
A Very Compact “Perfectly Masked” S-Box
for AES

D. Canright1 and Lejla Batina2

1 Applied Math., Naval Postgraduate School, Monterey CA 93943, USA,
dcanright@nps.edu

2 K.U. Leuven ESAT/COSIC, Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee, Belgium

Abstract. Implementations of the Advanced Encryption Standard
(AES), including hardware applications with limited resources (e.g., smart
cards), may be vulnerable to “side-channel attacks” such as differential
power analysis. One countermeasure against such attacks is adding a ran-
dom mask to the data; this randomizes the statistics of the calculation
at the cost of computing “mask corrections.” The single nonlinear step in
each AES round is the “S-box” (involving a Galois inversion), which in-
curs the majority of the cost for mask corrections. Oswald et al.[1] showed
how the “tower field” representation allows maintaining an additive mask
throughout the Galois inverse calculation. This work applies a similar
masking strategy to the most compact (unmasked) S-box to date[2]. The
result is the most compact masked S-box so far, with “perfect masking”
(by the definition of Blömer[3]) giving suitable implementations immu-
nity to first-order differential side-channel attacks.

Keywords: AES, S-box, masking, DPA, composite Galois field.

1 Introduction

In 2001 the National Institute of Standards and Technology adopted the Rijn-
dael algorithm [4] as the Advanced Encryption Standard (AES)[5], to provide a
standard algorithm for secure encryption, intended not only for U.S. government
documents, but also for electronic commerce. Since then, applications of AES
have become widespread.

Many different implementations of AES have appeared, to satisfy the varying
criteria of different applications. Some approaches seek to maximize throughput,
e.g., [6,7,8,9]; others minimize power consumption, e.g., [10]; and yet others min-
imize circuitry, e.g., [11,12,13,14,15]. For the latter goal, Rijmen[16] suggested
using subfield arithmetic in the crucial step of computing an inverse in the Ga-
lois Field of 256 elements. This idea was further extended by Satoh et al.[12],
using sub-subfields (the “tower field” representation of Paar[17], also called the
“composite-field” approach), along with other innovative optimizations, which
resulted in the smallest AES circuit at that point. The S-box architecture of
Satoh was refined somewhat by Canright[2], mainly through carefully chosen
normal bases, resulting in the most compact S-box to date.

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 446–459, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Very Compact “Perfectly Masked” S-Box for AES 447

No attacks have yet been found on the AES algorithm itself that are more
effective than exhaustive key search (“brute force”), although research contin-
ues, for example, on algebraic attacks[18,19]. But specific implementations of
cryptograpy in software or hardware, e.g. in smart cards, may be vulnerable to
“side-channel attacks” such as differential power analysis[20,21], that use statis-
tical analysis of physical quantities such as power consumption, electromagnetic
radiation, etc., to deduce information about the secret key.

One countermeasure against side-channel attacks is masking the data during
calculation, through adding or multiplying by random values. All the steps in
a round of AES are affine, except for the Galois field inversion substep of the
S-box (SubBytes) step. For the other steps, calculation of the mask correction is
linear, so an additive mask is most convenient. Some have suggested switching to
a multiplicative mask for the Galois inverse step (e.g., [22]), but one inescapable
weakness is that a zero data byte is unmasked by multiplication [23].

Applying the “tower field” representation, inversion in GF(28) involves several
multiplications and one inversion in the subfield GF(24), which in turn involves
multiplications and inversion in GF(22). In the sub-subfield GF(22), inversion
is identical to squaring, and so is linear (over GF(2)). Oswald et al.[1] applied
this idea to additive masking of the Galois inverse, and showed how to compute
the mask corrections for the tower field approach. (Morioka and Akishita[24]
apparently developed a similar masking scheme.) Many of the correction terms
involve multiplication in subfields, and Oswald et al. showed how some of these
multiplications can be eliminated through clever re-use of parts of the input
mask for the output.

The present work incorporates this masking approach into the compact S-box
of Canright[2], and also applies the optimization methods of [2] to the mask cor-
rection terms. At the level of operations in the subfield GF(24), we simplify the
approach somewhat, eliminating one multiplication and some additions, with fur-
ther simplifications at lower levels. Even so, we show that our approach achieves
the goal of “perfect masking,” in the terminology of Blömer et al.[3]: each inter-
mediate result has a statistical distribution that is independent of the plaintext
and key (assuming a source of uniformly distributed truly random masks). This
level of security (a strengthened version of that in [25]) ensures that no first-
order differential side-channel attacks can succeed, at least at the algorithmic
level. (Higher-order attacks are possible, but take much greater effort.)

