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Preface

This volume presents the set of papers accompanying the lectures of the eighth
International School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of computer, communication, and
software systems. The main aim of the SFM series is to offer a good spectrum
of current research in foundations as well as applications of formal methods,
which can be of help for graduate students and young researchers who intend to
approach the field.

SFM 2008 was devoted to formal techniques for computational systems bi-
ology and covered several aspects of the field, including computational models,
calculi and logics for biological systems, and verification and simulation meth-
ods. The school featured not only regular lectures, but also talks given by people
involved in the Italian research project on Bio-Inspired Systems and Calculi with
Applications (BISCA).

The first part of this volume comprises nine papers based on regular lectures.
The paper by Degasperi and Gilmore describes the application of sensitivity
analysis techniques to stochastic simulation algorithms. Talcott’s paper presents
pathway logic, an approach to modeling and analysis of biological processes
based on rewriting logic. Fages and Soliman study reaction graphs and activa-
tion/inhibition graphs used by biologists through formal methods originating
from programming theory. The paper by Maus, John, Röhl, and Uhrmacher dis-
cusses categories, abstraction hierarchies, and composition hierarchies playing a
role in modeling and simulation for computational biology. Gillespie’s paper re-
views the theory of stochastic chemical kinetics and several simulation methods
that are based on that theory. Păun and Romero-Campero introduce membrane
computing, a branch of natural computing aiming to abstract computing models
from the structure and functioning of the living cell and the way cells cooper-
ate. The paper by Heiner, Gilbert, and Donaldson illustrates a Petri-net-based
framework for modeling and analyzing biochemical pathways, which unifies the
qualitative, stochastic, and continuous paradigms. Ciocchetta and Hillston dis-
cuss the use of process algebras within systems biology and the related analysis
techniques by focussing on Bio-PEPA. Finally, the paper by Dematté, Priami,
and Romanel presents BlenX, a new programming language whose original de-
velopment was thought for biological systems.

The second part of this volume comprises five papers based on BISCA talks.
Chiarugi, Degano, Van Klinken, and Marangoni report on experiences in model-
ing biological cells with process calculi by following a holistic approach. The pa-
per by Barbuti, Caravagna, Maggiolo–Schettini, Milazzo, and Pardini describes
the calculus of looping sequences, which is suitable for modeling microbiological
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systems and their evolution. Bortolussi and Policriti survey the use of hybrid au-
tomata in systems biology through a series of case studies. The paper by Versari
and Gorrieri shows how different compartment semantics useful in biological sys-
tems modeling can be obtained by means of a simple and conservative extension
of π-calculus. Finally, Zavattaro’s paper uniformly introduces various models for
the representation of biochemical systems recently proposed in the literature.

We believe that this book offers a comprehensive view of what has been done
and what is going on worldwide in the field of formal methods for computational
systems biology. We wish to thank all the speakers and all the participants for
a lively and fruitful school. We also wish to thank the entire staff of the Univer-
sity Residential Center of Bertinoro for the organizational and administrative
support. Finally, we are very grateful to the University of Bologna, which kindly
provided a sponsorship for this event under the International Summer School
Program.

We would like to conclude by remembering our friend and colleague Nadia
Busi. Her most important research contributions were related to the study of
expressiveness problems in concurrency theory, with special emphasis on Petri
nets as well as calculi inspired by coordination languages. In 1998 her doctoral
dissertation “Petri Nets with Inhibitor and Read Arcs: Semantics, Analysis and
Application to Process Calculi” received the EATCS-IT prize for the best Italian
PhD thesis in theoretical computer science. More recently, she became interested
in bio-inspired models of computation. In that field, she developed new classes
of models, such as genetic P systems, and investigated decidability properties
of other formalisms, like brane calculi. She also led the research unit of the
University of Bologna within the BISCA project.

Unfortunately Nadia passed away a few months ago at the age of 39, after
playing – with her usual enthusiasm – a fundamental role in planning the sci-
entific program of SFM 2008. Despite the sadness due to her unexpected death,
we decided to proceed with the organization of the school, because SFM 2008
can be viewed as her last contribution to the scientific community – or maybe
because organizing SFM 2008 gave us a chance to feel Nadia still close to us.
This volume is therefore dedicated to the memory of Nadia Busi.

June 2008 Marco Bernardo
Pierpaolo Degano

Gianluigi Zavattaro
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Sensitivity Analysis of Stochastic Models of

Bistable Biochemical Reactions

Andrea Degasperi1 and Stephen Gilmore2

1 Department of Computing Science, University of Glasgow
2 Laboratory for Foundations of Computer Science, University of Edinburgh

Abstract. Sensitivity Analysis (SA) provides techniques which can be
used to identify the parameters which have the greatest influence on the
results obtained from a model. Classical SA methods apply to determin-
istic simulations of ODE models. We extend these to stochastic simu-
lations and consider the analysis of models with bifurcation points and
bistable behaviour. We consider local, global and screening SA methods
applied to multiple runs of Gillespie’s Stochastic Simulation Algorithm
(SSA). We present an example of stochastic sensitivity analysis of a real
pathway, the MAPK signalling pathway.

1 Introduction

Reaction-based biochemical models use input parameters such as concentrations
and kinetic rate constants to predict the time evolution of a biochemical sys-
tem. The chemical species involved in the reactions have the role of the output
variables of the model. Fig. 1 shows an example with four species.

Sensitivity Analysis (SA) studies the relationships between the inputs and
the outputs of models. When we wish to perform SA we choose a time point at
which to read the output values. In the case of an ODE model, a selected output
(species) has a precise value at a given time. Changing one or more parameters
of the model may alter this. In the case of stochastic simulation [1] the output
of a selected species at a selected time can be considered to be the collection of
the values given by the individual simulation runs. If it is sufficiently large, this
set of values will reveal the distribution of the output.

One of the basic SA operations is to compute the difference between the output
of a model and the output of the same model with one or more parameters
perturbed. This is simple to do with ODE models but not so straightforward
when facing stochastic simulation. One simple approach is to take as output the
mean of the values coming from the simulations. However, this can lead to a loss
of information: by taking the mean we are assuming a normal distribution and we
are even neglecting the variance. Another possibility is the use of a distribution
distance or histogram distance which, with sufficient simulation runs, is able
to precisely describe the difference. In [2] this is used to quantify how well an
approximate SSA emulates the exact SSA. We use it here with SA to quantify
the effect of perturbation of the parameters of a stochastic model.

M. Bernardo, P. Degano, and G. Zavattaro (Eds.): SFM 2008, LNCS 5016, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 A. Degasperi and S. Gilmore

Fig. 1. Examples of time evolution of a biochemical model computed with ODE (on
the left) and with SSA (on the right)

Histogram distance is computed as follows:

Dk(X, Y ) =
k∑

i=1

∣∣∣∣∣

∑|X|
j=1 χ(xj , Ii)

|X | −
∑|Y |

j=1 χ(yj , Ii)
|Y |

∣∣∣∣∣

where X and Y are two sets of numbers, k is the number of histogram columns
or intervals which divide the range of the output variable, |X | is the cardinality
of the set X (resp. |Y | is the cardinality of the set Y ), xj and yj are elements
of the sets X and Y respectively and the function χ returns 1 if the element xj

belongs to the interval Ii, 0 otherwise. Ii is the i-th interval in the range, which
runs from xmin + (i−1)L

k to xmin + iL
k , where L = xmax − xmin.

An interesting measure is then the self distance, given by Dk(X, X ′). This
runs the same experiment twice, with the same parameters, and then computes
the histogram distance between the results. Perturbations in the parameters
which generate values of distances less than or very close to the self distance will
be considered not to have an influence, or, at least, we can say that we cannot
distinguish any effect arising from this perturbation.

2 Sensitivity Analysis Classifications

According to [3], sensitivity analysis (SA) techniques can be classified as follows.

Local Methods: These concentrate the analysis around a particular point in
the parameter space. For example, local one at a time and elementary one
at a time approaches belong to this class.

Screening Methods: These are used to select the most important parameters
when the complexity of the model is problematic or the number of param-
eters intractable. The main idea of these methods is that they should be
computationally inexpensive and give the idea of which parameters can be
fixed (low importance), even if the information that can be achieved is poor.



Sensitivity Analysis of Stochastic Models of Bistable Biochemical Reactions 3

They are a tradeoff between information and algorithm complexity. Once
the most influential parameters have been identified, it is then possible to
apply a more informative and computationally expensive technique.

Global Methods: These techniques try to explore the entire space of the
parameters or, at least, explore the subspace that is believed to contain the
real value of the parameters and that represents their uncertainty. Usually
these are the most computationally expensive, but also the most informative.

2.1 One-At-a-Time Methods

The classical and most widely used SA is the one-at-a-time (OAT) approach: a
parameter is perturbed (usually by 1%) and the changes in the output measured.
Alternatively it is possible to compute the derivative of the output with respect
to each parameter to obtain its sensitivity coefficient:

Sij =
δyj(p)

δpi

where yj(p) is the j-th output of the model which depends on the parameters
and pi is the i-th parameter.

In the study of biochemical systems, OAT methods represent the prevalent
practice when analysing ODE models. Other more complex and informative
analysis has been proposed [4]. However, none of these are directly applicable
to stochastic models whose output is defined as a probability density function
(pdf) over the number of molecules for each species. The need to consider the
entire pdf is very clear in the analysis of bistable systems. These present at a
certain time a pdf which is not normal, but instead presents two distinct peaks of
likelihood. In this particular context an analysis cannot make any assumptions
about the pdf resulting from the model. For this reason SA of stochastic systems
is an engaging research question [5] and here we are using histogram distance to
quantify the change in the output value:

Si = D(Xn, Xpi)

where Xn is a random variable (r.v.) with nominal pdf = f(x,p) and Xpi is a
r.v. with perturbed pdf = f(x, p1, ..., pi + Δpi, ..., pk). This distance can instead
be divided by Δpi, leading to a correspondent derivative-based approach.

Together, these approaches can be classified as local one-at-a-time (LOAT)
SA and are applicable if we assume that varying one parameter at a time affects
the output of the model in a proportional way. However, that assumption is
often not valid for biological systems making LOAT incapable of giving a com-
plete view of the relationships between parameters and output and also between
the parameters themselves. LOAT methods are useful mainly because they can
give a first impression of sensitivity indices and because they are computation-
ally inexpensive – an important consideration when dealing with thousands of
stochastic simulations.
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Fig. 2. Example of a grid in the Morris method. In this case we have two parameters
(k = 2) and a grid level of five (p = 5), so the maximum possible combinations are
52 = 25. The black dots are two possible random points, while the circles are other
points computed during the algorithm iterations. An efficient implementation should
not recompute the point circled twice.

2.2 Morris’ Method

Morris’ method [3] can be classified as one at a time, because it uses as a basic
step the local OAT approach, and global, because the experiment covers the
entire space over which the factors are believed to vary. Morris estimates the
main effect of a factor by computing a number r of local measures, at dif-
ferent random points x1, ...,xr in the parameter space, and then taking their
average.

When applying this method, a computationally expensive model is assumed,
or a model with a large number of factors. The goal is to determine which
factors have (a) negligible effects, (b) linear and additive effects, or (c) non-
linear interaction effects. This will help to apply later the most appropriate
global sensitivity analysis only on the relevant parameters.

The k-dimensional factor vector x has components xi that have p values in
the set {0, 1/(p − 1), 2/(p − 1), ..., 1}. The region of experimentation Ω is then
a k-dimensional p-level grid (Fig. 2). In practice, the values sampled in Ω are
then rescaled to generate the actual values of the parameters as sampled from a
specific parameter range. Let Δ be a predetermined multiple of 1/(p − 1). Then
Morris defines the elementary effect of the ith factor at a given point x as:

di(x) =
y(x1, ..., xi + Δ, ..., xk) − y(x)

Δ

where x is any value in Ω selected such that the perturbed point x + Δ is still
in Ω. After sampling r times, the result will be a distribution Fi of elementary
effects. The characterisation of this distribution through its mean μ and standard
deviation σ gives useful information about the influence of the ith input on the
output.



Sensitivity Analysis of Stochastic Models of Bistable Biochemical Reactions 5

Fig. 3. An example of a possible deterministic model f(x1, x2) = Y which depends on
the factors x1 and x2, together with examples of conditional expectations

2.3 Variance-Based Methods

Variance-based methods use the variance of the conditional expectation (VCE)
as a measure of the importance of the input factors. The goal in these methods is
to estimate the VCE by exploring the space made by all the possible values of the
parameters. Applied to ODE-based models, the most well-known techniques are
correlation ratio, Sobol’, and Fourier amplitude sensitivity test (FAST) [3,4,6].
Probability theory states that:

V [Y ] = Vx
[
E[Y |x]

]
+ Ex

[
V [Y |x]

]
. (1)

The term Vx
[
E[Y |x]

]
is the variance of the conditional expectation of Y , con-

ditioned on x. This is a suitable measure of the importance of x, identifying
the part of the variance of Y due to x. If the variance of Y is matched by the
VCE of x we can say that x is the only parameter (or set of parameters) which
influences Y .

The variance of the conditional expectation is given by:

Vx
[
E[Y |x]

]
=

∫ (
E[Y |x] − E[Y ]

)2
px(x)dx

where E[Y |x] =
∫

ypY |x(y)dy. Here the integral is substituted with the sum over
all the possible values of x sampled from the range of x. A simple example of a
deterministic model is shown in Fig. 3.

The parameter space is sampled through the use of a grid. After having col-
lected all the results, the conditional expectations are estimated by fixing a
parameter to its possible values in the grid. A complete analysis of the influence
of the parameters on the output and on the other parameters is provided but,
as can be expected, the algorithm complexity increases exponentially with the
grid level and the number of parameters.

Let Sx be the n-th order sensitivity index, with x ∈ N
n. This corresponds to

the VCE fixing the factors in x minus the sensitivity indices relative to all the
possible combinations of the factors in x. For example, S12 is given by V CE12 −
S1 −S2 and S123 is given by V CE123 −S12 −S13 −S23 −S1 −S2 −S3. The VCE
relative to x, where x contains all the factors, is nothing but V [Y ].
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Following [6] the sensitivity measure which is the most suitable to determine
the influence of a parameter on the output of the model is the Total Sensitivity
Index (TSI) or simply TSi. This is defined as the sum of all the sensitivity indices
that contain i in x. For example, TS1 is given by S1 + S12.

3 Sensitivity Analysis of Stochastic Simulations of
Biochemical Reactions

In this section we introduce two new sensitivity measures and present them as
variants of Morris’ method and the variance-based approach respectively. When
doing this, we compare these new techniques with their original versions.

From now on, when we refer to results obtained with ODE or deterministic
methods, we implicitly intend that they are obtained using a 5/4 Dormand-
Prince ODE solver with adaptive step-size. When we refer to results obtained
with stochastic simulations, we implicitly intend that we used the original
SSA [1], if not otherwise stated.

3.1 The Schlögl Model

The Schlögl model [5,2] is a suitable model to show the differences between usual
Local OAT approaches and the one based on histogram distance. It is defined
as follows:

Reaction Propensity Stochastic Molecular
channels functions constants populations
A + 2X

a1→ 3X a1 = k1AX(X − 1)/2 k1 = 3 · 10−7 X0 = 247
3X

a2→ A + 2X a2 = k2X(X − 1)(X − 2)/6 k2 = 1 · 10−4 A = 1 · 105

B
a3→ X a3 = k3B k3 = 1 · 10−3 B = 2 · 105

X
a4→ B a4 = k4X k4 = 3.5

where A and B are kept constant. That is, they are available in sufficient supply
that we do not model changes to their molecular populations. The parameter
values are set close to a bifurcation point, where a small perturbation in them
can lead to completely different results in the ODE time evolution, as can be
seen in Fig. 4 (left and centre).

From a single set of parameters the time evolution of the stochastic simula-
tions will follow either one of two possible behaviours, as can be observed in
Fig. 4 (right). With the goal of describing the behaviour of this system, ODE
models, or the simple average of X from different stochastic simulations could
be inappropriate if not misleading. The use of estimated distributions can be
considered a more suitable choice.

3.2 Local Methods

Three local one-at-a-time sensitivity analyses have been applied to the Schlögl
model: LOAT (ODE), LOAT (Gillespie Average) and LOAT (Gillespie Density).
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Fig. 4. Left, the time evolution of the output variable X of the Schlögl ODE model
obtained with the value of the parameters stated in the text. Centre, the time evolution
of X changing only the initial number of molecules of X from 247 to 250: the behaviour
seems to completely change. Right, 50 runs of the SSA on the Schlögl model shows the
behaviour in a more informative way.

These differ in the way in which the distance is calculated and in the method
used to compute the time evolution of the system.

LOAT (ODE): The difference is computed from the output resulting from the
ODE models. Performing the analysis more than once will lead to the same
result, due to the deterministic nature of the ODEs.

LOAT (Gillespie Average): Many exact SSA simulations are computed here,
so the result may change from analysis to analysis, reducing its variation if
the number of stochastic simulations increases. The average of the simula-
tions output is used.

LOAT (Gillespie Density): Also in this case, the exact SSA (Gillespie’s
Direct Method) is used to compute the evolution of the system. In this
analysis the histogram distance is used instead of the simple difference of
the averages.

Given the difference in the order of magnitude of the parameters of the Schlögl
model, we may be more interested in the relative perturbation. For this reason
we consider the simple output difference a more interesting sensitivity index than
the derivative and we will discuss that first.

In Fig. 5 the first significant observation is that the ODE and Gillespie Density
procedures share common results. They both show that k1 produces the same
variation as A and that k3 produces the same variation as B. Indeed, we know
that k1 and A are related, because they could have been considered a single
parameter (consider the propensity functions), and this fact has been captured
by the analysis. The same reasoning holds for k3 and B. On the other hand, an
important and expected difference appears in the influence of X0. With ODEs,
the output variation induced by the perturbation of X0 is similar to that of k1
and k3, showing high sensitivity. This is due to crossing the bifurcation point.
The Gillespie Density method shows instead a low value of histogram distance
for the same perturbation, revealing it to be far less influential than k1. (This
latter method can easily be proved to be the correct one by considering Fig. 6,
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Fig. 5. Results of the three LOAT SA described in the text. The time of the analysis
is 20 seconds with a perturbation of 1%. Above the line all results are computed
using derivatives (distance divided by the perturbation). Below the line all results are
computed using elementary OAT (just distance). The histogram distance is computed
with 50 histogram columns and 5000 runs. The histogram self distance for X is 0.068.
ODE fractional value 0.001. Results obtained using the simulator Dizzy [7].

where the histograms of the distribution of X at time 20, generated with nominal
and perturbed parameter values, nearly coincide. In Fig. 6 can also be observed
how the perturbation of k1 influences the outcome of the stochastic simulations.)
Parameter k3, along with B, has been discovered to be not particularly influen-
tial, with a histogram distance close to the self distance.

The Gillespie Average approach seems instead inconsistent, particularly when
it shows k1 and A to have different sensitivities.

To conclude the discussion of the results we can notice how the derivative
approach (Fig. 5, above the line) attributes the same order of importance to the
parameters in all three cases. However, this is due mainly to their different orders
of magnitude and not significant with regard to the sensitivity of the system. It
is clear that, at least in this context, a parameter that is estimated to be of the
order of 10−5 and a parameter that is estimated to be of the order of 103 are
not directly comparable.

According to the results of this first study we will from now on prefer the
simple distance, specifying the relative perturbation in percentage.

3.3 Screening Methods

In this section we apply Morris’ method in two different versions: firstly an
adapted version of the original algorithm which makes use of the output of
ODEs; and secondly a novel modification which uses the information captured
by sets of stochastic simulations.



Sensitivity Analysis of Stochastic Models of Bistable Biochemical Reactions 9

Fig. 6. Values of output X of the stochastic simulations at time 20. On the left with
nominal parameter values (H0) and X0 perturbed by 1% (H1). On the right with nom-
inal parameter values (H0) and k1 perturbed by 1% (H1). Each histogram is obtained
from 5000 samples grouped in 50 columns.

Given our previous experience with LOAT SA we make use of two different
elementary effects : one being the simple difference of the outputs of ODE models;
the other the histogram distance of outputs of stochastic simulations. Moreover
we consider the possibility of having multiple outputs:

dij(x) = yj(x1, ..., xi + Δ, ..., xk) − yj(x)
dij(x) = D(Yj , Y

′
j )

where in general dij is the local influence of the ith input on the jth output of the
model. Considering a certain fixed time t when the analysis is performed, yj is
the outcome of the output j at that time and x is the vector of parameters. Yj is
the random variable (r.v.) of the outcome of the jth output at time t distributed
following the pdf f(yj,x) and Y ′

j is the r.v. of the outcome of the jth output at
the same time distributed following the pdf f(yj, x1, ..., xi +Δ, ..., xk). D(Yj , Y

′
j )

is the histogram distance between Yj and Y ′
j .

In order for these two measures to have meaning, we modified slightly the
method to generate perturbations which are always comparable. The ranges are
chosen as displacement from a nominal value which is proportional (±10%) to
that value. In the p-level grid we allow only unitary perturbations (not multiples
of 1/(p − 1) but exactly 1/(p − 1) every time). This way, every difference cor-
responds to the same percentage in perturbation with respect to the parameter
nominal value which is central in the grid (Fig. 2).

Morris’ Methods on the Schlögl Model. The two screening methods have
been applied to the Schlögl model. Fig. 7 shows the outcome of the analysis
with ODEs used to determine the time evolution of the system. The average
elementary effect has the role of ordering the parameters from the most to the
least influential. However, the elevated standard deviation of all the parameters
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Fig. 7. Result of Morris’ method on the Schögl model. Time evolution is computed
with ODEs (left) and with stochastic simulations (right). The adopted parameters are
1000 random points for ODE r (40 for stochastic simulations), grid level 5 p, time of the
analysis 10s, ±5% from nominal value, ODE fractional value 0.001. Number of stochas-
tic simulations 1000 and number of histogram columns 50. The average histogram self
distance of the random points was 0.141 with std. dev. 0.025.

sensitivities makes this classification difficult and reveals that the model is likely
to be nonlinear with respect to the parameters and strong dependency between
the parameters is also likely to exist.

Fig. 7 shows also Morris’ method applied using histogram distance. It is impor-
tant to bear in mind that all the conclusions are up to the level of precision that
is given by the average self distance. Observing Fig. 7 (right) we can at this
point say that, with the current approximations, the initial number of molecules
of the species X is a factor that appears not to be influencing the value of the
species X at time 10 seconds. We can also see that the product k3B has a weak
influence and that this influence does not change particularly as other param-
eters change (relatively low standard deviation). The other three parameters,
k2, k4 and k1A show instead that they have a significant influence, particularly
k1A, and their relative larger standard deviation implies non-linearity and cor-
relations. The reduction of the relative standard deviation in the novel Morris’
method helps us to be more confident when stating which factors are the most
important and which require to be further analysed.

3.4 Global Methods

We applied variance-based analysis to the Schlögl model, both with the ODE and
the stochastic simulation approach. The analysis has been performed considering
a subset of three parameters, selected as the most important factors arising from
a previous analysis with Morris’ method (Fig. 7 on the right). The factors are
k4, k1A and k2.

The results of the analysis of the two variance-based approaches are shown
in Table 1. We notice that the order of importance of the three parameters is
the same, according to the total sensitivity indices. Differences in the first and
second order sensitivity indices may be due to the relative weaker importance
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Table 1. Variance-based sensitivity analysis of Schlögl model. First-order sensitivity
indices relative to the factors k4 (1), k1A (2) and k2 (3) and other combined effects are
shown. The last three rows show the total sensitivity indices. Time of the analysis 10s,
grid level 5, fractional step size of ODE method 0.001, number of stochastic simulations
1000, number of histogram columns 50.

VCE with histogram distance VCE with ODEs

index sensitivity rank sensitivity rank

S1 0.244 2 21278 2
S2 0.325 1 30366 1
S3 0.064 5 4028 5
S12 0.086 4 10033 3
S13 0.008 7 299 7
S23 0.086 3 456 6
S123 0.054 6 8969 4

TS1 0.392 2 40580 2
TS2 0.551 1 49826 1
TS3 0.213 3 13752 3

that k2 seems to have in the classical analysis. Indeed, sensitivities involving k2,
like S13 or S23 are weaker in the classical analysis.

4 Sensitivity Analysis of the Mitogen-Activated Protein
Kinase (MAPK) Cascades

Mitogen-activated protein kinase (MAPK) cascades [8,9] are signalling pathways
which share a particular common structure consisting usually of three levels,
where the signal is transmitted from one level to another through the phospho-
rylation of a kinase. Once activated this phosphorylates the kinase at the next
level down the cascade (Fig. 8, left). The MAPK protein that triggers the cell
response usually needs to be activated through a two-site phosphorylation. The
catalyst for this reaction is a MAPKK (MAPK kinase) molecule and, at the
upper level, the same role belongs to a MAPKKK (MAPKK kinase) molecule.
The last molecule in this model is the MKP (MAP kinase phosphatase) which
dephosphorylates, and so deactivates, the MAPK molecule.

We consider a single level of the MAPK cascade with only one MAPK kinase
and without making any distinction between MAPK phosphorylated on tyrosine
or theronine. The model consists of a two step double phosphorylation (Fig. 8 on
the right). When speaking about this level of the MAPK cascade, we use M , Mp
and Mpp as the unphosphorylated, monophosphorylated and biphosphorylated
forms of MAPK.

The model of MAPK which we use in this section has been presented in [8]
as a system of ODEs which describe the evolution of the concentration of M ,
Mp and Mpp in time. The rate at which these concentrations change is obtained
using assumptions from the Michaelis-Menten kinetics. We use the same set of
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Fig. 8. On the left: structure of a MAPK cascade. At each level, the enzyme that
catalyzes the reaction in the next level is activated by a two-site phosphorylation. On
the right: model of a level of the MAPK cascade.

equations, but with number of molecules instead of concentrations. This proce-
dure is correct if we assume that the product of the cell volume and the Avogadro
number is equal to 1.

The system in Fig. 8 (on the right) is defined by the following enzymatic reac-
tions. Notice how, in the first two lines, phosphorylation and product dissociation
are considered a single step, while, in the last two lines, dephosphorylation and
product release are two distinct steps.

M + MAPKK
k1,k−1←→ M-MAPKK k2→ Mp + MAPKK

Mp + MAPKK
k3,k−3←→ Mp-MAPKK k4→ Mpp

Mpp + MKP3
h1,h−1←→ Mpp-MKP3 h2→ Mp-MKP3

h3,h−3←→ Mp + MKP3

Mp + MKP3
h4,h−4←→ Mp-MKP3 ∗ h5→ M-MKP3

h6,h−6←→ M + MKP3

This system can be reduced to only four reactions, under the assumptions of con-
stant number of ATP/ADP molecules and protein-protein complexes at steady-
state. These are the resulting reactions and rate equations.

M v1→ Mp v1 =
kcat
1 · MAPKK · M /Km1

(1 + M /Km1 + Mp/Km2)

Mp v1→ Mpp v2 =
kcat
2 · MAPKK · Mp/Km2

(1 + M /Km1 + Mp/Km2)

Mpp v3→ Mp v3 =
kcat
3 · MKP3 · Mpp/Km3

(1 + Mpp/Km3 + Mp/Km4 + M /Km5)

Mp v4→ M v4 =
kcat
4 · MKP3 · Mp/Km4

(1 + Mpp/Km3 + Mp/Km4 + M /Km5)

In these expressions MAPKK and MKP3 are the total amount of molecules
of the two enzymes and are considered constant through time. The nominal
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Fig. 9. Left, time evolution of the Mpp molecule of the MAPK model computed with
ODEs using the nominal parameter values described in the text. Centre, the initial
number of molecules of the phosphatase MKP3 is incremented by 5%. Right, 40 runs
of the SSA with the nominal parameter values show how the evolution of the system
may lead to two different stable systems.

values of the parameters and the relationship with the kinetics of the elementary
enzymatic reactions are given below.

kcat
1 = k2 = 0.01

kcat
2 = k4 = 15

kcat
3 = h2/(1 + h2/h3) = 0.084

kcat
4 = h5 · (1 + h5/h6 + h−3 · (h−4 + h5)/(h3 · h4))

−1 = 0.06

M0 = 200
Mp0 = 0
Mpp0 = 300
MAPKK 0 = 50
MKP3 0 = 100

Km1 = (k−1 + k2)/k1 = 50
Km2 = (k−3 + k4)/k3 = 500
Km3 = (h−1 + h2)/(h1 + h1 · h2/h3) = 22
Km4 = (h−4 + h5) · (h4 · (1 + h5/h6 + h−3 · (h−4 + h5)/(h3 · h4)))

−1 = 18
Km5 = (h6/h−6) = 78

The particularity of these parameter values is that they are close to a bifurcation
point. As can be seen in Fig. 9 (left and centre), a small perturbation of an
ODE parameter value can lead to a radical change in the behaviour of the
time evolution of the double phosphorylated MAPK (Mpp). As with the Schlögl
model a set of runs of the SSA shows that the real behaviour of the system
with the nominal parameters is a choice between two stable systems. Moreover,
thanks to [8], we know that this system with the stated parameters presents three
steady-states which we can consider to be three attractors for the stochastic
simulations. This situation is confirmed by the graph of the time evolution of
Mpp in Fig. 9 (right). Although the choice appears to be between two attractors,
it is delayed in those runs which are influenced by a central attractor.

4.1 Sensitivity Analysis

In this section we apply both classical SA and the techniques which we developed
earlier to the presented MAPK model. We will proceed with a comparison of
the methods throughout the analysis. Our choice is to measure the influence of
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Fig. 10. LOAT sensitivity analysis of the MAPK model at time 2000 seconds. The
result of classical analysis is on the left and the result of the analysis based on histogram
distance is on the right. ODE time evolution is computed with fractional step size of
0.0001, while we used 10000 stochastic simulations and 50 histogram columns in the
SSA runs. The perturbation of each parameter has been by 5%. The histogram self
distance is 0.1.

the factors, kinetics and initial number of molecules, on the amount of double
phosphorylated MAPK (Mpp). To do so, we choose the time of the analysis to
be 2000 seconds. This time, as revealed in Fig. 9, is at the core of the choice
between the two possible behaviours of the system and is within the limits of
our possibilities in terms of computational power when using the SSA.

Local one-at-a-time Analysis. As a first step in the sensitivity analysis of
the MAPK model, we performed a LOAT analysis. As we have seen, this consists
of the perturbation of one of the factors at a time and in the measurement of
the corresponding output change with respect to the original model. We used
two different measures: the simple difference of the values of Mpp at time 2000
seconds generated using ODE-based results; and the histogram distance between
the sets of values of Mpp at time 2000 seconds collected using stochastic simula-
tions. With this first and computationally inexpensive analysis, we can have an
idea of the relevance of the factors in the immediate surrounding of the factor
nominal values. However, we have to bear in mind that without a global analysis
we cannot be certain of the implications that may arise from perturbing more
than one factor simultaneously. This last point cannot be neglected when trying
to assert the influence of a factor on the model.

The results of the local one-at-a-time analysis are shown in Fig. 10. The
thirteen factors are listed in the graphs from the most relevant to the least. We
can notice that the relative order of importance is not particularly affected by
the method used for the analysis. However, with the deterministic approach it
appears that just the amount of phosphatase MKP3 is the most relevant factor,
while with the stochastic approach, the intuition is that both the amount of
kinase MAPKK and phosphatase MKP3 are the most relevant factors, above all
the others.

This last statement can be defended, at least in this local analysis, through
reference to the histograms generated using the results of the stochastic simu-
lations of the perturbed models. Fig. 11 highlights that the initial amount of
MAPKK and MKP3 are both the most influential factors. Moreover, they play
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Fig. 11. Histograms which collect the values of Mpp obtained using 10000 stochastic
simulations. Each histogram is divided into 50 columns. Left, all the histograms result-
ing from the one-at-a-time (OAT) analysis, one for each factor perturbed. Right, a
second OAT analysis with only the histograms relative to the perturbations of the ini-
tial amount of MAPKK and MKP3. The histograms labelled with nominal parameters
are those generated with the values of the parameters stated in the text.

the strongest role in the choice between the two possible stable systems. They
have opposite roles, since increasing the amount of one of the two enzymes leads
to opposite choices. It is indeed not surprising that the condition of bi-stability
is guided by the right proportion in the amount of enzymes that catalyze the
reactions.

Screening with Morris’ Methods. Before we proceed to a more detailed
analysis, we wish to use a screening method to identify and then exclude those
factors that are clearly the least influential. Once we have isolated only a small
part of most influential factors, we can proceed with the computationally expen-
sive techniques which can provide the most detailed analysis. To do so, we use
the techniques we developed earlier based on Morris’ method. As we have seen,
we consider a range of possible values for each factor and then we sample in the
vector space generated by all the possible combinations of values of all the fac-
tors. This sampling is done randomly and through the use of a grid. We use here
a grid level of five, meaning that each of the thirteen parameters can assume
one of five possible values. For each random point selected in the grid of all
the possible combinations of values, a LOAT analysis is performed. The indices
resulting from that are the elementary effects which are local with respect to
that random point. Averaging over all these local analyses reveals whether the
degree of importance of a parameter is constant or changes when the other fac-
tors assume other values. The results of Morris’ method applied to the MAPK
model are shown in Fig. 12.

Also in this case we compare the results obtained with the deterministic
method which uses the time evolution computed with ODE and the stochas-
tic method which uses time evolution computed with SSA. The ODE-based
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Fig. 12. The result of Morris’ method applied to the MAPK model. ODE integration
uses a fractional step size of 0.0001. Result obtained with a grid level of 5 and an average
over 1000 random points. In the approach based on histogram distance, 1000 runs of
SSA, 50 columns and 40 random points have been used and the average histogram
distance is 0.15 with standard deviation of 0.061. The parameters vary within ± 10%
of their nominal value.

approach highlights that, although the most influential parameters are confirmed
to be the initial amount of MAPKK and MKP3, the elementary effects of the
factors are extremely variable. In this case it is difficult to say which factors we
want to include in the detailed global analysis, if we exclude MAPKK and MKP3.
The important standard deviation of the elementary effects is certainly due to a
correlation between the factors and the non-linearity of the model output with
respect to the parameters.

Before discussing the results obtained with Morris’ method based on his-
togram distance, we need to point out that we were forced to limit the accuracy
of the analysis, due to the demanding asymptotic complexity of the algorithms
and the computational power available to us. Each experiment is made of 1000
stochastic simulations, number which leads to a relatively high histogram self
distance of 0.150, and a standard deviation of 0.061. However, we have already
seen in the LOAT analysis that the self distance can be considerable even with
the greater precision of 10000 stochastic simulations (self distance of 0.1, see
Fig. 10). Therefore, it appears that the point in time where we perform our
analysis is particularly unstable, with high stochasticity and indecision from the
single runs about which stable system to choose. We can then assume that we
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have two factors that limit the accuracy of our results: a limited number of
stochastic simulations and a strong stochasticity already present in the model.

The results of Morris’ method based on histogram distance, shown in Fig. 12,
confirm the strongly non-linear dependence in the model and the inconstant
influence of the parameters on the amount of double phosphorylated MAPK at
time 2000 seconds. On a more positive note, this method appears to achieve
a more precise information than the ODE-based analysis. First of all, many
parameters have reduced the standard deviation of their elementary effect. We
can therefore be more confident when stating that some factors are less influential
than others. Moreover, the strong influence which is attributed to the initial
amount of the enzymes MAPKK and MKP3 is more clearly evident. Finally,
this second analysis assigns a different role to the factors Mpp0 and M0. Here,
they appear to have a stronger average sensitivity, though this sensitivity may
vary considerably (large standard deviation), showing a strong dependence on
the value of the other parameters.

Global Analysis with Variance Decomposition. Thanks to the screening
which we applied in the previous section, we can now apply a global and more
informative method to a reduced set of parameters taken from the factors of the
MAPK model. The factors that proved to be the most influential are the initial
number of molecules of MAPKK and MKP3, so we investigate their influence
as single parameters and their combined effect. For this purpose we used the
techniques developed in Section 3.4. Again, a method based on differences of
outputs of ODEs and one based on histogram distances of executions of SSA are
compared. These measures consider the variance of the output: while the former
focuses on the variance of the ODE output, the latter estimates the variance in
the distribution approximated by histograms. In both cases, the quantity of the
variance that is due to each parameter is identified (Table 2).

In both the approaches, the initial amount of MAPKK and MKP3 present
the same level of importance, with the former that is slightly more influential.
The difference lies in the importance that is given to the combined effect of the
two factors. While with the first approach the combined effect is considerably
less than the single effects, with the second approach it appears that the two

Table 2. First and second order sensitivity indices relative to the factors MAPKK0

(1) and MKP30 (2) of the MAPK model and their combined effect (12), obtained
computing the variance of the conditional expectation. The fractional step size used in
the ODE integration is 0.0001, the number of stochastic simulations used is 5000 and
the number of histogram columns is 50. The parameters vary within ± 10% of their
nominal value.

Variance-based with ODEs Variance-based with histogram distance

index sensitivity rank sensitivity rank

S1 15695.65 1 0.350 2
S2 15308.66 2 0.332 3
S12 5631.88 3 0.811 1
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Fig. 13. Distribution of the values of Mpp from 2000 stochastic simulations at time
2000 seconds, with simultaneous perturbation of MAPKK and MKP3. Above, from left
to right: number of molecules of the enzymes decreased by 20%, 10% and with their
nominal value. Below, from left to right: number of molecules of the enzymes increased
by 10%, 20% and 30%.

Fig. 14. Time evolution of the double phosphorylated MAPK (Mpp) with ODE for
2000 seconds, with simultaneous perturbation of MAPKK and MKP3. Above, from left
to right: number of molecules of the enzymes decreased by 20%, 10% and with their
nominal value. Below, from left to right: number of molecules of the enzymes increased
by 10%, 20% and 30%.
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parameters are more linked. Changing them together leads to a stronger influence
with respect to a one-at-a-time change.

The visualisations in Fig. 13 help to prove the connection and reciprocal influ-
ence of the factors of this model. In this figure one can see that the combined
perturbation of MAPKK and MKP3 leads to a variation of the distribution of
the set of values obtained with the stochastic simulations. Although the mean
of these values appears to be the same, the distributions seem to pass from a
compact and largely Gaussian shaped (on the left) to a more irregular one, which
begins to show the two peaks of the bi-stability. This observations can be inter-
preted as the simple fact that increasing the amount of enzymes accelerates the
process, allowing the two stable choices to be reached sooner. Other interesting
visualisations are those in Fig. 14, where we can observe that the ODE integra-
tion fails to interpret the high stochasticity and indecision present in the system
at time 2000 seconds. However, also in this case, incrementing or decreasing the
quantity of enzymes accelerates or slows the production of MAPK-PP (Mpp).

5 Conclusions

In this paper we have shown an example of how sensitivity analysis of a model of
biochemical reactions can be performed using both deterministic and stochastic
approaches. As a first result, we have shown how global analysis such as Morris’
method first and the variance decomposition after, are necessary and must be
used to identify the relationship between the factors. For example, if we had
to rely only on a local analysis, we would just accept the order of importance
given in Fig. 10. However, thanks to the further application of a global screening
method (Fig. 12), we have been able to state that this order of importance may
vary if we change the value of more than a single factor at once. This suggested,
if not actually demanded, a further and more informative analysis concerning
those factors that seemed the most influential and dependent on the others. In
this case, we showed the intuitive relationship between the enzymes MAPKK
and MKP3, whose simultaneous increment accelerates the system and whose
proportions play the main role in the bi-stability of the system.

As a second but not less important result, the comparison between deter-
ministic and stochastic approaches to sensitivity analyis highlighted how, when
dealing with bistable systems near a bifurcation point, it becomes necessary to
have a sensitivity analysis tool that takes into account the distribution behind
a set of stochastic simulations. Although the analytical analysis of the ODEs is
fundamental to identify the bifurcation points and the multiple steady-states,
ODE integrations cannot model the uncertainty in the time evolution of the
system close to those bifurcation points. In this situation of high stochasticity,
a more suitable sensitivity analysis is one that takes into account the variations
between sets of stochastic simulations rather than the simple output of a ODE
integration. Here, for example, we have seen how a modified version of Morris’
method, identified some properties that the deterministic method was not able
to capture.
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Abstract. Pathway Logic (PL) is an approach to modeling and analysis of bio-
logical processes based on rewriting logic. This tutorial describes the use of PL
to model signal transduction processes. It begins with a general discussion of
Symbolic Systems Biology, followed by some background on rewriting logic and
signal transduction. The representation and analysis of a small model Ras and
Raf activation is presented in some detail. This is followed by discussion of a
curated model of early signaling events in response to Epidermal Growth Factor
stimulation.

Keywords: Symbolic systems biology, rewriting logic, signal transduction, Path-
way Logic, Epidermal Growth Factor signaling.

1 Symbolic Modeling of Cellular Processes

Biological processes are complex. They exhibit dynamics with a huge range of time
scales: microseconds to years. The spatial scales cover 12 orders of magnitude: metabo-
lite to single protein to cell to organ to whole organism. Just considering the cellular
level, cells interact with their environemt, both sensing and affecting. They have many
behaviors: they can grow, proliferate, migrate, differentiate, or die. Underlying these
behaviors are a variety of processes such as gene regulation, signal transduction, and
metabolism that interact with one another in complex ways. Genes are regulated by pro-
teins (and other molecular entities) binding to promoter regions. This determines which
genes are expressed (turned on) and thus which new proteins are produced. These pro-
teins may in turn regulate the same or other genes. A cell senses its environment by
receptors in the membrane that recognize specific types of molecule or condition. This
results in signal transduction that transmits the information to appropriate components
inside the cell. Mechansims underlying the flow of information include modification of
protein state, formation of complexes, and change of location. The flow is controlled
by mechanisms that activate or inactivate proteins in the signaling path. Metabolism
involves both synthesis and degradation of chemicals to generate energy, synthesize
protein building blocks (amino acids), and cell structure components amongst other
things. Metabolic processes are controlled by enzymes which may in turn be activated
or inhibited by signaling processes. Furthermore, metabolites such as glucose play role
in controling signal flow.
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Oceans of experimental biological data are being generated, from both traditional
and emerging high throughput techniques. How can we use this data to develop better
models? Important intuitions are captured in mental models that biologists build of
biological processes and the cartoons they draw. The trouble is that these models are not
amenable to computational analysis. High level statistical models can be developed, for
example to discover possible correlations and causal relations, such models may suggest
useful insights, but have many limitations such as features that can not be modeled.
Low level, detailed kinetic or stochastic models can be developed for small subsystems,
but often requires parameter fitting, so that the reaction rates used reflect unknown
biological context.

Symbolic systems biology is the qualitative and quantitative study of biological pro-
cesses as integrated systems rather than as isolated parts. Our focus is on modeling
causal networks of biomolecular interactions in a logical framework at multiple scales.
The aim is to develop formal models that are as close as possible to domain experts
(biologists) mental models. Furthermore, it is important to be able to compute with
and analyze these complex networks. The latter includes techniques for abstracting and
refining the logical models; using simulation and deduction to compute or check postu-
lated properties; and make testable predictions about possible outcomes, using experi-
mental results to update the models.

There are many challenges in developing symbolic systems models. One challenge is
choosing the right abstractions. Biological networks (metabolic, protein, or regulatory,
for example) are large and diverse. It is important to balance computational complex-
ity against model fidelity and to be able to move between models of different levels
of detail, using different formalisms in meaningful ways. Biological networks combine
to produce high levels of physiological organization, for example, circadian clock sub-
networks are integrated with metabolic, survival, and growth subnetworks. A second
challenge is to be able to compose different views or models of different components
into integrated system models.

Symbolic/logical models allow one to represent partial information and to model and
analyze systems at multiple levels of detail, depending on information available and
questions to be studied. Such models are based on formalisms that provide language for
representing system states and mechanisms of change such as reactions, well-defined
semantics for these languages, and tools for analysis based on the underlying seman-
tics. Of particular interest are symbolic models that are executable, that is the model
describes system states and provides rules specifying the ways in which the state may
change. Such models can be used for simulation of system behavior. In addition proper-
ties of processes can be stated in associated logical languages and checked using tools
for formal analysis.

Given an executable model such as that described above, the path graph of a given
initial state is a graph whose nodes are the reachable states and whose edges are the rules
connecting them. Paths through the graph then correspond to possible ways a system
can evolve. An execution strategy picks out a particular path among those possible.
For such a model, there are many kinds of analysis that can be carried out, including:
static analysis, forward simulation, forward search, backward search, model checking,
constraint solving, and meta analysis.
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Static analysis allows one to examine the structure of the model and to understand
how the elements are related and organized (the sort structure). It can be used to infer
flow of control and dependencies. Static analysis also provides a means to check for
inconsistencies or ill-formed declarations and to look for missing information.

Forward simulation runs the model from a given initial state using a specified strat-
egy either for a fixed number of steps, or until no more rewrites apply. This is extremely
fast, and very useful for initial exploration.

Forward search is a breadth-first search of all paths through the transition graph for a
given initial state. It will find ALL possible outcomes from a given initial state. Search
can also be constrained to find a possibly limited number of states satisfying a given
property.

Backward search runs the model backwards. For models satisfying certain con-
straints, backwards search can answer the question: “From what initial states can we
get to this state?”. For example it can be used to find all possible precursors to a partic-
ular checkpoint.

Model checking expands the collection of properties that can be investigated. Search
concerns only properties of individual states. Model-checking tools are based on al-
gorithms to determine if all computations of a system (pathways / sequences of steps)
satisfy a given property. For example we can ask if molecule X is never produced be-
fore molecule Y has been produced. If not, a pathway that fails to satisfy the property
(molecule Y is produced and molecule X is produced before it) is returned. Turning
this around, to find a pathway satisfying a property of particular interest, one asserts
that no such pathway exists and a counterexample will be one of the desired pathways.
An example of another kind of property that can be model checked is: “If we reach a
state that satisfies P then do we always later reach a state satisfying Q?”

Constraint solving attempts to find values for a set of variables that satisfy a given
set of constraints. Maximal satisfiability (MaxSat) problems are a generalization of
constraint satisfaction problems where there may be conflicting constraints, and hence
no assignment of values to variables that will satisfy them all. Weights (importance
measures) are assigned to constraints and a MaxSat solver finds a solution maximiz-
ing the total weight of the satisfied constraints. Many static analysis problems can be
formulate as constraint systems. Steady state analyses such as determining possible
flows of information or chemicals through a system can be formulated as constraint
problems.

Meta analysis allows us to reason about the models themselves. Essential features
of models can be abstracted to form families of related models, allowing us to work
with uncertainty about reactions. Starting with a base set of known reactions, differ-
ent instantiations of sets of reactions can be explored. For example, we can search for
models where a given path property is true in a given initial state. In addition, rules
themselves can be abstracted into families of rules, each family corresponding, for ex-
ample, to a particular type of reaction, such as activation, inhibition, or translocation.
It also allows the knowledge base to be queried as data base, for example finding all
rules that involve a given protein (in any or a specified state or location). Finally, using
mappings of logics a model can be mapped to another formalism to take advantage of
additional tools.
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2 A Sampling of Symbolic Modeling Approaches

A variety of formalisms initially developed to model and analyze concurrent computer
systems have been used to develop symbolic models of biological systems, including:
Petri nets [38,48]; the pi-calculus [34,35] and its stochastic variants [41]; membrane
calculi [43,36,28]; statecharts [20,10], life sequence charts [24]; rule-based systems
including Rewriting Logic [33,7] and P-systems [37]; and hybrid systems [21]. For a
recent review of ‘executable specification approaches’ see [15]. A series of abstract
machines each suited to modeling biological process associated to a different class of
macromolecules is presented in [4] giving an nice introduction to the concepts to be
modeled.

There are many variants of the Petri net formalism and a variety of languages and
tools for specification and analysis of systems using Petri nets. Petri nets model net-
works of reactions that describe processes as well as process execution. Petri nets have
a graphical representation that corresponds naturally to conventional representations of
biochemical networks. They have been used to model metabolic pathways and simple
genetic networks (e.g., see [22,42,19,26,32,16]). In [29] timed Petri nets are used to
model cellular signaling. These studies have been largely concerned with dynamic or
kinetic models of biochemistry. In [55] a more abstract and qualitative view is taken,
mapping biochemical concepts such as stoichiometry, flux modes, and conservation
relations to well-known Petri net theory concepts. Overviews of different Petri net for-
malisms and their application to modeling biological processes can be found in [18,6].

In contrast to Petri nets in which system state is explicit and processes emerge from
rules/transistions that change the state, process calculi model molecular components as
as processes. State is implicit in the interactions that processes may participate in. A pi-
calculus model for the receptor tyrosine kinase/mitogen-activated protein kinase (RTK/-
MAPK) signal transduction pathway is presented in [44]. BioSPI, a tool implementing
a stochastic variant of the pi-calculus, has been used to simulate both the time course
and probability of biochemical reactions [41].

BioAmbients [43], an adaptation of the Ambients formalism for mobile computa-
tions has been developed to model dynamics of biological compartments. BioAmbient
type models can be simulated using an extension of the BioSPI tool. A technique for
analysis of control and information flow in programs has been applied to analysis of
BioAmbient models [36]. This can be used, for example, to show that according to the
model a given protein could never appear in a given compartment, or a given complex
could never form.

Statecharts naturally express compartmentalization and hierarchical processes as
well as flow of control among subprocesses. They have been used to model T-cell ac-
tivation [23,10]. Life Sequence Charts [8] are an extension of the Message Sequence
Charts modeling notation for system design. This approach has been used to model the
process of cell fate acquisition during C.elegans vulval development [24].

Like Petri nets, rule-based formalisms model the state of molecular components di-
rectly, and state change is specified by rules. Pathway Logic [11,12,49,51] represents
biological processes using theories in rewriting logic. System state is represented as an
algebraic term, and behavior is specified by rewrite rules. Models can be directlly anal-
ysed by execution, search, and model-checking, or by mapping to other formalisms,
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such as Petri Nets. The remainder of this paper gives more detail about Pathway Logic.
P-systems is a multiset rewriting formalism that provides a built in notion of location.
A continuous variant of P-systems is used in [40] to model intra-cellular signaling. The
model can be used to predict concentration of components, for example phosphorylated
Erk, over time by a discrete step approximation method. A simple formalism for repre-
senting interaction networks using an algebraic rule-based approach very similar to the
Pathway Logic approach is presented in [14,5]. The language has three interpretations:
a qualitative binary interpretation much like the Pathway Logic models; a quantitative
interpretation in which concentrations and reaction rates are used; and a stochastic in-
terpretation. Queries are expressed in a formal logic called Computation Tree Logic
(CTL) and its extensions to model time and quantities. CTL queries can express reach-
ability (find pathways having desired properties), stability, and periodicity. Techniques
for learning new rules to achieve a desired system specification are described in [3].

Hybrid systems techniques are important for modeling processes where one wants
to capture both continuous and discrete aspects. Models of glucose/insulin metabolism
and B. subtilis sporulation are described in [30]. Hybrid system abstraction methods
(see [53]) are used to analyze the model, for example to develop parameters for insulin
control in diabetic patients. In [17] hybrid system models of the delta-notch system in
Drysophila are studied using control theory and hybrid abstraction methods.

Symbolic executable models can be mapped to alternative logical formalisms for
analysis. As will be discussed later, certain rewriting logic models can be mapped to
Petri Nets for analysis by special purpose, efficient model checkers. In [2] a continu-
ous stochastic logic and the probabilistic symbolic model checker, PRISM, is used to
express and check a variety of temporal queries for both transient behaviors and steady
state behaviors. Proteins modeled as synchronous concurrent processes, and concentra-
tions are modeled by discrete, abstract quantities. Metabolic or signaling networks can
be analyzed using a constraint-based technique that generalizes the well-known flux
balance analysis [9] by representing the network as constraints on the reactions, rather
than on the reacting components. In [54] this technique is used to compute preferred
steady states under different conditions, also represented as constraints. Apart from un-
derstanding the steady-state configurations, constraint-based analysis can also be used
to identify modules in the network, trace the flow of information in the network, and
identify cross talk and conflicts.

3 Pathway Logic Overview

Pathway Logic [11,12,49,52,50,51] is a symbolic systems biology approach to the mod-
eling and analysis of molecular and cellular processes based on rewriting logic [33].
Such formal theories can include both specific facts and general principles relating and
categorizing data elements and processes. New data structures for representing biologi-
cal entities and their relations and properties can easily be defined. Theories concerning
different types of information can also be combined using well-understood operations
for combining logical theories. A wide range of analytical tools developed for the analy-
sis of computer system specifications is being adapted to carry out new kinds of analysis
of experimental data curated into formal theories.
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In PL, biological molecules, their states, locations, and their roles in molecular or
cellular processes can be modeled at very different levels of abstraction. For example, a
complex signaling protein can be modeled either according to an overall state, its post-
tranlational modifications, or as a collection of protein functional domains and their
internal or external interactions. Similarly biological processes can be represented at
different levels of granularity using rewrite rules. Each rule represents a step (at the cho-
sen level of granularity) in a biological process such as metabolism or intra/intercellular
signaling. A rule may represent a family of reactions using variables to stand for fam-
ilies of molecular components. Rules express dependencies on biological context; for
example, a scaffold needed to hold proteins in position to interact productively.

A collection of rules together with the underlying data type specifications forms a
PL knowledge base. Each biological molecule that is declared in a PL rewrite theory
has associated metadata linking it to standard database entries, for example HUGO or
SwissProt for proteins, along with other information such as category and synonyms.
This information is part of the knowledge base. It is important to place the knowledge
in a broader context and to be able to integrate it with other knowledge sources. Each
rule has associated evidence used to justify the rule, which is also part of the knowledge
base.

A PL model is a specification of an initial state (cell components and locations) in-
terpreted in the context of a knowledge base. Such models are executable and can be
understood as specifying possible ways a sytem can evolve. Logical inference and anal-
ysis techniques are used for simulation to study possible ways a system could evolve,
to assemble pathways as answers to queries, and to reason about dynamic assembly of
complexes, cascading transmission of signals, feedback-loops, cross talk between sub-
systems, and larger pathways. Logical and computational reflection are used to trans-
form and further analyze models.

Pathways are not predefined. Instead they are assembled by applying the rules start-
ing from an initial state, searching for a state meeting given conditions. For example, a
pathway leading to specific conditions, such as activation of a Ras protein can be gen-
erated as the result of a logical query. A subnet (subset of reactions) composed of all
possible relevant pathways can also be generated. A subnet consisting of connections to
a given set of molecular components can be generated by graph exploration techniques.

PL knowledge is represented and analyzed using Maude [7], a rewriting-logic-based
formalism. The Pathway Logic Assistant (PLA) [52] provides an interactive visual rep-
resentation of PL models. In PLA, models are represented as graphs with nodes for
rules and components, and edges connecting reactant components to rules and rules
to product components (formally these graphs are Petri Nets). These models can be
queried and in silico experiments can be performed to study the effects of perturbations
on these networks. Using PLA a biologist can:

– ask for a list of dishes available for study, and modify or create dishes;
– display the network of signaling reactions for a specified model;
– formulate and submit queries to find pathways, for example, activating one protein

without activating a second protein, or exhibiting a phenotype signature such as
apoptosis;

– compare two pathways;
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– find knockouts—proteins whose omission prevents reaching a specified state;
– incrementally explore network connections to given rules or components;
– visualize gene expression data in the context of a network (by coloring the coded

proteins according to expression level)

PLA, sample models, tutorial material, papers and presentations are available from
the Pathway Logic web site, http://pl.csl.sri.com/.

4 Introduction to Formal Executable Specification and Maude

As mentioned in Section 3, Pathway Logic models of biological processes are devel-
oped using the Maude system, a formal language and tool set based on rewriting logic.
Rewriting logic [33] is a logical formalism that is based on two simple ideas: states
of a system are represented as elements of an algebraic data type, and the behavior
of a system is given by local transitions between states described by rewrite rules. By
algebraic data type, we mean a set whose elements are constructed from atomic ele-
ments by application of constructors. We represent data elements by terms, where a
term can be a variable, a constant, or application of a constructor to a list of terms. For
example the natural numbers are constructed from 0 by application of the successor
function s(0), s(s(0)) . . .. Functions on data types are defined by equations that allow
you to compute the result of applying the function. For example + can be defined by
two equations: n + 0 = n and n + s(m) = s(n + m), where n and m are variables
standing for arbitrary numbers. One data type might be a subtype (subset) of another.
For example the non-zero numbers are a subset of all numbers. Elements of one data
type might consist of lists or multisets of elements from another type. For example a
system might be represented by a set of pairs such as {(A,2) (B,5) (C,0)}.

A rewrite rule has the form t ⇒ t′ if c where t and t′ are patterns (terms possibily
containing place holder variables) and c is a condition (a boolean term). Such a rule
applies to a system in state s if t can be matched to a part of s by supplying the right
values for the place holders, and if the condition c holds when supplied with those
values. In this case the rule can be applied by replacing the part of s matching t by
t′ using the matching values for the place holders in t′. The process of application of
rewrite rules generates computations (also thought of as deductions). In the case of
biological processes these computations correspond to pathways.

Maude is a language and tool based on rewriting logic tt〈http://maude.cs.
ttuiuc.edu〉. Maude provides a high performance rewriting engine featuring match-
ing modulo associativity, commutativity, and identity axioms; and search and model-
checking capabilities. Thus, given a specification S of a concurrent system, one can
execute S to find one possible behavior; use search to see if a state meeting a given
condition can be reached; or model-check S to see if a temporal property is satisfied,
and if not to see a computation that is a counter example.

