
Chapter 13
Applications of Linkage Disequilibrium
and Association Mapping in Maize

Elhan S. Ersoz, Jianming Yu, and Edward S. Buckler

13.1 Introduction

Association mapping, also known as linkage disequilibrium mapping, is a relatively
new and promising genetic method for complex trait dissection. Association map-
ping has the promise of higher mapping resolution through exploitation of historical
recombination events at the population level, that may enable gene level mapping on
non-model organisms where linkage-based approaches would not be feasible (Risch
and Merikangas 1996; Nordborg and Tavare 2002).

Association mapping utilizes ancestral recombinations and natural genetic diver-
sity within a population to dissect quantitative traits and is built on the basis of the
linkage disequilibrium concept (Geiringer 1944; Lewontin and Kojima 1960). One
of the working definitions of linkage disequilibrium (which here on will be referred
to as LD) is the non-random co-segregation of alleles at two loci.

In contrast to linkage-based studies, LD-based genetic association studies of-
fer a potentially powerful approach for mapping causal genes with modest effects
(Hirschhorn and Daly 2005). While linkage analysis is based upon detection of
non-random association between a genotype and a phenotype in well-characterized
pedigrees, association mapping focuses on associations within populations of unre-
lated individuals. In general, chromosomes sampled from unrelated individuals in
a population will be much more distantly related than those sampled from members
of traditional pedigrees. In other words, the time to most recent common ancestor
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(MRCA) of any given two individuals from a population of unrelated individuals
would be greater than that of a pedigree population. This is what makes LD map-
ping suitable for fine-scale mapping: there will have been more opportunities for
recombination to take place over several generations, between many alleles, in a
species, while there can be only a few generations of recombination present in pedi-
gree populations. Increase in the rate of recombination will lead to reshuffling of
the chromosomal segments into smaller pieces. This will lead to reduction of the
LD in short distances around loci, and lead to significant co-occurrence (i.e. LD) be-
tween only loci physically close, allowing high resolution. Whereas pedigree studies
work with recombination events in few generations that enable exchange between
chromosomes at the order of megabases, association studies deal with segmental ex-
changes measured in kilobases (Paterson et al. 1990; Stuber et al. 1992; Thornsberry
et al. 2001).

13.2 What is Linkage Disequilibrium and How is it Related
to Association Mapping Studies

The term linkage disequilibrium was first introduced back in the late 1940s to de-
scribe the degree of non-random association between pairs of loci. In the absence
of demographic effects that might confound the LD patterns, LD summary statis-
tics such as r2 can be used to define the level of co-occurrence of alleles at two
loci (Hill and Robertson 1968). When r2 is zero, alleles at two loci do not co-occur
more frequently than would be expected under random sampling. r2 approaches
its maximum of 1 as alleles at two loci show more frequent co-occurrence within
the population sample examined. There are various other LD statistics that can
be used for this purpose (Hedrick 1987) all of which aim to estimate the predic-
tive value of a marker locus on another locus that is displaying non-zero LD with
it (if LD statistic is zero, two loci examined have zero predictive value for each
other).

Association mapping uses these properties of the measures of pairwise LD sta-
tistics to infer the predictive value of a marker locus for the association of the chro-
mosomal region where it resides with the phenotype. The high-LD chromosomal re-
gion around a marker locus defines the predictive range of a certain genetic marker.
If LD within this genomic range is complete, any polymorphism within this range
will have the same predictive value for the association with the phenotype. Hence,
as a result of a significant marker–phenotype association, it can be concluded that
the causative polymorphism resides within this high LD region around the marker
locus.

With respect to association mapping, the most significant aspect of LD is its
predictive properties over the haplotype it resides in. However, the extent of LD
(in base pairs) within species and even within individual genomes is highly vari-
able, and therefore most reliably estimated empirically (Long and Langley 1999).
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Theoretical estimation of the levels of LD for realistic population models that does
not satisfy the assumptions of the Wright-Fisher model is complex. The hardship
is mostly due to the large number of interrelated factors involved in the forma-
tion of patterns of LD, including but not limited to genetic drift, population ad-
mixture, and natural selection (Pritchard and Przeworski 2001; Wall and Pritchard
2003).

The statistical power of associations is determined by the extent of LD with
the causative polymorphism, as well as sample size used for the study (Long and
Langley 1999; Wang and Rannala 2005). If LD decays too fast within a region, a
large number of markers would be required to scan target regions of a genome. On
the other hand, if LD decays too slowly, the size of the haplotype blocks would be
too large to unambiguously reveal underlying causative locus. In other words, the
decay of LD over physical distance in the study population determines the marker
density required and the level of resolution that may be obtained in an association
study.

13.2.1 How to Estimate LD

There are several summary statistics proposed for estimation of LD (Hedrick 1987);
however, the most commonly used summary statistic within the association study
framework is known as r2 (Hill and Robertson 1968; Lewontin 1988). Concep-
tually and mathematically r is the Pearson’s (product moment) correlation coef-
ficient of the correlation that describes the predictive value of the allelic state at
one polymorphic locus on the allelic state at another polymorphic locus, where
r2 is the squared value of correlation coefficient that is also called coefficient
of determination. r2 explains the proportion of a sample variance of a response
variable that is explained by the predictor variables when a linear regression is
performed.