However, Mangard et al.[26] showed that first-order DPA attacks can succeed
against a masked S-box using standard CMOS technology, even when the inter-
mediate results at the algorithmic level are provably secure. The attack exploits
glitches in the gate transition timings. In later work, Mangard et al.[27] showed
that the information leakage is caused by specific XOR gates in masked multipli-
ers, and can be eliminated if those XORs are made to satisfy timing constraints,
either through delay elements or by enable signals. Also, rather than CMOS,
other (more expensive) logic styles can be used to eliminate this potential prob-
lem. So masked S-boxes can be made secure from first-order DPA. At any rate,

448 D. Canright and L. Batina

the current work only considers the intermediate results at the algorithmic level,
and shows that they are provably secure, which is the best that can be expected.

We apply the same optimizations as in the unmasked S-box of [2], including
efficient normal bases, elimination of common sub-expressions, and logic-gate
substitutions, to the masked S-box calculation here, including mask correction
terms. The result is, as far as we know, the most compact masked S-box to date
(for the 0.13-μ CMOS standard cell library considered). But the cost for this
security is that the S-box size is almost three times that of the unmasked S-box.
Also, since the security requires certain calculations to proceed in sequence, the
speed will be reduced. For applications with sufficient resources to unroll the
round loop, we show how re-using masks between rounds can save a significant
amount of the mask correction calculations; then the masked S-box is roughly
twice the size of the unmasked. Our compact masked S-box design could be
useful for securing some hardware AES applications, especially those with limited
resources, against first-order differential attacks.

2 Algebraic Description

The AES algorithm has been described thoroughly and frequently elsewhere[5];
here we give the barest outline before concentrating on the S-box. It is a sym-
metric block cipher (16 bytes, though the original Rijndael cipher supports other
block sizes[4]) consisting of several rounds (10, 12, or 14, for a key size 16, 24,
or 32 bytes, respectively). Each round involves the four steps called SubBytes
(byte substitution, or S-box), ShiftRows, MixColumns, and AddRoundKey (the
last round skips MixColumns, and there is a Round 0 consisting solely of Add-
RoundKey). The latter three steps are linear with respect to the data block, and
provide “diffusion.” SubBytes is the nonlinear step that provides “confusion.”

The S-box, applied to each byte, consists of two substeps: (i) considering
the byte an element of the Galois field GF(28), find its inverse in that field
(except a zero byte, which has no inverse, remains unchanged); (ii) considering
the resulting byte a vector of bits in (GF(2))8, multiply by a given bit matrix
and add a given constant vector, i.e., an affine transformation.

In the particular Galois field of AES, a byte represents a polynomial where the
bits are coefficients of corresponding powers of x, and multiplication is modulo
the irreducible polynomial q(x) = x8 + x4 + x3 + x + 1. Equivalently, one could
consider a root, say θ, of this polynomial, so q(θ) = 0 in this field; then the bits of
a byte would correspond to coefficients of powers of θ, e.g., 2 = θ, 3 = θ + 1, 4 =
θ2, etc. Thus the bits form a vector with respect to what is called a polynomial
basis. But there are computational advantages to considering a different (though
isomorphic) representation of GF(28). Instead of a vector of dimension eight over
GF(2), we consider a byte as a vector of dimension two over GF(24), where each
4-bit element is in turn a vector of dimension two over GF(22), and finally each
2-bit element is a vector of dimension two over GF(2). This has been called a
composite field, or “tower field” representation[17]. In this way, the 8-bit inverse
calculation comprises several 4-bit operations, each consisting of various simple

A Very Compact “Perfectly Masked” S-Box for AES 449

2-bit calculations. For each of these subfields, it has been shown[2] that a normal
basis (consisting of a conjugate pair) is more efficient than a polynomial basis for
the required inverse calculation; for each particular basis used, the trace (sum
of the conjugate pair) is 1, and the norm (product of the conjugate pair) is a
nonzero element of the subfield[2].

Converting between the standard AES representation and the composite field
representation amounts to a change of basis, accomplished by multiplying the
bit vector by a bit matrix. In converting back, this bit matrix can be combined
with that of the affine transformation substep[12]. With regard to an additive
mask, these matrix multiplications are simple linear calculations for the mask
correction terms. Below we detail the mask corrections required for the nonlinear
inverse calculation.