In the following we use a simple example to introduce Maude notation and give
some intuition about how to represent and analyze the structure and behavior of con-
current systems using Maude. We call the example Magic Marbles. In the world of
magic mables, a marble can be plain or have some magical potential. Activator marbles

http://pl.csl.sri.com/
<http://maude.cs.
<http://maude.cs.uiuc.edu>
uiuc.edu>
<http://maude.cs.uiuc.edu>
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can give positive or negative potential to plain marbles. If a marble with negative po-
tential contacts a marble with positive potential the potential is cancelled and they both
become plain. A marbles world consists of a collection (formally a multiset) of marbles
interacting according to the laws described above.

We formalize the marbles world in Maude by defining three modules: data types rep-
resenting marbles are specified in MAGIC-MARBLES-DATA, MAGIC-MARBLES-STATE
specifies marbles world states as multisets of marbles, and MAGIC-MARBLES-RULES

specifies the rules governing magic marble behavior.
A Maude module begins with the keyword fmod (a functional module, specifying

one or more data types) or mod (a system module, with rules specifying system behav-
ior), followed by the module name, and ends with a corresponding keyword endfm, or
endm, respectively.

The module MAGIC-MARBLES-DATA begins by declaring a sort Marble, the data
type consisting of all marbles, and a subsort (think subset or subtype) PlainMarble,
plain marbles. This is followed by an ops declaration naming several specific plain
marbles, for example a red marble redM. Next a sort MagicMarble of marbles with
magical potential is declared. It is also a subsort of Marble. Magic potential is repre-
sented abstractly by a sort Potential. Four different potentials are defined (the second
ops declaration):

– +, - represent postive and negative potentials
– *, @ represent the potenial of an activator marble to generate a postive or negative

potential respectively.

A marble with potential p is constructed by annotating a plain marble m with p, written
[m | p]. The _s in the declaration beginning op ‘[_|_‘] are place holders for the
two arguments, the first of sort PlainMarble, the second of sort Potential.

fmod MAGIC-MARBLES-DATA is
sort Marble .
sort PlainMarble . subsort PlainMarble < Marble .
ops redM blueM greenM purpleM whiteM blackM

: -> PlainMarble [ctor] .

sort MagicMarble . subsort MagicMarble < Marble .

sort Potential .
ops + - * @ : -> Potential [ctor] .
op ‘[_|_‘] : PlainMarble Potential -> MagicMarble [ctor] .

endfm

As examples, we have

– [whiteM | *] a white marble with positive activator potential
– [whiteM | @] a white marble with negative activator potential
– [greenM | +] a green marble with positive potential

The module MAGIC-MARBLES-STATE extends MAGIC-MARBLES-DATA (using the
inclusion statement beginning inc) specifying a sort Mix of multisets of marbles.



Pathway Logic 29

(A multiset or bag is a collection of elements where the number of occurrences of an
given element matters, but the order does not.) The constant none is empty multiset,
and multiset union is declared as a binary operator with empty syntax (_ _, that is appli-
cation of the operator is juxtaposition of the two arguments, much like forming strings
by juxtaposing characters). The operator is declared to be associative and commutative
with identity none.

fmod MAGIC-MARBLES-STATE is
inc MAGIC-MARBLES-DATA .

sort Mix .
subsort Marble < Mix .
op none : -> Mix [ctor] .
op _ _ : Mix Mix -> Mix [assoc comm id: none] .
endfm

Thus redM blueM [whiteM | *] is a mix of three marbles, two plain and one with
positive activating potential.

The module MAGIC-MARBLES-RULES specifies how marbles interact using three
rules. A rule begins with the key word rl followed by the rule label enclosed in []s.
The lefthand side (premiss) and righthand side (conclusion) of a rule are separated by
the => sign. The rules labeled plus and minus formalize the informal statements “Ac-
tivator marbles can give positive or negative potential to plain marbles”, “a marble with
the * potential is a positive activator”, and “a marble with the @ potential is a negative
activator.” The rule labeled cancel formalizes the statement “when a marble with neg-
ative potential contacts a marble with positive potential the potential is cancelled and
they both become plain”.

mod MAGIC-MARBLES-RULES is
inc MAGIC-MARBLES-STATE .
vars pm0 pm1 : PlainMarble .
rl[plus]: pm0 [ pm1 | *] => [ pm0 | + ] [ pm1 | @ ] .
rl[minus]: pm0 [ pm1 | @] => [ pm0 | - ] [ pm1 | * ] .
rl[cancel]: [pm0 | +] [ pm1 | -] => pm0 pm1 .

endm

Note that an activator switches parity when it activates. The variables pm0, pm1 stand
for arbitrary plain marbles.

Now we have an executable formal specification of magical marbles. What can we
do with it? The simplest thing to do is to pick a starting state and use the rewrite and
continue commands to watch it run. The command rew [1] t . rewrites the term
t one step. The command cont 1 . continues rewriting one more step. Suppose we
have an initial state [whiteM | *] redM blueMwith two plain marbles and a postive
activator. The rule plus applies to the subterm [whiteM | *] redM matching pm0

to redM and pm1 to whiteM (since the order of multiset elements doesn’t matter), and
replacing the matched subterm by the corresponding instance of the rules righthand
side, [redM | +] [whiteM | @].

Maude> rew [1] [whiteM | *] redM blueM .
result Mix: blueM [redM | +] [whiteM | @]
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Rewriting can be continued by rewriting with the minus rule and then by the cancel
rule.

Maude> cont 1 .
result Mix: [redM | +] [blueM | -] [whiteM | *] *** by [minus]
Maude> cont 1 .
result Mix: redM blueM [whiteM | *] *** by[cancel]

This computation could be continued as many steps as you like. There are many other
possible computations starting from our initial state, each making different choices of
which plain marble to use in the plus step.

The command search [n] istate =>+ pattern searches the states reachable
from istate for states matching pattern, stopping when it has found n solutions, or it
runs out of states. It starts by finding all states that result from application of one rewrite
rule, the finding all states that result from application of one rewrite rule to each of these
states, and so on. Using the search command we can ask whether it is possible to make
the red and blue marbles simultaneously positive, starting from the our initial state.

Maude> search [1] [whiteM | *] redM blueM
=>+ M:Mix [redM | + ] [blueM | + ] .

Maude> no Solution .

The answer is no. If we add another positive activator then getting two positive marbles
is easy.

We can make the structure of magic marble states a little more interesting by in-
troducing boxes that can contain marbles, or other boxes, and such that under certain
conditions a marble can enter or leave a box. Specifically, only plain marbles can enter
or leave a box. For a marble to enter a box, the box must contain a negative activator,
while for a marble to leave a box, there must be a postive activator outside the box.

The module BOXED-MARBLES-DATA extends MAGIC-MARBLES-STATE with new
sorts BoxId (box identifier) and Box. The subsort declaration Box < Mix says that
boxes can appear in mixes. A box has an identifer and contains a mix. For example
{B0 | redM blueM} is a box with identifier B0 and contents redM blueM. For con-
venience we define a constant bMix to be a box with identifier B0 that contains a white
positive activator marble, and two nested boxes.

fmod BOXED-MARBLES-DATA is
inc MAGIC-MARBLES-STATE .
sorts Box BoxId .
subsort Box < Mix .
ops B0 B1 B2 : -> BoxId .
op ‘{_|_‘} : BoxId Mix -> Box [ctor] .

**** sample box mix
op bMix : -> Mix .
eq bMix = { B0 | [whiteM | *]

{B1 | redM blueM [blackM | @]}
{B2 | greenM purpleM [blackM | @]}} .

endfm
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The module BOXED-MARBLES-RULES gives the rules for moving marbles in and out of
boxes.

mod BOXED-MARBLES-RULES is
inc BOXED-MARBLES-DATA .
inc MAGIC-MARBLES-RULES .

vars pm0 pm1 : PlainMarble .
var mx : Mix .
var bid : BoxId .

rl[in]:
{ bid | mx [ pm0 | @] } pm1 => { bid | mx [ pm0 | @] pm1 } .
rl[out]:
{ bid | mx pm1 } [ pm0 | *] => { bid | mx } [ pm0 | *] pm1 .

endm

To reason about location of marbles we define a predicate inBox which, given a mix
and a box identifer, checks whether a box with that identifier contains a target mix. It
selects a box in the outer mix. If the box has the given identifier it checks whether the
box contains the target mix, otherwise it looks for nested boxes and in the rest of the
outer mix.

op inBox : Mix BoxId Mix -> Bool .
var mx mx0 mx’ : Mix .
var bid bid’ : BoxId .
eq inBox({bid’ | mx} mx’, bid,mx0) =

(if bid == bid’ and contains(mx,mx0)
then true
else (if inBox(mx’,bid,mx0)

then true
else inBox(mx,bid,mx0)
fi) fi) .

eq inBox(mx,bid,mx0) = false [owise] .

The term contains(mx,mx0) evaluates to true if every element of mx0 is in mx. For ex-
ample inBox(bMix,B1,redM) = true and inBox(bMix,B0,whiteM) = false.
Suppose we want to know if, in bMix, the marbles in boxes B1 and B2 can change
places. This can be answered by searching, using the inBox predicate. There is only
one solution, shown below.

Maude> search [1] bMix =>+ M:Mix such that
inBox(M:Mix,B1,greenM purpleM) and inBox(M:Mix,B2,redM blueM).

Maude> Solution 1 (state 1387)
M:Mix --> {B0 | [whiteM | *]

{B1 | greenM purpleM [blackM | @]}
{B2 | redM blueM [blackM | @]}}

An alternative to search is to use model checking. A model checker checks proper-
ties of the possible computations starting from a given initial state. The properties are
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expressed in Linear Temporal Logic (LTL). The module MARBLES-MC defines model
checking states for Magic Marbles and defines a state proposition based the inBox

predicate. The {_} operator encapsulates a mix, thus defining a boundary. Proposi-
tions are defined using the relation, {mx}|= prop, read the mix mx satifies the propo-
sition prop. A predicate on mixes (and other arguments) can easily be turned into
a proposition, by defining a corresponding operator that maps the remaining argu-
ments to the sort Prop. For example, inBoxP(bid,mx0) is the proposition corre-
sponding the predicate inBox(mx,bid,mx0) and {mx} satisfies inBoxP(bid,mx0)
if inBox(mx,bid,mx0).

mod MARBLES-MC is
inc BOXED-MARBLES-RULES .
inc MODEL-CHECKER .

op ‘{_‘} : Mix -> State .
op inBoxP : BoxId Mix -> Prop .

vars mx mx0 : Mix .
var bid : BoxId .
eq {mx} |= inBoxP(bid,mx0) = inBox(mx,bid,mx0) == true .

endm

If P is a state proposition, then the property []P says that every state in a computa-
tion satisfies P and []˜P says that no state in a computation satisfies P. Thus to see if
a state satisfying P can be reached, we can use the Maude model checker to evaluate
modelCheck({mx},[]˜P). If a state can be reached satisfying P, the model checker
will return a counter-example showing the transitions (state and rule label) of a compu-
tation containing such a state. For example, we can find a way to move redM from box
B1 to B2 as follows.

red modelCheck({bMix}, []˜inBoxP(B2,redM)) .
result ModelCheckResult: counterexample(

{{{B0 | [whiteM | *]
{B1 | redM blueM [blackM | @]}
{B2 | greenM purpleM [blackM | @]}}},

’out}
{{{B0 | redM [whiteM | *]

{B1 | blueM [blackM | @]}
{B2 | greenM purpleM [blackM | @]}}},

’in}
{{{B0 | [whiteM | *]

{B1 | blueM [blackM | @]}
{B2 | redM greenM purpleM [blackM | @]}}},

...}

...

The first transition applies the out rule to move redM out of box B1. The second tran-
sition applies the in rule to move redM into box B2. The ...s indicate that the counter
example continues. This is an artifact of the model checker requirement that counter
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examples are infinite. The remainder of the computation is building a loop and can be
ignored for our purposes. The above is a reachability question that can also be answered
by search, although it is harder to extract the computation it can be done.

5 Signal Transduction: What to Model

We will focus on modeling signal transduction networks. The Wikipedia article on signal
transduction http://en.wikipedia.org/wiki/Signal transduction
contains an excellent overview and is a good place to start reading to learn more.

To illustrate key signaling concepts and modeling ideas, we will use epidermal
growth factor receptor (EgfR) signaling, which regulates growth, survival, prolifera-
tion, and differentiation in mammalian cells. In particular we will look at the MAPK
(Mitogen-Activated Protein Kinase) pathway [46,13,27,25]. Figure 1 shows the cartoon
drawing of the MAPK pathway (taken from Wikipedia). The pathway is also often rep-
resented as a linear sequence of events:

Egf → EgfR → Grb2 → Sos1 → Ras → Raf1 → Mek → Erk

Here is a biologist style explanation of what this picture or sequence represents.
The explanation uses PL terminology, with corresponding names from the figure in
parentheses.

“In this canonical pathway, Egf (EGF) binds to the Egf receptor (EgfR) and stim-
ulates its protein tyrosine kinase activity to cause autophosphorylation, thus activating
EgfR. Next, the adaptor protein Grb2 (GRB2) and the guanine nucleotide exchange fac-
tor Sos1 (SOS) are recruited to the membrane and bind to the activated EgfR. The Sos1-
containing EgfR complex activates a Ras family GTPase, and the activated Ras protein
activates Raf1, a member of the RAF serine/threonine protein kinase family. Raf1 then
activates the protein kinase Mek1/2 (MEK), which then activate Erk1/2 (MAPK).”

Even without understanding the terminology, it should be clear that much of the
actual model remains in the mind of the biologist and is not captured by the picture. In
the remainder of this section we will look at the steps leading to activation of Ras in
some detail, to explain the terms used in the biologists style desription of the pathway,
and introduce the concepts and mechanisms that we want to model. A PL model of this
pathway is discussed in Section 6, and the full PL model of Egf stimulation is discussed
in Section 8.

One of the first things to notice is that a protein may have many names, depending
on who is talking about it. The simplest variation is capitalization. PL uses the con-
vention that the name of a protein is capialized like a proper name, while in the figure
protein names are all-caps. The numbers in PL names make explicit the fact that there
are numbered variants of a protein, for example Sos1 (as opposed to Sos2) or Mek1/2
(meaning eith Mek1 or Mek2). The figure uses a more abstract representation. The
figure uses MAPK, which abbreviates Mitogen-Activated Protein Kinase, rather than
Erk (or Erk1/2). Sometimes a protein name is an acronym of a name that is related to
the proteins function or how it was discovered. For example, Egf abbreviates “Epider-
mal Growth Factor”, indicating that it is a protein involved in signaling related to deci-
sions about growth. EgfR (Epidermal growth factor receptor) is also known as ErbB1 or

http://en.wikipedia.org/wiki/Signal_transduction
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Fig. 1. Cartoon of Egf stimulated MAPK Pathway

HerbB1. Grb2, abbreviates “Growth factor receptor-bound protein 2” and Sos1 abbriv-
iates “Son of sevenless 1” (first discovered in Drysophila and named for its connection
to the tyrosine kinase receptor “sevenless”.)

One way to determine if two names refer to the same protein is to link the name to
a database entry that is accepted as a standard (of course there are several standards).
Pathway logic links all protein names to their Swiss-Prot entry. Swiss-Prot is a manually
curated biological database of protein sequences. In addition to the protein sequence,
the Swiss-Prot entry for a protein includes synonyms, literature references, informa-
tion about function, location, interactions, links to databases containing special purpose
information such a protein functional domains and gene annotations. For example the
SwissProt name for EgfR is EGFR_HUMAN and the SwissProt entry for EgfR can be
found at http://www.expasy.ch/cgi-bin/niceprot.pl?P00533 where
P00533 is the SwissProt accession number.

Adaptor proteins play key roles in signaling pathways. They serve to hold interact-
ing proteins in spatial configurations that make interaction possible. In the case of the

http://www.expasy.ch/cgi-bin/niceprot.pl?P00533
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adaptor Grb2, this is represented in the figure by nitches in the Grb2 icon so that it
brings EgfR and Sos1 together enabling Sos1 to carry out its function to activate Ras.

GTP (Guanosine triphosphate) is an important molecule in metabolism, protein syn-
thesis, and signal transduction. In our example, binding of GTP activates Ras, and sub-
sequent hydrolysis of the bound GTP to GDP and phosphate inactivates Ras, thus acting
as a kind of switch. The switch can be turned on by proteins, such as Sos1, known
as guanine nucleotide exchange factors (GEFs), and can be turned off by GTPase-
activating proteins (GAPs) that accelerate hydrolysis of GTP to GDP (guanosine
diphosphate). GEFs act by binding Ras-GDP forcing it to release the bound GDP. Once
released from the GEF, Ras quickly binds fresh GTP from the cytosol. Ras is called a
GTPase because of its ability to bind and hyrolize GTP.

The notion of location plays an important role in cellular signaling. Proteins need to
be co-located to interact. Compartments in a cell serve to collect interacting groups of
proteins (and other molecular components). Each compartment has a membrane and an
interior and compartments may be nested. A cell is itself a compartment. Its membrane
is called the cell membrane and its interior is called the cytoplasm. In the cytoplasm
there are many other compartments, most importantly, the nucleus, where the cell’s
DNA resides. In the figure 1 we can trace the Egf signal from the outside of the cell,
through the cell membrane, traversing the cytoplasm and eventually reaching the nu-
cleus. In the process Grb2 and Sos1 are recruited from the cytoplasm to the interior of
the membrane, to bind to the inner part of EgfR.

Proteins and other molecules are categorized according to their function. A receptor
is a protein that receives a signal by recognizing and binding to a signaling molecule
called a ligand. This results in a complex in which the two proteins are linked together,
likely causing a change in shape and activity of the receptor thus initiating a signaling
process. The first step of our example pathway is activation of EgfR. The EgfR protein
is a receptor that has three regions: one that sticks outside the cell, one traversing the
cell membrane, and one that sticks into the cytoplasm. Thus, it receives signals from
outside the cell and transmits them to the inside. In our example, the ligand Egf binds
to external portion of Egf and then the Egf-EgfR complex dimerizes (pairs with another
Egf-EgfR complex).

A signal is propagated by changes in the state of involved proteins. One way to
change state is complexing with other proteins. Another important form of state change
is post-translational modification. This is a change in the chemical structure of a protein
after its translation. Phosphorylation, attaching a phospate group to one of the amino
acid sites of a protein, is an example of post-translational modification. A kinase is a
protein that facilitates phosporylation. Usually kinases have specific proteins or classes
of proteins as targets and act on specific amino acid sites. Dually a phosphatase facili-
tates removal of a phosphate group. Phosphorylation (de-phosphorylation) changes the
state of a protein, and is one of the ways that signals get propagated (or blocked). In
our example, EgfR is not only a receptor, it is a kinase and capable of phosphorylating
other EgfRs. When the Egf-EgfR homo-dimer forms EgfR authophosphorylates and
becomes active.

Now we can explain why the pathway called the “mitogen-activated protein kinase”
(MAPK) pathway. A mitogen is a molecule that signals a cell to trigger mitosis and
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thus commence cell division. A MAPK pathway activates MAPK proteins such as Erk,
which propagae the mitotic signal to the nucleus. We note that Mek is a kinase kinase,
(also called MAPKK or MAPK Kinase), as it phosphorylates the kinase Erk. Continu-
ing the trend, Raf1 is a kinase kinase kinase also called MAPKKK.

6 Building a Pathway Logic Knowledge Base

Now we describe a small PL knowledge base, SmallKB, that represents initial signaling
events in response to Epidermal Growth Factor (Egf) stimulation discussed in Section 5.
The full Egf stimulation model is discussed in Section 8.

Recall that a rewriting logic specification has two parts: an equational part specify
structure and static properties of system states, and a rules part specifying system behav-
iors. A Pathway Logic (PL) knowledge base is structured in four layers: (1) sorts and
operations, (2) molecular components, (3) rules, and (4) initial states (called dishes).
Layers 1, 2, and 4 make up the equational part.

6.1 The Equational Part

The sorts and operations layer declares the main sorts, subsort relations, and operators
to construct representations of cellular states. The sorts of entities include Chemical,
Protein, Complex, and Location (position is cellular compartments), and Cell. These
are all subsorts of the sort, Soup, that represents ‘liquid’ mixtures, as multisets of enti-
ties. The sort Modification is used to represent post-translational protein modifications.
They can be abstract, to specify that a protein is activated, bound, or phosphorylated,
or more specific, for example, phosphorylation at a particular site. Modifications are
applied using the operator [_-_]. (Note the similarity to the annotation of marbles
with potential in section 4.) For example, the term [Raf1 - act] represents Raf1
in an activated state, and [Hras - GTP] represents the protein Hras in its “on” state
(loaded with GTP). (Hras is a specific member of the Ras family.) The term [Gab1

- Yphos] represents Gab1 phosphorylated on a tyrosine site while [Gab1 - phos(Y

627)] represents Gab1 phosphorylated on tyrosine 627. Complex formation is repre-
sented by the operation (_:_). For example, the term (Egf : [EgfR - act]) rep-
resents the complex resulting from binding of Egf to EgfR and subsequent activation of
EgfR. A cell state is represented by a term of the form

[cellType | locs] .

The symbol cellType specifies the type of cell, for example Macrophage or Fibroblast.
The symbol Cell is used to indicate an unspecified cell type. The symbol locs repre-
sents the contents of a cell organized by cellular location. Each location is represented
by a term of the form { locName | components } where locName identifies the
location, for example CLm for cell membrane, and components stands for the mixture
of proteins and other compounds in that location. For example,

[Cell | {CLm | EgfR PIP2}
{CLi | [Hras - GDP] Src}
{CLc | Gab1 Grb2 Pi3k Plcg Sos1}]) .
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represents a generic cell with three locations: the membrane (location tag CLm) contains
EgfR and a chemical PIP2 (see below); the inside of the membrane (location tag CLi)
contains Hras loaded with GDP and Src; and the cytoplasm (location tag CLc) contains
Gab1, Grb2, Pi3k, Plcg, and Sos1.

The components layer specifies particular entities (proteins, genes, chemicals) and
introduces additional sorts for grouping proteins in families. For example ErbB1L is
a subsort of Protein whose elements are ErbB1 (EgfR) ligands. Components are de-
clared as constants, giving their sort and also metadata that gives synonyms and links the
component to standard names and database entries, and may provide other information.
For example the epidermal growth factor Egf with sort ErbB1L, and metadata giving
its HUGO and SwissProt names, its SwissProt accession number, and its category. in
addition to two synonyms.

op Egf : -> ErbB1L [metadata "(\
(spname EGF_HUMAN)\
(spnumber P01133)\
(hugosym EGF)\
(category Ligand)\
(synonyms \"Pro-epidermal growth factor precursor, EGF\" \

\"Contains: Epidermal growth factor, Urogastrone\"))"].

Similarly, EgfR is delcared simply to be a protein.

op EgfR : -> Protein [metadata "(\
(spname EGFR_HUMAN)\
(spnumber P00533)\
(hugosym EGFR)\
(category Receptor)\
(synonyms \"Epidermal growth factor receptor precursor\" \

\"Receptor tyrosine-protein kinase ErbB-1, ERBB1\"))"].

PIP2 is a chemical (a lipid) residing in the membrane. Its phosphorylated form, PIP3,
plays an important role in a number of signaling pathways, either directly or through its
cleavage products. Chemicals have metadata linking them to the KEGG database entry,
where much information can be found.

op PIP2 : -> Chemical [metadata "(\
(category Chemical)\
(keggcpd C04569)\
(synonyms \"Phosphatidylinositol-4,5P \" ))"] .

The rules layer is the heart of a PL KB. It contains rewrite rules specifying indi-
vidual reaction steps. In the case of signal transduction rules represent processes such
as activation, phosphorylation, complex formation, or translocation. The rules layer is
discussed in Section 6.2 below.

The queries layer specifies initial states (called dishes) to be studied. Initial states
are in silico Petri dishes containing a cell and ligands of interest in the supernatant. An
initial state is represented by a term of the form
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PD(out cell)

where cell represents a cell state and out represents a soup of ligands and other molec-
ular components in the cells surroundings. In fact a dish can contain many cells, how-
ever the current PL analysis tools only treat single cells. For example an initial state to
study Ras activation in SmallKB is given by the dish term

op rasDish : -> Dish .
eq rasDish =

PD(Egf [Cell | {CLm | EgfR PIP2}
{CLi | [Hras - GDP] Src}
{CLc | Gab1 Grb2 Pi3k Plcg Sos1}]) .

The dish contains Egf in the supernatant, and the cell discussed above.

6.2 The Rules Part

PL rules are curated from the literature, and each rule has associated evidence items
describing experimental data that serve as evidence for the rule. Discussion of evidence
is beyond the scope of this tutorial as it requires some understanding of experimental
methods to be meaningful. The rules for the initial response to Egf signaling closely
parallel the biologists informal explaination of Figure 1 given in Section 5.

rl[1.EgfR.act]:
?ErbB1L:ErbB1L
[CellType:CellType | ct {CLm | clm EgfR}]
=>
[CellType:CellType | ct
{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L)} ] .

Rule 1 (label 1.EgfR.act) describes the binding of an ErbB1 ligand to EgfR. The term
?ErbB1L:ErbB1L is a variable that matches any ErbB1 ligand, for example Egf, and
CellType:CellType is a variable that matches any cell type. {CLm | clm EgfR}

matches any cell membrane location that contains EgfR, since clm is a variable that
will match the rest of the membrane contents. Thus the left hand side subterm

[CellType:CellType | ct {CLm | clm EgfR}]

matches any cell that contains EgfR in the cell membrane, since the variable ct will
match any additional locations. For example, it matches the initial state rasDish with

?ErbB1L:ErbB1L := Egf
clm := PIP2

ct := {CLi | [Hras - GDP] Src} {CLc | Gab1 Grb2 Pi3k Plcg Sos1}

and the result of rewriting rasDish with rule 1 is

PD([HMEC |
{CLm | ([EgfR - act] : Egf) PIP2}
{CLi | [Hras - GDP] Src}
{CLc | Gab1 Grb2 Pi3k Plcg Sos1}]) .
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which is obtained by instantiating the rules right hand side using the variable bindings
from the left hand side match.

Once the receptor is activated it can recruit Grb2 to the membrane interior. This is
describe by the rule labeled 5.Grb2.reloc.

rl[5.Grb2.reloc]:
{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }
{CLi | cli }
{CLc | clc Grb2 }
=>
{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }
{CLi | cli [Grb2 - reloc] }
{CLc | clc } .

Notice that on the left, Grb2 is in the CLc location (cytoplasm) while on the right it is
in CLi location. The modification reloc makes the change in location explicit. It is not
strictly necessary, but makes the changes easier to follow. Continuing the rewriting of
rasDish with rule 5.Grb2.reloc we get

PD([HMEC |
{CLm | ([EgfR - act] : Egf) PIP2}
{CLi | [Hras - GDP] Src [Grb2 - reloc]}
{CLc | Gab1 Pi3k Plcg Sos1}]) .

Now Sos1 can be recruited to the membrane complex by binding to Grb2. This is
described by rule 13.Sos1.reloc. Note that in this particular representation the com-
plex formation is abstracted to colocation. We could also make the complex explicit if
needed for some analysis.

rl[13.Sos1.reloc]:
{CLi | cli [Grb2 - reloc] }
{CLc | clc Sos1 }
=>
{CLi | cli [Grb2 - reloc] [Sos1 - reloc] }
{CLc | clc } .

The resulting state is

PD([HMEC |
{CLm | ([EgfR - act] : Egf) PIP2}
{CLi | [Hras - GDP] Src [Grb2 - reloc] [Sos1 - reloc]}
{CLc | Gab1 Pi3k Plcg }]) .

In the next section we will see how to tranform the Maude terms in to a graph rep-
resentation that makes it easier to visualize and understand reaction networks and their
evolution. In particular, a graphical representation of the above three step computation
is shown below in Figure 3.
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7 Computing with a PL KB

The Pathway Logic Assistant (PLA) provides interactive graphical access to a PL
knowledge base. For this purpose, rule sets and computations are represented using
Petri nets [39,38,48], which have a natural graphical representation, and additionally,
there are very efficient tools for analyzing the Petri net models generated by PLA. (See
Section 2 for discussion of other uses of Petri nets in systems biology.)

7.1 PL Petri Nets

Petri Nets were invented to model execution of concurrent processes and thus are nicely
suited to modeling signals propagating through a cell. A Pathway Logic Petri net (sim-
ply called Petri net, in what follows) can be thought of as graph with two kinds of
nodes: rule nodes (shown as squares) and occurrence nodes (shown as ovals). Rule
nodes, called transitions in the Petri net community, represent reactions, and occur-
rence nodes, called places in the Petri net community, represent reactants, products, or
modifiers. Occurrences can be thought of as atomic propositions asserting that a protein
(in a given state) or other component (small molecule, complex, . . . ) occurs in a given
compartment. In this view, rules are logical implications.

An occurrence oval is labeled by a string representation of the corresponding Maude
term. For example the string representation of Efg outside a cell is Egf-Out and
Egf:EgfR-act-CLm is the string representation of Egf : [EgfR - act] in the cell
membrane. The reactants of a rule are the occurrences connected to the rule by arrows
from the occurrence to the rule. The products of a rule are the occurrences connected to
the rule by arrows from the rule to the occurrence. The modifiers of a rule (enzymes and
other components that must be present but are unchanged) are the occurrences connect
to the rule by a dashed arrow. For example, the Petri net representation of the rule for
recruitment of Sos1 is shown in Figure 2.

13

Sos1-reloc-CLi

Sos1-CLc Grb2-reloc-CLi

Fig. 2. Petri net transitions for rule 13.Sos1.reloc

The rule is represented by the rectangle labeled 13 (short form of 13.Sos1.reloc).
The reactant Sos1 in the cytoplasm is represented by the oval labeled Sos1-CLc with
an arrow from the oval to the rule rectangle. The product [Sos1 - reloc] at the mem-
brane interior is represented by the oval labeled Sos1-reloc-CLi with an arrow from
the rule rectangle to the oval. [Grb2-reloc] drives the reaction but is not changed (at
our level of representation), thus it is represented by the oval labeled Grb2-reloc-CLi
with a dashed arrow from the oval to the rule rectangle.
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A set of Petri net rules corresponding to the rules of a PL knowledge base is called
a transistion knowledge base (TKB). The analog of a PL dish is a PL Petri net state,
which specifies which occurrences are present, that is, it specifies the state and loca-
tion of each molecular component. Given a state, a Petri net rule is enabled if all of
its occurrences connected by incoming arrows (reactants and modifiers) are present
in the state. When an enabled rule fires, the reactant occurrences are removed from
the state and the product occurrences are added. The modifier occurrences are left un-
changed.

Corresponding to a PL model, a Petri net model consists of a set of rules (a TKB) and
an initial state. To execute a Petri net model one puts tokens on the ovals corresponding
to occurrences present in the initial state, and moves tokens as rules become enabled
and fired. Figure 3 shows the execution of a Petri net model of the process that recruits
Sos1 to the membrane interior.

13

Sos1-reloc-CLi

Sos1-CLc

EgfR-CLm

1

5

Grb2-reloc-CLi

Egf:EgfR-act-CLm Grb2-CLc

Egf-Out

(a) initial state

13

Sos1-reloc-CLi

Sos1-CLc

EgfR-CLm

1

5

Grb2-reloc-CLi

Egf:EgfR-act-CLm Grb2-CLc

Egf-Out

(b) step 1

13

Sos1-reloc-CLi

Sos1-CLc

EgfR-CLm

1

5

Grb2-reloc-CLi

Egf:EgfR-act-CLm Grb2-CLc

Egf-Out

(c) step 2

13

Sos1-reloc-CLi

Sos1-CLc

EgfR-CLm

1

5

Grb2-reloc-CLi

Egf:EgfR-act-CLm Grb2-CLc

Egf-Out

(d) step 3

Fig. 3. Execution of the Sos1 recruitment pathway

There are three rules (corresponding to the rewrite rules discussed in Section 6).
Darker ovals represent occurrences that are present (marked with a token). Figure 3(a)
shows the initial state with Egf-Out, EgfR-CLm, Grb2-CLc, and Sos1-CLc marked
as initially present. The only rule enabled is rule 1. Figure 3(b) shows the result of
firing rule 1, removing tokens from Egf-Out and EgfR-CLm and adding a token to
Egf:EgfR-act-CLm. Now rule 5 is enabled and Figure 3(c) shows the result of firing
rule 5. This enables rule 13 and Figure 3(d) shows the final state.

Starting with a PL knowledge base, we convert it to a Petri net TKB, and we con-
vert dishes to occurrence sets, in a way that preserves the possible executions. We can
then analyze models by finding subnets relevant to a desired state (goal), finding path-
ways reaching a goal, compare subnets and/or pathways, finding knockouts (omissions
from the initial state that prevent reaching a goal), or exploring a network of rules by
incrementally adding connected components and rules to an chosen initial set. This is
explained in more detail in the following subsections. Details, including proof that the
Petri net representation is equivalent to the rewriting logic represenation, for the ques-
tions of interest, can be found in [52].
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7.2 Converting a PL KB to a Petri Net TKB

Transformation to Petri net representation accomplishes several things. One is support
for graphical representation. Another is making things concrete. The full PL represen-
tation allows for rules that express families of reactions and for multiple cells and cell
types. In PLA we restrict attention to systems with a single cell and for each variable
that stands for a single component, we fix a specific (finite) set of components that can
be values of that variable. For example, in the SmallKB knowledge base, there are two
proteins that can be values of the variable ?ErbB1L:ErbB1L of sort ErbB1L, namely
Egf and Tgfa. Producing a Petri net representation of the Pathway Logic knowledge
base proceeds in two steps. The first step is transforms rules to occurrence form, by
transforming the dishes or cells appearing in PL rules into occurrence sets. The second
step is to instantiate remaining variables with known values.

Formally, an occurrence is a pair consisting of a component (a protein, possibly
modified, a small molecule, or a complex) and a location name. For example, <Egf,
Out> is an occurrence representing Efg outside a cell and < Egf : [EgfR - act],

CLm> is a occurrence representing Egfr complexed with Egf and activated in the cell
membrane. The left or right side of a rule is transformed by pairing each component
with its location (the name of the enclosing location), dropping the location container,
and dropping variables such as ct or clm that serve only to name location contents that
are not important for the rule. Thus rule 1 (1.EgfR.act) becomes

rl[1.EgfR.act.pn]
< ?ErbB1L:ErbB1L, Out > < EgfR , CLm >

=>
< ?ErbB1L:ErbB1L : [EgfR - act], CLm >

When we instantiate remaining variables, we also convert rules (logical statements)
into elements of a data type called PNetTransition. The allows us to compute with
and reason about the Petri net rules directly. A single rewrite rule can be given to execute
the transitions. A pnet transition term has the form

pnTrans(label,iOccs,oOccs,bOccs)

where label is a quoted identifier, and iOccs, oOccs bOccs are multisets of occur-
rences: iOccs are the occurrences required and removed by the transition (connected
to the rule by incoming arrows), oOccs are the occurrences produced by the transition
(connected to the rule by outgoing arrows), and bOccs are the occurrences required but
not removed by the transition (connected to the rule by dashed arrows). As an example,
two pnet transitions are obtained by instantiating the occurrence form of rule 1, the first
by instantiating the variable ?ErbB1L:ErbB1L with Egf

pnTrans(’1.EgfR.act,
< Egf,Out > < EgfR,CLm >,
< Egf :[EgfR - act],CLm >,
none)

and the second by instantiating with Tgfa.
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pnTrans(’1.EgfR.act#1,
< EgfR,CLm > < Tgfa,Out >,
< Tgfa :[EgfR - act],CLm >,
none)

The transition label is the rule label, suffixed with #1, #2, . . . if there are multiple in-
stantiations. Since in rule 1 there are no unchanged occurrences, iOccs is simply the
instantiated occurrences from the rule lefthand side, oOccs is the instantiated occur-
rences from the rule righthand side, and bOccs is none, the empty occurrence set.

As another example, the Sos1 recruitment rule (13.Sos1.reloc) is transformed
into the following pnet transition.

pnTrans(’13.Sos1.reloc,
< Sos1,CLc >,
<[Sos1 - reloc],CLi >,
<[Grb2 - reloc],CLi >)

In this case bOccs is <[Grb2 - reloc],CLi > which is necessary for the rule to fire,
but not used up.

The process of converting a rule set into a list of pnet transitions uses Maude’s meta-
level, where rules are represented as data and one can manipulate terms with variables
(which are also just data in the meta-level).

7.3 PL PNet Models

Once we have a TKB we can derive models and compute with them, asking for subnets,
pathways, knockouts, and making comparisons. A model consists of a pnet transition
list (specifying the possible transitions) and a set of occurrences representing the initial
(or current) state. It is derived from a dish and a TKB by transforming the dish into a
set of occurrences and doing a forwards collection in the TKB from the occurrence set
to derive the set of transitions the could possible be enabled in a computation starting
from the initial state. The idea of the forward collection is to iteratively augment the
occurrence set with all occurrences that could be produced by firing enabled transitions
(from TKB), without removing the iOccs part of the transition, and add then enabled
transitions to the accumulating list of transitions. In a little more detail, the collection
process operates on a tuple (tkb,occs,pntl,pending,more?)where tkb is list of
possible transistions, occs, is the accumulated occurrence set, pntl is the accumulated
transition list. pending is list of tkb elements that are not yet enabled in occs, and
more? is a boolean which remembers if any new occs have been added to the accu-
mulated set. Initially the triple is (TKB,dOccs,nil,nil,false)where dOccs is the
dish occurrence set, and nil is the empty list. In one pass, each collection step trans-
forms the tuple by removing a transition from tkb and adding it to pntl if the transition
is enabled in occs. Otherwise it is added to pending. If there are any occurrences in
the transition oOccs part that are not in occs, they are added to occs and the done?
becomes true. The pass ends when there are no more transitions in tkb. If more? is
true then a new pass is started. Otherwise the accumulated pntl is returned. This can
be expressed as a function fwdCollect defined by the following equations.
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eq fwdCollect(tkb,dish)
= fwdCollect(tkb,dish2occs(dish),nil,nil,false) .

eq fwdCollect(pnTrans(rid,iOccs,oOccs,bOccs) tkb,
occs, pntl,pending,more?)

=
if contains(occs,union(iOccs,oOccs)) .
then fwdCollect(tkb, union(occs,oOccs),

(pntl, pnTrans(rid,iOccs,oOccs,bOccs)),pending,
(if (oOccs - occs == none) then more? else true fi)

else fwdCollect(tkb, occs, pntl,
(pending, pnTrans(rid,iOccs,oOccs,bOccs)),more?)

fi .
eq fwdCollect(nil,occs,pntl,pending,false) = pntl.
eq fwdCollect(nil,occs,pntl,pending,true) =

fwdCollect(pending,occs,pntl,nil,false) .

This forward collection produces a transition list that is possibly an over approximation.
That is, any transition of TKB that becomes enabled in some computation from the
initial state will be in the accumulated transition list but, there may be some transitions
that do not become enabled in any computation from the initial state. The crucial point
is that we don’t loose any possible computations by restricting the set of transitions to
be considered, and the simple over approximation makes the model derivation feasible.

Figure 4 shows a screen shot of the Petri net model of Raf activation, generated by
PLA from the dish rafDish whose occurrence set is rafDishOccs

eq rafDishOccs =
< Egf, Out > < EgfR, CLm > < PIP2, CLm >
< [Hras - GDP], CLi> < Src, CLi> < [Ube213 - ubiq], CLi >
< Cbl, CLc > < Gab1, CLc > < Grb2, CLc > < Pi3k, CLc >
< Plcg, CLc > < Sos1, CLc > < 1433x1, CLc > < Pak1, CLc >
< Raf1, CLc > < PP2a, CLc > .

As discussed above, ovals are occurrences, with initial occurrences darker. Rectangles
are transitions. Dashed arrows indicate an occurrence that is both input and output. The
thumbnail sketch in the upper right shows the full network. The main frame shows
a magnified version of the portion of the network in the red rectangle. The view in
the main frame can be changed by dragging the red rectangle around in the thumbnail
frame. It can also be changed using the scroll bars. The Finder in the lower right allows
one to locate occurrences and rules by name, and center the view on the selected node.

PLA provids a simple query language for specifying signaling pathways of interest.
A query specifies three sets: goals, avoids, and hides. Goals are a set of occurrences that
should appear at the end of a pathway, as they represent properties of a desired state.
Avoids are a set of occurrences that should not appear in any state in the execution of
the pathway. Hides are a set of rules that should not fire in the pathway. To make a
query, goals, avoids, and hides sets can be selected by clicking the occurrence or rule to
select, and pressing the corresponding button in the information window that appears.
Once query elements have been selected, the user can ask to see the relevant subnet
or to find a path. The relevant subnet contains all of rules needed for any (minimal)
pathway satisfying the query, while the path is just the first path found by the analysis
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Fig. 4. Raf Activation Model viewed in PLA

tool. The relevant subnet is computed directly from the pnet transitions list, together
with the initial state and query elements in a manner similar to the forward collection
function above.

The logic underlying the query language is a temporal logic Goal queries are an-
swered by model-checking the assertion that the goal set is not reachable, from the
initial state ioccs in a transition list pntl* from which transitions that produce an
avoid or are in the hides set are removed.

(pntl*,ioccs) |= []˜ goal

A pathway satisfying a query is obtained by translating the reduced pnet transition list
and query into the language of the LoLA model checker [45,31], asserting that no such
pathway exists. If a pathway does exist LoLA returns a list of transitions in the pathway,
which PLA converts to a Petri net for display and possibly further analysis. The LoLA
model checker is highly optimized for Petri nets, and thus allows use to compute with
very large models.

Figure 5 shows pathways in the Raf1 model that recruit Sos1 (a), and activate Pi3k
(b), obtained by making Sos1-reloc-CLi or Pi3k-act-CLi a goal (indicated by
coloring the oval green) and using FindPath. The key property of a pathway is that
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Fig. 5. Sos1 and Pi3k activation paths and comparison

executing the pathway Petri net starting from the initial state leads to a state in which
the goal(s) are among the occurrences, that is, a state satisfying the goal is reached.
Furthermore, none of the avoids or hides appear in the pathway.

In addition to generating pathway subnetworks, two subnets can be compared. For
this, the two networks are merged into one. Figure 5(c) shows the result of comparing
the Sos1 and Pi3k pathways. Nodes in both pathways are colored pink, nodes only in
the Sos1 pathway are colored cyan, and nodes only in the Pi3k pathway are colored
dark lavendar.

The Sos1 and Pi3k pathways are part of the model of Hras activation, and ultimately
of Raf activation. Figure 6(a) shows a pathway activating Hras, obtained by specifying
Hras-GTP-CLi as a goal. Figure 6(b) shows the Sos1 and Pi3k comparison as a subnet
of the Hras activation pathway (nodes only in the Hras path are white).

In principle is it possible to formulate more complex queries, for example express-
ing that a particular element is a check-point, or that a particular activation state is
always eventually reachable. In [1] a study was carried out in which Pathway Logic
models were exported to the SAL language [47] and comparison of the effectiveness
of several model-checkers in answering temporal logic queries was made. For the large
models that we are interested in querying, bounded model checking was able to find
counter-examples and thus to generate pathways for goals/avoids queries, but none of
the general model checkers was able to check more complex formulas on large models.
The special purpose Petri net analysis seems to scale much better, and the goals/avoids
queries are easy for the biologists to understand.

The SmallKB and the Ras and Raf1 activation initial states are available as part of the
Pathway Logic Demo available from the Pathway Logic web site <http://pl.csl.
sri.com/> along with papers, tutorial material and download of the Pathway Logic
Assistant tool.

<http://pl.csl.sri.com/>
<http://pl.csl.sri.com/>
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Fig. 6. Ras activation pathway and Sos1,Pi3k subnets

8 PL Model of Egf Stimulation

As an example of a non-trivial signaling model, we describe a Pathway Logic model
that includes all known early responses to Epidermal growth factor (Egf) stimulation.
As mentioned in Section 5 Epidermal growth factor receptor (EgfR) signaling regulates
growth, survival, proliferation, and differentiation in mammalian cells.

Figure 7 show a cartoon version of molecular components and interactions involved
in EfgR signaling. Although the cartoon summarizes a lot of information, the repre-
sentation is not suited for computational analysis. The PL model of Egf stimulation is
based on a PL knowledge base of early response events in adherent cells expressing
Egf-receptors. Rules in the knowledge base are based on experimental results and data
curated from the published scientific literature. The first step in the construction of the
knowledge base was to collect the data: 174 papers were searched for appropriate ex-
periments and the results were listed as 1373 evidence items that contain information
about state changes. The evidence items are used to determine the components of a
reaction rule. The reaction network assembled from data supporting events that might
be downstream of EgfR signaling includes over 370 reactions involving more than 460
occurrences (signaling molecules in different states and locations). These rules were
combined with a collection of Common Rules curated from additional experimental
data from experiments not specific to Egf stimulation.
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Fig. 7. Cartoon drawing of Egf signaling

As explained in Section 6, given a knowledge base, a model is obtined by defining
an initial state—the cellular components (proteins, chemicals, or nucleic acids), their
modifications, and locations. For the Egf model, the initial state represents a serum
starved, adherent cell expressing EgfR and was curated from published experimental
data. An impression of the Pathway Logic Assistant (PLA) rendering of the model as
a Petri net is shown in Figure 8 (a). Clearly this is a complex model. PLA can be used
to browse the model and to ask for subnets or pathways satisfying goals of interest.
For example, the subnet of all reactions relevant to activation of Erk in response to a

(a) Egf stimulation net (b) Erk activation subnet

Fig. 8. Model of Egf stimulation
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Fig. 9. Pathways activating Erk

stimulus by Egf is obtained by making Erk1 (and/or Erk2) a goal and asking PLA for
the subnet. This is shown in Figure 8 (b).

Unfortunately, there are so many potential paths to Erk activation that the Petri net
is still too complicated to comprehend without visualization tools or additional simpli-
fying constraints. The result of asking PLA to find a pathway activating Erk is shown
in Figure 9 (a). This pathway is similar to the canonical pathway that extends our Raf
activation pathway of Section 7. But, the subnet for Erk activation contains many pos-
sible paths that activate Erk. Which is the “correct” path? Currently there is no tool that
will produce all paths for individual inspection and further analysis.

Our approach is to use additional biological knowledge to further constrain the net-
work. A list of 85 state changes demonstrated experimentally to occur in response to a
short stimulus with Egf was collected as part of the curation process. These occurrences
(protein states) were set as goals. This will ensure that the paths used to reach specific
chosen goals are consistent with other observed events. In addition, Egf specific rules
were given precedence over Common Rules abstracting these rules. The Egf specific
rules that contain requirements specific to Egf signaling that must be satisfied before
they can fire. This ensures that any pathways found will include events that must hap-
pen before Erk is activated. Figure 10 shows the pathway satisfying all of the additional
constraints. The existence of the constrained network containing all 85 events observed
in response to Egf stimulation is a form of model validation (or more accurately fail-
ure of invalidation). Figure 9 (b) shows the path to Erk activation within the constrained
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Fig. 10. Constrained model of Egf stimulation

network. This is also a pathway in the full network, but it differs from that found by
searching in the unconstrained network, as we have forced the model-checking tool
to work in the context of realizing all the other observed events. We see that it is a
great deal more complicated than the canonical pathway. This result is not surprising,
given the large number of molecular components involved in the collected evidence
items.

The constrained path from Egf to Erk contains many unfamiliar events in compar-
ison to the canonical pathway. For example, Rala is required for Src activation in re-
sponse to Egf, but Sos1 is not required for Hras activation in response to Egf. More
generally, models based on a knowledge base such as the curated PL knowledge base
demonstrate that the series of events between activation of EgfR by Egf and activation
of Erk and other goals may not be as simple as those described in canonical path-
ways.

9 Conclusion

Pathway Logic is a symbolic systems biology approach to modeling biological pro-
cesses based on rewriting logic. We have described the use of Pathway Logic to model
signal transduction processes, and the use of the Pathway Logic Assistant to browse and
analyse these models. Pathway logic can also be used to model and analyze metabolic
networks and to interpret experimental data. Future challenges include integration of
signaling and metabolic network models, and new abstractions to simplify networks
and identify meaningful modules.
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Abstract. Biologists use diagrams to represent interactions between
molecular species, and on the computer, diagrammatic notations are
also employed in interactive maps. These diagrams are fundamentally
of two types: reaction graphs and activation/inhibition graphs. In this
tutorial, we study these graphs with formal methods originating from
programming theory. We consider systems of biochemical reactions with
kinetic expressions, as written in the Systems Biology Markup Lan-
guage (SBML), and interpreted in the Biochemical Abstract Machine
(Biocham) at different levels of abstraction, by either an asynchronous
boolean transition system, a continuous time Markov chain, or a sys-
tem of Ordinary Differential Equations over molecular concentrations.
We show that under general conditions satisfied in practice, the activa-
tion/inhibition graph is independent of the precise kinetic expressions,
and is computable in linear time in the number of reactions. Then we
consider the formalization of the biological properties of systems, as ob-
served in experiments, in temporal logics. We show that these logics are
expressive enough to capture semi-qualitative semi-quantitative prop-
erties of the boolean and differential semantics of reaction models, and
that model-checking techniques can be used to validate a model w.r.t. its
temporal specification, complete it, and search for kinetic parameter val-
ues. We illustrate this modelling method with examples on the MAPK
signalling cascade, and on Kohn’s map of the mammalian cell cycle.

1 Introduction

Biologists use diagrams to represent interactions between molecular species, and
on the computer, diagrammatic notations like the ones introduced in Kohn’s
map [1] are also employed in interactive maps like, for instance, MIM1. This
type of notation encompasses two types of information : interactions (binding,
complexation, protein modification, etc.) and regulations (of an interaction or
of a transcription).

The Systems Biology Markup Language (SBML) [2] uses a syntax of reaction
rules with kinetic expressions to define reaction models in a precise way, and more
and more models are described in such a formalism, like in the biomodels.net
repository. This type of language is well suited to describe interactions (and

1 http://discover.nci.nih.gov/mim/
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in a limited manner their regulations through the notion of modifiers) but not
directly molecule to molecule activations and inhibitions.

On the other hand, formal influence graphs for activation and inhibition have
been introduced in the setting of gene regulatory networks [3] as an abstraction of
complex reaction networks. These graphs completely abstract from the precise in-
teractions, especially at post-transcriptional level, and retain only the activation
and inhibition effects between genes. In these influence graphs, the existence of a
positive circuit (resp. a negative circuit) has been shown to be a necessary condi-
tion for multistationarity (resp. oscillations) in different settings [4,5,6,7,8]. There
are several tools providing different kinds of analyses for either reaction models or
influence graphs. The only formal relationship relating the two seems to be the
extraction of the second one from the Jacobian matrix derived from the first one,
when equipped with precise kinetic expressions and parameter values.

In this tutorial, we first provide a syntax for denoting objects in the cell, such
as molecular compounds and compartments, and for denoting their interaction
and transport. We use the rule-based syntax of the biochemical abstract machine
Biocham [9,10] which is similar to (and compatible with) the Systems Biology
Markup Language (SBML) [2] nowadays supported by a majority of modeling
tools [11,12]. Then we present the different semantics of Biocham models which
correspond to different abstraction levels: namely the differential, stochastic,
discrete and boolean semantics [13,14,15].

Then in section 3 we study the formal relationship between reaction mod-
els and activation/inhibition influence graphs. We show that under the general
condition of strongly increasing monotonicity of the kinetic expressions, and in
absence of both activation and inhibition effects from one molecule to the same
target, the influence graph inferred from the stoichiometric coefficients of the
reactions, called the syntactical influence graph, is equal to the influence graph
defined by the signs of the coefficients of the Jacobian matrix of the differential
semantics, called the differential influence graph. Under these conditions, satis-
fied by mass action law, Michaelis-Menten and Hill kinetics, the influence graph
is thus independent of the kinetic expressions for the reactions, and is computable
in linear time in the number of reactions. We show that this remarkable property
applies to the transcription of Kohn’s map of the mammalian cell cycle control
[1] into an SBML model of approx. 800 reactions [16]. On this example, the syn-
tactical influence graph is computed in less than a second, and our equivalence
theorem shows that this influence graph remains unchanged for any standard
kinetics and any parameter values. The same property of independence from
the kinetic expressions holds for the influence graph inferred from the MAPK
signalling model of Levchenko et al. [17]. This influence graph exhibits positive
as well as negative feedbacks that are hidden in the purely directional cascade
of the reaction graph [18] and were the subject of a misinterpretation in [19].

In section 4 we show how temporal logics, as introduced for circuit and pro-
gram verification, can be used for formalizing the biological properties of a system,
and automatically check their satisfaction in a given model by model-checking
techniques. Furthermore, by turning the temporal language into a specification
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language, we show how a temporal specification formalizing the biological data
can be used to search for kinetic parameter values. We illustrate how these tech-
niques may be useful to the modeler with the same example as above.

Finally we conclude on these achievements in Biocham and on their perspec-
tives for future work.

2 Reaction Models

2.1 Syntax

Following SBML [2] and Biocham [9,10] conventions, a model of a biochemical
system is formally a set of reaction rules of the form e for S => S′ where S is
a set of molecules given with their stoichiometric coefficient, called a solution,
S′ is the transformed solution, and e is a kinetic expression involving the con-
centrations of molecules. The reaction rules represent biomolecular interactions
between chemical or biochemical compounds, ranging from small molecules to
proteins and genes.

The syntax of the formal objects involved and their reactions, is given by the
following (simplified) grammar:
object = molecule | molecule :: location
molecule = name | molecule-molecule |molecule~{name,. . . ,name}
reaction = solution => solution | kinetics for solution => solution
solution = _ | object | number*object | solution + solution
The basic object is a molecular compound. Thanks to the :: operator, it can be
given a precise location, which is simply a name denoting a (fixed) compartment,
such as the nucleus, the cytoplasm, the membrane, etc. The binding operator -
is used to represent complexations and other forms of intermolecular bindings.
The alteration operator ~ makes it possible to attach to a compound a set of
modifications, such as the set of phosphorylated sites of a protein. For instance,
A~{p} denotes a phosphorylated form of the compound A, and A~{p}-B denotes
its complexation with B.

Reaction rules transform one formal solution into another one. The following
abbreviations are used: A =[C]=> B for the catalyzed reaction A+C => C+B, and
A <=> B for the reversible reaction equivalent to the two symmetrical reactions
A => B and B => A. The constant _ represents the empty solution. It is used
for instance in protein degradation rules, like A => , and in synthesis rules,
like =[G]=> A for the synthesis of A by the (activated gene) catalyst G. The
other main rule schemas are (de)complexation rules, like A + B => A-B for the
complexation of A and B, (de)phosphorylation rules, like A =[B]=> A~{p} for
the phosphorylation of A catalyzed by the kinase B, and transport rules, like
A::nucleus => A::cytoplasm for the transport of A from the nucleus to the
cytoplasm.

Reactions can be given kinetic expressions. For instance,
k*[A]*[B] for A=[B]=>A~{p} specifies a mass action law kinetics with param-
eter k for the reaction. Classical kinetic expressions are the mass action law
kinetics
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k ∗
n∏

i=1

xi
li

for a reaction with n reactants xi, where li is the stoichiometric coefficient of xi

as a reactant, Michaelis-Menten kinetics

Vm ∗ xs/(Km + xs)

for an enzymatic reaction of the form xs = [xe] => xp, where2 Vm = k ∗ (xe +
xe ∗ xs/Km), and Hill’s kinetics

Vm ∗ xs
n/(Km

n + xs
n)

of which Michaelis-Menten kinetics is a special case with n = 1. Kinetic expres-
sions can be written either explicitly, allowing any kinetics, or using shortcuts like
MA(k) for a Mass Action law with parameter k, or MM(Vm,Km) for a Michaelian
kinetics.

Example 1. The Mitogen-Activated Protein Kinase (MAPK) cascades are a
well-known example of signal transduction, since they appear in many receptor-
mediated signal transduction schemes. They are actively considered in pharma-
ceutical research, for their applications to cancer therapies. The MAPK/ERK
pathway is indeed hyperactivated in 30% of all human cancer tumours [20].

The structure of a MAPK cascade is a sequence of activations of three kinases
in the cytosol. The last kinase, MAPK, when activated, has an effect on different
substrates in the cytosol but also on gene transcription in the nucleus.

Since this cascade has been studied a lot, mathematical models of it appear
in most model repositories, like for instance that of Cellerator [21] or the SBML
repository page [2], both coming from [17]. This cascade was also the first ex-
ample treated by Regev, Silverman and Shapiro [22] in the pi-calculus process
algebra which was an initial source of inspiration for our own work.

