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Preface

ACNS 2008, the 6th International Conference on Applied Cryptography and Net-
work Security, was held in New York, New York, June 3–6, 2008, at Columbia
University. ACNS 2008 was organized in cooperation with the International As-
sociation for Cryptologic Research (IACR) and the Department of Computer
Science at Columbia University. The General Chairs of the conference were An-
gelos Keromytis and Moti Yung.

The conference received 131 submissions, of which the Program Committee,
chaired by Steven Bellovin and Rosario Gennaro, selected 30 for presentation
at the conference. The Best Student Paper Award was given to Liang Xie and
Hui Song for their paper “On the Effectiveness of Internal Patch Dissemination
Against File-Sharing Worms” (co-authored with Sencun Zhu).

These proceedings consist of revised versions of the presented papers. The
revisions were not reviewed. The authors bear full responsibility for the contents
of their papers.

There were many submissions of good quality, and consequently the selection
process was challenging and very competitive. Indeed, a number of good papers
were not accepted due to lack of space in the program. The main considerations
in selecting the program were conceptual and technical innovation and quality
of presentation. As reflected in the Call for Papers, an attempt was made to
solicit and publish papers suggesting novel paradigms, original directions, or
non-traditional perspectives.

We would like to extend our heartfelt thanks to the Program Committee mem-
bers, who dedicated so much time and effort to provide a thorough and in-depth
review of the submissions, with high standards of professional integrity. We also
thank the many external reviewers who assisted the Program Committee in its
work. Most importantly, we thank the authors of submitted papers for their con-
tributions; without these papers, after all, there would be no ACNS conference.

A special thanks is due to Shai Halevi for writing the software that greatly
facilitated the committee work, and for his responsiveness in answering all our
questions.

We are grateful to Jianying Zhou who, as Publicity Chair, relentlessy adver-
tised the conference, to Angelika Zavou for her timely maintenance of the confer-
ence website and to Sophie Majewski for helping with the local arrangements.

Finally, we appreciate the assistance provided by the Springer LNCS editorial
staff in assembling these proceedings.

June 2008 Steven Bellovin
Rosario Gennaro

Angelos Keromytis
Moti Yung
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Repelling Detour Attack Against Onions with Re-encryption . . . . . . . . . . 296
Marek Klonowski, Miros�law Kuty�lowski, and Anna Lauks

Analysis of EAP-GPSK Authentication Protocol . . . . . . . . . . . . . . . . . . . . . 309
John C. Mitchell, Arnab Roy, Paul Rowe, and Andre Scedrov

Efficient Device Pairing Using “Human-Comparable” Synchronized
Audiovisual Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Ramnath Prasad and Nitesh Saxena

PUF-HB: A Tamper-Resilient HB Based Authentication Protocol . . . . . . 346
Ghaith Hammouri and Berk Sunar

An Authentication Scheme Based on the Twisted Conjugacy
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Vladimir Shpilrain and Alexander Ushakov

Restricted Queries over an Encrypted Index with Applications to
Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Nikita Borisov and Soumyadeb Mitra

A Practical and Efficient Tree-List Structure for Public-Key Certificate
Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Tong-Lee Lim, A. Lakshminarayanan, and Vira Saksen

On the Security of the CCM Encryption Mode and of a Slight
Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
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On the Effectiveness of Internal Patching Against
File-Sharing Worms

Liang Xie1, Hui Song3, and Suncun Zhu1,2

1 Department of Computer Science and Engineering, The Pennsylvania State University
2 College of Information Sciences and Technology, The Pennsylvania State University

3 Computer Science Department, Frostburg State University
lxie@cse.psu.edu, hsong@frostburg.edu, szhu@cse.psu.edu

Abstract. File-sharing worms have been terrorizing Peer-to-peer (P2P) systems
in recent years. Existing defenses relying on users’ individual recoveries or limit-
ing users’ file-sharing activities are ineffective. Automated patching tools such as
Microsoft Windows Update and Symantec Security Update are currently the most
popular vehicles for eliminating and containing Internet worms, but they are not
necessarily the best fits for combating P2P file-sharing worms, which propagate
within a relatively smaller community. In this paper, we propose a complementary
P2P-tailored patching system which utilizes the existing file-sharing mechanisms
to internally disseminate security patches to those participating peers in a timely
and distributed fashion. Specifically, we examine the effectiveness of leveraging
the file downloading or searching process to notify vulnerable end hosts of the
surging worms and push corresponding security updates to these hosts. We show
through in-depth analysis and extensive experiments that both methods are scal-
able and effective in combating existing P2P worms.

1 Introduction

P2P file-sharing programs such as KaZaA, iMesh, Morpheus are popular Internet ap-
plications that allow users to download and share electronic files. As one of the most
popular networks, KaZaA has four million simultaneous users. The powerful data ac-
cess feature, however, brings about unique privacy and security threats in these systems.
In addition to adware and spyware, P2P hosts are placed at the risk of various viruses
and malicious codes [13].

Our focus in this paper is file-sharing worms1, which are malware spreading through
file-sharing activities within P2P systems. Specifically, a user searches for a file in the
network and acquires a list of accessible targets among which there could be a disguised
one provided by some infected machine. Unwittingly she downloads the file and opens
it, resulting in her own machine being infected. Recently, many file-sharing worms have
been reported, e.g., Benjamin.a, Franvir, Bare.a, Darby.m, and Duload worm that are ac-
tively attacking KaZaA, Gnutella, and eDonkey2000 networks [3,7]. One experimental
study reported that 44% of the 4,788 executable files downloaded through a KaZaA

1 Like mass-mailing worms, file-sharing worms also require human’s operations to propagate.
As such, they are sometimes referred to as viruses or malware.

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 L. Xie, H. Song, and S. Zhu

client program contain malicious code [25]; another experimental study revealed that
12% of the KaZaA client hosts were infected by over 40 different worms in February
and May, 2006 [21]. Some disastrous consequences of attacks from file-sharing worms
include opening backdoors, changing system registries and client configurations, and
collecting clients’ confidential data [7].

It would not be surprising that worms will increasingly exploit file-sharing applica-
tions as their major infection vector. However, research on these imminent threats has
just started and most existing work focused on modeling worm behavior such as infec-
tions and propagation in file-sharing environments [11,17,23]. The problem of quaranti-
ning these worms has not been adequately addressed. Currently the best defense mirrors
the strategy against Internet computer viruses with the inception of security patches
from vendors (e.g., Microsoft, Symantec, McAfee). The method of automated security
update is widely employed by security servers to automatically push the latest security
patches to Internet hosts[24]. This generic solution certainly helps protect Internet hosts
at the earliest stage of worm spreads, but it is not P2P-oriented. That is, security servers
either have to blindly deliver P2P patches to all the Internet hosts (including those non-
P2P machines and those who have installed P2P software but are not executing it), or
have to scan for currently running P2P client programs within each Internet host before
sending a patch to it. In both cases, system resources and network bandwidth could
be greatly wasted. Moreover, unnecessary security updates could cause annoying ma-
chine reboots (sometimes required for a complete security update), which unavoidably
interrupt those non-related users’ on-going tasks running on their hosts.

Contribution: In this paper, we study the feasibility of utilizing the existing file-sharing
infrastructure to internally push security updates to the participating nodes in P2P sys-
tems. We propose two BitTorrent-like mechanisms for distributing the security patches.
In file-sharing networks such as Gnutella, a very small fraction (5%) of hosts usually
provide a large fraction of the shared files (70%) [14]. Exploiting this asymmetry in
file-sharing, we consider first disseminating the security patches to these popular hosts,
such that most of the other participating hosts can receive the patches from these pop-
ular hosts when they actively download files from them. Our second approach is based
on the belief that P2P users as a community should help each other in combating worm
attacks. Therefore, when a host detects worm infection from a downloaded file, it first
re-performs a search on the infected file to identify those hosts possessing the same file,
and then it collaboratively notifies these hosts of the worm information as well as the
security patch. Based on a modified fluid model, we analyze worm spreads and evaluate
the effectiveness of our approaches in unstructured networks. Our result demonstrates
that both schemes can help a file-sharing system with 20, 000 hosts achieve a high
immunity rate (90%) within a few dozens of hours after the initial worm surge.

Our solutions are not a substitution for the existing automatic patching systems but
rather a nice complement to them. Our proposed techniques are not necessarily very
complex, but our work, backed up with solid analytic modelling and extensive exper-
iments, makes a concrete movement towards solving the important security problem
facing many P2P users. Also, our solution is scalable and easy to deploy by leverag-
ing the existing P2P infrastructure, without involving a dedicated Content Distribution
Network (CDN) (e.g., Akamai).
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Organization: The rest of the paper is organized as follows. Section 2 describes
an attack model for the network, as well as the design principles and the assumptions.
Section 3 and 4 introduce two internal patching schemes for securing participating hosts
in P2P systems. We evaluate the schemes in Section 6 and describe the related work in
Section 7. We conclude in Section 8.

2 Preliminaries

Network Model. Many P2P file-sharing systems are actively running in these days
(a comparison can be found in [2]). The most popular ones include eMule, KaZza,
Gnutella, and BitTorrent. For concreteness, however, our discussion will focus on those
unstructured networks such as Gnutella and KaZza. In Section 5 we will briefly mention
how our approaches can be extended to other P2P systems such as BitTorrent.

We use Gnutella as an example to describe the file-sharing process. Specifically, each
node uses a shared folder to store those files it wishes to share. When a requesting node
initiates a download request for a specific file, it places a search for the target node(s)
responsible for the given file identifier. The search request is routed through a two-tiered
system of ultra-peers and leave nodes in the Gnutella overlay. In response, the requester
collects a list of peers, each of which contains a file copy (probably with different ver-
sions). The requester then connects to one target node in the list and downloads the
copy. Finally, she opens the downloaded file for use.

Attack Model. A file-sharing worm usually copies itself to a host’s shared folder and
publishes it with an attractive name, for example, as a popular song or movie. Some-
times attackers replace real movie or sound files with their malicious copies or add
executable extensions to such files. When a host searches for some file and finds an
match from an infected machine, it downloads and opens the file without being aware
of the threat. Consequently, the worm is activated and it copies/attaches itself to all the
files in the shared folder(s) of this new victim. In this way, a file-sharing worm continues
its spread cycle.

We define two states for a file in P2P systems: normal and abnormal. A file is normal
when it is valid and clean, and it becomes abnormal once malicious codes have been
injected or attached to it. Also, we define three states with respect to a surging worm
for each host in the systems: vulnerable, infected, and immune. A vulnerable host is
not well-protected against the worm, hence it gets infected when exposed to the attack.
For example, when a user opens an downloaded file which is abnormal, all files inside
the shared folder(s) of this infected machine consequently become abnormal. A vul-
nerable/infected node becomes immunized once the protection (e.g., a patch) has been
in place. Fig 1 illustrates the node state transitions. We note that in real applications,
some P2P users could voluntarily install the vendor patch on their machines. Therefore,
these nodes are initially immunized to the worm. For simplicity, we assume no such
individual recoveries occur during the period of defense.

We notice that a few elaborated worms such as Worm.Win32.Hofox were recently
reported to be able to block the anti-virus protection services or kill anti-virus pro-
grams on P2P hosts. Clearly, at the system level, some local countermeasures will be
devised to protect defense tools from being eliminated, and the arms race will continue.
In this paper, however, we assume that P2P worms cannot disable the patching protocol
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VulnerableInfected

download & activate
an abnormal file

Immune

initial recoveries

initial recoveries

security alert (patch)

Fig. 1. Node state transition during the defense of internal patching. Initial recoveries include
individual updates from security vendors; its percentage is relatively low as a new worm surges.

deployed in end hosts, so that an infected host can receive patches and become immu-
nized as it is expected. Note that this assumption will not affect the correctness of our
approaches, and our analysis model presented later can be slightly changed for the case
when this assumption does not hold.

System Design Overview. To effectively combat file-sharing worms, we cannot merely
rely on users’ precaution and worm elimination skills; rather, we need an automated
and systematic approach to disseminate security patches to the P2P users. Existing au-
tomated patching systems can be utilized to secure P2P hosts as well by simply treating
them as normal Internet hosts; however, they are not necessarily the best-fit choices
because not all Internet hosts are equally exposed to those P2P worms. For P2P users
who often download files, their machines are more likely to be affected by P2P worms,
whereas for non-P2P users, their machines will not be affected by worms exploiting
P2P applications. Moreover, a traditional centralized model of patch distribution could
cause single-point failure or overloading on the patch servers.

As such, we are motivated to study a P2P-tailored automated patching mechanism
as a supplement to existing solutions and examine its effectiveness. Our approach uti-
lizes the existing file-sharing infrastructure to internally push security updates (alerts)
to the participating peers. It has several good features. First, it is customized for P2P
environments and delivers security updates to P2P hosts only. This avoids unnecessary
consumption of network/computer resources. Second, it adopts a distributed manner to
disseminate security patches to those vulnerable peers in need and no longer strains the
central servers. Third, our push-based scheme delivers security updates more promptly
than the traditional once-a-day update adopted by existing patching systems.

Internal patching should leverage the existing file-sharing infrastructure for distribut-
ing security patches. Approaches utilizing IP address scanning or topology exploration
to locate alive patching targets bring extra computation and communication overhead
to P2P systems. Moreover, these methods could be easily exploited by malicious users
and used as the vehicle for rapid worm spread and denial-of-service attacks.

In this paper, we study two push-based patching mechanisms for P2P systems. We
first examine a download-based approach, in which a small fraction of popular nodes
(also referred as key nodes) act as early patch distributors and a node which down-
loads a file from a key node will also be offered with a security patch/alert. Thus, the
patch is propagated to many active hosts along with the file-download process. We then
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examine a search-based approach, in which once a key node detects worm infection in
a downloaded file, it re-performs a file search to identify those active hosts that possibly
possess the abnormal file and disseminates the patch to immunize/disinfect them.

3 A Download-Based Approach

In our download-based approach, a small set of key nodes internally push the security
patches to participating peers through the file-downloading process. Nodes that are noti-
fied of the approaching threat hence have a good chance of being immunized/disinfected
against the worm. Our design of the scheme answers the following questions.

– Which hosts are determined as the key nodes so that they can distribute patches
to others in a most efficient and timely manner? Key nodes cannot be determined
in a centralized mode because no node in the system holds a global knowledge of
file-sharing activities of others.

– What is a user’s strategy to choose the download source and what is the impact on
patch dissemination? How should the existing P2P file transfer protocol be adapted
to support the patch dissemination?

– How does a recipient authenticate a patch that it receives? In a distributed envi-
ronment, even if a public key infrastructure (PKI) is deployed to provide sender
authentication, it cannot prevent malicious peers from injecting worm codes in-
stead of security patches. In other words, a node cannot fully trust others in the P2P
system. Moreover, how does the recipient deal with the patch and how does her
decision affect the immunity level of the system?

3.1 Scheme Description

Bootstrapping Key Nodes. The first important issue is the choice of key nodes. In
most decentralized systems such as Gnutella and KaZaA, downloading traffic is highly
focused around a small minority of popular targets and these popular files tend to be
gradually concentrated in a small set of providers. For example, in Gnutella, 50% of
all files are served by just 1% of nodes and 98% of all files are shared by the top 20%
nodes [14]; in KaZaA, 10% most popular files generate 60% of the download traffic and
70% of the highly popular files will remain popular for at least 10∼15 days [18]. These
are strong indications that a small fraction of popular hosts sharing the most interesting
files could be conveniently leveraged as the early distributors, which effectively push
security patches to active downloaders in the system.

We consider a distributed algorithm for bootstrapping such key nodes in the P2P
systems. Specifically, a small set of key nodes are individually decided according to a
predefined policy. These key nodes then automatically pull (download and launch) the
patch from vendor, so that they become immunized against the surging worm. To de-
scribe this algorithm in detail, we first introduce a node parameter named file-offering
rate φO , which is defined as the number of files a node offers to its requesters in unit
time. Note that this parameter reflects the popularity degree of the node. Each node
calculates its φO based on its own file-sharing history. For example, node i may de-
rive φO(i) = Dout(i)/Tf , where Dout(i) denotes i’s out-degree in its file-access graph
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within its neighborhood time window Tf . Thus, we can adopt the following policy to
bootstrap the key nodes: key nodes are selected from a subset of popular nodes with the
highest file-offering rates in the system. Specifically, each candidate node i refers to its
recent file-offering rate φO(i) and decides to be a key node only if φO(i) ≥ HO satis-
fies. Here HO is a globally defined threshold, which controls the fraction of key nodes.
This policy can be automatically enforced through the client program. Once a node de-
cides to become a key node, it should automatically fetch the latest security updates (if
there are any) from the trusted vendor(s) and immediately launch the protection on the
local machine (another option is they register to the vendors so that the vendors may
push the latest security patch to them once available). Thus, key nodes get immunized
against the surging worm and are ready to secure other file requesters. We note that as
an active holder of more popular files, the user has to sacrifice a little bit convenience
(patch activation if needed) and bandwidth (patch transfer) for the sake of the security
of the entire system. On the other hand, a key node could be malicious or a regular node
may claim to be a key node. We will discuss the related security issue shortly.

Disseminating Security Patches. Next, we discuss the message format of a security
patch generated by the key node. This patch is used to notify the receivers of the worm
threat and to provide the source of the security update. As illustrated in Fig 2, a patch
message MSGa typically contains two parts: a message header which contains the key
nodes’s identifier, and a message payload which contains (1) the worm alert (name,
type, severity level, etc..), (2) the security patch itself (e.g., a Microsoft XP patch in
binary delta compression format [6]) or simply a link to the URL of that patch (e.g.,
the Microsoft Security Bulletin), (3) a vendor signature of (1) and (2). We note that
for a specific worm (identified by a specific vendor), the payload of its security patch
message is unique. In addition, the security patch is self-verifiable: either the signature
from a well-known vendor is attached to the patch, or the patch link can be directly
verified through the vendor’s website. This mechanism does not require a recipient to
authenticate the intermediate patch distributors. Instead, it verifies the authenticity of
the message content with the vendor or through its web site – these are considered
more reliable and trustable.

Key Node

Identifier
Worm Alert

Name Type Severity Level

Patch Content / URL Link
Vendor’s 

Signature

Header Payload

Additional 

info.

Fig. 2. Message format of security patch MSGa

The next issue is how key nodes leverage the existing P2P file transfer protocol to
internally distribute the security patch to file downloaders. Using Gnutella 0.6 system
as an example, search results are directly delivered to a client (requester) through UDP
packets. If the client chooses a resulting node for file download, it typically sends an
HTTP Request to the provider and reads the bit stream of file content that follows
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the HTTP Response [1]. We propose that the client also includes its latest patch ver-
sion in the HTTP Request. Thus, a key node verifies the request before its file transfer
and decide whether to distribute the latest security patch. To notify the recipient of the
patch existence, the key node simply sets an indicator and the patch length in its HTTP
Response. Both sides may establish an additional channel or use the existing control
channel to perform patch transfer. In the case when the provider is behind a firewall, a
PUSH process is executed to establish the connection [1] and the remainder of the file
download and patch dissemination is similar as we have described.

Client Strategy and User Behavior. In response to a file search, a client receives a set
of replies pointing to different file providers. The main decision that the client needs
to make is which one of these node to ask for a copy of the file. This choice clearly
has some influence on the defense. We consider the following three major selection
strategies:

Random. The client selects a random node, independent of the node’s advertised re-
sources. In this mode, when there are α percentage of key nodes in the system, every
client has an equal chance of α to download the file from a key node. This also implies
that every client will eventually receive the security patch from key nodes.

Best. The client selects the node that advertises the best performance, i.e., the node with
the lowest estimated delay (the node’s queue length times the file size times the max-
imum number of simultaneous uploads divided by the access link bandwidth). Unlike
the random mode, in this mode every client has a higher chance of downloading files
from key nodes (i.e., those popular file holders). However, a small fraction of nodes
which are not interested in the popular files may not have a chance to receive the secu-
rity patch from key nodes.

Redundant. The client performs redundant download from either randomly chosen C
nodes or C nodes with the lowest estimated delay. Once the first download finished and
the content is verified for correctness, the other downloads are stopped. When the file
download from a key node is aborted, the client cannot receive the patch that follows.

Next, we discuss how recipients react to the security patch. Although our scheme
effectively leverages the internal infrastructure to expedite patch dissemination and
ensures most participating pees receive the update as the file downloads proceed, the
immunity level of the system is still in some degree dependent on individual users’
responses to the patch. Upon receiving a patch message MSGa, the client program
first examines the payload and compares it with the existing version in order to discard
out-dated or duplicated patch content. An accepted patch notifies the user of a surging
worm and reminds her to launch immediate protection. If the user accepts the patch, the
client program authenticates the patch payload either by directly examining the vendor
signature or by visiting the trusted vendor site and verifying if the patch link provides
consistent worm information. The program applies the new patch (a download is possi-
bly needed) on the local machine immediately after a successful verification. Thus, the
local machine gets immunized/disinfected against the worm and consequently all the
files in its shared folder are/become normal. However, when a user declines the offer,
either unwilling to follow the link or failing to activate the patch, her machine remains
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Table 1. Notation for worm propagation model

Note. Explanation
N the total number of hosts in the network
V (t) the number of vulnerable hosts
If (t) the number of infected hosts
Im(t) the number of immune hosts
F (t) the total number of files
h(t) the proportion of abnormal files in the system
s(t) the average size of a shared folder
λd the average rate of file download (files/hour)
λa the probability a user activates the downloaded file
α the percentage of key nodes in the system
β the probability at which a user accepts a patch

vulnerable to the worm. We quantitatively analyze the impact of user behavior on the
system immunity in Section 3.2.

3.2 Security and Performance Analysis

We derive a new fluid model for worm propagation and analyze the security and perfor-
mance of the download-based approach. We refer to notation in Table 1.

A Fluid Model for Worm Propagation. We first consider the case when no defense
has been deployed in the system. Each node is either in vulnerable or immune state,
i.e., relation N = V (t) + If (t) always satisfies. We show the evolution status of the
system under the worm threat. The vulnerable population decreases as some nodes un-
fortunately download abnormal files, activate these files and get infected. We have

dV (t)
dt

= −λdλa · V (t) · h(t). (1)

Here 1/λd is the average time a node takes to download a file, and h(t) reflects the
percentage of abnormal files at time t. Solving the above differential equation, we get

V (t) = N − If (t) = V (0) · e−λdλa

�
t
0 h(τ)dτ , (2)

where V (0) denotes the initial number of vulnerable hosts. This equation indicates that
the vulnerable population in the system decreases exponentially as there are more file
downloads and activations; the increase of the proportion of abnormal files accelerates
the worm spread. We further derive the file state.

Lemma 1. In a P2P file-sharing system, the percentage of abnormal files can be com-

puted as h(t) = h(0) · e
λd·λa

N

� t
0 V (τ)dτ , where h(0) is the initial abnormal rate. An

approximation of h(t) can be computed as h(t) ≈ If (t)
N , assuming λa → 1.
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This lemma is proved in Appendix A. It shows that user behavior has significant impact
on the percentage of abnormal files: more file downloads and activations lead to more
infections. However, as the amount of files increases and the vulnerable population
decreases, worm infection is gradually slowed down.

Analysis of the Download-Based Defense. Time Performance Next, we examine
the download-based defense. For simplicity, we assume users always adopt the random
strategy to choose file providers (see 3.1) and all infected hosts have a patch accep-
tance probability β. We define immunity rate i(t) as the fraction of immune nodes
i(t) = Im(t)/N , and let the initial immune population be Im(0). Note that these nodes,
including the key nodes, either have applied the patch or does not expose the software
vulnerability to the worm.

To study how long it takes to achieve a certain level of immunity rate, we formalize
the problem as finding a lower bound t0 for time t, so that we have i(t) ≥ Ψ when
t ≥ t0, where Im(0)

N ≤ Ψ ≤ 1 is a predefined threshold.

Lemma 2. In a file-sharing system which adopts the download-based defense, the num-
ber of immune nodes is Im(t) = N + (Im(0) − N) · e−λdαβt and the system takes at
least t0 = 1

αβλd
ln N−Im(0)

N(1−Ψ) hours to achieve an immunity rate Ψ .

Proof. From the state diagram in Fig 1, we know that N = V (t)+If (t)+Im(t) always
holds. Each time when a node downloads a file from a key node, it also receives a patch
and the user decides whether or not to accept it. Note that only infected and vulnerable
(If (t) + V (t)) nodes are immunized/disinfected in this process. We derive the change
of immunity rate.

dIm(t)
dt

= (If (t) + V (t))λdαβ = (N − Im(t)) · λdαβ. (3)

Here α also denotes the probability that each client selects a key node as the provider.
Solving this differential equation for Im(t), we get the number of immune nodes in the
system

Im(t) = N + (Im(0) − N) · e−λdαβ·t. (4)

From the given condition i(t) = Im(t)/N ≥ Ψ , we may further derive t ≥ t0 =
1

αβλd
ln N−Im(0)

N(1−Ψ) .

Fig 3 illustrates the change of immunity rate i(t) when the percentage of key nodes
(α) varies from 5% to 15%. Clearly, as there are more patch distributors, the system
takes less time to reach a certain level of immunity rate (in our case 90%). For example,
when α = 5%, it takes 60 hours for 90% of nodes to receive the patch, whereas it takes
20 hours when α = 15%. This figure also shows that in the random selection mode,
each downloader (including those not interested in the popular files) will eventually
receive the patch from a key node.

System Evolution Status. We also examine the evolution status of the system which
adopts the download-based defense. During the worm containment, a vulnerable host
either (1) becomes infected when it downloads and activates an abnormal file from a
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non-key node, or (2) gets immunized when it downloads a file from a key node and
accepts the patch. Hence, we set up the following equation for the change of the vul-
nerable population.

dV (t)
dt

= −λdλa(1 − α) · V (t) · h(t) − λdαβ · V (t). (5)

Note that here λdλa(1−α) ·V (t) ·h(t) computes the reduction caused by (1) (1−α de-
notes the probability of downloading from a non-key nodes) and λdαβ ·V (t) computes
the reduction caused by (2). We use the approximation h(t) ≈ If (t)

N and the solution
in Equ.4 to solve this differential equation for V (t). We also compute If (t) using the
relation N − Im(t) − V (t). Fig 4 illustrates the evolution status of a file-sharing sys-
tem. Initially, the percentage of infected nodes increases as the worm surges. However,
when more and more file downloaders receive the patch, worm infections are gradually
cleansed from the network and the infected population starts to decrease. Eventually,
immune nodes become the major population. The figures also indicate that the immune
time t0 is determined by several factors: the fraction of the key nodes (α), the file down-
loading rate (λd), patch acceptance rate (β) and the initial immunity rate. Our analytical
result has been validated in Section 6 (Fig 8).

4 A Search-Based Approach

This section proposes a search-based approach, in which once a key node detects worm
infection in a file it has just downloaded from other participating peers, it immediately
infer from a new search result a set of suspicious targets, to which it directly pushes
the security patch and disinfect/immunize them. Given the latest vendor updates, we
assume key nodes are able to detect on-going worm attacks based on techniques such as
worm signature matching, taint analysis or anomaly detection [9,16,20,19]. We answer
the following questions in our design.

– Which hosts in the system should be chosen as the key nodes, so that they detect
file anomalies in the system and distribute patches to others in a most efficient and
timely manner? Key nodes should be bootstrapped in a distributed way.
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– Once a key node detects file anomaly, how does it infer a set of suspicious nodes
by examining the query response and how to deal with network dynamics?

– How does a key node disseminate the patch to those suspicious nodes? To be scal-
able, how should a key node limit its bandwidth for patch delivery?

– What is the user’s reaction towards the patch and how does it influence the immu-
nity level of the system?

4.1 Scheme Description

Bootstrapping Key Nodes. To address the first issue, we consider a distributed algo-
rithm to bootstrap key nodes in our search-based scheme. Similar to the algorithm in
Section 3.1, key nodes automatically pull (download and install) the latest vendor patch
so that they become immunized against the surging worm. However, here we adopt
a different policy for determining key nodes in a distributed way. We first introduce
a node parameter named file-downloading rate φI , which is defined as the number of
files a node downloads from others in unit time. This parameter reflects a node’s activity
level of file downloads. Each node i derives φI(i) = Din(i)/Tf , where Din(i) denotes
the number of files i has downloaded within the time window Tf . Now we can adopt
the following policy to bootstrap the key nodes: key nodes are selected among a subset
of nodes with the highest file-downloading rates in the system. Specifically, each candi-
date node i refers to its recent file-downloading rate φI(i) and decides to be a key node
only if φI(i) ≥ HD satisfies. Here HD is a globally defined threshold which controls
the fraction of key nodes. This bootstrapping policy is automatically enforced through
the client program within an end host.

The above policy chooses those active file requesters as the key nodes because these
nodes keep actively acquiring files from various origins, hence their chance of being
infected is relatively higher than hosts with relatively low downloading rate. Keeping
these nodes updated with the latest vendor patch also enables them to explore more
worm infections from file providers. Our search-based scheme requires a key node P
immediately examines the file state after it finishes downloading a file fp. Once an
anomaly has been identified, the key node composes a security patch message Msga.

Distributing Security Patches. The next issue is to which nodes the security patch
should be distributed. Pushing the patch directly to the provider who has uploaded the
abnormal file is effective. However, this is not efficient because the key node has a good
reason to suspect that other file-owners may have also been infected. On the other hand,
simply flooding the patch or locating the targets by IP address scanning or topology
exploration is not scalable. Our solution is to let the key nodes exploit the file search list
to locate those suspicious file providers and push the patch to these targets. However,
there exist a time gap (could be in hours) between the original search and the worm
detection. During this period, nodes frequently join and leave the network. A good
strategy for the key node is to re-perform a file search once it has detected a file anomaly.

We propose a distributed algorithm for patch dissemination, as illustrated in Fig 5.
Specifically, once a key node P has detected worm infection in a downloaded file fp, it
immediately re-perform a search on fp and consequently receives multiple QueryHit re-
sponses, based on which it sorts the destination nodes according to the activity level and
constructs a ranked search list Sp. Here a node i’s activity level La(i) is derived from
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three parameters: the bandwidth of its access link Spd(i), the queue length QLen(i)
and the number of simultaneous uploads Nup(i). These parameters for node i are in-
cluded in the QueryHit message, i.e., we have La(i) = f(Spd(i), QLen(i), Nup(i)),
where f is a monotonically increasing function. The application in the key node then
computes an activity lower bound HL(P ) based on the bandwidth Spd(P ) and the cur-
rent number of connections (ongoing P2P traffic) in the local machine. Finally, the key
node chooses from Sp top k target nodes whose activity level satisfies La ≥ HL(P ) and
establishes a direct HTTP connection with each of these suspicious targets to push the
security patch. Note that such patch transfers are out-of-band (not through the Gnutella
overlay).

Fig. 5. An illustration of the search-based approach. In this example, key node P detects an
infected file fp and delivers patch MSG′

a to k = 6 suspicious nodes in the search list Sp.

Here a security patch MSG′
a also contains the identifier of the infected file fp. Upon

receiving the patch, each node j needs to verify the existence of fp and then displays
a warning in the local machine. If the user accepts the patch, the application first au-
thenticates the patch content/link. Once the patch has been successfully applied, node j
becomes immunized to the worm and its shared folder will be immediately scanned and
cleansed. We quantitatively analyze the impact of user behavior on the system immunity
level in Section 4.2.

4.2 Security and Performance Analysis

Time Performance. We analyze the effectiveness of the search-based defense. Let k
denote the average number of suspicious targets to which a key node distributes the
security patch, we first derive how long the system takes to achieve an immunity rate Ψ .
According to the state diagram in Fig 1, N = V (t)+If (t)+Im(t) always holds. In the
search-based scheme, the increased immune population comes from either vulnerable
nodes or infected nodes. Hence, the rate at which the immune population increases can
be computed as

dIm(t)
dt

= Nλd · αh(t)(
N − Im(t)

N
) · kβ

= a(N − Im(t)) · h(t), (6)
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Where a = αβλdk. Note that αh(t)(N−Im(t)
N ) computes the probability that a key node

downloads an abnormal file from those non-immune hosts.
Also, the decrease of the vulnerable population could be caused either by (1) worm

infections or (2) by host immunizations (or disinfections). Therefore, the rate at which
vulnerable nodes become either infected or immunized is

dV (t)
dt

= −λaλdV (t)h(t) − Nλd · αh(t)(
V (t)
N

) · kβ

= −(a + b)V (t)h(t). (7)

where b = λaλd. Here λaλdV (t)h(t) computes the reduction caused by (1); Nλd ·
αh(t)(V (t)

N ) · kβ computes the reduction caused by (2), in which αh(t)(V (t)
N ) denotes

the probability a key node downloads an abnormal file from a vulnerable host (not
infected yet). In this case, the latter receives the patch and could be immunized.

Finally, we know that the infected population (1) increases when some vulnerable
nodes get infected, and (2) decreases when some victim nodes have been disinfected.
Hence we derive the following differential equation.

dIf (t)
dt

= λaλdV (t)h(t) − Nλd · αh(t)(
If (t)
N

) · kβ

= bV (t)h(t) − aIf (t)h(t). (8)

Note that here λaλdV (t)h(t) computes the increase of infected nodes caused by (1);
Nλd · αh(t)( If (t)

N ) · kβ computes the reduction of infected nodes caused by (2), where

αh(t)( If (t)
N ) denotes the probability a key node downloads an abnormal file from an

infected host. In this case, the latter receives the patch and could be disinfected. To
solve these differential equations, we derive the immune population Im(t). We divide
Equ.6 by Equ.7 and get

V (t) = V
− b

a
0 · (N − Im(t))

a+b
a , (9)

where V0 = V (0) denotes the initial vulnerable population in the system. We then apply
the approximation h(t) ≈ If (t)

N = N−Im(t)−V (t)
N and substitute Equ.9 into Equ.6. Thus,

we have
du

dt
= −a · V0

N
· u2(1 − u

b
a ) (10)

where u = (N − Im(t))/V0. We further solve this equation for Im(t) and illustrate
the change of Im(t) in Fig 6. This figure indicates that under an average size k = 30,
the search-based approach only needs to deploys 5% nodes as key nodes and help the
system achieve a 90% immunity rate within 60 hours.

System Evolution Status. Adopting the similar method as above to solve Equ. 6, 7, 8,
we derive the following

dV (t)
dt

= −a + b

N
(c · V 1+ a

a+b (t) − V 2(t)), (11)

where c = V
b

a+b

0 . Hence we may compute V (t). Using If (t) = N − V (t) − Im(t),
we may further derive the infected population If (t). We illustrate the system evolution
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status in Fig 7. The figure shows that the infected population initially increases due to
the surging worm. However, this triggers the defense and many suspicious nodes receive
the patch. Eventually worm infections are eliminated and immune nodes become the
major population. The above analytical result has been validated in Section 6 (Fig 8).

5 Security Analysis

We discuss two attacks that may happen in both schemes.

Fake Security Alerts. A malicious node, either a key node or a regular node claiming
to be a key node, may replace security patches with worms and deliver them to other
hosts. This attack will fail because our signature-based mechanism allows a receiver to
verify if the patch truly comes from a trusted vendor or the link to the patch is correct.
On the other hand, we notice that a lot of false messages may cause a DoS attack to
other hosts. Since we do not assume a PKI, P2P nodes may not be able to authenticate
each other. Indeed, even a PKI is available, it does not solve this type of insider attacks.
A simple solution is that a node blacklists the nodes reporting false alerts based on their
IP addresses. To prevent IP spoofing, before a node accepts a security alert, it challenges
the source.

Patch Suppression Attack. A malicious (or selfish) candidate key node may not prop-
agate security patches. That is, in the download-based approach, it does not offer the
security patches to downloaders and in the search-based scheme it does not care about
other susceptible nodes. This patch suppression attack will degrade the effectiveness of
our schemes. However, it only decreases the actual α. As long as they are not a lot, our
schemes will still work. Otherwise, we should increase the value of α.

6 Evaluation

Environmental Setup. We evaluated and compared our schemes in a variety of file-
sharing systems. For unstructured networks we implemented a Gnutella simulator based
on Gnutellasim from limewire.org; for structured networks we used P2PSim ([5]) to
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Fig. 8. Comparing time performance of the approaches in Gnutella 0.6; N=20k nodes, M=1k files,
λd=1 file/hour, λa= 1.0, α=10%, β=0.7

construct a basic Chord [22] infrastructure for routing queries and responses. We im-
plemented a protocol similar as NeuroGrid [15] to generate large-scale file-sharing traf-
fic on top of the routing infrastructures. We studied the case when a file-sharing worm
Benjamin.a [4] surges in the network and evaluated the effectiveness of our counter-
measures.

We adopted the following metrics in our evaluations: t0, time takes to reach an immu-
nity rate Ψ = 90%; h(t0), the the percentage of abnormal files at time t0, which also re-
flects the infection rate If/N(t0) when λa → 1; If (max), the maximum infection rate
which indicates how severe the system has been attacked. For each scheme, we also in-
vestigated the system evolution status, the impacts from user behavior and the message
overhead. To examine the schemes’ tolerance against node dynamics (joins/departures),
our implementation followed the observations from Gnutella 0.6, i.e., 45% of the nodes
quit the network in less than 4 ∼ 5 hours, and 22% persistent node tend to stay in the
network for longer than 24 hours. Each of our experiments takes 100 runs. We report
the mean of the measurement results. Unless otherwise indicated, in all our tests, the to-
tal population N = 20, 000 nodes. The number of files (with different contents) varies
from 1, 000 to 10, 000 and the average size of shared folders ranges from 5 to 50 files.
We set the initial the percentage of abnormal files h(0) = 1.5%, the initial infection
If (0)/N = 0 and the initial immunity rate i(0) = 15%. Among these immune nodes,
α = 5 ∼ 10% of the entire population were bootstrapped as key nodes and each of
them obtained the latest security updates from vendors.

Scheme Effectiveness. We compared the time performance and the system evolution
status of different approaches, using the same set of parameters (e.g., λa, λd, α and
β). We also used the no-defense case as the base line. Our test results are shown in
Fig 8. Fig 8(a) illustrates the change of immune population over time. Without any de-
fenses, the system keeps a low immunity rate and has to rely on individuals’ patch up-
dates. The download-based approach and the search-based approach both significantly
increase the immunized population. The former takes around 35.5 hours to achieve a
90% immunity rate while the latter takes around 62.5 hour due to its reactive nature.
The download-based approach largely depends on the activity level of file downloads
and the search-based approach is triggered by worm detections. Fig 8(b) shows the
change of the infected population over time. Without any defenses, the worm spreads
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in a relatively high speed and infects all the vulnerable hosts within 9.5 hours. Both our
schemes effectively help the system reduce the infected population by internally push-
ing the security patch to disinfect those victims. A further comparison indicates that the
search-based approach has a relatively slower disinfection speed; it takes 62.5 hours to
reduce the overall infection rate to below 10%. However, it keeps a lower maximum in-
fection rate (If (max)/N = 37%). On the contrary, the download-based approach takes
45 hours to reach an infection rate below 5%, but it yields a higher maximum infection
rate (If (max)/N = 44%) in the system. Fig 8(c) illustrates the change of vulnerable
population over time. Without any defenses, the vulnerable population quickly drops to
zero (within 10 hours) as more and more nodes get infected during file downloads. Our
schemes effectively slow down this process by either immunizing the vulnerable hosts
or disinfecting the victims. We can see that after around 62.5 hours, there remain few
vulnerable nodes and victims in the system and the immunity rate exceeds 90%.
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Fig. 9. Impact from user behavior on the defense scheme (Gnutella 0.6)

User Impacts and Overhead. We evaluated the impacts of system parameters and user
behavior on the defense. Fig 9 illustrates the test result in Gnutella 0.6 system. Fig
9(a) shows that both schemes take less time (t0) to achieve an 90% immunity rate as
the speed of file download (λd) increases. For the download-based approach, a higher
download speed results in a faster patching process; for the search-based approach,
a higher download speed leads to more worm infections and this in turn speeds up the
patching process. The figure also indicates that in the download-based approach, t0 gets
reduced as users become more willing to accept the patch (β increases). However, this is
not distinct in the search-based scheme due to its reactive nature. When more users are
patched, the defense also gets slowed down. Fig 9(b) shows that in the download-based
scheme, the severity level of worm attacks (If (max)) quickly drops as β increases.
When β ≥ 0.85, the maximum infection rate in the system is below that of the search-
based scheme.

Fig 10 illustrates the message overhead of the defense schemes. Using Microsoft XP
as an example, the patches during SP2 are in binary delta compression format [6] and
the mean patch size is 32.9 KBytes [12]. This patch and its vendor signature (typically
around 300 Bytes) constitute the main part of the payload in an alert message. Thus,
the average length of a patch message is 33.2 KBytes. The figure shows that when β
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increases from 0.6 to 1.0, the message count of the download-based approach decreases
until finally it reaches around 20, 000 × (90% − 15%) = 15, 000. We examined three
cases for the search-based scheme: (1) worst case in which each key node simply deliv-
ers the patch to its targets. Patch messages could be duplicated and the message count
is above 50, 000; (2) average case in which a key node does not deliver a patch to the
same target and the message count is above 28,000; (3) optimal case when key nodes
collaborate to avoid patch duplicates or each node indicates its current patch version in
the QueryHit response. Hence, there are few patch duplicates and the message count
approaches 15, 000 when β → 1.
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Fig. 10. Message overhead of the defense scheme (N = 20,000 nodes, Ψ = 90%); the download-
based approach has less overhead than the search-based one due to no alert duplicates.

7 Related Work

File-sharing worms have recently attracted much attention in research community. The
initial studies mainly focused on understanding the threats and modeling the behavior
of such imminent worms. Dimitriu et al. [11] demonstrated that worm spreads highly
depend on user behavior, such as willingness to share files and quickness in removing
infected files. Kumar et al. [17] developed a suite of fluid models that characterize pol-
lution proliferation in file-sharing systems. Thommes et al. [23] derived deterministic
epidemiological models for file-sharing viruses spreading in file-sharing systems.

The problem of throttling these worms have not been adequately addressed. Exist-
ing defenses mirror the strategy against Internet computer viruses. Generic automated
patching tools (e.g., Microsoft Window Update, Symantec Update, McAfee VirusScan)
are widely adopted to launch protection on P2P hosts. Vojnovic et al. [24] studied the
effectiveness of automatic patching and quantified the speed of patch dissemination re-
quired for worm containment. Gkantsidis et al. [12] provided general guidelines on how
to design a fast planet-scale patching system based on their studies on Window Update.
They also suggested alternative patching strategies such as caching. Costa et al. [10]
proposed Vigilante, an end-to-end approach in which hosts run instrumented software
to detect worms and broadcast self-certifying alerts (SCA) upon worm detection. Zhou
et al. [26] further applied Vigilante in P2P systems to contain fast-spreading topological
worms. Our work differs from the above in that we provide internal patching mecha-
nisms exclusively for file-sharing systems. Our focus is not on generating anti-worm
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code on-the-fly to combat zero-day worms, but on studying good patching schemes
which both save network bandwidth and avoid unnecessary host interruptions.

8 Conclusions and Future Work

File-sharing worms are becoming the most dominating and devastating security threats
to P2P systems. Current defenses relying on individual recoveries or limiting file-sharing
activities are not adequate. As a complement to the existing centralized patching mode,
we proposed internal patching mechanism which conveniently leverages file-sharing in-
frastructure to disseminate security updates to participating peers in an automated and
distributed way. We studied a download-based approach which exploits the file download
process and a search-based approach which exploits the file search process for notifying
P2P hosts of the worm attack and pushing the security patch to them. In spite of some
remaining issues such as host diversity and user diversities, the free-rider problem [8] in
patching, our study suggests some interesting directions for designing countermeasures
against worms in distributed environments. We address remaining issues in our future
work.
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A Percentage of Abnormal Files

Proof. We refer to Table 1 for notation. Let A(t) denote the number of abnormal files at time t,
we have h(t) = A(t)/F (t). The change rate of the total number of files F (t) is

dF (t)

dt
= λdN i.e., F (t) = F0 + λdN · t, (12)

where F0 is the initial number of files in the system. A newly added abnormal file could be
caused either by a vulnerable host activating another abnormal file in the same folder, or by a
node directly downloading an abnormal copy from others. Therefore, we have the change rate of
the number of abnormal files

dA(t)

dt
= λd · λa · V (t) · h(t) · (s(t) − 1) + Nλdh(t). (13)

http://www.hpl.hp.com/shl/papers/kazaa/index.html
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Considering s(t) − 1 ≈ F (t)/N and A(t) = F (t) · h(t), we solve equation 13 and finally get

h(t) = h(0) · e
λd·λa

N

�
t
0 V (τ)dτ , (14)

where h(0) is the initial percentage of abnormal files.
We may compute an approximation for h(t). Assuming all the nodes have a similar size of

s(t) for their shared folders and the user parameter λa approaches 1, which means every client
usually activates (opens) the file he has just downloaded, all the abnormal files should gradually

be kept by those infected hosts in the system. Hence, we may derive h(t) ≈ If (t)
N

.
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Abstract. Reliable network demographics are quickly becoming a much
sought-after digital commodity. However, as the need for more refined
Internet demographics has grown, so too has the tension between privacy
and utility. Unfortunately, current techniques lean too much in favor of
functional requirements over protecting the privacy of users. For exam-
ple, the most prominent proposals for measuring the relative popularity
of a website depend on the deployment of client-side measurement agents
that are generally perceived as infringing on users’ privacy, thereby lim-
iting their wide scale adoption. Moreover, the client-side nature of these
techniques also makes them susceptible to various manipulation tactics
that undermine the integrity of their results. In this paper, we propose a
new estimation technique that uses DNS cache probing to infer the den-
sity of clients accessing a given service. Compared to earlier techniques,
our scheme is less invasive as it does not reveal user-specific traits, and
is more robust against manipulation. We demonstrate the flexibility of
our approach through two important security applications. First, we il-
lustrate how our scheme can be used as a lightweight technique for mea-
suring and verifying the relative popularity rank of different websites.
Second, using data from several hundred botnets, we apply our tech-
nique to indirectly measure the infected population of this increasing
Internet phenomenon.

Keywords: Client Density Estimation, Web-metering, Botnets, Net-
work Security.

1 Introduction

Over the past few years, it has become increasingly important to garner reliable
information about the demographics of the Internet and the myriad of services
that it supports. For one, Internet businesses increasingly rely on such informa-
tion to better customize their marketing campaigns. Advertisers, for example,
make continual use of the relative popularity of websites and the demographics
of their visitors to design and position their products and services in an effective
manner. Similarly, security practitioners frequently use information about the
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population affected by security incidents to develop a better understanding of
the characteristics and the scope of these attacks.

However, as the need for network demographics has increased, so too has the
tension between utility and privacy. For instance, the most well-known schemes
for measuring the relative popularity of websites (e.g., Alexa [38], ComScore [20]
and NetRatings [26]) collect client-side data from deployments of measurement
agents placed inside edge networks (e.g., using browser toolbars that record all
URLs visited by the client). Generally speaking, the collected data is sanitized
and used to produce aggregate statistics for the application in question. However,
since the type of sanitization that is applied, as well as the specific data collected,
are completely at the discretion of the data collector, large cross-sections of the
population shy away from deploying these agents. Moreover, the mere client-
side nature of these collection schemes opens the door to abuse (be it via click
fraud [23] or other manipulation recipes [1]) that directly affect the integrity
of the results. Recently, the prevalence of these fraudulent behaviors has raised
so much doubts about the integrity and authenticity of these ranking measures
that it captured the attention of the mainstream press (e.g., [22]).

Also of much interest lately is the question of how to reliably determine the in-
fected population of an all too common security event, namely, botnets. Clearly,
the size of the population affected by a particular security incident plays an
important role in fully understanding its impact, as well as helps in prioritizing
defense tactics from industry and practitioners alike. Unfortunately, although
information on the scale and nature of a security event can be valuable for
forensic and defenses purposes, network operators are usually reluctant to re-
lease such information as disclosure of (repeated) breaches can lead to loss
of public confidence. Therefore, information on the spread of security events
(worms, botnets, etc.) is normally collected at a global scale by dedicated mea-
surement entities (e.g., CAIDA) using a combination of direct [28,31] and in-
direct methods [3,24,31]. While these approaches have been widely successful,
they are known to be vulnerable to various evasive tactics. For example, network
monitors can easily be detected and evaded by active probing attacks [5,29,36].
Similarly, in the case of botnets, several practices complicate direct measure-
ments as botmasters often suppress broadcast feedback, thereby making direct
measurements infeasible even if the botnet has been infiltrated [30].

In what follows, we present a new technique for inferring the density of clients
accessing a particular network service. Among a number of possible applications,
our technique is directly applicable to both of the aforementioned problems.
Specifically, we present an indirect estimation technique using DNS cache prob-
ing [14], and show how it can be used for website metering as well as for inferring
the infected population of certain security events (e.g., botnets). In the former
case, our evaluation shows that the technique is very accurate, and can serve
as a standalone verification tool for determining the popularity rank of different
websites. Compared to other approaches (e.g., Alexa [38]), our technique is less
invasive as it does not require host-specific information. Moreover, as we discuss
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later, our technique is more robust under a threat model where the attacker is
deliberately trying to inflate the popularity rank of her website.

In the latter case, we illustrate how our technique can be used to arrive at
a better size estimate (than the notion of botnet footprint we suggested ear-
lier [31]). We argue that this refinement is important as botnets continue to be
one of the top Internet threats today [32,37], and so more accurate size mea-
surements have immediate benefit in assessing the monetary impact and damage
they cause (e.g., via identity theft, DDoS attacks, etc.) [15]. While fine-grained
estimates of botnet size still remain challenging [30], we believe this work offers
a valuable step forward in that regard.

The remainder of the paper is organized as follows. In Sections 2 we illus-
trate our methodology and estimation techniques. In Section 3 we validate our
approach through simulation and by comparison to an actual client count mea-
sured directly from our local network. In Section 4 we provide two real world
applications that we believe aptly demonstrate the utility of our technique then
we discuss some practical considerations in Section 5. In Section 6 we review
related work, and conclude in Section 7.

2 Estimation Methodology

Growing security [18,34] and privacy concerns raise significant challenges for the
application of direct methods to obtain faithful counts of clients using a partic-
ular service, for example, by simply taking measurements from within network
boundaries (e.g., using toolbars that monitor a users’ browsing habits). Right-
fully so, this unease calls for indirect counting techniques that limit the privacy
risks with recording host-specific information. In this section, we describe our
methodology for estimating the number of clients accessing a particular network
service using a purely indirect technique.

Our approach exploits the fact that most network services (e.g., websites,
botnet command and control servers) use DNS names to identify their servers.
This, in turn, makes DNS resolution a pre-requisite step for any client connecting
to that server. Simply speaking, we exploit this association to infer the number
of clients requesting the resolution of the DNS name for the service of interest
(e.g., www.cnn.com) from their local DNS resolver. Specifically, we use DNS
cache probing to measure the evolution of that name in the resolver’s cache and
consequently derive an estimate of the number of clients accessing that service.
Compared to direct methods, our technique is less intrusive as it does not reveal
the specific identities of clients accessing the service of interest.

The technique itself is rather straightforward: for each DNS name of interest,
S, we probe the cache(s) of the DNS resolver(s) for the network(s) of interest
at regular intervals and examine the observed cache hits, if any, for S. For each
cache probe, a cooperative resolver (i.e., a resolver that responds to DNS cache
queries) will report a hit if S was in its cache, or a miss otherwise. In the former
case, the resolver also reports the remaining time before S is flushed. While a
cache hit only indicates that at least one client made a request for that entry,
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we can refine that estimate by sending appropriately-spaced probes that reveal
the sequence of start and end times of S’s entry in the resolver’s cache. These
times are a direct result of the combined queries from all clients that the resolver
serves.

Figure 1 illustrates our estimation methodology. At a high level, one can
envision the client population estimation as involving two processes: an input
process representing the combined arrivals of DNS queries for the DNS entry S,
from clients served by the same resolver, and an output process representing the
refresh and expiry times of S that result from the input querying process. Our
subsequent analysis relies on the simplifying assumption that the inter-arrival
times of client requests in the input process can be modeled as a sequence of
independent identically distributed random variables (IID’s). Jung et al. [21]
also used this assumption and showed that it does not introduce significant bias
in the arrival model. We will return to this assumption, as well as the arrival
model, in Section 2.2. Given this model, our goal is to estimate the number of
clients n, requesting lookups for S from their common DNS resolver. We do
so by estimating the aggregate DNS query rate λ, using the observed refresh
and expiry times of the entry S from the output process. As we show later, the
resulting estimate for λ leads to an estimate of the number of clients n. In what
follows, we begin by describing our methodology for estimating the rate λ and
then proceed to show how we can use this estimate to infer the number of clients
n in Section 2.2.

2.1 Estimating the Aggregate Rate

For a DNS entry S, with a time to live (TTL), we estimate the aggregate rate
λ, as follows: we probe the cache of the resolver of interest at a rate of one probe
per TTL. As Figure 1 illustrates, the sequence of probes allows us to capture
the start and end times of S in the resolver’s cache. Recall that for a cache hit
corresponding to a probe p at time Tp, the resolver returns the time Tl until

DNS Resolver

Time

(Observed Refresh times)

(Client DNS requests)
Input Process

Output Process
TTL

Tr

Tp

DNS cache probes,

Tl

TTL

one probe per TTL
ΔTr (Case-I)

ΔTr (Case-II)

Fig. 1. Illustration of the estimation methodology
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the cached entry expires. Given the TTL we can therefore infer the most recent
start time (which we call the refresh time) Tr, as:

Tr = Tp − (TTL − Tl) (1)

Then one way to estimate the average rate λ, is to compute the average time
between consecutive refresh times Tr1 , Tr2 , ..., TrR (Case I in Figure 1) from a
sufficient number of refresh events R. Let ΔTri be the time between consecutive
refresh events of the entry S as observed from the output process, (ΔTri =
Tri − Tri−1), then,

λ ≈ R
∑R

i=1 ΔTri

(2)

However, notice that this method is overly conservative since it assumes that
no DNS queries arrive within the TTL of S in the resolver’s cache. This is of
course too restrictive and will lead to under-estimating the rate λ. Instead, we
consider ΔTri as the time between the expiry of the entry until its next refresh
time (Case II in Figure 1),

ΔTri = Tri − Tri−1 − TTL (3)

Notice that doing so makes the implicit assumption that the last DNS query in
the input process took place slightly before the DNS entry expired. As we show
later, this is not a significant issue and our technique still yields a fairly accurate
estimate for practical TTL ranges.

Based on the newly calculated ΔTri , we use Equation 2 to calculate the es-
timated rate λ from a sufficient number of refresh events R. To determine the
required number of samples R, we apply the results of the central limit theo-
rem [33]. For an acceptable error e, and confidence zα/2, we can calculate the
sample size accordingly (see Appendix A for the detailed derivation). Finally,
with the estimated λ at hand, we can infer the number of clients as a function
of λ and the individual client request rate λc. In the next section we discuss how
we estimate both λc and n.

2.2 DNS Request Arrival Model

In order to estimate the number of clients n, we need some knowledge of the DNS
request arrival model. We derive this model by studying the distribution of the
inter-arrival times of incoming DNS requests to a particular resolver. Specifically,
we use a large dataset of over 320 million NetFlow records collected at the edge
of a large campus network during a 24-hour period on 7/15/2007. We use this
dataset to study the arrival models for two popular domain names, namely,
www.google.com and www.cnn.com with TTLs of 5 and 10 mins, respectively.
Assuming that each HTTP connection is preceded by a DNS request, we deduce
these models by extracting the inter-arrivals of the start times of flows originating
from individual hosts and destined to each one of these domains. Jung et al. [21]
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used a similar approach in their study on the effectiveness of DNS caching.
Figure 2 shows the distribution of the inter-arrival times of requests to each
name. As the graphs show, the incoming client DNS request arrivals can be
reasonably modeled by exponential random variables with different rates λc (=
2.6 queries/hour for www.google.com and 0.78 queries/ hour for www.cnn.com).
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Fig. 2. Cumulative Distribution Function (CDF) of the incoming client request inter-
arrivals

Following the assumption from Section 2, the sequence of IID exponential
inter-arrivals from n clients (each with an input rate of λc) generates an output
arrival process with Gamma distributed arrival times Gamma(n, λ). Since n in
our case is an integer value, then it follows from the gamma distribution [33] that
the output process has exponentially distributed inter-arrivals with an aggregate
mean rate of λ = nλc. We use this property to indirectly estimate n from the
measured output process rate λ, where λ is estimated using R refresh events as
illustrated in Section 2. Given λ, the expected number of clients, is

(
n = λ

λc

)
.

3 Validation

We first verify the accuracy of the proposed approach via simulation. Using the
simulation parameters shown in Table 1, we evaluate the accuracy of our ap-
proach by measuring the estimation error of n for a wide combination of λ and
TTL values. Figure 3 shows the estimation error. As the graph shows, our es-
timator is fairly accurate; the 95% confidence interval (i.e., within 2 standard
deviations) of the mean estimation error remains within the bounds of the ac-
ceptable error set in the simulation.

3.1 In the Wild Evaluation

We further validate the effectiveness of our estimation technique by applying it to
data collected from a real-world DNS probing experiment. In this experiment, we
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Table 1. Simulation parameters

Acceptable estimation error (e) 20%
Actual number of clients 100
Confidence 95%
Number of samples (R) 100
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Fig. 3. Relative estimation error of the number of hosts n under different number of
DNS queries per TTL (λ TTL)

probe a local resolver serving a small department network for two popular DNS
names, namely, www.google.com and www.cnn.com. For validation purposes, we
enabled DNS logging on the local resolver so that all internal DNS queries issued
for either one of those names were recorded. We then extract the unique sources
making queries for each name and use their count as a validation baseline for
our estimate. Table 2 shows the parameters used in our experiment as well as
the estimation results. The client query arrival rate, λc, is chosen based on the
campus-wide trace discussed in Section 2.2.

As the table shows, the estimates are fairly accurate. For example, the estimated
aggregate rate λ for www.google.com, from our cache probing, is 240 queries/hour.
Dividing this estimate by the client query rate, λc = 2.63 query/hour estimated
from the NetFlow dataset, yields an estimate of 93 clients accessed www.google.
com. Similarly, our evaluation yields an estimate of 30 clients accessed www.cnn.
com. Both estimates are within the bounds of the 20% error margin set in the ex-
periment parameters. These results provide evidence on the viability of this esti-
mation technique. We now turn to illustrate the flexibility of our approach through
two important security applications: web-metering and botnet size measurement.
We believe these two applications serve as good examples of the strength of our
scheme.

www.google.
com
www.cnn.
com
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Table 2. DNS cache probing experiment, parameters and results

www.google.com www.cnn.com
TTL 300 seconds 600 seconds
Client mean query rate (λc) 2.63 query/hour 0.78 query/hour
Cache probing rate 1 query every 5 mins. 1 query every 10 mins
Number of samples (R) 100 100
Acceptable estimation error 20% 20%
Actual number of clients (n) 104 26
Estimated mean aggregate rate (λ) 240 queries/hour 23 queries/hour
Estimated number of clients (n̂) 93 30

4 Applications

4.1 Estimating Website Popularity

As mentioned earlier, web metering (or popularity ranking) plays an important
economic role in today’s Internet. Popularity rank, for instance, is a key factor
in deciding the marketing potential of a website. In particular, the higher a
site’s popularity rank, the more advertisers are willing to bid for advertising
space on that site. Not surprisingly, because of the strong correlation between
website popularity and monetary benefits, techniques for rank inflation are not
uncommon [1,2,12], and so this problem has stirred much interest on the design
of secure metering schemes (e.g., [16,25]).

For the most part, web metering schemes attempt to address the problem of
trust between advertisers and website owners by delegating the web metering
task to a third party (e.g., Alexa [38], ComScore [20], NetRatings [26]) that
monitors the interaction between clients and servers, and/or rely on cumbersome
key agreement and distribution schemes [6,16,25]. In practice, the most well-
known ranking services offer ranking for websites based on the number of visits
they receive. These visits are measured from data collected from millions of
users who willingly install measurement agents (e.g., Alexa toolbars 1) on their
machines. However, clearly such techniques raise security [18,34] and privacy
concerns as they reveal user-specific traits to the ranking service. Furthermore,
the resilience and accuracy of these techniques has been recently brought into
question [1,22].

In what follows, we illustrate a simple, yet effective, web metering scheme that
requires no client-side deployment. Additionally, our scheme is less intrusive as it
does not breach individual users’ privacy. The outcome of the proposed scheme
is a list of website ranks measured from a completely different perspective. These
ranks can be used as a stand-alone measure of the relative popularity of websites
or to validate the results obtained from other ranking schemes.

1 Whether or not these toolbars should be classified as “Spyware” seems to be a subject
of much debate lately.
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Our technique is a direct application of our DNS-based estimation technique.
That is, to measure the relative popularity rank for a set of websites, B, we peri-
odically probe the caches of a selected set of resolvers, D, following the aforemen-
tioned approach (i.e., one probe every TTL epoch). Then to determine the relative
rank of a website we simply measure the rate λ (as illustrated in Section 2) from
the output of the probing process for each resolver in D. The final rank K, is then
expressed in terms of the average time it takes the web-site entry to be refreshed
in the resolver cache after its last expiry (i.e., 1/λ) across all resolvers in D. In-
tuitively, DNS entries of websites with higher hit rates will be refreshed quicker
than those with lower hit rates. To get the final website rank K we calculate the
weighted average of the refresh times across all resolvers in D,

K =
∑

i∈D

Wi

λi
(4)

where, Wi is the relative weight of each resolver in the final rank outcome. A
number of criteria can be used to decide the relative weight for each resolver. For
example, the weights can be decided based on the population demographics and
target market of the advertising company, or from light-weight sampling of the
IP-space (e.g., [9,29]). In our case, we choose to apply a weight for each resolver
based on the total client population served by that resolver. For simplicity, we
infer this information from a dataset obtained from Google Inc. that contains
a large list of resolvers and a coarse-grained estimate of the number of clients
served by each resolver. For each resolver the weight Wi is then calculated as
the number of clients served by resolver i divided by the total number of clients
served by all resolvers in the sample D.
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Case Study. We apply the above methodology to measure the relative pop-
ularity of the top 100 web-sites according to the ranking of Alexa.com 2. For
our target resolvers, we use a large list of 1.6 million resolvers obtained by col-
lecting the Name Server (NS) records of a large list of crawled web URLs [27].
The resolvers list is first sanitized to extract the “cooperative resolvers” (re-
solvers that respond correctly to external cache queries). The sanitization phase
involves sending two consecutive DNS queries to each resolver for a known DNS
record. The first is a recursive query that forces the DNS server to fully re-
solve the query. The second query is sent with the recursion flag turned off
to elicit a local reply from the resolver’s cache. We compare the replies for
consistency and also verify that the value of the TTL field in the second re-
sponse is smaller than the one in the first response. After sanitization, a total of
768,000 resolvers were cooperative. As our target resolvers, we choose a smaller
sample of resolvers from the sanitized list. We denote this sample D. Notice
that there are several ways to choose the sample D. In our case, we first map
the resolvers in the large list of 768,000 resolvers to their respective countries
using the IP2Location database [13]. Our resolvers mapped to 189 countries.
From each country we randomly choose up to k (=3) resolvers to form our fi-
nal target list D of 495 resolvers 3. We choose this particular methodology to
serve our goal of ranking website according to their popularity from a global
perspective. However, the selection criteria can be tuned to serve other rank-
ing goals. For example, one could select all resolvers from a certain country to
study web-site popularity with respect to users from that region. Investigat-
ing the selection of resolvers to serve such goals is outside the scope of this
paper.

We probe each resolver in D for the top 100 websites from Alexa following the
above methodology. Then we estimate λi for each resolver based on a sample of
50 probes and compute the final rank for each name using Equation 4. Figure 4
shows a comparison between our ranks and those of Alexa. As the graph shows,
while both rankings show comparable results (with an average rank difference
of 4.5), in some cases the ranks differ significantly. A closer look into some of
the differing ranks reveal that they refer mostly to websites that have a country
specific domain (e.g., www.ebay.co.uk had a rank difference of 22). Recall that
we select our target resolvers from all-over the globe, hence this discrepancy
is likely a consequence of the resolver selection criteria. In some other cases
(e.g., www.orkut.com which has a rank difference of 12), the reason for the
discrepancy in ranking is unclear. While it is difficult to argue for or against
the accuracy of either ranking (without a true baseline) these results highlight
the benefit of having metrics from different perspectives. This is important as
the multiple measures can reveal inconsistencies in some ranks, and can be used
further to produce new, and hopefully more robust, ranks based on a combination
of different measures.

2 We use the top 100 Alexa global ranks that are based on traffic statistics as of
September, 2007.

3 For countries containing ≤ 3 resolvers we choose all the available resolvers.
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Resilience to Fraudulent Inflation

Click fraud. Click fraud schemes [23] have the dual effect of inflating the
number of “click-throughs” on the Ads posted on a website and increasing the
popularity of the website as the number of hits increases. While click-fraud
may directly affect the ranks produced by direct counting schemes (e.g., those
of Alexa), its effect on our ranks is more limited. For one, only those clicks
originating from hosts served by resolvers in our randomly chosen sample, D,
may influence the ranking. More importantly, to influence the outcome of the
probing process, these clicks need to persist over a long period of time in order
to significantly change the average refresh rate.

Direct manipulation attacks. In light of our technique, one might attempt to
inflate the popularity of a website by polluting the caches of the resolvers that
we probe. Cache pollution is possible if the resolver allows recursive external
DNS queries. In this case, the attacker may send a sequence of synchronized
DNS queries for the service name of interest—spaced by the TTL—so that the
DNS entry is refreshed immediately after its expiry. Consequently, our probing
process will falsely yield a high refresh rate for the target resolver. However, for
this attack to be effective, the attacker must target enough resolvers from D to
influence the final website popularity rank. To mitigate such attacks, our sample
of resolvers is selected at random, by region, and refreshed periodically, thereby
making pollution attacks more difficult (though not infeasible) to perpetrate.

4.2 Estimating Botnet Size

Another compelling use of our technique is that of estimating the size of a botnet.
Botnets are networks of compromised hosts, called bots, under the control of hu-
man operators, referred to as botmasters. Botnets are primarily used for various
types of malicious activities, including denial of service attacks, click fraud [12],
software piracy, and spam. While botnets have only recently attracted the atten-
tion of the research community, several works on the topic have already emerged
([10,11,19,28,31]). In particular, several studies have attempted to address the spe-
cific question of botnet size and the subtleties involved in size estimates. For ex-
ample, Dagon et al. used DNS redirection to divert bot connections to a darknet
in order to directly count the number of bots [11]. While effective, their approach
requires coordination with DNS authorities in order to perform the redirection.
Other studies used botnet infiltration to directly count the number of bot ID’s
observed on the botnet command and control channel [17,31]. Unfortunately, bot-
masters are increasingly suppressing bot information on the command and control
channel, thereby hindering the effectiveness of these techniques.

As a remedy, we proposed [31] a technique for estimating botnet sizes using
DNS cache probing. Similar to this work, botnet sizes were measured by probing
the caches of a large set of DNS resolvers for the DNS name of the botnet server.
The total number of DNS resolvers returning a cache hit for the name in question
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Fig. 5. CDF of Individual bot join inter-arrival times (based on data from 470 botnets)

provided a botnet’s so-called “DNS footprint”. However, this footprint is, at best,
a lower bound of the true infection size because that approach does not provide
any indication on how many infected bots reside behind a domain where a hit
was returned.

In what follows, we illustrate how one can use the approach suggested in this
paper to provide a better estimate of a botnet’s population. To do so, we first
examine the distribution of bot request inter-arrivals. We derive this distribution
by studying the bot4 join times extracted from a dataset containing the activity
logs of 470 infiltrated IRC botnets [31]. Figure 5 shows the distribution of bot
join inter-arrival times over a period of more than 9 months. As the graph shows,
bot inter-arrival times can be approximated by an exponential distribution with
an average rate of λc = 0.156 (i.e., an average of one connection every 6.4 hours).

Given knowledge of the distribution of bot request inter-arrivals, we now apply
our estimation technique. In order to have a baseline for validation, we only
choose botnets whose member counts are sufficiently large and can be calculated
directly from the IRC traces. This yields two botnets, with member counts of
12,700 and 10,690 respectively. As our target resolvers, we use the large list
of 768,000 cooperative resolvers from Section 4.1. Following the methodology
from Section 2, for each resolver, we send a sequence of cache probes spaced by
the TTL for the botnet server name in question then we estimate the botnet
population by calculating the sum of the estimated number of bots n served by
each resolver. Table 3 summarizes the parameters of the probing experiment and
the results of our estimation.

4 In our analysis we assume that a bot IP address is a sufficient measure of bot
uniqueness. To account for the effect of DHCP we only consider join inter-arrivals
that are ≤ 24 hours. We also exclude bot joins resulting from clone attacks as well
as any join with no associated quit message.



Peeking Through the Cloud: DNS-Based Estimation 33

Table 3. DNS cache probing experiment, estimating botnet sizes

Botnet I Botnet II
TTL 15 mins 30 mins
Client mean query rate (λ) 0.156 query/hour 0.156 query/hour
Cache probing rate 1 query every 15 mins. 1 query every 30 mins.
Number of DNS resolvers 768,000 768,000
Number of samples (R) per resolver 100 100
Population size (from IRC logs) 12,700 10,690
Measured DNS footprint 1,700 1,452
Estimated population 8,400 6,350

The probing experiment shows that the botnets in question have DNS foot-
prints [31] of 1,700 and 1,452, respectively. For each resolver in the footprint, we
extracted all refresh times for both botnet server names. We then applied our
estimator from Section 2 to derive the size of the infected population of each
botnet. Our estimation results show that the sizes of the infected population
were about 8,500 and 6,350 bots, respectively. Clearly, the population estimates
derived from our analysis are much closer to the actual population sizes com-
pared to the more coarse-grained DNS footprints — that imply sizes of only
1,700 and 1,452 bots, respectively. That is equivalent to more than a three fold
improvement in accuracy over the DNS footprint estimate.

The observant reader would note that the error margin from the actual bot
count is larger than that in Section 3. The degradation in accuracy is due to
the fact that our list of target DNS resolvers only covers a subset of all DNS
resolvers in the Internet. Hence, a more comprehensive list of servers would
enhance the estimation accuracy. Additionally, botnet size instability (be it due
to bot migration or churn [31]) also contributes to this effect. Nonetheless, we
believe our result shows the utility of this estimation technique in assessing a
botnet’s size when it is not possible to make such measurements directly even
after the botnet has been infiltrated.

5 Practical Considerations

Notice that our probing mechanism requires cooperative resolvers that respond
correctly to external cache probes. The sanitization step in Section 4.1 showed
that roughly half of the resolvers in our list did not respond to external cache
queries. While this is not a hindrance for some applications (e.g., for web-
metering we only require a small sample of resolvers), having a large set of
resolvers will improve the accuracy of other applications (e.g., botnet size esti-
mation). An alternative probing model that can overcome this limitation would
be to deploy a set of distributed DNS probing sensors inside the boundaries of
large networks (e.g., within the boundaries of ISPs). The internal sensors will
be able to query the caches of their respective resolvers and give an estimate for
the client density in the same network.
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Another noteworthy point of discussion is the practical impact of the TTL
interval. Our analysis shows that the change in the TTL interval length does not
significantly affect the accuracy of our estimator. However, in practice, the value
of the TTL has an impact on the estimation speed and the overhead associated
with the probing process. Recall that we probe each DNS name at a rate of
one query per TTL. For large TTL values (e.g., on the order of one day), our
probing scheme will require a long time to collect enough samples in order to
reliably estimate λ. Luckily, major websites mostly use short TTL values for
the purposes of load balancing [35]. Figure 6 illustrates the distribution of the
TTL length for the top 100 websites in Alexa’s ranking. As the graph shows,
the majority of the TTLs are relatively short (about 85% of the TTLs are less
than one hour). Likewise, our ealier work showed that a significant portion of
the DNS names used by botmasters have short TTLs [31]. In many cases, these
DNS names are served by dynamic DNS providers that intentionally use shorter
TTLs to accommodate for frequent IP address changes of the subscribing servers.
Finally, we note that one way to accommodate for large TTLs is to compute a
running estimate of λ and keep updating the estimate as more samples are
collected.
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Fig. 6. CDF of the TTL intervals for the top 100 websites according to Alexa. The
majority of websites use short TTLs with about 85% of the TTLs being less than one
hour.

6 Other Related Work

The general problem of inferring the size of various client populations on the
Internet has received considerable attention over the last few years. For the most
part, the proposed techniques share the characteristic of attempting to estimate
the size of a population in the absence of information from within the networks’
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edge. Generally speaking, these techniques differ in the inference mechanisms
they use to derive the different population estimates. Additionally, each scheme
is normally tailored to meet a specific goal for a specific context.

For example, Bellovin proposed a technique for estimating the number of
hosts behind a Network Address Translation (NAT) device [4]. His technique is
based on observing the evolution of the value of the identity field in the outgoing
IP datagrams. More recently, Casado et al. used the number of scans received
by strategically placed darknets to infer the percentage of Code Red II-infected
hosts that resided behind NAT devices [8]. Additionally, Casado and Friedman
proposed techniques based on active web content to estimate the number of
hosts located behind a large number of NAT devices and web proxy servers [7].
Our work is different both in scope and technique. In our case, the goal is to
estimate the density of clients accessing the same Internet service using DNS
cache probing.

The strength of our approach is demonstrated by its utility for a wide range
of applications, two of which are presented in Section 4. The web-metering
problem has been the subject of a number of earlier research proposals (e.g.,
[6,16,25]). At a high level, these schemes use cryptographic primitives to design
web-metering schemes that are resilient to click inflation attacks (e.g., [1,2,12]).
These approaches, however, are resource intensive and require sophisticated key
agreement and key distribution schemes. By contrast, our scheme is relatively
straightforward and requires no client side deployment.

Population estimation techniques have also been used to estimate the size of
infections caused by malware spreading. For example, Dagon et al. used DNS
redirection to measure the number of hosts connecting to IRC servers associated
with botnet C&C channels [11]. More recently, we used both direct and indi-
rect methods to better understand the spread of botnets in the wild, and how to
characterize their behavior [30,31]. While these later works also use DNS probes,
they are different from the approach in this paper in an important way: specif-
ically, while our earlier work provides a course-grain estimate, we refine that
approach to provide a technique for estimating (with reasonable approximation
error) the number of infected hosts within these domains.

7 Conclusion

In this paper, we provide a new technique for estimating an important class
of Internet demographics, specifically, the client population density of a given
service. We demonstrate the utility of our approach through two applications
that we argue are of much interest to the security and network community at
large: verifying the popularity rank of a website and estimating the size of a
botnet infection. Compared to earlier techniques, our popularity ranking scheme
is easier to deploy, offers increased resilience to fraudulent manipulation, and is
less intrusive as it does not reveal user-specific traits to the ranking service. In the
second case, we provide a refined technique for estimating botnet size. We argue
that since the issue of size plays an important role in assessing the monetary cost
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and damage caused by botnets, improvements in accuracy in estimating their size
is of immediate benefit. In short, our approach yields a three-fold improvement
in accuracy compared to the best previously known technique. We believe these
results aptly demonstrate the utility of our approach.
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Appendices

A Deriving the Required Number of Refresh Events (R)

It is known that the average rate λ measured from multiple independent samples
is normally distributed around the actual mean:

f(λ) = N

(

λ,
λ

R

)

. (5)

For an acceptable estimation error e and a confidence zα/2 the number of
samples R required is [33]:

R =
(zα/2 σ

e

)2
. (6)

where σ is the standard deviation of the measured mean rate, λ, which can be
determined from a smaller pilot sample of DNS refresh events.
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Abstract. Peer-to-Peer (P2P) overlay networks are a flexible way of creating
decentralized services. Although resilient to external Denial of Service attacks,
overlay networks can be rendered inoperable by simple flooding attacks generated
from insider nodes.

In this paper, we study detection and containment mechanisms against insider
Denial of Service (DoS) attacks for overlay networks. To counter such attacks,
we introduce novel mechanisms for protecting overlay networks that exhibit well
defined properties due to their structure against non-conforming (abnormal) be-
havior of participating nodes. We use a lightweight distributed detection mecha-
nism that exploits inherent structural invariants of DHTs to ferret out anomalous
flow behavior.

We evaluate our mechanism’s ability to detect attackers using our prototype
implementation on web traces from IRCache served by a DHT network. Our
results show that our system can detect a simple attacker whose attack traffic
deviates by as little as 5% from average traffic. We also demonstrate the resiliency
of our mechanism against coordinated distributed flooding attacks that involve up
to 15% of overlay nodes. In addition, we verify that our detection algorithms work
well, producing a low false positive rate (< 2%) when used in a system that serves
normal web traffic.

1 Introduction

Peer-to-Peer (P2P) overlay networks are a powerful and flexible way of creating de-
centralized routing services for various applications, including content distribution and
multimedia streaming [11,13,3,20], network storage [7,18,9], resilience [2], packet
delivery using rendezvous-based communications [19] and denial of service (DoS) pro-
tection [12]. A large number of overlay networks, such as CHORD [6], CAN [16], PAS-
TRY [17] and TAPESTRY [8], are structured; that is, they use Distributed Hash Tables
(DHTs) to perform directed routing. The use of DHTs imposes an inherent structure
which dictates a well-defined and bounded set of neighbors in each P2P node. These
neighbors are used by the P2P node to communicate all of its requests and replies. In
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addition, requests arriving from neighbors are appropriately forwarded to other neigh-
bors until they are routed to the right overlay node. In a healthy overlay network, we
expect that the load generated or forwarded by a node is, on the average, statistically
similar (but not identical) to the traffic generated by any other overlay node; that is, we
do not expect that the traffic will start be deviating too much from the average traffic
generated by other nodes in the system. This is even more true for overlay networks
that provide a service where clients do not actively participate in the overlay, such as
I3 [19], Oceanstore [9], SOS [12] and others.

In this paper, we investigate methods to identify the traffic anomalies that can arise
from deliberate attacks. Our detection algorithms do not depend on object popularity.
Instead, we base them on measures of aggregate packet flows. Doing so enables us
to avoid exorbitant storage and processing costs and maintain scalability in terms of
the number of overlay participants. Although other researchers have used statistical
methods to detect and examine aggregate flows [5,14], we are the first to consider the
use of such methods in an overlay network setting that takes into consideration the
neighbor-structure of P2P systems.

In general, we can protect an overlay network that has the following properties:

– The neighbors of each overlay participant are known for a window of time
– We can determine (within bounds) the fraction of requests we expect to receive

from each neighbor

The above properties hold for almost all DHT-based Overlays (CAN is an excep-
tion) and even some randomized ones where the set of neighbors is of fixed size and
the search requests have a predefined maximum length. Although we do not address
misrouting directly as in [4], we do not allow mis-forwarding or neighbor spoofing:
every node has a fixed list of known authenticated neighbors using pair-wise symmetric
keys. Only these neighbors are allowed to route packets through the node and only to
valid destinations according to the structure of the overlay. All other traffic is dropped,
making objects reachable only by nodes that follow proper routing. By exposing traffic
anomalies, our work prevents nodes from dropping or injecting requests, thereby en-
couraging nodes to conform to “normal” forwarding behavior with respect to the rest
of the flow aggregate.

1.1 Pushback-Like Protocol

Pushback [10] is a router-based mechanism for defending against DDoS attacks. In a
Pushback-enabled routing system, a router cognizant of the bandwidth limitations of
downstream nodes may adopt a more proactive forwarding strategy. Instead of sending
packets down a congested link (where they would be lost) or dropping such packets
itself (which does not address the root of the problem: too much inbound traffic), the
router would instruct (some of) its upstream routers not to forward certain packets.
Heuristics are employed to identify the flows, or “aggregates” (packets having some
common property, such as the same destination IP address and TCP port), responsible
for the downstream congestion. The router examines its incoming (with respect to those
flows) links, and the fraction of upstream routers responsible for most of the incoming
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packets belonging to the aberrant flow are asked to rate limit that flow. These routers,
in turn, recursively apply this mechanism.

Pushback, as proposed [10], works best when malicious traffic is anisotropically dis-
tributed around the Internet, so that some routers might rate limit traffic more severely
than others. It also requires some level of trust between routers, an expectation that
turns out to be somewhat unrealistic when crossing administrative boundaries (e.g., an
ISP’s border or peering routers). The Pushback system also assumes that the partici-
pating routers would not misbehave in their execution of the Pushback mechanism and
protocol.

There are two fundamental differences between that original setup and an overlay
network: in the latter, the nodes themselves are both the originators of traffic and overlay
“routers”, and we have to assume that some of them will be compromised. Furthermore,
not only can a compromised overlay node flood the network with traffic but it can also
drop traffic meant to be routed to another destination via one of its neighbors.

Thus, in an overlay network, we have two types of misbehaving flows: flooding flows
and packet drops. For excessive flows we first rate limit the offending aggregate flow
and notify the upstream overlay neighbor of the problem, expecting him to rate limit the
offending flow. For packet drops, we contact our neighbors’ neighbors asking them to
give us the counts for the aggregate flows in question, until we find a conflicting count
indicating the node that drops the packets or lies about its aggregate packet count. By
recursive and distributed application, this pushback-like protocol allows us to isolate
the attacking nodes, quenching at the same time the effects of the attack. Of course,
if our system has a lot of attackers collaborating with each other to both not comply
but also to falsify their aggregate rates, pushback itself can be exploited by the attack-
ers to generate additional traffic to the overlay network. On the other hand, even if the
attackers are a significant portion of the network, if they are not coordinated they can
be identified and isolated by the rest of the overlay nodes. An important assumption
is that neighboring nodes cannot fake their identities, that is, they cannot pretend to
be another node in the overlay. There are many mechanims that we can use depending
on the underlying network and operating system cryptographic facilities available to
the nodes. For example, if the underlying network is the public Internet, we can set up
pairwise-authenticated encrypted tunnels using IPsec, GRE, or some other encapsula-
tion protocol used to identify the origin of the traffic.

1.2 Our Approach

We test our implementation using traffic from actual web server caches [1] to drive the
detection process. To that end, we extract the source of the request and the requested
object and use their hash values to map them into sources and objects in our system.
This way we test the performance our system under normal traffic tuning the necessary
parameters to limit false positives. Our results show that:

1. We can efficiently detect and mark excessive flows even when up to 25% of the
system’s nodes have been compromised.

2. Our algoritms require O(log2(N)) of memory per node, where N is the overlay
nodes.
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3. The proposed pushback-like protocol remains effective even when up to 15% of the
overlay nodes attempt a coordinated attack

Our work is the first that attempts to detect, identify and isolate DOS flooding at-
tacks initiated from inside an Overlay Network. The novelty of our approach lies in
the exploitation of the properties inherent in these P2P systems with inference-based
techniques.

2 Flow Model Description

This Section presents the notation we use to describe what we consider a “structured”
P2P system, formally defines our notion of an attack, and provides a description of
invariants that structured P2P systems exhibit.

2.1 Structured P2P Systems

A structured P2P system maps a set of keys Kids to a set of nodes of size N and provides
a distributed routing algorithm among these nodes. When a node n wishes to forward a
message to the node holding key k, each P2P node on the route forwards the packet to
the next P2P node along the path.

A flow, (s, k), consists of the set of search requests sent from node s to the key
k ∈ Kids. Let λS ,K be the rate of packet transmissions from nodes in S to keys in K,
and let λK

avg =
λS ,K

|S | , i.e., it is the average rate at which a node transmits requests toward
keys in K. Objects stored in the P2P system may have different popularity, i.e., that in
general λk1

avg � λ
k2
avg for k1 � k2.

Initially, we also assume that for a fixed object k, the popularity of this object is
similar among the participants of the P2P network: λS ,k = λ

k
avg for all S, k. We expect

that as |S | grows, if the nodes that comprise S are chosen at random, then λS ,k will
quickly approach λk

avg.

2.2 DoS Attackers and Attack Intensity

We consider DoS attacks targeted toward a specific key or set of keys. Such an attack
could be mounted to block access to data associated with a particular key. A node that
is the origin point of excessive packets toward key k is said to be an attacker of key k.

In a healthy P2P network, the rate of a flow λS ,k from a fairly large, randomly selected
group of nodes S toward a set of keys K should closely approximate the popularity of
that object λK

avg. We say that a flow aggregate (S ,K) is misbehaving if λs,K > (δ + 1) ·
λK

avg = λ
K
max for some δ > 0, where δ represents a lower bound on the proportional

increase that a flow can transmit relative to the average rate before the flow is labeled
as misbehaving. The previous notion can be extended to a set of nodes S as λS ,K >
|S | · (δ + 1) · λK

avg = |S | · λK
max. Note that for a set of nodes, the maximum rate allowed

before we declare the aggregate flow as misbehaving depends on the size of the set.
The selection of δ is a measure of the tolerance that we allow between different nodes
(or groups of nodes) in the P2P system before declaring that a flow is misbehaving.
If we assume a totally homogeneous system, then δ = 0 — i.e., no deviations from
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the average rate (popularity) are allowed. Larger values allow more tolerance, but also
give an attacker more freedom to deviate from the average rate and avoid detection.
Typically, we select δ = 0.1 which means that we detect flows that send ten percent
more than the average rate of a set of keys K.

We define β to be the proportion by which one attacker increases its traffic toward k
above λk

avg such that the attacker transmits packets toward key k at a rate of (β+1) ·λk
avg.

If Na is the number of attacking nodes, the total amount of excessive search requests
injected into the system by the attackers is β ·Na · λk

avg. The rate of search requests λattc,
the target node experiences under attack is:

λattc =
Na

N
· (β + 1) · λk

avg +
(N − Na)

N
· λk

avg

Let f = Na/N be the fraction of nodes compromised; we define the attack intensity, or
gain due to the attack, DA, to be the increase in the popularity of the target key k caused
by the attackers’ excessive search requests:

DA =
λk

attc

λk
avg

For example, if DA = 2, the node that stores the object under attack has to serve
twice as many search requests for that object. For the attackers’ queries to be harmful
to the target node that stores the keys being attacked, DA must be large. If an attacker
only controls a limited number of nodes, their only choice is to increase β. A large β
and small f means that there will be a relatively small number of attack flows, and that
these attack flows will inject significantly more traffic toward k. Our methods to detect
misbehaving nodes will utilize the following measure:

– Fixed-Key Variable-Source (FKVS):

α(c,K, S 1, S 2) =
λc

S 1,K

λc
S 2,K

The FKVS measure compares the rates of two sets of sources for a particular set
of keys. In a healthy P2P system, for appropriately sized (large) sets S 1 and S 2, if c
lies on the paths from all S 1 and S 2 to the nodes storing keys K, we should have that
α(c,K, S 1, S 2) = |S 1|/|S 2|.

3 Statistical Bounds of Flows

We now present methods that use the previously introduced metrics to identify mis-
behaving flow aggregates and mark packets that belong to these aggregates. The total
number of possible flows in a P2P system is N · |Kids|. Thus, tracking each individual
flow would require O(N · |Kids|) memory. Even if we fully distributed the tracking load
amongst all participating nodes, O(|Kids|) memory would be needed to collectively track
all flows.
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To avoid utilizing such a potentially huge amount of memory per node, we track
a set of aggregate flows whose size is O(log(N)) by taking advantage of the fact that
the number of flows in each of the incoming and outgoing neighbors is O(log(N)).
We require that each node c consider as a separate aggregate all flows that arrive via
the same incoming neighbor and exit via the same outgoing neighbor. Hence, there
are O(log2(N)) aggregates to consider. By numbering the neighbor nodes in Inc and
in Outc, we can identify the flow aggregate that enters through the i-th neighbor and
departs through the j-th neighbor as fi, j, where i = 0 implies the flow originates at c
and j = 0 implies the flow terminates at c. Aggregate fi, j is assigned a counter, Ci, j.
When a packet arrives, we increment the counter that corresponds to the aggregate flow
to which the packet belongs.

3.1 Comparison of Aggregate Flows

Our detection algorithm compares each flow’s counter Ci, j to the counter for all the
aggregate of flows that exit to the same outgoing neighbor. We wish to determine the
likelihood that, in a healthy P2P system, Ci, j can have the value observed, under the
assumption that C j is made up mainly of healthy flows. More formally, let Xi, j and X j

respectively be random variables that equal the value of these counters in healthy P2P
system, and determine P(Xi, j ≥ Ci, j|X j = C j). (Note that Ci, j and C j represent actual
observed values in the real system, whereas Xi, j and X j are values that occur in a trial
on top of a healthy P2P system.) The larger this probability, the more confidence we
have that flows entering through neighbor i and exiting out of neighbor j are healthy.
We define ε to be our level of confidence of the test. If P(Xi, j ≥ Ci, j|X j = C j) < ε,
then (according to this test) there is a probability < ε that fi, j is healthy. By comparing
this value to the observed values of the counters, we can determine, within a certain
confidence level, whether one flow’s rate is higher with respect to the all the other
flows’ rate.

In the previous calculations, we don’t need to assume anything about the flows’
distribution. While any slight deviation from the normal transmission rate could be
flagged as a violation, we allow a small degree of variability. Hence, we apply our
“slack” factor, δ, and say that flow fi, j is misbehaving when the actual ratio of observed
rates is larger than (1+δ)α(c,K, S i, S ′i ) for the second test. Setting δ to 0 leaves no slack.
If fi, j sends at a rate even slightly above its supposed rate in a healthy P2P system, the
central limit theorem tells us that eventually, fi, j will be flagged as unhealthy. Setting δ
to larger values allows for additional slack.

4 Application to a DHT System

A Chord peer to peer system consists of a set nodes of size N that try to serve objects
that are hashed and stored in nodes using an m bit hash function. The key identifiers Kids

are placed in circular order, creating a ring of length K = ‖Kids‖ = 2m. To simplify the
notation, all math in the remainder of this section is performed modulo K. Each node is
assigned an identifier (id) from the key space, thus creating a node ring. Since we have
a circular placement, we have for each node c a successor node and a predecessor node.
Each node is assigned a set of keys, meaning that the node either stores or knows the
location of all the objects in its local database that hash to its value.
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4.1 Chord Invariants and Tests

Proposition 1 Let i1 > i2. If the set of flows (S i2 ,K) that pass through c is non-empty,
then:

α(c,K, S i1 , S i2) = 2i1−i2 .

Proof. In the Appendix

Proposition 2 If the set of flows (S ,K) that pass through c is non-empty, where S =
∪ jS j, then:

α(c,K, S i1 , S ) =
1

2log(N)−i1 − 1

Proof. The proof follows the form of Proposition 1, noting that there are
∑log(N)−i1

j=0 2i1− j

sources from S to K that enter c (through any finger).

5 Experimental Results

5.1 Web Trace-Driven Simulations

To test our implementation, we used web traces obtained from IRCache repository [1]
to drive our simulated environment. As we will soon present, our experiments show that
under non-attacking conditions our system does not generate excessive false positives
(less than 2% false positives).

Our first goal was to verify the effectiveness of our detection algorithm and to evaluate
its performance. To that end, we use an implementation of the Chord peer to peer network
in a series of simulations. In all of our experiments, some of the participating peer to peer
nodes assume the role of the “attacker”. The “attackers” select a key at random from the
set of allowed keys and generate a disproportionate number of search requests towards
that key. The node that stores the key under attack is the target. The goal of the attackers
is to flood the target with search requests, crippling its ability to respond. In general, the
attackers are allowed to select multiple targets simultaneously. However, if we assume
that attackers have abundant but nonetheless limited resources, aiming at multiple targets
will only lower their aggregate attack ability. Indeed, the attackers will have to split their
attack requests between the different targets, reducing their attack intensity. We formally
defined attack intensity as the increase in the search request traffic towards the target key
caused by the attackers’ excessive search requests. For example, an attack intensity of
DA = 2 means that the node that stores the key under attack has to serve twice as many
search requests for that object as it would normally have.

We use the notion of attack intensity to formally quantify the attack ability of the
compromised nodes. Where our test is working perfectly, marking only excessive search
requests, only a fraction β

β+1 of packets in the attacking flow should be marked. We
determine our performance by measuring our ability to detect the attack as close to the
attacker as possible. Also, we want to mark the malicious search requests as many times
as possible along the path from the attacker to the target object. All of these metrics are
dependent both on the attack intensity and the relative attacker’s distance from attacked
key.
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Fig. 1. Distribution of the number of tags for the
attack requests for one attacker in a 1024-node
Chord ring. The different plots represent the at-
tacker’s distance in hops from the target for at-
tack intensity of 110% (DA = 1.1) i.e the object
receives 10% more traffic.

Another goal of our experiments was
to identify the limits of our detection algo-
rithm. Our attack detection method identi-
fies aggregate groups containing attackers
by marking packets from these groups as
“excessive” whenever our estimates pre-
dict that the groups are transmitting at too
high a rate. Since we operate at the granu-
larity of groups, we introduce a false pos-
itive error for the non-attacking individual
flows which happen to be grouped with
“excessive” ones. As we show, this error is
relatively small because the vast majority
of the requests from a malicious aggregate
flow belong to the attacker. Moreover, the
attack requests get marked multiple times
along the path from the attacker to the tar-
get. Another potential source of error can
arise due to the use of statistical inference.
Of course, this error can become arbitrarily small by selecting a higher confidence in-
terval. In our simulations we used a 0.999% confidence interval.

In the last set of experiments, we use a pushback-like protocol where a node, upon
detection of a misbehaving aggregate flow, communicates with its upstream neighbor
that this flow is originated. The misbehaving aggregate flow, if it is excessive, is rate
limited to the average of the rest of the flows. If the upstream neighbor fails to respond
with a certain amount of packets, which is a parameter for our system, this node is
considered malicious and the rest of the overlay nodes are notified. The protocol is
applied recursively until the source of the anomaly is identified or the flow stops being
excessive. Either way the DoS attack will be prevented allowing only small, negligible
spikes of packets to reach the target node.

To ensure the statistical validity of our experiments, we used approximately 4 million
search requests per simulation. In addition, each simulated experiment was repeated
more than 50 times. The results we present in our graphs are the average of these simu-
lations; the variance among the different experiments was observed to be low.

5.2 Detection of Single-Attacker

We start by examining the scenario where a single node is compromised. Although
simplistic for a real world attack, this scenario provides insights on the effectiveness
of our approach. Furthermore, we can evaluate our ability to detect the malicious node
for varying distances relative to the target and for a range of attack intensities. Initially,
we placed the attacker in various distances (in hops) away from the node responsible
for the target key, the target node. We then measured the percentage of the excessive
search requests our algorithm detected and their detection distance from the target i.e.,
how quickly was the traffic identified as excessive. As the distance of the attacker from
the target increases, the detection distance increases accordingly. In addition, we detect
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the malicious flow in multiple nodes along the path from the attacker to the target. It
appears that the largest portion of the attack requests are detected close to the attacker.
For example, if we place the attacker at a distance 9, the majority of its packets are
detected by its next hop neighbor,with distance 8, then by the next node at distance 7
etc. Even when the attacker’s proximity to the target is reduced to the minimum, e.g.,
at a distance of 2, we detect 100% of the excessive search requests at the immediate
neighbor.

Fig. 2. Attack packets detected for one attacker
randomly placed in a 1024-node Chord ring. The
different bars correspond to increasing values of
attack intensity DA. The results presented are the
average of multiple experiments (100 per bar).

Recall that each node tags all the
flows of a group that appears to be
“misbehaving”. Figure 1 shows the rel-
ative distribution of the tags when we
vary the distance of the attacker to the
target. We see that, depending on the
distance between the attacker and the
target, a significant portion of the ex-
cessive search requests are tagged at
least twice by nodes along the path
from the attacker to the target. The
number of tags increases as we increase
the number of hops between the at-
tacker and the target since the attack
packets traverse more nodes in order to
reach their target.

To actually have impact on the
search requests of the attacked object,
the attackers intensity, DA should be
relatively high. For example, for DA = 2 the single attacker has to inject search re-
quests in the system with rate N · λk

avg, or with a β = N. Although this rate may appear
unnecessarily high, in practice this depends on the popularity λk

avg of the object attacked.
If the object is highly popular and λk

avg is large compared to the rest of the objects in the
system, the attacker will need to significantly increase the number of search requests to
noticeably affect its popularity.

We have shown that our method detects and marks search requests on groups of
flows. An inherent problem is that we may end up marking legitimate flows along with
the attacking ones (since they are mixed in the same aggregate) but that is not the case
for our method. Although we are marking flows belonging to the same “misbehaving”
group, we are punishing mostly the attacker since it is the one sending the majority
of the search requests through that group. The majority of the other flows are getting
marked minimally, in comparison both to the total number of requests they generate
and to the attacker requests marked. Naturally, blindly marking and dropping excessive
requests from a misbehaving flow is a very crude method to prevent a DoS attack,
although it can be effective if resources are otherwise limited.

Through our experiments we wanted to ensure that there is no attacker placement in-
side the Chord ring that our algorithm fails to detect. We are now in position to present
more realistic results from simulations in which we have one attacker randomly placed
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Fig. 3. Distribution of the number of tags
for the detected attack packets for a 1024-
node Chord ring with randomly selected
attacker-target placement. Each value on
the X axis corresponds to exponentially in-
creasing attack intensity (DA). The results
averaged over 100 experiments for each at-
tack intensity value.

Fig. 4. Percentage of attack packets
detected when we vary both the attack
intensity DA and the fraction of nodes
compromised for a 4096-node Chord
ring. Each line represents different attack
intensity values. We can see that as we
increase the attack intensity we can detect
more percentage of the attackers’ request
even when the attack is very distributed.

in a Chord ring of size 1024 (see Figure 2). We observe that even for very low attack
intensities values, DA = 1.025, a mere 2.5% increase in the load of the end server,
we can detect more than 40% of the attack packets. It is easy to see that for attack
intensity values larger than 0.05 our method detects a significant portion of the exces-
sive requests. As the intensity of the attack diminishes, our detection results become
weaker. This is something we expected, since our algorithm detects excessive requests
based on measurements done on groups of flows where small variations in the intensity
of one flow does not have significant impact on the aggregate flow. For some values
of attack intensity, especially for DA = 0.25, we have an over-marking of the attacker
search requests which fades out when the attack intensity becomes more significant.
This is due to the group detection nature of our algorithm and the fact that aggre-
gate groups of flows contain both legitimate and excessive flows originating from the
attacker.

The number of tags for the attack packets is an increasing function of both the av-
erage attacker distance and of the attack intensity as shown in Figure 3. The average
attacker distance seems to play a more prevalent role. This means that as the average
distance between the attacker and the target increases, so does our ability to tag the
attacker on multiple locations along the attacker-target path. Thus our system works
better as we increase the number of participants in the DHT system, since the average
distance between two nodes in the system increases. The detection behavior of our al-
gorithm for attack intensities that are higher than DA = 11 is similar to those measured
for DA = 11 and we omit them from our figures.
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5.3 Detection of Multiple Attackers

We now study the behavior of our detection algorithm using a Chord ring where we vary
both the fraction of nodes compromised and the attack intensity. Figure 4 presents the
results for a 4096-node Chord ring with multiple attackers. It is clearly shown that there
is a correlation between the excessive search requests detected and the attack intensity.
Our results show that as the attack becomes more severe, our ability to detect excessive
search requests increases; even when 40% percent of our nodes are compromised we
are able to detect around 50% of the excess requests.

On the other hand, as the proportion of compromised nodes grows, there is a corre-
sponding drop in our ability to detect excessive search requests, since the attack becomes
more distributed on the Chord ring. Additionally the number of tags for the excessive
requests are inversely proportional to the fraction of nodes compromised. For exam-
ple, as Figure 5 shows, when the attackers constitute 5% of all the Chord participants, a
large portion of their excessive requests have 2 or more tags, whereas when the attackers
become 40% of the total, only 14% of the excessive requests have 2 or more tags.

Fig. 5. Distribution of the number of tags for
the excessive search requests detected when the
attack intensity is DA = 21 and we vary the
fraction of nodes compromised for a 4096-node
Chord ring. Notice that he number of tags on the
attack requests are inversely proportional to the
fraction of the attackers. The more “distributed”
the attack is, the more difficult it is to detect and
tag.

In some cases we overestimate the
number of attack packets sent by the at-
tackers. This happens because we detect
groups of flows where, on average, the
attacker participates with multiple flows,
leading to over-marking of search re-
quests generated from the attacker. This
over-marking can be used to weed out the
specific flow from the group of flows de-
tected to be misbehaving.

Another source for this overmarking
comes from the fact that we allowed the
non-attacking nodes to select the popu-
larity of each key/object from a uniform
(0, 1] distribution. This generates differ-
ent preference distributions for each node
pushing our “normality” assumptions to
their limit. However, it also confirms our
initial assumption that our analysis re-
mains the same even if we allow different
preference distributions. With a mean of
1/2 and a standard deviation of 1/6, the
uniform distribution allows for wide spreading of the possible weight values in the full
(0, 1] spectrum. The use of a normal or exponential distribution for the same interval
would have resulted in less variance, leading to a more concentrated weight distribution.
The law of large numbers dictates that any type of weight distribution would eventually
lead to a normal preference distribution on the limit as the number of keys grows.

In Figure 6 we can see the percentage of packets detected for a Chord ring of size
1024. Again, each line represents different attack intensities. The detection ability dissi-
pates as the percentage of attackers in the total node population increases. Note that the
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Fig. 6. Percentage of excessive packets de-
tected when we vary both the attack inten-
sity DA and the fraction of nodes compromised
for a 1024-node Chord ring. Each line repre-
sents different attack intensity values. For this
experiment we allowed each individual non-
attacking node to assign a weight to each key
selected from a uniform distribution. The de-
tection results appear to be better than using
the same preference distribution function.

Fig. 7. In this experiment, the attackers are
collaborating by not marking the excessive
packets destined for the target key only (co-
ordinated attack). Each line represents differ-
ent attack intensity values and we vary the per-
centage of nodes compromised. Even under a
collaborative attack, and with a significant por-
tion of all nodes being compromised, we de-
tect a large portion of the attack requests.

detection results are better than those presented in Figure 4, where we used the same
preference distribution function for all the nodes. Indeed, when using different prefer-
ence distribution, sometimes attackers are grouped with flows that have high preference
for the attacked key and thus revealed faster. However, for the same reasons, we end up
having a higher false positive detection of around 0.1% compared to the 0.07% when
we used the same preference function. Overall, allowing the nodes to have a different
preference distribution function leads to better detection results at the cost of an slight
increase in the false positive detection percentage.

In our experiments, we used a fixed value for the threshold δ, namely δ = 0.1. Recall
that δ is a parameter of our detection algorithm, indicating our tolerance towards de-
viations from the average popularity of a key. Larger values allow more tolerance and
lower our false positives, but also give an attacker more room to deviate from the aver-
age rate before our algorithm starts detecting the excessive requests. There is a trade-off
between speed of detection and false positives. Figure 10 shows that, for DA = 20, we
get an improvement in our detection as we decrease δ from 0.1 to 0.05. At the same
time we see an increase in the false positive percentage, which becomes more apparent
for δ = 0.05. Conversely, for δ = 0.07 we get an improvement of almost 12% in the
detection rate, when we have a distributed attack with > 20% of attackers. Lowering δ
below 0.07 does not improve the detection rate, doubling false positives.

Our last experiment stresses our detection algorithm under the worst-case scenario:
a highly distributed attack where the attackers can collaborate both by exchanging in-
formation about the location of the target and by not marking each other’s excessive
flows towards the target node. Even under this adverse attack scenario, our algorithm
seems to detect between 70% and 100% of all attack traffic in high-volume attacks when
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Fig. 8. Increase in server load when under at-
tack and with pushback protocol activated. A
load of value 2 means that the server is serving
twice the amount of normal requests. The per-
formance of the pushback protocol remains ac-
ceptable even when 15% of the overlay nodes
are attacking the target.

Fig. 9. Total number of packets transmitted
to the overlay network, this includes packets
that traversed even one hop and then where
dropped. Again, the performance of the system
is not affected significantly by the attack even
when 15% of the overlay nodes are subverted.

even up to 15% of all overlay nodes are participating in the attack, as shown in Fig-
ure 7. When 25% of the overlay nodes are participating in the attack, our mechanism
correctly identifies between 40% and 50% of all attack traffic. As the percentage of at-
tacking nodes in the population increases, the effectiveness of our mechanism decreases.
This, however, should be expected: the notion of “normalcy” in such a system is shifting
towards higher-volume traffic flows. Furthermore, as we have anticipated, given more
knowledge, attackers can avoid detection especially when the attack is highly distributed
(> 25% of the total nodes are compromised) or the attack is of low intensity (DA < 6).

5.4 Pushback Protocol Performance

In this section we quantify the performance of the simple pushback protocol we devised:
we run our experiments enabling nodes to rate limit the aggregate flow that contains the
malicious flow using probabilistic rate limiting. The dropping probability is determined
based on the deviation of the aggregate flow from the average making the flow conform
to within δ from the measured average. Moreover, the node detecting the attack notified
its corresponding incoming neighbor of the problem denoting also the sets of key(s)
that were affected by this excessive aggregate flow. If the node was unresponsive to the
rate limiting request for more than 100 packets (ı.e. the rate of the detected aggregate
flow remained above the average) this node was immediately marked as malicious and
was removed from the overlay by being replaced with a non-attacking node to avoid
reconstruction of the overlay routing table. The selection of the 100 packet threshold
is a parameter of our system and allows a little more time to the neighbor to adjust to
the rate limiting request. It cannot be exploited by attackers since its too low to make a
significant impact to the target server.

The most important metric for the performance of our system is the additional load
imposed on the attacked node. Figure 8 shows that the load imposed on that node dur-
ing an attack for various attack intensities remains low, namely below 2 and when the
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percentage of the attackers is below 15%. If the fraction of the attacking nodes is in-
creased beyond 15%, our system can only provide partial protection and the load of the
server increases dramatically.

Figure 9 shows the total number of packets transmitted to the overlay network, this
includes packets that traversed even one hop and then where dropped. Again, the per-
formance of the system is not affected significantly by the attack even when 15% of the
overlay nodes are subverted.

6 Conclusion and Future Work

We have examined the problem of distributed denial of service (DDoS) attacks in peer
to peer (P2P) systems that exhibit certain properties due to their structured way they
forward packets. This include a broad range of DHT systems including locality aware
PASTRY and KADEMLIA[15]. However, our method does not apply to CAN since the
traffic arriving from various neighbors cannot be well defined. To our knowledge, this is
the first work that examines the problem of insider DDoS attacks in such systems. We
presented a distributed and scalable mechanism for identifying anomalous traffic flows.
Our main intuition was to exploit certain invariant characteristics of a well behaved
DHT-based P2P system, in particular, the tendency of aggregate traffic flows through a
node to exhibit roughly equal loads. Attackers that introduce (or drop) excessive traffic
are identified by measuring the deviation of their flows from the behavior of other flows,
as seen by any node in the system. Our simulations show that our mechanism can be
extremely effective, detecting attack traffic with 100% accuracy. Using different attack
scenarios applied in real Web traces from IRCache[1], we show that our detection can
protect against both uncoordinated and coordinated attacks. For uncoordinated DDoS
attacks, our algorithm detects most of the attack traffic even when up to 25% overlay
nodes are participating in the attack. In the case of coordinated DDoS attacks, the worst
type of attack possible, our mechanism works even when up to 15% of the nodes have
been subverted.

Our detection and reaction mechanism is fully distributed: it does not depend on
any particular node for its operation. When an attack is detected, information about it
is “pushed back” to the incoming neighbors that are better positioned to differentiate
misbehaving flows. Such nodes are alerted about the attack and recursively apply our
approach.We believe that our investigation opens up an important new area in DHT P2P
networks. Future directions include the application of our method in localized PASTRY,
KADEMLIA and other systems that have structure and evaluation in a real-world (not
simulated) environment.
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A Appendix

A.1 Chord Invariants and Tests

Proposition 3 Let i1 > i2. If the set of flows (S i2 ,K) that pass through c is non-empty,
then:

α(c,K, S i1 , S i2) = 2i1−i2 .
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Proof. Assume the set of flows (S i2 ,K) that pass through c is non-empty. For each key
k ∈ K, let us count the number of sources whose transmissions would pass through
node c, entering node c via the i2-th finger of node c − 2i2 en-route to key k. Recall
that the Chord forwarding protocol requires that a transmission be forwarded on the
finger that takes the transmission as far as possible in the clockwise direction without
passing the destination. Since the i2-th finger travels a distance of 2i2 around the ring,
all transmissions prior to reaching node c must traverse a distance greater than 2i2 , and
the sequence of fingers taken after reaching c to then reach k is unique.

Consider a sequence of � bits, b1b2 · · ·b�, where � = log(N) − i2, and consider the
node s that is at distance

∑�
j=1 b j2 j+i2 from c in the counter-clockwise direction. Then,

for node s to reach k, it will first traverse a series of nodes where it exits through the
j+ i2-th outgoing finger of some node along the path when and only when b j = 1. After
taking this series of fingers, the transmission will end up at node c by taking the i2-th
finger of node c − 2i2 en-route to its final destination of k.

Each of the 2� possible bit sequences produces a unique node s. Hence, there are 2�

such nodes whose transmissions to k first traverse a path that proceeds through c − 2i2

and takes its i2-th finger to reach c en-route to k. Furthermore, since the only way a
transmission can originate at a source s and reach k by taking the i2-th finger of c−2i2 is
to previously take a strictly decreasing sequence of fingers, this set of 2� nodes is unique.

It follows that there are 2log(N)−i2 sources that can reach key k by transiting through
the i2-th finger of c − 2i2 , and there are 2log(N)−i1 sources that can reach k by transiting
through the i1-th finger of c − 2i1 , so there are 2i2−i1 times as many sources entering the
i1-th finger of c to reach k as there are entering c through its i2-th incoming finger to
reach k.

Since we assume that all sources have (approximately) the same interest in key k,
and since this ratio remains fixed irrespective of the final distance of key k from c, the
Lemma holds.

A.2 Evaluation Results

Fig. 10. The left graph shows the increase in the detection rate as we decrease our tolerance
threshold from δ = 0.1 to δ = 0.05. The right graph shows the impact of this increase in the
false positive percentage: lowering δ below 0.07 offers little benefit to the detection rate while
doubling false positives.
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Abstract. In the pursuit of authentication schemes that balance user
privacy and accountability, numerous anonymous credential systems have
been constructed. However, existing systems assume a client-server ar-
chitecture in which only the clients, but not the servers, care about their
privacy. In peer-to-peer (P2P) systems where both clients and servers
are peer users with privacy concerns, no existing system correctly strikes
that balance between privacy and accountability.

In this paper, we provide this missing piece: a credential system in
which peers are pseudonymous to one another (that is, two who interact
more than once can recognize each other via pseudonyms) but are other-
wise anonymous and unlinkable across different peers. Such a credential
system finds applications in, e.g., Vehicular Ad-hoc Networks (VANets)
and P2P networks.

We formalize the security requirements of our proposed credential
system, provide a construction for it, and prove the security of our con-
struction. Our solution is efficient: its complexities are independent of
the number of users in the system.

Keywords: privacy, anonymous authentication, credentials, secret hand-
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1 Introduction

We live in an era where human activities happen electronically more than ever.
People rely heavily on computer infrastructures, such as Web applications and
peer-to-peer (P2P) networks, to share information, express opinions and trade
goods. It is therefore paramount to protect the privacy of the users in these
infrastructures by providing them with the option of acting anonymously, un-
linkably and/or unobservably.
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1.1 Balancing User Privacy and Accountability

It is impractical to pursue user privacy without taking accountability into con-
sideration. Without the fear of being identified, held responsible and punished
when they abuse the services, clients are likely to misbehave due to selfishness
or malice, thereby disrupting system operations and harming everyone else. Ac-
countability has traditionally been achieved through authentication mechanisms
(often followed by access control and/or auditing), which verify the identity of
a client who requests a service. In the classic examples of passwords, Kerberos
and standard Public Key Infrastructures (PKIs), clients have to give up their
privacy to be authenticated.

Anonymous Credential Systems. In the pursuit of authentication schemes
that balance privacy and accountability, numerous anonymous credential sys-
tems [15, 17], and closely related schemes such as k-times anonymous authenti-
cation (k-TAA) [33, 34], offline anonymous electronic cash (e-cash) systems [20,
14] and group signatures [21, 5] have been constructed. An anonymous creden-
tial system allows a client to be authenticated by a server as a group mem-
ber anonymously and unlinkably, and yet the anonymity can be revoked when
certain conditions are met. Existing systems differ in their anonymity revoca-
tion mechanisms, and hence provide different balancing points between privacy
and accountability for different application settings. For example, clients can be
identified when they “double-spend” in an e-cash system; their authentications
become linkable1 when they are authenticated more than k times in k-TAA.
In group signatures, an authority exists and is capable of arbitrarily revoking
anonymity.

1.2 The Challenge: P2P Systems

All anonymous credential systems in existence today assume a client-server archi-
tecture in which only the clients, but not the servers, care about their privacy.
However, in P2P systems where both clients and servers are peer users with
privacy concerns, none of the existing credential systems correctly strike that
balance between privacy and accountability.

More specifically, several existing anonymous credential systems provide client
accountability by empowering servers to pseudonymize clients who are other-
wise anonymous, and servers can thus decide whether and/or how to serve an
anonymous client depending the past behavior of the client. In all such systems,
however, a client must either (1) present to all servers the very same and hence
linkable pseudonym, or (2) learn the identity or at least the pseudonym of a
server and then present to that server a pseudonym specific to it. In the former
case, client privacy is at risk because colluding servers can link connections from
the same client; in the latter, server privacy is at risk because colluding clients
can link connections to the same server.
1 Two authentication runs are linkable (by some entity) if and only if it is possible

(for that entity) to tell whether or not the two runs are executed by the same client.
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We provide below two application scenarios to motivate the user’s need for
privacy not just as a client, but also as a server, in P2P systems. The opposing
requirements of server privacy, client privacy, server accountability and client
accountability in these scenarios illustrate the non-triviality of the challenge we
overcome in this paper.

Vehicular Ad-Hoc Networks (VANets). To contribute to safer and more
efficient roads, vehicles in VANets constantly exchange information such as road
and weather conditions among each other and with roadside base stations. Re-
search has shown that the provision of the necessary security and privacy in
VANets is critical to the users who rely on these networks [30, 12].

To protect the location privacy of the drivers when information is exchanged
on the road between two vehicles, both vehicles should remain anonymous among
all the vehicles in communication range. Furthermore, no one should be able to
link reports by the same vehicle to different other vehicles or roadside base
stations. This helps prevent a vehicle from being not only pseudonymized and
thus tracked, but also deanonymized through drawing inferences from multiple
reports made by the vehicle [28].

From the accountability perspective, to distinguish legitimate data from rogue
data, vehicles must be authenticated when reporting sensor readings. Moreover,
so that repetitive reporting of the same information can be detected, vehicles
should be pseudonymous to one another (that is, vehicle X can recognize some
vehicle Y reporting again, without knowing anything else about Y ). For instance,
in VANets in which vehicles decide when to accelerate and break based on reports
collected from the network, the failure to achieve these security goals can allow
an attacker to paralyze traffic and/or induce accidents.

Reputation Systems for P2P Networks. The existence of selfish users in
P2P networks such as those for file sharing severely degrades system perfor-
mance. Adversaries can reduce the availability of specific items in P2P networks
by “poisoning” [22] them, i.e., injecting lots of decoys into the network. Reputa-
tion systems provide a game-theoretic solution to these problems by introducing
incentives for users to behave well. Unfortunately, reputation systems lacking
privacy can also introduce disincentives to good behavior: if a reputation system
reveals the pseudonym or even the identity of the serving peers, peers might
refuse to serve others so as to stay anonymous.

A privacy-preserving reputation system for P2P networks where there is no
(trusted) central server should have the following properties: users are pseudony-
mous to one another, so that a user Carol can decide whether to serve (or be
served by) another user Dave based on her past experience with Dave, with-
out knowing his actual identity. However, assuming the registration procedures
make sure that users in the system can have at most one single membership,
Dave shouldn’t be able to start fresh after having established a bad reputation
with respect to Carol, nor can he impersonate Carol for her high reputation, po-
tentially even spoiling her reputation through misbehavior. Finally, connections
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between a peer Carol and different other peers should be unlinkable, as otherwise
it might be possible for someone to trace Carol by studying those connections.

1.3 Our Contributions

In this paper, we overcome the challenge posed above by proposing the concept—
and giving a construction and implementation—of Peer-to-Peer Anonymous Au-
thentication, or PPAA for short, a credential system in which peers are pseudony-
mous to individual peers but unlinkable across different peers. More specifically,
we make the following contributions:

• We rigorously define the operations of PPAA and its security and privacy
requirements, during which we introduce the notion of the Linkability Con-
text of an authentication scheme as a tool for a more precise reasoning about
the linkability property of an authentication scheme. We also formalize the
threat model in which those security requirements must be satisfied.

• We provide the first construction for PPAA. Our construction is both secure
and efficient. In particular, its complexities are independent of the number
of users in the system. In the extended version of this paper [36], we also
report empirical performance figures of a software implementation of our
construction.

Paper Organization. We review the related works in Section 2 and give an
overview of our solution in Section 3. Section 4 covers the preliminary materials.
In Section 5, we define the security model. We present our solution and analyze
its security and efficiency in Section 6. We provide some discussions in Section 7
and conclude the paper in Section 8.

2 Related Works

We review the literature for related works, and argue why they fail to solve the
problem posed in this paper. We make occasional but otherwise minimal use of
mathematical notation without definition for the sake of conciseness.

k-Times Anonymous Authentication. k-TAA [33, 29, 34, 13] and related
schemes such as event-oriented linkable group/ring signatures [37, 6] are close
candidates in overcoming the posed challenge. In essence, when a client Alice
in these schemes is being authenticated by a server Bob, she provides Bob with
a tag and convinces him that the tag is correctly formed. Bob can test if two
authentications are linked to the same client by examining the associated tags.

These schemes do not solve the posed problem since authentication runs by
the same user to different servers are linkable. This is because a user always uses
the same tag when being authenticated by any server. More specifically, the tag
of client i with secret xi has the form of ti = gxi for some global parameter g.

We point out that, while they do not address server privacy, various k-TAA
schemes and anonymous credential systems do provide several major ingredients
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for the solution we propose in this paper. For example, our proof system for
group membership uses ideas from Camenisch and Lysyanskaya [17] and Boneh
et al. [10]. Also, the concept of event identifiers in this paper stems from several
other existing schemes [15, 33, 37].

Secret Handshakes. Secret handshake schemes (SHSs) [7, 19, 40, 4] allow any
two members of the same group to authenticate each other as a group member
and share a session key without revealing their group affiliations to outsiders.

In the scheme due to Xu and Yung [40], secret handshakes are anonymous and
unlinkable, but members are limited to shaking hands no more than some prede-
fined number of times. The state-of-the-art construction [4] provides anonymity
and unlinkability without such a limitation. Recently, Tsudik and Xu [38] ex-
tended secret handshakes into a multi-party and privacy-conserving setting: two
or more group members can anonymously and unlinkably authenticate each other
such that one’s group affiliation is not revealed unless every other party’s mem-
bership is ensured.

All anonymous secret handshakes proposed so far [40, 4, 38] fail to solve the
posed problem. As handshakes are unlinkable, a client Alice has no way to tell
if the one she is shaking hands with is the same as the one behind some earlier
handshakes. As a remedy, Alice may ask the person behind the handshake to
reveal a secret, e.g., a random nonce, that she leaked in their last handshake. Un-
fortunately, this is problematic because the person does not know which secret to
reveal as Alice is anonymous. Also, one could pretend to be new by “forgetting”
the secrets.

3 Our Approach

In this section, weprovide an overviewof our approach to solve the posed challenge.

3.1 Putting Authentication Schemes into “Linkability Context”

We first introduce the notion of the linkability context in authentication.

Definition 1 (Linkability Context). The Linkability Context, or LC for short,
of an authentication scheme is a collection of attributes that determines the
linkability of authentication runs in the scheme. In particular, two authentication
runs are linkable if and only if the two runs are executed when the attributes in
the linkability context are all in the same condition. ��

In k-TAA, for instance, authentication runs by the same client at the same “time”
are linkable, while runs by the same client at different times, as well as those
by different clients at the same time, are not linkable. The linkability context
of k-TAA is thus LC = {client-ID, time}, i.e., the collection of client identity
and time.

Understanding the precise linkability context of an authentication scheme
helps reason about the privacy guarantees and hence implications of the scheme.
At one end of the spectrum of client privacy, in conventional authentication
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schemes such as those using digital signatures, any two authentication runs are
linkable. The linkability context of these schemes therefore consists of nothing,
i.e., LC = ∅. At the other end of the spectrum, there are schemes such as
ring authentication [31, 23] in which no two authentication runs are linkable. In
this case, the linkability context is the authentication run instance, i.e., LC =
{authen-run-ID}.

Linkability Context in PPAA. A correct choice of its linkability context is
the first step towards a secure PPAA construction. In our design, the linkability
context in PPAA is the collection of the unordered pair of client and server
identity, and the event for which the PPAA authentication is executed, i.e.,

LC = {{client-ID, server-ID}, event-ID}.

In other words, we would like to design PPAA in such a way that authentication
runs are linkable if and only if they are executed between the same pair of peers
for the same event. In the example of VANets, if one sets the event to be “speed
on Highway I-89 on June 3rd, 2008,” then only those PPAA-authenticated speed
report made by the same vehicle to the same road-side base station on Highway
I-89 on June 3rd, 2008 are linkable.

3.2 Key Ideas in Our PPAA Design

An Observation. It should have become clear now that event-oriented linkable
group/ring signatures and k-TAA fail as a secure PPAA construction because
server identity is not in their linkability context. It would seem that one could
bring server identity into the linkability context in an event-oriented linkable
group/ring signature (resp. k-TAA) by mapping an event in (resp. one “time”)
into the identity of a server. Consequently, LC becomes {client-ID, server-ID}
and authentication runs by the same user to different servers become unlinkable.
More specifically, the tag of client i with secret xi with respect to server j has the
form of ti,j = gxi

j , where gj is a server-specific parameter. Tags of the same client
with respect to different servers are now unlinkable thanks to the underlying
intractability assumption (the Decisional Diffie-Hellman assumption).

Unfortunately, to produce a tag and prove its correctness during an authenti-
cation run in the above modified scheme, a client must now ask the server for its
gj, which can be considered its pseudonym. Even if there existed a way in which
a client could compute a tag for the server without knowing the pseudonym of
the server, two colluding users can easily determine if they are being authenti-
cated by the same server. In other words, using the tag design in event-oriented
linkable group/ring signatures and k-TAA, it is impossible to devise a secure
authentication scheme with LC = {client-ID, server-ID}.

The Need of a Novel Tag Construct. As a result, constructing a secure
PPAA requires a new tag design that possesses novel features:

• Tags must be dependent on the identity of the client, the server, and the
event.
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• Tags are linked if and only if they are produced by the same (unordered)
pair of peers, and during the same event.

• Peers must be able to produce tags and prove their correctness in zero-
knowledge through interacting with the other peers and without knowing
the identity of the other peers.

In Section 6, we present such a tag design and how we use it to construct a
secure PPAA.

4 Preliminaries

We provide the technical background necessary for understanding the rest of
this paper.

Notations. A function f(λ) is negligible if for all polynomial p(λ), f(λ) <
1/p(λ) holds for all sufficiently large λ. A function is non-negligible if it is not
negligible. The probability Pr[E] of an event E is overwhelming (in some para-
meter λ) if 1 − Pr[E] is negligible (in λ).

Let λ be a sufficiently large security parameter. Let G1 and G2 be cyclic
groups of prime order p with |p| = λ such that group operation is efficiently
computable. Let g0 and h0 be generators of G1 and G2 respectively such that
there is an efficiently computable isomorphism ψ from G2 to G1 with ψ(h0) = g0.

We say that (G1, G2) is a bilinear group pair if there exists an efficiently
computable map ê : G1 × G2 → GT , where GT is also a cyclic group of prime
order p, such that: ê(Ax, By) = ê(A, B)xy for all A ∈ G1, B ∈ G2 and x, y ∈ Zp,
and ê(g0, h0) �= 1.

Complexity Assumptions. The security of our solution to be presented later
in this paper relies on the validity of the DDH assumption in G1 and the q-SDH
assumption on bilinear group pair (G1, G2), which we define as the following.

• The Decisional Diffie-Hellman (DDH) problem in G1: On input of a quadru-
ple (g0, g

a
0 , gb

0, g
c
0) ∈ G4

1, where a, b ∈R Zp, and c = ab or c ∈R Zq equally
likely, output 1 if c = ab and 0 otherwise. We say that the DDH assumption
in G1 holds if no probabilistic polynomial time (PPT) algorithm has non-
negligible advantage over random guessing in solving the DDH problem in
G1.

• The q-Strong Diffie-Hellman (q-SDH) problem in (G1, G2): On input of a
(q + 2)-tuple (g0, h0, hx

0 , hx2

0 , · · · , hxq

0 ) ∈ G1 × G
q+1
2 , where x ∈R Zp,

output a pair (A, c) ∈ G1 × Zp such that A(x+c) = g0. We say that the q-
SDH assumption in (G1, G2) holds if no PPT algorithm has non-negligible
advantage in solving the q-SDH problem in (G1, G2).

The q-SDH assumption was introduced and proven to hold in generic groups [32]
by Boneh and Boyen [9]. The DDH assumption in G1 is the also known as the
eXternal Diffie-Hellman (XDH) assumption in (G1, G2) [14, 10]. The validity of
the XDH assumption implies that ψ is computationally one-way. The assumption
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is known is be false on supersingular curves [25], but is conjectured to hold for
the Weil or Tate pairing on MNT curves with embedded degree greater than 1
and G1 defined over the ground field [10].

Proofs of Knowledge. In a Zero-Knowledge Proof-of-Knowledge (ZKPoK)
protocol [26], a prover convinces a verifier that some statement is true without
the verifier learning anything except the validity of the statement. Σ-protocols
are a special type of three-move ZKPoK protocols. They can be converted into
non-interactive Signature Proof of Knowledge (SPK) schemes that are secure in
the Random Oracle (RO) Model [8] (in the sense of Indistinguishability against
chosen-message attacks, or IND-CMA [27]).

In many anonymous credential systems, a client uses an SPK scheme to prove
in zero-knowledge to a server her possession of a credential issued by the Group
Manager when being authenticated by a server. The SPK schemes differ in these
systems, which accounts for the differences in privacy and accountability guaran-
tees and complexity assumptions. The SPK schemes we will use in our solution
are based on the ZKPoK protocol due to Boneh and Boyen [10].

We follow the notation introduced by Camenisch and Stadler [18] for the
various ZKPoK protocols. For example, PK {(x) : y = gx} denotes a ZKPoK
protocol that proves the knowledge of an integer x such that y = gx holds,
where y and g are elements of some group G = 〈g〉. Using this notation, a
ZKPoK protocol can be described by just pointing out its aim while hiding all
the details. Moreover, we denote by SPK {(x) : y = gx} (M) the SPK scheme
converted from the above ZKPoK protocol.

5 Model

This section formalizes PPAA. The entities involved in PPAA are the Group
Manager (GM) and a set of peer users, or simply peers. The GM is responsible for
registering peers. A peer can be a client, a server, or both. Clients are interested
in accessing services provided by servers and servers are willing to serve the
clients, as long as their privacy and accountability requirements are satisfied.

5.1 System Operations

Operations that take place in PPAA include the GM setting up the system
(Setup) and registering peers into the system (Registration), and peers authen-
ticating one another (Authentication) and testing if two authentication runs are
linked (Linking). We highlight that only Setup and Registration involve a central-
ized authority, namely the GM; Authentication requires no centralized authority,
which is a crucial property necessary for PPAA to be applicable to P2P systems
with scalability.

The syntax for these operations are given as follows.

• Setup is a Probabilistic Poly-Time (PPT) algorithm invoked by the GM. On
input a sufficiently large security parameter λ, the algorithm outputs GM’s
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secret key gsk and the group public key gpk. The GM stores gsk privately
and publishes gpk to the public. gpk is an implicit input to all the algorithms
below.

• Registration is a two-party multi-round protocol between the RegisterP PPT
algorithm invoked by a peer and the RegisterGM PPT algorithm invoked by
the GM. The additional input to RegisterGM is the GM’s secret key gsk.
Upon successful termination of a protocol run, RegisterP outputs a creden-
tial, which the peer stores privately, and by doing so becomes a registered
peer in the system.

• Authentication is a two-party multi-round protocol between the AuthenticateI

PPT algorithm invoked by a registered peer Alice (as the Initiator, i.e. the
one who initiates the protocol) and the AuthenticateR PPT algorithm in-
voked by another registered peer Bob (as the Responder). The common
input to both parties is an event identifier eid upon which they have al-
ready agreed.2 The additional inputs to AuthenticateI and AuthenticateR are
Alice’s credential and Bob’s credential, respectively.
A protocol run terminates successfully if and only if both algorithms out-
put a tag, in which case we say that the authentication is successful and
that Alice and Bob are mutually authenticated with one another, during
an event with identifier eid. When we say that a peer Carol is involved in
an authentication without specifying her role, then Carol can be either the
initiator or the responder in that authentication.

• Linking is a (possibly probabilistic) poly-time algorithm any peer can invoke.
On input two tags tag1 and tag2, the algorithm outputs a boolean value of
either linked or not-linked.
In the former (resp. the latter) case, the two tags, and also the two successful
authentication runs from which the tags are resulted, are said to be linked
(resp. not linked).
Semantically, a peer Carol uses this algorithm to pseudonymize other peers
with which she has mutually authenticated: for any two successful authenti-
cation runs during the same event, she thinks she is mutually authenticating
with the same peer if and only if the two authentication runs are linked.

Any construction of PPAA must be correct:

Definition 2 (Correctness). An PPAA construction is correct if it has au-
thentication correctness and linking correctness :

• Authentication Correctness. If all entities in PPAA are honest (i.e. they all
follow the system’s specification), then, with overwhelming probability, any
authentication between any two registered peers is successful.

• Linking Correctness. If all entities in PPAA are honest, then, with overwhelm-
ing probability, in any two successful authentication involving any registered
peer Carol, the two tags output by Carol are linked if and only if, in those
two authentications, both the event identifiers and the other peers involved
are identical. ��

2 In the VANet example given in Section 3.2, the eid can be 20080603||I-89||speed.
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5.2 Security Requirements

Roughly speaking, a PPAA construction is secure if it satisfies the following
security requirements. (A formal definition can be found in the extended version
of this paper [36].)

Mis-authentication Resistance. Mis-authentication occurs when two peers
successfully complete mutual authentication, but only one of them is an
honest and registered peer. A secure PPAA construction must be resistant
to mis-authentication.

For example, this property prevents vehicles in VANets from believing
(malicious) data from rogue sensors.

Peer Accountability. To subvert peer accountability, a coalition of n ≥ 1
registered but malicious peer(s) attempts to run more than n successful
mutual authentication involving the same honest peer Carol during the same
event such that the tags Carol outputs in those authentication are all pairwise
unlinked. A secure PPAA construction requires that no adversary can succeed
in such an attempt.

In the example of P2P networks, this prevents a peer from starting fresh
after having established a bad reputation with respect to another peer.3

Peer Privacy. To subvert the privacy of an honest peer Carol involved in an
authentication potentially executed with a malicious peer, the adversary,
potentially with the GM’s help, attempts to:

• deanonymize Carol in individual protocol runs, and/or
• pseudonymize Carol in protocol runs with different peers and/or during

different events.
A secure PPAA construction requires that no adversary can succeed in any
of the above attempts.

As an example, this ensures that communications of a vehicle in VANets
with different other vehicles or roadside base stations cannot be linked.

Framing Resistance. An honest peer Carol is framed when another honest
peer Dave thinks that he is mutually authenticating with the same peer in
two successful authentication runs, even though Carol is involved in exactly
one of them. A secure PPAA construction requires that no adversary, even
with the help of the GM, can frame an honest peer.

In the example of P2P reputation systems, this makes sure that peers
can’t impersonate other peers with high reputation.

6 Our Solution

We begin this section with a presentation of our first attempt to construct PPAA,
which, although insecure by itself, illustrates our tag design as the core component
of our full and secure PPAA construction. Then we proceed to present our actual
PPAA construction. In the extended version of this paper [36], we discuss our
implementation of the construction and its empirical performance evaluation.
3 This assumes that a peer can’t register more than once. We will discuss this issue

further in Section 7.
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6.1 Our First Attempt

We call our first attempt Basic-PPAA.

Parameters. Let G1 be a group as described in Section 4 in which the DDH
assumption holds. Let H : {0, 1}∗ → G1 be a secure cryptographic hash function.
Event identifiers are strings of any length.

Credentials. Each user is given by the GM one credential cred in the form
cred = (A, x, y) ∈ G1 ×Z2

p, where x, y ∈R Zp and A is distinct in all credentials.

Tags. In Basic-PPAA, a tag is the output of a function f that takes as inputs
the credential of an initiating peer cred1 = (A1, x1, y1), the credential of a
responding peer cred2 = (A2, x2, y2) and an event identifier eid. The function
is defined as follows:

f : (cred1, cred2, eid) �→ tag
.= {τ1, τ2}, where

{
τ1 = Ax2

1 H(eid)y1 ,
τ2 = Ax1

2 H(eid)y2 .

Thus, a tag is a set of two G1 elements.

The Skeleton Protocol. The following steps describe a protocol run between
an initiating peer Alice with credential cred1 = (A1, x1, y1) and a responding
peer Bob with credential cred2 = (A2, x2, y2) during an event with identifier
eid. When the protocol terminates, Alice and Bob output a tag.

1. Alice → Bob: 〈U1, V1〉 = 〈Ar1
1 , H(eid)r1〉, where r1 ∈R Zp.

2. Bob → Alice: 〈U2, V2, W2〉 = 〈Ar2
2 , H(eid)r2 , Ux2

1 V y2
1 〉, where r2 ∈R Zp.

3. Alice → Bob: 〈W1, τ1〉 = 〈Ux1
2 V y1

2 , W
1/r1
2 〉.

4. Bob → Alice: 〈τ2〉 = 〈W 1/r2
1 〉.

5. Alice and Bob both output tag = {τ1, τ2} = f(cred1, cred2, eid) and ter-
minate.

Properties. The tags and the skeleton protocol given above have the following
desirable properties:

1. Two tags tag = f(cred1, cred2, eid) and tag′ = f(cred′1, cred
′
2, eid

′) are
the same if and only if {cred1, cred2} = {cred′1, cred′2} and eid = eid′,
with overwhelming probability.

2. The protocol view of Alice 〈cred1, eid, r1, U2, V2, W2, τ2〉 can be simulated
(computationally indistinguishably) by Alice if she is given tag. In other
words, Alice learns no knowledge other than tag from running the skeleton
protocol. Similarly, Bob learns no knowledge other than tag from running
the skeleton protocol.

3. The tag produced by a peer Alice for another peer Bob during an event
is indistinguishable from the tag produced by any peer for Bob during a
different event; it is also indistinguishable from the tag produced by Alice
for a different peer during the same event.
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The validity of these properties are straightforward provided that the DDH
assumption in G1 holds. We thus omit the proof.

Remark. If not all entities are honest, Basic-PPAA results in an insecure PPAA
construction. For instance, users can be authenticated without asking the GM
for a credential, dishonest users may use an arbitrary credential instead of the
one given by the GM to get away from being linked and a malicious GM can
frame clients.