2.1 Inversion without Masking

Here we employ the following convention: upper-case bold symbols represent
elements of the main field (e.g. A ∈ GF(28)); upper-case italic symbols are for
elements of the subfield (e.g. A ∈ GF(24)); lower-case bold is used for the sub-
subfield (e.g. a ∈ GF(22)); and lower-case italic is for single bits (e.g. a ∈ GF(2)).

Without masking, inversion in GF(28)/GF(24) (indicating the representation
of GF(28) as vectors over GF(24)) using a normal basis [Y16,Y], where Y and
Y16 are the roots of X2 + X + N and N ∈ GF(24) is the norm (product:
N = Y17), is given by [2]:

A = A1 Y16 + A0 Y (given) , (1)

B = N ⊗(A1 ⊕ A0)
2 ⊕ A1⊗A0 , (2)

A−1 =
(
A0⊗B−1) Y16 +

(
A1⊗B−1) Y (result) . (3)

(Note that ⊗ and ⊕ denote multiplication and addition calculations in a Galois
field, while A1 Y16 +A0 Y is just the algebraic expression for the vector [A1, A0]
in the normal basis.) This requires inversion, multiplication, and the combined
“square-scale” operation (N⊗X2) in the subfield GF(24). Similarly, the inversion
in GF(24)/GF(22) using a normal basis [Z4, Z], where Z and Z4 are the roots
of X2 + X + n and n ∈ GF(22) is the norm (n = Z5), is given by:

B = b1 Z4 + b0 Z (given) , (4)

c = n⊗(b1 ⊕ b0)
2 ⊕ b1⊗b0 , (5)

B−1 =
(
b0⊗c−1) Z4 +

(
b1⊗c−1) Z (result) . (6)

But in the sub-subfield GF(22), inversion is the same as squaring, equivalent to
a bit swap:

c = c1 w2 + c0 w (given) , (7)
c−1 = c0 w2 + c1 w (result) , (8)

where w and w2 are the roots of x2+x+1. (While this algebraic description uses
the Galois inverse, the case of a zero element in any of these fields is correctly
handled: the zero element is returned in lieu of an inverse.)

450 D. Canright and L. Batina

2.2 Masked Inversion

Now introduce additive masking. By adding a random mask, such that the sta-
tistical distribution of masks is uniform over the field, now our operands appear
random as well, uncorrelated to either plaintext or key. Hence the statistical data
available through side channels appears as noise, independent of the chosen sets
of plaintexts, and the key is protected against first-order differential attacks. The
cost is the computation of mask correction terms that are combined with the
given masked input to correctly mask the output. Here we outline the algebraic
steps involved; we later show that this masking scheme is secure in 2.5.

We use the insight of Oswald et al. that in the sub-subfield GF(22) inversion
(squaring) is additive, so for data a and mask m, then

(a ⊕ m)−1 = (a ⊕ m)2 = a2 ⊕ m2 = a−1 ⊕ m−1 , (9)

and finding the mask correction m2 is trivial. Hence the tower-field approach
eliminates the need to remove the additive mask (or change it to a multiplicative
one) before inversion.

In the larger fields, here is how the mask corrections can be calculated. We
indicate the masked version of the input byte A with a tilde: Ã, and similarly
for the other masked quantities. So the input to the masked GF(28) inverter is
the data byte A already masked by the (known) mask M

Ã = (A ⊕ M) = Ã1 Y16 + Ã0 Y , (10)
M = M1 Y16 + M0 Y . (11)

Let

B̃ = N ⊗
(
Ã1 ⊕ Ã0

)2
⊕ Ã1⊗Ã0 ⊕ Ã1⊗M0 ⊕ Ã0⊗M1 ⊕ M1⊗M0 ,(12)

M2 = N ⊗(M1 ⊕ M0)
2

, (13)

with the result B̃ being B above, masked by M2, which is uniformly distributed.
Here the terms must be added in sequence to keep each intermediate result
uniformly distributed, as discussed below in 2.5.

For the subfield inversion, say B̃ = b̃1 Z4 + b̃0 Z and M2 = m1 Z4 + m0 Z,
and let

c̃ = n⊗
(
b̃1 ⊕ b̃0

)2
⊕ b̃1⊗b̃0 ⊕ b̃1⊗m0 ⊕ b̃0⊗m1 ⊕ m1⊗m0 , (14)

so c̃ is c above, masked by n⊗(m1 ⊕ m0)
2 (which need not be computed, only

its square m2 below).
In the sub-subfield, say c̃ = c̃1 w2 + c̃0 w, and let

c̃−1 = c̃0 w2 + c̃1 w (bit swap) , (15)
m2 = n2⊗(m1 ⊕ m0) , (16)

so c̃−1 is c−1 above masked by another uniform mask m2.