Our first running example in this paper is the MAPK model without scaffold
of Levchenko et al. [17], transcribed in Biocham as follows:

declare MEK~parts_of({p1,p2}).
declare MAPK~parts_of({p1,p2}).
parameter(k1, 1).
parameter(k2, 0.4).
(MA(k1), MA(k2)) for RAF + RAFK <=> RAF-RAFK.
parameter(k3, 0.5).
parameter(k4, 0.5).
(MA(k3),MA(k4)) for RAF~{p1} + RAFPH <=> RAF~{p1}-RAFPH.
parameter(k5, 3.3).
parameter(k6, 0.42).
(MA(k5),MA(k6)) for MEK~$P + RAF~{p1} <=> MEK~$P-RAF~{p1}

2 xe∗xs/Km is the concentration of the enzyme-substrate complex, supposed constant
in the Michaelian approximation and xe + xe ∗ xs/Km is thus the total amount of
enzyme.
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Fig. 1. Reaction (hyper)graph of the MAPK model of[17]

where p2 not in $P.
parameter(k7, 10).
parameter(k8, 0.8).
(MA(k7),MA(k8)) for MEKPH + MEK~{p1}~$P <=> MEK~{p1}~$P-MEKPH.
parameter(k9, 20).
parameter(k10, 0.7).
(MA(k9),MA(k10)) for MAPK~$P + MEK~{p1,p2} <=> MAPK~$P-MEK~{p1,p2}

where p2 not in $P.
parameter(k11, 5).
parameter(k12, 0.4).
(MA(k11),MA(k12)) for MAPKPH + MAPK~{p1}~$P <=> MAPK~{p1}~$P-MAPKPH.
parameter(k13, 0.1).
MA(k13) for RAF-RAFK => RAFK + RAF~{p1}.
parameter(k14, 0.1).
MA(k14) for RAF~{p1}-RAFPH => RAF + RAFPH.
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parameter(k15, 0.1).
parameter(k16, 0.1).
MA(k15) for MEK~{p1}-RAF~{p1} => MEK~{p1,p2} + RAF~{p1}.
MA(k16) for MEK-RAF~{p1} => MEK~{p1} + RAF~{p1}.
parameter(k17, 0.1).
parameter(k18, 0.1).
MA(k17) for MEK~{p1}-MEKPH => MEK + MEKPH.
MA(k18) for MEK~{p1,p2}-MEKPH => MEK~{p1} + MEKPH.
parameter(k19, 0.1).
parameter(k20, 0.1).
MA(k19) for MAPK-MEK~{p1,p2} => MAPK~{p1} + MEK~{p1,p2}.
MA(k20) for MAPK~{p1}-MEK~{p1,p2} => MAPK~{p1,p2} + MEK~{p1,p2}.
parameter(k21, 0.1).
parameter(k22, 0.1).
MA(k21) for MAPK~{p1}-MAPKPH => MAPK + MAPKPH.
MA(k22) for MAPK~{p1,p2}-MAPKPH => MAPK~{p1} + MAPKPH.
present(MAPK,0.3).
present(MAPKPH,0.3).
present(MEK,0.2).
present(MEKPH,0.2).
present(RAF,0.4).
present(RAFK,0.1).
present(RAFPH,0.3).

For sake of simplicity, the pattern variables noted $P in the rules have not
been described in the syntax. They represent variables bounded by the declare
statement and that can be constrained in the where statement to represent rule
schemas, i.e. sets of rules defined by a pattern. The last statements define the
initial conditions, i.e. the concentrations of the initially present molecules, the
others being set to 0. Figure 1 depicts the reaction (hyper)graph of this model,
represented by a bipartite graph where molecules are in circles and reactions in
boxes.

Example 2. Our second running example in this paper will be the map of Kohn
[1] for the mammalian cell cycle control. It has been transcribed in Biocham [16]
to serve as a large benchmarking example of approx. 500 species and 800 rules.

2.2 Differential Semantics

A set of reaction rules {ei for Si => S′
i}i=1,...,n over molecular concentration

variables {x1, ..., xm}, can be interpreted under different semantics. The tradi-
tional differential semantics interpret the rules by the following system of Ordi-
nary Differential Equations (ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej
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Fig. 2. Simulation result of the ODEs associated to the MAPK cascade

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp.
left) member of rule i.

Example 3. Models based on ordinary differential equations (ODE) like the
MAPK cascade of example 1 allow us to reproduce simulation results like the
one pictured out in Figure 2, where the concentration of the visualized com-
pounds is represented on the vertical axis, and time on the horizontal axis. It
is possible to see from such simulations how the cascade evolves in time. It is
possible to change input quantities to check for a significant change in the out-
put of the cascade. Similarly, the sensitivity of the system to the values of the
parameters can be checked by running different simulations with different values
of the parameters, and this process can of course be automated.

2.3 Stochastic Semantics

The most realistic interpretation of biochemical reaction models is provided by
the stochastic semantics. In that semantics, a reaction model is interpreted as a
(continuous time) Markov chain, and the kinetic expressions as transition rates.
This interpretation is correct w.r.t. the Master Chemical Equation if we suppose
that the reactions happen in a well stirred environment (i.e. “instantaneous”
diffusion) with constant pressure, temperature and volume [23].

For a given volume Vk of the location where the compound xk resides, a
concentration Ck for xk is translated into a molecule number Nk = �Ck × Vk ×
NA�, where NA is Avogadro’s number. A state in the stochastic semantics will
be a vector of integers indicating the numbers of molecules for each species.
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Fig. 3. Stochastic simulation of the MAPK cascade

Formally, given a fixed finite set M of molecule names, let a discrete state be a
vector of positive integers of dimension |M|. The universe S of stochastic transi-
tions is the set of triplets (S, S′, τ) where S and S′ are discrete states and τ ∈ R

+ is
a weight. The stochastic transition semantics domain is the powerset DS = P(S).

Note first that discrete states have the same mathematical structure as solu-
tions in reaction rules, and can both be represented by |M|-dimensional vectors
of positive integers. Note also that in a stochastic transition model s ∈ DS , there
can be more than one transition from one state to another one, labelled with
different real numbers. We define the weight in s of a transition from state Si to
Sj as the sum of the weights τij =

∑
(Si,Sj ,τ)∈s τ .

Now, an element s ∈ DS of the domain precisely defines a Markov chain where
the probability pij of having a transition from state Si to state Sj is obtained
by normalizing the transition weights into pij = τij∑

k τik
. Then the transition

time can be computed as usual. Stochastic simulation techniques like Gillespie’s
algorithm [24] compute realizations of the processes described by models in the
stochastic domain, where random variables range over the probability and the
time of transition.

In order to relate the stochastic semantics domain to the syntactical domain
of reaction rules, let us consider a reaction rule model {ei for li=>ri}i∈I , and
denote by S →i S′ the fact that rule i fires in state S resulting in state S′,
i.e. if S ≥ li (pointwise) and S′ = S − li + ri. In a given state S, the numbers of
molecules are fixed integer values and the kinetic expression ei evaluates into a
(positive) real valued reaction rate, noted ei(S). We denote by αRS : DR → DS
the function that associates to a reaction model {ei for li=>ri}i∈I the stochastic
transition model {(S, S′, ei(S)) ∈ S | i ∈ I, S →i S′}.
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Example 4. In the example 1 of the MAPK cascade, a stochastic simulation of
the model is depicted in Figure 3. As expected in this example, the realizations
of this stochastic process are simply noisy versions of the differential simulation.
However, in models with for instance, very few molecules of some kind, quali-
tatively different behaviors may appear in the stochastic simulation, and thus
justify the recourse to that semantics in such cases. A classical example is the
model of the lambda phage virus [25] in which a small number of molecules,
promotion factors of two genes, can generate an explosive multiplication (lysis)
after a more or less long period of passive wait (lysogeny).

2.4 Asynchronous Discrete Semantics

The discrete semantics of reaction models can be defined as the trivial abstraction
αSD : DS → DD from the domain of stochastic transition models to the domain of
discrete transition systems, that simply forgets the transition probabilities. The
states, represented by integer numbers of molecules, and the transition without
the weights are thus the same as in the stochastic semantics. The discrete seman-
tics is asynchronous and non-deterministic but not probabilistic. It is worth notic-
ing that the discrete semantics corresponds to the classical Petri net semantics of
reaction models [26,27,28,29]. As a consequence, classical Petri net analysis tools
can be used for the analysis of reaction models at this abstraction level. For in-
stance, the elementary mode analysis of metabolic networks [30] has been shown
in [31] to be equivalent to the classical analysis of Petri nets by T-invariants. These
analyses apply to the discrete semantics of reaction models in all generality.

2.5 Asynchronous Boolean Semantics

The boolean semantics is purely qualitative, and provides somehow the most
abstract semantics of reaction models. The rules are interpreted by a (non-
deterministic) asynchronous transition system over boolean states representing
the absence or presence of molecules. It can be applied to large models for which
the kinetic data may be not available such as example 2.

Let a boolean state be a vector of booleans of dimension |M| indicating the
presence of each molecule in the state. The universe B of boolean transitions
is the set of pairs of boolean states which defines the domain DB = P(B) of
boolean transition models as its powerset.

The boolean semantics of a reaction model can be defined from its discrete
transition semantics by the zero/non-zero abstraction from the integers to the
booleans, and its pointwise extension from discrete states to boolean states,
which provides the abstraction function αDB : DD → DB from discrete models
to boolean models.

In Biocham however, the boolean semantics of reaction models is computed
directly from the syntax of rules, by associating to each reaction rule a set of
boolean transition rules that take into account the possible complete consump-
tion or not of the reactants by the reaction [32]. For instance, a reaction rule
like A+B=>C+D is interpreted by four boolean transition rules :
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1. A ∧ B −→ A ∧ B ∧ C ∧ D
2. A ∧ B −→ ¬A ∧ B ∧ C ∧ D
3. A ∧ B −→ A ∧ ¬B ∧ C ∧ D
4. A ∧ B −→ ¬A ∧ ¬B ∧ C ∧ D

Given a reaction model R, let us denote by SBB the set of boolean transitions
obtained by applying these boolean transition rules to each state. The following
theorem shows that the Biocham boolean semantics of reaction models over-
approximates the boolean semantics obtained from the quantitative semantics.
The non-existence of a behaviour in the Biocham boolean semantics thus entails
its non-existence in the quantitative semantics of the rules whatever the kinetic
expressions are.

Theorem 1 ([13]). For any reaction model R, αDB(αSD(αRS(R))) ⊆ SBB.

It is worth noticing that this property does not hold for the boolean semantics of
reaction models that always assume either incomplete consumption, or complete
consumption, like in Pathway Logic [33] or in boolean Petri nets [29]. In these
formalisms, the correctness of the boolean interpretation w.r.t. a quantitative
interpretation is thus left to the modeler who is in charge of explicitly adding
reaction rules for the different cases of consumption of the reactants.

Example 5. Figure 4 depicts one boolean simulation of the MAPK model of
example 1. In this figure, the horizontal axis represents a logical time axis, where
one reaction rule is fired at each time step. Just like the stochastic semantics,
there are many possible boolean simulations, but unlike the stochastic semantics,
they all have the same probability of realisation.

Fig. 4. Boolean simulation of the MAPK cascade
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One single boolean simulation is thus not very informative, and we shall rely
in section 4 on model-checking techniques to query the set of all possible boolean
simulations.

In particular if one behavior is not possible in the boolean semantics, theorem
1 tells us that it is not possible to obtain such a behavior in the stochastic
semantics either, whatever the kinetic expressions are.

2.6 Hierarchy of Semantics

In [13], the different semantics of Biocham, as well as the syntactical model of
reaction rules, are formally related by Galois connections in the framework of
abstract interpretation [34,35,36], with the noticeable exception of the differen-
tial semantics which does not belong to this hierarchy. These results go beyond
the scope of this tutorial, however they establish the formal abstraction relation-
ships between the syntactical, stochastic, discrete and boolean interpretations
of reaction rule sets ordered by inclusion. As a consequence, these abstractions
can be composed and their commutation with further abstractions (such as for
instance the influence graph derived from the reaction model) can be analyzed.
On the other hand, the differential semantics is not compatible with the rule set
inclusion ordering as the addition of kinetic terms may make them disappear in
the differential equations [13].

3 Influence Graphs of Activation and Inhibition

Influence graphs for activation and inhibition have been introduced for the anal-
ysis of gene expression in the setting of gene regulatory networks [3]. Such influ-
ence graphs are in fact an abstraction of complex reaction networks, and can be
applied as such to protein interaction networks. However the distinction between
the influence graph and the reaction (hyper)graph is crucial to the application
of Thomas’s conditions of multistationarity and oscillations [3,6] to protein in-
teraction network, and there has been some confusion between the two kinds of
graphs [19].

Here we consider two definitions of the influence graph associated to a reaction
model, and show their equivalence under general assumptions.

3.1 Definition from the Jacobian Matrix

In the differential semantics of a reaction rule model M = {ei for li=>ri | i ∈
I} we have ẋk = dxk/dt =

∑n
i=1(ri(xk) − li(xk)) ∗ ei. The Jacobian matrix J is

formed of the partial derivatives Jij = ∂ẋi/∂xj .

Definition 1. The differential influence graph associated to a reaction model is
the graph having for vertices the molecular species, and for edge-set the following
two kinds of edges:

{A activates B | ∂ ˙xB/∂xA > 0 in some point of the space}
∪{A inhibits B | ∂ ˙xB/∂xA < 0 in some point of the space}



Formal Cell Biology in Biocham 65

3.2 Definition from the Stoichiometric Coefficients

Definition 2. The syntactical influence graph associated to a reaction model M
is the graph having for vertices the molecular species, and for edges the following
set:

{A inhibits B | ∃(ei for li => ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) < 0}

∪{A activates B | ∃(ei for li => ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) > 0}

In particular, we have the following influences for elementary reactions of
complexation, modification, synthesis and degradation:

α({A + B => C}) = { A inhibits B, A inhibits A, B inhibits A,
B inhibits B, A activates C, B activates C}

α({A=[C]=>B})={C inhibits A, A inhibits A, A activates B, C activates B}
α({A = [B] => }) = { B inhibits A, A inhibits A}
α({ = [B] => A}) = { B activates A}

The inhibition loops on the reactants are justified by the negative sign in
the Jacobian matrix of the differential semantics of such reactions. Unlike the
differential influence graph, this graph is clearly trivial to compute by browsing
the syntax of the rules:

Proposition 1. The syntactical influence graph of a reaction model of n rules
is computable in O(n) time.

Example 6. Let us consider the MAPK signalling model of [17]. Figure 1 depicts
the reaction graph as a bipartite graph with round boxes for molecules and
rectangular boxes for rules. Figure 5 depicts the syntactical influence graph,
where activation (resp. inhibition) is materialized by plain (resp. dashed) arrows.

This computed graph reveals the negative feedbacks that are somewhat hid-
den in a purely directional signalling cascade of reactions. Furthermore, as no
molecule is at the same time an activator and an inhibitor of a same molecule,
this graph is largely independent of the kinetics of the reactions, as shown by
Theorem 3 of next section. It is indeed identical to the differential influence
graph for any standard kinetic expressions with any (non zero) kinetic parame-
ter values.

These negative feedbacks, a necessary condition for oscillations [3,7,8], have
been formally analyzed in [18] and interpreted as enzyme sequestration in com-
plexes. Furthermore, oscillations in the MAPK cascade model have been shown
in [37].

The influence graph also exhibits positive circuits. These are a necessary con-
dition for multistationarity [3,6] that has been observed in the MAPK model,
and experimentally in Xenopus oocytes [19]. Note that the absence of circuit in
the (directional) reaction graph of MAPK was misinterpreted as a counterex-
ample to Thomas’ rule in [19] because of a confusion between both kinds of
graphs.



66 F. Fages and S. Soliman

Fig. 5. Influence graph inferred from the MAPK reaction model

Example 7. On the map of Kohn, Example 2, the computation of activation and
inhibition influences takes less than one second CPU time (on a PC 1,7GHz) for the
complete model, showing the efficiency of the syntactical inference algorithm. The
influence graph is composed of 1231 activation edges and 1089 inhibition edges.

Furthermore in this large example no molecule is both an activator and an
inhibitor of the same target molecule. Theorem 3 thus entails that the computed
influence graph is equal to the differential graph that would be obtained in any
kinetic model of Kohn’s map for any standard kinetic expressions and for any
(non zero) parameter values.

Since there is a lot of kinetic data missing for such a big model, the possibility
to nevertheless obtain the exact influence graph without having to estimate
parameters or even to choose precise kinetic expressions is quite remarkable,
and justifies the use of purely qualitative models for the analysis of feedback
circuits.
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3.3 Over-approximation Theorem

Comparing the differential influence graph and the syntactical influence graph
requires that the information in the kinetic expressions and in the reactions
be compatible. This motivates the following definition where the first property
forbids the presence of purely kinetic inhibitors not represented in the reaction,
and the second property enforces that the variables appearing in the kinetic
expressions do appear as reactants or enzymes in the reaction.

Definition 3. In a reaction rule e for l=>r, we say that a kinetic expression
e is increasing iff for all molecules xk we have

1. ∂e/∂xk ≥ 0 in all points of the space,
2. l(xk) > 0 whenever ∂e/∂xk > 0 in some point of the space.

A reaction model has an increasing kinetics iff all its reaction rules have an
increasing kinetics.

One can easily check that:

Proposition 2. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are increasing.

On the other hand, negative Hill kinetics of the form k1/(k2+yn) are not increas-
ing. They represent an inhibition by a molecule y not belonging to the reactants,
and thus not reflected in the syntax of the reaction.

Theorem 2. For any reaction model with an increasing kinetics, the differential
influence graph is a subgraph of the syntactical influence graph.

Proof. If (A activates B) belongs to the differential influence graph then
∂Ḃ/∂A > 0. Hence there exists a term in the differential equation for B, of
the form (ri(B) − li(B)) ∗ ei with ∂ei/∂A of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0 then ∂ei/∂A > 0 and since ei is
increasing we get that li(A) > 0 and thus that (A activates B) in the syntactical
graph. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A < 0, which is not
possible for an increasing kinetics.

If (A inhibits B) is in the differential graph then ∂Ḃ/∂A < 0. Hence there
exists a term in the differential semantics, of the form (ri(B) − li(B)) ∗ ei with
∂ei/∂A of sign opposite to that of ri(B) − li(B).

Let us suppose that ri(B)− li(B) > 0 then ∂ei/∂A < 0, which is not possible
for an increasing kinetics. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A > 0
and since ei is increasing we get that li(A) > 0 and thus that (A activates B) is
in the syntactical influence graph.

Corollary 1. For any reaction model with an increasing kinetics, the differential
influence graph restricted to the phase space w.r.t. some initial conditions, is a
subgraph of the syntactical influence graph.
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Proof. Restricting the points of the phase space to those points that are acces-
sible from some initial states, restricts the number of edges in the differential
influence graphs which thus remains a subgraph of the syntactical influence
graph.

It is worth noticing that even in the simple case of mass action law kinetics,
the differential influence graph may be different from the syntactical influence
graph. For instance let x be the following model :

k1 ∗ A for A => B
k2 ∗ A for = [A] => A

In the syntactical influence graph, A activates B, A activates A and A inhibits
A, however Ȧ = (k2 − k1) ∗ A, hence ∂Ȧ/∂A can be made always positive or
always negative or always null, resulting in the absence of respectively, A inhibits
A, A activates A or both, in the differential influence graph.

3.4 Equivalence Theorem

Definition 4. In a reaction rule e for l=>r, a kinetic expression e is strongly
increasing iff for all molecules xk we have

1. ∂e/∂xk ≥ 0 in all points of the space,
2. l(xk) > 0 iff there exists a point in the space s.t. ∂e/∂xk > 0

A reaction model has a strongly increasing kinetics iff all its reaction rules have
a strongly increasing kinetics.

Note that strongly increasing implies increasing.

Proposition 3. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are strongly increasing.

Proof. For the case of Mass action law, the kinetics are of the form:

ei = ki ∗
m∏

l=1

x
li(xl)
l

with ki > 0 and li(xl) ≥ 0. We thus have ∂ei/∂xk = 0 if li(xk) = 0 and
∂ei/∂xk = ki ∗ li(xk) ∗ x

li(xk)−1
k

∏
l �=k x

li(xl)
l otherwise, which clearly satisfies (1)

and (2).
In the case of Hill kinetics (of which Michaelis Menten is a subcase), we have:

ei =
Vm ∗ xn

s

Kn
m + xn

s

for the reaction xs + xe => xp + xe and where Vm = k2 ∗ xtot
e = k2 ∗ (xe +

k1 ∗ xe ∗ xs/(k−1 + k2)) from the steady state approximation. It is obvious that
∂ei/∂xk = 0 for all xk other than xs and xe since they do not appear in ei and
one can easily check that with all the constants n, k1, k−1, k2 strictly positive,
both ∂ei/∂xe and ∂ei/∂xs are greater than 0 at some point in the space.
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Lemma 1. Let M be a reaction model with a strongly increasing kinetics,
Of (A activates B) is an edge in the syntactical influence graph, and not (A

inhibits B), then (A activates B) belongs to the differential influence graph.
If (A inhibits B) is an edge in the syntactical influence graph, and not (A

activates B), then (A inhibits B) belongs to the differential influence graph.

Proof. Since ∂Ḃ/∂A =
∑n

i=1(ri(B) − li(B)) ∗ ∂ei/∂A and all ei are increasing
we get that ∂Ḃ/∂A =

∑
{i≤n|li(A)>0}(ri(B) − li(B)) ∗ ∂ei/∂A.

Now if (A activates B) is in the syntactical influence graph, but not (A inhibits
B), then all rules such that li(A) > 0 verify ri(B) − li(B) ≥ 0 and there is at
least one rule for which the inequality is strict. We thus get that ∂Ḃ/∂A is a
sum of positive numbers, amongst which one is such that ri(B) − li(B) > 0 and
li(A) > 0 which, since M is strongly increasing, implies that there exists a point
in the space for which ∂ei/∂A > 0. Hence ∂Ḃ/∂A > 0 at that point, and (A
activates B) is thus in the differential influence graph.

For inhibition the same reasoning applies with the opposite sign for the ri(B)−
li(B) and thus for the finale partial derivative.

This lemma establishes the following equivalence result:

Theorem 3. In a reaction model with a strongly increasing kinetics and where
no molecule is at the same time an activator and an inhibitor of the same target
molecule, the differential and syntactical influence graphs coincide.

This theorem shows that for standard kinetic expressions, the syntactical influ-
ences coincide with the differential influences based on the signs of the coeffi-
cients in the Jacobian matrix, when no molecule is at the same time an activator
and an inhibitor of the same molecule. The theorem thus provides a linear time
algorithm for computing the differential influences in these cases, simply by
computing the syntactical influences. It shows also that the differential influence
graph is independent of the kinetic expressions.

Corollary 2. The differential influence graph of a reaction model of n rules
with a strongly increasing kinetics is computable in time O(n) if no molecule is
at the same time an activator and an inhibitor.

Corollary 3. The differential influence graph of a reaction model is independent
of the kinetic expressions as long as they are strongly increasing, if no molecule
is at the same time an activator and an inhibitor.

4 Biological Properties Formalized in Temporal Logic

Temporal logics and model-checking algorithms [38] have proved useful to re-
spectively express biological properties of complex biochemical systems and au-
tomatically verify their satisfaction in both qualitative and quantitative models,
i.e. in boolean [33,32,16], discrete [39,40], stochastic [41,42] and continuous mod-
els [14,43,32]. This approach relies on a logical paradigm for systems biology that
consists in making the following identifications [44]:
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biological model = transition system
biological property = temporal logic formulae

biological validation = model-checking

Having a formal language not only for describing models, i.e. transition systems
by either process calculi [22,45,46,47,48], rules [33,10,9], Petri nets [26,29], etc...,
but also for formalizing the biological properties of the system known from bio-
logical experiments under various conditions, opens a whole avenue of research
for designing automated reasoning tools inspired from circuit and program ver-
ification to help the modeler [15].

The temporal logics CTL (Computation Tree Logic), LTL (Linear Time Logic)
and PLTL (Probabilistic LTL) with numerical constraints are used in the three
semantics of reaction models, respectively, in the boolean semantics, the differ-
ential semantics and the stochastic semantics.

4.1 Temporal Logics CTL∗, CTL, LTL and PLTL

The Computation Tree Logic CTL∗ [38] is an extension of classical logic that
allows reasoning about an infinite tree of state transitions. It uses operators
about branches (non-deterministic choices) and time (state transitions). Two
path quantifiers A and E are thus introduced to handle non-determinism: Aφ
meaning that φ is true on all branches, and Eφ that it is true on at least one
branch. The time operators are F, G, X, U and W ; Xφ meaning φ is true at
the next transition, Gφ that φ is always true, Fφ that φ is eventually true,
φ U ψ meaning φ is always true until ψ becomes true, and φ W ψ meaning φ is
always true until ψ might become true. In this logic, Fφ is equivalent to true U φ,
φ W ψ to (φ U ψ)|Gφ. We have the following duality properties: !(E(φ)) = A(!φ),
!(F (φ)) = G(!φ), !(φ U ψ) = (!ψ W !φ) where ! denotes negation.

Formally, a Kripke structure (see for instance [38]) is a couple K = (S, R) where
S is a set of states in which atomic formulas can be evaluated, and R ⊆ S × S is
the transition relation between states, supposed to be total (i.e. ∀s ∈ S, ∃s′ ∈
S s.t. (s, s′) ∈ R). A path in K, starting from state s0 is an infinite sequence of
states π = s0, s1, · · · such that (si, si+1) ∈ R for all i ≥ 0. We denote by πk the
path sk, sk+1, · · ·. Table 4.1 recalls the inductive definition of the truth value of
an LTL formula in a state s or on a path π, in a given Kripke structure K.

The computation Tree Logic CTL is the fragment of CTL∗ where each tem-
poral operator must be preceded by a path operator, and each path operator
has to be immediately followed by a temporal operator.

The Linear Time Logic LTL is the fragment of CTL∗ without path quantifiers,
and where a formula is true in a Kripke structure if it is true on all paths.

The Probabilistic Computation Tree Logic PCTL quantifies the different
paths by replacing the E and A modalities of CTL by probabilities.

4.2 Qualitative Biological Properties in CTL

As shown in [32], CTL is sufficiently expressive for formalizing qualitative bio-
logical properties, such as :
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Table 1. Inductive definition of the truth value of a propositional CTL∗ formula in a
state s or a path π, in a given Kripke structure K

s |= α iff α is a propositional formula true in state s,
s |= Eψ iff there exists a path π starting from s s.t. π |= ψ,
s |= Aψ iff for all paths π starting from s, π |= ψ,
π |= φ iff s |= φ where s is the first state of π,
π |= Xψ iff π1 |= ψ,

π |= ψ U ψ′ iff there exists k ≥ 0 s.t. πk |= ψ′ and πj |= ψ for all 0 ≤ j < k.

π |= ψ W ψ′ iff either for all k ≥ 0, πk |= ψ.
or there exists k ≥ 0 s.t. πk |= ψ&ψ′ and for all 0 ≤ j < k, πj |= ψ.

π |=!ψ iff π �|= ψ,
π |= ψ & ψ′ iff π |= ψ and π |= ψ′,
π |= ψ | ψ′ iff π |= ψ or π |= ψ′,
π |= ψ ⇒ ψ′ iff π |= ψ′ or π �|= ψ,

– reachability where reachable(P) stands for EF (P );
– steady states where steady(P) stands for EG(P );
– stable states where stable(P) stands for AG(P );
– checkpoints where checkpoint(Q,P) stands for !E(!Q U P );
– oscillations where oscil(P) stands for AG(EF !P ∧ EF P ).
– and loop(P,Q) stands for AG((P ⇒ EF Q) ∧ (Q ⇒ EF P )).

Without strong fairness assumption, it is worth noting that the last two ab-
breviations are actually necessary but not sufficient conditions for oscillations.
The correct formula for oscillations is indeed a CTL∗ formula that cannot be
expressed in CTL: EG(F !P ∧ F P ).

In Biocham, these abbreviations can be used inside CTL formulae. For
instance, the formula reachable(steady(P)) expresses that the steady state de-
noted by formula P is reachable, or the formula AG(!P -> checkpoint(Q,P)) ex-
presses that Q is a checkpoint for P not only in the initial state but in all
reachable states.

Such boolean CTL specification can also be used to complete or revise a
model with machine learning algorithms. In [14], a model revision algorithm is
described with the ability to not only add rules to, but also remove rules from a
model in order to satisfy a CTL specification.

Example 8. In our running example of the MAPK cascade, one can use Biocham
to enumerate, for instance, all simple reachability, stability, checkpoints and os-
cillation properties that are true in the model. This generates 112 CTL properties
that can be taken as a specification. Then the model can be automatically re-
duced by deleting rules that do not change the satisfaction of the specification.
In this model, 20 rules are left and 10 rules are deleted, essentially reverse re-
action rules that do not change the specification of the cascade at this boolean
abstraction level.
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biocham: reduce_model.
1: deleting RAF-RAFK=>RAF+RAFK
2: deleting RAFPH-RAF~{p1}=>RAFPH+RAF~{p1}
3: deleting MEK-RAF~{p1}=>MEK+RAF~{p1}
4: deleting MEKPH-MEK~{p1}=>MEKPH+MEK~{p1}
5: deleting MAPK-MEK~{p1,p2}=>MAPK+MEK~{p1,p2}
6: deleting MAPKPH-MAPK~{p1}=>MAPKPH+MAPK~{p1}
7: deleting MEK~{p1}-RAF~{p1}=>MEK~{p1}+RAF~{p1}
8: deleting MEKPH-MEK~{p1,p2}=>MEKPH+MEK~{p1,p2}
9: deleting MAPK~{p1}-MEK~{p1,p2}=>MAPK~{p1}+MEK~{p1,p2}
10: deleting MAPKPH-MAPK~{p1,p2}=>MAPKPH+MAPK~{p1,p2}

Furthermore, temporal specifications can be used to correct a model auto-
matically, with the model revision algorithm described in [14] for adding and
removing rules in order to satisfy the temporal formulas. For instance, in the
original model, if we delete one useful rule, the rule, or another model revision,
can be automatically found to satisfy the specification:

biocham: delete_rules(RAF~{p1}+RAFPH=>RAF~{p1}-RAFPH).
RAFPH+RAF~{p1}=>RAFPH-RAF~{p1}
biocham: check_all.
The specification is not satisfied.
This formula is the first not verified: Ai(oscil(RAF))
biocham: learn_one_addition(elementary_interaction_rules).
Rules tested: 2027
Possible rules to add: 1
RAFPH+RAF~{p1}=>RAFPH-RAF~{p1}

In this example, the deleted rule is recovered from the temporal specification
and no other choice is possible for the given pattern of elementary rules to search
for. Note that this pattern generates 2027 rules to check, and that this number
can be drastically reduced by integrating in the pattern type information such
as protein function kinase or phosphatase to restrict the search [49,13].

Example 9. In example 2 of Kohn’s map with 800 reaction rules over 500 molec-
ular compounds, simple CTL properties have been model-checked in Biocham
in a few seconds [16] using the symbolic model-checker NuSMV [50]. This shows
the efficiency of model-checking techniques for querying all possible behaviors of
a reaction model under the boolean semantics. Omissions in Kohn’s map, such
as for instance the absence of synthesis for cyclin B, can be immediately detected
by the absence of possibility to get oscillations for cyclin B, unlike cyclin A for
instance.

4.3 Quantitative Biological Properties Formalized in LTL with
Constraints over the Reals

LTL with Constraints Over the Reals. A version of LTL with constraints
over the reals, called Constraint-LTL, is used in Biocham [14] to express tem-
poral properties about molecular concentrations. A similar approach is used in
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the DARPA BioSpice project [43]. Constraint-LTL considers first-order atomic
formulae with equality, inequality and arithmetic operators ranging over real
values of concentrations and of their derivatives. For instance F([A]>10) ex-
presses that the concentration of A eventually gets above the threshold value 10.
G([A]+[B]<[C]) expresses that the concentration of C is always greater than
the sum of the concentrations of A and B. Oscillation properties, abbreviated
as oscil(M,K), are defined as a change of sign of the derivative of M at least K
times: F((d[M]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...)))The
abbreviated formula oscil(M,K,V) adds the constraint that the maximum con-
centration of M must be above the threshold V in at least K oscillations.

In this context, the Kripke structures in which the LTL formula are interpreted
are linear Kripke structures which represent either an experimental data time
series or a simulation trace, both completed with loops on terminal states. For
instance, in a model described by a system of ordinary differential equations
(ODE), and under the hypothesis that the initial state is completely defined,
numerical integration methods (such as Runge-Kutta or Rosenbrock method for
stiff systems) provide a discrete simulation trace. This trace constitutes a linear
Kripke structure in which Constraint-LTL formulae can be interpreted. Since
constraints refer not only to concentrations, but also to their derivatives, traces
of the form

(< t0, x0, dx0/dt, d2x0/dt2 >, < t1, x1, dx1/dt, d2x1/dt2 >, ...)

are considered, where at each time point ti, the trace associates the concentration
values xi to the variables, and the values of their first and second derivatives
dxi/dt and d2xi/dt2.

It is worth noting that in adaptive step size integration methods of ODE
systems, the step size ti+1 − ti is not constant and is determined through an
estimation of the error made by the discretization.

Constraint-LTL Model-Checking Algorithm. Let us assume a finite linear
Kripke structure, i.e. a finite chain of states containing a loop on the last state.
For these structures, the standard model-checking algorithms [38] can be easily
adapted to Constraint-LTL as follows:

Algorithm 1 (Constraint-LTL model-checking). [14,43]

1. label each edge with the atomic sub-formulae of φ that are true at this point;
2. add sub-formulae of the form Xφ to the immediate predecessors of points

labeled with φ;
3. add sub-formulae of the form φ1 U φ2 to the points preceding a point labeled

with φ2 as long as φ1 holds;
4. add sub-formulae of the form φ1 W φ2 to the last state if it is labeled by φ1,

and to the predecessors of the points labeled by φ1 W φ2 as long as φ1 holds
and add sub-formulae of the form φ1 W φ2 to the points preceding a point
labeled with φ1 ∧ φ2 as long as φ1 holds;

5. return the edges labeled by φ.
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In particular, given an ODE model and a temporal property φ to verify within
a finite time horizon, the computation of a finite simulation trace by numerical
integration provides a linear Kripke structure where the terminal state is com-
pleted with a loop. Note that the notion of next state (operator X) refers to the
state of the following time point in a discretized trace, and thus does not neces-
sarily imply real time neighborhood. The rationale of this algorithm is that the
numerical trace contains enough relevant points, and in particular those where
the derivatives change abruptly, to correctly evaluate temporal logic formulae.
This has been very well verified in practice with various examples of published
mathematical models [14].

In [51], the model checking algorithm for constraint LTL is generalized to a
constraint LTL solving algorithm with the capability to compute domains of
real valued variables (such as thresholds) for which a constraint LTL formula is
true. This is used for the analysis of numerical data time series in temporal logic
and the automatic generation of a temporal specification of some pattern from
biological experiment data time series.

Search of Kinetic Parameter Values from Constraint-LTL Properties.
One can use constraint LTL model-checking to design a generate and test algo-
rithm for finding parameter values such that a given LTL specification is satisfied.

A set of parameters, together with intervals of possible values and a precision
parameter, are input to an enumeration algorithm. All value combinations are
then scanned with a step size corresponding to the given precision, until the
specification is satisfied.

Example 10. In the example 1 of the MAPK model, this parameter search algo-
rithm can be used, for instance, to increase the overshoot for the complexation
RAF-RAFK observed in the simulation of figure 2 as follows:

biocham: add_ltl(F([RAF-RAFK]>0.05)).
biocham: check_ltl.
F([RAF-RAFK]>0.05) is false.
biocham: search_parameters([k1], [(0,10)], 40, 20).
First values found that make F([RAF-RAFK]>0.05) true:
parameter(k1,1.75).
Search time: 2.96 s

The resulting simulation with the new value found for the complexation param-
eter k1=1.75 is depicted in figure 6.

This search procedure actually replicates and automates part of what the mod-
eler currently does by hand: trying different parameter values, between bounds
that are thought reasonable, or computed by other methods such as bifurca-
tion diagrams, in order to obtain behaviors in accordance with the experimental
knowledge. Biocham provides a way to explore much faster this parameter space,
once the effort for formalizing the expected behavior in LTL is done. The main
novel feature of this method is its capability to express and combine in LTL both



Formal Cell Biology in Biocham 75

Fig. 6. Simulation result of the MAP cascade with new parameter value inferred for
increasing the overshoot on RAF-RAFK

qualitative and quantitative constraints on the expected behavior of the model.
In [52] it is used for exploring the conditions of entrainment in period of the cell
cycle by the circadian cycle in a coupled model of these cycles.

The computational complexity of the parameter values scanning grows lin-
early in the number of combinations of parameter values to try, that is in O(dn)
where n is the number of parameter values to find and d the number of val-
ues to try for each parameter. The difficulty to use other search algorithms
better than generate-and-test (such as local search or simulated annealing for
instance) comes from the criterion of satisfaction of LTL formulae which is nat-
urally boolean and for which it is not obvious to define a multi-valued measure
of satisfaction.

4.4 Probabilistic Model-Checking

For the stochastic semantics, it is natural to consider the PCTL logic [53] which
basically replaces the path operators of CTL, E and A, by the operator P��p. This
operator represents a constraint �	p on the probability that the formula under
P��p is true. For instance, A(ψ U ψ′) becomes P≥1(ψ U ψ′), i.e. the probability
that ψ U ψ′ is realized is 1. The atomic formulae considered here are first-order
formulae with arithmetic constraints, ranging on integers representing numbers
of molecules.

However, he existing probabilistic model-checking tools, like that of PRISM
[54], do not handle well highly non-deterministic examples, nor those where
variables have a large domain as it is the case in BIOCHAM models’ stochastic
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semantics.. This led us to actually consider the PLTL fragment of PCTL formu-
lae in which the P��p operator can only appear once as head of the formula, and
to use a Monte-Carlo method as done in the APMC system [55]. To evaluate the
probability of realization of the underlying LTL formula, BIOCHAM samples
a certain number of stochastic simulations using standard algorithms like that
of Gillespie [24] or of Gibson [56]. The outer probability is then estimated by
counting. It is worth noting that this method provides a real estimate of real-
ization of the LTL formula, whereas PCTL expresses the boolean satisfaction of
a probability constraint (�	p) over the formula.

In principle, the Monte-Carlo algorithm can thus be used for model-checking
and kinetic parameter learning along the same lines as in the differential seman-
tics and constraint-LTL. However, both the stochastic simulation process and
the model-checking process are computationally more expensive than in the dif-
ferential semantics by several orders of magnitude. For this reason, such search
algorithms are currently not practical with the stochastic semantics.

5 Conclusion

Systems biology can benefit from formal methods originating from programming
theory in many ways. By formalizing the different semantics of a reaction model,
we have shown that, to a large extent, the influence graph of a reaction model is
independent of the kinetic parameters and kinetic expressions, and that it can be
computed in linear time simply from the syntax of the reactions. This happens for
strongly increasing kinetics such as classical mass action law, Michaelis-Menten
and Hill kinetics, when no molecule is at the same time an activator and an
inhibitor of a same target molecule. The inference of the syntactical influence
graph from a reaction model has been implemented in Biocham, and applied to
various models. On a transcription of Kohn’s map into approx. 800 reaction rules,
this implementation shows that no molecule is at the same time an activator
and an inhibitor of a same molecule, and therefore, our equivalence theorem
states that the differential influence graph would be the same for any standard
kinetics with any parameter values. On the MAPK signalling cascade that does
not contain any feedback reaction, the implementation does reveal both positive
and negative feedback circuits in the influence graph, which has been a source
of confusion for the correct application of Thomas’ rules. Furthermore, in this
example again, no molecule is at the same time an activator and an inhibitor
of another molecule, showing the independence of the influence graph from the
kinetics.

By formalizing the biological properties observed in experiments, in temporal
logic, we have illustrated the expressivity of these logics in this context, and we
have shown that classical as well as new model-checking techniques can be ap-
plied for validating reaction models w.r.t. temporal specifications. The beauty of
this approach is that it deals not only with the boolean semantics but also with
the differential semantics (and stochastic semantics) of reaction models. Fur-
thermore, such semi-qualitative semi-quantitative temporal specifications can be
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also used for searching parameter values, in a complementary fashion to classical
mathematical methods such as bifurcation diagrams. The improvement of this
method by the definition of a measure of satisfaction of a temporal formula with
constraints, and a gradient descent analog, are currently under investigation.
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Abstract. Diverse hierarchies play a role in modeling and simulation for compu-
tational biology, e.g. categories, abstraction hierarchies, and composition hierar-
chies. Composition hierarchies seem a natural and straightforward focus for our
exploration. What are model components and the requirements for a composite
approach? How far do they support the quest for building blocks in computational
biology? Modeling formalisms provide different means for composing a model.
We will illuminate this with DEVS (Discrete event systems specification) and the
π calculus. Whereas in DEVS distinctions are emphasized, e.g. between a system
and its environment, between properties attributed to a system and the system
itself, these distinctions become fluent in the compact description of the π cal-
culus. However, both share the problem that in order to support a comfortable
modeling, a series of extensions have been developed which also influence their
possibility to support a hierarchical modeling. Thus, not individual formalisms
but two families of formalisms and how they support a composite modeling will
be presented. In computational biology one type of composite model deserves a
closer inspection, as it brings together the wish to compose models and the need
to describe a system at different levels in a unique manner, i.e. multi-level models.

Keywords: hierarchical models, DEVS, pi calculus, model components, multi-
level modeling.

1 Introduction

The goal of Computational Biology is to analyze the behavior and interrelationships of
functional biological systems. Modeling and simulation is on its way to be established
as one of the core tools in cell biological studies, which also inspires the development
and use of different modeling and simulation methods.

As biological systems are governed by the laws of chemistry and physics, simula-
tion approaches from these domains are also viable for the simulation of cell biological
models. Nevertheless, the size of these models often limits their applicability. This led
to numerous abstractions: from the actual physical processes, described by quantum
mechanics, over approaches that abstract to entire atoms (molecular dynamics), toward
approaches that only consider molecules, compartments, or cells [1]. Simulation algo-
rithms for a sub-molecular scale rely on natural laws that are of continuous nature [2].
At the level of molecules, approaches abstract from the natural laws by assuming that
the molecules move randomly (i.e., Brownian Motion). Turning from single molecules
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to concentrations of molecules, a system can be described using ODEs. However, this
deterministic continuous simulation is inadequate for models with small numbers of
molecules, where stochastic effects play a role. The stochastic effects that occur can be
expressed by the Chemical Master Equation (CME), which accurately models the sys-
tem behavior as a probability distribution of a chemical system’s state, depending on
the current time. To compute this formula is extremely hard, if not impossible for most
practical cases. In [3], Gillespie introduced a stochastic simulation algorithm (SSA)
whose outcome exactly samples the chemical master equation. The algorithm assumes
that the system under study is in thermal equilibrium, i.e. all molecules are randomly
distributed in a uniform manner.

Obviously, each of the modeling and simulation approaches comes along with spe-
cific abstractions, assumptions, and constraints, which influence its suitability for a
particular case study. Abstractions are essential in modeling, as each model is an ab-
straction of the system it describes [4]. To save space and time and to improve clarity
by concentrating on relevant aspects of behavior, the abstraction of a model might be
increased, e.g. by aggregating state variables, spatial and temporal variable scales, or
components, or by omitting components, variables, and interactions. Abstractions, as-
sumptions, and constraints are closely inter-related. However, in only few cases this
relation is made explicit, e.g. that a less abstract model will lead to a relaxation of
assumptions. Widely agreed upon representations of assumptions are lacking, which
hampers also a semantically meaningful reuse of models [5] and motivates current ap-
proaches like MIRIAM [6].

For understanding the functioning of a whole cell or an entire organ, one abstraction
level will likely not suffice. Hybrid modeling approaches combine continuous and dis-
crete perspectives on systems under study [7], and qualitative scales are combined with
quantitative ones [8,9]. Those can also be found in the area of computational biology,
e.g. [10,11]. Many utilize parallel composition to describe the system as a community
of concurrent sub-systems each of which might or might not be described at different
levels of abstractions [12], or some might use sequential composition to structure the
behavior of the system e.g. with STATE CHARTS [13]. A system being composed of
sub-systems, traditionally complements the network perspective and the functional per-
ception of dynamic systems in modeling and simulation. This composition hierarchy,
i.e. the parallel composition, is what is typically meant when speaking of a model hi-
erarchy, thus it is the pre-dominant form of hierarchy when it comes to modeling and
simulation in general. In computational biology, it is also gaining ground [14,15] and
thus competing with another hierarchical concept that has traditionally been associated
with biology: categories. Categories [16] are meant to reduce our cognitive effort in
dealing with complexity, by providing some structuring. The same can be said for hi-
erarchies in general: “whether nature is truly organized hiearchically is moot. Men’s
perception of nature is hierarchical.” [17].

2 Setting the Context

Statements like “Explanation of observed behavior is not possible with reference solely
to the spatial-temporal scale at which the observation was made” [18, p.267] and
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“behavior at any level is explained in terms of the level below, and its significance
is found in the level above” [17, p.127] emphasize the role of hierarchical modeling.
For the area of theoretical biology the fundamental importance of hierarchies has been
stated early [19], being also reflected in a series of edited books about hierarchy theory
coupled with a discussion about reductionism versus holism, e.g. [20,21,22]. Hierar-
chies are ubiquitous, from atomic and molecular processes up to the systematic classi-
fication of living species and large individual populations. Hierarchies form a cognitive
means for separating more important elements from less important ones and impose an
ordering on elements such that some elements are tagged with a higher rank than oth-
ers. Thereby, a hierarchy structures knowledge about the relationship between elements
of a system and helps reducing the level of detail [23]. Based on [24], we distinguish,
according to the role in simulation models, different kinds of hierarchies:

Representation. The higher level forms a representation of the lower level and hides
this detailed realization from the user. Icons in VIMS (Visual Interactive Modeling
Systems) are an example for abstracting away technical details and hiding them
behind an icon. Thereby, these approaches follow the information seeking mantra
of [25]: “Overview first, zoom and filter, then details-on-demand”.

Classification. Classification is another way of structuring the knowledge about a
given system. Categories shall provide the maximum of information with as little
cognitive effort as possible [26]. As the later is context dependent, it is not sur-
prising that for many areas, e.g. biology, different opposing methods to construct
categories exist [27]. “The objective criterion for being in the same category is hav-
ing common properties. But there is no objectivist criterion for which properties
are to count.” [16, p.186]. Categories are the pendant of classes in object-oriented
approaches [28]. Already Simula, the first object-oriented programming language,
supported the definition of classes and inheritance. Consequently, with establishing
object-oriented approaches in modeling and simulation also the use of classes and
inheritance have entered state of the art modeling, reflected in developments like
e.g. DEVS/SES for discrete systems [29], and, even more visible, MODELICA for
continuous systems [30]. In addition, categories in the form of ontologies are start-
ing to play a role for reusing models. Particularly, for a semantically valid reuse and
composition of models [31], the annotation of model components with meta-data
becomes necessary. Objectives, assumptions, and constraints for each component
need to be represented [5], open question are what information to represent and
how to represent it for an automatic composition. Due to the many online ontolo-
gies in medicine and biology, computational biology has a head start in specifying
this meta-data, e.g. [6].

Refinement. Refinement hierarchies structure the space by relating models due to ab-
straction, or reduction. Typically refinement refers in modeling to adding step-wise
more details to a model, and thus is essential in generating (more complex) mod-
els. With refinement the relation between alternative, differently detailed models is
explored, the intention is to be able to replace one model by another model of the
same system. Whereas in programming one starts with a model and refines it in
terms of programming, in modeling the opposite direction is often also of interest,
i.e., how to develop a more simple and behavior equivalent model? Aggregation of
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components, moving from quantitative to qualitative scales, or reducing the model
are means to achieve a more abstract model. For the purpose of model reduction
e.g. sensitivity analysis are exploited [32]: “Perfection is achieved, not when there
is nothing more to add, but when there is nothing left to take away” (Antoine de
Saint Exupery). Independent whether a model shall be simplified, or more detail
added to it, if refinement rules are made explicit they support reasoning about the
relation between different models, model parts, and their interactions. This can help
ensuring correctness and reliability of large simulation models, e.g. [33], and opens
one avenue for combining simulation and verification for a better understanding of
dynamic system [34].

Composition. Containment of elements within another element, the “part of”-relation
forms probably the most well known type of hierarchy exploited in dynamic sys-
tems modeling. It complements the network and functional view [35]. Composition
reduces the scope of single models and allows to construct models top-down or bot-
tom up. In computational biology, particularly in synthetic biology, researchers are
increasingly concerned with “the definition, description and characterization of the
basic biological parts, as well as standard conditions that support the use of parts
in combination and overall system operation” [14, p.450]. Whereas composition-
ality is currently mostly exploited for model description and construction, it gains
importance for analyzing dynamic systems as well [36].

In the scope of this paper we will concentrate on composition, although some of
the other forms of hierarchical modeling will creep into our exploration of hierarchical
modeling in biology sporadically. As already stated, defining a system as being com-
posed of other system, or a model being composed of other models is well established
as a means for complexity reduction in systems theory and modeling and simulation.
However, in the last 10 years the term “components” and “component-based design” has
received a more concrete meaning, due to developments in the area of software compo-
nents [37] which are also reflected in the area of model components [38]. A component
should be a replaceable part of a system and be usable in unforseen contexts for different
purposes [37]. Components provide a certain functionality, expressed by a well-defined
interface and realized by an implementation [38]. Interfaces should contain as much
information, as is needed to use an implementation solely via its interface [39]. In a
composition, analysis should be done based on interfaces. An interface may be seen as
a model of an implementation. Thus, for simulation model components, an interface is
a model of a model. Composition of model parts that were developed independently
of each other combine two hierarchical relations: (i) refinement relation between inter-
faces and implementations and (ii) part-of relations between a composite and its parts.
Figure 1 visualizes both hierarchical relations in the context of compositions.

The main challenge for compositional approaches is summarized in the term compo-
sitionality. Compositionality requires that the meaning of a composition can be derived
solely from the semantic descriptions of the parts together with the rules of combina-
tion [40]. Parts have compositional properties if the semantics of a composition can be
derived from the semantics of the used components [37]. Generally, we would assume
that the less composed a model is the more abstract it is, however, this might not be true
in all cases (cf. Figure 2).
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Fig. 1. Composition based on interfaces

Composition hierarchies, that are formed by the “is part of”, and abstraction hi-
erarchies do not necessarily coincide, nor are they necessarily entirely independent.
One type of model is just defined by a specific combination of composition and re-
finement, i.e. multi-level models. Multi-level models combine micro and macro models
within one model, so they do not substitute one macro model by a micro model but
combine both to form a part of the system. This implies that a model describes one
system at population and individual level. As micro and macro level do not refer to
two separate sub-systems, they do not form two loosely coupled components. The in-
dividuals at micro level make up (part of) the population at macro level. Obviously
the behavior at micro level will have an effect on the macro level, but also vice versa
the dynamics at macro level influence the behavior at micro level. Higher levels place
constraints on the behavior at lower levels, and also the behavior of the higher level is
consistent with lower level behavior [17]. Downward causation [41] and upward cau-
sation link both organizational levels in biology. The question how to put both levels
into relation is still controversially discussed: Are micro and macro complementary or
incommensurable [42]?

As soon as explicit structures are introduced into modeling the question arises
whether and how these structures can be changed. Referring to the composition hi-
erarchy, is it possible that new components are generated, that components are deleted,
and that new hierarchical levels are introduced, to allow a hierarchical tree structure
to grow in breadth and in depth? This possibility is particularly desirable when mod-
eling biological systems [43], as phenomena like succession, metamorphosis, or cell
differentiation ask for a structuring of the temporal plane. Variable structure models are
models that contain in their own description the possibility to change their own behav-
ior, interaction, and composition pattern. But which entity is responsible for changing
the structure of whom, what information and what communication is required? Solu-
tions have to tackle the question how much autonomy and control [44] are assigned to
the different sub-models, or “sed quis custodient ipsos custodes?” [45].
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compos. level = abstract. level compos. level �= abstract. level

Fig. 2. Composition and abstraction. Different shades of gray mean different abstraction levels.

2.1 Outline

Compositional hierarchies seem a natural and straightforward focus for our exploration
of hierarchical modeling formalisms in computational biology. Thereby, the focus will
be on two rather different modeling approaches, one state-oriented, i.e. DEVS, another
process-oriented, i.e. the π calculus. We will first discuss DEVS and two extensions that
address specific requirements of biological systems, i.e. ρ-DEVS and ML-DEVS. After-
wards stochastic π and extensions that add structure to stochastic π, i.e. BETA-BINDERS,
BIOAMBIENTS, and SPICO will be presented and the question will be pursued whether
and how they support a hierarchical modeling. Hierarchical component-based modeling
is based on the availability of model components and suggests a reuse of model compo-
nents. Steps towards a component-based design of models will conclude our exploration.

3 Hierarchies in DEVS

The Discrete Event Systems Specification (DEVS) is a modeling formalism originally
introduced in the 1970s by B. P. Zeigler [46]. DEVS models consist of atomic and of
coupled submodels. The first ones are the active ones, defined by states, state transition
and output functions of the model, whereas the latter ones serve only as passive con-
tainers for other models and route the incoming and outgoing messages. This modular
composition leads automatically to tree-like hierarchies where the root and nodes of the
tree reflect coupled models and leafs atomic models (see Figure 3).
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Fig. 3. Tree-like model structure of DEVS. Ci: coupled models, Ai: atomic models. Model inter-
faces and their couplings are not shown.

3.1 DEVS Basics

Systems modeled with DEVS have a continuous time base but events take place at dis-
crete time points, i.e. DEVS is a classical discrete event formalism. We will start here
with a variant of DEVS called parallel DEVS (P-DEVS) [47], which has a few additional
features compared to the original DEVS formalism of Zeigler [46]. In the following, we
will use DEVS and P-DEVS as synonyms.

Definition 1. An atomic P-DEVS model is defined as a structure:

〈X, Y, S, ta, δext, δint, δcon, λ〉

where

X is the structured set of inputs
Y is the structured set of outputs
S is the structured set of states
ta : S → R≥0 ∪ {∞} is the time advance function
δext : Q × Xb → S is the external state transition function, with

Q = {(s, e) : s ∈ S, 0 ≤ e < ta(s)} state set including elapsed time
δint : S → S is the internal state transition function
δcon : S × Xb → S is the confluent transition function
λ : S → Y is the output function

State transitions can be triggered either by the δint function, which is called when a
specific time interval associated with the current state (ta(s)) has been elapsed, or by
the δext function, which is called if an external message from another model component
arrives. Additionally, δcon can also change the model’s state. It is called if an internal
and external event coincide. For communication, DEVS models are equipped with sets
of allowed input and output events. The output generating function λ is called just right
before the internal transition function.
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In the general variant of the formalism, the input set X and the output set Y are both
plain sets respectively. In practice, it is common to structure X and Y into ports with
separate value ranges [46]. Formally, X may be structured into a set of pairs {(i, v)|i ∈
InPorts , v ∈ Xi}, where InPorts is the set of input ports and each Xi is the set of
allowed values for all i ∈ InPorts . Y can be structured in the same way.

How models interact via their in- and output ports, is specified in the coupled models,
which are defined as follows:

Definition 2. A coupled P-DEVS model is defined as a structure:

〈X, Y, D, Mi, Ii, Zi,j〉

where

X is the structured set of inputs
Y is the structured set of outputs
D is the name set of components
Mi is the structured set of components
Ii is the set of influencers of each component
Zi,j is the input output translation function

Now let’s have a look at some examples how DEVS models of biological systems can
look like and where limitations appear.

Modeling Biological Systems with DEVS. As the modular structure of DEVS models
leads to a strict separation of the individual submodels, intuitively membranes come
into mind which separate different cells, organelles, and compartments from each other
as well. The model interfaces, i.e. input and output ports, can represent the perme-
ability of the membrane or transport proteins for special molecules. Receptors on the
surface of the membrane for catching a signal can also be modeled by input ports. The
schematic model structure of a simple cell compartment model is shown in Figure 4.
The mitochondrion in the model (the “power plant” of cells) has one input port and
one output port for glucose input and ATP output respectively (Figure 5). In real cells
only the major products of glucose degradation in the cytoplasm by glycolysis enter
the mitochondria and not glucose itself, but modeling is always simplification and for
the example here this is a suitable assumption. If a glucose molecule reaches the mi-
tochondrion, the δext function is called and the glucose depot variable (#glucose) will
be incremented. Afterwards, the main state (phase) of the model changes from the idle
phase to the working phase. The working phase needs a specific time (timeToNextATP)
to metabolize one glucose to an equivalent of 38 ATP molecules and sending this event
through the output port to other model components. This time is not static but dy-
namically calculated by the function metabolizeDuration which is dependent on the
glucose amount. The mitochondrion model is just a very small example, but it shows
how biological processes can be modeled with DEVS.

Other examples, which the DEVS modeling formalism could be suitable for, are cell
to cell influences. Interactions between different cells in a tissue are determined by their
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Fig. 4. Structure of a simple cell compartment model. From the mitochondrion model more than
one instance exists. The connected small white squares indicate coupled input and output ports.

1 X = {glucosIn}
2
3 Y = {atpOut}
4
5 S = { (phase, #glucose, timeToNextATP) |
6 phase ∈ (idle, working),
7 #glucose ∈ N,
8 timeToNextATP ∈ R+ }
9

10 δext =
11 #glucose++;
12 timeToNextATP = metabolizeDuration(#glucose);
13 phase = working
14
15 δint =
16 if (#glucose > 0) then
17 #glucose--
18 timeToNextATP = metabolizeDuration(#glucose);
19 phase = working
20 else
21 phase = idle
22
23 δcon = δint; δext

24
25 λ = atpOut("ATP")
26
27 ta = case phase of
28 idle: ∞
29 working: timeToNextATP
30 end case

Fig. 5. Atomic model of a mitochondrion. The input port receives glucose shuttling events and
the output port releases ATP. State changes are triggered by the δ functions.
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neighborhood and thus the cell-cell connections can be clearly defined. In a model of
the only 203 cells containing nervous system of the worm C. elegans for example, some
cell models could have ports for external inputs (sensory receptors in the head) and other
sub-models could have external output interfaces (motoneurons for muscle stimulation).
The nervous system cells between the receptors and the motoneurons are connected by
synapses, which can be modeled by input and output ports as well. A stimulation of a
receptor cell would then cause a signal that can be processed and forwarded from one
cell to another until it reaches its final destination (the muscles).

The functionality of enzyme complexes built from several subunits like ATP syn-
thases can be nicely modeled with DEVS as well. Different subunits are connected via
ports and the messages from one protein to another indicate the proton flow through
channels of the enzyme. As has been shown in the example of tryptophan synthase,
due to explicit couplings between models, co-valent structures and processes like the
tunneling of substances (indole between the alpha and the beta sub-unit in the case of
the trytophan) are suitable for a modeling in DEVS [48].