6.2 Our PPAA Construction

We now enumerate our PPAA construction. It can be thought of as the result
of securing Basic-PPAA by adding to it all necessary mechanisms to force the
entities to behave honestly, such as by accompanying each step in the skeleton
protocol with a SPK scheme that proves the correctness of the step.

Parameters. In addition to those in Basic-PPAA, our PPAA construction has
the following parameters. Let G2 be a group as described in Section 4 such
that (G1, G2) is a bilinear group pair in which the q-SDH assumption holds.
Let � be a sufficiently large security parameter of size polynomial in λ. Let
g1, . . . , g5 ∈ G1 be generators of G1 such that the relative discrete logarithms
among g1, . . . , g5 and g0 (from Section 4) are unknown. Let Ĥ : {0, 1}∗ → Zp be
a secure cryptographic hash function. Ĥ is utilized by the various SPKs in the
construction.

Setup. The GM randomly chooses γ ∈R Zp and computes w = hγ
0 ∈ G2. The

group secret key is gsk = (γ) and the group public key is gpk = (w).

Registration. At the successful termination of a run of this protocol between
a user Alice and the GM, Alice obtains a credential cred in the form of cred =
(A, e, x, y, z) ∈ G1 × Z

4
p such that Ae+γ = g0g

x
1gy

2gz
3 . The private input to the

GM is his group secret key gsk. The protocol proceeds as follows.

1. The GM sends 〈N0〉 to Alice, where N0 ∈R {0, 1}� is a random challenge.
2. Alice sends 〈C, Π0〉 to the GM, where C = gx

1gy
2gz′

3 ∈ G1 is a commitment
of (x, y, z′) ∈R Z3

p and Π0 is a signature proof of knowledge of

SPK
{

(x, y, z′) : C = gx
1gy

2gz′

3

}
(M)

on message M = N0||C, which proves the correctness of C. We will refer to
the above SPK as SPK0.

3. The GM terminates with failure if the verification of Π0 returns invalid.
Otherwise the GM sends 〈A, e, z′′〉 to Alice, where e, z′′ ∈R Zp and

A = (g0Cgz′′

3 )
1

e+γ ∈ G1

4. Alice computes z = z′ + z′′. She terminates with failure if ê(A, whe
0) �=

ê(g0g
x
1gy

2gz
3 , h0). Otherwise she outputs cred = (A, e, x, y, z) as her

credential.



PPAA: Peer-to-Peer Anonymous Authentication 67

Fig. 1. The Authentication Protocol

We remark that the security of the system requires that no two instances of
the Registration protocol may run concurrently. To enforce this rule, the GM
registers users one after the other.

Authentication. Alice (as the initiator) and Bob (as the responder) would like
to mutually authenticate with each other during an event with identifier eid ∈
{0, 1}∗. The common input to both Alice and Bob is eid. The private input to Alice
and Bob is their own credentials (A1, e1, x1, y1, z1) and (A2, e2, x2, y2, z2) respec-
tively. The following describes the steps in the 4-round protocol for authentication.

1. Alice sends 〈N1, U1, V1, Π1〉 to Bob, where:
• N1 ∈R {0, 1}�, r1 ∈R Zp,
• U1 = Ar1

1 ∈ G1, V1 = H(eid)r1 ∈ G1, and
• Π1 is a signature proof of knowledge of

SPK

{

(A, e, x, y, z, r) : Ae+γ = g0g
x
1gy

2gz
3 ∧

U1 = Ar ∧ V1 = H(eid)r

}

(M)
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on message M = m1 = eid||N1||U1||V1 ∈ {0, 1}∗, which Alice can pro-
duce using her knowledge of (A1, e1, x1, y1, z1, r1). We will refer to the
above SPK as SPK1.

2. Bob terminates with failure if verification of Π1 returns invalid. Other-
wise he sends 〈N2, U2, V2, W2, Π2〉 to Alice, where:

• N2 ∈R {0, 1}�, r2 ∈R Zp,
• U2 = Ar2

2 ∈ G1, V2 = H(eid)r2 ∈ G1, W2 = Ux2
1 V y2

1 , and
• Π2 is a signature proof of knowledge of

SPK

⎧
⎨

⎩
(A, e, x, y, z, r) :

Ae+γ = g0g
x
1gy

2gz
3 ∧

V2 = H(eid)r ∧ U2 = Ar ∧
W2 = Ux

1 V y
1

⎫
⎬

⎭
(M)

on message M = m2 = m1||Π1||N2||U2||V2||W2 ∈ {0, 1}∗, which Bob can
produce using his knowledge of (A2, e2, x2, y2, z2, r2). We will refer to the
above SPK as SPK2.

3. Alice terminates with failure if verification of Π2 returns invalid. Other-
wise she sends 〈W1, τ1, Π3〉 to Bob, where:

• W1 = Ux1
2 V y1

2 ∈ G1, τ1 = W
1/r1
2 ∈ G1, and

• Π3 is a signature proof of knowledge of

SPK

⎧
⎨

⎩
(A, e, x, y, z, r) :

Ae+γ = g0g
x
1gy

2gz
3 ∧

U1 = Ar ∧ V1 = H(eid)r ∧
W1 = Ux

2 V y
2 ∧ W2 = τr

1

⎫
⎬

⎭
(M)

on message M = m3 = m2||Π2||W1||τ1 ∈ {0, 1}∗, which Alice can produce
using her knowledge of (A1, e1, x1, y1, z1, r1). We will refer to the above
SPK as SPK3.

4. Bob terminates with failure if verification of ΠA returns invalid. Other-
wise he sends 〈τ2, Π4〉 to Alice, where:

• τ2 = W
1/r2
1 , and

• Π4 is a signature proof of knowledge of

SPK {(r) : W1 = τr
2 ∧ V2 = H(eid)r} (M)

on message M = m4 = m3||Π3||τ2 ∈ {0, 1}∗, which Bob can produce using
his knowledge of (r2). We will refer to the above SPK as SPK4.

Bob outputs tag2 = {τ1, τ2} and terminates.
5. Alice terminates with failure if verification of Π4 returns invalid. Other-

wise she outputs tag1 = {τ1, τ2} and terminates.

Figure 1 is a diagrammatic representation of the protocol.

Linking. On input two tags tag1, tag2, this algorithm returns linked if they
are equal and not-linked otherwise.
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6.3 SPK Instantiation

The instantiation of SPK0 to SPK4 and their computational costs in terms
of the number of pairing computation and multi-exponentiations (multi-EXPs)4

can be found in the extended version of this paper [36].

6.4 Analysis

Our PPAA construction has correctness, which is a straightforward consequence
of the correctness of the skeleton protocol and the correctness of the various
SPK schemes. We omit the proof for conciseness.

Security. The security of our construction hinges on the correctness of the skele-
ton protocol and the security properties of the various SPK schemes surrounding
it. We now state the following theorem. (Its proof is sketched in the extended
version of this paper [36].)

Theorem 1 (Security). Our proposed PPAA construction is secure in the ran-
dom oracle model if the XDH assumption and the q-SDH assumption hold in
(G1, G2). ��

Complexities. Our solution scales extremely well: all operations have constant
computational and communication complexities, regardless on the number of
peers, events and authentication runs. Registration is a one-time process per
user in the system. Linking involves only an equality testing of two sets of two
G1 elements.

Authentication is the dominating operation, thus we provide a more detailed
analysis on its costs. Alice, the initiating peer, needs to do an SPK1 and an
SPK3 signing, and an SPK2 and an SPK4 verification. The number of G1
multi-EXPs, GT multi-EXPs and pairings are 24, 10 and 4 respectively. Some of
these operations can be precomputed before the the start of an authentication;
with precomputation, those numbers become 10, 4 and 2 respectively. Bob, the
responding peer, needs to an SPK2 and an SPK4 signing, and an SPK1 and an
SPK3 verification. The number of G1 multi-EXPs, GT multi-EXPs and pairings
are 22, 11 and 5 respectively. With precomputation, they become 14, 8 and 4.
In addition to these calculation, Alice and Bob also need to compute several G1
multi-EXPs during the protocol.

Table 1 summarizes the computational costs for Alice and Bob.

7 Discussion

Resilience to Sybil Attacks. Sybil attacks [24] are attacks during which an
individual entity masquerades as multiple simultaneous identities. Any authenti-
cation mechanisms including PPAA must defend Sybil attacks launched against
4 A multi-EXP computes the product of exponentiations faster than performing the

exponentiations separately. We assume that one multi-EXP operation multiplies up
to 3 exponentiations.
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Table 1. Timing complexity of the Authentication protocol

Number of Operations (without precomputation)
G1 multi-EXPs GT multi-EXPs Pairings

Alice (the Initiator) 12 (28) 4 (10) 2 (4)
Bob (the Responder) 16 (26) 8 (11) 4 (5)

user registration. Approaches exist to ensure that only legitimate users can regis-
ter and that no legitimate user can register more than once. They include trusted
certification such as X.509 [1], resource testing, where resources could be IP ad-
dresses or “friendship” in social networks or PGP-like web of trust, recurring
costs imposed by cryptographic puzzles or CAPTCHAs [39], and trusted devices
with certain degree of tamper-resistance, such as Trusted Platform Modules
(TPMs) [35].

The practicality of the above approaches depends on the application scenarios.
In the example of VANets, the Department of Motor Vehicles (DMV) can play
the role of the GM with little overhead. Additionally, the makers of the vehicles
can install a trusted device preloaded with a credential in each of vehicle they
manufacture. In the example of P2P systems over a public network such the
Internet, demonstrating the possession of IP addresses is a pragmatic and thus
more popular approach, even though it does not have the highest resilience to
Sybil attacks.

Revocation. Any practical authentication mechanism must allow for creden-
tial revocation. In the settings of PPAA, one might want to revoke a credential
because the peer user in possession of that credential is compromised or mis-
behaving. For example, in VANets, the credential issued to a vehicle should be
revoked when the vehicle is reported to have been stolen. Revocation allows for
easier identification and thus tracking of stolen vehicles while maintaining the
privacy of other vehicles as stolen cars with revoked credentials can no longer be
anonymously authenticated by, e.g. a highway toll booth.

Our construction of PPAA can be modified in a straightforward manner to
allow for credential revocation by adopting existing standard techniques [16,
11]: Alice and Bob verifiably encrypt part of their credentials during SPK1 and
SPK2 respectively during the authentication under the public key of an entity
usually referred to as the Revocation Manager. Now in addition to the original
authentication, Alice and Bob have to convince one another that they have not
been revoked. In the approach of verifier-local revocation [11], each user keeps
a list of revoked users; in the approach of dynamic accumulators [16], each non-
revoked user updates their credential when someone else’s has been revoked.

Authenticated Key-exchange. The authentication protocol in PPAA can be
easily turned into an authenticated Diffie-Hellman key-exchange. Specifically, Al-
ice additionally includes in m1 an element ga

0 with a ∈R Zp in Step 1 of the authen-
tication protocol, while Bob additionally includes in m2 an element gb

0 with b ∈R Zp

in Step 3. When the protocol terminates, both of them can derive a shared session
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key as gab
0 = (ga

0 )b = (gb
0)

a . Since m1 and m2 are signed with SPK1 and SPK2 re-
spectively, Alice and Bob can use the session key to establish a confidential channel
with the same privacy and accountability guarantees as in PPAA.

Blending Secret handshakes into PPAA. As discussed, anonymous SHSs
such as Ateneise et al.’s [4] do not provide the linkability desired by the servers.
On the other hand, PPAA leaks the initiating peer’s group affiliation to any re-
sponding peer who might not be a group member. Hence, each of them has its
advantage over the other. Fortunately, one can enjoy the advantages of both by
composing the two schemes. Specifically, two group members first execute an
anonymous secret handshake to authenticate the group membership of one an-
other and establish a secure channel, then they execute an PPAA authentication
within that channel.

Furthermore, carrying out PPAA authentication within a secure channel has the
additional benefit of preventing eavesdroppers from linking authentication traffic.

Fairness. In our PPAA construction, a malicious responding peer Bob might
decide to stop after receiving Alice’s protocol message at step 3 of the authen-
tication protocol so that he could learn Alice’s tag without Alice being able to
learn his. The revealing of tags between Alice and Bob is thus not guaranteed
to be fair in our construction.

Borrowing ideas from optimistic fair exchange [2, 3], one could augment fair-
ness to PPAA by modifying it as follows. Alice requires Bob to additionally send
a verifiable encryption of r2 under the public key of some Trusted Third Party
(TTP) in step 2 also that in case Bob stops before step 4, Alice can still re-
construct the tag with the help of the TTP. However, such a modification puts
Bob’s privacy at risk, as the collusion between Alice the TTP can identity Bob.
We leave the exploration of how to provide fairness without sacrificing privacy
as future work.

8 Conclusion

In this paper, we have introduced Peer-to-Peer Anonymous Authentication
(PPAA), a credential system that correctly balances user privacy and account-
ability in P2P systems where not just clients but also servers are concerned
with their privacy. We have shown that such a credential system finds applica-
tions in many P2P systems such as VANets. We have presented the first PPAA
construction, which is both secure and very efficient.
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Abstract. We present generic constructions of stateful public key en-
cryption (StPE). We build several new StPE schemes and explain exist-
ing ones using our generic constructions. Of the new StPE schemes, two
schemes are built using the “identity-based technique” whereby one can
construct public key encryption (PKE) schemes secure against chosen
ciphertext attack in the standard model from identity-based encryption
(IBE) schemes. These StPE schemes provide a positive answer to Bel-
lare et al.’s open question on whether stateful variants of PKE schemes
derived from IBE schemes exist.

1 Introduction

The main goal of the stateful public key encryption (StPE) schemes proposed by
Bellare, Kohno and Shoup [6] is to reduce the cost of public key encryption by
allowing a sender to maintain state that is reused across different encryptions.
For example, one can obtain a stateful version of the ElGamal encryption in
which a message M is encrypted to (gr, grxM) for public key gx by maintaining
the random value r and its corresponding value gr as state so that gr does not
need to be computed each time. (Note, however, that much more is involved in
the analysis of this scheme.)

Reducing the computational cost of public key encryption is of particular im-
portance for low-power mobile devices where computational resources are con-
strained (such as PDA and mobile phones) or sensors communicating with the
relatively powerful servers or base stations [24,15,12]. Due to the efficiency gained
from maintaining state, StPE schemes have potential to be employed in these set-
tings. But, even in the environments that provide reasonable amount of computa-
tional resources, it is preferable to speed up public key operation, which is often
more expensive than symmetric key operation, for overall system performance.

The approach that Bellare et al. [6] adopt to construct StPE schemes is to
convert specific public key encryption schemes such as DHIES [1] and Kurosawa
and Desmedt’s hybrid encryption scheme [20] into StPE schemes. However, for
the practical reasons that speeding up public key operations is of great impor-
tance for the system performance, and new and more efficient computational
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primitives may emerge in the future, it is desirable to have some generic meth-
ods to construct StPE schemes. – The application of our generic construction
to Kiltz’s [18] new key encapsulation mechanism, which is presented in 4.3, is a
good example of this argument.

Our Contributions. Regarding the issues discussed earlier we make the following
contributions in this paper:

1. We formalize the concept of “partitioned” key encapsulation mechanism
(PKEM) which is a special case of key encapsulation mechanism (KEM)
[14] but turns out to encompass many existing schemes. Apart from the se-
curity against chosen ciphertext attack (IND-CCA) of KEM, we define some
additional security properties that we require in our constructions of StPE.
– See Section 2.2.

2. We present two generic constructions of StPE using PKEM and symmet-
ric encryption. The first construction is shown to meet the strong security
requirement defined in [6] in the known secret key (KSK) model without
the random oracles [8]. The second construction is also shown to meet the
security requirement in the unknown secret key (USK) model depending on
the random oracles. – See Section 3.

3. We build several StPE schemes using the proposed generic constructions.
Of these schemes, two are derived from the public key encryption (PKE)
schemes constructed following the paradigm of converting identity-based en-
cryption (IBE) into IND-CCA secure public key encryption (PKE) [13] in
the standard model. We note that Bellare et al. [6] asked whether such StPE
schemes exist. – See Section 4.

Related Work. Since Bellare et al. proposed the concept of StPE, to our knowl-
edge, there has been few research work directly related to StPE. In their recent
paper [25], Sarkar and Chaterjee discuss possible relation between the symmet-
ric encryption they use for their generic construction of PKE from IBE and the
symmetric encryption used in StPE. Other related work include the reuse of the
randomness in the multi-receiver public key encryption, proposed by Kurosawa
[19] and further formalized by Bellare, Boldyreva and Staddon [4]. (Readers are
referred to [6] for detailed discussions on the relationship between StPE and the
randomness reuse in the multi-receiver PKE.)

Organization of This Paper. In Section 2, we give definitions of all the building
blocks we need in this paper. We then describe our generic constructions of StPE
and give security analysis of them in Section 3. In Section 4, we provide new
StPE schemes derived from our generic constructions.

2 Building Blocks

2.1 Stateful Public Key Encryption

In this subsection we review the definitions of StPE and its security as given
in [6].
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Definition 1 (StPE). A stateful public key encryption scheme, denoted StPE,
consists of the following algorithms:

– StPE.Setup: Taking 1λ for a security parameter λ ∈ Z≥0 as input, this
algorithm generates a system parameter sp which includes λ. We write
sp ← StPE.Setup(1λ).

– StPE.KG: Taking sp as input, this algorithm generates a private/public key
pair (sk, pk). We write (sk, pk) ← StPE.KG(sp).

– StPE.PKCk: Taking sp and pk as input, this algorithm returns 1 if the public
key pk is valid and 0 otherwise. We write δ ← StPE.PKCk(sp, pk), where
δ ∈ {0, 1}.

– StPE.NwSt: Taking sp as input, this algorithm generates a new state. We
write st ← StPE.NwSt(sp).

– StPE.Enc: Taking sp, pk, st and a plaintext M as input, this algorithm out-
puts a ciphertext C and state st which may be different from the state pro-
vided as input to this algorithm. We write (C, st) ← StPE.Enc(sp, pk, st, M).

– StPE.Dec: Taking sp, sk and C as input, this deterministic algorithm outputs
M which is either a plaintext or ⊥ (meaning “reject”) message. We write M
← StPE.Dec(sp, sk, C).

We impose a usual consistency condition on StPE: For any sp output by
StPE.Setup, (sk, pk) generated by StPE.KG and st output by either StPE.NwSt
or StPE.Enc, if (C, st) is an output of StPE.Enc(sp, pk, st, M), StPE.Dec(sp, sk,
C) = M .

We remark that the state generated by StPE.NwSt algorithm, the state provided
as input to the StPE.Enc algorithm and the state output by StPE.Enc algorithm
can all be different from each other. Note that StPE.PKCk is a public key verifi-
cation algorithm that checks the validity of the given public key. The level of the
validity check we require in this paper is the same as that of the simple public
key checking mechanisms, eg. checking whether some component of the given
public key belongs to the underlying (mathematical) group, which are already
exercised in practice [21,17].

We now review the definition of chosen ciphertext security for StPE schemes
as defined in [6].

Definition 2 (IND-CCA of StPE). Let StPE be a StPE scheme. Consider a
game played with an attacker A:

Phase 1: The game computes sp←StPE.Setup(1λ),(pk1, sk1)←StPE.KG(sp)
and st ← StPE.NwSt(sp). (Note that (sk1, pk1) is the private/public key pair
of the honest receiver R1.) The game sends (sp, pk1) to A.
Phase 2: A outputs public keys pk2, . . . , pkn of receivers R2, . . . , Rn respec-
tively, all of which are in the range of KG(sp). (Note that A may or may not
know the private keys corresponding to the public keys pk2, . . ., pkn.)
Phase 3: A issues a number of (but polynomially many) queries, each of
which is responded by the game. The type of each query and the action
taken by the game are described as follows:
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• A challenge query (M0, M1) such that |M0| = |M1|: The game picks
β

R← {0, 1} (Throughout this paper, we denote by s
R← S the assignment

of a uniformly and independently distributed random element from the
set S to the variable s), computes (C∗, st) ← StPE.Enc(sp, pk1, st, Mβ),
where st denotes current state, and sends C∗ to A.

• Encryption queries, each of which is denoted by (i,M) where i∈{1,. . . ,n}:
The game computes (C, st) ← StPE.Enc(sp, pki, st, M), where st denotes
current state, and sends C to A.

• Decryption queries, each of which is denoted by C �= C∗: The game
computes StPE.Dec(sp, sk1, C) and sends the resulting decapsulation
(key or ⊥ (“Reject”)) to A.

Phase 4: A outputs its guess β′ ∈ {0, 1}.

We define A’s advantage by AdvIND-CCA
A,StPE (λ) =

∣
∣
∣Pr[β′ = β] − 1

2

∣
∣
∣.

The chosen ciphertext security of StPE defined above can be considered in the
KSK (Known Secret Key) or the USK (Unknown Secret Key) models [6]. In the
KSK model, we assume that the attacker A possesses the corresponding private
(secret) keys sk2 . . . , skn of the public keys it outputs in Phase 2 of the attack
game. On the other hand, in the USK model, we do not need this assumption. –
Namely, in the KSK model, it is likely that the CA (Certificate Authority) is re-
quired to perform a proof of knowledge protocol to confirm whether users have cor-
responding private keys of their public keys while in the USK model, StPE.PKCk
should be run (by the game) to check whether the public keys are valid.

2.2 Partitioned Key Encapsulation Mechanism

In this subsection we define a new primitive called “partitioned key encapsulation
mechanism (PKEM)” which is a special type of normal KEM [14]. Speaking
informally, PKEM has a property that a part of ciphertext, which does not
explicitly depend on the given public key (but depends on the system parameter
as will be defined below), can be “partitioned” from other parts of ciphertext.
Though this property seems somewhat special, we show in the later section that
many KEM schemes are in fact PKEM.

Definition 3 (PKEM). A partitioned KEM scheme, which we simply denote
by PKEM, consists of the following algorithms.

– PKEM.Setup: Taking 1λ for a security parameter λ ∈ Z≥0 as input, this
algorithm generates a system parameter sp which includes λ. sp also defines
the key space KK . We write sp ← PKEM.Setup(1λ).

– PKEM.KG: Taking sp as input, this algorithm generates a private/public key
pair (sk, pk). We write (sk, pk) ← PKEM.KG(sp).

– PKEM.Encap1 : Taking sp as input, this algorithm generates the first cipher-
text vector ψ and state information ω which includes the internal randomness
used to generate ψ. We write (ω, ψ) ← PKEM.Encap1(sp).
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– PKEM.Encap2 : Taking sp, ω, pk and ψ as input, this algorithm generates the
second ciphertext vector σ and a key K. We write (σ,K) ← PKEM.Encap2(sp,
pk, ω, ψ).

– PKEM.Decap : Taking sp, sk, ψ and σ as input, this algorithm outputs either
the session key K or the special symbol ⊥. We write K ← PKEM.Decap(sp,
sk, ψ, σ).

We impose a consitency condition on PKEM: For any sp output by
PKEM.Setup, (sk, pk) generated by PKEM.KG, if (ω, ψ) and (σ, K) are out-
puts of PKEM.Encap1(sp) and PKEM.Encap2(sp, pk, ω, ψ) respectively,
PKEM.Decap(sp, sk, ψ, σ) = K. We also impose the following non-triviality
condition on (ψ, σ) and K: ψ �= ε and K �= ε but σ can be ε, where ε denotes
empty string.

Note in the above definition that for the sake of convenience, we separate
PKEM.Setup from the KEM.KeyGen() algorithm given in [14] which generates
both the system parameter and the public key together. Note also that the IND-
CCA definition for PKEM is essentially no different from the usual IND-CCA
definition for KEM [14] as an attacker does not get the state information ω
during the attack. For completeness, however, we define IND-CCA of PKEMs.

Definition 4 (IND-CCA of PKEM). Let PKEM be a PKEM scheme. Con-
sider a game played with an attacker A:

Phase 1: The game computes sp ← PKEM.Setup(1λ), (pk, sk) ← PKEM.KG
(sp) and gives (sp, pk) to A.
Phase 2: A issues decapsulation queries, each of which is denoted by (ψ, σ).
On receiving (ψ, σ), the game computes PKEM.Decap(sp, sk, ψ, σ) and gives
the resulting decapsulation K (which can be ⊥) to A.
Phase 3: The game subsequently computes (ω∗, ψ∗) ← PKEM.Encap1(sp)
and (σ∗, K∗

1 ) ← PKEM.Encap2(sp, pk, ω∗, ψ∗). It also picks K∗
0 at ran-

dom from the key space KK . The game then picks b
R← {0, 1} and gives

(ψ∗, σ∗, K∗
b ) to A.

Phase 4: A issues decapsulation queries, each of which is denoted by (ψ, σ).
A restriction here is that (ψ, σ) �= (ψ∗, σ∗). On receiving (ψ, σ), the game
computes
PKEM.Decap(sp, sk, ψ) and gives the resulting decapsulation K (which can
be ⊥) to A. At the end of this phase, A outputs its guess b′ ∈ {0, 1}.

We define A’s advantage by AdvIND-CCA
A,PKEM (λ) =

∣
∣
∣ Pr[b′ = b] − 1

2

∣
∣
∣.

Proving the security of our generic construction of StPE in the KSK model
given in Section 3.1 requires us to define a new property of PKEM, which we
call “reproducibility”. Informally, this means that there exists a polynomial-time
algorithm that, given a PKEM-ciphertext created under some public key and
state information, and some other public/private key pair, produces another
PKEM-ciphertext valid under the other public key and the same state informa-
tion as the given ciphertext. (We note that a similar notion has been considered
in [4] in the context of multi-receiver PKE.)
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Intuitively, the reason why we require reproducibility is as follows. Given
the specific state information, the adversary in the IND-CCA game of StPE
(Definition 2) can come up with public keys of receivers other than the target
receiver (denoted R1) and produce ciphertexts associated with these public keys
and the given state. In the KSK model, since the adversary is assumed to know
private keys, each of which corresponds to each public key, he can produce such
ciphertexts by himself. Now, a formal definition follows.

Definition 5 (Reproducibility of PKEM). Let PKEM be a PKEM scheme.
Consider a game played with an algorithm R:

Phase 1: The game computes sp ← PKEM.Setup(1λ), (sk, pk) ← PKEM.KG
(sp), (ω, ψ) ← PKEM.Encap1(sp), (σ, K) ← PKEM.Encap2(sp, pk, ω, ψ) and
(sk′, pk′) ← PKEM.KG(sp). It gives (sp, pk, ψ, σ, sk′, pk′) to R.
Phase 2: R outputs (σ′, K ′).

We define R’s advantage by

AdvPKEM-Repr
R,PKEM (λ) = Pr[(σ′, K ′) = PKEM.Encap2(sp, pk′, ω, ψ)].

We say that the PKEM scheme is reproducible if AdvPKEM-Repr
R,PKEM (λ) = 1.

Finally we define another type of security of PKEM, which is an extension of
one-wayness (OW) under key checking attack (KCA) defined in [2]. (Note that
KCA can be considered as a KEM version of the plaintext checking attack (PCA)
defined in [23].) Our extension strengthens the OW-KCA of [2] in such a way that
an attacker can freely choose a public key and include it to the “key checking”
query. A formal definition, which we call “OW-EKCA (extended key checking
attack)” is as follows.

Definition 6 (OW-EKCA of PKEM). Let PKEM be a PKEM scheme. Con-
sider a game played with an attacker A:

Phase 1: The game computes sp ← PKEM.Setup(1λ), (pk, sk) ← PKEM.KG
(sp), (ω∗, ψ∗) ← PKEM.Encap1(sp) and (σ∗, K∗) ← PKEM.Encap2(sp, pk,
ω∗, ψ∗), and gives (sp, pk, ψ∗, σ∗) to A.
Phase 2: A issues key checking queries, each of which is denoted by (pk′,
ψ′, σ′, K ′). On receiving it, the game checks whether (ψ′, σ′) encapsulates
K ′ or not with respect to pk′. If it is, the game returns 1, and 0 otherwise.
– We write this checking procedure as EKCO(pk′, ψ′, σ′, K ′), which returns
1 if (ψ′, σ′) encapsulates K ′ under the key pk′ and 0 otherwise.
Phase 3: A outputs its guess K.

We define A’s advantage by AdvOW-EKCA
A,PKEM (λ) = Pr[K = K∗].
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2.3 Symmetric Encryption

To construct IND-CCA secure StPE schemes, we need a somewhat strong sym-
metric encryption scheme. Note that in the usual KEM/DEM framework (DEM:
Data Encapsulation Mechanism) for hybrid encryption [14], it is sufficient that
the underlying symmetric encryption is IND-CCA in the weak sense that the
attacker does not issue queries to the encryption oracle. In contrast, we need sym-
metric encryption secure against CCA attack in which the attacker does issue
encryption queries. – A formal definition of IND-CCA for symmetric encryption
can naturally be defined and can easily be found in the literature including [14].

We remark that as mentioned in [6], the symmetric encryption schemes meet-
ing the IND-CCA definition can in fact be easily constructed, eg. using the
encrypt-then-mac composition [7] with an AES mode of operation (such as CBC)
and a MAC (such as CBC-MAC or HMAC [5]).

3 Our Constructions

3.1 Construction in the KSK Model

Description. We assume that a PKEM scheme PKEM and a symmetric encryp-
tion scheme SYM are “compatible” meaning that the key space KK of PKEM
is the same as the key space KD of SYM. We use these schemes as building
blocks to construct a stateful encryption scheme StPE. Below, we describe each
sub-algorithm of StPE.

StPE.Setup is the same as PKEM.Setup, which outputs system parameter sp.
Likewise, StPE.KG is the same as PKEM.KG, which outputs (sk, pk), a pri-
vate/public key pair. StPE.PKCk simply returns 1 (and does nothing else) as
the KSK model implies that any public keys in this system are generated cor-
rectly following the algorithm StPE.KG. (Namely the entity that has generated
a public key must know the corresponding private key.)

In our construction of stateful encryption, we assume that only two types
of state exist. The first type of state is produced by StPE.NwSt, which simply
returns the output of PKEM.Encap1 on input sp. This state is kept unchanged
until StPE.NwSt is invoked again to produce fresh state of the first type. The
second type of state is produced by the algorithm StPE.Enc, which appends the
first type of state output by StPE.NwSt to pk (provided as input to StPE.Enc)
and the output of PKEM.Encap2. (Note here that PKEM.Encap2 takes (sp, pk),
the state output by StPE.NwSt and a plaintext M as input.) We also assume that
pk and the output of PKEM.Encap2 of the second type of state is modified only
by StPE.Enc. In what follows, we give algorithmic descriptions of StPE.NwSt,
StPE.Enc and StPE.Dec.

Note that by the assumptions stated earlier, there are the following cases for st
provided as input to StPE.Enc to become: 1) (ω, ψ) which is output of StPE.NwSt;
2) (ω, ψ, pk′, σ′, K ′) where σ′ and K ′ are the outputs of PKEM.Encap2, both of
which are created under the public key pk′ different from the public key pk
provided as input to StPE.Enc; and 3)(ω, ψ, pk, σ, K) where σ and K are created
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under the public key pk provided as input to StPE.Enc. Note also that for state
st = (ω, ψ) generated by the algorithm StPE.NwSt, [StPE.Enc(sp, pk, st, M)]C
= [StPE.Enc(sp, pk, st′, M)]C for any st′ output by StPE.Enc before StPE.NwSt
is invoked to generate new state (different from st). Here, “[StPE.Enc(· · · )]C”
denotes the ciphertext part of an output of StPE.Enc. – This property is used
crucially to prove the security of the proposed construction.

StPE.NwSt(sp)

(ω, ψ) ← PKEM.Encap1(sp)
st ← (ω, ψ)
Return st

StPE.Enc(sp, pk, st,M)

If st is of the form (ω, ψ) or of the form (ω,ψ, pk′, σ′, K′) such that
pk′ �= pk then

(σ, K) ← PKEM.Encap2(sp, pk, ω,ψ)
Else

Parse st as (ω,ψ, pk, σ, K)

e
R← SYM.Enc(K, M)

C ← (ψ, σ, e)
st ← (ω, ψ, pk, σ, K)
Return (C, st)

StPE.Dec(sp, sk, C)

Parse C as (ψ, σ, e)
K ← PKEM.Decap(sp, sk, ψ, σ)
If K = ⊥ then return ⊥
Else return SYM.Dec(K, e)

We remark that the StPE.Enc algorithm becomes highly efficient when a
sender sends encryptions to a single receiver: If the sender wants to send encryp-
tions of M1, . . . , Mn to the same receiver whose public key is pk, he does not
have to run PKEM.Encap2 and PKEM.Key for each plaintext Mi for i = 1 . . . , n
but just runs them once at the beginning and then only runs SYM.Enc on input
(K, Mi) afterwards.

Security Analysis of Generic Construction. Our generic construction of StPE
seems to be reminiscent of the KEM/DEM paradigm of constructing hybrid en-
cryption given in [14]. However, the PKEM-reproducibility that we defined in the
previous section (Definition 5) and the “reuse” of a ciphertext and its correspond-
ing key of the PKEM scheme for the multiple encryptions without compromising
confidentiality due to the strong security of the SYM scheme are the features
that distinguish our generic construction of StPE from the KEM/DEM frame-
work for constructing normal hybrid encryption. We now prove the following
theorem.
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Theorem 1. In the KSK model, the proposed generic stateful public key encryp-
tion scheme StPE is IND-CCA secure if the underlying PKEM scheme PKEM
is IND-CCA secure and reproducible, and the underlying symmetric encryption
scheme SYM is IND-CCA secure. More precisely, we have

AdvIND-CCA
A,StPE (λ) ≤ 2AdvIND-CCA

B1,PKEM (λ) + AdvIND-CCA
B2,SYM (λ),

where λ denotes the security parameter; A, B1 and B2 denote the corresponding
attackers.

Proof. The proof uses the technique of sequence of games [26].

– Game G0: This game is identical to the IND-CCA game played by an
attacker A against StPE. (Readers are referred to Definition 2.) We re-
peat this game to clean up the notations. Let sp be a system parameter.
Let pk1 and sk1 be public and private keys of the honest receiver respec-
tively. Let pk2, . . . , pkn be the public keys output by A. Let st = (ω∗, ψ∗),
where (ω∗, ψ∗) ← PKEM.Encap1(sp), be the sender’s state generated by
StPE.NwSt, fixed throughout each game. We denote a challenge ciphertext
by C∗ = (ψ∗, σ∗, e∗), where (σ∗, K∗

1 ) ← PKEM.Encap2(sp, pk1, ω
∗, ψ∗) and

e∗ R← SYM.Enc(K∗
1 , Mβ) for β

R← {0, 1}.
Now, observe that we can assume that A does not make encryption queries
of the form (i, M) for i = 2, . . . , n. The reason is that since A is assumed to
know ski corresponding to its public key pki following the KSK model, by
the reproducibility, it, given (ψ∗, σ∗, pk1), can compute (σi, Ki) such that
(σi, Ki) ← PKEM.Encap2(sp, pki, ω

∗, ψ∗) for i = 2, . . . , n. Consequently,
it can compute ei

R← SYM.Enc(Ki, M) and can create ciphertext Ci =
(ψ∗, σi, ei) for all i = 2, . . ., n.

We denote by S0 the event β′ = β, where β′ is a bit output by A at the
end of the game. (We use a similar notation S1, S2, . . . for all modified games
G1, G2, . . . respectively). Since G0 is the same as the real attack game of the
IND-CCA of StPE, we have

– Game G1: In this game, we modify the generation of e∗ (a component of chal-
lenge ciphertext) of the previous game as follows: e∗ R← SYM.Enc(K∗

0 , Mβ),

where K∗
0 is the key chosen at random from KK(= KD) and β

R← {0, 1}.
Now, in the following, we construct an oracle machine B1 that breaks IND-
CCA of PKEM using A as a subroutine.
Algorithm B1(sp, pk1)

Give (sp, pk1) to A
If A issues a challenge query (M0, M1) such that |M0| = |M1| then
get a challenge ciphertext/key pair (ψ∗, σ∗, K∗

b ) where b
R← {0, 1}

from the challenger; β
R← {0, 1}; e∗ R← SYM.Enc(K∗

b , Mβ);
C∗ ← (ψ∗, σ∗, e∗); Give C∗ to A
If A issues an encryption query (1, M) then

e
R← SYM.Enc(K∗

b , M); C ← (ψ∗, σ∗, e); Give C to A.
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If A issues a decryption query C �= C∗, where C = (ψ, σ, e), then
If (ψ, σ) �= (ψ∗, σ∗) then query (ψ, σ) to the
challenger to get K = Decap(sp, sk1, ψ, σ)

If K �= ⊥ then return SYM.Dec(K, e)
Else return ⊥

Else return SYM.Dec(K∗
b , e)

If A outputs β′ such that β′ = β then return b′ = 1 (b′ is B1’s guess on
b)
Else return b′ = 0

First, assume that b = 1 in the above construction. In this case,
note that K∗

1 is the right key of PKEM. Importantly, note also that
[StPE.Enc(sp, pk, st, M)]C = [StPE.Enc(sp, pk, st′, M)]C for any st′ produced
by StPE.Enc before StPE.NwSt is invoked to produce new state different from
st. (Recall that “[StPE.Enc(· · · )]C” denotes the ciphertext part of an output
of StPE.Enc.) Hence, the ciphertexts (ψ∗, σ∗, e∗) and (ψ∗, σ∗, e) provided as
responses to A’s challenge and encryption queries respectively and those in
the real attack game (which is Game G0) are distributed identically. De-
cryptions are also perfectly simulated. Consequently, B1 creates the same
environment as Game G0 in which A outputs its guess β′. Hence, we have
Pr[S0] = Pr[β′ = β] = Pr[b′ = 1|b = 1]. Next, assume that b = 0 in the above
construction. Note that in this case, B1 creates the same environment as this
game (Game G1) in which K∗

0 is the key chosen at random from KK(= KD).
Hence, we have Pr[S1] = Pr[β′ = β] = Pr[b′ = 1|b = 0]. Thus, we obtain

| Pr[S0] − Pr[S1]| = | Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|

= 2
(
|1
2

Pr[b′ = 1|b = 1] − 1
2

Pr[b′ = 1|b = 0]|
)

= 2
(
|1
2

Pr[b′ = 1|b = 1] +
1
2
(1 − Pr[b′ = 1|b = 0]) − 1

2
|
)

= 2
(
|1
2

Pr[b′ = 1|b = 1] +
1
2

Pr[b′ = 0|b = 0] − 1
2
|
)

= 2AdvIND-CCA
B1,PKEM (λ).

Now, in the following, we construct an oracle machine B2 that breaks IND-
CCA of SYM using the attacker A as a subroutine.
Algorithm B2(λ)

Generate sp, sk1 and pk1; Give (sp, pk1) to A
(ω∗, ψ∗) ← PKEM.Encap1(sp);
(σ∗, K∗) ← PKEM.Encap2(sp, pki, ω

∗, ψ∗);
If A issues a challenge query (M0, M1) such that |M0| = |M1| then
query (M0, M1) to the challenger to get e∗ R← SYM.Enc(K∗

0 , Mβ)

where β
R← {0, 1}; C∗ ← (ψ∗, σ∗, e∗); Give C∗ to A.

If A issues an encryption query (1, M) then
query M to the challenger to get e

R← Enc(K∗
0 , M);
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C ← (ψ∗, σ∗, e); Give C to A.
If A issues a decryption query C �= C∗, where C = (ψ, σ, e), then

If (ψ, σ) �= (ψ∗, σ∗) then
K ← PKEM.Decap(sp, sk1, ψ, σ)
If K �= ⊥ then return SYM.Dec(K, e)
Else return ⊥

Else query e (which must be different from e∗) to the challenger to
get d = SYM.Dec(K∗

0 , e); Return d
If A outputs β′ then return β′

Observe that in the above algorithm B2, A is essentially conducting chosen
ciphertext attack on the symmetric encryption scheme SYM. Thus we have

∣
∣
∣Pr[S1] −

1
2

∣
∣
∣ ≤ AdvIND-CCA

B2,SYM (λ).

3.2 Construction in the USK Model

Description. Let H be a random oracle [8], whose range (output-space) is the
same as the key space KD of the symmetric encryption scheme SYM. Assume
that there exists an algorithm PKV which checks whether public key of the given
PKEM scheme PKEM is valid. We note that PKV is not an algorithm for “prov-
ing” the possession of the corresponding private key but a simple mechanism for
validating keys or domain parameters by, eg. showing they belong to the output
space of the key generation algorithm, as described in the public key cryptogra-
phy standard such as P1363 [21]. (Readers are particularly referred to Section
D.3.3 of the P1363 specification.)

Using the PKEM and SYM schemes and the random oracle [8] H as build-
ing blocks we construct another stateful encryption scheme StPE as follows.
StPE.Setup is the same as PKEM.Setup, which outputs sp. Also, StPE.KG is the
same as PKEM.KG, which outputs (sk, pk). We assume here that sk includes pk.
StPE.PKCk runs the algorithm PKV to check whether a given public key pk is
in {PKEM.KG(sp)}.

Like the construction of stateful encryption in the KSK model presented in
the previous section, we assume that there exist only two types of state. The
first type of state is produced by StPE.NwSt, which simply returns the output
of PKEM.Encap1 on input sp. This state is kept unchanged until StPE.NwSt is
invoked again to produce fresh state of the first type. The algorithm StPE.Enc
produces the second type of state by appending the first type of state output by
StPE.NwSt to pk (provided as input to StPE.Enc) and the session key K̃ output
by H. (Note here that H takes as input the part of the state output by StPE.NwSt,
pk and the output of PKEM.Encap2.) We also assume that pk and the output of
PKEM.Encap2 of the second type of state is modified only by StPE.Enc.

Security Analysis of Generic Construction. We now state the following theorem
regarding the security of the construction presented above. – Due to the page
limit, the proof will be provided in the full version of this paper.
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StPE.NwSt(sp)

(ω, ψ) ← PKEM.Encap1(sp)
st ← (ω, ψ)
Return st

StPE.Enc(sp, pk, st,M)

If st is of the form (ω, ψ) or of the form (ω,ψ, pk′, σ′, K̃′) such that
pk′ �= pk then

(σ, K) ← PKEM.Encap2(sp, pk, ω,ψ)
K̃ ← H(ψ, pk, σ, K)

Else
Parse st as (ω,ψ, pk, σ, K̃)

e
R← SYM.Enc(K̃, M)

C ← (ψ, σ, e)
st ← (ω, ψ, pk, σ, K̃)
Return (C, st)

StPE.Dec(sp, sk, C)

Parse C as (ψ, σ, e)
K ← PKEM.Decap(sp, sk, ψ)
If K = ⊥ then return ⊥
Else

K̃ ← H(ψ, pk, σ, K)
Return SYM.Dec(K̃, e)

Theorem 2. In the USK model, the proposed generic stateful public key en-
cryption scheme StPE described above is IND-CCA secure if the underlying hash
function H is modeled as random oracle; the underlying PKEM scheme is OW-
EKCA secure; and the underlying SYM scheme is IND-CCA secure. More pre-
cisely, we have

AdvIND-CCA
A,StPE (λ) ≤ AdvOW-EKCA

B1,PKEM (λ) + AdvIND-CCA
B2,SYM (λ),

where λ denotes the security parameter; A, B1 and B2 denote the corresponding
attackers as defined in Section 2.

4 Applications

4.1 A StPE Scheme Based on the Identity-Based Technique by
Boyen, Mei and Waters

One of interesting applications of our generic constructions is to build StPE
based on the identity-based technique which converts IBE schemes into (possibly
efficient) IND-CCA secure PKE schemes in the standard model [13]. (Recall
that Bellare et al. [6] asked whether the PKE schemes constructed in this way
have stateful variants.) Among various identity-based techniques available in
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the literature, we select, due to their efficiency, one of Boyen, Mei and Waters’
presented in [11], and Boneh and Katz’s one presented in [10], both of which are
essentially yielded from the Boneh-Boyen selective-ID IBE [9].

We now describe a PKEM scheme derived from Boyen et al.’s KEM scheme
in [11], which we denote by BMW. Readers are referred to Appendix 4.2 for the
application of our generic construction of StPE to Boneh and Katz’s identity-
based technique [10].

Description of BMW PKEM. By simply rearranging Boyen et al.’s KEM scheme,
one can obtain BMW as follows. On input 1λ, BMW.Setup picks groups G and Ĝ

of prime order q, generated by g and h respectively. It then constructs a bilinear
map e : G × Ĝ → GT . It picks a collision resistant hash function Hs : G → Zq.

Finally it returns sp = (λ, q, g, h, G, Ĝ, GT , e, Hs). BMW.KG(sp) selects α
R← Zq

and l ← hα, and computes Z ← e(g, l). (Note that l ∈ Ĝ.) It then picks x
R← Zq

and y
R← Zq, and computes u ← gx and v ← gy. It chooses a random seed s

and returns sk = (pk, l, x, y) and pk = (s, Z, u, v). The rest of the algorithms are
described as follows:

BMW.Encap1(sp) BMW.Encap2(sp, pk, r, ψ) BMW.Decap(sp, sk, ψ, σ)

r
R← Zq; ψ ← gr

Return (r, ψ)
w ← Hs(ψ)
σ ← urvrw; K ← Zr

Return (σ, K)

w ← Hs(ψ)
w̄ ← x + yw (mod q)
If ψw̄ = σ then

K ← e(ψ, l); Return K
Else return ⊥

Note that in the above description r denotes state information (represented
by ω in Definition 3). Hereinafter, we use r to denote state information.

StPE from BMW PKEM. In [11], the BMW scheme is shown to be IND-CCA
secure assuming that the Decisional Bilinear Diffie-Hellman (DBDH) problem is
intractable. We now prove that it satisfies reproducibility (Definition 5) as well.

Lemma 1. BMW PKEM is reproducible.

Proof. Let sp = (λ, q, g, h, G, Ĝ, GT , e, H) be a system parameter. Let sk =
(l, x, y) and pk = (s, Z, u, v), where l = hα for random α ∈ Zq, u = gx and v =
gy, be private and public keys respectively. Suppose that another private/public
key pair (sk′, pk′) such that sk′ = (l′, x′, y′) and pk′ = (s′, Z ′, u′, v′), where
l = hα′

for random α′ ∈ Zq, u′ = gx′
and v′ = gy′

, is generated. Also, let
(ψ, σ) = (gr, urvrw) for random r ∈ Zq, where w = Hs(ψ), and K = Zr.

Given (sp, pk, ψ, σ, sk′, pk′), one can compute w′ ← Hs′(ψ); σ′ ← ψx′+y′w′
;

K ′ ← e(ψ, l′) and outputs (σ′, K ′). Note that ψw̄′ = grw̄′ = gr(x′+y′w′) =
ψx′+y′w′

= σ′ assuming that w̄′=x′+y′w′ (mod q). Note also that (g,ψ,u′v′w
′
, σ′)

is a Diffie-Hellman tuple, and that K ′ = e(ψ, l′) = e(g, l′)r = Z ′r. Thus,
(σ′, K ′) = PKEM.Encap2(sp, pk′, r, ψ).
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Now, assume that the key space of KK of the BMW scheme is the same as that
of the symmetric encryption scheme, which we denote by SYM. (Note that this
can easily be achieved by providing the key K to the key derivation function
(KDF) [14]. If the KDF is secure in the sense of “indistinguishability” as defined
in [14] and the original KEM is IND-CCA, the resulting KEM scheme is also
IND-CCA, which can easily be shown.) Then, if the SYM scheme is IND-CCA
secure, by the result of Theorem 1, the StPE scheme based on BMW PKEM is
IND-CCA secure in the KSK model without the random oracles.

4.2 A StPE Scheme Based on the Identity-Based Technique by
Boneh and Katz

Another StPE scheme based on the identity-based technique can be built using
our generic construction. This time the underlying PKEM scheme is derived
from Boneh and Katz’s [10] identity-based technique. By BK, we denote this
PKEM scheme.
Description of BK PKEM. On input 1λ, BK.Setup first picks groups G and
G1 of prime order q, where G is generated by g. It then constructs a bilinear
map e : G × G → G1. It selects a pseudorandom generator G : G1 → {0, 1}∗, a
second-preimage resistant hash function H : {0, 1}448 → {0, 1}128 and a message
authentication scheme MAC=(T , V). – T and V are tagging and verification algo-
rithms respectively. Finally it returns sp = (λ, q, g, G, G1, e, e(g, g), G, H, MAC).
BK.KG(sp) picks α1

R← Zq, α2
R← Zq and x

R← Zq; computes g1 ← gα1 , g2 ← gα2 ,
g3 ← gx and Z ← e(g, g)α1x. It chooses a hash function h from a family of
pairwise independent hash functions. It returns sk = (α1, α2, x, h) and pk = (g1,
g2, g3, Z, h). The rest of the algorithms are described as follows:

BK.Encap1(sp) BK.Encap2(sp, pk, r, ψ) BK.Decap(sp, sk, ψ, σ)

r
R← Zq; ψ ← gr

Return (r, ψ)
s

R← {0, 1}448

k1 ← h(s); K
R← KK

ρ ← H(s); θ ← gr
2grρ

3
φ ← G(Zr) ⊕ (K||s)
τ ← T (k1, (ψ, θ, φ))
σ ← (ρ, θ, φ, τ )
Return (σ, K)

Parse σ as (ρ, θ, φ, τ );

t
R← Zq; (K||s) ← φ ⊕

G(e(ψα1x+t(α2+xρ)θ−t, g))
k1 ← h(s)
If V(k1, (ψ, θ, φ), τ ) = 1 and
H(s) = ρ then

return K
Else return ⊥

StPE from BK KEM. We first prove that BK has the reproducibility (Definition 5).

Lemma 2. BK PKEM is reproducible.

Proof. Let sp = (λ, q, g, G, G1, e, e(g, g), G, H, MAC) be a system parameter as
defined earlier. Let sk = (α1, α2, x, h) and pk = (g1, g2, g3, Z, h), where g1 = gα1 ,
g2 = gα2 , g3 = gx, Z = e(g, g)α1x and h is drawn from a family of pairwise
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independent hash functions, be private and public keys respectively. Suppose
that another private/public key pair (sk′, pk′) such that sk′ = (α′

1, α
′
2, x

′, h′)
and pk′ = (g′1, g′2, g′3, Z ′, h′), where g′1 = gα′

1 , g′2 = gα′
2 , g′3 = gx′

, Z ′ =
e(g, g)α′

1x′
and h′ is drawn from a family of pairwise independent hash functions,

is generated. Also, let ψ = gr and σ = (ρ, θ, φ, τ), where ρ = H(s), θ = gr
2g

rρ
3 ,

φ = G(Zr) ⊕ (K||s) and τ = T (k1, (ψ, θ, φ)), where k1 = h(s), for random
r ∈ Zq, s ∈ {0, 1}448 and K ∈ KK .

Given (sp, pk, ψ, σ, sk′, pk′), one can compute s′ R← {0, 1}448; ρ′ ← H(s′);
θ′ ← ψα′

2ψx′ρ′
; K ′ R← KK ; φ′ ← G(e(ψ, g)α′

1x′
) ⊕ (K ′||s′); k′

1 ← h′(s′); τ ′ ←
T (k′

1, (ψ, θ′, φ′)) and output σ′ = (ρ′, θ′, τ ′) and K ′.
Note that θ′ = ψα′

2ψx′ρ′
= grα′

2grx′H(s′) = (g′2)r(g′3)rH(s′). Note also that
e(ψ, g′1)

x′
= e(g, g′1)

rx′
= Z ′r. It is clear that τ ′ is valid. Thus, (σ′, K ′) =

BK.Encap2(sp, pk′, r, ψ).

Note that the above BK PKEM scheme is derived simply from the Boneh and
Katz’s PKE scheme (converted from selective-ID IBE) by providing a random
key instead of a plaintext as input to the encryption algorithm (and separating
the ciphertext part which depends on the system parameter only). One can easily
show that if Boneh and Katz’s PKE scheme is IND-CCA secure relative to the
DBDH problem, which is actually shown in [10], the BK KEM scheme is also
IND-CCA secure assuming that the DBDH problem is hard. Now, assume that
the key space of KK of the BK scheme is the same as that of the symmetric
encryption scheme SYM. Then, if the SYM scheme is IND-CCA secure, by the
result of Theorem 1, the StPE scheme from BK PKEM is IND-CCA secure in
the KSK model without random oracles.

4.3 A StPE Scheme from Kiltz’s KEM Scheme

One can also apply the generic construction presented in Section 3.1 to the KEM
scheme proposed by Kiltz [18] very recently. Next, we describe the PKEM version
of this scheme, which we denote by KI.
Description of KI PKEM. On input 1λ, KI.Setup picks a group G of prime order q,
generated by g. It then picks a target-collision resistant hash function H : G → Zq

and a key derivation function KDF. Finally it returns sp =(λ, q, g, G, H, KDF).
KI.KG(sp) picks x

R← Zq and y
R← Zq, and computes u ← gx and v ← gy. It

returns sk = (x, y) and pk = (u, v). The rest of the algorithms are described as
follows:

KI.Encap1(sp) KI.Encap2(sp, pk, r, ψ) KI.Decap(sp, sk, ψ, σ)

r
R← Z

∗
q ; ψ ← gr;

Return (r, ψ)
t ← H(ψ); σ ← (utv)r

K ← KDF(ur)
Return (σ, K)

t ← H(ψ)
K ← KDF(ψx)
If ψxt+y = σ

Return K
Else return ⊥
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StPE from KI PKEM. We prove that the above KI PKEM scheme satisfies the
reproducibility.

Lemma 3. KI PKEM is reproducible.

Proof. Let sp = (λ, q, g, G, H, KDF) be a system parameter. Let sk = (x, y) and
pk = (u, v), where u = gx and v = gy. Suppose that another private/public key
pair (sk′, pk′) such that sk′ = (x′, y′) and pk′ = (u′, v′), where u′ = gx′

and
v′ = gy′

, is generated. Also, let (ψ, σ) = (gr, (utv)r), where t = H(ψ).
Given (sp, pk, ψ, σ, sk′, pk′), one can compute σ′ ← ψx′t+y′

; K ′ ← KDF(ψx′
),

where t = H(ψ), and output (σ′, K ′). Note that σ′ = gr(x′t+y′) = (gx′tgy′
)r =

(u′tv′)r. Thus, (σ′, K ′) = PKEM.Encap2(sp, pk′, r, ψ).

It is shown in [18] that the above KI PKEM scheme is IND-CCA secure assuming
that the Gap Hashed Diffie-Hellman (GHDH) problem is hard and the underlying
hash function H is target-collision resistant.

Thus, assuming that the key space of KK of the KD scheme is the same as
that of the symmetric encryption scheme SYM and the SYM scheme is IND-CCA
secure, the StPE scheme based on KI PKEM is IND-CCA secure in the KSK
model without the random oracles, by the result of Theorem 1.

4.4 A StPE Scheme from the Diffie-Hellman KEM Scheme

The stateful version of DHIES [1] proposed in [6] can actually be explained using
our generic construction presented in Section 3.2. We now present a PKEM
version of the Diffie-Hellman KEM, which we denote by DH as follows.
Description of DH PKEM. On input 1λ, DH.Setup picks a group G of prime order
q, generated by g. It then returns sp = (λ, q, g, G). DH.KG(sp) picks x

R← Zq and
computes y ← gx. It returns sk = x and pk = y. The rest of the algorithms are
described as follows:

DH.Encap1(sp) DH.Encap2(sp, pk, r, ψ) DH.Decap(sp, sk, ψ, σ)

r
R← Z

∗
q ; ψ ← gr

Return (r, ψ)
σ ← ε (empty string)
K ← yr

Return (σ, K)

K ← ψx

Return K

StPE from DH PKEM. We prove that the above DH PKEM scheme is OW-
EKCA secure (Definition 6).

Lemma 4. DH PKEM is OW-EKCA secure assuming that Gap Diffie-Hellman
(GDH) problem [22] is intractable.

Proof. Assume that an GDH attacker B is given an instance (λ, q, G, g, ga, gb).
B sets sp = (λ, q, g, G), pk = y = gb, ψ∗ = ga and σ∗ = ε (empty string). B
gives (sp, pk, ψ∗, σ∗) to an OW-EKCA attacker A. Whenever A issues an EKCA
query (pk′, ψ′, σ′, K ′), B forwards the query to its DDH oracle and sends back the
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response DDHg(pk′, ψ′, K ′) to A. (Note here that the DDH oracle DDHg(·, ·, ·)
returns 1 if a given tuple is (gu, gv, guv) for u, v ∈ Z∗

q and returns 0 otherwise.)
When A outputs it guess K̄, B returns it.

Hence, assuming that the key space of KK of the DH scheme is the same as
that of the symmetric encryption scheme SYM and the SYM scheme is IND-
CCA secure, the StPE scheme based on DH is IND-CCA secure in the USK and
random oracle model, by the result of Theorem 2.

5 Discussions

It is clear that the StPE schemes built from BMW PKEM in the Section 4.1 and
BK PKEM in Appendix 4.2 are more efficient than the original PKE schemes
based on the identity-based techniques presented in [11] and [10] respectively
since the PKEM ciphertext (ψ, σ) and the key K are reused across encryptions
directed to one receiver whose public key is pk. The proven security of these
schemes ensures that reusing one instance of internal randomness appeared in
the “state” across multiple receivers do not compromise the confidentiality. More-
over, the proof of security does not depend on the random oracles.

We note that the stateful version of the Kurosawa-Desmedt PKE scheme
presented in [6] cannot be explained using our generic construction since the un-
derlying PKEM defined in the same way as [20] is not IND-CCA secure as shown
in [16]. However, we remark that by defining an extension of our approach based
PKEM called “Tag-PKEM” (similar to Tag-KEM [3]), which provides a tag as
input to PKEM.Encap2, one could analyze the stateful version of the Kurosawa-
Desmedt PKE scheme in [6]. But we realize that a definition of IND-CCA of
Tag-PKEM needs to allow an attacker to have access to a new kind of encapsu-
lation oracle which returns outputs of PKEM.Encap2 computed under the same
internal state but different tags. Note that this oracle is required to simulate
the encryption oracle of StPE, when it is queried by (1, M1), . . . , (1, Mn), whose
responses should be encryptions of M1, . . . , Mn under the same state. (In the
IND-CCA definition of stateless PKE, this special type of oracle is not required.)
Consequently, one cannot “reuse” the results of the security analysis of various
Tag-KEMs available in the literature, as they need to be analyzed under this
new security definition which is stronger than the normal IND-CCA definition
of Tag-KEM given in [3].

Finally, we remark that along with the efficiency issue pointed out in [6],
there is also a technical reason why constructing stateful versions of the RSA
(or possibly usual integer factorization based schemes) is not very feasible: The
reproducibility of PKEM (Definition 5) or OW-EKCA (Definition 6) is indeed
strong property that many integer factorization based encryption schemes in
which different receivers should have different modulus to guaranteer security
are not likely to satisfy. Nevertheless, more elaboration on this issues would be
an interesting area of research.
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Abstract. Very recently, the concept ofTraceable Identity-basedEncryp-
tion (IBE) scheme (or Accountable Authority Identity based Encryption
scheme) was introduced in Crypto 2007. This concept enables some mech-
anisms to reduce the trust of a private key generator (PKG) in an IBE sys-
tem. The aim of this paper is threefold. First, we discuss some subtleties
in the first traceable IBE scheme in the Crypto 2007 paper. Second, we
present an extension to this work by having the PKG’s master secret key
retrieved automatically if more than one user secret key are released. This
way, the user can produce a concrete proof of misbehaviour of the PKG in
the court. In contrast to previous approach, our idea gives strong incen-
tive for the PKG to strengthen the security of the system since if someone
can successfully release a user’s secret key, it means that his security is also
compromised. We present a formal model to capture our idea. Third, we
present an efficient construction based on Gentry’s IBE that satisfies our
model and prove its security. Our construction is proven secure in the ran-
dom oracle model. Nevertheless, we should emphasize that the aim of this
paper is to introduce the new model to strengthen the IBE system.

Keywords: Identity-based Encryption, Traceability, Retrievability,
PKG, Trust.

1 Introduction
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practical and fully functional IBE scheme was only proposed in [2] that takes
advantage of the properties of suitable bilinear maps (the Weil or Tate pair-
ing) over supersingular elliptic curves. Since then, many new schemes have been
proposed in the literature (including the recent one by Gentry [3]). The main
essence of IBE is to remove the necessity of public key certification, that is re-
quired in the conventional public key cryptography setting. The public key of
each participant is obtained from his/her public identity, such as email address,
IP address combined with a user name, social security number, etc. that can
uniquely identify the participant. Furthermore, the sender can send his cipher-
text to a recipient without requiring the receiver to have his public key setup
first. Indeed, the secret key can be retrieved later after the receiver receives the
ciphertext sent by the sender. Unfortunately, this model requires the existence
of a trusted authority called the Private Key Generator (PKG), whose task is
to generate user’s private key from their identity information, after a successful
identification.

In an IBE system, the PKG is completely trusted, and therefore the PKG has
the liberty to engage in any malicious activity without any risk of being sent
to court. To mitigate this trust problem, a distributed PKG was proposed [2].
Very recently, Goyal [4] presented a new idea to reduce the trust of the PKG.
His idea is to produce an exponential (or super-polynomial) number of possible
decryption keys corresponding to every identity. The PKG does not know which
secret key that has been chosen by the user. Therefore, when the PKG releases
one of the possible user’s secret keys, then the user can later show two different
secret keys as his proof of the PKG misbehaviour. Goyal formalized this notion
as a traceable identity-based encryption scheme [4] (This notion was renamed to
Accountable Authority Identity-based Encryption (A-IBE) in [5]).

Nonetheless, we believe that traceable IBE is not very useful for achieving the
purpose of deterring the PKG from distributing private keys for any identity. The
reason is that in practice, it is difficult for a user to win a court if the user sues
the PKG. This is because the PKG can always put a disclaimer well in advance
for mitigating the liability of the PKG. Another reason is that the damage is
externality with respect to the PKG, rather than the PKG itself. Therefore,
there is no strong incentive for the PKG to secure its own system. We therefore
motivate ourselves with an additional mechanism which can help discourage the
PKG from distributing private keys for any identity while encouraging the PKG
to strengthen the security of its own system.

Our Contributions
We take one step forward than Goyal’s idea in reducing the trust on the PKG.
Our idea is to have the PKG’s master secret key retrieved automatically if more
than one user secret key are released. This way, the user can produce a concrete
proof of misbehaviour of the PKG in the court. In contrast to Goyal’s approach,
our idea also gives some benefit to the PKG to strengthen their security system as
if someone can successfully release a user’s secret key, it means that his security



96 M.H. Au et al.

is also compromised. Therefore, it is also the PKG’s interest to ensure its security
of the system (c.f. Goyal’s approach [4]).

In this paper, firstly we point out some subtleties in Goyal’s work [4, 5]. More
specifically, there are some subtleties in instantiating the ZK-POK sub-protocol
in the first traceable IBE scheme provided in [4, 5] and we propose a suggestion on
how to efficiently instantiate it. Furthermore, we observe that several definitions
used in Goyal’s work are not formally defined. Hence, the model provided in
Goyal’s work is incomplete. We present a formal model to capture our idea
mentioned above with the aim of reducing the trust on the PKG. We deal with
this part in two stages. Firstly, we formally define the parts that are lacking
from Goyal’s work. Then, we add an algorithm called Retrieve that is used to
output the master secret key given two different user’s secret keys. We call this
notion as a Traceable and Retrievable Identity-based Encryption scheme. Second,
we present an efficient construction based on Gentry’s IBE [3] that satisfies our
model.

Paper Organization
The rest of this paper is organized as follows. In Sec. 3, we present some security
remarks on Goyal’s work [4, 5]. In Sec. 4, we present the formal model of Trace-
able and Retrievable IBE. We present a concrete construction based on Gentry’s
IBE in Sec. 5. Finally, we conclude the paper in Sec. 6.

2 Preliminaries

Notations
Let e be a bilinear map such that e : G1 × G2 → G3.

– G1 and G2 are cyclic multiplicative groups of prime order p.
– each element of G1, G2 and G3 has unique binary representation.
– g, h are generators of G1 and G2 respectively.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, e(xa, yb) = e(x, y)ab.
– (Non-degenerate) e(g, h) �= 1.

G1 and G2 can be the same or different groups. We say that two groups (G1,
G2) are a bilinear group pair if the group action in G1, G2 and the bilinear
mapping e are all efficiently computable.

Complexity Assumptions
The security of our concrete construction is based on a complexity assumption
called “truncated decision q-ABDHE assumption” proposed in [3] which is de-
fined as follows:

Let e : G × G → GT be a bilinear map, where G and GT are cyclic groups of
large prime order p. Given a vector of q + 3 elements:

(
g′, g′(α)q+2

, g, gα, g(α)2 , . . . , g(α)q) ∈ G
q+3

and an element Z ∈ GT as input, output 0 if Z = e(g(α)q+1
, g′) and output 1

otherwise.
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An algorithm B has advantage ε in solving the truncated decision q-ABDHE
if:

∣
∣ Pr[B(g′, g′(α)q+2

, g, gα, . . . , g(α)q

, e(g(α)q+1
, g′)) = 0]

− Pr[B(g′, g′(α)q+2

, g, gα, . . . , g(α)q

, Z) = 0]
∣
∣ ≥ ε

where the probability is over the random choice of generators g, g′ in G, the
random choice of α in Zp, the random choice of Z in GT , and the random bits
consumed by B.

The computational version of the assumption is defined in the natural way,
where the term Z is asked as the output.

Definition 1. We say that the truncated decision (t, ε, q)-ABDHE assumption
holds in G if no t-time algorithm has advantage at least ε in solving the truncated
decision q-ABDHE problem in G.

3 On Goyal’s Scheme [4]

In this section we analyze some subtleties in Goyal’s paper [4]. These subtleties
are mainly about the instantiation of ZK-POK sub-protocol and the FindKey
game. We also make some comments on Goyal’s definition of Traceable IBE.
First of all, we review Goyal’s first traceable IBE scheme below.

3.1 Review of Goyal’s First Traceable IBE Scheme

Goyal’s first scheme [4] is built on top of Gentry’s IBE scheme [3]. The basic cryp-
tosystem (Setup, Encryption and Decryption) are taken from Gentry’s scheme
[3]. The only difference between Goyal’s scheme and Gentry’s scheme relies on
the Key Generation Protocol, which is an interactive protocol between a user
U and the PKG. For completeness, we review the Setup and Key Generation
Protocol as follows.

Let G be a bilinear group of large prime order p and let g be a generator of G.
Additionally, let e : G × G → GT denote a bilinear map. A security parameter,
k, will determine the size of the groups.

Setup. The PKG picks random generators g, h1, h2, h3 ∈ G and a random α ∈ Zp.
It sets g1 = gα and then selects a hash function H from a family of universal
one-way hash function. The published public parameters PK and the master
key MK are given by

PK = {g, g1, h1, h2, h3, H}, MK = α

Key Generation Protocol. This protocol will allow a user U to securely obtain
a decryption key dID from PKG. As in [3], PKG aborts if ID = α. The key
generation protocol is as follows.
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1. The user U selects a random r ∈ Zp and sends R = hr
1 to the PKG.

2. U gives to PKG a zero-knowledge proof of knowledge of the discrete log of
R with respect to h1.

3. The PKG now selects three random numbers r′, rID,2, rID,3 ∈ Zp. It then
computes h′

ID,1 = (Rg−r′
)1/(α−ID) and hID,i = (hig

−rID,i)1/(α−ID), i ∈ {2, 3}
and sends

{r′, h′
ID,1, rID,2, hID,2, rID,3, hID,3}

to the user U .
4. U computes rID,1 = r′/r and hID,1 = (h′

ID,1)
1/r . It sets the decryption key

dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}}.
5. U now runs a key sanity check on dID as follows. It computes gα−ID = g1/gID

and checks if e(hID,i, g
α−ID) ?= e(hig

−rID,i , g) for i ∈ {1, 2, 3}. U aborts if the
check fails for any i.

At the end of this protocol, U will have a well-formed decryption key dID for the
identity ID.

3.2 Comments on the Instantiation of ZK-POK

In the above scheme, a user runs a Key Generation Protocol, which is a zero
knowledge proof of knowledge (ZK-POK), with the PKG to jointly generate
his/her secret key, without letting the PKG know which key was actually gener-
ated. In this protocol, the user first randomly selects R and then proves to the
PKG that he/she knows the discrete log of R with respect to base h1. We believe
that the Key Generation Protocol is correct. However, there are some subtleties
in instantiating the ZK-POK sub-protocol. Goyal suggested to employ Schnorr’s
3-round identification scheme [6] as the underlying ZK-POK, which is an honest-
verifier zero-knowledge proof of knowledge. The revised and extended version
[5] does not discuss much about the instantiation either. Proof systems proposed
in [7] may not fit the Key Generation Protocol, as they merely concentrate on
honest verifiers as well. It turns out that efficient instantiations of ZK-POK is
not a very trivial task as one may originally think. Below are the subtleties in
the instantiations.

In the proof of Theorem 2 in [4], after receiving the challenge R from its
challenger, the adversary B, who wishes to solve the discrete log problem, runs
the simulator to prove the knowledge of the discrete log of R with respect to
base h1 (by rewinding A who tries to win the FindKey game). Note that in the
proof, B and A play the roles of the simulator and the verifier, respectively. The
simulator S for Schnorr’s protocol does not need to rewind the (honest) verifier
in order to provide a transcript indistinguishable from that of a real interaction.
It even does not need to interact with the verifier during the simulation at all,
since the verifier is assumed to be honest, and S can select a random challenge
on behalf of the verifier. But in the case here, B has to interact with A in order
to provide an indistinguishable simulation, thus it has to rewind A to gain some
advantage for the simulation. However, there is only one possible way for B to
rewind A. That is, after receving the challenge c from A, B rewinds A back to
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the initial state at the beginning of the zero-knowledge proof, and sends A a
new first-round message a, which is computed based on the challenge c obtained
from A. Now, if A sends back the same c, then the simulation can be completed
successfully. However, there is no guarantee on that A would do so, since A’s
status is changed. In a consequence, B cannot use S to provide a zero-knowledge
proof desired by A without the knowledge of logh1

R. Hence, A may not win the
FindKey game with probability ε again.

An oversimplified way to fix the problem is to let verifier V commit itself to its
challenge first before prover P sends its first message. P sends its final response
only if V reveals the commitment correctly. It is easy to see that the resulting
protocol is zero-knowledge against arbitrary verifier, however, it does not seem
to be a proof of knowledge.

A better instantiation of the ZK-POK is to use the efficient 6-round ZK-POK
of [8] (which can further be compressed into 4 rounds). The verifier V commits
to its challenge and proves to P that he knows the challenge. After that P proves
to V that he knows either the challenge or the discrete log. Readers can refer to
[8] for details.

We emphasize here again that the above comments do not imply that Goyal’s
scheme is problematic. Instead, they are regarding to efficient instantiations of
the ZK-POK sub-protocol.

3.3 Comments on the Definition of [4]

We also notice that the definition for Traceable IBE given by Goyal in [4] is
incomplete and imprecise. Comparing with conventional IBE definition [2], a
Traceable IBE scheme described in [4] additionally requires the user to do a
“sanity check” on the “well-formedness” of an extracted user secret key from the
PKG. However, the meaning of “sanity check” of a user secret key in association
with that of “well-formedness” have never been formalized.

Since the PKG is no longer trusted fully in the setting of this research work,
the user secret key generated by the PKG using Extract Protocol may be mal-
formed. In this scenario, it is possible that this malformed key can still decrypt
a portion of all possible ciphertexts for the user but not all. Now if the malicious
PKG publishes another user secret key which can decrypt all the ciphertexts for
the user, the user will not be able to win a court if the user provides these two
keys as evidence to a court of law, claiming that the PKG is cheating. This is
because the PKG can show that one of the keys presented by the user is not a
valid key since it cannot decrypt all possible ciphertexts.

Therefore, we believe that the notion of “sanity check” has to be formalized.
In addition, in the subsequent security model, we also need to formalize the
intuition that a user should be provided with a method to make sure that the
user secret key extracted from the PKG via Extract Protocol can always be able
to decrypt ciphertexts for the user.

Also due to the lack of “sanity check” definition in [4], the security model of
[4] is also incomplete. The attack scenario described above is not captured in
any of the models specified in [4].
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4 Traceable and Retrievable IBE

4.1 TR-IBE Model

A Traceable and Retrievable Identity-Based Encryption (TR-IBE) scheme con-
sists of six probabilistic polynomial-time (PPT) algorithms and one two-party
interactive protocol.

Setup. On input 1k where k ∈ N is a security parameter, it outputs a master
public/secret key pair (mpk, msk).

Extract Protocol. The Private Key Generator, PKG, on input (mpk, msk, ID)
carries out the protocol with a user on input (mpk, ID). At the end of the proto-
col, the user outputs a user secret key uskID or a symbol ⊥ indicating the failure
of the protocol run. Formally, the PKG and the user in the protocol are consid-
ered as PPT Turing machines. Without loss of generality, we let ID ∈ {0, 1}k.
In practice, the user with identity ID may send the identity to the PKG in the
first message flow of the protocol.

SanityCheck. On input (mpk, ID, uskID), it outputs 1 or 0.

Enc. On input (mpk, ID, m), where m is a message from a message space M
defined by mpk, it outputs a ciphertext C.

Dec. On input (mpk, uskID, C), it outputs m ∈ M or a symbol ⊥ if the decryp-
tion fails.

Trace1. On input (mpk, ID, uskID), it outputs ⊥ if SanityCheck(mpk, ID, uskID) �=
1. Otherwise it outputs a user key family number fnID from a user key family
number space denoted by FID. This space is defined by (mpk, ID).

Retrieve. On input (mpk, ID, uskID, ũskID), it outputs the master secret key msk
or a symbol ⊥ indicating the failure of retrieval.

For correctness, we require that for all k ∈ N, for any (mpk, msk) ← Setup(1k),
any identity ID ∈ {0, 1}k, any uskID �= ⊥ output by the user with identity ID at
the end of a run of Extract Protocol with the PKG, any m ∈ M(mpk), we have

1. 1 ← SanityCheck(mpk, ID, uskID);
2. m ← Dec(mpk, uskID, Enc(mpk, ID, m)); and
3. Trace(mpk, ID, uskID) ∈ FID.

4.2 Security Model for TR-IBE

In [4], three games have been given for formalizing the following three security
notions.

1. Confidentiality of Ciphertexts: a conventional indistinguishability based
game capturing chosen ciphertext and identity attacks, namely IND-ID-CCA
similar to that in [2] is given.

1 Trace is needed for some technical reason. It is used for formalizing the user key family
number and will mainly be used in the Retrievability Game described on page 103.
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2. Secrecy of User Secret Key Against Malicious PKG: the PKG, after carrying
out a successful run of Extract Protocol with a user, should not be able to
find out the user key family number of the user secret key obtained by the
user.

3. Security Against Framing by Malicious Users: a user should not be able to
come up with two user secret keys such that the corresponding user key
family numbers are different, after at most one execution of Extract Protocol
with the PKG.

As explained in Sec. 3.3, an additional security notion related to “sanity check”
of user secret key should be introduced. We also introduce the security notion
“Retrievability” which is specific to the retrievability property of TR-IBE. It
can be seen that the security against framing by malicious user in TR-IBE is
implied by the requirement of confidentiality of ciphertexts and the retrievability
property. If the adversary is able to come up with two user secret keys, he can
compute the master secret key of PKG due to the retrievability property and is
able to break the confidentiality of ciphertexts of all users. In the following, we
formalize all these security notions. The corresponding games are Confidentiality
(IND-ID-CCA) Game, FindKey Game, SanityCheck Game and Retrievability Game.

Confidentiality (IND-ID-CCA) Game. On input a security parameter 1k, k ∈ N,
the following game is carried out by a simulator S against an adversary A.

1. S generates (mpk, msk) ← Setup(1k) and invokes A on mpk. S maintains a
list L. Initially, L is set to empty.

2. A (which acts as a user) may execute Extract Protocol with S (which acts as
the PKG) on any identity ID or query a decryption oracle ODec on (ID, C).
For each run of Extract Protocol, if ID ∈ L, S rejects the protocol run imme-
diately2. Otherwise, the protocol is carried out. At the end of a successful
run, S sets L := L ∪ {ID}. For an ODec query, S generates a user secret key
by simulating Extract Protocol and uses it to decrypt the querying ciphertext.

3. A submits two equal length messages m∗
0, m

∗
1 ∈ M(mpk) and an identity

ID∗ to S. If ID∗ ∈ L, S aborts. Otherwise, S flips a random coin b
R← {0, 1}

and sends C∗ ← Enc(mpk, ID∗, m∗
b) to A. S sets L := L ∪ {ID}.

4. A can continue executing Extract Protocol and querying ODec. At the end
of the game, A outputs its guess b′ of b.

A wins if b′ = b and (ID∗, C∗) has never been queried to ODec. The advantage
of A in this game is defined as Pr[A wins] − 1

2 .

In the following, we give the formal definition of “Secrecy of User Secret Key
Against Malicious PKG”. In Sec. 4.3, we will see that it is stronger than the one
given in [4].

FindKey Game. On input a security parameter 1k, k ∈ N, the following game
is carried out by a simulator S against an adversary A.
2 This restriction is natural as if A were allowed to run Extract Protocol on an ID for

multiple times, due to the retrievability property of TR-IBE, msk may be compro-
mised.
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1. S maintains two lists L1 and L2, both of them are initialized to null. S
invokes A on 1k and gets mpk from A.

2. A (acts as the malicious PKG) may execute Extract Protocol with S (which
acts as a user) on any identity ID chosen by A. If ID ∈ P (L1) ∪ L2, S
rejects the protocol run immediately, where P (L1) is the collection of the
first elements of all the pairs in L1. At the end of a successful run, suppose
the user secret key generated is uskID. If SanityCheck(mpk, ID, uskID) = 1, S
sets L1 := L1 ∪ (ID, uskID).

3. Since A (which acts as the malicious PKG) may collude with some users in
this multi-user setting (see Sec. 4.3 for more details), A is allowed to access
an oracle called OCorrupt. On input ID, if (ID, uskID) ∈ L1 for some user
secret key uskID, the oracle returns uskID, and sets L1 := L1 \ {(ID, uskID)}
and L2 := L2 ∪ {ID}. Otherwise, ⊥ is returned.

4. At the end of the game, A outputs an identity ID∗ and a user secret key
ũskID∗ .

A wins if

1. 1 ← SanityCheck(mpk, ID∗, ũskID∗);
2. (ID∗, uskID∗) ∈ L1; and3

3. Trace(mpk, ID∗, uskID∗) = Trace(mpk, ID∗, ũskID∗).

The advantage of A in this game is defined as Pr[A wins].

We now formalize the notion related to “sanity check”. As discussed in Sec. 3.3,
a user should be provided with a method to make sure that the user secret key
extracted from the PKG via Extract Protocol can always be able to decrypt ci-
phertexts for the user. We consider the following game. Informally, it requires
that for any two user secret keys of an identity that passed the “sanity check”,
both of them will always produce the identical result in decryption.

SanityCheck Game. On input a security parameter 1k, k ∈ N, a simulator S
invokes an adversary A on 1k. A returns a master public key mpk, an identity
ID∗, two user secret keys uskID∗ and ũskID∗ and a ciphertext C. A wins if

1. 1 ← SanityCheck(mpk, ID∗, uskID∗);
2. 1 ← SanityCheck(mpk, ID∗, ũskID∗);
3. ⊥�= Dec(mpk, uskID∗ , C);
4. ⊥�= Dec(mpk, ũskID∗ , C); and
5. Dec(mpk, uskID∗ , C) �= Dec(mpk, ũskID∗ , C).

The advantage of A in this game is defined as Pr[A wins]. By combining the
notion captured in this game and the correctness requirement defined at the
beginning of Sec. 4, it is easy to see that the intuition of “sanity check” is
captured.

3 Note that we do not need the restriction that ID∗ �∈ L2 as ID∗ cannot co-exist in
both L1 and L2.
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The last security notion, also the only one specific to “Retrievability” property,
requires that for any two user secret keys corresponding to the same identity
but with different user key family numbers, they allow the public to retrieve the
master secret key. The following game considers a malicious PKG which tries
to come up with two user secret keys such that its master secret key is not
retrievable.

Retrievability Game. On input a security parameter 1k, k ∈ N, a simulator S
invokes an adversary A on 1k. A returns a master public key mpk, an identity
ID∗, and two user secret keys uskID∗ and ũskID∗ . A wins if

1. 1 ← SanityCheck(mpk, ID∗, uskID∗);
2. 1 ← SanityCheck(mpk, ID∗, ũskID∗);
3. Trace(mpk, ID∗, uskID∗) �= Trace(mpk, ID∗, ũskID∗); and
4. ⊥ ← Retrieve(mpk, ID∗, uskID∗ , ũskID∗).

The advantage of A in this game is defined as Pr[A wins].

Theorem 1. A TR-IBE scheme is said to be secure if for all polynomial time
adversaries, the advantage in each of the Confidentiality game, FindKey game,
SanityCheck game and Retrievability game is negligible in the security parameter
k.

4.3 Further Comments on the Security Model of [4]

The FindKey Game defined in [4] is weaker than our model defined above. In
particular, the game in [4] requires the adversary to fix the challenging identity
ID∗ at the beginning of the game and no further change is allowed. Also, the ad-
versary is not allowed to interact with other identities. In our definition instead,
we allow the adversary to “try out” and also corrupt a couple of identities in the
manner of adaptive chosen identity attack before choosing a challenging identity
at the end of the game.

5 A Concrete Scheme

5.1 Construction

High Level Description. Our scheme is based on Gentry’s IBE scheme [3].
We extend the scheme by adding a Verifiable Encrypton (VE) scheme [9]. The
PKG has two sets of public key pair. One is for the IBE and the other for the
VE. At the beginning, the PKG verifibly encrypts, using its VE public key, the
(IBE) master secret key. The encrypted master secret key is published. In the
key extraction process, one addition component is given to the user as the secret
key. This component allows the revocation of the encrypted master secret key.
That is, if the PKG generates two secret keys (they may be different) for the
same user, by using these two secret keys, the master secret key can be decrypted
and revoked.
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Technical Details.
Setup: On input 1k, where k ∈ N is a security parameter, let G and GT be
groups of order p such that p is a k-bit prime, and let e : G × G → GT be the
bilinear map. We use a multiplicative notation for the operation in G and GT . Let
HI : {0, 1}∗ → Zp, H : {0, 1}∗ → Zp, Ht : {0, 1}∗ → Zp be secure cryptographic
hash functions. The PKG selects four random generators g, h1, h2, h3 ∈ G and
randomly chooses α, β, x ∈R Zp. It sets g1 = gα, g′ = gβ and X = e(g, g)x.
Define the message space M = GT .

Then the PKG runs the non-interactive verifiable encryption algorithm from
[9]. The idea is to verifiably encrypt the master secret key α and β under the
public key X . This can be done as follows. Let N := poly(k) for some polynomial
poly(·), be a security parameter4. Let HE : {0, 1}∗ → {0, 1}N be a secure hash
function.

1. The PKG randomly selects uj , u
′
j ∈R Zp and computes (Tj = guj , T ′

j = gu′
j ),

for j = 1 to N .
2. For j = 1 to N the PKG computes the following.

– Compute Zj,0 = uj , Zj,1 = uj − α, Z ′
j,0 = u′

j , Z ′
j,1 = u′

j − β.
– Randomly select vj,0, vj,1, v

′
j,0, v

′
j,1 ∈R Zp, compute E0,j,i = Xvj,i ⊕

Zj,i, E1,j,i = gvj,i and E′
0,j,i = Xv′

j,i ⊕ Z ′
j,i, E

′
1,j,i = gv′

j,i for i ∈ {0, 1}5.
3. PKG computes L = HE( T1|| E0,1,0|| E1,1,0|| E0,1,1|| E1,1,1|| . . . || TN ||

E0,N,0|| E1,N,0|| E0,N,1|| E1,N,1) and L′ = HE( T ′
1|| E′

0,1,0|| E′
1,1,0|| E′

0,1,1||
E′

1,1,1|| . . . || T ′
N || E′

0,N,0|| E′
1,N,0|| E′

0,N,1|| E′
1,N,1). Let bj , b

′
j be the j-th bit

of L and L′ respectively.
4. Output T = {

(
Tj , T ′

j , E0,j,0, E1,j,0, E0,j,1, E1,j,1, E′
0,j,0, E′

1,j,0, E′
0,j,1, E′

1,j,1,
Zj,bj , vj,bj , Z ′

j,b′
j
, v′j,b′

j

)
}N

j=1.
5. Verification. Anyone can check if T is a valid encryption of α and β under the

public key X by computing L and L′ from T and checking if the following
equations hold:

E0,j,bj

?= Xvj,bj ⊕ Zj,bj

E1,j,bj

?= gvj,bj

Tj
?= g

bj

1 gZj,bj

E′
0,j,b′

j

?= X
v′

j,b′
j ⊕ Z ′

j,b′
j

E′
1,j,b′

j

?= g
v′

j,b′
j

T ′
j

?= g′b
′
j g

Z′
j,b′

j

where j = 1 to N and bj , b′j are the j-th bit of L and L′ respectively.

The public parameters mpk and master secret key msk are given by

mpk = (g, g1, g
′, h1, h2, h3, X, H, HI , Ht, M, T ) msk = (α, β, gx)

4 N controls the cheating probability of the verifiable encryption.
5 We assume that some appropriate padding has been added for the ⊕ operation.
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Extract Protocol: On input the master public key/secret key pair (mpk, msk) and
an identity ID ∈ {0, 1}k of a user U , the PKG carries out an interactive protocol
with U , as follows. Compute ID = HI(ID). If ID = α, it aborts. Otherwise, the
protocol proceeds as follow:

1. The user U selects a random r ∈R Zp and sends R = hr
1 to the PKG.

2. U gives to the PKG the following zero-knowledge proof of knowledge:

PK{r : R = hr
1}

3. The PKG randomly selects r′, rID,2, rID,3 ∈ Zp and computes

h′
ID

= (Rg−r′
)1/(α−ID) tID = gxh

Ht(R,r′)
β+ID

1

hID,2 = (h2g
−rID,2)1/(α−ID) hID,3 = (h3g

−rID,3)1/(α−ID)

and sends (r′, h′
ID

, tID, rID,2, hID,2, rID,3, hID,3) to U .
4. The PKG computes πID, the non-interactive proof statement of the following

zero-knowledge proof of knowledge:

πID = PK
{
(x, α, β) : X = e(g, g)x ∧ g1 = gα ∧ g′ = gβ ∧

h′
ID

= R
1

α−ID g
−r′

α−ID ∧ tID = gxh
Ht(R,r′)

β+ID

1

}

and sends to U .
5. After checking πID, U computes

rID,1 = r′/r hID,1 = (h′
ID

)1/r

The secret key uskID is (r, rID,1, hID,1, rID,2, hID,2, rID,3, hID,3, tID, πID) where

hID,1 = (h1g
−rID,1)1/(α−ID) and tID = gxh

Ht(hr
1 ,rrID,1)
β+ID

1 .

SanityCheck: On input (mpk, uskID) and an identity ID ∈ {0, 1}k, compute ID =
HI(ID) and check whether e(hID,i, g1/gID) = e(hig

−rID,i , g) for i = 1, 2, 3. Also
check whether πID is a valid proof statement. If all of them are correct, output
1. Otherwise, output 0.

Enc: To encrypt a message m ∈ GT using identity ID ∈ {0, 1}k, compute ID =
HI(ID), generate a random s ∈R Zp and output the ciphertext C where:

C = (C1, C2, C3, C4, C5)

=
(

gs
1g

−sID , e(g, g)s , m · e(g, h1)−s , e(g, h2)se(g, h3)sγ , πC

)

where γ = H(C1, C2, C3) and πC is a non-interactive proof statement of the
following zero-knowledge proof of knowledge

πC = PK
{
(s) : C1 =

(
g1g

−ID
)s ∧ C2 = e(g, g)s

}
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Dec: To decrypt a ciphertext C = (C1, C2, C3, C4, C5) using secret key uskID,
compute γ = H(C1, C2, C3) and test whether

C4 = e(C1, hID,2hID,3
γ) · C2

rID,2+rID,3γ

If it is not equal or πC is not a valid proof statement , output ⊥. Else output

m = C3 · e(C1, hID,1) · C2
rID,1

Trace: On input (mpk, ID, uskID), define family space FID = Zp. Parse uskID = (r,
rID,1, hID,1, rID,2, hID,2, rID,3, hID,3, tID, πID) and output the decryption key family
number fnID

= rID,1.

Retrieve: On input (mpk, ID) and two sets of secret key (uskID, ũskID) for the
same identity ID,

1. Compute ID = HI(ID) and parse uskID = (r, rID,1, hID,1, rID,2, hID,2, rID,3,
hID,3, tID, πID) and ũskID = (r̃, r̃ID,1, h̃ID,1, r̃ID,2, h̃ID,2, r̃ID,3, h̃ID,3, t̃ID, π̃ID)

2. Compute K := Ht(hr
1, rrID,1) and K̃ := Ht(hr̃

1, r̃r̃ID,1). If K = K̃, output ⊥.
Otherwise, compute

( tID
K̃

t̃K
ID

) 1
K̃−K = gx (1)

and check whether X
?= e(g, gx). If not, output ⊥.

3. For any j ∈ {1, . . . , N}, one can get
(
Tj, Zj,bj , E0,j,1−bj , E1,j,1−bj

)
in T (the

verifiable encryption in Setup). For simplicity, we omit the subscript j. That
is, one can get (T := gu, Zb, E0,1−b, E1,1−b := gv1−b), such that b ∈ {0, 1}
where

Zb = u − bα (2)

Compute e(E1,1−b, g
x) ⊕ E0,1−b to get

Z1−b = u − (1 − b)α (3)

From equation (2) and (3), compute α. Check whether g1
?= gα. If not,

use another j ∈ {1, . . . , N} to compute α. If all j’s have been used and no
equality is attained, output ⊥. Otherwise, compute β in the similar way and
output (α, β, gx) as msk.

5.2 Security Analysis

Theorem 2. The advantage of an adversary in the IND-ID-CCA game is negligi-
ble for the proposed scheme under the decisional truncated q-ABDHE assumption
in the random oracle model.
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Proof: (sketch) The proof in our setting very much falls along the lines of the
proof of IND-ID-CCA security of Goyal’s scheme [4]. Here we just give a sketch
highlighting the differences.

The differences between [4] and our scheme (in terms of IND-ID-CCA) are
the formation of public parameter and the generation of a decryption key. In
our scheme, mpk = (g, g1, g

′, h1, h2, h3, X, H, Ht, HI , , M, T ) where (g, g1, h1, h2,
h3, M) are generated in the same way as in [4]. The remaining parameters
are generated as follows. The simulator S randomly generates x, β ∈R Zp and
sets g′ = gβ , X = e(g, g)x. S also moderates the hash functions H, HI , Ht as
random oracles. By controlling the random oracles, S can easily simulate the
transcript T .

In the Extraction Oracle, we use the same technique as in [4] to extract r
from the user and set r′ = rrID,1. S can generate tID easily, as it knows x, β.

S can also simulate the transcript xID by controlling the random oracle. �

Theorem 3. The advantage of an adversary in the FindKey game is negligible
for the proposed scheme if the discrete log problem in G is hard.

Proof: The proof follows along the lines of the proof for the FindKey game in [4],
except that we are in the adaptive chosen identity attack model.

Let A denote a PPT algorithm that has a non-negligible advantage ε in win-
ning the FindKey game, we construct another PPT algorithm B that breaks the
discrete log assumption in G with a non-negligible probability. B proceeds as
follows.

B runs the algorithm A and gets the public parameters mpk = (g, g1, g
′, h1, h2,

h3, X, H, HI , Ht, M, T ). B pass h1 to its challenger and gets a challenge R ∈ G.

B’s goal is to find r
def
= logh1

R.
Assume adversary A makes at most qI extract queries, after getting a chal-

lenge R from the challenger, B selects i
R← {1, 2, 3, ..., qI}. For each 1 ≤ j ≤ qI , if

j = i, B sets Rj = R, otherwise, B randomly selects rj ∈ Zp and sets Rj = h
rj

1 .
B answers A’s queries as follows:

- Extract queries. When A performs an extract query on an identity IDj , B
rejects the query if IDj has already been created. Otherwise, B performs the
extract protocol as follows: if j �= i, B runs the extract protocol as usual;
if j = i, B gives R to A together with a zero-knowledge proof. The zero-
knowledge proof is generated by rewinding A. Note that here we require
A to commit to the challenge before the zero-knowledge proof is carried
out so that when rewinding A the same challenge will be used by A. In
this way, B is able to simulate a proof by running the simulator of the
zero knowledge proof system without the knowledge of r. After receiving
(r′, h′

IDi
, t′

IDi
, rIDi,2, hIDi,2, rIDi,3, hIDi,3) and πIDi

from A, B verifies πIDi
and

runs a key sanity check by testing if e(hIDi,t, g1/gIDi) = e(htg
−rIDi,t , g) for

t = 2, 3. For t = 1, B tests if e(h′
IDi

, g1/gIDi) = e(Rig
−r′

, g). If any of these
tests fails, B aborts with failure, otherwise, IDi is added to L1, notice that
B cannot derive the final user secret key uskIDi in this case.
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- Corruption queries. When A performs a corruption query on identity ˆID, if
ˆID ∈ L1:
(a) ˆID = IDi, B aborts with failure
(b) ˆID �= IDi, B returns uskÎD to A
otherwise, B rejects the query.

Finally, if B does not abort the game, with probability ε, A will output a
decryption key (passing the key sanity check) usk′

IDn
which has the same family

number with uskIDn
in L1. If n = i, then B can calculate r = r′/f ′

nIDi
where f ′

nIDi

is the key family number of usk′
IDi

. It is obvious that n = i implies that uskIDi
is

in L1 and B does not abort in the game. Since i is randomly chosen, B’s success
probability in solving the discrete log problem in G is at least ε

qI
. �

Theorem 4. The advantage of an adversary in the SanityCheck game is negli-
gible for the proposed scheme.

Proof: (sketch) Let the output of A be mpk, ID∗, C = (C1, C2, C3, C4, C5),
uskID∗ = {r, rID,1, rID,2, rID,3, hID,1, hID,2, hID,3, tID, πID} and ũskID∗ = {r̃, r̃ID,1,
r̃ID,2, r̃ID,3, h̃ID,1, h̃ID,2, h̃ID,3, t̃ID, π̃ID}. A wins implies that condition (1) - (5)
defined in section 4.2 are all fulfilled.

Condition (1) implies

e(hID,i, g1/gID) = e(hig
−rID,i , g)

⇒ e(hID,i, g
α−ID) = e(hig

−rID,i , g)
⇒ e((hID,i)α−ID, g) = e(hig

−rID,i , g)
⇒ (hID,i)α−ID = (hig

−rID,i)

⇒ hID,i = (hig
−rID,i)

1
α−ID for i = 1, 2, 3 (4)

Similarly, condition (2) implies

h̃ID,i = (hig
−�rID,i)

1
α−ID for i = 1, 2, 3 (5)

Condition (3) and (4) imply that C5 verifies (that is, C5 is a valid SPK). That
is, in the random oracle model, the simulator can extract s such that

C1 = (gα−ID)s and C2 = e(g, g)s (6)

Condition (5) implies that

C3 · e(C1, hID,1) · C2
rID,1 �= C3 · e(C1, h̃ID,1) · C2

�rID,1 (7)

We have

LHS = C3 · e(C1, hID,1) · C2
rID,1

= C3 · e
(
(gα−ID)s,(h1g

−rID,1)
1

α−ID

)
· e(g, g)s·rID,1 from equation (4) and (6)

= C3 · e(gs, h1g
−rID,1) · e(g, g)s·rID,1

= C3 · e(g, h1)s · e(g, g)s·(−rID,1) · e(g, g)s·rID,1

= C3 · e(g, h1)s
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Similarly we have

RHS = C3 · e(C1, h̃ID,1) · C2
�rID,1

= C3 · e(g, h1)s = LHS (8)

However, equation (8) contradicts to equation (7). Thus A wins the game only
with negligible probability. �
Theorem 5. The advantage of an adversary in the Retrievability game is negli-
gible for the proposed scheme.

Proof: (sketch) Let the output of A be mpk, ID∗, C = (C1, C2, C3, C4, C5),
uskID∗ = {r, rID,1, rID,2, rID,3, hID,1, hID,2, hID,3, tID, πID} and ũskID∗ = {r̃, r̃ID,1,
r̃ID,2, r̃ID,3, h̃ID,1, h̃ID,2, h̃ID,3, t̃ID, π̃ID} such that rID,1 �= r̃ID,1. A wins implies
that condition (1) - (4) defined in section 4.2 are all fulfilled.

Condition (1) and (2) implies that the PK on πID and π̃ID are sound. That

is,
(

tID
K̃

t̃K
ID

) 1
K̃−K = gx. Condition (3) implies that rID,1 �= r̃ID1 , that is, K :=

Ht(gr, rID,1r) �= K̃ := Ht(g�r, r̃ID,1r̃). Condition (4) implies that either

1. K �= K̃; or
2. X �= e(g, gx) where gx is computed from equation (1); or
3. g1 �= gα where α is computed from equation (2) and (3)

Case (1) happens with negligible probability, due to the collision resistance
property of the hash function Ht. Case (2) happens with negligible probability,
due to the soundness of SanityCheck which has been proven above. Case (3)
also happens with negligible probability, due to the security of the verifiable
encryption scheme [9].

Combining all cases, the adversary only has negligible advantage to win the
game. �

6 Conclusion

In this paper, we firstly identified a security issue of Goyal’s work in [4, 5]. We
then proposed a way to fix it. Then, we took one step further than Goyal’s work
by proposing a Traceable and Retrievable IBE. In our notion, the PKG’s mas-
ter secret key is retrieved automatically if more than one user secret key are
released. We presented a formal model to capture this idea, and proposed a con-
crete scheme based on Gentry’s IBE [3]. We believe that the model we proposed
in this paper may be more appealing in practice as our model encourages the
PKG to strengthen their security system. If someone can successfully release an
additional user secret key, it means that his security is also compromised.
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Abstract. We propose attribute-based encryption schemes where
encryptor-specified access structures (also called ciphertext policies) are
hidden. By using our schemes, an encryptor can encrypt data with a hid-
den access structure. A decryptor obtains her secret key associated with
her attributes from a trusted authority in advance and if the attributes
associated with the decryptor’s secret key do not satisfy the access struc-
ture associated with the encrypted data, the decryptor cannot decrypt
the data or guess even what access structure was specified by the en-
cryptor. We prove security of our construction based on the Decisional
Bilinear Diffie-Hellman assumption and the Decision Linear assumption.
In our security notion, even the legitimate decryptor cannot obtain the
information about the access structure associated with the encrypted
data more than the fact that she can decrypt the data.

Keywords: Attribute-Based Encryption, Recipient Anonymity, Access
Control on Encrypted Data, Ciphertext Policy.

1 Introduction

In the distributed setting, we need to enforce access control polices to protect
various resources. In such settings, it may be suitable to specify access con-
trol policies based on attributes rather than individual identities, because an
identity may not have enough information about its entity. Attribute-based en-
cryption (ABE) is a mechanism by which we can realize such access control
in a cryptographic way. There are two kind of ABE schemes, key-policy and
ciphertext-policy ABE schemes.

In the key-policy ABE schemes [12,18,19,15], ciphertexts are associated with
sets of attributes and users’ secret keys are associated with access structures. If
the attributes associated with the ciphertext satisfy the access structure of the
secret key, the secret key holder can decrypt the ciphertext successfully. Also
the concept of searchable and predicate encryption [5,21] is related to key-policy
ABE in the sense that successful decryption is conditional on access structure
associated with secret keys.

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 111–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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On the other hand, in the ciphertext-policy ABE (CP-ABE) schemes [2, 11,
15, 16], the situation is reversed. That is, attributes are associated with secret
keys and access structures are associated with ciphertexts and called ciphertext
policies. The access structures are described with the attributes and therefore
the concept of CP-ABE is closely related to Role-Based Access Control.

In this work, we focus on CP-ABE and construct a CP-ABE scheme where
we can hide encryptor-specified access structures associated with ciphertexts.
Our scheme can be considered as a recipient-anonymous targeted broadcast and
the relation of our scheme to a normal CP-ABE scheme is similar to that of
anonymous identity-based encryption (IBE) to normal IBE. For example, sup-
pose a company wants to hire certain qualified people who satisfy the policy
the company specified and the policy may contain the useful information about
the company’s business strategy. The company can post a message encrypted by
our CP-ABE scheme on a public bulletin board to seek applications. By doing
so, the company can keep the important policy confidential. Since the policy is
hidden, the rival companies cannot know what kind of policy the company used
to hire its employees.

In the ABE schemes, collusion-resistance is an important property. We do
not want the secret key holders to be able to combine their secret keys to
decrypt ciphertexts neither of them can decrypt. By building on the previous
schemes [2, 11], we can also realize collusion-resistant CP-ABE schemes.

Our Results. We construct two CP-ABE schemes with partially hidden ci-
phertext policies in the sense that possible values of each attribute in the system
should be known to an encryptor in advance and the encryptor can hide what
subset of possible values for each attribute in the ciphertext policy can be used
for successful decryption. In our schemes, encryptors can use wildcards to mean
that certain attributes are not relevant to the ciphertext policy in a hidden way.
The security proof of our first construction is given under the Decisional Bilin-
ear Diffie-Hellman assumption and the Decision Linear assumption. Since these
assumptions are general, we can use a large variety of elliptic curves (including
both asymmetric and symmetric bilinear pairings) to implement our first scheme
though we use the symmetric notation for ease of exposition. The security proof
of our second construction is given in the generic group model and the second
construction needs DDH-hard groups, but with a property inherited from [2],
the second construction is more flexible than the first construction in that new
attributes can be added in the ciphertext policy securely with the existing public
parameters being unchanged even after the system setup is done. We mention
this aspect in Sect. 5 in more detail. We describe our constructions in the multi-
valued attribute setting where an attribute can take multiple values and this
setting is a generalization of the access structures used in [11]. In our security
notion, even the legitimate decryptor cannot obtain the information about the
ciphertext policy more than the fact that she can decrypt the data.

Related Work. Bethencourt, Sahai, and Waters [2] proposed the first CP-
ABE scheme. Their scheme allows the ciphertext policies to be very expressive,
but the security proof is in the generic group model and the policies need to
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be revealed in the ciphertexts because decryptors must know how they should
combine their secret key components for decryption. Cheung and Newport [11]
proposed a provably secure CP-ABE scheme and their scheme deals with neg-
ative attributes explicitly and supports wildcards in the ciphertext policies but
the policies need to be revealed as in [2]. Kapadia et al. [14] also proposed a CP-
ABE scheme and their scheme realizes hidden ciphertext policies that have the
same expressiveness as [11], but their scheme is not collusion-resistant and needs
an online semi-trusted server that must know the attributes’ values every user in
the system has and re-encrypt ciphertexts for each user when the user retrieves
the ciphertexts. Such an online semi-trusted server can be a performance bottle-
neck in the system while, in our schemes, encryptors can just post or broadcast
ciphertexts. Lubicz and Sirvent [16] proposed another CP-ABE scheme that has
the same expressiveness as [11] and only 3 pairing computations are needed for
decryption, but the ciphertext policies need to be revealed for decryption. Shi
et al. [21] proposed a predicate encryption scheme that focuses on range queries
over huge numbers, the dual of which can also realize a CP-ABE scheme where
an encryptor can specify a number range in the ciphertext policy. The security
proof of [21] is based on the security notion weaker than ours, which is called
match-revealing security in [21] and the number of attributes must be small
because the decryption cost is exponential in the number of attributes. Boneh
and Waters [5] proposed a predicate encryption scheme based on the primitive
called Hidden Vector Encryption or HVE for short. The scheme in [5] can re-
alize the same functionality as ours by using the opposite semantics of subset
predicates described in [5] (see Appendix A for the details). However, it needs
bilinear groups the order of which is a product of two large primes, so it needs to
deal with large group elements and the numbers of both attributes and possible
values for each attribute specified in the ciphertext policy are fixed at the system
setup while, in our constructions, the number of possible attribute values in the
ciphertext policy can be increased and furthermore in our second construction,
the number of attributes in the ciphertext policy can be increased securely even
after the system setup with the existing public parameters being unchanged.

Recently, Katz, Sahai, and Waters [15] proposed a novel predicate (or func-
tional) encryption scheme supporting inner product predicates and their scheme
is very general and can realize both key-policy and ciphertext-policy ABE
schemes. Their scheme can also realize hidden ciphertext policies that can be
more expressive than ours. However, their scheme is based on a special type of
bilinear groups the order of which is a product of three (or two) large primes while
ours are not. Therefore, their scheme needs to deal with large group elements
and requires new complexity assumptions for the security proof. By using the
dual of the predicate corresponding to polynomial evaluation, the scheme in [15]
can realize the same access structure of ciphertext policies that our schemes
can support (see Appendix B for the details) and then the ciphertext size of
our schemes O(

∑n
i=1 ni) is comparable to that of [15] where n is the number

of attributes in ciphertext policies and ni is the number of possible values for
each attribute i. Fox example, if attribute i is boolean, ni = 2. In the CP-ABE



114 T. Nishide, K. Yoneyama, and K. Ohta

Table 1. Comparison of different schemes

Expressiveness of
policy

Anonymity Complexity
assumption

Type of bi-
linear group

Add attrs af-
ter setup

[5] AND-gates on
multi-valued
attributes with
wildcards

yes cDBDH,
C3DH

group of
compos-
ite order
N = pq

no

[2] all boolean for-
mula

no generic
group model

any yes

[11] AND-gates on
postive and neg-
ative attributes
with wildcards

no DBDH any no

[15] all boolean for-
mula

yes new as-
sumptions
based on
composite
order group

group of
compos-
ite order
N = pqr

no

This work1 AND-gates on
multi-valued
attributes with
wildcards

yes DBDH,
D-Linear

any no

This work2 AND-gates on
multi-valued
attributes with
wildcards

yes generic
group model

DDH-hard
group

yes

scheme of [15], the maximum size of the subset of attribute values for each at-
tribute specified in the ciphertext policy for successful decryption is fixed at
the system setup while, in our constructions, the size can be increased. Also,
the number of attributes specified in the ciphertext policy is fixed at the sys-
tem setup while, in our second construction, the number of attributes in the
ciphertext policy can be increased securely even after the system setup with
the existing public parameters being unchanged. However, when the number of
possible attribute values is huge, the scheme in [15] is more advantageous than
ours because it can enjoy the smaller ciphertext size and still realize the wildcard
functionality.

Chase [10] proposed a multi-authority ABE where multiple authorities gen-
erate secret keys for their monitored attributes. The technique of [10] can be
applicable to our schemes too. Abdalla et al. [1] proposed an identity-based en-
cryption scheme where an encryptor can use wildcards to specify recipients of
the ciphertext, but the positions of the wildcards and other ID components need
to be revealed in the ciphertexts.

We summarize the comparison of major different schemes in Table 1.
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2 Preliminaries

2.1 Bilinear Maps

We assume that there is an efficient algorithm Gen for generating bilinear
groups. The algorithm Gen , on input a security parameter 1κ, outputs a tuple,
G = [p, G, GT , g ∈ G, e] where log2(p) = Θ(κ). A function e : G × G → GT

is a bilinear map. Here, G and GT are multiplicative groups of prime order p,
generated by g and e(g, g) respectively. The bilinear map e has the following
properties:

1. Bilinearity: for all a, b ∈ Zp, e(ga, gb) = e(g, g)ab.
2. Non-degeneracy: e(g, g) �= 1.

2.2 Complexity Assumptions

We describe complexity assumptions used in our security proofs.

2.2.1 The Decisional Bilinear Diffie-Hellman (DBDH) Assumption
We use the decisional version of the bilinear DH assumption [4, 13]. Let z1, z2,
z3, z ∈ Z

∗
p be chosen at random and g ∈ G be a generator. The DBDH as-

sumption is that no probabilistic polynomial-time algorithm can distinguish the
tuple [g, gz1, gz2 , gz3 , e(g, g)z1z2z3 ] from the tuple [g, gz1, gz2 , gz3 , e(g, g)z] with
non-negligible advantage.

2.2.2 The Decision Linear (D-Linear) Assumption
The D-Linear assumption was first proposed in [3]. Let z1, z2, z3, z4, z ∈ Z∗

p

be chosen at random and g ∈ G be a generator. The D-Linear assumption
is that no probabilistic polynomial-time algorithm can distinguish the tuple
[g, gz1, gz2 , gz1z3 , gz2z4 , gz3+z4 ] from the tuple [g, gz1, gz2 , gz1z3 , gz2z4 , gz] with
non-negligible advantage.

2.3 Access Structure for Ciphertext

In the CP-ABE scheme, an encryptor specifies an access structure for a cipher-
text, which is called a ciphertext policy. If a decryptor has a secret key whose
associated set of attributes satisfies the access structure, she can decrypt the ci-
phertext. The access structures used in [2] are the most flexible and expressive.
For example, we can use an access structure such as ((A AND B) OR (C AND
D)) in [2]. This means that a recipient must have attributes A and B simultane-
ously or attributes C and D simultaneously in order to decrypt the ciphertext.
Therefore, if a recipient has a secret key associated with a set of attributes {A,
B, C}, she can satisfy the access structure and decrypt the ciphertext. However,
if the recipient has a secret key associated with a set of attributes {A, C}, she
can not satisfy the access structure or decrypt the ciphertext. Actually AND,
OR, and threshold gates can be used for expressing the access structures in [2].
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However, the security proof of [2] is in the generic group model. In order to
obtain a reduction-based security proof, Cheung and Newport proposed another
CP-ABE scheme [11] which is proved to be secure under standard complexity
assumptions. The price of obtaining such security proofs is that the expressive-
ness of ciphertext policies in [11] is somewhat restricted as compared with [2].
However, the expressiveness is not too restrictive and still remains useful.

The access structure and the attribute set associated with the secret key used
in [11] are as follows. Let’s assume that the total number of attributes in the
system is n and the attributes are indexed as {A1, A2, . . . , Ai, . . . , An} or we
may use just i to refer to Ai. We use the notation such as L = [L1, . . . , Ln] =
[1, 0, 1, . . . , 0] in order to describe attribute-value pairs for a user, which we call
the attribute list. For example, the user has the value 1 for A1, 0 for A2, 1 for
A3, . . ., and 0 for An in this case. A trusted authority generates a secret key for
the user based on the user’s attribute list.

In order to specify the access structure for a ciphertext, we use the notation
such as W = [W1, . . . , Wn] = [1, 1, ∗, ∗, 0] where n = 5, which we call the cipher-
text policy. The wildcard ∗ can be used in the ciphtertext policies and it plays
the role of “don’t care” value. This can be considered as an AND-gate on all
the attributes. For example, the above ciphertext policy means that the recip-
ient who wants to decrypt must have the value 1 for A1 and A2 and 0 for A5,
and the values for A3 and A4 do not matter in the AND-gate. If the recipient
has the secret key associated with, let us say, [1, 1, 1, 0, 0], she can decrypt the
ciphertext, but not if the secret key is associated with [1, 1, 1, 0, 1].

Formally, given an attribute list L = [L1, L2, . . . , Ln] and a ciphertext policy
W = [W1, W2, . . . , Wn], L satisfies W if, for all i = 1, . . . , n, Li = Wi or Wi = ∗,
and otherwise L does not satisfies W . We use the notation L |= W to mean that
L satisfies W .

In our constructions, we generalize the access structures in [11]. In [11], each
attribute can take two values 1 and 0, but in our generalized access structures
each attribute can take two or more values and each Wi in W can be any subset
of possible values for Ai. More formally, let Si = {vi,1, vi,2, . . . , vi,t, . . . , vi,ni} be
a set of possible values for Ai where ni is the number of the possible values for Ai.
Then the attribute list L for a user is L = [L1, L2, . . . , Li, . . . , Ln] where Li ∈ Si

and the generalized ciphertext policy W is W = [W1, W2, . . . , Wi, . . . , Wn] where
Wi ⊆ Si. The generalized ciphertext policy W means, let us say,

(A1 = v1,1 ∨ A1 = v1,3)
∧ (A2 = v2,2) ∧ . . .

∧ (Ai = vi,5 ∨ . . . ∨ Ai = vi,ni) ∧ . . .

∧ (An = vn,1 ∨ An = vn,2 ∨ An = vn,3).

When the encryptor specifies a wildcard for Ai, it corresponds to specifying
Wi = Si for Ai. The attribute list L satisfies the ciphertext policy W iff Li ∈ Wi

for 1 ≤ i ≤ n. We achieve recipient anonymity by hiding what subset Wi for each
Ai is specified in the access structure of the AND-gate of all the attributes.
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2.4 Syntax of CP-ABE

Our CP-ABE schemes consist of the following four algorithms.

Setup(1κ). This algorithm takes the security parameter κ as input and gener-
ates a public key PK and a master secret key MK.

KeyGen(MK, L). This algorithm takes MK and an attribute list L as input
and generates a secret key SKL associated with L.

Encrypt(PK, M , W ). This algorithm takes PK, a message M , and an cipher-
text policy W as input, and generates a ciphertext CT .

Decrypt(CT , SKL). This algorithm takes CT and SKL associated with L as
input and returns the message M if the attribute list L satisfies the ciphertext
policy W specified for CT , that is, L |= W . If L �|= W , it returns ⊥ with
overwhelming probability.

2.5 Security Model

We describe the security models for our CP-ABE. Based on [21, 5, 15], we use
the following security game. A CP-ABE scheme is selectively secure if no proba-
bilistic polynomial-time adversary has non-negligible advantage in the following
game.

Selective Game for CP-ABE

Init: The adversary commits to the challenge ciphertext policies W0, W1.

Setup: The challenger runs the Setup algorithm and gives PK to the adversary.

Phase 1: The adversary submits the attribute list L for a KeyGen query. If
(L |= W0 ∧ L |= W1) or (L �|= W0 ∧ L �|= W1), the challenger gives the
adversary the secret key SKL. The adversary can repeat this polynomially
many times.

Challenge: The adversary submits messages M0, M1 to the challenger. If the
adversary obtained the SKL whose associated attribute list L satisfies both
W0 and W1 in Phase 1, then it is required that M0 = M1. The challenger
flips a random coin b and passes the ciphertext Encrypt(PK, Mb, Wb) to
the adversary.

Phase 2: Phase 1 is repeated. If M0 �= M1, the adversary cannot submit L such
that L |= W0 ∧ L |= W1.

Guess: The adversary outputs a guess b′ of b.

The advantage of an adversary in this game is defined as
∣
∣Pr[b′ = b] − 1

2

∣
∣ where

the probability is taken over the random bits used by the challenger and the
adversary. Since the adversary must commit to the challenge ciphertext policies
before the setup phase, this model can be considered to be analogous to the
selective-ID model [8, 9] used in identity-based encryption schemes. The non-
selective-ID model can be found in [2] where the proof is in the generic group
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model. In the game, the adversary can submit L such that L |= W0 and L |= W1
if possible and then the adversary can decrypt the ciphertext. This definition
captures that the adversary cannot obtain the useful information about the
ciphertext policy more than the fact that she can decrypt the ciphertext. The
above notion of security is called match-concealing security in [21].

3 Proposed Schemes

We construct two CP-ABE schemes that achieve recipient anonymity. In [11],
the ciphertext policy needs to be revealed in the ciphertext so that a decryptor
can know which secret key components should be used. Furthermore, in order
to support wildcards for ciphertext policies, the public key components for the
wildcards are prepared in [11] and the decryptor uses the secret key components
corresponding to the wildcards if the wildcards are specified in the ciphertext
policies. In our constructions, we can hide how the ciphertext policy is specified
successfully.

First we show the construction of [11] and later explain the intuition behind
our approach we take to make it recipient-anonymous. We assume, for nota-
tional simplicity, that the total number of attributes in the system is n and the
attributes are indexed as {1, 2, . . . , i, . . . , n}.

3.1 Construction of [11]

The four algorithms are as follows:

Setup(1κ). A trusted authority generates a tuple G = [p, G, GT , g ∈ G, e] ←
Gen(1κ), and random w ∈ Z∗

p. For each attribute i where 1 ≤ i ≤ n, the
authority generates random values ai, âi, a

∗
i , ∈ Z∗

p. The authority computes
Y = e(g, g)w and Ai = gai , Âi = g�ai , A∗

i = ga∗
i . The public key PK con-

sists of 〈Y, p, G, GT , g, e, {Ai, Âi, A
∗
i }1≤i≤n〉. The master secret key MK is

〈w, {ai, âi, a
∗
i }1≤i≤n〉.

KeyGen(MK, L). Let L = [L1, L2, . . . , Ln] be the attribute list for the user
who will obtain the corresponding secret key. The trusted authority picks up
random values si ∈ Z

∗
p for 1 ≤ i ≤ n, sets s =

∑n
i=1 si, and computes D0 =

gw−s. For 1 ≤ i ≤ n, the authority also computes [Di, D
∗
i ] = [gsi/ai , gsi/a∗

i ]
if Li = 1, and [Di, D

∗
i ] = [gsi/�ai , gsi/a∗

i ] if Li = 0. The secret key SKL is
〈D0, {Di, D

∗
i }1≤i≤n〉.

Encrypt(PK, M , W ). An encryptor encrypts a message M ∈ GT under a
ciphertext policy W = [W1, W2, . . . , Wn]. The encryptor picks up a random
value r ∈ Z∗

p and sets C̃ = MY r and C0 = gr. Also for 1 ≤ i ≤ n, the
encryptor computes Ci as follows: if Wi = 1, Ci = Ar

i ; if Wi = 0, Ci =
Âr

i ; if Wi = ∗, Ci = A∗r
i . The ciphertext CT is 〈C̃, C0, {Ci}1≤i≤n〉. The

encryptor needs to reveal W in CT so that recipients can know which secret
key components should be used for each Ci.
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Note that if W is hidden in CT , the recipients need to try all the possi-
ble combinations of the secret key components for decryption and it takes
exponential time in n, which seems impractical.

Decrypt(CT , SKL). The recipient can check W to know whether L |= W . If
L |= W , she can proceed. The recipient decrypts the CT , 〈C̃, C0, {Ci}1≤i≤n〉
by using her SKL, 〈D0, {Di, D

∗
i }1≤i≤n〉 associated with the attribute list L,

as follows:
1. For 1 ≤ i ≤ n,

D′
i =

{
Di if Wi �= ∗
D∗

i if Wi = ∗.

2.

M =
C̃

e(C0, D0)
∏n

i=1 e(Ci, D
′
i)

.

3.2 Main Idea

We describe how to make the construction of [11] recipient-anonymous. To
achieve our goal, the recipients need to be able to decrypt CT without knowing
W and we also want to support wildcards in a hidden way. For that, we re-
move the public key components {A∗

i }1≤i≤n for the wildcards and the secret key
components {D∗

i }1≤i≤n are not included in SKL. Furthermore, instead of the
ciphertext components {Ci}1≤i≤n, {Ci, Ĉi}1≤i≤n are generated with C0 = gr as
follows: let {Ci, Ĉi} = {Ar1

i , Âr2
i }; if Wi = 1, we set r1 = r and r2 is random; if

Wi = 0, r1 is random and r2 = r; if Wi = ∗, r1 = r2 = r. That is, if Ci = Ar
i

or Ĉi = Âr
i , these ciphertext components are “well-formed” and can be used for

successful decryption and otherwise “malformed” (or random). Each decryptor
uses Ci for decryption if Li = 1 and uses Ĉi if Li = 0 without knowing what is
specified for Wi. By generating the ciphertext like this, we can realize the func-
tionality of wildcards. We can generalize this idea to adapt to the multi-valued
attribute setting.

Finally to make it hard to distinguish the well-formed components from the
malformed components, we use the linear splitting technique in [6,21] and make
our first construction provably secure as shown in Sect. 4.

3.3 Our First Construction

The four algorithms are as follows:

Setup(1κ). A trusted authority generates a tuple G = [p, G, GT , g ∈ G, e] ←
Gen(1κ) and random w ∈ Z∗

p. For each attribute i where 1 ≤ i ≤ n, the
authority generates random values {ai,t, bi,t ∈ Z∗

p}1≤t≤ni and random points
{Ai,t ∈ G}1≤t≤ni

1. The authority computes Y = e(g, g)w. The public key
1 In the asymmetric bilinear groups, Ai,t must be generated such that Ai,t = gci,t

where ci,t ∈R Z
∗
p and ci,t is known to the authority so that the authority can use ci,t

in KeyGen .
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PK consists of 〈Y, p, G, GT , g, e, {{A
ai,t

i,t , A
bi,t

i,t }1≤t≤ni}1≤i≤n〉. The master se-
cret key MK is 〈w, {{ai,t, bi,t}1≤t≤ni}1≤i≤n〉.

KeyGen(MK, L). Let L = [L1, L2, . . . , Ln] = [v1,t1 , v2,t2 , . . . , vn,tn ] be the
attribute list for the user who obtains the corresponding secret key. The
trusted authority picks up random values si, λi ∈ Z∗

p for 1 ≤ i ≤ n, sets
s =

∑n
i=1 si, and computes D0 = gw−s. For 1 ≤ i ≤ n, the authority

also computes [Di,0, Di,1, Di,2] = [gsi(Ai,ti)
ai,ti

bi,ti
λi , gai,ti

λi , gbi,ti
λi ] where

Li = vi,ti . The secret key SKL is 〈D0, {{Di,j}0≤j≤2}1≤i≤n〉.
Encrypt(PK, M , W ). An encryptor encrypts a message M ∈ GT under a

ciphertext policy W = [W1, W2, . . . , Wn]. The encryptor picks up a ran-
dom value r ∈ Z∗

p and sets C̃ = MY r and C0 = gr. Also for 1 ≤ i ≤ n,
the encryptor picks up random values {ri,t ∈ Z∗

p}1≤t≤ni and computes
{Ci,t,1, Ci,t,2}1≤t≤ni as follows: if vi,t ∈ Wi, [Ci,t,1, Ci,t,2] = [(Abi,t

i,t )ri,t ,

(Aai,t

i,t )r−ri,t ] (well-formed); if vi,t �∈ Wi, [Ci,t,1, Ci,t,2] are random (mal-
formed). The ciphertext CT is 〈C̃, C0, {{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n〉.

Decrypt(CT , SKL). The recipient tries decrypting the CT ,
〈C̃, C0, {{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n〉 without knowing W by using her SKL,
〈D0, {{Di,j}0≤j≤2}1≤i≤n〉 associated with the attribute list L, as follows:
1. For 1 ≤ i ≤ n,

[C′
i,1, C

′
i,2] = [Ci,ti,1, Ci,ti,2] where Li = vi,ti .

2.

M =
C̃

∏n
i=1 e(C′

i,1, Di,1)e(C′
i,2, Di,2)

e(C0, D0)
∏n

i=1 e(C0, Di,0)
.

If the attribute list L satisfies the hidden ciphertext policy W of the CT , the
recipient can decrypt the CT correctly. For the recipient to know whether the
decryption was successful without knowing the ciphertext policy W , we can use
the technique used in [5] in practice. As in [5], the encryptor picks up a random
k ∈ GT and derives two uniform and independent μ-bit symmetric keys (k0, k1)
from k. The final ciphertext consists of 〈k1,Encrypt(PK, k, W ), Ek0(M)〉 where
Encrypt(PK, k, W ) is the ciphertext of k encrypted under PK and W , and
Ek0(M) is the ciphertext of M encrypted under k0 by using a symmetric en-
cryption scheme. The recipient can use k1 to check whether the decryption was
successful after decrypting k where the false positive probability is approximately
1/2μ. If successful, the recipient can decrypt M by using k0 derived from k. The
security proof is given in Sect. 4.

3.4 Second Construction with More Flexibility

We can also apply the technique in Sect. 3.2 to [2] and make it recipient-
anonymous. With a property inherited from [2], this scheme is more flexible
though the security proof is in the generic group model. The scheme in [2] uses
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a symmetric bilinear group while we use an asymmetric bilinear group. That
is, we assume Gen(1κ) outputs G = [p, G1, G2, GT , g1∈G1, g2∈G2, e] where e :
G1×G2 → GT is a bilinear map. We also use the External Diffie-Hellman (XDH)
assumption used in, for example, [3,20,7] to achieve recipient anonymity, which
holds on MNT curves [17]. In the XDH assumption, it holds that the Decisional
Diffie-Hellman (DDH) problem is hard in G1 and this implies that there does not
exist an efficiently-computable isomorphism ψ : G1 → G2. The four algorithms
are as follows:

Setup(1κ). A trusted authority generates a tuple G = [p, G1, G2, GT , g1 ∈
G1, g2 ∈ G2, e]. and random w, β ∈ Z∗

p. For each attribute i where
1 ≤ i ≤ n, the authority generates random values {ai,t ∈ Z∗

p}1≤t≤ni

and computes points {Ai,t = g
ai,t

1 }1≤t≤ni . The authority computes
Y = e(g1, g2)w and B = gβ

1 . The public key PK consists of
〈Y, B, p, G1, G2, GT , g1, g2, e , {{Ai,t}1≤t≤ni}1≤i≤n〉. The master secret key
MK is 〈w, β, {{ai,t}1≤t≤ni}1≤i≤n〉.

KeyGen(MK, L). Let L = [L1, L2, . . . , Ln] = [v1,t1 , v2,t2 , . . . , vn,tn ] be the
attribute list for the user who obtains the corresponding secret key. The
trusted authority picks up random values s, λi ∈ Z∗

p for 1 ≤ i ≤ n

and computes D0 = g
w+s

β

2 . For 1 ≤ i ≤ n, the authority also computes
[Di,1, Di,2] = [g

s+ai,ti
λi

2 , gλi
2 ] where Li = vi,ti . The secret key SKL is

〈D0, {Di,1, Di,2}1≤i≤n〉.
Encrypt(PK, M , W ). An encryptor encrypts a message M ∈ GT under a

ciphertext policy W = [W1, W2, . . . , Wn]. The encryptor picks up a random
value r ∈ Z∗

p and sets C̃ = MY r and C0 = Br. Also for 1 ≤ i ≤ n,
the encryptor picks up random values ri ∈ Z

∗
p such that r =

∑n
i=1 ri, sets

Ci,1 = gri
1 and computes {Ci,t,2}1≤t≤ni as follows: if vi,t ∈ Wi, Ci,t,2 = Ari

i,t

(well-formed); if vi,t �∈ Wi, Ci,t,2 is random (malformed). The ciphertext CT

is 〈C̃, C0, {Ci,1, {Ci,t,2}1≤t≤ni}1≤i≤n〉.
Decrypt(CT , SKL). The recipient decrypts the CT ,

〈C̃, C0, {Ci,1, {Ci,t,2}1≤t≤ni}1≤i≤n〉 by using her SKL,
〈D0, {Di,1, Di,2}1≤i≤n〉 associated with the attribute list L as follows:

1. For 1 ≤ i ≤ n,
C′

i,2 = Ci,ti,2 where Li = vi,ti .

2.

M =
C̃

∏n
i=1 e(Ci,1, Di,1)

e(C0, D0)
∏n

i=1 e(C′
i,2, Di,2)

.

Under the XDH assumption, it is hard to guess from CT what subset Wi the
encryptor specified for each attribute Ai in the ciphertext policy. The security
proof will be similar to that of [2] and is omitted due to space limitation. We
discuss the flexibility of this scheme in Sect. 5 in more detail.
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4 Overview of Security Proofs

We prove that our first scheme is selectively secure under the DBDH assumption
and the D-Linear assumption. We will give the high-level arguments of the proofs
here and the detailed proofs of the lemmas are given in Appendix C.

Suppose the adversary commits to the challenge ciphertext policies W0, W1 at
the beginning of the game. We use the notation Wb = [Wb,1, Wb,2, . . . , Wb,i, . . . ,
Wb,n].

The proof uses a sequence of hybrid games to argue that the adversary cannot
win the original security game denoted by G with non-negligible probability. We
begin by slightly modifying the game G into a game G0. Games G and G0 are
the same except for how the challenge ciphertext is generated. In G0, if the
adversary did not obtain the SKL whose associated attribute list L is such that
L |= W0 ∧ L |= W1, then the challenge ciphtertext component C̃ is a random
element of GT regardless of the random coin b. The rest of the ciphertext is
generated as usual. If the adversary obtained the SKL whose associated attribute
list L is such that L |= W0 ∧ L |= W1 then the challenge ciphertext in G0 is
generated correctly. That is, G = G0 in this case.

Lemma 1 Under the DBDH assumption, for any polynomial time adversary
A, the difference of advantage of A in game G and game G0 is negligible in the
security parameter κ.

Next, we modify G0 by changing how to generate the ciphertext components
{{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n and define a sequence of games as follows.

For vi,t such that (vi,t ∈ W0,i ∧ vi,t ∈ W1,i) or (vi,t �∈ W0,i ∧ vi,t �∈ W1,i),
the components {Ci,t,1, Ci,t,2} are generated as in the real scheme through the
sequence of all the games.

If there is vi,t such that (vi,t ∈ W0,i ∧vi,t �∈ W1,i) or (vi,t �∈ W0,i ∧vi,t ∈ W1,i),
the components {Ci,t,1, Ci,t,2} generated properly in game G�−1 are replaced
with the random values in the new modified game G� regardless of the random
coin b. Every time we replace such components {Ci,t,1, Ci,t,2} with the random
values, we define a new modified game. We repeat this replacement one by
one until we have no component that satisfies (vi,t ∈ W0,i ∧ vi,t �∈ W1,i) or
(vi,t �∈ W0,i ∧ vi,t ∈ W1,i). In the last game of the sequence, the advantage of the
adversary is zero because the adversary is given a ciphertext chosen from the
same distribution regardless of the random coin b.

By replacing the well-formed ciphertext components in G�−1 with the random
values in G� in this way, we can embed a D-Linear challenge in the ciphertext
such that the distinguisher of G�−1 and G� leads to the distinguisher of the
D-Linear challenge.

Lemma 2 Under the D-Linear assumption, for any polynomial time adversary
A, the difference of advantage of A in game G�−1 and game G� is negligible in
the security parameter κ.
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By considering the sequence G, G0, G1, . . . of games starting with the original
game G, no polynomial adversary can win the game G with non-negligible ad-
vantage by the lemmas above.

5 Adding Attributes After Setup

In our schemes, it is easy to add new possible values vi,t’s of each attribute
Ai in the ciphertext policy even after Setup is executed, because we have only
to add the public key components for the new values of Ai and the existing
public parameters can remain unchanged. That is, the access structure for the
ciphertext policy can be extended accordingly though the ciphertext size is also
increased. However, in our first scheme, it cannot be done securely to simply add
new attributes Ai′ ’s in the ciphertext policy with the existing public parameters
being unchanged after Setup is executed and some users already have their
secret keys. The reason is as follows. Suppose there are three attributes A1, A2, A3
in the system when Setup is executed and a user obtains her secret key SKL

where the attribute list L = [L1, L2, L3] = [1, 1, 0]. After that, a new attribute
A4 is added in the system and the corresponding public key components for
A4 are generated and published. Then an encryptor may specify a ciphertext
policy W = [W1, . . . , W4] = [∗, ∗, 0, 1], requiring the legitimate recipients to
have the value 1 for A4. In this case, the user who has the above SKL can
decrypt the ciphertext encrypted under the ciphertext policy W even if she
does not have the secret key component for A4, because L satisfies [W1, W2, W3]
partially and it enables the user to combine all the secret key components to
reconstruct s =

∑n
i=1 si in the exponent for decryption. The similar situations

can also happen in [11, 15, 5, 21] if we consider the setting where new attributes
may be added in the ciphertext policy dynamically after Setup is executed. As
mentioned in [18], we may be able to prepare redundant filler attributes reserved
for future use, but it increases the ciphertext size unnecessarily.

The second scheme can avoid this situation with the property inherited from
[2] and we can add new attributes in the ciphertext policy securely after Setup
is executed where the existing public parameters can remain unchanged. Note
that in this scheme, the encryptor splits random r in the ciphertext CT such
that r =

∑n
i=1 ri and it forces decryptors to have the secret key components for

all the attributes specified in the ciphertext policy even if the attributes in the
ciphertext policy were added after the decryptors obtained their secret keys. If a
user wants to decrypt the ciphertext with the ciphertext policy including newly
added attributes, she must obtain a new secret key including the newly added
attributes from the trusted authority again.

Additionally, in the second scheme, an encryptor can specify a variable-length
ciphertext policy. For example, the encryptor can specify the ciphertext policy
W = [Wi1 , Wi2 , . . . , Wim ] where m < n and n is the number of all the attributes
in the system. Since there are several attributes that do not appear in the ci-
phertext policy, the partial information on the ciphertext policy is leaked. That
is, it means that the wildcards are specified for the attributes not appearing in
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the ciphertext policy. However, it may be acceptable to the encryptor in some
cases and it can reduce the size of the ciphertext.
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A Realization of CP-ABE with [5]

We show how the scheme in [5] can realize the access structure of the ciphertext
policy considered in this work by using HVE. For ease of exposition, suppose
there are two attributes A1, A2 in the system and A1 can take values v1,1, v1,2
and A2 can take values v2,1, v2,2, v2,3. When an encryptor encrypts a message,
the encryptor specifies a vector corresponding to (v1,1, v1,2, v2,1, v2,2, v2,3) as a
ciphertext policy. For example, if (v1,1, v1,2, v2,1, v2,2, v2,3) = (1, 0, 1, 0, 1), this
means (A1 = v1,1) ∧ (A2 = v2,1 ∨ A2 = v2,3). A decryptor with A1 = v1,1 ∧ A2 =
v2,3 obtains her secret key the vector of which corresponds to (1, ∗, ∗, ∗, 1). The
decryptor can decrypt the ciphertext if the vectors of both the ciphertext and
the secret key match up except the wildcards. In this scheme, the length of the
vectors (5 in the example above) is fixed at the system setup. Therefore, the
numbers of both attributes and possible values for each attribute specified in
the ciphertext policy are fixed at the system setup.

B Realization of CP-ABE with [15]

We show how the scheme in [15] can realize the access structure of the ciphertext
policy considered in this work by using the dual of the predicate corresponding
polynomial evaluation. Similarly, for ease of exposition, suppose there are two
attributes A1, A2 in the system and A1 can take values v1,1, v1,2 and A2 can
take values v2,1, v2,2, v2,3. In this scheme, decryption succeeds if the vector for
the ciphertext (a1, a2, . . . , an) and the vector for the secret key (x1, x2, . . . , xn)
satisfy the condition that

∑n
i=1 aixi = 0.

When an encryptor encrypts a message with the ciphertext policy (A1 =
v1,1) ∧ (A2 = v2,1 ∨ A2 = v2,3), she prepares two polynomials f1(x) = c1x + c0
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and f2(x) = d2x
2 +d1x+d0 such that f1(v1,1) = 0, f2(v2,1) = 0 and f2(v2,3) = 0

and specifies the vector (c1, c0, d2, d1, d0) as the ciphertext policy. A decryptor
with A1 = v1,1 ∧ A2 = v2,3 obtains her secret key the vector of which cor-
responds to (v1,1, 1, v2

2,3, v2,3, 1). For example, when the encryptor specifies a
wildcard for attribute A2 in the ciphertext policy, she simply uses f2(x) = 0
where d2 = d1 = d0 = 0. In this scheme, the length of the vectors (5 in the
example above) is fixed at the system setup. Therefore, the maximum size of the
subset of attribute values for each attribute specified in the ciphertext policy for
successful decryption is fixed at the system setup. Also, the number of attributes
specified in the ciphertext policy is fixed at the system setup. However, when the
number of possible attribute values is huge and the maximum size of the subset
of attribute values specified in the ciphertext policy is small, the scheme in [15]
is more advantageous than ours because it can enjoy the smaller ciphertext size
and still realize the wildcard functionality.