A Very Compact “Perfectly Masked” S-Box for AES 451

The next steps would involve only multiplications, but directly adding any
of the correction terms would reveal a distribution that depends on the data.
Hence (as in Oswald et al.[1]) we need to introduce another additive mask. This
mask could be new, or could be re-used bits from the original mask M. In either
case, this mask must be added first, then the other mask correction terms added
individually to the sum, to maintain the uniform distribution for intermediate
results.

Say now we introduce a new temporary 4-bit mask T = t1 Z4 + t0 Z, and let

b̃−1
1 = t1 ⊕ b̃0⊗c̃−1 ⊕ b̃0⊗m2 ⊕ m0⊗c̃−1 ⊕ m0⊗m2 , (17)

b̃−1
0 = t0 ⊕ b̃1⊗c̃−1 ⊕ b̃1⊗m2 ⊕ m1⊗c̃−1 ⊕ m1⊗m2 , (18)

so that the result B̃−1 = b̃−1
1 Z4 + b̃−1

0 Z is B−1 above, masked by T (but is not
the inverse of B̃).

Similarly, introduce a new 8-bit mask S = S1 Y16 + S0 Y for the output, and
let

Ã−1
1 = S1 ⊕ Ã0⊗B̃−1 ⊕ Ã0⊗T ⊕ M0⊗B̃−1 ⊕ M0⊗T , (19)

Ã−1
0 = S0 ⊕ Ã1⊗B̃−1 ⊕ Ã1⊗T ⊕ M1⊗B̃−1 ⊕ M1⊗T , (20)

so that the result Ã−1 = Ã−1
1 Y16 + Ã−1

0 Y is the answer A−1 above, masked
by the output mask S:

Ã−1 = A−1 ⊕ S . (21)

2.3 Re-using Masks

Oswald et al.[1] showed that through using parts of the input mask for the
intermediate results and the output, then several operations can be eliminated,
notably multiplications (for the cost of a few additions). We will follow the same
strategy below. (While re-using masks could make the implementation more
vulnerable to higher-order differential side-channel analysis, it remains secure
against first-order attacks.)

The first place where re-using masks helps is in the masked intermediate result
c̃−1, where for one subsequent calculation the mask m1 would be helpful but
for another the preferred mask would be m0, so we follow [1] and switch masks.
Then starting at (15) above we modify the calculation as follows:

c̃−1 =
[
c̃0 w2 + c̃1 w

]
⊕ (m1 ⊕ m2) , (22)

b̃−1
1 = m11 ⊕ b̃0⊗c̃−1 ⊕ b̃0⊗m1 ⊕ m0⊗c̃−1 ⊕ m0⊗m1 , (23)

c̃−1
2 = c̃−1 ⊕ (m0 ⊕ m1) , (24)

b̃−1
0 = m10 ⊕ b̃1⊗c̃−1

2 ⊕ b̃1⊗m0 ⊕ m1⊗c̃−1
2 ⊕ m1⊗m0 , (25)

where the underlined products had already been computed previously and may
be re-used. (Parens indicate the order of evaluation necessary to avoid unmasking
operands. In the actual optimized code, the details of the specific bits added are
different.) The result B̃−1 = b̃−1

1 Z4 + b̃−1
0 Z is still B−1 above, but now masked

452 D. Canright and L. Batina

by M1 = m11 Z4 +m10 Z, the upper half of the input mask. Following the same
approach of switching masks at the next level gives

Ã−1
1 = S1 ⊕ Ã0⊗B̃−1 ⊕ Ã0⊗M1 ⊕ M0⊗B̃−1 ⊕ M0⊗M1 , (26)

B̃−1
2 = B̃−1 ⊕ (M0 ⊕ M1) , (27)

Ã−1
0 = S0 ⊕ Ã1⊗B̃−1

2 ⊕ Ã1⊗M0 ⊕ M1⊗B̃−1
2 ⊕ M1⊗M0 , (28)

again allowing the underlined products to be re-used, and with the output Ã−1 =
Ã−1

1 Y16 + Ã−1
0 Y having the output mask S (which could be the original input

mask M, or not):
Ã−1 = A−1 ⊕ S . (29)