3.2 Dynamically Structured Models

Structural dynamics can be found in biology very frequently. Beginning at the level of
molecular dynamics over cell growth up to individuals in an ecosystem. Unfortunately,
a classical DEVS model structure is fixed, that means, its composition and couplings
of submodels cannot change during simulation. Such a restriction of the formalism
consequentially hampers the modeling of dynamic systems with changing communica-
tion partners and reactions. In hierarchical modeling formalisms typically two principal
possibilities exist to introduce structural changes. Either the composite model is respon-
sible to generate new components and to define new couplings, as e.g. done in [43], or
components are responsible for generating new components and changing their own
structure, thereby, structural changes are introduced bottom up. Pursuing the first ap-
proach, [49] introduces a controller into coupled DEVS models, which initiate structural
changes top down. DYNDEVS and ρ-DEVS, both extensions of the DEVS formalism,
support adding and removing of model components and couplings dynamically during
simulation buttom up.

The DYNDEVS [50] formalism has been developed for describing models whose
description entails the possibility to change their own state and behavior pattern. There-
fore, model and network transitions, which map the current state of a model into a set
of models the model belongs to, have been introduced. Thereby, sequences of models
are produced. The idea of DYNDEVS is that models are interpreted as a set of models
that are successively generating themselves by model transitions. Each element of the
set represents an incarnation of the model and describes a phase of the evolving mod-
eled dynamic system. The formalism supports models which adapt their own interaction
structure and their own behavior. The reflective nature of DYNDEVS has been inspired
by the work of Nadia Busi on mobile nets [51,52].

DYNDEVS, as other variable structure variants of DEVS before, assumes a static set
of ports. This is not surprising, as in systems theory the distinction between system and
environment, and maintaining this distinction, is traditionally emphasized. A system
seems more likely to change its composition, its interaction structure and its behavior
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pattern, than its interface to its environment, although it might change its communica-
tion partners [50]. However, some systems are characterized just by that: a plasticity of
their interface with which systems signalize significant changes to the external world.
These phenomena can be found e.g. in the molecular biological domain, where enzymes
and proteins change their interface and thereby restrict the type of possible interaction
partners. This motivated the development of a further extension, i.e. ρ-DEVS [53].

Definition 3. An atomic ρ-DEVS model is the structure 〈minit, M, Xsc, Ysc〉 with
minit ∈ M the initial model, Xsc, Ysc ports to communicate structural changes, and
M a a set of elements with the following structure:

〈X, Y, S, s0, δint, δext, δcon, ρα, λρ, λ, ta〉

where

X, Y structured sets of inputs and outputs
S structured set of states
s0 ∈ S initial state
δint : S → S internal transition function
δext : Q × Xb → S external transition function, with

Q = {(s, e) : s ∈ S, 0 ≤ e < ta(s)} state set including elapsed time
δcon : S × Xb → S the confluent transition function
λ : S → Y the output function
ta : S → R≥0 ∪ {∞} the time advance function
ρλ : S → Ysc scheduled structural changes
ρα : S × Xsc → M model transition

and M is the least set for which the following reachability property holds ∀n ∈ M:

n = minit ∨ ∃m0 = minit, . . . , mi = n ∧ ρα(smk) = smk+1 with
i > 0; k = 0, . . . , i − 1; smk ∈ Smk ; smk+1 ∈ Smk+1 ; m0, . . . , mi ∈ M.

ρ-DEVS defines inputs, outputs, and states, i.e. X , Y , S, as structured sets. These are
structured according to a set of variable names, that, in the case of input and output, de-
note the ports by which inputs are received and outputs are launched. As in DYNDEVS,
the model transition ρα does not interfere with other transitions. It preserves the values
of variables which are common to the states of two successive model incarnations and
assigns “default initial” values to the “new” variables as it has been done in DYNDEVS

(see [50]). Xb denotes a bag of inputs, as several inputs might arrive concurrently, n
and mk etc. denote incarnations of the model set M. Input and output ports in ρ-DEVS

are becoming part of the incarnations and thus can be changed via model transition. In
addition, a special type of port has been introduced. The role of ρλ is to fill the port for
structural changes, Ysc, that shall occur at the level of the network model. This informa-
tion will be accessed by the network transition function ρn of the parent coupled model.
As other models might induce structural changes that have an effect on the model
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incarnation, also an input port Xsc has been introduced for these types of requests. This
input is considered in applying ρα and determining the new model incarnation. Both,
structural output ports and structural input ports, allow a structural change to transverse
up and down the model hierarchy.

To support the hierarchical and modular modeling, a network structure is introduced
in ρ-DEVS. A structural change means a change of interaction and composition struc-
ture as in DYNDEVS. In addition, ports can change and multi-couplings are introduced
(see Definition 5).

Definition 4. A reflective, higher order network, a ρ-NDEVS, is a structure 〈ninit, N ,
Xsc, Ysc〉 with ninit ∈ N the start configuration, Xsc, Ysc ports to communicate struc-
tural changes, and N a set with elements of the following structure:

〈X, Y, C, MC, ρN , ρλ〉

where

X set of structured inputs
Y set of structured outputs
C set of components which are of type ρ-DEVS

MC set of multi-couplings
ρN : Sn × Xsc → N network transition
ρλ : Sn → Ysc structural output function

with Sn = ×d∈C ⊕d∈C Y d
sc and N is the least set for which the following reachabil-

ity property holds ∀n ∈ N :

n = ninit ∨ ∃n0 = ninit, . . . , ni = n ∧ ρα(snk) = snk+1 with
i > 0; k = 0, . . . , i − 1; snk ∈ Snk ; snk+1 ∈ Snk+1 ; n0, . . . , ni ∈ N .

In addition, similar to the definition in DYNDEVS, the ρ-NDEVS has to satisfy the fol-
lowing constraint: The application of ρN preserves the state and structure of models
which belong to the composition of the “old” network and the “new” one. C is the set
of components. Components which are newly created are initialized. The initial state of
a component is given by the model ninit being in its initial state sinit [50]. The outputs
Y d

sc of the components in C form the quasi-state the structural output function ρλ and
the network transition ρN are based upon. The structural output function defines, given
the component’s structural outputs, what shall be made available to the coupled model
further up, and the network transition takes this information as well as structural input
information Xsc into account to determine the next network incarnation.

Another specific feature introduced in ρ-DEVS are multi-couplings. The idea be-
hind multi-couplings is to make use of the information of the components’ available
ports and allow a dynamic coupling between models. In this definition, the names
of ports become central. Couplings are defined as 1:n, n:1, or n:m relationships be-
tween sets of components. Taking part in these couplings is based on the availability
of ports.
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Definition 5. A multicoupling mc ∈ MC is defined as a tuple:

mc = 〈 {(Csrc.port)|Csrc ∈ C},
{(Ctar.port)|Ctar ∈ C},
select 〉

with select : 2C → 2C .

As couplings are directed, we distinguish between the components that form the source
and the target of events, i.e. between Cscr and Ctar. The existence of ports, i.e. port,
implies the existence of couplings. The function select determines how the values are
distributed. If more than one input port is linked to an output port in regular DEVS,
each output will be cloned and sent to all connected input ports. This standard strategy
is meaningful if information shall be broadcasted, however, it is not a good strategy for
consumable resources like molecules. For the latter, a random selection strategy can be
utilized.

For example, we combine the output port of the cytoplasm model from section 3.1
responsible for delivering glucose, i.e. cyt.glucoseOut, with all mitochondria models
which accept glucose over an input port, i.e. m.glucoseIn (see Figure 4), and assign
a random strategy. In the moment a glucose molecule is launched via the output port,
cyt.glucoseOut, one of the mitochondria models will be chosen randomly as its ad-
dressee. If the mitochondrion model would be equipped with a dynamic port removal,
e.g. if the glucose amount inside the mitochondrion reaches a certain threshold, the
multi-coupling would automatically connect only the models with an existing input
port glucoseIn to the cytoplasm model:

mc = 〈 { ( cytoplasm.glucoseOut, m.glucoseIn ) |
m ∈ {mitochondrion1, . . . , mitochondrionn}}, ranSelOne 〉.

The feature of dynamic structure is essential for modeling cell division and death
as shown in Figure 6. After certain time a cell divides into two equal daughter cells
which is realized by dynamically adding a new cell model instance. As the two cells
are neighbors in a tissue from now on, they can communicate with each other over
dynamically added port couplings. These two cells can divide again resulting in a tissue
consisting of four cells. If a cell dies after certain time or if an external “kill” event
arrives, the model instance including all couplings will be removed which changes the
overall model structure again.

Another example of dynamic coupling is depicted in Figure 7. Two different proteins
A and B can associate to build a protein complex AB. The backward reaction (dissocia-
tion of AB) is also possible and leads to the reversible chemical reaction equation:

A + B
k1−−−⇀↽−−−
k−1

AB

As the speed of a chemical reaction is not only dependent on the reaction rate con-
stant ki, but also on the concentration (amount per volume) of the involved species,
the association and dissociation events are triggered by an extra atomic model (re-
act) which holds the current number of free and bound molecules to calculate the next
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Fig. 6. Dynamic structures in a growth and death model (cell division and apoptosis) during
simulation. After certain time cells can divide into daughter cells connected over interfaces for
communication. A model instance including all connections will be removed if a cell dies (most
right model structure transition).

time of a reaction. All instances of A are coupled with the output port aOut of the
react model, but due to the random selection function only one coupling is selected
to route a ”bind” message when the next time for an association reaction has come.
At this moment the addressee changes its state from free to bound, removes its input
port freeIn and adds the ports boundIn and bOut. Now presenting the bOut port, this
A molecule is dynamically coupled with a randomly chosen molecule B. The back-
ward reaction is triggered by sending an ”unbind” event from the react model to a
bound protein A model (existing boundIn port) which causes a state change and the
removal of the bOut port resulting in the de-coupling of A and B. Biochemical re-
actions are a good example for changing interfaces, however it is not clear whether
the metaphor of reactive systems, that is emphasized by DEVS as it is emphasized
by STATE CHARTS are the most suitable metaphor for this type of systems (see
section 4.1).

DEVS is often re-cited as one of the archetypes for composite modeling, its ideas
of a modular, hierarchical construction of models being put forward at the beginning
of the 1980s has meanwhile been adapted by a wide variety of modeling approaches,
including continuous ones like Modelica [30] and recent ones like SysML [54]. How-
ever, particularly also in the area of biological modeling its rigid structure revealed also
some disadvantages. So it also served as an example what efforts are required to inte-
grate dynamic composition, interaction, and behavior pattern and to allow for changing
interfaces. Variable structure models lend structure to the temporal dimension in de-
scribing systems. As the relation of bi-simulation has been shown to hold between the
original DEVS formalism and its variable structure variants the question arises what
benefit to expect from such formalisms and consequently tools. Mostly, it is less the
question whether a formalism is able to express certain phenomena, but how easily this
can be done [55,56]. Thus, whereas the extension typically reduces the readability of
the formalism, it should increase the readability of the model, as we will also discuss in
our next section.
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1 C = {react, A1 ... An, B1 ... Bn}
2
3 MC = { (react.aOut, A.freeIn, ranSelOne),
4 (react.abOut, A.boundIn, ranSelOne),
5 (A.bOut, B.aIn, ranSelOne) }

1 Y = {aOut, abOut}
2
3 S = { (#A, #B, #AB, timeToNextAss, timeToNextDiss) |
4 #A ∈ N,
5 #B ∈ N,
6 #AB ∈ N,
7 timeToNextAss ∈ R+,
8 timeToNextDiss ∈ R+ }
9

10 δint =
11 if (timeToNextAss < timeToNextDiss) then
12 #A--; #B--; #AB++;
13 else
14 #A++; #B++; #AB--;
15 timeToNextAss = toTime(#A × #B × k1);
16 timeToNextDiss = toTime(#AB × k−1);
17
18 λ =
19 if (timeToNextAss < timeToNextDiss) then
20 aOut("bind");
21 else
22 abOut("unbind");
23
24 ta = min(timeToNextAss, timeToNextDiss)

1 X = {freeIn, boundIn}
2
3 Y = {bOut}
4
5 S = {phase ∈ (free, bound)}
6
7 δext =
8 if (freeIn) then
9 phase = bound;

10 removeInPort(freeIn);
11 addInPort(boundIn);
12 addOutPort(bOut);
13 else if (boundIn) then
14 phase = free;
15 addInPort(freeIn);
16 removeInPort(boundIn);
17 removePort(bOut);
18
19 ta = ∞

free bound

inport(freeIn)

inport(boundIn)

>freeIn

< boundIn

> bOut

Fig. 7. Biochemical reaction of two proteins A and B to a complex AB. (top) Coupled model with
component and multicoupling definitions. (middle) Atomic model responsible for the reactions.
(bottom) Atomic model of protein A including a statechart-like representation of its states, their
transitions and existing ports. Structured sets and functions without relevance or functionality are
not shown.
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3.3 Micro-Macro Modeling with DEVS

Modeling a system at different organizational levels requires to take population and in-
dividuals, the downward and upward causation between micro and macro level, and the
interaction pattern between the individuals into account. This is not a trivial matter, as
also problems in synchronizing the activities of macro and micro level arise (particu-
larly if we are working in the discrete-event field) – therefore the few approaches that
support this type of multi-level modeling, assume a discrete stepwise progress during
simulation, e.g. [57], or use another form of composing models [43].

Although DEVS models show a well-defined hierarchy due to the straightforward
modular composition of coupled and atomic models, the behavior of coupled models is
completely determined by their sub-components and the way they are coupled with each
other. When events depend on the overall state of the system, the passive state-less fate
of coupled models burdens the modeling significantly. The biochemical reaction from
the previous section (Figure 7), where the reaction rates depend on the concentration of
involved species, is a typical example of such a system. The DEVS formalism requires
to describe these “high-level” macro properties of the entire coupled model with an
atomic model at the same composition level as the other sub-components. Composition
hierarchy and organization hierarchy disagree.

Furthermore downward and upward causation between macro and micro have to be
realized by sending events asynchronously. This mode of communication is entirely
appropriate for independent components reacting to external events, but not for tieing
micro and macro levels which influence each other within the same system. In addition,
since there is normally a 1:n relation of macro to micro models, one atomic model
(macro level) has to interact with all other atomic models (micro) including special
communication protocols for each model which forms a further obstacle for modeling
micro-macro systems with DEVS. To overcome these problems we developed a new
extension of the DEVS formalism called multi-level-DEVS.

3.4 Multi-Level-DEVS

With multi-level-DEVS (ML-DEVS) [58] coupled models can have a state and behavior
of their own so that the macro level does not appear as a seperate unit of the coupled
model. Moreover, it’s possible to define explicitly how the macro level affects the micro
level and vice versa (downward and upward causation) by information propagation and
activating events.

– Downward Information Propagation:
Obviously, one means to propagate information from macro to micro level is to ex-
change events between models. However, this is rather tedious, e.g. in case the dy-
namics of a micro model has to take the global state into consideration. Therefore,
we will adopt the idea of value couplings. Information at macro level is mapped
to specific port names. Each micro model may access macro variables by defining
input ports with corresponding names.
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– Upward Information Propagation:
In the opposite direction, the macro level needs access to crucial information at the
micro level. For this purpose, we equip micro models with the ability to change their
ports and to thereby signalize crucial state changes to the outside world. Upward
causation is supported, as the macro model has an overview of the number of micro
models being in a particular state – i.e., exhibiting a particular set of ports – and to
take this into account when updating the state at macro level.

– Downward Activation:
The macro level can directly activate its components by sending them events –
thereby, it becomes possible to synchronously let several micro models interact,
which is of particular interest when modeling chemical reactions.

– Upward Activation:
The dynamics at macro level can be activated by the dynamics at micro level, e.g.
if the number of components being in a certain state (signalized by their ports)
surpasses a certain threshold. Therefore, a form of invariant is defined at macro
level, whose violation initiates a transition at macro level. This is inspired by the
ideas of hybrid state automata, where the discrete state changes are triggered at the
moment the continuous dynamics lead to threshold crossing.

Now let us have a look at the ML-DEVS formalism. Let X, Y, S = (V ; S1, . . . , Sn)
be structured sets with V = {v1, . . . , vn} (see [46, p.124]). The input ports of the
structured set X may now also hold information handed down via value coupling (see
Definition 6 of the coupled ML-DEVS model). Furthermore, let P be the set of available
port names.

Definition 6. An atomic ML-DEVS model is defined as a structure:

〈X, Y, S, sinit, p, δ, λ, ta〉

where

X the structured set of inputs
Y the structured set of outputs
S the structured set of states
sinit ∈ S the start state
p : S → 2P selects the ports available in a given state
δ : X × Q → S state transition function
λ : S → Y output function
ta : S → R≥0 ∪ {∞} time advance function

Atomic ML-DEVS models do no longer consist of internal, external and confluent tran-
sition functions, only one transition function δ exists. The main reason for this is the
clarity of the formalism. Moreover, the distinction between internal and external state
transitions is partly rendered meaningless by the fact that δint may now rely on macro
variables, which are accessed over value-coupled ports. With a single state transition
function, one may now decide which transitions have to be distinguished for the model
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at hand. Since the elapsed time and the inputs at all ports are accessible, the modeler
can define what to do under which circumstances. As in regular DEVS, the λ function is
invoked just before an internal or confluent event happens. This situation is recognized
by the simulator. A time advance function ta is given that associates a duration with
each state. Additionally, an atomic model has a function p : S → 2P , which defines the
ports the model exhibits in a given state.

The definition of a coupled model is based on the definition of an atomic ML-DEVS

model. Similar to this, a coupled ML-DEVS model has structured input and output sets
X and Y and a state set S. The input ports might hold events or information that was
handed down via value coupling from its superordinate coupled model. A λ function
produces outputs for the output ports. Similar to coupled models in DEVS, a set C of
components is defined.

Definition 7. A coupled ML-DEVS model is formally defined as a structure:

〈X, Y, S, sinit, p, C, MC, δ, λdown, vdown, sc, act, λ, ta〉

where

C set of sub-models which are of type
atomic ML-DEVS or coupled ML-DEVS

MC set of multi-couplings, {m|m : 2P → 2P}
δ : X × Q × 2C×P → S state transition function
λdown : S → 2∪c∈C(XC×C×P) downward output function
vdown : VS → P value coupling downward
sc : S → 2C × 2MC structural change function
actup : S × 2C×P → {true, false} activation function

Moreover, the following has to hold:

– If a port is an output port, it cannot be an input port:
∀p ∈ P : (∃m ∈ MC ∧ P ∈ 2P : p ∈ P ∧ m(P ) �= ∅) =⇒ (�m′ ∈ MC ∧ P ′ ∈
2P : p ∈ m(P ′))

– Value coupling is defined on ports that are no input ports:
∀vS ∈ VS : (�m ∈ MC ∧ P ∈ 2P : vdown(vS) ∈ m(P ))

All other elements of the tuple are defined as for atomic ML-DEVS models
(Definition 6). The dependencies between macro and micro level could easily lead to
an algebraic loop. This is prevented by the simulator [58], which defines the execution
semantics of ML-DEVS.

Like in ρ-DEVS, we equipped the coupled models with the possibility to define
multi-couplings (see Definition 5 in section 3.2). The transition function δ at macro
level takes the state, the information about the model’s components and multi-couplings
into account when calculating the new state. Again, the function p associates a set of
ports with each state. The structural change function sc defines the set of components
and multi-couplings for the coupled model’s current state. Changes within component
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structures are initiated top-down. Thus, the macro model is responsible for creating and
removing its components and the to change the interaction pattern between them. This
differs from the solution that has been realized in ρ-DEVS. However, in ML-DEVS, the
coupled model is equipped with a state and a behavior of its own, an ability, which can
also be exploited for initiating structural changes. Downward and upward causation are
realized in ML-DEVS as follows:

– Downward information:
The downward causation at information level is realized by the function vdown,
which couples state variables of the coupled model to input ports of its sub-models.
Thereby, each relevant variable at macro level is directly accessible by the micro
models via their input ports. This implies that the input ports of the micro models
are never “empty”, because value-coupled information is always accessible.

– Upward information:
The information propagation from micro to macro level is realized by changing
ports. The macro model can access the information which ports are available and
does so in its δ function to determine the next state at macro level. Each model can
change its ports via the function p and thus can signalize important information to
other micro models and the macro level.

– Downward activation:
The downward activation is done by the λdown function, which allows to syn-
chronously trigger a number of micro models by sending them events. This does
not require a coupling between macro and micro models, as a coupled model may
directly access the ports of its components.

– Upward activation:
Changes at the micro level can initiate changes at the macro level. The activation
constraint actup guards that the invariants at macro level are fulfilled, otherwise the
invocation of the macro model’s δ function is triggered. This leads to a new state
with a possibly new set of components and multi-couplings.

Regarding the example of section 3.2 again (Figure 7), with ML-DEVS now it’s possible
to describe the macro level information and behaviour as part of the coupled model (Fig-
ure 8). The port selection function p allows to specify which ports are available in the
different model states. For example the protein A’s output port bOut is available only if
it’s in the bound state. The change from the unbound to this state is triggered by the cou-
pled macro model which generates activation events by the λdown function. Therefore,
an input port (macroIn) has to be available but no explicit coupling from macro level to
the protein A model is needed. In addition, a macro level variable (temp) has been intro-
duced for depicting the way how value couplings are defined (vdown function). Protein B
models, which are not shown in the figure, have access to the systems temperature over
their input port tempInput. The information can be used e.g. to decide if the binding-site
for protein A, i.e. input port aIn, is no longer available due to a temperature increase.
The example shows some simplifications with respect to the model readability in com-
parison to the example model of Figure 7. However, for modeling ordinary biochemical
reactions, no DEVS variant seems overly suited. Only if the species of biochemical re-
actions show rich internal dynamics, as e.g. the temperature dependance of protein B,
DEVS’s reactive systems view appears fitting.
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Coupled model (macro level
varibles and behaviour)

A >

∨
B>

∨ free bound

inport(macroIn)

inport(macroIn)

>macroIn

> bOut

1 S = { (timeToNextAss, timeToNextDiss, temp) |
2 timeToNextAss ∈ R+,
3 timeToNextDiss ∈ R+,
4 temp ∈ R+ }
5
6 C = {A1...An, B1...Bn}
7
8 MC = { (A.bOut, B.aIn, ranSelOne) }
9

10 δ = #A = count(A,no port bOut);
11 #B = count(B,port aIn);
12 #AB = count(A,port bOut);
13 timeToNextAss = toTime(#A × #B × k1);
14 timeToNextDiss = toTime(#AB × k−1);
15
16 sc = (C,MC)
17
18 λdown =
19 if (timeToNextAss < timeToNextDiss) then
20 ( "bind", pick(A,no port bOut), macroIn );
21 else
22 ( "unbind", pick(A,port bOut), macroIn );
23
24 vdown = (temp, B, tempInput)
25
26 ta = min(timeToNextAss, timeToNextDiss)

Fig. 8. Biochemical reaction example modeled with ML-DEVS. (top) Statechart-like represen-
tation of the coupled model and protein A atomic model. (bottom) Description of the coupled
model. Structured sets and functions without relevance or functionality are not shown.

4 Hierarchies in the π Calculus

Originally the π calculus [59] was designed for checking communication models.
Therefore, only the pure course of action is of interest such that the formalism does not
include any notion of time. This makes it rather unpractical for simulation. However, in
1995 Priami introduced an extension to the π calculus, called stochastic π [60], which
associates stochastic rates to the described events. Additionally, he defined stochastic
semantics for this extension such that it is possible to use stochastic π models directly
as an input for Gillespie’s Stochastic Simulation Algorithm [3], a widely used method
for simulating basic stochastic interactions of molecules. With this step, the way of
the π calculus into systems biology was paved and carried on by Regev and Shapiro
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with their work in 2004 [61] where they described how to model basic and also more
complex biochemical reactions in stochastic π. However, for the modeling of complex
reaction networks, as they usually occur in systems biology, it became necessary to add
more structure to the very lean theoretical framework of the π calculus. Thus, extensions
like SPICO [62], BETA-BINDERS [63] and BIOAMBIENTS [64] introduced a more en-
tity based view. With BIOAMBIENTS even complete hierarchies can be integrated into
the π models which shall be the main topic of this section. However, before stressing
this point, a basic introduction to the π calculus and its application for the modeling of
biochemical reaction networks is given.

4.1 π Calculus Basics

Looking at a π calculus model is like reading a communication protocol; only the very
essential communication procedures, i.e. sending and receiving, are of interest. The
course of action is given by processes that run in parallel and synchronize on common
channels. In the π calculus everything is referenced by name. Therefore, for channels
and processes infinite sets of names C and P are given. Channels are introduced with
the ν operator and have a certain scope depending on where they are established. Each
communication has two partners, the sender and the receiver. They exchange messages
that can either be empty or hold a channel name. The sending of a channel extends its
scope, such that the receiver can now use it for further communication. Processes can
have multiple, mutually exclusive communication options at a time that are given by
summations. If more than one option is possible the choice of which communication
occurs is non-deterministic. By using the polyadic extension of the π calculus it is
also possible to transfer multiple channel names at a time and to use channel names as
parameters of processes (see Table 1). For further reading on the theoretical foundations
of the π calculus, e.g. its formal semantics, see [59].

Mapping a Simple Reaction Network. With this theoretical framework of communi-
cating processes it is possible to model different biochemical reactions. Lets consider
a very simple reaction network with two reactions (see fig. 9). Our model shall be di-
vided into three parts: channel definitions, process definitions and an initial process. In
the first part, a channel is introduced for each reaction with a corresponding name (here
the ν operator is omitted to denote that the channels’ scope is global). This is followed

Table 1. π calculus syntax (polyadic version)

Process P ::= P1 ‖ P2 Parallel Composition
| (ν c).P ν Operator
|

∑
i Si Summation

| A(x̃) Application
Summation S ::= x!(ỹ).P Send

| x?(ỹ).P Receive
Definition D ::= A(ỹ) = P
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by a process definition for each involved species. Thereby, a species is characterized
by its capability of taking part in reactions. E.g. chlorine can either react with sodium
to common salt or with hydrogen to hydrochloric acid. Thus, for chlorine a summation
is defined with two summands such that it can either receive on nacl or on hcl. Since
Na() and H() form the sending parts on these channels, Cl() can either react with
sodium or with hydrogen and receives either the toNa or the toH channel respectively.
After communicating the involved species turn into their bound states. Following the
ideas of Regev and Shapiro [61], the exchanged channels can now be used as back-
bones to perform the decay, i.e. the reverse reaction, of the generated complex. Thus,
after communicating on toCl the complex forming parts turn from their bound to their
initial state (see fig. 11). The specification of the model is completed, by introducing
the initial process, which defines the starting solution, i.e. how many elements of each
species are initially in the modeled system.

Instead of using a common backbone channel it is also possible to introduce a sepa-
rate process that describes the chemical behavior of the resulting complex. This is due
to the fact that complexes often show totally different behavior compared to their parts.
To implement this sort of reaction, one reactant proceeds with the resulting molecule
while the other completely vanishes (see fig. 10).

Although the reaction network is entirely implemented, the model is still not com-
plete. Still missing are the reaction rates. As already mentioned, the original π calculus
does not support any notion of time and thus reaction constants, that base on time, can-
not be included. This is were the stochastic π extension comes into play. It provides the
ability to attach stochastic rates to the channels that represent reaction constants. Since
for each reaction a channel is introduced, it is possible to assign the reaction constants
to the reactions, e.g. Na() = (ν toCl : r−1) . . . , where r−1 represents the stochastic
decay rate of NaCl. How to transfer reaction constants into stochastic rates can be read
in e.g. [65]. The now completed model can be directly simulated with the SSA. Notice
that the stochastic π calculus is well-suited as an input language for the SSA because
of the following reasons:

1. The SSA presumes that only two particles can react at a time. This presumption
is supported by the π syntax where communication can only happen between two
processes.

nacl : Na+ + Cl−
k1−−−⇀↽−−−

k−1

NaCl

hcl : H+ + Cl−
k2−−−⇀↽−−−

k−2

HCl

Fig. 9. A simple chemical system with two reactions – reaction rates above and underneath the
arrows for forth and back reaction respectively
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...
Process Definitions
Na() = nacl!(). NaCl()
H() = hcl!(). HCl()
Cl() = nacl?() + hcl?()

...

Fig. 10. Complexes as separate processes – further definition of NaCl() and HCl() is required

Channel Definitions
nacl
hcl

Process Definitions
Na() = (ν toCl). nacl!(toCl). NaBound(toCl)

NaBound(free) = free?(). Na()
H() = (ν toCl). hcl!(). HBound(toCl)

HBound(free) = free?(). H()
Cl() = nacl?(toNa). ClBound(toNa) + hcl?(toH). ClBound(toH)

Cl(decay) = decay!(). Cl()

Initial Process
(Na() |...| Na() | H() |...| H() | Cl() |...| Cl())

Fig. 11. A π model for a chemical system with two reactions

2. The SSA works with integer numbers of molecules instead of concentrations. This
is also true for stochastic π where an integer number of processes run in parallel,
representing the elements of a system.

3. The SSA uses the same stochastic rates that are attached to the stochastic π channels.

Although, the prerequisite that every reaction must have exactly two reactants seems
to hamper the applicability of the π calculus to the modeling of complex biological
systems, e.g. in comparison to process algebras like PEPA [66], it is absolutely possible
to represent sophisticated reaction patterns, like e.g. gene expression or cooperative
binding, as it is shown in [65]. Whereas composition is one of the basic ingredients
of the π calculus, this does not imply an explicit hierarchical modeling. This lack of
explicit structures, everything being fluent in π, is addressed in various extensions.

4.2 π Calculus Extensions

Because of the rather abstract view of communicating processes, different extensions of
the π calculus exist that aim to add more structure into models. In what follows, these
extensions are shortly discussed.
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Table 2. SPICO syntax – sending and receiving extended with functional symbols

Process P ::= P1 ‖ P2 Parallel Composition
| (ν c).P ν Operator
|

∑
i Si Summation

| A(x̃) Application
Summation S ::= x!f(ỹ).P Send

| x?f(ỹ).P Receive
Definition D ::= A(ỹ) = P

SPICO. SPICO [62] adds more structure to the π calculus by emphasizing the notion
of concurrent objects. Therefore, it considers the communication of π processes as calls
of object methods. To establish this view, SPICO extends the sending and receiving ac-
tions with functional symbols (see Table 2). Two processes can only communicate if
their sending and receiving pattern match. Thus, channels can rather be seen as refer-
ences to objects. As usual, these objects provide different methods that are addressed
with the corresponding functional symbol.

The functional symbols can become very handy when entities with multiple func-
tionality are modeled. In Biology, this situation occurs for example in the case of over-
lapping binding sites (see [62]). These complexes consist of two binding sites that allow
for only one ligand to bind at a time – if one site is occupied it blocks its peer and in the
moment that the ligand departs both sites are free again. In this scenario each binding
site needs to provide the functionality of getting blocked and unblocked by its partner.
Following the introducing example of how to model chemical reactions in the π calcu-
lus, it would be necessary for the sites to share four channels, a block and an unblock
channel for each site. However, with SPICO it is sufficient to create two channels, since
only a reference from each site to its peer is needed. Depending on their state, the sites
then provide the block and unblock function when necessary (see fig. 12).

The advantage of saving two channels does not seem too striking but consider the
case that an entity provides multiple functions. Still only one channel would be needed

...
Process Definitions

Free(me,peer) = me?bind(). peer!block(). Bound(me, peer) +
me?block(). Blocked(me, peer)

Bound(me, peer) = me?depart(). peer!unblock(). F ree(me,peer)
Blocked(me, peer) = me?unblock(). F ree(me,peer)
...
Initializing Process
(ν s : rs). (ν s′ : rs′). (Free(s, s′) | Free(s′, s) | Ligand() |...| Ligand())

Fig. 12. Overlapping sites in SPICO – instead of four only two channels are needed, Ligand()
is to be defined [62]
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for implementing such complex behavior. This is even more valuable when modeling
entity connections that change over time. In that case the exchanged channels have to
be modified dynamically. A good biological example for such a scenario is the DNA
transcription, where a molecule called Polymerase moves along the DNA and reads out
each molecule of the strand individually.

To amplify the object-oriented view even more the methodology of inheritance is
integrated. Therefore, similar to other π based modeling tools like BioSPi [67], SPICO
lets the user implement separate modules that are parametrized with channels. As a new
feature, these modules can be extended with additional processes. Thus, it is possible to
define rather generic species that are refined for specific modeling scenarios. As shown
in [68] this is a very useful feature when modeling complex biological systems.

BETA-BINDERS. The basic idea of BETA-BINDERS is to wrap basic π processes P into
boxes called bio-processes BP (see Table 3). To the bio-processes beta-binders B are
assigned which are sets of elementary beta-binders. Elementary beta-binders have the
form β(x, Γ ) where x is the corresponding channel name for the inner π processes and
Γ is a type. Types are sets of names. Communication over two elementary beta-binders
of two different bio-processes can happen if their type sets overlap, i.e. their intersection
is not empty. Thus, in BETA-BINDERS two kinds of communication exist, the usual one
as know from stochastic π and the one of two bio-processes over their beta-binders
(see fig. 13). The inner π processes of a bio-process can modify its elementary beta-
binders by the actions hide, unhide and expose. While the first ones enable and disable
the communication on an elementary beta-binder the latter one adds a completely new
one to the bio-process. Additionally to the operators, BETA-BINDERS provides join
and split-functions that merge and divide bio-processes and can be flexibly defined by
users. For more information see [63].

The basic idea of BETA-BINDERS can be best depicted by an example. Many intra-
cellular reactions are catalyzed by enzymes that bind to substrates and convert them
into products. To control the activity of enzymes, inhibitors exist that block their bind-
ing sites. In BETA-BINDERS this scenario can be modeled by defining bio-processes for

Table 3. BETA-BINDERS syntax – boxes called bio-processes BP wrap π processes P and pro-
vide sets of elementary beta-binders B that represent the communication capabilities of BP

Process P ::= P1 ‖ P2 Parallel Composition
| (ν c).P ν Operator
|

∑
i Si Summation

Summation S ::= x!(y).P Send
| x?(y).P Receive
| hide(x) Hide Channel
| unhide(x) Reverse Hiding
| expose(x) Reveal Channel

Bio-Process BP ::= BP1 ‖ BP2 Parallel Composition
| B [P ] Single Box
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x : Γ

x?(y). P1 | x!(z). P ′
1

u : Δ

u!(w). P2 | P ′
2

x : Γ

P1 {z/y} | P ′
1

u : Δ

u!(w). P2 | P ′
2

x : Γ

P1 {w/y} | x!(z). P ′
1

u : Δ

P2 | P ′
2

Fig. 13. Communication in BETA-BINDERS – two different reductions (communications) are pos-
sible; left: the π processes in the left bio-process communicate directly over x; right: the bio-
processes communicate over the beta-binders x and u, which means that the intersection set of
their types Γ and Δ is not empty

x : {f, g}

Enzyme

z : {g}

Inhibitor
join

xh : {f, g} zh : {g}

Enzyme | Inhibitor

x : {f, g}

Enzyme

y : {f}

Substrate
join

xh : {f, g} yh : {f}

Enzyme | Substrate

Fig. 14. Example model in BETA-BINDERS [63] – because of the type set of its beta-binder,
Enzyme can either communicate with Substrate or with Inhibitor. Either way, it forms a
complex with the respective communication partner by a join transition that has only hidden
binders due to the fact that it shall not take part in any reaction.

the substrate, the enzyme and the inhibitor (see fig. 14). Since their beta-binders include
overlapping type sets, Enzyme can either bind to Substrate or to Inhibitor. In any
case, the binding is achieved by merging (join) the respective bio-processes and hiding
their elementary beta-binders, which represents the inability of the molecules to un-
dergo further bindings. Consequently, their splitting would result in either an Enzyme
and a Product or an Enzyme and an Inhibitor.

BIOAMBIENTS. Similar to BETA-BINDERS, BIOAMBIENTS wraps π processes into
boxes, which in this case are called ambients. Yet, the main difference is that ambients
can not only contain π processes but also other ambients, i.e. they can be nested. To fully
exploit this feature, BIOAMBIENTS comes with a whole set of new constructs (see Table
4). On one hand these regard the direction of interaction. p2c and c2p communication
describe the sending and receiving from an ambient to its nested ambients and vice-
versa. The local and s2s constructs define the synchronization in a single ambient of
either π processes or ambients. On the other hand they regard the motion capability
of ambients. An ambient can enter another ambient if accepted (enter/accept), or it
can leave the surrounding ambient (exit/expel). Additionally, two ambients can merge
(merge + /merge−).
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Table 4. BIOAMBIENTS syntax – π processes that can be wrapped by ambients [P ], communicate
into different directions δ and move between ambients

Process P ::= P1 ‖ P2 Parallel Composition
| (ν c).P ν Operator
|

∑
i Si Summation

| [P ] Ambient
Summation S ::= δ x!(y).P Send with Direction

| δ x?(y).P Receive with Direction
| enter x.P Enter
| accept x.P Accept
| exit x.P Exit
| expel x.P Expel
| merge + x.P Merge+
| merge − x.P Merge-

Direction δ ::= local Processes in Ambient
| s2s Ambients in Ambient
| p2c Ambient to Nested Ambient
| c2p Nested Ambient to Ambient

compartment [accept c.C]

molecule [enter c.M ]

enter/accept

compartment [C]

molecule [M ]

Fig. 15. Example model in BIOAMBIENTS-a molecule enters a cell by enter/accept on channel c

The focus of BIOAMBIENTS is mainly to reflect biological compartments. This can
best be shown by an example: the penetration of a molecule, e.g. a protein, into a com-
partment. To implement this in BIOAMBIENTS, two ambients are defined: molecule
and compartment. Whereas the ambient molecule provides the action enter on chan-
nel c, compartment provides an accept on the same channel such that after synchro-
nizing the ambient compartment contains the ambient molecule (see fig. 15).

4.3 Micro-Macro Modeling with the π Calculus

As discussed in Section 2, components are an essential ingredient for building hierar-
chical models and therefore also for micro-macro modeling. On first sight, the basic
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GeneA

GeneB

GeneC

ProteinA

ProteinB

ProteinC

Fig. 16. Concept of Repressilator - genes produce proteins that inhibit the protein production
of their neighbors

Channel Definitions
a : ra

b : rb

c : rc

delay1 : rd1

delay2 : rd2

delay3 : rd3

Process Definitions
Gene(a, b) = delay1?(). (Protein(b) | Gene(a, b))

+ a?(). delay2?(). Gene(a, b)
Protein(b) = b!(). P rotein(b)

+ delay3?()
T imer(d) = d!(). T imer(d)

Initial Process
(Gene(a, b) | Gene(b, c) | Gene(c, a) | T imer(delay1) | T imer(delay2) | T imer(delay3))

Fig. 17. Repressilator - a model that composes three model parts (parametric processes),
Gene(), Protein() and T imer, to a model of three genes that produce proteins that inhibit
the production process of their respective neighbors [69]

π calculus seems not to provide any form of components. However, parametric pro-
cesses are the starting point for their introduction. This is because parametric processes
define a clear interface in form of their parametric channels. Thus, one can imple-
ment and compose separate model parts. To depict this concept, an example is given
in Table 17. It describes a well-known phenomenon in cell-biology, which is called
Repressilator. It consists of a certain amount of genes, that each encodes for a specific
protein. The only role the produced proteins play is to inhibit the protein production of
the respective neighbored gene (see fig. 16). To model this in stochastic π three para-
metric processes are defined, Gene, Protein, and T imer. The latter process is just a
technical add-on to time the decay of complexes. Each of the parametric processes can
be parametrized with different channels, such that they can be used to describe multiple
elements of the system, e.g. Gene for three different genes.

However, the parametric process itself cannot be seen as a complete component.
What is missing in general, is the possibility to determine entity borders. This is very
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obvious in case of the parametric process P (x1, x2) = x1!(). (R(x1, x2) ‖ Q(x2))
which could either describe an entity that consists of two parallel processes, like e.g.
the Na-Cl complex, or an entity which produces another one and by doing so it turns
into another state, like e.g. a gene that produces a protein and then automatically blocks.
Thus, with parametric processes only, no clear separation between entities and their en-
vironment can be achieved. Yet for the π calculus, the notion of components has been
completed by a syntactical add-on which is provided by modeling tools, like BioSPi,
namely the module. As already mentioned, modules define a clear interface by channel
parameters that are applied to their inner parametric processes. Additionally, they do
not allow any inner process to proceed with a process which is not internally defined.
Hence, modules are closed and therefore they can be implemented separately, parame-
terized and applied to different modeling scenarios which is a very useful option when
modeling large systems.

As described above, SPICO additionally extends the concept of modules by the
methodology of inheritance. In SPICO modules can be defined and then extended by
additional processes and thus additional behavior. Notice, that SPICO modules still
fulfill the component prerequisite of closure because also in the process of extending
modules inner processes can only precede with processes that are defined internally.
However, in SPICO the concept of classification, which is discussed in Section 2 as
a special sort of hierarchy, can be mapped. A module that extends another one can
be considered to be in a is a relation with the extended one. Such a hierarchy could
be: β-catenin is a protein is a molecule which could be implemented in SPICO by
defining a module called molecule and then extending it by a module called protein
which is itself extended by the module beta − catenin. In a modeling scenario where
multiple proteins are involved, the protein could then be extended more than once
(see fig. 18).

Although, well-established on a syntactical level, modules can not considered to be
full components in the sense of modeling because they are not transfered down to the
execution. In any case, they are translated into normal π processes for simulation. In
contrast, BETA-BINDERS introduces with its bio-processes components to the execu-
tion level. Bio-processes are considered to be components because they separate their
inner processes from the outside. Additionally, beta-binders are explicit interfaces of
bio-processes that define with their type sets different connectivity relations, i.e. 1 : 1,

Molecule

Protein

... Beta Catenin ...

is
a

module molecule

module protein

module ... module betacatenin module ...

extends

Fig. 18. Inheritance in SPICO – the is a relation between elements is represented by extending
modules
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1 : n, n : 1 and n : m, depending on how the declared type sets overlap. Another
important concept regarding BETA-BINDERS is the notion of variable interfaces, which
is implemented by the actions hide, unhide and expose, that allow for the dynamic
modification of beta-binder availability. By this means, bio-processes provide the com-
plete methodology of components, which is also known e.g. from DEVS, and an essen-
tial prerequisite for introducing hierarchies. Yet, the BETA-BINDERS concept does not
support the definition of hierarchies because its components (bio-processes) cannot be
nested. However, its compositional model structure is highly flexible because with the
join and split functions components can be added or removed from the system. Thus,
BETA-BINDERS seems to be a good language for compositional modeling but cannot
be used for implementing hierarchies and is therefore not applicable to micro-macro
modeling.

A complete hierarchical framework is provided by BIOAMBIENTS. It supports the
concept of components as well as hierarchies. In detail: the ambients of BIOAMBI-
ENTS fulfill all requirements of components. On one hand, they wrap π processes
into boxes such that elements can be clearly distinguished from their environment.
On the other hand, they define clear interfaces which are defined by the inner π pro-
cesses. Since BIOAMBIENTS uses the π calculus to describe its interfaces, the
communication structure between its components is highly dynamic. After every com-
munication step, interfaces, i.e. channels, are made available or unavailable. By this
means, very dynamic systems can be described in a very elegant way. However, one
drawback of using stochastic π as the interface language is that it is not possible to
easily define different kinds of connectivity relations, since it is restricted to 1 : 1-
communication.

BIOAMBIENTS allows for the nesting of ambients such that it completely supports
hierarchical modeling on multiple levels. Thereby the inner π processes of an ambient
represent the macro level for the nested ambients, that are the micro level. In Sec-
tion 2 the different causations are discussed that are necessary for multilevel modeling.
In BIOAMBIENTS, these are realized with the different communication directions, i.e.
p2c-communication represents the downward and c2p-communication the upward cau-
sation. s2s-communication describes the interactions of components that are on the
same hierarchical level whereas local-communication is restricted to processes within
one component.

The hierarchical structures of BIOAMBIENTS can be modified in multiple ways
(see fig. 19). As usual, it is possible to easily add and remove nodes from the sys-
tem (and therefore also from the hierarchy) by the means of basic π calculus oper-
ations. Furthermore, with the merge + /merge−-pair one can melt two nodes of
the tree structure to model e.g. the fusion of two cell compartments. By using the
enter/accept-communication a complete subtree is transferred from its parent node
to become the child of a node on the same level. With this construct it is possible
to represent the process of phagocytosis which describes a cell’s ingestion of some
part of its environment. Its reverse operation is exit/expel which could be used to
abstract a cell’s ejection of molecules. Thus, BIOAMBIENTS provides an extensive
set for modifying hierarchical structures and is thus well-suited for micro-macro
modeling.
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parent

merge + y.M1

child child

merge − y.M2

child

merge

parent

M1 ‖ M2

child child child

parent

accept y.M1

child child

enter y.M2

child

enter

parent

M1

child child M2

child

parent

M1

child child

M2

child

exit

parent

expel y.M1

child child exit y.M2

child

Fig. 19. Modification of hierarchical structures in BIOAMBIENTS by merge + /merge−,
enter/accept, and exit/expel

5 Components and Hierarchies

A prevalent challenge of modeling and simulation is to define a model in a way that
it can be reused by someone else than the original developer himself [70]. Standard
exchange formats like SBML do currently not support to exchange model compo-
nents, but focus on the exchange of whole simulation models. Model structures are not
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modularized and not equipped with an interface description that indicates, how a model
may interact with other model entities. In the case of SBML, reuse of model parts and
hierarchical modeling based on ports are considered to be the next major extensions of
the language [15].

As discussed above, existing modular-hierarchical modeling formalisms like DEVS

allow to define composition hierarchies. The interface of a model is described by the
set of its input and output ports. Modular-hierarchical approaches encapsulate model
behavior behind ports and allow to decompose models into smaller structures, which
may only be coupled via ports. Sub models may be exchanged as long as the ports of a
sub model fit into the coupling scheme of the surrounding model.

To compose models, which have been developed independently of each other, type
hierarchies and refinement hierarchies have to be considered in addition to part-of rela-
tions. Compositional approaches strive to derive properties of a composed system from
a set of property descriptions of the parts (instead of taking all details of the parts into
account). Implementations are then supposed to refine their interface descriptions. To
decide on the compatibility of components, one has to compare the types of events that
are declared by interfaces. Only if these types are sufficiently similar, models may be
coupled together. In the following, the definition of event types and their relations form
the starting point for a component-oriented approach.

5.1 Types and Abstract Points of Interaction

Classical modeling assumes a centralized development process. A problem maybe de-
composed into a set of smaller problems, which become realized by individual models.
If an agreement is made on how different model parts interact, modular-hierarchical
formalisms may be used to implement models separately.

Things become more complicated if a model shall be reused that has been developed
by someone else, in another context for another purpose. In such cases contracts can-
not be established prior to model implementation. Instead existing models need to be
checked and it has to be decided, whether they fit into the current simulation model. A
prerequisite for a model to be suited as a part for a certain simulation model is that it is
compatible to other model parts. Methods to check compatibility depend on how types
of ports are specified.

In DEVS the type of events to be exchanged by a model (via a port) is defined as a set.
Coupled system specifications require for port-to-port couplings the set of events that
a source port could sent to form a subset of the events that the target port is prepared
to receive [46, p.130]. This requirement ensures that a source port only sends events
that are acceptable by the target port. This has a direct correspondence to type systems,
which require for directed communication channels that the sending port to be a sub
type of the receiving port [71]. Sub-type relations formalize under which conditions
one type can be substituted by another type.

In modeling and simulation tools, types of model components are usually defined
based on the programming language used, e.g. Java [72,73]. Thereby, type definitions
are bound to a particular type system, e.g. that of a Java. Attempts to increase interop-
erability of systems, such as the web service architecture [74], utilize XML to abstract
from tool-specific and programming-specific representations. Data descriptions based
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on XML are generally considered to be robust, extensible, and well suited to represent
complex data structures [75].

XML Schema Definition (XSD) allows to constrain the content of elements and at-
tributes by type and value range assignments. Standardized by the W3C [76], XSD is
written itself in XML and supports structuring of definitions into namespaces. XSD
comes with built-in simple data types and allows to combine these to construct com-
plex types. Of particular interest for a decoupled modeling process is the ability to either
define types locally or to import existing type definitions via URI-based references.

XSD is compatible to specifications that go beyond the syntactical dimension of types.
SAWSDL, which stands for Semantic Annotations for WSDL [77], is a standard for se-
mantic annotations of type definitions. With SAWSDL an XSD type definition may refer
to a concept of an ontology to declare what entity is meant to be represented by the type.

Example 1. Figure 20 lists the XML Schema Definition of two complex types. The con-
crete type ATP is derived from the abstract type Molecule. Each molecule is required
to have a unique identifier. ATP is defined as a special kind of molecule. The attribute
modelReference holds a reference to the ATP entry of KEGG. This semantic an-
notation provides the information that the type named “ATP” represents the molecule
ATP. Glucose may be derived from Molecule in the same manner.

With XSD types can be specified in documents, which are separated from the ac-
tual model definitions. Thereby type definitions become independent of modeling for-
malisms and simulation tools. Schema matching approaches may be used to decide on
the compatibility of types [78].

<? xml v e r s i o n =” 1 . 0 ” ?>
<xs : schema x m l n s : x s =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema”

xmlns=” u n i h r o / c b i o / m o l e c u l e s ”
t a r g e t N a m e s p a c e =” u n i h r o / c b i o / m o l e c u l e s ”
x m l n s : s a w s d l =” h t t p : / /www. w3 . org / 2 0 0 2 / ws / sawsd l / spec / sawsd l #”>
<xs : complexT ype name=” Molecule ” a b s t r a c t =” t r u e ”>

<x s : s e q u e n c e>
<x s : e l e m e n t name=” i d ” t y p e =” x s : i n t e g e r ” minOccurs=” 1 ” />
<x s : e l e m e n t name=” mul ” t y p e =” x s : i n t e g e r ” />

< / x s : s e q u e n c e>
< / xs : complexT ype>

<xs : complexT ype name=”ATP” s a w s d l : m o d e l R e f e r e n c e =
” h t t p : / /www. genome . j p / dbget −b i n / www bget ? cpd:C00002 ”>

<x s : c o m p l e x C o n t e n t>
<x s : e x t e n s i o n base =” Molecule ”>
< / x s : e x t e n s i o n>

< / x s : c o m p l e x C o n t e n t>
< / xs : complexT ype>

<xs : complexT ype name=” Glucose ” . . .
</ xs : schema>

Fig. 20. Type definition in XSD with reference to semantics
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5.2 Interfaces, Implementations, and Refinement

Interface definition languages for software and services allow to group atomic points
of interaction into more complex structures. In the area of programming languages and
UML these composite points of interaction are called interfaces and group method dec-
larations. The idea behind interfaces is to extract certain patterns of interaction (at least
the structural part thereof) from implementations. Interfaces are separate units of def-
inition that may be referenced by different implementations and function as contracts
between implementations.

Roles and Composite Points of Interaction. A component usually exhibits a set of
interfaces and requires another set of interfaces to be provided by models it has to
interact with as part of a larger simulation model. For the purpose of discrete-event
modeling, method-oriented interfaces do not fit well to modeling formalisms that are
based on event ports. Therefore, SysML, a modeling language based on UML, allows
to define composite flowports that group asynchronous interaction capabilities [54].

Similar to SysML, we group event-based interaction capabilities in so called roles.
Based on type definitions in XSD, roles may be separated from model definitions and
reside in own XML documents – similar to interfaces defined in the Web Service De-
scription Language (WSDL) [79].

Example 2. Figure 21 shows the definition of a role, which the cytoplasm may play
when interacting with a mitochondrion. The role describes the interaction potential of
the cytoplasm as the ability to send Glucose and receive ATP. The document defining
the role imports the type definitions listed above.

Roles extract interface information with respect to a certain abstraction from a model
definition. A role declares a set of directed event ports, which have a logical relation.

Example 3. If the cytoplasm model is supposed to interact with other types of models,
e.g. with the nucleus for getting a transcription of the DNA, according roles have to be

<d e s c r i p t i o n
xmlns=” h t t p : / /www. i n f o r m a t i k . uni−r o s t o c k . de / cosa / r o l e ”

x m l n s : c e l l =” u n i h r o / c b i o / c e l l ”>
< i d>c e l l : E n e r g y R e q< / i d>
< t y p e s>

<i m p o r t namespace=” u n i h r o / c b i o / t y p e s ” />
< / t y p e s>
< r o l e x m l n s : t y p e s =” u n i h r o / c b i o / t y p e s ”>

<e v e n t p o r t name=” a t p ” i s I n p u t =” t r u e ” t y p e =” types :ATP ” />
<e v e n t p o r t name=” g l y ” i s I n p u t =” f a l s e ” t y p e =” t y p e s : G l u c o s e ” />

< / r o l e>
< / d e s c r i p t i o n>

Fig. 21. Definition of a role based on imported types
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Cytoplasm

atp:ATP
facA:FactorA

glu:Glucose mrna:mRNA

EnergyReq
ATP Glucose FactorAmRNA

FactorB

facB:FactorB

TransReq

Fig. 22. Assembling atomic interaction capabilities in roles

introduced. Figure 22 visualizes how the interface of the cytoplasm model may be split
up into two roles: EnergyReq for interacting with mitochondria and TransReq for
interacting with the nucleus.

Interfaces. For reusing a model all interaction capabilities have to be described un-
ambiguously. Interfaces are used to combine a set of roles, each describing a certain
aspect of the model’s overall communication potential. As types announce “atomic”
interaction capabilities, roles announce complex ones. By composite ports, an inter-
face declares that it may be coupled several times in the same manner with different
models.

For exploiting the potential of e.g. multiple connectivity of a port, a model compo-
nent needs to be customizable to fit into a particular composition context. Therefore,
parametrization of model components is needed, such that a component represents a
whole class of models, which are suited for a set of similar contexts.

Example 4. An interface definition for the cytoplasm model is depicted in Figure 23.
The interface possess two composite ports. The first port is named “trans” and typed by
the role TransReq. The second port bears the name “energy” and is of type
EnergyReq. Whereas “trans” has to be connected exactly once the number of con-
nections to port “energy” may range from one up to an arbitrary number (indicated by
the symbol *).

The parameter with name “mito” and type int allows to configure a cytoplasm
component to a certain number of connections to mitochondria.

Composite ports and parameters form the basic ingredients of an interface description
for model components. If a model should be reused in a new context, the concepts
underlying a model definition need to be considered [80]. As simulation models ab-
stract from certain properties, their reuse depends on the assumptions, simplifications,
and constraints made in the model. The conceptual dimension of models is usually de-
scribed in semi-structured data and needs to be evaluated by humans. An example for
an interface description is listed in Figure 24.

As XML documents, interfaces are described platform-independent, maybe stored
in databases, and can be analyzed for compatibility based on type definitions in XSD.
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Cytoplasm en:EnergyReq[1..*]trans:TransReq[1]

mi to: int

Fig. 23. Interface with two composite ports and a parameter

< i n t e r f a c e
xmlns=” h t t p : / /www. i n f o r m a t i k . uni−r o s t o c k . de / cosa / p u b l i c i ”

x m l n s : c y t o =” u n i h r o / c b i o / c y t o p l a s m ”
x m l n s : c e l l =” u n i h r o / c b i o / c e l l ”>

< i d>c y t o : i n t e r f a c e< / i d>
<p r o f i l e>

<name>Cytoplasm< / name>
<a p p l i c a t i o n d o m a i n>C e l l s i m u l a t i o n< / a p p l i c a t i o n d o m a i n>
<d e s c r i p t i o n>Simple model of t h e a c e l l ’ s

cy top l asm </ d e s c r i p t i o n >
<o b j e c t i v e >R e p r e s e n t a l l c e l l a c t i v i t i e s e x c e p t t h a t o f t h e

n u c l e u s and t h e m i t o c h o n d r i a </ o b j e c t i v e >
<k e y a b s t r a c t i o n s >May only be c o u p l e d t o a n u c l e u s and a s e t

o f m i t o c h o n d r i a . < / k e y a b s t r a c t i o n s >
<a u t h o r >Math ias Roehl </ a u t h o r >

</ p r o f i l e >
<param name =” mito ” t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema:int ”

v a l u e =”1” d e s c r i p t i o n =” number of m i t o c h o n d r i a t h i s model
s h o u l d be c o u p l e d t o ”/>

<p o r t m i n M u l t i p l i c i t y =”1” m a x M u l t i p l i c i t y =”∗”>
<name>en </name>
<type >c e l l : E n e r g y R e q </ type>

</ p o r t >
<impl>c y t o : i m p l </ impl>

</ i n t e r f a c e >

Fig. 24. Definition of a model interface in XML

Refinement. Public interface descriptions serve as contracts between model compo-
nents. To be of any value, properties declared in an interface has to be fulfilled by the
implementation. Via reference to roles an interface declares a set of directed event ports.
Its implementation has to provide these ports. Model implementations are not allowed
direct dependencies to other model implementations.

Ports need need to be associated with the declared interaction capabilities. A diffi-
culty arises from the multiplicities of complex ports. If a port may be connected multiple
times, name clashes might occur that have to be resolved.