C Proofs of Lemmas

C.1 Proof of Lemma 1

Proof. We prove our lemma by assuming that a polynomial adversary A has
non-negligible difference ε between its advantage in game G and its advantage in
game G0. We build a simulator B that can play the DBDH game with advantage
ε.

Given a DBDH challenge [g, gz1, gz2 , gz3 , Z] by the challenger where Z is ei-
ther e(g, g)z1z2z3 or random with equal probability, the simulator B creates the
following simulation.

Init: The simulator B runs A. A gives B two challenge chiphertext policies
W0 = [W0,1, . . . , W0,n], W1 = [W1,1, . . . , W1,n]. Then B flips a random coin
b ∈ {0, 1}.

Setup: To provide a public key PK to A, B sets Y to e(g, g)z1z2 . This implies
w = z1z2. For each attribute i where 1 ≤ i ≤ n, B generates {Ai,t}1≤t≤ni

such that Ai,t = gαi,t if vi,t ∈ Wb,i and Ai,t = gz1αi,t if vi,t �∈ Wb,i where
{αi,t ∈ Z∗

p}1≤t≤ni are random. Then B publishes public parameters as in the
real scheme by picking up {ai,t, bi,t}1≤t≤ni at random for 1 ≤ i ≤ n.

Phase 1: A submits an attribute list L = [L1, . . . , Ln] in a secret key query.
We consider only the case where L �|= W0 ∧ L �|= W1. The reason for this is
by our definition if L |= W0 ∧ L |= W1, then the challenge messages M0, M1
will be equal. In this case, the games G and G0 are the same, so there is no
difference of advantage of A in G and G0. Therefore, B simply aborts and
takes a random guess.
When L �|= W0 ∧ L �|= W1, there must be k ∈ {1, . . . , n} such that Lk(=
vk,tk

) �∈ Wb,k.
For 1 ≤ i ≤ n, B picks up s′i ∈ Z∗

p at random. It then sets sk = z1z2 +s′k and
for every i �= k, sets si = s′i. Finally it sets s =

∑n
i=1 si = z1z2 +

∑n
i=1 s′i.
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The D0 component of the secret key can be computed as

D0 = gw−s = gz1z2−s = g−
�n

i=1 s′
i .

For k, B computes the components [Dk,0, Dk,1, Dk,2]= [gsk(Ak,tk
)ak,tk

bk,tk
λk ,

gak,tk
λk , gbk,tk

λk ] as follows:

Dk,0 = gsk(Ak,tk
)ak,tk

bk,tk
λk

= gz1z2+s′
k(Ak,tk

)ak,tk
bk,tk

λk

= gz1z2+s′
k(gz1αk,tk )ak,tk

bk,tk
λk

= gs′
k(gz1αk,tk )ak,tk

bk,tk
λ′

k

where λk is chosen at random such that

λk = − z2

αk,tk
ak,tk

bk,tk

+ λ′
k

and random λ′
k is known to B.

B can compute the components [Dk,1, Dk,2] easily.
For i �= k, B can also compute [Di,0, Di,1, Di,2] easily.

Challenge: A submits two challenge messages M0 and M1. B sets C̃ = MbZ
and C0 = gz3 which implies r = z3 and generates, for Wb, the cipher-
text 〈C̃, C0, {{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n〉. When vi,t ∈ Wb,i, B can generate
{Ci,t,1, Ci,t,2} correctly because Ai,t does not contain unknown z1 and when
vi,t �∈ Wb,i, {Ci,t,1, Ci,t,2} can be simply chosen at random.

Phase 2: Phase 1 is repeated.

Guess: A outputs a guess b′ of b. If b′ = b, B outputs 1 and otherwise outputs
0. By our assumption, the probability that A guesses b correctly in game G
has a non-negligible ε difference from that of it guessing b correctly in G0.
When Z = e(g, g)z1z2z3 , A is in game G and when Z is random, A is in
game G0. Therefore the simulator B has advantage ε in the DBDH game.

��

C.2 Proof of Lemma 2

Proof. We prove our lemma by assuming that a polynomial adversary A has non-
negligible difference ε between its advantage in game G�−1 and its advantage
in game G�. We build a simulator B that can play the D-Linear game with
advantage ε.

Given a D-Linear challenge [g, gz1, gz2 , Z, gz2z4 , gz3+z4 ] by the challenger where
Z is either gz1z3 or random with equal probability, the simulator B creates the
simulation. Note that this D-Linear assumption is equivalent to that of Sect.
2.2.2.

As mentioned in Sect. 4, in G�−1, the ciphertext components {Ci�,t�,1, Ci�,t�,2}
are generated as in the real scheme, whereas, in G�, the components are random
regardless of the random coin b and we assume that (vi�,t�

∈ W1,i�
∧vi�,t�

�∈ W0,i�
)

without loss of generality.
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Init: The simulator B runs A. A gives B two challenge chiphertext policies
W0 = [W0,1, . . . , W0,n], W1 = [W1,1, . . . , W1,n]. Then B flips a random coin
b ∈ {0, 1}. If b = 0, B aborts and takes a random guess. The reason for this
is by our definition if b = 0 where (vi�,t�

∈ W1,i ∧ vi�,t�
�∈ W0,i), we have

G�−1 = G� because the distribution of the challenge ciphertext in game G�−1
is the same as that of game G�, so there is no difference of advantage of A
in G�−1 and G�. We proceeds assuming b = 1.

Setup: To provide a public key PK to A, B sets Y to e(g, g)w where w is
known to B. For each attribute i where 1 ≤ i ≤ n, B generates {Ai,t}1≤t≤ni

such that Ai,t = gαi,t if vi,t ∈ Wb,i and Ai,t = gz1αi,t if vi,t �∈ Wb,i where
{αi,t ∈ Z∗

p}1≤t≤ni are random. Then B publishes public parameters as in the
real scheme by picking up {ai,t, bi,t}1≤t≤ni at random for 1 ≤ i ≤ n with
the exception that, for ai�,t�

and bi�,t�
, B sets ai�,t�

= z1 and bi�,t�
= z2 and

can compute A
ai�,t�
i�,t�

= gαi�,t�
ai�,t� and A

bi�,t�
i�,t�

= gαi�,t�
bi�,t� without knowing

z1, z2.

Phase 1: A submits an attribute list L = [L1, . . . , Ln] in a secret key query. If
Li�

�= vi�,t�
, B can generate the corresponding secret key easily.

Let’s assume Li�
= vi�,t�

. B needs to compute the secret key components
[Di�,0, Di�,1, Di�,2] = [gsi� (Ai�,t�

)ai�,t�
bi�,t�

λi� , gai�,t�
λi� , gbi�,t�

λi� ] where
ai�,t�

= z1, bi�,t�
= z2.

B can compute Di�,0 as

Di�,0 = gsi� (Ai�,t�
)ai�,t�

bi�,t�
λi�

= gsi� (Ai�,t�
)z1z2λi�

= gsi� (gαi�,t� )z1z2λi�

= gs′
i�

where si�
is chosen at random such that

si�
= s′i�

− αi�,t�
z1z2λi�

and random s′i�
is known to B. B can compute the components [Di�,1, Di�,2]

easily without knowing z1, z2.
Here we can assume L �|= W0∧L �|= W1 because Li�

= vi�,t�
∧vi�,t�

�∈ W1−b,i�
.

That is, we have L �|= W1−b and therefore L �|= Wb, so there must be k ∈
{1, . . . , n} such that Lk(= vk,tk

) �∈ Wb,k. Then B generates [Dk,0, Dk,1, Dk,2]
as follows: B sets sk = s′k + αi�,t�

z1z2λi�
where s′k is random and known to

B and computes

Dk,0 = gsk(Ak,tk
)ak,tk

bk,tk
λk

= gs′
k+αi�,t�

z1z2λi� (gz1αk,tk )ak,tk
bk,tk

λk

= gs′
k(gz1αk,tk )ak,tk

bk,tk
λ′

k

where λk is chosen at random such that

λk = λ′
k − αi�,t�

z2λi�

αk,tk
ak,tk

bk,tk
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and random λ′
k is known to B. B can compute the components [Dk,1, Dk,2]

easily without knowing z2.
Also, for i �= i�, k, B can compute [Di,0, Di,1, Di,2] easily.
Finally by computing

s =
n∑

i=1

si

= si�
+ sk +

∑

i�=i�,k

si

= s′i�
− αi�,t�

z1z2λi�
+ s′k + αi�,t�

z1z2λi�
+

∑

i�=i�,k

si

= s′i�
+ s′k +

∑

i�=i�,k

si,

the component D0 = gw−s of the secret key can be computed.

Challenge: A submits two challenge messages M0 and M1. B sets C0 = gz3+z4

which implies r = z3 + z4. If L �|= W0 ∧ L �|= W1 for every queried L, B sets
C̃ to be random and otherwise sets C̃ = Mbe(g, gz3+z4)w. B generates, for
Wb, the ciphertext components {{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n as in G�−1 with
the exception that the components {Ci�,t�,1, Ci�,t�,2} are computed as

Ci�,t�,1 = (A
bi�,t�
i�,t�

)ri�,t� = (Az2
i�,t�

)z4 = (gαi�,t�
z2)z4 ,

Ci�,t�,2 = (A
ai�,t�
i�

)r−ri�,t� = (gαi�,t�
z1)z3 = Zαi�,t�

without knowing z2z4, z1z3. This implies that ri�,t�
= z4 and Z = gz1z3 and

if Z = gz1z3 , the components are well-formed and A is in game G�−1.

Phase 2: Phase 1 is repeated.

Guess: A outputs a guess b′ of b. If b′ = b, B outputs 1 and otherwise outputs
0. By our assumption, the probability that A guesses b correctly in game
G�−1 has a non-negligible ε difference from that of it guessing b correctly in
G�. When Z = gz1z3 , A is in game G�−1 and when Z is random, A is in
game G�. Therefore the simulator B has advantage ε in the D-Linear game.

��
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Abstract. The SHA-256 hash function has started getting attention
recently by the cryptanalysis community due to the various weaknesses
found in its predecessors such as MD4, MD5, SHA-0 and SHA-1. We
make two contributions in this work. First we describe message mod-
ification techniques and use them to obtain an algorithm to generate
message pairs which collide for the actual SHA-256 reduced to 18 steps.
Our second contribution is to present differential paths for 19, 20, 21, 22
and 23 steps of SHA-256. We construct parity check equations in a novel
way to find these characteristics. Further, the 19-step differential path
presented here is constructed by using only 15 local collisions, as against
the previously known 19-step near collision differential path which con-
sists of interleaving of 23 local collisions. Our 19-step differential path
can also be seen as a single local collision at the message word level. We
use a linearized local collision in this work. These results do not cause
any threat to the security of the SHA-256 hash function.

1 Introduction

Cryptanalysis of hash functions has been an area of intense interest to the re-
search community since past decade and a half. Many hash functions were broken
in this time, most notable among them are MD4, MD5, SHA-0 and theoretical
break of SHA-1. This has directed the attention of the cryptology community to
the SHA-2 family of hash functions.

Known Results for the SHA-2 Family: Gilbert and Handschuh (GH) [5]
were the first to study local collisions in the SHA-2 family. They reported a 9-
round local collision and estimated the probability of the differential path to be
2−66. This probability estimate was later improved by [11] and [6]. Sanadhya and
Sarkar [16] recently presented 16 new 9-round local collisions for SHA-2 family
of hash functions. The message expansion of SHA-256 was studied by Mendel
et al. [11], who mentioned an 18-step collision for SHA-256 which was recently
corrected in [12]. The work [11] also provided a differential path for 19-step near
collision for SHA-256. An earlier work [10] studied a very simplified variant of
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SHA-256. The encryption mode of SHA-256 is analyzed in [23] and is not rele-
vant to collision search attacks. Recently, at FSE ’08, Nikolić and Biryukov [13]
reported 21-step collisions for SHA-256 using a nonlinear differential path.

Our Contributions: We make two independent contributions in this work :

1. We construct a 18-step collision characteristic using one of the local collisions
from [16]. We describe message modification techniques to find messages
following this differential characteristic. Using these techniques, we provide
an algorithm to generate pairs of messages which collide for 18 step SHA-256
with the standard IV. We show two such pairs of messages.

2. We show multiple differential paths for attacking up to 23-step SHA-256. In
obtaining these differential paths, we use coding theoretic methods in a novel
way. Using linearized local collisions, there were no colliding differential paths
known for SHA-256 beyond 18 rounds. Previously known best differential
path was for 19-step SHA-256 which used 23 local collisions and gave rise
to a near collision. In contrast, our 19-step characteristic uses only 15 local
collisions and is an exact collision path. All the 15 local collisions start in the
same word and therefore this differential path can also be seen as consisting
of a single local collision with the starting word difference having a weight
of 15 bits. In addition there are no impossible conditions caused by the fIF

and fMAJ functions for the differential paths reported here. Therefore the
search for actual colliding message pairs following these paths is likely to be
easier.

We also show that neutral bit technique may not be of much help in finding
actual colliding pair of messages while message modification methods seem to
hold much more promise.

Note that these results do not cause any threat to the security of the SHA-256
hash function since it has 64 steps per block.

2 Notation

In this paper we use the following notation:

– mi ∈ {0, 1}32, Wi ∈ {0, 1}32, W ′
i ∈ {0, 1}32 for any i.

– The colliding message pair is: {m0, m1, m2, . . . m15} and {m′
0, m′

1, m′
2,

. . . m′
15}.

– The expanded message pair is: {W0, W1, W2, . . . W63} and {W ′
0, W ′

1, W ′
2,

. . . W ′
63}.

– ⊕: bitwise XOR.
– +: addition modulo 232.
– ΔWi = Wi ⊕ W ′

i

– ROTRn(x): Right rotation of a 32 bit quantity x by n bits.
– SHRn(x): Right shift of a 32 bit quantity x by n bits.
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3 The SHA-256 Hash Function

The newest members of SHA family of hash functions were standardized by US
NIST in 2002 [18]. There are 2 differently designed functions in this standard:
the SHA-256 and SHA-512. In addition, the standard also specifies a truncated
version of SHA-512, namely the SHA-384. The number in the name of the hash
function refers to the length of message digest produced by that function. In
this work we are interested in reduced round collision attacks against SHA-256.
Next we briefly describe SHA-256. For details refer to [18].

The round function of SHA-256 hash function uses 8 registers. The initial
value in the registers is specified by an 8x32 bit IV. In Step i, the 8 registers are
updated from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei,
fi, gi, hi) according to the following equations:

ai = Σ0(ai−1) + fMAJ (ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1
ci = bi−1
di = ci−1
ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)

+hi−1 + Ki + Wi

fi = ei−1
gi = fi−1
hi = gi−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The fIF and the fMAJ are three variable boolean functions “Choice” and
“Majority” respectively. The functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)

Round i uses a 32 bit word Wi which is derived from the message and a
constant word Ki. There are 64 rounds in all. The hash function operates on a
512 bit message specified as 16 words of 32 bits. Given the message words m0,
m1, . . .m15, the Wi ’s are computed using the equation:

Wi =
{

mi for 0 ≤ i ≤ 15
σ1(mi−2) + mi−7 + σ0(mi−15) + mi−16 for 16 ≤ i ≤ 63 (2)

The functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)

The IV = (a−1, b−1, c−1, d−1, e−1, f−1, g−1, h−1) is defined by 8 32-bit
constants. All additions in Equations 1 and 2 are modulo 232.

The output hash value of a one block (512 bit) message is obtained by chaining
the IV with the register values at the end of the final round as per the Merkle-
Damg̊ard construction. A similar strategy is used for multi-block messages, where
the IV for next block is taken as the hash output of the previous block.
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4 Collision Attacks Against Hash Functions

The aim of a hash function attack is to produce two different messages both of
which map to the same hash output. This is done by employing differential at-
tack against the hash function in question. First a suitable difference of messages
is found such that a pair of messages having that difference is likely to collide
to the same hash value with high probability. For example, if a given message
differential {ΔW0, ΔW1, . . . ΔW15} is likely to generate colliding pairs with prob-
ability 1

28 then one needs to try roughly 28 different pairs {W0, W1, . . . , W15} and
{W ′

0, W
′
1, . . .W

′
15} having the given difference to get a colliding pair of messages.

However, the probability of the specified differential to generate a collision is
likely to be very low for most of the practical hash functions. Hence some so-
phisticated methods are used to search for the right (colliding) pair, rather than
generating them at random. Message modification techniques [22,20] and neu-
tral bit technique [1] are the two widely used methods to find colliding message
pairs.

For a fuller discussion of linearized local collisions and differential paths, refer
to [17]. We next discuss the SHA-256 linearized local collisions.

4.1 Linearized Local Collisions in SHA-256

Let the first step in SHA-2 be denoted by Step 0. If a 9-step local collision is
started at step i, it defines the 9 word differences Wj ⊕ W ′

j for i ≤ j ≤ i+ 8. We
use two types of local collisions in the present work. The first is due to Gilbert
and Handschuh [5] and the second is one of the 16 local collisions presented
in [16]. From among the 16, we choose the 5th local collision because of the
following two reasons :

1. It is one of the 4 which are suitable for getting 18-step collision, as explained
later (the others being 7th, 14th and 16th).

2. It has the highest probability among these 4.

We call the two local collisions the GH local collision and the SS5 local collision
respectively. The other three local collisions from [16] are denoted by SS7, SS14
and SS16.

The following approximations are used in these local collisions :

1. Operator + is approximated by ⊕.
2. In GH, fIF and fMAJ are approximated by zero function. This causes certain

impossible conditions while searching for the message pair following this
differential path, as has been observed in [11].

3. In SS5, fIF and fMAJ are approximated by their middle arguments. These
linear approximations avoid two types of impossible conditions encountered
when using GH local collision.

See [16] for details on other local collisions.
All the local collisions mentioned above are:
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• GH : {x, Σ0(x) ⊕ Σ1(x), Σ0(Σ1(x)), 0, x, Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS5 : {x, Σ0(x) ⊕ Σ1(x), Σ0(Σ1(x)), Σ0(x) ⊕ Σ1(x), 0, Σ0(x) ⊕ Σ1(x), 0,

0, x}
• SS7 : {x, x ⊕ Σ0(x) ⊕ Σ1(x), Σ0(x)⊕ Σ0(Σ1(x)), x ⊕ Σ0(x) ⊕ Σ1(x), 0, x ⊕

Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS14 : {x, x ⊕ Σ0(x) ⊕ Σ1(x), x ⊕ Σ1(x)⊕ Σ0(Σ1(x)), Σ1(x), Σ0(x) ⊕ Σ1(x),

Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS16 : {x, Σ0(x)⊕Σ1(x), Σ0(x)⊕Σ1(x)⊕ Σ0(Σ1(x)), x⊕Σ1(x), x⊕Σ0(x)⊕

Σ1(x), x ⊕ Σ0(x) ⊕ Σ1(x), 0, 0, x}

Note that in all the above local collisions, Σ0 and Σ1 are used as operators
on 32 bit quantities, and x is any 32 bit message word difference. Once a start-
ing message difference x is chosen, next 8 words must have the difference in
accordance with the local collision.

5 Attacking 18 Rounds of SHA-256

It is possible to get up to 18 step reduced round collisions for SHA-256 using a
single local collision. Such an idea has already been used in [11] and mentioned
in [16]. We describe this for clarity of exposition.

First of all, note that any local collision under consideration spans 9 steps and
the message expansion of SHA-256 does not play any role in the first 16 steps.
Therefore if a local collision spans from Step i to Step (i + 8), and if we take
ΔW0 = ΔW1 = . . . = ΔWi−1 = ΔWi+9 = ΔWi+10 = . . . = ΔW15 = 0, we get
a differential path for 16-step collision for SHA-256.

The issue of message expansion is not considered in obtaining the 16 step col-
liding differential path described above. Next we tackle two steps of the message
expansion.

Message expansion rule for W16 and W17 are given by :

W16 = σ1(W14) + W9 + σ0(W1) + W0 (3)
W17 = σ1(W15) + W10 + σ0(W2) + W1 (4)

Let a local collision L start at Step 3 and hence end at Step 11. This local
collision defines the 9 word differences ΔW3, ΔW4, . . . ΔW11. The first step of
the local collision corresponds to ΔW3 and the 9th step corresponds to ΔW11.
Taking the differentials of all the message words outside the span of the local
collision to be zero, the differential path for L will have ΔW0 = ΔW1 = ΔW2
= ΔW12 = ΔW13 = ΔW14 = ΔW15 = 0.

Note that ΔWi = 0 means that Wi = W ′
i . Since ΔW0 = ΔW1 = ΔW14 = 0

for L, from Equation 3, W16 and W ′
16 may be different only due to the differences

in W9 and W ′
9.

ΔW9 corresponds to the 7th step word difference for L. If L is chosen such
that it’s 7th step word difference is zero, then W9 = W ′

9. Therefore even after
the message expansion recursion is used, we will have W16 = W ′

16. This results
in a 17-step differential path for SHA-256.
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Table 1. 18 step linear characteristic for SHA-256. Only 1 SS5 local collision is used
to build this path.

Step i ΔWi Δai Δbi Δci Δdi Δei Δfi Δgi Δhi
0-2 0 0 0 0 0 0 0 0 0
3 80000000 80000000 0 0 0 80000000 0 0 0
4 22140240 0 80000000 0 0 20040200 80000000 0 0
5 42851098 0 0 80000000 0 80000000 20040200 80000000 0

6 22140240 0 0 0 80000000 0 80000000 20040200 80000000
7 0 0 0 0 0 80000000 0 80000000 20040200
8 22140240 0 0 0 0 0 80000000 0 80000000
9 0 0 0 0 0 0 0 80000000 0
10 0 0 0 0 0 0 0 0 80000000
11 80000000 0 0 0 0 0 0 0 0

12-17 0 0 0 0 0 0 0 0 0

Similarly, if the 8th message word difference for L is zero, then by Equation 4,
W17 = W ′

17. This results in a 18-step differential path for SHA-256.
Both the 17 and the 18 Step paths discussed above use just one local collision.

To increase the probability of this differential path for the case of real SHA-256,
we can take starting messages differing in only 1 bit.

All the local collisions listed in the previous section have the 7th and the
8th message word differences zero. Therefore any one of them can be used to
obtain the 18 step colliding differential path for SHA-256. We list one of these
differential paths in Table 1. This 18-step colliding path is also a 17-step colliding
path for SHA-256.

Further, it can be seen that it is not possible to obtain a differential path for
19 or more steps with a single local collision where the weight of the perturbation
in first word is just 1-bit. This impossibility arises due to the message expansion
of SHA-256, and because there are no local collisions in which 3 consecutive word
differences are zero. We discuss the case of more than 18 steps in later sections.

6 Message Modification Techniques for SHA-256

We have used XOR differences for registers and message words in the differential
path for reduced round SHA-256. The differential path in Table 1 is obtained
by using linearized SHA-256. However our aim is to obtain a pair of messages
which follows this differential path for real SHA-256. The probability for this to
happen for random messages is 2−49 for 18-step SHA-256. If the message-pair
satisfies certain conditions then the probability of the differential path can be
increased significantly. We list conditions on the registers and the message words
which help in finding messages following the 18 step differential path shown in
Table 1 when actual SHA-256 is used. These conditions try to ensure that the
functions fIF and fMAJ both behave like their middle arguments, and that +
behaves like ⊕. These conditions are shown in Table 2. Sufficient conditions for
9 step SHA-256 collision have also been given in [7], Table 3. We next highlight
the advantages of our conditions with those in [7].

1. The conditions in [7] are for only 9-step collision in SHA-256. Our conditions
are for 18-step collision in SHA-256.
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Table 2. Conditions for the 18 step differential path in Table 1. xi denotes ith bit of
a 32 bit quantity x. x denotes the bitwise negation of x which can be a 32 bit or a 1
bit quantity. Operator + is addition modulo 232 and operator * is multiplication of 2
single bits. Both these operators are used in steps 6 and 8.

Step Due to Pr. Due to Pr. Due to Pr. Due to Pr. Step
k fMAJ fIF ak ek Pr.

0-3 - - - - - - - - 1

4 b313 = c313
1
2 f31

3 = g31
3

1
2 W i

4 = (Σ0(a3))i; i = 9, 18, 29 1
26

bit differences 1
23

1
211

W i
4 = (Σ1(e3))i; i = 6, 20, 25 ΔWi

4; i = 9, 18, 29
propagate into e4

5 a31
4 = c314

1
2 e31

4 = 1, 1
24

W i
5 = (Σ1(e4))i; 1

29
- - 1

214
ei
3 = fi

3; i = 3, 4, 7, 12, 16,

i = 9, 18, 29 18, 23, 25, 30

6 a31
5 = b315

1
2 e31

5 = 1; 1
24

Wi
5 = (Σ1(e5) + f5)i; 1

26
- - 1

211
i = 9, 18, 29 i = 6, 9, 18, 20, 25, 29

e31
4 = e31

5 ∗ e31
3

7 - - ei
6 = 1; 1

24
- - - - 1

24
i = 9, 18, 29, 31

8 - - e31
6 = e31

7 ∗ e31
5

1
2 Wi

8 = (Σ1(e7) + h7)i; 1
26

- - 1
27

i = 6, 9, 18, 20, 25, 29
9 - - e31

8 = 1 1
2 - - - - 1

2
10 - - e31

9 = 1 1
2 - - - - 1

2
11-17 - - - - - - - - 1

Prob. 1
249

2. The GH local collision is used in [7] whereas we use SS5 local collision.
Further, no explanation is provided in [7] on how these conditions are derived
whereas we provide complete details about our conditions. It is now possible
to use the method described in this work to derive conditions for 18-step
SHA-256 collision using any other local collision.

3. In [7] the conditions are claimed to be “sufficient” but it is not clear if
satisfying them will immediately lead to a collision. The conditions that we
identify are not claimed to be sufficient. We only note that satisfying them
will increase the probability of finding colliding message pairs.

6.1 Explanation of Conditions in Table 2

ΔWk = 0 for steps k=0, 1 and 2 and hence there are no restrictions due to these
steps. In Step 3, although ΔW3 �= 0, the difference is only in the most significant
bit. The + and ⊕ behave the same with probability 1 for a difference in MSB, so
even Step 3 does not impose any restrictions. Hence conditions are needed to tackle
the proper differential behavior for the message pair only from Step 4 onwards.

Conditions Due to fMAJ and fIF : In Step 4, fMAJ has inputs a3, b3 and
c3 with Δa3 = 0x80000000. In SS5 local collision fMAJ is approximated by
it’s middle argument, which will happen if b31

3 = c31
3 . Similarly the fIF function

having arguments e3, f3 and g3 will behave like it’s middle argument if f31
3 = g31

3 .

Conditions Due to Register a4: Once the two boolean functions are approx-
imated by their middle arguments, register a4 is evaluated for both the messages
as follows :
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a4 = Σ0(a3) + b3 + Σ1(e3) + f3 + h3 + K4 + W4 and
a′
4 = Σ0(a′

3) + b′3 + Σ1(e′3) + f ′
3 + h′

3 + K4 + W ′
4

Registers a3 and a′
3 (resp. e3 and e′3) differ in their MSB, and the operator

Σ0 (resp. Σ1) expands this difference to 3 bit positions 6, 20 and 25 (resp. 9, 18
and 29). The word difference ΔW4 at this step has been chosen to differ in these
6 bit positions (namely 6, 20, 25, 9, 18 and 29) with the aim of cancelling these
differences.

The cancellation will happen as desired if :

1. The difference of words W4 and W ′
4 is opposite to the difference in words

Σ0(a3) and Σ0(a′
3) on bit positions 9, 18 and 29. For example, if (Σ0(a3))i

= 1 and (Σ0(a′
3))i = 0, then we would like (W4)i = 0 and (W ′

4)i = 1 so that
W4 + Σ0(a3) and W ′

4 + Σ0(a′
3) are equal at the ith bit position; i = 9, 18

and 29.
2. Similarly, (W4)i and (W ′

4)
i have difference opposite to the difference in

(Σ1(e3))i and (Σ1(e′3))i at bit positions i = 6, 20 and 25.

All the 6 bit differences will be cancelled if the conditions shown in Table 2,
Step 4, column ak are met. Note that this is not a necessary way of cancelling
the differences, other possibilities exist when the sum of the terms in a4 and
a′
4 may behave as desired. In particular, we do not use bit carries in addition

modulo 232 to cancel these type of differences like Wang et. al do for SHA-1 [21].
We use XOR differences only, unlike [21] where modular differences are used.

Conditions due to register e4: Having cancelled the 6 bit differences to obtain
Δ(a4) = 0, it can be seen that 3 bits from Δ(W4) will certainly propagate into
Δ(e4) because there is no Σ0 term in calculating e4 and e′4. If the differential
path is to be followed, then these 3 differing bits in W4 and W ′

4 should not carry
forward to other positions. Carry propagation to other bits will cause problems
in adjusting the register differences in next steps since any single bit difference
in a or e register is expanded into 3 bit differences by the operators Σ0 and Σ1.
We have chosen the word differences in next steps considering these positions by
following the linear (XOR) characteristics. It is possible to allow some bit carries
here but it seems that it will only reduce the probability of the differential path.

To complete the analysis of step 4, we finally look at the difference Δ(e4).
The registers e4 and e′4 are computed as follows:

e4 = d3 + Σ1(e3) + fIF (e3, f3, g3) + h3 + K4 + W4,

and e′4 = d′3 + Σ1(e′3) + fIF (e′3, f
′
3, g

′
3) + h′

3 + K4 + W ′
4.

In these two computations, bits 6, 20 and 25 corresponding to Σ1 rotations
of the differing bit 31 in e3 have already been taken care of while considering
a4. Bit numbers 9, 18 and 29 are the places where W4 and W ′

4 differ and these
differences are required to be propagated to Δe4. Since d3 = d′3, h3 = h′

3 and
fIF (e3, f3, g3) = fIF (e′3, f

′
3, g

′
3);

if we write rest = Σ1(e3) + fIF (e3, f3, g3) + h4 + K4,



138 S.K. Sanadhya and P. Sarkar

then e4 = rest + W4,

and e′4 = rest + W ′
4.

If the ith bit of rest is 0 and there is no carry into the ith bit while addition
with W4 takes place, then the XOR difference W4⊕W ′

4 will propagate into e4⊕e′4
as desired. Alternately, if the ith bit of rest is 1 and there is a carry into the ith

bit while addition with W4 takes place, then too the XOR difference W4 ⊕ W ′
4

will propagate into e4 ⊕ e′4.
Thus either we would like no carry propagation in e4 and e′4 at bits 6, 20

and 25 if rest is 0 at these bit positions or we would like carry propagation in
both these registers if rest is 1 at these bits. We do not have a deterministic
way to ensure this since we do not have complete freedom to choose the registers
and the message words as desired at this stage. However, the probability of the
carries to happen as desired can be increased if we we set other free bits of W4
and W ′

4 according to the following conditions :

1. if rest9 is 0 then W 7
4 = W 8

4 = 0.
2. if rest9 is 1 then W 7

4 = W 8
4 = 1.

3. if rest18 is 0 then W 10
4 = W 11

4 = . . . = W 17
4 = 0.

4. if rest18 is 1 then W 10
4 = W 11

4 = . . . = W 17
4 = 1.

5. if rest29 is 0 then W 26
4 = W 27

4 = W 28
4 = 0.

6. if rest29 is 1 then W 26
4 = W 27

4 = W 28
4 = 1.

In setting these conditions, we have used the bits between 6, 9, 20 and 9, 18 and
29 which are not restricted.

Similarly we have set conditions for other steps so that the messages follow
the differential path as desired.

6.2 Method to Satisfy Conditions in Table 2

First 4 words in the differential path are free and hence we choose them randomly.
Thereafter, many conditions in Table 2 are easy to fulfill as they depend only
on word Wk in step k. Some of the conditions on registers can be tackled by
suitably choosing the word Wk at that step which we can choose as desired.
However, there may be instances when a previously selected message word causes
impossible condition at a later step. As an example, we may not get the bit
carry conditions for register e4 as described previously. Also we wish to have e31

6
following a particular pattern at step 8 whereas this bit has been set at step 6
itself. In such contradicting cases, we choose another message word randomly
at the previous step where the condition was breaking down. Then we apply
message modification techniques from that step onwards and continue the search
process for further steps. We search incrementally proceeding further only when
all the conditions at a step are fulfilled and the differential path is as desired. The
differential path in Table 1 holds with probability 2−49, but with the procedure
described above, we are able to get a much higher probability. In fact, Steps
0 to 7 become very easy to fulfill with the message modification and we are
able to satisfy all the conditions till Step 7 in about a minute on an ordinary
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PC. The only difficult conditions are those imposed due to a8. We could find a
colliding message pair following exact differential characteristic in time varying
from about 40 minutes to a couple of hours on an ordinary PC. Repeatedly
running the program we could generate many such pairs. We show two such
colliding pairs of messages.

6.3 Colliding Message Pairs for 18-Step SHA-256

Tables 3 and 4 show the message pairs found using the techniques described
previously. All 18 words of the messages are given in the tables. First 16 words
can be used to compute the last two words using the message expansion of
SHA-256. Similar method can be used for finding 9-round pseudo collisions for
SHA-256 as well. Since we can already find message pairs colliding for 18-step
SHA-256 with the standard IV, the only utility for such an exercise would be
to see how easy it becomes to find these pseudo collisions due to the benefits of
relaxing the IV conditions. However, we found that the time required to find a
9-round pseudo collision is only marginally less than the time required to find
an 18-step collision. An example of such a pseudo collision in provided in [17].

Table 3. Colliding message pair for 18 step SHA-256 with standard IV. These two
messages follow the differential path given in Table 1.

M1 0-7 ccea5c17 53ad1a2d 141db23c b6acfaa8 5ee7fe4d 53c5b764 2bf20d44 87d63bf6
8-15 63a07869 f305fdea 26ee271f b973b91c d0f87828 b724a487 a295fa2a 0a67c97a

M2 0-7 ccea5c17 53ad1a2d 141db23c 36acfaa8 7cf3fc0d 1140a7fc 09e60f04 87d63bf6
8-15 41b47a29 f305fdea 26ee271f 3973b91c d0f87828 b724a487 a295fa2a 0a67c97a

Table 4. Another colliding message pair for 18 step SHA-256 with standard IV. These
two messages also follow the differential path given in Table 1.

M1 0-7 ed919421 aa75e4fe 8548d0e0 9c1888f7 1da3fc3d a11f7a02 bb463b64 e9b28365
8-15 323ecf28 8097e497 4343b78b dc484e91 bf588b4b 8401140a 42499da1 f88a3e2e

M2 0-7 ed919421 aa75e4fe 8548d0e0 1c1888f7 3fb7fe7d e39a6a9a 99523924 e9b28365
8-15 102acd68 8097e497 4343b78b 5c484e91 bf588b4b 8401140a 42499da1 f88a3e2e

It seems possible to use neutral bits to increase the efficiency of the search
for finding message pairs following the given differential path. We experimented
with this idea and found that the gains are not significant. More details about
our experiments with neutral bits are available in [17].

7 Using Coding Theoretic Methods to Find Linear
Differential Paths for Reduced Round SHA-256

In [15] and [14] coding theoretic techniques were used to search for differential
paths in SHA-1. Extension to SHA-2 was mentioned in [11]. We describe a new
way of forming parity check equations and then find low weight codewords for the
corresponding generator matrix. Each of these codewords can be used to build
a differential characteristic for reduced round SHA-256. This method results in
tackling up to 23-step reduced SHA-256.
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7.1 A New Way of Constructing Parity Check Equations

Tackling message expansion in SHA-2 can be a problem. A non-zero value of
ΔWi for i ≥ 16 necessitates tackling the recursion for message expansion. So
one way to avoid this is to ensure that ΔWi = 0 for i ≥ 16. Clearly, this cannot
work for full SHA-2. But, for reduced round versions, one can find differential
paths using this approach, as we describe below.

The technique described below assumes a local collision L. The description is
not for any particular local collision. It holds for any local collision. Obtaining
a particular local collision requires certain linear approximations of the con-
stituents of the SHA-256 round function. This converts the round function into
a linear map based on which we define our linear code. We note that the linear
code is not straightforwardly obtained from the linear map.

A message consists of 16 32-bit words for a total of 512 bits. We use the
Chabaud-Joux [3] type disturbance vector approach. Let DV = {d0, d1, d2, . . . ,
d255} be a 256-bit disturbance vector. If di = 1 then the two initial messages
differ in their ith bit, and further message bits differ as per the local collision.

We do not consider a 512-bit DV for the following reason. A local collision
defines the differences of 9 words of messages and only the first 16 words of
SHA-256 are unrestricted. Thereafter the message words are calculated using
the message expansion recurrence. This implies that a local collision can not be
started after first 8 steps without affecting the message expansion.

Let us now describe the linear code that we require. This is done in two steps.
In the first step, we express ΔWi (i ≥ 16) in terms of d0, . . . , d255. In the second
step, we define the parity check equations for the code by setting ΔWi = 0 for
i ≥ 16. Thus, any DV (d0, . . . , d255) which satisfies these parity check equations
is a codeword. Our task then is to look for a low weight codeword as this gives
a differential path with a small number of local collisions.

It is clear that such codes can be formed as long as there are less than 256
parity check equations. If we apply this procedure up to N rounds (corresponding
to step N −1), then we will obtain 32(N −16) parity check equations. Thus, the
maximum N that we can use with this method is N = 23. The minimum value
of N is clearly 17. Since we already report 18-round collision, we do not consider
N = 17 and 18. Instead we report differential paths from 19 to 23 rounds.

The first task is to express ΔWi (i ≥ 16) in terms of d0, . . . , d255. We describe
how this is done. For any local collision L, the first word determines the next
eight words. Consider the 32-bit vector (d0, 0, . . . , 0), where d0 is treated as a (bi-
nary) variable. Then L defines the next 8 32-bit words. At this point, the first 9
words have been defined. The rest 7 are taken to be zero. For i ≥ 16, ΔWi is now
obtained using the message recursion. This expresses all the ΔWis (i ≥ 16) as
linear function of d0. Next consider the 32-bit vector (0, d1, 0, . . . , 0); use L to ob-
tain the next eight words and the message expansion recursion to express ΔWis
(i ≥ 16) as linear function of d1. Now, for the 32-bit vector (d0, d1, 0, . . . , 0), we
can express ΔWis (i ≥ 16) as linear function of d0 and d1 by XORing the sepa-
rate linear functions corresponding to d0 and d1. Clearly, the procedure can be
extended to the entire DV (d0, . . . , d255). The exact details are given in Table 5.
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Table 5. Algorithm for generating parity check equations for linearized N step SHA-
256

external LC(x) : accepts a 32 bit input x and returns 9 words of 32 bits conforming to the local
collision chosen.

Set ΔWfinal := (U0, U1, . . . UN−1) Ui ∈ {0, 1}32

Set δWcur := (V0, V1, . . . V8) Vi ∈ {0, 1}32

Initialize ΔWfinal and δWcur to all zeros.

For(i = 0 to 8){
For(j = 0 to 31){

set D := (0, 0, . . . , d32i+j , 0, . . . , 0); /* The jth bit of D is given by d32i+j .

Each dn ∈ {0, 1} is the component of the disturbance vector and D ∈ {0, 1}32 */
set δWcur := LC(D);
For(k = i to i + 8){

ΔWfinal [k] = ΔWfinal[k] ⊕ δWcur [k − i];
}

}
}
/* At this point the ΔWfinal list contains Wi ⊕ W ′

i
for 0 ≤ i < 16 */

Obtain ΔWi for 16 ≤ i < N using linearized message expansion of SHA-256.
Equate all 32 bits of ΔWi for i ≥ 16 to zero to get 32 ∗ (N − 16) parity check equations.

Methods presented in [2], [8] and [19] are used to search for low weight code-
words from the check-matrices (and the corresponding generator matrices) ob-
tained using the algorithm in Table 5. Codewords of least weight found and the
linear differential path for that codeword are shown in Section 8.

8 Results and Comparison to Previous Work

Low weight disturbance vectors are searched for reduced round SHA-256 by using
the probabilistic methods described in [2], [8] and [19]. The minimum weights
of codewords found are listed in Table 6. For 19-step SHA-256 the weight of the
codeword found is 15 for both GH and SS5 local collision. This means that 15
local collisions are interleaved to obtain the 19-step characteristic. Interestingly,
all the 15 local collisions start at the same word for both GH and SS5. Thus
the case of 19-step characteristic can be considered as consisting of a single local
collision starting at Step 3 where the initial message difference is a word with
weight 15 bits. There is no colliding differential path known before this work
using the linearized local collision. Using this technique, the best known 19-step
differential path is for a near collision consisting of 23 GH local collisions [11]. As
has already been noted in [11], the GH local collision causes certain impossible
conditions in the search for actual colliding pairs. The use of SS5 local collision
ensures that we do not face two types of impossible conditions.

For 20 to 23 steps, no differential path using a linearized local collision is
known so far. We provide the first differential paths for these cases using the
linearization technique. For 23-step SHA-256, the size of the corresponding gen-
erator matrix is 32×256, i.e. there are only 32 codewords of length 256. It is
possible to do exhaustive search on this size, hence we did not use the proba-
bilistic methods for this case. For the 23-step case, the reported codeword weight
is actually the best possible. All these differential paths are reported in [17].
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Table 6. Summary of results. Least weight of the codeword found using different local
collisions. For 23 step case, the codeword weight is obtained by exhaustive search. For
all other cases, methods described in [2], [8] and [19] are used.

Step i Size of Check matrix using GH using SS5

18 - 1 1

19 96×256 15 15

20 128×256 33 31

21 160×256 45 45

22 192×256 59 60

23 224×256 79 75
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Abstract. In this paper a cryptographic hash function is proposed,
where collision resistance is based upon an assumption that involves
squaring modulo an RSA modulus in combination with a one-way func-
tion that does not compress its input, and may therefore be constructed
from standard techniques and assumptions. We are not able to reduce
collision finding to factoring, but on the other hand, our hash function is
more efficient than any known construction that makes use of modular
squaring.

1 Introduction

With the emergence of a large number of attacks (e.g. [1, 2, 4, 11, 27, 28, 29]) on
many dedicated hash functions, the development of alternatives based on dif-
ferent design principles has become increasingly desirable. While much research
has shifted towards hash functions based on block ciphers, some recent propos-
als such as [5, 7, 12, 16, 17] aim for some sort of “provable security”. Provable
security is in quotation marks because security proofs are always based on some
unproven assumption.

The downside to provably secure hash functions is that they are often much
less efficient than commonly used alternatives like MD5 [24] and SHA-1 [21],
and with the arguably most common application of hash functions being the
pre-processing of a message in a digital signature scheme with the intention of
making the entire signing process faster, a slow hash function loses some of its
justification. Hence, speed cannot be overlooked altogether, but keeping in mind
the large number of recent attacks on fast dedicated hash functions, it may be
beneficial to reconsider the scaling of speed vs. security.

In this paper, we propose a reasonably fast hash function based partly on
number theoretic principles. We prove that finding collisions is as hard as break-
ing a computational assumption that involves squaring modulo an RSA modulus
in combination with a one-way, collision resistant function that does not need
to compress (hence it can be injective). We propose different variants of such a
function, and we urge the community to assist in analysing these variants and
to possibly propose others.
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2 Hash Function Security

Three types of attack on hash functions are usually mentioned in the literature.
These are the preimage attack, the second preimage attack and the collision at-
tack, with expected complexities for an ideal m-bit hash function of, respectively,
2m, 2m, and 2m/2. In most cases these are also the conjectured complexities of a
newly designed hash function, and if an attack of lower complexity is discovered,
then the hash function is usually considered broken.

Finding second preimages in a hash function is at least as hard as finding col-
lisions, since given a second preimage, one immediately has a collision. Moreover,
if we let H be a hash function that accepts inputs which are (much) longer than
the outputs of H , then an algorithm that finds preimages might be given the
hash value H(x) for some x. With good probability, the algorithm will return
a preimage x̃ of H(x) such that x �= x̃. This also yields a collision. Hence, a
collision resistant hash function may reasonably be considered resistant also to
preimage attacks.

Hash functions aimed towards the use in applications such as digital signa-
tures, and to some extent commitment schemes and data integrity, must be col-
lision resistant. Hence, the complexity of finding collisions must be high enough
that the task is infeasible, preferably for many years to come. For such hash func-
tions it makes sense for the designers to indicate one claimed attack complexity,
a complexity that is a lower bound for all three mentioned types of attack.

This is the choice we have made here. We shall not claim that our hash func-
tion behaves as a random oracle. We simply claim that it is collision intractable.

3 The Proposal

The hash function proposal of this paper is now presented. We call this hash
function Dakota.

The basic idea can be seen as a further development of earlier hash functions
whose security is provably reducible to factoring [14,9]. A representative example
of these ideas is where the compression function h maps as h : {0, 1}×SQ(n) →
SQ(n), and is defined by h(b, y) = aby

2 mod n, where a0, a1 are randomly chosen
squares modulo RSA modulus n, and SQ(n) is the set of squares modulo n. It is
easy to show that an algorithm that finds collisions for h can be used to factor
n with probability 1/2. The actual hash function H is obtained by iterating h
in a standard Merkle-Damg̊ard construction, using a random square y0 as initial
value.

An alternative formulation, better suited for generalisation is to define a func-
tion f : {0, 1} → SQ(n), where f(b) = ab and write h(b, y) = f(b)y2 mod n. The
assumption that h is collision intractable can be phrased as saying that it is hard
to find distinct inputs (b, y), (b′, y′) such that f(b)f(b′)−1 = (y′y−1)2 mod n.

While this construction is very inefficient, since we spend a modular squaring
to hash a single bit, efficiency can be improved by extending the input domain
of f : we can define instead f to take input from {0, 1}t, and select 2t random
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squares as output values. This is t times faster than the basic idea. The reduction
to factoring can be constructed to have success probability independent of t,
see [9]. However, this idea is of course only practical for small values of t.

A natural alternative seems to be to define an efficient algorithm for com-
puting f , instead of specifying it as a table with all output values. In this way
we can allow f to take large strings as input and gain efficiency. The price to
pay, as we shall see, is that we can no longer prove that security is equivalent
to factoring – we return later to a discussion of what we can prove instead. A
more immediate practical problem, however, is that the security of the original
construction requires f to map into SQ(n), and it is not clear how we can ensure
that this happens when we have too many inputs to be able to specify the func-
tion by a table. To hit SQ(n), it seems that the algorithm computing f would
have to either (a) square a known value or (b) make use of the factorisation of
n. In the case of (a), this would mean that the adversary would know the square
root of the output of f , and this would invalidate the reduction to factoring.
With respect to (b), this does not work because f has to be a public function,
so it cannot be based on the secret factors of n.

We therefore propose below a variant of the idea, that permits f to map into
all of Zn while still allowing a security proof.

To this end, we assume we are given a probabilistic algorithm G that on input
a security parameter k produces an RSA modulus n = pq > 2k, where p ≡ q ≡ 3
(mod 4) (this means that −1 is a quadratic non-residue mod n, and that squaring
mod n is a bijection on the set of quadratic residues, see e.g. [18]), together with
a description of a function f : {0, 1}k → Zn. As we shall see, f will have to be
one-way and collision intractable, but since f does not compress its input, there
is no circularity here. Finally, it chooses r ∈ Z∗

n at random, sets s = r2 mod n
and returns (f, n, s) (p, q, and r are discarded in a secure manner).

Using the output of G, we define a compression function h : {0, 1}k×Zn → Zn

as follows:
h(x, y) = (f(x)y)2 mod n.

From this compression function we can build a collision intractable hash function
under the following assumption.

Assumption 1. Consider a probabilistic polynomial time algorithm that takes
as input f, n as produced by G on input k and outputs x, x̃, z. Then the proba-
bility that x �= x̃ and f(x)/f(x̃) = ±z2 mod n is negligible.

Assumption 1 leads to some requirements on the function f . For a discussion,
see Section 3.1.

We now define our hash function H by a standard Merkle-Damg̊ard construc-
tion [10, 19]: split the input message x into blocks of length k bits, call them
x1, . . . , xt. We assume for simplicity that x has been padded to a length divis-
ible by k. Then define y0 = s, and yi = h(xi, yi−1) for 1 ≤ i ≤ t. Finally, set
H(x) = yt.

Collision intractability of H does not follow as usual with this type of iterated
construction because our compression function is not collision intractable (inputs
of the form (x, y), (x, −y) collide). However, we can still prove:
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Theorem 1. The hash function H as described above is collision intractable
under Assumption 1.

Proof. We assume we are given an algorithm A that finds collisions with prob-
ability ε. We then build an algorithm that breaks Assumption 1: we get f, n as
input, we choose r at random in Z∗

n, set s = r2 mod n and we give f, n, s to A.
Assume now that a collision has been found by A, for different inputs

x1, . . . , xt and x̃1, . . . , x̃t̃. This gives rise to two sequences of values y0, . . . , yt and
ỹ0, . . . , ỹt̃, where yt = ỹt̃. This implies that we have h(xt, yt−1) = h(x̃t̃, ỹt̃−1), or
equivalently

(f(xt)/f(x̃t̃))
2 = (ỹt̃−1/yt−1)2 mod n.

If f(xt)/f(x̃t̃) �= ±ỹt̃−1/yt−1 mod n, then we can efficiently factor n by comput-
ing (e.g.) p = gcd(f(xt)/f(x̃t̃) − ỹt̃−1/yt−1, n). Factoring n in particular allows
breaking Assumption 1.

So we may assume that f(xt)/f(x̃t̃) = ±ỹt̃−1/yt−1 mod n. Now, if xt �= x̃t̃,
we can break Assumption 1, using the fact that we can compute a square root
z of ỹt̃−1/yt−1 mod n. This is because we already know a square root of yt−1,
namely f(xt−1)yt−2 mod n (if t > 1) or r (if t = 1); and by the same argument
we also know a square root of ỹt̃−1.

On the other hand, if xt = x̃t̃ then 1 = f(xt)/f(x̃t̃) = ±ỹt̃−1/yt−1 mod n.
Note that ỹt̃−1/yt−1 ∈ SQ(n) since all y-values are squares modulo n, but −1 �∈
SQ(n), so we conclude that ỹt̃−1/yt−1 = 1 ⇐⇒ ỹt̃−1 = yt−1, and we can now
repeat the same argument.

The only way in which this can fail to produce a contradiction with Assump-
tion 1 is if we end up concluding that yt = ỹt̃, yt−1 = ỹt̃−1, . . . , y0 = ỹt̃−t, where
we assume without loss of generality that t̃ ≥ t. Since the two inputs are different
it must be that t̃ > t, whence we have that

s = y0 = h(x̃t̃−t, ỹt̃−t−1) = (f(x̃t̃−t)ỹt̃−t−1)
2 mod n.

In other words, we have produced a square root of s. Since r was uniformly
chosen, there is a probability of 1/2 that the square root we find here is different
from ±r mod n, in which case we can factor n and break Assumption 1. Hence
if A finds a collision with probability ε, we can break the assumption with prob-
ability at least ε/2. 
�

Remark 1. If n can be factored, then Assumption 1 can be broken, and this may
allow for an attack on the hash function itself. Hence, n must be generated in
such a way that nobody knows its factorisation. Boneh and Franklin [3] have
described efficient techniques to do this securely.

3.1 Notes on Assumption 1

If f can be inverted on a non-negligible subset of Zn, then Assumption 1 can be
broken. One simply chooses x̃ and z, and computes f−1(z2f(x̃)). In particular,
it must be infeasible to find a zero of f , since otherwise Assumption 1 is broken
with z = 0 and any x̃.
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On the other hand, the image of f may only be a small subset of Zn, and
in such cases the ability to find a preimage of a given image of f may not be
a problem. This is due to the fact that the size of the image of the function
F (x, x̃) = f(x)/f(x̃) mod n can be made much smaller than n, for instance
n/2128. In this case, assuming that the outputs of F are uniformly distributed
in Zn, the probability that for a given z, an input (x, x̃) to F exists such that
F (x, x̃) = ±z2 mod n, is only about 2−128. Of course, if f expands, then the
efficiency of the hash function decreases.

It is clear why f must be collision intractable, as mentioned: if f(x) = f(x̃)
for x �= x̃, then Assumption 1 is broken with z = 1. However, this possibility is
excluded if we design f to be injective.

If f is one-way, and n cannot be factorised, then attacks where one chooses
two values of (x, x̃, z) and computes the third will fail. Computing z for given
(x, x̃) requires computing a square root modulo n. Computing, say, x given (x̃, z),
requires inverting f .

Another generic attack is to compute z2 mod n for many random values of z,
likewise many values of f(x)/f(x̃) mod n, and hope for a collision. This is just a
standard meet-in-the-middle attack which has complexity about

√
n and hence

has no practical significance.
Whether a more efficient method to find collisions than by factoring n is pos-

sible, depends of course on whether the design of f interacts in some unfortunate
way with arithmetic modulo n. For instance, one may try to find x, x̃ such that
f(x) = −f(x̃) mod n, or in general x, x̃ such that f(x) = ±a2f(x̃) mod n for
some a of the adversary’s choice. We return to this question below.

3.2 Output Transformation

For most applications it is recommended that the output of H is not used as the
final hash, but is instead fed to an output transformation function Ω : Zn →
{0, 1}m, where m is chosen such that the complexity of factoring n is no less than
2m/2. The intention is to obtain an output size corresponding to the security level
of the hash function. In addition, Ω might be used to obfuscate the algebraic
structure of the output. Any algebraic structure could compromise the security
of schemes in which the hash function is used, particularly schemes that are
based on modular arithmetic such as signature schemes based on RSA [25, 26].
A third purpose of an output transformation may be to improve the preimage
resistance of the hash function.

In order to provably extend the collision resistance of H to Ω ◦ H , Ω would
itself have to be collision intractable. But in practice this may not be necessary:
even if it is easy to find collisions for Ω, these do not necessarily lead to collisions
for Ω ◦ H . In fact, it may be sufficient that Ω mixes the bits of its input well
such that all output bits depend on all input bits, and that it is regular meaning
that all 2m preimage sets are of roughly the same size. Unless the hash function
is primarily used for short messages, Ω does not have to be terribly fast, since
it is only used once.
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A concrete example of how the output transformation could work is as follows:
Let G be a finite group of prime order and let g1, ..., gu be chosen randomly
in G. We choose the two integers t and u such that t < log2 |G| and tu ≥
log2(n). Let b = H(x) = b1‖ · · · ‖bu be the output from the main hash function,
where the length of each bi is t. Since tu ≥ log2(n) this may require that bu

be padded with zeros – a simple padding scheme is fine here, since all inputs
to the output transformation will have the same length. We then define the
intermediate output ω(b) as gb1

1 · · · gbu
u , that is, a single element from G.

It is well known [6] (and straightforward to show) that finding collisions for
this mapping is as hard as solving the discrete logarithm problem (DLP) in G.
There are well known constructions of such groups based on elliptic curves, where
the DLP can be reasonably assumed to be hard, and where the representation
of a group element is 200-400 bits long. Note also that by choosing t small, for
instance ≤ 8, we may perform the exponentiations gbi

i by table lookups.
We recommend that a final bijective function based on symmetric cryptogra-

phy is used on ω(b) to produce the final output Ω(b), in order to prevent the
adversary from exploiting the algebraic properties of exponentiation in G. This
function could be designed based on a block cipher in CBC mode as described
in more detail in Section 4.1.

4 Proposals for f

In this section we describe a number of possible instantiations of f , the function
used in the compression function of Dakota which must satisfy Assumption 1.

As mentioned, for f to satisfy Assumption 1, it cannot be easily invertible,
and it must also be collision resistant. Hence, it might be desirable that f be
injective. It should take a k-bit input and return an element of Zn.

One-wayness and collision resistance are necessary, but not sufficient condi-
tions. As an example, consider f(x) = x2 mod n, where x > n/2. It is generally
believed that for a secure modulus n, this function is one-way and collision re-
sistant. However, this is clearly a bad proposal, since given z and x̃, one may
choose x = zx̃ and thus break Assumption 1.

If, however, one assumes that f is, in some sense, independent of arithmetic
modulo n, or put differently, does not interact badly with arithmetic mod n,
then, intuitively, it seems that one-wayness and collision resistance are indeed
sufficient properties. This idea is made more concrete in the proposals below.

In the following we assume a modulus of size about 1024 bits. A proposal
for f should be evaluated on its security properties, and also on its scalability,
i.e. how easily it can be adapted to a new modulus of a different size.

4.1 Combining Modular Arithmetic with Symmetric Encryption

It is quite straightforward to construct a one-to-one function that has “nothing”
to do with modular arithmetic in the sense that we make it hard for an adversary
to choose inputs for which the outputs satisfy some algebraic relation mod n:
one can simply encrypt the input under a fixed key using a symmetric algorithm,
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say, a block cipher in CBC mode. To make life harder for the adversary, it may
be desirable that all output bits depend on all input bits. This can be ensured
by encrypting twice, reversing the order of the blocks for the second encryption.
Unfortunately, anything based on encryption under a fixed key is easy to invert,
and so this is not sufficient to get what we want.

On the other hand, if we are willing to use modular arithmetic, we can easily
satisfy a different subset of our demands, namely we can build a fast one-way and
one-to-one function by using modular squaring. Actually, for an RSA modulus,
squaring is a four-to-one mapping, but if we constrain the input to be less than
half the modulus, one can only find collisions by factoring the modulus, so this
is “as good as” being one-to-one.

An obvious idea to get all the properties we want is now to combine the two
ideas: first square to get the one-way property and then do AES encryption to
obfuscate the algebraic structure. This results in the following proposal for f
(keep in mind that k is the size (number of bits) of the input to f):

Proposal 1. We assume the size of n is 1025 bits, and we choose another RSA
modulus n′ of size 1024 bits. We let k = 1022 and x be the input, and let Eκ be
AES encryption in CBC mode with key κ. κ1 and κ2 are two fixed AES keys.

– Let u = x2 mod n′.
– Let v = Eκ1(u) = v1‖ · · · ‖v8.
– Let f(x) = Eκ2(v8‖ · · · ‖v1) (notice that the order of the blocks of v is re-

versed).

The specific choice of input and output sizes is just to make sure that inputs are
less than n′/2 and that outputs are less than n.

With this construction of f , we can hash about 128 bytes using two modular
squarings, a multiplication and AES encryption of 256 bytes.

How hard is it for the adversary to break our assumption for this choice of
f? The good news is that the straightforward ways to attack will not work:
the adversary may compute f(x), f(x̃) and try to extract a square root of
±f(x)/f(x̃) mod n, he can try to invert f or he can try to find a collision of
f . All three types of attack are as hard as factoring n or n′.

However, for attacks that choose a and then try to find x, x̃ such that
f(x)/f(x̃) = ±a2 mod n, we can only base ourselves on the heuristic that the
design of f is sufficiently incompatible with arithmetic modulo n for this to be
infeasible.

Proposal 1 is easily adapted to an RSA modulus n of a different size: simply
choose n′ as an RSA modulus smaller than n/2, and ensure 0 ≤ x < n′/2.
Furthermore, the double CBC encryption will have to accommodate a different
number of blocks.

4.2 A Proposal Using a k-Bit Permutation

If a (suitable) k-bit permutation g is available, then one might define f simply
as g(x) ⊕ x. This is a standard method of obtaining a one-way function from
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a (“good”) invertible permutation, see e.g. [19]. For k = 1024 we suggest the
following definition of f .

Proposal 2. Define f as g(x) ⊕ x, where g is defined as follows. Let τ be an
invertible function that transforms the 1024-bit string x into an 8 × 8 matrix
A of 16-bit values. Let Ai be row i of A, and let E be the function operating
on A by replacing Ai with Ei(Ai), 0 ≤ i < 8, where Eκ is the AES encryption
function with key κ. Define a round as

A ← E(A)T

(where (·)T is the transpose operator). Perform 4 such rounds. Finally, let g(x) =
τ−1(A).

Every state bit depends on every input bit after just two rounds. It seems very
hard to identify a useful structure in g or its inverse.

Proposal 2 is easily adapted to, e.g., a 2049-bit modulus as follows: Let x be a
2048-bit input string, and form from x a 16 × 16 matrix of (8-bit) bytes. Define
E as above, only with 0 ≤ i < 16, and perform again 4 rounds as defined above.

5 Performance

Our proposal may be compared to the basic version of VSH [7] (see also Section 6)
as follows: in both hash functions a multiplication and a squaring modulo n must
be performed for each message block, plus an overhead which in the case of VSH
is due to the computation of the product of small primes, and in our case is
due to the evaluation of f . Our hash function is likely to perform better for
one important reason: the size of a message block in our case is up to log2(n)
bits, whereas in the case of (basic) VSH it is the largest number t such that
the product of the first t primes is less than n (in [7], t is estimated to be
approximately log n

log log n ). As an example, with n begin a 1024-bit modulus, the
size of a message block in our hash function may be up to 1024 bits, and in VSH
it would be 131 bits.

There may also be an important difference in efficiency between evaluating f
and computing the product of up to t primes.

There are faster versions of VSH that use larger message blocks and pre-
compute some products of the small primes. These versions require a larger
modulus to be used, and reliably comparing fast VSH with Dakota requires
implementations using similar optimisations, compilers, processors etc. Accord-
ing to measurements presented in [7], fast VSH with claimed security equivalent
to factoring a 1024-bit modulus reaches speeds of around 840 cycles/byte (on a
1GHz Pentium III, which is a 32-bit processor).

The two described versions of Dakota have been implemented with ran-
dom choices of the moduli n (1025 bits) and n′ (1024 bits), the square s and
AES keys κ1 and κ2. We used our own C implementation of AES, which does
not achieve quite the same speeds as, e.g., those of the Crypto++ [8] library.
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Table 1. Speed comparison of Dakota with SHA-256 (see text for details)

Hash function
Approximate speed (cycles/byte)

32-bit 64-bit

SHA-256 20 20
Dakota (Proposal 1) 385 170
Dakota (Proposal 2) 330 170

For large integer arithmetic, the GMP (GNU Multiple Precision) arithmetic li-
brary [13] has been used (version 4.2.2). The implementation was compiled and
run in 32-bit and 64-bit modes, see Table 1 for benchmarks. In the table are
also included benchmarks for the Crypto++ [8] (version 5.5) implementation
of SHA-256 [22]. All benchmarks refer to a test on a 2.4GHz Intel Core 2 Duo
processor. The Dakota implementations were compiled using gcc version 4.1.3
(with optimisation flags -static -O2 -fomit-frame-pointer) in GNU/Linux
Ubuntu 7.10. Further optimisations of the implementations are almost certainly
possible.

We have not performed tests using larger modulus sizes, although in order to
achieve security (with respect to collisions) comparable to, e.g., SHA-256, a mod-
ulus size of about 3072 bits would be needed, according to estimates by NIST [23].

5.1 Montgomery Multiplication

The Montgomery reduction [20] is a means to speed up modular computations.
Let R be an integer, which in our case could be chosen to some power of two.
In a modular multiplication modulo n of integers x and y, one first computes
x′ = xR mod n and y′ = yR mod n. The Montgomery reduction of x′y′ is then
x′y′R−1 = xyR mod n.

In our proposal we are computing a series of values of the form yi+1 =
(f(xi)yi)2 mod n. We will introduce a variant of the Montgomery reduction tai-
lored for our computations.

Let ỹ0 = y0R
3 mod n, then compute the Montgomery reduction of f(x)ỹ0

which yields w = f(x)y0R
2 mod n, then compute the Montgomery reduction of

ww, which is
ỹ1 = (f(x)y0)2R3 mod n = y1R

3 mod n.

This method can be iterated such that given yiR
3 mod n we get yi+1R

3 mod n
using one multiplication, one squaring and two Montgomery reductions. When
all message blocks have been processed in the hash function, the constant R3

can be removed.

6 Related Work

A number of hash functions claiming to obtain provable security have been
proposed in the past. Some examples are now mentioned.
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Goldwasser-Micali-Rivest. Following ideas of [14], a provably collision intractable
hash function can be constructed as described in Section 3 (see also [9]). For
completeness, we describe the construction again here: Let a0, a1 be random
squares modulo RSA modulus n. All values are public, but the factors of n are
secret. Define the compression function h : {0, 1} × Z∗

n → Z∗
n by

h(x, y) = axy2 mod n.

It follows that a collision gives a square root modulo n which (with probabil-
ity 1/2) can be used to factor n. Variants that are t times faster have been
proposed [9]; these use 2t public squares and preserve the collision intractability.

VSH. A more recent example of a provably collision resistant hash function is
VSH [7], which is roughly defined as follows. Let n be a public RSA modulus.
Let p1, . . . , pk be public primes such that

∏k
i=1 pi < n. Define the compression

function h : {0, 1}k × Z∗
n → Z∗

n by

h(x, y) = y2
k∏

i=1

pxi

i mod n,

where xi is the ith bit of x. The security of this construction relies on the so-
called Very Smooth Square Root Problem, which is connected to the difficulty
of factoring.

Discrete log hash. The discrete log hash, or the Chaum-van Heijst-Pfitzmann
hash function [6] is defined as follows. Let p and q = p−1

2 be large, odd primes.
Let α and β be randomly chosen primitive elements of Zp, such that logα(β) is
hard to find. Define the compression function h : Zq × Zq → Z∗

p by

h(x, y) = αxβy mod p.

Then it can be shown that a collision for h enables one to compute logα(β).

MASH. The MASH (for Modular Arithmetic Secure Hash) functions [15] are
standardised in ISO/IEC 10118-4:1998. The compression function of MASH-1
is defined as follows. Let n be an RSA modulus, and let the message block be
expanded to x, where the 4 most significant bits of every byte are set to 1111
(except in the final (padding) block, where 1010 is inserted). Let a = f00...00
(in hexadecimal), and let

h(x, y) =
(
((x ⊕ y) ∨ a)2 mod n

)
⊕ y.

In MASH-2, the exponent 2 is replaced by 28 + 1.
The MASH functions fall somewhat outside the category of provably secure

hash functions, since no security proof exists. The claimed security of both these
hash functions is n1/2 for preimages, and n1/4 for collisions.
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7 Conclusion

The Dakota hash function is proposed. The properties of Dakota are that it
reduces the problem of constructing a secure (collision resistant) compression
function to the problem of constructing a function f such that it is infeasible to
find x, x̃, z with f(x)/f(x̃) = ±z2 mod n, given that factoring the RSA modulus
n is infeasible. The function f must be collision resistant and one-way, but it
does not need to compress, and hence it can be injective.

Two proposals for the function f have been given. One combines modular
arithmetic with symmetric encryption, and the other uses only symmetric en-
cryption in the form of the AES encryption function in black-box mode.

For both versions of Dakota, performance is good compared to other hash
functions based on modular arithmetic.
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Abstract. Cascade chaining is a very efficient and popular mode of
operation for building various kinds of cryptographic hash functions. In
particular, it is the basis of the most heavily utilized SHA function family.
Recently, many researchers pointed out various practical and theoretical
deficiencies of this mode, which resulted in a renewed interest in building
specialized modes of operations and new hash functions with better se-
curity. Unfortunately, it appears unlikely that a new hash function (say,
based on a new mode of operation) would be widely adopted before being
standardized, which is not expected to happen in the foreseeable future.

Instead, it seems likely that practitioners would continue to use the
cascade chaining, and the SHA family in particular, and try to work
around the deficiencies mentioned above. In this paper we provide a
thorough treatment of how to soundly design a secure hash function H ′

from a given cascade-based hash function H for various cryptographic ap-
plications, such as collision-resistance, one-wayness, pseudorandomness,
etc. We require each proposed construction of H ′ to satisfy the following
“axioms”.
1. The construction consists of one or two “black-box” calls to H .
2. In particular, one is not allowed to know/use anything about the

internals of H , such as modifying the initialization vector or affecting
the value of the chaining variable.

3. The construction should support variable-length inputs.
4. Compared to a single evaluation of H(M), the evaluation of H ′(M)

should make at most a fixed (small constant) number of extra calls
to the underlying compression function of H . In other words, the
efficiency of H ′ is negligibly close to that of H .

We discuss several popular modes of operation satisfying the above
axioms. For each such mode and for each given desired security require-
ment, we discuss the weakest requirement on the compression function
of H which would make this mode secure. We also give the implica-
tions of these results for using existing hash functions SHA-x, where
x ∈ {1, 224, 256, 384, 512}.

1 Introduction

The Cascade construction is a very elegant way to build a hash function H
on arbitrary-length inputs from a given compression function h on fixed-length
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Fig. 1. The plain Merkle-Damg̊ard Mode

inputs. Recall that for a given h : {0, 1}κ × {0, 1}n → {0, 1}n, one can define
a hash function H , parametrized by an initialization vector IV ∈ {0, 1}n, as
follows (where input M = m1 ‖ . . . ‖ m� and mi ∈ {0, 1}κ for i = 1 . . . �):

H(m1 ‖ . . . ‖ m�) = h(m�, h(. . . , h(m1, IV ) . . .))

We will refer to this mode, depicted in Figure 1, as the MD mode or the plain
MD mode (after Merkle-Damg̊ard).

The most abundant use of the MD mode in practice comes in the design of
the industry-standard hash family SHA (which consists of several specific hash
functions SHA-x, where x ∈ {1, 224, 256, 384, 512}). Unfortunately, despite its
elegance and simplicity, the plain MD mode has several deficiencies. For in-
stance, it does not guarantee that a “global” collision of H implies a “local”
collision of the compression function h, unless one preprocesses the input into
a suffix-free form before applying H [10] (the particular suffix-free encoding of
appending the message length is called MD strengthening, and is actually used in
the SHA family for this reason). More seriously, it was shown by Coron et al. [9]
that even MD strengthening falls prey to the “extension attack” 1 which makes
it insufficient for domain extension of random oracle. Moreover, this deficiency
disqualifies the natural use of “plain MD” in the design of “pseudorandom func-
tions” [3]. Other problems also arise when the MD mode is used in applications
such as key derivation [11] and target collision-resistance (or UOWHFs 2) [5,25].

Apart from the issues mentioned above, several other deficiencies of the MD
mode against exponential-time attacks have been discovered [15,17]. All these
deficiencies, coupled with the improved brute-force attacks on the popular SHA-
1 hash function proposed recently [26,27], suggest that it is time to design a
better, more “secure” mode of operation for building a variable-length input
hash function. With this purpose, NIST has been organizing several workshops
dedicated to coming up with the next generation hash functions [22]. However,
this process will take some time, and it does not appear that such hash functions
would be standardized and widely accepted in any foreseeable future. Therefore,
practitioners are “stuck” with the prospect of using existing hash functions,
despite all their deficiencies. Hence, there is a pressing need to design immediate
“fixes” to the MD paradigm, without changing it drastically.
1 i.e., given H(x) and any extension y, one can compute H(x ‖ y) without knowing x.
2 Which stands for Universal One-Way Hash Functions.
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There are two aims in coming up with such “fixes” to the MD mode. The first,
and so far the most popular, aim is to design a slight variant of the MD mode
that provably preserves a given security property of the compression function,
and to do so in the most aesthetic and efficient manner. We mention only a
few of the many examples of this approach. For collision-resistance, we already
mentioned the well known technique of MD strengthening. For another example,
by viewing the initialization vector as the key and applying a prefix-free encoding
to the message, one can obtain a variable-length input pseudorandom function
from a fixed-length input pseudorandom compression function [3]. In the case
of target collision-resistance, Shoup [25] designed an elegant mode for building
target collision-resistant (TCR) hash functions (or UOWHFs [23]) from a TCR
compression function by cleverly XORing certain masks to the internal chaining
variables in the MD construction. The common feature in all these results is that
one assumes exactly the same property from the compression function h as the
desired property from the hash function H . In many cases, such as the PRF and
TCR examples, this means that a “secure” mode must be sufficiently different
from the plain MD so that its implementation requires a non-trivial modification
to the SHA implementation. Concretely, the SHA family uses a fixed public IV
(as opposed to arbitrary secret IV needed for PRFs), while in the TCR case one
cannot XOR the corresponding masks without modifying the internals of SHA.

Of course, we are not saying that the required modifications are too “com-
plicated” to be correctly implemented by a serious programmer. In fact, they
are not. Our point is that, irrespective of simplicity and conceptual similarity
to the existing implementations, they require one to tinker with the internals of
such standard implementations. And this is not only error-prone and requiring
low-level programming (which could result in less optimized implementations
than those done by the experts), but goes against the whole philosophy of mod-
ular design. We do not want our security engineers to know all the low-level
cryptographic details. Instead, they should understand the higher-level picture
of the protocols they are trying to build, and never need to worry about existing
low-level libraries.

This brings us to the second approach, where one explicitly aims to design
a “secure” mode that uses only black-box calls to the plain MD mode.3 For
instance, MD strengthening satisfies this property. Other important examples
include the HMAC mode for pseudorandom functions [3] and the results for do-
main extension of random oracle in [9]. The attractive feature of these results is
that they result in a hash function with the desired property without tinkering
with the internals of SHA, and can use any off-the-shelf implementation. More-
over, all these examples also satisfy the property-preserving property described
above, and do so without any noticeable efficiency penalties as compared to the
solutions following the first approach. Concretely, at the price of one or two (or
sometimes zero!) extra calls to the compression function h — which is negligible
for all practical purposes —, one manages to achieve the desired goal without
tinkering with the internals of the existing hash functions.

3 In practice, with MD strengthening, but we ignore this aspect for now.
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Our Goal. Not surprisingly, we will emphasize the latter approach in coming
up with “fixes” for existing hash functions. That is, we consider the question of
building a hash function H ′ achieving a given security property P using a black-
box MD-based hash function H (with an unknown compression function h). We
require that the proposed construction H ′ satisfies the following “axioms”:

1. The construction should consist of one or two “black-box” calls to H . In
particular, the construction is not allowed to use any knowledge of or tinker
with the internals of the hash function H .

2. The construction must support variable-length inputs.
3. Compared to a single evaluation of H(M), the evaluation of H ′(M) should

make at most a fixed (small constant) number of extra calls to the underlying
compression function of H . In other words, the efficiency of H ′ is negligibly
close to that of H .

The motivation behind requiring the construction H ′ to satisfy these axioms is
from the viewpoint of a practitioner who understands the properties of the hash
function that are needed for the security of his cryptosystem, but who wants to
use an off-the-shelf standardized hash function implementation without tinkering
with its internals. Such a practitioner would be willing to sacrifice the property-
preserving aspect of the “fix” in favor of a black-box implementation.

In fact, the above “axioms” leave very little freedom in choosing the modes
of operation for H ′. The resulting modes are essentially the most widely-utilized
constructions appearing in practical implementations:

1. Plain MD Construction: This captures the notion that the application uses
the hash function as it is. We will denote this mode of operation as H.

2. Encode-then-MD Construction: In this case, the user encodes the hash func-
tion input before applying the plain MD construction. Examples of popular
encoding schemes used are suffix-free encoding and prefix-free encoding. We
will refer to the corresponding constructions as the prefix-free MD construc-
tion Hpre and the suffix-free MD construction Hsuf .

3. MD-then-Chop Construction: Here the user applies the plain MD mode and
only uses part of the output while discarding the remaining bits. In partic-
ular, existing hash functions SHA-224 and SHA-384 are obtained this way
from SHA-256 and SHA-512, respectively. We denote the MD-then-chop con-
struction that chops s bits of the output as Hchops .

4. NMAC/HMAC Construction: The version of the NMAC construction that
we consider simply composes two applications of the plain MD mode with
possibly different initialization vectors IV1 and IV2. While not obeying the
first axiom, the NMAC construction serves as a nice abstraction for the
HMAC construction which does satisfy all our axioms (but is slightly harder
to formally analyze in some cases). Concretely, the HMAC construction
uses the NMAC construction with IV1 = h(IV, α1) = H(α1) and IV2 =
h(IV, α2) = H(α2), where each αi is either the null string ⊥ (in which case
we let h(IV, ⊥) = IV ) or a single κ-bit block. We denote the NMAC con-
struction as Hnmac and the HMAC construction as Hhmac.
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Now we can finally rephrase our goal as follows. Given a particular desired
security property P (such as collision-resistance or pseudorandomness) and one
of the 4 modes of operation above (which all satisfy our axioms), find the weakest
security assumption(s) P ′ on the compression function h which would make the
corresponding mode satisfy P (or determine that the construction is insecure for
any h). Ideally, this security property P ′ for h would be P itself (which would
result in a property-preserving mode of operation). However, unlike most previous
work, property preservation is not our primary concern. In particular, we will not
declare a mode of operation to be “insecure” for a property P simply because
it is not property-preserving for P . Instead, we will find the weakest security
property P ′ of the compression function that makes the resulting construction
secure. This will allow the practitioners to decide whether or not it is reasonable
to assume that the compression function of existing hash functions, such as SHA,
satisfy the property P ′, even if P ′ is (slightly) stronger than P .

Our Results. We achieve our main goal for a very wide variety of security
properties including collision-resistance (CR), pseudorandomness (PR), indif-
ferentiability from random oracle (RO), message authentication (MAC), target
collision-resistance (TCR), second preimage-resistance (SPR), randomness ex-
traction (RE) and one-wayness (OW). In each case, and for each of the four
popular modes above, we will identify the needed property P ′ on h. In some
cases, the needed P ′ easily follows from some existing work (for instance, from
[9] in the case of domain extension of random oracle). In other cases, it required
some minor, but important modifications to the existing results in order to sat-
isfy our axioms. For example, by assuming that “h(IV, random) = random” in
addition to h being a PRF when keyed with the first n bits of its input, we could
build a variable length PRF using the encode-then-MD mode and adjusting the
proof of [3]. More interestingly, by making extra assumptions on h, in some cases
we can prove security of the modes which were previously believed “insecure”
because they were not property-preserving. Finally, in some cases the proof will
involve careful and non-trivial modification of previous results. For example, this
is the case when analyzing the one-wayness of the Hsuf construction.

In addition to giving an exhaustive “mode × property” guide (see figure 2) for
achieving a given security property with a given popular mode, in each section
we also mention the practical implication of our results when using existing hash
functions SHA-x, where x ∈ {1, 224, 256, 384, 512}.

Related Work. We have already cited many of the relevant papers. In partic-
ular, the variants of the MD mode that are useful in the property-preservation of
collision-resistance [10], pseudorandomness [3,4], message-authentication [1,21],
random oracles [9] and randomness extraction [11]. We also mention the works of
[7,8] concerned with multiple property-preservation; namely, designing a single
mode of operation which simultaneously preserves several properties. Unfortu-
nately, the modes of [7,8] do not satisfy our axioms. Finally, we mention the
work of Halevi and Krawczyk [14], which concentrated on building TCR hash
functions, and is the closest in spirit to our motivation (indeed, we will use
their results when discussing the TCR property). The authors built TCR hash
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Assumptions on compression function:

(8)=computed SPR (cSPR)
(7)=enhanced SPR (eSPR)

(1)=Collision Resistance (CR)
(2)=Output Regular
(3)=standard PRF (sPRF)
(4)=dual PRF (dPRF)
(5)=FIL-RO
(6)=MAC with κ-bit key

(9)=Fixed-point at random IV

(10)=Family of random functions
(11)=One-way function

(7’)=eSPR after Chop
(8’)=cSPR after Chop

(3’)=sPRF after Chop
(2’)=h(Un, ·) is output regular
(1’)=CR after Chop

Misc.

SF=Suffix-free
PF=Prefix-free
MDS=MD Strengtheining
??=not known to be secure

Key ⊕ Blks =XOR key to
each block

RExt=Randomness Extrn.

CRHF

RO

PRF
Append key +

Pre-Free+(1)+(2)
(1) + (2) (1’) + (2)

(1)+(2)+(4)

Not Secure
Suf-Free not secure

Pre-Free+(5)

(5) NMAC/HMAC+(5)

IV1 �= IV2 ; α1 �= α2

MAC

Suf-Free+(1)

(prepend)

(append)

PF+(2’)+(3)

SF+(1)+(4)

(append)

Prepend key +

worse security

(1)+(2)+(6’)

(2’)+(3’)

Append key +

Any IV s/αs

TCR

SPR

RExt

OWF

Append key + N/H+(1)+(2)+(6)

SF+(7) (key ⊕ blks)key ⊕ blks key ⊕ blks

Any IV s/αs

α1 �=⊥

(1)+(2)+(6)

(7) + (9) PF+(7)+(9) (7’) + (9)

N/H+(7)+(9)

(8) + (9)
SF+(9)

PF+(8)+(9)
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Any IV s/αs

N/H+(8)+(9)

H∞(M) ∧ H∞(m�)

(10)

H∞(M) ∧ H∞(m�)

(10)

H∞(M) HMAC??

NMAC + (10)

(SF/PF??)

MDS + (10)

(2)+(11)
MDS+(2)+(11)

(2’)+(11)
NMAC+(2)+(11)

HMAC??

(SF/PF??)

SF+(1)+(6)

PF+(1)+(2)+(6)(app.)

N/HMAC+(1)+(2)

(key ⊕ blks)

Any IV s/αs

N/H+(3)+(4)

(append)

(prepend)

Plain MD Encode-then-MD MD-then-Chop NMAC/HMAC

Fig. 2. Table for comparing Security Property vs. Mode of operation

functions using the encode-then-MD mode, and showed a simple coding scheme
that yields a secure TCR hash function under an appropriately strong assump-
tion on the underlying compression function h (still weaker than CR, but stronger
than TCR).

Location of the key in keyed constructions. We note that for keyed
constructions, such as constructions of pseudorandom and TCR functions, there
are more than one possibilities for each hash function mode of operation. In
particular, any construction for these primitives must specify the location of the
key. In keeping with the black-box nature of the modes of operation, we prevent
popular keying methods such as setting the key to be the IV or XORing the key
into the chaining variables since this violates our basic axioms.

Moreover, we also do not consider the dedicated-key setting [1,8], where there
is separate space for the key in each application of the compression function.
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This is because existing hash functions do not support such dedicated keys.
Even though we may consider the key to be part of the message block bits,
we do not analyze this method since it yields constructions with poor input
bandwidth (thus violating our last axiom). Hence, we will only consider modes
of operation which incur an additive constant overhead compared to the plain
MD mode.

Are We Asking Too Much? In our motivation, we advocated the fact that
the security officers should not know (or worry about) the low-level details of the
hash function implementations. In particular, we do not want them to manually
modify the internals of SHA. On the other hand, to use our result they have to
be “smart enough” to understand the purpose of their application of the hash
function, so they can use our black-box workarounds. For example, they need
to know if H ′ is used for collision-resistance, key derivation, one-wayness, etc.
Aren’t we asking too much? Should not the security engineer just believe that
the existing hash function will be “magically applicable” for whatever intuitive
use (s)he has in mind (therefore making this paper “useless”)?

We give two answers. First, we personally believe that a person designing a
cryptographic protocol using a hash function should know what security prop-
erties this hash function should satisfy. (And this does not contradict our desire
to protect them from low-level details!) Second, in order for the security engi-
neer to use a hash function in the “magical” way above, the function should
not have the weaknesses of the SHA family we mentioned earlier. Thus, until a
new, “magic” hash function is built and standardized, we simply cannot achieve
a positive answer to our question, even if we want our engineers to be “dumb”
and not understanding what they is doing (which we personally disagree with)!
Until then, we believe that the results of this paper are meaningful and useful.

2 Security of MD Modes

We will analyze each of the security properties that actual hash functions are
often required to satisfy, and find the minimal assumptions on the compression
function that are necessary to prove the security of each of the black-box modes
of operation for this security notion. As we discussed, we will not restrict our-
selves to the case of property-preservation and in some cases, we will need to
make slightly stronger assumptions on the compression function than the secu-
rity notion desired.

Since the focus of our paper is mostly qualitative, in terms of when (i.e.
for which applications) does it make more sense to use some particular mode
of operation, so we will keep the discussion “slightly informal” by using more
asymptotic definitions for the security notions. We assume basic familiarity with
these notions, but provide the formal definitions in the full version of this paper
[12]. Due to space constraints, we only give the security of the modes of operation
for collision-resistance, pseudorandomness and one-wayness in the main body.
The discussion for other security notions can be found in the full version of this
paper [12].
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2.1 Collision Resistance

We will analyze each of the four modes for minimal assumptions required on
the compression function h : {0, 1}κ × {0, 1}n → {0, 1}n needed in order to
prove its collision resistance. A construction will be called ε collision resistant
if the maximum advantage of an efficient attacker in finding a collision is ε. As
we discussed, in some cases, the security property needed for the compression
function h may be stronger than collision resistance.

Plain MD construction. It is a well-known fact that simply assuming col-
lision resistance of the compression function does not suffice to prove collision
resistance of the plain MD construction. Indeed, if the compression function h
has a fixed-point such that there is some x ∈ {0, 1}κ such that: h(x, IV ) = IV .
Then the output of the plain MD construction H collides for the inputs x and
x ‖ m, for any m. Thus we, at least, need the compression function to satisfy
the following property.

Assumption 1 (No Fixed-Points) A function h : {0, 1}κ×{0, 1}n → {0, 1}n

is a ε secure against fixed points if for a randomly chosen IV ∈ {0, 1}n no
efficient machine A has success probability more than ε of finding a sequence of
κ-bit blocks x1 . . . xi such that,

h(xi, h(. . . , h(x1, IV ) . . .)) = IV

If the compression function is such that no efficient attacker can find such fixed
points (along with being collision resistant), then the plain MD construction
can be proven to be collision resistant. The proof of the following obsevration is
immediate from [10].

Observation 1 The plain MD construction can be proven to be collision re-
sistant if the compression function is collision resistant and is secure against
fixed-points.

The no fixed-points assumption allows us to prove collision resistance of the plain
MD construction, but it is a non-standard assumption and it is not intuitively
clear as to which compression functions satisfy this property. But since we are
already assuming the compression function to be collision-resistant, perhaps we
can prove this result by making a weaker and cleaner additional assumption
on the compression function. Fortunately we show that simply assuming output
regularity suffices in this case.

Assumption 2 (Regularity of outputs) A function h : {0, 1}m → {0, 1}n

is a ε output regular function if for any efficient machine A that gives a 1 bit
output:

|Pr [A(x) = 1 |x ← h(Um) ] − Pr [A(x) = 1 |x ← Un ]| ≤ ε

Here Um and Un denote the uniform distributions on {0, 1}m and {0, 1}n,
respectively.
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We show that if the compression function is output regular (i.e. for a random
input, the output is well distributed over the range) in addition to being collision-
resistant, then it is secure against fixed points and thus a CRHF using the
observation above.

Lemma 1. The compression function h : {0, 1}κ × {0, 1}n → {0, 1}n is (εcol +
εreg + 2−n)-secure against fixed points if it satisfies the following properties:

– h is εcol collision resistant.
– h is an εreg output regular function.

Proof: To the contrary, say there is an efficient attacker that finds a fixed point
x1 . . . xi with non-negligible probability ε, then we can show that it either breaks
the collision resistance or the output regularity assumption for the compression
function. In order to show this, choose the initialization vector IV as IV ← h(x)
(for x ← Uκ × Un), instead of IV ← Un. If the success probability of A changes
by a non-negligible amount then we can break the output regularity assumption.
Thus, ε′ ≥ εreg + Pr[A succeeds in new game].

To estimate the success probability of the attacker A in the new game, say it
finds a sequence of κ-bit blocks x1 . . . xi such that h(xi, h(. . . , h(x1, IV ) . . .)) =
IV with probability ε′. Let y = (xi, h(. . . , h(x1, IV ) . . .)). Then it is the case
that h(x) = h(y) (where x was used to select the IV ). Thus, we can deduce
that,

ε′ = Pr[(A succeeds) ∧ (x = y)] + Pr[(A succeeds) ∧ (x �= y)]
⇒ ε′ ≤ Pr[(x = y)] + εcol

⇒ ε′ ≤ εcol +
∑

IV ∈{0,1}n

#{x s.t. h(x) = IV }
2n+κ

· 1
#{x s.t. h(x) = IV }

≤ εcol + 2−n

Thus we get that the maximum success probability of an efficient fixed-point
finding attacker is εreg + εcol + 2−n.

Corollary 1. The plain MD construction H using a compression function h :
{0, 1}κ×{0, 1}n → {0, 1}n is a (εreg+εcol+2−n) collision resistant hash function
if h satisfies the following properties:

– h is εcol collision resistant.
– h is an εreg output regular function.

Encode-then-MD construction. It makes sense to only consider determin-
istic input coding schemes, since the resulting construction must behave like a
function. We analyze two of the most popular such coding schemes, i.e. prefix-free
encoding and suffix-free encoding.

We first note that using a prefix-free encoding on the input does not enable us
to get rid of any security properties in lemma 1. Hence we can essentially restate



Getting the Best Out of Existing Hash Functions 165

the same result for the prefix-free MD construction Hpre as well. On the other
hand, if we use a suffix-free encoding (such as Merkle-Damg̊ard strengthening)
then the resulting suffix-free MD construction Hsuf can be shown to be collision
resistant by simply assuming the collision-resistance of the compression function
h [10,19].

MD-then-Chop construction. Note that simply assuming collision resis-
tance of the compression function is not useful for this construction, since we
truncate s bits of the output. For instance, consider the case when h is collision
resistant on these s bits, and is the constant function for all other bits (noted
by Kelsey [16]). However, in our setting this only means that we need to make
a stronger assumption on the compression function h. In particular, we will in-
stead assume that h is collision resistant even if we remove these s bits from its
output.

Lemma 2. The MD-then-chop construction Hchops , using a compression func-
tion h : {0, 1}κ × {0, 1}n → {0, 1}n, is a (εreg + ε′col + 2n−s) collision resistant
hash function if the following holds:

– The functionh′ : {0, 1}κ×{0, 1}n → {0, 1}n−s defined ash′(x, y)=h(x, y)|n−s

(i.e. chopping the last s bits from the output of h) is a ε′col collision resistant
function.

– h is a εreg output regular function.

The proof of this lemma is essentially the same as for corollary 1.

NMAC/HMAC construction. We note that using the NMAC construction
Hnmac does not help in improving upon the collision resistance of the plain MD
construction H. This is essentially because any collision in the first application of
the plain MD construction of Hnmac (using initialization vector IV1) essentially
implies a collision for the entire construction. Hence, at best, we can restate
lemma 1 for this construction as well.

Since the HMAC construction Hhmac is simply a black-box instantiation of
the NMAC construction, this does not help in improving collision resistance.
However, we note that it has the best exact security if α1 �=⊥.

2.2 Pseudorandomness

An issue in the pseudorandomness analysis of the MD modes of operation is the
location of the PRF key. As discussed above, we need to specify the location of
the key such that the resulting construction is still a black-box variant of plain
MD. For our analysis, we will assume the key length to be the length of a single
block (i.e. κ bits for the compression function h : {0, 1}κ × {0, 1}n → {0, 1}n),
and we will denote the key as K. We will analyze two approaches for keying each
MD mode of operation:

1. Prepend the key to input: The PRF construction H outputs H(K ‖ X) on
input X .

2. Append the key to input: The PRF construction H outputs H(X ‖ K) on
input X .
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Moreover, we will need two versions of pseudorandomness definitions for the
compression function, one where the key occupies the last n bits and other
where it occupies the first κ bits. We get the following two assumptions on the
compression function in this manner.

– Standard PRF (sPRF) security: Here we require that for a uniformly chosen
K ∈ {0, 1}n, the function h(·, K) must be indistinguishable from a truly
random function.

– Dual PRF (dPRF) security: Here we require that for a uniformly chosen
K ∈ {0, 1}κ, the function h(K, ·) must be indistinguishable from a truly
random function.

Depending on the maximum distinguishing advantage ε of an efficient attacker
in each case, we call the compression function h ε-sPRF or ε-dPRF.

Plain MD construction. In this case if we prepend the PRF key to the hash
function input, then the resulting construction is not a PRF. This is because an
attacker can use the extension attack to find H(K ‖ X ‖ Y ) by simply knowing
the output H(K ‖ X) and computing the compression function on the remaining
blocks itself (where it does not need to know the key K). On the other hand, if
we append the PRF key to the input, then we can show that if the plain MD
construction using h is collision-resistant and satisfies the dual PRF security,
then the plain MD construction H(· ‖ K) is a variable-length input PRF.

Lemma 3. The plain MD construction H is a O(� · (εcol + εreg) + εdprf) PRF 4

(with PRF key appended to the function input) if the following conditions hold:

– h is εcol collision resistant.
– h is a εreg output regular function.
– h is a εdprf dual pseudorandom function.

The proof of this lemma is rather straightforward. Here, output regularity and
collision resistance of the compression function together imply the collision resis-
tance of the plain MD construction. Thus, in the last round, the n-bit chaining
variable is different for two different inputs. Hence a distinguisher for the plain
MD construction can be used directly by the dual-PRF distinguisher for the
compression function.

Encode-then-MD construction. Once again, we will discuss two deter-
ministic coding schemes here, prefix-free encoding and suffix-free encoding. Let
us first analyze the suffix-free MD construction Hsuf . If we prepend the key to
the (encoded) input, the resulting construction is still insecure since the exten-
sion attack works in this case as well. On the other hand, if we append the key
to the (encoded) input then the resulting construction is a PRF if the suffix-
free MD construction Hsuf using the compression function h is a dual PRF and
collision resistant (for which we only need collision resistance of h in this case).

4 � denotes the maximum number of κ-bit blocks in a hash function input, throughout
this paper
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For the prefix-free MD construction Hpre, if we append the key to the (en-
coded) input then we get no advantage as compared to the plain MD construction
and we can only restate lemma 3 in this case. On the other hand, if we prepend
the PRF key to the (encoded) input then the resulting construction is not vul-
nerable to the extension attack in this case. Indeed, it was shown by Bellare et
al. in [3] that the prefix-free MD construction with the PRF key in the IV is a
PRF only assuming that the compression function h satisfies the standard PRF
security. However, since we will need to prepend the key to the input (in order
to preserve the black-box property of the construction), we will need to impose
an extra condition on the compression function. In particular, we require that
the function defined as h(Un, ·) is an output regular function. That is, if the first
n bits of the compression function h are chosen at random then the resulting
function is output regular with high probability.

Lemma 4. The prefix-free MD construction Hpre is a O(ε′reg + � · εsprf ) secure
PRF (with PRF key prepended to the input) if the following conditions hold:

– h is a εsprf sPRF.
– h(Un, ·) is a ε′reg output regular function.

The proof of this lemma is similar to the result of [3].

MD-then-Chop construction. If the PRF key is appended to the input to
the MD-then-Chop construction Hchops , then a slight variant of lemma 3 can
be stated for this construction as well. Indeed, all we need is to specify the
dual PRF and collision-resistance properties for the compression function with
chopped output.

On the other hand, if we prepend the PRF key to the input to Hchops , then
the extension attack does not seem to go through as in the case of plain MD
construction. This is because the attacker does not learn the chopped s bits of the
chaining variable by observing the output of Hchops for the prefix of an input.
Indeed, this construction can be proven to be an arbitrary-length input PRF
by making a slightly non-standard assumption on the compression function. In
particular, we require the compression function to satisfy the following resilient
sPRF assumption:

Assumption 3 ((s, ε)-resilient sPRF) The function h : {0, 1}κ × {0, 1}n →
{0, 1}n is a (s, ε)-resilient sPRF if it is a ε-secure sPRF even if the attacker
learns s bits of the n bit key.

Lemma 5. The MD-then-Chop construction Hchops is a O(ε′reg+�·ε′sprf ) secure
PRF (with PRF key prepended to the input) if the following conditions hold:

– h is a (s, ε′sprf )-resilient sPRF.
– h(Un, ·) is a ε′reg output regular function.

NMAC/HMAC construction. The NMAC and HMAC constructions were
shown to be secure arbitrary-length input PRFs by Bellare [2]. In [2], it is shown
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that the HMAC construction with α1 = α2 =⊥ (i.e. with the same IV for both
invocations of the plain MD construction) is a secure arbitrary-length input PRF
if the underlying compression function satisfies both the standard and dual PRF
security definitions. This is done by simply prepending a different κ-bit key to
each invocation of the plain MD construction 5.

Lemma 6. The NMAC (resp. HMAC) construction Hnmac (resp. Hhmac) is a
O(q2� · εsprf + εdprf) PRF (with a different κ-bit key prepended to the input in
each call to the MD construction) for any IV1 and IV2 (resp. α1 and α2) if the
following conditions hold:

– h is a εsprf -secure sPRF.
– h is a εdprf -secure dPRF.

2.3 One-Wayness

One way functions are also often referred to as preimage resistant functions. A
construction is ε-secure OWF if no efficient attacker can find the input corre-
sponding to the output of the function (on a random input) with probability
more than ε. This security property is even weaker than second preimage resis-
tance.

Plain MD construction. In this case, we will need to assume that the
compression function h is a one way function. Moreover, we will also require
that h is output regular, so that its output is uniformly distributed for a random
input. This is essentially because we need the input to a one-way function to be
random in order to use the one-wayness property.

Lemma 7. The plain MD construction H is O(� · εreg + εowf)-secure OWF if
the following conditions hold:

– h is an εreg output regular function.
– h is a εowf -secure one-way function.

The proof of this lemma is based on the fact that an attacker cannot tell the
difference between the output of H on a random input or the compression func-
tion h on a random input, if h is output regular. Thus the one-wayness attacker
for h can use the one for H directly.

Encode-then-MD construction. If we use an arbitrary suffix-free encoding
with the MD construction, then we cannot say much about one-wayness of the
construction since the input distribution could be arbitrary. However, if we apply
Merkle-Damg̊ard strengthening to the input, then we can show that the resulting
construction is a one-way function under sufficient assumptions. The proof of
this fact is non-trivial though. In particular, we need to make an additional
assumption about the compression function.
5 If the same key is prepended in both invocations, then the construction is secure

under a slightly stronger assumption, called security against related-key attacks in
[3,2]. We ignore this setting here
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Assumption 4 ((p, ε) output consistent) The function h : {0, 1}κ × {0, 1}n

→ {0, 1}n is (p, ε) output consistent if for any κ-bit block x and uniformly dis-
tributed y ∈ {0, 1}n, with probability at least (1 − ε) the number of y′ ∈ {0, 1}n

such that h(x, y) = h(x, y′) is at most p.

Note that this property certainly holds for a random compression function (and,
thus, holds for most compression functions). By making this additional assump-
tion from the compression function, we can derive the following result.

Lemma 8. The suffix-free MD construction Hsuf that uses MD strengthening
for suffix-freeness is (pcons·(�·εreg+εowf)+εcons)-secure one-way function, where
� is the maximum length of an inverted input provided by the OWF attacker, if
the following conditions hold:

– h is an εreg output regular function.
– h is a εowf -secure one-way function.
– h is a (pcons, εcons) output consistent.

Proof: The proof for this lemma is essentially based on the proof of lemma 7.
We construct an one-wayness attacker A′ for the compression function using the
attacker A that has advantage ε in inverting Hsuf with MD strengthening. A′

gets its challenge output y and chooses a uniformly random i ∈ {1, . . . , �}n. It
then gives z = h(〈i〉, y) as a challenge to A.

Now A′ succeeds only if the inverse z outputted by A is i-bit long. If so, then
A′ can proceed similar to the case on the plain MD construction in lemma 7 if
the chaining variable for z in the last round, with 〈i〉 in the message block, is the
challenge y. However, from our assumptions, with probability at most εcons there
are more than pcons n-bit strings y′ such that h(〈i〉, y′) = h(〈i〉, y). Thus, we get
that the success probability of A is at most (pcons · (� · εreg + εowf) + εcons).

As for prefix-free encoding, once againwe cannot say anything general (for the same
reason as above), but when prepending the message length we are essentially back
to the setting of plain MD discussed above, except we need to assume that the out-
put of the compression function on a random IV and a fixed message block is ran-
dom. In particular, we note that encoding the input in any way does not help as
far as one-wayness of the construction is concerned. In fact, we only need more as-
sumptions to prove this property, as compared to the plain MD construction.

MD-then-Chop construction. In order to prove the one-wayness of the
MD-then-Chop construction, we need to make a stronger assumption on the
compression function h. In particular, we assume that h is one-way with s bits
of the output chopped. Let the one-way security of the function h with truncated
output be ε′owf . Then we can show that Hchops is a O(� · εreg + ε′owf)-secure one-
way function (similar to lemma 7)

NMAC/HMAC construction. The NMAC construction is a one-way func-
tion under the same conditions on the underlying compression function h as
required in lemma 7. However, we require that random and independent initial-
ization vectors IV1 and IV2 are used in the NMAC construction. However, it
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turns out that translating these results to the setting of the HMAC construction
is not straightforward.

3 Implications for Hash Functions in Practice

We will now translate our results into suggestions for usage of actual “cascade con-
structionbased” hash functions, such as functions fromthe SHA family.Aswemen-
tioned earlier, we have tried to find the minimal assumptions needed to make each
of the four modes of operation secure (for each of the security properties). Thus, we
have left part of the “decision making” for the practitioner who uses our results. In
particular, the practitioner must consider the following questions:

1. What one needs to assume about the hash function in order for the cryp-
tosystem (that the hash function is being used for) to be provably secure?

2. What level of trust the practitioner is willing to place in the underlying
compression function?

The answer to the first question will help in deciding the security property to
look for in the hash function mode of operation. The answer to the second ques-
tion may not be as straightforward since the design of the compression functions
is quite complex and mostly based on heuristic. In this case, the practitioner
needs to weigh all the properties (s)he desires from the cryptosystem, in terms
of efficiency, security etc. Thus, while some may be willing to make a slightly
stronger assumption on the compression function to have a more efficient imple-
mentation, others may be willing to sacrifice some efficiency for better security.
Now we will give some basic recommendations for actual hash functions with
respect to the various security properties.

Collision Resistance. Each of the SHA functions are essentially based on
the suffix-free MD construction (using MD strengthening). Hence, collision resis-
tance for each of these hash functions is asymptotically same as finding collisions
on the compression function. It does not make much sense to use the “truncated”
versions, SHA-224 and SHA-384, since this only sacrifices the collision resistance
of the original “untruncated” version (i.e. SHA-256 and SHA-512, respectively).
Using the NMAC/HMAC construction does not help in this case.

Pseudorandomness. We note that using the full SHA-256 or SHA-512 hash
functions makes more sense for pseudorandomness than using the chopped ver-
sions (SHA-228 or SHA-384), which only have worse security. If any of the SHA
functions are used, as it is, for pseudorandomness, then we recommend append-
ing the PRF key to the input instead of prepending it. However, we recommend
using these functions in conjunction with a prefix-free encoding (such as prepend-
ing input length to the input) in which case the PRF key should be prepended
to the input. Another option would be to compose two calls to SHA-1, with
independent keys prepended in each call, to get security based on the sPRF and
dPRF security of the compression function.

Random Oracle. Note that none of the SHA functions should be used, as it
is, if the security of the cryptosystem requires the random oracle assumption for
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the hash function. This is because the plain MD construction (even with MD
strengthening) is vulnerable to simple attacks in the indifferentiability scenario.
One may think that both SHA-224 and SHA-384 that correspond to “chop”
versions of the functions SHA-256 and SHA-512 would be secure (since the MD-
then-Chop construction is secure). However, note that only 32 bits are chopped
in the case of SHA-224, which does not give sufficient security for almost all
applications. Hence, only SHA-384 (that chops 128 bits) may be suitable to be
used directly to instantiate the random oracle.

We recommend using the HMAC construction involving two black-box calls
to the SHA function (while prepending different α1 and α2 in each cal) for this
purpose. Using any of these hash functions in conjunction with a prefix-free
encoding will also work for this purpose.

Message Authentication. If the SHA functions are used as MACs directly,
then the MAC key should be appended to the input. In this case, security de-
pends on both the MAC security and collision resistance of the compression
function. Using the HMAC construction does not help in improving the secu-
rity either. Moreover, when the “chopped” functions SHA-224 or SHA-384 are
used as MACs, then their security is only worse than the unchopped versions
(SHA-256 and SHA-512).

If one is willing to assume pseudorandomness of the compression function, then
the techniques mentioned above for pseudorandomness can be used as well. An-
other approachwould be to assume the dedicated-key setting, by inserting the MAC
key in each application of the compression function (at the cost of some input band-
width) and then one could use one of the techniques suggested in [1,21].

Target Collision Resistance or UOWHFs. We recommend using the
technique suggested by Halevi and Krawczyk [14] if the SHA functions are used
as UOWHFs. In this case, one XORs the UOWHF key to each block of the input.
Since MD strengthening is already used in all these functions, the UOWHF
security of this construction is based only on the eSPR [14] (see above) of the
compression function.

Second Preimage Resistance. It makes sense to use the SHA hash func-
tions directly for the purpose of second preimage resistance without using any
additional techniques, since they do not lead to improved security (note that
these functions already incorporate MD strengthening).

Randomness Extraction. All the positive results for randomness extraction
have reasonable interpretation in practice, only if we are willing to assume that
the SHA compression function is close to being a family of random functions.
Even though it is theoretically impossible, since the SHA compression function
has a short description, it might still be a more reasonable assumption than
assuming the compression function to be a FIL-RO.

Under this assumption, we can deduce that the SHA functions are good random-
ness extractors for input distributions with high min entropy overall and in the last
block. On the other hand, as we saw above, it might be a good idea to use chopped
function SHA-384 for this purpose to get better extraction properties (SHA-224
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does not have sufficient number of chopped bits to give useful advantage). Using
the HMAC construction does not help in improving the extraction properties.

One-Wayness. In the case of “one-wayness”, the security of the chopped func-
tions, SHA-224 and SHA-384, seems to rely on stronger assumptions than the se-
curity of the corresponding “unchopped” versions (SHA-256 and SHA-384). This
is because the one-way security increases with the number of output bits. On
the other hand, it might be the case that SHA-224 still has higher security than
SHA-1, which seems intuitive given the bigger IV of SHA-224. Moreover, message
encoding or HMAC construction only negatively affects the one-wayness.

4 Conclusions

In this work we showed how to efficiently use existing hash functions based on
the MD mode (such as the functions in the SHA family) to build cryptographic
hash functions satisfying various security properties such as collision-resistance,
pseudorandomness, indifferentiability from random oracle, message authentica-
tion, target collision-resistance, second preimage-resistance, randomness extrac-
tion and one-wayness. Our constructions are black-box, support variable-length
inputs and provide the same efficiency as the plain MD construction, under the
minimal assumptions on the underlying compression function.
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Macià Mut-Puigserver, Magdalena Payeras-Capellà, Josep Llúıs Ferrer-Gomila,
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Abstract. A fair multi-party exchange protocol provides equal treat-
ment to all users, in such a way that at the end of the execution of the
exchange, all parties have the element that wished to obtain, or none of
them has obtained any valid item. In this paper, we analyse a well-known
multi-party fair exchange protocol and, in spite of the formal proof of its
correctness given in [11], we demonstrate that the protocol has a flaw.
The weakness provoked by this flaw made possible a replay attack that
breaks the fairness of the exchange. We will see as a group of colluding
participants in the exchange can get the item from an honest participant
and this participant will get nothing. In addition to that, we propose a
new protocol to solve the problem of the potential replay attack which
preserves the property of semi-trusted neutral party. The property was
introduced in the original protocol so as to improve the user confidence
in the trusted third party (TTP). Our solution not only preserves this
property but also introduces the property of verifiable TTP. The prop-
erty guaranties evidences from each TTP operation to the users. The
evidences can be used to get compensation and correct any wrong situ-
ation caused by an incorrect operation of the TTP; for instance, in case
of a passive conspiracy of the TTP.

1 Introduction

Some electronic services require an exchange of elements between two or more
users. A fair exchange of values always provides an equal treatment to all users,
and, at the end of the execution of the exchange, all parties have the element
that wished to obtain, or the exchange has not been solved successfully (in this
case, nobody has its expected element). Among the electronic applications that
require a fair exchange of information we can find electronic contract signing,
certified electronic mail and electronic purchase (payment in exchange for a
receipt or a digital product).

In a fair exchange protocol several entities wants to exchange their goods in
such a way that, at the end of the protocol, any honest participant has received
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electrónica basada en servicios web (CICYT TSI2007 62986) and PROGECIB-16A
(CAIB).

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 174–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Replay Attack in a Fair Exchange Protocol 175

all expected items or none of them has obtained any valid item. Fair exchange
protocols often use trusted third parties (TTPs) helping users to successfully
realize the exchange. So, TTPs play an important role in these protocols and
their reliability and security is a problem that needs to be addressed, because the
security of the exchange can be broken if the TTP doesn’t work properly. In this
paper, we will break the fairness of the exchange of an existing protocol using
a replay attack against the TTP. As a result, the protocol will finish with an
entity, who has given away his own item, but without getting the other expected
item.

We can distinguish between single-unit and multi-unit exchange protocols. In
the case of multi-unit exchange protocols different topologies are possible (star,
ring, matrix, graph). Protocols like [2, 5] suppose that each party exchanges an
item against another and the exchange’s topology is a ring. Franklin and Tsudik
in [5] propose a new multi-party fair exchange protocol with a ring topology,
which was improved in [7] and a final version of the protocol with a proof of
its correctness was given in [11]. Here, we analyse the protocol proposed by
Mukhamedov et al. in [11] and we will demonstrate that, in spite of the im-
provements suggested and the formal proof of correctness, the security of the
exchange can be broken using a replay attack.

Our solution to the replay attack not only preserves a TTP with the quality
of semi-trusted neutral party [5] but also she is verifiable [12]. This key feature
removes a weakness of the protocol (e.g.; it can defend users against a passive
conspiracy of the TTP) and increases the user’s confidence in the TTP. Our new
scheme will provide users with evidences of the TTP operations. In case of any
misbehaviour of the TTP, participants can make use of the evidences to correct
the unfair situation.

The paper is organized as follows: section 2 presents some security notions and
the multi-party fair exchange protocol, section 3 describes what we can consider
a reply attack, sections 4 and 5 describes the replay attack and its solution.
Section 6 shows that the TTP involved in the new protocol is verifiable. Section
7 is devoted to the conclusions of this work.

2 Multi-party Fair Exchange Protocol

2.1 Syntax

To give a description of the protocols we use the notation number.{event}:
{description} to describe the individual steps of these protocols, where num-
ber is the step number of the protocol, {event} can be the sending of a message
from user X to Y (designated by X→Y ) or an ftp get operation (designated by
X↔Y ) and it can also be some local computation of a participant. The notation
of the encryption operations will be:

• PUA(m) is the result of applying an asymmetric encryption algorithm to the
plaintext m under Alice’s public key;
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• PRA(m) denotes the digital signature of Alice over message m using her
private key;

• EK(m) is the symmetric encryption of message m under key K.

The encryption schemes EK(), PUA() and PRA() are not homomorphic.

2.2 Security Notions

In this section we will give a general definition of the security of an exchange
protocol. As suggested in [10], we say that an exchange protocol is secure when
it respect these three mandatory properties:

1. Viability: independently of the communication channels quality, there exists
an execution of the protocol, where the exchange succeeds.

2. Fairness : the communication channels quality being fixed, at the end of the
exchange protocol run, either all involved parties obtain their expected items
or none (even a part) of the information to be exchanged with respect to the
missing items is received.

3. Timeliness: the communication channels quality being fixed, the parties al-
ways have the ability to reach, in a finite amount of time, a point in the
protocol where they can stop the protocol while preserving fairness.

So, a secure exchange protocol must be fair relating to the exchanged items
and it also must be fair relating to the ability to determine the progress of
the protocol (called timeliness). Moreover, a secure exchange can respect some
optional properties, like non-repudiation, abuse-freeness and verifiability of the
TTP [10, 12, 14]. These additional properties allow the evolution of fair-non-
repudiation protocols in the critical security points, such as the trusted third
party’s involvement in fair exchange schemes.

2.3 Protocol Description

We will describe the multi-party fair exchange protocol proposed in [11] which
will be the object of our replay attack. To do that, we need to know how the
privacy and the authentication properties are achieved in this protocol, because
the authors in [11], for the sake of simplicity, didn’t give explicit specifications
about that. For this reason we have chosen the description of the same protocol
made in [7] as a way of achieving privacy and authenticity. Of course, we have
added the two fixes proposed in [11] (the solution to the possible collision in the
label space and the fix to the arithmetic attack that they describe).

Different topologies are possible in the case of multi-party fair exchange pro-
tocols. The exchange topology in the protocol proposed in [11] is a ring. In this
case, each participant Pi(i ∈ [1, n]) desires an item (or a set of items) from the
participant Pi−1 and offers an item to the participant Pi+1. The communica-
tion channels between participants are unreliable and those used between each
participant and the TTP are resilient (a communication channel is resilient if a
message inserted into such a channel will eventually be delivered [14]).
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The protocol relies on a homomorphic one-way function f (i.e.; f(x1 · x2) =
f(x1) · f(x2)) and a function with n arguments Fn such that:

Fn(x1, f(x2), . . . , f(xn)) = f(x1 · x2 · . . . · xn)

The proposed function f is f(x) = x2(mod N) and Fn(x1, x2, . . . , xn) = x2
1 · x2 ·

. . . · xn where N is an RSA modulus. To avoid notational clutter, we suppose
that all operations on subscripts are performed modulo N. As we have said, the
exchange is cyclic, so, an entity Pi, i ∈ [1, n], sends his secret information mi to
Pi+1 in exchange of Pi−1’s secret information mi−1. At the end of setup phase
the authors suppose that:

• Each participant knows the identity of the remaining participants in the
exchange;

• All participants agree on the TTP and the functions f and Fn;
• Descriptions of the items to be exchanged f(mi) are public.

A label l has been introduced to identify a protocol’s run. To avoid possible
collision in the label space, Mukhamedov et al. explain that the TTP will gen-
erate and distribute the value of l to the participants of the exchange at the
setup phase (timestamps or nonces may suffice for this purpose together with
the TTP’s name). The protocol is as follows:

1. Pi → Pi+1 : PRPi(l, PUPi+1(Ri))
2. Pi → TTP : PRPi(l, Ai, PUT (Ci), f(Ri), f(Ri−1), f(mi−1)),

where Ai = Fn(mi, f(m1) . . . f(mi−1), f(mi+1) . . . f(mn)) and Ci = mi ·R−1
i

3. TTP → Pi : PRT (l,C),
where C = {Ci | 1 ≤ i ≤ n}

Each participant Pi chooses a random value Ri, then she encrypts it and sends
it to Pi+1. Then, each Pi computes Ci = mi · R−1

i and Ai and she sends this
information to the TTP along with f(Ri), f(Ri−1) and f(mi−1). The TTP waits
until it has received the n messages from the participants and then she performs
the following checks:

a. The f(Ri) sent by Pi is equal to the f(Ri) sent by Pi+1;
b. All received Ai are equal. If so, the TTP computes ζ = C1 · . . . · Cn and

Fn+1(ζ, f(R1), . . . , f(Rn)). This second computation has to be equal to any
Ai. These operations are made by the TTP to ensure consistency between
mi and f(mi);

c. The TTP must be sure that Ci contains R−1
i . So, the TTP checks that each

Ci ∈ C verifies: f(Ci · Ri) = f(mi), ∀i ∈ [1, n].

If checks succeed then the TTP will send C to the participants. This enables
each Pi to compute mi−1 = Ci−1 · Ri−1.
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3 Replay Attacks

Replay attacks have been discussed for quite some time in the literature (e.g.;
[1, 6, 13]). A reply attack is a kind of active attack where a user (the attacker)
records a communication session or part of it and then, later, replays the entire
session, or a portion of the recorded information so as to take advantage of it.

The attacker can be a single user involved in the exchange (e.g.; a sender
or a receiver of a certified electronic mail, a payer or a payee in an electronic
purchase, a contract signer. . . ) or a confabulation of users.

Attackers want to have a benefit replaying the exchange (or part of it). This
benefit, in case of fair exchange, can be obtaining the token they wanted to
receive through the exchange. In order to get the element, the attacker usually
contacts with the TTP and sends him some information included in the recorded
exchange. As a result of this attack, the attackers gain the element they desired to
obtain and some other honest participant will not receive the expected element.

4 Replay Attack to the Multi-party Fair Exchange
Protocol

A replay attack against the TTP could be possible in the protocol defined in
§2.3. In this attack, a group of dishonest participants make the TTP believe
that the exchange is stopped. Then, they start a new protocol’s run without an
honest participant of the previous exchange and they use the TTP to get the
item of this participant from the first exchange. We’ll attempt to illustrate the
attack by giving this example:

1. Suppose we have three participants involved in a cyclic exchange using the
protocol specified in [11]: Pi sends her information mi to Pi+1 in exchange
of Pi−1’s secret information mi−1(∀i = 1..3); to close the ring P3 sends her
information to P1. We assume that P1 collude with P2 against P3.

2. The second step of the protocol will not be performed neither by P1 nor by
P2. However, they capture the message sent by P3 to the TTP:

PRP3(l, A3, PUT (C3), f(R3), f(R2), f(m2))

The TTP will not receive any other message of this protocol’s run, so she
eventually stops this protocol’s instance.

3. Afterwards P1, P2 and P4 (a new dishonest participant colluded with P1 and
P2) start a new protocol’s run. The target of this new exchange is getting
the item m3 of P3 from the previous exchange. In this case, P1 and P2 are
supposed to exchange new items (the description of the items are f(m̃1)
and f(m̃2) respectively), but these participants deceive the TTP, they say
that the description of the item exchanged by P4 is f(m3). Thus, after the
exchange of the random numbers at the first step of the protocol, the second
step will be as follows:
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P1 → TTP : PRP1(l̃, Ã1, PUT (C̃1), f(R̃1), f(R3), f(m3))

P2 → TTP : PRP2(l̃, Ã2, PUT (C̃2), f(R̃2), f(R̃1), f(m̃1))

P4 → TTP : PRP4(l̃, Ã1, PUT (C3), f(R3), f(R̃2), f(m̃2))

The information PUT (C3), f(R3) and f(m3), used in the new messages, is
taken from the message captured in the previous protocol’s run. The value
of Ãi=1,2,4 must be the same, so P4 copies this value from P1 because it is
impossible to be computed by P4 without knowing m3.

4. Finally, the TTP checks:
(a) The f(Ri) sent by Pi is equal to the f(Ri) sent by Pi+1;
(b) All received Ai are equal. The TTP computes ζ = C̃1 · C̃2 ·C3 and checks

that F4(ζ, f(R̃1), f(R̃2), f(R3)) is equal to any Ai;
(c) The TTP also has to check that each Ci ∈ C verifies: f(Ci · Ri) =

f(mi), ∀i ∈ [1, n]; where C = {Ci | 1 ≤ i ≤ n}.
5. Participants will receive C from the TTP. Participant P1 has received R3

in the first step of the previous protocol’s run. Thus, P1 can compute the
message m3 = C3 · R3.

Following these five steps, participant P1 has got m3 from P3 and P3 has not
received the message expected. So, the fairness of the exchange has been broken.

5 Solving the Replay Attack

5.1 Fixing the Protocol

We will modify the original protocol so as to solve the problem of the replay
attack. As a result, we will get a new protocol resistant to this kind of attacks.
In the new scheme, before starting the exchange phase of the protocol, there is
a setup phase. At the end of this phase:

a. Participants in the exchange have agreed on the identity of the TTP and on
the functions f and Fn.

b. Each participant knows the identity of the remaining participants in the ex-
change. The TTP knows these participants and publishes a list with their
identities (ρ = PRT (l, P1, P2, . . . , Pn) is the set of all participants with the
label of the exchange l, which identifies a protocol’s run). The order of ap-
pearance in this list determines the way in which participants are arranged
in the ring topology of the exchange.

c. Participants also send the description of items that will be exchanged to the
TTP (f(mi), ∀i ∈ [1, n]). The TTP publishes a list with these descriptions:
δ = PRT (l, f(m1), f(m2), . . . , f(mn)).

Thus, at the end of the setup phase, participants can download from a public
directory managed by the TTP the following items:

0. Pi ↔ TTP : ρ, δ
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Then, each user Pi verifies the correctness of (ρ, δ) and begins the exchange
phase by choosing a random value Ri and sending it to Pi+1 as follows:

1. Pi → Pi+1 : PRPi(PUPi+1(l, Ri))
2. Pi → TTP : PRPi(l, Ai, EKi(l, Ci), PUT (l, Ki), f(Ki), f(Ri), f(Ri−1)),

where:

Ci = mi · R−1
i , and

Ai = Fn(mi, f(m1), . . . f(mi−1), f(mi+1), . . . , f(mn))

Note that label l is encrypted along with the random number Ri, the key Ki

and the message Ci. Thus, nobody can use Ri or Ci outside the scope of this
exchange. Inside the messages sent by participants to the TTP, f(mi−1) was in-
troduced in [11] because the TTP needs to know agent-message correspondence.
But now, this information is known by the TTP during the setup phase (in fact,
TTP publishes ρ and δ).

In order to know the status of the exchange and to verify the task of the TTP,
the TTP publishes, every period of time Δt (this period is a public parameter of
the TTP), an authenticated list (λ) of received messages from the participants
by the TTP. The items issued by the TTP are published in a public directory
managed by this entity. When all messages are received, the TTP verifies that
these messages have the correct format with the appropriate label, items, signa-
tures and encryptions. Obviously, that is very important to detect any kind of
attack, but, here, we want to emphasize the role of the correctness of these ver-
ifications in messages PRPi(l, Ai, EKi(l, Ci), PUT (l, Ki), f(Ki), f(Ri), f(Ri−1))
in order to prevent the replay attack: any participant cannot separate Ci from
l, which was the basis of the replay attack of §4.

Next, the TTP performs the verifications specified in §2.3 at the step three of
the protocol and, if all checks succeed, she publishes C and K as follows:

3. Pi ↔ TTP : PRT (l,C = {Ci|1 ≤ i ≤ n},K = {Ki|1 ≤ i ≤ n})

Finally, each participant Pi computes mi−1 = Ci−1 · Ri−1 and obtains the
expected item. However, an execution of the protocol can be aborted by any
participant if the TTP has not received the corresponding messages (step 2)
from all participants and, therefore, she has not published C (step 3). To cancel
an exchange, any participant has to verify that the TTP has not collected all
messages (i.e. the last published list λ doesn’t contain all messages and C is not
published), then she can perform this alternative step three:

3. Pi → TTP : PRPi(l, ′′cancel′′)
4. Pi ↔ TTP : PRT (l, λ, ′′cancelled′′)

When the TTP receives a message to cancel an exchange from a participant,
she checks whether the last published λ has all messages from the participants.
If the check fails, the TTP makes public the message PRT (l, λ, ′′cancelled′′)
instead of publishing the next list of received messages λ. Obviously, the list
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λ in message PRT (l, λ, ′′cancelled′′) must not contain all messages of the step
2 but it has to contain the request to cancel the exchange: PRPi(l, ′′cancel′′).
Lastly, participants can get the message PRT (l, λ, ′′cancelled′′), which is an
evidence that prove that the exchange identified by label l has been aborted.

5.2 Security of the Protocol

With respect to the three mandatory properties of a secure fair exchange we can
state that this new scheme is secure because:

1. Obviously the three step of the new protocol has an execution where the
exchange succeeds. So, the protocol is viable.

2. According to the definitions in §2.2, the proposed protocol is fair. A proto-
col’s run always ends with a fair situation:
(a) If everyone is honest, then each Pi can compute: mi−1 = Ci−1 · Ri−1, at

the end of the protocol.
(b) If all parties are honest but the TTP is not, all Ri values are pre-

distributed securely and the TTP cannot obtain any Ri. Moreover, if
the TTP misbehaves, participants will have evidences to prove that and
to correct the unfair situation (see §6: verifiable third party).

(c) If a protocol run is aborted, a malicious participant cannot take advan-
tage of that. Any participant will not be able to use the information of
this protocol’s run outside the scope of the exchange (the information
items used in the protocol are linked to the exchange and the encryptions
algorithms are not homomorphic, so it is not possible to use any piece of
information from a particular exchange in another exchange without be-
ing detected). Thus, in this case, the malicious participant cannot learn
the secret information from another participant.

3. Participants has the ability to determine the progress of the protocol and
they can arrive, in finite amount of time, at a point where the protocol
stops preserving fairness (here, we suppose that the TTP will reply to any
message from a participant in a finite amount of time). For example, if the
TTP doesn’t publish C and K because she has not received all messages
from participants, then any participant can cancel the protocol preserving
the security of the exchange.

6 Verifiable Third Party

Besides the compulsory properties, some other remarkable properties can be
present in a fair exchange. In order to improve the user confidence in the TTP,
the original protocol was presented in [5] with an important property: the TTP is
a semi-trusted neutral party. Numerous papers [3, 4, 5, 8, 9] express the concern
about that, because it is necessary the user confidence in the critical security
points in order to spread the use of new electronic procedures. From this point
of view, we need to design new protocols where the user confidence on what
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is happing when he invokes the TTP is enhanced. Otherwise, it could be very
difficult to find designated full-time neutral parties to rely on in order to use any
protocol.

A semi-trusted neutral party, as it is explained in [5], can be selected on a case-
by-case basis and asked to aid in the execution of a fair multi-party exchange.
However, while a TTP with this property is trusted to ensure the fairness of the
exchange, it is not trusted with the actual items involved in the exchange. This
means that a malicious semi-trusted neutral party must be unable to cheat as
long as the other parties remain honest (i.e. a malicious TTP cannot know and
reveal the content of the exchanged items).

Our solution, the proposed protocol in §5.1, is designed to achieve another
property in order to increase the user confidence on the TTP operations. The
TTP involved in this protocol is verifiable according to the concepts defined in
[12]. A verifiable TTP aims to reduce the amount of trust that users have to
place in TTPs, because verifiability is a security capability, that is to say, it is a
mechanism to protect users against security threats. Now, we are going to give
a definition of a verifiable TTP according to the concepts given in [12]:

Definition 1. A security service is verifiable if the user, who sends a request to
a TTP, receives a non-repudiation evidence of each operation carried out by the
TTP to provide the service.

Definition 2. The verifiability of a security service is on-line if the user, after
checking the received evidences, can immediately know whether the TTP misbe-
haved. In case of problems, the user can start a dispute to correct the situation.

Definition 3. A TTP is verifiable if the security services it provides are verifi-
able and the verifiability of the services is on-line.

Thus, to be verifiable, a TTP has to issue evidences about its operation. For
instance, if the fairness of the exchange is lost due to an incorrect TTP operation,
then users will have evidences to start a dispute in order to restore the fairness.

To specify the protocol of the above section, we have followed the guidelines
given in [12] so as to have a verifiable TTP operation. As a result, the TTP not
only is a semi-trusted neutral party (she doesn’t know any Ri to decrypt mes-
sages) but also is verifiable (any wrong operation of the TTP can immediately
be detected and participants have evidences of this wrong operation. The proof
can be used to achieve fairness in an external dispute resolution system).

6.1 Proof of the Verifiability

In order to show that the TTP is verifiable, we have to prove that the service
it provides it’s also verifiable. Previous to that, at the step 0 of the protocol the
TTP issues lists ρ and δ. The lists are authentic (they have the TTP’s signature).
Anyone can check the correctness of the participants in the ring topology of
the exchange and also the correctness of the exchanged item descriptions. Any
participant, who does not agree with these lists, must not start with the protocol.
She has to inform the rest of participants and the TTP about that.
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Proposition 1. The TTP involved in the protocol specified in §5.1 is verifiable.

Claim 1. The activity performed by the TTP at the second step of the protocol
is on-line verifiable.

Proof. The TTP receives the messages from each participant. Every period of
time Δt, the TTP publishes the received messages during the interval in the
list λ. Anyone can get λ and, in case of communication problems, any partic-
ipant can know if the TTP has received his message or not. We have to re-
member that the channel is resilient and there is no deadline in the protocol,
thus any message sent to the TTP will eventually be delivered to this entity. λ
is a non-repudiation of reception evidence of the user’s messages issued by the
TTP. Thus, anyone can claim that a received valid message (a message made
in accordance with the protocol specifications) and its information are not in
the final message published by the TTP where there is C. Each user has the
following evidences to solve a dispute about this activity: ρ, δ, λ, its message
(PRPi(l, Ai, EKi(l, Ci), PUT (l, Ki), f(Ki), f(Ri), f(Ri−1))) and the final mes-
sage of the TTP (PRT (l,C,K)).

Claim 2. At the step three the TTP publishes the list of encrypted messages C.
According to the protocol specified in §5.1 this is an on-line verifiable activity.

Proof. As we have seen in claim 1, any user has enough evidences to prove that
all encrypted messages from participants have to be in this list and in the same
order that is was specified at the setup phase (as stated in the ring topology
of the participants). Moreover, the corresponding decrypted messages have to
agree with the description established at the setup phase. Otherwise the TTP
shouldn’t have published it in the list, however users have the following evidences
to claim for that in a dispute resolution system: ρ, δ, λ, PRT (l,C,K).

Claim 3. The operation of the TTP when publishes a cancellation token of an
execution of the protocol is on-line verifiable.

Proof. participants of the exchange are able to check if the TTP has received
all messages of the step 2 or not (if the TTP publishes any list λ with all these
messages then she cannot cancel the protocol because users will have evidences
of the incorrect operation). The message PRT (l, λ, ′′cancelled′′) is an evidence
that proves that the TTP has cancelled the exchange because she has received
a request to cancel the execution of the protocol from a participant.

Result. According to claims 1, 2 and 3, the security activities performed by
the TTP to provide the service are on-line verifiable. Thus, the TTP involved
in the protocol is verifiable: users will get non-repudiation evidences of the TTP
operations. These evidences allows users to verify the service provided by the
TTP, that it means that they can immediately verify the items published by the
TTP to provide the service and, in case of any incorrect action that breaks the
fairness of the exchange, users will have evidences to correct the situation.
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6.2 Defending Against Passive Conspiracies in Case of Verifiable
TTP

The protocol designed by Franklin and Tsudik in [5] has a semi-trusted neutral
party which guarantees the message confidentiality to the users, in the sense that
the TTP will not be able to know the content of items exchanged. Thus, we can
say that the TTP only has an operational role in the protocol. In addition to
that, we not only have improved the security of the protocol but also we have
introduced the verifiability of the TTP as an additional property of the proto-
col. A passive conspiracy (PC) occurs whenever a dishonest party (or a group
thereof) conspires with an honest party without the latter’s consent. One of the
possible PC scenarios of two-party fair exchange, which the TTP is involved as
the attacker, is:

• The TTP could (without any consent) favor P1 over P2 and cause to learn
m2 without P2 learning m1.

Franklin and Tsudik in [5] consider two sub-types of this kind of PC for the
multi-party fair exchange:

1. The TTP selectively broadcast (i.e., directs its message to some participants
but not to others).

2. The TTP intentionally sends corrupt C (i.e., some Ci values are genuine and
some are fake).

In order to prevent an honest participant from becoming an unwilling co-
conspirator of the TTP, the authors in [5] propose a modus operandi for an
honest participant in an exchange:

• Each participant Pi, before searching for its barter secret in C, computes the
product of all elements in C:

ζ = Π(C) = C1 · · · . . . · Cn

• Next, Pi checks:

Ai = Fn+1(ζ, f(m1), . . . , f(mn))

− If the check fails, then
� An honest Pi must halt the protocol and not compute mi−1.

− Otherwise,
� Pi computes mi−1 and broadcasts C to all other participants (for the

benefit who may not have received it, perhaps because of a misbe-
having TTP).

As is said in [5], this procedure ensures that participant Pi does not learn its
barter secret mi−1 while some other participant is denied the opportunity
to learn its secret.
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However, the TTP involved in the protocol specified in §2.3 is not verifiable.
So, participants cannot be sure about the cause of the PC attack described
at the previous paragraph, because the check Ai = Fn+1(ζ, f(m1), . . . , f(mn))
can be correct even if Ci’s are untidy in C. Thus, the solution proposed in [5]
it is not correct because only participants, who cannot decrypt her expected
message from C, know that the TTP has not provided the service as the pro-
tocol specifies but they don’t have any evidence to prove it (they only have:
PRPi(l, PUPi+1(Ri)), and PRT (l,C)).

Even these participants cannot say who is responsible for the attack. Because,
they don’t have evidences to prove whether the problem arise when some colluded
participants exchanged their Ci’s before sending them to the TTP and the TTP
doesn’t perform all checks previous publishing C or all participants are honest
but the TTP misbehaves when publishes a list C where some Ci’s are fake.

The problem of a dishonest TTP in the proposed PC scenario can have a
different solution if the TTP is verifiable. Using the protocol of §5.1, each par-
ticipant will have the following non-repudiation evidences:

� PRPi−1(PUPi(l, Ri)),
� PRPi(l, Ai, EKi(l, Ci), PUT (l, Ki), f(Ki), f(Ri), f(Ri−1)),
� λ, ρ, δ and

� PRT (l,C,K)

This enables participants not only to verify the correctness of the TTP opera-
tions but also they can demonstrate that the TTP has misbehaved if a conspiracy
of the above proposed scenario occurs:

• Pi can check that the result of applying f to Ki+1 published in K is equal
to f(Ki+1) in the Pi+1’s message that appears in λ.

• Pi can also verify that the decryption of EKi+1(l, Ci+1) with Ki+1 has the
label of the exchange and the same Ci+1 that is in C.

Thus, the operation of the TTP has been verified by participants and if the
TTP publishes any Ci or Ki different from the originals sent by Pi, then partic-
ipants will detect this misbehaviour and they have evidences to prove it to an
external arbiter (e.g. a judge).

7 Conclusions

Franklin and Tsudik defined a multi-party exchange protocol in [5]. The protocol
was improved in [7] and recently was published with a formal proof of correct-
ness using the strand space formalism [11]. In this paper, we analyse the protocol
and, in spite of the improvements and the formal proof of its correctness, we have
demonstrated that the protocol had a flaw. The weakness provoked by this flaw
made possible a replay attack that breaks the fairness of the exchange. In §4, we
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have seen as a group of colluding participants in a multi-party fair exchange can
get the item from an honest participant and this participant will get nothing.
To break the fairness of the exchange, dishonest participants use what we call a
replay attack. A replay attack is possible in this protocol because some items of
the messages exchanged in an instance of the protocol can be used in a different
instance of the protocol. Then, the dishonest participants use the TTP involved
in the protocol as an oracle to achieve the secret information from the honest
one. The attack is possible because the private channel between participants and
TTP protects the information that must be secret but this information is not
linked to a particular run of the protocol.

In §5.1 we have repaired the protocol to solve the problem of the replay attack.
In addition to that, the fixed protocol has a procedure which allows users to
cancel an exchange. With this procedure we have add the property of timeliness
to the protocol, then in §5.2 we have been able to demonstrate the security of
the new exchange scheme. We think that the proposed fair exchange scheme is
a good example how a protocol can be executed over an insecure network and
provides an additional property of TTP-verifiability, i.e. a misbehaving TTP can
be proven (of course the protocol also have the so-called mandatory properties
of a secure fair exchange: viability, fairness and timeliness).

The role of third parties in protocols is very important. In fact, the original
protocol in [5] was proposed with an important property related to the TTP: the
entity is called semi-trusted neutral party because she cannot reveal the content
of the exchanged items. The property wants to decrease a potential risk of the
protocol in case of an incorrect TTP behaviour (malicious or not) and, as a
consequence, the protocol expects to reduce the amount of users reluctant to
use the new electronic procedures. Following this idea, our solution to replay
attack has been designed to involve a verifiable third party.