Lewontin’s D is another summary statistic for LD that is commonly used. D
describes the difference between the coupling gamete frequencies and repulsion ga-
mete frequencies at two loci. From D a second measure of LD, that is normalized
D′, can also be estimated. Even in samples taken from populations at equilibrium
under neutrality, variances of LD summary statistics are typically large, but D′ has
the lowest variance (Hedrick 1987). However, estimation using D′ may generate er-
ratic and unreliable results when low frequency alleles or small sample sizes are
used for the analysis. It is advisable to collapse the alleles using an allele frequency
cut-off prior to estimation of LD statistics D and D′.

Other than these commonly used summary statistics for LD, there are also
likelihood-based methods that investigate probability of independence between
pairs of sites using two-locus sampling distributions, rather than calculating a
summary statistic for LD. These methods, usually referred to as model-based LD es-
timators, also provide means of estimating population recombination parameter 4Nc
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under a neutral equilibrium model from nucleotide sequence data (Golding 1984;
Hudson 1985, 2001) or generating other model-based estimates of LD for com-
parisons with observed patterns (Mueller 2004) under various population structure
and demographic history scenarios. Although the estimation of LD through these
methods is more computationally intensive compared to pairwise-LD estimation
methods, they are extensively used for evolutionary and population genetic studies
as well as investigations into the domestication of various crop plant species (Wright
et al. 2005; Wright and Gaut 2005).

13.2.2 Interpretation of LD Data

Estimating LD from empirical data is a straightforward procedure; however, inter-
pretation of the results of LD analysis and extrapolation of this information to the
genome may be more complex. It is important to estimate the rate of decay of LD
with physical distance to be able to extrapolate information gathered from a small
collection of sampled loci to the whole genome investigated. This extrapolation is
essential for association mapping study design since it may be used to determine the
marker density required for scanning previously unexplored regions of the genome
as well as the maximum resolution that can be achieved for genotype–phenotype
associations in the study population.

The levels of LD are expected to be highly variable across the genome due to
several factors, such as variation in recombination rate and selection. For reliable
results, this variation needs to be taken into account when designing experiments to
exploit LD. Variation in rate of recombination across the genome is a key factor that
contributes to the variance observed in patterns of LD. A number of researchers have
focused on the distance at which average r2 is reduced to 0.10 as a reasonable point
to conclude that there is minimal LD to detect associations with complex traits. The
reasoning for this r2cut-off is as follows: in a complex trait a large quantitative trait
locus (QTL) may only explain approximately 10% of the phenotypic variation. If
a marker only explains 10% of the total QTL variation, then the marker will only
explain 1% of the phenotypic variation. Detection of locus effects that cause larger
than 1% phenotypic variation requires exponentially increasing population sizes,
and therefore such small effects would be considered undetectable in a moderate
size study population.

To maintain sufficient power for dissection of complex traits through associa-
tion studies, the choice of marker density and population size are of importance.
Not only high enough marker density to screen and target region(s) at blocks
of greater LD (i.e. r2 > 0.8) but also large-sized populations are required in or-
der to achieve sufficient power. Current human genetic studies focus on genome
scans aiming for much higher LD (e.g. r2 > 0.80) (Barrett and Cardon 2006),
and are developing haplotype-based approaches that can help capture more variants
(Pe’er et al. 2006).
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13.2.3 LD in Maize

Studies on rates of decay of LD in various plant taxa (Flint-Garcia et al. 2003)
such as maize (Zea mays ssp. mays) (Remington et al. 2001b; Ching et al. 2002;
Tenaillon et al. 2002; Palaisa et al. 2003), barley (Hordeum vulgare) (Caldwell
et al. 2004, 2006), Arabidopsis thaliana (Nordborg et al. 2002, 2005), sorghum
(Sorghum bicolor) (Hamblin et al. 2005) and durum wheat (Triticum durum)
(Maccaferri et al. 2005) indicate tremendous variation in the extent of LD. This
variation is mostly due to founder effect followed by genetic drift that leads to un-
equal number of effective recombinations in species sub-populations. Selfing also
plays an important role (Nordborg 2000).

The population sample effect is clearly observed in maize, where LD decays
within 1 kb in land races (Tenaillon et al. 2001), in approximately 2 kb in diverse
inbred lines (Remington et al. 2001b) and can extend up to 100–500 kb in com-
mercial elite inbred lines (Ching et al. 2002; Jung et al. 2004). One key issue in
comparing distances within genes and between genes is that recombination occurs
very rarely outside of genes, so LD can extend for great distances in retroposon
regions.

LD decay can also vary considerably from locus to locus. For example, signifi-
cant LD was observed up to 4 kb for the Y1 locus (encoding phytonene synthase),
but was seen at only 1 kb for PSY2 (a putative phytonene synthase) in the same
maize population (Palaisa et al. 2003). A more recent study showed that LD for some
haplotypes extends over 800 kb around Y1 (Palaisa et al. 2004). The Y1 case is a
clear example of strong selection, with a decade-long period tremendously reducing
the diversity linked to the key polymorphism, which created very extensive LD.

13.3 Association Populations and Statistics

There are five main stages for association studies: (1) selection of population sam-
ples; (2) determination of the level and influence of population structure on the
sample; (3) phenotyping the population sample for traits of interest; (4) genotyping
the population, for either candidate genes/regions or as a genome-wide scan; and
(5) testing the genotypes and phenotypes for their associations (Fig. 13.1).