Example 5. The two complex ports offered by the cytoplasm interface are both typed
by a role. All three atomic ports of the role TransReq can be directly mapped to
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Cytoplasm
Model

atp

facA
glu2

mrna

ATP Glycose

FactorAmRNA

FactorB

facB

TransReq

transCytoplasm

en
2

EnergyReq
ATP Glucose

1

glu1

EnergyReq

Fig. 25. Binding of abstract interaction points to ports of an implementation

an implementation port. In contrast, the port “en” may be connected multiple times
according to the role EnergyReq. For each of the multiplicities separate bindings have
to be defined. One possibility is to bind different multiplicities of the output channel of
type Glucose to different output ports of the implementation model, such that each
mitochondrion can be addressed individually. As it is not relevant for the cytoplasm
model from whom ATP is received, both the first and the second input channel of type
ATP are bound to the same implementation port. Figure 25 visualizes the binding of
abstract to concrete ports with bold dashed lines.

Based on port binding, refinement can now be formulated. A model refines an inter-
face if for all multiplicities of all declared interaction capabilities implementation ports
exists that are bound to them. To summarize, an interface contains a set of composite
ports. Composite ports reference roles, each of which comprises a set of event ports.
Looking at the composition of models, composite ports declare the provisions and re-
quirements of a model. At the time of composition ports have to be connected with
compatible counterparts.

5.3 Composition Hierarchies

Couplings connect composite ports of one model component to compatible ports of
another component. Communication between components is only allowed along these
connections. For the purpose of simulation, all connections have to be associated with
a precise meaning, i.e. they have to be mapped to atomic communication channels. To
this end, each connection needs to define to which position, in the range of multiplicities
of a port, it refers.

Example 6. Figure 26 shows a simple example for using composite structures to spec-
ify compositions of model components. A cell is defined as the composite component
Cell that contains and connects model components of type Cytoplasm, Nucleus,
and Mitchondrion. The cytoplasm and the nucleus are connected via their
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nucleus:
Nucleus

cyto:
Cytoplasm mito1:

Mitochondrion
en:EnergyReq[1..*]

e:EnergyProv

Cell

t:TransProvtrans:TransReq

 mito2:
Mitochondrion

e:EnergyProvmi to : in t=2

1

2

Fig. 26. Composite structure of a cell

TransReq and TransProv port respectively. Both Mitochondrion instances be-
come connected to the cytoplasm at a different position within the multiplicity of the
port “en”. The cytoplasm’s parameter “mito” is accordingly set to 2.

To support the hierarchical construction of models a component may itself refer to other
components as sub components, contain connections, and thereby become a composite
component. Consequently, connections fall into two different classes. On the one hand,
it is possible to connect compatible ports of sub components. On the other hand, con-
nections may delegate ports of the same type between a component and a port of its
sub components. Nevertheless, for a composition to be complete all required ports of
all components need eventually to be connected to compatible counterparts.

Example 7. The Cell may itself be modeled as a component, which provides two pa-
rameters and is equipped with a composite port to interact with other cells. The latter re-
quires the definition of a new role and another implementation of the cytoplasm model,
as the cytoplasm needs to interact accordingly. Figure 27 depicts the hierarchical rela-
tion between the interface of a cell and its implementation as a composite component.
For using the cell component, values have to be assigned to the parameters. The pa-
rameter “mito” prescribes the number of mitochondrion components to use inside the
cell and the parameter “nex” determines the number of connections to other cell com-
ponents. The implied structure at the atomic interaction level for the parameter values
“mito”=10 and “nex”=1 is shown in Figure 28.

For using a component within a certain composition, the component has to be connected
via its ports. At the level of a cell, the Cytoplasm and Mitochondrion component
are black boxes except their published ports. Besides the references to the published
ports and parameters, the cell makes no further assumptions about the implementation
of its sub components. Compositions abstract from internal details of the parts being
composed. Furthermore, component implementations are hidden. The knowledge of a
component ends at its borders. A component can interact with its environment only
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Cell

e:EnergyProv
mi to

Mitochondrionen:EnergyReq[1..*]

trans:TransReq

t:TransProv

c 1:
Cell

cyto:
Cytoplasm

ex:Exchange[1..4]

ex:Exchange[1..4]

ex:Exchange[1..4]

nucleus:
Nucleus

nex: int

mi to: int

Fig. 27. Hierarchical composition structures

cytop:
Cytoplasm mito1:

Mitochon

Cell

in1

 facA

mrna

inEx1

facA

mrna

glu
 glu1

nuc:
Nucleus

mito10:
Mitochon

 glu10

 outEx1  out1

... ...atp

 facB facB 

glu

 atp

 atp

Fig. 28. Resulting model structure

via its ports. Thereby, direct dependencies between components and their contexts of
use are eliminated and components may be developed independently of each other. The
presented approach to composition builds upon the following concepts:

– Define the type of events to be exchanged between models in a platform-
independent manner and put these definitions in separate XML documents, such
that they can be stored, queried, and retrieved from public databases.

– Group atomic interaction capabilities in role descriptions, which represent patterns
of interaction (currently merely the static part) and let interfaces refer to roles to
announce composite ports. Interfaces allow to

• offer a role multiple times to different interaction partners,
• reuse interaction capabilities for different model components,
• use different styles of connection by explicit port bindings, and to
• realize configuration points to adjust a component to a specific usage context.
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– Make components themselves modular-hierarchical. Components may be part of
other components. Here, the main difference to plain modular-hierarchical model-
ing lays in the complexity of composition relations. Sub components are not refer-
enced and analyzed directly but their usage is always mediated by their respective
interfaces.

Hierarchies and abstraction form the basic prerequisites to compositional approaches.
The presented composition approach combines different hierarchical relations (type hi-
erarchies, refinement hierarchies, and composition hierarchies) to simplify the modeling
process and thereby increase accuracy and decrease efforts. Currently, the proposed ap-
proach is based on static interfaces. How to support a component-based model design
based on components with dynamic interfaces is still an open question.

6 Discussion

Our focus has been on the compositional hierarchy in modeling biological systems. Two
different approaches have been presented, i.e. DEVS and π calculus. In being applied in
the biological realm, both encountered various extensions. The rigid hierarchical struc-
ture of DEVS has been softened, whereas in the π calculus explicit structures have been
added. Reasons to soften the hierarchical structures were to support variable structure
models, models that allow to describe changing patterns of interaction, composition,
behavior, i.e. DYNDEVS, and even interfaces, i.e. ρ-DEVS. The more structured ver-
sions of the π calculus, i.e. BETA-BINDERS, SPICO, and BIOAMBIENTS, inherited
the flexibility from the underlying formalism. Among them BIOAMBIENTS is the only
one supporting a composition hierarchy. The origin of DEVS lies in the 70s and in sys-
tems theory, and reflects the discussions of that time about hierarchical organizations
of dynamic systems and the crucial distinction between system and environment. The
concepts introduced, e.g. a clear interface between system and environment, reappear in
recent approaches like SysML. However, its set-based definition appears bulky in com-
parison to the more recent and lean π calculus. In any case, the extensions tend to bur-
den formalisms even if they lighten the modeling effort. Components are the building
blocks for this type of hierarchical modeling. Components require an interface and they
need to be operationally closed. For reuse it is beneficial to treat interfaces as separate
units, this is supported by formalisms like BETA-BINDERS, DEVS, and DYNDEVS. The
flexibility of the interface as realized in BIOAMBIENTS and ρ-DEVS hampers such a
separate treatment of interfaces. However, they support a plasticity that is characteristic
for many biological systems. BIOAMBIENTS as well as ML-DEVS support in addition
to the flexible interface another feature that is of importance in describing biological
systems, to combine micro and macro modeling of a system within one model and thus
to explicitly support downward and upward causation.
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32. Degenring, D., Frömel, C., Dikta, G., Takors, R.: Sensitivity analysis for the reduction of
complex metabolism models. Journal of Process Control 14(7), 729–745 (2004)

33. Boström, P., Morel, L., Walden, M.: Stepwise development of simulink models using the
refinement calculus framework. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007.
LNCS, vol. 4711, pp. 79–93. Springer, Heidelberg (2007)

34. Nicol, D., Priami, C., Nielson, H., Uhrmacher, A. (eds.): Simulation and Verification of Dy-
namic Systems. Dagstuhl Seminar Proceedings 0161 (2006) ISSN 1862-4405

35. Klir, G.: Architecture of Systems Problem Solving. Plenum Press (1985)
36. Sauro, H., Uhrmacher, A., Harel, D., Kwiatkowska, M., Hucka, M., Mendes, P., Shaffer,

C., Stroembaeck, L., Tyson, J.: Challenges for modeling and simulation in computational
biology. In: Proc. of the Winter Simulation Conference, IEEE/ACM (2006)

37. Szyperski, C.: Component software: beyond object-oriented programming, 2nd edn. ACM
Press/Addison-Wesley Publishing Co (2002)

38. Verbraeck, A.: Component-based distributed simulations: the way forward? In: PADS ’04:
Proceedings of the eighteenth workshop on Parallel and distributed simulation, New York,
NY, USA, ACM Press (2004) 141–148

39. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Gruenbauer, J., Harel,
D., Hoare, C.A.R. (eds.) Engineering Theories of Software-intensive Systems. NATO Sci-
ence Series: Mathematics, Physics, and Chemistry, vol. 195, pp. 83–104 (2005)

40. Janssen, T.M.V.: Compositionality (with an appendix by B. Partee). In: van Benthem, J.,
ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 417–473. Elsevier, Amsterdam
(1997)

41. Cambell, D.: Downward causation. In: Ayla, F., Dobzhansky, T. (eds.) Studies in the philos-
ophy of biology, pp. 179–186. University of California Press (1974)

42. Tilly, C.: Micro, macro, or megrim? In: Schlumbohm, J. (ed.) Mikrogeschichte - Makro-
geschichte: komplementär oder inkommensurabel? Göttinger Gespräche zur Geschichtswis-
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Abstract. This chapter reviews the theory of stochastic chemical ki-
netics and several simulation methods that are based on that theory. An
effort is made to delineate the logical connections among the major ele-
ments of the theory, such as the chemical master equation, the stochastic
simulation algorithm, tau-leaping, the chemical Langevin equation, the
chemical Fokker-Planck equation, and the deterministic reaction rate
equation. Focused presentations are given of two approximate simula-
tion strategies that aim to improve simulation efficiency for systems
with “multiscale” complications of the kind that are often encountered
in cellular systems: The first, explicit tau-leaping, deals with systems
that have a wide range of molecular populations. The second, the slow-
scale stochastic simulation algorithm, is designed for systems that have
a wide range of reaction rates. The latter procedure is shown to pro-
vide a stochastic generalization of the Michaelis-Menten analysis of the
enzyme-substrate reaction set.

Keywords: stochastic chemical kinetics, master equation, stochastic
simulation algorithm, tau-leaping, Langevin equation, Fokker-Planck
equation, multiscale, stiff systems, slow-scale stochastic simulation al-
gorithm, Michaelis-Menten, enzyme-substrate reaction.

1 Introduction

The dynamics of cellular chemical systems can sometimes (but not always) be
approximated by assuming that the reactant molecules are “stirred” to such an
extent that their positions become randomized and need not be tracked in detail.
When that is so, the state of the system can be defined by the instantaneous
molecular populations of the various chemical species. This chapter discusses
some of the ways in which such systems can be numerically simulated. The focus
will be on simulation methods that take explicit account of the discreteness
and stochasticity that is always present at the molecular level, and which is
sometimes important in cellular systems, where the molecular populations of
some key species can be small.

We begin in Sec. 2 by reviewing the theory of stochastic chemical kinetics,
which provides the rational basis for all the simulation methods that will be
discussed. We derive the chemical master equation and the stochastic simula-
tion algorithm, and then show how a series of well defined approximations leads
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successively to tau-leaping, the chemical Langevin and Fokker-Planck equations,
and finally the traditional deterministic description in terms of ordinary differen-
tial equations. In Sec. 3 we consider some practical issues involved in implement-
ing the explicit tau-leaping simulation method; this procedure, encompassing as
it does Langevin leaping and the deterministic reaction rate equation, accommo-
dates systems with a wide range of molecular populations. In Sec. 4 we present
the slow-scale stochastic simulation algorithm, which is designed for systems that
have a wide range of reaction rates. In Sec. 5 we show how application of the
slow-scale stochastic simulation algorithm to the enzyme-substrate reaction set
yields a stochastic generalization of the deterministic Michaelis-Menten theory.
We conclude in Sec. 6 with some brief comments on future directions for research.

2 Foundations of Stochastic Chemical Kinetics

The theory of stochastic chemical kinetics has been reviewed in several recent
articles [1,2,3], and the reader may consult any of those for further details and
for references to the original literature. We consider a system of molecules of
N chemical species {S1, . . . , SN}, which interact through M elemental reaction
channels {R1, . . . , RM}. An elemental reaction is one that occurs essentially
instantaneously. In practice, there are only two types of elemental reaction: uni-
molecular, in which a single molecule changes form; and bimolecular, in which
two molecules collide and a chemical change occurs as a result. All other types
of reaction (trimolecular, reversible, etc.) are made up of a series of two or more
elemental reactions.

The ideal way to simulate the time evolution of a chemical system would be
to use molecular dynamics, in which the exact positions and velocities of all the
molecules in the system are tracked. Molecular dynamics thus simulates every
molecular collision that occurs in the system, both the “reactive” collisions that
lead to bimolecular reactions, and the “non-reactive” collisions in which the
two colliding molecules simply bounce off each other without undergoing any
chemical change. But this highly detailed computational approach is unfeasible
for nearly all real systems.

2.1 The Well-Stirred Condition and the Propensity Functions

A great simplification occurs if successive reactive collisions tend to be separated
in time by very many non-reactive collisions. This might occur naturally, in which
case we would say the system is self-stirring, or it might occur through exogenous
stirring or shaking. Either way, the net effect is a randomization of the velocities
and the positions of the molecules: the velocities acquire a Maxwell-Boltzmann
distribution appropriate to the system temperature T , and the positions become
randomly uniform over the containing volume Ω. In what follows, we will be
exclusively concerned with such well-stirred systems. Whereas specifying the
state of a general chemical system requires giving the instantaneous position,
velocity, and species of each molecule in the system, specifying the state of a
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well-stirred system is enormously easier: We need only specify the vector X(t) =
(X1(t), . . . , XN (t)), where Xi(t) is the number of Si molecules contained in Ω
at time t.

For a well-stirred system, each reaction channel Rj can be characterized
mathematically by two quantities: The first is its state-change vector νj =
(ν1j , . . . , νNj), where νij is defined to be the change in the Si molecular popu-
lation caused by one Rj reaction event; thus, an Rj reaction induces the state
change x → x+ νj . The other defining quantity for reaction Rj is its propensity
function aj . It is defined by the statement

aj(x) dt ≡ the probability, given X(t) = x, that one Rj reaction will occur
inside Ω in the next infinitesimal time interval [t, t + dt) . (1)

(We view dt as a real variable that is distinct from, and independent of, t; the
domain of definition of dt is the interval [0, ε], where ε is arbitrarily close to 0.)

The definition (1) can be viewed as the fundamental premise of stochastic
chemical kinetics, because everything else in the theory follows from it. But
the validity of (1) cannot simply be assumed or postulated mathematically;
rather, it must be grounded in physical theory. This requires finding the specific
physical conditions under which functions aj having the property (1) exist, and
then determining the forms of those functions. This effort typically focuses on
identifying for each Rj a reaction probability rate constant cj , which is defined
so that cjdt gives the probability that a randomly chosen combination of Rj

reactant molecules will react accordingly in the next dt. Then we can use the
addition law of probability theory to compute the probability (1) as the sum of
cjdt over all distinct combinations of Rj reactant molecules in the current state
x = (x1, . . . , xN ). This leads to the following general forms for the propensity
functions of the basic elemental reaction types:

S1
cj−→ products: aj(x) = cjx1, (2a)

S1 + S2
cj−→ products: aj(x) = cjx1x2, (2b)

2S1
cj−→ products: aj(x) = cj

1
2x1(x1 − 1) . (2c)

The forms of cj will be highly reaction specific. For the unimolecular reaction
(2a), cj might be quantum mechanical in origin. For the bimolecular reactions
(2b) and (2c), cj will typically be the product of the probability that a randomly
chosen pair of reactant molecules will collide in the next dt, times the probability
such a collision will produce an Rj reaction [4]. The collision factor will generally
be inversely proportional to Ω, reflecting the fact that two molecules will have a
harder time finding each other in a larger container. Model theoretical derivations
of the collision probability factor can be given for well-stirred molecules moving
either ballistically (as in a dilute gas) or diffusively (as in a solution). In what
follows, we shall simply assume that the propensity functions aj(x), like the
state-change vectors νj , are all given.
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2.2 The Chemical Master Equation

The probabilistic nature of (1) implies that the most we can hope to predict
about the system is the probability P (x, t |x0, t0) of finding X(t) = x, given that
X(t0) = x0 for t0 � t. We can derive a time-evolution equation for P by using
the laws of probability to write P (x, t+dt |x0, t0) as the sum of the probabilities
of all the mutually exclusive ways in which the system could evolve from state
x0 at time t0 to state x at time t + dt, via specified states at time t:

P (x, t + dt |x0, t0) = P (x, t |x0, t0) ×

⎡

⎣1 −
M∑

j=1

(aj(x)dt)

⎤

⎦

+
M∑

j=1

P (x − νj , t |x0, t0) × (aj(x − νj)dt) .

The first term on the right is the probability that the system is already in state x
at time t, and then no reaction of any kind occurs in [t, t+dt). The generic second
term is the probability that the system is one Rj reaction removed from state x
at time t, and then one Rj reaction occurs in [t, t + dt). That these M +1 routes
to state x at time t + dt are mutually exclusive and collectively exhaustive is
ensured by taking dt to be so small that the probability of more than one reaction
occurring in [t, t + dt) is negligibly small. Subtracting P (x, t |x0, t0) from both
sides of the above equation, dividing through by dt, and then taking the limit
dt → 0, we obtain the chemical master equation (CME):

∂P (x, t |x0, t0)
∂t

=
M∑

j=1

[aj(x − νj)P (x − νj , t |x0, t0) − aj(x)P (x, t |x0, t0)] .

(3)
In principle, the CME completely determines the function P (x, t |x0, t0). But

in practice, this equation is usually very difficult, if not impossible, to solve. One
might hope to learn something from the CME about the behavior of averages,
like 〈f (X(t))〉 ≡

∑
x f(x)P (x, t |x0, t0), but this too turns out to be difficult if

any of the reaction channels are bimolecular. For example, by multiplying (3)
by x and then summing over x, we can derive the relation

d 〈X(t)〉
dt

=
M∑

j=1

νj 〈aj (X(t))〉 . (4)

If all the reactions were unimolecular, the propensity functions would all be
linear in x and we would have 〈aj (X(t))〉 = aj (〈X(t)〉). Equation (4) would
then be a closed ordinary differential equation for the first moment 〈X(t)〉. But
if, as is usually the case, any reaction is bimolecular, the right hand side of (4)
will contain at least one second moment of the form 〈Xi(t)Xi′(t)〉, and (4) would
then be merely the first of an infinite, open-ended set of equations for all the
moments.
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In the hypothetical case in which there are no fluctuations, i.e., if X(t) were
a deterministic or sure process, we would have 〈f (X(t))〉 = f (X(t)) for all
functions f . Equation (4) would then reduce to

dX(t)
dt

=
M∑

j=1

νjaj(X(t)) . (5)

This is the reaction rate equation (RRE) of traditional deterministic chemical
kinetics – a set of N coupled first-order ordinary differential equations for the
molecular populations Xi(t), which are here continuous sure variables. (The RRE
is more commonly encountered written in terms of the concentration variable,
Z(t) = X(t)/Ω, but that simple scalar transformation is inconsequential for our
purposes here.) Although this line of reasoning shows that the deterministic RRE
(5) would be valid if all fluctuations could be ignored, it does not tell us how
or why the fluctuations might ever be ignorable. One of the aims of this section
will be to show how the RRE (5) follows from (1) through a series of physically
transparent approximating assumptions.

2.3 The Stochastic Simulation Algorithm

An alternate approach to describing the behavior of the system is to construct
a numerical realization of X(t), i.e., a simulated trajectory of X(t)-versus-t.
This is not the same as solving the CME numerically; however, much the same
effect can be achieved by either histogramming or averaging the results of many
realizations. The key to constructing a simulated trajectory of X(t) is not the
CME or the function P (x, t |x0, t0), but rather another probability function,
p(τ, j |x, t), which is defined as follows:

p(τ, j |x, t) dτ ≡ the probability, given X(t) = x, that the next
reaction in the system will occur in the infinitesimal time

interval [t + τ, t + τ + dτ), and will be an Rj reaction . (6)

Formally, this function is the joint probability density function of the two random
variables “time to the next reaction” (τ) and “index of the next reaction” (j),
given that the system is in state x at the current time t.

To derive an analytical expression for p(τ, j |x, t), we begin by introducing
yet another probability function, P0(τ |x, t), which is defined as the probability,
given X(t) = x, that no reaction of any kind occurs in the time interval [t, t+ τ).
By the definition (1) and the laws of probability theory, this function must satisfy

P0(τ + dτ |x, t) = P0(τ |x, t) ×

⎡

⎣1 −
M∑

j′=1

(aj′ (x)dτ )

⎤

⎦ ,

since the right side gives the probability that no reaction occurs in [t, t + τ) and
then no reaction occurs in [t+ τ, t + τ + dτ) (as usual we take the infinitesimal
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time span dτ to be so small that it can contain no more than one reaction). A
simple rearrangement of this equation and passage to the limit dτ → 0 results
in the differential equation

dP0(τ |x, t)
dτ

= −a0(x)P0(τ |x, t) ,

where we have defined

a0(x) ≡
M∑

j′=1

aj′ (x) . (7)

The solution to this differential equation for the initial condition P0(0 |x, t) = 1 is

P0(τ |x, t) = exp (−a0(x) τ ) .

Now we observe that the probability defined in (6) can be written

p(τ, j |x, t) dτ = P0(τ |x, t) × (aj(x)dτ ) ,

since the right side gives the probability that no reactions occur in [t, t + τ) and
then one Rj reaction occurs in [t + τ, t + τ + dτ). When we insert the above
formula for P0(τ |x, t) into this last equation and cancel the dτ ’s, we obtain

p(τ, j |x, t) = aj(x) exp (−a0(x) τ ) . (8)

Writing this result in the form

p(τ, j |x, t) = a0(x) exp (−a0(x) τ ) × aj(x)
a0(x)

shows that τ is the exponential random variable with mean (and standard de-
viation) 1/a0(x), while j is a statistically independent integer random variable
with point probabilities aj(x)/a0(x).

There are several exact Monte Carlo methods for generating samples of such
random variables. For example, application of the classic “inversion” generating
method (see, e.g., Chapter 1 of [5]) yields the following procedure: Draw two ran-
dom numbers r1 and r2 from the uniform distribution in the unit-interval and take

τ =
1

a0(x)
ln
(

1
r1

)
, (9a)

j = the smallest integer satisfying
j∑

j′=1

aj′ (x) > r2 a0(x) . (9b)

Using these generating formulas gives the following so-called direct method of
implementing the stochastic simulation algorithm (SSA):

1. Initialize the time t = t0 and the system’s state x = x0.
2. With the system in state x at time t, evaluate all the aj(x) and their sum

a0(x).
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3. Generate values for τ and j using Eqs. (9).
4. Effect the next reaction by replacing t ← t + τ and x ← x + νj .
5. Record (x, t) as desired. Return to Step 2, or else stop.

The X(t) trajectory that is produced by the SSA might be thought of as a
stochastic version of the trajectory that would be obtained by numerically solving
the RRE (5). But note that the time step τ in the SSA is exact, and is not a finite
approximation to some infinitesimal dt as is the time step in most numerical
ODE solvers. If it is found that every SSA-generated trajectory is practically
indistinguishable from the RRE trajectory, then we may conclude that microscale
randomness is negligible for this system. But if the SSA trajectories are found to
deviate significantly from the RRE trajectory, or from each other, then we must
conclude that microscale randomness is not negligible, and the deterministic
RRE does not provide an accurate description of the system’s true behavior.
Figure 1 shows two SSA-generated trajectories for the simple reaction S1 → ∅,
and compares those trajectories to the predictions of the CME and the RRE.

The CME and the SSA are logically equivalent to each other, since each is
derived without approximation from premise (1). But even when the CME is
intractable, the SSA is straightforward to implement. In fact, as a numerical
procedure, the SSA is even simpler than procedures that are typically used to
numerically solve the RRE (5). The catch is that the SSA is often very slow. The
source of this slowness can be traced to the factor 1/a0(x) in (9a) for the time-
step τ ; that factor can be very small if at least one reactant species is present in
large numbers, and that is nearly always the case for real systems.

Besides the direct method just described, other implementations of the SSA
are the first reaction method, the next reaction method, the first family method,
the modified direct method, and the sorting direct method. Reference [3] de-
scribes these methods briefly and gives references to the original papers. The
next reaction, modified direct, and sorting direct methods are especially notewor-
thy, since they give significant speedups over the other methods while remaining
exact. But as procedures that simulate every reaction event one at a time, none
of these will be fast enough for most practical applications. This prompts us to
consider the possibility of giving up some of the exactness of the SSA in return
for greater simulation speed.

2.4 Tau-Leaping

One approximate accelerated simulation strategy is tau-leaping. It steps the sys-
tem ahead in time by a pre-selected interval τ which may encompass more than
one reaction event. The key to doing this properly is the Poisson random variable
with mean m, which we denote by P(m). One way of defining that integer-valued
random variable is as follows: P(aτ) is the number of events that will occur in
a time τ , given that the probability of an event occurring in any infinitesimal
time dt is a dt where a is a nonnegative real constant.

Suppose the system is in state x at time t. And suppose we choose a time
τ that is small enough to satisfy the Leap Condition, which is this: Each aj
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Fig. 1. Trajectories of X1(t)-versus-t for the simple reaction S1
c1−→ ∅, with c1 = 1 and

X1(0) = 100. The center solid curve is the solution X1(t) = 100 · e−t of the RRE for
this system, dX1/dt = −X1. The CME can be solved exactly for this system (but for very
few other systems), and its solution shows X1(t) to be the binomial random variable with
mean 100 ·e−t and standard deviation 10 ·

√
e−t · (1 − e−t). The resulting “one-standard

deviation envelope” is shown in the figure by the two dashed lines. The SSA for this re-
action decrements x1 by 1 at each reaction, with the time to the next reaction in state x1

being computed as τ = (1/x1) ln(1/r). Two independent SSA realizations, which were
made using different seeds for the unit-interval uniform random numbers r, are shown as
the step-curves. There will always be exact agreement between the mean of the CME and
the solution of theRRE if all the propensity functions are linear in the species populations,
as is the case here. Otherwise the two will not be exactly equal, but the difference between
them will nearly always be very small of the populations are even moderately large.

will remain approximately constant at its value aj(x) during the time interval
[t, t + τ ]. Satisfaction of this condition is secured in practice by requiring that,
for every j = 1, . . . , M , |Δτaj(x)/aj(x)|, the absolute fractional change in aj

during the next time τ , will not exceed some sufficiently small ε. When the Leap
Condition is satisfied, Rj will (approximately) have probability aj(x) dt of firing
in every dt subinterval of [t, t + τ ]. So by definition, the number of times Rj will
fire in [t, t+τ ] is (approximately) the Poisson random variable P (aj(x) τ ). Since
each firing of Rj changes the system state by νj , then the state at time t + τ
can be computed from the state x at time t by the formula

X(t + τ) .= x +
M∑

j=1

Pj (aj(x)τ ) νj . (10)
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Equation (10) is called the tau-leaping formula. Its accuracy depends solely on
how well the Leap Condition is satisfied (i.e., on how small we choose the control
parameter ε). If we can find a τ that is at once small enough to satisfy the Leap
Condition sufficiently well, yet nevertheless large enough that many reactions
will fire during time [t, t + τ ], then tau-leaping can give a faster simulation than
the SSA. This turns out to be possible for many systems.

2.5 The Chemical Langevin and Fokker-Planck Equations

In Section 3 we will consider some practical issues that must be resolved in order
for the tau-leaping strategy to be efficiently implemented. For now though, we
want to show that two well established theorems of probability theory allow
the tau-leaping formula (10) to be further approximated in a way that is both
useful and illuminating. The first theorem we will need deals with N (m, σ2), the
normal (or Gaussian) random variable with mean m and variance σ2. It says
that

N (m, σ2) = m + σN (0, 1) . (11)

The second theorem says that the Poisson random variable P(m) with mean m
also has variance m, and when m � 1, it can be well approximated by a normal
random variable with the same mean and variance:

P(m) ≈ N (m, m) if m � 1 . (12)

So, with the system in state x at time t, suppose we can find a τ that is small
enough that the Leap Condition is satisfied, i.e., for some ε 
 1,

|Δτaj(x)/aj(x)| � ε for all j = 1, . . . , M , (13)

and yet is also large enough that

aj(x)τ � 1 for all j = 1, . . . , M . (14)

It turns out that these two conditions will simultaneously be satisfied for most
systems if the reactant populations are sufficiently large. Assuming these con-
ditions are satisfied, then condition (13) permits us to invoke the tau-leaping
formula (10). And condition (14) then allows us to invoke theorem (12) to ap-
proximate Pj (aj(x)τ ) in (10) by a normal random variable with the same mean
and variance:

X(t + τ) .= x +
M∑

j=1

Nj (aj(x)τ, aj(x)τ ) νj .

Invoking theorem (11), this can also be written

X(t + τ) .= x +
M∑

j=1

[
aj(x)τ +

√
aj(x)τ Nj (0, 1)

]
νj ,
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which in turn can be rearranged to

X(t + τ) .= x +
M∑

j=1

νj aj (x) τ +
M∑

j=1

νj

√
aj (x)Nj(0, 1)

√
τ . (15)

Equation (15) has two names: the Langevin leaping formula and the “standard
form” chemical Langevin equation (CLE). When the latter name is used, the
time increment τ is regarded as a “macroscopic dt”. Equation (15) evidently
expresses the increment in the state in the small time τ as the sum of two terms:
the first term, which is non-random and proportional to τ , is called the drift
term; the second term, which is random and proportional to

√
τ , is called the

diffusion term. Since τ is “small” then τ 

√

τ , so the drift term will always
be very much smaller than the diffusion term. The reason we cannot just drop
the drift term from (15) is that the diffusion term also contains as a factor a
zero-mean normal random number, which will be as often positive as negative;
therefore, over a long series of successive τ-intervals, the state change caused by
the “tortoise-like” drift term will be comparable to the state change caused by
the “hare-like” diffusion term.

It can be shown that the seemingly arbitrary mathematical structure of (15),
which has the deterministic term proportional to τ and the stochastic term
proportional to

√
τ and a zero-mean normal random variable, is the only self-

consistent form that the increment of a “continuous, past-forgetting” process
can have if the increment has a finite mean and variance [6,7]. All continuous
Markov processes are governed by Langevin equations with those features. In
most science and engineering applications of Langevin equations, the coefficient
of τ in the drift term is inferred from a phenomenological macroscopic rate
equation, and the coefficient of Nj(0, 1)

√
τ in the diffusion term is then chosen

to secure some preconceived thermodynamic property. So it is noteworthy that
the chemical Langevin equation (15) has not been obtained here using such ad
hoc reasoning; instead, it has been logically deduced from the propensity function
hypothesis (1) under conditions that allow specific approximations to be made.
Of course, in circumstances where conditions (13) and (14) cannot both be met,
the CLE will have no claim to legitimacy.

In the theory of continuous Markov processes, it can be shown that the CLE
(15) can also be written in the form [6,7,8]

dX(t)
dt

.=
M∑

j=1

νj aj (X(t)) +
M∑

j=1

νj

√
aj (X(t))Γj(t) . (16)

This equation is known as the “white noise form” CLE. The Γj(t)’s here
are statistically independent Gaussian white noise processes that satisfy
〈Γj(t) Γj′(t′)〉 = δjj′ δ(t−t′), where the first delta function is Kronecker’s and the
second is Dirac’s. The CLE (16) has the canonical form of what mathematicians
call a “stochastic differential equation.”
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Another result of continuous Markov process theory is that the time evolution
of X(t) prescribed by (15) [or (16)] induces a time evolution in the probability
density function P (x, t |x0, t0) of X(t) that is described by the partial differential
[7,8,9]

∂P (x, t |x0, t0)
∂t

.= −
N∑

i=1

∂

∂xi

⎡

⎣

⎛

⎝
M∑

j=1

νijaj(x)

⎞

⎠P (x, t |x0, t0)

⎤

⎦

+
1
2

N∑

i=1

∂2

∂x2
i

⎡

⎣

⎛

⎝
M∑

j=1

ν2
ijaj(x)

⎞

⎠P (x, t |x0, t0)

⎤

⎦

+
N∑

i,i′=1
(i<i′)

∂2

∂xi∂xi′

⎡

⎣

⎛

⎝
M∑

j=1

νijνi′j aj(x)

⎞

⎠P (x, t |x0, t0)

⎤

⎦ . (17)

This equation is called the chemical Fokker-Planck equation (CFPE). The jump
Markov process governed by the master equation (3) has now been approximated
by the continuous Markov process that is governed by the Langevin equation
(15) [or (16)] and the Fokker-Planck equation (17). The transition from a dis-
crete (integer) valued process X(t) to a continuous (real) valued process X(t)
happened when we approximated the integer-valued Poisson random variables
in the tau-leaping formula (10) by the real-valued normal random variables in
the Langevin leaping formula (15).

Equations (16) and (17) may appear to be complicated and intimidating, so it
is worth emphasizing that the logical content of those two equations is completely
captured by (15). And (15) in turn is just a straightforward approximation of
the tau-leaping formula (10) that is justified whenever τ satisfies, in addition to
the Leap Condition (13), the condition (14).

2.6 The Thermodynamic Limit and the Reaction Rate Equation

We are now in a position to derive the traditional deterministic RRE (5) within
the context of stochastic chemical kinetics. In practice, most chemical systems
contain huge numbers of molecules, and are thus well on their way to the so-
called thermodynamic limit, in which the species populations Xi and the system
volume Ω all approach infinity in such a way that the species concentrations
Xi/Ω remain constant. The large molecular populations of such systems usually
mean that their dynamical behavior is well described by the CLE (15) [or (16)].
An inspection of the CLE (16) shows that its deterministic drift term is linear
in the propensity functions, while its stochastic diffusion term is proportional to
the square root of the propensity functions. Now, it can be shown that in the
thermodynamic limit, all propensity functions grow in direct proportion to the
size of the system. For a unimolecular propensity function of the form cjxi this
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is obvious, since cj is independent of the size of the system. For a bimolecular
propensity function of the form cjxixi′ this follows because cj is inversely pro-
portional to the system volume Ω, and that offsets one of the two population
variables. Therefore, as the thermodynamic limit is approached, the drift term
in the CLE (16) grows like the system size, while the diffusion term grows more
slowly as the square root of the system size. This establishes the well known
rule-of-thumb in chemical kinetics that relative fluctuations in a macroscopic
chemically reacting system typically scale as the inverse square root of the sys-
tem size. In the full thermodynamic limit, the diffusion term in the CLE (16)
becomes vanishingly small compared to the drift term, and the CLE then reduces
to the RRE (5).

2.7 The Broad View

The logical relationships among the various assumptions, approximations and
equations of stochastic chemical kinetics are summarized in Fig. 2.

We conclude this overview of stochastic chemical kinetics by noting that there
are many systems in biochemistry for which the potential number N of molecular
species is much larger than the total number of reactant molecules in the system
(e.g., proteins with many binding sites), and the potential number M of reaction
channels is much larger than the number of reaction events that will be simulated.
For such systems, it will not be feasible to enumerate all the potential species
and reaction channels in the way we have tacitly assumed. There are two general
ways of dealing with this difficulty.

One is to proceed along the lines of an adaptation of the SSA devised by Lok
and Brent [10]: Species and reactions are introduced into the SSA program only
when they become needed, and removed whenever they become not needed.
This tactic will usually keep the numbers of active species and reactions at
manageable levels, and can make possible the simulation of many systems that
could otherwise not be simulated. This tactic also brings to light a practical
advantage that the discrete, stochastic approach to chemical kinetics has over
the traditional continuous, deterministic approach: When using the RRE, all
potential species and reactions come into play after the very first timestep, and
that can make for an unmanageably large number of ODEs in the circumstances
just described.

A different way of dealing with the problem of astronomically large numbers
of potential species and reactions is to move closer to a molecular dynamics ap-
proach, and track the position of every key molecule. Doing that would also avoid
the sometimes unacceptable limitations imposed by the well-stirred assumption.
But the cost of doing this is substantial, since one has to accurately simulate
the physical motion of every important molecule in the system. That task can
be simplified somewhat by assuming that those molecules move about by “hop-
ping” from one “spatial lattice point” to another, but the physical fidelity of
that approximation can be difficult to assess.
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Fig. 2. The logical structure of stochastic chemical kinetics. Everything follows
from the fundamental premise at the top via the laws of probability theory, but the
premise itself must be grounded in physical theory. Inference routes that are exact are
shown by solid arrows. Inference routes that are approximate are shown by dashed ar-
rows, with the condition justifying the approximation indicated in braces immediately
to the right. Solid outlined boxes are exact results: the chemical master equation (CME)
and the stochastic simulation algorithm (SSA). Dashed outlined boxes are approximate
results: the tau-leaping formula, the chemical Langevin equation (CLE), the chemical
Fokker-Planck equation (CFPE), and the reaction rate equation (RRE). The condi-
tion justifying the arguments leading from the fundamental premise to tau-leaping is
called the Leap Condition, and the condition justifying the arguments leading from the
CLE to the RRE is called the thermodynamic limit. The top-to-bottom progression
from discrete-stochastic to continuous-stochastic to continuous-deterministic is typi-
cally realized as the molecular populations of all the reactant species is made larger
and larger.

3 Implementing Explicit Tau-Leaping and Langevin
Leaping

Besides playing the theoretical role of a conceptual bridge between the CME/SSA
and the RRE, tau-leaping also provides a faster way to stochastically simulate a
chemical system than the SSA, albeit at the cost of some accuracy. Applying the
tau-leaping formula (10) might seem at first sight to be straightforward: With
the system in state x at time t, we first pick a value for τ that satisfies the
Leap Condition (no propensity function will change appreciably in the next τ).
Then, for each j = 1, . . . , M , we generate a sample kj of P (aj(x)τ ), the Poisson
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random variable with mean (and variance) aj(x)τ . Finally, we compute the state
of the system at time t+τ as x+

∑M
j=1 kj νj . Likewise for applying the Langevin

leaping formula (15) when condition (14) holds, except then we would generate
kj as a sample of the normal random variable with mean and variance aj(x)τ .

There are, however, several practical issues that must be resolved in order
to carry out this strategy efficiently: First, how can we estimate in advance the
largest value of τ that satisfies the Leap Condition? Second, how can we ensure
that the generated kj values do not result in some reactions firing so many times
in τ that the population of some consumed reactant species gets driven negative?
And finally, how can we arrange it so that tau-leaping segues efficiently to the
SSA as τ → 0? We shall now consider each of these questions in turn.

3.1 Satisfying the Leap Condition

With Δτaj(x) ≡ aj (X(t + τ)) − aj(x), the currently favored way to satisfy the
Leap Condition is to choose τ so that

|Δτaj(x)| � max (ε aj(x), cj) (j = 1, . . . , M) , (18)

where the accuracy control parameter ε is assigned some positive value that is
“much less” than 1. Usually the bound on the right will be ε aj(x), and that has
the effect of bounding the absolute fractional change in each aj by ε. Smaller
values of ε will result in a better satisfaction of the Leap Condition. But since
molecular populations cannot change by less than 1, the smallest possible non-
zero change in any of the basic propensity functions in (2) is cj ; therefore, we
take care in (18) not to insist that any propensity function should change by an
amount less than that.

But |Δτaj(x)| is a random variable, so its value cannot be predicted with
certainty. How then should we go about imposing the bound (18)? Since simply
rejecting values of τ that produce leaps that violate (18) runs the risk of biasing
the generated random numbers, we propose to simply apply the bound to both
the mean and the standard deviation of |Δτaj(x)|; those two quantities can be
reasonably well estimated so long as τ is not too large. Of course, this tactic
does not result in a “hard” bound, since it will produce values of |Δτaj(x)| that
occasionally violate (18). But that should not really pose a problem, since the
value assigned to ε is largely arbitrary; i.e., there is no magic value of ε for which
condition (18) will absolutely secure the mandate of the Leap Condition that
no propensity function will change “noticeably” in time τ . The real goal here
is to bound the changes in all the propensity functions in a reasonably uniform
way, and the procedure just described should do that. We note in passing that
the original presentation of the tau-leaping method in [11] deviated from the
procedure just described in two ways: First, only the mean (and not the standard
deviation) of |Δτaj(x)| was bounded; this defect was corrected in [12]. Second,
the bound on the right of (18) was taken to be ε a0(x), where a0(x) is the sum of
all the propensity functions (7); this gave a too generous bound for small-valued
propensity functions, and it was changed in [13].
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3.2 A Tau-Selection Strategy

A direct imposition of the bound (18) leads to a procedure for computing the
largest τ = τ(ε,x) satisfying that bound whose computational complexity is of
the order of the square of the number of reaction channels M . We describe here a
faster procedure that is only of order M [13]. This faster procedure is “indirect”
in that it actually bounds the population changes in time τ , Δτxi ≡ Xi(t+τ)−xi,
according to

|Δτxi| � max (εixi, 1) ∀i ∈ Irs . (19)

Here, Irs denotes the set of indices of all reactant species ; those are the only
species whose population changes we need be concerned with, since a change in
the population of a non-reactant species will not affect the value of any propen-
sity function. The trick in using (19) instead of (18) is to choose the functions
εi ≡ εi(ε, xi) in (19) in such a way that satisfaction of (18) will automatically
follow. This can be done in the following way. Before the simulation begins, de-
termine by inspecting the forms of all the reactions R1, . . . , RM the following
quantity for all i ∈ Irs:

HOR(i) ≡ highest order of reaction in which Si appears as a reactant . (20)

For example, if S1 were a reactant only in the reaction S1 → S2, we would have
HOR(1) = 1. But if S1 also appeared in the reaction S1 + S3 → S4, we would
have HOR(1) = 2. With the values of HOR(i) all ascertained, we then set the
functions εi(ε, xi) for each reactant species Si as follows:

If HOR(i) = 1, set εi = ε . (21a)

If HOR(i) = 2, set εi = ε/2, except if any reaction requires

two Si reactant molecules set εi = ε/
(
2 + (xi − 1)−1) . (21b)

To see that this way of defining εi(ε, xi) results in condition (19) guaranteeing
condition (18), we reason as follows: If HOR(i) = 1, we will have for one or more
j’s, aj = cjxi. Then Δτaj = cjΔτxi, so Δτaj/aj = Δτxi/xi. Therefore, if we
bound Δτxi/xi by ε, we will also bound Δτaj/aj by ε. If HOR(1) = HOR(2) =
2, reflecting that for some j, aj = cjx1x2, then we will have Δτaj

.= cjx2Δτx1 +
cjx1Δτx2, and thus Δτaj/aj

.= Δτx1/x1+Δτx2/x2. Therefore, if we bound each
of the two terms on the right side of this last equation by ε/2, then we will bound
Δτaj/aj by ε. Finally, if HOR(i) = 2 because aj = 1

2xi(xi − 1), then Δτaj
.=

1
2cj(xi − 1)Δτxi + 1

2cjxiΔτxi; thus Δτaj/aj
.= (Δτxi/xi)

(
2 + (xi − 1)−1

)
. So

if we bound Δτxi/xi by ε
/(

2 + (xi − 1)−1
)
, then we will bound Δτaj/aj by ε.

Similar formulas for εi can be derived for idealized tri-molecular reactions [13].
With the forms of the functions εi(ε, xi) determined, we must next figure out

how to find the largest τ that satisfies condition (19). As mentioned earlier, we
will take this to be the largest τ for which the mean and the standard deviation
of |Δτxi| both satisfy (19). Now, the basic tau-leaping formula (10) tells us that

Δτxi =
∑

j
νijPj (ajτ) .
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Since the random variables Pj (ajτ ) in this formula are statistically independent
with means ajτ and variances ajτ , then by a well-known theorem in statistics
the mean and variance of this linear combination can be computed as

〈Δτxi〉 =
∑

j
νij(ajτ), var {Δτxi} =

∑
j
ν2

ij(ajτ) .

The condition “|Δτxi| � max {εixi, 1}” will therefore be satisfied, at least by
our criterion, if and only if

∣∣∣
∑

j
νijajτ

∣∣∣ � max {εixi, 1} and
√∑

j
ν2

ijajτ � max {εixi, 1} . (22)

Solving these two inequalities for τ is straightforward, and gives

τ = min
i∈Irs

⎧
⎨

⎩
max {εixi, 1}∣∣∣
∑

j νij aj(x)
∣∣∣
,

max {εixi, 1}2

∑
j ν2

ij aj(x)

⎫
⎬

⎭ . (23)

3.3 Avoiding Negative Populations

Now that we have a way to estimate the largest value of τ that satisfies the
Leap Condition, we turn to the problem of how to avoid producing negative
molecular populations. If the population of a consumed reactant species becomes
small, it might get “overdrawn” in a leap and go negative. This was a common
problem with the original formulation of tau-leaping [11], and it was widely
attributed at the time to the fact that the Poisson random variable P(m) is
unbounded. But in fact, the most common cause of negative population values
with the original tau-leaping algorithm was its tactic of bounding |Δτaj(x)|
by εa0(x). Doing that allowed small-valued propensity functions to change by
too large an amount during τ , and some of them would occasionally go negative.
Changing the bound from εa0(x) to max (ε aj(x), cj) greatly reduces the number
of “negatives”. (Taking a broader view, a change in the value aj(x) from positive
to negative should always be regarded as a “noticeable” change, and therefore
should not be allowed by any implementation of the Leap Condition.) But the
improved bounding strategy we are now using does have a weakness: Since each
propensity function change gets estimated separately, no attention is paid to
the possibility that two or more different reactions with a common consumed
reactant might, acting together, inadvertently overdraw that reactant.

To keep that from happening, we introduce a second tau-leaping control pa-
rameter (in addition to ε) which we call nc [14]. Using this parameter, we classify
any Rj as critical if it is within nc firings of exhausting any of its reactants. For
example, if nc = 10, then the reaction S1 → S2 would be classified as critical if
1 � x1 � 10. We call any reaction that does not meet this criterion non-critical.
Our strategy will be to implement the tau-leaping procedure in such a way that,
during any leap, there will at most one firing of a critical reaction. That will
make it impossible for any critical reaction to overdraw any of its reactants.
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And since the only reactions that are in danger of making such an overdraw will
be critical, provided nc is chosen large enough, then the negativity problem is
essentially solved. In more practical terms, if a negative population is encoun-
tered during a tau-leaping simulation run, that should be taken as a sign that
the simulation run should be started over with either a smaller value for ε or a
larger value for nc.

To ensure that there will be no more than one critical reaction occurring
during a leap, we proceed as follows. For the non-critical reactions Rj , whose
indices j make up (by definition) the set Jncr, we compute using (23) the largest
leap time τ ′ that is consistent with the Leap Condition (except if there are no
non-critical reactions we set τ ′ = ∞):

τ ′ = min
i∈Irs

⎧
⎨

⎩
max {εixi, 1}∣∣∣

∑
j∈Jncr

νij aj(x)
∣∣∣
,

max {εixi, 1}2

∑
j∈Jncr

ν2
ij aj(x)

⎫
⎬

⎭ . (24)

The restriction in (24) of the j-sums to the non-critical reactions makes τ ′ the
maximum leap time if no critical reaction fires. Next we focus on the critical
reactions Rj , whose indices j make up (by definition) the set Jcr. For leaps no
larger than τ ′, the propensity functions of the critical reactions will not be much
affected by any firings of the non-critical reactions. So to a good approximation,
we can use the SSA to determine the time τ ′′ when the next critical reaction
would fire, and the index jc of that reaction (except if there are no critical
reactions we set τ ′′ = ∞). To do this, we first compute

a0c(x) ≡
∑

j∈Jcr

aj(x) . (25)

Then we draw two unit-interval uniform random number r1 and r2 and compute

τ ′′ =
1

a0c(x)
ln
(

1
r1

)
, (26)

jc = smallest integer satisfying
jc∑

j∈Jcr

aj′(x) � r2a0c(x) . (27)

Having computed τ ′ and τ ′′, we now take the actual leap time τ to be the
smaller of the two. The state at time t+τ is then computed, at least tentatively,
from the tau-leaping formula (10), but applied to the non-critical reactions only;
i.e.,

X(t + τ) .= x +
∑

j∈Jncr

Pj (aj(x)τ ) νj . (28)

If τ = τ ′ < τ ′′, then no critical reactions will have fired during the leap, so (28)
accurately estimates the state change in time τ . But if τ = τ ′′ � τ ′, then the
critical reaction with index jc in (27) will have fired once (but no other critical
reaction will have fired), so we include its effect simply by making the adjustment

X(t + τ) ← X(t + τ) + νjc . (29)
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3.4 The Tau-Leaping Procedure

In summary then, the explicit tau-leaping simulation algorithm goes as follows:

1. Choose values for ε and nc. For each reactant species Si, determine the
functions εi(ε, xi) according to the rules (21). Initialize t ← 0 and x ← x0.

2. In state x at time t, evaluate all the aj(x). Classify as critical any Rj for
which aj(x) > 0 and which is within nc firings of exhausting any reactant.
Classify all other Rj non-critical.

3. Compute τ ′ using (24) (except if there are no non-critical reactions take
τ ′ = ∞). This is the maximum leap time allowed by the Leap Condition for
the non-critical reactions.

4. Compute τ ′′ using (26) (except if there are no critical reactions take τ ′′ = ∞).
This is the time to the next critical reaction.

5. Take τ = min (τ ′, τ ′′). Compute X(t+τ) using (28). This gives the new state
of the system if no critical reaction fired during the leap.

6. If τ ′′ � τ ′, compute jc from (27) and replace X(t + τ) ← X(t + τ) + νjc .
7. Update x ← X(t + τ) and t ← t + τ . Return to Step 2, or else stop.

In using this algorithm, a periodic check should be made to see if any negative
populations have been generated. If negative populations are found, this should
be taken as a sign that either ε has been set too large or nc has been set too
small. The simulation should then be aborted and started over with those control
parameters adjusted accordingly. Of course, one should not assume that the
absence of negative populations assures that the current value of the control
parameters are okay. Judgment is needed in setting those parameters.

3.5 An Example

Figures 3 and 4 compare simulations of a model reaction set made using the SSA
and the explicit tau-leaping algorithm. The tau-leaping run in Fig. 4 evidently
approximates the exact SSA run in Fig. 3 extremely well, yet it ran about ten
times faster. See the figure captions for details.

3.6 Segueing to the SSA, Langevin Leaping, and the RRE

An examination of the above tau-leaping algorithm will reveal that if all reac-
tions have been classified as critical, which will happen if either nc is taken very
large or if many reactant populations have become very small, then the algorithm
reduces to the SSA. This is very convenient. For, although the bare tau-leaping
formula (10) does become exact, and therefore equivalent to the SSA, in the limit
τ → 0, it also becomes infinitely inefficient in that limit. That’s because with
τ so small that aj(x) τ 
 1 for all j, the M Poisson random numbers in (10)
will usually all be zero, meaning that no reactions at all fire during the leap.
Only occasionally will some reaction fire once, but rarely will more than one
firing occur. Clearly it would be more efficient in that circumstance to use the
SSA, which is exact and always gives one reaction per step. Earlier versions of
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Fig. 3. An exact SSA simulation of the reaction set S1
c1−→ ∅, 2 S1

c2�
c3

S2, and S2
c4−→ S3.

The parameter values are c1 = 1, c2 = 0.002, c3 = 0.5 and c4 = 0.04, and the
t = 0 populations are X1 = 100, 000 and X2 = X3 = 0. We can think of S1 as
a “decaying monomer”, S2 as an “unstable dimer”, and S3 as a “stable dimer”. An
initial fast transient due to reaction R2 brings X1 down to around 5000, and X2

up to about 47,000. Thereafter the populations evolve more slowly, although with
evident fluctuations. The populations were plotted out here after every 500 reaction
events. There were a total of 517,067 reactions simulated by the time all the S1 and
S2 molecules were gone.

the tau-leaping algorithm explicitly checked to make sure that τ is comfortably
larger than 1/a0(x), the average size of τ produced by the SSA formula (9a),
and if that were not so tau-leaping would revert to the SSA. But this precau-
tion appears to be unnecessary when using the tau-leaping algorithm described
above.

Also important is the limit at the other extreme, where tau-leaping segues
first to the CLE and then to the RRE. These transitions practically always oc-
cur as the molecular populations of the reactant species grow larger. All reaction
channels then become non-critical, and the means aj(x) τ of the Poisson ran-
dom variables in (28), which give the expected number of firings of each Rj ,
become large compared to 1. Those Poisson random variables can then be well
approximated by normal random variables with the same means and variances,
and the tau-leaping formula becomes the Langevin leaping formula. For even
larger populations the standard deviations of the normal random variables be-
come negligibly small compared to their means, so they can be approximated
by sure numbers, which results in the RRE. But all of these transitions will
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Fig. 4. An approximate explicit tau-leaping simulation run of the same reaction set as
in Fig. 3. The control parameters used here were ε = 0.04 and nc = 10. The species
populations here were plotted after every leap, and 905 leaps in all were taken, in
contrast to the over half million reaction steps that were taken in Fig. 3. This tau-
leaping run was over 10 times faster than the SSA run. The initial transient evidently
caused no problems for the method. The only noticeable difference from the SSA plot
is that the slowly decreasing X1 trajectory is slightly noisier here than in the SSA plot.
This is a manifestation of stiffness (see Sec. 4). The problem is not serious for these
parameter values, but it could easily become serious for other parameter values.

happen smoothly and automatically if one writes the Poisson random number
generator appropriately: When a call is received by the generator for a Poisson
random number with mean and variance aj(x) τ , if that number is “very large”
(perhaps > 103) the generator should return a normal random number with
that mean and variance, and if aj(x) τ is “very very large” (perhaps > 108) the
generator should return the sure number aj(x) τ . If the Poisson random number
generator is written in this way, then if it should happen that all the aj(x) τ
are “very large” we will automatically be doing Langevin leaping, and if all the
aj(x) τ are “very very large” we will automatically be using the Euler method
for numerically solving the RRE (5). But there is no need for us to be aware of
which (if any) of those regimes we happen to be in at any moment, nor to have
any concern if the firing numbers of some reactions are Poisson while others are
normal while still others are sure.

The explicit tau-leaping algorithm as implemented here evidently includes the
exact-but-slow SSA at one extreme, and the fast-but-approximate RRE at the
other extreme, so the algorithm is actually a fairly robust simulation procedure
for stochastic chemical kinetics. Since the SSA is typically required for small
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molecular populations, while the RRE is usually acceptable only for very large
molecular populations, then the explicit tau-leaping algorithm can fairly be said
to be “multiscale” with respect to species populations.

But the explicit tau-leaping algorithm does have a significant limitation: The
Leap Condition will always restrict the size of τ to the time scale of the fastest
reactions in the system. Therefore, for systems with a very wide range of time
scales, for example stiff systems, explicit tau-leaping will seem unduly slow.
There are two approaches to this problem, both of which are still under active
development. One is implicit tau-leaping [15,16], which is a stochastic adaptation
of the implicit Euler method for ODEs. The other is the slow-scale SSA, which is
a stochastic adaptation of the rapid (or partial) equilibrium method for ODEs.
We shall describe the slow-scale SSA in the next section.

4 The Slow-Scale SSA

Many chemically reacting systems of practical interest, especially cellular sys-
tems, consist of a mixture of “fast” reactions that occur very frequently and
“slow” reactions that occur only rarely. Perhaps the simplest example of that
kind of system is the reaction set

S1
c1�
c2

S2
c3−→ S3 (30)

when the rate constants are such that reactions R1 and R2 are “fast” and reaction
R3 is “slow” in the sense just defined. In simulating such systems, the SSA will
spend most of its time simulating the fast reactions. If those fast reactions are
in some sense not as important as the slow ones, this will be an inefficient
allocation of computational resources. In the case of reactions (30) for instance,
the fact that R1 and R2 undo each other tends to make those two reactions
uninteresting, whereas the creation of an S3 molecule might well be an event of
some significance. So the question arises, can the simulation of systems like this
be made more efficient?

4.1 Stiffness

In the deterministic world of ODEs, the problem we have just described is known
as the problem of “dynamical stiffness”. A set of ODEs that evolve on a wide
range of time scales, with the fastest mode being stable, is said to be stiff. Much
attention has been devoted to stiff ODEs over the past decades because they
arise in many contexts, and several effective ways of dealing with stiff ODEs
have been devised [17].

It turns out that stiffness is just as much a problem in a stochastic context [15],
but the situation there is less well understood. Among the complicating issues:
Do “fast” and “slow” apply to reactions, or to species, or to both? Exactly how
are these terms to be defined operationally? Since the fast and slow components
of a system are typically interconnected (if they aren’t then there is no problem),
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can those components be teased apart for analysis without seriously distorting
their combined effects?

We describe here one way of dealing with stiff stochastic chemical systems
called the slow-scale stochastic simulation algorithm (ssSSA) [18]. The ssSSA
consists of, first, a procedure for identifying fast and slow reactions and species
in circumstances where the fast reactions are relatively unimportant; and second,
an approximate procedure derived from the fundamental premise (1) for skipping
over the fast reactions and simulating only the slow ones. All this is accomplished
through a series of carefully prescribed steps, which we shall now describe. For
more details and references to original papers and related works, see [18,19,20,3].