2.4 Re-using Masks Between Rounds

Many of the mask correction terms used in the masked inversion above involve
only the input mask, independent of the masked data. This is also true of all the
mask correction term calculations in the other steps of each round of encryption,
as those other steps are all linear (with respect to the additive mask). Then, if
the original 128-bit mask for a block of data were to be re-used for every round,
all those data-independent correction terms would be the same for each round.
For implementations where the round loop is “unrolled,” with S-boxes for each
round, these terms would only need computing once, then could be passed along
to all the other rounds. This would save the re-computation of all those mask
terms, eliminating the associated circuitry, at the modest cost of the “wiring”
required to pass along the correction terms. Of course, one would use a new
random mask with each new block of data in Round 0, to ensure that over time
the distribution of masks remains uniform.

More precisely, one way to do this starts by picking a random 128-bit mask
that will be used as the output mask (whose bytes correspond to S above)
from the inversion step. Then after each byte undergoes the basis change (from
the tower field form) combined with affine transformation part of the S-box
(excluding the additive constant), the ShiftRows step is applied to the whole
mask; the result is the output mask after the last round of encryption (which
lacks the MixColumns step). Then MixColumns is applied to that, giving the
input mask to be added to the initial data before Round 0. Applying byte-wise
the basis change (to the tower field form) gives the input mask (corresponding
to M above) for the inversion step. From this can be computed such terms as
M1 ⊗M0, M2, m1 ⊗m0, and m2 above, to be re-used each round. Then the
only correction terms that would need computing in each round are the data-
dependent terms (e.g. Ã1⊗M0 above) of the inversion step.

But this only makes sense if the application has enough room to unroll (at
least partly) the round loop. (While unrolling the rounds does not improve la-
tency, this saving of correction terms may make unrolling preferable to simply
duplicating more encryptors for increased throughput.) In cases where compact-
ness is paramount the same few S-boxes would be employed for each round;
using pre-computed correction terms from round to round would then require
extra registers – a cost rather than a saving.

A Very Compact “Perfectly Masked” S-Box for AES 453

2.5 Security of Masked Operands

Here we show that the masked inversion operation outlined above is secure,
by which we mean, assuming a source of truly random uniformly distributed
masks, then the distribution of each intermediate result is independent of both
the plaintext data and the key. This gives “perfect masking” in the terminology
of [3], and hence protection from first-order differential side-channel attacks. We
start with Lemmas 1 and 2 of [3] (paraphrased) and, to be thorough, add two
more lemmas to cover all the operations in inversion, which are then examined
in detail.

Lemma 1. Given x uniformly distributed over a finite field IF, and any y ∈ IF
independent of x, then z = x ⊕ y is also uniformly distributed and independent
of y.[3]

Lemma 2. Given x and y independent and both uniformly distributed over a
finite field GF(pn), then z = x ⊗ y is distributed according to

Pr(z = i) =
{

(2pn − 1)/p2n , i = 0
(pn − 1)/p2n , i �= 0

here called the random product distribution.[3]

Lemma 3. Given x uniformly distributed over a finite set IF, and a one-to-one
mapping f : IF → IF, then y = f(x) is also uniformly distributed.

Proof: For a finite set, any one-to-one mapping is a bijection, i.e., just a permuta-
tion of the elements, so a uniform distribution is unchanged. (Note in particular
that any isomorphism of a finite field is a bijection.)

Lemma 4. Given x = [x1, x2, · · · , x2n] uniformly distributed over the set IF2n

of ordered 2n-tuples from a finite set IF, then the two halves y1 = [x1, x2, · · · , xn]
and y2 = [xn+1, xn+2, · · · , x2n] of x are independent and uniformly distributed
over IFn.

Proof: Since x is uniform if and only if each xi is independently uniform over
IF, then y1 and y2 are independent and uniform. (So given a uniform mask of n
bits then any sub-mask is also uniform.)

Consider the operations in the masked inversion above. Initially adding a
uniform mask to the plaintext data gives a uniform result, as is Ã in (10) above,
with independent uniform halves Ã1, Ã0. Then Ã1⊕Ã0 is uniform, so is its square
(squaring is an isomorphism in a field of characteristic 2), and so is that square
scaled by the norm N , since multiplication by a nonzero constant is a one-to-one
mapping. Each of the other four products in (12) for B̃ has the random product
distribution.