The choice of association test is the last step of the study and is mostly de-
pendent on the previous steps, according to the characteristics of the popula-
tion that was used to collect the genotypic and phenotypic data (Lewis 2002;
Breseghello and Sorrells 2006a, b). Furthermore, possible complications due to
population structure in the study sample may adversely affect the association test
results. The influence of population structure on each association study depends on
the relatedness between sampled individuals in the studied population (Fig. 13.2,
Fig. 13.3). Therefore, the populations amenable for association studies may be clas-
sified according to the level of relatedness between the individuals forming the as-
sociation population.
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Preliminary Analysis and Feasibility Study

Population: Small sized diversity sample(s) 
to be used as a Discovery Panel.

Data: Nucleotide sequence, from locus 
samples with genome-wide coverage from 
the Discovery Panel.

Analysis: Nucleotide diversity (q ) , decay of 
linkage disequilibrium with physical distance 
(r 2 ), population recombination rate (r ) ,
population structure and demography.

Results: Range of diversity to be sampled 
for association population, marker density 
required for sufficient coverage of target 
genomic regions (or the genome) for 
association, level of population structure that 
exists within the species, evaluation of 
genome-wide influence of demography,  
determination of genomic regions targeted by 
natural selection and domestication, and 
number and density of the neutral markers 
required to evaluate background 
associations.

Data Collection

Genotype: Select species-wise informative
and high-through put genotyping-amenable
markers. Choice of genotyping platform is 
dependent on the size of the population to be 
studied as well as the number of available 
markersthereby per marker per individual 
experimental cost  is optimized. In addition, 
since genotypes from the candidate regions 
are trait dependent, in order to test the levels 
of background-stochastic associations, other 
neutral markers should be genotyped as well.

Phenotype: Phenotypes of interest should 
be replicated temporally and spatially to 
increase accuracy and precision of the 
phenotypic measurements. Quantitative 
measures of the traits of interest are 
preferable over categorical phenotyping. 
Evaluation of the heritability helps define the 
expectation for the genetic component of the 
phenotypic variance.

Statistical Association

• Build  statistical model(s) for the 
expectation of phenotypic correlation with 
environmental and genetic variability 
(V

p
= V

G
+V

E
 ).

• Evaluate the level of co-variance between 
the phenotypes, and combine the highly 
correlated traits in the same model.

• Evaluate co-variance between the neutral 
marker genotypes and candidate gene 
genotypes.

• Determine the type I error thresholds 
according to the number of tests performed
and the level of flexibility in the study.

• Determine power and false positive rate 
expectations for the study.

• Run statistical association tests.

Post-Association Follow-up

Evaluation: The genotypic value of the associated allele should be evaluated on several different genetic backgrounds, for its overall phenotype
as well as biochemical and molecular genetic studies for elucidation of structure and function.
Verification: The association reported should be verified either through re-evaluation in an independent population sample or through allelic 
silencing /knock-outs.
Breeding: The  best alleles obtained through the study should be incorporated into breeding programs for integration into elite varieties.

Fig. 13.1 The steps employed during an association study

In the following subsections, we will first discuss the influences of population
structure on various association study designs, followed by examples of control on
its influences by accounting for the relatedness between individuals forming the
association population.
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Fig. 13.2 Schematic comparison of various methods for identifying nucleotide polymorphism trait
association in terms of resolution, research time and allele number
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Fig. 13.3 Schematic diagram of the different types of population encountered in association map-
ping studies. Examples and relevant statistical methods for the analysis of the different population
types are described. a Ideal sample with subtle population structure and familial relatedness (e.g.
F2 population or synthetic), regression and genomic control (GC). b Family-based sample (e.g.
extended pedigree), transmission disequilibrium test, quantitative transmission disequilibrium test,
GC and mixed model (pedigree-based coancestry matrix and relative kinship matrix). c Sample
with population structure (e.g. maize landraces), structured association (SA) and GC. d Sample
with both population structure and familial relationships (e.g. maize association panel), SA, GC
and mixed model (population structure (Q) plus relative kinship matrix (K))

13.3.1 Population Structure

The most important constraint to the use of association mapping for crop plants is
unidentified population substructuring and admixture due to factors such as adapta-
tion or domestication (Thornsberry et al. 2001; Wright and Gaut 2005). Population
structure creates genome-wide LD between unlinked loci. When the allele frequen-
cies between sub-populations of a species are significantly different, due to factors
such as genetic drift, domestication or background selection, genetic loci that do
not have any effect whatsoever on the trait may demonstrate statistical significance
for their co-segregations with a trait of interest. Provided that a large number of
neutral markers are available for estimation of genome-wide effects of structure, it
is possible to statistically account for such effects in association data analysis (Yu
et al. 2006b).