The introduction of the verifiability property in security protocols aims to
spread the use of such protocols. We think that this property build a trusted in-
frastructure so as to enhance the user confidence on what is happen during every
protocol’s run. Thus, the verifiability of the third party is a security property,
which can be employed to convince reluctant users in using the new electronic
procedures. With verifiable TTPs we can show how a potential weakness of some
security protocols can be removed, thereby improving the security of the system.
Verifiable third party is a property that provides evidences to the users from each
TTP operation in an easily and comprehensible way. The evidences can be used
to get compensation and correct a wrong situation caused by an incorrect oper-
ation of the TTP in an external dispute resolution system. For instance, in this
paper, we have seen as this property protects users against a passive conspiracy
of the TTP which pretends to break the fairness of the exchange.

In further works we have to consider the way of formally proving the correct-
ness of a protocol, because, here, we have broken the security of a fair exchange
protocol with a formal proof of correctness presented in [11] (the given security
proof is only related to the fairness property not with other security properties).
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Abstract. Conditional e-cash or conditional e-payments have been in-
troduced by Shi et al. as the means for enabling electronic payments to
be based on the outcome of a certain condition not known in advance. In
this framework, a payer obtains an electronic coin and can transfer it to
a payee under a certain condition. Once the outcome of the condition is
known, if it was favorable to the payee, the payee can deposit the coin;
otherwise, the payer keeps the money. In this work, we formalize con-
ditional payments and give a scheme to achieve conditional e-payments
that outperforms the original solution in several respects.

1 Introduction

Recently Shi et al. [24] introduced conditional electronic payments which allow
a participant to anonymously cash bank-issued electronic coin at a future time
if a certain agreed-upon condition is satisfied. That is, a payer engages in a
protocol with a payee after which the payee has a (conditional) payment that
can later be cashed only if a certain public condition is satisfied (or a certain
event happens). Such scenarios arise in several contexts including, for instance,
trading of financial securities and prediction markets. The conditional nature
of electronic payments can, however, be taken more broadly with the outcome
of the condition determined by the performance of the payee in carrying out a
certain task or by a combination of different conditions.

Such conditional payments have similarities with traditional e-cash systems,
but the requirements placed on interaction between entities in a conditional e-
payment protocol are different enough for an e-cash scheme to be adopted to
this problem. Thus, new tools need to be developed to meet the requirements of
conditional payments. To illustrate why e-cash solutions are not sufficient for con-
ditional e-payments, we list some distinctive features of conditional e-cash next.
In conditional payments, a payer obtains an electronic coin and anonymously
transfers it to an anonymous payee. In traditional e-cash systems, however, the
coin is normally bound to the identity of the merchant during the transfer, and
the merchant cannot remain anonymous. Furthermore, in conditional payments
the payee should be unable to spend the coin until after the outcome of the
condition is determined and only if the outcome is favorable to the payee. Ad-
ditionally, the payer should have the ability to cash the payment in case of an
unfavorable to the payee outcome of the condition, which cannot be done in
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traditional e-cash. Thus, existing e-cash schemes do not provide an adequate
solution to the conditional e-payment setting with the above requirements.

Shi et al. [24] defined the model and necessary properties for conditional e-
payments, as well gave the first solution to the problem. Unfortunately, this
solution lacks efficiency due to the use of expensive cut-and-choose techniques,
and in this work we show that recent advances in electronic cash systems allow
conditional payments to be implemented in a more efficient manner completely
avoiding cut-and-choose techniques. More precisely, the solution of [24] requires
O(n1n2k) computation and communication, where n1 and n2 are cut-and-choose
parameters and k is a security parameter for RSA-based systems. Recall that in
cut-and-choose techniques with a parameter n a dishonest user can cheat with
probability 1/n, therefore a protocol that has the overhead of O(n2k) is likely
to be too computation and communication heavy for practical use, which we
remedy in this work with a faster solution. In our solution, probability of cheating
drops exponentially with the increase in computation and communication. More
precisely, we achieve O(k′ log n2), where k′ is a security parameter for groups
with bilinear maps, which significantly lowers O(n1n2k). (The logarithmic factor
in our solution is due to the use of verifiable encryption.)

Our contributions. The basis of construction is an e-cash system of Camenisch
and Lysyanskaya that follows from CL-signatures with protocols. We modify it
to (i) permit payers and payees to stay anonymous during the transfer protocol
while maintaining the ability of the bank to trace dishonest payers, and to (ii)
incorporate the conditional nature of the transfer. Compared to the solution of
Shi et al., our simple scheme has the following advantages:

– Our scheme has lower computation and communication overhead.
– Shi et al.’s solution requires the payee to contact the bank at the time of coin

transfer to verify the validity of the coin, while in our scheme all transfers
between the payer and the payee are performed off-line, with no participation
of the bank or other entities.

– Shi et al.’s solution gave only informal arguments regarding the security
of the solution. In this work, we formally state security requirements for a
conditional e-payment scheme and provide proofs of security.

Another important contribution of this work is an extension that permits payees
to further transfer (conditional) payments to other payees. In this case, double-
spending by both payers and payees is addressed.

The rest of this paper is organized as follows. We first give a more detailed
description of the model in section 2 and list preliminaries and building blocks
in section 3. Our conditional payment scheme is presented in section 4. An
extension for handling additional transfers is given in section 5. And section 6
concludes the paper.

2 The Model

A conditional e-payment scheme involves several parties, namely: a bank that
issues electronic coins; a publisher that announces public conditions and later
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their outcomes; a payer who obtains an electronic coin from a bank and can
conditionally transfer it to a payee. In this model, the payer withdraws a certain
amount of money from his bank account and obtains an electronic coin for
the amount of the withdraw. The publisher announces future events by posting
information about them. The payer can conditionally transfer his coin to a payee
using the public conditions announced by the publisher. When the outcome of
the public condition becomes known, the publisher is trusted to correctly publish
the outcome of the event and any other information associated with it. After the
event, the payee will be able to validate her coin and cash it only if the published
outcome of the event was favorable to her. Otherwise, the payee’s coin remains
unspendable, and the payer cashes it back.

In the rest of the paper, we use the following terminology: when the payer
contacts the bank to have an electronic payment issued to him, we will refer to the
token that the payer receives from the bank as a coin. Once a coin is transferred
to a payee, we will refer to the token that the payee receives as a conditional
payment. Once the outcome of the condition on the payee’s conditional payment
is announced, it can be transferred into a validated (or casheable) coin. Finally,
in the event of unfavorable outcome of the condition, the conditional payment
becomes uncasheable.

The properties that the conditional e-cash system in [24] was (informally)
shown to have are as follows:

Anonymity. The bank is unable to associate its previously issued coins with
the identities of principals cashing them (payers or payees).

Double spending. It is either infeasible to achieve or the identity of a payer
will be uncovered if (i) the payer transfers a coin to more than one payee
and the payees cash it or (ii) one payee cashes the coin and the payer cashes
it as well.

Conditional transfer. In the case of an unfavorable outcome, the payer can
cash back his coin. If the payee accepts the coin during the transfer protocol,
in the case of a favorable outcome, she will be able to cash the coin.

Deniability. Neither payer nor the payee can prove to outside parties that they
participated in a conditional payment protocol.

Limited information flow. The bank cannot infer any event-specific details.
The publisher cannot infer any information about bank-payer-payee interac-
tions through the protocol.

In some interactions in the conditional payments scheme, a participant is to
stay anonymous. We then assume that in such cases the participant will use a
network anonymizer (e.g., [16]) to hide her location information or engage in a
protocol using other anonymous means (e.g., a protocol between the bank and
an anonymous user can take place at a bank’s kiosk).

We show the security of our solution with respect to all properties stated
above. The bank and the publisher are trusted to perform their function in
the protocol correctly (i.e., the bank issues electronic payments and cashes its
previously issued valid coins and the publisher announces the events correctly),
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but we also design the protocols to be resilient to collision between different
participants. For example, a payer, a payee, and the publisher should not be
able to conspire to over-spend a bank-issued payment. Similarly, the bank, the
publisher, and payees should not be able to conspire to link a coin to the identity
of an honest payer.

As stated above, there are four players in the conditional e-payment system:
the bank, the publisher, the payer, and the payee. We will assume that the bank
will setup is public-private key pair prior to any payment can be made. The
functionality of the system and the interaction between the bank, a payer, and
a payee can be described using the following algorithms (the publisher does not
interact with other parties, it has a passive role of announcing events and their
outcomes):

Payment Generation: A protocol between the bank and a payer that allows the
payer to obtain electronic payments from the bank. The bank withdraws
from the payer’s account the value of the electronic coin it issued.

Conditional Transfer: A protocol between a payer and a payee during which the
payer transfers an electronic payment to the payee in such a way that the
payee will be able to cash the payment only after the favorable outcome of
the agreed-upon condition.

Validating the Payment: After the publisher announces the outcome of the event,
if the outcome was favorable to the payee, the payee will use the informa-
tion posted by the publisher to transform the conditional payment into a
casheable coin.

Cashing the Payment: Cashing can be done by either the payee in case of fa-
vorable outcome of the condition or by the payer otherwise. In either case
the claimant anonymously submits an electronic payment to the bank and
receives cash in the amount of the payment.

Identifying Double-Spenders: This algorithm is invoked by the bank on input a
coin’s serial number s and two validity proofs for it. If a payee does not
attempt to spend the same coin twice (with the same proof), this algorithm
will reveal the identity of the payer (who either transferred the coin to more
than one payee or cashed the coin that was also casheable by a payee).

The solution of [24] also included a Payment Activation protocol: a protocol
between the bank and the payer, where the payer anonymously contacts the
bank and activates the electronic payment issued during the payment generation
protocol. This protocol, however, is not required.

We now give a more formal definition of a conditional e-payment system and
its security properties.
Correctness. If an honest payer generates a conditional payment and engages
in a conditional transfer protocol with a payee, then the payee will accept. If a
payee is honest and accepts during the conditional transfer protocol, then in case
of the favorable outcome the payee will be able to cash the payment. If a payer
is honest and does not transfer the payment or transfers the payment and the
outcome is unfavorable to the payee, the payer will be able to cash the payment.
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Anonymity. When addressing anonymity of users, we need to consider two
different cases: anonymity of payers and anonymity of payees. Anonymity of
payers means that other participants (e.g., the bank, the publisher, and the
payee) cannot link the coin an (honest) payer transfers to a payee to the payer’s
identity (assuming that the payer does not double-spend the coin). Thus, we
model the adversary A as colluding bank, payees, and the publisher. A will be
able to create the bank’s private and public keys and engage in queries, where A
executes the payment generation protocol with various users idi. Then A engages
in a challenge conditional transfer and the consecutive payment validation, where
it is interacting either with a real user or a simulator with no access to any
user information. The anonymity requirement for the payer is such that, for
any adversary A, given all information A receives during payment generation,
transfer, and validation, A is unable to distinguish between a real payer and a
simulator with more than negligible probability.

To model anonymity of payees, the adversary A will represent the bank col-
luding with payers. In this case, A will be able to create the bank’s key, create
users, and issue coins. To ensure that a payee’s identity is not revealed at any
point during the protocols, we require that A cannot distinguish between a real
user idj and a simulator (with no access to user-specific information) with more
than negligible probability during both the conditional transfer protocol and
cashing payment protocol.
Balance. There are two parts to this property. From the bank’s point of view,
we would like to assure that no coalition of dishonest payers and payees can cash
more coins than they withdrew. This is often shown by treating the payment
generation protocol as a proof where the user plays the role of the prover and
the bank plays the role of the verifier. Let x denote the user’s input to the
payment generation protocol. Then if the bank accepts at the end of the protocol,
there will be a knowledge extractor that extracts a witness w = s, which is the
serial number associated with the issued payment. Let the adversary A engage
in a number of payment generation, payment transfer, and payment cashing
protocols. Let on ith successful execution of the payment generation protocol
the extractor’s output be (xi, si). We say that adversary wins if, for any number
n of payment generation protocol executions, A is able to cash a payment with
a serial number s �∈ {s1, . . ., sn}. We say that the balance property holds if A
has at most negligible probability of winning.

From the payer’s point of view, if the payment was transferred to a payee
and the outcome is unfavorable to the payee, that payee should not be able to
produce a valid casheable payment. To be able to show this, we let A act as
either the payer or the payee with various users (by possibly corrupting other
users) and, when acting as the payee, request favorable outcome for its events.
Then A, acting as the payee, engages in a challenge conditional transfer protocol
with an uncorrupted payer, such that the outcome of this event is unfavorable.
We say that the protocol is secure if any A can recover a casheable token with
at most negligible probability.
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Double-spending. In this case the adversary A represents a payer possibly in
coalition with one or more payees; the bank is assumed to be honest. A engages
in the payment generation, conditional transfer, and cashing protocols as many
times as it likes. A wins the game if the bank accepts two requests to cash the
same payment with serial number s without being able to recover the identity of
A. We say that identification of double-spenders is achieved if any A can succeed
at double-spending with at most negligible probability.
Deniability. Deniability was defined in [24] as the inability of a payer or a
payee to prove to outside parties that he or she participated in a conditional
payment protocol. This issue, however, requires further investigation to specify
what constitutes a proof of engagement in such a protocol. If, for example, the
format or the use of coins issued for a conditional payment protocol differs from
coins issued by the bank for different purposes, then the mere fact that a user
requests the bank to issue a conditional e-payment token to her indicates the
intent to engage in a conditional transfer protocol. In this case, both the solution
of Shi et al. and our solution fail to provide deniability. Furthermore, we argue
that in many applications of conditional e-payments deniability might not be a
requirement or a different type of deniability might be preferred (where, e.g., a
participant – a payer or a payee – cannot provide a proof that its peer engaged
in a conditional transfer protocol). Thus, we do not further treat deniability in
this work.

3 Preliminaries

In this section, we review certain cryptographic primitives used as building blocks
in our solution, as well as their security guarantees.

3.1 Zero-Knowledge Proofs of Knowledge

Prior literature provides efficient zero-knowledge proofs of knowledge (ZKPK)
for a variety of statements, with many efficient proofs being based on the dis-
crete logarithm problem (see, e.g., [14,13,11,3,4]). Camenisch and Stadler [12]
introduced notation for various proofs of knowledge and we follow their notation
here. For example,

PK{(α, β, γ) : A = gαhβ ∧ B = gαhγ ∧ (α ≥ a)}
denotes a ZKPK of integers α, β, and γ, where A = gαhβ, B = gαhγ , and α ≥ a.

ZKPKs used in our protocols are proof of knowledge of the discrete loga-
rithm representation, equality of discrete logarithms, and linear equations on
the discrete logarithms, solutions to which are well known. We also utilize proof
of knowledge that a discrete logarithm is the product of two other committed
values [11].

3.2 Signature Schemes

In this work, we use signature schemes with protocols due to Camenisch and
Lysyanskaya [8,9]. These schemes have two protocols associated with them:
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(i) they allow a user to obtain a signature on a committed value without re-
vealing that value to the signer; and (ii) they enable the user to convince a third
party that she possesses a signature on a certain message.

The commitment scheme used is the Pedersen commitment scheme [22]. Recall
that in this scheme the public parameters are a group Gq of prime order q
such that the discrete logarithm problem in Gq is hard and generators g0, g1,
. . . , gk. In order to compute a commitment to x1, . . ., x� ∈ Zq, we choose r ∈
Zq at random and compute com(x1, . . ., x�; r) = gr

0
∏�

i=1 gxi

i . This commitment
is unconditionally hiding (i.e., com(x1, . . ., x�; r) reveals no information about
x1, . . ., x�) and is computationally binding (assuming that the discrete logarithm
problem is hard in Gq, the sender cannot open the commitment to values other
than x1, . . ., x�).

Then given a commitment com(x1, . . ., x�; r), it is possible obtain the signer’s
CL signature σ(x1, . . ., x�) without revealing any information about the values
x1, . . ., x� to the signer. Furthermore, possession of σ(x1, . . ., x�) allows its owner
to use commitments to x1, . . ., x� to prove to other parties that she has the
signer’s signature on the values included in the commitments without revealing
additional information about the signed values themselves. If this protocol is
combined with a ZK proof that the values included in these commitments sat-
isfy certain properties, it becomes possible to convince a third party that the
prover possesses a CL signature that meets these conditions without disclosing
additional information about the signed values.

The signature scheme [8] relies on the Strong RSA assumption for its security.
The scheme [9] relies on LRSW assumption in groups with bilinear maps. Our
and other e-cash solutions built on such schemes require certain ZK proofs to be
non-interactive, which is normally done by applying Fiat-Shamir heuristic [18].
Such non-interactive ZK proofs are, however, secure only in the random oracle
model. Recent work by Belenkiy et al.[2] is the first to give new signatures
with protocols, called P-signatures, that have non-interactive protocols without
relying on the random oracle model. In particular, they utilize techniques of
Groth and Sahai [19] to permit non-interactive zero-knowledge proofs that the
contents of a commitment has been signed and that a pair of commitments are
committed to the same value. The protocols used in this work, however, involve
proofs of more general statements than equality, and more research is needed
to determine what types of statements about discrete logarithms can be proven
non-interactively using techniques of Groth and Sahai.

3.3 Verifiable Encryption

Verifiable encryption is a protocol between an encryptor and verifier that allows
the encryptor to convince the verifier that encryption was performed correctly.
Given a public encryption key pk and a commitment C = com(x), this proto-
col allows the encryptor to produce encryption, Epk(x), of the opening of C,
such that the verifier can accept an invalid encryption only with a negligible
probability. Then given the corresponding decryption key sk and the proto-
col transcript for Epk(x), opening of C can be computed efficiently. Camenisch
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and Damgard [5] provide techniques for converting any semantically secure en-
cryption scheme into a verifiable encryption scheme, and this is what adds the
logarithmic factor to the complexity of our scheme. For our purposes, any secure
verifiable encryption scheme will suffice.

4 Conditional E-Payments

4.1 Description and Intuition

With the recent advances in e-cash systems, a natural place to seek alternatives
for expensive cut-and-choose techniques of Shi et al. [24] conditional e-cash is
to look at other e-cash solutions. Recent e-cash systems such as, e.g., [6,7,10]
use CL-signatures with constant overhead as their building block. Using CL-
signatures, it is possible to construct an e-cash system using a known method as
follows: to generate a payment, a user obtains the bank’s signature on (id, s, t),
where id is the user’s identity, s is the serial number of the coin, t is the blinding
value without the bank knowing s or t. Then when the user would like to spend
the coin at a merchant, the user provides the merchant with commitments to
id, s, and t and a ZK proof that she possesses a signature on these values. The
merchant chooses a random value R (computed as a function of the merchant’s
identity and additional information provided by the merchant) and communi-
cates R to the user. The user reveals to the merchant the serial number s and the
result of evaluating the double-spending equation D = id + R · t mod q on R, as
well as provides a ZK proof of correctness of both s and D (i.e., that s appears
in the signature, and D is computed using id and t from the signature). Now, if
only a single value D is computed for a coin, it does not reveal any information
about the user’s identity id (since t was chosen at random); but revealing two
such values for different R’s reveals the identity of the user.

The biggest difference between the regular e-cash setting and conditional e-
payments is that (i) in e-cash a coin transferred to a merchant carries a validity
proof that is bound to the merchant (and only that merchant can cash it), while
in conditional e-payments each payee is to stay anonymous, and (ii) the only way
for a user to spend a coin in e-cash is through a merchant, while in conditional
e-payments, the payer is able to cash coins herself. To address the first item,
we can require each (anonymous) payee to challenge the payer on a randomly
chosen value R, which, unlike the e-cash systems, is not bound to the payee’s
identity. This will ensure that if the payer transfers the coin to more than one
payee, the payer’s identity can be recovered. In case when the payer does not
transfer the payment or the outcome of the event is unfavorable, the payer can
transfer a coin to himself and cash it anonymously. This, however, creates a
problem, as the payer will be able to quickly cash the coin using the payee’s R
before the payee learns the outcome of the condition. And when the (honest)
payee attempts to cash the same payment, the request will be denied by the
bank as duplicate (without the ability to uncover the payer’s identity).
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This could be fixed in the same way as in [24]: a trusted authority (e.g.,
the bank) keeps track of payment transfers.1 We, however, are interested in a
solution that can be performed completely off-line, without the need of the bank
to participate in payment transfers. Even though both participants are to stay
anonymous, we let the payee to obtain a proof of the payment in an oblivious
way, without the payer knowing the value of R. That is, the payee sends to the
payer a commitment to R, gR, and the payer then transfers that commitment
into gD and also provides a proof that the value was formed as prescribed. Note
that knowledge of R is required to be able to cash the payment, and the payer is
prevented from doing so. Given commitments to the double spending equation
evaluated on different values, it is still possible to recover the identity of the
payer (more precisely, now the bank will be able to recover gid instead of the
value of id itself, but this does not affect the security of the solution2).

In the above solution, the payee’s participation in the conditional transfer and
subsequent cashing protocols is linkable due to the use of the payer’s validity
proofs during cashing. Thus, to prevent colluding payer and the bank from re-
covering the payee’s identity, the payee must stay anonymous during the deposit
protocol. This means that either the payer cashes the e-payment anonymously or
exchanges it for another anonymous token such that its generation and deposit
protocols cannot be linked together (and this is what was suggested in [24]).
Furthermore, the techniques we are utilizing do not seem to permit a payee’s
participation in the conditional transfer and cashing protocols to be unlinkable,
as the payee is unable to modify the ZK proof generated by the payer. We leave
this unlinkability issue as an open problem.

The final issue that remains to be addressed is the conditional nature of the
transfer, where the payee’s payment must remain uncasheable at the time of the
transfer while still ensuring that the payee can verify all of the payer’s proofs.
We solve this by conditionally hiding only partial information which is necessary
for cashing the payment. In particular, the payee will be able to obtain access
to the serial number s only in case of favorable outcome of the condition.

We model events as follows: When event E is announced, the publisher posts
the public key pkE associated with this event. Later, when the outcome of the
event is determined, if the outcome satisfies the condition, the publisher releases
the corresponding private key skE . In case of unfavorable outcome, the publisher
does not release any additional information. At the time of transfer, the payer
encrypts the payment-related information using pkE , and the payee will be able

1 In more detail, a coin consists of two halves (the right half is used for conditional
transfers and the left half is used to cash unspent payments) such that spending both
halves reveals the identity of the payer. The payer first (anonymously) activates a
payment using its serial number s. During the transfer protocol, the payee contacts
the bank with s and obtains a secret value that must be presented to the bank upon
cashing the right half of the coin. Thus, the payer can cash only the left half.

2 Furthermore, in previous e-cash schemes [6,7,10], each user was identified by a public
key instead of her identity. Then for user U , the secret key is skU ∈ Zq and the
corresponding public key is pkU = gskU . Using our terminology, the secret key is id
and the public key is gid.
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to decrypt it and produce a casheable coin only if the private key skE is an-
nounced. To ensure that the payer does not cheat during the encryption process,
we employ verifiable encryption. More precisely, the payer forms a commitment
to the serial number s and verifiably encrypts s using pkE . The payee will accept
the payment only is she is able to verify the correctness of the encryption.

We also make use of another key pair (pkĒ , skĒ) that correspond to the event
Ē opposite of E (that is, skĒ is published in case of unfavorable outcome of the
event E). The key pkĒ enables encryption of the value R to the payer, which he
decrypts in case of unfavorable outcome and cashes the coin back.

4.2 The Scheme

Our scheme is as follows: The common parameters to all players consist of a
group G of prime order q (chosen according to a security parameter 1κ) and
generators g0, g1, . . .. The bank generates its private signing key skB and the
corresponding verification key pkB using one of the CL-signature algorithms.
This key will be used to sign e-payments the bank issues.
Payment Generation: The interaction between a payer and the bank is as follows:

1. The payer identifies herself as having id. The bank and the payer also agree
on the amount of withdraw v. (We assume that id, v ∈ Zq.)

2. The payer with the help of the bank computes a commitment to s, t, id, and
v, where s is a random value used as the payment’s serial number (jointly
generated by the payer and the bank). To achieve this:
(a) The payer chooses sP , t ∈ Zq at random, forms a commitment C1 =

com(sP , t; r) = gr
0g

sP
1 gt

2, and sends it to the bank along with a ZK proof
of knowledge of the representation of C1 with respect to bases g0, g1,
and g2.

(b) The bank chooses sB ∈ Zq at random and sends it to the payer.
(c) Both the payer and the bank use sB, id, and v to locally compute C =

com(s, t, id, v; r), where s = sP + sB. This is done by setting C = C1 ·
gsB
1 · gid

3 · gv
4 .

3. The payer and the bank run a protocol for obtaining a signature on a commit-
ted value, at the end of which the payer has bank’s signature σB(s, t, id, v).

4. The bank debits the payer’s account with amount v.
5. The payer stores (id, s, t, v, σB(s, t, id, v)) as his e-payment token.

When the payer would like to transfer the payment to a payee, both of them
need to agree on the public condition E announced by the publisher. The public
key pkE is then used during the conditional transfer.

In the conditional transfer protocol, the payer needs to convince the payee in
the validity of the payment, which is done by using protocols associated with
CL-signature and additional ZKPKs. Both participants stay anonymous during
the protocol.
Conditional Transfer: The protocol between a payer with (id, s, t, v, σB(s, t, id, v))
and a payee proceeds in the following steps:
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1. The payer forms commitments C1 = com(s; r1), C2 = com(t; r2), and C3 =
com(id; r3), and sends them along with v to the payee.

2. The payer sends to the payee a proof of knowledge π1 of a CL signature from
the bank on the openings of C1, C2, and C3 as well as the value v.

3. The payee chooses R ∈ Zq at random and sends A = gR to the payer.
4. The payer computes B = gRt+id, sends it to the payee, and executes a proof

of knowledge π2 of well-formness of B. More precisely, the ZKPK is:

PK{(α, β, γ1, γ2) : B = Aαgβ ∧ C2 = gα
1 gγ1

0 ∧ C3 = gβ
1 gγ2

0 }

5. The payer verifiably encrypts s under the key pkE using C1. The payee
obtains EpkE (s), which includes the proof that the encryption was formed
properly.

6. The payee verifiably encrypts R under the key pkĒ using A. The payer ob-
tains EpkĒ (R), which includes the proof that the encryption was formed
properly.

7. As the result of this transfer, the payee stores (C1, C2, C3, v, π1, R, A, B, π2,
EpkE (s)) and the payer stores (C1, C2, C3, v, π1, EpkĒ (R), A, B, π2, s).

After the outcome of the event is announced, if it was favorable to the payee,
the payee obtains the private key skE corresponding to pkE and performs the
following payment validation procedure.

Validating the Payment: On input (C1, C2, C3, v, π1, R, A, B, π2, EpkE (s)) and skE ,
the payee decrypts EpkE (s) obtaining s and stores (C1, C2, C3, v, π1, R, A, B, π2, s)
as a casheable payment.

In case of unfavorable outcome, the payer transfers his coin into a casheable
payment using skĒ (i.e., given (C1, C2, C3, v, π1, EpkĒ (R), A, B, π2, s), the payer
decrypts EpkĒ (R) to obtain (C1, C2, C3, v, π1, R, A, B, π2, s). In case the payer
did not engage in any conditional transfer protocol and would like to cash the
coin back, the payer engages in the transfer protocol with himself without en-
crypting the serial number. In this case, the casheable coin is the same as in
other cases.

The following protocol is performed anonymously.
Cashing the Payment: The claimant’s input consists of a casheable coin (C1, C2,
C3, v, π1, R, A, B, π2, s).

1. The claimant submits the payment (C1, C2, C3, v, π1, R, A, B, π2, s) to the
bank.

2. The bank verifies all proofs and, in particular, that gR = A. The bank also
checks whether the pair (s, R) was previously submitted to the bank. If the
proofs are correct and (s, R) is fresh, the bank credits the claimant’s account
with amount v; otherwise, it rejects the payment.

3. The bank records the payment (C1, C2, C3, v, π1, R, A, B, π2, s) in the data-
base of spent payments and searches for another record with s. If s has been
used before, it invokes the identification algorithm.
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Identifying Double-Spenders: If a coin with a serial number s can be found in the
bank’s database more than once, the bank identifies the guilty payer as follows:

– The bank locates two records (s, R1, B1) and (s, R2, B2). (Recall that each
Bi = gR1t+id for some value t unknown to the bank.)

– It computes the identity of the payer by first computing d1 =
(B1/B2)(R1−R2)−1

and then d2 = B1/(dR1
1 ). The value of d2 will correspond

to gid, where id is the identity of the double-spender.
– The bank searches its database for an id that matches gid.

We briefly show that d2 indeed corresponds to the value gid:

d2 =
B1

dR1
1

= B1

(
B2

B1

)(R1−R2)−1R1

= gR1t+id
(
gR2t+id−R1t−id

)(R1−R2)−1R1

= gR1t+id
(
g−t(R1−R2)

)(R1−R2)−1R1

= gR1t+idg−R1t = gid

Efficiency. Computation and communication in all of our protocols are constant
(more precisely, linear in the security parameter), with the exception of verifi-
able encryption used in the transfer protocol. To achieve probability of cheating
2−k, O(k) encryptions must be performed during the transfer protocol. Addi-
tionally, to decrypt a value during payment validation, O(k) decryptions are to
be performed.

4.3 Security Analysis

Theorem 1. Assuming the security of the CL-signature scheme and the ver-
ifiable encryption scheme, the above scheme is a secure conditional e-payment
scheme in the random oracle model.

Proof. We analyze the scheme w.r.t. the properties given in section 2.
Correctness. This property can be shown by examination.
Balance. We first show that dishonest users cannot cash more coins than what
they withdrew. Let Xpg denote a knowledge extractor in the payment generation
protocol that acts as the bank and Xpk denote a knowledge extractor for the
proof of knowledge executed in step 2(a) of the protocol. Then during each
execution of the payment generation protocol by the adversary A, Xpg executes
the protocol as the bank would with the exception that it also executes Xpk to
obtain values id, s, t, v. After n executions of the protocol, Xpg has the knowledge
of n serial numbers s1, . . ., sn. Now note that the soundness property of the
proofs of knowledge prevents A from successfully producing a valid serial number
s′ �∈ {s1, . . ., sn}. Therefore, A will attempt to deposit a coin for which it cannot
honestly generate a valid proof. For A to succeed in convincing the bank that
it has a valid coin with serial number s′, A must produce a proof that either A
knows the bank’s signature on openings of C1, C2, and C3 or B is well-formed.
The former can happen only with a negligible probability assuming that the
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CL-signatures are secure, and the latter can also happen only with a negligible
probability assuming that the discrete logarithm problem is hard. Therefore, A
can succeed in winning this game with at most negligible probability.

To show that the adversary A, acting as a payee, is unable to spend its coin
in case of unfavorable outcome of the event, let c1, . . ., cn denote the sequence of
casheable coins A acquires in the first part of the game (acting as both payers and
payees), where the pairs (EpkE1

(s1), s1), . . ., (EpkEn
(sn), sn) are the correspond-

ing encryptions of coin serial numbers produced during the conditional transfer
protocols and their decryptions. A then engages in a challenge transfer protocol
with an honest payer and obtains coin (C1, C2, C3, v, π1, R, A, B, π2, EpkE (s)).
Now assume that A is able to recover a casheable payment from this coin with-
out access to skE . Then A must either recover the correct value of s or produce
a valid coin using another serial number s′. As was argued above, the latter
is possible only with a negligible probability. A will then attempt to recover s
from the commitment C1 and the associated proof of knowledge or encryption
EpkE (s). Since the commitment is unconditionally hiding and the proof of knowl-
edge is zero-knowledge, A must use EpkE (s). Finally, assuming the security of
the verifiable encryption scheme, A can recover s from EpkE (s) with at most
negligible probability. Therefore, A can succeed in producing a casheable coin
in this game with at most negligible probability.
Anonymity. Anonymity of a payee is trivially achieved, since at no point in
the protocol the payee is required to present her identity or include it in the
information exchanged between the payee and the payer or the bank.

To show payer anonymity, let the game setup be as described in section 2.
Adversary A represents other participants colluding together, who can create
users and engages in payment generation protocols. During the challenge, A is
asked to engage in a conditional transfer protocol and execute the consecutive
payment validation procedure with either a real user idj or a simulator S without
access to user idj ’s information. Our simulator S participates in a conditional
transfer protocol by performing the following steps:

1. S chooses id, s, t, v ∈ Zq and produces commitments C1 = com(s; r1), C2 =
com(t; r2), and C3 = com(id; r3).

2. S produces a simulated proof of knowledge π1 of a CL signature from the
bank on the openings of C1, C2, C3, and the value v. This requires usage of
the corresponding simulator of CL-signatures.

3. After obtaining A = gR, S computes B = gRt+id and produces a proof of
knowledge π2 of well-formness of B.

4. S verifiably encrypts s under the key pkE using C1 producing EpkE (s).

At the end of this interaction, A obtains (C1, C2, C3, v, π1, R, A, B, π2, EpkE (s)).
After executing the challenge transfer protocol (with either a real user or a simu-
lator), A is given pkE and validates the coin obtaining (C1, C2, C3, v, π1, R, A, B,
π2, s). We next argue that a casheable coin produced by a real payer is indistin-
guishable from a casheable coin produced by the simulator.
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First, the payment generation protocol does not allow the bank to learn any
information about the coin-specific values s and t. When a payer is issued a CL-
signature σB(s, t, id, v) by the bank, all values in it are information-theoretically
hidden (i.e., the signature is issued on the values (s, t, id, v, r) for a random
value r rather than (s, t, id, v); this r is obtained from the commitment that
the payer submits and information-theoretically hides the values both in the
commitment and in the signature). Therefore, the values s and t that S chooses
are indistinguishable from those chosen by real users.

Other values produced by S in the transfer protocol are commitments C1, C2,
C3 (which perfectly hide the values), real proofs of knowledge π2 (which therefore
are indistinguishable from a payer’s proofs), real verifiable encryption EpkE (s)
which consequently is decrypted, and one simulated proof of knowledge π1. This
simulated proof differs from a real proof of knowledge of a CL signature, but due
to the security of CL-signatures, A can distinguish between a real and simulated
proofs only with a negligible probability.
Double spending. There are two different ways for A (representing a coalition
of dishonest users) to double-spend a coin with serial number s: (1) by transfer-
ring it to two different (honest) payees, both of whom are able to cash it later, or
(2) by transferring it to a single (honest) payee, recovering the payee’s challenge
R, and cashing the coin while the payee has a casheable coin.

In the first case, suppose the bank accepts two casheable coins c1 = (C1, C2,
C3, v, π1, R, A, B, π2, s) and c2 = (C′

1, C
′
2, C

′
3, v, π′

1, R
′, A′, B′, π′

2, s) with the
same serial number s. Since there are knowledge extractors for all proofs included
in the payments, A knows σB(s, t, id, v) and B = gid+Rt (resp., B′ = gid+R′t)
(more precisely, these conditions can fail with at most negligible probability).
Now, because R and R′ can happen to be the same only with a small proba-
bility, the protocol for identifying double-spenders in this case will succeed in
recovering the identity id.

Next, consider the case where A transfers its payment to a single honest
payee, and the payee is later able to obtain a casheable coin (i.e., the condition
outcome is favorable). A might attempt to produce a casheable coin using the
payee’s challenge R from the transcript of the conditional transfer protocol. A
in this case has (C1, C2, C3, v, π1, EpkĒ (R), A, B, π2, s). To produce a casheable
coin, A will have to recover R from either A = gR or EpkĒ (R). However, in the
first case A will have to solve the discrete logarithm which, by our assumption, is
infeasible, and in the first case to circumvent verifiable encryption scheme E(·),
which is assumed to be secure. Therefore, in this case A also succeeds with at
most negligible probability.

5 Further Transfer of Coins

In this section, we sketch how a payee can further transfer a conditional payment
to another payee. Solutions to achieve transferable e-cash, including off-line sys-
tems, have been previously proposed in the literature (see, e.g., [15,21,1,20,23]),
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but to the best of our knowledge, no solution of the kind we propose (or even an-
other solution based on CL-signatures) has previously appeared in the literature.

Now each payee who would like to be able to further transfer conditional
payments will need to be registered with the bank to permit recovering her
identity in case of double-spending. Note that a payee will be able to transfer
a coin under the same condition as the one used in issuing the payment to
that payee.3 To transfer a payment, each payee can use the bank’s signature on
the payee’s identity and other information similar to the coins themselves. This,
however, will require a signature per transfer since using it more than once reveals
the identity of its owner. To enable a user to perform multiple transfers using
the same credential from the bank, we modify the double-spending equation: the
property we now desire is that using this credential on a unique serial number
once will leave the user anonymous, but using it twice on the same serial number
will allow the identity of the user to be uncovered. More precisely, evaluating
this equation on a pair (s1, R1) and (s2, R2), where s1 = s2 and R1 �= R2
will lead to recovery of the identity, but observing the results of evaluating the
equation on any number of values (s1, R1), (s2, R2), . . ., (sn, Rn) where all si’s
are unique does not reveal information about the user. To achieve this, our idea
is to have the double-spending equation in the same form Di = id + Ri · t, but
make t dependent on si. This means that different values of si’s will result in
different values of t and therefore different equations, but evaluating it on the
same s and two values of R will permit recovery of id. The function t = f(s)
should be deterministic and such that, knowing s, computing t is difficult. For
example, we can compute t using a pseudo-random function and a secret key
u known to the user only. Then the user will obtain the bank’s signature on a
pair (id, u) without revealing u to the bank, and during a coin transfer compute
t = fu(s) and D = id + Rt. The function f should be such that the user is able
to convince the other protocol participant in zero-knowledge that both t and D
were computed as prescribed (and according to the bank’s signature on id, u).
User Registration: The interaction between a user and the bank is as follows:

1. The user identifies herself as having id and sends to the bank a commitment
C′ = com(u; r) for a randomly chosen u ∈ Zq.

2. The user proves to the bank in zero-knowledge that she knows the represen-
tation of C′ with respect to bases g0 and g1.

3. Both the user and the bank use id to locally compute C = com(u, id; r) by
setting C = C′ · gid

2 .
4. The user and bank run a protocol for obtaining a signature on a committed

value, at the end of which the user has bank’s signatures σB(u, id).
5. The user stores (id, u, σB(u, id)) as her payment transfer credential.

The payment generation protocol and the conditional transfer protocol between
the payer and the first payee remain mostly unchanged. The only difference in
3 Since the payee does not have access to the serial number s, she cannot use other

conditions for hiding it. Furthermore, even when the payment becomes casheable
after successful outcome of the original event, that payee still will not be able to
construct verifiable encryption of s using the (payer’s) commitment C1.
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the first conditional transfer protocol is that, in order for the payee to further
transfer her coin, she will need to prove statements involving the coin’s serial
number (to prove that the double-spending equation was constructed correctly).
Therefore, we modify the commitment C1 generated in the first step of the
conditional transfer protocol to be C1 = com(s). This means that com(s) is of
the form gs and does not unconditionally hide the value of s. The knowledge
of s, however, is required for cashing the payment, and recovering it from gs

requires solving the discrete logarithm problem. Therefore, we relax the hiding
property of the commitment to permit further transfer of payments.

Now suppose that a payee would like to transfer her conditional payment to
another payee. This operation can be performed any number of times, and we de-
note the chain of payees associated with some payment s as P1, P2, . . .. When P1
transfers her conditional payment to P2 using coin c = (C1, C2, C3, v, π1, R0, A,
B, π2, EpkE (s)), the new challenge R1 is computed as a one-way function of the
previous value R0 and randomness r1 contributed by P2. That is, R1 = f(R0, r1)
and the idea is to chain the sequence of challenges R0, R1, R2, . . ., so that fu-
ture values in the chain are unpredictable to earlier participants and Pi cannot
completely control the value of Ri. For P2 to convince P1 that R1 was com-
puted correctly, the computation must be verifiable in zero-knowledge without
disclosing R1 or r1. Therefore, we can, for example, use the verifiable random
function fk(x) = g1/(k+x) of Dodis and Yampolskiy [17] (which is the most
efficient construction) as Ri = f(Ri−1, ri) = g1/(ri+Ri−1).

Going back to evaluating the double-spending equation on coin- and user-
specific values, we have t = fu(s). The above DY function can also be used here
to compute t. But since computation of this function would require access to the
serial number s, which is not known at the time of the transfer, commitment
C1 = gs can be used instead. If all participants use an agreed-upon method
of mapping any gs to an element s′ of the appropriate group (i.e., Z∗

q), the
computation will be of the form t = fu(s′).

We next describe the protocol for transferring a payment from P1 to P2.
Further transfers from Pi to Pi+1 are performed analogously, and each new
transfer maintains information about all previous transfers. P1’s input is the
original coin c = (C1, C2, C3, v, π1, R0, A, B, π2, EpkE (s)).
Additional Transfer:

1. P2 chooses r1 and sends C = com(r1; r′) to P1. P1 sends R0 to P2.
2. P2 computes R1 = f(R0, r1) and sends gR1 and a proof of its well-formness

to P1.
3. P1, who is in possession of σB(u, idP1), sends to P2 commitments C

(1)
1 =

com(u; r′1), C
(1)
2 = com(idP1 ; r′2) and proves possession of the bank’s signa-

ture on the openings of these commitments with proof π
(1)
1 .

4. P1 computes t1 = f(s′, u) and gD1 = gidP1+R1t1 . P1 sends to P2 gD1 and a
proof π

(1)
2 of its well-formness.

5. P1 transfers c to P2. P2 verifies all of the proofs in c and that R0 was used
in c and pays P1. P2 stores c and c1 = (r1, R1, C

(1)
1 , C

(1)
2 , gD1 , π

(1)
1 , π

(1)
2 ).
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Each additional transfer adds ci = (ri, Ri, C
(i)
1 , C

(i)
2 , gDi , π

(i)
1 , π

(i)
2 ) to the coin.

This information is used to recover the identity of Pi in case of double spending.
Payment validation is performed as before, by decrypting the serial number s,
but now only the last person in the chain is entitled to the payment.

During the cashing protocol, the bank will challenge the user on a newly
chosen value of R computed in the same way as in the above additional transfer
protocol. The user cashing the coin will evaluate the double spending equation
D = id + R · fu(s′) mod q using her transfer credential σB(u, id). This applies
to every user, including the original payer (note that in payer’s case, transfer
is performed using the coin σB(s, t, id), while the cashing protocol also requires
from that user transfer credential σB(u, id)).
Cashing the Payment:

1. The banks sends to the claimant a randomly chosen value r.
2. The claimant presents a coin c and transfer values c1, c2, . . ., ci for i ≥ 0 (i.e.,

the claimant is participant Pi+1 in the chain).
3. The bank first verifies all values and proofs in c and each ci. It then retrieves

the value Ri from ci and computes Ri+1 = f(Ri, r).
4. Similar to the additional transfer protocol, the claimant proves possession of

transfer credentials σB(u, idPi+1) and sends to the bank gDi+1 along with a
proof of its well-formness.

5. The bank stores all values and issues to the claimant a payment for amount
v recorded in c.

Double-spending now can happen in different ways (in all of the following cases
double-spending occurs only if the coins in question become casheable): (1) as
before, a payer can transfer his coin to more than one payee, (2) a payee can
transfer her coin to more than one payee, or (3) a payee can transfer her coin
to another payee and cash the coin herself. In case (1), the payer’s identity is
recovered as before using the serial number s and two different values for R0
and B. The case of dishonest payees is handled as follows. Suppose payee Pi

transfered c to Pi+1 and P ′
i+1 (case (2) above), and now there are two chains

P1, . . ., Pi, Pi+1, . . ., Pn and P1, . . ., Pi, P
′
i+1, . . ., P

′
m. When Pn and P ′

m cash the
payments, the bank will be able to retrieve gDi and gD′

i computed using Ri and
R′

i, respectively, and recover idPi in the same way. Case (3) above is handled in
a similar way. The difference is that the bank obtains one value gDi that encodes
idPi when user Pn cashes the payment. Another value gD′

i is obtained during
the cashing protocol, where Pi is challenged on a new value R′

i.

6 Conclusions

Conditional e-payments, first introduced by Shi et al. [24], allow an electronic
payment between two parties to be based on the outcome of a condition not
known in advance. This work formalizes the security of a conditional e-payment
scheme and gives a solution based on CL-signatures. Compared to work of [24],
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our scheme completely avoids cut-and-choose techniques, thus exponentially re-
ducing the protocols’ overhead. We also eliminate the need for the bank to be
involved in all conditional transfer protocols by making the protocol off-line.

Another significant contribution of this work is an extension that permits
a conditional payment to be further transfered to other users. This extension
builds a chain of users involved in a transfer of a particular coin, and each chain
contains enough information to prevent double-spending by each user in the
chain.

While our solutions satisfy the stated goals, there are a few directions that
can be pursued in refining the properties we achieve. In particular, it would be
interesting to see if the information used in the conditional payment protocol
and the consecutive cashing protocols could be made unlinkable (this, however,
is likely to require drastically different tools). Also, some of our constructions
use commitments of the form gx, which do not unconditionally hide x. Thus, it
would be desirable to achieve stronger hiding properties.
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Abstract. Regular cash systems provide both the anonymity of users
and the transferability of coins. In this paper, we study the anonymity
properties of transferable e-cash. We define two natural additional levels
of anonymity directly related to transferability and not reached by ex-
isting schemes that we call full anonymity (FA) and perfect anonymity
(PA). We show that the FA property can be reached by providing a
generic construction and that the PA’s cannot. Next, we define two re-
stricted perfect anonymity properties and we prove that it is possible
to design a transferable e-cash scheme where a bounded adversary not
playing the bank cannot recognize a coin he has already owned.

1 Introduction

Electronic cash systems aim at emulating regular cash. Users withdraw coins
from a bank, and next pay merchants using them. Then, merchants deposit
coins to the bank. Even if the property of transferability (i.e. received cash can
be spend later without involving the bank) is seen as a fundamental property
of regular cash, it is usually disregarded in the electronic setting. This lack of
interest for transferable e-cash may be explained by the result given in [6] showing
that it is impossible to transfer a coin without increasing its size. However, this
apparent drawback is not always unacceptable for applications depending on the
available amount of storage data. The main advantage of the transferability of
e-cash would be the decrease of communications between the bank and all users.

The anonymity in (non transferable) e-cash systems is well-studied in the lit-
erature. When introducing the transferability property into e-cash schemes, new
notions of anonymity appear that have not already been described in the litera-
ture. These new anonymity notions related to transferable e-cash are studied in
this paper.

As far as we know, the first transferable e-cash schemes that provides a weak
level of anonymity has been proposed in [10,11]. The anonymity level is said
weak since the spenders identities are protected but it is possible to link several
spends of the same user.

Another method for transferring e-cash has been presented in [14,6]. The
anonymity level of this scheme is said strong since the spender identities are
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protected and it is not possible to link several spends of the same user. Very re-
cently, two transferable e-cash schemes have been proposed in [5]. Both schemes
improve the efficiency of [14,6] by reducing the number of communications be-
tween the bank and users. One scheme offers a computational strong anonymity
while the other one offers an unconditional strong anonymity. However, none of
these schemes offers a “perfect” anonymity of spends since it is always possible
for an adversary to recognize a coin that he has previously seen being spent.

There is a gap between the highest level of anonymity achieved by the trans-
ferable e-cash schemes of the state-of-the-art and the impossibility result given
in [6] showing that transferable e-cash cannot fulfils an unconditional “perfect”
anonymity since an unbounded payer can always recognize his own money if he
sees it later in a payment.

In this paper, we contribute to reduce this gap, in one hand by showing the
possibility for an e-cash system to fulfil higher levels of anonymity, and on the
other hand by proving that a computational payer can always recognize his own
money if he sees it later in a payment, meaning that transferable e-cash cannot
provide a computational “perfect” anonymity.

In Section 2, we give formal definitions for transferable e-cash. In Section 3, we
focus on the security properties related to anonymity and we introduce two new
properties: the Full Anonymity (FA) meaning that the adversary A is not able to
recognize a coin he has already observed during a spending between honest users,
and the Perfect Anonymity (PA) meaning that A is not able to decide whether
or not he has already owned a coin he is receiving. In Section 4, we show that
a transferable e-cash scheme can fulfil the FA property by providing a generic
construction, and that no scheme can fulfil the PA property by improving the
impossibility result given in [6]. In Section 5, we give evidence that it is possible
to design a PA scheme if we assume that the (not unbounded) adversary is not
the bank. Finally, we conclude in Section 6.

2 Transferable E-cash

In this section, we define the algorithms of transferable e-cash, the variables
and oracles used by the adversaries, and the classical security properties that
are not related to anonymity; anonymity properties are defined in Section 3.
Note that our model can easily be extended to wallets by using the compact
e-cash techniques [2].

2.1 Algorithms

A transferable e-cash system involves two types of player: a bank B and a user
U . A coin is represented by an identifier Id and some values π needed to prove
its validity.
– ParamGen(k) is a probabilistic algorithm that outputs the parameters of the
system Par (including the security parameter k).
– BKeyGen(Par) (resp. UKeyGen(Par)) is a probabilistic algorithm executed by
B (resp. U) that outputs the key pair (skB, pkB) (resp. (skU , pkU )).
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– Withdraw(B(skB, pkB, pkU , Par), U(skU , pkU , pkB, Par)) is an interactive pro-
tocol where U withdraws from B one coin. At the end, U either gets a coin
C = (Id, π) and outputs OK, or outputs ⊥. The output of B is either its view
VW
B of the protocol (including pkU), or ⊥.

– Spend (U1(Id, π, pkU2 , Par), U2(skU2 , pkB, Par)) is an interactive protocol
where U1 gives a coin to U2. At the end, either U2 outputs a coin C = (IdC , πC)
or ⊥, and either U1 saves that C is a spent coin and outputs OK, or U1 outputs
⊥.

– Deposit (U(Id, π, skU , pkU , pkB, Par), B(skB, pkB, pkU , L, Par)) is an inter-
active protocol where U deposits a coin (Id, π) at the bank B. If (Id, π) is not
consistent/fresh, then B outputs ⊥1. Else, if Id already belongs to the list of
spent coins L, then there is an entry (Id, π′) and B outputs (⊥2, Id, π, π′). Else,
B adds (Id, π) to its list L, credits U ’s account, and returns L. U ’s output is OK
or ⊥.

– Identify (Id, π, π′, Par) is a deterministic algorithm executed by B that
outputs a public key pkU and a proof ΠG. If the users who had submitted π and
π′ are not malicious, then ΠG is evidence that pkU is the registered public key
of a user that double-spent a coin.

– VerifyGuilt(pkU, ΠG, Par) is a deterministic algorithm that can be executed
by any actor. It outputs 1 if ΠG is correct and 0 otherwise.

2.2 Global Variables

The set of user’s public (resp. secret) keys is denoted by PK = {(i, pki) : i ∈ N}
(resp. SK = {(i, ski) : i ∈ N}; ski =⊥ if user i is corrupted). The set of views of
supplied coin by oracles is denoted by SC and the set of all coins owned by the
oracles is denoted by OC. The set of deposited electronic cash (corresponding to
L) is denoted by DC.

2.3 Oracles

By convention, the name of an oracle corresponds to the action done by this
oracle.

Creation and corruption of users. Create(i) executes UKeyGen(Par) =
(ski, pki), it defines PK[i] = pki and SK[i] = ski and it outputs pki. The or-
acle Corrupt(i, pki) defines PK[i] = pki and SK[i] =⊥ and it outputs OK.
Corrupt(i) outputs the value SK[i] = ski and it updates SK[i] =⊥.

Withdrawal protocol. Suppl() plays the bank side and it updates SC by adding
VW
B with bit 1 to flag it as a corrupted coin. The oracle Withd(U) plays the

user U side and it updates OC by adding the value (U, Id, π). The oracle
Withd&Suppl(U) plays both sides and it updates OC as for Withd(U) and SC
by adding VW

B with flag 0. It outputs the communications between B and U .
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Spending protocol. The oracle Rcv(U2) plays the role of user U2 with secret keys
of user U2 and it updates the set OC by adding a new entry (U2, Id, π). The
oracle Spd(U1) plays the role of user U1 by spending a coin in OC owned by
user U1. It uses and updates the entry (U1, Id, π) of OC as the Spend protocol
describes it.

The oracle Spd&Rcv(U1, U2) plays the role of both U1 and U2 and it executes
the spending of a coin owned by user U1 to user U2. It updates OC by adding
the value (U2, Id, π) and by flagging the coin as spent by U1. It outputs all the
communications of the spending.

Deposit protocol. CreditAccount() plays the role of the bank and it updates
the set DC. If the executed Deposit protocol outputs (⊥2, Id, π, π′), then the
oracle CreditAccount runs the algorithm Identify and outputs the result of
this algorithm on inputs (Id, π, π′). The oracle Depo(U) plays the role of the user
U during a Deposit protocol.

2.4 Classical Security Properties Not Related to Anonymity

Unforgeability. No collection of users can ever spend more coins than they
withdrew.

Game. Let an adversary A be a p.p.t. Turing Machine that has access to
the set of all user’s public keys PK, the bank’s public key pkB and Par. A
can play as many times as he wants with the oracles: Create, Corrupt, Suppl,
Withd&Suppl, Spd, Spd&Rcv, Rcv and CreditAccount.

Let qW denote the number of successful queries to the oracle Suppl. Let qR

denote the number of successful queries to the oracle Spd. Let qS be the number
of successful queries to the oracle Rcv. The adversary A wins the game if, at any
time during the game, we have qW + qR < qS .

Identification of double-spenders. No collection of users can double-spend
a coin twice without revealing one of their identities.

Game. Let an adversary A be a p.p.t. Turing Machine that has access to the
PK global variable, the bank’s public key pkB and Par. A can play as many
times as he wants with the oracles: Create, Corrupt, Suppl, Withd&Suppl, Spd,
Spd&Rcv, Rcv and CreditAccount.

A wins the game if, at any time of the game, the oracle CreditAccount
outputs (⊥2, Id, π, π′) and the output of the oracle Identify on inputs (Id, π, π′)
is not a public key related to a secret key ⊥ in SK.

Exculpability. The bank, even when cooperating with any collection of mali-
cious users cannot falsely accuse users from having double-spent a coin.

Game. Let an adversary A be a p.p.t. Turing Machine that has access to
the PK global variable, the bank’s key pair (pkB, skB) and Par. A can play as
many times as he wants with the oracles: Create, Corrupt, Withd, Spd, Spd&Rcv,
Rcv and Depo. At any time of the game, A outputs two spends (Id1, π1) and
(Id2, π2). A wins the game if the outputs of the algorithm Identify on inputs
(Id1, π1, π2) is a public key pk such that the related secret key in SK is not ⊥
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together with a valid proof ΠG, and the output of the algorithm VerifyGuilt
on inputs (pk, ΠG) is 1.

3 Anonymity Properties in Transferable E-cash

In this section, we focus on security properties related to anonymity, remember-
ing usual ones and introducing our two new ones.

3.1 Overview

The Weak Anonymity (WA) and the Strong Anonymity (SA) properties are
classical properties. Informally speaking,

– an e-cash scheme fulfils the WA property if an adversary cannot link a spend-
ing to a withdrawal. However, the adversary may know if two spends are done
by the same user or not.

– An e-cash scheme fulfils the SA property if it fulfils the WA property and if
an adversary is not able to decide if two spends are done by the same user
or not. However, the adversary may recognize a coin that he has already
observed during previous spends.

We introduce two new anonymity properties directly related to the trans-
ferability property in e-cash that we call Full Anonymity (FA) and Perfect
Anonymity (PA). Informally speaking,

– an e-cash scheme fulfils the FA property if it fulfils the SA property and if
an adversary is not able to recognize a coin that he has already observed
during a spending between two honest users. However, the adversary may
be able to recognize a coin he has already owned.

– An e-cash scheme fulfils the PA property if it fulfils the FA property and if
an adversary is not able to decide whether or not he has already owned a
coin he is receiving.

3.2 Description of the Game

Before defining the game, we need to recall that a transferred cash necessary
grows in size [6]. This property may be exploited by the adversary A to win the
game and break the anonymity property. Indeed, A may choose two users that
do not own coins of the same size so as to distinguish which one is used at the
end of the game.

Consequently, in the following game, we impose that the two challenged users
i0 and i1 own coins of the same size and the coin used during the final call to
the Spd oracle should be one of these coins.

Game. Let an adversary A be a p.p.t. Turing Machine that has access to the
set of all user’s public keys PK.
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1. A is given (skB, pkB), Par and A can play with the oracles: Create, Corrupt,
Withd, Spd, Rcv, Spd&Rcv and Depo.

2. At any time, A chooses two public keys pki0 , pki1 ∈ PK, such that:
(a) SK[i0] �=⊥ and SK[i1] �=⊥;
(b) users i0 and i1 own coins of the same size;
(c) users i0 and i1 have been used only by a set of authorized oracles that

depends on the power of the adversary A (see below).
3. A bit b is secretly and randomly chosen and A plays with Spd(ib).
4. A outputs a bit b′.

3.3 Security Properties Related to Anonymity

We define four adversaries related to the four anonymity properties (WA, SA,
FA and PA) that can be used to play the game described at Section 3.2. Indeed,
the adversary is allowed to observe the transactions involving the coin that will
be spend at step 3 with some specific restrictions depending on the anonymity
property.

Definition 1 (Adversaries). We denote by i0 and i1 the two users chosen by
the adversary at Step 2 of the game described in Section 3.2.

– The adversary AWA is allowed to manipulate i0 and i1 only with the oracles:
Create, Withd and Depo.

– The adversary ASA is allowed to manipulate i0 and i1 only with the oracles:
Create, Withd, Spd, Spd&Rcv with the additional restriction that i0 and i1
do not play the role of U2 and Depo.

– The adversary AFA is allowed to manipulate i0 and i1 only with the oracles:
Create, Withd, Spd, Spd&Rcv and Depo.

– The adversary APA is allowed to manipulate i0 and i1 with all the oracles
except the Corrupt oracle.

Definition 2 (Anonymity properties). A transferable e-cash system fulfils
the property P ∈ {WA, SA, FA, PA} if for an adversary AP playing the game de-
scribed at Section 3.2, the probability that b = b′ differs from 1/2 by a fraction
that is at most negligible.

Remark 1. By construction, the anonymity properties are (exclusively) related
one to the other as follows: PA ⇒ FA ⇒ SA ⇒ WA.

4 Study of Anonymity Properties

The schemes proposed in [14,6,5] fulfil both the WA and the SA properties but,
as far as we know, the FA property (and consequently the PA property) is not
achieved by any state of the art scheme. In this section, we first show that the
FA property can be reached by providing a generic construction. Next, we prove
that the PA property cannot be achieved.
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4.1 Achieving the Full Anonymity Property

The difference between the SA game and the FA game is that the coin received
at the challenge step by the adversary may have already been observed by AFA

during a call to the Spd&Rcv oracle, whereas this case cannot happen during the
SA game. The generic construction we propose is built upon an SA scheme. The
key idea of our construction is to modify an SA scheme to get an FA scheme by
protecting the communications of the spending protocol using the establishment
of a unilateral authenticated secure channel between the receiver and the spender
in order to prevent an active adversary to recognize a coin that he has previously
seen being spent.

We assume that S is a transferable e-cash scheme that fulfils the SA property.
From S, we construct a transferable e-cash scheme S′ that fulfils the FA prop-
erty. We re-define only the spending protocol of S and we additionally use two
building blocks: a secure symmetric encryption scheme E = (Enc, Dec), and a
unilateral authenticated key agreement protocol KE between two users (including
a key-confirmation step) secure against an active adversary. In particular, KE is
resistant to man-in-the-middle attacks.

A user U1 spends a coin to user U2 by first playing the KE protocol. At the
end of the KE protocol, U1 and U2 share a unilateral authenticated session key
K. Next, U1 and U2 play the Spend protocol of S by encrypting all the commu-
nications using the algorithms Enc and Dec with the common session key K.

Theorem 1. Under the assumptions that S fulfils the SA property, and EK and
E are secure, the system S′ fulfils the FA property.

Sketch of Proof. Assume that AFA breaks the FA property by determining be-
tween users i0 and i1, which one is ib. By definition AFA is not allowed to manip-
ulate i0 and i1 with the oracle Rcv and thus AFA owns the coin of the challenge
only at step 3 of the game. AFA should have seen it during the withdrawal of
this coin (using the oracle With(U)) and possibly during spends between honest
users (using the oracle Spd&Rcv).

By assumption (S fulfils the SA property), AFA cannot get the serial number
of a coin involved in a withdrawal protocol. By construction of S′, all com-
munications related to the spending of a coin are encrypted with a unilateral
authenticated ephemeral session key, which includes the communications related
to a call to the oracle Spd&Rcv. Thus, AFA has no information about the identi-
fier of the coin embedded into the spending (AFA may know the entry number
of the coin in OC but not the serial number), except if AFA has succeeded in
breaking either the security of KE to obtain the session key K or the security of
E to decrypt the communications without knowing the decryption key. �

4.2 Impossibility of the Perfect Anonymity Property

It is known that a payer with unlimited computing power can always recognize
his own money if he sees it later being spent [6], and thus the PA property cannot
be achieved by an unlimited powerful adversary. In this section, we show that a
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bounded adversary APA, acting as the bank, can also win the anonymity game,
meaning that the PA property cannot be achieved by transferable e-cash.

Attack against the PA Property. During the PA game, APA creates users and
corrupts some of them. At any time, APA owns a set of valid coins {C0, · · · , Cl}
that he got from his interactions with the oracle Spd.

APA chooses two honest users i0 and i1 such that they have no coins. Next
APA chooses two coins C0 and C1, spends coin C0 to user i0 and coin C1 to user
i1 using the oracle Rcv. Then, APA outputs i0 and i1, according to the PA game.
The challenger next chooses at random a bit b and APA plays a Spend protocol
with the oracle Spd on input the user ib. Acting as the bank, APA then simply
executes the Deposit algorithm for the coins Cb and C0

1. If a double spending
is detected, then APA outputs b′ = 0 and he outputs b′ = 1 otherwise. Thus, APA

can always succeed in guessing b.

5 Variants of the Perfect Anonymity Property

The attack described in Section 4.2 shows that thePAproperty cannot be achieved.
In this section, we describe the two most natural ways to modify the PA game in or-
der to prevent this attack. We define two distinct properties called PA1* and PA2*
and show that both properties can be achieved. Next, we prove that there is no
inclusion relation between the FA property and PA1* (resp. PA2*).

5.1 Additional Anonymity Properties

The first possibility to make impossible the attack described in Section 4.2 is to
prevent the adversary from receiving the coin Cb at Step 3 of the game described
in Section 3.2. Then the coin Cb may have been manipulated by the adversary
before Step 3 but the adversary only observes the spending of coin Cb between
two honest users at Step 3.

Definition 3 (Adversary PA1*). The adversary APA∗
1

can manipulate the
challenged users with all the oracles except the Corrupt oracle.

Game of the PA1* property. We modify the game described in Section 3.2
as follows. The steps 1 and 2 are unchanged. In step 3, the call to Spd(ib) is
replaced by a call to Spd&Rcv(ib, i) where i is a randomly chosen honest user.

The second possibility to avoid the attack against the PA property is to prevent
the attacker to execute the deposit. We thus separate the power of the bank into
two entities with distinct keys: BW (resp. BD) is responsible of the withdraw
(resp. the deposit) part. In the new property, the adversary is not allowed to
control BD. Moreover, the Deposit and Identify protocols should be protected
by a secret key of the bank BD. We should prevent the adversary from being
able to simulate the deposit phase, as a user can do when this phase is based on
public algorithms.
1 Even if this is a fraud, APA can deposit the coin C0 he has already spent.
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Definition 4 (Adversary PA2*). The adversary APA∗
2

can manipulate the
challenged users with all the oracles except the oracles CreditAccount and
Corrupt.

Game of the PA2* property. We modify the game described in Section 3.2
as follows. Only Step 1 is modified: Withd is replaced by Suppl, and Depo is
replaced by CreditAccount.

Remark 2. Note that the discussion on public [13] or secret [2] Deposit and
Identify is controversial in non-transferable e-cash definitions.

5.2 Studying the PA1* Property

We first show that the PA1* property can be achieved by proving that the scheme
S′ described in Section 4.1 is PA1*.

Theorem 2. The scheme S′ described in Section 4.1 is PA1*.

Sketch of Proof. Assume that APA∗
1

breaks the PA1* property of S′ by determining
between users i0 and i1 which one is ib. Before Step 3 of the game, APA∗

1
has

observed the withdrawal of the coin of the challenge but cannot get the related
serial number from it (S fulfils the SA property). Moreover, APA∗

1
may have owned

many times the coin of the challenge using the oracles Spd, Rcv and Spd&Rcv.
But, by construction of S′, all communications related to the spending of a coin
are encrypted with a unilateral authenticated ephemeral session key. Thus, all
communications of the final call to the Spd&Rcv oracle are encrypted, which
means that APA∗

1
cannot recognize the serial number of the spent coin embedded

into the spending, except if APA∗
1

has succeeded in breaking either the security
of KE or the security of E by decrypting the communications without knowing
the decryption key. �
We then show that the previously defined anonymity properties and PA∗

1 are
independent (i.e. one property does not imply the other).

Proposition 1. WA (resp. SA, resp. FA) and PA1* are independent properties.

Proof. WA � PA1*. The scheme proposed by Okamoto and Ohta [10,11] fulfils
the WA property but not the PA1* one since the serial number of a coin is not
protected and it is not modified from one spend to another.

PA1* � WA. If we apply the general construction of Section 4.1 onto a trans-
ferable e-cash scheme that does not fulfil the WA property, we can easily show
that the new scheme fulfils PA1* but not WA.

SA � PA1*. The schemes proposed in [14,6,5] fulfil the SA property but not
the PA1* one since the serial number of a coin is not protected and it does not
change from one spend to another.

PA1* � SA. From SA⇒ WA and PA1* � WA, we have PA1* � SA.
FA � PA1*. See Appendix A.
PA1* � FA. This is due to FA⇒ SA and PA1* � SA. �
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5.3 General Description of a PA2* Scheme

In this section, we want to prove that PA2* can be reached by a transferable
e-cash scheme and the efficiency of the constructed scheme is out of the scope
of this paper. The construction of a PA2* transferable e-cash scheme is less
straightforward than the PA1*’s one. Indeed, we need to use an additional tool
called metaproof system that has been introduced in [12] by de Santis and Yung.

Metaproofs. Roughly speaking, the metaproof tool corresponds to a NIZK
(Non-Interactive Zero-Knowledge) proof of the existence of a NIZK proof to a
statement. More precisely, they provide a metaproof system for 3SAT and prove
that their metaproof system is a bounded NIZK proof system [1]. The metaproof
system gives an indirect proof covered by additional encryption mechanism such
that the metaprover possesses a zero-knowledge witness and does not necessary
know the witness of the proof itself. Eventually, the metaproof can be applied
recursively.

Overview of our PA2* transferable e-cash scheme. A spent coin is classi-
cally represented by at least a serial number S, a security tag T (that permits the
identification of double-spenders) and a proof that S and T are correct. Then,
a transferable spent coin should consists in at least a serial number S, a set of
security tags T = {T1, · · · , Tl} and a proof of validity.

We first notice that, in a PA2* e-cash scheme, a coin should be transferred
without revealing any information on previous spends, even for the user that is
receiving the coin. Moreover, the bank needs to retrieve the serial number and all
security tags describing the history of the coin, which can be done by encrypting
these values using the bank’s public key.

Since a user should not be able to recognize a coin previously owned, the
receiver should be able to verify the validity of the coin without being able
to retrieve neither the serial number nor any security tag. Moreover, since the
spender can next become a receiver of this coin, the spent coin should be modified
at each spend so that she cannot recognize it. We thus need a cryptographic tool
permitting someone to send the serial number, security tags and proofs without
revealing nor knowing them but proving that they are valid, which can be done
using metaproofs [12].

More precisely, if a user withdraws a coin, she spends it by computing the
serial number S of the coin and the security tag T1, plus a proof of validity V1 that
S and T1 are well-formed. If the receiver wants to spend this coin, she computes
a security tag T2, she encrypts S and T1 and she proves that T2 is well-formed
and that she knows the encryption of the serial number S, the encryption of the
first security tag T1 and a proof of validity V1 without revealing the encrypted
values nor V1, using in particular a metaproof.

Description of our PA2* Scheme. We largely use the proposal of transfer-
able e-cash scheme from Canard, Gouget and Traoré [5] to describe our PA2*
scheme, with the restriction that a user withdraws one coin at a time, and not a
wallet. In the following, we only give a high level description of our scheme and
we refer to [5] and [12] for details.
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Setup. Let G be a group of prime order p and g, g0 be two random generators in G.
These data constitute the public parameters Par. Let H be a cryptographic hash
function. In the BKeyGen algorithm, B computes two key pairs (skB,1, pkB,1) and
(skB,2, pkB,2) of a CL signature scheme [3] that permit it to sign coins and enroll
users, respectively. During the UKeyGen algorithm, each user Ui obtains a CL
(verifiable) signature Ci = Sign(ui, wi) associated to his public key pkUi = gui

0
and a random data wi. Let EncB be a secure verifiable probabilistic encryption
scheme (e.g. El Gamal) to encrypt messages for the bank.

Withdrawal protocol. Following [2,5], a coin C withdrawn at the bank is a CL
signature σ under the bank’s public key pkB,1 on the set of values (s, ui, t, x)
where ui is the user secret key, s, t and x are random values; C = (s, (ui, t, x, σ)).
The value s implicitly defines the serial number of the coin and the value t
implicitly defines the corresponding security tag (using the Dodis-Yampolskiy
Pseudo Random Function [7]).

Spending of a withdrawn coin. A user Ui, owning a coin C = (s, (ui, t, x, σ)) with-
drawn from B, wants to spend a coin to a user Uj .

1. Uj computes rj = g
1

uj+dj

0 where dj represents some data related to the
transaction. Next, Uj sends rj and dj to Ui.

2. Ui computes S = gs, Ti = pkUig
rj

t+dj and a NIZK proof Vi that
– Ui knows a signature σ on s, ui, t and x,

– S = gs and Ti = pkUig
rj

t+dj = gui
0 g

rj
t+dj ,

without revealing s, t, ui, x nor σ.
3. The spent coin is represented by (S, π = (Ti, Vi, rj , dj)).

First transfer of a coin. Let us now consider the user Uj that has received a
coin (S, π = (Ti, Vi, rj , dj)) from user Ui during the above protocol. If Uj wants
to spend this coin to a user Uk, he has to proceed as follows.

1. Uk computes rk = g
1

uk+dk
0 where dk represents some data related to the

transaction. Next, Uk sends rk and dk to Uj .

2. Uj computes Tj = pkUj g
rk

uj+S+dk , dS = EncB(S), dTi = EncB(Ti) and a NIZK
proof Vj that
– Uj knows a signature Cj on uj and wj

– Tj = pkUj g
rk

uj+S+dk = gui
0 g

rk
uj+S+dk and rj = g

1
uj+dj

0 ,
– dS and dTi are correct encryptions of the unrevealed values S and Ti,

respectively,
– there exists a NIZK proof Vi proving that S and Ti are well-formed,

using in particular rj and dj , and linked to a valid signature of the bank
(this step corresponds to a metaproof as described in [12]),

without revealing uj, S, Cj , wj , rj , dj , Ti nor Vi.
3. The spent coin is represented by (dS, π = (Tj , dTi, Vj , rk, dk)).
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Second transfer of a coin. Let us now consider the user Uk that has received a
coin (dS, π = (Tj, dTi, Vj , rk, dk)) from user Uj during the above protocol. If Uk

wants to spend it to Ul, he has to proceed as follows.

1. Ul computes rl = g
1

ul+dl
0 where dl represents some data related to the trans-

action. Next, Ul sends rl, dl to Uk.
2. Uk computes Tk = pkUk

g
rl

uk+dS+dl , d2S = EncB(dS), dTj = EncB(Tj), and
d2Ti = EncB(dTi) and a NIZK proof Vk that
– Uk knows a signature Ck on uk and wk

– Tk = pkUk
g

rl
uk+dS+dl = guk

0 g
rl

uk+dS+dl and rk = g
1

uk+dk
0 ,

– d2S, dTj and d2Ti are correct encryption of the unrevealed values dS,
Tj and dTi, respectively,

– there exists a NIZK proof Vj proving that dS, Tj and dTi are well-formed,
using in particular rk and dk, and linked to valid signatures of the bank,
the one from the withdrawal phase and the one corresponding to the
certificate of Uj (this step corresponds to a metaproof as described in
[12]),

without revealing uk, dS, Cj , wk, Tj, dTi nor Vj .
3. The spent coin is represented by (d2S, π = (Tk, dTj , d

2Ti, Vk, rl, dl)).

The next spendings of this coin work similarly and are not described in this
paper.

Deposit and Identify. During a deposit, U sends the received coin (e.g. of the
form (d2S, π = (Tk, dTj, d

2Ti, Vk, rl, d))) to B. Then B first checks if this coin is
fresh by decrypting d2S until obtaining the initial S and by testing if S already
belongs to L. If this is not the case, then everything is ok. Otherwise, there is
a double-spending and B has two deposited coins. Then, B compares the first
spending of both coins. If they are identical, then B goes to the second one an so
on until two spends at the same level are different (this case always happens). B
finally retrieves the identity of the cheater by first decrypting the related values
T and T ′ and next using the compact e-cash technique to retrieve the cheater
public key.

5.4 Achieving the PA2* Property

Note that our PA2* scheme is in accordance with the result of [6] which says that
an unbounded adversary can always recognize his own coin during the game if
it sees it later in a payment since such adversary is capable of decrypting values
to retrieve the spender’s identity.

Theorem 3. Under the security of the used encryption scheme (e.g. El Gamal),
the security of NIZK proofs and the security of the Dodis-Yampolskiy PRF, the
proposed scheme fulfils the PA2* property.

Sketch of Proof. Assume that APA∗
2

succeeds in breaking the PA2* property of
the scheme described at Section 5.3. That means that APA∗

2
is able to decide,

between two honest users i0 and i1 chosen by APA∗
2
, which user is the spender ib
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during a call to the oracle Spd(ib). Note that, there is no restriction on the list
of authorized oracles for such adversary.

The best strategy for APA∗
2

is to choose the users i0 and i1 such that he has
previously manipulated all the coins owned by these users. Then APA∗

2
has to

recognize the coin C = (diS, π = (Tl, dTk, · · · , diTj , Vl, rm, dm)) sent by ib that
he has previously owned. Consequently, APA∗

2
knows some values that has been

used to compute this coin (such as e.g. di0Tj0). When receiving a coin, APA∗
2

cannot learn anything from:

– the encrypted serial number diS under the security of the probabilistic en-
cryption scheme (even if he knows the value that is encrypted),

– the encrypted security tags dTk, · · · , diTj under the security of the encryp-
tion scheme (even if he knows some encrypted values),

– the security tag Tl of the spender under the security of the Dodis-Yampolskiy
PRF (see [7,5] for details),

– the values rm and dm that comes from APA∗
2

himself,
– the proof Vl by definition of a NIZK proof. In particular, see the result on

metaproofs [12] and on usual zero-knowledge proofs of knowledge based on
the discrete logarithms [8,4].

Consequently, even if APA∗
2

has already seen the spent coin, he cannot recognize
it. Thus, APA∗

2
cannot win the PA2* game and our construction is PA2*, which

concludes the proof. �

We finally show that there is no relation between previously defined anonymity
properties and the PA∗

2 one.

Proposition 2. PA2* and WA (resp. SA, resp. FA, resp. PA1*) are indepen-
dent properties.

Sketch of Proof. WA � PA2*. The scheme given in [10,11] fulfils the WA property
but not the PA2* property since the serial number of a coin is not protected and
it does not change from one spend to another.

PA2* � WA. See appendix B.
PA2* � SA. This is due to SA ⇒ WA and PA2* � WA.
SA � PA2*. The schemes proposed in [14,6,5] fulfil the SA property but not

the PA2* property since the serial number of a coin is not protected and it does
not change from one spend to another.

PA2* � FA. This comes from FA ⇒ SA and PA2* � SA.
FA � PA2*. The scheme proposed in Section 4.1 fulfils the FA property but

not the PA2* property.
PA1* � PA2*. The generic construction given in Section 4.1 fulfils PA1* but

not PA2* property (for obvious reasons).
PA2* � PA1*. The PA2* scheme proposed in Section 5.3 does not fulfil the

PA1* property since the adversary being the bank in the PA1* game can decrypt
all encrypted data of all spends. �
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6 Conclusion

In this paper, we provide the first study-in-depth of anonymity properties
in transferable e-cash by introducing the full anonymity (FA) and perfect
anonymity (PA). We show that the FA property can be reached by providing
a generic construction and we prove that the PA cannot. We then define two
restricted PA properties called PA1* and PA2* and we show that both restricted
properties can be reached. Finally, we show that FA, PA1* and PA2* are three
separate properties. Thus, an anonymous transferable e-cash scheme should ide-
ally fulfils these three properties, which is the case (obviously inefficiently) if
we apply the trick of Section 4.1 to the PA2* scheme of Section 5.3. Note that
all our results can easily be extended to wallets by using the compact e-cash
techniques [2].

Acknowledgments. We are grateful to Marc Girault, Pascal Paillier and
Jacques Traoré for their suggestions of improvement, and to anonymous referees
for their valuable comments.
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A Proof of Proposition 1: FA � PA1*

We first describe a toy scheme T S and next we prove that T S fulfils the FA
property but it does not fulfil the PA1* property.

Description of the Toy Scheme T S. We assume that S is a transferable e-cash
scheme that fulfils the SA property (e.g. [14,6,5]). We need to re-define only
the spending protocol of S. We additionally use as building blocks a secure
symmetric encryption scheme E = (Enc, Dec) and a unilateral authenticated
group key agreement (GKA) scheme which uses e.g. the proposal of [9] where
g is a public element. Each user has a signature key pair together with a valid
certificate. In particular, this permits us to make the GKA scheme resistant to
man-in-the-middle attacks. If U1 wants to spend a withdrawn coin to U2, he has
to proceed as follows.

– U1 chooses at random a value K1 and sends gK1 to U2. User U2 chooses at
random a value K2, computes gK2 , signs gK1‖gK2 and sends gK2 and the
signature to U1. Both can securely and secretly compute K = gK1K2 and
execute a key-confirmation protocol.

– U1 and U2 play together the Spend protocol of S by encrypting communi-
cations using the encryption algorithm Enc with the common secret key K.
Both U1 and U2 can decrypt communications using the decryption algorithm
Dec with the common secret key K.

If U2 wants to spend a received coin to U3, the protocol is as follows.

– U2 sends gK = ggK1K2 to U3. User U3 chooses at random a value K3, com-
putes gK3, signs gK3‖gK and sends gK3 and the signature to U2. Both can
compute K ′ = gKK3 = ggK1K2K3 , as in [9], and execute a key-confirmation
protocol.

– U2 and U3 play together the Spend protocol of S using Enc and the session
key K ′, as for the spending of a withdrawn coin

Note that the adversary playing the role of U2 cannot take any advantage in
not sending the correct value gK = ggK1K2 for obvious reasons.

Proposition 3. Under the assumptions that S fulfils the SA property, and E is
secure, the T S system fulfils the FA property.
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Sketch of Proof. Assume that AFA succeeds in breaking the FA property of T S
and thus decide, between i0 and i1, which user is the user ib from which AFA

receives the coin of the challenge.
Note that the oracle Rcv is not allowed for the manipulation of users i0 and

i1. Thus, at Step 2 of the Game, AFA chooses users i0 and i1 such that all the
coins owned by users i0 and i1 have never been owned by AFA. Then, AFA owns
the coin of the challenge for the first time at step 4.

Before Step 3 of the game, AFA has observed the withdrawal of the coin of the
challenge (using the oracle With(U)) and AFA may have observed many times a
spending between two honest users involving the coin of the challenge, using the
oracles Spd&Rcv.

By assumption (S fulfils the SA property), AFA cannot get the serial number
of a coin involved in a withdrawal protocol. By construction of T S, all commu-
nications related to the spending of a coin are encrypted with an anonymous
ephemeral session key. Thus, all communications related to a call to the ora-
cle Spd&Rcv are encrypted. That means that AFA has no information about the
identifier of the coin embedded into the spending (AFA may know the entry num-
ber of the coin in OC but not the serial number), except if AFA has succeeded
in breaking either the security of the unilateral authenticated group key agree-
ment or the security of E to decrypt the communications without knowing the
decryption key which is impossible by assumption. �

Proposition 4. T S does not fulfil the PA1* property.

Sketch of Proof. T S does not fulfil the PA1* property (by construction). Indeed,
APA∗

1
can always choose one of his coins and give it to i0 that has no coin. Since

APA∗
1

has received the coin, he necessarily knows the session key K. During the
game, APA∗

1
chooses i0 as defined previously and i1 at random. Then, the oracle

Spd&Rcv(ib, i), where i is a random honest user, is called. The underlying Spend
protocol uses a session key K ′ from a key K̃ introduced by i0 or i1 and a random
key K3 introduced by the receiver, as in the spending protocol. Then APA∗

1
can

easily check if the key K̃ corresponds or not to the key K he knows. If this is
the case, APA∗

1
outputs 0 and he outputs 1 otherwise and wins the game with a

probability of success equal to 1, which concludes the proof. �

B Proof of Proposition 2: PA2* � WA

In order to prove that PA2* � WA, we describe a toy scheme and we prove that
it fulfils the PA2* property but not the WA one.

Withdrawal protocol. The user U gets from the bank B a signature σ on the
serial number s of the coin. Note that the serial number is not hidden to the
bank that consequently knows s and σ.

Spending a withdrawn coin. The user U1 spends the coin (s, σ) to the user U2
by encrypting s and the signature σ to obtain E and producing a NIZK proof
that the encrypted σ is a signature of the encrypted value s.
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Spending a received coin. U2 spends a received coin (E, U) to U3 by using the
metaproof technique [12] to produce a NIZK proof V that there exists a NIZK
proof U of validity of the spent coin. This step can be done many times so that
the coin can be spent again and again.

This scheme is straightforwardly PA2* but does not achieve the WA property
since the bank can decrypt all spends to retrieve s and thus make the link with
the initial withdrawal.
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Abstract. We describe two new paradigms on how to obtain ordinary
signatures that are secure against existential forgery under adaptively
chosen message attacks (fully-secure, in short), from any signatures sat-
isfy only a weak security notion called existentially unforgeable against
weak chosen message attacks (weakly-secure, in short). The new transfor-
mations from a weakly-secure signature scheme to fully-secure signature
scheme are generic, simple, and provably secure in the standard model.
Moreover, these two new paradigms are built only on weakly-secure sig-
natures. They are different from the previous methods, which also relied
on some other cryptographic protocols or non-standard models.

By using two new paradigms, several efficient instantiations without
random oracles are also presented, which are based on two previous
weakly-secure signature schemes. These fully-secure signature schemes
have many special interesting properties compared with the previous re-
lated signature schemes.

Keywords: Signature, Weak Chosen Message Attack, q-SDH Assump-
tion, Strong-RSA Assumption, Strong Unforgeability.

1 Introduction

Digital signature is a central cryptographic primitive. The standard definition
on the security of signature scheme was given by Goldwasser, Micali, and Rivest
[18]. In fact, in terms of the goals and resources of the adversary, there are many
security models can be formed. Compared to the standard security model, there
are also many weak security models. Signatures in these weak security models
are not sufficient in many practical applications. Among these weak security
models, we will focus on the weak security model mentioned in [5,18], which
is called existentially unforgeable against generic chosen message attack (or,
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weak chosen message attack). The signatures that satisfy this security model are
called weakly-secure signatures in this paper. In this security model, it requires
the adversary to submit all signature queries before the signer’s public key is
published. More detailed definition will be given in Section 2. Obviously, because
of the limitation of signature queries, it is insecure in many practical applications.
However, in our paper, we will show its applications in the constructions of
standard signatures and strongly secure signatures.

Since the standard definition on the security of signature schemes was given
[18], there are many attempts to design practical and provably secure signature
schemes in this security model. These methods can be divided into two categories,
namely, concrete construction method and generic construction method.

There are many concrete constructions of signature schemes based on some
standard assumptions, such as discrete logarithm problem [28,30], computational
Diffie-Hellman problem [6,17,33], factoring [3]. Some constructions are based on
other assumptions [29,34]. These schemes are very efficient, but their security
can be proven only in the random oracle model. However, Canetti et al. [9]
proved that some popular cryptosystems previously proved secure in the random
oracle are actually provably insecure when the random oracle is instantiated by
any real-world hashing functions. Over the years, several signature schemes were
proposed in the standard model based on some stronger complexity assumptions
such as [5,8,13,16]. Among them, the most efficient schemes are based on the
Strong-RSA assumption [13,16] and q-strong Diffie-Hellman (q-SDH) assumption
[5]. These assumptions are cryptographically stronger than the computational
Diffie-Hellman, factoring, and RSA assumptions. The reason is that in order to
simulate the signing oracle for the adversary in the proof, the simulator has to
get some additional auxiliary inputs.

There are also many generic constructions of signatures. Most of them are
based on the basic cryptographic primitive, such as (trapdoor) one-way func-
tions [1,21]. There are also many generic constructions from other cryptographic
protocols such as non-interactive zero-knowledge [19] and [12,15] et al. Among
them, the most famous is the Fiat-Shamir (FS) transform [15]. Recall that the
FS-transform [15] is a way to obtain a signature scheme from a three-move
identification Σ protocol (honest-verifier zero-knowledge protocol) by collapsing
the interaction via a hash function. But its security relies on the random oracle
model. In order to avoid the usage of random oracle model, from the Σ protocol,
Cramer et al. [12] gave another generic transform. The transform also uses hash
function which does not act as a random oracle in the proving process. This
conversion method is not practical because it used the authentication tree. Very
recently, Bellare and Shoup [4] showed a simple transform for the construction
of standard and strongly secure signatures from the Σ protocol, using the tool
of two-tier signatures.

Compared to the standard security notion of existential unforgeability, there is
another strong security notion which is called strongly existential unforgeability.
Recently, this notion was concerned by many papers, such as [7,20,32].
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1.1 Our Results

Firstly, we present two new paradigms to transform any weakly-secure signature
schemes into fully-secure signature schemes. More precisely, the two paradigms
are called sequential composition and parallel composition method, respectively.
The new transformations from a weakly-secure signature scheme to fully-secure
one are generic, simple and provably in the standard model. The goal is to
obtain constructions that are based on standard assumptions and are efficient.
They have interest from both theoretical and practical perspective.

– Sequential Composition (of weak signatures): This paradigm requires two
weak signature schemes sequentially. Key pair in the first weak signature
scheme is generated in key generation algorithm and used to sign the other
public key, which is generated in signing algorithm.

– Parallel Composition (of weak signatures): Two weak signature schemes
are also required in this paradigm, however, both of their key pairs should
be generated in key generation algorithm, and used to sign two random and
related messages.

We also show several efficient instantiations without random oracles converted
from two weakly-secure signature schemes. The first paradigm, i.e., the sequen-
tial composition method, is very efficient in key generation algorithm compared
to the second. However, the signing algorithm is more efficient in the second par-
adigm. So, we can use different paradigm in different circumstances according
to its requirements. This is a coincidence that, when instantialized from weak
signature scheme [16], the construction will be similar to twin signature scheme
[25]. In fact, our second paradigm can be viewed as generalization and extension
of the twin signature scheme [25]. And, in both paradigms, if the signing algo-
rithm in the weak signature is deterministic, the resulted fully-secure signature
is strongly unforgeable secure.

1.2 Organization

In the next section, the definitions of variant signatures are given. Then, two
previous instantiations of weakly-secure signature schemes are reviewed in Sec-
tion 3. In Section 4, we propose our two generic transformations techniques. The
security proof for these two transformations are given in Appendix. In Section 5,
two instantiations from sequential composition method are presented based on
two previous weakly-secure signature schemes. In Section 6, we present the two
instantiations from parallel composition method. We discuss the efficiency of our
two generic transformation methods and instantiations by comparing them with
the previous signatures. Finally, the conclusion will be made.

2 Preliminaries

A signature scheme is defined by the following algorithms:

– Key generation algorithm Gen. On input 1k, where k is the security parame-
ter, it outputs (pk, sk) as public and secret keys.
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– Signing algorithmSign. On input a message m and sk, it outputs a signature σ.
– Verification algorithm Verify. Given public key pk, message m and signature σ,

algorithm Verify(pk, m, σ) outputs 1 if σ ← Sign(sk, m). Otherwise, output 0.
In terms of the goals of the adversary, it can be divided into four categories

[18]:

– Total break: This is the most serious attack, in which the adversary is able
to disclose the secret key of the signer.

– Universal forgery : The adversary is able to sign any given messages.
– Existential forgery : The adversary is able to provide a signature on a new

message whose signature has not been seen.
– Strong Existential forgery: The adversary is able to provide a new message-

signature pair.

On the other hand, various resource can be made available to the adversary,
helping into his/her forgery [18]. We focus ourselves on two kinds of message
attacks:

– Weakly chosen message attack: The adversary is allowed to obtain signatures
from the signer for a chosen list of messages before it attempts to break the
scheme. These messages chosen by the adversary must be given to the signer
before seeing the signer’s public key.

– Adaptively chosen message attack: The adversary is allowed to request sig-
natures of messages chosen by itself. These messages may not only depend
on signer’s public key, but also depend on the previous obtained signatures.

2.1 Unforgeability

By combining the different goals of the adversary and various resource available
to the adversary, many security notions for signature schemes can be derived.
The standard notion of security for a signature scheme is called existential un-
forgeability under adaptively chosen message attacks (fully-secure signatures)
[18], which is defined through the following game between a challenger C and an
adversary A:

Setup: A public/private key pair (pk, sk) ← Gen(1k) is generated and ad-
versary A is given the public key pk.

Query: A runs for time t and issues q signing queries to a signing oracle
in an adaptive manner, that is, for each i, 1 ≤ i ≤ q, A chooses a
message mi based on the message-signature pairs that A has already
seen, and obtains in return a signature σi on mi from the signing oracle
(i.e., σi = Sign(sk, mi).

Forge: A outputs a forgery (m∗, σ∗) and halts. A wins if
– σ∗ is a valid signature on message m∗ under the public key pk, i.e.,

Verify(pk, m∗, σ∗) = 1; and
– m∗ has never been queried, i.e., m∗ /∈ {m1, m2, · · · , mq}.
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Definition 1 (Unforgeability). A signature scheme Π =(Gen, Sign, Verify) is
(t, q, ε)-fully-secure, if any adversary with run-time t wins the above game with
probability at most ε after issuing at most q signing queries.

If we lower down the adversary’s goal to strong existential forgeability and keep
its ability unchanged, we can get a stronger definition compared to existential
unforgeability against adaptive chosen message attacks:

2.2 Strong Existential Unforgeability

The notion is also defined using the above game between a challenger C and
an adversary A, except the definition that “A wins the game ”is A can output
a pair (m∗, σ∗) such that (m∗, σ∗) does not belong to the previous queried set
{(mi, σi)} and Verify(pk, m∗, σ∗)=1.

If we lower the adversary’s ability to weak chosen message attack while keeping
the goal of the adversary unchanged compared to the standard security notion,
we can get a weaker definition compared to existential unforgeability against
adaptive chosen message attacks:

2.3 Weak Unforgeability

The difference between this security notion with the standard security [18] is
that here it requires that the adversary should submit all messages for signature
queries before the public key is seen. And we define “A wins the game ”is equiv-
alent to A can output a pair (m∗, σ∗) such that σ is a valid signature of a new
message m∗.

Pre-Proceeding: Adversary A runs for time t and issues q signing queries
to a signing oracle, i.e., A chooses messages mi, where 1 ≤ i ≤ q.

Setup: A public/private key pair (pk, sk) ← Gen(1k) is generated and ad-
versary A is given the public key pk. Meanwhile, q signatures σi on mi

from the signing oracle (i.e., σi = Sign(sk, mi), are also returned to A.
Forge: A outputs a forgery (m∗, σ∗) and halts. A wins if

– σ∗ is a valid signature on message m∗ under the public key pk, i.e.,
Verify(pk, m∗, σ∗) = 1; and

– m∗ has never been queried, i.e., m∗ /∈ {m1, m2, · · · , mq}.

Definition 2 (Weak Unforgeability). A signature scheme Π = (Gen, Sign,
Verify) is (t, q, ε)-weakly-secure, if any adversary with run-time t wins the above
game with probability at most ε.

3 Instantiations of Weak Signatures

It has been shown in [5,16] that two weakly-secure signature schemes can be
constructed, based on the q-SDH assumption and Strong-RSA assumption, re-
spectively, in the standard model.
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3.1 Weak Boneh-Boyen Signature [5]

Before describing the weak Boneh-Boyen signature, we first introduce some pre-
liminaries on bilinear maps and an assumption used in [5].

Let G1 and G2 be cyclic groups of prime order p with the multiplicative group
action. And, g is a generator of G1. Let ê : G1 × G1 → G2 be a map with the
following properties:

1. Bilinearity: ê(ga
1 , gb

2) = ê(g1, g2)ab for all g1, g2 ∈ G1, and a, b ∈R Zp;
2. Non-degeneracy: There exists g1, g2 ∈ G1 such that ê(g1, g2) �= 1, in other

words, the map does not send all pairs in G1 × G1 to the identity in G2;
3. Computability: There is an efficient algorithm to compute ê(g1, g2) for all

g1, g2 ∈ G1.

As shown in [6,34], such non-degenerate bilinear maps over cyclic groups can
be obtained from the Weil or the Tate pairing over algebraic curves.

Definition 3. (q-Strong Diffie-Hellman Assumption (q-SDH in short)).
The q-SDH assumption in group G1 is defined as follows: given a (q + 1)-tuple
(g, gx, gx2

, · · · , gxq

) ∈ (G1)q+1 as input, it is hard to output a pair (c, g1/(x+c)),
where c ∈ Z∗

p.

Next, we describe the weak Boneh-Boyen signature [5]. Let (G1, G2) be bilinear
groups where the order of G1 and G2 is p. As usual, g is a generator of G1.

1. Gen: Pick x ∈ Z∗
p, compute y = gx. The public key is y and the secret key

is x.
2. Sign: Given message m ∈ Z∗

p, the signer outputs the signature on m as
σ = g

1
x+m .

3. Verify: On input verification key y, message m, and the signature σ, output
1 if and only if ê(y · gm, σ) = ê(g, g). Otherwise, output 0.

Theorem 1. The weak Boneh-Boyen signature is weakly-secure if the q-SDH
assumption holds.

Proof. Refer to [5]. ��

3.2 Weak GHR Signature [16]

Gennaro, Halevi and Rabin proposed a secure signature scheme [16] (denoted
by GHR signature) without random oracle, however, under the assumption that
hash function H is division intractable, and acts like the random oracle model or
achieves the chameleon property, which was called a non-standard randomness-
finding oracle in [16]. Division intractability means that it is computationally
impossible to find a1, a2, · · · , ak and b such that H(b) divides the product of all
the H(ai). In order to get a fully-secure signature without random oracles, the
non-standard randomness-finding oracle was required [16]. This non-standard
assumption helps the simulator to find the second preimage during the simu-
lation. The randomness-finding oracle is non-standard because it requires that,
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given a hash function H , values M and e, one could find a random value R such
that H(R, M) = e. In fact, without the assumption of randomness-finding ora-
cle, the simulator has to guess which messages the adversary will ask during the
signing simulation phase. Then, the scheme in [16] can only be proven weakly-
secure without the randomness-finding oracle. This problem was also addressed
in [11], which presented an extension to [16] without relying on this non-standard
assumption.

Definition 4. (Strong-RSA Assumption) Given a randomly chosen RSA
modulus n, and a random element s ∈ Z∗

n, it is infeasible to find a pair (e, r)
with e > 1 such that re = s (mod n).

We describe the weak GHR signature scheme as follows:

1. Gen: Pick two safe primes p and q, compute n = pq as RSA modulus, a
hash function H , and select s ∈ Z∗

n. The public key is (n, s) and the secret
key is (p, q).

2. Sign: To sign a message m, the signer computes e ← H(m) and outputs the
signature as σ = s

1
e mod n.

3. Verify: On input verification key (n, s), message m, and σ, output 1 if and
only if σH(m) = s mod n. Otherwise, output 0.

Theorem 2. The weak GHR signature scheme is weakly-secure if the Strong-
RSA assumption holds and H is division intractability.

Proof. Refer to [10,16] ��
As stated in [11,16], division-intractable hash functions can be constructed from
collision-intractable hash functions [26].

4 Fully-Secure Signatures from Weakly-Secure Signatures

4.1 Related Work

There are two main techniques in order to get fully-secure signatures from
weakly-secure signatures:

– Random Oracle Model: By using the hash function on the messages for
signatures without changing other algorithms, the new signatures can be
fully-secure from the back patch property of random oracle [2]. This method
was used in [5,34].

– Chameleon Hash Function: By combining weakly-secure signatures with the
chameleon hash function, the signer can first sign any value with the weak
signature scheme. Then it can sign the real message from the signature on
any value, by using the property of chameleon hash function. Many papers
have used this technique, such as [5,14,24,31].

Compared to fully-secure signatures, the construction of weakly-secure signa-
tures is relatively easy (Obvious, every fully-secure signature scheme also satis-
fies security notion of weakly-secure signature). There have several weakly-secure
signature schemes in the open literature.
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4.2 Sequential Composition Method

Given a weakly-secure signature scheme Π ′ = (Gen′, Sign′, Verify′), we construct
a fully-secure signature scheme Π = (Gen, Sign, Verify) by using the sequential
composition method. We assume that the public key space belongs to the mes-
sage space in this paradigm. Otherwise, hash function or other techniques could
be applied here to achieve this. The construction of Π proceeds as follows:

– Gen. On input security parameter 1k, invoke Gen′(1k) and obtain (pk, sk) ←
Gen′(1k). Output Π ′s public key pk and secret key sk (In fact, Gen = Gen′).

– Sign. To sign message m, the signer first invokes Gen′(1k) to obtain a key
pair (pk′, sk′) ← Gen′(1k). The signer then invokes algorithms Sign′(sk, pk′)
and Sign′(sk′, m). Finally, it outputs σ=(A, B, C) as the signature, where
A = Sign′(sk, pk′), B = Sign′(sk′, m), C = pk′.

– Verify. On input verifying key pk, message m, and signature σ = (A,B,C),
output 1 if and only if Verify′ (pk,C,A) = 1 and Verify′(C, m,B) = 1.

Key generation of the resulted fully-secure signature Π is the same with the
key generation of weak signature Π ′. In signature generation phase, Sign′(sk, pk′)
can be pre-computed by the signer. The construction is similar with [4,22]. How-
ever, only weakly-secure signatures are required here, instead of fully secure sig-
nature scheme or one-time signature scheme as required in [4,22]. This could be
viewed as improvements to the results [4,22].

Below, we formally prove the security of the signature scheme Π . We denote
the cost of a signing algorithm Sign′ in Π ′ by tsign′ .

Theorem 3. If Π ′ is (t′, q, ε′)-weakly-secure, then the signature Π is (t, q, ε)-
fully-secure, where t ≤ t′ − O(q · tsign′) and ε ≥ 2q · ε′. 1

Proof. See Appendix A. ��

In fact, if the signing algorithm Sign′ in Π ′ deterministic, then the fully-secure
signature scheme Π is strongly unforgeable.

4.3 Parallel Composition Method

In this section, we show another generic transformation from weakly-secure sig-
natures to fully-secure signatures.

Before showing the transformation, we define a relation R={((a, b), c)} that
satisfies the following conditions:

– Given a and c (or b and c), b(or a) is determined and can be computed in
probabilistic polynomial time (PPT );

1 In fact, the key pair (pk′, sk′) ← Π ′ generated in the signing algorithm is only
used to sign message for one-time. So, in fact, (pk′, sk′) can be generated from
weakly-secure signatures satisfies only (t′, 1, ε′)-weakly-secure, which is easier to be
constructed compared to (t′, q, ε′)-weakly-secure signatures.
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– Given randomly chosen values a and b, it is hard to find c in PPT , such that
((a, b), c) ∈ R.

In fact, this kind of relation can be easily found. Suppose the security para-
meter is 1k. For example, given a collision-resistant hash function H : {0, 1}∗ →
{0, 1}k, a, b ∈ {0, 1}k and c ∈ {0, 1}∗, we define ((a, b), c) ∈ R, if and only if
a ⊕ b = H(c).

Obviously, this relation satisfies the definition of R because: Given a ∈ {0, 1}k

and c, b ∈ {0, 1}k is determined and can be computed efficiently; And, randomly
choose a ∈ {0, 1}k and b ∈ {0, 1}k, it is hard to find c such that a⊕ b = H(c) for
the collision-resistant property of the hash function.

In public parameters, relation R={((a, b), c)} defined above should be given.
The generic construction follows:

1. Gen. On input security parameter 1k, invoke Gen′(1k) two times and ob-
tain two key pairs (pk1, sk1) and (pk2, sk2). Output Π ′s public key pk =
(pk1, pk2) and secret key sk = (sk1, sk2).

2. Sign. To sign message m, the signer first chooses m′ randomly and com-
putes m

′′
such that ((m′, m

′′
), m) ∈ R. The signer then invokes algorithms

Sign′(sk1, m
′) and Sign′(sk2, m

′′
). Output σ=(A, B, C) as the signature on

message m, where A = Sign′(sk1, m
′), B = Sign′(sk2, m

′′
), C = m′.

3. Verify. On input verifying key pk = (pk1, pk2), message m, and signature
σ = (A, B, C), first compute m

′′
from m and C such that ((C, m

′′
), m) ∈ R

(This can be done from the property of the relation R). Finally, it outputs
1 if and only if Verify′(pk1, C, A) = 1 and Verify′(pk2, m

′′
, B) = 1.

It is easy to prove that Π is strongly unforgeable if Π ′ is deterministic. Below,
we formally prove the security of the resulting signature scheme Π , with very
tight security reduction to Π ′. We also denote the cost of a signing algorithm
sign′ in Π ′ by tsign′ .

Theorem 4. The signature scheme Π is (t, q, ε)-fully-secure, provided that Π ′

is (t′, q, ε′)-weakly-secure, where t ≤ t′ − O(q · tsign′) and ε ≥ 2ε′.

Proof. See Appendix B. ��

4.4 Comparison of Two Paradigms

– Key generation phase: The key generation in fully-secure signature from the
sequential method, is the same with its corresponding key generation of weak
signature scheme. And, for the fully secure signature from parallel method,
it requires to run the key generation algorithm of weak signature twice. So,
the key size is smaller and computation cost is less in sequential method,
compared with the parallel method.

– Signing phase: In the first paradigm, the signer should run the key genera-
tion algorithm and signing algorithm of weak signature, respectively. In the
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second paradigm, it requires to run the signing algorithm of weak signature
twice. The online computations of both methods in signing phase requires
to run signing algorithm of weak signature only once.

– Verification phase: In both paradigms, it requires to run the verification of
weak signature scheme twice. So, the computations of verification algorithm
are the same.

In conclusion, the sequential method is more suitable for device with small
storage such as smart card for its smaller key size. And, the signing algorithm
in the sequential composition method requires one key generation of weak sig-
natures. So, if the computation of this phase is almost the same with signing
algorithm of weak signature, then, the sequential method is indeed better than
the parallel composition method. Otherwise, from only the computational cost
of signing algorithm, the parallel composition method is better. So, we can use
different paradigms according to circumstance requirements.

After presenting two paradigms, we will describe several instantiations con-
verted from the weakly-secure signature schemes [5,16].

5 Instantiations from Sequential Composition Method

5.1 Fully-Secure Signature from Weak Boneh-Boyen Signature

We describe how to get fully-secure signature, denoted by S-WBB, by using the
sequential composition method on the weak Boneh-Boyen signature scheme. The
public parameters are similar with the weak Boneh-Boyen signature, except a
collision resistant hash function H : G1 → Z∗

p is chosen additionally.

1. Gen: Pick x ∈ Z∗
p, compute y = gx. The public key is y and the secret key

is x.
2. Sign: Given message m ∈ Z∗

p, the signer chooses a random x′ ∈ Z∗
p, computes

y′ = gx′
, and outputs the signature as σ=(A, B, C), where A = g

1
x+H(y′) ,

B = g
1

x′+m , C = y′.
3. Verify: On input verification key y, message m, and the signature σ =

(A, B, C), output 1 if and only if ê(y · gH(C), A) = ê(g, g) and ê(y′ · gm, B) =
ê(g, g). Otherwise, output 0.

In key generation algorithm, S-WBB scheme needs one exponentiation in
group G1. The signing algorithm costs two exponentiations computations in
group G1 and two inversion computations in Z∗

p. As the value A could be pre-
computed, the computations is reduced to only one exponentiation in G1 and
one inversion computation in Z∗

p. In verification algorithm, the value ê(g, g) can
be fixed and published as part of the public key. So, it only needs two pairing
and two exponentiations computations.

Compared with the fully-secure signature scheme in [5], the key generation al-
gorithm of S-WBB is more efficient. Furthermore, the key size is smaller than [5]
because the secret key consists of only one group element. So, it is very suitable
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for small storage device such as smart card or mobile phone to perform authenti-
cation operations. The online computation for signing algorithm in [5] is also one
exponentiation in G1 and one inversion computation in Z∗

p. The computation of
online verification in S-WBB requires one more pairing computation compared
with [5]. From the above comparison, the S-WBB scheme is very suitable for
device with small storage.

Theorem 5. The S-WBB signature scheme is fully-secure.

Proof. The result can be derived directly from Theorems 1 and 3. ��

5.2 Fully-Secure Signature from Weak GHR Signature

In this section, we present a fully-secure signature, denoted by S-WGHR, from
the weak GHR signature scheme [16].

1. Gen: On input security parameter 1k, pick two pairs safe primes (p1, q1).
Compute n1 = p1q1 as a RSA modulus, select s1 ∈ Z∗

n1
. Meanwhile, choose

a division intractability hash function H1 : {0, 1}∗ → Z
∗
n1

. The public key is
(n1, s1, n2, s2, H1) and the secret key is (p1, q1).

2. Sign: To sign a message m, choose two pairs safe primes (p2, q2), and a
random s2 ∈ Z∗

n2
, compute n2 = p2q2. Then, choose a division intractabil-

ity hash functions and H2 : {0, 1}∗ → Z∗
n2

and compute the signature

as σ=(A, B, C), where A = s
1

H1(n2‖s2‖H2)

1 mod n1, B = s
1

H2(m)

2 mod n2,
C = n2 ‖ s2 ‖ H2.

3. Verify: On input verification key (n1, s1, H1), message m, and σ=(A, B, C),
parse C = (C1, C2, C3). Then, output 1 if and only if AH1(C) = s1 mod n1
and BC3(m) = C2 mod C1. Otherwise, output 0.

Theorem 6. The S-WGHR signature scheme is fully-secure.

Proof. The result can be derived directly from Theorems 2 and 3. ��

In key generation algorithm, it requires one multiplications in Z∗
n1

. The secret
key size is only [log2n1]. The signing algorithm needs one exponentiation and
inversion computations in Z∗

n1
and Z∗

n2
, respectively. As the value A could be

pre-computed, the computation is reduced to only one exponentiation and one
inversion computation in Z∗

n2
. In verification algorithm, it requires one expo-

nentiation computation in Z∗
n1

and Z∗
n2

, respectively. Compared to [25], the
computations in signing and verification algorithms are almost the same. In key
generation algorithm of S-WGHR, the key size is smaller than [25] and it requires
less exponentiations to generate key pair.

6 Instantiations from Parallel Composition Method

In the following two instantiations, we will use the concrete relation R given in
Section 4.3: ((a, b), c) ∈ R, if and only if a ⊕ b = H(c). The relation should be
described in system public parameters, in both following examples.
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6.1 Fully-Secure Signature from Weak Boneh-Boyen Signature

Denote the following fully-secure signature scheme from the weak Boneh-Boyen
by P-WBB. The public parameters are similar with the weak Boneh-Boyen sig-
nature, excluding a concrete relation R given in Section 4.3.

1. Gen: Pick x1, x2 ∈ Z∗
p, compute y1 = gx1 and y2 = gx2 . The public key is

(y1, y2) and the secret key is (x1, x2).
2. Sign: Given message m ∈ Z∗

p, the signer chooses a random m′ ∈ Z∗
p and com-

putes the signature as σ=(A, B, C), where A = g
1

x1+m′ , B = g
1

x2+(H(m)⊕m′) ,
C = m′.

3. Verify: On input verification key (y1, y2), message m, and the signature
σ = (A, B, C), output 1 if and only if ê(y1 · gC , A) = ê(g, g) and ê(y2 ·
gH(m)⊕C , B) = ê(g, g). Otherwise, output 0.

In key generation algorithm of P-WBB, it needs two exponentiations in group
G1. The signing algorithm costs two exponentiations computations in group G1
and two inversion computations in Z

∗
p. In verification algorithm, it only needs

two pairing and two exponentiations computations as the value ê(g, g) can be
published as part of the public key..

From Theorems 1 and 4, we can get the following result:

Theorem 7. The P-WBB signature scheme is fully-secure.

The security reduction is the same with Theorem 4.

6.2 Fully-Secure Signature from Weak GHR Signature

In this section, we present a fully-secure signature, denoted by P-WGHR, from
the weak GHR signature[16] with the following advantages: The new scheme
does not require the non-standard randomness-finding oracle assumption [16].
The signing algorithm requires less exponentials computation compared to [16].

1. Gen: On input security parameter 1k, pick two pairs safe primes (p1, q1),
(p2, q2). Compute n1 = p1q1 and n2 = p2q2 as two RSA modulus, select
s1 ∈ Z∗

n1
and s2 ∈ Z∗

n2
. Meanwhile, choose two division intractability hash

functions H1 : {0, 1}∗ → Z∗
n1

and H2 : {0, 1}∗ → Z∗
n2

. Furthermore, a
collision-resistant hash function H : {0, 1}∗ → {0, 1}k is selected. The public
key is (n1, s1, n2, s2, H1, H2, H) and the secret key is (p1, q1, p2, q2).

2. Sign: To sign a message m, the signer chooses a random m′ ∈ {0, 1}k and

computes the signature as σ=(A, B, C), where A = s
1

H1(m′)
1 mod n1, B =

s
1

H2(H(m)⊕m′)
2 mod n2, C = m′.

3. Verify: On input verification key (n1, s1, n2, s2, H1, H2, H), message m, and
σ=(A, B, C), output 1 if and only if AH1(C) =s1 mod n1 and BH2(H(m)⊕C) =
s2 mod n2. Otherwise, output 0.
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It requires one multiplication in Z∗
n1

and Z∗
n2

in key generation algorithm,
respectively. The signing algorithm needs one exponentiation and inversion com-
putations in Z∗

n1
and Z∗

n2
, respectively. The online computation in signing phase

could be reduced to only one exponentiation and one inversion computation in
Z∗

n2
. In verification algorithm, it requires one exponentiation computation in Z∗

n1

and Z
∗
n2

, respectively.
It is very interesting because this instantiation from the weak GHR signature

scheme looks similar to the twin signature scheme in [25]. In fact, the parallel
composition paradigm could be viewed as generalization of [25]. First, we define
a relation R as follows:

(a, b), c) ∈ R if and only if a = c ⊕ μ1 ‖ c ⊕ μ2, b = μ1 ‖ μ2 for some μ1 and
μ2.

It is easy to verify such kind of relation satisfies the definition given in Section
4.3. Based on this given relation and the parallel paradigm, the twin signature
scheme [25] could be derived directly from the weak GHR signature scheme.

And, the following result could be derived easily from Theorems 2 and 4. And,
security reduction is the same with Theorem 4.

Theorem 8. The P-WGHR signature scheme is fully-secure.

7 Conclusion

We showed two new paradigms on how to obtain fully-secure signature scheme
from any scheme satisfies only a weak security notion called existentially un-
forgeable against generic chosen message attacks in the standard model. The
new paradigms are different from known methods because they are built only
on weakly-secure signatures, and do not rely on other cryptographic protocols
such as one-time signature, or non-standard assumptions such as random ora-
cle model. The transformations are simple, generic, and provably secure in the
standard model. The sequential composition method is very efficient in key gen-
eration algorithm compared to the second. However, if the computation cost in
the key generation algorithm of weak signature needs more than the weak sig-
nature’s signing algorithm, then, the signing algorithm is more efficient in the
second paradigm. So, we can use different paradigm in applications according to
different requirements.

We also presented several concrete fully-secure signature schemes without
random oracles converted from two previous weakly-secure signature schemes.
Their efficiency comparison with the previous secure signatures was also given.

The design of existentially unforgeable secure signature scheme under adap-
tively chosen message attack, then, can be reduced to that of signature scheme
which is secure under only weakly chosen message attack. In the standard model,
constructing an efficient signature scheme based on standard assumption is still
an open problem. The two new paradigms give one direction in order to solve
this problem.
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Appendix A: Proof of Theorem 3

Proof. Given any adversary A attacking Π in an adaptive chosen message at-
tack, we construct an adversary A′ breaking Π ′ in weak chosen message attacks.
After given public key pk of Π , A queries the signing oracle of Π on messages
mi adaptively and gets q signatures σi=(Ai, Bi, Ci) for 1 ≤ i ≤ q. After the sig-
nature queries, A outputs a forged signature on a new m∗ as σ∗ = (A∗, B∗, C∗).

There are two types of forgeries.
Type 1 forgery: C∗ �= Ci for 1 ≤ i ≤ q.

Type 2 forgery: C∗ = Ci for some i, 1 ≤ i ≤ q.

The reduction works differently for each forger type. Therefore, initially A′ will
choose a random bit bcode ∈ {1, 2} that indicates its guess for the type of forger.
The simulation proceeds differently for each bcode.

If bcode = 1, we construct an algorithm A′ to break Π ′ as follows:

Simulation of Key Generation. A′ first invokes Gen′(1k) and gets q key pairs
(pki, ski) ← Gen′(1k) (Assume that A makes at most q queries to signing oracle),
and sends the q values pki, for 1 ≤ i ≤ q, to challenger for signature queries of
Π ′ before the parameters publication of Π ′. Then A′ gets public key pk of Π ′

and q signatures σ′
i = Sign′(sk, pki) on the q messages pki, with respect to pk,

for 1 ≤ i ≤ q. A′ sends the public key pk to the adversary A as the public key
of Π .

Simulation of Signing Oracle. A then queries the signing oracle of Π on mes-
sages mi adaptively for 1 ≤ i ≤ q. A′ answers the signature query as σi=(Ai,
Bi, Ci), where Ai=σ′

i from the challenger, Bi = Sign′(ski, mi), Ci = pki.

Forgery After the signature queries, A outputs a forged signature on a new
message m∗ as σ∗ = (A∗, B∗, C∗).

If C∗ �= Ci for 1 ≤ i ≤ q, then A′ can output a forged Π ′ signature as σ = A∗

on a new message C∗ and break the signature scheme Π ′. Otherwise, A′ aborts.

If bcode = 2, we construct an algorithm A′ to break Π ′ as follows:

Simulation of Key Generation. A′ randomly generates (pk, sk) ← Gen′(1k) of
Π ′. A′ then sets Π ′s key pair as (pk, sk) and sends the public key pk to A. A′

also chooses a random κ ∈ [1, q] and keeps it secret.

Simulation of Signing Oracle. A queries the signing oracle of Π on messages mi

adaptively for 1 ≤ i ≤ q. A′ answers the signature query as follows: if i �= κ, A′

first invokes Gen′(1k) and gets key pair (pki, ski) ← Gen′(1k). Then, it returns the
simulated signature on messages mi as σi=(Ai, Bi, Ci), where Ai=Sign′(sk, pki),
Bi = Sign′(ski, mi), Ci = pki. Otherwise, if i = κ, A′ sends mi to the challenger
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for signature of Π ′, and gets the challenge public key pk∗ of Π ′ and signature
Sign′(sk∗, mi) of mi with respect to pk∗. Then A′ answers the signature query
as σi=(Ai, Bi, Ci), where Ai=Sign′(sk, pk∗), Bi= Sign′(sk∗, mi) and Ci=pk∗.

Forgery. After the signature queries, A outputs a forged signature on a new
message m∗ as σ∗ = (A∗, B∗, C∗), where C∗ = Ci for some 1 ≤ i ≤ q.

If i �= κ, A′ aborts and fails. Otherwise, if i = κ, then c∗ = pk∗. This implies
that A′ can output a forged signature B∗ on a new message m∗ with respect to
pk∗ and break the signature scheme Π ′.

We define two events, E1 and E2, which denotes type 1 forgery and type 2
forgery occurs, respectively. As prob[E1] + prob[E2] = prob[A wins]. Since A wins
with probability ε, it follows that one of the two events occurs with probability at
least ε/2. It is easy to see that the success probability of A′ under the conditions
that event E1 occurs is 1

2 · prob[E1]. In the type 2 forgery simulation, success
guess of γ is 1

q . So the success probability of A′ under the conditions that event
E2 occurs is 1

2q prob[E2]. Therefore, if A wins with probability ε, the signature
scheme Π ′ with probability at least ε

2q . ��

Appendix B: Proof of Theorem 4

Proof. Given any adversary A attacking Π in an adaptive chosen message at-
tack, we construct an adversary A′ breaking Π ′ in weak chosen message attacks.
After given public key pk of Π , A queries the signing oracle of Π on messages
mi adaptively and gets q signatures σi=(Ai, Bi, Ci) for 1 ≤ i ≤ q. After the sig-
nature queries, A outputs a forged signature on a new m∗ as σ∗ = (A∗, B∗, C∗).

There are also two types of forgeries:
Type 1 forgery: C∗ �= Ci for 1 ≤ i ≤ q.

Type 2 forgery: C∗ = Ci for some i, 1 ≤ i ≤ q.

The reduction works differently for each forger type. Therefore, initially A′ will
choose a random bit bcode ∈ {1, 2} that indicates its guess for the type of forger
that A will emulate. The simulation proceeds differently for each bcode.

If bcode = 1, we construct an algorithm A′ to break Π ′ as follows:

Simulation of Key Generation. A′ first invokes Gen′(1k) and gets key pair
(pk2, sk2) ← Gen′(1k). Then A′ chooses q random values m′

1, · · · , m′
q (Assume

A makes at most q queries to signing oracle), and sends the q values m′
i, for

1 ≤ i ≤ q, to challenger for signature queries of Π ′ before the parameters pub-
lication of Π ′. Then A′ gets its challenge public key pk of Π ′ and q signatures
σ′

i = Sign′(sk, m′
i) on the q messages m′

i, with respect to pk, for 1 ≤ i ≤ q.
Then A′ sets the public key of Π as pk = (pk1, pk2), where pk1 = pk, and

sends the public key pk to the adversary A.

Simulation of Signing Oracle. A then queries the signing oracle of Π on mes-
sages mi adaptively for 1 ≤ i ≤ q. A′ answers the signature query as follows:
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– From the first property of the given relation R, A′ could compute m
′′

i such
that ((m′

i, m
′′

i ), mi) ∈ R;
– Then, it computes Bi = Sign′(sk2, m

′′
i );

– Finally, outputs the signature σi=(Ai, Bi, Ci), where Ai=σ′
i from challenger,

and Ci = m′
i.

Forgery. After the signature queries, A outputs a forged signature on a new
message m∗ as σ∗ = (A∗, B∗, C∗).

Because m∗ �= mi for 1 ≤ i ≤ q, then if C∗ = m′
i for some i, A′ aborts

and fails. Otherwise, A′ can output a forged Π ′ signature as σ = A∗ of a new
message C∗ and break the signature scheme Π ′, with the challenge public key
pk.

If bcode = 2, we construct an algorithm A′ to break Π ′ in another way:

Simulation of Key Generation. A′ randomly generates (pk1, sk1) ← Gen′(1k)
of Π ′. Then A′ chooses q random values m′′

1 , · · · , m′′
q (Assume that A makes at

most q queries to signing oracle), and sends the q values m′′
i , for 1 ≤ i ≤ q, to

challenger for signature queries of Π ′ before the parameters publication of Π ′.
Then A′ gets its challenge public key pk of Π ′ and q signatures σ′

i = Sign′(sk, m′′
i )

of the q messages m′′
i , with respect to pk, for 1 ≤ i ≤ q.

Then A′ sets the public key of Π as pk = (pk1, pk2), where pk2 = pk, and
sends the public key pk to the adversary A.

Simulation of Signing Oracle. A then queries the signing oracle of Π on mes-
sages mi adaptively for 1 ≤ i ≤ q. A′ answers the signature query as fol-
lows: First, from the first property of relation R, A′ computes m′

i such that
((m′

i, m
′′

i ), mi) ∈ R. Then, A′ outputs simulated signature on message mi as
σi=(Ai, Bi, Ci), where Ai=Sign′(sk1, m

′
i), Bi = σ′

i, Ci = m′
i.

Forgery. After the signature queries, A outputs a forged signature on a new mes-
sage m∗ as σ∗ = (A∗, B∗, C∗). By using the first property of relation R again,
A′ could compute m∗′′

from m∗ and C∗, such that ((C∗, m∗′′
), m∗) ∈ R.

Recall that in this kind of forgery, C∗ = Ci for some i. Because m∗ �= mi

for 1 ≤ i ≤ q, and m′
i, m

′′

i are chosen randomly by the simulator, we have
m∗′′ �= m

′′

i from the second property of the defined relation R. This proof, in
fact, shows that the signature scheme prevents the attack from the adversary
that just combine the first part in one signature for message M and the second
part in the other signature for message M ′.

So, A′ can output a forged Π ′ signature as σ = A∗ on a new message m∗′′

and break the signature scheme Π ′, with respect to the challenge public key pk.
��
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Abstract. A recently proposed class of multivariate Public-Key Cryp-
tosystems, the Rainbow-Like Digital Signature Schemes, in which succes-
sive sets of central variables are obtained from previous ones by solving
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Recently SFLASH (C∗−) was broken by Dubois, Fouque, Shamir, and
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1 Outline

Multivariate Public-Key Cryptosystems (MPKCs, or trapdoor MQ schemes) are
cryptosystems for which the public key is a set of polynomials P = (p1, . . . , pm)
in variables x = (x1, . . . , xn) where all variables and coefficients are in K =
GF(q). In practice this is always accomplished via

P : w = (w1, . . . , wn) ∈ K
n S�→ x = MSw+cS

Q�→ y T�→ z = MT y+cT = (z1, . . . , zm) ∈ K
m

In any given scheme, the central map Q belongs to a certain class of quadratic
maps whose inverse can be computed relatively easily. The maps S, T are affine.
The polynomials giving yi in x are called the central polynomials, and the xj

are called the central variables.
In 1999, the Unbalanced Oil-and-Vinegar multivariate structure is proposed

by Patarin et al [16]. Lately the Rainbow class of signatures [7,25,20], based on
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repeated applications of the Unbalanced Oil-and-Vinegar principle, shows some
promise on systems of low computational resources.

Given that the well-known C∗− class of signature schemes including SFLASH
was broken by differential attacks [8], we examine similar attacks on Rainbow,
with the following conclusions:

– Differentials improve on the High-Rank attacks on Rainbow-like systems.
– Differentials also helps with randomized brute-force searches for S and T .
– We can assess how Rainbow-like schemes needs to be amended in view of

recent developments.
– The results are in line with experiments run on small scale systems.

In Sec. 2 we recap Rainbow-like multivariates and what is known about the secu-
rity of MPKC before the appearance of Rainbow in Sec. 3. In Sec. 4, we describe
the new differential attack, which is related to the high-rank attack, and in Sec. 5
we present new paramters for Rainbow construction, we tabulate what we know
about the security of Rainbow-like schemes, in particular, the security against
the two new recent attacks specially targeted against the Rainbow schemes, and
we design schemes with new parameters for practical applications. Finally, in
Sec. 6, we present the conclusion.

2 Rainbow-Like Multivariate Signatures

We characterize a Rainbow type PKC with u stages:

– The segment structure is given by a sequence 0 < v1 < v2 < · · · < vu+1 = n.
For l = 1, . . . , u + 1, set Sl := {1, 2, . . . , vl} so that |Sl| = vl and S0 ⊂ S1 ⊂
· · · ⊂ Su+1 = S.

– Denote by ol := vl+1 − vl and Ol := Sl+1 \ Sl (i.e., vl < k ≤ vl+1 if k ∈ Ol)
for l = 1 · · ·u. The central map Q : x = (x1, . . . , xn) �→ y = (yv1+1, . . . , yn),
where each yi := qi(x) is a quadratic polynomial in x of the following form

qk =
∑

i<j≤vl

α
(k)
ij xixj +

∑

i≤vl<j<vl+1

α
(k)
ij xixj +

∑

i<vl+1

β
(k)
i xi, if vl < k ≤ vl+1.

In every qk, k ∈ Ol, there is no cross-term xixj where both i and j are in
Ol at all. So given all the yi with vl < i ≤ vl+1, and all the xj with j ≤ vl,
we can compute xvl+1, . . . , xvl+1 .

– To expedite computations, some coefficients αijk ’s may be fixed (e.g., set to
zero), chosen at random (and included in the private key), or be interrelated
in a predetermined manner.

– To invert Q, determine (usu. at random) x1, . . . xv1 , i.e., all xk, k ∈ S1. From
the components of y that corresponds to the polynomials qv1+1, . . . qv2 , we
obtain a set of o1 equations in the variables xk, (k ∈ O1). We may repeat
the process to find all remaining variables.
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In this form, we can see that Rainbow can only be a signature scheme. We
can see a good example of what can go wrong in [15] if we try to construct an
encryption scheme, where the initial vinegar variables is determined through an
initial block of equations.

Example 1. enTTS(20,28) of [25] has structure (8, 9, 1, 1, 9) and this central map:

yi = xi +
∑7

j=1 pijxjx8+(i+j mod 9), i = 8 · · · 16;
y17 = x17 + p17,1x1x6 + p17,2x2x5 + p17,3x3x4

+p17,4x9x16 + p17,5x10x15 + p17,6x11x14 + p17,7x12x13; (1)
y18 = x18 + p18,1x2x7 + p18,2x3x6 + p18,3x4x5

+p18,4x10x17 + p18,5x11x16 + p18,6x12x15 + p18,7x13x14;

yi = xi + pi,0xi−11xi−9 +
∑i−1

j=19 pi,j−18 x2(i−j)−(i mod 2) xj + pi,i−18x0xi

+
∑27

j=i+1 pi,j−18 xi−j+19 xj , i = 19 · · ·27.

If x0, . . . , x7 is decided, one can solve first for x8, . . . , x16, then x17, x18, then
x19, . . . , x27. Note: x0 does not appear until the last block, which will be significant
later.

Example 2. The proposed Rainbow scheme in [7] is an essentially generic stage-
wise UOV construction with layers (6, 6, 5, 5, 11). The first six central equations is
a generic UOV construction with six vinegar (x1, . . . x6) and six oil (x7, . . . , x12)
variables; the next five has 12 vinegars and 5 oils (x13, . . . , x17); the next five
has 17 vinegars and 5 oils (x18, . . . , x22), and the last 11 has 22 vinegars and 11
oils (x23, . . . , x33).

Rainbow schemes where most of the crossterm coefficients α
(k)
ij are zero are said

to be TTS instances. TTS schemes have a relatively small private key and even
better efficiency, but may be exposed to additional risks. Regardless, the same
techniques that we shall describe below are security concerns for all schemes of
the rainbow type including TTS, TRMS, and Rainbow [25,20, 7].

3 The Security of Multivariates and Prior Attacks

The name of the class came from the “Multivariate Quadratics” problem:

Problem MQ: Solve the system p1 = p2 = · · · = pm = 0, where each pi is a
quadratic polynomial in x = (x1, . . . , xn) and coefficients and variables are
in K = GF(q).

Generic MQ is NP-hard [12], and consensus pegs it as a difficult problem to
solve even probabilistically. However, to use MQ as the underlying hard problem
in a PKC, one need a trapdoor built into the public map P . So the security of
the cryptosystem also depends on the following:

Problem EIP: (Extended Isomorphism of Polynomials) Given a class of cen-
tral maps C and a map P expressible as P = T ◦ Q ◦ S, where Q ∈ C, and
S, T are affine, make such a decomposition.
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There are two interesting twists here:

– If Q is constant, this is known as the IP problem. J.-C. Faugère showed that
in some cases simple IP is not NP-hard at Eurocrypt 2006 [11].

– The EIP problem where C is the set of homogeneous quadratic maps is
easy [13]. Equivalently, if Q is homogeneous (e.g., as in SFLASH=C∗−) we
can set cS = cT = 0.

If Q fundamentally involves a map in a field L = Kk that is of a size signif-
icantly bigger than K, we call the scheme “big field” or “dual field”. This order
includes derivatives of Matsumoto-Imai (C∗) and Hidden Field Equations. Oth-
erwise we call the scheme a “true multivariate” (sometimes “single field”). This
includes the Unbalanced Oil-and-Vinegar and stagewise triangular structures.

One of the biggest concerns of multivariate cryptography is the lack of prov-
able security results. Today security in MPKC is still very much ad hoc. Proposed
schemes are evaluated against known attacks security estimates obtained for var-
ious parameters. The designers then tries to juggle the system parameters so as
to have some requisite security level under every known attack.

With that, we list the standard attacks known for MPKCs today:

1. Rank (or Low Rank, MinRank) attack, which finds a central equation with
least rank [25].

Clow rank ≈
[
qr�m/n�m(n2/2 − m2/6)/μ

]
m.

Here as below, the unit m is a multiplications in K, and r is that lowest
rank (“MinRank”, [14]). μ is the number of linear combinations of central
equations [25] at that minimal rank.

2. Dual Rank (or High Rank) attack [5, 14], which finds a variable appearing
the fewest number of times in a central equation cross-term. If this least
number is s, [25] gives

Chigh rank ≈
[
qsn3/6

]
m.

3. Oil-and-Vinegar Separation [22, 16, 17], which finds an Oil subspace that is
sufficiently large (estimates as corrected in [25]).

CUOV ≈
[
qn−2o−1o4 + (some residual term bounded by o3qm−o/3)

]
m.

o is the max. oil set size, i.e., there is a set of o central variables which are
never multiplied together in the central equations, and no more.

4. Trying for a direct solution (i.e., going for the MQ as opposed to the EIP or
“structural” problem). Best known methods are the Lazard-Faugère family
of solvers (the Gröbner Bases methods F4-F5 or XL) whose complexities
[6, 9, 10, 24] are very hard to evaluate; some recent asymptotic formulas can
be found in [1, 2, 24].
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4 New Differential Attacks

One key point of our new attack is to use the differentials (first used, as far as
we know, with MPKC in [18] and recently to break SFLASH [8]).

Given the public key of a MPKC, which we denote as P(x), a set of quadratic
polynomials, its differential DP(x) is defined as

DP(x) = P(x + c) − P(x) − P(c),

a set of linear functions in x.
The key is to use the hidden structures in the differential to attack the cryp-

tosystem. The observation is that the differential can be used to improve the
old high-rank attack when there are too many variables that don’t appear in
the final block of equations (for yi, where i ∈ Ou). First, we will reformulate an
existing attack in terms of the differentials.

Let Hi be the symmetric matrix corresponding to the quadratic part of zi(w).
Without loss of generality, we may let the fewest number of appearances of all
variables in the cross-terms of the central equations be the last variable xn

appearing s times.

Algorithm 0 (High or Dual Rank Attack). as described by Goubin-Courtois
and Yang-Chen [14,25]:

1. Compute the differential P(x+c)−P(x)−P(c) and take its j-th component
(which is bilinear in x and c) as cT Hjx. Hk is representing the quadratic
crossterms in the k-th polynomial of the public key. Note that the Hi are
always symmetric and if charK = 2, and xT Hix = 0.

2. Form an arbitrary linear combination H =
∑

i αiHi. Find V = kerH.
3. When dim V = 1, set (

∑
j λjHj)V = {0} and check if the solution set V̂ of

the (λi) form a subspace dimension m − s. Note: Since a matrix in Kn×n

can have at most n different eigenvalues, less than n/q of the time we would
need to do this.

4. With probability q−s we have V = U = {x : x1 = · · · = xvu = 0}.

As each trial run consists of running an elimination and some testing, we can
realistically do this with ∼

(
sn2 + n3

6

)
qs field multiplications, by taking linear

combinations from only (s+1) of the matrices Hi and hope not to get too unlucky.
An upper bound is

[
mn2 + n3

6 + n
q (m3/3 + mn2)

]
qs.

The above formulation of the high rank attack is designed to defeat “plus”-
modified Triangular systems. We first present some notations before describing
how we can improve this attack further:

Let Pl be the linear space of quadratic polynomials spanned by polynomials
of the form

∑

i∈Ol,j∈Sl

αi,jxixj +
∑

i,j∈Sl

αi,jxixj +
∑

i∈Sl+1

βixi + η
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We can see that these are Oil and Vinegar type of polynomials such that xi,
i ∈ Ol are the Oil variables and xi, i ∈ Sl are the Vinegar variables. We call xi,
i ∈ Ol an l-th layer Oil variable and xi, i ∈ Sl an l-th layer Vinegar variable.
We call any polynomial in Pl an l-th layer Oil and Vinegar polynomial. Clearly
we have Pi ⊂ Pj for i < j. Let Wi be the space of linear functions of variables
x1, ..., xvi . Then we have

W1 ⊂ P1 ⊂ W2 ⊂ P2 · · · ⊂ Wu ⊂ Pu ⊂ Wu+1.

Now we present the new attack:

Algorithm 1. The Improved High-Rank Attack using differentials:

1. Pick random c, c′ ∈ Kn, compute P(w+c)−P(w)−P(c), and we will denote
its components as (t1, t2, . . . , tm). Similarly we compute (t′1, t

′
2, . . . , t

′
m) =

P(w + c′) − P(w) − P(c′), then

U = span(t1, t2, . . . , tm) ∩ span(t′1, t
′
2, . . . , t

′
m).

2. Guess at a linear form f ∈ U ; find coefficients ai and a′
i such that f =∑

aiti =
∑

a′
it
′
i.

3. Use ai and a′
i as the guessed αi in the High Rank Attack (Algorithm 0) above.

Proposition 1. The expected complexity of Algorithm 1 is ∼ qd · (cubic-time
elimination) where (the last block of equations is the ones whose solutions gives
Ou)

d ≤ s − [# vars appearing in crossterms only in the last block]. (2)

Proof. Let
F = (F1, . . . , Fm) = Q ◦ S

be the mapping from x �→ z. Let

F (x + b) − F (x) − F (b) := G = (G1, G2, . . . , Gn),

where b = (b1, b2, . . . bi, . . . , bn) is randomly chosen. Pick another b′ and form

H = (H1, . . . , Hn) = F (x + b′) − F (x) − F (b′),

then

1. if i ∈ Oj , then Gi, Hi ∈ Wj+1;
2. W j+1 := span{Gi}i∈Oj ⊂ Wj+1, and similarly Ŵj+1 := span{Hi}i∈Oj ⊂

Wj+1;
3. W 2 ⊂ ... ⊂ Wu+1 and Ŵ2 ⊂ ... ⊂ Ŵu+1.

Clearly (Ŵu

⋂
Wu) ⊂ (Ŵu+1

⋂
Wu+1), and we observe that: if the dimensions of

the two subspaces differ by d, then we can break the system with ∝ qd·(one guess)
computations.
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How so? Because the relationship between P and F , is the same as that
between the w-space and x-space, i.e., the linear transformation S. So there is
a 1-in-qd chance that both

∑
aizi and

∑
a′

izi correspond to a linear form in
Wu. The odds are now decided by q−d instead of q−s. In a Rainbow-like system,
s = ou = n − vu. For Alg. 1 to be worthwhile, we must show that d ≤ s.

In fact, it is not so hard to describe how to determine d. Wu+1 and Ŵu+1 are
two m-dimensional subspaces in the n-dimensional vector space Wu+1. Most of
the time they intersect in a 2m − n dimensional subspace, hence

dim Wu = dim Ŵu = m − ou

which equals the number of variables appearing in cross-terms in equa-
tions not of the final block, which is equivalent to Eq. 2.