Now the order of adding these pieces together is crucial, because adding any
pair of those four products would give a distribution that depends on the data. So

the uniform N⊗
(
Ã1 ⊕ Ã0

)2
must be added to the first product before any other

454 D. Canright and L. Batina

products are added; by successively adding each other product to the previous
uniform sum, then each resulting sum is uniform, including B̃. Also, its mask
M2 = N ⊗(M1 ⊕ M0)

2 is uniform.
Similar reasoning applies to c̃ in (14). Then its square in (22) is also uniform,

with the uniform mask m2 = n2 ⊗(m1 ⊕ m0); hence the order of summation
for c̃−1 in (22) is important to avoid unmasking by (c̃)2 ⊕ m2. Again, in (23)
for b̃−1

1 , each of the four products has the random product distribution, and the
first sum must be with the uniform mask m11, then each other product added
successively, so each result is uniform. And again, in switching masks for c̃−1

2 in
(24) the order of summation for is important to prevent unmasking by c̃−1 ⊕m1.
All the remaining steps are similar to those already discussed.

Therefore, the result of every calculation is either uniformly distributed or
has the random product distribution (provided the summations are performed
in the correct order), independent of the data and key: “perfect masking.” This
protects suitable implementations from attacks by first-order differential side-
channel analysis. (Resistance against higher-order attacks would be improved
by avoiding re-use of masks within the S-box, as well as between rounds.)

3 Optimizations and Results

The algebraic description above shows the most efficient masked inversion at that
algebraic, hierarchical level. At the bit level, further optimization is possible due
to certain bit combinations being useful in more than one place. And at the
logic gate level, certain substitutions of types of logic gates give further savings
in circuit size (for the standard cell library considered).

Here we briefly describe the main optimizations, which are essentially the
same as in [2], but applied also to mask correction calculations. Each Galois
multiplier involves bit sums, and since all factors are shared between two multi-
pliers (using normal bases), these bit sums can be re-used; some of them are also
useful as parts of the square-scale operation. And bit sums required for mask
switching in (27) are useful in subfield operations also. Gate-level optimizations
(minimizing the size for the 0.13-μ CMOS standard cell library[28] considered)
include replacing AND by NAND, and where possible, replacing a NAND and
some XORs by a single NOR. (We only consider two-input logic gates; using
gates with more inputs may allow some improvement.)

But the S-box involves more than inversion in the tower-field representation.
The affine transformation and conversion to/from the tower-field form are also
required. (While one approach is to use the tower-field form for the entire encryp-
tion round[11], we use it only for the inversion, so that the MixColumns step
remains simple.) For decryption, the inverse affine transformation is required.
The conversion between the standard form and the tower-field form can be done
through multiplying the byte by a bit matrix, and one of those two matrices
can be combined with the bit matrix multiply of the affine transformation (or
inverse). Satoh et al.[12] showed how, when both encryption and decryption are
required, an architecture sharing a single Galois inverter between an S-box and

A Very Compact “Perfectly Masked” S-Box for AES 455

an inverse S-box allows some further optimization in the four matrices involved.
We use the particular normal bases of [2] and the corresponding optimally fac-
tored matrices to minimize this computation.

We wrote a complete implementation, with all optimizations, of the masked
S-box and inverse S-box using the merged architecture of [12], with a shared
Galois inverter. The complete implementation, written in Verilog, is given in
[29]. Here both the input mask and the output mask are parameters, along with
the masked data byte. The code has been compiled and run on an FPGA, and
shown to give correct results for every combination of encryption/decryption,
data byte, input mask, and output mask (33,554,432 combinations).

Tables 1 and 2 give the resulting numbers of logic gates separately for the
masked Galois inverter and the basis change (bit matrices). Results are shown
by number and type of specific logic operations, and also by total “gates,”
where the number refers to the equivalent number of NAND gates (rounded
to whole numbers), using our standard cell library. We use the equivalencies 1
XOR/XNOR = 7

4 NAND gates, 1 NOR = 1 NAND gate, 1 NOT = 3
4 NAND

gate, and 1 MUX21I = 7
4 NAND gates[28].

Table 1. Inverter Size. Here we compare the masked inverter with the unmasked
version, where total gates is in NAND equivalents.

Inverter gate counts total gates
masked 217 XOR, 94 NAND, 6 NOR 480

unmasked 56 XOR, 34 NAND, 6 NOR 138

Table 2. Basis Change Sizes. Here we compare gates needed in the basis change bit
matrices (including the affine transformation but excluding the Galois inverter) for a
merged S-box & inverse, S-box alone, and inverse S-box alone, using different input
and output masks, same mask for both, or no mask. Both individual gate counts and
NAND equivalents are given.