4.2 Fast and Slow Reactions, Fast and Slow Species

The first step in the ssSSA is to make a provisional partitioning of the reactions
into fast and slow subsets,

{
Rf

1, . . . , R
f
Mf

}
and

{
Rs

1, . . . , R
s
Ms

}
. The criterion for

making this partitioning is somewhat vague: The propensity function af
j(x) of

each fast reaction Rf
j should usually be very much larger than the propensity

function as
j(x) of any slow reaction Rs

j . The qualifier “usually” is needed because
the value of a propensity function depends on the current state x, so a propensity
function can be very large in some regions of state space and very small in other
regions. It is therefore impossible to know whether a propensity function will be
large or small “usually” unless we already have a good idea of how the system
behaves. But the partitioning we adopt here is only provisional. It will later be
subjected to a test that will determine whether or not it is acceptable.

The second step is to partition the species into fast and slow subsets. The cri-
terion for doing this is unambiguous: Any species whose population gets changed
by at least one fast reaction is classified as fast, and all other species are clas-
sified as slow. This leads to a partitioning of the state vector into fast and
slow components: X(t) =

(
Xf(t),Xs(t)

)
, where Xf(t) =

(
X f

1(t), . . . , X
f
Nf

(t)
)

and Xs(t) =
(
Xs

1(t), . . . , X
s
Ns

(t)
)
.

Some points to note: (a) With both the species and the reactions now grouped
into fast and slow subsets and re-indexed accordingly, the state change vector
components νij acquire superscripts, νσρ

ij , where σ = (f, s) tells whether index
i is for a fast or slow species, and ρ = (f, s) tells whether index j is for a
fast or slow reaction. (b) A slow species cannot get changed by a fast reaction
(νs f

ij ≡ 0), but a fast species can get changed by a slow reaction. (c) All propensity
functions can depend on both fast and slow species populations; i.e., in general
af

j(x) = af
j(x

f ,xs) and as
j(x) = as

j(x
f ,xs). (d) The population of a fast species

need not be large. (e) It is possible for there to be no slow species, in which case
xf = x; however, there must always be at least one slow reaction.

4.3 The Virtual Fast Process

The third step in the ssSSA is to define the virtual fast process, X̂f(t), as the fast
species populations evolving under only the fast reactions. That is, X̂f(t) is Xf(t)
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with all the slow reactions switched off. X̂f(t) is a fictitious process, in contrast
to the real fast process Xf(t) which consists of the same fast variables evolving
under all the reactions. The master equation for Xf(t) will be non-Markovian,
and no easier to solve than the (Markovian) master equation for the full pro-
cess X(t). But the master equation for X̂f(t) will be Markovian, and usually
much simpler than that for X(t); it determines the function P̂ (xf , t |x0, t0), the
probability that X̂f(t) = xf given that X(t0) = x0. We will not actually need
to compute P̂ (xf , t |x0, t0) for arbitrary t. But we will need to estimate some
properties of

lim
t→∞ P̂ (xf , t |x0, t0) ≡ P̂ (xf , ∞ |x0) . (31)

This function, which defines the asymptotic virtual fast process X̂f(∞), can in
principle be found by solving the (purely algebraic) stationary master equation
for X̂f(t) [cf. (3)]:

0 =
Mf∑

j=1

{
af

j(x
f − νf

j ,x
s
0)P̂ (xf − νf

j , ∞ |x0) − af
j(x

f ,xs
0)P̂ (xf , ∞ |x0)

}
. (32)

4.4 The Stochastic Stiffness Conditions

The fourth step in the ssSSA is to verify that the partitioning of the reactions
that was done in the first step is acceptable. The partitioning is deemed accept-
able if and only if two conditions are satisfied: First, X̂f(t) must be “stable”, in
that X̂f(t → ∞) must exist, or equivalently, the function (31) must exist. Sec-
ond, X̂f(t) must approximately attain its limiting form X̂f(∞) in a time that is
small compared to the expected time to the next slow reaction. In effect, these two
conditions are simply demanding that the full process X(t) be stiff : It should
have well-separated fast and slow modes, and the fast mode should be stable. If
these conditions are not satisfied, and cannot be satisfied by a different choice
of fast and slow reactions in the first step, then we should conclude that the
fast reactions are not less important than the slow ones, and therefore should
not be skipped over. Verifying the satisfaction of these two stochastic stiffness
conditions can be a challenging task, but it has been successfully done for several
simple systems, as we shall see below.

4.5 The Slow Scale Approximation Lemma

The foregoing four steps basically set the stage for the following lemma, which
gives the main enabling result for the ssSSA [18]:

Slow Scale Approximation Lemma. With X(t) = (xf ,xs), let Δs be a time
increment that is large compared to the time it takes for X̂f(t) → X̂f(∞), yet
small compared to the expected time to the next slow reaction. (The existence
of such a Δs is guaranteed by the satisfaction of the stochastic stiffness conditions
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in the fourth step.) Then the probability that the slow reaction Rs
j will fire in

[t, t + Δs) is approximately ās
j(x

f ,xs) × Δs, where

ās
j(x

f ,xs) =
〈
as

j

(
X̂f(∞),xs

)〉
≡
∑

yf

P̂ (yf , ∞ |xf ,xs) as
j(y

f ,xs) . (33)

Before we prove this lemma, let us make clear its significance. Recall that for
a “true” infinitesimal dt, as

j(x
f ,xs)× dt gives, by definition, the probability that

reaction Rs
j will fire in the next dt. Now, the time increment Δs, although large

on the “fast” timescale, is very small on the “slow” timescale; thus, on the time
scale of the slow reactions, Δs can be regarded as an “infinitesimal”. According
to the lemma, if we multiply Δs by the function ās

j(x
f ,xs) that is defined in (33),

we get the probability that Rs
j will fire in the next Δs. Therefore, ās

j(x
f ,xs) has

the defining attribute of the propensity function for Rs
j on the timescale of the

slow reactions. So, if we are content to simulate the system on the timescale
of the slow reactions, we can forget about the fast reactions and just simulate
the slow ones, provided of course we use the propensity functions ās

j(x
f ,xs). The

trick, of course, is to evaluate those functions according to (33), either exactly or
to an acceptable approximation. Before we consider that matter, though, let us
prove the slow scale approximation lemma. The proof turns out to be remarkably
straightforward:

Proof of lemma: Let [t′, t′ + dt′) be a “true” infinitesimal subinterval of the
“macroscopic” infinitesimal time interval [t, t+Δs). The probability that Rs

j will
fire in [t′, t′ + dt′) is, by definition,

as
j

(
Xf(t′),Xs(t′)

)
dt′ ≈ as

j

(
X̂f(t′),xs

)
dt′ . (34)

The last step follows because it is very unlikely that any slow reaction will fire
anywhere in the full interval [t, t+Δs), so Xf(t′) can be well approximated there
by X̂f(t′), and Xs(t′) can be well approximated by xs. Since there is a negligibly
small probability of more than one Rs

j reaction firing in [t, t+Δs), we can invoke
the addition law of probability for mutually exclusive events to compute

Prob
{
Rs

j will fire in [t, t + Δs)
}

≈
∫ t+Δs

t

as
j

(
X̂f(t′),xs

)
dt′ , (35a)

≈
{

1
Δs

∫ t+Δs

t

as
j

(
X̂f(t′),xs

)
dt′
}

Δs , (35b)

≈

⎧
⎨

⎩
∑

yf

P̂ (yf , ∞ |xf ,xs) as
j(y

f ,xs)

⎫
⎬

⎭Δs . (35c)

The quantity in braces in (35b) is, since Δs is very large on the time scale of the
fast reactions, the temporal average of as

j

(
X̂f(t′),xs

)
. In proceeding to (35c),

we are choosing to evaluate that temporal average as the ensemble average,
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〈
as

j

(
X̂f(∞),xs

)〉
. This is a tactic that is ubiquitously employed in statistical

physics. It can be justified for any stable jump stochastic process Y (t) by the
following chain of reasoning: Letting tk = (T/K)k for k = 0, 1, . . . , K,

lim
T→∞

1
T

∫ T

0
Y (t)dt = lim

T→∞
1
T

lim
K→∞

K−1∑

k=0

Y (tk)(tk+1 − tk)

= lim
T,K→∞

1
T

K−1∑

k=0

Y (tk)
(

T

K

)
= lim

K→∞
1
K

K∑

k=1

Y (∞)k =
∑

y

P (y, ∞)y , (36)

where Y (∞)k is a sample value of Y (∞), and P (y, ∞) = Prob{Y (∞) = y}.
With (35c), the lemma is established.

4.6 Strategy of the ssSSA

The strategy of the ssSSA is to simulate only the slow reactions with the SSA,
but using their slow-scale propensity functions (33). If there is a comfortable
separation between the fast and slow timescales, the Slow Scale Approximation
Lemma tells us that this procedure should give an accurate picture of how the
slow species populations evolve.

For the fast species, the situation is a little convoluted. The fast species popu-
lations are governed mainly by the fast reactions. But when we use the ssSSA, we
will no longer be simulating the fast reactions; therefore, we will no longer have the
ability to track the “true” populations of the fast species. This loss of precise in-
formation about the populations of the fast species is the price we must inevitably
pay for skipping over the fast reactions. But there is a way we can simulate how
the fast species populations would appear on the timescale of the slow reactions:
After the occurrence of each slow reaction, if we simply wait for a time that is in-
finitesimally small on the timescale of the slow reactions, yet large enough for the
relaxation X̂f(t) → X̂f(∞) to take place, then measuring the populations of the
fast species would be equivalent to drawing a random sample yf from the probabil-
ity function P̂ (yf , ∞ |xf ,xs). So this is what the ssSSA does for the fast variables:
After effecting each slow reaction, the ssSSA in effect “pauses imperceptibly” to
allow the fast species populations to “relax”, and then it simulates their values by
Monte Carlo sampling the random variable X̂f(∞).

It is important to understand, though, that any errors we might make in
generating values for the fast species populations will not affect the subsequent
accuracy of the ssSSA simulation. That’s because we never make use of those
generated values to evaluate any propensity functions. More specifically, we don’t
need to know xf to evaluate the fast reaction propensity functions af

j(x
f ,xs),

because we do not simulate the fast reactions. And we don’t need to know xf

to evaluate the propensity functions of any of the slow reactions, because (as
will be seen more clearly the examples that follow) their propensity functions
ās

j(x
f ,xs) in (33) depend only on properties of xf that are conserved by the fast

reactions. The only reason for generating “relaxed” values of the fast variables
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is to indicate how those populations would appear if they were plotted on the
timescale of the slow reactions. If such a visualization of the fast variables is not
needed – i.e., if all we are interested in are the populations of the slow species
– then the step of generating relaxed values for the fast species populations can
be omitted without any impairment to the simulation.

The key steps in implementing the ssSSA are therefore as follows:

(i) In state (xf ,xs) at time t, evaluate ās
j(x

f ,xs) =
〈
as

j

(
X̂f(∞),xs

)〉
accord-

ing to (33) for each slow reaction Rs
j . This is the hard part. If each slow

reaction has no more than one fast reactant species molecule, then this
formula simplifies to ās

j(x
f ,xs) = as

j

(〈
X̂f(∞)

〉
,xs

)
, and all we will need

is the first moment of X̂f(∞). But if any slow reaction involves two fast
reactant species molecules, we will also need the second moment of X̂f(∞).
Approximations may have to be made to compute these moments. For in-
stance, in many cases it has been found acceptable to approximate the first
moment

〈
X̂f(∞)

〉
by the stationary solution of the RRE for the virtual

fast process.
(ii) Compute the time τ to the next slow reaction, and the index j of that

reaction, by applying the SSA procedure in (9) to the slow reactions only,
using their effective propensity functions ās

j(x
f ,xs).

(iii) Implement the next slow reaction by updating t ← t + τ and x ← x + νs
j .

(iv) Finally, “relax” the fast variables by replacing xf with a sample yf of the
probability function P̂ (yf , ∞ |xf ,xs). Approximations may be required to
do this. But note that any approximation errors in this step will have
no effect on the accuracy of the simulation. If P̂ (yf , ∞ |xf ,xs) cannot be
computed exactly, it will sometimes be acceptable to approximate it as a
normal random variable; that would require estimating only the first and
second moments of X̂f(∞).

4.7 An Example

For an illustrative example, let us apply the ssSSA to the reaction set (30). We
start by (provisionally) taking R1 and R2 to be fast reactions and R3 a slow
reaction. Since species S1 and S2 get changed by fast reactions, then they will
be fast species, whereas S3, which does not get changed by any fast reaction,
will be a slow species. The fast process is thus Xf(t) = (X1(t), X2(t)), and the
slow process is Xs(t) = X3(t). The virtual fast process is therefore X̂f(t) =(
X̂1(t), X̂2(t)

)
, with X̂1(t) and X̂2(t) evolving only through the fast reactions,

S1
c1�
c2

S2. For these two reactions, we evidently have the conservation relation

X̂1(t) + X̂2(t) = x12. It implies that the virtual fast process X̂f(t) has only one
independent variable. We can choose that independent variable to be X̂2(t), and
then compute X̂1(t) as x12−X̂2(t). The propensity functions for the fast reactions
relative to X̂2(t) take the forms a1(x2) = c1(x12 − x2) and a2(x2) = c2x2. The
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associated state-change vectors are ν1 = +1 and ν2 = −1. The steady-state or
“equilibrium” master equation (32), which determines the probability function
for X̂2(∞), reads

0 =
2∑

j=1

{
aj(x2 − νj)P̂2(x2 − νj , ∞ | x12) − aj(x2)P̂2(x2, ∞ | x12)

}
. (37)

After substituting into this equation the aforementioned propensity functions
and state change vectors, it is not hard to show that this equation implies

c2(x2 + 1)P̂2(x2 + 1, ∞ | x12) = c1(x12 − x2)P̂2(x2, ∞ | x12), ∀x2 . (38)

The physical sense of this “detailed balance” relation can be seen by multiplying
it through by dt: the asymptotic probability of having x2 + 1 S2 molecules and
then losing one of them in the next dt is equal to the asymptotic probability
of having x2 S2 molecules and then gaining a new one in the next dt. Equation
(38) implies the following recursion relation for the function P̂2(x2, ∞ | x12):

P̂2(x2 + 1, ∞ | x12) =
c1(x12 − x2)
c2(x2 + 1)

P̂2(x2, ∞ | x12), x2 = 0, . . . , x12 − 1 . (39)

Iterating this recursion relation and then normalizing the result gives

P̂2(x2, ∞ | x12) =
x12!

x2!(x12 − x2)!

(
c1

c1 + c2

)x2 ( c2

c1 + c2

)x12−x2

, (40)

as can easily be verified by direct substitution into the recursion relation (39).
This probability function has the canonical form of the binomial distribution;
more specifically, it implies that X̂2(∞) is the binomial random variable with pa-
rameters c1/(c1 + c2) and x12. Thus, the asymptotic virtual fast process X̂f(∞)
is exactly known for this problem:

X̂2(∞) = B
(

c1

c1 + c2
, x12

)
, X̂1(∞) = x12 − X̂2(∞) . (41)

Since 〈B(p, N)〉 = pN , then the slow-scale propensity function for reaction R3 is

ā3(x) ≡ c3

〈
X̂2(∞)

〉
=

c3c1x12

c1 + c2
. (42)

Now we must determine under what conditions our initial provisional choice of
fast and slow reactions is acceptable. More specifically, we must determine under
what conditions X̂2(t) will relax to X̂2(∞) in a time that is small compared to
the expected time to the next slow (R3) reaction. Only if this is so will the Slow
Scale Approximation Lemma apply. The relaxation time for the process X̂2(t)
turns out to be 1/(c1 + c2). One way to verify this result is to note that, since
the propensity functions for this virtual fast process are linear in x2, then the
mean of X̂2(t) will satisfy the RRE for X̂2(t); thus,

d
〈
X̂2(t)

〉

dt
= c1

(
x12 −

〈
X̂2(t)

〉)
− c2

〈
X̂2(t)

〉
. (43)
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It is not hard to show that the solution
〈
X̂2(t)

〉
of this simple ODE approaches

its t = ∞ limit c1x12/(c1 + c2) exponentially with characteristic time 1/(c1 + c2).
As for the expected time to the next R3 reaction, it can be estimated as the recip-
rocal of the effective propensity function (42) for that reaction. Thus, the criterion
for the ssSSA to be applicable is that 1/(c1 + c2) should be very much less than
(c1 + c2)/c3c1x12, or

(c1 + c2)2 � c3c1x12 . (44)

This condition can always be satisfied by making c2 sufficiently large compared
to c3. And this is intuitively just what we should expect: If in the reaction set (30)
each S2 molecule is very much more likely to change into an S1 molecule than
an S3 molecule, then the two reactions R1 and R2 will fire much more frequently
than reaction R3. That circumstance will allow R1 and R2 to reach equilibrium
well before the next R3 reaction is likely to occur. And that is essentially all
that the proof of the Slow-Scale Approximation Lemma requires. Furthermore,
the stronger the inequality (44) is (i.e., the “stiffer” the system is), the more
accurate will the ssSSA simulation be. Notice that, since the combined number
x12 of S1 and S2 molecules steadily decreases as reactions (30) proceed, then if
condition (44) is satisfied at the beginning of a simulation run, it will necessarily
be satisfied for the duration of the run.

So, assuming condition (44) is satisfied, here is how the ssSSA simulation of
the reaction set (30) would proceed:

1. In state x =
(
xf ,xs

)
= ((x1, x2), x3) at time t, and with x12 = x1 + x2,

evaluate the slow-scale R3 propensity function ā3(x) in (42).
2. Draw a unit-interval uniform random number r, and compute the time to

the next R3 reaction, τ = (1/ā3(x)) ln (1/r).
3. Advance to the time of the next R3 reaction by replacing t ← t + τ , and

actualize that reaction by replacing x2 ← x2 − 1 and x3 ← x3 + 1. Then
update x12 ← x1 + x2 (or equivalently, x12 ← x12 − 1).

4. “Relax” the fast variables by first setting x2 equal to a random sample of
the binomial random variable B (c1/(c1 + c2), x12), and then setting x1 =
x12 − x2.

5. Record (t, x1, x2, x3) if desired. Return to 1, or else stop.

Figures 5, 6, 7 and 8 show comparison runs of the SSA and the above ssSSA
procedure for two different sets of rate constants. The SSA plots (in Figs. 5 and
7) were plotted out only after the occurrence of each R3 reaction – i.e. on the
slow timescale – in order to make a fair comparison with the ssSSA plots (in
Figs. 6 and 8). See the figure captions for details. In both examples the ssSSA
results are statistically indistinguishable from the SSA results, but were obtained
in orders of magnitude shorter times. And the ssSSA had no problems when the
fast species had low population numbers (Fig. 8).
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Fig. 5. An exact SSA simulation of reactions (30), S1
c1�
c2

S2
c3−→ S3, for the parameter

values c1 = 1, c2 = 2, and c3 = 5×10−5. A point was plotted out immediately after the
occurrence of each (slow) R3 reaction. Over 40 million reactions in all were simulated
in the time span shown, so between successive R3 reactions there were, on average,
about 76,000 R1 and R2 reactions.

4.8 The ssSSA in More Complicated Situations

Reaction set (30) is probably the simplest of all stiff chemical systems, so it
is not surprising that for it we can analytically calculate everything the ssSSA
needs to know about the asymptotic virtual fast process X̂f(∞) without making
any approximations. But we will not be able to do that for most systems.

In situations where one cannot conveniently develop reasonably accurate ana-
lytical approximations for X̂f(∞), one can try a variation on the ssSSA called the
nested SSA (nSSA) [21]. The nSSA essentially estimates the slow-scale propen-
sity functions ās

j(x
f ,xs) by computing the temporal average in (35b) instead of

the ensemble average in (35c). More specifically, the nSSA uses the SSA to nu-
merically construct a realization x̂f(t′) of the virtual fast process X̂f(t′) from
time t′ = t, when that process has the value xf , to time t′ = t + Tf , where Tf is
chosen to be larger the relaxation time of X̂f(t′). One estimates the slow-scale
propensity functions by numerically evaluating the integrals

ās
j(x

f ,xs) ≈ 1
Tf

∫ t+Tf

t

as
j

(
x̂f(t′),xs

)
dt′ , (45)

and then one takes the “relaxed sample” of X̂f(∞) to be x̂f(t + Tf). Since these
two estimates will be exact only in the limit Tf → ∞, the trick is to determine



154 D.T. Gillespie

0 4000 8000 12000 16000 20000

time

0

400

800

1200

1600
m

ol
ec

ul
ar

 p
op

ul
at

io
n

X2

X3

X1

Fig. 6. An approximate ssSSA simulation of the reactions in Fig. 5. Here only the
slow reactions are simulated, and there were 521 of them in all. For this simple system,
all of the procedures of the ssSSA can be carried out exactly, but the accuracy of the
simulation still depends on how well the stiffness condition (44) is satisfied. For these
parameter values, condition (44) is initially satisfied by two orders of magnitude, and
that figure improves as the reaction proceeds. This ssSSA plot, which is made on the
timescale of the slow reaction R3, is statistically indistinguishable from the SSA plot
in Fig. 5. But whereas the SSA run took 20 minutes of computer time to execute, this
ssSSA run took less than a second.

the smallest value of Tf that gives sufficiently accurate results. And of course,
the stiffness condition must still be satisfied, since it is assumed by (35b). Here
that condition essentially amounts to requiring that Tf be small compared to the
average time to the next slow reaction.

For systems with virtual fast processes that are only a little more complicated
than that for reactions (30), it is usually possible to get accurate results with the
ssSSA by making suitable approximations in calculating the needed properties
of the asymptotic virtual fast process. One example of this is worked out in [18],
where analytical approximations are developed for applying the ssSSA to the reac-
tion set that was simulated in Figs. 3 and 4, except the values of the reaction rate
constants are changed to make the reactions 2S1 � S2 “fast” and the other two
reactions “slow”. In a test run, the ssSSA results were statistically indistinguish-
able from the SSA results on the time scale of the slow reactions. But whereas the
compute time was 17 minutes for the exact SSA, it was less than a second for the
ssSSA. If the explicit tau-leaping procedure had been applied to this “stiffer” situ-
ation, a much smaller gain in simulation speed would have been achieved because
the Leap Condition would restrict the leaps to the timescale of the fast reactions.
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Fig. 7. An exact SSA simulation run of the same reactions (30) as in Fig. 5, but with
different reaction rates: c1 = 10, c2 = 4×104 and c3 = 2. These values cause the S2 pop-
ulation to be very small – usually 0 and rarely greater than 3. Over 23 million reactions
were simulated in the time span shown. The S1 and S3 populations in the upper box
were plotted out after the occurrence of each R3 reaction. However, the S2 population
in the lower box was plotted out at equal time intervals of Δt = 1.167, a value chosen
to give approximately the same number of plot points. If the S2 population had been
plotted out immediately after each R3 reaction, the density of dots along the X2 = 1
and X2 = 2 lines would be slightly but noticeably heavier than shown here, while the
density of dots along the X2 = 0 line would be slightly lighter. The reason is that an R3

reaction will be n times more likely to occur in the next dt when there are n S2 molecules
than when there is one S2 molecule, so plotting the fast species populations immediately
after a slow reaction will give a biased picture of the fast species populations on the slow
timescale. Such a bias is actually present in the trajectory of the other fast species S1,
but it is not noticeable at its larger population level.

Another example of a successful approximate implementation of the ssSSA
is to the simple enzyme-substrate reaction set. We shall describe how this is
done, and how it relates to the well known Michaelis-Menten treatment of that
problem, in the next section.

5 Applying the ssSSA to the Enzyme-Substrate Reaction
Set

The simple enzyme-substrate reaction set is

E + S
c1�
c2

ES
c3−→ E + P , (46)

where E is an enzyme molecule, S a substrate molecule, ES an enzyme-substrate
complex, and P a product molecule. The traditional deterministic analysis of this
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Fig. 8. An ssSSA simulation of the same reactions that were simulated in Fig. 7. Condi-
tion (44) is satisfied initially by over four orders of magnitude, and that figure becomes
more favorable as the reactions proceed. These trajectories are evidently statistically
indistinguishable from those in exact SSA run, showing that there is no requirement
by the ssSSA for the population of the fast species to be “large”. The simulation time
speed up was not measured, but it is roughly commensurate with the fact that the
SSA run in Fig. 7 simulated over 23 million reactions, while this ssSSA run simulated
only 587 reactions.

reaction set gives rise the famous Michaelis-Menten formula for the “rate v” at
which product is formed. An analysis using the ssSSA has been given in [19],
under the stiffness condition that reactions R1 and R2 are “fast” and reaction
R3 is “slow”. That analysis effectively generalizes the deterministic Michaelis-
Menten result to a stochastic context. Since the enzyme-substrate reaction set
(46) is so important in cellular chemistry, we shall now show how the ssSSA
deals with it.

5.1 The Step-by-Step Analysis

We start by (provisionally) taking R1 and R2 to be the fast reactions and R3
a slow reaction. Since species E, S and ES get changed by a fast reaction,
they will be fast species, while P will be a slow species; thus, the fast process
is Xf(t) = (XE(t), XS(t), XES(t)) and the slow process is Xs(t) = XP(t). The
virtual fast process is therefore X̂f(t) =

(
X̂E(t), X̂S(t), X̂ES(t)

)
evolving under

only the fast reactions E + S
c1�
c2

ES. We observe that this virtual fast process

obeys two conservation relations :

X̂E(t) + X̂ES(t) = xE∗ , X̂S(t) + X̂ES(t) = xS∗ . (47)
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The first expresses the conservation of enzyme units, and the second the conser-
vation of substrate units. (Note that the real fast process Xf(t) obeys the first
conservation relation but not the second.) Because of these two conservation
relations, the virtual fast process has only one independent variable. We shall
choose that independent variable to be X̂ES(t), and then let it determine X̂E(t)
and X̂S(t) through the conservation relations. The propensity functions for the
two fast reactions relative to X̂ES(t) are

a1 (xES) = c1(xE∗ − xES)(xS∗ − xES), a2 (xES) = c2xES , (48)

and the associated state-change vectors are

ν1 = +1, ν2 = −1 . (49)

The asymptotic master equation for X̂ES(t) reads

0 =
2∑

j=1

{
aj(xES − νj)P̂ (xES − νj , ∞ | xE∗ , xS∗) − aj(xES)P̂ (xES, ∞ | xE∗ , xS∗)

}

(50)
where P̂ (xES, ∞ | xE∗ , xS∗) is the probability that X̂ES(∞) will equal xES, given
that there are xE∗ (bound or unbound) enzyme units and xS∗ (bound or un-
bound) substrate units. After substituting into this equation the propensity
functions (48) and the state change vectors (49), one can show that it implies

c2(xES + 1)P̂ (xES + 1, ∞ | xE∗ , xS∗)

= c1(xE∗ − xES)(xS∗ − xES)P̂ (xES, ∞ | xE∗ , xS∗), ∀xES . (51)

This “detailed balance relation” in turn implies that P̂ (xES, ∞ | xE∗ , xS∗) satisfies
the recursion relation

P̂ (xES + 1, ∞ | xE∗ , xS∗) =
c1(xE∗ − xES)(xS∗ − xES)

c2(xES + 1)
P̂ (xES, ∞ | xE∗ , xS∗)

(xES = 0, 1, . . . , xmax
ES − 1) , (52)

where the maximum possible number of enzyme-substrate units is

xmax
ES ≡ min(xE∗ , xS∗) . (53)

In principle, P̂ (xES) can be computed from the recursion relation (52), with
P̂ (0) being chosen to make

∑xmax
ES

xE=0 P̂ (xES) = 1. But an analytical iteration of
(52) does not lead to a tractable formula, as it does for (39). Therefore, we have
to find some way to estimate the mean

〈
X̂ES(∞)

〉
of that probability function,

in order to estimate
ā3(x) = c3

〈
X̂ES(∞)

〉
. (54)

And we have to find a way to generate random samples of P̂ (xES), so that we can
get “relaxed” values for the fast species. Following [19], we take a two-pronged
approach to these tasks, depending on whether xmax

ES in (53) is “small” or “large”.
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For small xmax
ES , it is feasible to iterate the recursion (52) numerically to

obtain exact values for P̂ (xES, ∞ | xE∗ , xS∗). With those values in hand, we can
straightforwardly evaluate ā3(x) numerically as

〈
X̂ES(∞)

〉
=

xmax
ES∑

xES=0

xESP̂ (xES, ∞ | xE∗ , xS∗) . (55)

And we can generate a “relaxed” value of XES by using the standard “inversion”
Monte Carlo procedure of drawing a unit-interval uniform random number r and
taking XES to be the smallest integer satisfying

XES∑

xES=0

P̂ (xES, ∞ | xE∗ , xS∗) � r . (56)

The relaxed values of the other two fast species are then obtained from the
conservation relations (47):

XE = xE∗ − XES, XS = xS∗ − XES . (57)

The Appendix of [19] describes these computations in more detail.
For large xmax

ES , a numerical iteration of the recursion (52) would take too much
time. But tests have shown [19] that in this circumstance, the mean

〈
X̂ES(∞)

〉

in (55) can be well-approximated by the asymptotic (stationary) solution x̄ES of
the RRE for X̂ES(t) [cf. (5)]:

0 =
2∑

j=1

νjaj(x̄ES) . (58)

With formulas (48) and (49), this equation reads

c1(xE∗ − x̄ES)(xS∗ − x̄ES) − c2x̄ES = 0 . (59)

This is a simple quadratic in x̄ES, and its solution is

x̄ES =
1
2

⎧
⎨

⎩

(
xE∗ + xS∗ +

c2

c1

)
−

√(
xE∗ + xS∗ +

c2

c1

)2

− 4xE∗xS∗

⎫
⎬

⎭ . (60)

So, for large xmax
ES , we evaluate ā3(x) = c3

〈
X̂ES(∞)

〉
by simply approximating

〈
X̂ES(∞)

〉
≈ x̄ES . (61)

To generate a random sample from P̂ (xES, ∞ | xE∗ , xS∗) for estimating the
“relaxed” values of the fast variables, we can take some comfort in the fact that
any errors we make in doing that will not affect the subsequent accuracy of



Simulation Methods in Systems Biology 159

the simulation. With that in mind, we simply approximate P̂ (xES, ∞ | xE∗ , xS∗)
by a normal probability density function whose mean is as given in (61). For
the variance of this approximating normal, we use the value obtained by fitting
the (single) peak in the function defined by the recursion relation (52) with a
Gaussian form, and then taking var

{
X̂ES(∞)

}
to be the variance of the fitted

Gaussian. The details of how this is done are spelled out in [19] (see also [5],
Sec. 6.4.C). The resulting formula is

var
{
X̂ES(∞)

}
≈ (c2/c1)x̃ES

−2x̃ES + (xE∗ + xS∗ + 2) + (c2/c1)
. (62)

Here, x̃ES locates the maximum of the function defined by the recursion relation
(52), and is given by

x̃ES =
1
2

(
xE∗ + xS∗ +

c2

c1
+ 2

)

− 1
2

√(
xE∗ + xS∗ +

c2

c1
+ 2

)2

− 4(xE∗ + 1)(xS∗ + 1) . (63)

5.2 Checking the Stiffness Condition

One of the strengths of the ssSSA is that it gives us a rational criterion for
determining when it can be applied. The criterion is that relaxation time of the
virtual fast process should be small compared to the expected time to the next
slow reaction. In this case, that criterion leads to the specific condition

−2c1x̃ES + c1(xE∗ + xS∗ + 2) + c2 � c3x̃ES . (64)

Here, the quantity on the right is the reciprocal of the estimated time to the
next R3 reaction, and the quantity on the left is the reciprocal of the estimated
relaxation time of the process X̂ES(t). For details on how the latter estimate is
made, see [18] and [19].

An inspection of condition (64) shows that it will inevitably be satisfied if c2
is sufficiently large compared to c3. The physical interpretation of that is easily
understood: When c2 � c3, an ES molecule will decay much more frequently to
E+S than to E +P . So between two successive R3 firings there will typically be
many firings of R1 and R2. That will allow reactions R1 and R2 to come to an
approximate equilibrium well before the next R3 reaction occurs. And that is the
key condition required by our proof of the Slow-Scale Approximation Lemma,
which provides the logical basis for the ssSSA in (33).

5.3 The Simulation Procedure

The recipe for applying the ssSSA to the enzyme-substrate reaction set (46)
therefore goes as follows – all of course under the assumption that condition
(64) is satisfied:
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1. In state x =
(
xf ,xs

)
= ((xE, xS, xES), xP) at time t, and with xE∗ = xE+xES,

xS∗ = xS + xES, and xmax
ES = min(xE∗ , xS∗), evaluate ā3(x) = c3

〈
X̂ES(∞)

〉
.

For this, compute
〈
X̂ES(∞)

〉
from (55) if xmax

ES is “small”, or from (61)
otherwise.

2. Draw a unit-interval uniform random number r, and compute the time to
the next R3 reaction, τ = (1/ā3(x)) ln (1/r).

3. Advance to the time of the next R3 reaction by replacing t ← t+τ . Actualize
that reaction by replacing xES ← xES − 1, xE ← xE + 1, xP ← xP + 1.
Then update xS∗ ← xS + xES (or equivalently, xS∗ ← xS∗ − 1) and also
xmax

ES ← min(xE∗ , xS∗).
4. Relax the fast variables by first taking xES to be a random sample of

P̂ (xES, ∞ | xE∗ , xS∗), and then taking xE = xE∗ − xES and xS = xS∗ − xES.
In generating the value for xES, use the exact method (56) if xmax

ES is “small”;
otherwise, take xES to be a sample of the normal random variable with mean
(61) and variance (62), rounded to the nearest integer in [0, xmax

ES ].
5. Record (t, xE, xS, xES, xP) if desired. Return to step 1, or else stop.

It may well be possible to devise more efficient procedures for estimating
ā3(x) in step 1, and for generating the relaxed fast variables in step 4. The main
message here is the overall strategy of the ssSSA approach to the reaction set
(46), and why we can expect this approach to give accurate results whenever
c2 � c3.

5.4 Examples

Figures 9,10, 11 and 12 compare results obtained with the exact SSA and the ap-
proximate ssSSA for two different sets of rate constants and initial populations.
In both cases, the SSA and ssSSA results are seen to be statistically indistinguish-
able, and the speedup of the latter over the former is substantial. Notice in par-
ticular that the ssSSA has no problems with fast initial transients (see Figs. 9 and
10), or with fast species that have very low populations (see Figs. 11 and 12).

5.5 Connection to Michaelis-Menten

How is the foregoing ssSSA approach to the enzyme-substrate reaction set re-
lated to the famous Michaelis-Menten approach? The most obvious advantage
of the ssSSA approach is that it accurately captures all the discreteness and
stochasticity of reactions (46) on the timescale of the slow reaction R3. But
to see that the two approaches essentially agree otherwise, we need to quickly
review the conventional derivation of the Michaelis-Menten formula.

The goal of the Michaelis-Menten approach is to estimate the supposedly
deterministic rate

v ≡ c3XES (65)

at which product molecules are being formed by reactions (46). If we were content
to express v in terms of the enzyme-substrate complex population XES, then (65)
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Fig. 9. An exact SSA simulation of the enzyme-substrate reaction set (46), E + S
c1�
c2

ES
c3−→ E+P , with rate constants c1 = c3 = 10−4 and c2 = 1. At time t = 0 there were

220 free enzyme molecules (XE = 220), 3000 free substrate molecules (XS = 3000),
and no enzyme-substrate complex or product molecules (XES = XP = 0). The E and
SE populations refer to the left scale, while the S and P populations refer to the
right scale. The populations of the species were plotted out immediately after each R3

reaction. Over 58 million reactions in all were simulated here, of which only 3000 were
R3 reactions, so between successive R3 reactions there were an average of 19,300 R1

and R2 reactions.

would suffice. But XES is usually difficult to measure, and as is illustrated in
Figs. 9 and 11, XES fluctuates because of reactions R1 and R2. So the Michaelis-
Menten approach makes an assumption. More specifically, it makes either the
“partial (or rapid) equilibrium” assumption that R1 and R2 are in equilibrium
with each other,

c1XEXS = c2XES , (66)

or it makes the “quasi-steady-state” assumption that the population of the
enzyme-substrate complex is constant in time,

dXES/dt = c1XEXS − c2XES − c3XES = 0 . (67)

For the case c3 
 c2 of interest here, these two assumptions are indistinguishable,
because the third term in (67) is negligibly small compared to the second term.
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Fig. 10. An approximate ssSSA run of the same enzyme-substrate reactions that were
simulated exactly in Fig. 9. The stiffness condition (64) is initially satisfied by a factor
of 260, and that figure improves as the reactions proceed. Only the R3 reactions were
simulated here – there were 3000 of them in all. This plot is statistically indistinguish-
able from the plot in Fig. 9, but the ssSSA program that generated it ran over 950
times faster than the SSA program that generated the plot in Fig. 9. Notice the ssSSA
had no problem with the initial fast transient that brought the free enzyme population
down from 220 to around 170.

Using assumption (66), the problematic enzyme-substrate complex population
can be expressed in terms of the free enzyme and free substrate populations as

XES =
c1

c2
XEXS. (68)

By substituting this into (65) we get a formula for v in terms of XE and XS.
But a glance at Fig. 9 shows that XE is just as problematic a variable as XES.
A more convenient variable than XE would be the total enzyme population,
xE∗ = XE + XES in (47), which stays constant. Using it to eliminate XE from
(68) gives

XES =
c1

c2
(xE∗ − XES)XS . (69)

Solving this equation for XES gives

XES =
xE∗XS

(c2/c1) + XS
, (70)
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Fig. 11. Another exact SSA simulation of the enzyme-substrate reaction set (46), but
using different rate constants (c1 = 10−4, c2 = 6, and c3 = 10−3) and a different total
number of enzyme units (10 instead of 220). The initial populations were XE = 10,
XS = 3000, and XES = XP = 0. The populations of the E, S, and P species were
plotted out immediately after each R3 reaction, but the population of ES was plotted
out at equal time intervals, for reasons explained in the caption of Fig. 7. A total of 13.7
million reaction events in all were simulated here; only 1,172 of those were R3 events.
For this choice of rate constants, the ES population is usually 0 or 1, and rarely more
than 3.

and substituting this into (65) gives the famous Michaelis-Menten formula for
the rate of production of product molecules:

v =
c3xE∗XS

(c2/c1) + XS
≡ vMM . (71)

But further reflection on (71) leads to the realization that having the variable
XS in this formula is almost as unsatisfactory as having either of the variables XE
or XES. That’s because the values of all three of those “fast” variables are rapidly
changing due to the fast reactions R1 and R2. And if we stop simulating R1 and
R2, as we clearly do in the Michaelis-Menten approach, we can no longer claim
to know the values of any of those fast species populations. But this problem
can easily be remedied by recognizing that reactions R1 and R2 do not change
the total substrate population, xS∗ = XS + XES in (47). Using it to eliminate
XS from (70) gives

XES =
xE∗(xS∗ − XES)

(c2/c1) + (xS∗ − XES)
. (72)

Upon solving this (quadratic) equation in XES, we find that

XES = x̄ES , (73)
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Fig. 12. An approximate ssSSA run of the same reactions that were simulated exactly
in Fig. 11. The stiffness condition (64) is initially satisfied by about four orders of mag-
nitude, and that figure improves as the reactions proceed. Only the R3 reactions were
simulated here; there were 1,165 of them. This plot is statistically indistinguishable from
the plot in Fig. 11, but the compute time here was faster by a factor of about 400.

where x̄ES is defined in (60). Formula (73) is equivalent to the Michaelis-Menten
formula (70) since they are derived from the same assumptions. But whereas
(70) expresses XES in terms of xE∗ and XS, (73) expresses XES in terms of xE∗

and xS∗ . Equation (73) thus has the advantage that it does not require knowing
the essentially unknowable fast species population XS.

When we substitute (73) into formula (65) we get

v = c3x̄ES , (74)

and here at last we have the connection with the ssSSA: Comparing (74) with
(61) and (54), we see that v is the “large xmax

ES ” approximation to ā3(x). Thus, the
Michaelis-Menten rate is essentially the ssSSA’s slow-scale propensity function
for reaction R3 when the molecular populations are “not too small”. Or, from
the other point of view, for not too small molecular populations the ssSSA’s
ā3(x) is given by the standard Michaelis-Menten formula, written however in
terms of the total substrate population instead of the free substrate population.

This quantitative connection between the ssSSA treatment of the enzyme-
substrate reaction set (46) and the traditional Michaelis-Menten treatment is
reassuring. But these considerations also reveal that the ssSSA treatment pro-
vides a firmer basis for understanding and simulating reactions (46): Whereas
the Michaelis-Menten analysis proceeds from an assumption, in the form of ei-
ther the rapid equilibrium assumption or the quasi-steady-state assumption, the
ssSSA proceeds from a proven result, in the form of the Slow Scale Approximation
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Lemma. That lemma, whose proof begins with a straightforward application of
the addition law of probability in (35a), shows that the ssSSA will be valid
whenever the relaxation time of reactions R1 and R2 is small compared to the
expected time between successive firings of reaction R3. This criterion is difficult
even to articulate in the context of the ODE formalism of the Michaelis-Menten
approach, because in that formalism all reactions happen concurrently, and there
is no notion of a “time between successive firings of reaction R3”. But the fact
that the Michaelis-Menten result emerges naturally within the ssSSA when large
numbers of molecules are involved shows that it can be considered “established”
without having to make any ad hoc assumptions like (66) or (67).

6 Looking Ahead

There are many ways to improve and extend the ideas and techniques described
in this chapter. Ways of combining explicit and implicit tau-leaping have been
devised [22], but could no doubt be improved. And ways of efficiently applying
the ssSSA to more complicated systems need to be developed.

Taking a broader view, the propensity function formalism needs to be ex-
tended, where possible, to bimolecular reactions that do not assume that the
reactant molecules move about as either well-stirred dilute gas molecules or
as well-stirred diffusing molecules. Enlightenment is needed on how propensity
functions are affected by the finite sizes of the reactant molecules [23], and by
crowding from larger inert molecules. There is a need to develop efficient meth-
ods for simulating systems in which the natural motions of the molecules do
not adequately “stir” the system between successive occurrences of bimolecular
reactions. Are such spatially inhomogeneous systems best simulated by dividing
the volume Ω into smaller, spatially homogeneous subvolumes that diffusively
share molecules with neighboring subvolumes? Or should such systems instead
be simulated by adopting an approach closer to molecular dynamics, in which
the positions of key reactant molecules are tracked in detail?

It seems likely to this writer that progress on these difficult issues will be made
faster and more reliably by initially focusing on specific, simple, experimentally
inspired models, rather than by trying to develop general simulation schemes for
simulating all types of systems under all possible conditions.
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Abstract. Membrane computing is a branch of natural computing aim-
ing to abstract computing models from the structure and functioning of
the living cell, and from the way cells cooperate in tissues, organs, or
other populations of cells. This research area developed very fast, both
at the theoretical level and in what concerns the applications. After a
very short description of the domain, we mention here the main areas
where membrane computing was used as a framework for devising mod-
els (biology and bio-medicine, linguistics, economics, computer science,
etc.), then we discuss in a certain detail the possibility of using mem-
brane computing as a high level computational modeling framework for
addressing structural and dynamical aspects of cellular systems. We close
with a comprehensive bibliography of membrane computing applications.

1 Introduction

Membrane computing is a branch of natural computing, the broad area of
research concerned with computation taking place in nature and with human-
designed computing inspired by nature. Membrane computing abstracts comput-
ing models from the architecture and the functioning of living cells, as well as
from the organization of cells in tissues, organs (brain included) or other higher
order structures such as colonies of cells (e.g., bacteria).

Membrane computing was initiated in 1998 (with the seminal paper published
in 2000) and the literature of this area has grown very fast (already in 2003,
Thompson Institute for Scientific Information, ISI, has qualified the initial paper
as “fast breaking” and the domain as “emergent research front in computer sci-
ence” – see http://esi-topics.com). Details, in particular, many downloadable
papers, including pre-proceedings of yearly workshops and brainstorming weeks
on membrane computing, can be found at http://psystems.disco.unimib.it.

The initial goal was to learn from cell biology something possibly useful to
computer science, and the area quickly developed in this direction. Several classes
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of computing models – called P systems – were defined in this context, inspired
from biological facts or motivated from mathematical or computer science points
of view. In the last few years, a number of applications were reported in several
areas – biology, bio-medicine, linguistics, computer graphics, economics, approxi-
mate optimization, cryptography, etc. Several software products for simulating P
systems and attempts of implementing P systems on a dedicated hardware were
reported; also an attempt towards an implementation in bio-chemical terms is
in progress.

After very briefly presenting the basic ideas of membrane computing (main
types of P systems, main categories of results), we enumerate the domains where
membrane computing was used as a modeling framework; then we pass to pre-
senting P systems as a high level computational modeling framework which
integrates the structural and dynamical aspects of cellular systems in a compre-
hensive and relevant way while providing the required formalization to perform
mathematical and computational analysis. Several case studies are discussed in
some detail.

The paper ends with a comprehensive bibliography, with papers clustered
according to the area of applications; at the beginning of the bibliography we
also provide several titles of a general interest, giving basic information about
membrane computing.

2 A Quick Description of Membrane Computing

The main ingredients of a P system are (i) the membrane structure, delimit-
ing compartments where (ii) multisets of objects evolve according to (iii) (re-
action) rules of a bio-chemical inspiration. The rules can process both objects
and membranes. Thus, membrane computing can be defined as a framework
for devising cell-like or tissue-like computing models which process multisets in
compartments defined by means of membranes. These models are (in general)
distributed and parallel. When a P system is considered as a computing device,
hence it is investigated in terms of (theoretical) computer science, the main issues
studied concern the computing power (in comparison with standard models from
computability theory, especially Turing machines/Chomsky grammars and their
restrictions) and the computing efficiency (the possibility of using parallelism for
solving computationally hard problems in a feasible time). Computationally and
mathematically oriented ways of using the rules and of defining the result of a
computation are considered in this case. When a P system is constructed as a
model of a bio-chemical process, it is examined in terms of dynamical systems,
with the evolution in time being the issue of interest, not a specific output.

At this moment, there are three main types of P systems: (i) cell-like P sys-
tems, (ii) tissue-like P systems, and (iii) neural-like P systems.

The first type imitates the (eukaryotic) cell, and its basic ingredient is the
membrane structure, a hierarchical arrangement of membranes (understood as
three dimensional vesicles), i.e., delimiting compartments where multisets of ob-
jects are placed; the objects are in general described by symbols from a given
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alphabet, but also string-objects can be considered; rules for evolving these ob-
jects are provided, also localized, acting in specified compartments or on specified
membranes. The most common types of rules are multiset rewriting rules (sim-
ilar to chemical reactions) and transport rules, e.g., symport or antiport rules,
inspired by biological processes. The objects not only evolve, but they also pass
through membranes (we say that they are “communicated” among compart-
ments). The rules can have several forms, and their use can be controlled in
various ways: promoters, inhibitors, priorities, etc. Also the hierarchy of mem-
branes can evolve, e.g., by creating and destroying membranes, by division, by
bio-like operations of exocytosis, endocytosis, phagocytosis, and so on.

In tissue-like P systems, several one-membrane cells are considered as evolving
in a common environment. They contain multisets of objects, while also the envi-
ronment contains objects. Certain cells can communicate directly (channels are
provided between them) and all cells can communicate through the environment.
The channels can be given in advance or they can be dynamically established –
this latter case appears in so-called population P systems. In the case when the
cells are simple, of a limited capacity (as the number of objects they contain or
of rules they can use), we obtain the notion of P colony.

Finally, there are two types of neural-like P systems. One is similar to tissue-
like P system in that the cells (neurons) are placed in the nodes of an arbitrary
graph and they contain multisets of objects, but they also have a state which
controls the evolution. Another variant was recently introduced, under the name
of spiking neural P systems, where one uses only one type of objects, the spike,
and the main information one works with is the distance between consecutive
spikes.

From a theoretical point of view, P systems are both powerful (most classes
are Turing complete, even when using ingredients of a reduced complexity –
a small number of membranes, rules of simple forms, ways of controlling the
use of rules directly inspired from biology are sufficient for generating/accepting
all sets of numbers or languages generated by Turing machines) and efficient
(many classes of P systems, especially those with enhanced parallelism, can
solve computationally hard problems – typically NP-complete problems, but
also harder problems, e.g., PSPACE-complete problems – in feasible time –
typically polynomial). Then, as a modeling framework, membrane computing is
rather adequate for handling discrete (biological) processes, having many attrac-
tive features: easy understandability, scalability and programmability, inherent
compartmentalization and non-linearity, etc.

The cell-like P systems were introduced first and their theory is now very well
developed; tissue-like P systems have also attracted a considerable interest, while
the neural-like systems, mainly under the form of spiking neural P systems, were
only recently investigated. Correspondingly, most applications use cell-like P
systems, several of them also involve tissue-like P systems, but very few research
efforts were paid to using spiking neural P systems in applications (although
several suggestions from “classic” neural computing are obvious – for instance,
trying applications to pattern recognition).
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3 Applications of Membrane Computing

As it is natural, membrane computing was first and much more intensively used
as a modeling framework for addressing biological processes. In this respect, P
systems can be seen as models approaching reality at the micro level, where
“reactants” and “reactions” can be known individually, opposed to the macro
approach (e.g., by means of differential equations), which deals with popula-
tions of reactants which can be considered infinite (large enough to be better
approximated by infinity rather than by finite, discrete sets). We have mentioned
above several attractive features of P systems as models of biological processes:
inherent compartmentalization, easy extensibility, direct understandability (by
the biologist), easy programmability, non-linear behavior. P systems are partic-
ularly suitable, if not the “obligatory”, in the cases when we have to deal with
a reduced number of object or with slow reactions – and this is the case in a
large number of biological processes, especially related to networks of pathway
controls, genetic processes, protein interactions.

It should be noted here that many of the reported applications in biology and
bio-medicine are of a postdiction type: one takes a biological process, as described
already in biological publications, one writes a membrane computing model of it,
then one writes a program or one takes a program existing in the literature (for
instance, at the membrane computing P page), and one simulates the model by
means of this program, comparing the results with those already known from lit-
erature (based on differential equations models or on experimental results). There
also are a few papers of a prediction type, involving biological research hypothe-
ses and thus returning really new information to biologist, not yet known through
other means. Of course, this latter direction of research is of much more interest,
but the former one is still useful/necessary, because it checks the models and the
programs, thus validating the tools for prediction applications.

Similar from many points of view to the bio-chemical reality is the economic
reality (e.g., at the market level), where compartments can be defined where
various “objects” (good, parts of goods, money, working time, contracts, and so
on and so forth) “react” according to well-specified rules. There also is an im-
portant difference between bio-chemistry and economic interaction: in the latter
case, the behavior of agents is not purely probabilistically controlled, e.g., de-
pending on the multiplicity of “reactants” (stoichiometry), but the psychological
factor is also important. Anyway, this direction of research needs further efforts,
but it is much favored by the fact that multi-agent computer based approaches
(simulations) are more and more used in economics, somewhat contrasted to the
fact that “exact” methods, e.g., of the kind provided by the classic operational
research, seem to be less applicable to non-trivial, complex economic phenomena.

It was also used in economics the language of membrane computing, the math-
ematical and the graphical one. This is much more visible in the applications to
linguistics.

The applications to computer science are rather diverse. A good example is
that of computer graphics: some papers are rather practical (somewhat comple-
menting the applications of Lindenmayer systems in computer graphics, one add
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membrane distribution to known approaches, with good results in terms of effi-
ciency), many others are of a theoretical type (P systems with two-dimensional
objects or generating in well specified ways picture languages, mainly arrays).
Whether or not the second direction of research may be considered as dealing
with “real” applications is debatable in this moment, that is why only a few
titles of this kind are mentioned.

Similar discussions can be made in what concerns applications in sort-
ing/ranking, cryptography, modelling/simulating circuits, parallel architectures,
etc. They mainly show the great expressivity power of P systems, their versa-
tility, but the results of the mentioned papers are not yet of a direct practical
interest in computer science.

A promising exception to the previous remark is the use of membrane comput-
ing ideas in evolutionary computing. The so-called membrane algorithms intro-
duced by T.Y. Nishida and much investigated by L. Huang and his collaborators,
seem to be rather efficient and useful, both in terms of the convergence speed,
the quality of the provided solutions, and the average and the worst solutions
(which proves that such approaches are reliable and effort-saving).

We have ended with a short list of papers dealing with “other applica-
tions” (such as simulating ambient calculus or other well-know models and
paradigms from computer science), but we have not included papers from the
large literature dealing with polynomial (often even linear) solutions to compu-
tationally hard problems (typically, NP-complete, but also PSPACE-complete
problems). The bibliography from http://psystems.disco.unimib.it,
http://ppage.psystems.eu contains many papers (and PhD theses) with this
subject, as well as further titles pertaining to all sections of the paper bibliog-
raphy.

4 Looking for Cell Models

We pass now to discussing in more details and illustrating the issue of using P
systems as models for cell systems, starting with a general presentation of the
related efforts and directions of research.

The complexity and apparent messiness of interactions in cellular systems
makes necessary the development of models able to provide a better under-
standing of their dynamics and properties. The use of models is intrinsic to any
scientific activity. A model is an abstraction of the real world onto a mathemat-
ical/computational formalism which highlights some key features while ignoring
others that are assumed to be irrelevant. Therefore, a model should not be seen
or presented as a representation of the truth, but instead as a statement of our
current knowledge of the phenomenon under research. A model is even useful
when proved to disagree with real data, since it shows that our current hy-
potheses do not match the reality and it helps experimentalists to decide which
experiments are necessary to advance understanding.

Although biologists are familiar with modeling, quantitative computational
mathematical models have lain outside the mainstream due to the lack of
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techniques from both experimental and theoretical/computational sides.
Nonetheless, at the end of the last century extraordinary advances were achieved
in both computer science and biology reaching the point where each one can
benefit from the other one. In this respect, a new field is emerging which in-
tegrates biology, mathematics and computer science, systems biology. Systems
biology constitutes a purely interdisciplinary field aiming to merge classical biol-
ogy, computer science and mathematics. Ideally it will produce a new generation
of scientists able to understand and apply concepts, techniques and sources of
inspirations coming from any of the three classical fields enumerate above into
any of the others.

The new advances in cellular biology have made possible the enumeration
of the components of cellular systems on a large scale. Initially, a reductionist
approach was taken with the aim of understanding the functioning of cells by
identifying and characterizing each one of their individual constituents. This ap-
proach did not produce the expected knowledge uncovering the fact that the
functioning of cellular systems arises as an emergent process from the interac-
tions between their different components. The young field of systems biology
presents a systemic methodology whose goal is to deepen the understanding of
cellular level dynamics as emergent properties arising over time from the inter-
actions between different systems made of molecular entities. Systems biology
focuses on the nature of the interactions and links that connect cellular sys-
tems and the functional states of the networks that result from the assembly of
such links. Due to the complexity of these connections and to the huge amount
of data produced by experimentalists computational/ mathematical modeling,
simulation and analysis are essential techniques in this field.

In a cell system biology model it is desirable to have at least four properties:
relevance, understandability, extensibility and computability [22].

• Relevance: A model must be relevant capturing the essential features of the
phenomenon investigated. It should present a unifying specification of the dif-
ferent components that constitute the system, the interactions between them,
their dynamic behavior as well as the physical structure of the system itself.
• Understandability: The abstract formalisms used to model cellular systems
should correspond well to the informal concepts and ideas from molecular bi-
ology. A model should provide a better and integrated understanding of the
real cellular system instead of producing a complicated and hard to decipher
formalism.
• Extensibility: In a cellular model we should be able to identify easily its dif-
ferent components so they can be rearranged, duplicated, composed, etc. in an
easy way to produce other models. Models of cellular systems should also be ex-
tensible to higher levels of organizations, like colonies, tissues, organs, organism,
etc. Our knowledge of cellular systems continues to expand and change. In order
to handle this continuous supply of new discoveries a model should be adapted
easily to incorporate new information.
• Computability and Mathematical tractability: It should be possible to imple-
ment a model in a computer so that we can realize it to study the dynamics
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of the system by manipulating experimental conditions in the model without
having to perform complex and costly experiments. The computability of the
model also allows us to apply analytical techniques on it to infer qualitative and
quantitative properties of the system in an automatic way. In this respect, the
model should be mathematically tractable.

Our research towards using P systems as a computational/mathematical mod-
eling framework for the specification and analysis of cell system biology aims to
produce a high level formalism which integrates the structural and dynamical
aspects of cellular systems in a comprehensive and relevant way while providing
the required formalization to perform mathematical and computational analysis.
To this aim, we introduce stochastic P systems as a modeling framework for cell
systems biology models, with a detailed methodology for the specification of the
components of cellular systems and of the most important molecular interac-
tions in living cells. Then we propose the analysis of P system models using the
probabilistic model checker PRISM. The lac operon regulation system is studied
as a case study to illustrate this modeling approach.

5 Related and Previous Work

Modeling of cellular systems is currently subject to very intensive research. There
are multiple approaches ranging from graphical representations to sophisticated
computational and mathematical formalisms. Here we cannot present an exhaus-
tive enumeration of the different modeling methodologies and will only discuss
roughly those modeling approaches closely related to the work presented in this
paper.

5.1 Ordinary Differential Equations

Ordinary differential equations (ODEs) constitute the most widely used ap-
proach in modeling molecular interaction networks in cellular systems. Writ-
ing and solving numerically a system of ODEs describing a reaction network
can be largely automated. Each molecular species is assigned a continuous vari-
able which represents its concentration. For each molecular species, a differential
equation is written to describe its concentration change over time due to the re-
actions with other species in the system. The rate of each reaction is represented
using a kinetic law, which commonly depends on one or more rate constants.
Exponential decay law, mass action law, Michaelis-Menten dynamics and Hill
dynamics are the most widely used kinetic laws. In this respect models based
on ODEs are referred to as macroscopic since they do not represent mechanistic
aspects of the interactions between molecules they focused on the modeling of
the macroscopic effect of the molecular interactions using specific kinetic laws.