Example 3. Consider enTTS(20,28) as in Eq. 1. Here dim(Wu+1
⋃

Ŵu+1) =
20 + 20 − 28 = 12, while dim(Wu

⋃
Ŵu) = 11 + 11 − 17 = 5. Therefore we

need only ∼ 256 instead of 272 guesses, which is a speed increase of 216× over
Algorithm 0. Since each guess takes about 28 time units (standard is to use
time of a 3DES block encryption, between 26 to 28 multiplications), this gives
complexity 264 instead of 280, too weak to be “strong” crypto.

What went wrong? Generically dimWu = n − ou and the intersection is of
dimension 2(m − ou) − (n − ou) = 2m − n − ou, making d = (2m − n) − (2m −
n − ou) = ou = s. The lesson: watch out for variable not in the final oil set that
does not occur prior to the last block of equations. In enTTS(20,28), x0 and x18
did not appear in any earlier equations than the final block.

4.1 Experimentation with Mini-versions

We experimented in smaller fields with three different schemes: Rainbow (6,6,5,5,
11), the enTTS(20,28) scheme above, and its miniaturized sister version enTTS
(16,22) [structure (6,7,1,1,7)].

Table 1. Timing (sec) on 16 of 3GHz P4 machines guessing in parallel

q

The results are fairly constant over many tests [except the enTTS(20,28) test
which we only ran a few times]. Clearly, not having all vinegar variables of
the last segment appearing previously in cross-terms is a big minus. Rainbow
(6,6,5,5,11) does not have the same problem and Algorithm 1 is no improvement
of the High Rank Attack against it.
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5 New Rainbow Parameters for Practical Applications

For practical applications, we will propose the following Rainbow Structures.

1. (20, 10, 4, 10), where the public key has 44 variables and 24 polynomials.
2. (18, 12, 12), where the public key has 42 variables and 24 polynomials.
3. (20, 14, 14), where the public key has 48 variables and 28 polynomials.

We will first formalize a twist on the regular Rainbow construction, which
is somewhat more general. In the previous constructions, in each new layer,
previously appeared variables will only be Vinegar variables, the new variables
appearing only as Oil variables. We can also consider adding new Vinegar vari-
ables as we add Oil variables. This also implies that in the signing process, we
guess at the new vinegar variables as they appear, while in the previous Rainbow
construction, we only guess the Vinegar variables in the first layer once. In this
case, we can also write for each layer two parameters, (v′i, oi), where the v′i counts
the new vinegar variables we introduce. In this layer, we will have vi +v′i Vinegar
variables (where vi counts the number of all previous appearing variables) and
oi the number of Oil variables.

If all the v′i are zero, this is precisely the original Rainbow construction. We
might call this new construction the extended Oil-Vinegar construction. From
the viewpoint of the attacker we can see this as a specialization of the Rainbow
construction, since the new vinegar variables might as well have been part of
the initial block of vinegar variables, but simply never have been used before.
However, it is different in an operative sense, in that if we use the new vinegar
variables properly, we could always find a signature, as implicitly used in TTS
constructions earlier.

So, in this language, we would propose scheme:((15,10), (4, 4),(1, 10)),((17, 12),
(1, 12)), and ((19, 14), (1, 14)).

For these new schemes, we could also choose to use the generic sparse polyno-
mials or special sparse polynomials as in the case of TTS [25]. For generic sparse
polynomials, we think it is a good idea to choose 3Li terms for each layer, where
Li is the sum of number of Oil and vinegar variables in each layer.

For these new schemes, we need to take into two new recent special attacks
against Rainbow.

5.1 The Reconciliation Attack

In the following attack we attempt to find a sequence of change of basis that let
us invert the public map. In this sense it can be considered an improved brute
force attack.

Suppose we have an oil-and-vinegar structure, then the quadratic part of each
component qi in the central map from x to y, when expressed as a symmetric
matrix, looks like
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Mi :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v, 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

First, no matter what MT is, it won’t change the basic shape, so we let T be
the identity map for the moment. What can S be like? Suppose we pick MS as
totally random, most often (see below) it decompose to

MS :=
[
∗v×v ∗v×o

∗o×v ∗o×o

]

=
[
1v×v ∗v×o

0o×v 1o×o

] [
∗v×v 0v×o

∗o×v ∗o×o

]

(4)

where 1 means identity matrix, 0 means just zeros and ∗ means random or
anything. In fact, this decomposition always hold unless the lower-right o × o

submatrix is singular. It should be clear that the
[
∗v×v 0v×o

∗o×v ∗o×o

]

portion of MS , as

a coordinate change leaves the Mi’s with the same shape. That is, if we can find

the correct
[
1v×v ∗v×o

0o×v 1o×o

]

portion and perform the basis change in reverse, we will

again make the resulting public map into the same form (all zeroes on the lower
right) and be easily inverted. Hence, no more security at all. More about this
phenomenon (“equivalent keys”) in MPKCs can be seen in, say, [23].

Let this essential portion of MS that we wish to recreate be P , that is, the
linear transformation w �→ x = Pw will create all zeroes on the lower right. We
can decompose this P into a product of P := Pv+1Pv+2 · · · Pn, where each of the
matrices look like

Pn = 1n +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 a1
0 · · · 0 a2
...

. . .
...

...
0 · · · 0 av

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Pn−1 = 1n +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 a′
1 0

0 · · · 0 a′
2 0

...
. . .

...
...

...
0 · · · 0 a′

v 0
0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; · · ·

Indeed, the multiplication is actually commutative among the various Pi’s. Sup-
pose, then, that we start with the differential matrices Hi and simultaneously
transform them to make their lower-right corner a square of 0’s using exactly
such Pi’s.

Algorithm 2 (UOV Reconciliation). The following gives the Reconciliation
Attack against a UOV scheme with o oil and v = n − o vinegar variables (which
has the smaller indices):
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1. Perform basis change wi := w′
i − λiw

′
n for i = 1 · · · v, wi = w′

i for i =
v + 1 · · ·n. Evaluate z in w′.

2. Let all coefficients of (w′
n)2 be zero and solve for the λi. We may use any

method such as F4/F5 or FXL. There will be m equations in v unknowns.
3. Repeat the process to find Pn−1. Now we set w′

i := w′′
i −λiw

′′
n−1 for i = 1 · · · v,

and set every (w′′
n−1)2 and w′′

nw′′
n−1 term to zero (i.e., more equations in the

system) after making the substitution. This time there are 2m equations in
v unknowns.

4. Continue similarly to find Pn−2, . . . , Pv+1 with more and more equations.

Given what we know about system-solving today, we can expect the complexity
to be determined in solving the initial system. Hence, if v < m, solving m
equations in v variables will be easier than m equations in n equations, and we
achieve a simplification.

Proposition 2. The Reconciliation Attack works with probability ≈
(
1 − 1

q−1

)
.

Proof (Sketch). Provided that lower-right o×o submatrix of MS is non-singular,
we can see that the construction of Pn will eliminate the quadratic term in the
last variable. Pn−1 will eliminate all quadratic terms in the last two variables,
and so on, and each sequential construction will not disturb the structure built
by the prior transformations. The number of nonsingular k × k matrices in over
GF(q) is (qk − 1)(qk − q)(qk − q2) · · · (qk − qk−1), because the first row has 1
possibility to be zero, the second row q possibilities to be a multiple of the first,
the third row q2 possibilities to be dependent on the first two, etc., so the chance
that the above attack works is roughly

(

1 − 1
q

) (

1 − 1
q2

)

· · ·
(

1 − 1
qk

)

> 1 −
(

1
q

+
1
q2 + · · · + 1

qk

)

> 1 − 1
q − 1

.

Here we will use formulas from [26] for all our estimates as shown below.

Example 4. We attack enTTS(20,28) as in Eq. 1. Originally we must solve a 20-
equation, 20-variable (we can guess 8 out of the original 28) MQ system. With
vu = 19, the rate-determining step of the Reconciliation Attack is a 20-equation,
19-variable system. This is easier by a factor of exactly 28 if we are using FXL
or FF4 [24, 1], since we will guess exactly one fewer variable.

Since we expect a direct attack on enTTS(20,28) to have ∼ 272 complexity,
Alg. 2 should take ∼ 264. The construction process and odds as given above
have been tested and verified on miniature versions (cf. [25]) of TTS schemes
such as enTTS(16,22) as well as other Rainbow-like instances.

Example 5. TRMS [20] can be reduced to 264 via the same attack (a faster attack
given below) because it has rainbow layer parameters of (8, 6, 2, 3, 9), with a last
block of the same size as TTS.

Example 6. We implemented enTTS(16,22) over GF(128), the initial system has
16 equations and 22 − 7 = 15 variables. We ran FXL with Wiedemann solver
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(as in [26]) with one fixed variable on an assembly of machines with 128 total
P4 cores at 3.0GHz, each guessing 1 value out of 128. Here D = 8 [24], and the
number of monomials is T = 319770, with a total of 73799040 terms which took
only 288MB of storage at every core. Solving a system known to have a solution
should take around 3(T 2n(n + 3)/2) ≈ 245 multiplications, which at about 16
cycles a multiplication about 2.0 × 104 seconds, but we discovered that there is
guesswork in generating a system, so we dare not run more than one value on a
given CPU.

In practice we were not so unlucky and were able to solve 15 variables in 16
equations in GF(128) in what was in fact closer about 3 days, probably due to
non-optimal programming. After that, solving the remaining systems is a piece
of cake [real CPU time estimated at less than two hours], and we can then
decompose an enTTS(16,22) instance.

Example 7. We now attack the proposed Rainbow instance in [7]. Since vu =
22 < m = 26, solving this one is significantly easier: using FF5 [24], the expected
time use is 256 (3DES blocks) instead of 281. F5 is not generally available but
we should be able to achieve ∼ 264 cycles using FXL on a large SMP system.

We can easily see that we must be very careful choosing our parameters for
security against one attack may expose it to another. Our selected parameters
are all tuned against this particular attack and this attack is no better or worse
than direct attack, which have complexity of solving 24, and 28 equations in as
many variables over GF(256), or roughly 283 and 298 respectively.

But this is just a unbalanced oil and vinegar attack. The more efficiently imple-
mented systems are Rainbow and have multiple layers. If we look at the Rainbow
construction, it looks more like

That is, only the last o equations looks like Eq. 3, the initial m − o equations
actually have non-zero entries in the upperleft submatrix — which actually looks
like a UOV matrix itself, i.e., has a block of zeros on the lower right. We don’t
bother with that detail. Can we exploit this property? Yes we can.

At this point, we should no longer consider T as the identity. Let us think
about what the matrix MT does in Rainbow. At the moment that we distill the
Pn portion out, m − o of the new Mi’s should show a zero last column. However
we don’t; MT mixes the Mi’s together so that they in fact don’t – we will see
most of the time only the lower right entry as zero. But if we take any o + 1 of
those last columns, there will be a non-trivial linear dependency. We can verify

Mi :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α
(i)
11 · · · α

(i)
1v 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, if i ≤ m−o;

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v, 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, otherwise.

(5)
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that by setting one of those columns as the linear combination as the other o,
the resulting equations are still quadratic!

Algorithm 3 (Rainbow Band Separation). Reconciliation may be extended
for a Rainbow scheme where the final stage has o oil and v = n − o vinegar
variables (which has the smaller indices):

1. Perform basis change wi := w′
i − λiw

′
n for i = 1 · · · v, wi = w′

i for i =
v + 1 · · ·n. Evaluate z in w′.

2. Find m equations by setting all coefficients of (w′
n)2 to be zero; there are v

variables in the λi’s.
3. Set all cross-terms involving w′

n in z1 − σ
(1)
1 zv+1 − σ

(1)
2 zv+2 − · · · − σ

(1)
o zm

to be zero and find n−1 more equations. Note that (w′
n)2 terms are assumed

gone already, so we can no longer get a useful equation.
4. Solve m + n − 1 quadratic equations in o + v = n unknowns. We may use

any method (e.g., F4 or XL).
5. Repeat the process to find Pn−1. Now set w′

i := w′′
i − λiw

′′
n−1 for i = 1 · · · v,

and set every (w′′
n−1)

2 and w′′
nw′′

n−1 term to zero after making the substitu-
tion. Also set z2 − σ

(2)
1 zv+1 − σ

(2)
2 zv+2 − · · · − σ

(2)
o zm to have a zero second-

to-last column. This time there are 2m + n − 2 equations in n unknowns.
6. Continue in the same vein to find Pn−2, . . . , Pv+1.

The idea was mentioned by Mr. Yu-Hua Hu to one of the authors in a con-
versation, for which we are indebted. And this attack explains why the current
parameter set suggested looks like that in Sec. 5.

Example 8. We run the attack on an instance of enTTS(16, 22) [25] which has the
shape (6, 7, 1, 1, 7). The algebraic portion of the attack results in a system with
22 variables and 37 equations. This with XL at degree DXL = 6 can be solved
using 400MB (actually 415,919,856 bytes) of memory and 123,257 seconds on a
16-core, 2.2GHz Opteron machine with a total of 1,877,572 seconds of K8-CPU
time. The number of multiplications is about 247, or ∼ 16 cycles a multiplication.

On a single core, a K8 machine running XL-Wiedemann can average one multi-
plication in GF(28) in about 9 cycles. The slowdown comes from the communi-
cations requirement between cores.

Example 9. The attack on an instance of enTTS(20, 28) [25] should result in a
system with 22 variables and 37 equations. This with XL at degree DXL = 7
should be solvable in 15GB of main memory and about 256 multiplications. This
is under the design complexity of 272.

We are also testing the prowess of other system-solving methods like Magma’s F4.

5.2 Interlinked/Accumulating Kernels and MinRank

As noted in [25] and recapped in Sec. 3, if μ combinations of central equations
stays at the minrank, a Rank attack often speed up μ-fold, and which is termed
interlinking or accumulation of kernels.
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Recently Billet and Gilbert [4] cryptanalyzed the Rainbow instance of [7] in ∼
264 3DES unit times (they stated 271, but GF(256)-multiplications is a very small
unit; NESSIE for example counted 3DES units) using the same principle. While
we exhibit a faster attack on that rainbow instance above, the same extended
accumulating-kernel minrank attack is more widely applicable:

Proposition 3 (Billet-Gilbert). Kernels of the initial block of equations in
a rainbow-like multivariate always accumulate such that any vector in x-space
with the initial vinegar components all vanishing has at least a 1/q probability of
being found by the MinRank attack.

Example 10. We can cryptanalyze enTTS(20,28) [25] in 264 via the accumulating
kernels attack.

In fact, this pitfall is sometimes easy to overlook:

Proposition 4. We can cryptanalyze TRMS from [20] in ∼ 262 via the accu-
mulating kernels attack.

Proof. The central map has this piece with ∗3 meaning multiplication in GF(224):
⎛

⎝
y17
y18
y19

⎞

⎠ =

⎛

⎝
x17
x18
x19

⎞

⎠ ∗3

⎛

⎝
x8

x9 + x11 + x12
x13 + x15 + x16

⎞

⎠ +

⎛

⎝
c29x4x16
c30x5x10
c31x15x16

⎞

⎠ +

⎛

⎝
c32x9
c33x10
c34x11

⎞

⎠ .

Each of these equations are only of rank 8 (the minrank) in GF(256), and the y17
and y19 form a pair of equations that has q = 256 interlinked kernels. Evaluating
as in Sec. 3 gives ≈ 262.

In our schemes, the attack has complexity roughly q to the number of equa-
tions in the first block times change, which comes out to about 285, 2100, 2118.

5.3 The Challenge

From all the above, we can see that we need to be very careful in our design of
the parameter for Rainbow like schemes.

Proposition 5. To build a scheme with design security C over the base field
GF(q), we let � be the smallest integer such that q�+1 � C, then:

– The initial segment must contain � − 1 or more vinegar variables. The final
segment must contain � − 1 or more equations and exactly as many as there
are total vinegar variables.

– There should be enough equations to avoid direct solution via a Lazard-
Faugère solver.
Current estimate [24] is that 20 underdetermined equations in GF(28) achieves
272; 24 equations achieves 282; each extra equation roughly gives a factor � 22.5

to the complexity [24].
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We conclude that all three Rainbow like schemes we propose below have security
levels above 280 elementary operations. The best attack is with Algorithm 3, and
the expected complexity in GF(28) multiplications is 284, 287, 280 respectively.

1. Rainbow (20,10,4,10), in the extended form ((15, 10), (4, 4), (1, 10))
2. Rainbow (18,12,12), in the extended form ((17, 12), (1, 12))
3. Rainbow (20,14,14), in the extended form ((19, 14), (1, 14)).

Of course, without using the extended form, the security level would not be any
lower, the extended form merely guarantees the existence of a signature always.

We hasten to add that the form given above is not much slower in signing
than the previous TTS. In preliminary runs, a single signature for (20,10,4,10)
version averages to about 157μs, still way faster than any competitor.

6 Conclusion

In this paper, we present a new differential attack and a new Rainbow construc-
tions. We design new schemes for practical applications.

With these constructions, we note that the design security of the system would
still go up exponentially as the length of the hash in both generic (rainbow) and
sparse (TTS) variants. Perhaps, we might even say that the kinks of this ap-
proach is being ironed out, and multivariate cryptographers are finally beginning
to understand Rainbow-like Multivariate Signatures.

Another development that affects Rainbow-like schemes is the fact that SHA-1
is being phased out in the wake of recent results [21]. This means that hashes and
hence signatures might become longer in a hurry. ECC is affected in much the
same way, because 163- or 191-bit ECC may be obsoleted when everyone switches
to SHA-2 (no one really wants to use a truncated hash if it can be helped). Even
such state-of-the-art work as [3] would force the slightly uncomfortable SHA-
224. With multivariate signature schemes, an additional problem is the large
(and sometimes redundant, cf. [23]) keys. One might look toward other base
fields such as GF(16) to help with the key size problem, but this would also pose
new challenges in optimization. Another way is to look for a safe TTS (built on
the similar layer structures as specified above), now that hash sizes has gotten
longer. Though the new attacks are found on Rainbow schemes, these attacks
can be easily prevented by adjusting the parameter. All in all, we think that
multivariates including Rainbow-like schemes still deserve a good look as the
age of quantum computers approaches.
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Abstract. Sanitizable signatures allow a designated entity to modify
some specific parts of a signed message and to produce a new signature
of the resulting message without any interaction with the original signer.
In this paper, we extend these sanitizable signatures to formally intro-
duce trapdoor sanitizable signatures. In this concept, the power of saniti-
zation is given to possibly several entities, for a given message/signature
by using a trapdoor computed by the signer at any time. We also give a
generic construction of such trapdoor sanitizable signatures. Eventually,
we apply our new cryptographic tool to group content protection, per-
mitting members of the group to distribute a protected content among
themselves.

1 Introduction

Digital Rights Management (DRM) systems provide efficient mechanisms to pro-
tect digital contents against unauthorized usages. Despite its increasing usage,
in particular in video and music on-line services, users have difficulties to agree
with device limitations induced by these systems. Consumers want flexibility
with legal transfer or exchange of their acquired digital contents.

Let us consider the following scenario: a modern family made up of two par-
ents, teenagers and children connected to a physical or wireless LAN. This family
wants to buy some music songs offered by a well-known music service portal. The
father identifies itself and purchases the desired protected media content on the
portal of the license server. His local DRM agent installs in his device a license
associated to this musical content. A license is a data structure which contains
information about the authorized rights on the song and the cryptographic key
necessary for decrypting the content. For security reasons this license has been
strongly tied to the device. A license is protected by cryptographic functions: a
part of it is encrypted with the public key of the recipient’s device and conse-
quently, it is the only device able to decrypt information helpful for a content
use. In this situation, other family members could play this song only on the
father’s device.
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This is a main drawback in spite of a few advances made in this field. Some
private DRM applications allow the transfer of limited rights up to non con-
nected devices like Personal Digital Assistant (i.e. Microsoft WMDRM). The
normalization group OMA-DRM1 itself defined the notion of domain to resolve
exchange of rights/licenses inside a set of mobile devices belonging to a same
domain. In fact each domain’s device receives the same cryptographic key allow-
ing the use of the domain license. The management of these domains and the
generation of the associated keys are realized by the license server. This means
that this server gets a specific knowledge about domain’s members.

Similarly, iTunes from Apple enables buyers to transfer content to identified
machines that share the same license decryption key. The decryption key is sent
to a new computer from Apple’s servers that can, by this way, limit the number
of authorized computers (today limited to five).

To by-pass these restrictions, we propose a system which answers the following
needs: (1) dynamicity of license transfers; (2) local management of the group
members; (3) compliance with OMA-DRM architecture and protocols. The first
and second requirements are incompatible with OMA-DRM domains; in fact
we need to modify the former license received by the family’s father. The DRM
agent of the father will be able to create a new license targeted at another family
member. This modification of license requires both operations: (1) decrypt the
Content Encryption Key CEK thanks to the father’s private key, and encrypt
it again with the public key of the new recipient, (2) sign the new license such
that the DRM agent of the recipient recognizes this signature as a true license
server signature.

Technically, to get rid of this drawback, we need to adapt and develop a new
type of signature scheme where it is possible for a designated user to modify
some part of a message signed by a particular signer. The signature on the new
message is still seen as a message signed by the initial signer. In DRM systems,
the signer of a license is the license server and applying the new signature scheme,
the result is that the OMA-DRM agent of the final user will accept the signature
of the derived license as a real license server signature. Moreover, it should be
possible to give this particular power later (i.e. not at the creation of the license)
to permit users to change their mind when they want to.

1.1 Related Work

A usual way to expose declassified documents and keep a protection of intelli-
gence sources is to blot out the sensitive parts. Well-known examples were the
memo to US President that had been declassified for an inquiry into the 11 Sep-
tember 2001 terrorist attack and a US Department of Defense memo about who
helped Iraq to militarize civilian Hugues helicopters. These examples of sanitized
documents became famous because Naccache and Whelan demasked the blotted
out words [13].

1 Open Mobile Alliance is a standard consortium which develops open standards for
the mobile phone industry.
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In this example, keeping secret the sanitized part is fundamental. When ap-
plied to electronic documents, sanitizing can of course easily resist Naccache
and Whelan attack, but an important issue is the authentication and integrity
of such sanitized documents. If the original document is signed with a traditional
signature scheme, modifying this document in any way will make the original
signature be invalid. If the authentication must be preserved, a traditional sig-
nature cannot be used in this case. Of course, the signer could sign the sanitized
document, but when applied to declassified documents for instance, the signer’s
secret key might have expired, or the signer may not be available at all. Saniti-
zable signatures have been introduced to address this problem.

Two different flavors of sanitizable signatures can be found in the literature.
The first kind illustrates the previous scenario, namely the signature of the
original message can be modified, without the help of the signer, to be also valid
for the sanitized document [16,7,15]. In other words, a designated user can erase
some part of a signed message and produce a new signature in such a way that
the resulting signature is seen as a correct signature on the new message from
the initial signer.

The other kind of sanitizable signatures was introduced in [1] by Ateniese,
Chou, de Medeiros and Tsudik, also in terms of sanitizable signatures. Contrary
to the above case, such signatures allow a semi-trusted censor to modify (not
only to erase) some specific portions of a signed message and to produce a new
valid signature of the resulting message without any interaction with the original
signer. According to Ateniese et al., a sanitizable signature scheme must ensure
(1) immutability, which means that the censor must not be able to modify any
part of the message, not specified by the signer, (2) privacy, which means that
all sanitized information is unrecoverable, (3) accountability, which means that
in case of dispute, the signer can prove to the court that a given message was
sanitized, and (4) transparency which means that no one, except the signer and
the censor, can guess whether a message has been sanitized. As we will see in
section 3.1, Ateniese et al.’s scheme can easily be obtained via a sanitizable
signature scheme of the first kind.

In [9], Klonowski and Lauks propose some improvement of the Ateniese et
al. scheme [1] by proposing (in particular) generic techniques permitting first
to limit the set of possible modifications of a single mutable block using either
accumulator schemes or bloom filters and second to limit the number of modi-
fications of mutable blocks. Note that their methods cannot be applied to our
scheme since they do not use a trapdoor.

1.2 Our Contribution and Organization of the Paper

The sanitizable signature of Ateniese et al. may be useful for our application
of content protection. But in fact, the proposed properties of their sanitizable
signature scheme are not sufficient. More precisely, we need the possibility for
any authorized user to have a special trapdoor to modify some designated parts
of a signed message. Therefore, contrary to the modelization of Ateniese et al.,
the power of the sanitizer is not given during the signature process.
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In this paper, we thus define in Section 2 the security model of a new type of
sanitizable signatures, called trapdoor sanitizable signatures, where the power of
sanitization is given to possibly several entities, for a given message/signature
by using a trapdoor issued by the signer at any time.

We also give the first generic construction in Section 3 of such sanitizable
signature scheme based on an identity-based chameleon hashing function and
on a classical signature scheme. We then give a possible instance of our generic
construction and apply in Section 4 our new cryptographic tool to content pro-
tection so as to fit our requirement for a DRM license, as described previously.

2 Trapdoor Sanitizable Signature Scheme

In a trapdoor sanitizable signature scheme, the signer allows a specific user to
modify a portion of a signed message by producing a piece of information that
will help this user in sanitizing the document. This trapdoor information is given
upon the will of the signer, who can choose to whom and when he will deliver
it. This last property makes a crucial difference with conventional sanitizable
signatures, and is of importance to design our DRM scheme.

In this section, we first briefly and informally describe sanitizable signatures
as they appear in the literature, and then, we propose a formal definition and a
precise security model for our new primitive of trapdoor sanitizable signatures.

2.1 Review of Existing Definitions for Sanitizable Signatures

We recall here several definitions for sanitizable signature schemes to enlight the
different notions and the difference with our new concept.

– According to [16,7,11,12,15], a sanitizable signature scheme is a scheme which
allows a specific user (not necessarily chosen by the signer) to sanitize certain
portions of a message (which means that these portions become unavailable)
and to generate a valid signature for this new document, without any in-
teraction with the signer. The scheme consists of four procedures: the key
generation, the signing process, the sanitizing phase, and the verification.
This scheme must resist an existential forgery under a chosen message at-
tack, and must be indistinguishable under a chosen message attack (which
means that an attacker is not able to distinguish between two signatures,
which one is one a sanitized message).

– According to [1,9], a sanitizable signature scheme permits a specific user to
modify a message (a priori chosen by the signer) and to produce a valid sig-
nature for the new message. The main difference with the previous definition
is therefore the possibility to replace some parts of the documents with some
others. The different algorithms which constitute the scheme are the same
as in the previous definition. The scheme must be existentially unforgeable
under a chosen message attack, and the authors also propose a notion of in-
distinguishability and one of identical distribution between the distribution
coming from the signing algorithm and the one coming from the sanitizing
algorithm.
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2.2 Definition of a Trapdoor Sanitizable Signature Scheme

We present in this section a formal definition for trapdoor sanitizable signatures
and its security model. The main difference with Ateniese et al.’s definition is
that the original signer produces a trapdoor information, depending on a specific
message divided into several blocks of independent sizes, that he will transmit
to the sanitizer, who will be able to modify this message.

Definition 1 (Trapdoor sanitizable signature scheme). A trapdoor sani-
tizable signature scheme TSS consists in the following algorithms.

– Setup is a probabilistic algorithm which takes a security parameter k as input
and outputs the public parameters P. P ←− Setup(k).

– KeyGen is a probabilistic algorithm which takes the public parameters P as
input and outputs a pair of secret and public keys (sk, pk).

(sk, pk) ←− KeyGen(P).

– Sign is a probabilistic algorithm which takes public parameters P, a message
m = m1‖ · · · ‖mL and a secret key sk as inputs, and outputs a signature σ
on the message m and the set I ⊂ [[1, L]] of the indices that are sanitizable
on this signature. (σ, I) ←− Sign(P , m, sk).

– Trapdoor is a deterministic algorithm which takes public parameters P, a
message m and a valid signature σ and a secret key sk as inputs and outputs
a trapdoor t. t ←− Trapdoor(P , m, σ, sk).

– Sanitize is an algorithm which takes public parameters P, a message m, a
valid signature σ on m under the public key pk, a message m̃, the set I of
the indices that are sanitizable and a trapdoor t and outputs a signature σ̃
on the message m̃. σ̃ ←− Sanitize(P , m, σ, pk, m̃, I, t).

– Verif is a deterministic algorithm which takes public parameters P, a message
m, a putative signature σ, a public key pk and the set I of the indices that
are sanitizable as inputs and outputs 1 is the signature σ on m is valid and
0 otherwise. 0/1 ←− Verif(P , m, σ, pk, I).

Remark 1. Note that the Sanitize algorithm can be either deterministic or proba-
bilistic. In fact, in all existing constructions (including ours), as the construction
is based on the use of chameleon hash functions, this algorithm is deterministic.
But we can easily imagine that it is possible to design (trapdoor) sanitizable
signature schemes with a probabilistic Sanitize algorithm.

The security criteria which must be fulfilled are discussed in the following
paragraph.
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2.3 Security Model

Correctness. A trapdoor sanitizable signature scheme must satisfy two cor-
rectness properties:

∀k ∈ N, ∀P ← TSS.Setup(k), ∀(pk, sk) ← TSS.KeyGen(P),

∀(σ, I) ← TSS.Sign(P , m, sk), Verif(P , m, σ, pk, I) → 1

and
∀k ∈ N, ∀P ← TSS.Setup(k), ∀(pk, sk) ← TSS.KeyGen(P),

∀(σ, I) ← TSS.Sign(P , m, sk), ∀t ← Trapdoor(P , m, σ, sk),

∀σ̃ ← Sanitize(P , m, σ, pk, m̃, I, t), Verif(P , m̃, σ̃, pk, I) → 1

Unforgeability. A trapdoor sanitizable signature scheme must also satisfy an
unforgeability property. The conventional notion of security for signatures was
introduced by Goldwasser, Micali and Rivest in [6]. A signature scheme must
be existentially unforgeable under a chosen message attack. We present here
the formal definition of existential unforgeability under a chosen message attack
(EU-CMA) for trapdoor sanitizable signatures.

First, we need to define the following oracles.

– OSign: this oracle is initialized with a public key pk and the corresponding
secret signing key sk. It takes as input a message m and outputs a valid
signature related to this message and the public key pk.

– OTrapdoor: this oracle is initialized with a public key pk and the corresponding
secret signing key sk. It takes as input a message m and a signature σ. If
Verif(P , m, σ, pk, I) = 0, then the oracle outputs error. Otherwise, it outputs
a trapdoor t related to the message m, the signature σ and the public key
pk as if it is output by the Trapdoor algorithm.

– OSanitize: this oracle is initialized with a public key pk and the corresponding
secret signing key sk. It takes as input two messages m and m̃ and a signature
σ. If Verif(P , m, σ, pk, I) = 0, then the oracle outputs error. Otherwise, it
computes a trapdoor t related to the message m, the signature σ and the
public key pk (using sk) and outputs the signature σ̃ on m̃ as if it is output
by the Sanitize algorithm on input m, σ and m̃. Note that the trapdoor t
can be either deleted or not at the end of the request.

We say that a trapdoor sanitizable signature scheme is existentially unforge-
able under a chosen message attack, if no PPT adversary F has a non negligible
success in the following game:

1. The challenger C runs the Setup algorithm to produce the public parameters
and then runs the KeyGen algorithm. It obtains the pair of keys (pk�, sk�)
to be attacked and gives the public key pk� to F .

2. The forger F adaptively interacts with the signing oracle OSign and the
trapdoor oracle OTrapdoor.
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3. Eventually, F comes up with a message m� and a signature σ�. F is said to
succeed if the pair (m�, σ�) verifies the four following properties.
(a) Verif(P , m�, σ�, pk�, I) → 1.
(b) (m�, σ�) does not come from the OSign oracle.
(c) (m�, σ�) does not come from the OSanitize oracle.
(d) (m�, σ�) is not linked to a tuple (t, m, σ) from the OTrapdoor oracle. More

precisely, for all message m being in input of the OTrapdoor oracle, we
should have that ∃i /∈ Im, m�

i 	= mi where Im corresponds to the set I
output with the signature σ and related to m.

Remark 2. Note that by describing condition (3d) like that, we reject the pos-
sibility for the adversary to forge a signature on a message related to one for
which a trapdoor has been asked. This can be seen as restrictive (we don’t know
if the adversary has used the trapdoor or not to produce the forge) but this is
not really a problem in practice. Note also that if the Sanitize algorithm is de-
terministic (see above), this is easily verifiable since the corresponding signature
can be also computed by the challenger.

The success of F is defined as the probability (over all internal random coins)
of its success in this previous game. F is said to (qS , qT , qSz, τ, ε)-breaks the
existential unforgeability in the chosen message attack of the trapdoor sanitizable
signature scheme, if its success is ε, its running time is τ , and its number of
queries to the signing oracle (resp. trapdoor oracle and sanitize oracle) is qH

(resp. qT and qSz).

Indistinguishability. We require that values produced by the Sanitize algo-
rithm are distributed identically to those produced by the Sign algorithm. In
particular, the following distributions DSanit and DSign are indistinguishable for
all P , pk, sk:

DSanit = {σ̃ : σ̃ = Sanitize(P , m, σ, pk, m̃, I, t), (m, m̃) ∈ M,

(σ, I) = Sign(P , m, sk), t = Trapdoor(P , m, σ, sk)}

and
DSign = {σ : (σ, I) = Sign(P , m, sk), m ∈ M}.

3 Generic Construction

Before describing a generic construction of a trapdoor sanitizable signature
scheme, we will first give an intuition of this construction by revisiting a bit
Ateniese et al.’s scheme from [1] in the light of a sanitizable scheme of Miyazaki
et al. [11,12]. As we already explained, the corresponding two definitions of saniti-
zable signatures are different. Nevertheless, the next section shows how Ateniese
et al.’s scheme can be obtained from Miyazaki et al.’s one.
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3.1 Ateniese et al.’s Sanitizable Signatures Revisited

Let’s first recall the scheme SUMI-4 from Miyazaki et al.’s [11,12]. The rough
idea is to replace the parts of the message that are censored by hash values of
these parts. Let Σ = (Setup,KeyGen,Sign,Verif) be a signature scheme and h be
a hash function. SUMI-4 works as follows.

Signer

1. Let m = m1‖ . . . ‖mL be the message to sign, the signer first picks random
values ri ∈ {0, 1}k for i = 1 . . . L.

2. The signer generates a set H = {hi}i=1...L where hi = h(mi, ri)
3. The signature is obtain as σ = Sign(H).
4. The signer outputs ({mi, ri)}i=1...L, σ)

Sanitizer

1. Determine I ⊂ [[1, L]] the indices of the message to be censored.
2. The sanitizer converts the document m to m̃ = m̃1‖ . . . ‖m̃L where

m̃i =
{

(mi, ri) if i 	∈ I
hi if i ∈ I

3. The sanitizer outputs (m̃, I)

Verifier

1. Let (m̃, I) the sanitized message and σ the original signature. The verifier
generates the set of hash values H̃ = {h̃i}i=1...L such that

h̃i =
{

h(m̃i) if i 	∈ I
m̃i if i ∈ I

2. The verifier then checks Verif(H̃, σ) to verify the validity of the signature.

Now, let’s look at this scheme from Ateniese et al.’s point of view. In their
definition of sanitizable signatures, a specific user can not only erase a part of
the message, but he can replace it by something else. Suppose that h is replaced
by a chameleon hash function, as introduced by Krawczyk and Rabin in [10].
This means that a pair of secret and public key parametrizes this hash function,
with the property that the owner of the secret key is able to find a collision to a
hash value computed thanks to his public key. In this setting, the signer chooses
the sanitizer (by selecting his “chameleon” public key) and replaces the function
h by the chameleon hash function hC . The sanitizer is then able to replace the
sanitized parts by values of his choice, thanks to his secret key. Indeed, given a
message m′

i (for i ∈ I), he can compute an element r′i such that

hC(m′
i, r

′
i) = hC(mi, ri) = hi.
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The remaining works as follows: the sanitizer converts the document m to m̃ =
m̃1‖ . . . ‖m̃L where

m̃i =
{

(mi, ri) if i 	∈ I
(m′

i, r
′
i) if i ∈ I

and the verifier generates the set of hash values {h̃i}i=1...L such that h̃i = hC(m̃)
and eventually checks Verif(H ′, σ) to verify the validity of the signature.

This is another look at Ateniese et al.’s scheme. Our idea to design trapdoor
sanitizable signature is to replace the chameleon hash function by an identity-
based chameleon hash function. The secret key extraction from an identity will
actually help us to generate the trapdoor allowing the sanitization of a specific
message. The following section rigorously describes our construction relying on
this idea.

3.2 A Generic Construction of Trapdoor Sanitizable Signatures

We propose in this section a generic construction which uses as building blocks an
identity-based chameleon hash function [10] to achieve our “trapdoor” require-
ment. Roughly speaking a chameleon hash function is a trapdoor hash function,
such that the owner of the trapdoor is able to find collisions for every given
input. When they are used instead of traditional hash functions in a signature
scheme based on the well-known hash-and-sign paradigm, the resulting scheme
is a chameleon signature scheme which is highly related to Chaum and van
Antwerpen’s undeniable signatures [5] and Jakobsson, Impagliazzo and Sako’s
designated verifier signatures [8].

Identity-BasedChameleonHashing. Identity-based chameleonhashing were
introducedbyAteniese anddeMedeiros [2].Weassume that it is possible to identify
all systems to a bit-string easily derivable from a system’s public knowledge. We
call such a string an identity string and we note it Id. There are two actors in such
schemes: an authority A and a user U . For mally, an identity-based chameleon hash
scheme CH is defined by the following family of efficiently computable algorithms.

– Setup: this probabilistic algorithm is executed by A to generate a pair of key
skCH and pkCH , taking on input a security parameter k.

(skCH , pkCH) ←− Setup(k)

– Extract: this probabilistic algorithm, executed by A taking on inputs the
identity Id of a user U and the secret key skCH , outputs the derived trap-
door information B. B ←− Extract(Id, skCH)

– Proceed: this probabilistic algorithm that can be executed by anybody and
which takes on inputs the public key pkCH , the identity Id of a user, a
message m and a random value r and outputs the hash value h.

h ←− Proceed(pkCH , Id, m, r)
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– Forge: this algorithm is executed by the user with identity Id to compute a
hash value on a new message. It takes as inputs the public key pkCH , the
identity Id, the corresponding extracted value B, a new message m′ and the
hash value h on a message m with random value r and it outputs a new hash
value (h, r′). r′ ←− Forge(pkCH , Id, B, m′, r, h, m)

This construction must be correct, which means that if B = Extract(Id, skCH)
and if we assume that h = Proceed(pkCH , Id, m, r) where m is a message and r
a random value, then h = Proceed(pkCH , Id, m′, Forge(pkCH , Id, B, m′, r, h, m)).

We need to introduce the following new security property for the identity-based
hash function, to prove the security of our scheme. This notion is not defined in
Krawczyk and Rabin’s paper [10] nor in the one of Ateniese et de Meideros [2],
but it is a natural generalization of the notion of collision for traditional hash
functions. An Id-based chameleon hash function must be collision-resistant, in
the sense of the following game:

1. A challenger C runs the Setup algorithm to produce the pair of keys (pk�, sk�)
and gives the public key pk� to F .

2. The collision finder F adaptively interacts with an Extract oracle OExtract to
obtain a trapdoor information B corresponding to some identity string.

3. Eventually, F comes up with a tuple (m, m′, r, r′, Id). F is said to succeed
if Proceed(pk�, Id, m, r) = Proceed(pk�, Id, m′, r′) and Id has not been pro-
posed to the Extract oracle.

Moreover, it is required that the distributions of r and r′ must be the same
(random and uniform) and that a message m induces the same probability dis-
tribution on Proceed(pk�, Id, m, r) for a random r (cf. Krawczyk and Rabin’s
uniformity from [10]).

The Construction. Our construction also relies on a classical signature scheme
Σ = (Setup,KeyGen,Sign,Verif) which follows the “hash-and-sign” paradigm.
That is, from a key pair (skS , pkS), output by the Σ.KeyGen algorithm, and
a message m, the signature σ is computed as σ = Σ.Sign(skS , m). Eventually,
from a signature σ, a message m and a public key pkS , the verifier checks that
Σ.Verif(pkS , m, σ) = 1. This signature scheme must be existentially unforgeable
under a chosen message attack as defined in [6].

– Setup: the Setup consists in executing Σ.Setup to output some public para-
meters.

– KeyGen: the KeyGen phase consists in executing the CH.Setup(k) for the
chameleon hash function and the Σ.KeyGen(k) for the signature scheme.
Consequently, the global secret key of the trapdoor sanitizable scheme is
sk = (skCH , skS) and the corresponding public key is pk = (pkCH , pkS).
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Procedure KeyGen(k):

(skCH , pkCH) ←− CH.Setup(k)
(skS , pkS) ←− Σ.KeyGen(k)
sk = (skCH , skS)
pk = (pkCH , pkS)
Output (sk, pk)

– Sign: the Sign step first consists in choosing the set I of the indices that are
sanitizable. For each i ∈ I, we execute CH.Proceed(pkCH , m, mi, ri) which
outputs hi. For all i ∈ [[1, L]], we set m̂i = mi if i /∈ I and m̂i = hi otherwise.
We denote by m̂ = m̂1‖ · · · ‖m̂L. σ is the concatenation of the output s of
the Σ.Sign algorithm on input skS and m̂ and of all elements of the set R.
We also add a verification value hc so as to prevent some types of attacks.
The output of the algorithm is finally σ and the set I.

Procedure Sign(P , m, sk):

m1‖ · · · ‖mL ←− m
Set I ⊂ [[1, L]]
∀i ∈ I, ri ∈R R
∀i ∈ I, hi ←− CH.Proceed(pkCH , m, mi, ri)
∀i ∈ [[1, L]] \ I, m̂i ←− mi

∀i ∈ I, m̂i ←− hi

rc ∈R R
hc ←− CH.Proceed(pkCH , m, m, rc)
m̂ = m̂1‖ · · · ‖m̂L‖hc

R ←− {ri : i ∈ I}
σ ←− Σ.Sign(skS , m̂)
∀i ∈ I, σ ←− σ‖ri

σ ←− σ‖rc

Output (σ, I)

– Trapdoor: the Trapdoor function consists in executing the CH.Extract of the
Id-based chameleon hash function with m as the identity and skCH . It out-
puts the derived trapdoor information t.

Procedure Trapdoor(P , m, σ, sk):

if Verif(P , m, σ, pk, I) = 1 then
t ←− CH.Extract(m, skCH)
Output t

otherwise output error

– Sanitize: let m̃ = m̃1‖ · · · ‖m̃L. Remember that σ is the concatenation of s
and all elements of R = {ri : i ∈ I}. The CH.Forge algorithm is executed
for all i ∈ I on input pkCH , m, t, the new message m̃i, ri, hi and mi that
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outputs each time a new r̃i and we do the same for the verification value
hc. The new signature σ̃ is thus the concatenation of s (unchanged) and all
elements of R̃ = {r̃i : i ∈ I} plus rc.

Procedure Sanitize(P , m, σ, pk, m̃, I, t):

m1‖ · · · ‖mL ←− m
m̃1‖ · · · ‖m̃L ←− m̃
Retrieve s, R and rc from σ
∀i ∈ I, hi ←− CH.Proceed(pkCH , m, mi, ri)
∀i ∈ I, r̃i ←− CH.Forge(pkCH , m, t, m̃i, ri, hi, mi)
R̃ ←− {r̃i : i ∈ I}
hc ←− CH.Proceed(pkCH , m, m, rc)
r̃c ←− CH.Forge(pkCH , m, t, m̃, rc, hc, m)
σ ←− s
∀i ∈ I, σ ←− σ‖r̃i

σ ←− σ‖r̃c

Output σ

– Verif: the verification procedure consists in computing hi for each mi with
i ∈ I by using CH.Proceed on input pkCH , m = m1‖ · · · ‖mL, mi and ri. For
all i ∈ [[1, L]], we set m̂i = mi if i /∈ I and m̂i = hi otherwise and we denote
by m̂ = m̂1‖ · · · ‖m̂L‖hc. The output of the Verif algorithm is the output of
Σ.Verif(pkS , s, m̂) = 1.

Procedure Verif(P , m, σ, pk, I):

Retrieve s, R = {ri : i ∈ I} and rc from
σ
m1‖ · · · ‖mL ←− m
∀i ∈ I, hi ←− CH.Proceed(pkCH , m, mi, ri)
∀i ∈ [[1, L]] \ I, m̂i ←− mi

∀i ∈ I, m̂i ←− hi

hc ←− CH.Proceed(pkCH , m, m, rc)
m̂ = m̂1‖ · · · ‖m̂L‖hc

Output Σ.Verif(pkS , s, m̂)

3.3 Security

First of all, the correctness of our scheme is obvious. We will then concentrate
our security analysis on unforgeability and indistinguishability.

Theorem 1 (Unforgeability)
Let F be a (qS , qT , qSz, τ, ε)-forger against our trapdoor sanitizable signature
scheme. Then their exists a (ε′, τ ′, qS)-existential forger F ′ against the under-
lying signature scheme and a (ε′′, τ ′′, qT + qSz)-collision finder C against the
identity-based hash function and a such that:
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ε ≤ 1
2
(ε′ + ε′′) and τ ≥ max{τ ′ + (qT + qSz)tcollision, τ

′′ + qStsign}

where tcollision and tsign are the necessary time to compute a collision and to sign
a message respectively.

Proof. To simplify the proof (and in particular to get rid of the set I of indices
in the proof), we will suppose that a message consists of a single block2. The
condition (3d) of acceptation of the forge by the adversary needs then to be
modified, taking into account that our Sanitize algorithm is deterministic. More
precisely, considering the forge (m�, σ�) output by the adversary, we can easily
test, for all message (m, σ) for which the adversary has asked the OTrapdoor oracle,
whether or not the Sanitize algorithm, on input m, σ, m�, t output σ�. If this is
the case, the output of the adversary is rejected.

Let’s suppose that their exists a (qS , qT , qSz, τ, ε)-forger against our trapdoor
sanitizable signature scheme. Given a public key pk as input, after at most qS

queries to the signing oracle, qT queries to the trapdoor oracle, and qSz queries
to the sanitize oracle, the forger outputs a pair m�, σ�, with σ� corresponding
to a random coin r�. For the forger to win the game, two possibilities arise:

– case 1: m� is a non-sanitized message and σ� has not been obtained from
the signing oracle

– case 2: m� is a sanitized message which has not been formed with a trapdoor
information obtained from the trapdoor oracle nor the sanitize oracle. The
pair (σ�, r�) must not come from the signing oracle. Nevertheless, we can
suppose that σ� comes from the signing oracle.

We will show that the first case allows the construction of a forger against the
signature scheme Σ, the second allows the construction of a collision-finder on
the identity-based hash function CH. We will exhibit a reduction R which will
flip a coin b ∈ {0, 1} to bet which case will happen.

Case 1. Let’s first consider the case 1 where the reduction designs an existential
forger F ′. R will use F as a sub-routine to build this forger, which has as input a
public key pk� and some global parameters P , and has to produce an existential
forgery related to this public key. First, R generates a pair of key (pkCH , skCH)
for the identity-based chameleon hash function thanks to CH.Setup. Then he
sets pk = (pk�, pkCH) and gives this public key to F . R now has to simulate
F ’s signing, trapdoor and sanitize oracles. To simulate the trapdoor and the
sanitize oracles OTrapdoor and OSanitize, the reduction R uses its knowledge of
the trapdoor secret key skCH to create the trapdoor (and, in case of OSanitize,
computes the corresponding signature). To simulate the signing oracle OSign ,
R must answer to F ’s query related to a message m. It forwards this query to
F ′’s signing oracle which is parametrized by the secret key sk, and therefore
2 However, this do not prevent an adversary to create new signatures without the

knowledge of the trapdoor. The proof can be generalizable but will not be detailled
in this paper due to space constraints.
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R simulates perfectly F ′s environment. At the end of the game, F outputs a
pair (m�, σ�) (with corresponding random bits r�). R then sets (m�, σ�) as F ′’s
outputs. This is clearly a successful forgery.

Case 2. Now, we consider that the reduction designs a collision-finder C against
the identity-based chameleon hash function CH from case 2. The reduction R
has to deal with C’s challenge : namely a public key pk�

CH for the chameleon
hash function. R then executes Σ.Setup and Σ.KeyGen to obtain the system’s
global parameters and a pair of keys (skΣ , pkΣ) for the signature scheme Σ. As
before, R constructs a public key for the trapdoor sanitizable signature scheme
pk = (pk�

CH , pkΣ), which he forwards to the forger F . To simulate the signing
oracle, the reduction R uses the secret key skΣ . When the forger F queries
a trapdoor for a pair (m, σ), R first checks the validity of the signature with
the public key pkΣ and then asks C’s extractor oracle OTrapdoor with m as the
(identity) request. OTrapdoor’s answer is a trapdoor t which corresponds to a
correct trapdoor for sanitization. When the forger F queries a sanitization for a
message m and its signature σ, R first checks the validity of the signature with
the public key pkΣ , secondly asks C’s extractor oracle OTrapdoor with m as the
(identity) request to obtain the corresponding trapdoor t and finally computes
the new signature using the trapdoor. The reduction therefore perfectly simulates
F ’s environment.

At the end of this game, F comes up with a pair (m�, σ�) corresponding to a
random string r�. As we suppose that m� is a sanitized message, their exists a
message m̃�, corresponding to a signature (σ�, r̃�), which has been asked to the
signing oracle, such that

CH.Proceed(pkCH , m�, m�, r�) = CH.Proceed(pkCH , m�, m̃�, r̃�).

Eventually, (m�, m̃�, r�, r̃�, m�) is a collision for the chameleon hash function.
The final success probability and running time are straightforward, and this
concludes the proof. �

Theorem 2 (Indistinguishability). The following distributions are perfectly
indistinguishable for all P, pk, sk:

DSanit = {σ̃ : σ̃ = Sanit(P , m, σ, pk, m̃, I, t), (m, m̃) ∈ M,

(σ, I) = Sign(P , m, sk), t = Trapdoor(P , m, sk)}

and
DSign = {σ : (σ, I) = Sign(P , m, sk), m ∈ M}.

Proof. Let’s first consider DSign. As described in the previous section, the output
of Sign consists in a signature σ and a set I. The signature σ is composed of
the outputs of Σ.Sign and a random (uniformly chosen) value ri ∈ R where Sign
is a classical signature scheme. Let us denotes Im(Σ.Sign) the distribution of
all outputs of the Sign algorithm of the chosen signature scheme. Consequently,
DSign = {(σ, ri) : σ ∈ Im(Σ.Sign), ri ∈ R}.
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Let us now consider DSanit. As described in the previous section in the de-
scription of the Sanitize algorithm, the signature σ̃ is composed of the value σ
such that (σ, I) = Sign(P , m, sk) and a value r̃i that is output by a call to the
CH.Forge algorithm. As explained above, it implies that σ ∈ Im(Σ.Sign) and
that σ is on the same distribution Im(Σ.Sign) as the previous one. Moreover, as
shown in the previous section in useful tool, a secure identity-based chameleon
hashing function has the property that Im(CH.Forge) is the set of all ri ∈ R
informally distributed and thus the set R. Consequently,

DSanit = {(σ, ri) : σ ∈ Im(Σ.Sign), r̃i ∈ R}.

These two distributions are obviously indistinguishable in the sense of the infor-
mation theory which concludes the proof. �

3.4 An Example of Instantiation

In [2], the authors propose the following construction of an Id-based chameleon
hash function.

– CH.Setup: n = pq is an RSA modulus where p and q are of size the security
parameter k, v is a random prime element and w corresponds to the inverse
of v modulo ϕ(n).Then, skCH = (p, q, w) and pkCH = (n, v).

– CH.Extract: from the secret key skCH and an identifier Id, it is possible to
construct the extracted key by first computing J = EMSA − PSS(Id) and
t = Jw (mod n).

– CH.Proceed: from the public key pkCH , the identifier Id and a message m,
choosing at random r, it is possible to compute J = EMSA− PSS(Id) and the
value h is then h = JH(m)rv (mod n) where H is a classical hash function.

– CH.Forge: this algorithm, taking on input pkCH , Id, t, a new message m′,
r, h and m outputs the random value r′ associated with m′ and h. This is
done by r′ = rtH(m)−H(m′) (mod n).

We can thus use this instantiation of an Id-based chameleon hash function in
our proposal. The proof of Theorem 1 of [2] can be easily modified to prove that
the scheme reaches the collision resistance property as defined previously in this
paper. Other choices for secure identity-based chameleon hash function can be
found in [17].

A lot of classical signature schemes can be used for our generic construction
and one possible choice is RSA with EMSA-PSS padding [14].

4 Application to Group Content Protection

4.1 Classical Approach and Limitations

As defined in OMA DRM, a DRM agent A needs an encryption key pair (ska, pka)
to interact with a License Server L which will provide him a license. The License
Server needs a signature key pair (skl, pkl). A protected content is always en-
crypted with a unique secret key denoted by CEK. A license is related to a single
protected content denoted by Idc. It consists in the following fields:
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– the license identifier Idl which is a unique serial number of the license,
– the content identifier Idc,
– the rights which describe what is possible to do (read, copy, etc.) with this

content using this license,
– the content key CEK encrypted for the receiver using pka,
– the signature σ from the License Server of all the previous fields.

Consequently, the license can be viewed as the concatenation of a message m =
Idl‖Ids‖rights‖[CEK]pka and a signature σ.

There are several steps to describe the way a DRM agent is able to read a
protected content in the classical approach. These are the following ones.

– SystemCreation: the License Server generates his signature keys.

(skl, pkl) ←− SystemCreation(P).

In the OMA DRM standard, it is recommended to use the RSA signature
scheme with an EMSA-PSS padding.

– AgentCreation: a DRM agent generates his encryption keys.

(ska, pka) ←− AgentCreation(P).

The OMA DRM standard recommends to use the RSA encryption scheme.
– ContentEncapsulation: during this phase, the License Server encrypts the con-

tent C using a randomly generated secret key CEK. The encrypted content
is then published.

PC ←− ContentEncapsulation(CEK, C).

– LicenseGen: this is an interactive protocol between a DRM agent A and the
License Server L where A first sends to L the chosen content Idc and its
encryption public key pka. L then creates the license L = (m, σ) as described
above and sends it back to A.

L ←− LicenseGen(Idl, Idc, rights, CEK, skl, pka).

– ContentRead: the DRM agent retrieves the protected content and the license,
verifies the signature of the License Server on the license, verifies the rights,
decrypts CEK using its private decryption key and finally decrypts the
content using CEK.

C ←− ContentRead(PC, L, ska, pkl).

On one hand, the problem is that the license is completely related to the DRM
agent and this latter cannot send a received license to other DRM agents. In
fact, this security property is very useful in many cases since it prevents fraud,
but in the context of a group of DRM agents which wants to buy some contents
and then to share them, this may be a too much important restriction.
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On the other hand we do not want to modify the way a DRM agent proceeds
when reading a protected content. Consequently, it is necessary to design a way
to transfer a license to another DRM agent without modifying the structure of
a license nor the signature from the License Server. A license bought from the
License Server and a license coming from another DRM agent should have the
same structure, including the same signature. By this way, constructors need to
implement only one type of DRM agent. But, for this purpose, we need first to
introduce some new procedures to the ones described above.

4.2 Some New Procedures

We use the same model as the one of classical OMA DRM one we describe
above except that the License Server needs a new key pair (sk, pk) related to
the computation of a trapdoor that will permit a designated DRM agent to
modify a designated license so that other chosen DRM agents will be able to use
the license. We thus add the new following procedures.

– TrapdoorGen: this is an interactive protocol between a DRM agent A and
the License Server L where the latter gives to A the possibility to modify
some part of a specific license.

t ←− TrapdoorGen(L, sk).

– TransferLicense: a DRM agent sends to another one a license. This latter can
be used classically by the receiver using the ContentRead procedure.

L̃ ←− TransferLicense(L, t, p̃ka, pk).

Note that we want to give the buyer a maximum of flexibility. This implies
the possibility for her to choose, whenever she wants, a classical license with no
possibility of transfer and later the possibility to transfer a previously obtained
license. This is done by using our trapdoor sanitizable signature scheme as de-
scribed in the next section. Note also that this is for this particular reason that
the Ateniese et al. [1] proposal of sanitizable signature is not suitable here.

4.3 General Description

In our proposal, we maintain previous known procedures as they are. We do not
modify the SystemCreation, AgentCreation, ContentEncapsulation, LicenseGen and
ContentRead procedures. The only modification concerns the signature scheme
since we do not use a classical RSA signature scheme but a trapdoor sanitizable
signature scheme based on RSA with EMSA-PSS padding.

Consequently, the SGen call in the SystemCreation procedure is replaced in the
OMA DRM standard by the execution of the KeyGen of a trapdoor sanitizable
signature scheme that outputs (sk, pk).

Moreover, in the LicenseGen protocol, the Σ.Sign algorithm is replaced by an
execution of the TSS.Sign of the trapdoor sanitizable signature scheme. Conse-
quently, a license has the same fields as a classical one except that the signature
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from the License Server is not a calssical signature. Notice however that the
underlying signature scheme is standard since and we can use the RSA signa-
ture scheme as a building block (as a hash and sign type signature scheme).
The verification of the signature done by a DRM Agent when trying to read a
content, initially done by the Σ.Verif algorithm of a classical signature scheme
is also replaced by a call to the TSS.Verif algorithm of the trapdoor sanitizable
signature scheme. Let us now describe the two new procedures.

– TrapdoorGen: this is done by executing the TSS.Trapdoor algorithm of the
trapdoor sanitizable signature scheme with the public parameters, the license
L and the secret key sk of the trapdoor sanitizable signature scheme as
inputs. The output is the trapdoor t.

– TransferLicense: a DRM Agent having a valid license and a trapdoor t can
execute the TransferLicense procedure by executing the TSS.Sanitize algo-
rithm of the trapdoor sanitizable signature scheme with the initial license L
(containing the message M and the signature σ), the trapdoor sanitizable
signature public key pk, the new message m̃ that corresponds to the different
fields (except the signature) of the new license, the corresponding set I of
indices in the message that are sanitizable (see Section 4.4 below) and the
trapdoor t as inputs. The output is a signature σ̃ which is concatenated to
the message m̃ to create the new license L̃.

4.4 On the Modification of a License

As described above, it is possible for a DRM Agent to modify some fields of
a valid license using the trapdoor sanitizable signature scheme properties. We
consider that a license is a (reduced) message m and the signature σ of the
License Server. The message m is divided into several blocks: m1 = Idl, m2 =
Idc, m3 = rights and m4 = [CEK]pka . In the following, we study which parts of
the license are sanitizable.

The messages m1 and m2 should of course not be modified. On the contrary,
the message m4 will be modified by the DRM Agent since the receiver should
be able to decrypt the CEK to read the content. Thus the value 4 necessary
belongs to the set I that is output by the TSS.Sign algorithm.

The case of the rights is a bit more complicated and there are several possi-
bilities. Either it is not possible for the DRM Agent to modify the rights, or it
is possible but only in a set of predefined values (at least no more rights than
the ones the DRM Agent already has). In the first case, our trapdoor sanitizable
signature scheme can be used as it is. In the second case, we need to modify it
and it is an open problem to adapt the techniques of [9] to our scheme.

5 Conclusion

We formally introduce a new variant of sanitizable signatures and apply our new
tool to manage licenses for digital contents protection within a group. We hope
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that our new variant can also be useful for medical applications or secure routing
(see [1]). Among some open problems, we suggest to add a traitor tracing layer
or to have a better control on the message that can be sanitized.

Acknowledgments. We are grateful to anonymous referees for their valuable
comments.
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Abstract. In order to increase the security for authenticated key ex-
change protocols, various authentication means can be used together. In
this paper, we introduce a security model for multi-factor authenticated
key exchange, which combines a password, a secure device, and biomet-
ric authentications. We thereafter present a scheme, that can be proven
secure, in the random-oracle model.

1 Introduction

1.1 Motivation

Authentication is definitely one of the most important goal of modern cryptogra-
phy. In order to avoid mistakes and impersonations during access control we can
use various authentication means, possibly all together, that uniquely identify
someone: a secret information, a biometric or user’s belongings are the most well-
known examples of such authentication factors for human beings. They represent
the three classes of human authentication factors generally admitted, namely:

– something you know (as a secret password),
– something you have (as an unclonable secure device with a secret key),
– something you are (as a biometric).

Brainard et al. [15] have recently proposed a fourth authentication means: some-
one you know, also called the social networking. However we focus in this pa-
per on the classical “three-factor authentication” technique, involving the three
above factors. They are all subject to various types of attacks, notably attacks
that cannot be avoided using cryptographic techniques only, but require external
security protections:

– the password can be recovered through social engineering (phishing [29] or
malwares), and thus users have to be careful when they enter it;

– the device can be stolen, open or cloned, and thus the device must be pro-
tected using tamper-resistant techniques;

– the biometric can be copied, and thus the sensor has to be able to correctly
detect whether the controlled biometric is a real one, corresponds to the
human-being under control, and to certify it.

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 277–295, 2008.
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Combining the three factors in the same authentication protocol could increase
the security since the adversary would have to break the three protections in
order to win. However, involving the three factors does not necessarily requires
the adversary to break all the protections in order to break the scheme, if the
latter is not well designed: a security model for authentication based on a secret
key, on a password and on a biometric, all together, has to be provided, in order
to be able to formally prove that the design is correct.

In addition to simple authentication (access control), in case of success, the
two parties may be interested in coming up with a common ephemeral secret
key to establish a secure channel [8,17,19]. We are thus interested, not only in
authentication, but in Authenticated Key Exchange [4,8]. In the following we
focus on such AKE protocols, combining the three above authentication means.
This basically means that if the three authentication verifications simultaneously
succeed, then the 2 parties should come up with a session key that is semantically
secure (indistinguishable from a truly random key to any other party), otherwise
nobody learns anything.

Issues raised by PKI-based [8,17,18] and password-based [6,14,16] AKE are
now well understood, and several solutions are known. The PKI/public-key set-
ting is definitely the easiest case, since signatures [28] can be used to authenticate
the flows, or alternatively the ability to decrypt, using an asymmetric encryp-
tion scheme [26,31]. In the password-based setting, one has to take care of the
(off-line) dictionary attacks [9]. We indeed cannot avoid the on-line dictionary
attack, which consists in trying to impersonate one party with a random pass-
word, and do it again, until the correct password is used. We thus want to prove
that this is the best attack. Note that in many cases, such attacks can be pre-
vented or damages can be reduced with appropriate techniques (delays after a
failure, limited number of failures, etc).

However, biometric-based authentication raises quite different issues. First
of all, biometric cannot be assumed a secret information. Indeed, recovering a
fingerprint from the object someone has just touched is an easy task, or getting
an image of the iris simply requires a camera. That is why considering biometric
as a truly secret information and treating it the same way as a private key is
not reasonable in practice, even if this scenario has often been assumed in the
literature [30,24,12,13,23].

On the other hand, if the biometrics are public, how do we prevent an ad-
versary from impersonating an honest user? The only way to use biometrics for
authentication is to guarantee that the biometric template comes from a real
living human being and not from a fake copy. Several technical solutions have
been elaborated to guarantee this (authenticated channels, various biometric
features controlled at the same time, sensor under human supervision, . . . ). The
assumption that biometrics really come from the living human being under con-
trol is called the liveness assumption. It also implies that all computations made
from the biometric data are done honestly. This assumption is not only useful
for authentication, it is compulsory to ensure authentication security. This is a
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strong, but necessary, assumption. Practical solutions exist to achieve, but are
out of the scope of the this paper.

Secondly, and more importantly from a technical point of view, two measure-
ments of the same biometric lead to different templates. Since a specific template
cannot be reproduced, a matching mechanism has to be used to compare two
templates and determine if they come from the same biometric or from two dif-
ferent persons. The matching can for example be based on a simple threshold on
the distance between the candidate template and the reference template (as it
is the case for iris [20]). However all known matching systems are not foolproof:
they introduce two possible errors, “false acceptance” (when the system accepts
someone it should not) and “false rejection” (when the system does not recognize
someone it should). Therefore, an AKE protocol based on biometrics has to deal
with these measurement errors and make this matching possible, but should not
increase significantly the “false acceptance” and “false rejection” rates.

Finally, biometrics can be used to unequivocally identify an individual and
are often linked with other personal information in the database. Since these
databases can be vulnerable to internal or external adversaries, the privacy of
the database is a classical requirement. Even if we already noticed that they
cannot be considered as private information, biometric templates are critical
data, especially when they are gathered in a database. Privacy is thus a major
concern here.

1.2 Related Works

As already mentioned, literature about PKI-based and password-based AKE is
rich of many results [8,17,18,6,14,16].

Dealing with biometric measurement errors is a much more challenging task
and two dedicated tools were formalized by Dodis et al. [24]: secure sketches
and fuzzy extractors. They allow, from an erroneous biometric measurement
and public information, to always generate the same biometric template and
random bitstring respectively. These tools were improved and allowed to design
biometric-based AKE [24,12,13]. However, these tools rely on the assumption
that biometrics are private information, which we do not allow in this paper.

Several efforts were taken to design authentication protocols were the match-
ing is made on the client side [3]. But in client-side protocols the client sensor
must record a reference biometric template for the user(s), which can be heavy
if numerous people use the same sensor.

Despite all the efforts taken for 1-factor authentication or AKE protocols,
literature does not tell much on multi-factor authentication protocols. In [11],
an encoding for fingerprints is proposed, which is thereafter included in the
design of a two-factor authentication protocol. Their fingerprint encoding has
the property that two measurements of the same fingerprint leads to the same
encoding, despite the errors. They make good use of it, since no matching is
needed anymore and they can use classical cryptographic tools. They propose to
use zero-knowledge proofs of knowledge [27], so that the database cannot have
any information about the biometric template that it records. They assume that
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the biometric is private, however their protocol can be proven secure even if
biometric template is public. This protocol has nice features, but it heavily relies
on the fact that thanks to their encoding, they get rid of errors. There is not
such encoding for all biometrics and this protocol is therefore very restrictive.
Furthermore, it achieves authentication only, but does not help to establish a
secure channel.

1.3 Our Solution

We propose a Multi-Factor based AKE (MFAKE) which preserves database pri-
vacy. From three factors (a password, a high entropy secret key and a biometric
template) the protocol generates a common semantically secure secret key, in
order to establish a secure channel. The protocol is designed so that the match-
ing is made on the server side and is adapted for a matching based on a simple
threshold on the distance between the candidate template, and a reference tem-
plate. Therefore, it is particularly well-suited to iris which is efficiently encoded
on 1024-bit string, but can also apply on some other biometric techniques, with
appropriate encoding.

Derived from PKI-AKE, PAKE and biometric-based AKE security models,
we first define a new and clear security model for MFAKE protocols, which
combines all the corresponding security properties. We chose to extend the Real-
or-Random model, since the latter is strictly stronger than the Find-then-Guess
model in the password-based setting [1]. The model allows the adversary to make
several corruptions, on the secret key, the password, or the sensor. And despite
two corrupt queries, the new keys should still remain semantically secure: in
this model a protocol is provably as secure as the strongest remaining factor.
Furthermore, our model also deals with the forward-secrecy, which means that,
even when all the authentication means are corrupted, a session key established
before the last corruption remains semantically secure. However, note that we
only consider client-authentication (Test-queries will be allowed to the server
only, in the formal security model below). This can be seen as a strong limitation,
but it is not in practice: if the password and the secret keys are compromised,
an adversary can easily play the role of the server, since there is no more secret
(the biometric is public and the liveness assumption is valid on the client side
only), whatever the protocol is. Authentication of the server to the client could
be satisfied, until the two secret information related to the client (secret key and
password) are compromised, but we do not address it in this model.

Then we also provide a protocol that is secure, according to this model, in the
random-oracle [7]. This protocol records an encrypted version of the biometric
template on the server side. Therefore privacy of the database (and thus of all the
biometric templates) is preserved, even to the server, and thus even if the server
is compromised. The protocol is proven to have a tight security proof: when the
password is the last factor not to be corrupted, on-line dictionary attacks are the
most efficient attacks that can be mounted; when the biometric is the last one,
the adversary probability to be accepted is nearly equal to the false-acceptance
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probability; when the secret key is still private, the security level is quite strong
since it requires the adversary to break the Diffie-Hellman problem [22].

2 Security Model

In this section, we describe the security model for multi-factor authenticated key
exchange (later denoted MFAKE). This model is built upon the usual password-
authenticated key exchange security model [8,6], in the Real-or-Random indis-
tinguishability framework [5,1].

2.1 Notation

We first explain the notation and the assumptions about the authentication
means.

Participants, Sessions and Partnering. In a MFAKE, participants are
either clients C or a unique, trusted server S. The server and every client can
activate several instances at a time, in order to run several sessions concurrently.
The instance i of the entity U , where U is a client or the server, is denoted as
Πi

U . This instance includes three variables, initialized as null:

– pidi
U : the partner identifier which is the instance with whom Πi

U believes it
is interacting,

– sidi
U : the session identifier, in practice it can be the transcript seen by Πi

U

(concatenation of the received/sent flows, excepted the last one).
– acci

U : a boolean variable which is fixed at the end of the session and denotes
whether the instance Πi

U goes in an accepted state or not.

The two instances Πi
U and Πj

U ′ are said to be partners if the following conditions
are fulfilled:

1. pidi
U = Πj

U ′ and pidj
U ′ = Πi

U ;
2. sidi

U = sidj
U ′ �= null;

3. acci
U = accj

U ′ = 1.

Long-Lived Keys. Each client C owns a tuple tC = (DC , skC , pwdC), where DC
is a probability distribution for his biometric, while skC and pwdC are a high-
entropy private key and a low-entropy password respectively. The server holds a
list of tuples tS = 〈tS [C]〉, where tS [C] is a transformed-tuple of tC . More precisely,
when the client C enrolls in the system, he generates a biometric template WC ,
according to the distribution DC , as well as two private data skC and pwdC . The
tuple tS [C] is then an (injective) transformation of (WC , skC , pwdC).

Biometric Templates. As explained above, for each client C, DC defines the
probability distribution of his biometric (fingerprint, face, iris, etc). In order to
be relevant for authentication, we have to make some assumptions about the
matching process, and more precisely about the encoding and the Hamming
distance, since we will use this distance in the matching decision:
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– on the one hand, the distance between two templates WC and W ′
C of the same

biometric is low with great probability. More concretely, there is a threshold
t, such that for any C,

Pr[WC ← DC , W ′
C ← DC : dH(WC , W ′

C) ≤ t] ≥ 1 − εfr.

The subscript fr stands for “false rejection”.
– on the other hand, for any pair of distinct clients C �= C′, the distance

between WC and WC′ is high with great probability. More precisely, there
exist a threshold τ ≥ t, such that for any C �= C′,

Pr[WC ← DC , WC′ ← DC′ : dH(WC , WC′) > τ ] ≥ 1 − εfa.

The subscript fa stands for “false acceptance”.

We assume that for all the clients C, the biometric distribution DC is public.
Under the liveness assumption explained below the biometric acceptance will
guarantee that the client is like the intended client.

Private Data. The private key component skC is chosen uniformly in a set of
private keys Keys, where Keys is assumed to be very large (with high entropy),
such that 1/#Keys is negligible. It will be stored in a secure device. The accep-
tance of this private key, with respect to a public key, will guarantee that the
client has the device.

On the opposite, the password component pwdC is chosen in a fixed low-entropy
dictionary Dict ⊂ Z

�
p, according to the probability distribution Dpwd. We denote

by Dpwd(q) the sum of the probability of the q most probable passwords according
to Dpwd. The knowledge of the password will guarantee that the client knows it.

Liveness Assumption. Since we assume the biometric to possibly be public
(the opposite assumption is not reasonable in practice), then the liveness as-
sumption [32,21], though quite strong, is necessary. It prevents the attacker from
making replay attacks and from altering the computations made by the sensor.
The liveness assumption implies that the biometric is fresh, comes from a real
living person (and not using a fake biometric feature), and that the computations
are made from this biometric honestly.

To model this assumption, a computation oracle Compute(Πi
C , W ′, sk, pwd) is

used: according to the state of the client instance Πi
C , from the secrets sk, pwd

and a random value of W ′, it computes honestly the message which would have
been generated by C with these inputs, following the protocol.

As it models an attempt of the attacker to authenticate using its own bio-
metric, W ′ has to be chosen according to a (wrong) distribution D, such that
Pr[W ′ ← D, WC ← DC : dH(W ′, WC) > τ ] ≥ 1 − εfa.

With the liveness assumption for the client C, we consider that all the messages
involving the biometric, claimed to be sent by C, have been previously generated
by the computation oracle.

Corruption. As explained below, the adversary will be allowed to corrupt a
client C, by learning the password pwdC (phishing), by getting the private key skC
(side-channel attack on the device), or by breaking the above liveness assumption
(attack on the sensor).
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2.2 Semantic Security

Adversarial Capabilities and Goals. The semantic security of the key is
modeled using the Real-or-Random paradigm [5,1]. At the beginning of the game,
the challenger chooses a random bit b which determines its behavior when an-
swering Test-queries during the game (it provides either real keys or random keys
to the adversary). The adversary may interact with protocol instances through
several oracles, and at the end of the game, she sends a bit b′. If b = b′, she wins,
otherwise, she looses. The available queries are as follows:

– Send(m, Πi
U ): this query allows the adversary to play with the instances, by

intercepting, forwarding, modifying or creating messages. The output of this
query is the answer generated by instance Πi

U to the message m. As stated
above, if pidi

S = Πj
C is the client instance with whom the server believes to

talk, if the liveness assumption still holds for the client C (no corruption)
and if the computation of m involves the biometric, then m has to have been
previously generated through a Compute(Πj

C , W ′, sk, pwd) query.
– Reveal(Πi

U ): this query models the leakage of information about the session
key agreed on by the parties. For example, if it is misused afterward. There-
fore, if no session key is defined for this instance, or if the instance (or its
partner) has been tested (see below), then the output is ⊥. Otherwise, the
oracle outputs the session key computed by the instance Πi

U .
– CorruptKey(C, a): this query models corruption capabilities of the adversary.

She can indeed steal/break one or several authentication factors of clients.
• If a = 1, the oracle outputs the password pwdC of C;
• if a = 2, the oracle outputs the secret key skC of C;
• if a = 3, the attacker is now allowed to submit any message involving

the biometry, without asking the computation oracle Compute before. It
models the attack against the liveness assumption.

Note that in the following, we will restrict to non-adaptive corruptions: no
corruption can be performed during a session, but before a new session starts.

To formally model the semantic security with respect to client authentication,
the adversary can ask Test-queries, but to the server only: we are interested in
the privacy of the key established with the real server only. We only consider
adversaries whose goal is to impersonate a client to the server. Of course, to
achieve this goal, the adversary may try to impersonate the server to the client
in order to learn some information about the long-lived keys of the client. But
only a client impersonation will be considered as a successful attack:

– Test(Πi
S): if Πi

S is not fresh (see below), then output ⊥, otherwise the oracle
sends

• the session key of instance Πi
S (that is Reveal(Πi

S)), if b = 1 – the real
case;

• a random key from the same domain, if b = 0 – the random case.
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Freshness. The freshness notion basically defines session keys that are not
trivially known to the adversary. Since we will focus on the freshness of the
server only, we say that the session key of instance Πi

S is fresh if:

– upon acceptance, C (corresponding to the partner of Πi
S) was not fully cor-

rupted. This means that strictly less then 3 CorruptKey-queries had been
asked to the client C;

– no Reveal-query has been sent to either Πi
S or its partner.

Semantic Security. Let denote by Succ the event that the adversary A cor-
rectly guesses the bit b used by the challenger during the above attack game.
The mfake-advantage advmfakeP (A) and the advantage function of the protocol
P are respectively:

advmfakeP (A) = 2 · Pr[Succ] − 1, advmfakeP (t, Q) = max
A

{
advmfakeP (A)

}
,

where the maximum is over all the attackers with time-complexity at most t and
number of queries at most Q.

Forward-Secrecy. Forward-secrecy means that as soon as a session key is
securely generated (semantically secure), it will remain secure even after corrup-
tion. In order to capture this security level, the model must allow the adversary
to perform Test-queries, even when the 3 CorruptKey-queries have been asked,
but on sessions completed before the full corruption of the client. One can also
consider that upon acceptance, a session is fresh if less than 3 CorruptKey-queries
have been asked.

Client Authentication. We also usually model an attack against the uni-
lateral authentication of the client to the server by considering sessions where
the server accepts, but without any client-partner. Let denote by Succ the event
that a server instance accepts with no partner instance of the client (with the
same partial transcript).

The auth-success SuccauthP (A) and the success function of the protocol P
are respectively:

SuccauthP (A) = Pr[Succ], SuccauthP (t, Q) = max
A

{
SuccauthP (A)

}
,

where the maximum is over all the attackers with time-complexity at most t and
number of queries at most Q.

3 Description of the Protocol

The complete description of our protocol is provided Figure 1. It assumes a
common setup, with parameters (u, v, p, g, q), where g is an element of order q
in Z�

p, and generates the subgroup G. Then, u and v are random elements in G.
We also model H as a random oracle [7].

The server stores all the data corresponding to user C, provided during the
enrollment phase:
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– the public key h = gxC , related to the high-entropy secret xC ;
– an El Gamal encryption [25] of the reference biometric template WC =

(Wi)i≤N —where Wi is the i-th bit of WC and N the number of bits—
under the public key h = gxC , that is tuple of pairs (gri , hrigWi)i;

– the password pwdC ∈ D ⊂ Z�
q .

One can note that the server actually does not know the biometrics of the clients
since they are encrypted under keys chosen by the clients.

C : (W ′
C = (W ′

i )i, skC = xC, pwdC) S :
�
(gri , hrigWi)i, h = gxC , pwdC , C

�
C

b
$← Zq and B = gb, B∗ = B · vpwdC

C, B∗
−−−−−−→

S , (gsi)i, A
∗

←−−−−−−−−

For 1 ≤ i ≤ N,

r′
i

$← Zq and compute

gsi = gr′
i · gri , hsigWi = hr′i · hrigWi

a
$← Zq, A = ga, A∗ = A · upwdC

For 1 ≤ i ≤ N,
compute H(K′

i) = α′
i‖β′

i‖k′
i with:

KC =
�

A∗

upwdC

�b

, Ki
C = (gsi)xC · gW ′

i

K′
i =S

���C
���(gsi)i

���A∗
���B∗

���Ki
C

���KC

���pwdC

���i
(α′

i)i−−−−−−→

(βi)i←−−−−−−

For 1 ≤ i ≤ N, H(Ki) = αi‖βi‖ki with:

KS = ( B∗

vpwdC
)a, Ki

S = hsi · gWi

Ki =S
���C

���(gsi)i

���A∗
���B∗

���Ki
S

���KS

���pwdC

���i

If #{i : αi �= α′
i} ≤ t

Then acc = 1, K = lsbk

�
‖i : αi=α′

i
ki

�

Else acc = 0, K
$← {0, 1}k, βi

$← {0, 1}�

If #{i : βi �= β′
i} ≤ t

Then acc = 1, K′ = lsbk

�
‖i : αi=α′

i
k′

i

�

Else acc = 0, K′ $← {0, 1}k

Fig. 1. Our MFAKE Protocol

For authenticating himself, the client C owns an ephemeral biometric template
W ′

C = (W ′
i )i; the long-term private key xC ; and the password pwdC ∈ D ⊂ Z�

q .
The protocol guarantees that, if the ephemeral template W ′

C is close enough
to the reference template WC (who you are), if the private key xC corresponds
to the public key h (what you have), and if the passwords are the same (what
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you know), then the server accepts the client, and they agree on an ephemeral
common secret K ′ = K.

We namely want to prove that unless the three authentication factors have
been corrupted, no adversary can impersonate a client to the server. And all the
keys actually agreed on between a client and the server are semantically secure,
even after corruptions (forward-secrecy).

Basically, (B∗, A∗) corresponds to the Password-Authenticated part (similar
to EKE [9,2]); for each i, (h, gsi) is a Diffie-Hellman key agreement which leads to
the key gxC·si , with xC used for authentication. Note that the si are rerandomized
every time, so that the Diffie-Hellman key exchange is not static. The bit Wi

(or W ′
i for the client) of the biometric template is used as a mask and we obtain

gxC·si · gWi (gxC·si · gW ′
i for the client). If for most of i the masks Wi and W ′

i

are equal, then for most of i the authenticators α′
i and verifiers αi will be equal

also, as well as βi and β′
i, and ki and k′

i.
To define the partnership in our protocol, we have to precise that the sid is

equal to the first two flows ((C, B∗), (S, (gsi)i, A
∗)).

4 Security of the Protocol

Before stating the security result, let us remind the computational assumption
on which the security will rely.

Computational Diffie-Hellman Problem. Let G be a cyclic group of order
q. Let g be a generator of G, let (x, y) be two integers uniformly chosen in Zq. The
computational Diffie-Hellman problem states that, given (gx, gy), it is difficult
to compute gxy = CDHg(gx, gy).

Let A be a CDH-adversary with running time at most T . We denote by
Succcdh

g (A) the probability that A succeeds in computing gxy from (gx, gy) and
by Succcdh

g (T ) = maxA{Succcdh
g (A)} where the maximum is taken over all the

adversaries with running-time at most T .

Biometric. We remind that for any client C and any adversary which uses a
true biometric W ′, we have Pr[dH(W ′, WC) > τ ] ≤ 1 − εfa where τ is an integer
greater than t. The protocol does not increase the false-rejection probability but
it does increase the false-acceptance probability, due to the additional check on
the αi = α′

i equalities. The increasing is upper-bounded by

Pr [#{i : α′
i �= αi} ≤ t | dH(W ′, WC) > τ ] ≤

(
τ

τ−t

)

2�(τ−t) .

A protocol session between two honest entities is correct if for all i, Ki = K ′
i is

equivalent to αi = α′
i or βi = β′

i. It fails if there is an index i such that Ki �= K ′
i

and αi = α′
i or βi = β′

i. As there are at most t indexes i such that Ki �= K ′
i the

probability that an honest protocol session is not correct is upper bounded by
2t Pr[αi = α′

i : Ki �= K ′
i] which is equal to 2t/2�.
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Theorem 1. Let us consider the above protocol P over a group of prime order
q, where the dictionary of passwords is equipped with the distribution D ⊂ Z�

q.
Let A be an adversary against the semantic security within a time bound T ,
with less than qsession Send-queries and asking less than qh queries to the random
oracle. Then we have

advmfakeP (A) ≤ 2
∑

C
D(qC) + 4q2

h · Succcdh
g (T + 4τe) +

q2
session

q
+

2qh

q

SuccauthP (A) ≤
∑

C
D(qC) + 2q2

h · Succcdh
g (T + 4τe) +

q2
session

2q
+

qh

q

+qsession

(

εfa +

(
τ

τ−t

)

2�(τ−t) +
N t · (2� − 1)t

2�N(t − 1)!

)

where τe denotes the computational time for one exponentiation and qC the num-
ber of active sessions the adversary ran against client C.

Proof. The proof consists of a sequence of games:
Game 0. This is the real attack game, against the protocol. We are interested
in the two following events:

– S0 (for semantic security) which occurs if the adversary correctly guesses the
bit b chosen at the beginning of the game.

– A0 (for client authentication), which occurs if a server instance accepts with
no partner instance of the client (with the same transcript).

Actually in any game Gn, we study the event An, and the event Sn. Note that

advmfake (A) = 2 Pr[S0] − 1, Succauth (A) = Pr[A0].

Therefore

advmfakeP (A) = 2 Pr[Sn] − 1 + 2(Pr[S0] − Pr[Sn]) ≤ 2 Pr[Sn] − 1 + 2
n−1∑

i=0

Δi

SuccauthP (A) = Pr[An] + (Pr[A0] − Pr[An]) ≤ Pr[An] +
n−1∑

i=0

Δi,

if we denote by Δi the distance between games Gi and Gi+1.
Game 1. In this game, we simulate the random oracles (H , but also an addi-
tional function H ′ that will appear in the game G3) as usual by maintaining
lists ΛH and ΛH′ . We also simulate all the instances, as the real players would
do, for the Send-queries and the Reveal and Test-queries. From this simulation,
we see that the game is indistinguishable from the real attack: Δ0 = 0.

Note that since the probability distributions of the biometrics are public, we
draw a random reference template for each client, to be used/known by the
server. And when needed (simulation of a client), we can draw a random bio-
metric according to the (public) probability distribution of the client’s biometric.
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Game 2. In order to guarantee independence of the sessions, we cancel games
in which some collision on the session transcripts ((C, B), (S, A∗, (gsi)i)) appear.
Since transcripts involve at least one honest party, (A∗, (gsi)i) or B∗ is truly
uniformly distributed. Therefore the collision probability is upper bounded by
q2
session/2q, where qsession is the number of sessions: Δ1 ≤ q2

session/2q.
Game 3. We now replace the generation of the authenticators and session keys
with a private oracle H ′ instead of H , for all the sessions that are fresh (which can
be tested: involving a server so that the intended client is not fully corrupted),
and also for all the sessions involving a client (but no server) for which the
password and the secret key are unknown (none of the 1-CorruptKey and 2-
CorruptKey-queries has been asked): instead of using the public oracle H , we use
the private oracles H ′, on Ki and K ′

i computed as

Ki = S
∥
∥
∥C

∥
∥
∥(gsi)i

∥
∥
∥A∗

∥
∥
∥B∗

∥
∥
∥gWi

∥
∥
∥i K ′

i = S
∥
∥
∥C

∥
∥
∥(gsi)i

∥
∥
∥A∗

∥
∥
∥B∗

∥
∥
∥gW ′

i

∥
∥
∥i.

As already explained, we have chosen a random reference biometric template
for each user. And when needed, we can draw a random biometric according
to the (public) probability distribution of the client’s biometric. Thus we can
include gWi or gW ′

i in the above public computations, in order to make Ki and
K ′

i possibly different, even for compatible biometric templates.
We do not use none of KC , Ki

C , KS and Ki
S anymore, therefore we can omit

their computations. Besides, we do not use A and B anymore, therefore we can
change the computations of A∗ and B∗ by a∗ $← Zq, A∗ = ga∗

and b∗ $← Zq,
B∗ = gb∗

. Lastly, since we do not use neither the password nor the secret key,
we can choose them at the last moment: for the password-corrupt query (1-
CorruptKey) or for the secret key-corrupt query (2-CorruptKey), or at the very
end of the game only (when the adversary gives her answer).

However, when a client is fully corrupted (adversary against the server) or
the adversary plays against a client from which she knows the password and the
secret key, the keys Ki and K ′

i are computed normally and we use the public
oracle H again.

Note that we restrict to non-adaptive corruptions, and thus, when a session
starts, we know the corruption status of a client. Then, requests to the Compute-
oracle will also focus on such a session for which we know the corruption status,
since the biometric is only involved in the third round. The latter oracle indeed
has to know how to perform the simulation of K ′

i, using either H or H ′.
The games G2 and G3 are indistinguishable unless some specific hash query

is asked (for a session made before the last CorruptKey-query): if the adversary
asks either

S
∥
∥
∥C

∥
∥
∥(gsi)i

∥
∥
∥A∗

∥
∥
∥B∗

∥
∥
∥Ki

C
∥
∥
∥KC

∥
∥
∥pwdC

∥
∥
∥i or S

∥
∥
∥C

∥
∥
∥(gsi)i

∥
∥
∥A∗

∥
∥
∥B∗

∥
∥
∥Ki

S
∥
∥
∥KS

∥
∥
∥pwdC

∥
∥
∥i,

for some transcript ((C, B∗), (S, A∗, (gsi)i)), and some index i, to the H function,
whereas the H ′ function has been used by the simulator. We denote by AskH3
such an event. Note that, it can be decided whether this event happened only
when the password and the secret key have both been chosen.
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In this game, for all clients, the (αi)i, the (βi)i and the key are computed
from a private random oracle. Therefore, whatever the bit b involved in the
Test-query, the answer is random, and independent for all the sessions, unless
some transcript ((C, B∗), (S, A∗, (gsi)i)) appeared twice, but this has already
been excluded in game G2. Therefore we have:

Δ2 ≤ Pr[AskH3] and Pr[S3] =
1
2
.

Similarly, the only possibility for the adversary to authenticate against a true
server instance is to guess the αi at random or to use the Compute-oracle, unless
some transcript ((C, B∗), (S, A∗, (gsi)i)) appeared twice.

If she tries to guess the αi at random, since |αi| = 	, then her probability to
succeed is upper-bounded by:

1
2N�

·
t∑

k=0

(
N

k

)

(2� − 1)k ≤ N t · (2� − 1)t

2�N (t − 1)!
,

If she uses the Compute-oracle, all the α′
i and βi are generated through a

trusted computation oracle and since the adversary uses her own biometric W ′,
which is, with high probability, quite different from the client biometric WC ,
her probability to succeed is exactly the false-acceptance probability computed
earlier.

As a consequence,

Pr[A3] ≤ qsession

(

εfa +

(
τ

τ−t

)

2�(τ−t) +
N t · (2� − 1)t

2�N(t − 1)!

)

.

Game 4. Our goal is now to upper-bound the probability of event AskH3. We
denote by AskH4 the same event in this game and have AskH3 ≤ AskH4 +Δ3. In
this game, we receive a Diffie-Hellman pair (X = gx, Y = gy), and we will try to
show that the probability of event AskH is related to the probability of computing
the Diffie-Hellman value of (X, Y ). We set u = X and v = Y . We furthermore
cancel games in which, for a transcript ((C, B∗), (S, A∗, (gsi)i)), which both

– was generated before a password-corrupt query to the client C was made
– comes from an execution involving the adversary, against either an instance

of the client C or the server S

there are two tuples (A∗, B∗, CDHg(A∗/upwdk , B∗/vpwdk), ik), with two different
passwords pwd0 and pwd1 and two, possibly different, indexes i0 and i1, such
that

S
∥
∥
∥C

∥
∥
∥(gsi)i

∥
∥
∥A∗

∥
∥
∥B∗

∥
∥
∥Kik

S
∥
∥
∥CDHg(A∗/upwdk , B/vpwdk)

∥
∥
∥pwdk

∥
∥
∥ik

is in ΛH .

Distance. We first easily show that Δ3 ≤ q2
h ·Succcdh

g (T +3τe). To this aim, we
remind that the distance we study comes from the fact we have canceled games
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in which, for some specific transcript ((C, B∗), (S, A∗, (gsi)i)) —which was gener-
ated before a password-corrupt query to the client C was made and which comes
from an execution involving the adversary, against either an instance of the client
C or the server S—, there are two tuples (A∗, B∗, CDHg(A∗/upwdk , B∗/vpwdk), ik),
with two different passwords pwd0 and pwd1 and two, possibly different, indexes
i0 and i1, such that

S
∥
∥
∥C

∥
∥
∥(gsi)i

∥
∥
∥A∗

∥
∥
∥B∗

∥
∥
∥Kik

S
∥
∥
∥CDHg(A∗/upwdk , B/vpwdk)

∥
∥
∥pwdk

∥
∥
∥ik

is in ΛH .
If such a pair exists, then for k = 0, 1: CDHg(A∗/upwdk , B∗/vpwdk) is equal to

CDHg(A∗, B∗) · CDHg(u−1, B∗)pwdk · CDHg(A∗, v−1)pwdk

CDHg(u, v)pwd2
k

.

Since we simulated either A∗ or B∗, knowing the discrete logarithms, we can
extract CDHg(X, Y ). Let us show it when B∗ = gb∗

, it works similarly when we
know A∗ = ga∗

: since the two passwords are different and non-zero,

CDHg(X, Y ) =
CDHg(A∗/upwd0 , B∗/vpwd0)1/pwd0(pwd1−pwd0)

CDHg(A∗/upwd1 , B∗/vpwd1)1/pwd1(pwd1−pwd0)
· (A∗)−b∗/pwd0pwd1 .

Conclusion. In order to conclude with the computation of Pr[AskH4], we dis-
tinguish the events when the transcript ((C, B∗), (S, A∗, (gsi)i)) comes from an
execution between:

– two instances of C and S, or an instance of C or S and the adversary but the
flows are all oracle-generated, this event is denoted by AskH-Passive4;

– an instance of C and the adversary, where at least one flow is not oracle-
generated, this event is denoted by AskH-withC4;

– an instance of S and the adversary, where at least one flow is not Compute-
oracle-generated, this event is denoted by AskH-withS4;

Assume that there is a tuple (A∗, B∗, D = CDHg(A∗/upwd, B∗/vpwd)) such that

S
∥
∥
∥C

∥
∥
∥(gsi)i

∥
∥
∥A∗

∥
∥
∥B∗

∥
∥
∥K ′

C
∥
∥
∥D

∥
∥
∥pwd

∥
∥
∥i or S

∥
∥
∥C

∥
∥
∥(gsi)i

∥
∥
∥A∗

∥
∥
∥B∗

∥
∥
∥K ′

S
∥
∥
∥D

∥
∥
∥pwd

∥
∥
∥i

is in ΛH , for any password pwd of the adversary’s choice.
If the corresponding transcript ((C, B∗), (S, A∗, (gsi)i)) comes from an execu-

tion between instances of C and S, it means that both A∗ and B∗ have been
simulated (and the adversary was only passive). In this case, we know the dis-
crete logarithms a∗ and b∗, and

CDHg(A∗/upwd, B∗/vpwd) =
ga∗b∗ · (va∗

ub∗
)pwd

CDHg(v, u)pwd2 .

Since pwd is non-zero in Zq, it can be inverted modulo q and then,

CDHg(X, Y ) =
(

ga∗b∗ · va∗·pwd · ub∗·pwd

CDHg(A∗/upwd, B∗/vpwd)

)1/pwd2

.

Therefore Pr[AskH-Passive4] ≤ qh × Succcdh
g (T + 4τe).
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If the corresponding transcript ((C, B∗), (S, A∗, (gsi)i)) comes from an execu-
tion between an instance of C and the adversary, where at least at one flow is not
oracle-generated, it means that B∗ has been simulated and the other has been
generated by the adversary. We know that either the secret key-corrupt query
or the password corrupt query has not been asked (otherwise the simulation was
performed using H in game G3).

– Assume that the secret key-corrupt query has not been made before this
session, then xc and h are unknown to the adversary. Then it is quite hard
to compute hsi = (gsi)xC (no information at all): qh/q.

– If the secret key-corrupt query has been made, it implies that the password-
corrupt query has not been made. Due to the games which were canceled in
this game, there is at most one password pwd such that there exists an index
i, 1 ≤ i ≤ N , such that:

S
∥
∥
∥C

∥
∥
∥(gsi)i

∥
∥
∥A∗

∥
∥
∥B∗

∥
∥
∥KS

∥
∥
∥KS

∥
∥
∥pwd

∥
∥
∥i

is in ΛH . In other words, for every transcript, there is only one password
which can be tested by the adversary:

∑
C D(qC).

If the corresponding transcript ((C, B∗), (S, A∗, (gsi)i)) comes from an execu-
tion between instances of S and the adversary, where at least at one flow is not
Compute-oracle-generated, it means that (A∗, (gsi)i) has been simulated and B∗

has been generated by the adversary. Since the server accepted a non-Compute-
oracle-generated, it means that the biometric corrupt query has been made for
the corresponding client C. Thereafter, the same analysis, according to the secret
key-corrupt status and the password-corrupt status, as above can be done.

We can thus conclude with

Pr[AskH4] ≤
∑

C
D(qC) +

qh

q
+ qh · Succcdh

g (T + 4τe).

�

5 Discussion

5.1 Optimality and Tightness

The authentication probability upper bound presented in Theorem 1 has two
leading terms which are

qS

(

εfa +

(
τ

τ−t

)

2�(τ−t) +
N t · (2� − 1)t

2�N (t − 1)!

)

and
∑

C
D(qC).

If 	 is large enough, then the last two terms in the parenthesis are negligible, that
is why we focus on the two terms which cannot be made negligible even with
larger parameters: qS · εfa and

∑
C D(qC). We claim that our scheme is optimal
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and the security result is tight: these two terms could not be avoided, with any
better protocol.

Let us consider the following adversary: A asks for both a password and a
secret key corrupt queries and then tries to authenticate using her own biometric.
Every time she tries to authenticate, her success probability is equal to the false
acceptance probability. Thus, her global success probability is approximately
equal to qS · εfa. This attack is generic, independent of any specific protocol,
and therefore this shows that the first upper bound cannot be avoided by any
cryptographic means.

Secondly, let us consider the adversary which asks for all the secret key-corrupt
and (liveness assumption) biometric-corrupt queries, against all the clients: the
system is now protected by the passwords only. Thereafter, for each client C, she
makes qC impersonation attempts with the server, using the qC most probable
passwords. For every client C, the success probability is upper-bounded by D(qC),
therefore the global success probability is approximately equal to

∑
C D(qC) (it

shows that the best attack consists in trying the most probable passwords against
as many clients as possible). Once again, the adversary is generic and indepen-
dent of any protocol. Therefore, this bound cannot be avoided either.

The other terms being negligible, our global upper-bound against authentica-
tion is tight, and our protocol optimal. The same way, one can show optimality
and tightness for the semantic security.

5.2 Practical Parameters

Let us see what it gives with practical values. An iris scan is usually encoded
over N = 1024 bits and t = 300 is considered as a good threshold for the
Hamming distance between two measurements of the same biometrics. With
such parameters, the false acceptance rate is estimated to 2−14. For a similar
false rejection rate, we can assume τ = 400 as a reasonable threshold. In this
case, if 	 ≥ 4 then

(
τ

τ−t

)

2�(τ−t) +
N t · (2� − 1)t

2�N(t − 1)!
≤

(400
100

)

2400 +
23000

22896(299)!
≤ 2321

2400 +
2104

22033 ≤ 2−78.

Note that 	 is the length of the authentication tags. The shorter they are, the
more efficient the protocol is, from a communication point of view. Can we
reduce this value 	? Consider an adversary that has corrupted both the password
and the secret key. With very high probability (greater than εfa) the Hamming
distance between a measurement of the adversary biometric and a client reference
biometric is approximately 512 and so there are 512 indices i such that αi = α′

i.
If 	 = 1 there are approximately 512/2 other αi and α′

i which are equal, that is,
there are 768 indices i for which αi = α′

i and the adversary is able to impersonate
the client. Therefore, if 	 = 1, with probability greater than the false acceptance
probability an adversary can authenticate.

This means that 	 must be greater than 2, and the previous bound shows that
	 = 4 is a good choice. However if one wants to guarantee the correctness of an
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honest execution (for all the indices i, αi = α′
i and βi = β′

i if and only if the
biometric bits are the same), then a good solution is to choose a greater 	. If
	 = 24, an honest execution succeeds with probability 2−14 ≈ εfa.

Another solution to guarantee the correctness of an honest session is to add
a distillation step [10] after the protocol. Distillation allows two entities, with
two secret keys with small Hamming distance, to agree on a common secret
key, at the price of revealing some of the bits of the original secret keys. With a
distillation step, one can choose 	 = 4. Even if the resulting secret is shorter than
the original ones, this is not a problem in our case, since the original ones are
quite large. The distillation step also allows to prevent some denial-of-service
attacks where the adversary flips some of the α′

i (this is possible only if the
liveness assumption is broken) or βi. If for this i, Ki = K ′

i then with high
probability the two entities will generate two different secret keys, whereas they
both accept (a few modifications might not flip the decision), and then think that
they share the same secret key. With a classical key confirmation, this attack
can be detected, and the affected sessions identified. However the advantage of
the distillation is that it allows to correct the errors introduced by the adversary
or due to hazard, and then to avoid replaying the protocol once more.

5.3 Conclusion

In this paper, we defined a quite strong security model, since it allows a lot
of information leakage for the adversary. It guarantees that the adversary has
to break all the protections to impersonate a client. Namely, as long as the
secret key is not recovered from the secure device, one can show that the success
probability of the adversary against our scheme is negligible. As the unclonable
device is probably the strongest and the most realistic protection, we can say
that our protocol is quite secure.
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Abstract. This paper is devoted to ModOnions – an anonymous com-
munication protocol, for which a message is encoded as a set of onions
and sent through intermediate nodes so that each node knows only its
predecessor and its successor on the routing path. Moreover, encoding
details enable universal re-encryption: each node re-encrypts the message
so that no observer can link together the ciphertexts before and after re-
encryption and re-encryption can be performed without any public key.
ModOnions were supposed to offer many additional features over clas-
sical onion protocols, such as resilience against replay attack. However,
during ISC’2006 George Danezis presented a detour attack against this
construction. It enables to redefine the routing path by inserting interme-
diate corrupt nodes between each two nodes of the original routing path.
In this way anonymity becomes completely broken. We show that after
slight changes in the protocol the attack does not work anymore. The
patch proposed can also be seen as a general method of enforcing who
is the final addressee of a message encrypted with the ElGamal scheme
and multiple public keys.

1 Introduction

Onion-Routing is one of the most important techniques supporting anonymous
communication in distributed systems. It is based on the following idea: mes-
sages are not sent from the sender to the receiver directly, but through a path
of intermediate nodes chosen at random. Each message is encoded in a special
way before being sent – i.e. it is encapsulated many times with asymmetric en-
cryption. The resulting structure is called an onion. At each intermediate node
on the path, one encryption layer is removed. Due to encryption properties, two
messages entering and leaving the same node become indistinguishable from the
point of view of an external observer. Such a situation is called a conflict. Intu-
itively, when many conflicts occur, then the batch of all messages becomes more
and more mixed and linking the senders and the receivers becomes infeasible
for an external adversary. Formal probabilistic analysis of this phenomenon in
various models can be found for example in [1, 6, 9].
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Paper [5] presents a routing scheme with “onion-like” encoding that was sup-
posed to protect users not only from a plain traffic analysis, but also from some
classes of active attacks - in particular against so called replay attack. Such an
attack is based on the following idea: the adversary controls some nodes in the
network. Let us assume that he would like to trace the route of a particular mes-
sage. He sends this message twice and traces repetitions among the messages
transferred on all servers under his control. Finding such a repetition definitely
betrays the route traced. The scheme from [5], called ModOnions, was built on
the top of a very useful cryptographic primitive - an extended version of ElGamal
encryption scheme with universal re-encryption (or URE, for short) introduced
by Golle et al. in [4].

In [2] George Danezis presented an attack on ModOnions that can be suc-
cessfully carried out by an active adversary that collaborates with even a small
subset of nodes in the network. To some extent, this attack can be also applied
to scheme presented in [8]. The idea is that the adversary manages to detour the
routing path of a message. Namely, he or she modifies the encoded message in
such a way that a corrupted node (i.e. controlled by the adversary) is inserted
between each two subsequent nodes from the path. The adversary may insert
markers that make it easy to recognize the messages from the same path. In this
way the complete routing path may be revealed by the adversary and anonymity
protocol becomes completely broken.

Main Result. In this paper we present a simple patch for ModOnions that
protects the scheme against the attack of George Danezis. The patch proposed
can also be seen as as a general method of enforcing who is the final addressee
of a message encrypted with the ElGamal scheme and multiple public keys,
where each participant partially decrypts the ciphertext concerned. The method
is based on different pairs of keys for the final decryption and for a partial
decryption.

2 ModOnions – Onion Routing with URE

First, let us recall an extension of the ElGamal encryption scheme with universal
re–encryption feature [4]. This scheme serves as the main building block for
further considerations. It can be regarded as a simple, yet powerful extension of
ElGamal encryption scheme that allows re-encryption of any ciphertext without
knowledge of the public key.

Universal Re–Encryption. Let us recall ElGamal encryption scheme: we as-
sume that p is a prime number such that the discrete logarithm problem is hard
in Z∗

p and g is a generator of Z∗
p. Then a private key is a non-zero x < p−1 chosen

uniformly at random, the corresponding public key is y, where y := gx mod p.
For a message m < p, a ciphertext of m is a pair (s, r), where r := gk mod p and
s := m · yk mod p and 0 < k < p − 1 is chosen at random.
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The ElGamal scheme is a probabilistic one: the same message encrypted for
the second time yields a different ciphertext with overwhelming probability.
Moreover, given two ciphertexts, it seems to be infeasible in practice to say
whether they have been encrypted under the same key (unless, of course, the
decryption key is given). This property is called key-privacy (see [4]). ElGamal
cryptosystem has yet another important property. Everyone can re-encrypt a ci-
phertext (α, β) and get (α′, β′) where α′ := α · yk′

mod p, β′ := β · gk′
mod p for

k′ < p chosen at random and public key y. Moreover, without the decryption key
it is infeasible to find that (α, β) and (α′, β′) correspond to the same plaintext.

In [4] Golle et al. proposed a slightly modified version of this scheme that
allows to perform re–encryption without the public key. The method proposed
is also called universal re-encryption scheme or URE for short. It consists of the
following procedures:
Setup: A generator g of a cyclic group G is chosen, where discrete logarithm

problem is computationally hard. Then G and g are published.
Key generation: Alice chooses a private key x at random; then the corre-

sponding public key y is computed as y = gx.
Encryption: To encrypt a message m for Alice, Bob generates uniformly at ran-

dom values k0 and k1 (k0, k1 < p). Then, the ciphertext of m is a quadruple:
(α0, β0; α1, β1) :=

(
m · yk0 , gk0 ; yk1 , gk1

)
. Let us note that this is a pair of

two ElGamal ciphertexts with plaintext messages m and 1 (neutral element
of G), respectively.

Decryption: Alice computes m0 := α0
βx
0

and m1 := α1
βx
1
. Message m0 is accepted

if and only if m1 = 1.
Re-encryption: Two random values k′

0 and k′
1 are chosen. Then we compute:(

α0 · α
k′
0

1 , β0 · βk′
0

1 ; αk′
1

1 , β
k′
1

1

)
, which is a re-encrypted version of the same

ciphertext.

Throughout this paper Ex(m) denotes an URE ciphertext of a message m for
a secret decryption key x. Note that there are many possible values for Ex(m),
since URE is a probabilistic encryption scheme.

Extension of Universal Re–Encryption. Let us assume there are λ distinct
servers on each routing path. We would like to encrypt a message in such a way
that it must be processed by all servers on the path to obtain the plaintext. On
the other hand, we would like to retain universal re-encryption feature to enable
strong anonimization at each server.

Key setup: A private key xi is chosen uniformly at random for the ith server
(1 ≤ i ≤ λ). Then the corresponding public keys yi := gxi are computed and
published.

Encryption: To encrypt a message m, values k0 and k1 are generated at ran-
dom. The ciphertext has the following form:

Ex1,x2,...,xλ(m) = (α0, β0; α1, β1) :=
�
m · (y1y2 . . . yλ)k0 , gk0 ; (y1y2 . . . yλ)k1 , gk1

�
.
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Obviously, y1y2 . . . yλ is a kind of cumulative public key, since

Ex1,x2,...,xλ
(m) =

(
m · g

k0
λ�

i=1
xi

, gk0 ; g
k1

λ�

i=1
xi

, gk1

)
.

Moreover, Ex1,...,xλ
(m) is a ciphertext of m with the decryption key equal to

∑λ
i=1 xi. Hence it can be re-encrypted in a regular way. Moreover, such a ci-

phertext can be partially decrypted, for instance, by the first server. Namely, it
computes Ex2,...,xλ

(m) as the following quadruple:

(α′
0, β

′
0; α

′
1, β

′
1) :=

( α0

βx1
0

, β0;
α1

βx1
1

, β1

)
.

It is obvious that it still is a correct URE ciphertext for the “reduced” key∑λ
i=2 xi, and therefore it also can be re-encrypted as it was described above.

3 ModOnions Protocol

In this section we recall ModOnions – routing scheme from [5] based on URE
encryption. Let xi denote the secret key of server i. We assume that the cor-
responding public key yi = gxi is globally known. Again, g it is a generator of
a group such that discrete logarithm is computationally hard. We assume that
g is a public parameter shared by all servers.

Construction of an ModOnion. Let us assume that a server would like to
send a message to a server sλ. As the first step, a path of intermediate servers
s1, s2, . . . , sλ is chosen at random. Then a modified onion (ModOnion) is built as
a collection of λ ciphertexts, called blocks. The ith block, for 1 ≤ i ≤ λ−1, has the
form: Exs1+···+xsi

(send to si+1) . The last block has the form: Exs1+···+xsλ
(m) .

Let us note that this construction deviates from the encapsulation idea that is
the core feature of the regular onions (see for instance [9, 6]).

Routing a ModOnion. First, all blocks described above are permuted at
random and sent together to server s1. When a server si receives a ModOnion,
it partially decrypts and re-encrypts all its blocks:

Partial decryption: each block (α0, β0; α1, β1) is replaced by
(

α0

(β0)xi
, β0;

α1

(β1)xi
, β1

)

.

After this phase, exactly one block should contain a plaintext with the name
of the next server on the path (i.e. si+1). This block is replaced with a random
string pretending to be a URE ciphertext.

Re-encryption: All blocks are independently re-encrypted as described in
Subsection 2.

Permuting: The blocks are permuted at random.
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Sending to the next destination: The resulting ModOnion is sent to the next
server on the path, i.e. to si+1.

As remarked in [5], such a scheme is vulnerable to multiplicative attack: one can
multiply a message encrypted with an URE scheme by an arbitrary value γ. In-
deed, (γ · α0, β0; α1, β1) =

(
(γ · m) · yk0 , gk0 ; yk1 , gk1

)
. The adversary processing

a ModOnion can multiply an arbitrary block by γ. Then, if the adversary con-
trols a significant number of nodes, it is pretty likely that one of nodes under his
control gets a message of the form γ · s, where s is a correct name of a server. In
such a situation the adversary can be sure that this was the previously marked
message.

To avoid these attacks an investigation procedure is executed, when any mis-
behavior is detected. If an honest node receives an invalid ModOnion - i.e. none
of blocks or more than one decrypted block represents a name of the next server
on the route or a valid final message, it complains against the previous server
from the path. Then both servers - the previous server as well as the complaining
one – prove that they behaved correctly. If one of them fails to prove its correct
behavior, it is recognized guilty. If they manage to prove their correct behavior,
the next predecessor on the path is interrogated. The procedure is repeated un-
til a cheater is detected. Servers prove their correct behavior in a standard way
using zero knowledge proofs for discrete logarithms (more details can be found
in [5]).

4 Detour Attack on ModOnions

Preliminaries. We recall the attack of George Danezis [2] on the ModOnion
scheme. It utilizes two observations:
1. Given Ex(m), one can easily add an arbitrary value x′ to the private key

and create Ex+x′(m). Indeed, if
Ex(m) = (α0, β0; α1, β1) =

(
m · (y)k0 , gk0 ; yk1 , gk1

)
,

then one can get Ex+x′(m) as the following quadruple:

(α0 · (β0)x′
, β0; α1 · (β1)x′

, β1) =
(
m · (y · y′)k0 , gk0 ; (y · y′)k1 , gk1

)
.

In context of the ModOnions scheme it means that one can add an additional
cryptographic layer to an arbitrary block.

2. Given Ex(m) = (α0, β0; α1, β1), everyone can create a ciphertext of an arbi-
trary message m′ for the same (unknown) secret key. Indeed, it suffices to
compute (m′ · α1, β1, α1, β1) and re-encrypt it.

Attack Description. The aim of an adversary is to find the destination of
a message passing through a server controlled by the adversary. The attack is
performed in consecutive steps, at each step the adversary reveals one subse-
quent node from the routing path of the message traced. Let us assume that an
ModOnion:

Exsi
(si+1), Exsi

+xsi+1
(si+2), Exsi

+xsi+1+xsi+2
(si+3), . . . , Exsi

+xsi+2+...+xsλ
(m)
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arrives to server si controlled by the adversary (for simplicity of description we
ignore here the random order of blocks at their arrival). After partial decryption
ModOnion takes the form:

E0(si+1), Exsi+1
(si+2), Exsi+1+xsi+2

(si+3) . . . , Exsi+1+xsi+2+...+xsλ
(m),

so the adversary knows that the ModOnion should be sent to si+1 – the next
server on the path. In his next move the adversary adds an additional layer with
a random key x′ to each block and he also replaces the decrypted block E0(si+1)
with a block Exsi+1

(si). This block would redirect the ModOnion back to a node
under control of the adversary in the next step. So now the ModOnion contains
the following blocks:
Exsi+1

(si), Exsi+1+x′(si+2), Exsi+1+xsi+2+x′(si+3), . . . , Exsi+1+xsi+2+...+xsλ
+x′(m).

The adversary sends such a a ModOnion from si to the node si+1. According to
the rules of the protocol the node si+1 removes one encryption layer – after the
decryption phase performed by the node si+1 the traced ModOnion consists of
the following blocks:

E0(si), Ex′(si+2), Exsi+2+x′(si+3), . . . , Exsi+2+...+xsλ
+x′(m).

According to the protocol, server si+1 sends them back the ModOnion to si.
Of course, si can partially decrypt the blocks with the key x′ and find si+2.
Moreover, the decryption result is a correct ModOnion that would be obtained
by si+1, if there were no attack. Exactly in the same way the adversary can
find the subsequent servers si+3, si+4, . . . and the destination sλ as well as the
message m sent.

Of course, in order to avoid suspicious pinging back a ModOnion to the same
node, the adversary may detour the ModOnion to any server under his control
instead of si. For his convenience, he may also add an additional block containing
a tag, which links the incoming ModOnion with the one, on which detour attack
is exercised at si.

Tagging Attack. Another idea from [2] is to replace the random block by the
block encoding the name of the next server. In order to check that the next
t hops of the message are through nodes sj1 , . . . , sjt , he inserts Exj1+...+xjt

(ω)
instead of a random block, where ω is a special string used for this purpose.
Now, if sjt becomes ω, then it is a strong evidence that the path went through
exactly the nodes sj1 , . . . , sjt and the ModOnion arriving with ω is the same as
the ModOnion marked.

This attack is not particularly useful, if only one ModOnion is sent along the
same path. However, it becomes dangerous, if ModOnions are used as a connec-
tion protocol - then one can try many times to discover the routing path.

5 Protocol Immune Against Detour Attack

In this section we present an improved version of the protocol recalled in Sec-
tion 3. The core idea is as follows: each node has two pairs of keys. The first pair
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of so called transport keys is used for transporting blocks through intermediate
servers (like for the ModOnions protocol). The second pair of so called destina-
tion keys is used for encrypting and decrypting messages and routing addresses
for their recipients. So there are the following keys of a server s:

– transport keys: a private key xs and a public key ys := gxs ,
– destination keys: a private key x�

s and a public key y�
s := gx�

s .

Modified Construction of a ModOnion. Now the blocks encoding interme-
diate nodes on the routing path s1, s2, . . . , sλ are constructed as follows:

1. The block encoding the second node - s2 has the form: Ex�
s1

(send to s2).
2. For all 2 ≤ i ≤ λ − 1, the block encoding address si+1 has the form:

Exs1+···+xsi−1+x�
si

(send to si+1).

3. The block encoding the payload message m has the form:
Exs1+···+xsλ−1+x�

sλ
(m, t),

where t is a code of the current time.
Note that each destination key x�

i is used exactly once for each ModOnion, in
the remaining cases for server i transport keys are used. For the simplicity of the
security discussion we assume that all servers on the routing path are different.

Routing. Processing a Modified ModOnion by a server si becomes slightly more
difficult:

1. Server si copies all blocks of a ModOnion. Then it decrypts all blocks with
its private destination key. If every previous server on the path is honest,
exactly one of the blocks after decrypting should contain a correct name of
the next server si+1, the other blocks should yield meaningless strings.

2. If all of the blocks are meaningless strings, the investigation procedure is
started. Otherwise all copies of the blocks (the original blocks obtained from
the previous server), except for the one containing si+1, are decrypted with
the private transport key of si. The blocks obtained are then re-encrypted
in the regular way.

3. A random block replaces the block containing si+1.
4. The blocks are permuted at random.
5. The resulting ModOnion is sent to si+1.

The following steps are executed by the destination server:

1. It decrypts all blocks with its private destination key.
2. If all of the blocks are meaningless strings, then the investigation procedure

starts.
3. If a correct message m, t has been already delivered before, then the inves-

tigation procedure starts.
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5.1 Encoding Addresses and Countermeasures Against
Multiplication Attack

We have to prohibit changing an address encoded in a block to the address
of a chosen corrupt server s′. Note that this might be quite easy for the ad-
versary: if he guesses that a block encodes an address s - i.e. it has the form
(α0, β0; α1, β1) = (s · (y)k0 , gk0 ; yk1 , gk1), then the modified block encoding the
address s′ would be (α0 · s′/s, β0; α1, β1) . The only danger for the adversary is
that the guess was wrong and the block contained an address z is different from
s. In this case the modified block would encode the address z · s′/s, which can
be an address of an honest server or can be invalid (i.e. it does not correspond
to any node in the network). In the last case an investigation procedure may be
started in order to determine the corrupt server. Probability that such an attack
is detected (and an investigation procedure is started) increases, if it is unlikely
that for any addresses z, s, z′, s′ the following equality holds for some α:

z · α = s and z′ · α = s′.

Potentially, there are many encoding schemes that may achieve this property.
A simple way is to replace address z by z|H(z), where | denotes concatenation
symbol and H is a strong hash function. Then we ask for pairs z, s, z′, s′ such
that

z|H(z)
s|H(s)

=
z′|H(z′)
s′|H(s′)

.

Finding such pairs seems to be infeasible for a good hashing function.
Another technique that can be applied on top of the previous method is the

following modification of processing the blocks:

– During re-encryption of a ModOnion an additional operation is performed on
each block (α0, β0; α1, β1): the server tosses a coin and if tails are obtained,
then it replaces this block by (α2

0, β
2
0 ; α2

1, β
2
1) . So if the original block en-

coded a message d, then it will encode d2.
– Constructing blocks by the sender becomes slightly more involved. In order to

encrypt a string s it is necessary to compute s̄ = 2λ√
s mod p. (This requires p

to be chosen so that computing square roots is computationally easy.) Then
inside a block that would contain s in the original design we encrypt s̄2i

,
where i is chosen in the following way: If the block has to be read by the
jth server on the routing path, then a symmetric coin is tossed λ − j times
and i is taken as the number of tails obtained during this experiment. This
steps allow to hide the distance between the origin to the addressee of s,
since the number of squarings executed is stochastically independent from
this distance.

– Decryption of a ModOnion becomes slightly more difficult. After decryption
with the private destination key, we obtain not s, but some root of the form
2h√

s mod p, where h ≤ λ (according to our design, h oscillates around λ/2
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regardless of the position on the routing path). In order to recognize s the
server performs up to λ squarings on each decrypted block.

The main advantage of this technique is that even if an adversary correctly
guesses the next address si+1 on the routing path, it is uneasy to replace the
address si+1 by the address of a corrupt server z, as described before. Indeed, in
order to remove si+1 from block (α0, β0; α1, β1) the adversary has to compute

(α0/s̄2h

i+1 · z̄2j

, β0; α1, β1)

where h is hidden in the block concerned. Note that h depends on independent
decisions of the intermediate nodes and of the sender. The main trick here is that
we insert no additional information bit to the intermediate addresses - according
to the idea of ModOnion the only information got by a server on a routing path
are the names of its successor and its predecessor. Nevertheless, we make hard
to modify the next address, even if it is guessed correctly. In particular, this
redundancy cannot be used for a replay attack.

6 Security of the Modified ModOnion Scheme

6.1 Immunity Against Detour Attack for Modified ModOnions

Using two different pairs of keys (transport and destination keys) is a simple
way to make the ModOnion scheme immune against the detour attack. Indeed,
in order to find the node si+2 on the routing path a malicious node si should:
1. add a redirectional block Ex�

si+1
(si) in order to enforce the ModOnion to be

sent back to him,
2. impose the additional encryption layer with a random key x′ so that si+1

gets only one plaintext after decrypting all blocks with its destination key.
Server si+1 that is processing the ModOnion according to the protocol will de-
crypt the redirectional block using his private destination key and remove one
encryption layer from the remaining blocks using its transport key. So the layer
encrypted with the destination key of si+1 will not be removed from block that
encodes the next address si+2 on the original routing path. So the adversary will
get no knowledge about si+2.

6.2 General Security Discussion

In this section we consider some security aspects of the proposed scheme.

Adversary Model: There are k servers in the system - s1, s2, . . . , sk and the
adversary can control a small fraction d of them (for example d = 1/λ). We
also assume that the adversary can observe the inputs and the outputs of every
server in the network. Finally, we assume that both the sender and the receiver
are honest.
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Attack Model: The adversary can observe the messages transmitted, manipulate
messages processed by the servers controlled by him, and inject some new mes-
sages. In this paper we do not consider attacks based on traffic analysis that can
be applied for regular onions as well.

We say that an attack A succeeds if and only if the adversary can get some
substantial information about the contents of a ModOnion and the probability
that a corrupt server will be detected is negligible.

Offline Analysis. The first question to ask is if a single ModOnion may betray
some knowledge about the information encoded inside it.

First assume that using algorithm A the adversary gets some knowledge about
the plaintext m encoded in a ModOnion. We show that in this case ElGamal
encryption scheme would be insecure. Let (α, β) be an ElGamal ciphertext of
some unknown plaintext created with public key y. Then we create a network
and assign all key pairs except one destination key pair, where y is the public
destination key. Then we create a ModOnion with appropriate blocks so that
it points to the server with destination key y. We present such a ModOnion to
A and get some knowledge on m. This simple reduction is possible, since (α, β)
does not depend on all other keys used for construction of the ModOnion.

The second case is that algorithm A yields some knowledge about the iden-
tity of an intermediate node x on the routing path. If the adversary has some
advantage, then there are values a, b such that x is limited to a and b and the
following data are fixed: position of x on the routing path, the other nodes on
the path and positions of the blocks corresponding to each node on the path. In
this case A distinguishes between ModOnions such that:

1. some blocks are created with transport key y
(t)
a (and the keys of nodes dif-

ferent from x) and one block encodes a with destination key y and keys of
nodes other than x,

2. some blocks are created with transport key y
(t)
b and one block encodes b with

destination key y and keys of nodes other than x.

As we see, there is a relation between x occurring as a plaintext and transport
key y

(t)
x used for encoding information on other nodes on the path. Since we

know the other plaintexts and their positions we can replace the plaintexts by
1’s by dividing the first components of each such a block by the appropriate
plaintext.

We show that we can use A to distinguish between ElGamal ciphertexts.
For this purpose, for a ciphertext (α, β) which has the form (x · yk, gk), where
x ∈ {a, b}, we prepare inputs for A. We construct two ModOnions: one created
with y

(t)
a assuming that (α, β) is a ciphertext of address a, and one created with

y
(t)
b assuming that (α, β) is a ciphertext of address b. One of these ModOnions

is well formed and A will tend to provide the correct answer for that input
(note that thanks to re-encryption we may present many equivalent inputs). For
the ill-formed ModOnion, behavior of A might be arbitrary. If for ill-formed
ModOnions with address a and key y

(t)
b , the answer is unbiased or biased to a,
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then we create ModOnions from (α, β) using l times y
(t)
b (constant l depends on

the bias). If there is a bias towards b, then (α, β) should encode b; otherwise it
should encode a.

Similarly, we consider the behavior of ill-formed ModOnions with address b

and key y
(t)
a . The only uncovered case is that for ill-formed ModOnions with

address b and key y
(t)
a the answer tends to be a and for ill-formed ModOnions

with address a and key y
(t)
b the answer tends to be b. In this case we turn our

attention to a block encoded with either y
(t)
a or y

(t)
b : we expand it to a ModOnion,

but in place of (α, β) we put a ciphertext of a. Then due to the properties of A
we may detect whether y

(t)
a or y

(t)
b was used.

Similarly we may show that the adversary gains no advantage if he considers
a set of ModOnions from different time stages and tries to conclude if they come
from the same routing path.

For the further discussion concerning active attacks notice that, if a ModOnion
is partially decrypted with a key y, then a block, where (cumulative) public key
Y was used, is transformed into a block corresponding to public key Y/y. So in
particular if we use a wrong key, then the plaintext becomes unreadable until
we reverse this operation and perform partial decryption corresponding to key
y−1, or there is nontrivial equality between two products of public keys used. Of
course, the last case has negligible probability, if the keys are chosen at random.

Online Attacks. Using the nodes at his control, an active adversary may
change the routing path of a ModOnion, manipulate the contents of a ModOnion
without changing its route or inject additional ModOnions into the system.

So assume that ModOnion O arrives at a corrupt server s. Then the adversary
knows only the address of the next server on the route, say si. Assume that
this node is not controlled by the adversary. At this moment the adversary may
perform some actions listed above. Our goal is to show that either a manipulation
will be detected with a non-negligible probability or with a high probability no
additional information will be gained by the adversary.

First we argue that any change of the path of O does not lead to a successful
attack. The routing path can be changed in two different ways - such a path
may use or not the blocks of O. First assume that the adversary builds a path
P of length l by himself so that:

1. l additional blocks that define P replace some original blocks of O (if possible,
they should replace random blocks),

2. the rest of original blocks are blinded with a secret key known to the adversary
(in this way the adversary escapes the danger of an investigation that would be
started after partial decryption and discovering two valid addresses),

3. the last server on the new route belongs to the adversary. Otherwise the
ModOnion will be further processed, and since the chosen route is different
from the original one with non-negligible probability, after some partial de-
cryption no valid address or a final message will be found. This would lead
to an investigation.
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As the last server on the route belongs to the adversary, it can halt such Mod-
Onions (the adversary can use the tags designed by G. Danezis in order to mark
and detect these ModOnions). The key point is that even if P consists of servers
from O, the destination keys of the servers from this path will be used to decode
the appropriate blocks added by the adversary. Since each destination key can
be used only once per ModOnion no destination key will be used to decode the
original blocks of O. However, as we have mentioned a block partially decrypted
with a wrong private key does not leak information on the plaintext from the
blocks left from O.

The second case is that the modified path of O contains some links obtained
from the blocks that encode the original path. As seen in Section 5.1, transform-
ing an address encrypted in a block to another address is hard - even if we know
the right block and the original address - we fail to get a valid address with
a substantial probability. Similarly, using only some blocks encoding the links of
the original ModOnion is risky, since we do not know their origin and destina-
tion, so the routing path may become disconnected. It is not disconnected, if we
insert an additional subpath as a prefix and it terminates in si. However, this
brings no advantage to the adversary, since no destination key will be used on
this detour to decrypt the blocks from the original path.

It follows from the discussion above that the adversary should leave the route
of O unchanged. However, still the adversary may insert some data into random
blocks and use them for revealing routing paths. We have to consider two cases:
Case 1. The inserted block is encoded with the cumulative keys that are not the
same as for the original route. In that case the adversary is unable to distinguish
between these blocks and random blocks.
Case 2. The inserted block is encoded by the transport keys of the servers from
the path, say z1, . . . , zl. In that case the adversary observing that nodes can
detect that O was really processed by z1, . . . , zl. However, there are limitations
of this method. First, the jth server on the route can insert at most j such tags
into the ModOnion processed, since there are only j random blocks. (However,
even this may be problematic. The adversary is sure only about the blocks, where
it has detected a tag and the block where it puts a random block according to
the original protocol.) Second, if the tag was well chosen (and it is detected by
the addressee of the tag), there is no reason to resend it from the old point. If it
is undetected, then the adversary must not try to put another tags and resend
it. Indeed, in this case the same message would arrive twice at the destination
point and an investigation would be started. The adversary has

(
k−k·d

l

)
possible

paths of length l and γ ≤ λ − 1 places for the tags. The probability that he
guesses the right path (and inserts appropriate tags) equals γ

(k−k·d
l ) assuming

that the adversary knows the positions of all random blocks in the ModOnion.
For example for d = 1/λ, the probability that he guesses one server from the
original route is

γ
k−k·d = γ

k·(1−1/λ) < (λ−1)·λ
k·(λ−1) = λ

k .



308 M. Klonowski, M. Kuty�lowski, and A. Lauks

One can also easily see that the chances of the adversary to detect a subpath
are better, if the tags describe short subpaths. However, this requires that there
are corrupt servers at the end of the subpaths, which cannot be guaranteed for
short subpaths.

7 Concluding Remarks

We have proposed a modification of the ModOnions scheme that immunizes it
against detour attacks introduced in [2]. It preserves main advantages of the
original solution, which are minimal knowledge given to intermediate nodes on
the routing path and use of universal re-encryption. The main disadvantage
of the new scheme is increase of computational complexity.
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Abstract. The EAP-GPSK protocol is a lightweight, flexible authentication pro-
tocol relying on symmetric key cryptography. It is part of an ongoing IETF
process to develop authentication methods for the EAP framework. We analyze
the protocol and find three weaknesses: a repairable Denial-of-Service attack,
an anomaly with the key derivation function used to create a short-term mas-
ter session key, and a ciphersuite downgrading attack. We propose fixes to these
anomalies, and use a finite-state verification tool to search for remaining prob-
lems after making these repairs. We then prove the fixed version correct using a
protocol verification logic. We discussed the attacks and our suggested fixes with
the authors of the specification document which has subsequently been modified
to include our proposed changes.

1 Introduction

The Extensible Authentication Protocol (EAP) [1] is an authentication framework de-
veloped by the Internet Engineering Task Force (IETF) which runs on the data link
layer and supports a variety of mechanisms for two entities to authenticate themselves
to each other. EAP is not itself an authentication protocol; rather it provides a con-
text in which the entities can negotiate an authentication method such as Generalized
Pre-Shared Key (GPSK) [2]. EAP is currently deployed on Point-to-Point connections,
IEEE 802 wired networks, wireless LAN networks and over the Internet. The GPSK au-
thentication method is a lightweight protocol being developed by the IETF EAP Method
Update (EMU) working group. It uses symmetric cryptography and relies on a pre-
shared key, as suggested by its name, between a server and a peer. The protocol seeks to
minimize the number of messages exchanged, and hence is particularly well-suited for
use in handheld devices where memory and computational resources are a limitation.
The protocol is designed to provide mutual authentication and key agreement between
the server and the peer. In this paper, we report improvements in the protocol and report
on a formal analysis of the GPSK method. The main goal of our analysis is to have
a positive impact on the protocol during a critical stage of the development and stan-
dardization process. As such, our suggested improvements attempt to keep the protocol
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In this paper, we use finite-state model checking to find errors, and Protocol Com-
position Logic [3,4] to prove correctness after errors have been found and repaired.
The model checker we use is called Murφ [5]. Murϕ has been successfully used in the
past on a variety of protocols including Kerberos [6], SSL [7], and the 802.11i 4-Way
Handshake [8]. As a model checker, Murϕ is well suited for finding flaws but is insuf-
ficient to prove the correctness of a protocol. So to compliment Murϕ we use Protocol
Composition Logic (PCL) [9] as a proof tool. Murϕ was useful in detecting some of
the problems with the protocol specification as we first encountered it, while PCL was
useful for proving that the fixes we suggested, and which were subsequently adopted,
are correct.

Our analysis uncovered three weaknesses with GPSK. The first is a repairable
Denial-of-Service attack against the peer, in which the attacker forces the peer to ex-
haust its memory thereby blocking the protocol. This attack is virtually identical to one
which was found on the 802.11i 4-Way Handshake [8]. The second weakness is due
to a non-standard use of the key derivation function which is used to create session
keys. Although the non-standard use does not provide an obvious attack we cannot ex-
clude the existence of an attack. In addition, we indicate the difficulties which such
non-standard usage creates when trying to prove the protocol’s correctness. Finally, we
identify a ciphersuite downgrading attack in which the attacker can force the peer to
choose a weak hash function or encryption algorithm. If the ciphersuite is susceptible
to a key-recovery attack then the attacker can learn the session keys and then eavesdrop
on all subsequent communications.

In addition to discovering these weaknesses we also suggest ways to fix them and
prove that our proposed fixes make the protocol secure. As indicated above, we dis-
cussed the weaknesses and our suggested fixes with the authors of the GPSK specifi-
cation. In turn, the authors presented the issues to the EMU working group for open
discussion. They recognized the problems and they have since incorporated our sug-
gested fixes to the most recent protocol specification. Our interaction with the authors
came at a time in which GPSK was mature enough to undergo a thorough analysis, and
yet early enough in the standardization process that it was not widely implemented.

There have been many efforts to develop and use methods for proving security
properties of network protocols. In recent years, most efforts have used the so-called
symbolic model, also referred to as the Dolev-Yao model [10,11,12]. In the sym-
bolic model, protocol execution and the possible actions of an attacker are charac-
terized using a symbolic model of computation that allows nondeterminism but does
not incorporate probability or computational complexity bounds. In addition to many
model checking and bug-finding efforts, there have been some significant correct-
ness proofs carried using the symbolic model, including mechanically checked formal
proofs [13,14], unformalized but mathematical proofs about a multiset rewriting model
[15,16,17], and work using compositional formal logic approaches [18,19,20,21,22].
Several groups of researchers have taken steps to connect the symbolic model to the
probabilistic polynomial-time computational model used in cryptographic studies, e.g.,
[23,24,25,26,27,28,29,3,4,30]. Protocol Composition Logic has been used to prove cor-
rectness of versions of Kerberos in the symbolic model [31], and in the computational
model [32], with errors in the Diffie-Hellman variant of Kerberos and proofs of security



Analysis of EAP-GPSK Authentication Protocol 311

presented in [33]. Connections between symbolic trace properties and computational
soundness properties are developed in [34]. All these efforts have been aimed at prov-
ing security properties for well-established protocols. Unfortunately, protocols such as
EAP-GPSK are still being designed with flaws and weaknesses that are identical to
those found and fixed in previous protocols. The major contribution of this work is to
integrate the methods of protocol analysis into the standardization process before the
protocol is deployed in a variety of implementations.

The rest of the paper is structured as follows. Section 2 describes in more detail
the EAP framework and the GPSK method. In Section 3 we present the weaknesses
we found and our suggested fixes. Section 4 describes the role that Murϕ played in
our analysis. In Section 5 we present a proof of correctness of the fixed protocol. We
conclude in Section 6.

2 EAP

The Extensible Authentication Protocol (EAP) [1] is an authentication framework
which is meant to support a variety of authentication methods. No single authentica-
tion protocol is defined. Instead, it defines message types that allow an authenticator
and a peer to choose and perform an authentication mechanism. EAP is designed to run
on the data link layer where IP connectivity may not be available. It provides support
for duplicate elimination and retransmission but relies on lower layers to properly order
packets. The authenticator may act as a pass-through and use a backend authentication
server. This allows an implementation in which only the end server must be configured
for a particular method. The authenticator does not have to be updated with the intro-
duction of every new authentication method. The distinction between the authenticator
and the authentication server does not arise in our analysis of the GPSK authentication
method. Therefore we will treat the authenticator and the server as one entity referred
to simply as the server.

EAP was designed to work with Point-to-Point connections, and was subsequently
adapted for IEEE 802 wired networks as well as wireless LAN networks and over the
Internet. In each of these settings an attacker may be able to control the network. EAP
assumes an attacker can perform such actions as eavesdropping network traffic, modi-
fying or spoofing packets, and offline dictionary attacks among others. This allows an
attacker to attempt such attacks as person-in-the-middle attacks, ciphersuite downgrad-
ing attacks, and key recovery attacks due to weak key derivation.

An EAP conversation typically consists of three phases: discovery, authentication
and secure association. In the discovery phase the two agents must identify each other
and negotiate an authentication method. Then they carry out the chosen method in the
authentication phase. The secure association phase occurs when the authenticator and
the authentication server are distinct entities and so does not affect the present analysis.
Our focus in the current analysis is on the authentication phase.