In cases where population structuring is mostly due to population stratification
(Pritchard 2001; Bamshad et al. 2004), three methods are often acknowledged to be
suitable for statistically controlling the effects of population stratification on associ-
ation tests: (1) genomic control (GC) (Devlin and Roeder 1999; Devlin et al. 2001,
2004); (2) structured association (SA) method, including two extensions that are
modified for the type of association study – case control (the SA-model) (Pritchard
et al. 2000b) and quantitative trait association study (the Q-model) (Thornsberry
et al. 2001; Camus-Kulandaivelu et al. 2006); and (3) the unified mixed model ap-
proach (Q+K) (Yu et al. 2006b).
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The first method suggested for statistically controlling population structure was
GC, which assumes that population structuring has equivalent effects on all loci
genome-wide. In the GC method, a small random set of markers (e.g., poly-
morphisms unlikely to affect the trait of interest) are used to estimate influence
of population structure on the association test statistics (inflation factor), such
that the significance of the association statistic (P value) estimated is adjusted
to account for population structure. The general principle of GC is to use in-
dividual genomes from the sample to estimate the levels of confounding due
to substructure and more direct relatedness, such as familial relationship, in the
study, and scale the final significance level of the association reported accordingly
(Devlin et al. 2001).

Structured association methodology utilizes marker loci unlinked to the candi-
date genes under investigation to infer sub-population membership. The application
of structured association to qualitative and quantitative traits is done using the appro-
priate model, depending on the trait and population type, with either SA or Q mod-
els, respectively. In application of SA for quantitative trait association (Q-model),
a two-stage procedure is constructed, where for the first stage each subject’s prob-
ability of membership in each sub-population is estimated (Pritchard et al. 2000a,
b), and then in the next stage a test of association is conducted using sub-population
membership as a variable for the association model tested (Pritchard et al. 2000b);
then, in the next stage, a test of association is conducted using sub-population mem-
bership. In case-control studies, the probability of the SNP frequency distribution
based on population structure is compared between the case and control samples.
For quantitative traits, the population structure estimates are used as co-variates in
the regression model that defines the correlation of the genotype with the phenotype
(Thornsberry et al. 2001; Camus-Kulandaivelu et al. 2006).

In the unified mixed model approach (aka Q+K model) of Yu et al. (2006b), a
large set of random markers that can provide genome-wide coverage are used to
estimate population structure (Q) and relative kinship matrix (K), which are fit into
a mixed-model framework to test for marker-trait association. In the unified mixed-
model approach, each of the factors that may confound association analysis, that
is familial relatedness between individuals (K) and relatedness due to population
structure (Q), are considered as independent variables within the species population.
In order to account for the combined effects of such relatedness factors, they are
included as covariates in the regression model that defines the correlation between
genotype and phenotype during association testing.

The genetic makeup of the study population that was used to collect genotypic
and phenotypic data defines the model and type of association statistics to be used
for association tests. This will be discussed further in the next section.

13.3.2 Classic Association Populations

If the individuals forming the study population are effectively unrelated, the study
population may be considered a random sample of individuals from species
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populations and is therefore equivalent to any natural population. The relatedness
amongst the individuals forming the population can be either estimated using pedi-
grees (Emik and Terrill 1949) or inferred using molecular markers (Lynch and
Ritland 1999; Wang 2002; Blouin 2003; Oliehoek et al. 2006). These individuals
can be either selected from originally natural populations or subselected from se-
lections included in breeding programs, to form a classic association population.
Selecting individuals from breeding programs offers the advantage of easy incorpo-
ration into future breeding programs; however, the number of lineages incorporated
in the association study becomes limited (Breseghello and Sorrells 2006a, b).

All the previously mentioned statistical methods for population structure infer-
ences are applicable to the classic association populations; however, the Q+K model
has the widest base of applicability across all structured association study designs
in natural populations.

In plants, so far the focus has been on quantitative traits in natural populations.
In maize, using diverse inbred lines, it was possible to select a sample of 102 lines
with relatively few closely related individuals by sampling across the world’s breed-
ing programs (Remington et al. 2001b; Thornsberry et al. 2001). However, as larger
samples were gathered to increase statistical power to over 300 maize lines it be-
came extremely difficult to find samples that match the structure expected in nat-
ural populations (Flint-Garcia et al. 2005). These are the cases where the com-
bined natural and family-based approaches are most powerful (Yu et al. 2006a).
In Arabidopsis (Nordborg et al. 2005), natural samples were collected from around
the world, but because of strong population structure and selfing, these samples
in many respects behave more like families for association mapping purposes
(Aranzana et al. 2005). Association studies with some tree species are more likely
to fall into the model of effectively unrelated individuals (Thumma et al. 2005;
Gonzaléz-Martinéz et al. 2006). Most crop plant studies will probably fall on a con-
tinuum between natural and family-based association populations.

13.3.3 Family-Based Association Populations

If the association population is a collection of unrelated families, instead of sin-
gle unrelated individuals, it is possible to perform a joint linkage and association
analysis on the population, that potentially can be more informative on the trait of
interest than either approach alone (Holte et al. 1997; Karayiorgou et al. 1999). For
instance, in human genetics, where the association populations are collections of
parent–offspring trios, two types of study design are considered: transmission dis-
equilibrium tests (TDTs) (Spielman et al. 1993; Allison 1997; Rabinowitz 1997;
Monks et al. 1998; Fulker et al. 1999) and family-based association tests (FBATs)
(Laird et al. 2000; Lake et al. 2000; Horvath et al. 2001; Lange et al. 2003; Herbert
et al. 2006; Laird and Lange 2006). Stich et al. (2006) modified the QTDT algorithm
to test its applicability to inbred plant populations, and developed a model named
the Quantitative Inbred Pedigree Disequilibrium Test (QIPDT), for analysis of joint
linkage and association data from crop plant populations. Another family-based
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population design that was essentially developed for crop and livestock breeding
is the Henderson’s Mixed Model Approach (Henderson 1975), which is generally
known for its applications in best linear unbiased predictors (BLUPs). Family-based
association study design investigates co-segregation and linkage simultaneously
(Spielman et al. 1994).