Basis Change merged S-box (S-box)−1

2 masks 78 XOR, 4 NOT, 32 MUX = 196 49 XOR = 86 50 XOR = 88
1 mask 58 XOR, 3 NOT, 32 MUX = 160 44 XOR = 77 45 XOR = 79

unmasked 38 XOR, 2 NOT, 16 MUX = 96 24 XOR = 42 25 XOR = 44

Note that the additional resources needed to use different masks on input
and output are significant for the merged architecture, but not for dedicated
encryption (or decryption) only. For protection against first-order differential
attacks, there is no reason not to use the input mask for the output as well. In
this case, the size for the merged architecture where encryption and decryption
share an inverter is 640 NAND equivalents, nearly three times the size of the
unmasked version (234 gates). (For encryption only, not merged, the S-box with
a single mask for both input and output is 557 NAND equivalents, compared
with 180 for unmasked; again masked is three times larger.)

456 D. Canright and L. Batina

However, if the current approach were used in an application where the loop of
rounds was “unrolled” (requiring enough room for at least 160 S-boxes for com-
plete unrolling), the masks could be re-used from round to round, as discussed
above in 2.4. This would require passing along the extra bits of pre-computed
corrections between rounds. For one S-box, the total number of mask-term bits
would be 43, as compared to 8 bits for an input mask alone (to be used as output
mask also, or 16 bits for two different masks). These extra wires would replace
33 XORs and 12 NANDs in the inverter, and all of the mask basis change calcu-
lation (so the basis change would be as if unmasked). The gains from this re-use
between rounds is shown in Table 3; then a masked merged S-box is 506 NAND
equivalents, rather than the 640 above. In addition to this saving per S-box (af-
ter the first round), the MixColumns operation on the mask block would also be
eliminated (again, after the first round).

Table 3. Gains from re-using masks between rounds, for the complete S-box, in NAND
equivalents. (This re-use requires unrolling the round loop with many copies of the S-
box.)

masking merged S-box (S-box)−1

1 mask 640 557 559
re-use 506 452 454

Table 4. High-level comparison of masking schemes: GF(24) operations, from Table
1 of [1] with a new row for the current work, and a new column for the Square-Scale
optimized combination [addition and inverse operations not shown].

method Mult MultConst Square Square-Scale
S-Akkar 18 6 4 0
S-Blömer 12 1 2 0
MS-IAIK 9 2 2 0
this work 8 0 0 2

Direct comparison with Oswald et al.[1] is difficult at the level of optimization
employed here. Their terms of comparison are operations in GF(24) and their Ta-
ble 1 is reproduced here as Table 4, augmented to compare with the present work.
They compare their approach (MS-IAIK) to their implementations of two pre-
vious methods, and do not include addition and inversion operations, presum-
ably because addition is relatively small (4 XORs) and one subfield inversion is
assumed. The column for multipliers in GF(24) is the most significant (since each
GF(24) multiplier includes 3 multipliers and 4 additions in GF(22)) and our ap-
proach saves one multiplier at this level. It is not clear how they implemented
squaring, and multiplication by a constant, called “scaling” here; in our approach
with normal bases, squaring is always followed with scaling by the norm, so we
treat square-scale as a single operation, which we have optimized down to only 3
XORs, less than one of the 4-bit additions that are not counted in [1].

A Very Compact “Perfectly Masked” S-Box for AES 457

Some rough comparison is possible in the algebraic description at the GF(24)
level: our (12) and (13) are approximately comparable to their (19), while our
(26), (28) are like their (15), (17) respectively. In particular, their (19) (which
includes 4 squares, though only 2 appear in [1, Table 1]) shows more terms than
our combined (12,13). So we save at least some GF(24) additions, and again at
the GF(22) level. But while detailed comparison is difficult in the lack of specifics,
we are confident that ours is the smallest masked S-box to date, because it uses
the same optimizations as the smallest unmasked S-box to date.