2.1 EAP-GPSK

The Generalized Pre-Shared Key (GPSK) protocol [2] is an EAP authentication
method which is meant to be lightweight and flexible. To this end, it uses symmetric
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cryptography relying on a long-term, pre-shared key (denoted by PSK) between a server
and a peer. The use of symmetric cryptogrpahy minimizes the computational resources
required at either end of the communication, making it suitable for smartcards, handheld
devices, or any device in which computational resources and memory are a significant
constraint. To increase efficiency, the protocol also attempts to minimize the number
of round trips. For flexibility the protocol allows for the negotiation of cryptographic
ciphersuites which detail the encryption algorithm (if any), the message integrity mech-
anism and the key derivation algorithm the protocol participants will use. In this way, a
server may authenticate several peers with a variety of local preferences for ciphersuites
which may depend on the peers’ computational constraints.

We show a successful message exchange in Fig. 1 at an abstract level. In the figure,
S represents the server’s ID and P represents the peer’s ID. SNonce and PNonce are
the server and peer nonces, respectively. CSuiteList represents the list of ciphersuites
supported by the server, while CSuiteSel represents the ciphersuite selected by the peer.
The field {Payload}PK represents an optional encrypted payload block that is a generic
mechanism for exchanging confidential data. Higher level protocols may piggy-back on
GPSK using the encrypted payload block to guarantee confidentiality. This means that
sensitive confidential data may be sent as early as Message 2. Messages 2, 3 and 4
each have a keyed message authentication code, MACSK , appended to the end. This is
essentially a keyed hash of the rest of the message, although implementations depend
upon the ciphersuite which is chosen.

[Message 1: S → P]: SNonce, S, CSuiteList
[Message 2: P → S]: P, S, PNonce, SNonce, CSuiteList, CSuiteSel, {Payload}PK , MACSK

[Message 3: S → P]: PNonce, SNonce, CSuiteSel, {Payload}PK , MACSK

[Message 4: P → S]: {Payload}PK , MACSK

Fig. 1. Successful GPSK message exchange

The keys SK and PK are both derived from a key derivation function KDF-X by
way of an intermediate master key MK . KDF-X takes two arguments, a key and a
seed, and outputs a bit string of length X. The notation KDF-X(Y,Z)[i..j] represents
the i’th through j’th octets (8 bits) of the output of the KDF-X. The PSK has length
PL, while the SK and PK have length KS which is a value specified by the ciphersuite.
Key derivation is defined as follows:

inputString = PNonce || P || SNonce || S.
MK = KDF-KS(0x00, PL || PSK || CSuiteSel || inputString)[0..KS-1].
SK = KDF-{128+2∗KS}(MK, inputString)[128..127+KS].
PK = KDF-{128+2∗KS}(MK, inputString)[128+KS..127+2*KS].

The first 128 octets of KDF-{128+2∗KS}(MK, inputString)[128+KS..127+2*KS] are
divided into two keys which are exported as part of the protocol. They may be used for
key derivation in higher level protocols. Every EAP method which supports key deriva-
tion is required to export such keys, but we omit them because they are not relevant to
the current analysis.
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GPSK is intended to provide mutual authentication between the peer and the server.
After a successful message exchange the server should believe the peer is authentic due
to the use of the key SK (derived from the long term key PSK) for the MAC in Mes-
sage 2. Likewise, the peer should believe the server to be authentic due to the use of
SK for the MAC in Message 3. GPSK is also intended to provide session independence.
Even if the master key MK is compromised, this should not help an attacker to com-
promise past or future sessions. As with any symmetric key authentication protocol,
the secrecy of the long-term key PSK is crucial for all of the above properties to hold.
Unlike some protocols, GPSK does not support fast re-keying because the number of
round trips is already at a minimum.

The peer and the server must silently discard any message which is unexpected (e.g.
receiving Message 4 instead of Message 2), doesn’t parse (e.g. the wrong nonce is
returned), or whose MAC is invalid. The only exception is for Message 2. If the server
receives an invalid MAC then it must respond with an EAP failure message. The peer
must always be willing to accept Message 1 from a server since there is no integrity
protection.

3 Anomalies

In our analysis of EAP-GPSK we found a number of anomalies. The first is a potential
Denial-of-Service attack against the peer that is reminiscent of a similar attack found
on the 802.11i 4-Way Handshake. We also identified a possible problem with the way
in which the master key MK is derived. Lastly, we found a potential ciphersuite down-
grading attack. Let us consider these issues one by one.

3.1 Denial-of-Service Attack

There is a simple Denial-of-Service attack that is made possible by the fact that Mes-
sage 1 provides no integrity protection. The result of the attack is a discrepancy be-
tween the SKs held by the peer and the server. This causes the peer to be unable to
validate the MAC in Message 3. The protocol is blocked and the server will timeout
and de-authenticate the peer. Obvious inspection shows that Messages 2, 3 and 4 all
have integrity protection. This means that if an attacker tries to forge these messages
the peer can simply discard them when the MAC does not validate properly. We do not
consider it an attack to cause the peer to attempt to validate a large number of MACs.

For simplicity the attack is explained in a situation where the peer can only maintain
one open conversation with a given server. A message exchange for a successful attack
is shown in Fig. 2. Only the relevant portions of each message are shown. When the
peer receives a legitimate Message 1 from a server it computes the MAC key SK, and
responds with Message 2. At this point the attacker can send a fake Message 1 with a
new nonce. Since the peer can only have one open conversation with the server, and
since the peer must always accept Message 1, the peer will recalculate the MAC key
to a different value SK’ when it receives the fake Message 1 with a new nonce. When
receiving a valid Message 3, the peer can no longer verify the MAC because it was
calculated with the key SK, and the peer is trying to validate it with the new key SK’.
At this point, the protocol can no longer proceed.
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[Message 1:S → P]: SNonce, S
[Message 2:P → S]: P, S, PNonce, SNonce, MACSK

[Message 1’:Attacker → P]: SNonce’, S
(The peer chooses a new PNonce’ and calculates SK’.)
[Message 3:S → P]: PNonce, SNonce, MACSK

(The peer uses SK’ to check MACSK and verification fails.)

Fig. 2. A Successful DoS attack on GPSK

If the peer can only hold one open conversation with a server the attack requires a sin-
gle, well-timed message from the attacker. This may be prevented by allowing the peer
to maintain several open conversations with a server. However, in this case an attacker
can flood the network with Message 1’ to exhaust the peer’s allocated memory. The fact
that GPSK is designed to work well in devices with limited resources makes this type of
attack more feasible than it otherwise might be. The peer’s memory resources are likely
to be very restricted, allowing an attacker to fill the peer’s memory with relatively little
effort. The ability to flood the network with fake messages also reduces the attacker’s
reliance on good timing.

One might argue that the attack can be prevented by not allowing the peer to respond
to a new Message 1 when it is waiting for Message 3. However, this is not a viable
option. This solution introduces the possibility that the protocol will be blocked, even
in the absence of an attacker. It also enables another DoS attack which is even easier to
execute as we explain below.

The principal concern, as was explained in [8], is that Message 2 will not reach
the server. Since EAP is frequently run on wireless LANs, packet loss is a legitimate
concern. If the server does not receive Message 2, it will re-transmit Message 1 after
an appropriate timeout. The peer will discard re-transmissions because it is waiting for
Message 3, and the server will never get a response. Alternatively, an attacker can cause
the same problem by sending one fake Message 1 to a peer before the server initiates a
conversation. This will force the peer into a state in which it is waiting for Message 3,
and any attempts by a server to authenticate the peer will be ignored.

This anomaly is virtually identical to a DoS attack found in the 802.11i 4-Way Hand-
shake and presented in [8]. The solution we propose is therefore analogous to the so-
lution which was proposed by the authors of [8] and ultimately adopted by the 802.11
working group. The memory exhaustion attack is possible because the peer is forced to
maintain state for each Message 1 it receives. The proposed solution allows the peer to
maintain state for each server regardless of the number of times it receives Message 1.
Since the number of servers associated with a given peer is likely to be small, this should
drastically reduce the memory used by a peer.

The first time a peer receives Message 1 from a server it will choose a fresh
PNonce and remember it. If it receives another Message 1 from the same server before
completing the protocol then the peer will re-use PNonce. Message 2 will remain as
it is. The fact that Message 3 has a MAC whose key depends on the PSK allows the
peer to trust its contents. Instead of storing the SK used in Message 2, the peer will
recalculate SK when it receives Message 3. This solution requires Message 3 to contain
enough information for the peer to re-compute SK. Currently, Message 3 does not
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contain the server’s ID which is necessary to compute SK. One way to fix this is to leave
the message format as it is, and change the key derivation. If SK no longer depends on
the server’s ID, then the peer can compute it at this stage. Another option is to add the
server’s ID to Message 3 and leave the key derivation alone. This would also provide the
peer with all the information it needs to re-compute SK. Ultimately, the latter solution
was adopted by the EMU working group.

Let us see how this solution defends against the attack in Fig. 2. When the attacker
sends a fake Message 1, the peer no longer updates its own nonce. The peer will com-
pute a new SK’ for Message 2’ based on the fake SNonce’. It will store neither SNonce’
nor the new SK’. Now when the peer receives a legitimate Message 3, it can verify
that PNonce was correctly returned, and it can use all the information provided to re-
compute SK and verify the dependence on PSK. This will convince the peer that the
legitimate server sent Message 3.

While this solution does not introduce integrity to Message 1, it does prevent the peer
from changing state in response to an unauthenticated message. By re-using PNonce an
attacker can now cause the peer to produce many copies of Message 2 with the same
key by sending many forged copies of Message 1 using the same nonce. If the encrypted
payload changes every time then this gives the attacker access to many different encryp-
tions under the same key. The peer should be aware of this and choose a ciphersuite
which is strong enough to resist cryptanalysis under these conditions.

3.2 Non-standard Key Derivation

The second anomaly we found involved the derivation of the master key MK. Recall
from above that MK is derived by:

MK = KDF-KS(0x00, PL || PSK || CSuiteSel || inputString)

The use of “0x00” as the key to the KDF is not standard. In TLS [35] for example
the master secret, which corresponds to MK, is derived from a KDF which uses the
long-term shared key (pre master secret) as its key input:

master secret = PRF(pre master secret, “master secret”, ClientHello.Random +
ServerHello.Random)

The derivation of MK in GPSK does not provide an obviously reliable way for an
attacker to learn MK or the keys SK and PK. It is unwise, however, to deviate too
much from accepted standard usage which has undergone thorough investigation in
other protocols.

The current derivation poses problems on theoretical grounds as well. Cryptographic
implementations are often accepted because they provide strong guarantees when one
assumes that the implementations satisfy standard assumptions. For example, the key
derivation function for TLS is transparently assumed to act as a pseudo-random function
(PRF). Let us now examine what assumptions about KDF are necessary for the current
implementation to provide strong keys.
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The KDF is being used in two different capacities, one for the MK derivation and
another for the SK and PK derivations. In the MK derivation it acts like a hash function
or a randomness extractor whereas in the SK and PK derivations, it acts like a PRF.

The cryptographic security of SK and PK are defined assuming uniformly random
execution of a key generation algorithm. Assuming, for the particular schemes in use for
this protocol, that the keys are sampled uniformly from the key space of a given length,
we would require SK and PK to be computationally indistinguishable from purely ran-
dom numbers of the same length.

Working backwards from the SK and PK derivations, if we model the KDF as a PRF,
we can ensure that SK and PK are computationally indistinguishable from random,
as long as MK itself is also computationally indistinguishable from random. So the
requirement reduces to ensuring that MK is pseudo-random. What should the KDF
with key 0x00 behave like in order to ensure this? Let us denote by kdf00(y) the function
KDF(0x00, y). We have the following alternatives:

1. kdf00 is a Random Oracle: Then MK would indeed be perfectly random by def-
inition. However, this is a very strong assumption and although a theoretically useful
model, it is unrealizable in practice and its usage is debatable [36].

2. KDF is a PRF: This is too weak. It is possible to construct perfectly valid PRFs
which output a constant if the key is 0x00. This does not violate pseudo-randomness
because a PRF’s output ‘seems’ to be random with a randomly chosen key. The proba-
bility of a key being all 0’s is exponentially small in the security parameter and hence
this is a very low probability event.

3. kdf00 is a pseudo-random generator (PRG): The trouble with this model is that
a PRG’s output is claimed to be pseudo-random only if the input seed is uniformly
random and unknown. However, for this protocol, parts of the seed are known (the
nonces, IDs, ...) and neither is it uniformly random (IDs and CSuiteSel have structure).

Thus the alternatives that are weaker than the random oracle model do not guarantee
strong keys. Perhaps the simplest solution to the problem is to use PSK as the key when
deriving MK. In that case, if we assume that KDF is a PRF, MK will be indistinguish-
able from a random number of the same length because PSK is random and unknown.
This implies that both SK and PK will be indistinguishable from random.

In talking with the authors of the specification it seems that the reason this ap-
proach was not taken from the start was because different ciphersuites have different
key lengths and PSK might not be the right length for some of them. The working
group finally decided to require PSK to be long enough for all current (and many fu-
ture) ciphersuites. Then PSK will be truncated to be the right length if it is too long for
the chosen ciphersuite.

3.3 Ciphersuite Downgrading Attack

The last anomaly we found was a potential ciphersuite downgrading attack. Just as with
the DoS attack, this also arises from the fact that the first message has no integrity pro-
tection. An attacker who controls the network can modify a legitimate message from a
server. In this case the attacker can change CSuiteList to include only weak ciphersuites.
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In particular, the attacker might force the peer to choose a ciphersuite which does not
provide an encryption mechanism, or which provides an encryption algorithm that the
attacker can break in real time. In this case, any data which is passed in the encrypted
payload block in Message 2 can be read by the attacker.

There is an additional concern if the weak ciphersuite is susceptible to a key-recovery
attack. If the attacker is able in real time to recover the session keys based only on the
knowledge of the nonces and the IDs of the peer and the server, then he will break
authentication. The attacker could block Message 2 and replace the peer’s nonce with
a freshly chosen nonce, and compute the corresponding key to create a valid MAC. In
this way the attacker could impersonate both the peer and the server giving him full
control over their communication.

To counteract such an attack the protocol designers have required that CSuiteList in
Message 1 must contain two specified ciphersuites. While this should ensure that some
of the ciphersuites offered meet some minimum strength, it does not ensure that the
peer chooses the strongest ciphersuite which it supports. Although the peer will likely
support both of these ciphersuites it has the freedom to choose a weaker ciphersuite if
it is offered. In addition, one of the required ciphersuites does not support encryption.
Although this ciphersuite is among those required to be supported because it does not
suffer from a key-recovery attack, an unwitting peer may choose this ciphersuite and
still attempt to send confidential data in Message 2.

This attack seems unavoidable as long as Message 1 continues to lack integrity pro-
tection. As long as the peer is allowed to send encrypted data in Message 2 before
the CSuiteList is authenticated, this data might be sent even after choosing a cipher-
suite without support for encryption. However, the damage of this attack can be fully
avoided as long as the peer is aware of the potential problem and chooses a strong
ciphersuite. Also, if the peer wishes to send confidential data, then it must choose a ci-
phersuite which supports encryption, and it must wait until Message 4 to send the data.
After discussing the problem with the protocol authors, the specification was amended
to contain warnings for the peer.

4 Model Checking the Protocol

Finite-state verification tools such as Murϕ have proven to be very useful in the analysis
of security protocols. Murϕ was successfully used in [6] to verify small protocols such
as the Needham-Schroeder public key protocol, the Kerberos protocol, and the TMN
cellular telephone protocol. In [7] Murϕ was also successfully applied to the analysis
of the SSL 3.0 handshake protocol using a “rational reconstruction” methodology which
was adopted in [8] to analyze the 802.11i 4-Way Handshake.

Tools such as Murϕ, commonly called model checkers, verify specified properties of
a nondeterministic system by explicitly enumerating all possible execution sequences
and checking for states which violate the specified properties. Although security proto-
cols are infinite systems, many flaws have been found in finite (and very small) approx-
imations to them. While finite verification has been successful in finding bugs, failure
to find a bug does not mean the protocol is secure. Certain simplifications must be made
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when creating a model and these may eliminate crucial details. The restriction to a finite
state space with only a small number of participants is also a crucial limitation.

The use of Murϕ for the current analysis served two main goals. First, it was used to
help detect the flaws found in the original specification of GPSK [2]. Second, we used
it to perform a preliminary search for new flaws which may have been introduced by
the fixes we proposed. Since a run of Murϕ in which no flaws are found does not imply
the security of the protocol the next section is dedicated to the describing the process of
giving a formal proof of the security properties.

To use Murϕ to verify the protocol we must create a model of the protocol following
the specification, add a model of an attacker, state the security properties we would like
to check and then run Murϕ on the model. In this last step Murϕ searches through all of
the possible traces of the protocol checking at each step if any of the security properties
fail. If so then it will return the trace which ends in the violation. This allows the user
to see what caused the problem.

In formulating a model of the protocol the honest participants do not stray from
the specification. They act deterministically. We assume that every pair of servers and
clients shares a long term PSK. Since PSK is never used as a key we will assume that
the attacker cannot recover any PSK. The MAC key SK is simply modeled as a list
containing PSK and the inputString. Again, since Murϕ is not well-suited for discov-
ering low level cryptographic attacks we assume that SK will remain secret. Thus our
model contains no mechanism for the attacker to learn SK. Since the encrypted payload
block is not explicitly used as part of the authentication mechanism, we exclude this
component of the messages. For simplicity we model a good ciphersuite list and a bad
one by a 1 or a 0 respectively. We similarly model a good (strong) ciphersuite selection
and a bad one. Since we cannot model the lower level details of the ciphersuites (i.e. the
way they function on bitstrings) this good/bad distinction should be enough to detect a
ciphersuite downgrading attack.

Despite the above restrictions on the attacker, he still can act nondeterministically
in a variety of ways. The attacker can eavesdrop and remember any message sent on
the network. Since there is no encryption used, the attacker can read the plaintext of
any message and decompose it into its various parts. He can block any message, and
he can generate and send any message which is made up of components from other
messages. In particular, this means that an attacker can replay complete messages. Since
SK is assumed to be secure, the attacker will remember and use the MACs he sees as
indecomposable units.

Since PSK is assumed to remain secret the properties we are concerned with in our
analysis are mutual authentication and consistency of the key SK. Namely, at the end of
a session the peer and the server must each believe they are talking to each other, and
they must share the same key SK. We also check to see if the protocol is blocked by the
attacker as it is in the DoS attack. Finally, we have Murϕ print a trace if a ciphersuite
downgrading attack occurs. Once these attacks were detected we added a feature which
allows us to turn these attacks off. This allows us to more efficiently search for other
attacks.

Although Murϕ only creates finite models, it does allow us to specify parameters
which will determine the size of the model. In this way, we can write one model that can
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be scaled up or down simply by switching the values of these parameters. In modeling
GPSK we chose to vary the number of peers and the number of servers. We can control
the number of nonces available, the number of sessions to be completed and the number
of distinct actions the attacker may execute.

Murϕ proved useful in successfully detecting and verifying the existence of the DoS
attack as well as the ciphersuite downgrading attack. We then ran Murϕ on the model
with the suggested fixes. Since our proposed fix for the ciphersuite downgrading attack
does not change the message exchange, we simply turn the attack off in order to assume
that the peer chooses a strong ciphersuite. We successfully verified that no errors exist
when there is just one peer and one server engaging in up to 10 sessions. In addition we
verified correctness with one peer and two servers engaging in 3 sessions total as well as
the situation with two peers and one server engaging in up to 3 sessions. In attempting
to verify the case with 2 peers and 2 servers engaging in 2 sessions total we ran out of
memory. While the verification didn’t run to completion Murϕ also failed to find any
flaws before exhausting memory. This may be taken as tentative evidence of a lack of
an attack since Murϕ prints a violating trace as soon as a problem is found. The model
checking of this protocol was very familiar the previous experience of model checking
the 802.11i 4-Way Handshake [8], so we did not investigate it further.

5 Proof of Correctness

In this section, we present a formal correctness proof of EAP-GPSK using Protocol
Composition Logic (PCL) [37,38,39,40,41,19,18]. In previous work, PCL has been
proved sound for protocol runs that use any number of principals and sessions, over
both symbolic models and (for a subset of the logic at present) over more traditional
cryptographic assumptions [3].

5.1 Overview of Proof Method

We begin with a brief discussion of PCL relevant to the analysis of EAP-GPSK.

Modeling protocols. A protocol is defined by a set of roles, each specifying a sequence
of actions to be executed by an honest agent. In PCL, protocol roles are represented
using a simple “protocol programming language” based on cords [37]. The possible
protocol actions include nonce generation, signatures and encryption, communication
steps, and decryption and signature verification via pattern matching. Programs can
also depend on input parameters (typically determined by context or the result of set-up
operations) and provide output parameters to subsequent operations.

Protocol Logic and the Proof System. For a summary of the proof system and the proof
of soundness of the axioms and the rules, we refer the reader to [9,38,19]. Most protocol
proofs use formulas of the form θ[P ]Xφ, which means that starting from a state where
formula θ is true, after actions P are executed by the thread X , the formula φ is true in
the resulting state. Formulas φ and ψ typically make assertions about temporal order of
actions (useful for stating authentication) and/or the data accessible to various principals
(useful for stating secrecy).
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The proof system extends first-order logic with axioms and proof rules for protocol
actions, temporal reasoning, knowledge, and a specialized form of invariance rule called
the honesty rule. The honesty rule is essential for combining facts about one role with
inferred actions of other roles, in the presence of attackers. Intuitively, if Alice receives
a response from a message sent to Bob, the honesty rule captures Alice’s ability to use
properties of Bob’s role to reason about how Bob generated his reply. In short, if Alice
assumes that Bob is honest, she may use Bob’s role to reason from this assumption.

5.2 Formal Description of EAP-GPSK in the PCL Programming Language

GPSK : Server ≡ [

new SNonce;

send SNonce.Ŝ.CSL;

receive P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1.mac1;

MK := prg PSK;

InputString := PNonce.P̂ .SNonce.Ŝ;

SK := kdf1 InputString, MK;

PK := kdf2 InputString, MK;

pl1 := symdec enc1, PK;

verifymac mac1, P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1, SK;

enc2 := symenc pl2, PK;

mac2 := mac PNonce.SNonce.

CSL.enc2, SK;

send PNonce.SNonce.Ŝ.CSL.enc2.mac2;

receive enc3.mac3;

verifymac mac3, enc3, SK;

pl3 := symdec enc3, PK;

]S

GPSK : Peer ≡ [

receive SNonce.Ŝ.CSL;

new PNonce;

MK := prg PSK;

InputString := PNonce.P̂ .SNonce.Ŝ;

SK := kdf1 InputString, MK;

PK := kdf2 InputString, MK;

enc1 := symenc pl1, PK;

mac1 := mac P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1;

send P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1.mac1;

receive PNonce.SNonce.Ŝ.CSL.

enc2.mac2;

verifymac mac2, PNonce.SNonce.

CSL.enc2, SK;

pl2 := symdec enc2;

enc3 := symenc pl3;

mac3 := mac enc3, SK;

send enc3.mac3;

]P

5.3 EAP-GPSK Security Properties

Setup Assumption. To establish security properties of the EAP-GPSK protocol, we as-
sume that the Server Ŝ and the Peer P̂ in consideration are both honest and the only
parties which know the corresponding shared PSK . However, we allow all other prin-
cipals in the network to be potentially malicious and capable of reading, blocking and
changing messages being transmitted according to the symbolic model of a network
attacker.

φsetup ≡ Honest(P̂ ) ∧ Honest(Ŝ) ∧ (Has(X, PSK) ⊃ X̂ = Ŝ ∨ X̂ = P̂ )
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Security Theorems. The secrecy theorem for EAP-GPSK establishes that the sign-
ing and encryption keys SK and PK should not be known to any principal other
than the peer and the server. For server Ŝ and peer P̂ , this property is formulated as
SECgpsk(S, P ) defined as:

SECgpsk(S, P ) ≡ (Has(X, PK) ∨ Has(X, SK)) ⊃ (X̂ = Ŝ ∨ X̂ = P̂ )

Theorem 1 (Secrecy). On execution of the server role, key secrecy holds. Similarly for
the peer role. Formally, EAP-GPSK � SECserver

pk,sk , SECpeer
pk,sk , where

SECserver
pk,sk ≡ [GPSK : Server]S SECgpsk(S, P )

SECpeer
pk,sk ≡ [GPSK : Peer]P SECgpsk(S, P )

Proof Sketch. We skip the rigorous formal proof here, but the proof intuition is as fol-
lows: PSK is assumed to be known to P̂ and Ŝ only. The keys SK, PK are derived by
using PSK in a key derivation function (MK could be a truncation of PSK or gen-
erated by application of a PRG to PSK , according to the length needed). The honest
parties use SK, PK as only encryption or signature keys - none of the payloads are
derived by a kdf application. This is the intuition why SK, PK remain secrets. A rigor-
ous proof would employ a stronger induction hypothesis and induction over all honest
party actions. ��

The authentication theorem for EAP-GPSK establishes that on completion of the
protocol, the principals agree on each other’s identity, protocol completion status, the
cryptographic suite list and selection, and each other’s nonces. The authentication prop-
erty for EAP-GPSK is formulated in terms of matching conversations [42]. The basic
idea of matching conversations is that on execution of a server role, we prove that
there exists a role of the intended peer with a corresponding view of the interaction.
For server Ŝ, communicating with client P̂ , matching conversations is formulated as
AUTHgpsk(S, P ) defined below:

AUTHgpsk(S, P ) ≡ (Send(S, msg1) < Receive(P, msg1))∧
(Receive(P, msg1) < Send(P, msg2))∧
(Send(P, msg2) < Receive(S, msg2))∧
(Receive(S, msg2) < Send(S, msg3))

Theorem 2 (Authentication). On execution of the server role, authentication holds.
Similarly for the peer role. Formally, EAP-GPSK � AUTHserver

peer , AUTHpeer
server ,

where

AUTHserver
peer ≡ [GPSK : Server]S ∃η. P = (P̂ , η) ∧ AUTHgpsk(S, P )

AUTHpeer
server ≡ [GPSK : Peer]P ∃η. S = (Ŝ, η) ∧ AUTHgpsk(S, P )

Proof Sketch. The formal proof in PCL is in Appendix A. We describe the proof in-
tuition here. We needed to add two new axioms MAC0 and VMAC (also written
in Appendix A) to the extant PCL proof system in order to reason about macs. Axiom
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MAC0 says that anybody computing a mac on a message m with key k must possess
both m and k. Axiom VMAC says that if a mac is verified to be correct, it must have
been generated by a mac action.

AUTHserver
peer : The Server verifies the mac1 on msg2 to be a mac with the key SK .

By axiom VMAC, it must have been generated by a mac action and by MAC0,
it must be by someone who has SK . Hence by secrecy, it is either P or S and hence
in either case, an honest party. It is an invariant of the protocol that a mac action on a
message of the form X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc is performed by a thread
of X̂ , captured by Γ1 - hence it must be a thread of P̂ , say P . Also using Γ1 we prove
that P received the first message and generated nonce PNonce and sent it out first
in the message msg2. From the actions of S, we also have that S newly generated
SNonce and sent it out first in msg1. Using this information and axioms FS1,FS2,
we can order the receives and sends as described in AUTHserver

peer .
AUTHpeer

server : The Peer verifies the mac2 on msg3 to be a mac with the key SK .
By axiom VMAC, it must have been generated by a mac action and by MAC0,
it must be by someone who has SK . Hence by secrecy, it is some thread of either P̂
or Ŝ and hence in either case, an honest party. It is an invariant of the protocol that a
mac action on a message of the form Y Nonce.XNonce.Ŷ .CSL.enc, is performed by
a thread of Ŷ , captured by Γ2 - hence it must be a thread of Ŝ, say S.

However this mac does not bind the variables CSS and enc1 sent in msg2. So to
ensure that S received the exact same message that P sent, we use Γ2 to further reason
that S verified a mac on a message of the form msg2 and axioms VMAC,MAC0
again to reason that this mac was generated by threads of Ŝ or P̂ . Now, we can use
Γ1 and the form of msg2 to reason that a thread of P̂ did it which also generated
PNonce - hence by AN1, it must be P itself. Now we use an invariant stating that a
thread generating such a mac does it uniquely, captured by Γ3, thus binding CSS, enc1.
Now we use FS1,FS2 as in the previous proof to establish the order described in
AUTHpeer

server . ��

Discussion. The formal proof presented above applies to the case where fresh nonces
are generated every time. When the peer uses the same nonce repeatedly until it suc-
ceeds in completion we have to use a different form of reasoning to ensure the intended
message ordering. Specifically, the predicate FirstSend(P, PNonce, msg2) does not
necessarily hold anymore. However, we can still appeal to the fact, that a MAC must
have been generated and sent out before it could be received and verified, in order to
order messages. Formalizing this requires the new axiom V MAC′:

VMAC′ Receive(X, m2) ∧ Contains(m2, m′) ∧ VerifyMac(X, m′, m, k)∧
¬Mac(X, m, k) ⊃ ∃Y, m1. Mac(Y, m, k) ∧ Contains(m1, m′)∧
(Send(Y, m1) < Receive(X, m2))

The proof above uses axioms previously proved sound in the symbolic model. While
proofs for some properties of EAP-GPSK in the computational model could be carried
out in computational PCL ([3,32]), we currently do not have the technical machinery to
prove message ordering as a consequence of using fresh nonces in CPCL.
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6 Conclusions

In this paper we analyzed the EAP-GPSK authentication protocol. We found three
anomalies: a repairable DoS attack, an anomaly in the derivation of the master key
MK, and a potential ciphersuite downgrading attack. While the third anomaly seems
unavoidable, proper awareness of an attacker’s ability to weaken CSuiteList in Mes-
sage 1 should prevent problems from arising.

We found that by flooding the network with fake Message 1’s, an attacker can force a
peer to re-compute the MAC key SK, causing the peer to be unable to correctly process
Message 3 from a legitimate server. This attack is especially worrisome when consid-
ering that GPSK is designed to work on devices with limited memory which can easily
be exhausted. We propose a fix that allows the peer to maintain state per server instead
of state per message.

We identified an anomaly in the derivation of the master key MK. Specifically, MK
was derived using a KDF with constant key 0x00. While this does not provide an obvi-
ous way for an attacker to reliably learn session keys, it is better to use a more standard
implementation.

We used a finite state verification tool named Murϕ to search for new problems which
may have arisen from the fixes we proposed. We found none. Finally we proved the
fixed protocol correct. The analysis was introduced during the standardization process.
Throughout our analysis we discussed the weaknesses and possible solutions with the
IETF EMU working group. The changes we suggested have subsequently been adopted
by the protocol designers. They have been incorporated in the latest internet draft.
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A Formal Proofs
New Axioms

MAC0 Mac(X, m, k) ⊃ Has(X, m) ∧ Has(X, k)

VMAC VerifyMac(X, m′, m, k) ⊃ ∃Y. Mac(Y, m, k) ∧ m′ = MAC[k](m)
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Invariants

Γ1 ≡ Mac(Z, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc,K) ⊃
Ẑ = X̂ ∧ (Receive(Z, Y Nonce.Ŷ .CSL) <

Send(Z, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc.mac))∧
mac = MAC[K](X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc)∧
FirstSend(Z, XNonce, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc.mac)

Γ2 ≡ Mac(Z, Y Nonce.XNonce.Ŷ .CSL.enc, SK) ∧ SK = KDF1[K](Y Nonce.Ŷ .XNonce.X̂) ⊃
Ẑ = Ŷ ∧ ∃CSS′, enc1. (Send(Z, Y Nonce.Ŷ .CSL) <

Receive(Z, Ŷ .X̂.Y Nonce.XNonce.CSL.CSS′.enc1.mac1) <

Send(Z, Y Nonce.XNonce.CSL.enc.mac))∧
mac1 = MAC[SK](Ŷ .X̂.Y Nonce.XNonce.CSL.CSS

′
.enc1)∧

mac = MAC[SK](Y Nonce.XNonce.CSL.enc)∧
VerifyMac(Z, mac1, Ŷ .X̂.Y Nonce.XNonce.CSL.CSS′.enc1, SK)∧
FirstSend(Z, Y Nonce, Y Nonce.Ŷ .CSL)

Γ3 ≡ Mac(Z, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc,K)∧
Mac(Z, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS

′
.enc

′
, K) ⊃ CSS = CSS

′ ∧ enc = enc
′

Formal Proof of AUTHserver
peer

AA1 [GPSK : Server]S VerifyMac(S, mac1, P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1, SK) (1)

SECserver
pk,sk , VMAC [GPSK : Server]S ∃X. (X̂ = P̂ ∨ X̂ = Ŝ)∧

Mac(X, P̂ .Ŝ.PNonce.SNonce.CSL.CSS.enc1,SK) (2)

Γ1 [GPSK : Server]S ∃η. P0 = (P̂ , η)∧
Mac(P0, P̂ .Ŝ.PNonce.SNonce.CSL.CSS.enc1,SK)∧
Receive(P0, msg1) < Send(P0, msg2)∧
FirstSend(P0, PNonce, msg2) (3)

Inst P0 −→ P [GPSK : Server]S Mac(P, P̂ .Ŝ.PNonce.SNonce.CSL.CSS.enc1,SK)∧
Receive(P, msg1) < Send(P, msg2)∧
FirstSend(P, PNonce, msg2) (4)

FS1 [GPSK : Server]S FirstSend(S, SNonce, msg1) (5)

FS2, (−2,−1) [GPSK : Server]S (Send(S, msg1) < Receive(P, msg1))∧
(Receive(P, msg1) < Send(P, msg2))∧
(Send(P, msg2) < Receive(S, msg2)) (6)

AA4 [GPSK : Server]S (Receive(S, msg2) < Send(S, msg3)) (7)

(−2,−1) AUTH
server
peer (8)
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Formal Proof of AUTHpeer
server

AA1 [GPSK : Peer]P VerifyMac(P, mac2, PNonce.SNonce.Ŝ.CSL.enc2, SK)
(9)

SECserver
pk,sk , VMAC [GPSK : Peer]P ∃X. (X̂ = P̂ ∨ X̂ = Ŝ)∧

Mac(X, PNonce.SNonce.Ŝ.CSL.enc2, SK) (10)

Γ2, (−1) [GPSK : Peer]P ∃η. S0 = (Ŝ, η)∧
∃CSS

′
, enc1′

. (Send(S0, SNonce.Ŝ.CSL) <

Receive(S0, P̂ .Ŝ.PNonce.SNonce.CSL.CSS′.enc1′.mac1) <

Send(S0, PNonce.SNonce.CSL.enc2.mac))∧
mac1 = MAC[SK](P̂ .Ŝ.PNonce.SNonce.CSL.CSS′.enc1′)∧
mac = MAC[SK](PNonce.SNonce.CSL.Ŝ.enc2)∧
FirstSend(S0, SNonce, SNonce.Ŝ.CSL) (11)

Inst S0 −→ S [GPSK : Peer]P ∃CSS′, enc1′. (Send(S, SNonce.Ŝ.CSL) <

Receive(S, P̂ .Ŝ.PNonce.SNonce.CSL.CSS′.enc1′.mac1) <

Send(S, PNonce.SNonce.Ŝ.CSL.enc2.mac))∧
mac1 = MAC[SK](P̂ .Ŝ.PNonce.SNonce.CSL.CSS′.enc1′)∧
mac = MAC[SK](PNonce.SNonce.Ŝ.CSL.enc2)∧
VerifyMac(S, mac1, P̂ .Ŝ.PNonce.SNonce.CSL.CSS′.enc1′, SK)∧
FirstSend(S, SNonce, SNonce.Ŝ.CSL) (12)

Inst CSS′, enc1′, [GPSK : Peer]P ∃X. (X̂ = P̂ ∨ X̂ = Ŝ)∧
VMAC, MAC0 Mac(X, P̂ .Ŝ.PNonce.SNonce.CSL.CSS′.enc1′, SK) (13)

Γ1, AA1, (−1) [GPSK : Peer]P New(X, PNonce) ∧ New(P, PNonce) (14)

AN1, (−1) [GPSK : Peer]P X = P (15)

AA1, (−3,−1) [GPSK : Peer]P Mac(X, P̂ .Ŝ.PNonce.SNonce.CSL.CSS′.enc1′, SK)∧
Mac(X, P̂ .Ŝ.PNonce.SNonce.CSL.CSS.enc1,SK) (16)

Γ3, (−1) [GPSK : Peer]P CSS′ = CSS ∧ enc1′ = enc1 (17)

(−2,−1) [GPSK : Peer]P (Send(S, msg1) < Receive(S, msg2) < Send(S, msg3)) (18)

FS1 [GPSK : Peer]P FirstSend(P, PNonce, msg2) (19)

FS2, (12, −2,−1) [GPSK : Peer]P (Send(S, msg1) < Receive(P, msg1))∧
(Send(P, msg2) < Receive(S, msg2))∧
(Receive(S, msg2) < Send(S, msg3)) (20)

AA4 [GPSK : Peer]P (Receive(P, msg1) < Send(P, msg2)) (21)

(−2,−1) AUTHpeer
server (22)
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Abstract. “Pairing” is referred to as the operation of achieving au-
thenticated key agreement between two human-operated devices over a
short- or medium-range wireless communication channel (such as Blue-
tooth, WiFi). The devices are ad hoc in nature, i.e., they can neither
be assumed to have a prior context (such as pre-shared secrets) with
each other nor do they share a common trusted on- or off-line authority.
However, the devices can generally be connected using auxiliary physi-
cal channel(s) (such as audio, visual) that can be authenticated by the
device user(s), and thus form the basis for pairing.

One of the main challenges of device pairing is the lack of good qual-
ity output interfaces (e.g., a speaker, display) as well as receivers (e.g.,
a microphone, camera) on both devices. In this paper, we present a new
pairing scheme that is universally applicable to any pair of devices, sup-
porting all possible pairing scenarios. Our scheme does not require de-
vices to have good transmitters or any receivers, and is based upon the
device user(s) comparing short and simple synchronized audiovisual pat-
terns, such as in the form of “beeping” and “blinking”.

1 Introduction

Short- or Medium-range wireless communication, based on technologies such as
Bluetooth and WiFi, is becoming increasingly popular and promises to remain
so in the future. This surge in popularity brings about various security risks.
Wireless communication channel is easy to eavesdrop upon and to manipulate,
and therefore a fundamental security objective is to secure this communication
channel. In this paper, we will use the term “pairing” to refer to the operation
of bootstrapping secure communication between two devices connected with a
short-range wireless channel. The examples of pairing, from day-to-day life, in-
clude pairing of a WiFi laptop and an access point, a Bluetooth keyboard and a
desktop. Pairing would be easy to achieve if there existed a global infrastructure
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enabling devices to share an on- or off-line trusted third party, a certification au-
thority, a PKI or any pre-configured secrets. However, such a global infrastruc-
ture is close to impossible to come by in practice, thereby making pairing an
interesting and a challenging research problem.1

A recent research direction to pairing is to use an auxiliary physically authen-
ticatable channel, called an out-of-band (OOB) channel, which is governed by
humans, i.e., by the users operating the devices. Examples of OOB channels in-
clude audio, visual and tactile. Unlike the wireless channel, on the OOB channel,
an adversary is assumed to be incapable of modifying messages, however, it can
eavesdrop on, and possibly also delay, drop and replay them. A pairing scheme
should therefore be secure against such an adversary.

The usability of a pairing scheme based on OOB channels is clearly of utmost
importance. Since the OOB channels typically have low bandwidth, the shorter
the data that a pairing scheme needs to transmit over these channels, the better
the scheme becomes in terms of usability.

Various pairing protocols have been proposed so far. These protocols are gen-
erally based on the bidirectional automated device-to-device (d2d) OOB chan-
nels. Such d2d channels require both devices to have transmitters and the cor-
responding receivers. In settings, where d2d channel(s) do not exist (i.e., when
at least one device does not have a receiver) and even otherwise, same protocols
can be based upon device-to-human (d2h) and human-to-device (h2d) channel(s)
instead. Depending upon the protocol, only two d2h channels might be sufficient,
such as in case when the user has to perform a very simple operation (such as
“comparison”) of the data received over these channels. Clearly, the usability
of d2h and h2d channel establishment is even more critical than that of a d2d
channel.

The earlier pairing protocols required at least 160 to 80 bits of data to be
transmitted over the OOB channels. The simplest protocol [1] involves devices
exchanging their public keys over the wireless channel, and authenticating them
by exchanging (at least 80-bits long) hashes of corresponding public keys over the
OOB channels. The more recent, so-called SAS- (Short Authenticated Strings)
based protocols, [5], [7], reduce the length of data to be transmitted over the
OOB channels to only 15 bits or so.2

Based on the above protocols, a number of pairing schemes with various OOB
channels have been proposed. These include schemes based on two bidirectional
d2d infra-red channels [1]; two bidirectional d2d visual channels consisting of
barcodes and photo cameras [6]; a unidirectional d2d visual channel consisting
of blinking LED and video camera plus a unidirectional d2h channel consisting
of a blinking LED and a unidirectional h2d channel [10]; two audio/visual d2h
channels consisting of MadLib sentences and displayed text [4]. In addition, the
SAS protocols trivially yield pairing schemes involving two bidirectional d2h and
h2d channels – the user reads 15 bits of data displayed on one device and inputs it

1 The problem has been at the forefront of various recent standardization activities,
see [14].

2 For the SAS-based authentication and related prior work, refer to [16].
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on the other, and vice versa. Most recently, [15] performed user studies of pairing
schemes based on user comparing the data transmitted over two independent d2h
SAS channels.

The aforementioned schemes have varying degree of usability and are applica-
ble to different device combinations. However, all the above schemes become
inapplicable in pairing scenarios where,

1. both devices do not have good quality transmitters (such as displays, speak-
ers, etc.), and

2. both devices do not have relevant receivers (such as cameras, microphones,
etc.).

Notice that the pairing scenarios involving most commodity devices, such as
access points, headsets, would fall into the above categories.

A very recent proposal, [11], focuses on pairing two devices with the help of
“button presses” by the user. The scheme can be used to pair devices with min-
imal hardware interfaces (such as an LED and a button) using a SAS protocol.
However, as we discuss in the next section and as indicated by the results of [11],
the scheme is a bit slow.

In short, the previous pairing schemes are either not applicable or are slow in
routinely performed pairing scenarios, such as pairing of a WiFi laptop/PDA/cell
phone and an access point, a Bluetooth keyboard and a desktop/laptop/PDA.

Our Contributions. In this paper, we propose a new efficient scheme that is
universally applicable to pair any two devices.3 Such a universality of a pairing
scheme with respect to devices, in our opinion, would improve both security
as well as usability over time. Our scheme can use the existing SAS protocols
and does not require devices to have good transmitters or any receivers, e.g.,
only a pair of LEDs are sufficient. The scheme involves users comparing very
simple audiovisual patterns, such as “beeping” and “blinking”, transmitted as
simultaneous streams, forming two synchronized d2h channels.4 We tested our
scheme with the three combinations we call Beep-Beep, Blink-Blink and Beep-
Blink. Our test results indicate that the Blink-Blink and Beep-Blink combinations
perform very efficiently and robustly, with the former being preferable. However,
we discard the Beep-Beep combination because it turns out to be quite inefficient
and error-prone from our initial testing.

The Blink-Blink and Beep-Blink combinations are quite efficient in pairing sce-
narios where both devices do not have good quality transmitters and only at
most one device has a relevant receiver. The Blink-Blink combination can typi-
cally only be used for pairing two similar devices (such as a Bluetooth headset
and a cell phone, two laptops, two cell phones) that are physically very close by
3 Our proposal is also equally applicable to establish unidirectional authentication,

such as between a printer and a laptop.
4 We notice that in an independent result [9], the authors present a scheme similar to

our “blinking” scheme, aimed at the detection of “evil twin” access points. The two
schemes, however, differ significantly in their implementation and thus in terms of
the underlying user experience. We discuss these differences in the next section.
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and can be aligned properly with each other. The Beep-Blink combination, on
the other hand, can be used for any two devices (generally, one of the devices
being paired has an audio transmitter and the other has LEDs). Moreover, the
Beep-Blink combination is applicable irrespective of the extreme proximity of
devices. In other words, the Beep-Blink combination is also suitable for pairing,
e.g., a wall-mounted access point with other devices.

We anticipate that, even in scenarios where devices have good transmitters
and also have receivers, the Blink-Blink and Beep-Blink combinations would per-
form better than most prior solutions [6], [15]. Intuitively, this is due to the reason
that the schemes in [15] require the users to perform two operations, reading and
comparing, while our schemes only require comparing; whereas the scheme in [6]
requires the users to handle specialized equipments, such as cameras, which they
might not have used previously. Of course, these are mere expectations. Only a
detailed comparative study of all these schemes (which is an item for our future
work) can give a clear insight into their applicability among an average user
population.

In addition to the single user pairing scenarios, our proposal is also equally and
efficiently applicable to scenarios where two users pair their individual devices,
such as their cell phones, laptops.

Organization. The rest of the paper is organized as follows. In Section 2, we
review the prior pairing schemes. In Section 3, we describe the security model
and summarize relevant protocols. In Section 4, we present our scheme, followed
by the description of its design, implementation and performance in Section 5.

2 Related Work

There exists a significant amount of prior work on the general topic of pairing.
In their seminal work, Stajano, et al. [13] proposed to establish a shared secret

between two devices using a link created through a physical contact (such as an
electric cable). In many settings, however, establishing such a physical contact
might not be possible, for example, the devices might not have common interfaces
to do so or it might be too cumbersome to carry the cables along. Balfanz, et
al. [1] extended this approach through the use of infrared as a d2d channel –
the devices exchange their public keys over the wireless channel followed by
exchanging (at least 80-bits long) hashes of their respective public keys over
infrared. The main drawback of this scheme is that it is only applicable to
devices equipped with infrared transceivers.

Another approach taken by a few research papers is to perform the key ex-
change over the wireless channel and authenticate it by requiring the users to
manually and visually compare the established secret on both devices. Since
manually comparing the established secret or its hash is cumbersome for the
users, schemes were designed to make this visualization simpler. These include
Snowflake mechanism [3] by Levienet et al., Random Arts visual hash [8] by
Perrig et al. etc. These schemes, however, require high-resolution displays and
are thus only applicable to a limited number of devices, such as laptops.
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Based on the pairing protocol of Balfanz et al. [1], McCune et al. proposed the
“Seeing-is-Believing” (SiB) scheme [6]. SiB involves establishing two unidirec-
tional visual d2d channels – one device encodes the data into a two-dimensional
barcode and the other device reads it using a photo camera. Since the scheme
requires both devices to have cameras, it is only suitable for pairing devices such
as camera phones.

Goodrich, et al. [4], proposed a pairing scheme based on “MadLib” sentences.
This scheme also uses the protocol of Balfanz et al. The main idea is to establish
a d2h channel by encoding the data into a MadLib sentence. Device A encodes
the hash of its public key into a MadLib sentence and transmits this over a
d2h channel (using a speaker or a display); device B encodes the hash of the
(received) public key from device A into a MadLib sentence and transmit this
over a d2h channel (using a speaker or a display); the user reads and compares
the data transmitted over the two d2h channels, and vice versa. The scheme, as
proposed in the paper, requires four d2h channels and the user needs to perform
two comparisons. This is quite slow and tedious for the user. One can trivially
improve the scheme by using a slightly modified protocol, the one where devices
exchange the hash (of size at least 160-bits) of the concatenation of both public
keys, after exchanging their public keys. The modified scheme would then require
only one user comparison. Note that, however, the scheme is not applicable to
pairing scenarios where one of the devices does not have a display or a speaker.

Note that the previously described schemes, with trivial modifications, can
(and should) all be based upon one of the SAS protocols [5], [7]. Since the SAS
protocols require only 15-bits of data to be transmitted over the OOB channel,
such a migration will immensely improve the efficiency as well as the usability
of these schemes.

Saxena et al. [10] proposed a new scheme based on visual OOB channel. The
scheme uses one of the SAS protocols [5], and is aimed at pairing two devices
A and B (such as a cell phone and an access point), only one of which (say B)
has a relevant receiver (such as a camera). First, a unidirectional d2d channel
is established by device A transmitting the SAS data, e.g., by using a blinking
LED and device B receiving it using a video camera. This is followed by device B
comparing the received data with its own copy of the SAS data, and transmitting
the resulting bit of comparison over a d2h channel (say, displayed on its screen)
. Finally, the user reads this bit transmitted and accordingly indicates the result
to device A by transmitting a bit over an h2d input channel.

A very recent proposal, [11], focuses on pairing two devices with the help of
“button presses” by the user. The scheme described in the paper is based upon
a protocol that first performs an unauthenticated Diffie-Hellman key agreement
and then authenticate the established key using a short password. Such a short
password can be agreed upon between the two devices via three variants using
button presses. The first variant involves the user simultaneously pressing but-
tons on both devices within certain intervals and each of these intervals are used
to derive 3-bits of the password (and thus with 5 button presses, the user is able
to inputs the same password on both devices). In the other two variants, one
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device picks up a short password, encodes each 3-bit block of the password into
the delay between consecutive flashing of the device’s screen or its vibration. As
one device flashes or vibrates, the user presses the button on the other device
thereby transmitting the password from one device to another. One drawback
with the scheme, as described in [11], is that its security is based upon the se-
crecy of the agreed upon password. At least the button presses and the flashing
of the screen can possibly be recorded by a video camera and therefore, the
secrecy of the password is not guaranteed. The scheme, however, can easily be
based upon a SAS protocol in a straight-forward manner and be used for pairing
devices which do not have good transmitters or receivers. Assuming that both
devices have an LED and a button each, we can have them transmit their SAS
values by blinking of the LED (on one device) and pressing of button (on the
other) and vice versa. Unfortunately, this would be quite slow – to transmit a
15-bit SAS value, it will take about a minute in each direction (see the results of
the scheme called “D-To-B” in [11]; users can possibly not perform simultaneous
“blink-press” faster than 3-4 seconds). One could apply the protocol variant of
Saxena et al. [10] to avoid transmission of SAS in the other direction thereby
reducing the execution time to close to a minute.

Uzun et al. [15] carry out a comparative usability study of simple pairing
schemes. They consider pairing scenarios where devices are capable of displaying
4-digits of SAS data. In what they call the “Compare-and-Confirm” approach,
the user simply reads and compares the SAS data displayed on both devices.
The “Select-and-Confirm” approach, on the other hand, requires the user to
select a 4-digit string (out of a number of strings) on one device that matches
with the 4-digit string on the other device. The third approach, called “Copy-
and-Confirm”, requires the user to read the data from one device and input it
onto the other. These schemes are undoubtedly simple, however, the results of
[15] seem to indicate that Select-and-Confirm and Copy-and-Confirm are error
prone.

In [12], authors consider the problem of pairing two devices which might not
share any common wireless communication channel at the time of pairing, but
do share only a common audio channel.

We notice that in an independent result [9], the authors present a scheme
similar to the “blinking” scheme that we present in this paper. The scheme of
[9] is aimed at the detection of “evil twin” access points in cafs, airport lounges,
etc. The two schemes, however, differ significantly in their implementation and
therefore in terms of user experience. Firstly, in the scheme of [9], the user
controls the time period during which she compares each bit of the SAS data,
by pressing and releasing a button on her device. Our scheme, on the other
hand, is automatic in that this time period is a pre-determined experimental
value. Secondly, in [9], the user’s device needs to trigger the display of next bit
on the other device by sending it a signal over the wireless channel. This requires
k such signals for a k-bit long SAS and the user needs to verify whether or not
these signals are delayed, dropped or injected. This is unlike our scheme, where
only one synchronization signal is sent between the two devices.
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3 Communication and Security Model, and Applicable
Protocols

The pairing protocols are based upon the following communication and adversar-
ial model [16]. The devices being paired are connected via two types of channels:
(1) a short-range, high-bandwidth bidirectional wireless channel, and (2) auxil-
iary low-bandwidth physical OOB channel(s). Based on device types, the OOB
channel(s) can be device-to-device (d2d), device-to-human (d2h) and/or human-
to-device (h2d). An adversary attacking the pairing protocol is assumed to have
full control on the wireless channel, namely, it can eavesdrop, delay, drop, re-
play and modify messages. On the OOB channel, the adversary can eavesdrop,
delay, drop, replay and re-order messages, however, it can not modify them.
In other words, the OOB channel is assumed to be an authenticated channel.
The security notion for a pairing protocol in this setting is adopted from the
model of authenticated key agreement due to Canneti and Krawczyk [2]. In this
model, a multi-party setting is considered wherein a number of parties simultane-
ously run multiple/parallel instances of pairing protocols. In practice, however,
it is reasonable to assume only two-parties running only a few serial/parallel in-
stances of the pairing protocol. For example, during authentication for an ATM
transaction, there are only two parties, namely the ATM machine and a user,
restricted to only three authentication attempts. The security model does not
consider denial-of-service (DoS) attacks. Note that on wireless channels, explicit
attempts to prevent DoS attacks might not be useful because an adversary can
simply launch an attack by jamming the wireless signal.

To date, two three-round pairing protocols based on short authenticated
strings (SAS) have been proposed [7], [5]. For the sake of completeness, we
depict the protocol of [7] in Figure 1.

In a communication setting involving two users restricted to running three
instances of the protocol, these SAS protocols need to transmit only k (= 15)
bits of data over the OOB channels. As long as the cryptographic primitives used
in the protocols are secure, an adversary attacking these protocols can not win
with a probability significantly higher than 2−k (= 2−15). This gives us security
equivalent to the security provided by 5-digit PIN-based ATM authentication.

Recall that the pairing scheme that we propose in this paper requires the
users to “compare” the data transmitted over two d2h channels. Our scheme can
be based on the existing SAS protocols. This is because in these protocols, the
SAS messages are computed as a common function of the public keys and/or
random nonces exchanged during the protocol, and therefore the authentication
is based upon whether the two SAS messages match or not [7] [5]. The security
of these SAS protocols is based upon different cryptographic assumptions. For
example, [7] is based upon the random oracle model (ROM), while [5] is not.
Moreover, these protocols have different computational requirements. Therefore,
based upon the security requirements and underlying devices, our scheme can
resort to either of the SAS protocols as desired.
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A B

Pick RA ∈ {0, 1}k

(cA, dA) ← comm(pkA, RA)
pkA,cA ��

Pick RB ∈ {0, 1}k

pkB ,RB��
dA ��

SASA = RB ⊕ HRA(pkB)
SASA ��

RA ← open(pkA, cA, dA)
SASB = RB ⊕ HRA(pkB)

SASB��
Accept pkB as B’s public key if Accept pkA as A’s public key if

SASB = RB ⊕ HRA(pkB) SASA = RB ⊕ HRA(pkB)

���� : the wireless channel
�� : the unidirectional d2d channel

��� � � � : the d2h channel
�� � � �� � � : the h2d channel
pkA, pkB: (Diffie-Hellman) public keys of devices A and B
comm() and open(): functions of a commitment scheme based on ROM
H(): hash function drawn from an almost universal hash function family

Fig. 1. The SAS protocol of [7]

4 “Human-Comparable” Audiovisual Patterns

Our primary goal is to support pairing scenarios in which both devices do not
have good transmitters (e.g., displays) and only at most one device has a receiver
(e.g., cameras). Recall that these scenarios include pairing of a laptop and an
access point, a keyboard and a desktop, a cell phone and an access point, etc. Our
idea is to make use of the existing SAS protocols and implement two synchronized
d2h channels to transmit the SAS strings in the form of streams that the user
can compare. The synchronization can be achieved by one device signalling the
other over the wireless channel. Since this synchronization signal can possibly
be tampered with by the adversary, each d2h channel also consists of an “END”
marker indicating the end of the respective SAS string and the two END markers
also need to be compared by the user. Such d2h channels can be implemented
using the following audiovisual combinations.
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1. “Beep-Beep”. This combination requires both devices to have audio trans-
mitters (such as basic speakers or “beepers”). The two devices encode their
respective SAS strings using a sound denoted by “S1” – a ‘1’ bit corresponds to
the sound S1 and a ‘0’ bit to a “silence” for a certain period. The two devices
also encode the END markers using a distinct sound denoted by “S2”. The user
listens to both devices and determines if the two play two sounds S1 and S2 in
synchronization with each other or not. In other words, if S1 on one device is
not played with S1 on other device or if S2 on one device is not played with S2
on the other, the user indicates a “failure”.

2. “Blink-Blink”. This combination requires both devices to have visual trans-
mitters, the simplest of which are LEDs. In cases where devices have good dis-
plays, one could use the whole or a part of the screen as a transmitter. The two
devices encode their respective SAS strings into blinking of a green LED – a ‘1’
bit corresponds to a “blink” period and a ‘0’ bit to an “off” period. The two
devices also encode the END markers using the glowing of a red LED. The user
looks at the two devices and determines if the green LEDs on two devices blink
in synchronization with each other and if the red LEDs glow together. In other
words, if the green LED on one device does not blink with the green LED on
other device or if the red LED on one device does not glow with the red LED
on the other, the user indicates a “failure”.

3. “Beep-Blink”. This combination requires one device to have an audio trans-
mitter and the other to have a visual transmitter. One device A encode its SAS
string using sound S1 and the END marker using sound S2, and the other device
B encodes its SAS string into blinking of a green LED and the END marker
by glowing a red LED. The user listens to device A while looking at device B
and determines if S1 is played in synchronization with the blinking of the green
LED and if S2 is played with the glowing of the red LED. In other words, if S1
on device A is not played with the green blinking LED on device B or if S2 on
device A is not played with the glowing of the red LED on device B, the user
indicates a “failure”.

The security of our schemes is equivalent to the security of the underlying SAS
protocol under the assumption that the user does not commit any errors. This
brings us to the design, implementation and usability evaluation of our schemes.

5 Experimentation and Testing

We describe the design and implementation of our pairing schemes based on
the Beep-Beep, Blink-Blink and Beep-Blink combinations, and their experimental
usability study.

5.1 Design and Implementation

Our goal was to design the Beep-Beep, Blink-Blink and Beep-Blink combinations
in a manner that can be used on most devices and that the users find simple
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and easy to perform. To this end, we chose to realize the “beeping” with simple
sounds, a “system beep” and a “buzz”, which can be easily distinguished even
amidst some noise, and the “blinking” with LEDs.

A pairing scheme, in its entirety, consists of three phases: (1) the device discov-
ery phase, wherein the devices exchange their identifiers over the wireless chan-
nel, prior to communicating, (2) the pairing protocol execution phase, wherein
the devices execute the desired pairing protocol over the wireless channel, and
(3) the authentication phase, where the devices, using the OOB channels, au-
thenticate the messages exchanged during the previous phase. For the sake of
our experimentation, we skipped the first two phases and concentrated on the
third phase, because our main goal was to test the feasibility of the way we
intended to implement the OOB channels, i.e., using the Beep-Beep, Blink-Blink
and Beep-Blink combinations. As mentioned previously, our pairing scheme can
be built on top of the SAS protocols [7], [5].

Let us assume that we want to pair two devices A and B. Given that A and B
already performed the device discovery and protocol execution phases over the
wireless channel, our job is now reduced to A and B encoding the 15-bits of their
respective SAS data SASA and SASB into beeping or blinking, and transmitting
it in a synchronized fashion for the user to compare. This encoding should enable
the user to easily identify both the good cases, i.e., when SASA = SASB, and
also the bad ones, i.e., when SASA �= SASB.

To achieve synchronization, we simply have one device sending a synchroniza-
tion signal S to the other device over the wireless channel. The devices encode
and start transmitting their respective SAS data right after sending and receiv-
ing the bit S. Note that this synchronization signal can possibly be modified,
delayed or dropped (either maliciously or otherwise), possibly fooling the users
into accepting non-matching SAS strings (for example, strings SASA = “010010”
and SASB = “100100”, will appear to be equal to the user if the synchroniza-
tion signal is delayed by a bit). To counter this, the end of each SAS string is
indicated by an END marker, which can be easily distinguished from the beeping
and blinking of the SAS strings and compared by the users enabling them to
detect any synchronization errors.
Encoding for “beeping”.A ‘1’ bit in the SAS string is signalled using a “system
beep”,whereas a ‘0’ bit is signalledusing a “silence” for a certainperiodof time.The
END marker is signalled using a distinctively sounding “buzz”. Every bit signal is
followed by a brief “sleep interval”. Note that the “human-comparison” is integral
to our scheme and it is important that users are able to identify two distinct bit
signals.The sleep interval is inserted for this purpose.The time required to compare
two SAS strings is inversely proportional to the duration of the sleep interval –
the shorter the sleep interval, the faster the comparison, and vice versa. Based on
the Beep-Beep, Blink-Blink and Beep-Blink combinations, an optimal range for the
sleep interval needs to be determined through experiments. This range needs to
be optimal with respect to the comfort level of a typical user and with respect to
the time taken for comparison of encoded data. Figure 2 illustrates the encoding
process using a sleep interval of 500 msec.
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Sleep Interval ← 500ms → ← 500ms → ← 500ms → ← 500ms → ← 500ms →
Bits 1 1 0 0 END

Bit Signal beep beep silence silence buzz

Sleep interval ← 500ms → ← 500ms → ← 500ms → ← 500ms → ← 500ms →
Bits 1 1 0 0 END

Bit Signal green blink green blink off off red blink

Fig. 2. Encoding for “beeping” and “blinking” using a sleep interval of 500 msec

Encoding for “blinking”. We use two LEDs, one green and one red, connected
to the data pin of the parallel port of a desktop. On receiving a ‘1’ bit in the
SAS string, at the data pin, a voltage is applied at that particular data pin and
the green LED “glows” on receiving this voltage. The voltage stays on unless it
is explicitly cleared. Through our experiments, we found out that the “blinking”
is more suitable than the “glowing”. So to modify glowing to blinking, in our
implementation, when the bit a ‘1’, a voltage is applied to the pin for a fixed time
interval a, followed by another fixed time interval b where voltage to the data
pin is cut off. As in the encoding using system beep, we call the time interval
a + b as the sleep interval. For example, on a ‘1’ bit, the LED glows for 80 msec
and it stays off for the next 420 msec; on a ‘0’ bit, the LED stays off for the
entire duration of 500 msec. See Figure 2 for the encoding process using a sleep
interval of 500 msec. Again, the optimal values for a, b and thus for the sleep
interval will be determined through experiments. The END marker is similarly
implemented using a red LED.

Implementation. For our experiments, we used a Dell machine 1.2Ghz running
windows and a Laptop Compaq AMD 64 bit Turion 1.7GHz processor machine
also running windows. In our experiments, the Dell machine simulates a device
which only has a transmitter in the form of two LEDs, one green and one red.
To enable blinking feature on Dell machine, we connect external LEDs to the
data pins of the parallel port. We use C programming for our implementation
and make use of the Visual Studio environment. We use the winsock libraries to
establish sockets for communication over a wireless 802.11b channel between the
Dell machine and the Compaq machine configured in the ad hoc mode. In our
implementation, we configure a fixed port to listen for incoming device pairing
requests. The Compaq machine is a device that initiates the pairing with the
Dell machine. The Compaq machine has inbuilt speakers, that are used to play
out the sounds “beep” and “buzz”.

5.2 Usability Testing

Once the implementation for our schemes was complete, we started doing the
most critical part, i.e., the user testing. We tested our scheme with 21 subjects.
Being at a University campus, our subjects were young, enthusiastic group open
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to new ideas. They belonged to a wide array of background. All of them were
given a brief overview of our pairing schemes and they were also made aware
of the possible scenarios where one could make use of pairing. Each user was
briefed about the experimental setup comprising of the two devices, and was
explained what they are supposed to do while testing the Beep-Beep, Blink-Blink
and Beep-Blink combinations.

Our primary goal for the user testing was to figure out if the users are easily
able to identify the good cases, i.e., when the two signals match, and more
importantly, the bad ones, i.e., when the two signals mismatch. In other words,
we wanted to know how often do the users commit, if at all, the safe errors (i.e.
false positives, or identifying a match as a mismatch), and the fatal errors (i.e.
false negatives, or identifying a mismatch as a match), following the terminology
of [15].

The Set-up and Test Cases. The tests for the Beep-Beep, Blink-Blink and
Beep-Blink combinations were carried out in an office room of our University,
where volunteering subjects helped us perform 15 test cases that we prepared
for each combination. 11 of these test cases were designed to test for the match
or mismatch in SAS strings and 4 were designed to test for the synchronization
delays.

Our tests comprised of 15 different pairs of 21-bit long strings running as
different instances of our written programs. 11 of these pairs were intented to
test for match or mismatch of the SAS data (with some padding in the begin-
ning) assuming no synchronization delays (i.e., the END markers were always
synchronized). The remaining 4 pairs of strings were intended to test for the
synchronization delays (i.e., the END markers were not synchronized). In order
to determine the fatal errors, we grouped the strings based upon the following
types of mismatch. A “single bit” mismatch denotes a single bit mismatch in
the SAS string; a “multiple bit” mismatch denotes a multiple bit mismatch in
the SAS string; a “single bit-END marker” mismatch denotes a single bit mis-
match in the SAS string in conjunction with a mismatch in the END marker (an
example being strings “111111” and “111110”, which appear to be matching in
presence of a single bit delay if the user misses the mismatch in the first bit and
if no END marker is in place. Identifying a mismatch in the first few bits is a
common mistake committed by users as we will see next from our initial tests.);
and a “multiple bit-END marker” mismatch denotes a multiple bit mismatch in
the SAS string in conjunction with a mismatch in the END marker (an example
being strings “010010” and “100100”, which appear to be matching in presence
of a single bit delay). The order in which these test cases were administered to
the users was randomized to prevent users from learning as they proceeded.

The testing for the Beep-Beep combination was done on two Compaq laptop
machines. For the Beep-Blink combination the testing was done with one Compaq
laptop machine and one Dell desktop machine, simulating, e.g, an access point,
with two LEDs connected to a data pin of its parallel port. To test the Blink-
Blink case, on the other hand, we simply connected four LEDs (two green and
two red) to four data pins of the parallel port of the Dell desktop machine. This
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(a) The Beep-Beep Set-up (b) The Blink-Blink Set-up

Fig. 3. First two scenarios for the experimental set-up

(a) The Beep-Blink Set-up (b) The Beep-Blink Set-up (zoomed-in)

Fig. 4. The third scenario for the experimental set-up

simulated two close by devices with LEDs. See Figures 4 and 3 for some pictures
from our experimental test set-up.

Users had to start the process by clicking a button on the Compaq laptop ma-
chine, which transmits to the Dell machine the synchronization bit S. Right after,
both machines start signalling their respective SAS string by blinking/beeping
according to the bit pattern, based on the Beep-Beep, Blink-Blink and Beep-Blink
combination being tested.

Some Initial Tests. From some initial tests that we ran, we found out the
following. The subjects commit fatal errors when there is a single bit mismatch
between the two SAS strings and that the error rate increases when we reduce
the sleep interval to anywhere between 200 − 300 msec. Moreover, the subjects
commit fatal errors when the 1st bit in the two SAS strings differ.

Immediately analyzing these errors, we concluded that our subjects did not
have any learning phase during the signaling. Another important factor was that
a subject had to click start one device and almost immediately shift his/her focus
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onto both devices simultaneously. If the user is delayed in doing so, then he/she
misses the first bit and is thus prone to committing the fatal error. To counter
this occurrence of fatal error, we prepend a learning phase of five bits added
as an “inner pad” to each SAS string. All the padding bits were 1’s at both
devices. For obvious reasons, the use of all 1’s as padding bits was preferred to
all 0’s or a combination of 0’s and 1’s. This gave the subjects a learning time
before each test. It turns out that including this learning phase of using the
inner pad improved the accuracy of our schemes to a great extent. However, it
should be noted that subjects were not told about the padding until the last
test was carried out by the subject. By including a inner pad to SAS string,
we also reduce the bit mismatch to occur somewhere mid string or at the end.
Our results show that users were able to clearly identify bit mismatch for these
strings with a very high degree of accuracy.

Optimal Values for the sleep interval. Recall that we need to determine
the values for the sleep interval, which are optimal with respect to the overall
execution time as well to the user comfort level. Through our experiments, we
determined the following values for the first 20-bits of the strings being compared,
that we will use in our test cases. For the Beep-Beep combination, 300−500 msec
range was optimal. The Blink-Blink combination fared well with 300 − 800 msec
sleep interval, with 300 msec corresponding to 80 msec of a “glow” and 220 msec
of an “off”; 500 msec corresponding to 150 msec of a “glow” and 350 msec of an
“off”; 800 msec corresponding to 300 msec of a “glow” and 500 msec of an “off”.
The sleep interval for the Beep-Blink combination was in the range 300 − 500
msec, with blinking of 300 msec corresponding to 80 msec of a “glow” and 220
msec of an “off”; 400 msec corresponding to 80 msec of a “glow” and 320 msec
of an “off”; 500 msec corresponding to 80 msec of a “glow” and 420 msec of an
“off”. In each case, the sleep interval for the “blinking” END marker was set to
800 msec, corresponding to 300 msec of a “glow” and 500 msec of an “off’. This
higher value was chosen for the users to be able to easily identify any mismatch
in the END markers.

The Test Results and their Interpretation. The results5 of our user test-
ing for the Beep-Beep, Blink-Blink and Beep-Blink combinations are depicted in
Tables 1, 2 and 3, respectively.

Table 1. Responses of 21 users when tested for the Beep-Beep combination

Safe Errors Fatal Errors

Sleep Error Execution Type of Sleep Error Execution
Interval Rate Time Mismatch Interval Rate Time

500 ms 6/21 10.8sec single bit 500 ms 16/21 10.8sec

500 ms 5/21 10.8sec multiple bit 500 ms 11/21 10.8sec
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Table 2. Responses of 21 users when tested for the Blink-Blink combination

Safe Errors Fatal Errors

Sleep Error Execution Type of Sleep Error Execution
Interval Rate Time Mismatch Interval Rate Time

300 ms 0/21 6.8 sec single bit 300 ms 3/21 6.8 sec

500 ms 0/21 10.8 sec single bit 500 ms 1/21 10.8 sec

800 ms 0/21 16.8 sec single bit 800 ms 0/21 16.8 sec
800 ms 0/21 16.8 sec single bit-END marker 800 ms 0/21 16.8 sec
300 ms 0/21 6.8 sec multiple bit 300 ms 0/21 6.8 sec

500 ms 0/21 10.8 sec multiple bit 500 ms 0/21 10.8 sec

800 ms 0/21 16.8 sec multiple bit 800 ms 0/21 16.8 sec
800 ms 0/21 16.8 sec multiple bit-END marker 800 ms 0/21 16.8 sec

Table 3. Responses of 21 users when tested for the Beep-Blink combination (given one
matching learning instance)

Safe Errors Fatal Errors

Sleep Error Execution Type of Sleep Error Execution
Interval Rate Time Mismatch Interval Rate Time

300 ms 0/21 6.8 sec single bit 300 ms 2/21 6.8 sec

400 ms 0/21 8.8 sec single bit 400 ms 1/21 8.8 sec

500 ms 0/21 10.8 sec single bit 500 ms 0/21 10.8 sec
500 ms 0/21 10.8 sec single bit-END marker 500 ms 0/21 10.8 sec
300 ms 0/21 6.8 sec multiple bit 300 ms 0/21 6.8 sec

400 ms 0/21 8.8 sec multiple bit 400 ms 0/21 8.8 sec

500 ms 0/21 10.8 sec multiple bit 500 ms 0/21 10.8 sec
500 ms 0/21 10.8 sec multiple bit-END marker 500 ms 0/21 10.8 sec

We tested the Beep-Beep combination for bit mismatch in SAS strings only
(and not in END marker mismatch). The results indicate quite high (around
50-75%) fatal error rates, as well as high safe error rate (around 30%). This is
due to the fact that in order to identify matching as well as mismatching strings,
i.e, to determine whether the devices beep together or not, the user needs to be
aware of the pitch at which the two devices beep and also of the exact orientation
of the devices. Gauging the pitches of the devices is not easy for the users and
it requires them to concentrate heavily. Moreover, increasing the sleep interval
duration did not improve the error rates (this is why we are only showing the
results for 500 msec sleep interval). Clearly, as the results indicate, a mismatch
in a single bit is even harder for the users to identify than mismatch in multiple
bits. Based on these poor results, we decided not to pursue any further tests
(i.e., for the END marker mismatch) for the Beep-Beep combination.

5 No user reaction timings are taken into account.
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For the Blink-Blink combination, the results are quite promising. There are
no safe errors, irrespective of the sleep interval duration. The users do commit
some fatal errors (around 3-15%) in cases of single bit mismatch in the SAS
strings when the sleep intervals are 500 msec and 300 msec. However, with a
sleep interval of 800 msec, there are absolutely no errors at all – the users are
easily able to detect correctly a match or a mismatch in the SAS strings as well
a match or a mismatch in the END markers. The whole process took 16.8sec to
complete. Since all four LEDs were attached to the same parallel port in our
testing, the users were able to focus upon two of them simultaneously and as
the sleep interval duration was increased, they felt more comfortable and were
able to accurately identify the mismatch.

From some of our initial tests for the Beep-Blink combination, we found out
that the users commit a great number of fatal errors. Except a few users, all of
them could not detect correctly the very first mismatching instance consisting
of a single bit mismatch in the SAS string in conjunction with a single bit
delay. However, we also observed that when the users were given the very first
instance as a matching instance, they could very accurately identify any other
mismatching instances. This implies that a matching instance at the beginning
acts as a learning instance for the users that trains them to correctly detect any
errors later on. Our tests show that given one matching instance of learning, the
only errors were the single bit fatal errors (around 3-9%) with the sleep interval
of 400 msec and 300 msec. The sleep interval of 500ms yielded absolutely no
errors and an execution time of only 10.8sec. Our results are intuitive – it is
somewhat hard for the users to compare two blinking LEDs with two sounds
right away, however, given one learning instance, the users get attuned to the
process and correctly perform the comparison.

User Feedback. After the users finished their tests, we asked them about their
order of preference among the three combinations. Out of the 21 users, 19 users
preferred the Blink-Blink combination over the Beep-Blink combination. Clearly,
the Beep-Beep combination was everyone’s last choice.

6 Discussion and Conclusion

With the results in hand, we discuss the applicability of our proposal. We decide
to discard the Beep-Beep combination, and choose the Beep-Blink combination
with a sleep interval of 500 msec and an execution time of 10.8sec (given one
learning instance) and the Blink-Blink combination with a sleep interval of 800
msec and an execution time of 16.8sec.

The Blink-Blink and Beep-Blink combinations are quite efficient solutions for
the pairing scenarios where both devices do not have good quality transmitters
and only at most one device has a relevant receiver. The Blink-Blink combination
can typically be used for pairing two similar devices (such as a Bluetooth headset
and a cell phone, two laptops, two cell phones) that are physically very close by
and can be aligned properly with each other. The Beep-Blink combination, on the
other hand, can be used for any two devices (generally, one of the devices being
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paired has an audio transmitter and the other has LEDs). Moreover, the Beep-
Blink combination is applicable irrespective of the extreme proximity of devices.
In other words, the Beep-Blink combination is also suitable for pairing, e.g., a wall-
mounted access point with other devices. Of course, there is a downside to the
Beep-Blink combination in that it requires the users be trained with one matching
instance beforehand. However, such a training can easily be administered to the
user on one of user’s own devices, for example, in the form of a simulation of the
Beep-Blink combination on user’s cell phone. Notice that the user is anyway gen-
erally explained various steps involved in setting up its devices, using brochures
or CDs.

Overall, we rate Blink-Blink over Beep-Blink because it does not require any
learning and was preferred by most users in our tests. Furthermore, in noisy
environments, Blink-Blink is anyway a better choice than Beep-Blink.

We hope that, even in scenarios where devices have good transmitters and also
have receivers, the Blink-Blink and Beep-Blink combinations would perform better
than most prior solutions [6], [15]. This is due to the reason that the schemes in
[15] require the users to perform two operations, reading and comparing, while
our schemes only require comparing; whereas the scheme in [6] requires the users
to handle specialized equipments, such as cameras, which they might not have
used previously. We expect that our schemes and the scheme of [4] (modified
using one of the SAS protocols and with one device displaying a MadLib sentence
while the other “speaking” it out) might be comparable. Of course, these are
mere expectations. Only a detailed comparative study of all these schemes (which
is an item for our future work) can give a clear insight into their applicability
among an average user population. In our future work, we would also like to
compare the Blink-Blink and Beep-Blink combinations with the schemes of [11]
and [9]. Recall that, similar to Blink-Blink and Beep-Blink, these two schemes
also require only minimal interfaces on the devices.

In conclusion, we believe that our Blink-Blink and Beep-Blink schemes can be
adopted in practice. This is so not only because of their efficiency and robustness
as indicated by our test results and their universal applicability, but also because
of another subtle, yet obvious, reason. Notice that “beeping” and “blinking”,
naturally and universally so, often serve the purpose of alerting humans in day
to day life, such as when used in car indicators, in fire alarms, on ambulances,
fire brigades and police vehicles, and so on. The use of beeping and blinking, as
proposed, is therefore a natural approach to realize a critical security operation,
such as pairing.
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Abstract. We propose a light-weight protocol for authentication of low-
power devices. Our construction PUF-HB merges the positive qualities of
two families of authentication functions. PUF represents physically
unclonable functions and fulfills the purpose of providing low-cost tamper-
resilient challenge-response authentication. On the other hand, the Hop-
per Blum (HB) function provides provable cryptographic strength against
passive adversaries. By building on an earlier proof of the security of HB+

by Katz et al. [1], we rigorously prove the security of the proposed scheme
against active adversaries. While the active adversary model does not in-
clude man-in-the-middle attacks, we show that a previously successful
man-in-the-middle attack proposed for HB+, does not carry to PUF-HB.

Keywords: HB+, PUF, tamper resilience, provable security.

1 Introduction

Low cost and power efficient devices are essential for the next generation ubiq-
uitous networks. By utilizing devices ranging from wireless sensor nodes to RF
identification devices (RFIDs) and smartcards, these networks are envisioned to
support a large number of applications carrying out diverse tasks. It is clear
that low-cost and lightweight security schemes are absolutely essential for the
adoption of ubiquitous networks. To further highlight the security requirements
of these networks, we observe that despite their diversity, the deployed devices
have three things in common: they store sensitive information, they transmit
data through unprotected wireless networks, and typically an adversary will have
physical access to the device due to the nature of the applications. It is essential
that sensitive information is safely stored and communicated. However, since
most of the pervasive devices are passive devices with limited power sources
and with stringent constraints imposed on their computational resources, im-
plementing protection measures on these low-cost devices becomes a challenge.
Furthermore, attacks that circumvent the data channel and instead exploit the so
called side-channels [4,3] are posing a major threat to constrained devices. These
attacks are classified into two groups. Passive attacks solely observe side-channels
(e.g. computation time, power consumption, electromagnetic emanation, temper-
ature attacks etc.) to deduce internal secrets from leaked side-channel profiles.

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 346–365, 2008.
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In contrast, in active attacks the attacker may also inject faults during the com-
putation [5]. Not surprisingly, active attacks are more powerful and are more
difficult to prevent. Furthermore, active attacks have also been demonstrated to
be useful in circumventing countermeasure against side-channel leakage. Thus,
building tamper-proof hardware is crucial for securing devices against passive
and active side-channel attacks.

The recently proposed Physically Unclonable Functions (PUFs) provide a
promising alternative approach for achieving tamper-resilience [6]. A PUF is a
physical pseudo-random function which may be implemented by exploiting the
small variances of the wire and gate delays that are unique for every single inte-
grated circuit (IC), even if they are logically identical. These variances depend
on highly unpredictable factors, which are mainly caused by the inter-chip man-
ufacturing variations. Hence, given the same input, the PUF circuit will return
a different output on different ICs. Additionally, if the PUFs are manufactured
with high precision, any major external physical influence will change the PUF
function and render the device non-functional. These features are indeed very
attractive for any low-cost authentication scheme hoping to achieve tamper-
resilience. However, all PUF based authentication schemes proposed so far rely
on collecting challenge-response pairs which are unique for every PUF. These
challenge-response pairs have to be stored in a database [6], so that the data
can be retrieved and used to authenticate any given PUF. It is not hard to see
that this solution becomes less practical when the number of devices deployed
increases. Another major problem faced by the delay-based PUF design is that
unless augmented by traditional cryptographic schemes (e.g. hash functions) or
non-linearization techniques [7,8,12] it will not be secure against simple modeling
attacks.

In complement to PUFs the HB-based authentication schemes provide a se-
curity reduction. In [13] Hopper and Blum (HB) proposed the first HB authenti-
cation scheme. The HB protocol is indeed promising for simplifying the authen-
tication process and significantly reducing the power consumption of pervasive
networks. An additional major advantage of the HB protocol is that its security
is based on the hardness of the learning parity with noise (LPN) problem. The
LPN problem is known to be NP-hard [25]. Unfortunately, as pointed out in [13]
the HB scheme is weak against active adversaries. In [14], Juels and Weis pro-
posed a hardened version of the HB protocol labeled HB+ which resists active
attacks in the detection based model.1 HB+ was shown to be secure [14,1] in the
detection based model. In [18], the authors demonstrated a man-in-the-middle
attack for breaking HB+.

In this paper we merge the PUF authentication scheme along with the HB
based authentication protocol to produce a hybrid protocol which enjoys the
advantages of both schemes while improving the level of security. We propose an
authentication scheme which is tamper resilient, and at the same time provably
secure against active attacks in the detection based model. In addition, the

1 In this model, a flag is raised whenever a tag fails to authenticate for a large number
of times.
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presented protocol resists the man-in-the-middle attacks proposed so far for the
HB+ scheme. From the PUF perspective, our protocol is the first PUF based
authentication scheme which is provably secure. For our security proof we closely
follow the proof presented in [1].

The remainder of the paper is organized as follows. In the next section we
introduce PUFs and present a mathematical model. In Section 3 we give a review
of the previously proposed HB based authentication protocols. In Section 4 we
define our notation and describe our protocol. The security reduction is presented
in Section 5. In Section 6 we describe the man-in-the-middle attack and show that
the proposed protocol resists it. In Section 7 we discuss hardware implementation
and tamper resilience properties of the proposed scheme. Finally, we present the
conclusions in Section 8.

2 Physically Unclonable Functions

A PUF is a challenge-response circuit which takes advantage of interchip varia-
tions to achieve tamper-resilience. The idea behind a PUF is to have the same
logical circuit produce a different output depending on the actual implementa-
tion parameters of the circuit. The variations from one circuit implementation
to another are not controllable and are directly related to the physical aspects of
the environment. These aspects include temperature, pressure levels, electromag-
netic waves and quantum fluctuations. Therefore, two identical logical circuits
sitting right next to each other on the same die might still have quite different
input-output behavior due to the nature of a PUF.

The reason one might seek to explore this property is to prevent an attacker
from cloning the function. Additionally, because of the high level of sensitivity
of these physical functions it becomes virtually impossible for an attacker to
accurately reproduce the hardware. Another major advantage of the sensitivity
of the PUF is to prevent physical attacks on the system. Trying to tap into
the circuit will cause a capacitance change and therefore change the output of
the PUF. Removing the outer layer of the chip will have a permanent effect on
these circuit parameters and again, will change the output of the PUF circuit.
Roughly summarized, we can say that a well-built PUF device will be physically
tamper-resilient up to its sensitivity level. We would like to note here that one of
the major advantages of PUF circuits is their lightweight nature. Using a recent
proposal which utilizes tri-state buffers to construct PUF circuits [11], one can
show that for an n bit PUF about 2n gates is sufficient.

A delay-based PUF [6] is a {0, 1}k → {0, 1} mapping, that takes a k-bit
challenge a and produces a single output bit r. As shown in Figure 1 the delay-
based PUF circuit consists of k stages of switches. Each switch has two input and
two output bits in addition to a control bit. If the control bit of the switch is 0,
the two inputs are directly passed to the outputs through a straight path. If on
the other hand, the control bit to the switch is 1, the two input bits are switched
before being passed as output bits. Therefore, the control bit of each switch will
decide the path taken by the input signals. The k switches are serially connected
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Fig. 1. A basic delay-based PUF circuit

so that the output of each switch is connected to the input of the following
switch. The two outputs of the last switch are connected to a flip-flop, which is
called the arbiter. The two inputs to the first switch are connected to each other,
and then connected to a pulse generator.

We briefly describe the operation of PUFs as follows. When a challenge a is
received each of its k bits is used as the control bit to one of the PUF switches.
Next, a pulse is generated and sent to the first switch. The pulse will break into
two pulses entering the upper and lower inputs of the first switch. Depending on
the control bit of the first switch the two signals will either travel in a straight path
or they will switch locations. Although the paths taken by the signals have been
designed to have the same length, due to physical variations the two paths will
have a small mismatch. This mismatch will have a different value for each of the
two possible paths of the two signals. Therefore, the two pulses will acquire a time
delay between them which is dependent on the control bit of the first switch. The
same argument applies for the rest of the k switches. Each challenge a will impose a
different path on the k switches. Consequently, the total delay mismatch between
the two signals will be a function of a. The job of the arbiter at the end of the
switch chain is to indicate which signal arrives first. Recall that a flip-flop has two
inputs, the data input and the clock input. When the clock input observes a rising
edge the data input is captured at the output of the flip-flop. In a PUF setting,
if the signal connected to the data input of the arbiter arrives first, the output of
the arbiter will be 1. Otherwise, the output will be 0.

In [6] the authors derive a linear delay model for the delay-based PUF. The
model is represented by an equation which gives the total delay difference be-
tween the two pulses in terms of the challenge bits and the parameters of the
PUF circuit. Let DH represent the total delay of the pulse that enters the data
input of the arbiter and DL be the delay of the pulse that enters the clock input.
The mathematical model derived in [6] shows that the difference between the
two propagation paths DH and DL can be expressed algebraically as

δ = DL − DH =
k∑

i=1

(−1)piyi + yk+1
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where pi = ai ⊕ ai+1 ⊕ . . . ⊕ ak such that ai is the ith bit of a. This relation can
also be described using (P = Ua) where P = [p1, . . . , pk] and a are represented
as column vectors. U is the upper triangular matrix with all non-zero entries
equal to 1 and the matrix multiplication is performed modulo 2. Here the yi

parameter denotes the imbalance in the signal propagation paths in ith stage of
the PUF circuit.2 The condition for the output bit of the arbiter circuit, r, can
be written as δ + Ts > 0 → r = 1 and δ + Ts < 0 → r = 0, where Ts denotes the
setup time for the arbiter flip-flop. Now, let Y = [y1, . . . , yk+1] we can compute
the output of the PUF using the following function,

r = PUFY (a) = sign

(
k∑

i=1

(−1)piyi + yk+1

)

.3 (1)

Where sign(x) = 1 if x > 0, and 0 if x < 0. When the argument in sign(x) is zero
the output becomes a random bit. In fact, the random output bit will in practice
be observed for a slightly larger window of mismatch values. In these cases the
PUF is said to be metastable. We will shortly address this issue by introducing
the noise parameter ε. It is important to note that the delay variations yi will
depend on the fabrication process of the PUF circuit. Therefore, one would
expect these parameters to follow a normal distribution [10]. In particular, the
yi values will follow a Gaussian distribution of mean zero, and a fixed variance.
Without loss of generality, we can normalize these values and assume they belong
to a normal distribution of mean 0 and variance 1.

The fact that the PUF function can be represented using a linear inequality
means that given a sufficient number of challenge-response pairs (a(i), r(i)) for a
single PUF,4 an attacker will be able to model the system using linear program-
ming [27,28,12] or machine learning [29,6] algorithms. This observation seems
to completely undermine the idea behind a device labeled unclonable. Although
the delay parameters yi are not measurable, a simple PUF circuit will leak infor-
mation about these values through its challenge-response pairs. For theoretical
and experimental results on PUF modeling, the reader is referred to [8,12,11].
As proposed in [12], in this paper we take advantage of the modelability of the
simple PUF circuit. We provide an overall scheme which prevents an attacker
from calculating the delay parameters, while at the same time allowing the owner
of the circuit to take advantage of this property. We further elaborate on this
point in Section 7. For the remainder of the paper we will utilize the PUF model
and assume that the yi parameters fully characterize the operation of the PUF
circuit.

It should be noted that even if the best techniques are used to model a PUF
circuit, there will always be a level of error in the developed model. This is

2 The delay model derived here is slightly different from that given in [6], particularly
the yi parameters differ with a factor of two.

3 For brevity the setup time Ts can be merged with the last delay parameter yk+1.
4 In this paper we use subscripts with parenthesis to denote different strings, e.g. a(i),

and we use subscripts without parenthesis to denote bits of the same string, e.g. ai.
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due to multiple reasons. First, the thermal noise will cause slight fluctuations in
the internal delay parameters yi. Second, although the system is modeled with
a linear equation, there will always be some source of non-linearity which will
affect the system. Moreover, the two signals propagating inside a PUF circuit
will sometimes enter a race condition such that the decision made by the arbiter
will be random [9]. This will typically happen when the total delay difference
between the two signals is less than the resolution of the arbiter. When the PUF
enters such a state the circuit is said to be metastable. As a result, any PUF
device can only be modeled up to a certain level of accuracy, i.e. the model will
always mispredict some response bits. The best modeling schemes tested so far
were shown to reduce the misprediction rate to as low as 3% [8]. Note that the
3% misprediction rate is obtained by implementing error reduction techniques
such as majority voting. For the construction in this paper we utilize the built-
in noise to secure the HB component. In our notation we denote the amount of
error that exists in a PUF circuit model by ε.

Before we conclude this section, we introduce the following notation. For any
bit v,

PUFY,v(a) =

⎧
⎨

⎩

sign
(∑k

i=1(−1)piyi + yk+1

)
, v = 0

sign
(∑k

i=1(−1)piyi + yk+1

)
, v = 1

⎫
⎬

⎭
, (2)

where pi is the complement of pi.5 This notation will simplify the derivations in
the following sections.

3 The HB Family

The HB authentication schemes base their security on the hardness of the LPN
problem. In this section we give a quick review of the LPN problem and the
different HB authentication schemes, focusing on HB and HB+. For a certain
ε ∈
(
0, 1

2

)
the LPN problem is denoted by LPNε, and defined as follows.

Definition 1 ([1]). Given n random binary k-bit strings a(j) and the bits z(j) =
a(j) · x ⊕ ν for some x ∈ {0, 1}k, where a · b denotes the binary inner product
between a and b, ν = 1 with probability ε and 0 with probability 1 − ε, then find
the binary string x.

The LPN problem is known to be NP-hard [25]. In [13], the authors show that
the LPN problem is log-uniform and even hard to approximate within a ratio of
2. Kearns proved in [26] that the LPN problem is hard in the statistical query
model. The best known algorithm to solve the LPN problem is the BKW algo-
rithm [20]. However, there has been a number of improvements on the algorithm
with the best running time of 2O(k/ log k) [21,22,23].

5 The complement may be realized by simply XOR-ing the most-significant bit of a
with v.
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In the HB protocol [13], the tag and the reader share a k-bit secret string
x. To authenticate the tag, the reader starts sending randomly generated k-bit
challenge strings a(j). The tag responds with the bit z(j) = a(j) ·x⊕ ν where the
variables are as defined in the LPN problem. The tag and the reader repeat the
same step for multiple challenges. Finally, the reader checks to see if the number
of errors in the tag’s response matches the noise level, and decides to accept or
reject accordingly. Note that if the tag’s response did not contain noise, then a
passive attacker would easily be able to deduce x after collecting k challenge-
response pairs using Gaussian elimination. In [13], the authors prove that given
an algorithm that predicts z(j) for a random a(j) with some advantage, then this
algorithm can be used to solve the LPNε problem. However, HB is only secure
against passive attacks. An active attacker can easily repeat the same challenge
multiple times, effectively eliminating the noise and reducing the problem to
Gaussian elimination.

To secure the HB protocol against an active attacker the HB+ protocol was
proposed in [14]. In HB+ the tag and the reader share two k-bit strings x and y.
The tag starts the authentication session by sending a random k-bit string b(j).
The reader then responds with a(j) just like the HB protocol. Finally the tag
responds with z(j) = a(j) ·x⊕b(j) ·y⊕ν, where ν is defined as above. The protocol
is proven to be secure against an active attack on the tag (excluding man-in-
the-middle attacks). In such an adversary model an attacker is not allowed to
obtain final decisions from the reader on whether this authentication session was
successful or not. In [14] and [1] the authors show that in this adversary model
breaking the HB+ protocol is equivalent to solving the LPN problem. However,
as we pointed out earlier, a simple man-in-the-middle attack was demonstrated
on the HB+ protocol in [18]. Note that in a detection based model this attack
will not be successful.

In addition to HB and HB+, there has been a number of other variations such
as HB++ [16], HB-MP [15] and HB∗ [24]. All these proposals attempt to prevent
man-in-the-middle attacks. In a more recently proposed scheme, i.e. HB# [19],
the authors propose a modified version of HB+ which uses Toeplitz matrices
rather than vectors for a shared secret. Under a strong conjecture the scheme
is proven secure against a class of man-in-the-middle attacks. In this adversary
model which is referred to as GRS-MIM-model, the attacker can only modify
data transmission from the reader to the tag but not the other way around. This
model will protect against the previously mentioned attack.

4 The PUF-HB Authentication Protocol

We start by defining basic notation. In the remainder of the paper we reserve
k to denote the security variable. T(n,x,Y,s,ε) denotes the tag used in the PUF-
HB protocol, where x ∈ {0, 1}k, s ∈ {0, 1}2×n. We treat sj as a 2-bit vector.
and Y = [y1, y2, . . . , yk+1] such that yi ∈ N(0, 1) and N(μ, σ2) is the normal
distribution with mean μ and variance σ2. The noise parameter is ε ∈

(
0, 1

2

)

and n denotes the number of rounds required for authentication. We denote the
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reader by R(n,x,Y,s,ε,l,u), where all the variables are as defined for the tag except
l and u which are integers in the range [0, n] such that l ≤ ε · n ≤ u.

With this notation we describe the basic authentication step. In the jth round
of the protocol, T(n,x,Y,s,ε) outputs a randomly generated vector b(j) ∈ {0, 1}k

and sends it to R(n,x,Y,s,ε,l,u). The reader responds with the vector a(j) ∈ {0, 1}k

and e(j) ∈ {0, 1}2. Finally the tag computes z(j) = b(j) ·x⊕PUFY,e(j) ·sj (a(j))⊕ν,
where · is the binary inner product, sj are the jth two bit vector of s and ν = 1
with probability ε and ν = 0 with probability 1− ε. For authentication, this step
is repeated n times. In each round the reader checks to see if the tag’s response
is equal to b(j) · x ⊕ PUFY,e(j)·sj (a(j)). If not, the reader marks the response as
wrong. At the end of the nth round, the reader authenticates the tag if and only
if the number of wrong responses is in the range [l, u].

In general, any entity can interact with the reader and try to impersonate an
honest tag. To capture such interaction, let E be any entity trying to authenticate
itself to the reader R(n,x,Y,s,ε,l,u). Then PUF-HB

(
E , R(n,x,Y,s,ε,l,u)

)
= 1 iff E is

authenticated by the reader, and is equal to 0 otherwise. The following protocol
formalizes this interaction:

Protocol 1: PUF-HB
(
E , R(n,x,Y,s,ε,l,u)

)

1. R(n,x,Y,s,ε,l,u) sets c = 0 and j = 1.
2. E sends b(j) ∈ {0, 1}k to R(n,x,Y,s,ε,l,u).
3. R(n,x,Y,s,ε,l,u) choses a(j) ∈ {0, 1}k and e(j) ∈ {0, 1}2 uniformly at

random and sends it to E .
4. E sends z(j) to R(n,x,Y,s,ε,l,u).
5. If z(j) �= b(j) · x ⊕ PUFY,e(j)·sj (a(j)) then c = c + 1.
6. R(n,x,Y,s,ε,l,u) increments j and repeats steps 2 through 5 until j = n.
7. If l ≤ c ≤ u then PUF-HB

(
E , R(n,x,Y,s,ε,l,u)

)
= 1, otherwise it equals 0.

Provided that E has no information about x, s or Y , the best probability of be-
ing authenticated by the reader will be εs = 2−n

∑u
i=l

(
n
i

)
. This probability rep-

resents the soundness error in the algorithm. As for an honest tag T(n,x,Y,s,ε) one
can see that with a very high probability PUF-HB

(
T(n,x,Y,s,ε), R(n,x,Y,s,ε,l,u)

)
=

1. However, the tag’s choice to set ν = 1 with probability ε is independent in
each round of the authentication. Therefore, it will be possible for the tag to
introduce a number of errors which is outside the range [l, u]. This will result in
a failed authentication session. We denote the probability of this incident by εc,
i.e. the completeness error. If we set l = 0 then using the Chernoff bound we can
produce the following bound, εc < e−(εn)(u/εn−1)2/4.

Protocol (1) would work identically if we run it in a parallel fashion. In this
case, the n different b(j) vectors sent in Step 2 would be sent in a single step and
similarly all the a(j) vectors and e(j) bits sent in Step 3 would also be sent in a
single step. Finally all the z(j) bits returned in Step 4 would be sent in a single
step. In general, the PUF-HB protocol is almost identical to the HB+ protocol.
The main difference introduced in the PUF-HB protocol is to substitute the inner
product a · y where y ∈ {0, 1}k with PUFY,s(a). As we will see in the proof of
Theorem 1 this substitution will not affect the security features introduced by the
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HB+ protocol. However, as indicated in the previous sections this substitution
will make the tag tamper-resilient, and will simultaneously help resist the known
man-in-the-middle attack on the HB+ protocol [18].

5 Security Against Active Attacks

In this section, we reduce the security of the PUF-HB protocol in the active
attacker model (which does not include man-in-the-middle attacks) to solving
the LPN problem. Note that as we pointed out earlier, the proof here closely
follows the proof of Katz et al. on the security of the HB+ protocol [1]. However,
due to the nature of the PUF circuit, a very simple part of the original proof in
[1], becomes much more complex in our protocol. Such a difference is a reflection
of the change from a simple binary inner product to a PUF operation. For a more
elaborate explanation of the proof see [1] where the authors prove security for
the parallel execution case with ε < 1/4. Also see [17] for a similar proof when
ε < 1/2. Moreover, in the original paper where the HB+ protocol was proposed
[14] the authors provide an elegant proof of security against active attacks. The
proof in [14] can easily be modified to prove the security of the PUF-HB protocol.
However, for simplicity and completeness we use the proof in [1].

We start by quoting the following definitions directly from [1]. Let Ax,ε denote
an LPNε oracle which outputs a k + 1 bit string such that x is chosen uniformly
at random from {0, 1}k and ε ∈

(
0, 1

2

)
. The output of the oracle is the string

(a, a · x ⊕ ν) .

Where a is chosen uniformly at random from {0, 1}k, and ν = 1 with probability
ε and ν = 0 with probability 1 − ε. We also define Uk+1 to be the uniform
oracle with outputs from the uniform distribution over {0, 1}k+1. We say that
an algorithm M can (t, q, δ) solve the LPNε problem if

Pr
[
MAx,ε(1k) = x

]
≥ δ ,

provided that M runs in time t and uses q queries to the oracle Ax,ε. The main
theorem of this paper relies on the following lemma originally due to Regev [30]
and reproven in [1].

Lemma 1. ([1]) If there exists an algorithm D making q oracle queries, and
running in time t, such that

∣
∣Pr
[
DAx,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣
∣ ≥ δ ,

then there exist an algorithm M making q′ = O(q · δ−2 log k) oracle queries and
running in time t′ = O(t · kδ−2 log k), such that

Pr
[
MAx,ε(1k) = x

]
≥ δ/4 .



PUF-HB: A Tamper-Resilient HB Based Authentication Protocol 355

Before we prove the main theorem of the paper we try to give some intuition
on why the proof in [1] can be applied to prove the security of the PUF-HB
protocol. In addition, we state two technical lemmas which are needed for the
proof of the main theorem.

First, note that the function computed in the HB+ protocol is z = b · x ⊕ a · y
whereas the function computed in the PUF-HB protocol is z = b ·x⊕PUFY,s(a).
Moreover, Theorem 1 states that if there exists an algorithm A which starts by
impersonating a reader to interact with an honest tag T(n,x,Y,s,ε) (learning phase),
and then impersonates a tag to interact with an honest reader (impersonation
phase) therefore achieving PUF-HB

(
A, R(n,x,Y,s,ε,l,u)

)
= 1 with high probability,

then algorithm A can also be used to distinguish between an LPN oracle and a
uniform oracle. As implied by Lemma 1, then algorithm A can be used to solve
the LPN problem.

In the learning phase, the algorithm A will expect to interact with an honest
tag. In the proof, we impersonate such a tag, and use the oracle outputs to
substitute the b · x part of a tag’s response. Note that this part of the response
is in common between the HB+ protocol and the PUF-HB protocol. Now since
we will use an oracle for part of the response, this means that we will have no
control over x which will be determined by the oracle. At the same time we will
have full control over Y, s (y in the HB+ protocol).

In the impersonation phase A will take the role of a tag interacting with an
honest reader, and will therefore attempt to correctly compute the responses
z(i). However, the responses of A will depend on the interaction that took place
in the learning phase. If we were successful in providing outputs which were
consistent with some x, then A will be able to provide correct responses in the
impersonation phase. This will be the case if the used oracle was an LPN oracle.
On the other hand, if the oracle was the uniform oracle, then we will have failed
in providing consistent outputs to A. Consequently, the responses z(i) produced
by A in the impersonating phase will be random. While this presents a technique
to distinguish between an LPN oracle and a uniform oracle, nevertheless, we do
not have a way to know if the responses z(i) were correct or not. Primarily
because we have no knowledge of x. To resolve this issue we run the algorithm
and acquire the responses for a set of challenges {a1

(i)} along with the {e1
(i)} bits,

then we rewind the algorithm and acquire a second set of responses for a different
set of challenges {a2

(i)} and the {e2
(i)} bits. Adding the two responses cancels

out the effect of x and retains the effect of PUFY,e1
(i)·si

(a1
(i)) ⊕ PUFY,e2

(i)·si
(a2

(i))

(this would be a1
(i) · y ⊕ a2

(i) · y for the HB+ protocol). With this trick we will
have complete knowledge over the remaining variables. Therefore, we can check
whether the responses retuned by A were correct or not.

What remains to be shown is that given the inputs a1
(i) and a2

(i) and no
other information, the algorithm A will not be able to predict the output bits
PUFY,e1

(i)·si
(a1

(i)) and PUFY,e2
(i)·si

(a2
(i)). This is akin to asking the question: How

much can be inferred about the output, by only knowing the input. In the HB+

protocol this becomes a question of linear independence. However, in the case
of PUF-HB the answer becomes much more complicated. This question will be
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addressed in Lemma 2 and 3. In general, one can see that the function PUFY,s(a)
(compared to a · y) only becomes relevant toward the end of the proof of The-
orem 1. In fact, it should be clear that there is a large family of functions that
could be used in place of PUFY,s(a) or a · y while maintaining the security of
the protocol. However, our choice of PUFY,s(a) was mainly motivated by hard-
ware simplicity and tamper resilience. The following Lemma characterizes the
correlation between two PUF outputs obtained from different input challenges.

Lemma 2. Given two k-bit strings a(1) and a(2) chosen independently and uni-
formly at random from {0, 1}k, and Y0 = [y1, . . . , yk+1] where yi ∈ N(0, 1) for
i = 1, . . . , k and yk+1 = 0, then for z(1) = PUFY0(a(1)) and z(2) = PUFY0(a(2))
the probability that z(1) and z(2) are equal is

Pr[z(1) = z(2)] = Fk(d) = 1 − 2
π

arctan

(√
d

k − d

)

. (3)

Where d is the Hamming distance between P(1) and P(2) and (P(i) = Ua(i)). The
strings a(i) are represented as column vectors, U is the upper triangular matrix
with all non-zero entries equal to 1 and the matrix multiplication is performed
modulo 2.

The proof of Lemma 2 can be found in Appendix A. The next lemma, connects
Lemma 2 to the main theorem.

Lemma 3. Let A be an adversary who is given n strings {a(i)}n
i=1, where a(i)

is chosen independently and uniformly at random from {0, 1}k. A also knows
that s is chosen uniformly at random form {0, 1}n and that Y0 = [y1, . . . , yk+1]
where yi ∈ N(0, 1) for i = 1, . . . , k and yk+1 = 0. Let z(i) = PUFY0,si(a(i)) then
the bits z(i) will be uniform and independent (from the point of view of A).

The proof of Lemma 3 is also moved to Appendix A. We are now ready to prove
the main theorem.

Theorem 1 (Compare to Theorem 3 in [1]). If there exists an adversary A
interacting with a tag T(n,x,Y,s,ε) in at most q executions of the PUF-HB protocol
(possibly concurrently), running in time t such that

Pr
[
AT(n,x,Y,s,ε)(1k) : PUF-HB

(
A, R(n,x,Y,s,ε,l,u)

)
= 1
]

≥ δ ,

then these exist an algorithm D making q · n oracle queries, running in time
O(t), and such that

∣
∣Pr
[
DAx,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣
∣ ≥ δ2 − 2−n/2

2u∑

i=0

(
n/2
i

)

− e−
n
8

Therefore, for any ε < 1
8 there is an appropriate choice of n, u such that the last

two terms become negligible, and thus we can conclude that the PUF-HB protocol
is secure assuming the hardness of the LPNε problem.6

6 Note that by parametering the length � of the strings si ∈ {0, 1}� and e(i) ∈ {0, 1}�

we may achieve some flexibility in the parameters, i.e. ε < 0.25 − 2−(�+1).
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Proof. To prove the theorem we show a construction of the algorithm D. As
stated by the theorem, D is given access to an oracle returning (k+1)-bit strings
which can be broken to (b̄, z̄), where b̄ ∈ {0, 1}k and z̄ ∈ {0, 1}. D proceeds as
follows:

1. D starts by choosing vectors Y0 and s such that yk+1 is set to 0, and then
the k remaining yi values are chosen from N(0, 1). The bitstring s is chosen
uniformly at random from {0, 1}2×n. D runs the algorithm A which will
expect to interact with a PUF-HB tag. In order to impersonate a real tag,
D does the following to simulate a basic authentication step: D starts by
obtaining a k + 1 bit string (b̄(i), z̄(i)) from the oracle, and then sends b̄(i)
to A as the initial b in Protocol 1. A will reply with a challenge ā(i) and
the bits ē(i). Next, D computes z(i) = z̄(i) ⊕PUFY0,ē(i)·si(ā(i)) and sends z(i)
back to A. D repeats this step q · n times.

2. In the second phase of the algorithm, A tries to impersonate an honest
tag. Looking at the parallel execution of PUF-HB, A starts by sending
b(1), . . . , b(n) ∈ {0, 1}k to a reader. Next, D randomly choses a1

(1), . . . , a
1
(n) ∈

{0, 1}k and e1
(1), . . . , e

1
(n) ∈ {0, 1}2 and send them back to A, which will

in turn respond with the bits z1
(1), . . . , z

1
(n). D then rewinds A and sends

randomly chosen a2
(1), . . . a

2
(n) ∈ {0, 1}k and e2

(1), . . . , e
2
(n) ∈ {0, 1}2. A will

respond with z2
(1), . . . , z

2
(n). Note that since the algorithm was rewound the

same b values will be sent by A.
3. D calculates z⊕(i) = z1

(i) ⊕z2
(i) and lets Z⊕ = (z⊕(1), . . . , z

⊕
(n)). D also computes

ẑ(i) = PUFY0,e1
(i)·si

(a1
(i)) ⊕ PUFY0,e2

(i)·si
(a2

(i)) and lets Ẑ = (ẑ(1), . . . , ẑ(n)). D

outputs 1 iff Z⊕ and Ẑ differ in at most 2u positions.

Now we analyze D:

Case 1: If the oracle used by D was the uniform oracle Uk+1, then the outputs z̄
given to D in step 1 were uniformly distributed and independent of everything.
This means that the bits z(i) which D sent back to A in step 1 were also uniformly
distributed and independent of everything. Therefore, by the end of step 1 A has
no information about either Y0 or s. All A receives in the second step are the in-
puts {a1

(i)}n
i=1, {e1

(i)}n
i=1 and {a2

(i)}n
i=1, {e2

(i)}n
i=1. All of these inputs are uniformly

and independently distributed. As shown in Lemma 3 each of the two calculated
output strings {PUFY0,e1

(i)·si
(a1

(i))}n
i=1 and {PUFY0,e2

(i)·si
(a2

(i))}n
i=1 will be uni-

form over {0, 1}n (from the point of view of A). However, when we add these
two variables and obtain Ẑ the individual bits of the output will not always be
independent. The affect of the si bits will actually cancel out from both terms
when e1

(i) = e2
(i) with probability 0.25. To simplify the proof, we assume in this

case that the outputs are completely dependent. Using the Chernoff approxima-
tion we bound the probability of observing more than n/2 dependent output bits
by e−

n
8 . The probability that Z⊕ and Ẑ differ in at most 2u positions is exactly

2−n/2∑u
i=0

(
n/2

i

)
. We conclude that D outputs 1 in this case with probability

at most 2−n/2∑2u
i=0

(
n/2

i

)
+ e−

n
8 .
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Case 2: If D is using the oracle Ax,ε for some random x, the simulation provided
by D in the first phase will be perfect and therefore A will be able to impersonate
an honest tag with probability at least δ. Let w be the randomness used in the
first phase of running A, then we denote the probability that A succeeds in
impersonating an honest tag for a fixed choice of w by δw. Now since we rewind
the algorithm, the probability that A succeeds in both rounds is δ2

w. Let E(δ2
w)

denote the expected value of δ2
w over all possible randomness w, then we have

E(δ2
w) ≥ E(δw)2 = δ2,

where the square is taken out of the expected value operator using Jensen’s
inequality. Now assuming that A succeeds in impersonating an honest tag for
both rounds, then we would expect each of the response strings z1

(1), . . . , z
1
(n) and

z2
(1), . . . , z

2
(n) to have at most u errors. Therefore Z⊕ will in turn have at most 2u

errors.7 When we add z1
(i) and z2

(i) to generate z⊕i we are canceling the effect of
b · x and therefore we are left with z⊕(i) = PUFY0,e1

(i)·si
(a1

(i)) ⊕ PUFY0,e2
(i)·si

(a2
(i)).

With the exception of the 2u errors in Z⊕, the strings Ẑ and Z⊕ are calculating
the same output. We conclude that D outputs 1 in this case with probability at
least δ2. �	

This concludes our security proof, and shows that the PUF-HB protocol is secure
against an active attacker provided that the LPN problem is hard to solve.

6 Man-in-the-Middle Attacks

The main weakness of the HB+ protocol is the man-in-the-middle attack pro-
posed in [18]. Briefly summarized, in this attack an adversary replaces all the
challenges {a(j)}n

j=1 sent from the reader in a single authentication session by
{a(j) ⊕w}n

j=1 where w ∈ {0, 1}k. The attacker knows that the challenges will in-
teract with the secret y through a(j) ·y. At the end of the n rounds, if the reader
authenticates the tag, the adversary can deduce with very high probability that
his changes did not affect the responses of the tag, and therefore w · y = 0. On
the other hand, if the reader rejects the tag, then the adversary will know with
a very high probability that w · y = 1. Repeating the same attack k times will
allow the adversary to collect k linear equations in y. The adversary can use
Gaussian elimination to recover the secret y. Similarly, the same attack can be
carried out to deduce the other secret string x.

In the PUF-HB scheme this particular man-in-the-middle attack will not suc-
ceed due to the non-linearity of the PUF function. From Lemma 2 we know that
the only type of correlations that the attacker can exploit are those related to
the Hamming distance between the different input strings a. However, we saw
in Lemma 3 that with the secret string s the Hamming distance information is

7 This worst case happens when the u errors in z1
(i) and z2

(i) affect completely different
bits.
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masked for a single authentication session. It is still possible that an adversary
can exploit Hamming distances between different sessions to launch an attack.
Another potential point of weakness is the linearity in the b · x portion of the
PUF-HB protocol. To protect against simple attacks exploiting this linearity, a
second PUF circuit can be used with the b vector as its input. We label such a
protocol PUF2-HB, since it will essentially be identical to Protocol 1, with the
only difference in the z bit calculated by the tag, which becomes

z(i) = b(i) · x ⊕ PUFY1,si(a(i)) ⊕ PUFY2(b(i)) ⊕ ν (4)

where the shared secret becomes (x, Y1, Y2, s).

7 Hardware Security

In the previous section we discussed the security of the proposed scheme under
abstract security models. However, in recent years we have seen numerous side-
channel attacks which directly target the hardware implementation. The PUF
paradigm was aimed at protecting against active side-channel attacks. In the
PUF-HB protocol there are only two strings that are to be stored by the tag: x
and s. The secret Y is not really stored since it is part of the characteristics of
the circuit itself. In Section 2 we discussed the resilience of PUF circuits against
hardware attacks. In particular the PUF prevents an attacker from measuring
the yi parameters directly via a physical measurement. Any major changes to
the surrounding temperatures or voltage levels, or any attempt to forcefully read
the value of these registers will induce a change to the PUF, therefore changing
the identity of the tag.

What is more impressive about the PUF circuit is that it even protects neigh-
boring components. This is achieved by placing all registers containing the secret
strings x and s sufficiently close to the PUF circuit. We have experimentally ver-
ified these claims on an FPGA hardware implementation of a PUF. Such a level
of security ensures that even when the tag itself is compromised, an attacker
cannot impersonate this tag by extracting the secrets from the hardware. Natu-
rally, one might be concerned about how that will affect the modelability of the
PUF in the pre-deployment phase. Before deployment of the tag, the registers
are initialized to their secret values. Afterward, with the knowledge of the se-
cret vectors the reader can develop an accurate model for the PUF circuit. Note
that modeling the PUF is even possible in the existence of noise [32]. Hence, the
sensitivity of the PUF does not prevent the owner from modeling it.

Finally we would like to underline that PUF-HB is not inherently protected
against passive attacks, e.g. Simple Power Analysis and Differential Power Analy-
sis. Although not trivial, side-channel profiles may be utilized to recover the se-
cret values. If passive side-channel attacks are a concern, standard IC level power
balancing techniques [33,34,35] must be employed. Although effective, these tech-
niques tend to incur significant area overhead. An alternative approach would
be to modify the implementation to balance the power consumption.
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8 Conclusion

In this paper we merged the PUF authentication scheme with the HB based
authentication protocol, with the goal of producing a hybrid protocol which
enjoys the advantages of both schemes while improving the level of security. The
main contribution of this paper is the proposed PUF-HB authentication scheme
which is tamper resilient, and at the same time provably secure against active
attacks in the detection based model. In addition, the proposed protocol resists
the known man-in-the-middle attacks against the HB+ scheme. From the PUF
perspective, the protocol is the first PUF based authentication scheme with a
security reduction. From the HB perspective, this is the first tamper-resilient HB-
based authentication protocol. From a more practical perspective, the proposed
scheme provides low-cost, tamper-resilient, and provably secure authentication.
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A Appendix 1

Proof of Lemma 2

Proof. First recall from Section 2 that for any string c = [c1, . . . cn] the PUF
response is

PUFY (c) = sign

(
k∑

i=1

(−1)piyi + yk+1

)

,

where pi = ci ⊕ . . . ⊕ ck and P = [p1, . . . , pk], as noted above (P = Uc). This
mapping is a linear bijection and will therefore preserve uniformity and inde-
pendence. Since a(1) and a(2) were chosen uniformly at random from {0, 1}k,
the same can be said about the distribution of the corresponding P vectors
P(1) = [p(1)

1 , . . . p
(1)
k ] and P(2) = [p(2)

1 , . . . p
(2)
k ]. Let Z(P(j), Y0) =

∑k
i=1(−1)p

(j)
i yi,

and let d be the Hamming distance between P(1) and P(2). Without loss of gen-
erality we may assume that the different bits of P(1) and P(2) are in the first d
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bit positions. Now we can write

Z(P(1), Y0) =
d∑

i=1

(−1)p
(1)
i yi +

k∑

i=d+1

(−1)p
(1)
i yi = Dd + Sk−d

Z(P(2), Y0) = −Dd + Sk−d ,

where Dd =
∑d

i=1(−1)p1
i yi and Sk−d =

∑k
i=d+1(−1)p1

i yi. Note that since z(j) =
sign(Z(P(j), Y0)), then for z(1) to be equal to z(2) we need Z(P(1), Y0) and
Z(P(2), Y0) to have the same sign. For this, Dd needs to have a smaller mag-
nitude than Sk−d which means |Dd| < |Sk−d|. Therefore

Pr[z(1) = z(2)] = Pr[|Sk−d| − |Dd| > 0] = Pr[Rd > 0],

where Rd = |Sk−d| + (−|Dd|). Let fR(Rd), fD(Dd) and fS(Sk−d) represent the
probability distribution function (PDF) for each of the random variables Rd, Dd

and Sk−d respectively. Each term in the summations making up Dd and Sk−d

involves one of the bits p
(1)
i and the real value yi. Since yi ∈ N(0, 1) has mean

zero and is symmetric around the y-axis, we can easily see that multiplying
with (−1)p

(1)
i will not affect the normal distribution and therefore (−1)p

(1)
i yi ∈

N(0, 1). Now each of the variables Dd and Sk−d is a summation of respectively d
and k−d normal distributions N(0, 1). Thus, fD(Dd) = N(0, d) and fS(Sk−d) =
N(0, k−d).8 We are interested in the PDF of −|Dd| and |Sk−d|. These can easily
be calculated as follows:

f|S|(x) =
{

2N(0, k − d) x > 0
0 x ≤ 0

}

=

⎧
⎨

⎩
2 e

−x2
2(k−d)√
2π(k−d)

x > 0

0 x ≤ 0
,

and

f−|D|(x) =
{

0 x > 0
2N(0, d) x ≤ 0

}

=

{
0 x > 0

2 e
−x2
2d√
2πd

x ≤ 0
.

Now we can calculate the desired probability

Pr[z(1) = z(2)] = Pr[Rd > 0]

=
∫ ∞

0
fR(w) dw =

∫ ∞

0
f−|D|(w) ∗ f|S|(w) dw

=
∫ ∞

0

4
2π
√

d(k − d)
·

[∫ ∞

−∞
e

−x2

2(k−d) · U(x) · e
−(w−x)2

2d · U(x − w) dx

]

dw

8 This is a straightforward application of the Central Limit Theorem. It is also very
easy to derive directly from the PDF of a normal random variable.
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where ∗ denotes the convolution operator and U(x) is the unit step function. By
rearranging the terms we obtain

Pr[z(1) = z(2)] =
4

√
2π(k + 1)

∫ ∞

0

(
1√

2πσ2

∫ ∞

w

e
−(x−μ)2

2σ2 dx

)

e
−w2
2k dw

= 2
∫ ∞

0

1√
2πk

[1 − erf(αw)] e
−w2
2k dw

= 2

[∫ ∞

0

e
−w2
2k

√
2πk

dw −
∫ ∞

0

e
−w2
2k · erf(αw)√

2πk
dw

]

= 2
[
1
2

− 1
π

arctan
(
α
√

2k
)]

where σ2 = d(k−d)
k , μ = σ2w

d , erf(x) = 2√
π

∫ x

0 e−t2 dt and α =
√

d
2k(k−d) . The

first of the two integrations is just a Gaussian over half of the space. As for
the second integration this is a known definite integral [31]. Finally, substituting
back with the original variables k and d we obtain

Pr[z(1) = z(2)] = Fk(d) = 1 − 2
π

arctan

(√
d

k − d

)

.

�	

Proof of Lemma 3

Proof. To show that the bits {z(i)}n
i=1 are uniform and independent, we need

to show that the probability of z(i) = 0 for any i ∈ [1, n] is 0.5 and that the
probability of z(i) = z(j) for any i, j ∈ [1, n] is 0.5. It is clear that when yk+1 = 0
the output of a PUF will be balanced. Therefore, it is straightforward to see
that when {a(i)}n

i=1 are independent and chosen uniformly at random the bits
{z(i)}n

i=1 will also be uniformly distributed. What remains to show is that there
is no correlation between the bits {z(i)}n

i=1.
From Lemma 2 and as can be seen from Equation 3 the probability of any

two PUF outputs being equal (or not equal) depends on the Hamming distance
d between P(i) = Ua(i) and P(j) = Ua(j) and not the specific values of a(i) and
a(j). Furthermore, we can deduce from Equation 3 that

F k(d) = Pr[z(i) �= z(j)] = 1 − Fk(d) =
2
π

arctan

(√
d

k − d

)

.

The two probability distributions Fk(d) and F k(d) are reflections of each other
around d = k

2 . Therefore, F k(d) = Fk(k−d). This means that when the probabil-
ity distribution of the Hamming distance between P(i) and P(j) is symmetrized
around k

2 , then z(i) and z(j) will be uncorrelated. To prove the rest of the lemma,
we only need to show that the probability distribution of the Hamming distances
between the different P(i) strings will be symmetric around k

2 .
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The n bit strings {a(i)}n
i=1 given to A will induce n(n−1)

2 different Hamming
distances between the corresponding P(i) strings. Recall from the lemma that
z(i) = PUFY0,si(a(i)). Therefore, as indicated by Equation 2 the PUF circuit
will invert the P(i) strings based on the value of the bit si. From A’s perspective
s is chosen uniformly at random from {0, 1}n. Therefore, each of the P(i) strings
will be inverted with probability 0.5. For any two strings P(i) and P(j), if both
of the strings or neither of them are inverted the Hamming distance d will not
be affected. On the other hand, if only one of the two strings is inverted then
the Hamming distance d will become k − d. Therefore, the Hamming distance
between any two strings P(i) and P(j) will be d with probability 0.5 and will be
k − d with probability 0.5. This distribution is symmetric around k

2 . �	
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Abstract. The conjugacy search problem in a group G is the problem
of recovering an x ∈ G from given g ∈ G and h = x−1gx. The alleged
computational hardness of this problem in some groups was used in sev-
eral recently suggested public key exchange protocols, including the one
due to Anshel, Anshel, and Goldfeld, and the one due to Ko, Lee et
al. Sibert, Dehornoy, and Girault used this problem in their authenti-
cation scheme, which was inspired by the Fiat-Shamir scheme involving
repeating several times a three-pass challenge-response step.

In this paper, we offer an authentication scheme whose security is
based on the apparent hardness of the twisted conjugacy search problem
which is: given a pair of endomorphisms (i.e., homomorphisms into itself)
ϕ, ψ of a group G and a pair of elements w, t ∈ G, find an element s ∈ G
such that t = ψ(s−1)wϕ(s) provided at least one such s exists. This
problem appears to be very non-trivial even for free groups. We offer
here another platform, namely, the semigroup of all 2 × 2 matrices over
truncated one-variable polynomials over F2, the field of two elements,
with transposition used instead of inversion in the equality above.

1 Introduction

One of the most obvious ramifications of the discrete logarithm problem in the
noncommutative situation is the conjugacy search problem:

Given a group G and two conjugate elements g, h ∈ G, find a particular
element x ∈ G such that x−1gx = h.

This problem always has a recursive solution because one can recursively
enumerate all conjugates of a given element, but this kind of solution can be
extremely inefficient. Specific groups may or may not admit more efficient so-
lutions, so the choice of the platform group is of paramount importance for
security of a cryptographic primitive based on the conjugacy search problem. A
great deal of research was (and still is) concerned with the complexity of this
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problem in braid groups because there were several proposals, including the one
by Anshel, Anshel, and Goldfeld [1], and the one by Ko, Lee at al. [11] on using
the alleged computational hardness of this problem in braid groups to build a key
exchange protocol. Also, Sibert, Dehornoy, and Girault [15] used this problem
in their authentication scheme, which was inspired by the Fiat-Shamir scheme
involving repeating several times a three-pass challenge-response step. At the
time of this writing, no deterministic polynomial-time algorithm for solving the
conjugacy search problem in braid groups has been reported yet; see [3] and [4]
for recent progress in this direction. However, several heuristic algorithms, in
particular so-called “length based attacks”, were shown to have very high suc-
cess rates, see e.g. [7], [8], [10], [12], [13]. This shows that one has to be really
careful when choosing the platform (semi)group to try to avoid length based or
similar attacks. One way to achieve this goal is, informally speaking, to have “a
lot of commutativity” inside otherwise non-commutative (semi)group; see [13]
for a more detailed discussion.

In this paper, we propose an authentication scheme whose security is based on
the apparent hardness of the (double) twisted conjugacy search problem which is:

given a pair of endomorphisms (i.e., homomorphisms into itself) ϕ, ψ of
a group G and a pair of elements w, t ∈ G, find an element s ∈ G such
that t = ψ(s−1)wϕ(s) provided at least one such s exists.

This problem, to the best of our knowledge, has not been considered in group
theory before, and neither was its decision version: given ϕ, ψ ∈ End(G), w, t ∈
G, find out whether or not there is an element s ∈ G such that t = ψ(s−1)wϕ(s).
However, the following special case of this problem (called the twisted conjugacy
problem) has recently attracted a lot of interest among group theorists:

given ϕ ∈ End(G), w, t ∈ G, find out whether or not there is an element
s ∈ G such that t = s−1wϕ(s).

This problem is very non-trivial even for free groups; see [5] for an astonish-
ing solution in the special case where ϕ is an automorphism of a free group. To
the best of our knowledge, this decision problem is open for free groups if ϕ
is an arbitrary endomorphism. Another class of groups where the twisted con-
jugacy problem was considered is the class of polycyclic-by-finite groups [16].
Again, the problem was solved for these groups in the special case where ϕ is an
automorphism.

The conjugacy problem is a special case of the twisted conjugacy problem,
where ϕ is the identity map. Now a natural question is: what is the advantage of
the more general (double) twisted conjugacy search problem over the conjugacy
search problem in the context of an authentication scheme? The answer is: if the
platform (semi)group G has “a lot” of endomorphisms, then Alice (the prover),
who selects ϕ, ψ, w, and s, has an opportunity to select them in such a way that
there are a lot of cancelations between ψ(s), w, and ϕ(s), thus rendering length
based attacks ineffective.
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In this paper, we use the semigroup of all 2 × 2 matrices over truncated
one-variable polynomials over F2, the field of two elements, as the platform. It
may seem that the platform necessarily has to be a group since one should at
least have the element s (see above) invertible. However, as we will see in the
next section, we do not really need the invertibility to make our authentication
protocol work; what we need is just some antihomomorphism of G into itself, i.e.,
a map ∗ : G → G such that (ab)∗ = b∗a∗ for any a, b ∈ G. Every group has such
an antihomomorphism; it takes every element to its inverse. Every semigroup
of square matrices has such an antihomomorphism, too; it takes every matrix
to its transpose. Some (semi)groups have other special antihomomorphisms; for
example, any free (semi)group has an antihomomorphism that rewrites every
element “backwards”, i.e., right-to-left. Here we prefer to focus on semigroups
of matrices (over commutative rings) since we believe that these have several
features making them fit to be platforms of various cryptographic protocols, see
[14] for a more detailed discussion.

2 The Protocol

In this section, we give a description of a single round of our authentication pro-
tocol. As with the original Fiat-Shamir scheme, this protocol has to be repeated
k times if one wants to reduce the probability of successful forgery to 1

2k .
Here Alice is the prover and Bob the verifier. Let G be the platform semigroup,

and ∗ an antihomomorphism of G, i.e., (ab)∗ = b∗a∗.

1. Alice’s public key is a pair of endomorphisms ϕ, ψ of the group G and two
elements w, t ∈ G, such that t = ψ(s∗)wϕ(s), where s ∈ G is her private key.

2. To begin authentication, Alice selects an element r ∈ G and sends the ele-
ment u = ψ(r∗)tϕ(r), called the commitment, to Bob.

3. Bob chooses a random bit c and sends it to Alice.
– If c = 0, then Alice sends v = r to Bob and Bob checks if the equality

u = ψ(v∗)tϕ(v) is satisfied. If it is, then Bob accepts the authentication.
– If c = 1, then Alice sends v = sr to Bob and Bob checks if the equality

u = ψ(v∗)wϕ(v) is satisfied. If it is, then Bob accepts the authentication.

Let us check now that everything works the way we want it to work.

– If c = 0, then v = r, so ψ(v∗)tϕ(v) = ψ(r∗)tϕ(r) = u.
– If c = 1, then v = sr, so ψ(v∗)wϕ(v) = ψ((sr)∗)wϕ(sr) = ψ(r∗s∗)wϕ(s)ϕ(r)

= ψ(r∗)ψ(s∗)wϕ(s)ϕ(r) = u.

3 The Platform and Parameters

Our suggested platform semigroup G is the semigroup of all 2 × 2 matrices over
truncated one-variable polynomials over F2, the field of two elements. Truncated
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(more precisely, N -truncated) one-variable polynomials over F2 are expressions
of the form

∑

0≤i≤N−1

aix
i, where ai are elements of F2, and x is a variable. In

other words, N -truncated polynomials are elements of the factor algebra of the
algebra F2[x] of one-variable polynomials over F2 by the ideal generated by xN .

Our semigroup G has a lot of endomorphisms induced by endomorphisms of
the algebra of truncated polynomials. In fact, any map of the form x → p(x),
where p(x) is a truncated polynomial with zero constant term, can be extended
to an endomorphism φp of the algebra of truncated polynomials. Indeed, it is
sufficient to show that φp(xN ) = (p(x))N belongs to the ideal generated by xN ,
which is obviously the case if p(x) has zero constant term. Then, since φp is both
an additive and a multiplicative homomorphism, it extends to an endomorphism
of the semigroup of all 2 × 2 matrices over truncated one-variable polynomials
in the natural way.

If we now let the antihomomorphism ∗ from the description of the protocol
in our Section 2 to be the matrix transposition, we have everything set up for
an authentication scheme using the semigroup G as the platform.

Now we have to specify parameters involved in our scheme. The parameter N
determines the size of the key space. If N is on the order of 300, then there are
2300 polynomials of degree < N over F2, so there are 21200 2 × 2 matrices over
N -truncated polynomials, i.e., the size of the private key space is 21200, which
is large enough.

At the same time, computations with (truncated) polynomials over F2 are
very efficient (see e.g. [2], [6], or [9] for details). In particular,

– Addition of two polynomials of degree N can be performed in O(N) time.
– Multiplication of two polynomials of degree N can be performed in

O(N log2 N) time.
– Computing composition p(q(x)) mod xN of two polynomial of degree N can

be performed in O((N log2 N)
3
2 ) time (see e.g. [6, p.51]).

Since those are the only operations used in our protocol, the time complexity
of executing a single round of the protocol is O((N log2 N)

3
2 ).

The size of public key space is large, too. One public key is, again, a 2×2 matrix
over N -truncated polynomials, and two other public keys are endomorphisms of
the form x → p(x), where p(x) is an N -truncated polynomial with zero constant
term. Thus, the number of different endomorphisms in this context is on the
order of 2300, hence the number of different pairs of endomorphisms is on the
order of 2600.

We also have to say a few words about how a private key s ∈ G is selected.
We suggest that all entries of the matrix s have non-zero constant term; other
coefficients of the entries can be selected randomly, i.e., “0” and “1” are selected
with probability 1

2 each. Non-zero constant terms are useful here to ensure that
there are sufficiently many non-zero terms in the final product t = ψ(s∗)wϕ(s).
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4 Cryptanalysis

As we have pointed out in the previous section, the key space with suggested
parameters is quite large, so that a “brute force” attack by exhausting the key
space is not feasible.

The next natural attack that comes to mind is attempting to solve a system
of equations over F2 that arises from equating coefficients at the same powers
of x on both sides of the equation t = ψ(s∗)wϕ(s). Recall that in this equation
t, w, ϕ, and ψ are known, whereas s is unknown.

More specifically, our experiments emulating this attack were designed as
follows. The entries of the private matrix s were generated as polynomials of
degree N−1, with N = 100 (which is much smaller than the suggested N = 300),
with randomly selected binary coefficients, except that the constant term in
all polynomials was 1. Then, the endomorphisms ϕ and ψ were of the form
x → pi(x), where pi(x) are polynomials of degree N − 1, with N = 150, with
randomly selected binary coefficients, except that the constant term in both of
them was 0. Finally, the entries of the public matrix w were generated, again,
as polynomials of degree N − 1, with N = 100, with randomly selected binary
coefficients, except that the constant term in all polynomials was 1.

The attack itself then proceeds as follows. The matrix equation t = ψ(s∗)wϕ(s)
is converted to a system of 4N polynomial equations (N for each entry of a 2 × 2
matrix) over F2. The unknowns in this system are coefficients of the polynomials
of degree N − 1 that are the entries of the private matrix s. Then, starting with
the constant term and going up, we equate coefficients at the same powers of x on
both sides of each equation. After that, again starting with the coefficients at the
constant term and going up, we find all possible solutions of each equation, one at
a time. Thus we are getting a “tree” of solutions because some of the unknowns
that occur in coefficients at lower powers of x also occur in coefficients at higher
powers of x. If this tree does not grow too fast, then there is a chance that we can
get all the way to the coefficients at highest power of x, thereby finding a solution
of the system. This solution may not necessarily yield the same matrix s that was
selected by Alice, but it is sufficient for forgery anyway.

We have run over 1000 experiments of this kind (which took about two weeks),
allowing the solution tree to grow up to the width of 16384, i.e., allowing to go
over at most 16384 solutions of each equation when proceeding to a higher power
of x. Each experiment ran on a personal computer with Pentium 2Ghz dual core
processor. The success rate of the described attack with these parameters was 0%.

5 Conclusions

We have introduced:

1. An authentication scheme based on the (double) twisted conjugacy problem,
a new problem, which is allegedly hard in some (semi)groups.

2. A new platform semigroup, namely the semigroup of all 2 × 2 matrices over
truncated one-variable polynomials over F2. Computation in this semigroup
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is very efficient and, at the same time, the non-commutative structure of this
semigroup provides for security at least against obvious attacks.

We point out here one important advantage of using the (double) twisted
conjugacy problem over using a more “traditional” conjugacy search problem as
far as (semi)groups of matrices are concerned. The conjugacy search problem
admits a linear algebra attack upon rewriting the equation x−1gx = h as gx =
xh; the latter translates into a system of n2 linear equations with n2 unknowns,
where n is the size of the matrices involved, and the unknowns are the entries
of the matrix x. Of course, if the entries come not from a field but from a
more general ring, such a system of linear equations does not necessarily admit
a straightforward solution, but methods emulating standard techniques (like
Gauss elimination) usually have a pretty good success rate anyway. For the
twisted conjugacy problem, however, there is no reduction to a system of linear
equations.

We have considered an attack based on reducing the twisted conjugacy prob-
lem to a system of polynomial equations over F2, but this attack becomes com-
putationally infeasible even with a much smaller crucial parameter (which is the
maximum degree of the polynomials involved) than the one we suggest in this
paper.
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Abstract. Compliance storage is an increasingly important area for
businesses faced with a myriad of new document retention regulations.
Today, businesses have turned to Write-One Read Many (WORM) stor-
age technology to achieve compliance. But WORM answers only a part
of the compliance puzzle; in addition to guaranteed document retention,
businesses also need secure indexing, to ensure auditors can find required
documents in a large database, secure deletion to expire documents (and
their index entries) from storage once they are past their expiry period,
and support for litigation holds, which require that certain documents
are retained pending the resolution of active litigation.

We build upon previous work in compliance storage and attribute-
based encryption to design a system that satisfies all three of these re-
quirements. In particular, we design a new encrypted index, which allows
the owner of a database of documents to grant access to only those doc-
uments that match a particular query. This enables litigation holds for
expired documents, and at the same time restricts auditor access for un-
expired documents, greatly limiting the potential for auditor abuse as
compared to previous work. We show by way of formal security proofs
that our construction is secure and that it prevents reconstruction at-
tacks wherein the index is used to recover the contents of the document.
Our experiments show that our scheme can be practical for large data-
bases and moderate sizes of queries.