A long-standing mixed model method has been used by animal scientists to an-
alyze the data from extended pedigree in dairy and beef cattle breeding programs
(Henderson 1975, 1976, 1984). The superiority of the mixed model lies in its in-
corporation of the phenotypic observations from relatives of an individual in the
estimation of the breeding value of that individual. The amount of information that
is incorporated depends on the heritability of the trait and the genetic relationships
(traditionally defined by pedigree information) among individuals. Naturally, this
method has been extended to quantify the single gene effect while accounting for the
pedigree relationship (Kennedy et al. 1992), and is applicable to association map-
ping with family-based association populations. Taking this mixed model frame-
work, Yu et al. (2006b) suggested replacing the pedigree-based co-ancestry with a
marker-based relative kinship (K) to account for the relatedness among individuals.

This unified mixed model approach is demonstrated to be the most powerful
statistic compared to all the rest of the statistics for the family-based association
studies and those studies falling between classical and family-based designs. The
flexibility and generality of this approach allow association studies to be carried out
on any population without the restriction on the specific family structure.

13.3.4 Special Association Populations

Recently, the field of plant association genetics pioneered the use of a new type of
association population, designed to incorporate advantages of both linkage-based
and LD-based quantitative trait dissection approaches in association studies, in a
stronger design than transmission-disequilibrium test (TDT) design. This builds
on some of the joint linkage-association approaches encountered in cattle breeding
(Meuwissen and Goddard 1997; Blott et al. 2003). Nested association populations
(NAM) are developed through controlled crosses between a diverse selection of un-
related individuals according to a breeding scheme that aims to shuffle alleles in
diverse samples either across backgrounds or against a reference background, while
keeping track of number and locations of the recombination events that shuffle the
parental chromosomes (Yu et al. 2006a). The subsequent generations of progeny
of the crosses can then be used as association populations. A population gener-
ated according to this described scheme not only provides tremendous power to the
statistical tests of association, but also enables the projection of genotype informa-
tion from the parents to the progeny, optimizing genotyping cost for large studies.
The cross design is expected to effectively reduce many of the effects of admix-
ture and population structure on the association population. For such populations, a
two-step procedure for associations is suggested.
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The two-stage study design of nested association mapping requires deep se-
quencing or genotyping of the parents for SNP identification across the genome,
followed by lower density genotyping in the progeny in order to infer the locations
of the recombination breakpoints during the crosses. Once the recombination break-
points are localized and the recombination blocks are traced back to the contributing
parent, the haplotype information from the parents can be directly projected on the
progeny genome, without further need for genotyping within these blocks.

This design scheme enables the researcher to utilize the advantages of both
linkage-based and LD-based genetic mapping approaches. It provides genome-wide
coverage with high resolution and is performed on an experimental cross that is ro-
bust to genetic heterogeneity, with representation of several alleles per loci in a large
population.

Because of the balanced design, straightforward multiple regression approaches
can be applied (Yu et al. 2006a) for association testing. Currently, availability of
such nested association populations are reported for maize (Yu et al. 2006a) and
loblolly pine (Baltunis et al. 2005; Kayihan et al. 2005; Ersoz 2006). Further statis-
tical methods that are going to utilize and combine information from both parent and
progeny generations for NAM-type populations are currently under development.

These mentioned association population structures represent the continuum of
LD levels from low in classic association populations towards high in biparental
breeding populations. Nested association populations that are similar to heteroge-
nous intermated populations (Niebur et al. 2004) fall in the mid-range of this con-
tinuum with moderate levels of LD and linkage.

13.4 False Positives and Power of Association

One of the major concerns of association mapping studies is the statistical power
of the association testing, since, as it stands, there is a trade-off between the power
and accuracy of reporting associations due to false positives. The major determinant
of the levels of false positives and power of associations is the level of population
structure in the association population.

A false positive (type I error) occurs when a test incorrectly reports that it has
found a positive result where none really exists. The classical definition of type I
error is an incorrect rejection of the null hypothesis – accepting the alternative hy-
pothesis even though the null hypothesis was true. The second functional biological
definition of false positives is also used in association studies. In this framework,
false positives arise not only due to the failure of the statistical test performed, but
also in cases where the statistical test is valid and the association exists but it is
an association with population structure instead of the trait of interest. Population
structure can lead to identification of loci that generate statistically significant but
biologically invalid associations solely due to their tight correlation with population
structure. However, if the population structure in an association study is properly
dealt with, this is not expected to be a source of false positives.



184 Elhan S. Ersoz et al.

Traditionally, type I error rate (α) for multiple testing is controlled with the Bon-
ferroni correction. The Bonferroni correction in general is conservative and leads
to power loss for detection if the polymorphisms are in LD and/or the traits are
correlated with one another.