4 Conclusion

Side-channel attacks can be an major concern for certain applications of AES,
including hardware applications with limited resources, such as smart cards.
Adding random masks can be an effective countermeasure, though at the cost of
computing mask corrections in the S-box (the rest of each round being linear).
Here we show how to compute the Galois inverse (the nonlinear part of the S-
box) with “perfect masking,” in that the distributions of all the masked operands
are independent of the chosen plaintext and key; hence suitable implementations
employing this method are secure against first-order differential side-channel at-
tacks. (Though, as discussed in the Introduction, CMOS implementations might
be vulnerable to DPA attacks, due to glitches[26], unless specific timing con-
straints are met[27].) While our approach is similar to [1], we have reduced the
number of operations at every level. We have optimized this masked S-box for
minimal chip area, giving the smallest masked S-box of which we are aware.

The overhead for masking nearly triples the size of the S-box, from 234 gates
(NAND equivalents) to 640 gates for the merged version. In applications with
sufficient resources to unroll the round loop (where the compactness of our S-
box allows more copies for a given area), this overhead may be reduced through
re-using the block mask between rounds. Then (after the first round) each S-box
would require only 506 gates, a little over twice the size of the unmasked version,
and the mask correction for the rest of each round would also be eliminated.

Acknowledgements

We would like to thank the reviewers for several helpful suggestions.

References

1. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis
resistant description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

2. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

3. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

458 D. Canright and L. Batina

4. Daemen, J., Rijmen, V.: The Design of Rijndael, AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

5. NIST: Specification for the ADVANCED ENCRYPTION STANDARD (AES).
Technical Report FIPS PUB 197, National Institute of Standards and Technol-
ogy (NIST) (November 2001)

6. Morioka, S., Satoh, A.: A 10 Gbps full-AES crypto design with a twisted-BDD
S-box architecture. In: IEEE International Conference on Computer Design, pp.
98–103 (2002)

7. Weaver, N., Wawrzynek, J.: High performance, compact AES implemen-
tations in Xilinx FPGAs (2002), http://www.cs.berkeley.edu/∼nweaver/
papers/AES in FPGAs.pdf

8. Jarvinen, K.U., Tommiska, M.T., Skytta, J.O.: A fully pipelined memoryless 17.8
Gbps AES128 encryptor. In: FPGA 2003, ACM, New York (2003)

9. Hodjat, A., Hwang, D., Lai, B.-C., Tiri, K., Verbauwhede, I.: A 3.84 Gbits/s AES
crypto coprocessor with modes of operation in a 0.18-μm CMOS technology. In:
ACM Great Lakes Symposium on VLSI, pp. 60–63 (2005)

10. Morioka, S., Satoh, A.: An optimized S-box circuit arthitecture for low power
AES design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 172–186. Springer, Heidelberg (2003)

11. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
Rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer,
Heidelberg (2001)

12. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with s-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

13. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES
S-boxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer,
Heidelberg (2002)

14. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algo-
rithm. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 319–333. Springer, Heidelberg (2003)

15. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. In: IEE Proceedings on Information Security, vol. 152, pp. 13–20 (2005)

16. Rijmen, V.: Efficient implementation of the Rijndael S-box (2001),
http://www.esat.kuleuven.ac.be/∼rijmen/rijndael/sbox.pdf

17. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen,
Germany (1994)

18. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

19. Murphy, S., Robshaw, M.J.B.: Essential algebraic structure within the AES. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg
(2002)

20. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

21. Akkar, M.L., Bévan, R., Dischamp, P., Moyart, D.: Power Analysis, What is Now
Possible... In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502.
Springer, Heidelberg (2000)

http://www.cs.berkeley.edu/~nweaver/
papers/AES_in_FPGAs.pdf
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/sbox.pdf

A Very Compact “Perfectly Masked” S-Box for AES 459

22. Akkar, M.L., Giraud, C.: An implementation of DES and AES, secure against some
attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 309–318. Springer, Heidelberg (2001)

23. Golić, J., Tymen, C.: Multiplicative masking and power anaylsis of AES. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212.
Springer, Heidelberg (2003)

24. Morioka, S., Akishita, T.: DPA attack to AES S-box circuits over composite fields.
Joho Shori Gakkai Shinpojiumu Ronbunshu 2004(11) 9C–2 (2004) (in Japanese)

25. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

26. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005)

27. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES
hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

28. Satoh, A.: personal communication (July 2004)
29. Canright, D.: Masking a compact AES S-box. Technical Report NPS-MA-07-002,

Naval Postgraduate School (June 2007)

	A Very Compact “Perfectly Masked” S-Box for AES
	Introduction
	Algebraic Description
	Inversion without Masking
	Masked Inversion
	Re-using Masks
	Re-using Masks Between Rounds
	Security of Masked Operands

	Optimizations and Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