1 Introduction

Recent regulations require many corporations to ensure trustworthy long-term
retention of their routine business documents. The US alone has over 10,000 reg-
ulations that mandate how business data should be managed over their entire
lifecycle [1]. The focus of most of these regulations (e.g., SEC Rule 17a 4 [2],
Heath Insurance Portability and Accountability Act, 1996 (HIPAA), and the
Sarbanes–Oxley Act, 2002 [3]). is to ensure that the records are kept immutable
during their retention periods and are securely erased at the end of their lifecy-
cle. For example, the HIPAA Section 1173(d) sets security standards for health
information, including safeguards to ensure the integrity and confidentiality of
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the information and to protect against any reasonably anticipated threats or
hazards to the integrity of the information once stored.

This has led to a rush to introduce write-once read-many (WORM) compli-
ance storage devices (e.g., [4,5,6]). These devices ensure term immutability of
files. Every file committed to the device has an expiry date either assigned ex-
plicitly by the committing application or as a system default. Until the end of
its expiration period, the file is read-only and cannot be deleted or altered even
by a superuser. A WORM device hence secures critical documents from certain
threats originating from company insiders or hackers with administrative priv-
ileges. Once a file expires, the device lets the file be deleted, so that external
cleanup applications can erase it. Cleanup is required as expired records can of-
ten be a liability for the company—e.g., it can be subpoenaed in future lawsuits
or regulatory enquiries.

Records are often subject to litigation holds. A record subject to a litigation
hold must not be erased from the device until the hold is removed. Litigation
holds can be enforced by disabling the automatic deletion (on expiry) of the files,
an operation supported by most WORM devices.

Unfortunately, this is not enough to ensure the trustworthiness of litigation
holds. Litigation hold requests are often expressed as keyword queries. For exam-
ple, the judge or auditor might require all email having the words “Martha and
Ralph and ImClone” to be retained. Furthermore, the person invoking the hold
(judge/auditor) often does not have direct access to the WORM device when
the hold request is being enforced—the hold is executed by a company employee
(e.g. sysadmin) who may not be trusted in our threat model. In such a scenario,
the judge or auditor must be able to verify (at a future point in time) that all
the files that are subject to the litigation hold query have been retained.

A simple way to address this problem is to retain the inverted index created
over the documents [7] on the WORM device even after the documents have
expired. At any future point, the index can be used by the auditor/judge to
rerun the litigation hold query to verify that all the resulting documents have
been retained. Unfortunately, a keyword index contains too much sensitive in-
formation, as the index entries can be used to reconstruct the complete set of
keywords in every document, even those which are not subject to the litigation
hold.

To address this problem, we design a new type of encrypted index that allows
the owner to create a key that gives an auditor access to only those documents
that match a particular query. Further, the index prevents reconstruction attacks
for any documents that do not match the query. The integrity of the key can be
verified, so an auditor checking a litigation hold can be sure that no documents
have been removed. Additionally, these per-query keys can be used to restrict
auditor access in situations not involving litigation holds, so that auditor access
to a WORM device can be restricted to only the documents related to the matter
at hand, reducing the potential for auditor abuse.

We implement our scheme and evaluate it using the Enron data set [8], rep-
resentative of a database at a large enterprise. We show that, although the
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Fig. 1. Record Lifecycle

encrypted index is both storage- and CPU-intensive, it can be practical for large
database sizes and moderate query lengths.

2 Background

2.1 Threat Model for Compliance Records

We use the term record to refer to business documents with a fixed retention
period, such as financial notes, email, memos, reports, and instant messages.
Figure 1 shows the life cycle of record in a typical business environment.

At time tcommit a user “Alice” creates a record and commits it to the WORM
storage server. We assume that the commit is trustworthy, that is, Alice properly
stores the document and correctly sets the expiry time to texp.

A user Bob (e.g. a judge) subjects the record to litigation hold at time thold

where (tcommit ≤ thold ≤ texp). In this paper, we consider litigation hold requests
that are expressed as keyword queries. An example hold request would be:

All documents containing “Martha” and “Ralph” that were created be-
tween 06/2002 and 08/2002 must be retained.

We assume that the user Bob does not have direct access to the WORM
device for enforcing the hold request. The hold is implemented by a company
employee Mala (e.g. the system administrator)—she must run the litigation hold
query to obtain a list of matching documents and ensure that the documents
are not deleted on expiry (by disabling their auto-deletion) until they have been
inspected by Bob at time tinsp.

We however do not trust the user Mala to enforce the hold request properly.
For example, Mala might be the CEO who retroactively wants to hide an illegal
email conversation she had with her broker about whether to sell stock in her
company. Mala cannot alter the email itself, because it is on WORM storage.
Mala can however tamper with the litigation hold process. For example, out of
all the files that satisfy the litigation hold query, she might retain only the “safe”
files while expire the sensitive ones.

At the time of inspection (tinsp) Bob must be able to verify the completeness
of the litigation hold query result. That is, he should be able to provably verify
that all the files satisfying his hold query have been retained. The trivial way
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Fig. 2. Posting Lists. With each keyword, a posting list of documents containing that
keyword is stored. After merging, the keyword (or its hash) must also be stored in the
posting list.

of ensuring this is to retain the inverted index even after the documents have
expired. Bob can run the litigation hold query and obtain the complete list of
documents satisfying the query—all those documents must have been retained
by Mala.

Unfortunately, the user Bob, although law-abiding, is inquisitive—he may try
to reconstruct or extract information about other expired records which do not
satisfy his hold request. If the entire inverted index is retained as described above,
he can extract information about such documents from the index. Hence, such a
scheme is undesirable. Our goal is to develop an index structure which would let
Bob obtain the list of documents which satisfy his query without allowing him
learn any information about other documents.

2.2 Storage Model

In this paper, we consider a WORM device with a file system interface [6],
though our techniques are equally applicable to object-based devices [4]. The
interface allows users to create new files and to append to existing files. Appends
are required for indexing and can be efficiently supported since the underlying
media are magnetic [7]. The append feature should be restricted to the specific
storage volume holding the index, to prevent appends to committed files that
contain ordinary records.

2.3 Querying and Indexing

The standard query interface for semi-structured and unstructured business
records is keyword queries, where a user types an arbitrary set of terms and
obtains a list of the documents containing some or all of the terms. Queries can
be further constrained by a document creation time interval.

The standard implementation of keyword queries uses an inverted index [9].
As shown in Figure 2.3(a), an inverted index consists of a dictionary of terms and
a posting list of the identifiers (IDs) of the documents that contain that term. In
addition to an ID, each posting list element gives the number of occurrences of
that term in the document (its term frequency), which is not shown in the figure.
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The document IDs are usually assigned in order of document arrival, through
an increasing counter. Queries are answered by scanning the posting lists of
the terms in the query, thereby obtaining a list of documents having some/all
of the keywords. The resulting documents are ranked based on the number of
occurrences of the keywords and their relative importance [9].

As explained earlier, we assume that litigation hold queries are also expressed
as keyword queries.

2.4 Compliant Inverted Indexes

Because the volume of compliance data is so large and no one wants to wait
hours or days for a query answer, index lookup is the only practical record
search method. But this means that an adversary can make a record inacces-
sible by omitting its entries from the index, or altering the index to point to
a different version of the record on WORM. Hence, a record can be logically
deleted or logically modified by suitably altering the index structure. To prevent
such tampering, the index must be kept on WORM media [7,10].

An inverted index can be stored on WORM by keeping each posting list in
an append-only WORM file. The index can be updated when a new document
is added, by appending its document ID to the posting lists of all the keywords
it contains. Unfortunately, this operation can prohibitively slow as each append
would incur a random I/O. Mitra et al have studied the problem of efficiently
updating an inverted index on WORM [7] by merging posting lists (into a max-
imum of as many lists as the number of cache blocks in the storage server [7]).
Each merged list contains the union of the document IDs from the individual
posting lists that are merged together. A keyword encoding is also stored in each
posting element, to identify which keyword in the merged set appears in that
document.

The litigation hold techniques that we have developed here treat each keyword
posting list as a separate logical unit independent of whether it is stored merged
with other keyword posting lists. Specifically, the document IDs are stored en-
crypted with a keyword specific key. The querier hence would be able to decrypt
only those document IDs (in the merged list) which satisfy the query though he
would have to run decryption on all the posting elements. Hence, in our case
there is no need to store the keyword encoding separately with each posting
element.

A compliant index structure must also support deletion. An inverted index
contains sufficient information to reconstruct the set of indexed terms in a docu-
ment. For example, from the index in Figure 2.3(a) Bob can learn that document
3 contains the words Query, Data, Base and Index. From the set of words in a
document, an adversary can often infer its meaning (e.g., “fire next Thomas
week”). Thus it is critical to clean up the index when documents are deleted.

The easiest way to support deletion is to divide the documents into groups
called disposition group based on their commit times (e.g. all documents com-
mitted within a week form one group) and to create a separate index for every
disposition group, as shown in Figure 3. The expiry time of a posting list file is
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Expiry: Week 31, 2007 Expiry: Week 32, 2007 Expiry: Week 33, 2007
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List 3

List 4

X

X

Doc X

Fig. 3. The split index provides deletion by creating a separate index for each dispo-
sition group

set to that of the corresponding disposition group. Once the disposition group
expires, the posting list files are deleted. This deletion scheme is strongly secure:
after the posting lists are deleted, the adversary cannot get any information
about the deleted documents.

Unfortunately, this approach has very poor query performance. A single-
keyword query requires scanning as many posting list files as the number of
disposition groups spanned by the query interval. Mitra et al have proposed
more efficient techniques for supporting secure deletion with better query per-
formance by encrypting the posting list elements with a disposition group specific
key and adding noise terms [11]. Our scheme builds on top of this design by re-
placing the encryption of posting list elements with a new scheme, described in
Section 4.

3 Litigation Hold Approaches

In the rest of the paper, we consider a litigation hold request of the following
form:

Retain all documents which satisfy the query Q and were committed in dispo-
sition interval D

where Q is an arbitrary boolean keyword query involving conjunction of key-
words. (A disjunctive query can be implemented as a collection of several sep-
arate litigation holds.) All the documents committed in the disposition group
D must be retained in response to this hold request. (although we consider a
single disposition interval, the techniques are trivially extendible to multiple
disposition intervals).

As shown in Figure 1, Bob invokes the hold request at time thold. However, the
verification of whether all the documents subject to the hold have been retained
is done at a later point in time at tinsp, where tinsp could be after the expiry
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time of disposition group D. Bob must be able to verify that all the documents
in D satisfying his hold query Q have been retained.

3.1 Trivial Approach

The trivial approach to this problem is to require Mala to retain the entire in-
verted index for the documents in D till tinsp, along with the documents which
satisfy query Q. At tinsp. Bob can rerun Q on the index and get a list of docu-
ments satisfying Q. These are the documents which should have been retained
by Mala.

Since the index is on WORM, Mala cannot tamper with the index. When the
index expires, she can delete it and create a new tampered copy of the index.
However, Bob will be able to detect this attack by checking the create-time of
the index.

Unfortunately, this approach also lets Bob get information about documents
which do not satisfy his query. An inverted index contains sufficient information
to reconstruct the set of indexed terms in a document. For example, from the
index in Figure 1(a) Bob can learn that document 3 contains the words Query,
Data, Base and Index. From the set of words in a document, an adversary can
often infer its meaning (e.g., “fire Harriet tomorrow”).

This problem can be partially addressed by retaining only the posting lists of
keywords involved in the hold query Q. This prevents Bob from reconstructing
the contents of arbitrary documents. However, Bob can still learn about docu-
ments which do not satisfy his query. For example, even if no documents in D
match the query “Martha and Ralph”, Bob may learn that a large number of
documents contained the keyword “Martha” during that disposition and infer
sensitive information. (Normally, noise techniques proposed by Mitra et al [11]
prevent such leaks).

Furthermore, a large company may be involved in many separate pieces of
litigation and thus be subject to many holds. An auditor involved with one
litigation will have access to all of the documents corresponding to all other
litigation, which is undesirable.

3.2 Key-Policy Attribute-Based Encryption

A possible way to resolve this problem is to use Key-Policy Attribute-Based
Encryption (KP-ABE) [12]. KP-ABE allows one to encrypt a document together
with a set of attributes, and then to create a decryption key that allows the
decryption of only those documents that satisfy a particular access structure
over a document. An access structure can be thought of as a subset of 2A, where
A is a set of attributes; documents whose attribute set is in the structure are
said to satisfy the structure. As a simple example, a query such as A ∧ B can
define an access structure of all attributes sets S such that {A, B} ⊂ S.

Consider how an KP-ABE system would be used given attributes A, B, C, D
and documents M1, M2. Suppose the two documents were encrypted as follows:
E1 = Encrypt(M1, {A, B, C}) and E2 = Encrypt(M2, {A, C, D}). Then a key
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K1 corresponding to the access structure A ∧ B could be used to decrypt E1
but not E2. But K2, corresponding to the access structure A∧ (B ∨C) could be
used to decrypt both documents.

Mapping KP-ABE to our setting, each potential keyword could be assigned
to be an attribute. Each index entry for a keyword K occurring in document D
would then be encrypted under the set of keywords contained in D. Bob would
then be given a key corresponding to the litigation hold query, and he would be
able to decrypt only those index entries corresponding to documents matching
his query. Other index entries would be indistinguishable from noise terms. In
addition, all document contents can be encrypted with KP-ABE using the set of
keywords that occur in the document. This would further ensure that Bob could
not read any document that does not match his litigation hold, both among
the expired documents and those that are currently still within their retention
period. As such, Bob would be prevented from abusing his access to the WORM
drive to learn company trade secrets or other sensitive information.

However, this scheme has a fatal flaw. A document encrypted under KP-ABE
includes, in cleartext, the list of all the attributes that it is encrypted under.
This would allow Bob to easily reconstruct document contents from encrypted
index entries (or encrypted documents). Thus the situation is even worse than
with the trivial approach, since the KP-ABE encryption allows Bob to recover
all the keywords in the non-matching documents, rather than only those that
are a part of the litigation hold query.

We therefore design a scheme that is based on KP-ABE, but addresses this
flaw. It has the advantage that Bob cannot read any document that is not
covered by his query, but it also prevents the reconstruction attacks possible
with KP-ABE.

4 Encrypted Index with Per-query Keys

4.1 Preliminaries

Our scheme, as with KP-ABE, is based on using bilinear maps:

Definition 1 (Bilinear Map). Let G1, G2, GT be cyclic groups of same prime
order p, and let g1 and g2 be generators of G1 and G2 respectively. Then e :
G1 × G2 → GT is a bilinear map if:

1. For any a, b, x, y, e(ax, by) = e(a, b)xy (bilinearity)
2. e(g1, g2) �= 1 (non-degeneracy)

Efficiently-computable bilinear maps are created based on Weil and Tate pair-
ings over elliptic curves [13,14]. Usually, G1 = G2 (or equivalently, there is an
efficiently-computable isomorphism between G1 and G2 and vice versa.) How-
ever, we will use maps where G1 �= G2, because we need the following additional
assumption:
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Assumption 1 (External Diffie–Hellman (XDH)). Given groups G1, G2,
GT and a bilinear map e between them, the External Diffie–Hellman assumption
holds if the Decisional Diffie–Hellman problem is hard in G1. In other words,
there is no polynomial time algorithm that can decide whether, given ga

1 , gb
1, g

c
1,

c = ab with a non-negligible advantage.

It is easy to see that if G1 = G2, DDH is easy to solve by computing e(ga, gb) and
e(gc, g). However, in bilinear maps based on MNT curves [15], where G1 �= G2,
the XDH assumption is believed to hold [16].

We also require a variant of the standard Bilinear Diffie–Hellman (BDH)
assumption [17] for pairings where G1 �= G2:

Definition 2 (Asymmetric Bilinear Diffie–Hellman (ABDH)). Given
groups G1, G2, GT , with generators g1 of G1 and g2 of G2 and a bilinear map e
between them, the Asymmetric Bilinear Diffie–Hellman Assumption holds if there
is no efficient algorithm that, given as input ga

2 , gb
2, g

c
2, computes e(g1, g2)abc.

Note that due to the existence of an efficiently-computable isomorphism from
G2 to G1, this assumption is weaker than a variant that uses g1 rather than g2.

4.2 Set Up

We consider a collection of documents D = {D1, . . . , Dn} and a collection of
keywords K. For ease of exposition, we will assume that K ⊂ N, since the actual
names of the keywords do not matter for our purposes. Let k : D → 2K be the
function relating documents to keywords.

In our scheme, each document Di will be stored under a secret document
identifier, idi. In addition, each keyword will have a corresponding index of
encrypted document identifiers. In practice, the WORM drive can contain a
hash table mapping identifiers idi to file names. The secret identifier can also
be used to derive an encryption key for the document, making it impossible to
read a document without knowing its identifier.

For the purposes of encryption, Alice must generate a secret value s, as well as
secrets s1, . . . , sm corresponding to each keyword. These values can be computed
from a master secret as, e.g., an HMAC [18] of the keyword name. New secrets
will be computed for every disposition period.

Alice will also commit to WORM storage gs1
1 , . . . gsm

1 and e(g1, g2)s. These
will be used to verify the integrity of the per-query keys.

4.3 Storage

To store a document Di, the Alice picks a random identifier di. Then, for each
keyword j ∈ k(Di), Alice adds g

disj

1 to the index Ij . Finally, the document
identifier is calculated as idi = H(e(g1, g2)sdi), where H is a hash function.
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4.4 Lookup by Alice

Alice can easily use the indices to look up a document. For example, to look up
a document that has keywords k1 and k2, Alice first reads all the identifiers in
index Ik1 and raises them to the power s−1

k1
:

(
g

disk1
1

)s−1
k1 = gdi

1

She then performs the same transform on the index Ik2 and looks for matches.
Given gdi

1 that occurs in both sets, the document ID can easily be computed as
H(e(gdi

1 , g2)s).

4.5 Per-query Key

Alice can also generate a key that can be used by Bob without knowing the
per-keyword secrets. This key will allow the lookup of documents that match
all the keywords from a selected set. Given keywords k1, k2, . . . , kl, Alice picks
a1, . . . , al, such that:

sk1a1 + sk2a2 + · · · + skl
al ≡ s (mod p)

It is easy to see that a1, . . . , al−1 can be picked randomly, with al being used
to solve the remaining equation. Alice then gives ga1

2 , ga2
2 , . . . , gal

2 to Bob. Bob
can verify that they key is constructed correctly based on the committed values:

πl
i=1e(g

ski
1 , gai

2 ) = e(g1, g2)
�l

i=1 ski
ai = e(g1, g2)s

4.6 Lookup Using a Per-query Key

If Bob is in possession of a key corresponding to keywords k1, . . . , kl, he can find
documents matching the conjunction of these keywords as follows. First, f each
entry g

disk1
1 in index Ik1 , Bob computes the pairing:

e(gdisk1
1 , ga1

2 ) = e(g1, g2)disk1a1

Similar pairings are computed for each entry in indices Ik2 , . . . , Ikl
. Then for

each tuple of documents
(
e(g1, g2)di1sk1a1 , . . . , e(g1, g2)dil

skl
al

)
, Bob computes

the product:

l∏

j=1

e(g1, g2)
dij

skj
aj

If the entries in the tuple all correspond to the same document di, then the
result will be:

l∏

j=1

e(g1, g2)
diskj

aj =

e(g1, g2)(
�l

j=1 skj
aj)di = e(g1, g2)dis
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Which will make it possible to look up the document. If the di’s are not equal,
the result will be random, and the next tuple should be considered, until all of
|I1| · |I2| · · · |Il| tuples have been checked.

5 Proof of Security

In our scheme, we are concerned with two security properties. First, we want to
ensure that the auditor Bob is not able to read any expired document that does
not match the particular litigation hold query. Second, we want to prevent the
reconstruction attack, which entails hiding the existence of documents that are
not matched by a litigation hold.

5.1 Document Secrecy

To ensure document secrecy, the adversary must be unable to determine
e(g1, g2)ds for a document d for which he does not have a key. We set up the
document secrecy game as follow:

Definition 3 (Document Secrecy Game)

Parameters: The game is parameterized by groups G1, G2, GT , generators
g1, g2, bilinear map e and keyword set K.
Keyword selection: The adversary picks a set of keywords γ ⊂ K that he
wishes to be challenged upon.
Setup: The challenger picks secret parameters s, si and commits the public pa-
rameters gsi

2 , e(g1, g2)s to the adversary.
Challenge: The challenger picks a document id d and provides gdsi

1 for i ∈ γ.
Learning phase: The adversary submits to the challenger a polynomial num-
ber of queries γ′ ⊂ K such that γ′ �⊂ γ. For each γ′, the challenger returns the
corresponding decryption key {gai

2 }i∈γ′ such that
∑

i∈γ′ aisi = s.

Response: The adversary outputs ω, which is his best guess for e(g1, g2)sd.

In essence, the game requests that an adversary, given index entries for a docu-
ment that has keywords γ, must find out the corresponding document ID, while
being able to obtain decryption keys for any set of keywords, as long as one of
them is not in γ, and hence the keys should not allow the adversary to decrypt
the document ID. The advantage of an adversary is defined as:

Pr(ω = e(g1, g2)sd) − 1
|GT |

Theorem 1 (Document Secrecy)
For any polynomial-time adversary A that has advantage ε at the Document
Secrecy Game, there is a polynomial-time adversary A′ that has advantage ε at
the Asymmetric Bilinear Diffie–Hellman Game with the same groups.
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The proof of this theorem is modeled upon the proof of security of KP-ABE [12],
due to the similarities between the two schemes.

Proof. We build a simulator A′ that will solve the ABDH problem given A as
input. Recall that in the ABDH problem, A′ will be given (ga

2 , gb
2, g

c
2) and A′

must compute e(g1, g2)abc.
A′ starts by defining a set of keywords K and running A to obtain the challenge

keyword set γ. A′ now defines the secret parameters as follows: It picks ri ∈R Zp

for all i ∈ K. It then defines si = ri for i ∈ γ and si = bri for all i /∈ γ. It also
sets s = ab.

A′ outputs the public parameters: gsi
2 = gri

2 for i ∈ γ, gsi
2 =

(
gb
2
)ri for i /∈ γ,

and e(g1, g2)s = e(ga
1 , gb

2). (ga
1 can be obtained using the isomorphism φ from G2

to G1.)
A′ then outputs the challenge document, with d = c:

φ(gc
2)

ri = gcri
1 = gdsi

1

A′ then runs A, which will proceed to issue queries of the form γ′. Let γ′ =
{k1, . . . , kn}, and assume without loss of generality that k1 /∈ γ. A′ needs to
produce ga1

2 , . . . , gan
2 such that

∑n
i=1 aisi = s.

We first compute g
a′
1

2 , . . . , g
a′

n
2 such that

∑n
i=1 a′

iri = a. We do this by choosing
a′
2, . . . , a

′
n randomly and computing:

g
a′
1

2 =

(
ga
2

∏n
i=2 g

a′
iri

2

)r−1
1

For i ∈ γ, we set ai = a′
ib, and compute gai

2 =
(
gb
2
)a′

i . (Since i �= 1, a′
i is chosen

by A′.) For i /∈ γ, we set ai = a′
i. In both cases, we have that aisi = (a′

iri)b.
Therefore,

∑n
i=1 aisi = ab.

Finally, A will output ω as a guess for e(g1, g2)ds. If the guess is correct,
ω = e(g1, g2)abc by construction. Therefore, when A′ outputs ω, it will enjoy the
same advantage as A.

5.2 Reconstruction Attack

To prevent the reconstruction attack, we must ensure that an adversary does
not learn anything from the index, other than the identifiers of those documents
he should have access to. The noise terms added using the scheme from [11] can
be used to ensure that the size of each posting list reveals no information to the
attacker. In addition, we want to ensure that given two entries in two posting
lists, an attacker should be unable to discover whether those entries correspond
to the same or different documents. We therefore set up the reconstruction game
as follows.
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Definition 4 (Reconstruction Game).
Parameters: The game is parameterized by G1, G2, GT , g1, g2, e, and K.
Keyword selection: The adversary picks two keywords k1, k2 ∈ K that he
wishes to be challenged upon.
Setup: The challenger defines the private parameters si, s and the corresponding
public parameters gsi

2 and e(g1, g2)s.
Challenge: The challenger picks two document IDs, d0 and d1 and flips a coin
to obtain a bit β. He then sends the adversary gd0s1

1 and g
dβs2
1 , where s1, s2 are

secrets corresponding to keywords k1, k2, as defined in our scheme. If β = 0, dβ =
d0 and the two values belong to the same document, whereas if β = 1, they belong
to different ones.
Learning phase: The adversary can perform two types of queries. First, he can
pick a set of keywords K ′ and request to get the encrypted index entries for a
document that matches these keywords. I.e. the challenger has to produce gdsi

1
for each i ∈ K ′. Second, he can pick a set of keywords K ′′, such that ∃ki ∈ K

with ki �= k1, k2 and obtain the decryption key {g
akj

2 }kj∈K′′ . The adversary can
perform a polynomial number of either type of query.
Response: The adversary then outputs β′ as his best guess for β.
The two types of queries correspond to what Bob might be able to learn given
access to the WORM drive. The first query corresponds to finding index entries
corresponding to other documents with an arbitrary set of keywords. Such entries
may be obtained by using per-query keys for K ′, or through some external
knowledge of what documents may have been stored during disposition period D.
The second query corresponds to obtaining keys to litigation holds that include
some keyword other than k1 or k2. Such keys cannot be used to decrypt the two
challenge document IDs and to see if they match a real document.

We can define the advantage of an adversary playing the reconstruction game
as:

P [β′ = 0|β = 0] − P [β′ = 0|β = 1]

Theorem 2 (Reconstruction Security). For any polynomial-time adversary
A that has advantage ε in the Reconstruction Game, there exists a polynomial-
time adversary A′ that has an advantage ε in solving the Decisional Diffie–
Hellman problem in G1.

Proof. We prove the theorem by simulation. Given an adversary A, we construct
A′ as follows.

A′ takes as input g1, g
a
1 , gb

1, g
c
1 ∈ G1, its goal is to determine whether c = ab.

A′ starts by executing A to obtain the challenge keywords k1, k2.
A′ sets up the secret parameters by first picking random values ri for i ∈ K.

It assigns sk1 = rk1 , sk2 = rk2b, and si = ri(1 + b) for all others. It also picks a
random r and sets s = r(1 + b). Note that si are uniformly distributed for all i.
It then supplies the public parameters to A.
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g
sk1
1 = g

rk1
1

g
sk2
1 = (gb

1)
rk2

gsi
1 = (g1 · gb

1)
ri for all other i

e(g1, g2)s = e(g1 · gb
1, g

r
2)

A′ then challenges the adversary with (ga
1 )k1 and gc

1 to the adversary. Note
that if c = ab, then gc

1 = gas2
1 and so d0 = dβ = a. Otherwise, dβ = c/b �= a = d0.

For a query of type K ′ from A, A′ picks a random document number d and
then computes g

dsj

1 for each j ∈ K ′ as follows:

– If j = k1, A returns g
dsk1
1 , since both d and sk1 are known to A

– If j = k2, A returns
(
gb
1
)drk2 = g

dsk2
1

– If j �= k1, k2, A returns
(
g1 · gb

1
)rjd = g

drj(1+b)
1 = g

dsj

1

For a query of type K ′′, A′ needs to construct a set of aj such that∑
j∈K′′ ajsj = s. If k1, k2 /∈ K ′′, then we need to simply find {aj} such that∑
j∈K′′ ajrj = r. If k1 ∈ K ′′ or k2 ∈ K ′′, we can assign aj ’s by solving a system

of two equations. As an example, consider K ′′ = {k1, k2, k3}. In this case, we
need:

a1rk1 + a2rk2b + a3rk3(1 + b) = r(1 + b)

To find suitable aj ’s, we solve the following equations:

a1rk1 + a3rk3 = r

a2rk2 + a3rk3 = r

Since all the coefficients in the equations are known to A′, and there are three
unknowns, A′ can solve the equation and produce the correct key. In general,
there will be at least two unknowns since in addition to k1 or k2, K ′′ must
contain at least one more k3 �= k1, k2, so A′ can always solve the equation.

After A has made a polynomial number of queries and has output β, A′

outputs that c = ab if β = 0 and that c �= ab otherwise. Since A′ will be correct
whenever A is correct, they both enjoy the same advantage of ε.

6 Performance Evaluation

We carried out experiments both on micro-benchmark and on real-world data
set to evaluate our scheme. The hardware platform used in our experiments was
a 2.4 GHz 64-bit dual core Pentium IV machine running SUSE Linux. (Our tests
were single-threaded, so only a single core was in use.)

In our micro-benchmark application, all the posting elements were of the same
size and had the same set of document IDs. In other words, all the documents
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(a) Query Runtime

Fig. 4. Runtime overhead of our scheme. x axis plots the number of documents. y axis
shows the runtime in msecs.

satisfied the query. Figure 4 plots the total runtime as a function of the length
of the posting list (number of documents). The different curves correspond to
the different number of keywords in the query.

Based on these results, we have developed a model of the executing a query.
As described earlier, a query involving q keywords requires the following:

– A bilinear map computation on each posting element of the q query posting
lists. The total run time for this (b) is linear in the total length of the posting
lists

– A product computation in the group GT for each possible posting element
combination of the q posting lists. The run time (p) for this is proportional
to the number of such q posting element combinations, times the time for
each such modulo computation (proportional to q). For example, for a 2-
keyword query on two posting list of lengths l1 and l2, the number of modulo
computations is l1*l2.

The total runtime (r) is a linear combination of the above two:

r = cb ∗ b + cp ∗ p

By applying least square fitting, we obtained the values of 12.34ms and
0.056ms for cb and cp respectively. The runtime predicted by the model was
accurate within 3% in the average case and 6% in the worst case.
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As a micro-benchmark, we used a collection of 422,000 emails from the Enron
email corpus [8]. These emails were exchanged in the 2 year period from January
2000 to December 2001; we omitted the other 50,000 emails in the corpus because
they were sprinkled very thinly across the time periods of 1994–2000 and 2002–3.
Each email has a metadata tag identifying the sender, receiver, and the time the
email was sent. We use this time information to divide the email documents into
disposition groups of size 1 week. Noise terms are added to make the posting list
same across the disposition groups to some threshold length. Assuming a uniform
query model (each keyword equally likely to be queried) the average time for
answering a 1, 2,3 and 4 keyword query on each disposition group specific index
was 0.8, 1.9, 18.2 and 1034s respectively. The worst case query execution times
were 1.2, 3.0, 58.7s and 5461s respectively. This shows that queries with up to
three keywords can be practically supported. The cryptographic operations are
trivially parallelizable, so as multi-core systems become more common, the CPU
time needed to execute queries should be significantly reduced.

Another important consideration is the size of the index. In our experiments,
we had set the size of the group G1 to 320 bits. Each posting element hence is
320
8 = 40 bytes long. Although this inverted index is substantially bigger than

the unencrypted inverted index (it is about twice the size of the data corpus),
this is not a serious consideration given the low cost of storage. The entire Enron
email corpus is only a few GB in size, so the additional cost of the index storage
is pennies under current prices.

Index creation requires one bilinear pairing computation for obtaining the
document ID and as many modulo exponent computations as the number of
keywords in the documents. On our platform, indexing a 100 keyword document
takes about 200ms. Once again, multi-core architectures can be used to index
documents in parallel.

7 Related Work

The first scheme for searches on encrypted data was proposed by Song et al. [19],
with several improvements in following work [20,21,22]. Golle et al. extended
the notion to that of a conjunctive query [23], with improvements in following
work [24,25,26,27]. The conjunctive query work, while sharing similar goals to
ours, uses a model where there are a fixed number of fields, each of which has
a single keyword associated. The conjunctive query tests for the presence of
a keyword in a particular position. Therefore, they work well for queries on
structured fields (e.g., “From: Martha”, “To: Ralph”), but not full text indexing
of records.

KP-ABE is one of several schemes proposed for attribute-based encryp-
tion [28,29,30,12,31,32]. Much of the work concerns creating efficiently expressing
complex policies over attributes. As our construction is similar to KP-ABE [12],
it is possible to extend it to support the more general access structures found
therein, rather than simple conjunctive queries. However, since our approach re-
quires the enumeration of index entry tuples that may satisfy the query, it would
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negate the efficiency gains for complex policies. As discussed in Section 3.2, a
simple application of attribute-based encryption is insufficient for our needs due
to explicitly stated policies. Kapadia et al. have investigated hidden policies with
ABE [33], but they resort to a semi-trusted third party to enforce this property.

8 Conclusion

We have developed a new type of encrypted index. Our index allows the owner
to create a keys granting access to only a subset of the documents in the in-
dex that match a particular query. We showed how this scheme can be used
to address the litigation hold problems of compliance storage, and also to limit
potential abuse from auditors. We formally proved the security of our scheme
and demonstrated by experiments that it is practical for large databases and
moderately-sized queries. Our scheme may have applications beyond compliance
storage to other shared databases where people are to be given restricted access
based on attributes; it improves upon the Key-Policy Attribute-Based Encryp-
tion construction by being able to hide which attributes documents are encrypted
under.
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Abstract. In this paper, we present the Tree-List Certificate Valida-
tion (TLCV) scheme, which uses a novel tree-list structure to provide
efficient certificate validation. Under this scheme, users in a public-key
infrastructure (PKI) are partitioned into clusters and a separate black-
list of revoked certificates is maintained for each cluster. The validation
proof for each cluster’s blacklist comes in the form of a hash path and
a digital signature, similar to that used in a Certificate Revocation Tree
(CRT) [1]. A simple algorithm to derive an optimal number of clusters
that minimizes the TLCV response size was described. The benefits and
shortcomings of TLCV were examined. Simulations were carried out to
compare TLCV against a few other schemes and the performance met-
rics that were examined include computational overhead, network band-
width, overall user delay and storage overhead. In general, we find that
TLCV performs relatively well against the other schemes in most aspects.

1 Introduction

Certificate revocation and validation are important aspects of public-key in-
frastructures (PKIs). The digital certificate that binds a user’s identity to a
public-private keypair needs to be revoked when the private key has been com-
promised or due to other reasons which could cause a breach in security. Before
using a public-key of another user to verify a digital signature, the digital cer-
tificate associated with the key must be validated to ensure that it has not been
revoked. The same applies when one wishes to use a public-key of another user to
encrypt a document. In order for certificate revocation and validation to achieve
its purpose, the mechanism used must provide timely information to users and
be scalable for deployment. In this paper, we introduce the Tree-List Certifi-
cate Validation (TLCV) scheme, which uses a hybrid tree-list structure that is
efficient, practical and straightforward to implement.

One of the very first mechanisms proposed for certificate validation relied on
the use of a blacklist that contains serial numbers of revoked certificates. Such a
blacklist is referred to as the certificate revocation list (CRL) [2]. Most, if not all,
internet browsers support the downloading of a CRL for certificate validation
under the X.509 standard. One major drawback of using CRLs is that when the
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number of revocations is large, a large amount of response data would have to
be downloaded. In addition, the network bandwith that the distribution server
needs to support is also affected. To reduce the network bandwith required for
certificate validation, the Internet Engineering Taskforce (IETF) came up with
the Online Certificate Status Protocol (OCSP) [3], in which a server known
as an OCSP responder issues a signed response for each certificate validation
request. While OCSP provides small responses and has low network bandwidth
requirements, the need to compute a digital signature (which is an expensive
operation) for every response makes it non-scalable when the number of requests
is large. Variants of CRL have also been introduced for better performance.
Examples include the segmented CRL, over-issued CRL, sliding window delta
CRL [4], and more recently, the augmented CRL [5].

In [1], Kocher took a different approach by proposing a tree-based method
known as the certificate revocation tree (CRT) that provides reasonably small
responses for certificate validation. However, when changes to certificate status
occur, the entire tree needs to be reconstructed, incurring a substantial amount
of hash computations. In [6], Naor and Nissim introduced the authenticated
dictionary (AD) that uses a 2-3 tree in place of a binary tree to provide greater
efficiency when handling revocation updates. However, one shortcoming of AD
is that it is complicated and not straightforward to implement.

Based on insights gained from these works, we propose the TLCV scheme,
which uses a novel tree-list structure to provide better performance for certifi-
cate validation without the shortcomings faced by CRT or AD. We explain the
proposed tree-list structure and describe a simple algorithm to derive an op-
timal tree height that minimizes the response size for TLCV. We also discuss
the benefits and possible drawbacks when implementing TLCV, and compare
its performance against other previously proposed schemes with the use of sim-
ulations. The simulations were carried out based on a constant-rate certificate
arrival model, as well as a real-world model. Various aspects of performance,
including computational overhead, network bandwidth, overall user delay and
storage overhead, were examined. In general, we find that TLCV performs better
than most of the other schemes in most aspects.

2 Background

The certificate revocation tree (CRT) introduced by Kocher is a certificate revo-
cation and validation method that is based on a binary Merkle hash tree [1]. The
CRT arranges the serial numbers of revoked certificates in an ordered manner
and uses a path along the Merkle hash tree and a digitally signed root to verify
the integrity and authenticity of the certificate validation response. This allows
a certificate to be validated with a significantly smaller response as compared
to CRL. However, one problem of this solution is that the entire CRT needs to
be reconstructed when changes to certificate status occur, i.e. when there are
new revocations that have to be inserted or when expired revocations need to
be removed.
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In [6], Naor and Nissim introduced an Authenticated Dictionary (AD) as an
improvement over the CRT. The proposed AD is based on a 2-3 tree instead of
a binary tree. Using a 2-3 tree allows updates to be performed without the need
to reconstruct the entire tree. The insertion or deletion of a leaf node due to a
change in certificate status will only involve a re-computation of the hash path
for the associated leaf node. However, balancing a 2-3 tree is a complicated affair
and putting the AD into implementation is not straightforward. In this paper,
we introduce a practical and efficient tree-list structure that only requires re-
computing hash paths for changed leaf nodes and does not involve complicated
rebalancing of the tree. The number of hash paths that need to be recomputed
is at most that required for an AD and the size of a hash path is guaranteed to
be lesser than that of a CRT.

Other related works that have been carried out include works on the use of
interval cover families [7], skip lists [8], the hash-based NOVOMODO [9], the
QuasiModo Tree [10] and the Huffman Merkle Hash Tree [11]. Besides OCSP
and the various CRL schemes, only NOVOMODO is known to be implemented
and available for practical deployment in a PKI. In fact, we find that since the
introduction of the CRT, there has been no significant improvement to tree-based
certificate validation approaches without much implementation complications,
such as that exhibited by AD.

In this paper, introduce the TLCV scheme, which uses a hybrid tree-list struc-
ture that is efficient, practical and straightforward to implement. We conduct
experiments to compare the performance of TLCV against CRT, which TLCV is
based on, and AD, which is an efficient improvement over CRT. In addition, we
also compare TLCV against those schemes with known practical implementa-
tions – namely OCSP, ACRL [5] (the most efficient CRL variant known to date),
and NOVOMODO. Here, we note that OCSP differs from the other schemes in
that it is essentially an online mechanism that provides real-time certificate val-
idation, while the rest are based on periodic updates to certificate status or
revocation information. Nonetheless, we contend that it would be useful and in-
teresting to investigate how TLCV fares against OCSP, especially since OCSP
is an openly adopted certificate validation mechanism for the public internet.

3 The Tree-List Certificate Validation Scheme

3.1 Description of Scheme

The proposed Tree-List Certificate Validation (TLCV) scheme is based on par-
titioning users in a PKI into clusters. Under TLCV, the public-key certificate
issued for each keypair would include a cluster number in addition to the serial
number. The certificate authority (or revocation authority) maintains a separate
blacklist of revoked certificates for each cluster. Similar to CRT and AD, a hash
path, together with the cryptographically signed root of a hash tree, is used to
provide integrity protection and origin authentication for each cluster’s black
list. The blacklist for each cluster is first hashed using a secure one-way hash
function (e.g. SHA-1 or SHA-256) to produce the leaf node of a Merkle hash tree,
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Fig. 1. The proposed tree-list structure under the TLCV scheme

• Header: IssuerName (32 bytes)
Cluster Number (3)
LastUpdate (6)
NextUpdate (6)

• Data: Revoked Entries (10 bytes/entry)
- Serial Number (3)
- Revocation Date (6)
- Reason Code (1)

• Proof: Siblings of Hash Path (20 bytes/node)
- SHA-1 Hash (20)

Signed Root (RSA) (128)

Fig. 2. Format of a validation response under the TLCV scheme

as shown in Fig. 1. The rest of the tree is produced the same way as in a CRT,
i.e. the value of each non-leaf node is computed by hashing a concatenation of
the values of its children. The root of the Merkle hash tree is then signed (e.g.
using RSA) together with a timestamp and other relevant information that is
to be included in the validation response. The resulting digital signature and
the hash path provided can then be used to verify whether the contents of the
response have been received correctly and whether the response originated from
the trusted certification authority.

With this scheme, each public-key certificate would now contain an addi-
tional field for the cluster number. During certificate validation, a user sends a
request containing the cluster number of the certificate in question. The response
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contains the blacklist for the cluster, the siblings of the hash path associated
with the blacklist, and the signed root (see Fig. 2).

Under TLCV, the size of a response depends on the number of revoked cer-
tificates in a cluster and the size of the hash path. Let Nr denote the total
number of revoked certificates in the PKI population and C denote the number
of clusters (note that this is equal to the number of leaf nodes in the tree – in
the case of a binary tree, C = 2h for some positive integer h). Assuming that
the revoked certificates are uniformly distributed across the clusters, then the
average number of revoked certificates in each cluster would be

Nc = Nr

C . (1)

The size of each hash path in the tree is given by h = log2 C. Hence, the size
of a response under the TLCV scheme effectively depends on C (or h) and Nr.
In a study performed in [12], the authors showed that Nr reaches a constant
value after a certain duration of time, as new revocations are balanced by revo-
cations that expire. Furthermore, we note that in most PKI deployments, the
PKI population is known and is more or less fixed. If the number of revocations
at steady state is known, or if this can be predicted or estimated given the PKI
population size, then we can use the information to determine a suitable value
for C (or h) such that the size of the response is minimized. Henceforth, we shall
assume that Nr refers to the number of revoked certificates at steady state.

3.2 Finding the Optimal Number of Clusters

Based on the response format shown in Fig. 2 and assuming that the revoked
certificates are uniformly distributed across clusters, the size of a validation
response under TLCV is

Sresp = Sheader + Sentry

�
Nr

C

�
+ Shash (log2 C) + Ssign (2)

When expressed in terms of the height of the tree, we have

Sresp = Sheader + Sentry

�
Nr

2h

�
+ Shash (h) + Ssign . (3)

Our aim is to obtain the value of C or h that minimizes Sresp. Using (2), we solve for
the value of C that satisfies

min

�
Sheader + Sentry

�
Nr

C

�
+ Shash (log2 C) + Ssign

�
. (4)

and obtain the optimal number of clusters and tree height as

C∗ =
SentryNrloge2

Shash
. (5)

h∗ = log2

(
SentryNrloge2

Shash

)

. (6)



A Practical and Efficient Tree-List Structure 397

Fig. 3. Graph of response size Sresp against number of revoked certificates Nr for the
various tree-based certificate validation schemes

However, the h∗ derived from (6) may not necessarily be a positive integer. To
ensure that this condition is met, we replace (5) and (6) with the following:

C∗ = 2�log2(SentryNrloge2/Shash)� . (7)

h∗ =
⌈

log2

(
SentryNrloge2

Shash

)⌉

. (8)

In this case, (7) and (8) give approximations to the optimal number of clusters
and tree height. We now describe a simple algorithm that allows us to obtain
the precise optimal number of clusters that minimizes the response size:

1. Based on the known (or estimated) number of revoked certificates at steady
state, compute h∗ using (8).

2. Compute Sresp by substituting h = h∗ into (3) to obtain s. Repeat with
h = h∗ − 1 and h = h∗ + 1 to obtain s− and s+ respectively.

3. (a) If s ≤ s− and s ≤ s+, then h∗ is the optimal tree height. Output C = 2h∗
.

(b) Otherwise, obtain s′ = min(s−, s+). The corresponding value of h, say
h′, gives the optimal tree height. (This can be verified by checking that
the values of Sresp obtained from h′ − 1 and h′ + 1 are greater than or
equal to that obtained from h′.) Output C = 2h′

.

Using this algorithm, we can construct a tree-list structure that guarantees a
low response size. Fig. 3 shows the graph of response size against Nr for TLCV
compared with CRT and AD (in the average case and for a full ternary tree).
The responses for CRT and AD are assumed to be of the format shown in Fig. 4.
From the graph, we find that TLCV generally provides smaller responses than
the other tree-based schemes.

3.3 Benefits and Drawbacks of TLCV

In this section, we discuss the benefits and possible drawbacks of TLCV. The
benefits of TLCV can be listed as follows:
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• Header: IssuerName (32 bytes)
LastUpdate (6)
NextUpdate (6)

• Data: 2-tuple (S1, S2) (6)
Revocation Date for S2 (6)
Reason Code (1)

• Proof: Siblings of Hash Path (20 bytes/node)
- SHA-1 Hash (20)

Signed Root (RSA) (128)

Fig. 4. Format of a validation response under CRT and AD

– Just like CRT and AD, TLCV only requires the computation of a single dig-
ital signature during each update period. While additional hash operations
need to be performed, the time taken for them is only a small fraction of
that required for a signature. This is an advantage over on-demand schemes
like OCSP, whereby a signature needs to be computed for every response,
causing scalability problems when the number of requests get large.

– Changes to revocation entries only affect the path from the affected leaf node
(corresponding to the cluster the revoked certificate is in) to the root node.
In cases whereby multiple revoked certificates belong to the same cluster,
only a single path needs to be updated for those revocations. Moreover, at
the optimal number of clusters, the height of a TLCV is lower than that
for a CRT or AD, i.e. the hash path for a TLCV is shorter than that for
CRT and AD. Hence, during each update, the number of hash computations
required for a TLCV is lesser than that required for a CRT or an AD.

– Unlike AD, there is no need to rebalance the tree for TLCV. The structure
of the tree remains the same as only the contents of the leaf nodes change.
The updating of a TLCV is straightforward and easier to implement than
an AD based on a 2-3 tree.

– As witnessed in the previous section, the response size of TLCV is smaller
than that of CRT or AD. Consequently, the network bandwidth required to
support the download of validation responses under TLCV is expected to be
smaller than that under CRT or AD.

On the other hand, some possible drawbacks to TLCV are as follows:

– There is a need to have an a priori knowledge of the PKI population size and
revocation rate in order to determine the optimal number of clusters. While
the PKI population size can be pre-determined in many cases, information on
the revocation rate may not be readily available. Under such circumstances,
an estimate for the revocation rate would have to be used.

– If the size of the PKI population changes drastically or the actual number of
revoked certificates at steady state differs greatly from what was expected,
the number of clusters may not be optimal anymore. This could possibly
affect the performance of TLCV.
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Table 1. Ranges of Nr and the corresponding h∗ under optimal TLCV

Nr h∗

1,024 - 2,047 9

2,048 - 4,095 10

4,096 - 8,191 11

8,192 - 16,383 12

16,384 - 32,767 13

32,768 - 65,535 14

65,536 - 131,071 15

– When deriving the optimal TLCV, it is assumed that the number of revoked
certificates is uniform across different clusters. However, in a real-life sce-
nario, clusters may have unequal numbers of revoked certificates. Thus, a
client could end up downloading a larger response if the certificate to be val-
idated belongs to a cluster that has a larger number of revoked certificates.

In general, the first two drawbacks would be more significant in a highly
dynamic environment, where users join or leave the PKI in an unpredictable
fashion and the number of users in the PKI varies drastically with time. In
a fixed organization whereby the number of users is more or less stable, those
drawbacks would have a lesser effect TLCV. With regards to the third drawback,
we note that if the certificate to be validated is equally likely to be from any
cluster, then the size of data downloaded will be averaged out due to clusters that
have smaller number of revoked certificates (i.e. smaller responses). However, if
the certificate to be validated is more likely to belong to a cluster containing a
larger number of revoked certificates, the performance of TLCV would suffer.

3.4 Effects of Deviations to Expected Nr

In this section, we investigate how the TLCV scheme would be affected if the
number of revoked certificates happens to differ from its expected value. We first
investigate how changes in the total number of revoked certificates could affect
the performance of TLCV by examining the optimal TLCV tree height h∗ for
various ranges of Nr. From Table 1, we see that if h∗ = h is the optimal tree
height for Nr = n, then the optimal tree height for Nr = 2n would be h∗ = h+1.
In other words, if the actual value of Nr is double of what was expected, then
the height of the TLCV tree would need to be increased by one in order for it
to be optimal. (This is characteristic of a binary tree, where the number of leaf
nodes in the tree doubles each time the height is increased by one). This suggests
that on the average, TLCV would only deviate from optimality if the number of
revoked certificates at steady state is double or more than double of what was
initially expected.

Table 2 shows the response sizes for the various tree-based schemes, including
the cases of TLCV where the tree height is not optimal (represented by TLCV#2,
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Table 2. Comparison of response sizes (in bytes) for non-optimal TLCV

Nr Sresp

TLCV Non-optimal TLCV CRT AD
#2 #5 #10 (avg) (full)

1,000 374 393 451 588 385 440 465

5,000 419 424 530 706 445 500 505

10,000 439 444 550 726 465 530 545

50,000 486 496 537 639 505 575 585

100,000 506 516 557 659 525 605 625

TLCV#5 and TLCV#10). TLCV#2 represents the case where the TLCV was
designed to provide optimal response size for 1

2Nr, i.e. the tree height is opti-
mal for 1

2Nr (but not Nr). TLCV#5 and TLCV#10 represent the cases where
the TLCV was designed to provide optimal response size for 1

5Nr and 1
10Nr re-

spectively. The results under these columns correspond to the situation whereby
the actual number of revoked certificate at steady-state is twice, five times and
ten times (respectively) of what was initially expected for the PKI. From the
table, we find that TLCV#2 performs reasonably well, with slightly larger re-
sponse sizes than CRT but smaller than those achieved under AD. TLCV#5
has slightly larger response sizes than AD when Nr is below 50,000 but smaller
response sizes for Nr = 50,000 and 100,000. TLCV#10 gives responses that
are around 25-50% larger than the responses obtained under CRT and 5-30%
larger than the responses obtained under AD. This shows that the performance
of TLCV would only deteriorate to levels below that of AD if the actual number
of revoked certificates at steady state is drastically larger (over five times more)
than what was initially expected.

In summary, we find that TLCV can still perform at an optimal level if the
number of revoked certificates deviate slightly from its expected value. Even
when the deviation is large enough to cause the TLCV to become non-optimal,
performance gains over the other schemes can still be achieved unless the devi-
ation is drastically larger (over five times more) than the expected value.

3.5 Mitigating Drawbacks with Adaptation

To improve the performance of TLCV in a highly dynamic environment that
causes Nr to deviate drastically from its expected value, adaptive changes to
the tree-list structure can be made during the deployment of TLCV. The tree-
list structure can be easily adapted to regain optimality in situations when the
actual value for Nr is drastically different from its expected value. When Nr is
overestimated, the resulting number of clusters would be greater than optimal. In
order to compensate for this, we can combine the cluster lists to obtain a reduced
tree, as shown in Fig. 5. The lists for two adjacent clusters are combined into a
single new list and the leaf node (corresponding to the new list) of the resulting
Merkle hash tree would be the parent of the original leaf nodes corresponding
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Fig. 5. Adapting the TLCV structure when Nr is overestimated

to the original lists. The new Merkle hash tree would simply be the original
tree with its leaf nodes removed and the tree height reduced by one. Hence, the
hash nodes are reused and there is no need to make any new hash computations.
However, the new validation response would need to include an additional cluster
number since both cluster numbers are required to identify the separate clusters
within the new list. Based on Fig. 2, this would only incur an additional 3 bytes
in the response.

On the other hand, if Nr is underestimated, there will be a need to increase
the number of clusters and expand the tree, as shown in Fig. 6. In this case, the
number of clusters is doubled and new leaf nodes are added for the revocation
lists corresponding to the new clusters. New users joining the PKI would then be
assigned to those new clusters when they apply for their digital certificates. The
existing nodes from the original Merkle hash tree will be reused and need not
be recomputed. The original root node now becomes the child of the new root
and the height of the Merkle hash tree is increased by one. Hash values would
have to be computed for the intermediate nodes that lie along the new paths
between the new leaf nodes and the new root. We note that this adaptation is
useful for PKIs where new membership can be expected and possibly result in
an increase in the size of the PKI population. In PKIs whereby the users are
fixed, then such an adaptation would not be applicable.



402 T.-L. Lim, A. Lakshminarayanan, and V. Saksen

Fig. 6. Adapting the TLCV structure when Nr is underestimated

4 Performance Analysis

In this section, we conduct simulations in Matlab to analyze the performance
of TLCV against a few other schemes, namely CRT, AD, OCSP, NOVOMODO
and ACRL. We note that OCSP differs from the other schemes in that it is an
online mechanism that provides real-time certificate validation, while the rest
are based on periodic updates to certificate status or revocation information.
While this is the case, we contend that it would be interesting to find out how
TLCV fares against OCSP.

4.1 PKI Assumptions

We assume a PKI population of N users, whereby each user owns a single asym-
metric key pair and a public-key certificate that binds the user to the key pair.
Each certificate is valid for a duration L, after which it expires and is renewed
(replaced by a new certificate) if it has not been revoked. Clients validate cer-
tificates (receive certificates that have not expired) at an average rate of v per
client. Certificates are revoked at a constant rate rr and revoked certificates
expire at a rate rx. In addition, the following assumptions were made:

– L = 365 days
– v = 10 certs/day
– rr = 0.05% × N = 0.0005N certs/day = rx
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Fig. 7. The network architecture for certificate validation

As in [4], we assume further that the total number of certificates that have been
revoked and have not yet expired at any one time is given by Nr = 1

2rrL =
0.0913N . If valid certificates expire at a rate rv and the proportion of valid cer-
tificates that expire each day is the same as the proportion of revoked certificates
that expire each day, then

rv

N
=

rr

Nr

⇔ rv =
rr

Nr
N = 0.00548N certs/day

The total number of unexpired certificates in circulation, is Ntotal = N + Nr =
1.0913N . Hence, when a client receives a certificate that has not expired, the
probability that it is revoked is Pr = Nr

Ntotal
= 0.08 and the probability that it is

valid is Pv = 1 − Pr = 0.92.

4.2 Certificate Validation System Model

For the underlying certificate validation network, we assume a basic model shown
in Fig. 7. The model comprises a CA and a validation server (VS) that clients
connect to for certificate validation. All clients in the PKI are served by a single
VS. When validating a certificate, the client sends a request to the VS and the
VS replies with a response comprising the validation data, and a proof that
provides evidence on the authenticity of the information. The response formats
for the different schemes are assumed to be similar, except for the validation
data and proof that is specific to each scheme. For TLCV, we assume the format
shown in Fig. 2 and for CRT and AD, we assume the format shown in Fig. 4.
The response formats for the other schemes are shown in Fig. 8.

For the arrival of digital certificates to clients, we consider two different mod-
els. The first model is the constant-rate model adopted by Cooper in [4]. In this
model, each client receives certificates for validation at a constant rate v and the
inter-arrival time between two successive certificates can be modelled using an
exponential distribution with mean 1

v . The second model is a real-world model
that more accurately reflects the actual deployment and operation of an infor-
mation technology (IT) infrastructure. It is based on the daily activity within
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OCSP
• Header: IssuerName (32 bytes)

EffectiveTime (6)

• Data: Certificate Status (1)
Revocation Date (6)
Reason Code (1)

• Proof: RSA Signature (128)

NOVOMODO
• Header: IssuerName (32 bytes)

LastUpdate (6)
NextUpdate(6)

• Data: Certificate Status (1)
Revocation Date (6)
Reason Code (1)

• Proof: SHA-1 Hash (20)

ACRL
• Header: Same as NOVOMODO (44 bytes)

• Data: CRL Entries (10 bytes/entry)
- Serial Number (3)
- Revocation Date (6)
- Reason Code (1)

Expired Entries (3 bytes/entry)
- Serial Number (3)

• Proof: RSA Signature (128)

Fig. 8. Formats of validation responses for OCSP, NOVOMODO and ACRL

Fig. 9. The email arrival pattern (obtained by summing the email arrivals over 1 min
intervals) for an organization of 700 employees on a single workday
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an organization, i.e. the load during working hours is expected to be heavy while
the load outside working hours would be light or close to zero. To model such a
load pattern, we can either gather statistics on webpage requests made by users
from a web server, or we can gather email arrival statistics from an email server.
In this paper, we shall adopt the latter approach.

Statistics on email arrivals were collected from an email server in an organi-
zation of approximately 700 employees. The email arrivals for all work days in
a single month were consolidated, from which the average email arrival pattern
for a single work day was derived. Fig. 9 shows the resulting graph. This was ex-
trapolated to model a PKI of N users, each validating certificates at an average
rate v for each day.

4.3 Performance Metrics

In our performance analysis, we make use of some typical metrics that can be
used to determine the scalability of each scheme for implementation and deploy-
ment in a PKI. The metrics are:

– Peak computational overhead. We assume that the main overhead comes
from cryptographic computations and measure computational costs in terms
of the total time taken for cryptographic operations. The following costs are
assumed based on benchmarks obtained in [13]:

• time to compute an RSA signature, Tsign = 5 ms
• time to verify an RSA signature, Tverify = 0.2 ms
• time to compute a SHA-1 hash, Thash = 0.3 μs

– Peak network bandwidth required at VS. Network bandwidth is ob-
tained by computing the number of bytes transmitted from the VS to clients
per unit time.

– Peak delay experienced by a client. This is measured by summing the
peak computational time, the time taken to transfer the relevant data struc-
tures between the CA and the VS, the peak network delay between the VS
and a client, and the computational time required at the client.

– Storage overhead at VS. This gives the amount of storage memory re-
quired at the VS.

4.4 Simulation Setup

Simulations were carried out on the optimized TLCV, as well as the non-optimal
TLCV (labelled TLCV#), using Matlab. For TLCV#, we assume that the num-
ber of revoked certificates is under-estimated by one-fifth, i.e. the actual Nr is
five times the estimated Nr. Other schemes that were also simulated include
CRT, AD, ACRL, NOVOMODO and OCSP. For the periodic schemes (schemes
other than OCSP), the interval for updating the revocation information at the
VS was set to one minute in order to make certificate validation as close to real-
time as possible without incurring an unreasonable overhead. Separate sets of
simulations were conducted under Cooper’s constant-rate model, as well as the
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Fig. 10. Graph of peak computational overhead against N under the constant-rate
model (left), and the real-world model (right)

real-world model, with the average rate of certificate arrival at each client set
to v = 10 certs/day. The simulations were carried out for various values of N
between 100,000 to 1 million.

4.5 Results and Discussion

Peak Computational Overhead. Fig. 10 shows results for peak computa-
tional overhead under Cooper’s constant-rate model and the real-world model.
TLCV performs well since only one digital signature needs to be computed at
every revocation update and the additional hash computations make up an al-
most negligible fraction of the time taken for computing a digital signature. The
same goes for AD. ACRL has similar computational overheads since only one
digital signature needs to be computed per update. CRT has higher compu-
tational costs than TLCV, TLCV# and AD due to the large number of hash
operations required to reconstruct the entire tree. OCSP experiences the highest
amount of computations due to the large number of digital signatures that have
to be computed for the responses. NOVOMODO also experiences a relatively
large computational overhead due to the computation of hash chains for new
validity targets when expired certificates are renewed and revoked certificates
are replaced.

Table 3. Number of hash operations per update for tree-based schemes

N CRT AD TLCV TLCV#

100,000 32,767 30 26 20
300,000 65,535 48 42 36
500,000 131,071 51 45 39

1,000,000 262,143 90 80 70
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Fig. 11. Graph of peak network bandwidth required at the VS against N under the
constant-rate model (left), and the real-world model (right)

Table 3 shows the number of hash operations required at the CA (similarly,
at the VS) under the tree-based schemes during each update. From the table, we
see that TLCV and TLCV# require lesser hash operations than both AD and
CRT. This is because the height of a TLCV tree is generally smaller than that for
CRT or AD, which results in a shorter hash path that needs to be re-computed
when a change occurs. We note that the non-optimal TLCV# performs better
than optimized TLCV because the optimization was carried out with respect
to response size rather than computational overhead. In the following sections,
we will see that response size has a greater effect on the performance of both
schemes and TLCV has the edge over TLCV# in terms of overall performance.

Peak Network Bandwidth at VS. From Fig. 11, we find that TLCV re-
quires lower network bandwidth than CRT and AD. This is due to its smaller
response size, as witnessed in Table 2. While TLCV# requires slightly larger net-
work bandwidth than CRT, it is still lesser than AD. Comparing TLCV against
ACRL, we find that TLCV performs better for larger N (when N ≥ 700, 000
under Cooper’s constant-rate model and N ≥ 600, 000 under the real-world
model). This is because for larger user populations, the size of the revocation
list grows tremendously, causing the performance of ACRL to deteriorate. OCSP
and NOVOMODO require smaller network bandwidths than TLCV due to their
smaller response sizes, making them perform better than TLCV in this aspect.

Peak Delay at Client. Fig. 12 shows the peak delay experienced by a client.
Under Cooper’s constant-rate model, we find that TLCV performs better than
most of the schemes, losing out only to ACRL in the range of 100, 000 ≤ N ≤
600, 000. For the range N ≥ 700, 000, TLCV performs the best. Under the real-
world model, TLCV performs better than than most of the schemes as well. In
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Fig. 12. Graph of peak delay against N under the constant-rate model (left), and the
real-world model (right)

Fig. 13. Graph of storage overhead at VS against N . (The graph on the right is a
scaled version of the graph on the left, with results for NOVOMODO excluded.).

the range 100, 000 ≤ N ≤ 600, 000, only ACRL performs better and in the range
700, 000 ≤ N ≤ 1 million, only NOVOMODO performs better. These results
show that in terms of overall performance (considering the sum of computational
delay and network delay), TLCV performs better than most of the schemes. In
fact, TLCV performs the best among the tree-based schemes.

Storage Overhead at VS. Fig. 13 shows results for storage overhead at the
VS. OCSP has negligible storage overhead since it does not store any data at the
VS. However, it requires a secure connection with the CA to retrieve revocation
information from the CA and secure storage for the secret key that is used
to sign the responses. This requires the VS to be trusted and secured against
tampering, which implies extra overhead. On the other hand, TLCV, CRT, AD
and ACRL can be deployed with untrusted VS since the data structures are
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integrity-protected by the signature pre-computed by the CA. In general, we
find that TLCV incurs lower storage overhead than CRT or AD and slightly
larger storage overhead than ACRL. Non-optimal TLCV# incurs the lowest
storage overhead among the various schemes but this comes at the expense of
larger response size and overall delay.

Summary of Results. In general, we find that TLCV performs well compared
against the other schemes. Among the tree-based schemes, TLCV requires lesser
computations, network bandwidth, client delays and storage than CRT or AD.
Comparing TLCV against OCSP and NOVOMODO, we find that while OCSP
and NOVOMODO require smaller network bandwidths to support, the large
computational overheads incurred cause them to perform poorly against TLCV.
Moreover, both schemes require the VS to be trusted and secured against tam-
pering since cryptographic secrets are kept at the VS. This incurs additional
costs to these two schemes. Moreover, NOVOMODO requires an extremely large
storage overhead. Comparing TLCV against ACRL, we find that both schemes
perform closely in all four areas. In terms of network bandwidth and overall
client delay, TLCV performs better for larger N and ACRL performs better for
smaller N .

Considering results for non-optimal TLCV#, we find that while the network
bandwidth and overall client delay deteriorates when TLCV deviates from opti-
mality, this deterioration is not very significant even when the actual Nr is five
times more than what was initially expected. TLCV# is still able to perform
better than CRT, and performs close to AD. Moreover, TLCV# has a slight
edge over the rest of the schemes in certain aspects, for example computational
overhead and storage overhead.

5 Conclusion

We presented a novel tree-list structure for efficient certificate validation that
partitions users into clusters and maintains a blacklist of revoked certificate for
each cluster. We described a simple algorithm to obtain the optimal number
of clusters that gives the minimal response size. We discussed the benefits and
shortcomings of TLCV and performed simulations to compare its performance
against a few other certificate validation schemes. From the results, we find that
TLCV performs better than most of the other schemes in most aspects.
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Abstract. In this paper, we present an analysis of the CCM mode of
operations and of a slight variant. CCM is a simple and efficient en-
cryption scheme which combines a CBC-MAC authentication scheme
with the counter mode of encryption. It is used in several standards.
Despite some criticisms (mainly this mode is not online, and requires
non-repeating nonces), it has nice features that make it worth to study.

One important fact is that, while the privacy of CCM is provably garan-
teed up to the birthday paradox, the authenticity of CCM seems to be
garanteed beyond that. There is a proof by Jonsson up to the birthday
paradox bound, but going beyond it seems to be out of reach with current
techniques. Nevertheless, by using pseudo-random functions and not per-
mutations in the counter mode and an authentication key different from
the privacy key, we prove security beyond the birthday paradox.

We also wonder if the main criticisms against CCM can be avoided:
what is the security of the CCM mode when the nonces can be repeated,
(and) when the length of the associated data or message length is miss-
ing to make CCM on-line. We show generic attacks against authenticity
in these cases. The complexity of these attacks is under the birthday
paradox bound. It shows that the lengths of the associated data and the
message, as well as the nonces that do not repeat are important elements
of the security of CCM and cannot be avoided without significantly de-
creasing the security.

Keywords: CCM, CBC-MAC, Counter mode.

1 Introduction

CCM stands for CTR + CBC-MAC and has been proposed by Doug Whiting,
Russ Housley and Niels Ferguson. It is an authenticated encryption scheme based
on the MAC-then-encrypt generic construction. It is interesting since it uses two
very popular symmetric key schemes which are implemented in a lot of products
and so, CCM can be constructed using “on the shelf” functions. It is used in
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many standards of wireless networks such as IEEE 802.11 [22] (WiFi), IEEE
802.15.40 (Wireless Personal Area Network/ZigBee), standards of the internet
in the RFC 3610 and RFC 4309 and finally in the NIST SP 800-38C [10].

The security of CCM is very interesting since it relies on some padding or for-
matting functions. Such requirements are not appreciated in general and cryp-
tographers try to avoid such properties: for example, the security should not
hold only because the length of the message is included in some message block.
However, such specific requirements have been used before to construct hash
function as in the Merkle-Damgard transformation of compression function to
hash function or in order to make secure the CBC-MAC function for messages of
arbitrarily length. It is a well-known property that messages that include their
length in the first block are prefix-free and such property can be used to avoid
classical attacks on the CBC-MAC.

CCM has also been criticized by some authors [19] who highlight three effi-
ciency issues: “CCM is not on-line, CCM disrupts word-alignment, and CCM
can’t preprocess static associated data”. The main issue is that CCM is not
on-line since the sender has to know the length of the message before the be-
ginning of the encryption. The two other critiques concern the associated data.
Consequently, we have tried to see whether such criticisms can be avoided in the
attack part of this paper.

1.1 Related Works

The security notions of symmetric encryption schemes have been intensively ex-
plored [2,3,5,9,14] and are now well understood. This background has allowed to
design and analyze several operating modes [2,15,17,7] for symmetric authenti-
cated encryption.

In this vein, two main authenticated encryption schemes with associated data
were designed: AEX [7] and CCM [21]. They both are two-pass modes with
non-repeating nonces and they both have been proved secure [12,7] until 2n/2

encryption queries for privacy and integrity. This bound is a classical bound
and an encryption scheme secure up to this bound is commonly considered as
secure. According to Jonsson, the privacy of CCM cannot be proved beyond the
birthday paradox. However maybe the scheme is a good authentication scheme
beyond this bound. At the end of his paper, Jonsson explains that if the CCM
security is guaranteed until 2n/2 encryption queries, no attack which reaches
this bound is known. Jonsson left as an open problem to fill the gap between
the better known attack in 2n encryption queries and this security bound. More
precisely, he conjectures a security in 2n encryption queries.

1.2 Our Results

The first part of our result concerns the presentation of an encryption scheme
secure beyond the birthday paradox bound. We rely on CCM and propose a
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slight variant of the CCM mode for which we are able to give a security proof
beyond the birthday paradox for privacy and authenticity. We do not alter CCM
too much to preserve some interesting properties. Precisely, we replace the block
cipher used in the counter mode with a pseudo-random function. If one wants
to base the security of the scheme on block cipher security, this pseudo-random
function can be built using several block ciphers such as in [4,11,16]. Another
alternative is to use the compression function of a hash function, where the key
takes the place of the IV. This solution relies on the non classical assumption,
that the compression function is a good pseudorandom function. However this
assumption is more and more common [1,8] and is realistic. The privacy proof
is a consequence of the privacy of the counter (CTR) mode when it is used with
a random function. The authentication proof is built upon a method from [15]
using the fact that with CTR, the encryption of the tag cannot be distinguished
from a random bit string. Therefore one does not have to generate the tag to
simulate the encryption.

In the second part of this paper, we try to justify why the non-repeating
nonces and the length of the message and of the associated data are required
for the security of CCM. All the attacks do apply to CCM and to the modified
version that we propose, but we focus on the consequences for CCM, since CCM
is standardized. We exhibit three attacks against the authenticity of the scheme.
We, among others, worry about the “non-repeating” feature of the nonces. In a
two party setting, it is easy to check such requirement since the two parties can
maintain a counter. However, when several parties want to communicate to each
other using the same key, it is difficult to maintain a global variable distributed
among the participants. Consequently, the security of CCM with random nonces
is an important issue.

In our first attack, we show a generic attack that requires 2(�+t)/2+2� encryp-
tion messages, where � is the nonces length and t is the length of the MAC. This
attack is more theoretical than practical but it shows that the expected security
bound of 2n cannot be reached with random nonces.

Our second attack shows that when random nonces are used and when the
length of the associated data is missing, 2�/2 encryption queries allows to forge
a valid encrypted message (note that in practice � < n). It implies that if one
want to remove the length of associated data to be able to preprocess static
associated data, then one decreases CCM security under the proven birthday
paradox bound.

Finally, our third attack shows that if random nonces are used and if the length
of the message is not included in the padding function, then the authenticity of
the scheme can be broken using 22�/3 queries. It implies that if � ≤ 3n/4 = 96
(which is realistic) and one wants to be able to make on-line encryption, then one
decreases the security of CCM under the birthday paradox bound once more.

These attacks show that the security of CCM relies on the non-repeating
nonce property and on the length of the message and of the associated data that
is added before the message and make them prefix-free. This property is very
useful to design secure encryption and authenticated schemes.
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1.3 Organization

In section 2, we describe the CCM authenticated encrypted scheme. Then, we
show our security proof beyond the birthday paradox for the authenticity and
privacy in section 3. In Section 4, we describe some attacks that show why the
non-classical assumptions, non-repeating nonces and prefix-free messages are
important.

2 Security Notions

In the sequel, we briefly recall the basic security notions for blockciphers, pseudo-
random functions, and symmetric encryption schemes. For the latter, we are
interested into the integrity (we indistinctly use the words integrity and au-
thentication in the sequel) and the privacy. The definitions we use are derived
from [2,5].

Conventions. When an adversary A can interact with an oracle O and at the
end of the interaction outputs b, it is denoted by AO ⇒ b. If B and C are
two events, the probability that the event B occurs, knowing the event C is
denoted by Pr[B|C]. When an adversary is involved in an event, the probability
is considered upon the adversary random coins.

Let S be a set of bit strings and let x and x′ be a couple of bit strings from S,
we denote by x ⊂ x′ the fact that x is a prefix of x′. The set S is prefix-free if for
all couples (x, x′) ∈ S2, x ⊂ x′ implies that x = x′. An adversary is said prefix-
free if the set of the queries that it made to all the oracles, forms a prefix-free
set. Finally, we denote by lsbk (x) the k least significant bits of x.

2.1 Pseudorandom Functions and Pseudorandom Permutations

Pseudorandom Permutations. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a per-
mutation family. We denote by Sn the set of all the permutations from {0, 1}n

to {0, 1}n. The goal of a prp-adversary A, which runs in time T , against E is
to guess the value of b in the following game. The challenger chooses a bit b at
random; if b = 1 he assigns π to a random permutation from Sn otherwise he
chooses a random key K in {0, 1}k and assigns π to E(K, ·). The adversary can
interact with π making up to q queries xi and receives π(xi). The prp-advantage
of A, denoted advprpE (A), is:

∣
∣
∣Pr

[
AE(K,·) ⇒ 1|K $← {0, 1}k

]
− Pr

[
Aπ(·) ⇒ 1|π ← Sn

]∣
∣
∣ .

Pseudorandom Functions. Let F : {0, 1}k × Dom → {0, 1}t be a function
family. We denote by Rand the set of all the functions from Dom to {0, 1}t. The
goal of a prf-adversary A, which runs in time T , against F is to guess the value
of b in the following game. The challenger chooses a bit b at random; if b = 1
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he assigns f to a random function from Rand otherwise he chooses a random
key K in {0, 1}k and assigns f to F (K, ·). The adversary can interact with f
making up to q queries xi and receives f(xi). The prf-advantage of A, denoted
advprfF (A), is:

∣
∣
∣Pr

[
AF (K,·) ⇒ 1|K $← {0, 1}k

]
− Pr

[
Af ⇒ 1|f ← Fd,n

]∣∣
∣ .

If A is restricted to be prefix-free then its prf-advantage is called pf-prf-advantage
and is denoted advpf-prfF (A).

2.2 Integrity

The security notion we use to define authenticity for a symmetric encryption
scheme is the integrity of the ciphertext (denoted INT-CTXT). Formally, in the
integrity game, the adversary A is given access to an encryption oracle E(·) and
a verification oracle VO(·) it can feed with queries of his choice. The encryp-
tion oracle encrypts the plaintext and answers by the corresponding ciphertext.
The adversary feeds the verification oracle with a ciphertext, also called forgery
attempt in the sequel, and the oracle answers 1 if the ciphertext is valid and 0
otherwise. The adversary goal is to generate a valid ciphertext (that is accepted
by the verification oracle) which is different from all ciphertexts previously gen-
erated by the encryption oracle. Note that the adversary can send several queries
to the verification oracle. The success probability of A is:

Succint-ctxtCCM (A) = Pr[VO(C) ⇒ 1|AE(·),VO(·) ⇒ C].

2.3 Privacy

The security notion used to define privacy for a symmetric encryption scheme is
the indistinguishability security under chosen plaintext attacks (denoted IND-
CPA). Formally, in the privacy game an adversary A is given access to an en-
cryption oracle E(·) it can feed with queries of the form (M0, M1) where M0 and
M1 are messages of his choice. At the beginning of the game this oracle chooses
a bit b and always encrypts the message Mb. The adversary’s goal is to guess
b, that is to say to distinguish the two cases. The indistinguishability is defined
in the “left or right model” which has been introduced and proved to be the
strongest one in [2]. The advantage of A is:

advind-cpaCCM (A) =
∣
∣
∣Pr[AE(·) ⇒ 1|b = 1] − Pr[AE(·) ⇒ 1|b = 0]

∣
∣
∣ .

3 CCM Description

In this part, we describe the original CCM authenticated encryption mode and
the format of its various inputs. In [21] recommendations are also given on various
choices that have to be made to implement CCM: unique key for both the CBC
chain and the counter mode, nonces that cannot be repeated. . . Some of these
restrictions can be ignored without any security problems although some other
are needed for security reasons. At the end of this part we discuss these choices.
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3.1 Notations

In this paper, the following notations will be used:

– for any string or integer x, |x|2 denotes its bit length, |x|8 =
⌈
|x|2
8

⌉
its octet

length, and [x]s denotes the binary representation of x on s bits;
– E is a block cipher with n-bit blocks and k-bit keys, where n = 128;
– M is a plaintext, consisting of blocks of n bits denoted M1, . . . , Mm−1 and

a last block Mm with at most n bits.
– the associated data (data which is authenticated and not encrypted) is de-

noted by D1, . . . , Da and consists in a − 1 blocks of n bits and one block of
at most n bits;

– the ciphertext C consists in m + 1 blocks C0, C1, . . . , Cm where Ci is n-bit
long for 0 ≤ i ≤ m − 1 and Cm is at most n bits;

– B = B0, B1, . . . , Br is the n-bit long formatted input used for the CBC-MAC
computation, B0 is called the pre-initial value;

– A0, A1, . . . , Am are the inputs for the counter mode;
– the nonce used to derive the pre-initial value B0 and the counter values

A0, A1, . . . , Am is denoted by N . This nonce is �-bit long, with 7 ≤ �/8 ≤ 13
(� has to be divisible by 8);

– q is an integer such that 2 ≤ q ≤ 8 and q + �/8 = 15, let Q denotes the
bit representation of the octet length of the message M over q octets, i.e.
Q =

[
|M |8

]
8q

;
– t denotes the bit length of the MAC, it has to be divisible by 16, and 4 ≤

t/8 ≤ 16.

3.2 CCM Mode

The CCM mode can be basically viewed as an authenticate-then-encrypt com-
position instantiated with a CBC-MAC and a counter mode. The mode uses a
block cipher E both in the CBC chain and in the counter mode. The block length
is equal to n = 128 bits. We denote by K the key used in the CBC-MAC and
by K ′ the one used in the counter mode. The choice of K and K ′ is discussed
in section 3.4.

Let M = M1‖M2‖ . . . ‖Mm be a plaintext and D = D1‖D2‖ . . . ‖Da associated
data that will only be authenticated and not encrypted.

At first, the encryption box chooses a nonce N of � bits. This nonce will be
used to derive both the pre-initial value for the CBC-MAC and the counter
blocks.

In a first step, the associated data and the plaintext blocks are authenticated.
This consists in computing their CBC-MAC value. This computation is how-
ever quite different from the classical one: it authenticates a formatted input
B = B0‖ . . . ‖Br derived from N , M , and D. The format of B is described
in section 3.3. The 1-block pre-initial value B0 is treated as the first message
block in the CBC chain. Its main property is that it contains the tag length, the
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T3

Fig. 1. CCM authenticated encryption mode

plaintext length and the nonce value. The CBC-MAC is a simple CBC chain
without retail. Its output is denoted T and is t-bit long, with 32 ≤ t ≤ n.

In a second step, the MAC value T and the plaintext M are concatenated and
encrypted with a counter mode. The inputs for the counter mode are blocks of
n bits denoted A0‖A1‖ . . . ‖Am. Their format is described in section 3.3. Briefly,
each one contains some flag information, the nonce value, and the index of the
plaintext block. The tag T is encrypted as C0 = lsbt (EK′(A0)) ⊕ T and for all
plaintext blocks Mi, 1 ≤ i ≤ m, Ci = EK′(Ai) ⊕ Mi.

The ciphertext C = C0‖C1‖ . . . ‖Cm and the associated data D are then
transmitted. The nonce value is transmitted if necessary (in case of non syn-
chronizing).

Figure 1 describes the CCM mode for 3-block plaintexts and no associated
data.

The decryption process consists in decrypting C with the counter mode and
then to compute the tag T ′ with the formatted input B computed from the
nonce N , the associated data and the recovered plaintext. If valid, the plaintext
is returned. Otherwise an error message is given. For a description of CCM
encryption and decryption algorithms in pseudo-code, see appendix A.

3.3 Formatting the Inputs

The specification [21] precisely describes the format for the different inputs.
The CBC-MAC chain uses a formatted input B = B0, . . . , Br. The n-bit pre-

initial value B0 is determined by a nonce of � bits, and various information. The
first octet is a flag one containing one bit for future extension, one bit to indicate
whether associated data are present or not, three bits to indicate the octet length
of the MAC value (which is necessarily different from 000) and three bits for the
octet length of the binary representation of the octet length of the plaintext M .
The remaining octets contain the nonce value followed by the value q, the bit
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0 if no associated datas
1 otherwise

�
�

�
��

�
�

�
��

�

�

Q: bit representation
of the octet length of M

Nonce N
on ��/8� octets

Flags on
1 octet

[(t − 2)/2]3 [q − 1]3

First bit reserved for future usage

Fig. 2. The format of the pre-initial value B0 for the CBC-MAC

representation of the octet length of M . Picture 2 represents the format of B0.
Note that a collision on the B0 values occurs if and only if the nonces collide,
associated data are either used or not for both and the plaintexts are of the same
octet length.

If there are authenticated data then let B1‖ . . . ‖Bu be the concatenation of
a particular encoding of the D size (for more details see [21]), of D, and of as
few ’0’ as possible such that the resulting bit string can be partitioned into n-bit
blocks (if there is no authenticated data B1‖ . . . ‖Bu is the empty bit string).
Let Bu+1‖ . . . ‖Br be the concatenation of M and of as few ’0’ as possible such
that the resulting bit string can be partitioned into n-bit blocks. Remark that
the encoding of B is made in such a way that the set of all possible formatted
inputs B is prefix-free !

Finally, the inputs for the counter mode A0, A1, . . . , Am are encoded as fol-
lows: the first octet contains some flag information (2 bits reserved for a future
usage, three bits fixed to 000 and three bits containing the binary representa-
tion of q − 1). The remaining ones contain the nonce value, already used for
formatting B0 and the block number.

3.4 NIST Requirements

The CCM specification [21] gives indications to guide implementation choices.
Of course, CCM should be used with the AES so the key length is either 128,
192, or 256 bits. The block length is 128 bits.

The CCM specification also provides a requirement for the key choice. Indeed,
the same key should be used for both the CBC-MAC and the counter mode. Such
a choice is of course debatable since it goes against the common sense based on
the key usage separation. However, the security proof given by Jonsson in [12]
is made for this case and ensures that CCM provides privacy and authenticity
up to 2n/2 block cipher calls. Thus, choosing the same key for the two modes
combined in CCM is not a security concern since the security bound is very close
to the one given for a lot of other authenticated encryption modes [18,13].
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However, even if this requirement is quite understandable in case of same
security results, it becomes cumbersome if the security with two keys is much
better than for a single key. In our modified CCM we can achieve a much better
security with two keys. That is why in section 4, we focus on the security results
for our modified CCM in case of non repeating nonces with two different keys.

Another requirement made in the CCM specification concerns the choice of
the nonce values. It is explicitly defined that “the counter blocks must be distinct
within a single invocation and across all other invocations of the CTR mode
under any given key”. This is done by imposing non-repeating nonces. This re-
quirement is here largely understandable: indeed, a collision on the nonce values
can often be exploited to forge a valid ciphertext or to attack the privacy of
the scheme. However, in practice, non repeating nonces could be very difficult
to handle, particularly in a scenario where three or more users share the same
key used with CCM. Thus, it can be interesting to carefully look at the CCM
security when nonces are randomly chosen and can thus collide. This is done in
section 5.

4 Modified CCM

4.1 Description

In this section we propose a modified version of CCM (mCCM) which we prove
secure beyond the birthday paradox bound. The main difference between the
original and the modified CCM versions is the use of a pseudorandom function
to encrypt the tag and the message. Let F be a pseudorandom function family
from {0, 1}n to {0, 1}n, E a blockcipher over {0, 1}n and let K and K ′ be two
keys chosen independently.

To encrypt a message M, D, a nonce is chosen, the corresponding formatted
input is deduced and a CBC-MAC tag T is computed with the blockcipher
EK . Then, the ciphertext is computed as C0 = T ⊕ lsbt (FK′(A0)) and Ci =
Mi ⊕ FK′(Ai).

The decryption process consists in decrypting C with the counter mode and
then to compute the tag T ′ with the formatted input B′ computed from the
nonce N , the associated data and the recovered plaintext. If valid, the plaintext
is returned. Otherwise an error message is given.

We remind that in this modified version, as in the original version, we impose
non repeating nonces. This implies that adversaries against modified CCM can
choose the nonce to encrypt a query, as soon as, any new nonce is different
from all the previous one. However, for the verification queries the adversary is
allowed to use a nonce which was already used in a previous encryption query.

In the following we prove the IND-CPA and INT-CTXT security of this mod-
ified version of CCM. Note that as proven in [5] these two security notions imply
the IND-CCA security (with a tight reduction), which means that this protocol
achieves the best security levels for privacy and for integrity (see [5] for precise
definitions and relations between these notions).
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4.2 Privacy

The modified CCM privacy is a direct consequence of the privacy of CTR using
a pseudorandom function. This security result has been stated in [2]:

Theorem 1 (BDJR). Suppose F is a PRF family from {0, 1}n to {0, 1}n.
Then, for any adversary A against privacy of CTR mode, with running-time T ,
and which can do at most qe encryption queries of at most s blocks, there exists
a prf-adversary A′ against F with running time T and which can make at most
sqe queries, such that:

advind-cpaCTR (A) ≤ advprfF (A′) .

The security of mCCM is an easy consequence of this theorem:

Theorem 2. Suppose F is a PRF family from {0, 1}n to {0, 1}n. Then, for any
adversary A against privacy of modified CCM mode, with running-time T , and
which can do at most qe encryption queries of at most s blocks, there exists a
prf-adversary A′ against F with running time T and which can make at most
(s + 1)qe queries, such that:

advind-cpamCCM (A) ≤ advprfF (A′) .

4.3 Integrity

To prove the integrity of ciphertexts (INT-CTXT) in modified CCM, we need
the two following results. The first one is shown in [6] and upper bounds the
advantage of a pf-prf adversary against CBC-MAC.

Theorem 3 (BPR). Let A be a prefix-free prf-adversary against the n-bit block
CBC-MAC, A can make at most q ≥ 2 queries of at most s blocks and has a
running-time of at most T . Then we have:

advpf-prfCBC-MAC (A) ≤ sq2

2n

(

12 +
64s3

2n

)

.

The second result comes from [3] and shows that if a protocol is INT-CTXT
secure against an adversary which can make at most one verification query, then
it is secure against adversaries which can make several verification queries.

Lemma 1. Let A be an adversary against the authenticity of a symmetric en-
cryption schemes Π. Assume that A makes at most qe encryption queries and
qv verification queries all of at most s blocks. Then there exists an adversary A′

against the authenticity of Π, such that A′ makes at most qe encryption queries
and 1 verification queries, all of at most s blocks and:

Succint-ctxtΠ (A) ≤ qv · Succint-ctxtΠ (A′) .

The adversaries A and A′ have the same running-time.
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Thanks to these results, we can upper bound the advantage of any adversary
against the INT-CTXT of mCCM.

Theorem 4. Let A an adversary against the authentication of mCCM, with
running-time at most T , which can make at most qe encryption queries of at
most s blocks and qv verification queries of at most s blocks. Then its success
probability is upper bounded by:

Succint-ctxtmCCM (A) ≤ qv

(
48(s + 1)

2n
+ 256

(
(s + 1)2

2n

)2

+
1
2t

)

+advprfF (A1) + advprfE (A2) ,

where A1 is a prf-adversary against F with running-time at most T , which can
make at most (s + 1)(qe + qv) queries and A2 is a prp-adversary against E with
running-time at most T , which can make at most (s + 1)(qe + qv) queries.

Proof. The following proof is a game-based proof. In the first game (game 1)
the adversary faces the verification and encryption oracles which are simulated
respecting strictly the protocol. In each new game we alter a bit the way we
simulate the two oracles, so that in the last game we are able to upper bound
the adversary success probability. Since we alter the simulation between two
games, the adversary success probability is modified, so we have to upper bound
this modifications; this upper bound is called the distance between two games.
See [20] for details.

In the games 2 and 3 we replace successively the PRF F and the PRP E with
respectively a true random function and a true random permutation. One can
easily shows that there exists two adversaries A1 and A2 as stated in the theorem
such that the distances between the games can be upper bounded respectively
by advprfF (A1) and advprfE (A2).

Let A3 be the adversary against the authenticity of mCCM in the game 3,
it can make qe encryption queries and qv verification queries, all of at most s
blocks. Let A′ be an adversary against the authenticity of mCCM which makes
qe encryption queries of at most s blocks and 1 verification query of at most
s blocks such that Succint-ctxtmCCM (A3) ≤ qv · Succint-ctxtmCCM (A′) (it exists thanks to
lemma 1). To upper bound the success probability of A3, we upper bound the
success probability of A′. For this, thanks to A′ we construct D a prefix-free
prf-adversary against CBC-MAC with 2 MAC queries of at most s blocks, and
then relate the success probability of D with the one of A′.

As described in the prf security definition, the prf-distinguisher D faces a
CBC-MAC oracle. To construct D, we run A′ and to every of its encryption
query (N i, M i, Di), we answer:

– ⊥ if there exists k < i such that N i = Nk,
– (N i, Di, Ci = Ci

0‖ . . . ‖Ci
mi

) with Ci
0

$← {0, 1}n, Ci
k = M i

k ⊕ F (Ai
k).

To A′ verification query (N, D, C = C0‖ . . . ‖Cm), we answer:
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– if N �= Nk for all k ≤ qe, then we choose randomly a t-bit string T and
compute the m-block message M with Mi = Ci ⊕ F (Ai) ; we give B, where
B is the corresponding formatted input, to the CBC-MAC verification oracle
which answers with T ′ and we reply to A′ with 1 if and only if T = lsbt (T ′),

– if there is k ≤ qe such that N = Nk, D = Dk, and C = Ck, then we answer ⊥,
– if there is k ≤ qe such that N = Nk, but D �= Dk or C �= Ck, then, we

compute the message blocks Mi = F (Ai) ⊕ Ci, deduce the corresponding
formatted input B; we send the kth formatted input Bk (from the kth en-
cryption query) to the CBC-MAC oracle and receives the corresponding tag
T k; then we compute the tag of B: T = lsbt

(
T k

)
⊕ C0 ⊕ Ck

0 ; finally we
send B to the CBC-MAC oracle, receives back T ′, check if T = lsbt (T ′) and
forward the answer to A′ (Note that since D �= Dk or C �= Ck, B �= Bk and
since the formatted inputs form a prefix-free set, the two queries made to
the CBC-MAC oracle are prefix-free).

At the end, D decides that it faces a true CBC-MAC oracle if the answer to the
A′ verification query is equal to 1.

As soon as the nonces are different from each other, for a mCCM attacker
the Ci

0 are randomly distributed, therefore the answers to A′ are well simulated.
Since there is no collision between the nonces, the probability of success of A′ is
exactly the probability that D outputs 1 when it faces a true CBC-MAC oracle.
When D faces a random function, its success probability is 1/2t, therefore we
have:

Succint-ctxtmCCM (A′) ≤ 1
2t

+ advpf-prfCBC-MAC (D) .

We remind that pf in pf-prf stands for prefix-free. Theorem 3 allows us to
conclude. �

In practice, we can consider that s ≤ 240 − 1 (in fact this is probably still a
large upper bound of s). In the following, we omit the PRF and PRP advantages
for simplicity reasons, since these terms are identical in the two bounds. Let
assume that t ≥ 82, previous theorem gives an upper bound of the integrity
adversaries of qv ·2−80. For the same values, Jonsson theorem [12] gives a security
of approximately (qv + qe)2 · 2−48. Remark that for a value of t = 82, our bound
is tight since the simple attack which consists in trying to guess the CBC-MAC
value has a success probability of qv/2t = qv · 2−82.

5 Random Nonces

In this part we consider that the nonces used for the CCM mode are chosen at
random in {0, 1}�. In this case, collision between two random values are possible
and such an event can be exploited by an adversary to forge a valid ciphertext. Of
course, confidentiality cannot be ensured as soon as two nonces collide. Indeed,
if such a collision occurs, the adversary can easily distinguish which plaintext is
encrypted and then break the scheme in the sense of semantic security. However,
forging a valid ciphertext, i.e. breaking the ciphertext unforgeability, is a different
task. Attacking the privacy is independent and does not imply any weakness on
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the integrity, even if, when one is compromised, the other often too. However,
the technique used here to forge a valid ciphertext is completely different from
the one used to break the semantic security in case of collision between nonces.

Note that the following attacks do apply to both original CCM and modified
CCM, as long as the nonces are random. We focus our analyze to CCM because
it is a standard, but the same conclusions could be stated for the modified version
of CCM. Besides, remark that the security model is slightly different from previ-
ous section. As the nonce may repeat, the adversary can make as many queries
as it wants, whereas in previous section the adversary was restricted to 2� encryp-
tion queries, the number of possible nonces. However,when in previous context the
nonces used for encryption queries can be chosen by the adversary, as long as there
are all distinct, in this context the nonces are chosen randomly by the challenger.

5.1 Generic Attack

We present in this subsection a generic attack against original and modified
CCM, assuming only that the nonces may collide. The complexity of this attack
is O(2� + 2(t+�)/2) encryption queries and one verification query, where t is the
tag bit size and � the nonce bit size, and its success probability is very close to 1.
Let M3 be a message block and (M i

1, M
i
2)i be a set of 2(t+�)/2 2-block messages.

The adversary makes the 2(t+�)/2 encryption queries (M i
1, M

i
2, M3) and receives

the answer N i, (Ci
0, C

i
1, C

i
2, C

i
3). With high probability, there are two different

indexes i and k such that N i = Nk and Ci
0 = Ck

0 . Since the nonces are the
same, the counter values used for the encryption are the same and thus, since
the encryptions of the tags are the same, there is a collision between the two
tags. Since the last block of the two messages are the same, it means that the
collision appears in fact before the last block and thus CBC(B0‖M i

1‖M i
2‖M ′

3) =
CBC(B0‖Mk

1 ‖Mk
2 ‖M ′

3) for any n-bit block M ′
3 (note that the collision between

the nonces implies a collision between the B0 values since the plaintexts are
of the same octet length). Let M ′

3 �= M3 and let repeat O(2�) times the en-
cryption query M i

1‖M i
2‖M ′

3 until the answer involves the nonce N i. Let denote
C0, C1, C2, C3 the corresponding ciphertext, and let C′

0 = C0, C′
1 = C1 ⊕ M i

1 ⊕
Mk

1 , C′
2 = C2 ⊕ M i

2 ⊕ Mk
2 , and C′

3 = C3. The ciphertext Nk, (C′
0, C

′
1, C

′
2, C

′
3) is

valid for the message Mk
1 ‖Mk

2 ‖M ′
3 (message which was not previously asked).

Note that in the case when t ≤ � this attack requires O(2�) encryption queries,
1 verification query, all of at most 3 blocks. Therefore if theorem 4 would apply,
the success probability of such an adversary would be upper bounded by 29−n +
2−t, whereas it is nearly equal to 1. If this attack is not practical, it illustrates
the fact that allowing random nonces strongly decreases the security of CCM.

5.2 If the Data Length was Not Precised

In previous attack we have relieved the constraint that nonces should not collide.
In the two following attacks, we still allow the nonces to collide and in addition
we assume that the formatted inputs do not form a prefix-free set. We show
that, in this case, the attacks can be even worse than the previous one.
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Fig. 3. Forgery attempt: C0 ⊕ C′
0 equals T2 ⊕ T3

We remind that in CCM, B0 depends on the message length but not of the as-
sociated data length (however if there are associated data, a flag bit is set to 1).
If there are associated data, their length is encoded at most on the 10 first blocks
of B. Since the length of the associated data must be known to authenticate, the
authentication cannot be done online and this reduce CCM efficiency. For the fol-
lowing attack we retrieve this constraint, assuming that the associated data length
is not concatenated before the associated data themselves (it could be encoded af-
ter the associated data even if for simplicity we just skip it). The attacker will use
this remark to forge a valid ciphertext from 2�/2 encryption queries.

We assume for the attack that associated data are always used, so that the
flag bit used in B0 is always set to 1. This attack exploits some relations he can
deduce from the collision on the nonce values: the attacker queries the encryption
oracle for messages of two blocks and three blocks. In both cases, only the last
block is encrypted. He thus collects ciphertext (Ni, C

i
0‖Ci

1) corresponding to the
authentication of M1‖M2 and the encryption of M2 under different nonces, and
ciphertexts (N ′

j , C
j
0‖Cj

1) corresponding to the authentication of M1‖M2‖M3 and
the encryption of M3 under different nonces. By the birthday paradox, after 2�/2

queries, there is a collision between two nonces, one used for a query in the first
set and the other for a query in the second set. Thus, there exists i and j such
that Ni = Nj. Since plaintexts to authenticate and encrypt are of the same
length in both cases, we also have Bi

0 = Bj
0 . For simplicity, the corresponding

ciphertexts are denoted (N, C0‖C1) and (N, C′
0‖C′

1‖C′
2).

The attacker can now compute the value

C0 ⊕ C′
0 = T ⊕ T ′

where T is the CBC-MAC value computed for the first message and T ′ is the
CBC-MAC value for the second. He thus can forge a valid ciphertext for the
message M1‖M2‖M3‖M3 ⊕ C0 ⊕ C′

0 where only the last block is encrypted. The
corresponding ciphertext is thus (N, C′

0‖C′
1 ⊕ C0 ⊕ C′

0) with the associated data
M1‖M2‖M3. Figure 3 resumes this forgery.
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The complexity of the attack is O(2�/2) encryption queries. As � ≤ n, it means
that relieve the constraint on the format of the authenticated data would lead
to better attacks than the birthday paradox bound proved by Jonsson.

5.3 Random Nonces with Inputs Not Formatting

Finally, in next attack we consider the case where the nonces are random and
the message length is not put in the pre-initial formatted input B0. This way
CCM computation can be done online, but however we show that in this case,
even without additional authenticated data, the security of CCM decreases.

The attacker will make 3 kinds of queries: the first ones are composed with a
plaintext of a single block denoted M1. This block is the same for all the queries.
The second kind of queries is composed with messages of two blocks, M1‖M2
where M1 is the same block as the one chosen for the first queries. Finally,
in the third set of queries, messages are composed with 3 blocks M1‖M2‖M3
where here again M1 and M2 are the same as before. The attackers queries the
encryption oracle for these messages until a collision occurs between the nonces
used for one message in each set. Thus, there exists integers i, j, k such that :
Ni = Nj = Nk and thus Bi

0 = Bj
0 = Bk

0 and Ai
0 = Aj

0 = Ak
0 (since B0 does

not depend on the message length anymore). The attacker is now able to forge a
valid ciphertext. We denote by (N, C1

0‖C1
1 ) the corresponding ciphertext for the

one block message, (N, C2
0‖C2

1‖C2
2 ) the ciphertext for the two blocks message

and (N, C3
0‖C3

1‖C3
2‖C3

3 ) the ciphertext for the three blocks message. Due to the
choice of the message blocks M1 and M2 and since the nonces collide for these
three encryptions, we remark that C1

1 = C2
1 = C3

1 and C2
2 = C3

2 . The first ones
are briefly denoted by C1 and the second by C2. We also denote by T1 the CBC-
MAC value for M1, T2 the one for M1‖M2, and T3 the one for M1‖M2‖M3.
These notations are given in figure 1.

Due to the collision between the nonces used for these three encryptions, the
value C1

0 ⊕ C2
0 is equal to T1 ⊕ T2. Although the attackers does not know the

values T1 and T2, he can exploit the knowledge of their bit-wise addition to forge
a valid ciphertext : indeed, the ciphertext C3

0‖C1‖C2 ⊕ M2 ⊕ C1
0 ⊕ C2

0 ⊕ M3 is
valid for the plaintext M1‖C1

0 ⊕ C2
0 ⊕ M3 and the nonce N . The input to the

third encryption box in the CBC chain is the bit-wise addition of the plaintext
block C1

0 ⊕ C2
0 ⊕ M3 and the previous output T1. Since C1

0 ⊕ C2
0 = T1 ⊕ T2, the

input is just T2 ⊕ M3, that is to say the input to the fourth encryption box in
the CBC for the encryption of M1‖M2‖M3. Thus, the output is T3 (unknown to
the adversary) and the first ciphertext block is C3

0 . The second ciphertext block
is easily computable from C2 due to the malleability of the counter mode.

We now estimate the complexity of this attack and in particular the average
number of queries needed. The attackers queries the encryption oracle until a
collision appears between the nonces for three of them. By the birthday paradox,
a collision occurs for two encryption queries when 2�/2 nonces have been chosen
at random. After 22�/3 queries for M1 and M1‖M2, there are in average 24�/3/2�

collisions, i.e. 2�/3 pairs of ciphertexts computed with the same nonce. If we con-
sider this set of ciphertext pairs and the set of 22�/3 ciphertexts for M1‖M2‖M3,
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there are in average triplet of ciphertexts computed with the same nonce. In a
general case, if Si is the number of ciphertext in each set, there is a 3-collision
on the nonces used if and only if S1 × S2 × S3 equals 2�. Choosing Si = 22�/3 is
the best compromise. Finally the attacker can forge a valid ciphertext with the
help of 3 × 22�/3 encryption queries. If � ≤ 96 = 3n/4 then 2�/3 ≤ n/2 and this
attack is better than the security bound given by Jonsson.

This attack illustrates the fact that if one wants to preserve the security, one
cannot increase CCM efficiency removing the particular format, with the message
length appended to the beginning of the message, and allowing repeating nonces.

6 Conclusion

In this paper we have studied the security of the CCM authenticated encryption
scheme and of a modified version. We have shown that slightly modifying CCM
one can prove the O(2n) security for authenticity, security which only conjectures
for CCM. Additionally, the modified version of CCM provably guarantees an
optimal security for privacy.

Besides, we have studied the CCM (and also modified CCM) properties that
restrict its efficiency. We exhibit that if we relieve some of them (if we let nonces
collide, if we break the prefix-freeness of authenticated messages removing the
message and/or authenticated data length) then one can mount attacks which
are better than the expected or proved security bound by Jonsson.
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Algorithm 1. CCM Encryption(M, D)
1: Choose N ,
2: function Authentication(N,D, M)
3: Generates B0, . . . , Br from N , M and D.
4: X0 ← E(B0)
5: for i ← 1,r do
6: Xi ← E(Bi ⊕ Xi−1)
7: end for
8: T ← lsbt (Xr)
9: return T

10: end function
11: function Encryption(N, D, T, M)
12: Generates A0, . . . , Am from N .
13: c0 ← lsbt (E(A0)) ⊕ T
14: for i ← 1,m do
15: Ci ← E(Ai) ⊕ Mi

16: end for
17: C ← C0, . . . , Cm

18: return (N, C, D)
19: end function

Algorithm 2. CCM Decryption(N, C, D)
1: Generates A0, . . . , Am from N .
2: T ← lsbt (E(A0)) ⊕ C0

3: for i ← 1,m do
4: Mi ← E(Ai) ⊕ Ci

5: end for
6: M ← M0, . . . , Mm

7: Generates B0, . . . , Br from N , M and D.
8: X0 ← E(B0)
9: for i ← 1,r do

10: Xi ← E(Bi ⊕ Xi−1)
11: end for
12: if T == lsbt (Xr) then return (M, D)
13: else return ⊥
14: end if
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Abstract. Efficient implementations of cryptosystems are important
in order to conserve resources, memory, power, etc., which will enable
resource-limited devices to compute necessary cryptographic operations.
One technique that successfully reduces the number of necessary oper-
ations is the use of a signed digit representation for the key, because
it reduces the nonzero density of the representation. One such signed
digit representation is the non-adjacent form or NAF . Moreover, one
can make more reductions in the number of nonzero symbols of the key
by expressing the key with a w-ary NAF or wNAF form. A drawback is
that one needs to parse the key twice, once to construct the wNAF rep-
resentation and the second time to perform the necessary cryptographic
operation. At Crypto 2004 [10], Okeya et. al. introduced a w-ary repre-
sentation wMOF , which possess the same nonzero density as wNAF ,
as well as an algorithm that computes wMOF in a left-to-right manner
utilizing very little memory (“memory-less”). At that time, the authors
noted that a left-to-right “memory-less” algorithm that computes wNAF
is an open problem. In this work, we define wNAF ∗, a generalization of
wNAF . Further, we construct a left-to-right “memory-less” algorithm
that computes the w-ary wNAF ∗ representation of a key and demon-
strate that wNAF ∗ is as efficient as wNAF . Our work will demonstrate
that the left-to-right wNAF ∗ recoding algorithm closely resembles the
right-to-left wNAF recoding algorithm.

1 Introduction

It is well known that if one uses a signed digit representation of the cryptographic
key then one can reduce the number of complex computations that are needed
to perform the cryptographic operation. One such signed digit representation
is the non-adjacent form or NAF . By expressing a key in NAF form, one will
reduce the number of nonzero symbols, however this will introduce signed digits.
Fortunately, in many algebraic settings an inverse is very efficient to compute.
This is especially true when using elliptic curve cryptosystems (ECC), where the
inverse (negative) of an ECC point can be trivially computed from the EC point.
When using the NAF form of a key, the computational complexity of computing
the scalar multiple kP will be very efficient, since the hamming weight of a key
in NAF form is less than the hamming weight of a key. One can make further
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reductions in the number of nonzero symbols of the key by expressing it with a
w-ary NAF or wNAF form [2]. RSA and discrete-log cryptosystems would also
benefit by expressing a key in NAF or wNAF form because of the reduction of
the hamming weight (number of nonzero bits) of the key. In order to be more
succinct, we will emphasize the use of NAF and wNAF with ECC, however our
work will impact efficient implementations of all cryptosystems.

Algorithms demonstrating how to compute the NAF form of a key can be
found in [2,12,4] and algorithms to compute the wNAF form are provided in [2,4].
In addition to NAF, there are other alternative ways to reduce the number of
nonzero symbols in the key representation by using techniques such as sliding
window with NAF [3].

At Crypto 2004 Okeya et. al. [10] introduced a left-to-right binary signed digit
recoding algorithm called Mutual Opposite Form or MOF . The goal of the au-
thors of [10] was to develop an algorithm that constructs an “efficient signed
digit representation that could be computed in a left-to-right manner without
requiring additional storage”. That is, a signed digit representation that can be
computed in a left-to-right manner on-the-fly. The importance of such a con-
struction is that as the key bits are generated (in a left-to-right manner), one
can immediately construct the signed digit representation. Further, one can im-
mediately start the computation of the cryptographic operations as the most
significant digits of the signed digit representation become available. This is a
good security practice, in that the secret key should only be available to soft-
ware modules that require it. Moreover, it is good practice to limit the number of
software modules that use/possess key. Consequently, if the cryptographic com-
putation can be computed simultaneously as the signed digits are generated, this
would limit the access of the key to software modules.

A left-to-right construction of a signed digit representation NAF was first
constructed in [5], however this construction was limited to w = 2 and the au-
thors did not provide a left-to-right algorithm of the more efficient representation
wNAF . In [10], it was noted that the construction of a memory-less left-to-right
algorithm for wNAF is an open problem. In this work, we examine the open
problem posed in [10], and provide an algorithm that can construct a left-to-right
wNAF ∗ algorithm, where wNAF ∗ is a left-to-right generalization of wNAF .

Summary of our results. We will address an open problem by defining a
signed digit representation wNAF ∗ and constructing a left-to-right “memory-
less” method for computing wNAF ∗. Our work will establish the relationship
between left-to-right w-ary signed digit recoding and right-to-left w-ary signed
digit recoding. We will also provide several algorithms, including an algorithm
that computes the ECC scalar multiple kP , processing the key k using the left-
to-right wNAF ∗ recoding.

2 Background

In [11], Reitwiesner introduced the signed digit representation referred to as
NAF. The definition that an integer k is written in NAF form is:
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Definition 1 (NAF). [2] A nonnegative integer k =
∑n−1

i=0 ki2i where ki ∈
{−1, 0, 1} is said to be in non-adjacent form (NAF) provided ki · ki+1 = 0 for
i = 0, ..., n − 2.

Reitwiesner’s algorithm [11] efficiently converted a binary number to signed-digit
NAF form using a right-to-left method, see Algorithm 1.

Throughout this paper we will abbreviate −1 as 1. The following are some
well-known results concerning the NAF form of an integer. Every positive integer
k has a unique NAF representation [1, 2]. The length of k written in NAF-form
is at most one bit longer than the length of k. In [1], it was proven that the
expected number of nonzero symbols in a NAF representation was 1/3 times the
length of k. In general, one would expect a random k to have an equal number
of 1’s as 0’s.

Joye and Yen proposed two left-to-right binary signed-digit recording algo-
rithms in [5]. Based on Reitwiesner’s algorithm and the left-to-right addition
algorithm [9], Joye and Yen developed the first left-to-right recoding algorithm
which preserves the NAF property. Joye and Yen also developed a more effi-
cient left-to-right signed digit recoding algorithm whose output possessed the
same nonzero density properties as a NAF representation.

One can make further reductions in the number of nonzero symbols by utiliz-
ing a w-ary NAF form or wNAF . Formally the definition of wNAF is:

Definition 2 (wNAF). [4] Let w > 2 and k a positive integer. We say that
k =

∑n−1
i=0 ki2i is a wNAF representation of integer k provided (i) kn−1 �= 0, (ii)

for all nonzero ki, ki is an odd integer with |ki| < 2w−1, and (iii) at most one
of any w consecutive digits ki, ki+1, ..., ki+w−1 is nonzero.

The term 2NAF is often used to describe a NAF representation. The ratio of
nonzero symbols to symbols in a wNAF representation has been shown to be on
average 1/(w + 1) [2, 10].

At Crypto 2004, Okeya, et.al. [10] created a sparse representation of a key,
which can be constructed using a left-to-right pass through the key, utilizing little
memory. The representation they introduced was the Mutual Opposite Form
(MOF).

Definition 3 (MOF). [10] A n-bit integer is represented using the mutual op-
posite form (MOF) provided:

1. the signs of adjacent nonzero bits are opposite sign
2. the most significant bit is 1 and the least significant bit is −1, unless all

bits are zero

Okeya et. al. [10] then generalized this to construct wMOF.

Definition 4 (wMOF). [10] A signed digit representation satisfies wMOF pro-
vided

1. The most significant nonzero digit is positive.
2. All but the least significant nonzero digit x are adjoint by w − 1 zeros as
xxxx(i) if 2k−1 < |x| < 2k for 2 ≤ k ≤ w − 1 the pattern is 0...0x0...0 (k

leading zeros and w − k − 1 trailing zeros),
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xxxx(ii) if |x| = 1 we have either the pattern x000...0 (w − 1 trailing zeros)
and the next lower nonzero digit has opposite sign to x or the pattern 0x0...0
(w − 2 trailing zeros) and the next lower digit has the same sign as x, and

xxxx(iii) if x is the least significant nonzero digit, it is possible that the number
of right-hand adjacent zeros is smaller than the stated above. It is not possible
that the last nonzero digit is a 1 following any nonzero digit.

3. Each nonzero digit is odd and less that 2w−1 in absolute value.

In [10], the authors provided an algorithm that constructs the wMOF repre-
sentation in a left-to-right manner and showed that the nonzero density of a
wMOF representation was 1/(w + 1), the same as wNAF .

The amount of precomputations represent both a computational resource re-
quirement as well as a memory requirement. Because the inverse (negative) of
the group operation in an Elliptic Curve Cryptosystem is trivial to compute,
one does not need to pre-compute nor store negative multiples of the EC point,
since the negative of an EC point can be computed requiring very little resources
and can be computed as needed. In addition to the left-to-right algorithm which
computes the wMOF representation, Okeya et. al. also constructed a left-to-
right algorithm that computes wNAF . Unfortunately their algorithm requires
additional memory and hence it is not a memoryless left-to-right algorithm. In
their left-to-right wNAF algorithm, they require O( n

w ) memory (see Table 5).
In practice since w will be constant, this is O(n) amount of memory. In our al-
gorithm that computes wNAF ∗, we require no additional memory. The nonzero
density for wNAF is the optimal value 1/(w + 1). We will establish that the
nonzero density of wNAF ∗ is also 1

w+1 and the precomputations needed by
wNAF ∗ is identical to wNAF . Reminder, other cryptosystems like RSA and
discrete-log cryptosystems would realize improved efficiency when using a key in
wNAF form.

3 NAF and NAF ∗

Algorithm 1 illustrates Reitweisner’s canonical recoding of the key k, computed
in a right to left manner. In this case k = (dn−1, dn−2, . . . , d2, d1, d0) =

∑n−1
j=0 dj ·

2j. This algorithm saves each carry cj that is produced during each iteration,
though one only needs to know the current carry-in, the current symbol di and
the lookahead symbol di+1.

Algorithm 1 can be expressed in a table format, see Table 1. Here di denotes
the current symbol, di+1 denotes the lookahead symbol and C denotes the carry-
in. The output symbol is δi. A second output symbol is C which is the carry-out
and becomes the next carry-in symbol.

In addition to constructing a left-to-right wMOF representation, Okeya, et. al.
constructed a left-to-right NAF algorithm (see Algorithm 5 in [10]) but this con-
struction required external memory. They needed to track the number of consecu-
tive ones that are visited. Because the number of consecutive ones could be on the
order of n, at least O(log2 n) memory is needed. By applying a innovated tech-
nique we can create a left-to-right binary encoding which we call NAF ∗, which
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Algorithm 1. Reitwiesner’s canonical recoding [5, 2, 11]
1: INPUT: dn, ..., d0

2: OUTPUT: δn+1, ...., δ0

3: c0 ← 0
4: for j = 0 to n + 1 do
5: cj+1 ← �(dj + dj+1 + cj)/2�
6: δj ← dj + cj − 2cj+1

7: return δn+1δn−1 . . . δ0

Table 1. Reitwiesner’s algorithm to compute right-to-left NAF

Carry-in Current Lookahead Output
C Symbol di Symbol di+1 result δi

0 0 x δi = 0, i ← i + 1, and set C = 0
0 1 0 δi = 1, i ← i + 1, and set C = 0
0 1 1 δi = −1, set C = 1 and i ← i + 1
1 0 0 δi = 1, i ← i + 1, and set C = 0
1 0 1 δi = −1 and set C = 1 and i ← i + 1
1 1 x δi = 0 and set C = 1, i ← i + 1

Here x

represents a don’t care, it can be either 0 or 1.

requires no additional storage. We amend the definition of NAF to form our de-
finition of NAF ∗. Our technique mimics the right-to-left NAF computation. For
example when encountering a sequence 11 (in a right-to-left manner) the NAF
computation makes the replacement of 11 with 01 and a left carry of one. When
we encounter 11 in a left-to-right manner, then we have already processed the bit
prior to the sequence 11 (to the left). Since we have already processed the bits to
the left, we can only create “carries to the right”. Hence we replace 11 by 20 with
a carry-to-the right of 2 (here 2 denotes negative 2). Of course the sequence 11
represents 3=2*1+1, whereas the sequence 20 with a carry-to-the right of 2 rep-
resents 2 ∗ 2+1 ∗ 0+ 1

2 ∗ 2 = 3. It is of course straightforward to handle sequences
01, 10, and 00. What remains to be considered are the cases when we have carry-
in’s from the left, which can occur, such as in the case described above. The only
two possible carry-in symbols will be 0 and −2 = 2. Recall, we are examining cur-
rent symbol di while the lookahead symbol is di−1. The possible values that these
two consecutive symbols can represent are determined by 2 ∗ di + di−1 (integers
between 0 and 3). If we have a carry-in (from the left) of −2, then this would be
placed in the di place. This would be equivalent to a value of −2∗2 = −4, thus we
must add −4 to the possible values, resulting in a sequence of integers between −4
to −1. In NAF ∗, we use an extended set of symbols that consist of 0, ±1, and ±2.
Table 2 illustrates how we handle the cases of a left carry-in of −2 = 2. The defin-
ition of NAF ∗ is identical to that of NAF except the symbols can consist of 0, ±1,
and ±2 (whereas NAF restricts them to 0 and ±1). An integer k =

∑n−1
i=0 ki2i

is expressed in NAF ∗ form provided ki ∈ {0, ±1, ±2} and ki · ki−1 = 0 for all
i = 1, . . . , n − 1.
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The computation of the NAF ∗ recoded key can be generated using Table 2,
where the initial value for C is 0 and i = n − 1. Here the key k = dn−1 . . . d1d0.
Further, for obvious reasons we use d−1 = d−2 = 0.

Table 2. Left-to-right NAF ∗

Carry-in Current LookaHead result
C Symbol di Symbol di−1 δi

0 0 x δi = 0, i ← i − 1, and set C = 0

0 1 0 δi = 1, i ← i − 1, and set C = 0

0 1 1 δi = 2, i ← i − 1, and set C = −2

−2 0 0 δi = −2, i ← i − 1, and set C = 0

−2 0 1 δi = −1, i ← i − 1 and set C = −2

−2 1 x δi = 0, i ← i − 1 and set C = −2
Here x represents a don’t care, it can be either 0 or 1.

We now describe NAF ∗ in algorithm form. That is the following algorithm is
an implementation of Table 2.

Algorithm 2. NAF ∗

1: INPUT: dn, ..., d0

2: OUTPUT: δn, ...., δ0δ−1
3: cn ← 0
4: for j = n downto 0 do
5: cj−1 ← −2 · (�(dj + dj−1 +

|cj |
2 )/2�)

6: δj ← dj + cj − 1
2 · cj−1

7: δ−1 ← c−1

8: return δnδn−1 . . . δ0δ−1

In Algorithm 2, because we execute left-to-right, carries are either −2 or 0.
This explains the use of the absolute value and the fraction 1

2 in line 5 and the
use of the fraction 1

2 in line 6.

Example 1. The following example illustrates both the NAF recoding and the
NAF ∗ recoding for a key k.

Key k xx 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 xx

NAF recoding of k xx 1 0 1 0 0 1̄ 0 0 1̄ 0 1̄ 0 0 0 1̄ xx

NAF ∗ recoding of k xx 1 0 0 2 0 1̄ 0 0 1̄ 0 1̄ 0 0 0 0 2̄
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The reason for the 2̄ symbol in the NAF ∗ recoding (see the far right symbol), is
that this occurs in the case where i = −1, i.e. δ−1 = 2̄. That is, the length of the
NAF ∗ recoded key is one symbol longer than that of the key k = dn−1, . . . , d1, d0.
Much like NAF, the recoding NAF ∗ may have a length of one symbol longer
than the length of the key but the extra symbol occurs in the far right place
(where i = −1).

Theorem 1. The NAF ∗ algorithm, as described by Table 2, when applied to
k will produce a recoded sequence of symbols satisfying NAF ∗, such that the
sequence is equivalent to k

Proof. To establish this theorem we are left to show that after each iteration i
of applying Table 2, we have a sequence of symbols which is equivalent to the
key k. We will assume that prior to the ith iteration the result computes the key.
Prior to the ith iteration we have completed the i + 1st iteration. Thus we have
computed δn−1, . . . , δi+1, the carry C, which we will denote as CIN (since this
is the carry-in to the ith iteration), as well as the symbols di, . . . , d0 which have
not been processed. Thus

k = CIN · 2i +
n−1∑

j=i+1

δj · 2j +
i∑

j=0

dj · 2j . (1)

Now after the ith iteration we have processed di based on CIN and di−1. The
result is that we have now computed δi and COUT (the C value which is the
carry-out after the ith iteration) based on Table 2. Consider COUT · 2i−1 + δi ·
2i+

∑n−1
j=i+1 δj ·2j +

∑i−1
j=0 dj ·2j . We need to show that this value is equivalent to

equation (1). By cancelling the common terms, we are left to show CIN ·2+di·2 =
COUT + δi · 2. By examining each row of Table 2, we see that this equation is
valid for each possible input and so this establishes the theorem.

•
Observe that there is a natural mapping between the execution of the NAF algo-
rithm and the execution of the NAF ∗ algorithm. This is clearly demonstrated by
a comparison of Table 1 and Table 2. The mapping is implied by the correspon-
dence between rows of the tables. This is a one-to-one mapping such that NAF
outputs a nonzero symbol iff NAF ∗ outputs a nonzero symbol and NAF out-
puts a carry term that is nonzero iff NAF ∗ outputs a carry term that is nonzero.
By [1], the expected hamming weight of a key, of length n, recoded in NAF is
n
3 . This mapping, together with the result by [1], establishes the following.

Theorem 2. The expected hamming weight of a NAF ∗ recoded key of length
n is n

3 .

Proof. This theorem follows from the result that the expected hamming weight
of a key recoded in NAF form is n

3 , and the fact that there exists a natural
one-to-one mapping between NAF recoding and a NAF ∗ recoding (as described
above). Since the input distribution, as well as the distribution of zero vs. nonzero
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carry symbols are identical, we see that under this mapping and due to the result
by [1], the expected hamming weight of a NAF ∗ recoded key is n

3 .
•

Consequently NAF ∗ is as “efficient” as NAF except NAF ∗ allows the use of the
symbols 2 and −2. Thus when applying NAF ∗ to perform an ECC scalar multi-
ple, it appears that a precomputation of 2P will need to be performed, however
2P always must be computed. Consequently, no additional precomputation is
needed. The ECC scalar multiple algorithm is provided in the Appendix, see
Algorithm 4.

4 wNAF and wNAF ∗

The following is a right-to-left calculation for wNAF as provided in [12,10]. Note
that the term “mods”, as used in Algorithm 2, is defined as: x mods y returns
a value j such that −y/2 ≤ j < y/2 and j mod y = x mod y. For example
5 mods 16 = 5 and 11 mods 16 = −5.

Algorithm 3. wNAF [12, 10]
1: Input: width w and n-bit integer d
2: Output: wNAF δnδn−1 . . . δ0 of d
3: i ← 0
4: while d ≥ 1 do
5: if d is even then
6: δi ← 0
7: else
8: δi ← d mods 2w

9: d ← d − δi

10: d ← d/2; i ← i + 1
11: return δnδn−1 . . . δ0

Algorithm 3, which computes the wNAF recoding, can be rewritten in table
form, see Table 3. The correctness of the table can be established by consider-
ing the various cases and applying the above algorithm. We omit the proof of
correctness for the table.

4.1 wNAF ∗

We modify the NAF ∗ construction and apply techniques that mimic a right-
to-left wNAF construction to construct a wNAF ∗ definition and recoding algo-
rithm. Again as our algorithm parses the key in a left-to-right fashion we will
restrict ourselves to a carry-in of 0 or −2. Observe that in the definition of
wNAF , a nonzero integer ki is such that it is a most w − 1 bits, where the low-
bit is a one (i.e. it is an odd integer) and the high bit is zero (thus the absolute
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Table 3. Right-to-left wNAF

Carry-in Input Output
C R = (di+w−1, . . . , di+1, di) δi result

0 di = 0 δi = 0 , i ← i + 1, and C = 0

0 di = 1 and di+w−1 = 0 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, R)
i ← i + w, and C = 0

0 di = 1 and di+w−1 = 1 ∃j dj = 0 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, −(2w − R)
i ← i + w, C = 1

0 di = 1 = di+1 = . . . = di+w−1 = 1 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, −1)
i ← i + w, C = 1

1 di = 1 δi = 0 i ← i + 1, C = 1

1 di = 0 and di+w−1 = 0 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, R + 1)
i ← i + w, and C = 0

1 di = 0 and di+w−1 = 1 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, −(2w − (R + 1))
i ← i + w, C = 1

value of ki is less than 2w−1). We need to provide a recoding definition for our
left-to-right construction that mimics these properties. In our definition, if the
symbol is nonzero the left-most bit must be nonzero and the rightmost wth bit
will be zero. We now formalize the definition of wNAF ∗

Definition 5. wNAF∗ Let w > 2 and k a positive integer. Then we say that∑n−1
i=−1 ai2i is a wNAF∗ representation of k provided k =

∑n−1
i=−1 ai2i and

(i) ai is a rational number for all i,
(ii) at most one of any w consecutive symbols ai, ai+1 . . . , ai+w−1 is nonzero,
(iii) for all i, if ai is nonzero then 1 ≤ |ai| ≤ 2,
(iv) for all i, the product ai · 2w−2 ∈ Z, and
(v) for all i, with −1 ≤ i ≤ w − 1 we have ai · 2i ∈ Z.

First observe that if a−1 �= 0 then 1 ≤ |a−1| ≤ 2 and a−1 · 2−1 ∈ Z. Since
1 ·2−1 ≤ |a−1| ·2−1 ≤ 2 ·2−1 = 1 we see that |a−1| = 2. So if a−1 �= 0 then either
a−1 = −2 or a−1 = 2.

Let us now consider ai where i ≥ w−2. Suppose ai is nonzero, without loss of
generality assume that ai > 0. Thus 1 ≤ ai ≤ 2. Then ai = 1+ ε where ε ∈ [0, 1].
Therefore we can express ai as

ai = 1 +
∞∑

j=1

ai,j
1
2j

where ai,j ∈ {0, 1} . (2)

Now ai · 2w−2 ∈ Z. Consequently,

ai · 2w−2 = 1 · 2w−2 +
w−2∑

j=1

ai,j
2w−2

2j
+

∞∑

j=w−1

ai,j
2w−2

2j

where ai,j ∈ {0, 1}. Observe that 1 · 2w−2 +
∑w−2

j=1 ai,j
2w−2

2j ∈ Z. Thus as ai ·
2w−2 ∈ Z we have

∑∞
j=w−1 ai,j

2w−2

2j is an integer. Now 0 ≤
∑∞

j=w−1 ai,j
2w−2

2j ≤ 1.
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Therefore since
∑∞

j=w−1 ai,j
2w−2

2j is an integer, there are two possible cases, it is
either 0 or 1.
Case 1. Suppose

∑∞
j=w−1 ai,j

2w−2

2j = 0. Then ai,j = 0 for all j = w − 1, . . .. So
in this case ai = 1 +

∑w−2
j=1 ai,j

1
2j .

Case 2. Suppose
∑∞

j=w−1 ai,j
2w−2

2j = 1. Then ai,j = 1 for all j = w − 1, . . . and
∑∞

j=w−1 ai,j
2w−2

2j = 1
2 + 1

4 + · · · = 1. Thus in this case
∑∞

j=w−1 ai,j
1
2j = 1

2w−2 .
Recall ai = 1 +

∑w−2
j=1 ai,j

1
2j +

∑∞
j=w−1 ai,j

1
2j , so ai = 1 +

∑w−2
j=1 ai,j

1
2j + 1

2w−2 .
We now examine this latter case, case 2, more closely. Suppose ai = 1 +∑w−2
j=1 ai,j

1
2j + 1

2w−2 . Observe that if ai,j = 1 for all j = 1, . . . , w − 2, then
ai = 2. Suppose there exists a j with 1 ≤ j ≤ w − 2 such that ai,j = 0. Since
ai = 1 +

∑w−2
j=1 ai,j

1
2j + 1

2w−2 , and there exists some ai,j equal to zero, we can
simplify this as ai = 1 +

∑w−2
j=1 bi,j

1
2j where bi,j ∈ {0, 1}. Thus there are three

possible representations for ai, either it is 0, ±2 or ±(1 +
∑w−2

j=1 bi,j
1
2j ) where

bi,j ∈ {0, 1}.
For all cases, when ai is expressed using the representation given in (2), we

see that ai,j = 0 for j = w − 1, . . .. Further, if ai �= 0, nd ai �= ±2, then
we can express ai as |ai| = (1, ai1, . . . ai,w−2, 0). Consequently either ai = 0,
ai = ±2 or it can be interpreted as a w − 1 bit rational number (either positive
or negative). The interpretation of ai as a w −1 bit rational number comes from
|ai| = (1, ai,1, . . . , ai,w−2, 0) = 1 + ai,1

2 + ai,2
22 + · · · + ai,w−2

2w−2 where ai,j ∈ {0, 1}.
Obviously the definition of wNAF ∗ mimics the definition of wNAF. That is,

one can view ai as a w-bit symbol such that if ai is non zero, and if ai �= ±2
then the high bit ai,w−1 is one (this is analogous to the case that in wNAF the
ki is odd) and the far right wth bit is zero. This implies that |ai| is between 1
and 2, such that |ai| = 1 + ai,1

2 + ai,2
22 + · · · + ai,w−2

2w−2 .
Let R be a w − 1-bit (or less) nonzero positive integer. R = rj , . . . , r1 where

rj = 1 and 1 ≤ j ≤ w − 1. Then we define Rfrac as

Rfrac = (1, rj−1 . . . , r1)frac =
j−1∑

i=0

rj−i · 1
2i

= 1 + rj−1 · 1
2

+ · · · + r1 · 1
2j−1 . (3)

4.2 wNAF ∗ Recoding Algorithm

When computing the wNAF representation of a key, we may have carry-in’s
from the right that are 0 or 1. In the left-to-right calculation of wNAF ∗ we
could have carry-in’s (from the left) of either −2 or 0. Table 4 describes how to
construct the wNAF ∗ recoding of key k. We initialize C = 0 and i = n − 1 and
process and compute each output symbol δi in a left-to-right manner. We will
continue until i < −1. It is possible that the last symbol generated δ−1 may be
nonzero.

Observe that termination is guaranteed, because k =
∑n−1

j=0 dj2j , so we inter-
pret input values d−1 = d−2 = 0 (since they do not have any assigned values,
they are correctly treated as zero). Also observe that it is possible that we have
an output result of δ−1 being nonzero (this is illustrated in the Example 2).
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Table 4. Left-to-right wNAF ∗

Carry-in Input Output
C R = (di, di−1, . . . , di−w+2, di−w+1) result

0 di = 0 δi = 0, i ← i − 1, and C = 0

0 di = 1 and di−w+1 = 0 (δi, δi−1, . . . , δi−w+2, δi−w+1) =
(Rfrac, 0, 0, . . . , 0),

i ← i − w and C = 0

0 di = 1 and di−w+1 = 1 ∃j dj = 0 (δi, δi−1, . . . , δi−w+2, δi−w+1) =
(R + 1)frac, 0, 0, . . . , 0),

i ← i − w, C = −2

0 di = 1 = . . . = di−w+1 = 1 (δi, δi−1, . . . , δi−w+2, δi−w+1) =
(2, 0, . . . , 0),

i ← i − w, C = −2

-2 di = 1 δi = 0, i ← i − 1, C = −2

-2 di = 0 and di−w+1 = 0 (δi, δi−1, . . . , δi−w+2, δi−w+1) =
(−(2w − R)frac, 0, 0, . . . , 0),

i ← i − w and C = 0

-2 di = 0 and di−w+1 = 1 (δi, δi−1, . . . , δi−w+2, δi−w+1) =
(−(2w − (R + 1))frac, , 0, 0, . . . , 0),

i ← i − w, C = −2

However if δ−1 �= 0 then δ−1 is either 2 or −2. Further δ−2 = δ−3 = ... = 0. In
Theorem 3 we show that the wNAF ∗ recoding is correct.

Example 2. We illustrate the different recodings systems for a fixedkey k. For a key
k = (1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1) =
3, 918, 617, 943.We express k utilizing the following representations:NAF, NAF ∗,
3NAF, 3NAF ∗, 4NAF, 4NAF ∗, and we provide a generalization of 4NAF ∗ which
uses integer symbols.

keyk 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1

NAF form
of k 1 0 0 1̄ 0 1 0 1 0 1̄ 0 0 1 0 0 1 0 1̄ 0 1̄ 0 0 0 1̄ 0 1̄ 0 1̄ 0 1̄ 0 0 1̄

NAF ∗ form
of k 2 0 0 1̄ 0 2̄ 0 2 0 2̄ 0 1 0 0 0 1 0 1 0 2 0 0 1̄ 0 1̄ 0 1̄ 0 1̄ 0 0 0 2̄

3NAF form
of k 1 0 0 0 0 3̄ 0 0 0 3 0 0 1 0 0 0 1 0 0 3 0 0 0 1̄ 0 0 3̄ 0 0 3 0 0 1̄

3NAF ∗ form

of k 2 0 0 3̄
2 0 0 0 3

2 0 0 0 1 0 0 0 3
2 0 0 1̄ 0 0 0 3̄

2 0 0 3
2 0 0 1̄ 0 0 0 2̄

4NAF form
of k 0 0 0 7 0 0 0 5 0 0 0 3̄ 0 0 0 7̄ 0 0 0 5̄ 0 0 0 0 3̄ 0 0 0 5 0 0 0 7

4NAF ∗ form

of k 7
4 0 0 0 5

4 0 0 0 0 7̄
4 0 0 0 0 0 5

4 0 0 0 7
4 0 0 0 5

4 0 0 0 3
2 0 0 0 0 2̄

Modified version a

4NAF ∗ form
of k 0 0 7 0 0 0 5 0 0 0 0 7̄ 0 0 0 0 0 5 0 0 0 7 0 0 0 5 0 0 3 0 0 0 2̄
a In this representation we express entries as integers rather than rational numbers.

Observe that we do not necessarily satisfy wNAF properties.
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Theorem 3. Let Δ =
∑n−1

j=−1 δj2j be the wNAF ∗ recoding of key k then Δ = k.

Proof. Our goal is to show that after each iteration we replace key bits dj with
symbols from the wNAF ∗ recoding δj such that result after replacement still
equals k. Assume that prior to the ith iteration we have CIN ·2i +

∑i
j=0 dj ·2j +

∑n−1
j=i+1 δJ · 2j = k.

We now consider each of the seven possible cases, a case for each of the seven
rows of Table 4.

First case, suppose CIN = 0 and di = 0, then trivially after executing the ith

iteration the resulting replacement still equals k.
Now suppose CIN = 0 and di = 1 and di−w+1 = 0. Then R = di . . . di−w+1 =

1xx · · · x0. We replace
∑i

j=i−w+1 dj · 2j by Rfrac · 2i which are equal. Again
trivially after executing the ith iteration the result still equals k.

Now suppose CIN = 0 and di = 1, di−w+1 = 1 and there exists j with
i − w + 1 < j < i such that dj = 0. Then R = di . . . di−w+1 = 1x · · ·x01 · · · 1.
Thus R + 1 = 1x · · ·x10 · · · 0. In this case COUT = −2. Now (R + 1)frac · 2i +
COUT · 2i−w = Rfrac · 2i + 1 · 2i

2−w+1 + −2 · 2i−w = Rfrac · 2i =
∑i

j=i−w+1 dj · 2j .
So the use of (R + 1)frac with COUT of −2 will provide a valid replacement.

Now suppose CIN = 0 and di = 1 = . . . = di−w+1 = 1. Then R =
di . . . di−w+1 = 11 · · · 111 · · ·1. Thus R + 1 = 2w+1. Note (R + 1)frac = 2.
In this case COUT = −2. With an argument similar to the above case, the use
of (R + 1)frac with COUT of −2 will provide a valid replacement.

Now suppose CIN = −2 and di = 1. Then −2 + 1 = −1 so the use of δi = 0
and COUT = −2 will provide a valid replacement.

Now suppose CIN = −2 and di = 0 and di−w+1 = 0. Then R =
di . . . di−w+1 = 1x · · ·x0. Thus −(2w − R) represents the sum of CIN with R.
The use of −(2w − R)frac with COUT of 0 will provide a valid replacement.

Now suppose CIN = −2 and di = 0 and di−w+1 = 1. Then R =
di . . . di−w+1 = 0x · · · x1. Thus R+1 = x′x′ · · · x′0. Consequently −(2w−(R+1))
represents the sum of CIN with R producing a COUT = −2. The use of
−(2w − (R + 1))frac with COUT of −2 will provide a valid replacement.

Thus all seven cases produce a valid replacement.
•

Theorem 3 established that the wNAF ∗ representation is correct (equivalent to
k). We now discuss the “efficiency” of the wNAF ∗ recoding.

Theorem 4. The average nonzero density of a wNAF ∗ recoding is 1
w+1 .