Another statistical method suggested for control of multiple testing is the false
discovery rate (FDR) procedure. The FDR is the proportion of positive results that
are actually false positives versus the whole set of positive results obtained from a
statistical test. The procedure can be used to estimate a cutoff for a particular FDR
(Benjamini and Hochberg 1995) or an FDR for a particular cutoff (Storey 2002;
Storey and Tibshirani 2003). FDR approaches may be most appropriate when mul-
tiple traits are being compared or when the markers are not in extensive LD (Chen
and Storey 2006). Essentially based on the relative costs of false positives on further
follow-up research, appropriate FDRs should be determined and used.

A third procedure that can be applied for multiple testing correction is the permu-
tation test (Churchill and Doerge 1994; Doerge and Churchill 1996), which controls
for the genome-wide error rate (GWER). The permutation test has the ability to
estimate effects on significance levels caused by the use of correlated markers as
well as correlated traits. In this approach, the trait values are permuted relative to
the genotypic data. These permutation approaches are appropriate ways to control
the GWER; however, they can be quite conservative if one expects numerous QTLs.
Recently, the GWERk approach of Chen and Storey (2006) incorporating a more
liberal balance of true and false positives provides a reasonable avenue.

Other than the statistical methods proposed, it is also possible to non-
parametrically estimate the FDR through comparison of distributions of P values
against a set of markers of known influence and a set of random markers scored on
the same association population, with simulations. The probability of false associa-
tions is simply the ratio of the proportion of significant associations detected in the
random set to the proportion of significant associations detected in the simulated set
of known influence loci. This method provides a fast and rigorous way of estimating
FDR if a set of random markers has been scored on the association population. Since
random markers are required to estimate population structure, this method should
be applicable for association testing in most cases.

The power of a statistical test is the probability that the test will reject a false
null hypothesis. Some of the relevant parameters that can affect the power of asso-
ciation studies are, but are not limited to, (1) the type of association test – single
marker or haplotype based; (2) the multiplicity control method; (3) the population-
structure control method; (4) genetic architecture of the trait; (5) population size;
(6) marker density; and (7) type of populations used for associations – family based
or effectively unrelated (Long and Langley 1999).

Simulation studies that investigate the power of the association tests for the can-
didate gene association approach report that 300 individuals in a natural population
provide enough power to detect repeatable associations when population structure
is controlled properly (Long and Langley 1999; Thornsberry et al. 2001; Camus-
Kulandaivelu et al. 2006; Yu et al. 2006a). These power estimates are based on can-
didate gene studies, where there are few SNPs being evaluated relative to the entire
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genome. Genome scan-type association studies are rapidly becoming feasible, but
for such studies the population sample size required to obtain sufficient power will
be larger. The exact population size required will depend on the LD structure for the
population. Population sizes of 1000 to 5000 genotypes will likely be sufficient in
most cases.

The power of association will be low if the trait is highly correlated with pop-
ulation structure. Statistical controls for population structure under such circum-
stances would result in false negatives. An example of such a case is demonstrated
for maize and Arabidopsis flowering time traits (Aranzana et al. 2005; Flint-Garcia
et al. 2005). The reason for flowering time and population structure to be correlated
is that flowering time is an adaptive trait that largely defines the structure. The Q+K
model can produce somewhat better results in these situations (Yu et al. 2006b), but
in general a different sample or genetic design is required to work with traits that
are tightly correlated with population structure. From a study of 60 traits on a maize
diversity panel of 302 inbred lines, the only traits that showed strong relationship
with structure were two flowering time-related traits.

Three studies using different germplasm have analyzed maize flowering time
and the dwarf8 (d8) gene (Thornsberry et al. 2001; Andersen et al. 2005; Camus-
Kulandaivelu et al. 2006). These studies highlight the difficulties of studying traits
related to population structure. In all three studies, when population structure is ig-
nored, highly significant associations between the traits and polymorphisms in d8
are detected that are often much more significant than any of the random markers. It
is clear that the putatively functional allele is segregating with a very high allele fre-
quency in some populations, while it is represented at very low frequencies in other
populations. This is exactly what would be expected if flowering time is under diver-
sifying selection between the various sub-populations. Furthermore, upon applica-
tion of standard corrections for managing population structure (Q), the d8-flowering
time association is significant for some samples but not for others, in all three stud-
ies. Essentially, there is low statistical power to evaluate candidate genes that are
involved in the clinal adaptation and/or creation of population structure. While em-
pirical significance estimates obtained through contrasting the significances of the
candidates with large numbers of random markers, the most effective approach for
this type of trait may be specially constructed association populations with balanced
designs.

13.5 Phenotyping and Genotyping Strategies for
Association Testing

As in all other quantitative genetic studies, the success of an association study
is heavily dependent on the accurate evaluation of the phenotype of interest. The
within-population variation observed for genotypes and phenotypes for an associa-
tion is much greater than that found in most bi-parental mapping populations. While
greater variation is preferable when aiming for higher resolution and allele mining,
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it can pose problems for accurate evaluation of this variation in a meaningful way
in a single environment.

The inherent variation observed in phenotypic trait measurement, when com-
bined with the substantial genetic variation included in some association studies,
requires careful experimental design to acquire quality data. In addition, evaluations
in multiple environments with controls and unbalanced designs may be required. In
our experience with maize, we found that evaluating the germplasm in short-day
environments facilitated some trait evaluation by reducing photoperiod effects be-
tween lines. Additionally, we found that evaluating the germplasm in testcrosses
(F1 hybrids) has reduced the phenotypic range to a manageable level. Since each of
these approaches interact with the genetic architectures of the traits, future studies
will be needed to fully understand the tradeoffs of various study design approaches.