Although, ODEs have been used successfully to model kinetics of conventional
macroscopic chemical reactions the realization of a reaction network as a system
of ODEs is based on two assumptions:
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1. First, cells are assumed to be well stirred and homogeneous volumes.
Whether or not this is a good approximation depends on the time and space
scales involved. In bacteria molecular diffusion is sufficiently fast to mix com-
pounds. The time needed for a protein to diffuse throughout a bacterium
size volume is a few seconds. Therefore if we are interested in transcrip-
tion/translation processes (minutes), cell cycle (hours), circadian rhythms
(one day), etc. the well stirred volume assumption is justified in bacteria.
This is not the case in eukaryotic cells where the volume is considerably
bigger and it is structured in different compartments.

2. The second basic assumption is that chemical concentrations vary contin-
uously over time in a deterministic way. This assumption is valid if the
number of molecules of each specifies in the reaction volume (the cell or the
subcellular compartment) are sufficiently large and the reactions are fast.

Therefore in cellular systems with low number of molecules and slow molecular
interactions the application of the classical macroscopic and deterministic ap-
proach based on ODEs is questionable. Instead mesoscopic, discrete and stochas-
tic approaches are more suitable [11]. In this last approach the most relevant
individual parts of the system are taken into account but details like position
and momenta are neglected. One focuses on the number of individual compo-
nents of the system, the statistics of the events and how often they take place.
The mesoscopic approach is more tractable than the microscopic approach while
keeping more relevant information than the macroscopic approach.

5.2 Computational Modeling

The complexity of mesoscopic, discrete and stochastic models makes necessary
the use of computers to help to analyze them. Until recently the majority of
computational models were implemented in custom programs and published as
statements of the underlying mathematical model. No computational formalism
was explicitly used to model and simulate cellular systems. Nevertheless, to be
useful a computational model must be presented within a well defined, consistent
and formal framework. Following this line, recently several formal computational
frameworks has been proposed to model cellular systems. Here we will only
discuss briefly Petri nets and process algebra as they are closely related to P
systems.

• Petri Nets are a mathematical and computational tool for modeling and
analysis of discrete event systems typically with a concurrent behavior. They
offer a formal way to represent the structure of the interactions in a discrete
event system, simulate its behavior, and prove certain properties of the sys-
tem [20]. Roughly speaking a Petri net is a directed graph formed by two
kinds of nodes called places and transitions. Directed edges, called arcs, con-
nect places to transitions, and transitions to places. A non-negative integer
number of tokens is assigned to each place. Tokens move from one place to
another one connected to it through a transition when this transition fires.
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A system of interacting molecules can be modeled using Petri nets by rep-
resenting each molecular species as a different place and each biochemical
transformation as a different transition. The number of tokens inside a place
is used to specify the number of molecules of the corresponding molecular
species [20]. Within this framework only qualitative analysis can be per-
formed, in order to be able to develop quantitative analysis Stochastic Petri
Nets (SPN) were introduce in [12]. In SPNs each transition is associated
with a rate parameter used to compute a time delay following an negative
exponential distribution. Then transitions fire according to these time delays.

• Process algebra is a family of formalisms for the description of interac-
tions, communications, and synchronization between a collection of concur-
rent processes. Algebraic laws are provided allowing process descriptions to
be manipulated and analyzed. The π-calculus is one of the most widely used
process algebras in cellular modeling. It was introduced as a formal language
to describe mobile concurrent processes that interact through communica-
tion channels [16]. It is now a widely accepted model for interacting systems
with dynamically evolving communication topology. The π-calculus has a
simple semantics and a tractable algebraic theory. Starting with atomic ac-
tions and simpler processes, complex processes can be constructed in specific
ways.
In the π−calculus formalism a system of interacting molecular entities is
modeled by a system of interacting processes which communicate through
complementary communication channels. Each molecular species or domain
is represented by a different process. The number of copies of each process
is used to specified the number of molecules. Molecular interactions are de-
scribed using complementary communication channels [22].

Although these computational frameworks captures some of the information re-
garding cellular systems and their components, none fully integrates the dy-
namics and structural details of the systems. One of the main points which is
neglected is the key role played by membranes and compartmentalization in the
structure and functioning of living cells. There have been several attempts in
specifying and simulating membranes and compartments in the process algebra
[5,21]. Nevertheless, it has been discussed that the models developed using pro-
cess algebra can be obscure, non intuitive and difficult to understand [22]. In
this work we aim to develop a formal modeling framework based on P systems
which explicitly represent in a relevant and comprehensible manner the key role
played by membranes.

6 Stochastic P Systems for Cell Systems Biology Models

Let us stress once again that P systems, according to the original motivation,
were not intended to provide a comprehensive and accurate model of the living
cell, rather, to explore the computational nature of various features of biological
membranes. Although most research in P systems concentrates on computational
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powers, recently they have been used to model biological phenomena within the
framework of computational systems biology presenting models of oscillatory
systems [8], signal transduction [17], gene regulation control [24], quorum sensing
[23] and metapopulations [18].

6.1 P System Specifications and Models

In order to develop a modeling framework based on P systems a variant has
been proposed to formalize the specification of cellular systems, the parameters
associated with a specification and the models obtained from specifications by
instantiating their parameters with specific values [18].

In what follows the main definitions used in this work are presented. First, we
introduce P system specifications which will constitute the main structure used
to analyze particular cellular systems. A set of parameters is identified from the
components of a P system specification. Then, the basic definition of P system
specifications is extended to introduce P system models. Given a possible sets
of values for the parameters of a P system specification, a P system model is
obtained by instantiating the set of parameters using the given parameter values.

Definition 1 (P system Specification)
A P system specification is a construct:

Π = ((Σobj , Σstr), L, μ, M1, M2, . . . , Mn, (Robj
l1

, Rstr
l1 ), . . . , (Robj

lm
, Rstr

lm ))

where:
• (Σobj , Σstr) are finite alphabets of symbols. The symbols from Σobj represent
individual objects whereas the symbols from Σstr represent objects that can be
arranged to form strings.
• L = {l1, . . . , lm} is a finite alphabet of symbols representing labels for the
compartments and identifying compartment types1.
• μ is a membrane structure containing n ≥ 1 membranes identified in a one to
one manner with values in {1, . . . , n} and labeled with elements from L.
• Mi = (li, wi, si), for each 1 ≤ i ≤ n, is the initial configuration of membrane i
with li ∈ L, the label of this membrane, wi ∈ Σ∗

obj a finite multiset of individual
objects and si a finite set of strings over Σstr. A multiset of objects, obj is
represented as obj = o1 + o2 + · · · + om with o1, . . . , om ∈ Σobj. Strings are
represented as follows 〈s1.s2. · · · .si〉 where s1, . . . , si ∈ Σstr.
• (Robj

lt
, Rstr

lt
) are finite sets of rewriting rules associated with compartments of

the type represented by the label lt ∈ L. More specifically:

− The rules in Robj
lt

= {robj,lt
1 , . . . , robj,lt

kobj,lt
}, for each 1 ≤ t ≤ m, are multiset

rewriting rules of the following form:

robj,lt
j : obj1 [ obj2 ]l

c
obj,lt
j−→ obj′1 [ obj′2 ]l

1 Compartments with the same label will be considered of the same type and thus the
same set of rules will be associated with them.
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with obj1, obj2, obj
′
1, obj

′
2 some finite multisets of objects from Σobj and l a la-

bel from L. These rules are multiset rewriting rules that operate on both sides
of membranes, that is, a multiset obj1 placed outside a membrane labeled by
l and a multiset obj2 placed inside the same membrane can be simultaneously
replaced with a multiset obj′1 and a multiset obj′2, respectively.

− The rules in Rstr
lt

= {rstr,lt
1 , . . . , rstr,lt

kstr,lt
}, for each 1 ≤ t ≤ m, are rewriting

rules on multisets of strings and objects of the following form:

rstr,lt
j : [ obj + str ]l

c
str,lt
j−→ [ obj′ + str′1; str

′
2 + · · · + str′s ]l

with obj, obj′ multisets of objects over Σobj and str, str′1, . . . , str
′
s strings

over Σstr. These rules operate on both multisets of objects and strings. The
objects obj are replaced by the objects obj′. Simultaneously a substring str
is replaced by str′1 whereas the strings str′2 + · · · + str′s are produced to form
part of the content of the compartment.

Note that a constant, cobj,lt
j or cstr,lt

j , is associated specifically with each rule. This
constant will be referred to as stochastic constant and will be used to compute
the propensity of the rule.

Definition 2 (Parameters)
Given a P system specification Π = ((Σobj , Σstr), L, μ, M1, . . . , Mn,

(Robj
l1

, Rstr
l1

), . . . , (Robj
lm

, Rstr
lm

)) the set of parameters P(Π) = (M0(Π), C(Π))
consists of:

1. The initial multisets M0(Π) = (M1, . . . , Mn) associated with the compart-
ments.

2. The stochastic constants C(Π) = (cobj,lt
j , cstr,lt

j′ ) for 1 ≤ j ≤ kobj,lt ,
1 ≤ j′ ≤ kstr,lt and 1 ≤ t ≤ m, associated with the rewriting rules in
(Robj

l1
, Rstr

l1
), . . . , (Robj

lm
, Rstr

lm
).

Definition 3 (P system Model)
Let Π be a P system specification with parameters P(Π) = (M0(Π), C(Π)) and
(M0 ,C) a family of possible values for the initial multisets M0(Π) and for
the stochastic constants C(Π). A family of P system models, F(Π ; M0, C), is
obtained from Π and (M0, C) by instantiating the parameters P(Π) using values
from M0 and C.

Hence given (M0, C) sets of possible values for the parameters P(Π) specific
values (M0

1 , . . . , M0
n) ∈ M0 and (cobj,lt

j,0 , cstr,lt
j′,0 ) ∈ C can be selected to obtain a

P system model (Π ; (M0
1 , . . . , M0

n), (cobj,lt
j,0 , cstr,lt

j′,0 )) ∈ F(Π ; M0, C). In this way a
family of P system models F(Π ; M0, C) sharing the same P system specification
can be used to study the behavior of a particular cellular system specified by Π
under the different initial conditions collected in M0 and study the sensitivity of
the system for the different rule constants in C.
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6.2 Stochastic P Systems and Gillespie’s Kinetics Theory

At the microscopic level of functioning of cellular processes the interactions be-
tween molecules follow the laws of physics. A fundamental result of theoretical
statistical physics is the famous

√
n law, which states that the noise in a system

is inversely proportional to the square root of the number of particles. There-
fore, systems with a low number of molecules show high fluctuations and the
application of the classical deterministic and continuous approaches is question-
able. Mesoscopic, discrete and stochastic approaches are more accurate under
these circumstances. In this subsection we present a stochastic extension of the
original membrane computing framework using Gillespie’s kinetics theory.

In the original approach of membrane computing P systems evolve in a non
deterministic and maximally parallel manner. All the objects in every mem-
brane that can evolve according to any rule must evolve. This produces a semi-
quantitative framework that takes into account the discrete character of the
molecular population and the role played by membranes in the structure and
functioning of living cells. Although such coarse abstraction has been proved
to achieve some success [2,3], this approach fails to model quantitative aspects
that are key to the functioning of many cellular systems. Specifically the non
deterministic and maximally parallel approach produces the following two inac-
curacies:

1. Reactions do not occur at a correct rate.
2. All time steps are equal and do not represent the time evolution of the real

cellular system.

These two problems are interdependent and must be addressed when devising
a relevant modeling framework for cellular systems as it has been done in other
computational approaches [12,22].

In the field of membrane computing, the discrete aspect of the different com-
ponents as well as the distributed and compartmentalized character of the struc-
ture, where the computation takes place, are fundamental. This is not the case
with the non deterministic and maximal parallel semantics as have been studied
in different variants [7,10]. In this section the original approach will be replaced
with a strategy based on Gillespie’s theory of stochastic kinetics [11].

To provide P systems with a stochastic extension a constant c is associated
with each rule. This constant depends only on the physical properties of the
molecules involved in the reaction described by the rule and on other physical
parameters of the system like temperature. It is used to compute the propensity
of each rule which in turn determines the probability and time needed to apply
the rule.

The starting point consists of treating each compartment, delimited by a mem-
brane, as a well mixed and fixed volume where the classical Gillespie algorithm
is applied. Given the state of a compartment i, Mi = (li, wi, si), and the sets
of rules associated with it, Robj

li
and Rstr

li
, the next rule to be applied and its

waiting time is computed according to Gillespie algorithm:
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1. Compute for each rule rj associated with the compartment its propensity,
aj(Mi), by multiplying the stochastic constant associated specifically with
the rule by the number of distinct possible combinations of the objects and
substring present on the left-side of the rule with respect to the current
contents of the membranes involved in the rule.

2. Compute the sum of all propensities:

a0(Mi) =
∑

rj∈(Robj
li

∪Rstr
li

)

aj(Mi)

3. Draw two random numbers r1 and r2 from the uniform distribution in the
unit-interval, and select τi and ji according to

τi =
1

a0(Mi)
ln

(
1
r1

)

ji = the smallest integer satisfying
ji∑

j=1

aj(x) > r2a0(Mi)

This discrete-event simulation algorithm, usually referred to as Gillespie algo-
rithm or SSA (Stochastic Simulation Algorithm), has the nice properties that it
simulates every reaction event and is exact in the sense that it generates exact
independent realizations of the underlying stochastic kinetic model. Neverthe-
less, it should be emphasized that Gillespie algorithm was developed for a single,
well mixed and fixed volume or compartment. In contrast, in P systems we have
a hierarchical structure defining different compartments with specific rules. In
what follows we present an adaptation of the Gillespie algorithm that can be ap-
plied in the hierarchical and compartmentalized structure of a P system model.
This will be referred to as Multi-compartmental Gillespie algorithm.

Next, a detailed specification of this algorithm is presented:

• Initialization
◦ set time of the simulation t = 0;
◦ for each membrane i compute a triple (τi, ji, i) by using the procedure

described before; construct a list containing all such triples;
◦ sort this list of triples (τi, ji, i) in increasing order according to τi;

• Iteration
◦ extract the first triple, (τi0 , ji0 , i0) from the list;
◦ set time of the simulation t = t + τi0 ;
◦ update the waiting time for the rest of the triples in the list by subtract-

ing τi0 ;
◦ apply the rule rji0

in membrane i0 only once changing the number of
objects and sites in the membranes affected by the application of the
rule;

◦ for each membrane i′ affected by the application of the rule remove the
corresponding triple (τi′ , ji′ , i′) from the list;
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◦ for each membrane i′ affected by the application of the rule rji0
re-run

the Gillespie algorithm for the new context in i′ to obtain (τ ′
i′ , j′i′ , i′), the

next rule rj′
i′ , to be used inside membrane i′ and its waiting time τ ′

i′ ;
◦ add the new triples (τ ′

i′ , j′i′ , i′) in the list and sort this list according to
each waiting time and iterate the process.

• Termination
◦ Terminate simulation when time of the simulation t reaches or exceeds

a preset maximal time of simulation.

It is worth noting that this is a local algorithm in the sense that all computations
only consider the content and rules of a single compartment. The only remain-
ing global computation is the location of the index of the smallest waiting time,
which could be improved by keeping all reaction times in an indexed priority
queue. The advantage of having local computations is that the algorithm is eas-
ily implemented in an event-driven object-oriented programming style, such an
implementation could be multithreaded on a hyper-threading machine and would
also lend itself to full message-passing implementation on a parallel computing
cluster.

There exists a different well established approach to modeling cell systems
in membrane computing, based on the so called Metabolic Algorithm [4]. This
algorithm keeps maximal parallelism as the strategy for the evolution of their
models. Nonetheless they use rules of the form a → a, called transparent rules,
that have no effect on the state of the system, in order to bound the number of
applied rules that actually change the system. Specific functions, called reaction
maps, defined ad hoc, are also associated with rules to represent the reactions
rates. By doing this the first of the two problems presented before is somehow
solved; nevertheless the real evolution time of the system is not treated in this
approach. Finally, the Metabolic Algorithm is deterministic and so its applicabil-
ity in certain cell systems suffers from the same drawbacks as other deterministic
approaches like ODEs. The relationship between this approach and ODEs has
been studied in [9].

Another stochastic approach in P systems has been proposed in [18], dynam-
ical probabilistic P systems. This approach also keeps maximal parallelism and
uses transparent rules to bound the number of effective rule applications. The
non determinism is replaced by a probabilistic strategy which associates prob-
abilities with the rules depending on the content of membranes. Nevertheless,
this approach does not represent the real evolution time of the system as in the
metabolic algorithm.

7 P System Specifications of Cellular Systems

Most modelling approaches in systems biology are formalisms coming from
different sources of inspirations not related to biology. For example, the
π-calculus was introduced to specify mobile concurrent processes that interact
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through communication channels [16]. In contrast, P systems are inspired di-
rectly from the functioning and structure of the living cell. Therefore, the con-
cepts in P systems are more similar to those used in molecular cell biology
than the abstractions of other formalisms. This feature of P systems is key to
produce relevant, comprehensive and integrative specifications of the different
cellular components.

In this section, we present some principles for the specification of cellular sys-
tems in P systems. More specifically we will describe some ideas of how to de-
scribe cellular regions and compartments, protein-protein interactions and gene
expression control.

7.1 Specification of Cellular Compartments

As mentioned previously, membranes play a key role in the functioning and struc-
tural organization of both prokaryotic and eukaryotic cells. The key differential
feature of P systems with respect to other discrete, mesoscopic and stochastic
approaches is the so called membrane structure which provides an explicit de-
scription of the compartmentalization in the structural organization of cells. The
specification of compartmentalization has been addressed in P systems in dif-
ferent systems, for instance selective uptake of molecules from the environment
[24], signalling at the cell surface [6] and colonies of interacting bacteria which
communicate by sending and receiving diffusing signals [23].

In the specification of compartments in cellular systems it is necessary to
consider two distinct and relevant regions:

1. The compartment surface where a set of proteins, which control the move-
ment of molecules and detect signals, are located.

2. The lumen or aqueous interior space where a characteristic complement of
proteins interact to carry out specific functions.

In our P system modeling framework, membranes are used to define the rele-
vant regions in cellular systems. Therefore they do not always correspond with
real cell membranes although normally they do. According to this idea, in this
work two different membranes will be used to specify the two relevant regions
associated with a cellular compartment:

1. A first membrane will represent the compartment surface. In the region
defined by this membrane the objects describing molecules associated with
the compartment surface will be located. The processes involving molecular
transport and cell signalling will be represented by rules which will also be
associated with this region.

2. A second membrane will describe the aqueous interior of the compartment
and thus it will be embedded inside the previous one. The multiset of ob-
jects and strings specifying the proteins and other molecules located in the
lumen of the compartment will be placed in the region defined by this mem-
brane. The rules describing the molecular interactions taking place inside
the compartment are also associated with this membrane.
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In cases where the compartment surface does not play a crucial role the first
membrane is omitted and only one membrane defining the compartment interior
is used.

7.2 Specification of Protein-Protein Interactions

Large and complex networks of interacting molecular entities are responsible for
most of the information processing within living cells. Here we aim to provide a
comprehensive and relevant P system modeling schema for the most important
protein-protein interactions that take place in living cells. More specifically we
will focuss on the formation and dissociation of complexes and on the fundamen-
tal processes of communication and transport between different compartments
in cellular systems.

The theoretical and experimental description of protein-protein interactions
is related to the field of chemical kinetics. A primary objective in this area is
to determine the propensity or probability of a protein interaction, in order to
describe the rate at which reactants are transformed into products. In this section
every P system schema for protein-protein interactions is presented together with
the propensities associated with each rule. These propensities are computed
according to Gillespie’s theory of stochastic kinetics [11].

• Transformation and Degradation: A molecule a can react to produce
another molecule b or it can be degraded by the cell machinery.

In P system specifications, transformation and degradation are represented
using the rewriting rules in the schema (1). In these rules the object a is re-
placed with the object b or is simply removed in the case of degradation. The
compartment type where the molecules are transformed or degraded is also spec-
ified using square brackets with a label l. A constant c is associated with the
rule so that its propensity 2 can be computed.

r1 : [ a ]l
c−→ [ b ]l

r2 : [ a ]l
c−→ [ ]l

prop(ri) = c · |a| i = 1, 2 (1)

• Complex Formation and Dissociation: Two molecules, a and b, can collide
and stick to produce a complex c. Once a complex has been formed it can
dissociate back into its components, d and e which could have changed as a
consequence of the interaction.

In biochemistry, these reactions are referred to as complex formation, more
specifically heterodimer formation when a 
= b and homodimer formation when
a = b; and complex dissociation. In P system specifications, complex formation
and dissociation reactions are specified using the rewriting rules in the schema (2)
which take the name of the reactions they represent. In the complex formation
rule, rcf , the objects a and b, representing the corresponding molecules, are
replaced with the object c, representing the complex. In the same manner, in
the complex dissociation rule, rcd, the object c is replaced with the objects d

2 In this work |a| will be used to represent the number of molecules a.
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and e. The compartment type in which the reactions take place is specified using
square brackets and a label l.

rcf : [ a + b ]l
ccf−→ [ c ]l prop(rcf ) =

{
ccf · |a||b| if a 
= b

ccf · |a|(|a| − 1)
2

if a = b

rcd : [ c ]l
ccd−→ [ d + e ]l prop(rcd) = ccd · |c|

(2)

• Diffusion in and out: Small molecules can readily move by simple passive
diffusion across membranes without the aid of transport proteins and without
the consumption of any metabolic energy.

The rewriting rules in (3) constitute a P system specification for diffusion in
and out of a compartment. This compartment is represented by square brackets
with a label l. For diffusion in the object a is moved from the compartment
surrounding compartment l inside the region defined by it. Viceversa for the
case of diffusion out from compartment l.

r1 : a [ ]l
cin−→ [ a ]l prop(r1) = cin|a|

r2 : [ a ]l
cout−→ a [ ]l prop(r2) = cout|a|

(3)

• Binding and Debinding: One of the key steps in the process of converting
signals into cellular responses, signal transduction, is the binding of signalling
molecules to structurally complementary sites on the extracellular or membrane-
spanning domains of receptors leading to their activation.

In P system specifications, the binding and debinding of a ligand to its re-
ceptor, located on the cell surface, is specified using the rewriting rules in (4).
For the binding rule, the object a representing the ligand is placed outside the
compartment representing the cell surface, square brackets with label l. The re-
ceptor is specified using the object b placed inside the square brackets. These
two objects are replaced with the object c, the complex receptor-ligand, inside
the square brackets which represent the compartment surface. The debinding
reaction is specified by replacing the object c, inside the square brackets, with
the object d, representing the ligand, outside the square brackets and the object
e, representing the free receptor, inside them.

r1 : a [ b ]l
clb−→ [ c ]l prop(r1) = clb|a||b|

r2 : [ c ]l
cld−→ d [ e ]l prop(r2) = cld|c| (4)

The P system schema representing binding and debinding reactions has been
mainly used to model signalling at the cell surface [6,17]. Nevertheless, this
schema is not limited to representing receptor activation. It can also be used
to specify selective uptake (binding) of certain substances from the environment
and delivering of substances to the environment (debinding) by specific transport
proteins located on the cell surface [24].
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• Recruitment and Releasing: Binding of a ligand to its receptor produces a
conformational change in the cytosolic domains of the receptor that triggers the
recruitment of some cytoplasmic proteins. These proteins are subsequently trans-
formed and released back into the cytoplasm which ultimately induces specific
cellular responses.

The rules in (5) model recruitment and releasing in P system specifications.
The compartment from where or to where the proteins are recruited or released
is specified using square brackets with a label l. In the recruitment rule, rrt the
active receptor is represented by the object a placed outside the compartment
l where the object b represents the protein that is recruited. These objects are
replaced with the object c outside compartment l specifying the formation of
the complex formed by the active receptor and the recruited protein.

Conversely, in the releasing rule, rrl, the object c outside compartment l is
replaced with the objects d outside and the object e inside the compartment.

rrt : a [ b ]l
crt−→ c [ ]l prop(rrt) = crt|a||b|

rrl : c [ ]l
crl−→ d [ e ]l prop(rrl) = crl|c|

(5)

This P system specification has been used in signal transduction systems [6,17]
and to describe processes involving uptake (recruitment) of certain substances
from the cytoplasm and the delivering of some substances to the cytoplasm
(releasing) by specific transport proteins located on the cell surface [24].

7.3 Specification of Gene Regulation

Living cells can sense very complex environmental and internal signals through
some of the molecular interactions described previously. Cells respond to these
signals by producing appropriate proteins codified in specific genes. The rate of
production of these proteins is regulated by special proteins called transcription
factors which bind to genes. There are, basically, two different types of transcrip-
tion factors, activators and repressors. Although both types bind to genes they
have opposite effects. Activators increase the rate of transcription of genes whereas
repressors produce a decrease in the rate of transcription of the genes to which they
bind. Cells use transcription factors as an internal representation of the environ-
mental and internal state of the cell.

The interaction between transcription factors and genes leading to a change in
the rate of production of certain proteins are described by transcription networks.
In this section, P system specification schemas for transcription networks in
prokraryotes are presented. For simplicity only prokaryotes will be considered.
In spite of the differences between gene regulation control in prokaryotes and
eukaryotes the same fundamental principles and mechanisms still apply in both
cases [19].

The central dogma of molecular cell biology states that the necessary informa-
tion for the production of proteins is contained in stretches of DNA called genes.
Transcription of a gene is the process by which a protein called RNA polymerase
produces the mRNA that corresponds to a gene’s coding sequence. This mRNA
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is then translated into a protein or gene product, by ribosomes, complexes made
of specific proteins and ribosomal RNA. This picture is much more complex than
it first appears since transcription factors, which are also proteins encoded in
certain genes, acts as regulators in the transcription rate of genes by binding
to specific regions or sites of the DNA. These genes can codify in turn other
transcription factors or other proteins produced to carry out specific tasks. This
provides a feedback pathway by which genes can regulate the expression of other
genes and, in this manner, the production of the proteins encoded by them. In
this work two different approaches to the specification of transcription networks
and gene regulation processes will be discussed.

In the first approach individual objects will be used to specify proteins, tran-
scription factors and genes. Rewriting rules on multisets of objects will describe
the interactions between the different components of transcription networks. In
the second approach a much more detailed description of the interactions will
be developed using objects to represent proteins and transcription factors and
strings to represent genes, operons3 and mRNA. Rewriting rules on multisets of
objects and strings will provide a more mechanistic description of the processes
that take place in transcription networks.

Specification of Transcription Networks Using Objects. In a simplistic
approach processes like transcription and translation can be abstracted as indi-
vidual reactions. In this case, genes and operons will be specified as individual
objects which produce in a single step their complementary mRNA also repre-
sented by a single object. The production of a protein from the mRNA is also
described in a single step. Finally, the processes involved in gene expression con-
trol, like binding and debinding of transcription factors, are also specified using
rewriting rules on multisets of objects.

• Transcription and Translation: In the P system specification schema in
(6) the objects gene, rna and prot specify the stretch of DNA consisting of the
gene, its complementary mRNA, and its gene product or protein, respectively.
The transcription of the gene into its complementary mRNA is described by
the rewriting rule, rtc. According to this rule in the compartments of the type
represented by the label l, the object gene is replaced with the objects gene and
rna. In this manner, when the rule is applied, the object gene remains in the
compartment and an object rna representing the mRNA is produced.

rtc : [ gene ]l
ctc−→ [ gene + rna ]l prop(rtc) = ctc|gene|

rtl : [ rna ]l
ctl−→ [ rna + prot ]l prop(rtl) = ctl|rna|

(6)

In a similar way translation is described by the single rewriting rule rtl, ac-
cording to which the object rna is replaced with the objects rna and prot. The
application of this rule does not consume the object rna but it produces an
object prot representing the translated protein.
3 An operon is a group of genes physically linked on the chromosome and under the

control of the same promoters. In an operon, the linked genes give rise to a single
mRNA molecule that is translated into the different gene products.
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• Binding and Debinding of Transcription Factors to Genes: The pro-
cesses of binding and debinding of a transcription factor to a gene can be
described by similar rules to the ones used to specify complex formation and
dissociation. The P system specification schema in (7) constitutes the specifica-
tion of these processes through rewriting rules on multisets of objects.

Rule rgon describes the binding of a transcription factor, Tf , to a gene, spec-
ified by the object gene. According to this rule in compartments of the type l an
object Tf and an object gene can be replaced with an object Tf–gene, which
represents the situation when the transcription factor is bound to the gene. The
reverse process, the debinding of a transcription factor from a gene, is described
through the rule rgoff . When this rule is applied in compartments of the type l
the object Tf–gene is replaced by the objects gene and Tf .

rgon : [ Tf + gene ]l
cgon−→ [ Tf–gene ]l prop(rgon) = cgon|Tf ||gene|

rgoff : [ Tf–gene ]l
cgoff−→ [ Tf + gene ]l prop(rgoff ) = cgoff |Tf–gene|

(7)

Specification of Transcription Networks Using Strings. The use of indi-
vidual objects to represent the complex structure of genes in the DNA and RNA
and the use of single rules to describe the complex processes of transcription and
translation is widely used. Nevertheless, transcription networks present some cru-
cial features that questions the applicability of this approach. For instance, in
prokaryotes, genes codifying proteins involved in similar tasks are arranged to-
gether in a piece of DNA called operon so that they are transcribed in a single
strand of mRNA. The order in which these genes are placed in operons is rele-
vant, as it determines the order in which they are transcribed, and thus the or-
der in which their protein products become available. Therefore, it is necessary
to specify genes using linear structures like strings if one wants to produce rele-
vant models of transcription networks. Another important fact that is overlooked
in approaches describing transcription and translation as individual processes is
that in prokaryotes shortly after transcription has started and before it is over ri-
bosomes can bind to the growing mRNA and start translation. Furthermore, there
can be many processes of transcription and translation going on at the same time.
Summing up, transcription and translation are concurrent and parallel processes
that are difficult to specify using individual objects and single step rules.

Finally, another problem that arises from the use of single step rules for the
description of transcription networks is the difference in the time scales of their
processes. While protein-protein interactions take seconds, transcription and
translation may need half an hour to complete. This difference in the time scales
produces a difference of many orders of magnitude in the stochastic constants
associated with the corresponding rules. When this is the case the applicability
of Gillespie’s theory of stochastic kinetics is questionable as the difference among
the stochastic constants distorts appreciably the evolution of the system. In this
section this problem is solved by decomposing the processes of transcription and
translation into simpler interactions whose time scales are similar to those of
protein-protein interactions.
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In what follows we propose the use of strings to represent the linear structure
of strands of DNA and RNA and the use of rewriting rules on multisets of
objects and strings to describe the binding and debinding of transcription factors
to genes and the processes of transcription and translation as concurrent and
parallel processes. A typical representation of a gene as a string in presented
below where each substring represent a relevant region or site in the gene

〈 op . siteini . sitemid . · · · . sitemid . siteter 〉
• Binding and Debinding of Transcription Factors to Specific Sites
on the DNA: Transcription factors bind to specific regions of the genes called
operators. These sites are normally located around the region where the RNAP
binds to start transcription. The binding of a transcription factor to an operator
produces a change in the conformation of that region increasing or decreasing
the rate at which RNAP starts the transcription.

The P system specification schema in (8) describes the binding and debinding
of a transcription factor represented by the object Tf to an operator specified by
the substring 〈op〉. Specifically, rule rtfb describes the binding of the transcription
factor. The effect of this rule consists of the consumption of an object Tf and the
rewriting of the substring 〈op〉 representing the free operator with the substring
〈op′〉 representing the operator occupied by the transcription factor. The reverse
process is described in rule rtfd. An application of this rule produces an object
Tf and the replacement of the substring 〈op′〉 with the substring 〈op〉.

rtfb : [ Tf + 〈op〉 ]l
ctfb−→ [ 〈op′〉 ]l prop(rtfb) = con|Tf ||〈op〉|

rtfd : [ 〈op′〉 ]l
ctfd−→ [ Tf + 〈op〉 ]l prop(rtfd) = coff |〈op′〉|

(8)

The constants ctfb and ctfd represent the affinity between the transcription
factor and the operator.

• Transcription: To carry out transcription, RNAP performs several distinct
steps, namely, transcription initiation, mRNA elongation and transcription ter-
mination. In what follows a detailed description of the P system schemas used
to specify these stages is presented.
– First the RNA polymerase, described by the object RNAP, recognizes and
binds reversibly to a specific site at the beginning of the gene, called the pro-
moter, represented by the substring 〈prom〉. The rewriting rules on multisets of
objects and strings in (9) describe the binding and debinding of the RNAP to
and from the promoter.

The binding of the RNAP to the promoter is described in rule rrb. An appli-
cation of this rule in a compartment of the type specified by the label l consumes
an object RNAP and replaces 〈prom〉 with 〈prom.RNAP〉 in a string which con-
tains 〈prom〉 as substring. This produces the insertion of the object RNAP after
〈prom〉 describing the binding of the RNAP to the promoter of the gene.

The debinding of the RNAP from the promoter is specified in rule rrd. Ac-
cording to this rule in a compartment of type l the substring 〈prom.RNAP〉 is
rewritten with the substring 〈prom〉 and an object RNAP is produced. An ap-
plication of this rule produces the removal of the object RNAP from the string
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where 〈prom〉 is located, representing the dropping of the RNAP from the pro-
moter.

rrb : [ RNAP + 〈prom〉 ]l
crb−→ [ 〈prom.RNAP〉 ]l

prop(rrb) = con|RNAP||〈prom〉|

rrd : [ 〈prom.RNAP〉 ]l
crd−→ r[ RNAP + 〈prom〉 ]l

prop(rrd) = crd|〈prom.RNAP〉|

(9)

– Transcription initiation is described by the rewriting rule on strings in (10).This
rule specifies the melting of the double strand of the DNA and the transcrip-
tion of the first nucleotides. These nucleotides are represented by the substring
〈siteini〉. The complementary ribonucleotides are represented by the substring
〈siteini〉 which mark the beginning of the nascent (growing) mRNA. The effect
of an application of the rule rti in a compartment of type l consists of the replace-
ment of the substring 〈RNAP.siteini〉 with the substring 〈siteini.siteini.RNAP〉
in the string representing the gene.

rti : [ 〈RNAP.siteini〉 ]l
cti−→ [ 〈siteini.siteini.RNAP〉 ]l

prop(rti) = cini|〈RNAP.siteini〉|
(10)

Note that after an application of rule rti the substring 〈prom〉 is free so another
object RNAP can bind to it. In this manner we can represent the binding of an
RNAP to the promoter of a gene which is currently being transcribed. That
is, we can describe different processes of transcription taking place at the same
time.
– During the stage of strand elongation, RNAP moves along the template DNA
adding nucleotides to the nascent (growing) RNA chain. Although, the growing
mRNA hangs from the RNA polymerase and is not part of the DNA; in our
specification, the substring representing the growing mRNA is part of the string
which represents the DNA. Nevertheless, different symbols will be used to specify
DNA sites and RNA sites so the growing mRNA can be easily identified.

The rewriting rule rel in (11) describes the process of mRNA elongation. The
substring 〈siteini.w.RNAP.sitemid〉 represents the situation when RNAP with a
partially formed chain of mRNA, 〈siteini.w〉, is ready to transcribe the next site
in the DNA, 〈sitemid〉.

The addition of newly transcribed nucleotides is achieved by adding the sub-
string 〈sitemid〉 to the substring representing the growing mRNA, 〈siteini.w〉. The
movement of the RNA polymerase along the DNA leaving behind transcribed sites
is described by moving the substring 〈sitemid〉 from immediately ahead of the sym-
bol RNAP to the end of the growing mRNA represented by the substring 〈siteini〉.
All this is achieved by rewriting the substring 〈siteini.w.RNAP.sitemid〉 with the
substring 〈sitemid.siteini.w.sitemidRNAP〉.

rel : [ 〈siteini.w.RNAP.sitemid〉 ]l
cel−→ [ 〈sitemid.siteini.w.sitemidRNAP〉 ]l

prop(rel) = cel|〈siteini.w.RNAP.sitemid〉|
(11)
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– The last stage in RNA synthesis is transcription termination. When the RNAP
reaches specific termination sites in the DNA a completed RNA molecule is re-
leased and the RNAP dissociates from the gene. Rule rter in (12) describes
this process. The situation when the RNAP with a growing mRNA reaches a
termination site is represented by the substring 〈siteini.w.RNAP.siteter〉. The
dissociation of the RNA polymerase from the DNA is described by rewriting
the substring 〈siteini.w.RNAP.siteter〉 with 〈siteter〉. The release of the RNA
polymerase is specified by the production of an object RNAP. Finally, the re-
lease of a completed mRNA is represented by the production of a new string
〈siteini.w.siteter〉.

rter : [ 〈siteini.w.RNAP.siteter〉 ]l
cter−→ [ RNAP + 〈siteter〉; 〈siteini.w.siteter〉]l

prop(rter) = cter|〈siteini.w.RNAP.siteter〉|
(12)

• Translation: Translation is the whole process by which the nucleotide se-
quence of an mRNA is used to order and join the amino acids in a polypeptide
chain to synthesize a protein. Ribosomes direct the formation of proteins. Sim-
ilarly to transcription, the complex process of translation can be divided into
three stages, initiation, elongation and termination.
– In prokaryotes, shortly after RNAP starts transcription and before it is over,
ribosomes bind to specific sites in the growing mRNA called ribosome binding
sites (RBS) to start translation. Rule rtli describes translation initiation. In this
rule the RBS is specified using the substring 〈siteini〉 and ribosomes are repre-
sented using the object Rib. An application of this rule in a compartment of type
l consumes an object Rib and rewrites the substring 〈siteini〉 with 〈siteini.Rib〉.

rtli : [ Rib + 〈siteini〉 ]l
ctli−→ [ 〈siteini.Rib〉 ]l

prop(rtli) = ctli|Rib||〈siteini〉|
(13)

Note that in our approach transcription and translation are specified as con-
current and parallel processes since rules representing translation initiation can
be applied before rules describing transcription termination.
– Ribosomes direct elongation of the polypeptide sequence forming a protein by
moving along a mRNA chain. In our approach we overlook the growing sequence
of amino acids and only specify the movement of ribosomes along the mRNA as
we focus on the release of the protein once translation is finished.

The rule in (14) describes a step of elongation. The translocation of a ribosome
along the mRNA is achieved by rewriting the substring 〈Rib.sitemid〉 with the
substring 〈sitemid.Rib〉.

rtle : [ 〈Rib.sitemid〉 ]l
ctle−→ [ 〈sitemid.Rib〉 ]l

prop(rtle) = ctle|〈Rib.sitemid〉|
(14)

– In translation termination ribosomes dissociate from a mRNA and release
a completed polypeptide chain forming a protein when they reach specific sites
marking termination points. This last process is described by the rule rtlt in (15).
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The situation when a ribosome reaches a termination site is represented by the
substring 〈Rib.siteter〉. The dissociation of the ribosome from the mRNA and the
release of the protein are described by rewriting the substring 〈Rib.siteter〉 with
the substring 〈siteter〉 in the string representing the mRNA and the production
of an object Rib and Prot specifying a free ribosome and a newly produced
protein, respectively.

rtlt : [ 〈Rib.siteter〉 ]l
ctlt−→ [ Rib + Prot + 〈siteter〉 ]l

prop(rtlt) = ctlt|〈Rib.siteter〉|
(15)

8 Analysis of P System Models Using PRISM

Most research in systems biology focuses on the development of models of bi-
ological systems accurately enough such as to be able to reveal new properties
that can be difficult or impossible to discover through direct lab experiments.
One key question is what one can do with a model, other than simple simulation.
Is it enough just to realize many simulations of a model to obtain novel knowl-
edge on the system under study? This question has been considered in detail for
deterministic models where a rich theory has been produced to analyze systems
of differential equations. However, this is not the case for stochastic models, as
such systems defy conventional intuition and consequently are harder to con-
ceive. The field is widely open for theoretical advances that help us to reason
about systems in greater detail and with finer precision.

There are several attempts in this direction which consists of applying model
checking tools to computational models of cellular systems [13]. There are pre-
vious studies investigating the use of model checking on P system [1,15]. In
this section we will propose the use of a probabilistic symbolic model checking
approach based on PRISM (Probabilistic and Symbolic Model Checker) [14].

Model checking is a well established and widely used formal method for veri-
fying the correctness of real life systems. Probabilistic model checking is a prob-
abilistic variant of the classical model checking augmented with quantitative
information regarding the likelihood that transitions occur and the times at
which they do so. One of the major advantages of probabilistic model checking
is that it is an exhaustive approach, that is, all possible behaviors of the system
are analyzed. Analytical methods based on probabilistic model checking consists
of three different steps:

1. First, one must design a precise mathematical model of the system which is
to be analyzed. In this work, P system models will be used as the formal
description required in this step.

2. Once the formal model is built, one has to translate it into the specific
language of the probabilistic model checker, PRISM in this case.

3. Finally, some properties of the model must be identified and expressed for-
mally using temporal logic. This allows the probabilistic model checker to
analyze these properties in an automatic way against the constructed model.
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The fundamental components of the PRISM language are modules, variables
and commands. A model is composed of a number of modules which can interact
with each other. A module contains a number of local variables and commands.
The values of these variables at any given time constitute the state of the module.
The space of reachable states is computed using specified ranges for each variable
and their initial values. The global state of the whole model is determined by
the local state of all modules.

The behavior of each module is described by a set of commands. A predicate
is associated with each command to determine when the command is applicable.
The application of a command updates the values of the variables in the module
describing a transition of the module. The application of commands is driven by
some probabilistic information assign to them using specific expressions.

Once a probabilistic model has been specified and constructed in PRISM, one
needs to identify one or more properties of the model to be analyzed by the
model checker. This is done using temporal logic. One key feature of PRISM is
the use of rewards associated with states and transitions. This allows to express
reward-based properties which are quantitative in nature. Rewards associated
with states, cumulated rewards, are incremented in proportion to the time spent
in the state, while rewards associated with transitions impulse rewards are in-
cremented each time the transition is taken.

Translation of P system Models into PRISM
As mentioned before in order to perform model checking analysis on a P system
model it is necessary to translate it into the PRISM language. The three essential
components of aP systemare amembrane structure consisting of anumber ofmem-
branes that can interact with each other, multisets of objects4 and rewriting rules
associatedwithmembranes.These components can easily bemapped into the com-
ponents of the PRISM language using modules to represent membranes, variables
to describe objects and commands to specify rules. A detailed description of how
to specify P systems models in the PRISM language is presented in what follows.

• Membrane structure: Recall that each membrane is uniquely identified with an
identifier i. Therefore, for each membrane i a module with name compartment_i
will be introduced in the model.
• Alphabet and initial multisets: For each object obj that can be present inside
the compartment defined by membrane i a local variable obj_i will be declared
in module compartment_i. The initial value of this variable is determined by
the initial multiset associated with membrane i. The value range of the variables
representing objects will be determined experimentally or it will be derived from
the literature. In order to specify these ranges two constants will be declared
upb_obj_i and lob_obj_i.
• Rewriting rules: Commands are used in PRISM to describe the rewriting rules
of a P system. Given a rule of the form:

rli
j : obj1 [ obj2 ]l

c
li
j−→ obj′1 [ obj′2 ]l

4 Strings are not easily represented in PRISM and will not be considered in this work.
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with obj1 = o1
1 + · · · + o1

n1
,obj2 = o2

1 + · · · + o2
n2

,obj′1 = oo1
1 + · · · + oo1

m1
,obj′2 =

oo2
1 + · · · + oo2

m2
some finite multisets and cli

j the stochastic constant associated
with the rule. Assuming that the label of membrane i is l and that it is embedded
inside membrane k the objects in the rule are specified as follows. The variables
o_1_1_k, . . . , o_n_1_1_k, oo_1_1_k, . . . , oo_m_1_1_k specify the objects from
obj1 and obj′1 in module compartment_k. The objects o_1_2_i, . . . , o_n_2_2_i
and oo_1_2_i, oo_m_2_2_i represent the objects from obj2 and obj′2 in module
compartment_i. The stochastic constants associated with the rules are specified
using PRISM constants.

In general, rules need two membranes to interact in a synchronized way to
exchange objects. Therefore when a rule affects two different compartments, the
two modules representing them will synchronize the application of two different
commands by using a label which identifies the rule r_j_l_i.

The command in module compartment_i describing the effect of an applica-
tion of rule rli

j in compartment i will be:
[ r_j_l_i ] o_1_2_i > 0 & ... & o_n_2_2_i > 0 &

oo_1_2_i < upb_oo_1_2_i & ... &
oo_m_2_2_i < upb_oo_m_2_2_i - >

c_j_l_i * o_1_2_i * ... * o_n_2_2_i :
(o_1_2_i’ = o_1_2_i - 1) & ... &
(o_n_2_2_i’ = o_n_2_2_i - 1) &
(oo_1_2_i’ = oo_1_2_i + 1) & ... &
(oo_m_2_2_i’ = oo_m_2_2_i + 1);

The command in module compartment_k describing the effect of an applica-
tion of rule rli

j in compartment k will be:
[ r_j_l_i ] o_1_1_k > 0 & ... & o_n_1_1_k > 0 &

oo_1_1_k < upb_oo_1_1_k & ... &
oo_m_1_1_k < upb_oo_m_1_1_k - >

o_1_1_k * ... * o_n_1_1_k :
(o_1_1_k’ = o_1_1_k - 1) & ... &
(o_n_1_1_k’ = o_n_1_1_k - 1) &
(oo_1_1_k’ = oo_1_1_k + 1) & ... &
(oo_m_1_1_k’ = oo_m_1_1_k + 1);

Observe that these two commands are applied when the guards hold, that is,
if and only if there are some reactants in the corresponding membranes and the
products have not reached the upper bounds determined experimentally. Also
note that the rate of this transition is the product of the individual rates:

(c_j_l_i * o_1_2_i * ... * o_n_2_2_i) (o_1_1_k * ... * o_n_1_1_k)

When this transition is performed the local variables representing the re-
actants are decreased by one and the variables representing the products are
increased by one.

Some Specifications of P System Properties in PRISM
The first step when analyzing a model in PRISM is to associate the appropriate
rewards with the corresponding states and transitions. A typical analysis consists
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of the study of the evolution over time of the number of objects or molecules and
the number of applications of rules. Therefore, two different lists of rewards will
be used. The first list will associate with each state a reward representing the
number of a particular object. A constant obj is used to identify which object
is being tracked at the moment. In a similar manner a list of rewards will be
used to associated with each transition a reward of 1 representing that the rule
has been applied once. A constant rule is used to identify which rule is being
analyzed.

rewards "molecules" rewards "rules"
obj = 1 : = o1_i; [ r_1_env ] rule = 1 : 1;
...

...
obj = n : on_i ; [ r_14_cyto ] rule = 19 : 1;
endrewards endrewards

Once the corresponding rewards have been associated with particular states
and transitions one can use PRISM to model check some properties of the system.
The type of properties analyzed in this section are only intended to illustrate
how to use PRISM to study the behavior of P system models. We do not intend
to cover all possible properties, not even the most common ones, that can be
checked in PRISM as the properties to study depend very much on the model
being analyzed.

A typical analysis, when dealing with stochastic models, is to compute the
expected number of molecules over time. This can be studied in PRISM using
instantaneous reward properties where a constant time indicates the time instant
for which the expected number of molecules is computed, see below left. PRISM
also allows to reason about the evolution of P system models as a consequence
of the applications of different rules. One can compute the expected number of
applications of the different rules within T units of time using cumulative reward
properties, see below right.

R = ? [ I = time ] R = ? [ C <= T ]

Another important type of quantitative property which can be computed using
PRISM is the expected time for an event to take place. This can be done with
reachability reward properties. For instance the property specified below can be
used to compute the expected time for the number of objects o1_i to get over
a threshold Th.

R = ? [ F o1_i > Th ]

PRISM allows us to reason about the probability that a certain type of behav-
ior is observed at specific times during the evolution of our stochastic models.
This is done by using the operator P and a path property which can use the
temporal operators next X, until U and bounded until U time. For instance the
property below computes the probability of o1_i getting over a threshold Th
within the first T units of time of the evolution of the model.
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P = ? [ true U <= T o1_i > Th ]

Finally, PRISM allows us to reason about the long run, equilibrium or steady
state behavior of our models. In this case the operator S is used. For example
the probability of the number of objects o1_i to be between the values o1_up
and o1_down in the long run can be computed using the following expression:

S = ? [ o1_i < o1_up & o1_i > o1_down ]

9 The Lac Operon System, a Case Study

In this section the lac operon regulation system in Escherichia coli (E. coli) is
used as a case study to illustrate the general principles presented in this paper.
Here we present a summary of the model developed in [24]. Gene expression
is highly regulated in order to produce the necessary proteinic machinery to
respond to environmental changes. At a given time a particular cell only syn-
thesizes those proteins necessary for its survival under the specific conditions of
that time. Gene expression is primarily regulated by mechanisms that control
transcription initiation.

The lac operon is a group of three genes, lacZ, lacY and lacA physically
linked together in an operon. These genes codify β-galactosidase, LacY and
LacA, proteins involved in the metabolism and transport of lactose. The lac
operon has a dual, positive and negative, regulation system that allows E. coli
to uptake and consume lactose only in the absence of glucose [19].

9.1 A P System Specification of the Lac Operon

Our P system specification of the lac operon regulation system consists of the
following construct:

Πlac =((Σobj
lac , Σstr

lac ), {e, s, c}, [ [ [ ]3 ]2 ]1, M1, M2, M3, ((R
obj
e , ∅), (Robj

s , ∅), (Robj
c , Rstr

c ))

– Specification of the molecular entities: In our P system specification, Πlac,
each protein and proteinic complex is represented by an individual object in
the alphabet Σobj

lac . As discussed in section 7.3 the specification of operons as
strings is more accurate than as individual objects. Following this idea the lac
operon is represented by the following string whose components define the rel-
evant sites for the regulation of the operon. These sites are represented by the
symbols in Σstr

lac .

〈cap.op.

30
︷ ︸︸ ︷
lacZs.lacZm · · · lacZm.lacZe .

12
︷ ︸︸ ︷
lacYs.lacYm · · · lacYm.lacYe .

6
︷ ︸︸ ︷
lacAs.lacAm · · · lacAm.lacAe〉

– Specification of the relevant regions: In the lac operon regulation system the
cell surface plays a crucial role since the proteins involved in the selective up-
take of glucose and lactose are located in this region of the system. According
to section 7.1 two membranes are used to specify an E. coli bacterium in our P



196 G. Păun and F.J. Romero-Campero

systems specification Πlac. Specifically, membrane 2 with label s is introduced
to describe the cell surface and membrane 3 embedded in the previous one with
label c specifies the cytoplasm. Moreover, in the lac operon system the grow-
ing media is also a relevant region as bacteria response differently according to
its conditions (presence or absence of glucose/lactose). Therefore, membrane 1
labeled by e is used to describe the growing media or environment. Figure 1
depicts a graphical representation of the membrane structure in Πlac.

Fig. 1. Membrane structure in the lac operon regulation system

– Specification of the molecular interactions:
The molecular interactions in the regulation system of the lac operon are

specified using the rewriting rules in ((Robj
e , ∅), (Robj

s , ∅), (Robj
c , Rstr

c )). Here we
only present a few rules to illustrate our approach. For a complete specification
of the molecular interactions in the lac operon see [24].

The uptake of glucose, Gluc, and lactose, Lact, from the environment by the
proteins LacY and EIICB∼P located on the cell surface, membrane labeled by
s, is specified by the binding rules r4, r8 ∈ Robj

e . The delivering to the cytoplasm
of the sugars is described by the releasing rules r6, r9 ∈ Robj

s .

r4: Gluc [ EIICB∼P ]s
c4→ [ EIICB∼P–Gluc ]s

r6: EIICB∼P–Gluc [ ]c
c6→ EIICB [ Gluc∼P ]c

r8: Lact [ LacY ]s
c8→ [ Lact-LacY ]s

r9: Lact-LacY [ ]c
c9→ LacY [ Lact ]c

Glucose uptake needs a phosphate group from EIICB∼P. This protein is phos-
phorylatedbyEIIA∼Pwhich is in turn is involved in theproductionof the activator
cAMP according to the recruitment and releasing rules r19 ∈ Robj

c and r20 ∈ Robj
s .

As a consequence of these rules in the presence of glucoseEIIA∼Pwill be utilized in
the glucose transport system and it will not be available to produce the activator.

r19: AC-EIIA∼P [ATP]c
c19→ AC∼P-EIIA∼P-ATP [ ]c

r20: AC–EIIA∼P–ATP [ ]c
c20→ AC∼P–EIIA∼P [ cAMP ]c

When lactose is transported inside the cytoplasm it interacts with β-
galactosidase producing as a byproduct allolactose, Allolact. Allolactose binds
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to the repressor, LacI, forming a complex, rule r15 ∈ Robj
c . This changes the

repressor making it incapable of binding to the operator of the operon.

r15: [ LacI + Allolact ]c
c15→ [ LacI-Allolact ]c

The mechanism by which LacI represses the transcription of the lac operon is
by reversibly binding to a specific site called operator. This site is represented
by the substring 〈 op 〉. This process is represented by the rewriting rules on
multiset of objects and strings r25, r26 ∈ Rstr

c .

r25: [ LacI + 〈 op 〉 ]c
c25→ [ 〈 opLacI〉 ]c

r26: [ 〈 opLacI〉 ]c
c26→ [ LacI + 〈 op 〉 ]c

The activator CRP-cAMP2 binds to another specific site represented by the
substring 〈 cap 〉 according to similar transcription factor binding and debinding
rules. The RNAP recognizes with different affinities the unoccupied and occupied
sites showing a higher transcription initiation rate in the latter case. This is
represented in the rules r29, r30 ∈ Rstr

c . Note that there is a 40 fold increase
between c29 and c30.

r29: [ RNAP + 〈 cap 〉 ]c
c29→ [ 〈 cap.RNAP 〉 ]c, c29 = 5×10−4molec−1sec−1

r30: [ RNAP + 〈 capCRP−cAMP2 〉 ]c
c30→ [ 〈 capCRP−cAMP2 . RNAP 〉 ]c,

c30 = 0.02molec−1sec−1

An example of transcription elongation rule in the lac operon is r36 ∈ Rstr
c .

Here the RNAP transcribes a specific site of the lacY gene and attaches the
corresponding ribonucleotides lacYm to the growing mRNA , 〈 op.w 〉.

r36: [ 〈 op.w. RNAP. lacYm 〉 ]c
c36→ [ 〈 lacYm.op.w.lacYm.RNAP 〉 ]c

The transcription of the lac operon terminates when the RNAP reaches the
transcription termination site represented by the string 〈 lacAe 〉. Rule r40 ∈ Rstr

c

specifies the dissociation of the RNAP from the operon and the releasing of a
complete mRNA strand, 〈 op.w.lacAe 〉.

r40: [ 〈 op.w.RNAP.lacAe 〉 ]c
c40→ [ RNAP + 〈 lacAe 〉 ; 〈 op.w.lacAe 〉 ]c

Examples of translation initiation and elongation are rules r41 ∈ Rstr
c and

r45 ∈ Rstr
c respectively. Note that the rewriting rule on multiset of objects and

strings r41 describes the recognition by a ribosome of the RBS for lacZ. The
rules r45 specifies the movement along the mRNA of ribosomes.

r41: [ Rib + 〈 lacZs 〉 ]c
c41→ [ 〈 Rib.lacZs 〉 ]c

r45: [ 〈 Rib.lacZm 〉 ]c
c45→ [ 〈 lacZm.Rib 〉 ]c

Finally translation finishes when ribosomes reach termination sites in the
mRNA. For instance, rule r46 ∈ Rstr

c , represents translation termination for
lacZ when a ribosome reaches the termination site lacZe and releases a molecule
β-galactosidase, the protein codified by the lacZ gene.

r46: [ 〈 Rib.lacZe 〉 ]c
c46→ [ β−Galac + Rib + 〈 lacZe 〉 ]c
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9.2 P System Models of the Lac Operon

A family of P system models based on our specification Πlac is introduced to
study the behavior of the lac operon regulation system under different initial
conditions. The parameters of Πlac, P(Πlac) = (M0(Πlac), C(Πlac)) consists of
the initial multisets associated with the environment M1, cell surface M2 and
cytoplasm M3 and the stochastic constants associated with the rewriting rules
C(Πlac). Since we are interested in the behavior of the lac operon system under
different environmental conditions specific values C0, M0

2 and M0
3 will be given

to C(Πlac), M2 and M3 [24]. In contrast we will vary the values given to M1 to
represent different conditions. More specifically, we will study our system in the
presence of lactose and absence of glucose, M1

1 = (e, Lact3000, ∅) and presence
of lactose and glucose M2

1 = (e, Lact3000 + Glucose3000, ∅). Our study will be
performed by running simulation using the algorithm introduced in section 6.2.

– Presence of lactose: This case is represented by the P system model
(Πlac; (M1

1 , M0
2 , M0

3 ), C0). Under this condition our simulation showed that the
state of the promoter of the lac operon is 〈 capCRP−cAMP2 .op 〉. Since lactose is
in the media allolactose will appear in the cytoplasm and inutilize the repressor
LacI. The absence of glucose in the media will allow AC–EIIA∼P to synthe-
size the activator cAMP which will interact with the protein CRP and bind to
the promoter of the lac operon to increasing transcription initiation by RNAP.
This configuration of the promoter yields a full transcription of the operon by
many RNAPs, Figure 2 top left, which in turn produces a massive number of
the proteins encoded in the operon, for instance LacY, Figure 2 top right.
– Presence of lactose and glucose: This situation is represented by the P sys-
tem model (Πlac; (M2

1 , M0
2 , M0

3 ), C0). The state of the promoter in this case is
〈cap.op〉 which corresponds with a low transcription of the lac operon in spite of
the presence of lactose, this phenomenon is referred to as catabolite repression.
The presence of lactose in the media excludes the repressors but the presence of
glucose in the media represses the synthesis of the activator which produces a
non-repressed non-activated operon. Under these conditions only a few RNAP
will be active transcribing the operon, Figure 2 bottom left, and only after a
delay which corresponds to the time necessary to consume glucose, the proteins
codified in the operon are produced, Figure 2 bottom right.