Proof. The exists a natural mapping between wNAF and wNAF ∗. This can be
seen by examining each row of Table 3 with the corresponding row of Table 4.
Under this mapping wNAF produces a nonzero output iff wNAF ∗ produces a
nonzero output and wNAF produces a nonzero carry-out iff wNAF ∗ produces
a nonzero carry out. Since the nonzero density of wNAF is 1

w+1 (see [10]), then
the nonzero density of wNAF ∗ must be 1

w+1 .
•
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Remark. In the appendix we illustrate how to compute the ECC scalar multiple
(see Algorithm 5 in Appendix). In our algorithm, precomputations of the form
Rfrac · P will need to take place. This can be done by using a halving a point
technique. For example, over binary elliptic curves the halving point algorithm [8]
is very efficient, see [6, 4]. However we could avoid the use of fractional symbols
and use integers (see Example 2, row labeled with a). By doing so we benefit
from the fact we have odd integers less than 2w−1 (in absolute value). Further
this generalization of wNAF ∗ will have the same nonzero density as wNAF ∗.
Thus this generalization has the same efficiency as wNAF ∗ (in the appendix we
construct the scalar multiple algorithm using this technique, see Algorithm 5).
In general, wNAF ∗ would require one more precomputation than wNAF since
2P would need to be computed and stored, but again 2P would always have to
be computed. Thus no extra precomputations are needed.

Table 5 illustrates the resource requirement of various signed digit recoding
representations. This table was provided in [10], we have added the additional
entry for the resource requirements of our algorithm wNAF ∗. Only wMOF, left-
to-right wNAF b and wNAF ∗ are left-to-right w-ary recoding. However left-to-
right wNAF b, has additional memory requirements. Most importantly wNAF ∗

is much more straightforward to implement than wMOF.

Table 5. Table of various signed digit representations as provided in [10]

Scheme Precomputations density additional memory

wNAF [12,2] 2w−2 1
w+1 O(n)

Koyama [7] 2w−1 − 1 1
w+3/2 O(n)

NAF +SW [3] 1/3(2w + (−1)w+1) 1
w+4/3−ν(w) O(n)

wMOF [10] 2w−2 1
w+1 O(w)

left-to-right wNAF b [10] 2w−2 1
w+1

O( log(w)
w

· n) when w > 2
O(log n) when w=2

wNAF ∗ 2w−2 1
w+1 O(w)

Here ν(w) = (−1)w

3·2w−2 .

5 Conclusion

We have examined an open problem concerning the creation of a left-to-right
on-the-fly implementation of wNAF by defining wNAF ∗ and creating the left-
to-right wNAF ∗ recoding algorithm. Though the wNAF ∗ recoding definition is
not the same as the wNAF definition, it closely mimics the definition. Further
the left-to-right recoding algorithm for wNAF ∗ closely mimics the right-to-left
recoding algorithm of wNAF . Our work has provided the relationship between
a right-to-left wNAF calculation and the left-to-right w-ary non adjacent form
calculation.

When applying the wNAF ∗ representation to the key k in the computation
of the ECC scalar multiple, it at first appears to require the use of halving of a
point computation [8], which is very efficient. However it is possible to modify
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our algorithm to create integer symbols, yet still reaping the same efficiency as
wNAF ∗. Our algorithm provides the optimal nonzero density (which implies
less additions need to take place) while also maintaining the optimal minimal
amount of precomputations (as illustrated in Table 5).
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Appendix

We have modified the algorithm from Table 2 slightly to provide a more straight-
forward implementation of the algorithm, collapsing more than one case (i.e.
more than one row of Table 2) into one logical statement.

We have modified the algorithm from Table 4 slightly to provide a more
straightforward implementation of the algorithm, collapsing more than one case
(i.e. more than one row of Table 2) into one logical statement, this is provided in
Algorithm 5. In Algorithm 6, we have modified Algorithm 5, so that the symbols
produced will be integers. We are using a technique illustrated in Example 2,
row denoted by a and then incorporate this technique to compute the scalar
multiple of an EC point.
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Algorithm 4. Using NAF ∗ to compute the scalar multiple in a left-to-right
fashion
1: INPUT: k = dn−1, ..., d0, and base point P belonging to elliptic curve
2: OUTPUT: kP
3: Compute 2P and store it
4: c ← 0
5: Q ← O { O is the point of infinity}
6: j ← n − 1
7: while j ≥ 0 do
8: if 2 ∗ dj + c = 0 then
9: Q ← 2Q {the next carry-in is the same as the previous carry-in}

10: else
11: Q ← 2Q
12: Q ← Q + (c + dj + dj−1)P
13: if exactly one of c, dj , dj−1 is nonzero then
14: c = 0
15: else
16: c = −2
17: j ← j − 1

{Comment we now handle the case if δ−1 is nonzero}
18: if c �= 0 then
19: Q ← Q + (c/2)P
20: return Q
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Algorithm 5. Computing the EC scalar multiple using the wNAF ∗ algorithm
1: INPUT: k = dn−1, ..., d0, and base point P belonging to elliptic curve
2: OUTPUT: kP
3: FORALL nonzero w bit integers with a leading one and trailing zero r =

(1, x1, . . . , xw−2, 0)
4: Compute rfracP and store in table
5: Compute 2P and store in table
6: c ← 0
7: Q ← O { O is the point of infinity}
8: j ← n − 1
9: ρ ← −1

10: while j ≥ 0 do
11: r = (dj , dj−1, . . . , dj−w+1)
12: if 2 ∗ dj + c = 0 then
13: Q ← 2Q, j ← j − 1
14: else
15: if c = 0 then
16: if dj �= dj−w+1 then
17: t ← rfrac

18: else
19: t ← (r + 1)frac

20: c = −2
21: else
22: if dj = dj−w+1 then
23: t ← −(2w − r)frac

24: c = 0
25: else
26: t ← −(2w − (r + 1))frac

27: if j ≥ w then
28: Q ← 2wQ
29: Q ← Q + tP {use precomputed table to find tP}
30: j ← j − w
31: else
32: ρ ← j
33: j ← j − w
34: if 0 ≤ ρ < w then
35: Q ← 2ρQ
36: Q ← Q + tP {use precomputed table to find tP}
37: else
38: if j = −1 and c = −2 then
39: Q ← Q + −P
40: return Q
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Algorithm 6. Modified version of scalar multiple calculation using wNAF ∗ and
integer constants
1: INPUT: k = dn−1, ..., d0, and base point P belonging to elliptic curve
2: OUTPUT: kP
3: FORALL nonzero w − 1 (or less) bit odd integers r
4: Compute r · P and store in table
5: Compute 2P and store in table {This was actually done some time in line 2}
6: c ← 0
7: Q ← O { O is the point of infinity}
8: j ← n − 1
9: ρ ← −1

10: τ ← 0
11: while j ≥ 0 do
12: Q ← 2τ Q
13: r = (dj , dj−1, . . . , dj−w+1)
14: if 2 ∗ dj + c = 0 then
15: Q ← 2Q, j ← j − 1, τ ← 0
16: else
17: if c = 0 then
18: if dj �= dj−w+1 then
19: Let τ denote the least significant nonzero bit of r (label the LSB of a w

bit integer as the 0 bit)
20: t ← (r/2τ )
21: else
22: Let τ denote the least significant nonzero bit of r + 1 (label the LSB of

a w bit integer as the 0 bit)
23: t ← (r + 1)/2τ

24: c = −2
25: else
26: if dj = dj−w+1 then
27: Let τ denote the least significant nonzero bit of 2w − r (label the LSB of

a w bit integer as the 0 bit)
28: t ← −(2w − r)/2τ

29: c = 0
30: else
31: Let τ denote the least significant nonzero bit of 2w − (r + 1) (label the

LSB of a w bit integer as the 0 bit)
32: t ← −(2w − (r + 1)/2τ

33: if j ≥ w then
34: Q ← 2w−τ Q
35: Q ← Q + tP {use precomputed table to find tP}
36: j ← j − w
37: else
38: ρ ← j
39: j ← j − w
40: if 0 ≤ ρ < w then
41: Q ← 2ρ−τ Q
42: Q ← Q + tP {use precomputed table to find tP}
43: Q ← 2τ Q
44: else
45: if j = −1 and c = −2 then
46: Q ← Q + −P
47: return Q
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Abstract. Implementations of the Advanced Encryption Standard
(AES), including hardware applications with limited resources (e.g., smart
cards), may be vulnerable to “side-channel attacks” such as differential
power analysis. One countermeasure against such attacks is adding a ran-
dom mask to the data; this randomizes the statistics of the calculation
at the cost of computing “mask corrections.” The single nonlinear step in
each AES round is the “S-box” (involving a Galois inversion), which in-
curs the majority of the cost for mask corrections. Oswald et al.[1] showed
how the “tower field” representation allows maintaining an additive mask
throughout the Galois inverse calculation. This work applies a similar
masking strategy to the most compact (unmasked) S-box to date[2]. The
result is the most compact masked S-box so far, with “perfect masking”
(by the definition of Blömer[3]) giving suitable implementations immu-
nity to first-order differential side-channel attacks.

Keywords: AES, S-box, masking, DPA, composite Galois field.

1 Introduction

In 2001 the National Institute of Standards and Technology adopted the Rijn-
dael algorithm [4] as the Advanced Encryption Standard (AES)[5], to provide a
standard algorithm for secure encryption, intended not only for U.S. government
documents, but also for electronic commerce. Since then, applications of AES
have become widespread.

Many different implementations of AES have appeared, to satisfy the varying
criteria of different applications. Some approaches seek to maximize throughput,
e.g., [6,7,8,9]; others minimize power consumption, e.g., [10]; and yet others min-
imize circuitry, e.g., [11,12,13,14,15]. For the latter goal, Rijmen[16] suggested
using subfield arithmetic in the crucial step of computing an inverse in the Ga-
lois Field of 256 elements. This idea was further extended by Satoh et al.[12],
using sub-subfields (the “tower field” representation of Paar[17], also called the
“composite-field” approach), along with other innovative optimizations, which
resulted in the smallest AES circuit at that point. The S-box architecture of
Satoh was refined somewhat by Canright[2], mainly through carefully chosen
normal bases, resulting in the most compact S-box to date.

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 446–459, 2008.
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No attacks have yet been found on the AES algorithm itself that are more
effective than exhaustive key search (“brute force”), although research contin-
ues, for example, on algebraic attacks[18,19]. But specific implementations of
cryptograpy in software or hardware, e.g. in smart cards, may be vulnerable to
“side-channel attacks” such as differential power analysis[20,21], that use statis-
tical analysis of physical quantities such as power consumption, electromagnetic
radiation, etc., to deduce information about the secret key.

One countermeasure against side-channel attacks is masking the data during
calculation, through adding or multiplying by random values. All the steps in
a round of AES are affine, except for the Galois field inversion substep of the
S-box (SubBytes) step. For the other steps, calculation of the mask correction is
linear, so an additive mask is most convenient. Some have suggested switching to
a multiplicative mask for the Galois inverse step (e.g., [22]), but one inescapable
weakness is that a zero data byte is unmasked by multiplication [23].

Applying the “tower field” representation, inversion in GF(28) involves several
multiplications and one inversion in the subfield GF(24), which in turn involves
multiplications and inversion in GF(22). In the sub-subfield GF(22), inversion
is identical to squaring, and so is linear (over GF(2)). Oswald et al.[1] applied
this idea to additive masking of the Galois inverse, and showed how to compute
the mask corrections for the tower field approach. (Morioka and Akishita[24]
apparently developed a similar masking scheme.) Many of the correction terms
involve multiplication in subfields, and Oswald et al. showed how some of these
multiplications can be eliminated through clever re-use of parts of the input
mask for the output.

The present work incorporates this masking approach into the compact S-box
of Canright[2], and also applies the optimization methods of [2] to the mask cor-
rection terms. At the level of operations in the subfield GF(24), we simplify the
approach somewhat, eliminating one multiplication and some additions, with fur-
ther simplifications at lower levels. Even so, we show that our approach achieves
the goal of “perfect masking,” in the terminology of Blömer et al.[3]: each inter-
mediate result has a statistical distribution that is independent of the plaintext
and key (assuming a source of uniformly distributed truly random masks). This
level of security (a strengthened version of that in [25]) ensures that no first-
order differential side-channel attacks can succeed, at least at the algorithmic
level. (Higher-order attacks are possible, but take much greater effort.)

However, Mangard et al.[26] showed that first-order DPA attacks can succeed
against a masked S-box using standard CMOS technology, even when the inter-
mediate results at the algorithmic level are provably secure. The attack exploits
glitches in the gate transition timings. In later work, Mangard et al.[27] showed
that the information leakage is caused by specific XOR gates in masked multipli-
ers, and can be eliminated if those XORs are made to satisfy timing constraints,
either through delay elements or by enable signals. Also, rather than CMOS,
other (more expensive) logic styles can be used to eliminate this potential prob-
lem. So masked S-boxes can be made secure from first-order DPA. At any rate,
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the current work only considers the intermediate results at the algorithmic level,
and shows that they are provably secure, which is the best that can be expected.

We apply the same optimizations as in the unmasked S-box of [2], including
efficient normal bases, elimination of common sub-expressions, and logic-gate
substitutions, to the masked S-box calculation here, including mask correction
terms. The result is, as far as we know, the most compact masked S-box to date
(for the 0.13-μ CMOS standard cell library considered). But the cost for this
security is that the S-box size is almost three times that of the unmasked S-box.
Also, since the security requires certain calculations to proceed in sequence, the
speed will be reduced. For applications with sufficient resources to unroll the
round loop, we show how re-using masks between rounds can save a significant
amount of the mask correction calculations; then the masked S-box is roughly
twice the size of the unmasked. Our compact masked S-box design could be
useful for securing some hardware AES applications, especially those with limited
resources, against first-order differential attacks.

2 Algebraic Description

The AES algorithm has been described thoroughly and frequently elsewhere[5];
here we give the barest outline before concentrating on the S-box. It is a sym-
metric block cipher (16 bytes, though the original Rijndael cipher supports other
block sizes[4]) consisting of several rounds (10, 12, or 14, for a key size 16, 24,
or 32 bytes, respectively). Each round involves the four steps called SubBytes
(byte substitution, or S-box), ShiftRows, MixColumns, and AddRoundKey (the
last round skips MixColumns, and there is a Round 0 consisting solely of Add-
RoundKey). The latter three steps are linear with respect to the data block, and
provide “diffusion.” SubBytes is the nonlinear step that provides “confusion.”

The S-box, applied to each byte, consists of two substeps: (i) considering
the byte an element of the Galois field GF(28), find its inverse in that field
(except a zero byte, which has no inverse, remains unchanged); (ii) considering
the resulting byte a vector of bits in (GF(2))8, multiply by a given bit matrix
and add a given constant vector, i.e., an affine transformation.

In the particular Galois field of AES, a byte represents a polynomial where the
bits are coefficients of corresponding powers of x, and multiplication is modulo
the irreducible polynomial q(x) = x8 + x4 + x3 + x + 1. Equivalently, one could
consider a root, say θ, of this polynomial, so q(θ) = 0 in this field; then the bits of
a byte would correspond to coefficients of powers of θ, e.g., 2 = θ, 3 = θ + 1, 4 =
θ2, etc. Thus the bits form a vector with respect to what is called a polynomial
basis. But there are computational advantages to considering a different (though
isomorphic) representation of GF(28). Instead of a vector of dimension eight over
GF(2), we consider a byte as a vector of dimension two over GF(24), where each
4-bit element is in turn a vector of dimension two over GF(22), and finally each
2-bit element is a vector of dimension two over GF(2). This has been called a
composite field, or “tower field” representation[17]. In this way, the 8-bit inverse
calculation comprises several 4-bit operations, each consisting of various simple
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2-bit calculations. For each of these subfields, it has been shown[2] that a normal
basis (consisting of a conjugate pair) is more efficient than a polynomial basis for
the required inverse calculation; for each particular basis used, the trace (sum
of the conjugate pair) is 1, and the norm (product of the conjugate pair) is a
nonzero element of the subfield[2].

Converting between the standard AES representation and the composite field
representation amounts to a change of basis, accomplished by multiplying the
bit vector by a bit matrix. In converting back, this bit matrix can be combined
with that of the affine transformation substep[12]. With regard to an additive
mask, these matrix multiplications are simple linear calculations for the mask
correction terms. Below we detail the mask corrections required for the nonlinear
inverse calculation.

2.1 Inversion without Masking

Here we employ the following convention: upper-case bold symbols represent
elements of the main field (e.g. A ∈ GF(28)); upper-case italic symbols are for
elements of the subfield (e.g. A ∈ GF(24)); lower-case bold is used for the sub-
subfield (e.g. a ∈ GF(22)); and lower-case italic is for single bits (e.g. a ∈ GF(2)).

Without masking, inversion in GF(28)/GF(24) (indicating the representation
of GF(28) as vectors over GF(24)) using a normal basis [Y16,Y], where Y and
Y16 are the roots of X2 + X + N and N ∈ GF(24) is the norm (product:
N = Y17), is given by [2]:

A = A1 Y16 + A0 Y (given) , (1)

B = N ⊗(A1 ⊕ A0)
2 ⊕ A1⊗A0 , (2)

A−1 =
(
A0⊗B−1) Y16 +

(
A1⊗B−1) Y (result) . (3)

(Note that ⊗ and ⊕ denote multiplication and addition calculations in a Galois
field, while A1 Y16 +A0 Y is just the algebraic expression for the vector [A1, A0]
in the normal basis.) This requires inversion, multiplication, and the combined
“square-scale” operation (N⊗X2) in the subfield GF(24). Similarly, the inversion
in GF(24)/GF(22) using a normal basis [Z4, Z], where Z and Z4 are the roots
of X2 + X + n and n ∈ GF(22) is the norm (n = Z5), is given by:

B = b1 Z4 + b0 Z (given) , (4)

c = n⊗(b1 ⊕ b0)
2 ⊕ b1⊗b0 , (5)

B−1 =
(
b0⊗c−1) Z4 +

(
b1⊗c−1) Z (result) . (6)

But in the sub-subfield GF(22), inversion is the same as squaring, equivalent to
a bit swap:

c = c1 w2 + c0 w (given) , (7)
c−1 = c0 w2 + c1 w (result) , (8)

where w and w2 are the roots of x2+x+1. (While this algebraic description uses
the Galois inverse, the case of a zero element in any of these fields is correctly
handled: the zero element is returned in lieu of an inverse.)
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2.2 Masked Inversion

Now introduce additive masking. By adding a random mask, such that the sta-
tistical distribution of masks is uniform over the field, now our operands appear
random as well, uncorrelated to either plaintext or key. Hence the statistical data
available through side channels appears as noise, independent of the chosen sets
of plaintexts, and the key is protected against first-order differential attacks. The
cost is the computation of mask correction terms that are combined with the
given masked input to correctly mask the output. Here we outline the algebraic
steps involved; we later show that this masking scheme is secure in 2.5.

We use the insight of Oswald et al. that in the sub-subfield GF(22) inversion
(squaring) is additive, so for data a and mask m, then

(a ⊕ m)−1 = (a ⊕ m)2 = a2 ⊕ m2 = a−1 ⊕ m−1 , (9)

and finding the mask correction m2 is trivial. Hence the tower-field approach
eliminates the need to remove the additive mask (or change it to a multiplicative
one) before inversion.

In the larger fields, here is how the mask corrections can be calculated. We
indicate the masked version of the input byte A with a tilde: Ã, and similarly
for the other masked quantities. So the input to the masked GF(28) inverter is
the data byte A already masked by the (known) mask M

Ã = (A ⊕ M) = Ã1 Y16 + Ã0 Y , (10)
M = M1 Y16 + M0 Y . (11)

Let

B̃ = N ⊗
(
Ã1 ⊕ Ã0

)2
⊕ Ã1⊗Ã0 ⊕ Ã1⊗M0 ⊕ Ã0⊗M1 ⊕ M1⊗M0 ,(12)

M2 = N ⊗(M1 ⊕ M0)
2

, (13)

with the result B̃ being B above, masked by M2, which is uniformly distributed.
Here the terms must be added in sequence to keep each intermediate result
uniformly distributed, as discussed below in 2.5.

For the subfield inversion, say B̃ = b̃1 Z4 + b̃0 Z and M2 = m1 Z4 + m0 Z,
and let

c̃ = n⊗
(
b̃1 ⊕ b̃0

)2
⊕ b̃1⊗b̃0 ⊕ b̃1⊗m0 ⊕ b̃0⊗m1 ⊕ m1⊗m0 , (14)

so c̃ is c above, masked by n⊗(m1 ⊕ m0)
2 (which need not be computed, only

its square m2 below).
In the sub-subfield, say c̃ = c̃1 w2 + c̃0 w, and let

c̃−1 = c̃0 w2 + c̃1 w (bit swap) , (15)
m2 = n2⊗(m1 ⊕ m0) , (16)

so c̃−1 is c−1 above masked by another uniform mask m2.
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The next steps would involve only multiplications, but directly adding any
of the correction terms would reveal a distribution that depends on the data.
Hence (as in Oswald et al.[1]) we need to introduce another additive mask. This
mask could be new, or could be re-used bits from the original mask M. In either
case, this mask must be added first, then the other mask correction terms added
individually to the sum, to maintain the uniform distribution for intermediate
results.

Say now we introduce a new temporary 4-bit mask T = t1 Z4 + t0 Z, and let

b̃−1
1 = t1 ⊕ b̃0⊗c̃−1 ⊕ b̃0⊗m2 ⊕ m0⊗c̃−1 ⊕ m0⊗m2 , (17)

b̃−1
0 = t0 ⊕ b̃1⊗c̃−1 ⊕ b̃1⊗m2 ⊕ m1⊗c̃−1 ⊕ m1⊗m2 , (18)

so that the result B̃−1 = b̃−1
1 Z4 + b̃−1

0 Z is B−1 above, masked by T (but is not
the inverse of B̃).

Similarly, introduce a new 8-bit mask S = S1 Y16 + S0 Y for the output, and
let

Ã−1
1 = S1 ⊕ Ã0⊗B̃−1 ⊕ Ã0⊗T ⊕ M0⊗B̃−1 ⊕ M0⊗T , (19)

Ã−1
0 = S0 ⊕ Ã1⊗B̃−1 ⊕ Ã1⊗T ⊕ M1⊗B̃−1 ⊕ M1⊗T , (20)

so that the result Ã−1 = Ã−1
1 Y16 + Ã−1

0 Y is the answer A−1 above, masked
by the output mask S:

Ã−1 = A−1 ⊕ S . (21)

2.3 Re-using Masks

Oswald et al.[1] showed that through using parts of the input mask for the
intermediate results and the output, then several operations can be eliminated,
notably multiplications (for the cost of a few additions). We will follow the same
strategy below. (While re-using masks could make the implementation more
vulnerable to higher-order differential side-channel analysis, it remains secure
against first-order attacks.)

The first place where re-using masks helps is in the masked intermediate result
c̃−1, where for one subsequent calculation the mask m1 would be helpful but
for another the preferred mask would be m0, so we follow [1] and switch masks.
Then starting at (15) above we modify the calculation as follows:

c̃−1 =
[
c̃0 w2 + c̃1 w

]
⊕ (m1 ⊕ m2) , (22)

b̃−1
1 = m11 ⊕ b̃0⊗c̃−1 ⊕ b̃0⊗m1 ⊕ m0⊗c̃−1 ⊕ m0⊗m1 , (23)

c̃−1
2 = c̃−1 ⊕ (m0 ⊕ m1) , (24)

b̃−1
0 = m10 ⊕ b̃1⊗c̃−1

2 ⊕ b̃1⊗m0 ⊕ m1⊗c̃−1
2 ⊕ m1⊗m0 , (25)

where the underlined products had already been computed previously and may
be re-used. (Parens indicate the order of evaluation necessary to avoid unmasking
operands. In the actual optimized code, the details of the specific bits added are
different.) The result B̃−1 = b̃−1

1 Z4 + b̃−1
0 Z is still B−1 above, but now masked
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by M1 = m11 Z4 +m10 Z, the upper half of the input mask. Following the same
approach of switching masks at the next level gives

Ã−1
1 = S1 ⊕ Ã0⊗B̃−1 ⊕ Ã0⊗M1 ⊕ M0⊗B̃−1 ⊕ M0⊗M1 , (26)

B̃−1
2 = B̃−1 ⊕ (M0 ⊕ M1) , (27)

Ã−1
0 = S0 ⊕ Ã1⊗B̃−1

2 ⊕ Ã1⊗M0 ⊕ M1⊗B̃−1
2 ⊕ M1⊗M0 , (28)

again allowing the underlined products to be re-used, and with the output Ã−1 =
Ã−1

1 Y16 + Ã−1
0 Y having the output mask S (which could be the original input

mask M, or not):
Ã−1 = A−1 ⊕ S . (29)

2.4 Re-using Masks Between Rounds

Many of the mask correction terms used in the masked inversion above involve
only the input mask, independent of the masked data. This is also true of all the
mask correction term calculations in the other steps of each round of encryption,
as those other steps are all linear (with respect to the additive mask). Then, if
the original 128-bit mask for a block of data were to be re-used for every round,
all those data-independent correction terms would be the same for each round.
For implementations where the round loop is “unrolled,” with S-boxes for each
round, these terms would only need computing once, then could be passed along
to all the other rounds. This would save the re-computation of all those mask
terms, eliminating the associated circuitry, at the modest cost of the “wiring”
required to pass along the correction terms. Of course, one would use a new
random mask with each new block of data in Round 0, to ensure that over time
the distribution of masks remains uniform.

More precisely, one way to do this starts by picking a random 128-bit mask
that will be used as the output mask (whose bytes correspond to S above)
from the inversion step. Then after each byte undergoes the basis change (from
the tower field form) combined with affine transformation part of the S-box
(excluding the additive constant), the ShiftRows step is applied to the whole
mask; the result is the output mask after the last round of encryption (which
lacks the MixColumns step). Then MixColumns is applied to that, giving the
input mask to be added to the initial data before Round 0. Applying byte-wise
the basis change (to the tower field form) gives the input mask (corresponding
to M above) for the inversion step. From this can be computed such terms as
M1 ⊗M0, M2, m1 ⊗m0, and m2 above, to be re-used each round. Then the
only correction terms that would need computing in each round are the data-
dependent terms (e.g. Ã1⊗M0 above) of the inversion step.

But this only makes sense if the application has enough room to unroll (at
least partly) the round loop. (While unrolling the rounds does not improve la-
tency, this saving of correction terms may make unrolling preferable to simply
duplicating more encryptors for increased throughput.) In cases where compact-
ness is paramount the same few S-boxes would be employed for each round;
using pre-computed correction terms from round to round would then require
extra registers – a cost rather than a saving.



A Very Compact “Perfectly Masked” S-Box for AES 453

2.5 Security of Masked Operands

Here we show that the masked inversion operation outlined above is secure,
by which we mean, assuming a source of truly random uniformly distributed
masks, then the distribution of each intermediate result is independent of both
the plaintext data and the key. This gives “perfect masking” in the terminology
of [3], and hence protection from first-order differential side-channel attacks. We
start with Lemmas 1 and 2 of [3] (paraphrased) and, to be thorough, add two
more lemmas to cover all the operations in inversion, which are then examined
in detail.

Lemma 1. Given x uniformly distributed over a finite field IF, and any y ∈ IF
independent of x, then z = x ⊕ y is also uniformly distributed and independent
of y.[3]

Lemma 2. Given x and y independent and both uniformly distributed over a
finite field GF(pn), then z = x ⊗ y is distributed according to

Pr(z = i) =
{

(2pn − 1)/p2n , i = 0
(pn − 1)/p2n , i �= 0

here called the random product distribution.[3]

Lemma 3. Given x uniformly distributed over a finite set IF, and a one-to-one
mapping f : IF → IF, then y = f(x) is also uniformly distributed.

Proof: For a finite set, any one-to-one mapping is a bijection, i.e., just a permuta-
tion of the elements, so a uniform distribution is unchanged. (Note in particular
that any isomorphism of a finite field is a bijection.)

Lemma 4. Given x = [x1, x2, · · · , x2n] uniformly distributed over the set IF2n

of ordered 2n-tuples from a finite set IF, then the two halves y1 = [x1, x2, · · · , xn]
and y2 = [xn+1, xn+2, · · · , x2n] of x are independent and uniformly distributed
over IFn.

Proof: Since x is uniform if and only if each xi is independently uniform over
IF, then y1 and y2 are independent and uniform. (So given a uniform mask of n
bits then any sub-mask is also uniform.)

Consider the operations in the masked inversion above. Initially adding a
uniform mask to the plaintext data gives a uniform result, as is Ã in (10) above,
with independent uniform halves Ã1, Ã0. Then Ã1⊕Ã0 is uniform, so is its square
(squaring is an isomorphism in a field of characteristic 2), and so is that square
scaled by the norm N , since multiplication by a nonzero constant is a one-to-one
mapping. Each of the other four products in (12) for B̃ has the random product
distribution.

Now the order of adding these pieces together is crucial, because adding any
pair of those four products would give a distribution that depends on the data. So

the uniform N⊗
(
Ã1 ⊕ Ã0

)2
must be added to the first product before any other
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products are added; by successively adding each other product to the previous
uniform sum, then each resulting sum is uniform, including B̃. Also, its mask
M2 = N ⊗(M1 ⊕ M0)

2 is uniform.
Similar reasoning applies to c̃ in (14). Then its square in (22) is also uniform,

with the uniform mask m2 = n2 ⊗(m1 ⊕ m0); hence the order of summation
for c̃−1 in (22) is important to avoid unmasking by (c̃)2 ⊕ m2. Again, in (23)
for b̃−1

1 , each of the four products has the random product distribution, and the
first sum must be with the uniform mask m11, then each other product added
successively, so each result is uniform. And again, in switching masks for c̃−1

2 in
(24) the order of summation for is important to prevent unmasking by c̃−1 ⊕m1.
All the remaining steps are similar to those already discussed.

Therefore, the result of every calculation is either uniformly distributed or
has the random product distribution (provided the summations are performed
in the correct order), independent of the data and key: “perfect masking.” This
protects suitable implementations from attacks by first-order differential side-
channel analysis. (Resistance against higher-order attacks would be improved
by avoiding re-use of masks within the S-box, as well as between rounds.)

3 Optimizations and Results

The algebraic description above shows the most efficient masked inversion at that
algebraic, hierarchical level. At the bit level, further optimization is possible due
to certain bit combinations being useful in more than one place. And at the
logic gate level, certain substitutions of types of logic gates give further savings
in circuit size (for the standard cell library considered).

Here we briefly describe the main optimizations, which are essentially the
same as in [2], but applied also to mask correction calculations. Each Galois
multiplier involves bit sums, and since all factors are shared between two multi-
pliers (using normal bases), these bit sums can be re-used; some of them are also
useful as parts of the square-scale operation. And bit sums required for mask
switching in (27) are useful in subfield operations also. Gate-level optimizations
(minimizing the size for the 0.13-μ CMOS standard cell library[28] considered)
include replacing AND by NAND, and where possible, replacing a NAND and
some XORs by a single NOR. (We only consider two-input logic gates; using
gates with more inputs may allow some improvement.)

But the S-box involves more than inversion in the tower-field representation.
The affine transformation and conversion to/from the tower-field form are also
required. (While one approach is to use the tower-field form for the entire encryp-
tion round[11], we use it only for the inversion, so that the MixColumns step
remains simple.) For decryption, the inverse affine transformation is required.
The conversion between the standard form and the tower-field form can be done
through multiplying the byte by a bit matrix, and one of those two matrices
can be combined with the bit matrix multiply of the affine transformation (or
inverse). Satoh et al.[12] showed how, when both encryption and decryption are
required, an architecture sharing a single Galois inverter between an S-box and
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an inverse S-box allows some further optimization in the four matrices involved.
We use the particular normal bases of [2] and the corresponding optimally fac-
tored matrices to minimize this computation.

We wrote a complete implementation, with all optimizations, of the masked
S-box and inverse S-box using the merged architecture of [12], with a shared
Galois inverter. The complete implementation, written in Verilog, is given in
[29]. Here both the input mask and the output mask are parameters, along with
the masked data byte. The code has been compiled and run on an FPGA, and
shown to give correct results for every combination of encryption/decryption,
data byte, input mask, and output mask (33,554,432 combinations).

Tables 1 and 2 give the resulting numbers of logic gates separately for the
masked Galois inverter and the basis change (bit matrices). Results are shown
by number and type of specific logic operations, and also by total “gates,”
where the number refers to the equivalent number of NAND gates (rounded
to whole numbers), using our standard cell library. We use the equivalencies 1
XOR/XNOR = 7

4 NAND gates, 1 NOR = 1 NAND gate, 1 NOT = 3
4 NAND

gate, and 1 MUX21I = 7
4 NAND gates[28].

Table 1. Inverter Size. Here we compare the masked inverter with the unmasked
version, where total gates is in NAND equivalents.

Inverter gate counts total gates

masked 217 XOR, 94 NAND, 6 NOR 480
unmasked 56 XOR, 34 NAND, 6 NOR 138

Table 2. Basis Change Sizes. Here we compare gates needed in the basis change bit
matrices (including the affine transformation but excluding the Galois inverter) for a
merged S-box & inverse, S-box alone, and inverse S-box alone, using different input
and output masks, same mask for both, or no mask. Both individual gate counts and
NAND equivalents are given.

Basis Change merged S-box (S-box)−1

2 masks 78 XOR, 4 NOT, 32 MUX = 196 49 XOR = 86 50 XOR = 88
1 mask 58 XOR, 3 NOT, 32 MUX = 160 44 XOR = 77 45 XOR = 79

unmasked 38 XOR, 2 NOT, 16 MUX = 96 24 XOR = 42 25 XOR = 44

Note that the additional resources needed to use different masks on input
and output are significant for the merged architecture, but not for dedicated
encryption (or decryption) only. For protection against first-order differential
attacks, there is no reason not to use the input mask for the output as well. In
this case, the size for the merged architecture where encryption and decryption
share an inverter is 640 NAND equivalents, nearly three times the size of the
unmasked version (234 gates). (For encryption only, not merged, the S-box with
a single mask for both input and output is 557 NAND equivalents, compared
with 180 for unmasked; again masked is three times larger.)
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However, if the current approach were used in an application where the loop of
rounds was “unrolled” (requiring enough room for at least 160 S-boxes for com-
plete unrolling), the masks could be re-used from round to round, as discussed
above in 2.4. This would require passing along the extra bits of pre-computed
corrections between rounds. For one S-box, the total number of mask-term bits
would be 43, as compared to 8 bits for an input mask alone (to be used as output
mask also, or 16 bits for two different masks). These extra wires would replace
33 XORs and 12 NANDs in the inverter, and all of the mask basis change calcu-
lation (so the basis change would be as if unmasked). The gains from this re-use
between rounds is shown in Table 3; then a masked merged S-box is 506 NAND
equivalents, rather than the 640 above. In addition to this saving per S-box (af-
ter the first round), the MixColumns operation on the mask block would also be
eliminated (again, after the first round).

Table 3. Gains from re-using masks between rounds, for the complete S-box, in NAND
equivalents. (This re-use requires unrolling the round loop with many copies of the S-
box.)

masking merged S-box (S-box)−1

1 mask 640 557 559
re-use 506 452 454

Table 4. High-level comparison of masking schemes: GF(24) operations, from Table
1 of [1] with a new row for the current work, and a new column for the Square-Scale
optimized combination [addition and inverse operations not shown].

method Mult MultConst Square Square-Scale

S-Akkar 18 6 4 0
S-Blömer 12 1 2 0
MS-IAIK 9 2 2 0
this work 8 0 0 2

Direct comparison with Oswald et al.[1] is difficult at the level of optimization
employed here. Their terms of comparison are operations in GF(24) and their Ta-
ble 1 is reproduced here as Table 4, augmented to compare with the present work.
They compare their approach (MS-IAIK) to their implementations of two pre-
vious methods, and do not include addition and inversion operations, presum-
ably because addition is relatively small (4 XORs) and one subfield inversion is
assumed. The column for multipliers in GF(24) is the most significant (since each
GF(24) multiplier includes 3 multipliers and 4 additions in GF(22)) and our ap-
proach saves one multiplier at this level. It is not clear how they implemented
squaring, and multiplication by a constant, called “scaling” here; in our approach
with normal bases, squaring is always followed with scaling by the norm, so we
treat square-scale as a single operation, which we have optimized down to only 3
XORs, less than one of the 4-bit additions that are not counted in [1].
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Some rough comparison is possible in the algebraic description at the GF(24)
level: our (12) and (13) are approximately comparable to their (19), while our
(26), (28) are like their (15), (17) respectively. In particular, their (19) (which
includes 4 squares, though only 2 appear in [1, Table 1]) shows more terms than
our combined (12,13). So we save at least some GF(24) additions, and again at
the GF(22) level. But while detailed comparison is difficult in the lack of specifics,
we are confident that ours is the smallest masked S-box to date, because it uses
the same optimizations as the smallest unmasked S-box to date.

4 Conclusion

Side-channel attacks can be an major concern for certain applications of AES,
including hardware applications with limited resources, such as smart cards.
Adding random masks can be an effective countermeasure, though at the cost of
computing mask corrections in the S-box (the rest of each round being linear).
Here we show how to compute the Galois inverse (the nonlinear part of the S-
box) with “perfect masking,” in that the distributions of all the masked operands
are independent of the chosen plaintext and key; hence suitable implementations
employing this method are secure against first-order differential side-channel at-
tacks. (Though, as discussed in the Introduction, CMOS implementations might
be vulnerable to DPA attacks, due to glitches[26], unless specific timing con-
straints are met[27].) While our approach is similar to [1], we have reduced the
number of operations at every level. We have optimized this masked S-box for
minimal chip area, giving the smallest masked S-box of which we are aware.

The overhead for masking nearly triples the size of the S-box, from 234 gates
(NAND equivalents) to 640 gates for the merged version. In applications with
sufficient resources to unroll the round loop (where the compactness of our S-
box allows more copies for a given area), this overhead may be reduced through
re-using the block mask between rounds. Then (after the first round) each S-box
would require only 506 gates, a little over twice the size of the unmasked version,
and the mask correction for the rest of each round would also be eliminated.
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attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 309–318. Springer, Heidelberg (2001)
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Abstract. What are the real security issues for a wireless sensor net-
work (WSN) intended to monitor the structural health of a suspension
bridge, a subway tunnel or a water distribution pipe? Could an attack
on the sensor network cause the structure to collapse? How easy is it
for civil engineers or other domain experts to build a secure WSN using
commercially available hardware and software?
We answer these questions by conducting a qualitative risk assessment
with bridge and subway tunnel operators and by conducting penetration
testing on commonly available commercial WSN hardware and software,
namely the Crossbow MICAz motes running TinyOS and XMesh and
communicating over IEEE 802.15.4.

1 Introduction

We are interested in the practical security of real-world deployments of wireless
sensor networks (WSN). The goal of our project is to develop reliable ways of
monitoring the condition of large civil engineering structures such as bridges,
subway tunnels, water pipes and sewers so that structural damage (due for ex-
ample to corrosion, materials fatigue, overloading or shifting of surrounding soil)
may be noticed and remedied before the structure weakens to the point of failure.

Traditionally, such monitoring is effected through periodic visual inspection.
However the cost of accessing the structure for inspection is high, not just in
terms of the effort required for the people in hard hats to reach the part of the
structure to be monitored (think of the main steel cables of a suspension bridge
or the middle section of a 3 km stretch of subway tunnel between two stations)
but also in terms of the downtime of the structure for its regular users. This
means that, unless there is reason to suspect a problem at a particular spot,
routine inspections are infrequent (perhaps every few months) and cannot easily
pick up new faults as they develop. This motivates our search for a solution
based on a fixed network of sensors—wireless rather than wired in order to
facilitate deployment in hard-to-access locations. Within the project, we (the
three authors of this article) are responsible for the security engineering aspects
of the wireless sensor network.

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 460–478, 2008.
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From the security viewpoint, what is the problem to be solved? A preliminary
challenge is to understand what damage could be caused by a failure (whether
accidental or maliciously induced) of the sensor system. Would an attack on the
sensor system just compromise the monitoring functionality, forcing the struc-
ture operators to fall back to manual inspection, or could it also have direct
repercussions in the physical world, such as causing actual damage to the struc-
ture or to other nearby entities? If so, how? It is difficult to quantify such risks
because there is essentially little or no prior experience of large civil engineer-
ing structures being monitored for many years by wireless sensors. Sometimes
the structure operators themselves cannot imagine any serious security issues.
It would be a mistake to launch into grand plans for encryption, key manage-
ment and access control based just on what is fun for security researchers to
do, rather than in response to recognised risks. So the consequences of security
failures must be researched and understood, and the cost of security measures
must be appropriate for the risks. The second challenge, assuming that the risk
analysis requires and justifies such action, is to build a secure network of sen-
sors using commercial off the shelf (COTS) hardware and software. Are current
systems sold in a secure configuration? If not, is it still possible for non-experts
to build a secure system out of such components? How? And how difficult is it?

In this paper we offer the following contributions. Firstly, we report on our ini-
tial qualitative risk assessment, carried out by interviewing the operating manager
of a large suspension bridge and a contractor responsible for part of a large subway
tunnel network (section 3). Secondly, and most significantly, we assess the practi-
cal security of the particular COTS system adopted by our team, the Crossbow
MICAz motes running TinyOS or XMesh, together with the Stargate gateway: we
design and implement a variety of attacks on this system and we report on the secu-
rity problems we found, together with appropriate fixes where possible (section 4).
As a further contribution to WSN security we ported the TinySec security library
to the MICAz motes1. While some of our attacks exploit generally known vulnera-
bilities, others like selective jamming (section 4.3) and power exhaustion through
routing table manipulation (section 4.5) are original and interesting in their own
right. In section 4.3 we also demonstrate how an attacker can undetectably alter
messages in an IEEE 802.15.4 radio environment. Finally, based on the experience
we gained, we offer some architectural recommendations (section 5), independent
of the particular hardware and software we used, that will help future teams design
and deploy more secure WSN systems out of COTS hardware and software.

2 Scenario

2.1 Sensing

The purpose of a sensor network in our scenario is to monitor ambient conditions
for hints that the structure may be deteriorating. Here is a non-exhaustive list
of examples of what we monitor and why.
1 The source code is available under GPL from
http://www.winesinfrastructure.org/

http://www.winesinfrastructure.org/
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Bridges. The main cables of a 2 km suspension bridge are almost 1 m in diameter;
each of them is actually a bundle of over ten thousand 5 mm steel wires, all
anchored in strands into huge concrete blocks in underground chambers at either
end of the bridge. We monitor temperature and humidity at various points in
those chambers for signs of conditions that might lead to corrosion.

Some of the wires do break over the lifetime of the bridge owing to corrosion,
defects and stress. A large safety factor is built in by design, to ensure that the
main cables will still support the weight of the loaded bridge despite a number of
inner wires having snapped; but monitoring the rate of breakages is very hard. A
visual inspection, involving opening up the main cables with wedges, is extremely
costly and disruptive; it will only spot breakages that are close to the inspection
point and it may itself cause further breakages by stressing the cable. We will
instead be using sensors based on acoustic monitoring of the “ping” sound made
by a wire snap: with several synchronised sensors on the main cables, one may
approximately locate the position of a breakage. Such sensors require a 100 kHz
sampling rate, which imposes stringent performance constraints on the nodes.

Tunnels. A subway tunnel is essentially a hollow underground burrow whose
walls are lined with large cast iron or concrete tiles. As the surrounding soil
moves, settles and subsides, the cross-section of the tunnel deforms and the
walls of the tunnel get damaged, perhaps developing cracks. We monitor existing
cracks with sensors that measure the displacement across the edges of the crack.
We also use inclinometer sensors to measure whether a given tile moves (by
as little as a hundredth of a degree), indicating deformation of the tunnel that
might lead to further cracks. We also monitor relative humidity, temperature
and vibrations.

Water pipes. A large water distribution pipe can be almost 1 m in diameter.
The opening and closing of valves causes pressure waves that stress the pipe
and may eventually result in leaks. A leak in a large water pipe may discharge
substantial amounts of water and cause a local flood in less than an hour. Prompt
intervention is essential. We monitor water pressure at various points in the pipe
and infer the presence and location of leaks with mathematical models.

2.2 Network Architecture

The standard architecture for this type of application is a three-tier wireless
sensor network. At the bottom tier, the sensors are attached to nodes2 that form
a multi-hop ad-hoc network. Modern motes tend to use IEEE 802.15.4 as their
communication standard3 but some older motes may use unlicensed frequencies
such as 868 or 916 MHz.

At the middle tier, the data measured by the motes is routed to a gateway,
physically located near the nodes (e.g. inside the tunnel) because of obvious

2 Also known as motes from the seminal “Smart Dust” paper [1].
3 This standard is often colloquially indicated as ZigBee but, strictly speaking, most

current motes do not implement the higher layers specified by ZigBee on top of the
PHY and MAC defined by 802.15.4.
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connectivity requirements. The gateway, usually an embedded Linux PC, may
perform some preprocessing on the collected data. Communication between the
gateway and the next tier is frequently implemented via GPRS, which is easy
to deploy in isolated areas. However, GPRS is relatively slow and expensive
and therefore may not be suitable for applications that require high data rates
or always-on connectivity (as opposed to, say, overnight batch logging of a few
data samples collected during the day). It also does not work in tunnels. Where
ADSL is available, it is usually more convenient.

At the top tier, the data collected by the gateway(s) is aggregated into a
database running on a central server (usually a PC) that will be accessed by
various applications for visualisation and processing of the data.

3 Qualitative Risk Assessment

Since the value of our project to the security community comes primarily from
its link to real-world installations, we started by interviewing two senior repre-
sentatives of organisations that respectively operate a large suspension bridge
and a system of underground tunnels. We wanted to elicit their perception of
risks rather than relying on our own guesswork. This is an ongoing portion of
the project and we next expect to interview a water distribution operator.

Direct consequences in the physical world. The disruptive potential of data mo-
dification or injection attacks is greatly amplified if the sensors are directly
connected to actuators in a feedback loop (e.g. actuators close the valves as
soon as a leak is reported). In such cases, altering bits in a radio message has
a direct effect on the real world (a mains water pipe is closed down, stopping
water delivery for a whole neighbourhood).

Our first round of questions to the bridge and subway operators therefore
aimed to elicit whether the WSN would plausibly be linked to any actuators
once the system reached maturity. For the bridge, the answer was a definite
no: none of the measurements would have consequences requiring automatic
and immediate action. Everything is reported to a control room from where
human operators have direct visibility of the bridge. Any action, including such
“soft” actions as activating road signs that lower the speed limit for motorists
(something that is done in poor weather conditions such as high winds, frost and
so on), is initiated manually by an operator who cross-checks the sensor readings
with other clues (e.g. a windsock). For the subway tunnels the situation was more
subtle, since operators cannot rely on a visual cross-check, but our contact could
still not imagine a situation in which tunnel sensors would be directly attached
to actuators without human intermediation. We are keen to interview a water
operator, though, whose answer might be quite different in light of the leak
scenario.

Confidentiality. We also asked whether the operators would be worried if sensor
readings were not kept confidential. The bridge operator was not worried at all,
since from his experience he did not expect any such reading ever to say anything
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extraordinary or embarrassing. The tunnel operator was more sensitive and cau-
tious: if a problem occurs he wants to hear about it first, and have a chance
to address it before others (e.g. the press) know it occurred. A well designed
WSN system should therefore be flexible; encryption should only be activated
if confidentiality protection is worth more than its cost in energy consumption,
key management and system complexity.
Short-Term Integrity. Concerning the threat of false negatives (attacker making
us believe that there is no fault when there is one, thus stopping the structure
owner from carrying out maintenance that might fix the problem, leading to
aggravation of the problem with time and possibly partial or total collapse) we
learnt from these interviews that, over the life of these structures up to this point
(26 years for the bridge; 118 years for the underground tunnels), the number of
serious structural incidents has been nil or very low. This implies that trying to
take down the structure by hiding spontaneous faults that the sensor network
would report is a strategy that might force the attacker to wait for a very long
time! The situation might be different if the attacker also caused the damage,
as well as was subsequently trying to hide it from the sensors, but if this were
perceived as a serious threat then safeguards against causing physical damage
would be much more of a priority than those against network tampering.

With the injection of false positives, instead, the sensors report damage (e.g. sev-
eral wire snaps one after the other) that has not actually occurred. This forces the
maintenance operators to waste time trying to locate and repair a non-existent
fault, e.g. by opening up the main cable with wedges without finding anything.
It may also force temporary closure of the structure while the problem is investi-
gated. Therefore, false positives would be more disruptive, since unlike false nega-
tives they could be triggered at will by the attacker. In any case the feedback was
that any major alerts from the new system (WSN) would be viewed with some
suspicion by the operators until the system had proved its worth. This was par-
ticularly true for the bridge operator, for whom the new system was a nice extra
but not a necessity, whereas the subway operator had no “eyes” in the tunnel and
was therefore more eager to accept and trust any technological development giving
him greater monitoring power.

Medium-Term Integrity. The subway tunnel operators see value in analysing
sensor data over the medium term (e.g. months) because they currently have
no systems allowing remote monitoring of the state of the tunnels; and the
tunnels themselves can only be physically inspected in the middle of the night
when trains do not run. Systematic collection of data about the state of the
tunnels would be very useful in budgeting for maintenance costs as it would allow
more precise estimates of necessary works. Maintenance budget negotiations are
currently based on very vague estimates derived from manual inspection of a
small sample of accessible sections of the tunnels. Continuous monitoring would
provide more reliable quantitative estimates that all parties involved would have
an easier time accepting.
Long-Term Integrity. For structure operators, a significant perceived benefit of
our automated sensing is the provision of decades-long monitoring logs that will
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allow them to carry out previously impossible research on long term behaviour
(and, inevitably, decay) of materials when plotted against influencing factors
such as humidity, acidity, pollutants and stresses. The monitoring thus becomes
particularly valuable when it allows reliable data collection over many years.
One requirement is therefore that data be collected and stored in a sensibly
designed non-proprietary format that can still be read after decades, under the
assumption that any component of the physical implementation of the system
will be replaced by something newer in due course. Another consequent require-
ment is on data integrity: corruption of sensor readings, especially if on a small
enough scale as to go undetected at acquisition time, would invalidate the whole
historical database and make the exercise useless. This requires an architecture
in which, regardless of confidentiality, integrity of sensor readings is preserved
at all costs.
Availability. We explained that it would be technically impossible to eliminate
denial of service attacks on a wireless network and tried to understand their
practical consequences for the operators. Apart from the financial loss of having
wasted money on an unusable sensor system, even a complete jamming of the
wireless network did not appear as a grave loss to the bridge operator, who did
not expect ever to depend entirely on the WSN output; but it sounded somewhat
more embarrassing for the subway operator, who anticipated his newly gained
real-time “eyes” on potential cracks as a facility he would not want to do without.
Conclusions. The general conclusion from the interviews with the structure
operators is that data integrity is the most important security property for this
type of application. No direct link from sensors to actuators is envisaged in the
two systems we discussed, so the main effects of an attack on the WSN are
invalidation of collected data or incapacitation of the WSN system rather than
damage to real world facilities. This is therefore not a very high risk setting.
Having said that, there is still scope for attackers causing disruption to users
of the structure insofar as denial of service or injection of false positives may
lead the operators to close the bridge or the tunnel for safety reasons while the
problem is investigated.

4 Attacks on a Real System

Inspired by the above-mentioned user concerns, we examined the available WSN
technologies for vulnerabilities threatening the desired security properties. As
we did that, we also found problems that the operators had not anticipated.

Our goal was to assess practical security of wireless sensor networks on a
real, physical system, as opposed to just in theory or through simulations. So
we targeted our attacks on the particular platform that our project adopted,
namely the MICAz mote from Crossbow, running TinyOS v1.1 and XMesh from
MoteWorks 2.0.F, together with the Stargate rev. 1.2 as a gateway.

A superficial reader might comment that, since we chose the components
and assembled the system ourselves, any security holes we find only reflect on
our own incompetence. On the contrary, the spirit of our investigation was to
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imagine that a team of application experts (in this case civil engineers), assumed
to be security-conscious but not security experts, puts together a system using
COTS components, following the manufacturer’s instructions and activating any
recommended security features. We set out to assess the practical security of the
resulting system and to suggest ways of improving it where appropriate.

Our limited budget and manpower would never have allowed us to carry out
a comparative study of all commercially available WSN platforms to determine
the most secure one, so that was never a goal. Nonetheless, we believe our results
will interesting for users of other platforms too.

Each of the attacks or exploits described in this section has been carried out
and validated on actual hardware. We report sufficient details to convince the
reader that a vulnerability exists and has been exploited by us, but stop short
of supplying malicious readers with a cookbook. We also describe how to fix the
problem wherever possible. As a courtesy we supplied a copy of a preliminary
version of this paper to Crossbow in September 2007, to give them a chance to
release security patches based on our advisories.

4.1 Our Platform

The TinyOS operating system runs on various hardware platforms including
MICA2, MICAz, Iris (Crossbow Inc.), Tmote (Moteiv), Intel Mote, Intel Mote
2 (Intel). It is a modular system that allows easy extension with drivers for new
sensor boards or functionality.

TinyOS v1.1 appears to be the most commonly used version in practice: v2
exists but is not stable yet. TinyOS may be deployed as is, or in conjunction
with a commercial derivative such as XMesh from Crossbow or Boomerang from
Moteiv. Being an open source project, TinyOS is reasonably easy to analyse for
stability and security issues. TinyOS v1.1 has been stable since September 2003,
so it can be considered a fairly mature product.

We began by analysing TinyOS, focusing our attention primarily on cryp-
tography and routing protocols. The first big surprise was that, while TinyOS
ships with the cryptographic module TinySec [2], the latter can only be com-
piled for MICA2 motes and there is no implementation available for the current
generation of motes with 802.15.4-compliant radio chips. This means that all the
networks based on modern Crossbow, Moteiv or iMote devices are vulnerable to
a slew of attacks from even relatively unskilled attackers. To address this deficit,
we ported TinySec4 to make it run with the latest 802.15.4 chips—namely the
Texas Instruments CC2420 chip, used in most of the motes mentioned above—
so that we could test our attacks on cryptographically secured networks. In the
process of performing this port, we noticed that the TinySec MAC generation
code uses a fixed block size of 7 bytes, while the underlying block cipher has
a fixed block size of 8 bytes. While we do not believe that this causes a se-
curity exposure, our port corrects this behaviour to use the same block size

4 See footnote 1.
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as the underlying cipher5. Note that, as the TinySec authors themselves point
out, TinySec provides no protection against replay attacks. Unfortunately this
protection does not exist at any layer of the TinyOS radio stack either. In addi-
tion, since by design TinySec only supports a single key shared across the entire
network, there is no protection against physical capture of one mote.

A general virtue (security-wise) of the TinyOS code is that it is very lean
and spartan. The underlying system supplies minimal functionality, preferring
to export simple primitives to applications. One of the results of this is that the
basic TinyOS system seems to be fairly secure without making much apparent
effort to be so; several times during the course of our analysis we tried out
attacks that we thought might work, but were blocked by TinyOS’ minimalist
philosophy. In contrast to this, the commercial system we analysed, Crossbow
XMesh, exports a very rich set of features to applications running on it and
consequently exposes a much wider attack surface.

Concerning power consumption, a mote using its radio continuously would
exhaust a pair of alkaline AA batteries in a couple of days (a couple of weeks
for the expensive D lithium batteries we use). In normal use, with a duty cycle
of around 1%, a mote lasts for several months.

4.2 Classes of Attacks

We chose not to concentrate on physical attacks [3] on the sensors and on
the nodes attached to them, not because we think they are impossible6 but
because an attacker with physical access to the sensors could with comparable
effort stage much more destructive attacks on the structure itself, for example by
using explosives. We therefore focus on attacks on the communication systems,
primarily the ad-hoc radio used by the sensor nodes but also the back-end link
from gateway to central server.

We studied three broad types of attacks: data payload attacks that change
the content of data packets; network attacks that affect the functionality of
the network, for example by preventing communication, taking down specific
links, modifying the routing topology or rewriting the firmware of a node; and
system attacks, potentially the most damaging, in which the attacker exploits
a vulnerability in one part of the system architecture (e.g. the wireless network)
to gain control of other parts (e.g. the gateway or the central computer).

Attack mechanisms we employed included jamming (at various degrees of
selectivity and at different layers in the stack), replay attacks, packet injection or
corruption (where the injected or malformed packets were specifically crafted to
probe for vulnerabilities or to trigger known vulnerabilities) and ACK spoofing.
5 This divergence from a correct implementation will become a compatibility issue if

end-to-end keys are used, as the MAC algorithm will have to be implemented on
both the motes and the gateway. The NesC code for the motes cannot be compiled
for the gateway, so its use of non-standard parameters hinders interoperability.

6 On the contrary, with so many unsupervised nodes over a large area, we believe one
cannot exclude that a few nodes may at some point be physically captured, even
though attackers are unlikely ever to be able to take over a majority of the nodes.
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4.3 Jamming

While it is well known that no one can prevent physical jamming of the radio
channel, appropriate design decisions can reduce a system’s vulnerability to de-
nial of service (DoS) attacks and increase the cost of such attacks. In this section,
we investigate the baseline case of an attacker using an unmodified COTS mote
as the transmitter. It is understood that a more resourceful attacker, with a
higher power transmitter, could cause greater damage.

Description. We used a MICAz mote to jam the communication between other
motes by transmitting at the same time as them, thereby causing a collision.
Unlike most previous jamming attacks, ours is selective and jams only a subset
of the packets (e.g. those coming from a specified victim) while leaving others
unaffected. The attack can therefore be used to selectively disconnect individual
motes or whole regions from the network. It is also hard to detect because
unaffected nodes do not notice anything unusual.

The algorithm is as follows:

1. We select criteria for messages to be jammed, e.g. senderID = 3 and mes-
sageType = AM_MULTIHOP.

2. We compile the code with the selected criteria into the attacking mote and
deploy the mote in the vicinity of the victim.

3. When the attacking mote detects a transmission, it listens to just enough of
the message to determine whether the packet meets its jamming criteria.

4. If the message meets the criteria, go to step 5. In our example, we have a
match if byte 13 = 3 and byte 9 = AM_MULTIHOP. Loop back to step 3 if the
criteria were not met.

5. The attacking mote switches the radio chip to transmit mode and jams the
rest of the message by transmitting on the same channel.

Steps 3 and 5 are difficult for technical reasons. To start with, the CC2420 is a
packet based radio, so in normal operating conditions the microcontroller is only
informed of radio activity after a complete packet has arrived. This obviously
makes step 3 difficult since, by the time we can tell that we should jam a packet,
it has already been transmitted. We were able to overcome this difficulty by
putting the radio chip into a debugging mode, where each bit received from the
radio was sent to one of the microcontroller’s input pins as it arrived.

Our second problem in implementing the attack arose from the tight timing
requirements imposed by the data rate of the radio—250 kbps. The ATMega128
microcontroller is clocked at 7.37 MHz, effectively giving us 30 instructions to
process each bit. This would not be too much of a problem were it not for the
fact that invoking a hardware interrupt appears to take around 30 clock cycles,
meaning that our interrupt handler (which gets invoked once per bit) was always
too slow. However, having the first invocation of the interrupt handler busy-wait
for the remaining bits in the frame allowed us to meet the timing requirements.

Finally, switching from receive mode to transmit mode takes some time, so if
the frame was particularly short we would frequently miss the end of the packet
by the time we started jamming. By iteratively optimising the code, we were
able to reliably jam frames with as few as 5 bytes of data.
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Empirical Results. The 802.15.4 standard implemented by the motes uses direct-
sequence spread spectrum (DSSS) to increase resilience to noise and jamming.
However, since 802.15.4 specifies the spreading code to use, our motes shared
the spreading code with the target, thereby nullifying the protection offered
by DSSS. We carried out several experiments to measure the success rate of
jamming. The experiments used three motes: transmitter, receiver, and jammer.
The transmitter sent out a packet every 200 ms and the receiver, connected to
a laptop, forwarded the received messages to a laptop where they were logged.
All three motes were positioned 45 cm above the ground.

The jamming appeared successful in an open space, but with some anomalies.
All messages were jammed when the attacking mote was between the sender and
the receiver. The initial results (see Figure 1) suggested that the angle defined
by transmitter-receiver-jammer had a significant impact on the success of the
jamming, but later experiments showed a lack of repeatability, with variations
between 30 and 88% for a given position. Complete jamming (100% of frames
jammed) was achieved in several configurations of the three motes.
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Fig. 1. Success rate of jamming depending on the position of the attacking mote. The
Tx and Rx labels are the transmitting and receiving motes. The numbers 0–100 in the
graphs denote the percentage of packets that were jammed when the attacking mote
was in that 2D position relative to Tx and Rx (section 4.3).

We tried to find out why our results were so unpredictable, especially when
the motes were close to the ground. A radio engineer told us that this is due to
interference between the direct ray and the ray reflected from the ground, as the
path difference between the two rays can be close to a half wavelength when the
motes are on the ground. This results in destructive interference between the
two rays, causing a weak signal. We think it may be some kind of voodoo.
Risks. The ability to selectively jam frames allows an attacker to:

– Make specific sensors deaf and/or mute;
– Prevent any sensor data from reaching the database, by jamming close to

the gateway;
– Perform a man-in-the-middle attack by having a second mote listen for

jammed frames and resend chosen ones with altered data.
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The first two of these are simple DoS attacks and so may be written off by
some as unimportant. The ability to alter the contents of any message while
remaining undetected is rather more serious, as it gives the attacker complete
control over the output of the network and therefore indirect control over all the
systems controlled by the data reported by the sensor network.

Since the jammed frames are silently dropped by the radio chip, TinyOS is
never notified. As such, a mote is unable to determine that a jamming attack
is taking place unless its radio driver has been specifically modified to run in
debug mode in order to detect this.

Underlying Cause. The vulnerability of a network to jamming as described here
is simply a result of communicating over a shared medium to which adversaries
have access (in this case radio).

Fix. To make it more difficult for an adversary to perform this type of selective
jamming attack, the frame header could be moved to the end of the frame. This
would mean that by the time an attacking node had decided to jam a frame, it
would be too late. Unfortunately this defence is not perfect and succumbs to an
attacker with two motes: one to jam every frame and one to resend any frames
that do not meet the jamming criteria7. It is also expensive in terms of battery
life, as each node must listen to and buffer the whole packet, instead of just the
header, before knowing whether it was destined for itself. Detection of this type
of jamming could be achieved by having one or more “observer” motes running
in debug mode and listening for suspicious patterns of corrupted frames.

4.4 Counter Overflow Attack

Description. Another attack that can be mounted against a wireless network
is a replay attack. This type of attack works even against an authenticated
and encrypted network. One of the simplest protections against it is to use
monotonically increasing counters to ensure the freshness of messages. TinyOS
and TinySec use a 16 bit counter to distinguish messages, with TinySec using
another counter as part of the encryption initialisation vector. Although TinySec
explicitly does not offer replay protection, even if it did, the attack presented
in this subsection would still work, unless TinySec increased the length of the
counter. The network stack decides whether to accept a received message as
valid according to the value of the counter in the message8. If the counter in the
message is higher than the stored counter, the message is accepted. If it is lower
but the difference is within an allowed range, the message is also accepted. Any

7 We are not discussing all the details related to the necessity for the attacker to learn
the whole content of every packet it jams in order to retransmit it if needed. This
can be achieved in several ways, including jamming a part of the message that the
attacker can reconstruct (such as the CRC, provided that there were no real errors),
or jamming the message twice in different places, counting on the fact that the
sending node will retransmit—although this latter strategy would be less stealthy.

8 This is also used to compute the number of missed messages and subsequently the
quality of the link with that neighbour.
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other value causes the message to be rejected and the stored counter value to be
zeroed. Each mote tracks the counter values of all its neighbouring motes.

For a replay attack to work, the receiving node needs to be ready to accept a
message with the same counter value as the one we eavesdropped and intend to
replay. We can achieve this by having the recipient’s counter overflow and wrap
around to the desired value. We thought of at least three methods to cause a
counter overflow. First, we can inject fake messages that the target mote will
forward, causing the target’s counter to increment once per message we send.
Second, we can use the routing table attacks described in section 4.5 to create
a loop in the network: this causes a packet storm which eats up counter values.
Finally, we can simply jam message acknowledgements from the target’s parent
as this will cause the target to retransmit each message several times.

Note that, if XMesh receives a message whose counter is set to zero, it bypasses
the routing mechanisms used to verify the freshness of the message, obviating the
need to overflow the counter. In addition, the receiving mote will not increment
its stored counter, which means that the message has no effect on the link quality
calculations. An attacker might exploit such “features”.

Risks. When the message counter overflows we may initiate a replay attack with
previously eavesdropped messages, even if these messages feature cryptographic
integrity protection. This allows us to inject false negatives, false positives, or
just slightly corrupted data to invalidate the long term monitoring. It also allows
us to manipulate routing messages, even if they are authenticated. The message
counters form the basis of many cryptographic mechanisms that rely on fresh-
ness, particularly in the absence of timestamps. This vulnerability would affect
security mechanisms built from these cryptographic primitives.

Underlying Cause. Our three counter overflow methods rely respectively on the
lack of source authentication, on the possibility of routing table manipulation
(section 4.5), and on jamming (section 4.3). As such, the underlying causes of
the counter overflow attack are the union of the underlying causes for these
sub-attacks.

4.5 Routing Table Manipulation

Description. Nodes in an XMesh network populate their routing tables by lis-
tening to periodic broadcasts issued by their neighbours, which contain:

– The node’s current parent;
– The path cost of sending a message from the node to the base station;
– A list of some of the node’s neighbours and an estimate of how well it can

receive messages from each.

When a node receives such a message from a neighbour, it updates its internal
table of neighbours, which it consults every few minutes9 to choose a new parent.
All future messages are routed through this parent. The new parent appears to
9 Every 30 seconds if the node is disconnected.
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be chosen to minimise the path cost of sending messages back to the base station,
with the link quality to each potential parent being a factor in the cost of the hop
to the parent. The routing algorithm may thus be thought of as a distributed
single-source shortest path algorithm.

Since all communication in the XMesh network is unauthenticated and unen-
crypted, an attacker can interfere with routing messages and thereby change the
topology of the network to suit her whims. We created a Python module called
wsn to read, modify, create and inject messages into the sensor network and we
used it to implement and validate these routing attacks.
Risks. The ability to choose a topology for the network gives the attacker a
lot of power. For example, she can cause all the traffic in the network to be
routed through a mote she controls, allowing her to selectively drop or modify
any message. Alternatively, she can cause a direct attack against the motes
themselves by creating routing loops where, e.g. one route is 2 �→ 3 �→ 2 . . . In
such a configuration, nodes 2 and 3 will send messages back and forth, rapidly
consuming their batteries. Using this method, we have been able to increase
the peak rate at which nodes send messages to over 300/s with a mean value
of around 25 messages per second. This can be used for a very powerful “sleep
deprivation torture” [4] attack.

There is a low power implementation of XMesh that puts radio and micro-
controller to sleep and they wake up only when necessary. However, any mote
forwarding for at least one of its neighbours must wake up the radio chip reg-
ularly. The XMesh low power mode wakes up the radio chip roughly every 125
ms and it listens for a period of 1 ms. This means that the duty cycle is around
0.8%. The attack increases this value substantially to tens of percents.

Karlof and Wagner [5] discuss other routing attacks.

Underlying Cause. The problem here seems to be that the topology of the net-
work is decided by the motes themselves while they do not have enough trusted
information about the physical structure of the whole network to make sensible
decisions. The ad hoc nature of the network appears to cause significant security
issues, as everything received is trusted.

Fix. A natural solution to such trust issues would be to cryptographically au-
thenticate messages sent by legitimate nodes. We could, for example, have all the
nodes in the network share a key and use TinySec to authenticate and encrypt all
messages sent over the network. This would mean that an attacker would not be
able to forge routing messages without knowledge of the key. One problem with
this scheme is that physical capture of a single node would reveal the network
key and render the entire network susceptible to attack. Another problem is that
authentic routing messages from one part of the network may still be recorded
and replayed in other parts of the network, causing routing anomalies. We could
stop this type of attack by using per-link keys (unique keys shared by each pair
of neighbours), at the cost of complicating the key management process.

No cryptographic fix, however, would stop what has been called a “flagpole”
attack, in which the attacker moves a victim mote up and down a flagpole in
order to make other motes waste their battery updating their routing tables.
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4.6 Over-the-air Programming

Description. One of the optional features that can be compiled into the motes
making up an XMesh network is over-the-air programming (OTAP). This is a
mechanism by which an entire network of motes can be reprogrammed remotely
by sending them the code to execute. If OTAP is enabled on a network, no
authentication is required to request a reprogram; an attacker able to send traffic
to the network can therefore cause every mote to execute code of her choice.

Risk. The ability to reprogram motes allows an attacker to entirely control all
data sent by the network. This means that she would be able to choose whether
to send data from the sensors, what the apparent readings of the sensors were
and how often the readings were reported.

Underlying Cause. The underlying problem here seems to be that there is no
concept of authentication between any parties communicating over the network.
As a result, all traffic is trusted and this is clearly a bad transport over which
to run critical protocols such as OTAP.

Fix. The obvious action to mitigate this risk would be not to use OTAP. One fix
could be to authenticate OTAP messages, e.g. with a scaled down version of the
CMS standard for secure firmware update (RFC 4108). Using public key cryp-
tography, generally thought of as computationally infeasible on low-end hard-
ware, might be acceptable for such rare events as authenticating the signature
of an OTAP request. Then the network would not be vulnerable to the physical
capture of one node and so OTAP could be used securely.

4.7 Remote Command Execution in XServe

Description. XServe is a middleware component that connects the WSN to the
back-end. If XServe is started with the -h flag, it starts a web server on a user-
specified port. This web server is intended to be used to display the output of the
attached sensor network. Unfortunately, one of the scripts supplied with the web
server contains a bug that can be exploited by an attacker to execute arbitrary
commands on the computer running XServe.

Risk. XServe may be run on a Stargate gateway or on the top-tier server. If
the web server were enabled on a Stargate and an attacker could access the web
server port, she could gain shell level access to the Stargate, obtaining complete
control (read, write, modify, drop) over all the data sent from the sensor network
to the central servers. If the web server were running on a central database server,
an attacker could gain access to the administrative network, potentially gaining
complete control over all new data from the network, as well as the ability to
modify historical data and attack other parts of the network.

Underlying Cause. This exposure results from a simple programming error, but
the underlying problem is really that the XServe component is far too feature
rich. From a security viewpoint it is hard to defend the decision of equipping it
with a built-in web server, for example.
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Fix. We can fix this vulnerability by patching the script or by not using XServe’s
built in web server. However, since software errors cannot be eliminated, we
suggest running complex software on safely stored data, outside the critical parts
of the system.

4.8 Stargate Unhardened to IP Attacks

Description. The Stargate we bought new in 2007 shipped with very old versions
of several pieces of software, many of which contained exploitable vulnerabilities.
Some of the more serious issues are summarised in Figure 2.

Component Exposure CVE Reference

OpenSSH Local root CVE-2002-0083
CVE-2003-0682

OpenSSH Remote root CVE-2003-0693
CVE-2003-0695

Kernel Remote root CVE-2004-1137
Kernel Local root CVE-2005-1263
Kernel Local root CVE-2004-1235

PostgreSQL Remote shell CVE-2005-0247
PostgreSQL Remote shell CVE-2005-0245
PostgreSQL Remote shell CVE-2003-0901

Fig. 2. Some vulnerabilities affecting the Stargate. CVE reference numbers may be
resolved at http://cve.mitre.org/cve/. (Section 4.8).

In addition to these problems caused by outdated software, the Stargate ships
in an insecure configuration: it has a default, weak root password and an SSH
daemon installed. In addition, if the PostgreSQL database is installed on the
Stargate (a recommended and supported configuration), a database super-user
is added with a default, weak password. The documentation does not explain
how to change these passwords, nor does it suggest that you do. Furthermore
the existence of the database super-user account is not even mentioned.

Risks. A remote attacker with access to the Stargate’s IP interface may be able
to gain root access or crash the Stargate. This would result in either a complete
compromise of the sensor network or a complete DoS of the network.

Underlying Cause. The Stargate was not designed for security, as demonstrated
by the outdated software, weak passwords, lack of security related documentation
and unnecessarily high number of services running.

Fix. Patch, configure, minimise. If possible, update the software on the Stargate,
in particular OpenSSH, PostgreSQL and the kernel. Do not run sshd on the
Stargate and drop all inbound IP traffic to the Stargate that is not already part
of an established TCP stream. This implies that all connections to the back-end
network would have to be initiated by the gateway. In addition, change passwords
for the system root account and the tele user in the PostgreSQL system.
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5 Architectural Recommendations

Securing the Gateway. The WSN gateway is a bottleneck through which all data
related to the sensor network flows. It is therefore crucial that it be properly
secured. The usual configuration has the gateway performing many complex
operations on the received data and exporting several services to the IP network.
We instead recommend not to offer any services to the IP network (e.g. no SSH
or HTTP daemons) and not to perform any analysis of the sensor data on the
gateway. The gateway should act only as an SSH client, rather than server, and
simply relay data from the WSN to the server. This would significantly reduce
the attack surface of the gateway, resulting in greater security.

Key Management. Clearly, TinySec’s default key management approach with a
single key for all devices is inadequate to protect an unattended WSN, as the
capture of a single node would expose the entire network. The use of pairwise
link keys between motes would not protect against attacks on the gateway and
another cryptographic protection would have to be used for communication with
the central server. Based on the risk assessment in section 3, we recommend
the use of pairwise end-to-end keys between each node and the central server to
protect the integrity of the sensor data and to provide source authenticity. Insofar
as routing is crucial to the security of the network, based on the vulnerabilities
exposed in section 4.5 we also recommend the use of pairwise end-to-end keys
between each node and the gateway to protect routing table data.

Routing. Many papers on WSNs axiomatically accept the smart-dust-derived as-
sumption that individual nodes (possibly dropped from an aircraft) know noth-
ing about each other’s position and that therefore the network can only be built
in an ad hoc, decentralised fashion. But, in our scenario, the deployment en-
gineers know where they want to place the nodes—for example where they see
cracks that need monitoring. We therefore suggest taking advantage of that posi-
tional information, perhaps by precomputing an initial (though sub-optimal) set
of routing tables and preloading it into the nodes. We also suggest that routing
calculations be performed centrally, for example at the gateway, after collecting
authenticated local connectivity information from the nodes, since visibility of
the whole connectivity graph would allow for the discovery of a better global
solution. We are currently working on such a system.
Reviewing the risk assessment. Since the monitoring operation might last for
several years, the risk assessment should be repeated at regular intervals to
ensure that it still reflects the current usage patterns. It is common for systems
to be used in ways that were not originally envisaged, so the protection goals
and consequent security measures should be kept up to date.

6 Related Work

Although very many papers have been written about wireless sensor networks,
experience papers reporting on real-world deployments are a minority: they in-
clude at least Mainwaring et al [6] who monitor seabird nesting environment and
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behaviour, Arora et al [7] who deploy a perimeter control WSN and Werner-Allen
et al [8] who monitor an active volcano. Closer to our scenario are Krishnamurthy
et al [9] who monitor equipment for early signs of failure and especially Kim et
al [10] who monitor the structural health of the Golden Gate bridge.

Similarly, although there is a vast literature on security of WSN, including
such milestones as Perrig et al [11] on efficient broadcast stream authentication,
Eschenauer and Gligor [12] on random key predistribution, Hu et al [13] on
secure routing and Chen et al [14] on energy efficient topology maintenance, few
such papers deal with attacks on actual sensor network platforms. One notable
exception is the brilliant work by Becher et al [3] on physical attacks, providing
concrete data on the effort required to extract secrets from a mote. Closer to
our own investigations on 802.15.4 jamming are Wood et al [15], who discuss
jamming attacks and countermeasures in detail, although their focus is on energy
efficiency for the attacker rather than on being able to target a specific victim
selectively. The TinySec work of Karlof et al [2] is of particular significance since
it resulted in running code which we used extensively. One promising effort in
a similar vein is that of Luk et al [16] for which, however, the code was only
released after we completed this paper.

Our specific interest lies at the intersection of these two sets: real-world WSN
deployments and real-world WSN attacks; so far we have not been able to find
other papers in this subset. We believe that practical security is a field worth
exploring in greater detail before proceeding with actual deployments.

7 Conclusions

What are the risks of a WSN that monitors large engineering structures? In
the situations we examined, the sensors are never linked to actuators; therefore,
deploying a WSN in such circumstances does not introduce major new risks.
Typically, the worst outcome of an attack is that data gathered from the WSN
will be useless, not that the structure itself will be directly endangered. Of course,
if the WSN or the collected data becomes useless, there is a financial loss; more-
over, false alarms might cause secondary losses through downtime; so, ensuring
the integrity of the WSN is still a worthy goal. Considering our qualitative risk
assessment (section 3), all the attacks presented in section 4 are potentially rel-
evant, because they can be used directly or indirectly to corrupt integrity of
sensor data—the main concern of the structure owners as expressed during in-
terviews. The implementation of countermeasures, which must crucially protect
the whole system including back-end and gateway as opposed to just the motes,
could be prioritised based on a quantitative risk assessment that established the
likelihood of each attack.

Will a WSN built by well-intentioned and security-minded application ex-
perts be secure by default? Based on the components we examined, no. For a
start, if users of MICAz motes (or any other motes using 802.15.4) wanted to
“turn on the crypto”, they would find that TinySec does not even compile for
their platform. Porting the code is not a trivial endeavour; fortunately, we have
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now done it for them. Besides that, we have found and exploited a variety of
vulnerabilities. The most devastating in practice are probably the most triv-
ial from an intellectual viewpoint: the Over-The-Air Programming vulnerability
(section 4.6), which allows an attacker to reprogram motes at will, and the Re-
mote Command Execution vulnerability (section 4.7), which allows an attacker
to gain complete control of the gateway or even the central server. Until such
features are patched or protected, it is advisable to keep them disabled.

Among our other attacks, the most significant for the security researcher is
probably our sleep deprivation torture attack based on routing table manipula-
tion (section 4.5): it is crippling and very efficient because the attacker can set it
up and walk away, as opposed to having to keep talking to the victims to drain
their batteries out. Our selective jamming (section 4.3), too, is of interest as it is
undetectable by OS and applications and can be used as the basis for more so-
phisticated attacks including packet rewriting (often assumed possible but rarely
demonstrated in a modern ad-hoc radio context) and man-in-the-middle.

We trust that this paper will help vendors and users strengthen the security
of their real-world systems.
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Abstract. One of the main challenges in RFIDs is the design of privacy-
preserving authentication protocols. Indeed, such protocols should not
only allow legitimate readers to authenticate tags but also protect these
latter from privacy-violating attacks, ensuring their anonymity and un-
traceability: an adversary should not be able to get any information that
would reveal the identity of a tag or would be used for tracing it. In this
paper, we analyze some recently proposed RFID authentication proto-
cols that came with provable security flavours. Our results are the first
known privacy cryptanalysis of the protocols.

Keywords: RFID, Privacy, Untraceability, Authentication protocols.

1 Introduction

Radio frequency identification (RFID) tags are being deployed in many con-
sumer, financial and governmental applications, for instance respectively in sup-
ply chain [1, 6, 20, 21, 32], in contactless credit cards [13], and in e-passports
[15, 5, 14, 17, 22].

In view of the pervasiveness and inconspicuous nature of these tiny RFIDs,
privacy for RFID tag users is a major concern that could potentially impede the
public’s long-term adoption of RFID-enabled applica tions. To the best of our
knowledge, formal treatments of privacy for RFID protocols include the work
of Avoine [2], Juels and Weis [16], Le, Burmester and de Medeiros [18]; and
Vaudenay [34, 35, 26]. The difference in these models lie basically in the power
of the adversary’s tag-corruption ability.

We analyze in this paper the privacy (or security when relevant) issues of the
following provably-secure RFID authentication protocols: the protocol by Lim
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and Kwon [19] at ICICS ’06, and two protocols at AsiaCCS ’07 by Le et al. [18].
The first protocol is a nice unconventional design in the sense that it achieves
both forward and backward untraceability in the face of tag corruption, while
typical protocols only provide backward untraceability. That paper also defined
a provable security model for backward and forward untraceability. The latter
two protocols are interesting since they come with provable security in the sense
of universal composability [4] which has strong guarantees. In fact, except for
subsections 4.2 and 4.3 corresponding to breaks on forward privacy/security and
therefore the notion of tag corruption is inevitably assumed by definition, our
attacks do not even need the strong requirement of corrupting tags [33, 16, 34,
19, 18, 35].

2 RFID Privacy Models

For completeness and for better clarity, we describe here the general untraceable
privacy (UPriv) model [25] that will be the setting in which we use in later
sections to demonstrate how to trace tags and thus show that the schemes do
not achieve the notion of untraceable privacy.

In fact, the model defined herein can be seen as an alternative definition of
the Juels-Weis model [16] in a style more in line with the Bellare et al. [3] models
for authenticated key exchange (AKE) protocols, for which RFID protocols can
be seen to have close relationship with. With this model as a reference, our
emphasis throughout this paper is on the analysis of the privacy (or security)
issues of recent RFID protocols.

A protocol party is a T ∈ Tags or R ∈ Readers interacting in protocol
sessions as per the protocol specifications until the end of the session upon which
each party outputs Accept if it feels the protocol has been normally executed
with the correct parties. Adversary A controls the communications between all
protocol parties (tag and reader) by interacting with them as defined by the
protocol, formally captured by A’s ability to issue queries of the following form:

Execute(R, T , i) query. This models passive attacks, where adversary A gets
access to an honest execution of the protocol session i between R and T by
eavesdropping.

Send(U1, U2, i, m) query. This query models active attacks by allowing the ad-
versary A to impersonate some reader U1 ∈ Readers (resp. tag U1 ∈ Tags)
in some protocol session i and send a message m of its choice to an instance of
some tag U2 ∈ Tags (resp. reader U2 ∈ Readers). This query subsumes the
TagInit and ReaderInit queries as well as challenge and response messages
in the Juels-Weis model.

Corrupt(T , K) query. This query allows the adversary A to learn the stored
secret K ′ of the tag T ∈ Tags, and which further sets the stored secret to
K. It captures the notion of forward security or forward privacy and the
extent of the damage caused by the compromise of the tag’s stored secret.
This is the equivalent of the SetKey query of the Juels-Weis model.
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TestUPriv(U, i) query. This query is the only query that does not correspond to
any of A’s abilities or any real-world event. This query allows to define the
indistinguishability-based notion of untraceable privacy (UPriv). If the party
has accepted and is being asked a Test query, then depending on a randomly
chosen bit b ∈ {0, 1}, A is given Tb from the set {T0, T1}. Informally, A
succeeds if it can guess the bit b. In order for the notion to be meaningful,
a Test session must be fresh in the sense of Definition 2.

Definition 1 (Partnership & Session Completion). We say that a reader
instance Rj and a tag instance Ti are partners if, and only if, both have output
Accept(Ti) and Accept(Rj) respectively, signifying the completion of the protocol
session.

Definition 2 (Freshness). A party instance is fresh at the end of execution if,
and only if,

1. it has output Accept with or without a partner instance,
2. both the instance and its partner instance (if such a partner exists) have not

been sent a Corrupt query.

Definition 3 (Untraceable Privacy (UPriv)). UPriv is defined using the
game G played between a malicious adversary A and a collection of reader and
tag instances. A runs the game G whose setting is as follows.

Phase 1 (Learning): A is able to send any Execute, Send, and Corrupt
queries at will.
Phase 2 (Challenge):
1. At some point during G, A will choose a fresh session on which to be

tested and send a Test query corresponding to the test session. Note
that the test session chosen must be fresh in the sense of Definition 2.
Depending on a randomly chosen bit b ∈ {0, 1}, A is given a tag Tb from
the set {T0, T1}.

2. A continues making any Execute, Send, and Corrupt queries at will, sub-
jected to the restrictions that the definition of freshness described in
Definition 2 is not violated.

Phase 3 (Guess): Eventually, A terminates the game simulation and out-
puts a bit b′, which is its guess of the value of b.

The success of A in winning G and thus breaking the notion of UPriv is quantified
in terms of A’s advantage in distinguishing whether A receives T0 or T1, i.e.
it correctly guessing b. This is denoted by AdvUPriv

A (k) where k is the security
parameter. In relation to other models, note that the Le-Burmester-de Medeiros
model [18] similarly allows the corruption of tags. For the purpose of our attack
descriptions in later subsections 4.2 and 4.3, it suffices to consider their definition
of corruption in their model. This will be treated later as required.

The Vaudenay model [34, 35] is stronger than both the Juels-Weis and Le-
Burmester-de Medeiros models in terms of the adversary’s corruption ability. In
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more detail, it is stronger than the Juels-Weis model in the sense that it allows
corruption even of the two tags used in the challenge phase. It is stronger than
the Le-Burmester-de Medeiros model in the sense that it considers all its privacy
notions even for corrupted tags, in contrast to the Le-Burmester-de Medeiros
model that only considers corruption for its forward privacy notion.

We chose to describe our tracing attacks in later sections with reference to
a defined model in order for more uniformity between similar attacks on differ-
ent RFID protocols, and for better clarity to illustrate how an adversary can
circumvent the protocols using precise types of interactions that he exploits, as
captured by his oracle queries. This will facilitate the task of a designer when
an attempt is made to redesign a protocol which had been attacked.

3 A Backward and Forward Untraceable Protocol

At ICICS ’06, Lim and Kwon [19] proposed an RFID protocol that offers un-
traceable privacy (UPriv) both before and after corruption of a tag. This is indeed
a major feat, since other RFID schemes in literature are only able to treat back-
ward untraceability, i.e. a corrupted tag cannot be linked to any past completed
sessions.

The initialization phase is as follows:

1. The reader chooses a random secret Ki for each tag Ti, and evaluates m − 1
evolutions of K0

i = Ki, i.e. Kj
i = g(Kj−1

i ) for 1 ≤ j ≤ m − 1, where g is a
pseudorandom function. It then computes tji = extl2(K

j
i ) for 0 ≤ j ≤ m− 1,

where l2 is some appropriate bit length, extl(x) is an extraction function
returning l bits of x.

2. The reader also chooses a random ui for each tag Ti and computes a key chain
{wj

i }n−1
j=0 of length n, such that wn

i = ui and wj
i = h(wj+1

i ) for 0 ≤ j ≤ n−1,
where h is a pseudorandom function.

3. The tag stores 〈wi,T , Ki〉 where wi,T = w0
i and initializes a failure counter

ci = 0.
4. The reader creates two tables L1, L2 for Ti in its database, where L2 is empty

and L1 has entries of the form 〈si, {tji}m−1
j=0 , ui, ni, wi,T , wi,S〉 where ni = n

and wi,S = w1
i thus wi,T = h(wi,S).

After initialization, a normal protocol session is illustrated in Fig. 1, where f is a
pseudorandom function. For further discussions on this protocol, the interested
reader is referred to [19].

Tracing the Tag. For the purpose of understanding our attack, it suffices to
review the gist of the Lim-Kwon protocol. The tag updates its stored secret Ki

in two possible ways. If the reader is successfully authenticated, it would update
as Ki = g(Ki ⊕ (wi,T ||r1||r2)). Else, the tag would update as Ki = g(Ki), up to
m times of unsuccessful authentications, after which the tag stops updating its
Ki. This eventual non-updating allows the reader to catch up.
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Reader R Tag Ti

Database: {. . . , (Ki, tables L1, L2), . . . } Secret: wi,T , ci, Ki

pick r1
r1−−−−→

calculate ti = extl2(Ki)
pick r2

ti,r2,σ1←−−−− compute σ1 = extl1(f(Ki, r1||r2)).

check ∃tj
i : (tj

i = ti) ∧ (tj
i ∈ {tk

i }m−1
k=0 )∧

〈Ki, {tk
i }m−1

k=0 , ui, ni, wi,T , wi,S〉 ∈ (L1 ∪ L2)
calculate K′

i = g(Ki)
j , σ′

1 = extl2(f(K′
i, r1||r2))

and check that σ′
1 = σ1

calculate σ2 = f(K′
i, r2||r1) ⊕ wi,S

σ2−−−−→ wi,S = f(Ki, r2||r1) ⊕ σ2.

for k = 0 . . . m − j − 1 calculate: t̂k
i = tj+k+1

i ; check h(wi,S) = wi,T .
for k = m − j . . . m − 1 calculate: If yes:

K̂i = g(K′
i), t̂

k
i = extl2(g(K̂i)

k−m+j); ci = 0; wi,T = wi,S ;

update K̂i, {tk
i }m−1

k=0 in L2 Ki = g(Ki ⊕ (wi,T ||r1||r2)).
calculate Ki = g(Ki ⊕ (wi,S ||r1||r2)); else

tj
i = extl2(g(Ki)

j) for j = 0 . . . m − 1; ci = ci + 1;
ni = ni − 1, wi,T = wi,S , wi,S = h(ui)

ni if ci < m

update 〈Ki, {tk
i }m−1

k=0 , ni, wi,T , wi,S〉 in L1 update Ki = g(Ki).

Fig. 1. The backward and forward untraceable RFID protocol

Our attack works nevertheless, as follows, using the basic principle where we
intentionally desynchronize the tag from the reader by sending the tag into the
future [19].

1. Learning: An adversary sends m number of queries rj
1 for 1 ≤ j ≤ m to the

tag T0, and records the tag’s response tj for 1 ≤ j ≤ m. Since the adversary
is impersonating the reader, thus each time it will not pass the check by the
tag, and so each time the tag would update its stored secret as Ki = g(Ki),
from which ti will be derived in the next session.

2. Challenge: Query rm
1 to the tag Tb ∈ {T0, T1}, and obtain its response t∗.

3. Guess: Check if t∗ = tm. If so, then the adversary knows this was the tag it
queried during the learning phase i.e. Tb = T0. Else, it knows that Tb = T1.

It was remarked in [19] that once a tag is successfully authenticated by a reader,
then the tag’s stored secret Ki would be freshly randomized so that tracing
of any kind is prevented. Yet, our adversary can repeat the above step of the
Learning phase by sending m arbitrary queries rj

1 for 1 ≤ j ≤ m to the tag again
to desynchronize it and the same tracing attack applies.

In order to solve the DoS problem, the authors included into the design a
feature that unfortunately allowed our attack causing the tag to be traceable
even without corruption, although the goal for their protocol was much stronger
i.e. backward and forward untraceability even with corruption.

Violating the Forward Untraceability. Another goal of the protocol is to
achieve forward untraceability, i.e. even if a tag is corrupted thus leaking its
stored secret Ki, it should be impossible for the adversary to trace the tag in
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future sessions. Nevertheless, an attack by the adversary proceeds as follows,
using the example application in [19] of a tag embedded in a purchased item:
Initially, the seller’s reader R1 has legitimate access to the tag. At the point of
purchase, ownership of this access should transfer to the buyer’s reader R2. The
attack can be mounted either by the seller’s reader or by an outsider adversary
having access to Corrupt queries.

1. An outsider adversary issues a Corrupt query to the tag Tb, obtaining its
stored secret Ki. Alternatively, the seller’s reader R1 knows the stored secret
Ki and wi,T .

2. At the point of purchase, the buyer’s reader R2 interacts with the tag in a
protocol session, thus updating Ki. During this time, the adversary eaves-
drops on the values r1, r2 communicated in the session.

3. Right after the interaction between the tag and the buyer’s reader R2, the
adversary initiates a protocol session with the tag. Since it knows the pre-
vious Ki, and also the latest values of r1, r2, it can recompute the latest
Ki = g(Ki ⊕ (wi,T ||r1||r2)) and thus pass the check by the tag without
any problem. It can therefore trace the tag in all future sessions, and other
readers including the buyer’s can no longer successfully interact with the
tag.

This result counters the protocol’s claim that its ownership transfer is perfect.
In [19], it was argued that the protocol achieves forward untraceability under the
assumption that the adversary cannot eavesdrop on all future legitimate interac-
tions involving the tag and the reader; the above attack works without violating
that assumption. [19] furthermore gives a provable security model for forward
untraceability in its Appendix, yet their protocol was not rigourously proven
under that model, but instead its security was supported with brief arguments.

4 O-FRAP and O-FRAKE

At AsiaCCS ’07, Le et al. [18] presented a universally composable [4] privacy
model for RFID protocols, and proposed O-FRAP and O-FRAKE. These two
protocols are shown in figures 2 and 3 respectively, on which F denotes a pseudo-
random function.

4.1 Tracing O-FRAP

O-FRAP is formally proven to be a secure untraceable RFID protocol in the Le-
Burmester-deMedeiros model where corruption of tags is allowed, in the sense
that the only information revealed to an adversary is if a party is a tag or a reader.
Yet we show here how its untraceable privacy can be violated by presenting a
tracing attack that is valid even in a weaker privacy model were corruption
possibilty is not granted to the adversary.
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Reader Rj Tag Ti

Database: {. . . , (ri, Ki), . . . } Secret: ri, Ki

pick r
r−−−−→ calculate:

ri,v2←−−−− v1||v2||v3||v4||v5 = F (Ki, r||ri)
check ∃(ri, , Ki) in DB update ri = v1.

calculate v′
1||v′

2||v′
3||v′

4 = F (Ki, r||ri)
check v′

2 = v2

output Accept(Ti)

update (ri, Ki) = (v′
1, v

′
4) in DB

v′
3−−−−→ check v3 = v′

3.
output Accept(Rj).
update Ki = v4

Fig. 2. The O-FRAP protocol

Reader Rj Tag Ti

Database: {. . . , (ri, Ki, SKi), . . . } Secret: ri, Ki, SKi

pick r
r−−−−→ calculate

ri,v2←−−−− v1||v2||v3||v4||v5 = F (Ki, r||ri)
check ∃(ri, , Ki, SKi) in DB update ri = v1.

calculate v′
1||v′

2||v′
3||v′

4||v′
5 = F (Ki, r||ri)

check v′
2 = v2

output Accept(Ti, SKi)

update (ri, Ki, SKi) = (v′
1, v

′
4, v

′
5) in DB

v′
3−−−−→ check v3 = v′

3.
output Accept(Rj , SKi).
update 〈Ki, SKi〉 = 〈v4, v5〉.

Fig. 3. The O-FRAKE protocol

The attack works as follows:

1. Learning: The adversary sends an arbitrary r value to the tag T0, but does
not complete the protocol. This causes the tag to update its ri, while its Ki

remains unchanged, thus marking the tag for future tracing.
2. Challenge: To trace the tag in future, the adversary observes the interaction

between the reader and the tag Tb.
3. Guess: If the reader does not output Accept, then the adversary knows that

this tag was indeed the tag that it marked in step (1), i.e. Tb = T0. Otherwise,
he deduces that Tb = T1.

4.2 Violating the Forward Privacy of O-FRAP

In the Le-Burmester-deMedeiros model, corruption is not allowed before a proto-
col session is initiated, and it is assumed that upon corruption of a party (tag or
reader) then the corrupted party’s current incomplete session offers no privacy.
It is claimed that privacy is maintained for all previously completed sessions
involving the heretheto corrupted party.
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To motivate our case, we consider the definition of subsession completion in
the Le-Burmester-deMedeiros model. A subsession is a party’s view of its current
protocol session, e.g. during an O-FRAP protocol session, both the reader and
the tag have their own separate views of that session, so-called their subsession.
To quote from [18], “Upon successful completion of a subsession, each party
accepts its corresponding partner as authenticated.” Thus, at the point where a
party outputs Accept, its subsession is already considered completed.

Referring to the O-FRAP description in Fig. 2, the reader’s subsession is
completed at the point when it outputs Accept, i.e. before it updates its entry in
L and before it sends v′3 to the tag. Meanwhile, the tag’s subsession is completed
at the point that it outputs Accept, i.e. before it updates its Ki. In the context of
the Le-Burmester-deMedeiros model, corruption of a party at this point should
not violate the privacy of the party corresponding to its completed subsession.
This is the problem with the O-FRAP proof that we are exploiting. Indeed, we
show how this can be circumvented.

1. The adversary first eavesdrops on an O-FRAP session and records 〈r, ri, v2〉.
2. It then corrupts a tag T ′

i at the point after the tag outputs Accept. It thus
obtains K ′

i corresponding to a previoulsy completed subsession, and not the
updated K ′

i = v4.
3. The adversary calculates v∗1 ||v∗2 ||v∗3 ||v∗4 = F (K ′

i, r||ri). It can then check
the computed v∗2 with its recorded v2 for a match, thereby associating the
tag T ′

i to the particular completed subsession corresponding to its recorded
〈r, ri, v2〉.

Our attack here requires a stronger adversary than the other attacks we have
presented in earlier sections of this paper, yet it fits into the Le-Burmester-
deMedeiros model for which O-FRAP’s privacy was proven, and shows that
O-FRAP does not achieve its goal of forward untraceable privacy.

It appears that O-FRAP can be made to resist this attack by having the
tag output Accept as the very last step of the protocol, i.e. after Ki has been
updated.

4.3 Breaking the Forward Secrecy of O-FRAKE

The above attack can be extended to break the forward secrecy of the O-FRAKE
protocol, which is an extension of O-FRAP that furthermore establishes a shared
secret session key between the tag and reader.

1. The adversary first eavesdrops on an O-FRAKE session and records 〈r, ri, v2〉.
2. It then corrupts a tag T ′

i at the point after the tag outputs Accept. It thus
obtains 〈K ′

i, SK ′
i〉 corresponding to a previously completed subsession, and

not the updated 〈K ′
i, SK ′

i〉 = 〈v4, v5〉.
3. The adversary calculates v∗1 ||v∗2 ||v∗3 ||v∗4 ||v∗5 = F (K ′

i, r||ri). It can then check
the computed v∗2 with its recorded v2 for a match, thereby associating the
tag T ′

i to the particular completed subsession corresponding to its recorded
〈r, ri, v2〉; and further it also knows that the established session key for that
associated session is SK ′

i.
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Similarly, it appears that O-FRAKE can be made to resist this attack by having
the tag output Accept as the very last step of the protocol, i.e. after 〈Ki, SKi〉
have been updated.

5 Concluding Remarks

We described in an alternative manner the privacy models that capture the
notion of untraceable privacy (UPriv) and briefly discussed its relation to existing
models. The aim was to use this notion to show how some recent provably
secure RFID protocols (with proofs of security in strong adversarial models)
do not achieve this privacy notion even under the weak adversarial model that
does not require corruption of tags. In some sense, these results support the
case [7, 8, 9, 10, 11, 12, 27, 28] that while provable security is the right approach
to design and analysis of protocols, more careful analysis and interpretation of
provable security models and proofs are needed to ensure the right definitions [30]
are put in place.

As a commonly accepted model addressing privacy and security in RFID has
to be established and many RFID protocols are proposed without providing
any formal security proof, these results strengthen the need for such a model to
facilitate better design of RFID protocols that offer both privacy and security.

“Big Brother is watching you”.

George Orwell, Nineteen Eighty-Four.
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Abstract. The increased functionality of EPC Class1 Gen2 (EPCGen2)
is making this standard the de facto specification for inexpensive tags
in the RFID industry. EPCGen2 supports only very basic security tools
such as a 16-bit Pseudo-Random Number Generator and a 16-bit Cyclic
Redundancy Code. Recently two EPCGen2 compliant protocols that ad-
dress security issues were proposed in the literature. In this paper we
analyze these protocols and show that they are not secure and subject
to replay/impersonation and synchronization attacks. We then consider
the general issue of supporting security in EPCGen2 compliant proto-
cols and propose two RFID protocols that are secure within the restricted
constraints of this standard, and an anonymous RFID mutual authen-
tication protocol with forward secrecy that is compliant with the EPC
Class2 Gen2 standard.

Keywords: EPCGen2 compliance, security, anonymity, forward secrecy,
unlinkability.

1 Introduction

Radio Frequency Identification (RFID) is a promising new technology that is en-
visioned to replace barcodes and to be massively deployed for inventory manage-
ment, supply-chain logistics and retail operations. The advantage of RFID over
barcode technology is that it is wireless and does not require direct line-of-sight
reading. Furthermore, RFID readers can interrogate tags at greater distances,
much faster and concurrently. Perhaps one of the most important advantages
of RFID technology is that tags have read/write capability, allowing stored tag
information to be altered dynamically. A typical RFID system has three com-
ponents: tags, one or more readers, and a backend server. The communication
channel between the reader and the backend server is (usually) assumed to be
secure while the (wireless) channel between the reader and the tag is insecure.

To foster and promote the adoption of RFID technology and to support inter-
operability, EPCGlobal [13] and the International Organization for Standards
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c© Springer-Verlag Berlin Heidelberg 2008



The Security of EPC Gen2 Compliant RFID Protocols 491

(ISO) [16] have been actively engaged in defining standards for tags, readers,
and the communication protocols between them. A recently ratified standard is
EPC Class 1 Gen 2 (EPCGen2). This is a communication standard that creates
a platform on which to build interoperable RFID protocols. It supports efficient
tag reading, flexible bandwidth use, multiple read/write capabilities and ba-
sic security guarantees, provided by an on-chip 16-bit Pseudo-Random Number
Generator (RNG) and a 16-bit Cyclic Redundancy Code (CRC-16). EPCGen2
is designed to strike a balance between cost and functionality, with less atten-
tion paid to security which, arguably, at this stage in the development of RFID
technology may be justified.

In this paper we are concerned with the security of EPCGen2 compliant
protocols. We recognize that there are situations in which one has to design
security into systems with restricted capability so as to promote low-cost wide-
spread use. In such situations it is important to employ protocols that offer the
best level of security within the constraints of the specification. Several RFID
authentication protocols that address security issues using lightweight crypto-
graphic mechanisms have been proposed in the literature. Most of these use
hash functions [21,20,25,15,1,3,11] and [23,12,19], which are beyond the capabil-
ity of most low-cost tags and are not supported by EPCGen2. Some protocols
use pseudo-random number generators [25,17,5,4,24], a mechanism that is sup-
ported by EPCGen2, but these are not optimized for EPCGen2 compliance.
Other protocols use timestamps (e.g. [23]), however these are also not supported
by EPCGen2.

The research literature for RFID security is already quite extensive and grow-
ing. We refrain from a comprehensive review of the literature, and refer the
interested reader to a fairly comprehensive repository available online at [2]. Re-
cently two RFID authentication protocols specifically designed for compliance
with EPCGen2 have been proposed [10,9]. These combine the CRC-16 of the
EPCGen2 standard with its 16-bit RNG to hash, randomize and link proto-
col flows, and to prevent cloning, impersonation and denial of service attacks.
In this paper we analyze these protocols and show that they do not achieve
their security goals. One may argue that, because the security of EPCGen2 is
set to only 16-bits, any RFID protocol is potentially vulnerable, for example
to ciphertext-only attacks that exhaust the 16-bit range of the components of
protocol flows. While this is certainly the case, such attacks may be checked by
using additional keying material and by constraining the application (e.g., the
life-time of tags). We contend that there is scope for securing low cost devices.
Obviously, the level of security may not be sufficient for sensitive applications.
However there are many low cost applications where there is no alternative.

The rest of this paper is organized as follows. Section 2 introduces the EPC-
Gen2 standard focusing on security issues. Section 3 analyzes two recently pro-
posed EPCGen2 protocols. Section 4 describes two “trivial” RFID protocols
whose security is reduced to the security constraints of EPCGen2, and an anony-
mous RFID protocol that complies with the EPC Class 2 Gen2 standard. Sec-
tion 5 considers an extension that captures a kill functionality.
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2 The EPCGen2 Standard

The EPC Class 1 Generation 2 UHF Air Interface Protocol [13] specifies the
operation and functionality of passive RFIDs. It defines the physical and logi-
cal requirements for interrogator-talks-first systems that operate in the 860-960
MHz frequency range. Readers (interrogators) transmit information to tags by
modulating an RF signal. Tags receive both transmitted information and operat-
ing energy from the RF signal. The readers receive information from the tags by
transmitting a continuous-wave RF signal, which the tags modulate (backscat-
ter). EPCGen2 deals with the medium access control layer (air interface) and
the tag identification layer (physical interactions) of RFID systems. These lay-
ers involve RF signaling, managing tag populations, tag singulation (identifying
individual tags), collision arbitration (resolving collisions in multi-tag environ-
ments), and conformance requirements. A particular attractive feature of EPC-
Gen2 is that it provides for high-speed reading and sortation. The following
minimal on-chip tag persistent memory (non-volatile) features are specified:

– Reserved memory that contains a 32-bit kill password (KP) to permanently
disable the tag and a 32-bit access password (AP).

– EPC memory that contains: the parameters of a cyclic redundancy code
CRC-16 (16 bits), protocol control (PC) bits (16 bits), and an electronic
product code EPC that identifies the object to which the tag is (or will be)
attached (at least 32 bits).

– TID memory that contains sufficient information to identify to a reader the
(custom/optional) features that a tag supports and tag/vendor specific data.

– User memory that allows user-specific data storage.

EPCGen2 also provides for optional user memory and password-protected access
control.Two basicmechanisms to protect the tag⇔reader channels are supported:

– A 16-bit Pseudo-Random Number Generator and,
– A 16-bit Cyclic Redundancy Code.

2.1 The Pseudo-random Number Generator

A pseudo-random number generator (RNG) is a deterministic function that on
input a random binary string, called seed, outputs a sequence of numbers that
are indistinguishable from random numbers. RNGs are constructed from pseudo-
random bit generators (RBGs). A RBG stretches a random seed of length k to a
pseudo-random binary string of length � � k. This string can be partitioned into
blocks of length m to get an m-bit RNG. The length of the random seed must be
selected carefully to guarantee that the numbers generated are pseudo-random.

Each number generated by a RNG is said to be drawn by the generator.
If the numbers drawn by a RNG (or the bits drawn by a RBG) cannot be
predicted given the outcomes of prior draws, then the RNG (RBG) is said to be
cryptographically secure.

EPCGen2 does not detail the structure of the implemented 16-bit RNG; how-
ever it does specify the minimum security levels that should be supported:
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1. Probability of RN16: The probability that a pseudo-random number
RN16 drawn from the RNG has value r is bounded by:

0.8/216 < Prob(RN16 = r) < 1.25/216.

2. Drawing identical sequences: For a tag population of up to 10,000 tags,
the probability that any two or more tags simultaneously draw the same
sequence of RN16s is < 0.1%, regardless of when the tags are energized.

3. Next-number prediction: A RN16 drawn from a tag’s RNG is not pre-
dictable with probability better than 0.025%, given the outcomes of all prior
draws.

Strength of EPCGen2 Compliant RNGs. The strength of a cryptographic
RNG is usually expressed in terms of the average maximum length of the se-
quences of drawn numbers that are indistinguishable from random sequences.
With this in mind, we interpret the requirements above as imposing minimal
security requirements on the RNGs specified by EPCGen2:

1. The first “randomness” requirement implies that the value of a drawn num-
ber cannot be too biased. This requirement, while certainly satisfied by cryp-
tographically secure RNGs, is actually too weak by itself to imply much in
the way of pseudo-randomness. For instance, a simple counter that incre-
ments from 0 to 216 − 1 and then cycles back satisfies this condition.

2. The second “collision” requirement needs a detailed examination. A well
known approximation for the collision problem is n =

√
2d ln(1/(1 − p))

[22,18], where n is the number of integers drawn randomly with uniform
distribution, d the size of the range of the integers, and p the probability
that at least two integers have the same value. From this approximation we
see that when n is close to

√
d then the probability of collision is greater

than 50%. When p = 0.1% and n = 10, 000 we get that d is approximately
236. That implies that observing two successive numbers (36-bits) drawn
from the RNG of two or more tags still guarantees a fairly unbiased (and
random-looking) sequence, at least as far as collisions are concerned.

3. The third EPC requirement for the next-number prediction also needs ex-
amination. Let RBG be the pseudo-random bit generator that defines the
RNG. For the cryptographic security of RBG, the next-bit prediction should
be p = 0.5 + ε, ε negligible. This expression can be used to compute the
next-number prediction. Let B0 be the bit-sequence of prior numbers. The
prediction for the next 16-bit number is:

P =
i=15∏

i=0

Prob (bi+1|B0b0 · · · bi) = p16 = (0.5 + ε)16,

where b1, . . . bi, bi+1, . . . , are the bits drawn by the RBG after B0. EPCGen2
bounds P by 0.025%. Taking (0.5 + ε)16 < 0.025% we see that ε is bounded
0.094. This is not sufficiently small to provide cryptographic security for the
16-bit RNG, and suggests that the 0.025% bound should be lowered at least
one order.
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In conclusion, in particular with respect to Condition 2, a reasonably con-
servative assumption is that the standard for EPCGen2 guarantees the pseudo-
randomness of at least two RN16s (32-bits), and probably more, before there is
a need to re-seed the key. If Condition 3 were to be interpreted in the absence
of restraints on the number of prior draws, then at least 3-4 RN16s (48-64-bits)
drawn from the RNG should be indistinguishable from pseudo-random.

2.2 The 16-bit Cyclic Redundancy Code

CRCs are error-detecting codes that check accidental (non-malicious) errors
caused by faults during transmission. In EPCGen2, a CRC-16 is used to pro-
tect the information transmitted by both readers and tags. The CRC-16 al-
gorithm maps arbitrary length inputs onto 16-bit outputs as follows: an n-bit
input p is first replaced by a binary polynomial p(x) of degree n − 1, and then
reduced modulo a specific polynomial g(x) of degree 16 to a polynomial re-
mainder r(x) : p(x) = q(x)g(x) + r(x). The remainder has degree less than 16
and corresponds to a 16-bit number. For EPCGen2, the polynomial g(x) is the
irreducible polynomial: x16 + x12 + x5 + 1 (over the finite field GF (2) of two
elements). CRC-16 will detect burst errors of 16-bits or less, any odd number of
errors less than 16, and error patterns of length 2 [13].

CRCs by themselves are not suitable for protecting against intentional (ma-
licious) alteration of data. They do not provide the one-wayness required by
message digest codes: they are linear codes whose one-wayness is comparable to
xor-sums.

3 Weaknesses of Currently Proposed EPCGen2
Compliant RFID Protocols

In this section we consider two recently proposed EPCGen2 compliant protocols:
the Duc-Park-Lee-Kim protocol [10] and the Chien-Chen protocol [9]. The first
protocol is designed to support untraceability and uncloneability; the second to
support the same security features, but also to provide forward secrecy. We shall
show that both protocols fall short of their claimed security.

In the protocols below we use the following notation: S is the backend server,
R the reader, T the tag. We assume that S and R are linked with a secure
channel, and for simplicity, only consider the case when the authentication is
online.

3.1 The Duc-Park-Lee-Kim RFID Protocol and Its Weaknesses

In this protocol [10] each tag T shares two values with the backend server S:
a 32-bit key and a 16-bit key. The tag stores these in its non-volatile mem-
ory and the server S stores them in a database DB. The 16-bit key is initialized
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K ← Kinit and updated with each successful authentication of the tag by the
server. The 32-bit key is assigned the tag’s EPC. The protocol has four passes.

1. R → T : a query request.
2. T → R → S: a random 16-bit nonce r, M1 = CRC(EPC||r) ⊕ K, and

C = CRC(r ⊕ M1).
S checks C and that: M1 ⊕ K = CRC(EPC||r) for some (K, EPC) in DB.
If the checksum fails or if it cannot find a match then it rejects T .
S computes M2 = CRC(EPC||AP ||r) ⊕ K and updates the key K of T in
DB: K ← RNG(K).

3. S → R: M2, and details that identify the object to which the tag is attached,
depending on the reader’s privileges.

4. R → T : M2, “end session”.
T checks that: M2⊕K = CRC(EPC||AP ||r). If this is valid then it updates
the key K: K ← RNG(K).

This protocol is subject to a synchronization attack as observed by Chien-
Chen in [9]: if the adversary prevents the tag in Pass 4 from receiving an “end
session” instruction, the tag will not update its key while the server will have
updated the corresponding key in DB. Consequently the server will not be syn-
chronized with the tag and any future attempts by the tag to get authenticated
will fail. However there is another important weakness, caused by the linearity
of CRC-16. The adversary can easily forge the response (r′, M ′

1, C
′) of a tag T

in any session by simply using an earlier response (r, M1, C) obtained by inter-
rogating T (as a rogue reader) or eavesdropping. Indeed let:

1. r′ be a random 16-bit number.
2. A = CRC(00||r ⊕ r′) and B = CRC(A ⊕ r ⊕ r′).
3. M ′

1 = M1 ⊕ A = [CRC(EPC||r) ⊕ K] ⊕ CRC(00||r ⊕ r′)
= CRC(EPC||r′) ⊕ K.

4. C′ = C ⊕ B = CRC(M1 ⊕ r) ⊕ CRC(A ⊕ r ⊕ r′) = CRC(M1 ⊕ A ⊕ r′)
= CRC(M ′

1 ⊕ r′).

Clearly (r′, M ′
1, C

′) is valid for any query request, and so the adversary will
succeed in impersonating the tag T .

3.2 The Chien-Chen RFID Protocol and Its Weaknesses

This protocol [9] is an extension of the Duc-Park-Lee-Kim protocol, designed to
address its weaknesses, as well as to offer forward secrecy. Each tag T stores three
values in non volatile memory: a 32-bit EPC, a 16-bit key K and a 16-bit access
key P . For each tag the backend server S stores six values in a database DB: the
tag’s EPC, two 16-bit keys Kold, Knew , two 16-bit access keys Pold, Pnew and
DATA. The values of the key K and the access key P that the tag stores and
the corresponding values of the keys Kold, Knew and Pold, Pnew that the server
stores are updated with each successful tag authentication so as to preserve
synchronization. The protocol is described below.
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1. R → T : a random nonce N1.
2. T → R → S: a random nonce N2, and M1 = CRC(EPC||N1||N2) ⊕ K.

S checks that M1 = CRC(EPC||N1||N2) ⊕ Kj for some (Kj , EPC), j ∈
{new, old}, in DB.
If S cannot find a match then it rejects T and sends a “failure” message to
R.
Else it updates the keys of T : Kold ← Knew ← RNG(Knew), Pold ←
Pnew ← RNG(Pnew) in DB, and computes M2 = CRC(EPC||N2) ⊕ Pj ,
j ∈ {new, old}, using the j-value in M1.

3. S → R: M2 and DATA, with product information.
4. R → T : M2.

T checks that M2 = CRC(EPC||N2) ⊕ P .
If this is valid it updates its keys: K ← RNG(K), P ← RNG(P ).

There are several weaknesses with this protocol. One weakness concerns the
synchronization of keys in Pass 4: the protocol does not protect tags against re-
peated synchronization attacks. Indeed, the first time the adversary prevents the
tag from getting its confirmation in Pass 4, the tag will not update (K, P ), while
the server will have updated the corresponding values of the tag in DB: Kold ←
Knew, Knew ← RNG(Knew) and Pold ← Pnew, Pnew ← RNG(Pnew). Then, if
the value of (K, P ) stored by the tag prior to the attack was (Knew, Pnew), after
the attack it will be (Kold, Pold). Suppose the attack is repeated. The server will
accept the tag’s response in Pass 2 because the tag uses the value (Kold, Pold) in
DB. But this will be discarded by the server when it updates its keys. However
the tag will not update its keys in Pass 4 if it is prevented from getting a confir-
mation M2. It follows that the adversary will succeed in desynchronizing the tag
after the second attempt. Desynchronization will also result from two successive
reading failures by a tag.

This protocol shares the weakness of the Duc-Park-Lee-Kim protocol result-
ing from the linearity of CRC-16. In this case, the adversary can forge a re-
sponse N ′

2, M
′
1 to any challenge N ′

1 of the server by using an earlier protocol
flow (N1; N2, M1) obtained by interrogating the tag (as a rogue reader) or eaves-
dropping. Indeed, let:

1. N ′
2 be a random nonce.

2. B1 = N ′
1 ⊕ N1 and B2 = N ′

2 ⊕ N2.
3. A = CRC(00||B1||B2).
4. M ′

1 = M1 ⊕ A = [CRC(EPC||N1||N2) ⊕ K] ⊕ [CRC(00||B1||B2)]
= CRC(EPC||N ′

1||N ′
2) ⊕ K.

Then N ′
2, M

′
1 is a valid response to the challenge N ′

1.

4 Secure EPCGen2 Protocols

We next consider three “trivial” RFID authentication protocols (TRAPs) that
comply with EPCGen2, and whose security is reduced to the minimum levels of
statistical behavior of RNGs guaranteed by this standard.
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The first protocol TRAP-0, is a toy example to illustrate that the RNG of
EPCGen2 cannot be used to securely link protocol flows. We then show how
to modify the RNG so that we get security. This will give us TRAP-1. The
next protocol, TRAP-2, is an extension that provides anonymity, but not for-
ward secrecy. The last protocol, TRAP-3, supports strong privacy (with forward
secrecy).

4.1 A Trivial RFID Protocol That is EPCGen2 Compliant

This protocol uses the 16-bit RNG supported by EPCGen2, seeded with a 16-bit
key K. For each tag T with identifier id(T ), the server S stores in a database
DB an entry of the form: < id(T ), K >, used to identify the tag. We assume that
the server S and the reader R are linked by a secure (private and authenticated)
channel.

TRAP-0

1. S ⇒ R → T : A 16-bit random nonce N .
T computes L = K ⊕ N and draws M from RNG(L).

2. T → R ⇒ S : id(T ), M .
S computes L′ = K ⊕ N , where K is the key of id(T ), and draws M ′ from
RNG(L′).
If M ′ = M then the tag T is authentic. Else it is rejected.

3. S ⇒ R : “end session”.

4.2 Analysis of TRAP-0

The security of TRAP-0 is based on the statistical behavior of the RNG of
EPCGen2 as specified by the three EPCGen2 constraints in Section 2.1. TRAP-0
has two major weaknesses that result from the fact that a 16-bit RNG is used as a
security tool to link the challenge-response flows of a protocol instance. The first
concerns exhaustive-key attacks: since RNGs are deterministic, an exhaustive
search on all possible 216 key (seed) values can be used to determine the key
(alternatively, a pre-computed table of RNG entries can be used). One way to
prevent such attacks is to use additional keying material (we shall do this in
Section 4.4).

A second weakness concerns related-key attacks: EPCGen2 does not specify
any protection of its RNGs against attacks in which the adversary exploits values
drawn from RNGs whose keys are related. We next discuss these attacks, and
consider an approach that may be used to deal with them.

The related-key problem

– Search problem. Given RNG(K ⊕Ni), Ni, i = 1, . . . , t and N 
= Ni: find
RNG(K⊕N).

– Decision problem. Given RNG(K⊕Ni), Ni, i = 1, . . . , t and N, X 
= Ni: is
X = RNG(K⊕N)?
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Clearly if the adversary can compute RNG(K ⊕N) for a fresh nonce N , given a
history of RNG(K⊕Ni), Ni, i = 1, . . . , t, obtained by eavesdropping on protocol
flows, then the adversary can forge a session with challenge N . Although we have
not as yet presented an anonymous TRAP (we shall do this in Section 4.5), if
values drawn from a RNG are used as pseudonyms, then the adversary will be
able to disambiguate tags if it can solve the related-key decision problem. The
related-key problem described above is for passive attacks. In an active attack,
the adversary can select the numbers Ni, i = 1, . . . , t, adaptively (but not N or
X). Protecting protocols against adaptive attacks is usually much harder.

There are several ways to deal with such attacks. The solution we consider
here involves modifying the 16-bit EPCGen2 RNG so that it is hard to link its
inputs and outputs.

4.3 Constructing a PRF Family from a RNG

We briefly describe a construction, due to Goldreich-Goldwasser-Micali [14]. Let
G be an n-bit RNG and K an n-bit number. Denote by G0(K) the first n-bit
number output by G and G1(K) the next n-bit number. Let X = X1, X2, . . . , Xt,
t ≥ n, be a t-bit number and GX(K) = GXt(Zt−1), where

Zt−1 = (GXt−1 (· · · (GX1 (GX0(K))) · · ·).

Define the function fK : {0, 1}t → {0, 1}n by fK(X) = GX(K). It is shown
in [14] that the family Fn = {fK}|K|=n is a pseudo-random function (PRF).

In our TRAP protocols we shall use fK(X) as a RNG: since Fn is a PRF,
fK(X) is secure against attacks that exploit correlated values of X . The first
number drawn from fK(X) will be GX(K). If a second number has to be drawn
then, in the last step of the construction above we take either the second or the
third n-bit number output by G(Zt−1), depending on whether Xt = 0 or Xt = 1;
for the t-th draw, we take either the t-th output number or the (t+1)-th output
number of G(Zt−1).

4.4 TRAP-1: A Trivial EPCGen2 RFID Protocol

To deal with exhaustive key attacks and related-key attacks on TRAP-0 we
use two 16-bit numbers K0, K1 as key, and evaluate fK0(K1 ⊕ · ) on 16-bit
number inputs. In particular, for the 16-bit number N , we draw numbers from
fK0(K1 ⊕ N) instead of fK(N). Observe that if N and L = fK0(K1 ⊕ N) are
given, then there are roughly 216 pairs (K ′

0, K
′
1) for which L = fK′

0
(K ′

1 ⊕ N),
each one being equally likely to be (K0, K1). The search range is narrowed as
more values (Ni, Li) become available: to prevent attacks in which partial infor-
mation about the seed may be leaked, the tag’s key (K0, K1) may be updated
during the execution of the protocol. We shall do this in our last TRAP protocol
(Section 4.7). Finally note that since the value fK0(K1 ⊕ N) is the output of an
EPCGen2 RNG, it is subject to the minimal security requirements of EPCGen2
given in Section 2.
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TRAP-1

1. S ⇒ R → T : A 16-bit random nonce N .
T computes L = K1 ⊕ N , and draws a 16-bit number M from fK0(L).

2. T → R ⇒ S: id(T ), M .
S computes L′ = K1 ⊕N , where K = K0||K1 is the key of id(T ), and draws
M ′ from fK0(L

′).
If M ′ = M then the tag T is authentic. Else it is rejected.

3. S ⇒ R : Details of T (obtained from TID), “end session”.

Security is based on the fact that fK0(K1 ⊕ · ) is a PRF, since it is generated by
a RNG. The numbers drawn from fK0(K1 ⊕ N) are 16-bit numbers drawn from
an EPCGen2 RNG, pseudo-randomly rearranged to thwart related-key attacks.
These numbers are bound by the EPC constraints in Section 2.1. Consequently
we have:

1. Robustness against passive attacks. Suppose that the adversary obtains the
values of authenticators M of one or more tags for several sessions. Since
these are drawn using independent seeds, the probability of predicting the
next authenticator is bounded by the EPCGen2 probability of drawing a
number from a RNG.

2. Robustness against active attacks. Since the tag’s response is linked to the
reader’s challenge, a replay attack will fail. Furthermore, since the numbers
M generated by a tag T are drawn from its RNG (with key K0), by the next-
number EPCGen2 prediction requirement, the adversary cannot predict their
value with probability better than 0.025%.

The security of the TRAP protocols is discussed in a more formal setting in
Section 4.6 and the Appendix.

4.5 TRAP-2: A Trivial Anonymous EPCGen2 RFID Protocol

Our next protocol, TRAP-2, extends TRAP-1 to capture anonymity. For this
protocol each tag T stores two numbers, a 16-bit pseudonym P and a 32-bit key
K = K0||K1; the server S stores in a database DB for each tag an entry of the
form: < id(T ), K >. Initially P and K are assigned random values.

TRAP-2

1. S ⇒ R → T : A 16-bit random nonce N .
T computes L = (K1 ⊕ P )||N and draws two 16-bit numbers M, M1 from
fK0(L).

2. T → R ⇒ S: P , M .
T updates P ← M1.
S computes L′ = (K1 ⊕ P )||N and draws M ′ from fK0(L′) for every key
K = K0||K1 in DB. If there is a match M ′ = M then tag T is authentic.
Else it is rejected.

3. S ⇒ R: Details regarding tag T , and “end session”.
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TRAP-2 is a simple extension of TRAP-1. Anonymity is assured because the
pseudonyms P are pseudo-random, and because they are updated after each
interrogation (by authorized or rogue readers). We shall discuss in more detail
the security of this, and the other TRAP protocols, in the following section.

4.6 The Security of EPCGen2 Compliant Protocols

EPCGen2 is a standard for Class 1 tags that have restricted memory (particu-
larly non-volatile) and circuit footprint. It provides for high speed reading and
sortation of tags. This standard focuses on reliability and efficiency and will
only support a very basic level of security, provided by a 16-bit RNG. In our
first two protocols, TRAP-1 and TRAP-2 we have used this RNG to secure
protocol flows: we added an extra 16-bits of keying material to make it harder
to invert the RNG and to prevent related-key attacks. Obviously this will af-
fect the efficiency of the interrogating process: identification will take longer and
may lead to reading failures. Also the additional non-volatile memory means
that the TRAP protocols can only be used with tags that are at the top end of
the EPCGen2 standard.

The EPC Air Interface Protocol [13] covers a wide range of tag types. The
Class 1 tags we shall consider in this paper are the most basic passive tags.
Class 2 tags are covered by the same specifications, but are allowed to have
additional memory. In the last part of this section we consider TRAP-3, a Class 2
mutual authentication RFID protocol that supports strong privacy (with forward
secrecy). For this protocol we require that each tag has a 48-bit key, and use a
32-bit RNG. We shall assume the same minimum security level of EPCGen2 as
specified in Section 2.1, extended to allow for 32-bit RNGs.

Our TRAP protocols are based on the protocols O-TRAP [5] and O-FRAP [24])
that are secure in the Universal Composability (UC) framework [6,7,8]. The main
feature of these protocols is that their protocol flows are pseudo-random. In the
Appendix we describe O-TRAP and show how to adapt it to get a security proof
for TRAP-2 in the UC framework, provided a sufficiently large seed for the RNG
is used, so as to prevent the adversary from distinguishing its output from random
numbers. Similarly, the security proof of O-FRAP can be adapted to get a proof
for TRAP-3.

4.7 An EPC Class2 Gen2 Compliant Protocol That Supports
Strong Privacy

Our last protocol is a mutual authentication protocol. This protocol uses a 32-
bit RNG and 48-bit keys, to support security. For reliability the transmitted
messages are (only) 16-bit numbers. Each tag T stores a 16-bit number P and
a 48-bit key K = K0||K1, where K0 is 32-bits long. The server S stores for each
tag T in a database DB an entry with two 48-bit keys Kold, Kcur, that is:

< id(T ), Kold, Kcur > .

Initially P is assigned a random value, Kcur, K are assigned the same random
value, and Kold is null.
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TRAP-3

1. S ⇒ R → T : A 16-bit random nonce N .
T computes L = (K1 ⊕P )||N , draws three 32-bit numbers M1, M2, M3 from
fK0(L), parses M1 = M10||M11 and M3 = M30||M31 into 16-bit numbers,
and sets M ← M10.

2. T → R ⇒ S: P , M .
T updates P ← M11.
S computes L′ = (K1⊕P )||N and draws M ′

1, M
′
2, M

′
3 from fK0(L

′), for every
Kj, j ∈ {old, cur} in DB, parses M ′

1 = M ′
10||M ′

11 and M ′
2 = M ′

20||M ′
21, and

sets Q ← M ′
20.

If for some Kj in DB there is a match M ′
10 = M , then T is authentic: for

j = cur it updates Kold
1 ← Kcur, Kcur

1 ← M ′
21||M ′

3; for j = old it updates
Kcur ← M ′

21||M ′
3.

Else T is rejected.
3. S ⇒ R: Q, details regarding the tag, “end session”.
4. R → T : Q.

T checks that Q = M20; if so, it updates K ← M21||M3.

The security of TRAP-3. TRAP-3 extends TRAP-2 to capture forward se-
crecy. To prove forward secrecy we need to show that the adversary cannot (a)
desynchronize the updating process of the key K of a tag T and, (b) link a tag
whose key is compromised to earlier protocol flows (obtained by eavesdropping).

For (a) there are two cases to consider. If the adversary is passive then the
value of the key K of T is the same as the value Kcur stored in DB for T . If
the adversary is active and prevents T from receiving the confirmation Q, or if
a rogue reader interrogates T , then the value of K is Kold—even if such attacks
are repeated. For (b) observe that if a tag’s key K is compromised then the
earlier flows [N ; P, M ; Q] cannot be linked because they are pseudo-random.

Observe that this protocol is optimistic [24]: if the server stores the values
P for each tag T , then these can be used to disambiguate the tag T when the
adversary is passive (an eavesdropper) or inactive. Finally, as with the protocols
O-TRAP and O-FRAP [5,24], a compromised tag can be traced back to its last
completed interrogation with an authorized reader, since it will not update its
key K until it receives a (valid) confirmation Q.

5 Adding a Kill Functionality

Our TRAP protocols can be extended to include a kill feature for tags. In this
section we show how this is done for TRAP-2. Observe that to disable a particular
tag, the server must first authenticate that tag.

5.1 TRAP-2*: A TRAP with Kill Functionality

EPCGen2 specifies four states that tags may implement: open, ready, secure and
killed. Open is the initial state; ready is a holding state until the tag receives the
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next message from the reader; secure is a state into which a tag transitions on
receiving an authenticator from the reader; killed is a state into which a secured
tag transitions on receiving a kill mandate. A killed tag will not respond to any
challenge, and cannot be resurrected.

In TRAP-2* each tag T stores a 16-bit number P and a 32-bit key K =
K0||K1, as in TRAP-2, but also stores an additional 32-bit kill-key KP . The
server S stores in a database DB, for each tag T , an entry of the form:

< id(T ), K, KP, EPC, state tag, kill mandate >,

where state tag specifies the state of the tag and kill mandate is either null or kill.
Initially K and P are assigned random values, state tag is open and kill mandate
is null.

TRAP-2*

1. S ⇒ R → T : A 16-bit random nonce N .
T updates its state to ready, computes L = (K1 ⊕ P )||N and draws two
16-bit numbers M, M1 from fK0(L).

2. T → R ⇒ S: P , M .
T updates P ← M1.
S computes L′ = (K1 ⊕P )||N and draws two numbers M ′, M ′

1 from fK0(L′)
for every key K in DB.
If there is a match M ′ = M then T is authentic: S updates T ’s state tag in
DB to secure. Else the tag is rejected.
If the value of kill mandate of a secure tag T is kill, then the server S parses
KP = KP0||KP1 into 16-bit numbers and draws a 16-bit number Q from
fKP0((KP1 ⊕ P )||N).

3. If the value of kill mandate of a secure tag T in DB is null then:
S ⇒ R: Details regarding the tag, and “end session”.

4. If the value of kill mandate of a secure tag T in DB is kill then:
S ⇒ R: Q, and “end session”.
R → T : Q.
T : If the value of state tag is ready then T parses KP = KP0||KP1 and
draws a number Q′ from fKP0((KP1 ⊕ P )||N).
If Q′ = Q then T transitions to a killed state.

5.2 Security Analysis of TRAP-2*

We only discuss the security of the kill functionality. As noted earlier, non-
corrupted tags that receive a kill mandate will always assume a killed state.
However a tag may be prevented from receiving the kill mandate Q by the
adversary. In such cases even though the value of state tag in the database DB
is killed, the tag is not killed. However the tag is, for all practical purposes,
disabled: each time it attempts to get identified by an authorized reader, it will
only receive a kill mandate.
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6 Concluding Remarks

The EPCGen2 standard for Class 1 tags focuses on reliability and efficiency and
supports only a very basic security level. Designing EPCGen2 compliant RFID
protocols that are secure is particularly challenging because the only security
tool that is available in this standard is a 16-bit RNG.

In this paper we have shown that two recently proposed EPCGen2 compliant
RFID protocols fail to provide adequate security and are subject to imperson-
ation attacks and synchronization attacks. We proposed two basic RFID authen-
tication protocols, TRAP-1 and TRAP-2 that are EPCGen2 compliant, whose
security is reduced to the minimal security levels supported by this standard,
and have shown how to add a kill functionality. Finally we proposed a mutual
authentication RFID protocol that provides strong anonymity and that complies
with the EPC Class2 Gen2 standard.
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Appendix: The Security of TRAP-2

We first describe the protocol O-TRAP [5] and show the modifications needed
to get TRAP-2. We then state our main result and briefly discuss the security
framework.
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In O-TRAP, each tag T stores two n-bit numbers: a pseudonym P and a
key K, where n is the security parameter. The server S has two databases,
DB and DB′: for each tag T , the server S stores in DB an entry of the form
< id(T ), K >, and in DB′ and entry of the form < id(T ), P, K >. DB is
indexed by the (authorized) keys K while DB′ is indexed by the pseudonyms
P . Initially P and K are assigned random values. Let HK(·) be a hash function
with pseudorandom values.

O-TRAP

1. S ⇒ R → T : An n-bit random number N .
T computes M = HK(N ||P ).

2. T → R ⇒ S: P , M .
T updates P ← M .
S accepts the tag T as authentic if:
either there exists an entry (id(T ), P, K) ∈ DB′ with M = HK(Rsys||P ),
or there exists an entry (id(T ), K) ∈ DB with M = HK(Rsys||P ).
Else the tag is rejected.

We have:

Theorem 1. [5] O-TRAP guarantees availability, anonymity, and authentica-
tion in the Universal Composability (UC) framework [6,7,8] provided the keyed
hash function is chosen from a pseudo-random function family {HK(·)}|K|=n.

A key feature of this protocol is that it is optimistic, that is its security over-
head is minimal when the adversary is passive (an eavesdropper) or inactive,
since in this case the server S needs to do only one key-lookup in DB′ to find
the pseudonym of T and then authenticate the tag (we have constant key-
lookup [4]). TRAP-2 is not optimistic, however in all other respects is very
similar to O-TRAP. For both protocols the pseudonyms P and authenticators
M are pseudo-random. In TRAP-2, M is drawn from fK0(K1 ⊕ P ||N), whereas
in O-TRAP it is HK(P ||N). Consequently M is a pseudo-random number de-
termined by: the key K, the pseudonym P , and the challenge P . It follows that
one can use the same steps as in the security proof for O-TRAP to get a proof
for TRAP-2. We need however to make certain that fK0(K1 ⊕ · || · ) is a PRF,
which in our case is guaranteed if the length of the seed is sufficiently long to
prevent the adversary from distinguishing its output from random numbers.

The UC-framework. UC security is based on notions of interactive indistin-
guishability of real from ideal protocol executions. This requires:

1. A mathematical model of real protocol executions, where honest parties are
represented by probabilistic polynomial-time Turing machines that correctly
execute the protocol as specified, and adversarial parties that can deviate
from the protocol in an arbitrary way. The adversarial parties are controlled
by a single (PPT) adversary A that (1) has full knowledge of the state of
adversarial parties, (2) can arbitrarily schedule the actions of all parties, both
honest and adversarial, and (3) interacts with the environment in arbitrary
ways, in particular can eavesdrop on all communications.
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2. An idealized model of protocol executions, where the security properties are
defined in terms of an ideal functionality F , a trusted party that all parties
may invoke to guarantee correct execution of particular protocol steps. The
ideal-world adversary SA is controlled by the ideal functionality, to reproduce
as faithfully as possible the behavior of the real adversary.

3. A proof that no environment can distinguish (with better than negligible
probability) real- from ideal-world protocol runs by observing the system
behavior.

In the real world the adversary A interacts with the protocol parties using com-
mands such as REFRESH, START, SEND and END, to cause the beginning of
a new server interrogation period, to make available a tag for interrogation, to
send a challenge to a tag and get its response, or to send a response to the server,
etc. The goal of A is to prevent an honest tag from (i) getting accepted by the
server (availability), (ii) getting authenticated, and (iii) being anonymous. The
ideal adversary SA has the same goals, but this time the interactions are with
the ideal-world functionality F . We get UC-security if no PPT environment Z
can distinguish real- from ideal-world simulations. For more details the reader
is refered to [5,24].
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Milhau, Michel 258
Mitchell, John C. 309
Mitra, Soumyadeb 373
Monrose, Fabian 21
Mut-Puigserver, Macià 174
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