In the association study design, genotyping is required for inferences both on
the genotype/phenotype associations and on the population structure and demogra-
phy. The first aim of querying candidate regions for polymorphisms is best achieved
by genotyping SNPs within these candidate regions. The second aim of gathering
information on population-specific phenomena, such as structure, linkage, demogra-
phy and kinship, can be achieved through genotyping neutral background markers,
such as SNPs on non-coding regions and SSRs (simple sequence repeats) distributed
evenly throughout the genome.

All genetic markers can be used for investigating association; however, SNPs
potentially have the most utility compared to other genetic markers. Various assays
were developed for detection of known and unknown SNPs. Some are relatively easy
to implement and low in cost, while others are developed for high-volume screening
at substantial cost. As the cost of genotyping diminishes, genome-wide scans of all
available polymorphisms in a species’ genome are becoming rapidly feasible and
preferable over targeted SNP genotyping approaches. SSR markers have historically
been useful in association studies and do have high information content, but they
may be difficult to find in candidate gene regions and they are several-fold more
expensive to score than SNPs.

For the purposes of inferences on the population history, genotype information
from a large number of neutral marker loci is required. We are using the term neutral
marker loosely here to indicate the non-candidate loci, i.e. the loci that were not
designated as candidate loci that can putatively influence a trait of interest. The
density of the markers required should be scaled to provide genome-wide coverage.
Simulation studies suggest 100 SSR or 200 SNP markers would suffice to get a
reasonable estimate of population structure and relatedness for most crop plants
(J. Yu and E.S. Buckler, unpublished results).

When targeting candidate loci for association studies, the greatest statistical
power is achieved when the marker and QTL have equal allele frequencies (Abecasis
et al. 2001) in the study population. This is due to the opportunity created for maxi-
mal linkage and LD, since robust detection of associations requires that the marker
and trait loci are in phase. If there is no knowledge of the QTL frequency distribution
a priori, the best alternative is to choose markers with a wide range of allele frequen-
cies that are likely to mimic the QTL mutation rate. Some SSRs probably mutate
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faster and have a different frequency distribution than QTLs, which may make them
less useful for association mapping. SNPs with a wide range of allele frequencies
are most likely to be informative. In order to maximize the information content of
SNPs, a large number of them can be chosen to scan a particular genomic region,
and this can be achieved with numerous algorithms available for choosing SNPs
(Daly et al. 2001; Johnson et al. 2001; Patil et al. 2001; Gabriel et al. 2002; Acker-
man et al. 2003; Ke and Cardon 2003; Sebastiani et al. 2003; Zhang and Jin 2003;
Halldorsson et al. 2004; Forton et al. 2005).

Whether the trait of interest has a binary or quantitative phenotype, it is also
of interest for the association study design. When a binary trait is being investi-
gated, case-control-type populations are required for association analysis, where
equivalent sized sub-populations of individuals that display the phenotype of inter-
est (cases) and do not display the phenotype of interest (controls) are queried for
allelic association of genetic loci with the case and control phenotypes in a statisti-
cally significant manner. The statistical test performed is simply an hypothesis test
that asks whether or not the allelic frequency distribution of a locus is the same or
different for a given locus between the two sub-populations. Bulk segregant analy-
sis (BSA)-type (Michelmore et al. 1991) bulked sample genotype screening meth-
ods for all the available marker loci may facilitate candidate gene and association
discovery for binary traits (Shaw et al. 1998). The challange of case-control type
studies is to make sure that the case and control groups are comparable in terms of
their genetic makeup. Most of the statistical methods aim to detect and correct for
the effects of population statification and ancestry differences between the case and
control groups (Pritchard et al. 2000b; Price et al. 2006).

13.6 Association Mapping in Crop Plants

The motivations for attempting association mapping in different crop plants are
highly variable. For historically well-studied crop plants, such as maize and rice,
the major motivation for the association approach is dissection of complex traits at
very high-level resolution, as well as allele mining from natural genetic diversity re-
sources. For other organisms where there is insufficient or few genetic resources, the
major motivation is functional marker development and identification of molecular
markers tightly linked to the trait locus for marker assisted selection and breeding
practices. Thus, each association study stands alone for its own motivations and
should be evaluated for its utility and success based on the initial motivations and
aims.

The association mapping approach requires extensive infrastructure development
and preliminary studies to determine population structure and LD (Fig. 13.1). Once
the preliminary data and infrastructure for association mapping for a species are
available, several association studies on various plant taxa report successful results
for tests of associations between candidate locus genotypes and various complex
phenotypes (Table 13.1).
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Table 13.1 Association studies that report significant results. SA Structured association; MLM
mixed linear model

Species Population type Association
method

Trait References

Zea mays Diverse inbred
lines

SA (Q model) Flowering time Thornsberry et al.
2001;

Andersen et al. 2005;
Camus-Kulandaivelu
et al. 2006

SA (Q model) Kernel composition
Starch pasting

properties

Wilson et al. 2004

SA (Q model) Maysin synthesis Szalma et al. 2005
Case-control Carotenoid content Palaisa et al. 2004
MLM (Q+K

model)
Carotenoid content Harjes et al. 2008

Zea mays Diverse inbred
lines

Haplotype tree
scanning

Sweet taste Tracy et al. 2006

In the model organism Arabidopsis, the association mapping practice is mostly
motivated by generating proof of concept, identification of QTLs involved in
adaptation, and additional alleles to supplement other mutagenesis approaches.
The candidate-gene association study at the CRY2-Cryptochrome2 locus reported
diverse functional alleles (Olsen et al. 2004). In their first attempt at a genome-wide
association study in Arabidopsis, Aranzana et al. (2005) reported identification of
previously known flowering time (FRI locus) and three known pathogen-resistance
genes.

In maize, all reported association studies so far have targeted candidate genes
with known mutant phenotypes and are motivated by high resolution mapping and
allele mining purposes. For instance, d8locus with flowering time (Thornsberry
et al. 2001; Andersen et al. 2005; Camus-Kulandaivelu et al. 2006), bt2 (brittle2),
sh1 (shrunken1) and sh2 (shrunken2) with kernel composition, ae1 (amylose ex-
tender1) and sh2 (shrunken2) with starch pasting properties (Wilson et al. 2004)
and sweet taste (Tracy et al. 2006), a1(anthocyaninless1) and whp1 (whitepollen1)
genes with maysin synthesis (Szalma et al. 2005), and lyc-e (lycopene epsilon cy-
clase) gene with carotenoid content (Harjes et al. 2008) are studies that report
very high resolution associations, as well as localizing the causative polymorphism
within 1–2 kb of the marker loci reported. In maize, very little is known about as-
sociation mapping from a genomic scale, mostly due to incomplete genomic se-
quence and very rapid decay of LD. At the Y 1 locus a relatively large genomic
context was examined. Y 1 is a key gene in carotenoid production in maize (Buckner
et al. 1990, 1996), and through an association study (Palaisa et al. 2003) the allelic
variation was traced down to multiple independent insertions in the Y 1 promoter
region that cause up-regulation of the downstream Y 1 gene. At this locus, associ-
ations were also shown to extend to neighboring genes (Palaisa et al. 2004), albeit
with weaker significances. This extended LD is mostly the result of breeding efforts
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in the twentieth century that specifically targeted this simple Mendelian inherited
trait. The extended LD at the Y 1 locus is likely to be one of the most extensive
in the maize genome, effective over hundreds of kilobases, while other domesti-
cation loci, tb1(teosinte branched 1) (Lukens and Doebley 2001) and tga (teosinte
glume architecture) (Wang et al. 2005), show LD that extends over tens of kilobases.
However, it should be emphasized that tb1 and tga domestication loci demonstrate
patterns of reduced diversity as well as extended LD, indicating that the estimates
of LD are not as efficient as they are at Y 1. Furthermore it is plausible to assume
that not all of the selection events may have similar LD patterns to that of the
Y 1 locus.

Another motivation for the association approach is the opportunity to unify the
elite germplasm resource of an organism through investigation of the breeding ma-
terial. In an association study, Breseghello and Sorrells (2006b) investigated wheat
kernel size and milling quality in an elite germplasm collection of soft-winter wheat
from eastern USA. They identified three candidate regions on chromosomes 2D,
5A and 5B that are significantly associated with these traits (Breseghello and Sor-
rells 2006a). This study clearly demonstrates how results obtained from association
mapping-based genetic trait dissection studies can be utilized for marker-assisted
selection.

13.7 Conclusions

So far, map-based cloning approaches have been reported to successfully isolate 12
major-effect QTLs and nine small-effect QTLs (Price 2006). The time from QTL
mapping to positional cloning is estimated to be between 5 and 10 years, while
sufficient marker resolution for QTL cloning through association mapping can be
achieved within 2–3 years. Furthermore, there is a substantial lag between QTL
discovery and marker assisted crop improvement practices dedicated to verifica-
tion of the presence and stability of QTL in traditional linkage-based studies. In a
well-designed association study, some of the results can be immediately applied to
marker-assisted improvement.

The true large-scale applications of association mapping will become apparent as
multiple species begin to have marker densities sufficiently high for whole genome
scan by association mapping. Currently, several research groups are working on
whole genome scan approaches in half a dozen species that have whole genome
sequences available, and there are at least 50 more species whose genome sequences
will be completed in the near future.

The goal of association mapping in many crop plants is to identify key
genes controlling various traits and mine the best alleles from diverse germplasm
for incorporation into elite breeding material. Traditionally, genetic markers
were mostly used for trait improvement through several breeding-based ap-
proaches, such as marker assisted selection (MAS), marker assisted breeding
(MAB) and mapping as you go (MAYG) (Podlich et al. 2004), as well as QTL
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cloning/transformation-based approaches (Remington et al. 2001a). Association
mapping has the potential to provide numerous useful alleles to these marker-
assisted breeding programs. Marker-assisted breeding programs using association
data are now underway in numerous plant breeding companies. In the next few
years, we will also witness applications of association mapping and MAS for public
breeding programs.

Association mapping holds an important and rapidly expanding niche in quanti-
tative trait mapping studies, along with linkage mapping and positional cloning, and
it is likely that this niche will continue to expand over the next decade.
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