9.3 An Analysis of Gene Expression Using P Systems and PRISM

As it can be seen in the results obtained when modeling the lac operon system
gene expression shows a considerable level of noise. In this section in order to
illustrate the use of P system models and PRISM to study the stochasticity in
cellular systems we will use the abstract gene regulation system in Figure 3. This
simple model consists only of rewriting rules on multisets of objects modeling
transcription, translation and the interactions between a transcription factor and
a gene.

We start by checking the average time the gene is occupied by a transcription
factor for different affinities, c6

c5
, and number of transcription factors. This can be
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Fig. 2. Number of RNAP transcribing the operon (left) and LacY molecules (right) in
the presence of lactose and absence of glucose (top) and in the presence of lactose and
glucose (bottom)

P System Rules PRISM Specification

r1 : [ gene ]c
c1→ [ gene + rna ]c

r2 : [ rna ]c
c2→ [ rna + prot ]c

r3 : [ rna ]c
c3→ [ ]c

r4 : [ prot ]c
c4→ [ ]c

r5 : [ Tf + gene ]c
c5→ [ Tf–gene ]c

r6 : [ Tf–gene ]c
c6→ [ Tf + gene ]c

module compartment

gene : [ 0 .. 1 ] init 0;
rna : [ 0 .. uprna ] init 0;
prot : [ 0 .. upprot] init 0;

[ r1 ] gene = 0 & rna < uprna ->
c_1 : (rna’ = rna + 1);

[ r2 ] rna > 0 & prot < upprot ->
c_2*rna : (prot’ = prot + 1);

[ r3 ] rna > 0 -> c_3*rna : (rna’ = rna - 1;)
[ r4 ] prot > 0 -> c_4*prot : (prot’ = prot - 1);
[ r5 ] Tf > 0 & gene = 0 -> c_5*Tf : (gene’ = 1);
[ r6 ] gene = 1 -> c_6 : (gene’ = 0);

endmodule

Fig. 3. P System rules and PRISM specification for an abstract gene regulation system

done in PRISM by associating a reward of one to every state in which the gene is
occupied and using a cumulative reward query. Our results, Figure 4 right, show
that for affinities between 1012 to 109 M fewer than five transcription factors
are enough to occupy the gene almost all the time. For an affinity of 108 M the



200 G. Păun and F.J. Romero-Campero

Fig. 4. Number of proteins in the expected evolution and in a single simulation (left)
and expected percentage of time a transcription factor is bound to the gene (right)

Fig. 5. Noise (left) and noise strength (right) in translational bursting

system is able to discriminate more precisely between only a few transcription
factors, fewer than ten, and many, more than thirty. In the first case the gene
is occupied less than half of the time whereas for the second case the gene is
occupy most of the time. For affinities of the order of 107 − 106 M the gene is
seldom occupied even when more than fifty transcription factors are present in
the system.

We also study the expected number of proteins produced when a very low
transcription rate is considered, c1 = 10−4sec−1, Figure 4 left. Note that the
expected number of proteins in the long run is three. Nevertheless, when running
a single simulation we observe sporadic bursts in the number of protein reaching
high peaks. This phenomenon is known as translation bursting and is due to a
high translation efficiency or expected number of proteins produce by a single
molecule of mRNA. Using PRISM we checked that this value is equal to c2

c3
.

For different expected number of proteins produced by a molecule of mRNA
we study the noise in the system, η = σ

μ
5 and the noise strength φ = σ2

μ .
These values were computed using PRISM. Our results show that although high
translation efficiencies produce a slight decrease in the level of noise, Figure 5 left,
5 σ represents the standard deviation and μ the expected value.
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they produce a considerable increase in the noise strength, Figure 5 right. This
analysis highlights the important of posttranscriptional regulation, a mechanism
that is widely overlooked in gene regulation modeling.

10 Conclusions

Modeling in systems biology is subject to very intensive research. Nevertheless,
most modeling approaches proposed so far do not present a unifying framework
for the specification of the structural components of the cell together with the
description of their dynamical interactions. In this work, we have presented P
systems as a high level computational modeling framework which integrates the
structural and dynamical aspects of cellular systems in a comprehensive and
relevant way while providing the required formalization to perform mathemat-
ical and computational analysis. The non deterministic and maximally parallel
original strategy has been replaced by an adaption of Gillespie algorithm to the
multicompartmental structure of P systems in order to develop a stochastic and
quantitative framework.

We have discussed a methodology to specify compartments using membranes;
molecular entities as objects or strings depending on the relevance of the internal
structure and the most important molecular interactions as rewriting rules on
multisets of objects and strings. Our modeling framework is not restricted to
the simple generation of simulations of our models. We have taken the first steps
towards the development of techniques to analyze P system models based on
probabilistic and symbolic model checking.

Finally, our work has uncovered several open problems and future lines of
research in the use of P systems as a modeling framework in systems biology.

1. The adaption of Gillespie algorithm to a multicompartmental structure has
produced a local algorithm easily implemented in an event-driven object-
oriented programming style. Such an implementation could be multithreaded
on a hyper-threading machine and would also lend itself to full message-
passing implementation on a parallel computing cluster. In spite of this no
such implementation has been addressed yet.

2. One of the key advantages of P systems with respect to other modeling ap-
proaches is the explicit specification of the structural components of cellular
systems, more precisely of compartments. In this respect, it is worth noting
that up to now P systems have overlooked a key component of the structure
of living cells, the cytoskeleton, a dense network of protein filaments that
permeate the cytosol and mechanically support membranes and proteins. It
is also involved in a great variety of processes like molecular transport, cell
division, cell mobility, etc.

3. Regarding membrane interactions in cellular systems we have not investi-
gated important processes where membranes are crucial like cell division,
cell adhesion, biofilm formation, etc. The specification and simulation of
this type of processes remain an open problem and a future direction to
explore.
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4. Finally, although very easy to understand P systems present a current limita-
tion to the transparency and utility of the specifications and models designed
within their framework. The P system abstractions are purely textual and
so far lack of a graphical formal representation for the visualization of the
modeled systems.

Summing up, P systems constitute a reliable formal framework for the speci-
fication, simulation and analysis of cell systems biology models presenting many
challenging future directions.
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5. Gh. Păun: Membrane computing. Main ideas, basic results, applications.

In Molecular Computational Models: Unconventional Approaches (M. Gheo-
rghe, ed.), Idea Group Publ., London, 2004, 1–31.
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208 G. Păun and F.J. Romero-Campero

76. G. Terrazas, N. Krasnogor, M. Gheorghe, F. Bernardini, S. Diggle, M. Ca-
mara: An environment aware P system model of quorum sensing. In Proc.
New Computational Paradigms. First Conf. on Computability in Europe,
CiE2005, Amsterdam, LNCS 3536, Springer, 2005, 479–485.

77. M. Umeki, Y. Suzuki: Direct simulation of the Oregonator model by using a
class of P systems. In Membrane Computing. Eight Workshop on Membrane
Computing, WMC2007, Thessaloniki, Greece, June 2007. Revised, Selected
and Invited Papers, LNCS 4860, Springer, 2007.

Applications to Linguistics

1. G. Bel Enguix: Preliminaries about some possible applications of P systems
to linguistics. In Membrane Computing, WMC-CdeA2002, Curtea de Argeş,
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9. W. Korczynski: Păun’s systems and accounting. Pre-proc. Sixth Workshop
on Membrane Computing, Vienna, Austria, July 2005, 461–464.

10. W. Korczynski, G. Wawrzola, S. Wawrzola: On a reconstruction problem for
membrane systems. Second Conf. Tools and Methods of Data Transforma-
tion, WSU Kielce, 2004.

11. M. Oswald: Independent agents in a globalized world modelled by tissue P
systems. In Workshop on Artificial Life and Robotics, 2006.

12. Gh. Păun, R. Păun: Membrane computing as a framework for modeling
economic processes. In Proc. SYNASC 05, Timişoara, Romania, IEEE Press,
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212 G. Păun and F.J. Romero-Campero

Optimization

1. L. Huang: Research on Membrane Computing. Optimization Methods. PhD
Thesis, Institute of Advanced Process Control, Zhejiang University, China,
2007.

2. L. Huang, X.-X. He, N. Wang, Y. Xie: P systems based multi-objective
optimization algorithm. Progress in Natural Science, 17, 4 (2007), 458–464.

3. L. Huang, I.H. Suh: Design of controllers for marine Diesel engine by mem-
brane computing. Intern. J. Innovative Computing, Information and Con-
trol, 2007.

4. L. Huang, L. Sun, N. Wang, X.M. Jin: Multiobjective optimization of simu-
lated moving bed by tissue P system. Chinese J. Chemical Engineering, 15,
5 (2007), 683–690.

5. L. Huang, N. Wang: An optimization algorithms inspired by membrane com-
puting. In Proc. ICNC 2006, LNCS 4222, Springer, 2006, 49–55.

6. L. Huang, N. Wang: Multiobjective optimization for controllers. Acta Auto-
matica Sinica, 2007.

7. L. Huang, N. Wang: A variant of P systems for optimization. Neurocomput-
ing, 2007.

8. L. Huang, N. Wang: An extension of membrane computing – a type of evo-
lutionary computing. J. Central South Univ., China, 2007.

9. T.Y. Nishida: An application of P systems – A new algorithm for NP-
complete optimization problems. In Proceedings of the 8th World Multi-
Conference on Systems, Cybernetics and Informatics, vol. V, 2004, 109–112.

10. T.Y. Nishida: Membrane algorithm – an approximate algorithm for NP-
complete optimization problems exploiting P systems. In Membrane Com-
puting, International Workshop, WMC6, Vienna, Austria, 2005, Selected
and Invited Papers, LNCS 3850, Springer, 2006, 55–66.

11. T.Y. Nishida: Membrane algorithms. Approximate algorithms for NP-
complete optimization problems. In AMC 2006, 303–314.

12. T.Y. Nishida: Membrane algorithm with Brownian subalgorithm and genetic
subalgorithm. Intern. J. Found. Computer Sci., 18, 6 (2007), 1353–1360.

13. D. Zaharie, G. Ciobanu: Distributed evolutionary algorithms inspired by
membranes in solving continuous optimization problems. In Membrane Com-
puting, WMC2006, Leiden, The Netherlands. Revised, Selected and Invited
Papers, LNCS 4361, Springer, 2006, 536–554.

Others

1. B. Aman, G. Ciobanu: Translating mobile ambients into P systems. In Proc.
MeCBIC 2006, Veneţia, 2006.
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Abstract. We give a description of a Petri net-based framework for
modelling and analysing biochemical pathways, which unifies the qualita-
tive, stochastic and continuous paradigms. Each perspective adds its con-
tribution to the understanding of the system, thus the three approaches
do not compete, but complement each other. We illustrate our approach
by applying it to an extended model of the three stage cascade, which
forms the core of the ERK signal transduction pathway. Consequently
our focus is on transient behaviour analysis. We demonstrate how quali-
tative descriptions are abstractions over stochastic or continuous descrip-
tions, and show that the stochastic and continuous models approximate
each other. Although our framework is based on Petri nets, it can be
applied more widely to other formalisms which are used to model and
analyse biochemical networks.

1 Motivation

Biochemical reaction systems have by their very nature three distinctive charac-
teristics. (1) They are inherently bipartite, i.e. they consist of two types of game
players, the species and their interactions. (2) They are inherently concurrent,
i.e. several interactions can usually happen independently and in parallel. (3)
They are inherently stochastic, i.e. the timing behaviour of the interactions is
governed by stochastic laws. So it seems to be a natural choice to model and
analyse them with a formal method, which shares exactly these distinctive char-
acteristics: stochastic Petri nets.

However, due to the computational efforts required to analyse stochastic mod-
els, two abstractions are more popular: qualitative models, abstracting away from
any time dependencies, and continuous models, commonly used to approximate
stochastic behaviour by a deterministic one. We describe an overall framework
to unify these three paradigms, providing a family of related models with high
analytical power.

The advantages of using Petri nets as a kind of umbrella formalism are seen
in the following:
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– intuitive and executable modelling style,
– true concurrency (partial order) semantics, which may be lessened to inter-

leaving semantics to simplify analyses,
– mathematically founded analysis techniques based on formal semantics,
– coverage of structural and behavioural properties as well as their relations,
– integration of qualitative and quantitative analysis techniques,
– reliable tool support.

This chapter can be considered as a tutorial in the step-wise modelling and anal-
ysis of larger biochemical networks as well as in the structured design of systems
of ordinary differential equations (ODEs). The qualitative model is introduced
as a supplementary intermediate step, at least from the viewpoint of the bio-
chemist accustomed to quantitative modelling only, and serves mainly for model
validation since this cannot be performed on the continuous level, and is gen-
erally much harder to do on the stochastic level. Having successfully validated
the qualitative model, the quantitative models are derived from the qualitative
one by assigning stochastic or deterministic rate functions to all reactions in the
network. Thus the quantitative models preserve the structure of the qualitative
one, and the stochastic Petri net describes a system of stochastic reaction rate
equations (RREs), and the continuous Petri net is nothing else than a structured
description of ODEs.

systems biology: modelling as formal knowledge representation

synthetic biology: modelling for system construction

biosystem
natural

biosystem
synthetic

observed
behaviour

predicted
behaviour

model
(blueprint)

desired
behaviour

design construction

verification verification

observed
behaviour

predicted
behaviour

wetlab

model-based
experiment design

experiments
formalizing
understanding

wetlab 
experiments

model
(knowledge)

Fig. 1. The role of formal models in systems biology and synthetic biology
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This framework is equally helpful in the setting of systems biology as well as
synthetic biology, see Figure 1. In systems biology, models help us in formalising
our understanding of what has been created by natural evolution. So first of all,
models serve as an unambiguous representation of the acquired knowledge and
help to design new wetlab experiments to sharpen our comprehension.

In synthetic biology, models help us to make the engineering of biology eas-
ier and more reliable. Models serve as blueprints for novel synthetic biological
systems. Their employment is highly recommended to guide the design and con-
struction in order to ensure that the behaviour of the synthetic biological systems
is reliable and robust under a variety of conditions.

Formal models open the door to mathematically founded analyses for model
validation and verification. This paper demonstrates typical analysis techniques,
with special emphasis on transient behaviour analysis. We show how to sys-
tematically derive and interpret the partial order run of the signal response
behaviour, and how to employ model checking to investigate related properties
in the qualitative, stochastic and continuous paradigms. All analysis techniques
are introduced through a running example. To be self-contained, we give the
formal definitions of the most relevant notions, which are Petri net specific.

This paper is organised as follows. In the following section we outline our
framework, discussing the special contributions of the three individual analysis
approaches, and examining their interrelations. Next we provide an overview of
the biochemical context and introduce our running example. We then present
the individual approaches and discuss mutually related properties in all three
paradigms in the following order: we start off with the qualitative approach, which
is conceptually the easiest, and does not rely on knowledge of kinetic information,
but describes the network topology and presence of the species. We then demon-
strate how the validated qualitative model can be transformed into the stochastic
representation by addition of stochastic firing rate information. Next, the continu-
ous model is derived from the qualitative or stochastic model by considering only
deterministic firing rates. Suitable sets of initial conditions for all three models
are constructed by qualitative analysis. Finally, we refer to related work, before
concluding with a summary and outlook regarding further research directions.

2 Overview of the Framework

In the following we describe our overall framework, illustrated in Figure 2, that
relates the three major ways of modelling and analysing biochemical networks
described in this paper: qualitative, stochastic and continuous.

The most abstract representation of a biochemical network is qualitative and
is minimally described by its topology, usually as a bipartite directed graph with
nodes representing biochemical entities or reactions, or in Petri net terminology
places and transitions (see Figures 4 – 6). Arcs can be annotated with stoichiomet-
ric information, whereby the default stoichiometric value of 1 is usually omitted.
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Fig. 2. Conceptual framework

The qualitative description can be further enhanced by the abstract repre-
sentation of discrete quantities of species, achieved in Petri nets by the use of
tokens at places. These can represent the number of molecules, or the level of
concentration, of a species. The standard semantics for these qualitative Petri
nets (QPN) does not associate a time with transitions or the sojourn of tokens
at places, and thus these descriptions are time-free. The qualitative analysis
considers however all possible behaviour of the system under any timing. The
behaviour of such a net forms a discrete state space, which can be analysed in
the bounded case, for example, by a branching time temporal logic, one instance
of which is Computational Tree Logic (CTL), see [CGP01].

Timed information can be added to the qualitative description in two ways –
stochastic and continuous. The stochastic Petri net (SPN) description preserves
the discrete state description, but in addition associates a probabilistically dis-
tributed firing rate (waiting time) with each reaction. All reactions, which occur
in the QPN, can still occur in the SPN, but their likelihood depends on the prob-
ability distribution of the associated firing rates. Special behavioural properties
can be expressed using e.g. Continuous Stochastic Logic (CSL), see [PNK06], a
probabilistic counterpart of CTL, or Probabilistic Linear-time Temporal Logic
(PLTL), see [MC2], a probabilistic counterpart to LTL [Pnu81]. The QPN is an
abstraction of the SPN, sharing the same state space and transition relation with
the stochastic model, with the probabilistic information removed. All qualitative
properties valid in the QPN are also valid in the SPN, and vice versa.

The continuous model replaces the discrete values of species with continuous
values, and hence is not able to describe the behaviour of species at the level
of individual molecules, but only the overall behaviour via concentrations. We
can regard the discrete description of concentration levels as abstracting over the
continuous description of concentrations. Timed information is introduced by the
association of a particular deterministic rate information with each transition,
permitting the continuous model to be represented as a set of ordinary differential
equations (ODEs). The concentration of a particular species in such a model will
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have the same value at each point of time for repeated experiments. The state
space of such models is continuous and linear. So it has to be analysed by a linear
time temporal logic (LTL), for example, Linear Temporal Logic with constraints
(LTLc) in the manner of [CCRFS06], or PLTL [MC2].

The stochastic and continuous models are mutually related by approxima-
tion. The stochastic description can be used as the basis for deriving a continu-
ous Petri net (CPN) model by approximating rate information. Specifically, the
probabilistically distributed reaction firing in the SPN is replaced by a particular
average firing rate over the continuous token flow of the CPN. This is achieved
by approximation over hazard (propensity) functions of type (1), described in
more detail in section 5.1. In turn, the stochastic model can be derived from the
continuous model by approximation, reading the tokens as concentration levels,
as introduced in [CVGO06]. Formally, this is achieved by a hazard function of
type (2), see again section 5.1.

It is well-known that time assumptions generally impose constraints on be-
haviour. The qualitative and stochastic models consider all possible behaviours
under any timing, whereas the continuous model is constrained by its inher-
ent determinism to consider a subset. This may be too restrictive when mod-
elling biochemical systems, which by their very nature exhibit variability in their
behaviour.

3 Biochemical Context

We have chosen a model of the mitogen-activated protein kinase (MAPK) cas-
cade published in [LBS00] as a running case study. This is the core of the ubiq-
uitous ERK/MAPK pathway that can, for example, convey cell division and
differentiation signals from the cell membrane to the nucleus. The model does
not describe the receptor and the biochemical entities and actions immediately
downstream from the receptor. Instead the description starts at the RasGTP
complex which acts as a kinase to phosphorylate Raf, which phosphorylates
MAPK/ERK Kinase (MEK), which in turn phosphorylates Extracellular signal
Regulated Kinase (ERK). This cascade (RasGTP → Raf → MEK → ERK) of
protein interactions controls cell differentiation, the effect being dependent upon
the activity of ERK. We consider RasGTP as the input signal and ERKPP (ac-
tivated ERK) as the output signal.

The scheme in Figure 3 describes the typical modular structure for such a
signalling cascade, compare [CKS07]. Each layer corresponds to a distinct pro-
tein species. The protein Raf in the first layer is only singly phosphorylated.
The proteins in the two other layers, MEK and ERK respectively, can be singly
as well as doubly phosphorylated. In each layer, forward reactions are catal-
ysed by kinases and reverse reactions by phosphatases (Phosphatase1, Phos-
phatase2, Phosphatase3). The kinases in the MEK and ERK layers are the
phosphorylated forms of the proteins in the previous layer. Each phosphory-
lation/dephosphorylation step applies mass action kinetics according to the fol-
lowing pattern: A + E � AE → B + E, taking into account the mechanism
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by which the enzyme acts, namely by forming a complex with the substrate,
modifying the substrate to form the product, and a disassociation occurring to
release the product.

Raf RafP

MEKP MEKPPMEK

ERKP ERKPPERK

Phosphatase3

Phosphatase1

Phosphatase2

RasGTP

Fig. 3. The general scheme of the considered signalling pathway: a three-stage dou-
ble phosphorylation cascade. Each phosphorylation/dephosphorylation step applies the
mass action kinetics pattern A+E � AE → B+E. We consider RasGTP as the input
signal and ERKPP as the output signal.

4 The Qualitative Approach

4.1 Qualitative Modelling

To allow formal reasoning of the general scheme of a signal transduction cas-
cade, which is given in Figure 3 in an informal way, we are going to derive a
corresponding Petri net. Petri nets enjoy formal semantics amenable to math-
ematically sound analysis techniques. The first two definitions introduce the
standard notion of place/transition Petri nets, which represents the basic class
in the ample family of Petri net models.

Definition 1 (Petri net, Syntax). A Petri net is a quadruple N =(P, T, f,m0),
where

– P and T are finite, non empty, and disjoint sets. P is the set of places (in
the figures represented by circles). T is the set of transitions (in the figures
represented by rectangles).
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– f : ((P × T ) ∪ (T × P )) → IN0 defines the set of directed arcs, weighted by
nonnegative integer values.

– m0 : P → IN0 gives the initial marking.

Thus, Petri nets (or nets for short) are weighted, directed, bipartite graphs. The
idea to use Petri nets for the representation of biochemical networks is rather
intuitive and has been mentioned by Carl Adam Petri himself in one of his
internal research reports on interpretation of net theory in the seventies. It has
also been used as the very first introductory example in [Mur89], and we follow
that idea in this tutorial, compare Figure 4.

Places usually model passive system components like conditions, species or
any kind of chemical compounds, e.g. proteins or proteins complexes, playing
the role of precursors or products. Transitions stand for active system compo-
nents like atomic actions or any kind of chemical reactions, e.g. association,
disassociation, phosphorylation, or dephosphorylation, transforming precursors
into products.

The arcs go from precursors to reactions (ingoing arcs), and from reactions
to products (outgoing arcs). In other words, the preplaces of a transition corre-
spond to the reaction’s precursors, and its postplaces to the reaction’s products.
Enzymes establish side conditions and are connected in both directions with the
reaction they catalyse; we get a read arc.

Arc weights may be read as the multiplicity of the arc, reflecting known sto-
ichiometries. Thus, the (pseudo) arc weight 0 stands for the absence of an arc.
The arc weight 1 is the default value and is usually not given explicitly.

A place carries an arbitrary number of tokens, represented as black dots or
a natural number. The number zero is the default value and usually not given
explicitly. Tokens can be interpreted as the available amount of a given species
in number of molecules or moles, or any abstract, i.e. discrete concentration
level.

In the most abstract way, a concentration can be thought of as being ‘high’
or ‘low’ (present or absent). Generalizing this Boolean approach, any continuous
concentration range can be divided into a finite number of equally sized sub-
ranges (equivalence classes), so that the concentrations within can be considered
to be equivalent. The current number of tokens on a place will then specify the
current level of the species’ concentration, e.g. the absence of tokens specifies
level 0. In the following, when speaking in terms of level semantics, we always
give the highest level number.

A particular arrangement of tokens over the places of the net is called a
marking, modelling a system state. In this paper, the notions marking and state
are used interchangeably.

We introduce the following notions and notations. m(p) yields the number of
tokens on place p in the marking m. A place p with m(p) = 0 is called clean
(empty, unmarked) in m, otherwise it is called marked (non-clean). A set of
places is called clean if all its places are clean, otherwise marked. The preset of
a node x ∈ P ∪T is defined as •x := {y ∈ P ∪ T |f (y, x) �= 0}, and its postset as
x• := {y ∈ P ∪ T |f (x, y) �= 0}. Altogether we get four types of sets:
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– •t, the preplaces of a transition t, consisting of the reaction’s precursors,
– t•, the postplaces of a transition t, consisting of the reaction’s products,
– •p, the pretransitions of a place p, consisting of all reactions producing this

species,
– p •, the posttransitions of a place p, consisting of all reactions consuming this

species.

We extend both notions to a set of nodes X ⊆ P ∪ T and define the set of
all prenodes •X :=

⋃
x∈X

•x, and the set of all postnodes X• :=
⋃

x∈X x•. See
Figure 11 for an illustration of these notations.

Petri Net, Semantics. Up to now we have introduced the static aspects of a
Petri net only. The behaviour of a net is defined by the firing rule, which consists
of two parts: the precondition and the firing itself.

Definition 2 (Firing rule). Let N = (P, T, f, m0) be a Petri net.

– A transition t is enabled in a marking m, written as m[t〉, if
∀p ∈ •t : m(p) ≥ f(p, t), else disabled.

– A transition t, which is enabled in m, may fire.
– When t in m fires, a new marking m′ is reached, written as m[t〉m′, with

∀p ∈ P : m′(p) = m(p) − f(p, t) + f(t, p).
– The firing happens atomically and does not consume any time.

Please note, a transition is never forced to fire. Figuratively, the firing of a tran-
sition moves tokens from its preplaces to its postplaces, while possibly changing
the number of tokens, compare Figure 4. Generally, the firing of a transition
changes the formerly current marking to a new reachable one, where some tran-
sitions are not enabled anymore while others get enabled. The repeated firing of
transitions establishes the behaviour of the net.

The whole net behaviour consists of all possible partially ordered firing se-
quences (partial order semantics), or all possible totally ordered firing sequences
(interleaving semantics), respectively.

Every marking is defined by the given token situation in all places m ∈ IN|P |
0 ,

whereby |P | denotes the number of places in the Petri net. All markings, which
can be reached from a given marking m by any firing sequence of arbitrary
length, constitute the set of reachable markings [m〉. The set of markings [m0〉
reachable from the initial marking is said to be the state space of a given system.

All notions introduced in the following in this section refer to a place/transi-
tion Petri net according to Definitions 1 and 2.

Running Example. In this modelling spirit we are now able to create a Petri
net for our running example. We start with building blocks for some typical
chemical reaction equations as shown in Figure 5. We get the Petri net in Figure
6 for our running example by composing these building blocks according to the
scheme of Figure 3. As we will see later, this net structure corresponds exactly
to the set of ordinary differential equations given in [LBS00]. Thus, the net can
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Fig. 4. The Petri net for the well known chemical reaction r: 2H2+O2 → 2H2O and three
of its markings (states), connected each by a firing of the transition r. The transition is
not enabled anymore in the marking reached after these two single firing steps.

equally be derived by SBML import and automatic layout, manually improved
from this ODE model.

Reversible reactions have to be modelled explicitly by two opposite transi-
tions. However in order to retain the elegant graph structure of Figure 6, we use
macro transitions, each of which stands here for a reversible reaction. The entire
(flattened) place/transition Petri net consists of 22 places and 30 transitions,
where r1, r2, . . . stand for reaction (transition) labels.

We associate a discrete concentration with each of the 22 species. In the
qualitative analysis we apply Boolean semantics where the concentrations can
be thought of as being “high” or “low” (above or below a certain threshold). This
results into a two level model, and we extend this to a multi-level model in the
quantitative analysis, where each discrete level stands for an equivalence class
of possibly infinitely many concentrations. Then places can be read as integer
variables.

4.2 Qualitative Analysis

A preliminary step will usually execute the net, which allows us to experience
the model behaviour by following the token flow1. Having established initial
confidence in the model by playing the token game, the system needs to be
formally analysed. Formal analyses are exhaustive, opposite to the token game,
which exemplifies the net behaviour.

1 If the reader would like to give it a try, just download our Petri net tool [Sno08].
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Fig. 5. The Petri net components for some typical basic structures of biochemical
reaction networks. (a) simple reaction A → B; (b) reversible reaction A � B; (c)
hierarchical notation of (b); (d) simple enzymatic reaction, Michaelis-Menten kinetics;
(e) reversible enzymatic reaction, Michaelis-Menten kinetics; (f) hierarchical notation
of (e); (g) enzymatic reaction, mass action kinetics, A + E � A E → B + E; (h)
hierarchical notation of (g); (i) two enzymatic reactions, mass action kinetics, building
a cycle; (j) hierarchical notation of (i). Two concentric squares are macro transitions,
allowing the design of hierarchical net models. They are used here as shortcuts for
reversible reactions. Two opposite arcs denote read arcs, see (d) and (e), establishing
side conditions for a transition’s firing.
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Fig. 6. The bipartite graph for the extended ERK pathway model according to the
scheme in Figure 3. Places (circles) stand for species (proteins, protein complexes).
Protein complexes are indicated by an underscore “ ” between the constituent pro-
tein names. The suffixes P or PP indicate phosphorylated or doubly phosphorylated
forms respectively. The name Phase serves as shortcut for Phosphatase. The species
that are read as input/output signals are given in grey. Transitions (squares) stand
for irreversible reactions, while macro transitions (two concentric squares) specify re-
versible reactions, compare Figure 5. The initial state is systematically constructed
using standard Petri net analysis techniques. At the bottom the two-line result vector
as produced by Charlie [Cha08] is given. Properties of interest in this vector for this
biochemical network are explained in the text.
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(0) General Behavioural Properties. The first step in analysing a Petri net
usually aims at deciding general behavioural properties, i.e. properties which
can be formulated independently from the special functionality of the network
under consideration. There are basically three of them, which are orthogonal:
boundedness, liveness, and reversibility [Mur89]. We start with an informal char-
acterisation of the key issues.

– boundedness For every place it holds that: Whatever happens, the maximal
number of tokens on this place is bounded by a constant. This precludes
overflow by unlimited increase of tokens.

– liveness For every transition it holds that: Whatever happens, it will always
be possible to reach a state where this transition gets enabled. In a live net,
all transitions are able to contribute to the net behaviour forever, which
precludes dead states, i.e. states where none of the transitions are enabled.

– reversibility For every state it holds that: Whatever happens, the net will
always be able to reach this state again. So the net has the capability of
self-reinitialization.

In most cases these are requirable properties. To be precise, we give the following
formal definitions, elaborating these notions in more details.

Definition 3 (Boundedness)

– A place p is k-bounded (bounded for short) if there exists a positive integer
number k, which represents an upper bound for the number of tokens on this
place in all reachable markings of the Petri net:
∃ k ∈ IN0 : ∀m ∈ [m0〉 : m(p) ≤ k .

– A Petri net is k-bounded (bounded for short) if all its places are k-bounded.
– A Petri net is structurally bounded if it is bounded in any initial marking.

Definition 4 (Liveness of a transition)

– A transition t is dead in the marking m if it is not enabled in any marking
m′ reachable from m:
� ∃ m′ ∈ [m〉 : m′[t〉.

– A transition t is live if it is not dead in any marking reachable from m0.

Definition 5 (Liveness of a Petri net)

– A marking m is dead if there is no transition which is enabled in m.
– A Petri net is deadlock-free (weakly live) if there are no reachable dead

markings.
– A Petri net is live (strongly live) if each transition is live.

Definition 6 (Reversibility). A Petri net is reversible if the initial marking
can be reached again from each reachable marking: ∀m ∈ [m0〉 : m0 ∈ [m〉.
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Fig. 7. A net to illustrate the general behavioural properties. The place A is 0-
bounded, place B is 1-bounded and all other places are 2-bounded, so the net is
2-bounded. The transitions r1 and r2 in the leftmost cycle are dead at the initial
marking. The transitions r8 and r9 in the rightmost cycle are live. All other transitions
are not live; so the net is weakly live. The net is not reversible, because there is no
counteraction to the token decrease by firing of r4. There are dynamic conflicts, e.g. in
the initial marking between r4 and r5.

Finally we introduce the general behavioural property dynamic conflict, which
refers to a marking enabling two transitions, but the firing of one transition
disables the other one. The occurrence of dynamic conflicts causes alternative
(branching) system behaviour, whereby the decision between these alternatives
is taken nondeterministically. See Figure 7 for an illustration of these behavioural
properties.

Running Example. Our net enjoys the three orthogonal general properties of
a qualitative Petri net: it is bounded, even structural bounded (SB), live (LIV),
and reversible (REV).

Boundedness can always be decided in a static way, i.e. without construction
of the state space, while the remaining behavioural properties generally require
dynamic analysis techniques, i.e. the explicit construction of the partial or full
state space. However as we will see later, freedom of dead states (DSt) can still
be decided in a static way for our running example.

The essential steps of the systematic analysis procedure for our running ex-
ample are given in more detail as follows. They represent a typical pattern how
to proceed. So they may be taken as a recipe how to analyse your own system.

(1) Structural Properties. The following structural properties are elemen-
tary graph properties and reflect the modelling approach. They can be read as
preliminary consistency checks to preclude production faults in drawing the net.
Remarkably, certain combinations of structural properties allow conclusions on
behavioural properties; some examples of such conclusions will be mentioned.
The list follows the order as used in the two-line result vector produced by our
qualitative analysis tool Charlie [Cha08], compare Figure 6.

PUR. A Petri net is pure if
∀x, y ∈ P ∪ T : f(x, y) �= 0 ⇒ f(y, x) = 0,
i.e. there are no two nodes, connected in both directions. This precludes read
arcs. Then the net structure is fully represented by the incidence matrix,
which is used for the calculation of the P- and T-invariants, see step (2).
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ORD. A Petri net is ordinary if
∀x, y ∈ P ∪ T : f(x, y) �= 0 ⇒ f(x, y) = 1,
i.e. all arc weights are equal to 1. This includes homogeneity. A non-ordinary
Petri net cannot be live and 1-bounded at the same time.

HOM. A Petri net is homogeneous if
∀p ∈ P : t, t′ ∈ p• ⇒ f(p, t) = f(p, t′),
i.e. all outgoing arcs of a given place have the same multiplicity.

NBM. A net has non-blocking multiplicity if
∀p ∈ P : •p �= ∅ ∧ min{f(t, p)|∀t ∈ •p} ≥ max{f(p, t)|∀t ∈ p•},
i.e. an input place causes blocking multiplicity. Otherwise, it must hold for
each place: the minimum of the multiplicities of the incoming arcs is not less
than the maximum of the multiplicities of the outgoing arcs.

CSV. A Petri net is conservative if
∀t ∈ T :

∑
p∈•t f(p, t) =

∑
p∈t• f(t, p),

i.e. all transitions add exactly as many tokens to their postplaces as they sub-
tract from their preplaces, or briefly, all transitions fire token-preservingly.
A conservative Petri net is structurally bounded.

SCF. A Petri net is static conflict free if
∀t, t′ ∈ T : t �= t′ ⇒ •t ∩ •t′ = ∅,
i.e. there are no two transitions sharing a preplace. Transitions involved in
a static conflict compete for the tokens on shared preplaces. Thus, static
conflicts indicate situations where dynamic conflicts, i.e. nondeterministic
choices, may occur in the system behaviour. However, it depends on the
token situation whether a conflict does actually occur dynamically. There is
no nondeterminism in SCF nets.

CON. A Petri net is connected if it holds for every two nodes a and b that there
is an undirected path between a and b. Disconnected parts of a Petri net
cannot influence each other, so they can usually be analysed separately. In
the following we consider only connected Petri nets.

SC. A Petri net is strongly connected if it holds for every two nodes a and
b that there is a directed path from a to b. Strong connectedness involves
connectedness and the absence of boundary nodes. It is a necessary condition
for a Petri net to be live and bounded at the same time.

FT0, TF0, FP0, PF0. A node x ∈ P ∪ T is called boundary node if
•x = ∅ ∨ x• = ∅. Boundary nodes exist in four types:
– input transition - a transition without preplaces (•t = ∅, shortly FT0),
– output transition - a transition without postplaces (t• = ∅, shortly TF0),
– input place - a place without pretransitions (•p = ∅, shortly FP0),
– output place - a place without posttransitions (p• = ∅, shortly PF0).

A net with boundary nodes cannot be bounded and live at the same time.
For example, an input transition is always enabled, so its postplaces are
unbounded, while input places preclude liveness. Boundary nodes model
interconnections of an open system with its environment. A net without
boundary nodes is self-contained, i.e. a closed system. It needs a non-clean
initial marking to become live.
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Definition 7 (Net structure classes)

– A Petri net is called State Machine (SM) if
∀t ∈ T : |•t| = |t•| ≤ 1,

i.e. there are neither forward branching nor backward branching transitions.
– A Petri net is called Synchronization Graph (SG) if

∀p ∈ P : |•p| = |p•| ≤ 1,
i.e. there are neither forward branching nor backward branching places.

– A Petri net is called Extended Free Choice (EFC) if
∀p, q ∈ P : p• ∩ q• = ∅ ∨ p• = q•,

i.e. transitions in conflict have identical sets of preplaces.
– A Petri net is called Extended Simple (ES) if

∀p, q ∈ P : p• ∩ q• = ∅ ∨ p• ⊆ q• ∨ q• ⊆ p•,
i.e. every transition is involved in one conflict at most.

Please note, these definitions refer to the net structure only, neglecting any arc
multiplicities. However, these net classes are especially helpful in the setting of
ordinary nets. SM and SG 2 are dual notions; a SM net can be converted into an
SG net by exchanging places and transitions, and vice versa. Both net classes
are properly included in the EFC net class, which again is properly included in
the ES net class.

SM nets are conservative, and thus the prototype of bounded models; they
correspond to the well-known notion of finite state automata. SG nets are free
of static conflicts, and therefore of nondeterminism. In EFC nets, transitions
in conflict are always together enabled or disabled; so there is always a free
choice between them in dynamic conflict situations. EFC nets have the pleasant
property of monotonously live, i.e. if they are live in the marking m, then they
remain live for any other marking m′ with m′ ≥ m. In ES nets, the conflict
relation is transitive: if t1 and t2 are in conflict, and t2 and t3 are in conflict,
then t1 and t3 are in conflict too. ES nets have the distinguished property to be
live independent of time, i.e. if they are live, then they remain live under any
timing [Sta89].

All these structural properties do not depend on the initial marking. Most of
these properties can be locally decided in the graph structure. Connectedness
and strong connectedness need to consider the global graph structure, which can
be done using standard graph algorithms.

Running Example. The net is pure and ordinary, therefore homogeneous as
well, but not conservative. There are static conflicts. The net structure does
not comply to any of the introduced net structure classes, so it is said to be
not Extended Simple (nES). The net is strongly connected, which includes con-
nectedness and absence of boundary nodes, and thus self-contained, i.e. a closed
system. Therefore, in order to make the net live, we have to construct an initial
marking, see step (3) below.

2 We use synchronisation graph instead of the more popular term marked graph, which
might cause confusion.
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(2) Static Decision of Marking-independent Behavioural Properties.
To open the door to analysis techniques based on linear algebra, we represent
the net structure by a matrix, called incidence matrix in the Petri net commu-
nity, and stoichiometric matrix in systems biology. We briefly recall the essential
technical terms.

Definition 8 (P-invariants, T-invariants)

– The incidence matrix of N is a matrix C : P × T → ZZ, indexed by P and
T , such that C(p, t) = f(t, p) − f(p, t).

– A place vector (transition vector) is a vector x : P → ZZ, indexed by P
(y : T → ZZ, indexed by T).

– A place vector (transition vector) is called a P-invariant (T-invariant) if it
is a nontrivial nonnegative integer solution of the linear equation system
x · C = 0 (C · y = 0).

– The set of nodes corresponding to an invariant’s nonzero entries are called
the support of this invariant x, written as supp (x).

– An invariant x is called minimal if � ∃ invariant z : supp (z) ⊂ supp (x), i.e.
its support does not contain the support of any other invariant z, and the
greatest common divisor of all nonzero entries of x is 1.

– Anet is coveredby P-invariants, shortlyCPI, (coveredby T-invariants, shortly
CTI) if every place (transition) belongs to a P-invariant (T-invariant).

CPI causes structural boundedness (SB), i.e. boundedness for any initial mark-
ing. CTI is a necessary condition for bounded nets to be live. But maybe even
more importantly, invariants are a beneficial technique in model validation, and
the challenge is to check all invariants for their biological plausibility. Therefore,
let’s elaborate these notions more carefully, compare also Figure 8.

The incidence matrix of a Petri net is an integer matrix C with a row for each
place and a column for each transition. A matrix entry C(p, t) gives the token
change on place p by the firing of transition t. Thus, a preplace of t, which is
not a postplace of t, has a negative entry, while a postplace of t, which is not a
preplace of t, has a positive entry, each corresponding to the arc multiplicities.
The entry for a place, which is preplace as well as postplace of a transition,
gives the difference of the multiplicities of the transition’s outgoing arc minus
the transition’s ingoing arc. In this case we lose information; the non-ordinary
net structure cannot be reconstructed uniquely out of the incidence matrix.

The columns of C are place vectors, i.e. vectors with as many entries as there
are places, describing the token change on a marking by the firing of the transi-
tion defining the column index. The rows of C are transition vectors, i.e. vectors
with as many entries as there are transitions, describing the influence of all
transitions on the tokens in the place, defining the row index. For stoichiometric
reaction networks, e.g. metabolic networks, the incidence matrix coincides with
the stoichiometric matrix.

A P-invariant x is a nonzero and nonnegative integer place vector such that
x · C = 0; in words, for each transition it holds that: multiplying the P-invariant
with the transition’s column vector yields zero. Thus, the total effect of each
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transition on the P-invariant is zero, which explains its interpretation as a token
conservation component. A P-invariant stands for a set of places over which
the weighted sum of tokens is constant and independent of any firing, i.e. for
any markings m1, m2, which are reachable by the firing of transitions, it holds
that x · m1 = x · m2. In the context of metabolic networks, P-invariants reflect
substrate conservations, while in signal transduction networks P-invariants often
correspond to the several states of a given species (protein or protein complex).
A place belonging to a P-invariant is obviously bounded.

Analogously, a T-invariant y is a nonzero and nonnegative integer transition
vector such that C · y = 0; in words, for each place it holds that: multiplying
the place’s row with the T-invariant yields zero. Thus, the total effect of the
T-invariant on a marking is zero. A T-invariant has two interpretations in the
given biochemical context.

– The entries of a T-invariant specify a multiset of transitions which by their
partially ordered firing reproduce a given marking, i.e. basically occurring
one after the other. This partial order sequence of the T-invariant’s tran-
sitions may contribute to a deeper understanding of the net behaviour. A
T-invariant is called feasible if such a behaviour is actually possible in the
given marking situation.

– The entries of a T-invariant may also be read as the relative firing rates
of transitions, all of them occurring permanently and concurrently. This
activity level corresponds to the steady state behaviour.

The two transitions modelling the two directions of a reversible reaction al-
ways make a minimal T-invariant; thus they are called trivial T-invariants. A
net which is covered by nontrivial T-invariants is said to be strongly covered by
T-invariants (SCTI). Transitions not covered by nontrivial T-invariants are can-
didates for model reduction, e.g. if the model analysis is concerned with steady
state analysis only.

The set xi of all minimal P-invariants (T-invariants) of a given net is unique
and represents a generating system for all P-invariants (T-invariants). All invari-

r1: 2 A
E−→ 2 B

r2/3: A � B

r1 r2 r3

A –2 –1 1
B 2 1 –1
E 0 0 0 A B

E

r1

r2

r3

2 2

x1 = (1, 1, 0) = (A, B),
x2 = (0, 0, 1) = (E)

y1 = (1, 0, 2) = (r1, 2 · r3),
y2 = (0, 1, 1) = (r2, r3)

y3 = (1, 1, 3) = y1 + y2

Fig. 8. Two reaction equations with the corresponding Petri net, its incidence matrix,
and the minimal P-invariants x1, x2, and the minimal T-invariants y1, y2, and a non-
minimal T-invariant y3. The invariants are given in the standard vector notation as
well as in a shorthand notation, listing the nonzero entries only. The net is not pure;
the incidence matrix does not reflect the dependency of r1 on E.
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ants x can be computed as nonnegative linear combinations: n · x =
∑

(ai · xi),
with n, ai ∈ IN0, i.e., the allowed operations are addition, multiplication by a
natural number, and division by a common divisor.

Technically, we need to solve a homogenous linear equation system over natu-
ral numbers (nonnegative integers). This restriction of the data space establishes
– from a mathematical point of view – a challenge, so there is no closed formula
to compute the solutions. However there are algorithms – actually, a class of
algorithms – constructing the solution (to be precise: the generating system for
the solution space) by systematically considering all possible candidates.

This algorithm class has been repetitively re-invented over the years. So, these
algorithms come along with different names; but if you take a closer look, you will
always encounter the same underlying idea. All these versions may be classified as
“positive Gauss elimination”; the incidence matrix is systematically transformed
to a zero matrix by suitable matrix operations.

However, there are net structures where we get the invariants almost for free.
For ordinary state machines it holds:

– each (minimal) cycle is a (minimal) T-invariant;
– for strongly connected state machines, the reverse direction holds also: each

(minimal) T-invariant corresponds to a (minimal) cycle;
– all places of a strongly connected state machine form a minimal P-invariant.

Likewise, for ordinary synchronisation graphs it holds:

– each (minimal) cycle is a (minimal) P-invariant;
– for strongly connected synchronisation graphs, the reverse direction holds

also: each (minimal) P-invariant corresponds to a (minimal) cycle;
– all transitions of a strongly connected synchronisation graph form a minimal

T-invariant.

A minimal P-invariant (T-invariant) defines a connected subnet, consisting of
its support, its pre- and posttransitions (pre- and postplaces), and all arcs in
between. There are no structural limitations for such subnets induced by mini-
mal invariants, compare Figure 9, but they are always connected, however not
necessarily strongly connected. These minimal self-contained subnets may be
read as a decomposition into token preserving or state repeating modules, which
should have an enclosed biological meaning. However, minimal invariants gener-
ally overlap, and in the worst-case there are exponentially many of them.

Running Example. There are seven minimal P-invariants covering the net
(CPI), and consequently the net is bounded for any initial marking (SB). All
these P-invariants xi contain only entries of 0 and 1, permitting a shorthand
specification by just giving the names of the places involved.

Each P-invariant stands for a reasonable conservation rule, the species pre-
served being given by the first name in the invariant. Due to the chosen naming
convention, this particular name also appears in all the other place names of the
same P-invariant.
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Fig. 9. The four nets on the left are each covered by one minimal T-invariants. Invari-
ants can contain any structures (from left to right): cycles, forward/backward branching
transitions, forward branching places, backward branching places. Generally, invariants
overlap, and in the worst-case there are exponentially many of them; the net on the
far-right has 24 T-invariants.

x1 = (RasGTP, Raf RasGTP)
x2 = (Raf, Raf RasGTP, RafP, RafP Phase1, MEK RafP, MEKP RafP)
x3 = (MEK, MEK RafP, MEKP RafP, MEKP Phase2, MEKPP Phase2,

ERK MEKPP, ERKP MEKPP, MEKPP, MEKP)
x4 = (ERK, ERK MEKPP, ERKP MEKPP, ERKP, ERKPP Phase3,

ERKP Phase3, ERK PP)
x5 = (Phase1, RafP Phase1)
x6 = (Phase2, MEKP Phase2, MEKPP Phase2)
x7 = (Phase3, ERKP Phase3, ERKPP Phase3)

The net under consideration is also covered by T-invariants (CTI), however
not strongly covered (SCTI). Besides the expected ten trivial T-invariants for
the ten reversible reactions, there are five nontrivial, but obvious minimal T-
invariants, each corresponding to one of the five phosphorylation/dephosphoryla-
tion cycles in the network structure:

y1 = (r1, r3, r4, r6),
y2 = (r7, r9, r16, r18),
y3 = (r10, r12, r13, r15),
y4 = (r19, r21, r28, r30),
y5 = (r22, r24, r25, r27).

The interesting net behaviour, demonstrating how input signals finally cause out-
put signals, is contained in a nonnegative linear combination of all five nontrivial
T-invariants,

y1−5 = y1 + y2 + y3 + y4 + y5,

which is called an I/O T-invariant in the following. The I/O T-invariant is sys-
tematically constructed by starting with the two minimal T-invariants, involv-
ing the input and output signal, which define disconnected subnetworks. Then
we add minimal sets of minimal T-invariants to get a connected subnet, which
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corresponds to a T-invariant feasible in the initial marking. For our running
example, the solution is unique, which is not generally the case.

The automatic identification of nontrivial minimal T-invariants is in general
useful as a method to highlight important parts of a network, and hence aids its
comprehension by biochemists, especially when the entire network is too complex
to easily comprehend.

P/T-invariants relate only to the structure, i.e. they are valid independently
of the initial marking. In order to proceed we first need to generate an initial
marking.

(3) Initial Marking Construction. For a systematic construction of the
initial marking, we consider the following criteria.

– Each P-invariant needs at least one token.
– All (nontrivial) T-invariants should be feasible, meaning, the transitions,

making up the T-invariant’s multi-set can actually be fired in an appropriate
(partial) order.

– Additionally, it is common sense to look for a minimal marking (as few tokens
as possible), which guarantees the required behaviour.

– Within a P-invariant, choose the species with the most inactive or the
monomeric state.

Running Example. Taking all these criteria together, the initial marking on
hand is: RasGTP, MEK, ERK, Phase1, Phase2 and Phase3 get each one token,
while all remaining places are empty. With this initial marking, the net is covered
by 1-P-invariants (exactly one token in each P-invariant), therefore the net is
1-bounded (indicated as 1-B in the analysis result vector, compare Figure 6).
That is in perfect accordance with the understanding that in signal transduction
networks a P-invariant comprises all the different states of one species. Obviously,
each species can be only in one state at any time.

Generalising this reasoning to a multi-level concept, we could assign n to-
kens to each place representing the most inactive state, in order to indicate the
highest concentration level for them in the initial state. The “abstract” mass
conservation within each P-invariant would then be n tokens, which could be
distributed fairly freely over the P-invariant’s places during the behaviour of the
model. This results in a dramatic increase of the state space, as we will later see,
while not improving the qualitative reasoning.

We check the I/O T-invariant for feasibility in the constructed initial marking,
which then involves the feasibility of all trivial T-invariants. In order to preserve
all the concurrency information we have, we construct a new net which describes
the behaviour of our system net under investigation. We obtain an infinite partial
order run, the beginning of which is given as labelled condition/event net in Fig-
ure 10. Here, transitions represent events, labelled by the name of the reaction
taking place, while places stand for binary conditions, labelled by the name of
the species, set or reset by the event, respectively. We get this run by unfolding
the behaviour of the subnet induced by the T-invariant. This run can be char-
acterized in a shorthand notation by the following set of partially ordered words
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RasGTP Raf MEKPhase2 ERK Phase3

Raf_RasGTP

RasGTP

RafP

MEK_RafP

RafP MEKP

MEKP_RafP

RafP MEKPP

ERK_MEKPP

MEKPP ERKP

MEKPP ERKPP

ERKP_MEKPP

Phase1

RafP_Phase1

Raf Phase1

MEKPP_Phase2

MEKP Phase2

MEKP_Phase2

MEK Phase2 Phase3ERK

ERKP_Phase3

Phase3ERKP

ERKPP_Phase3

r1

r3

r7

r9

r10

r12

r19

r21

r22

r24

r4

r6

r13

r15

r16

r18

r25

r30

r28

r27

Fig. 10. The beginning of the infinite partial order run of the I/O T-invariant y1−5 =
y1 + y2 + y3 + y4 + y5 of the place/transition Petri net given in Figure 6. We get this
run by unfolding the behaviour of the subnet induced by the T-invariant, whereby any
concurrency is preserved. Here, transitions represent events, labelled by the name of the
reaction taking place, while places stand for binary conditions, labelled by the name of
the species, set or reset by the event, respectively. The highlighted set of transitions and
places is the required minimal sequence of events to produce the output signal ERKPP.
We get a totally ordered sequence of events for our running example. Generally, this
sequence will be partially ordered only.
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out of the alphabet of all transition labels T (“;” stands for “sequentiality”, “‖”
for “concurrency”):

( r1; r3; r7; r9; r10; r12;
( ( r4; r6 ) ‖

( ( r19; r21; r22; r24 );
( ( r13; r15; r16; r18 ) ‖ ( r25; r27; r28; r30 ) ) ) ) ).

This partial order run gives further insight into the dynamic behaviour of
the network, which may not be apparent from the standard net representation,
e.g. we are able to follow the (minimal) producing process of the proteins RafP,
MEKP, MEKPP, ERKP and ERKPP (highlighted in Figure 10), and we notice
the clear independence, i.e. concurrency of the dephosphorylation in all three lev-
els. The entire run describes the whole network behaviour triggered by the input
signal, i.e. including the dephosphorylation. This unfolding is completely defined
by the net structure, the initial marking and the multiset of firing transitions.
Thus it can be constructed automatically.

Having established and justified our initial marking, we proceed to the next
steps of the analysis.

(4) Static Decision of Marking-dependent Behavioural Properties. The
following advanced structural Petri net properties can be decided by combina-
torial algorithms. First, we need to introduce two new notions.

Definition 9 (Structural deadlocks, traps )

– A nonempty set of places D ⊆ P is called structural deadlock (co-trap) if
•D ⊆ D• (the set of pretransitions is contained in the set of posttransitions),
i.e. every transition which fires tokens onto a place in this structural deadlock
set, also has a preplace in this set.

– A set of places Q ⊆ P is called trap if Q• ⊆ •Q (the set of posttransitions is
contained in the set of pretransitions), i.e. every transition which subtracts
tokens from a place of the trap set, also has a postplace in this set.

Pretransitions of a structural deadlock 3 cannot fire if the structural deadlock
is clean. Therefore, a structural deadlock cannot get tokens again as soon as it
is clean, and then all its posttransitions t ∈ D• are dead. A Petri net without
structural deadlocks is live, while a system in a dead state has a clean structural
deadlock.

Posttransitions of a trap always return tokens to the trap. Therefore, once a
trap contains tokens, it cannot become clean again. There can be a decrease of
the total token amount within a trap, but not down to zero.

An input place p establishes a structural deadlock D = {p} on its own, and an
output place q, a trap Q = {q}. If each transition has a preplace, then P • = T ,
3 The notion structural deadlock has nothing in common with the famous deadlock

phenomenon of concurrent processes. The Petri net community has been quite cre-
ative in trying to avoid this name clash (co-trap, siphon, tube). However, none of
these terms got widely accepted.
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and if each transition has a postplace, then •P = T . Therefore, in a net without
boundary transitions, the whole set of places is a structural deadlock as well
as a trap. If D and D′ are structural deadlocks (traps), then D ∪ D′ is also a
structural deadlock (trap).

A structural deadlock (trap) is minimal if it does not properly contain a struc-
tural deadlock (nonempty trap). The network, defined by a minimal structural
deadlock (trap), is strongly connected. A trap is maximal if it is not a proper
subset of a trap. Every structural deadlock includes a unique maximal trap with
respect to set inclusion (which may be empty).

The support of a P-invariant is structural deadlock and trap at the same time.
But caution: not every place set which is a structural deadlock as well as a trap
is a P-invariant. Even more, a P-invariant may properly contain a structural
deadlock. Of special interest are often those minimal deadlocks (traps), which
are not at the same time a P-invariant, for which we introduce the notion proper
deadlock (trap). See also Figure 11 for an example to illustrate these two notions
of structural deadlock and trap.

Structural deadlock and trap are closely related but contrasting notions. When
they come on their own, we get usually deficient behaviour. However, both no-
tions have the power to complement each other perfectly.

Definition 10 (Deadlock trap property)
A Petri net satisfies the deadlock trap property (DTP) if

– every deadlock includes an initially marked trap,
To optimize computational effort this can be translated into:

– the maximal trap in every minimal deadlock is initially marked.

This is only possible if there are no input places. An input place establishes
a structural deadlock on its own, in which the maximal trap is empty, and
therefore not marked. The DTP can still be decided by structural reasoning
only. Its importance becomes clear by the following theorems.

Theorem 1 (Relations between structural and behavioural properties)

1. A net without structural deadlocks is live.
2. ORD ∧ DTP ⇒ no dead states
3. ORD ∧ ES ∧ DTP ⇒ live
4. ORD ∧ EFC ∧ DTP ⇔ live

The first theorem occasionally helps to decide liveness of unbounded nets. The
last theorem is also known as Commoner’s theorem, published in 1972. Theorems
2-4 have been generalized to non-ordinary nets by requiring homogeneity and
non-blocking multiplicity [Sta90]. The proof for ordinary Petri nets can be found
in [DE95].

Running Example. The Deadlock Trap Property holds, but no special net
structure class is given, therefore we know now that the net is weakly live, i.e.
there is no dead state (DSt). Please note, for our given net we are not able to
decide liveness by structural reasoning only.
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BA C D

E
r1

r2
r3

r4

r5

structural deadlock: trap:
•{A, B} ⊆ {A, B}• {C, D, E}• ⊆ •{C, D, E}
pretransitions: •{A, B} = {r1, r2} posttransitions: {C, D, E}• = {r4, r5}
posttransitions: {A, B}• = {r1, r2, r3} pretransitions: •{C, D, E} = {r1, r3, r4, r5}

Fig. 11. The token on place A can rotate in the left cycle by repeated firing of r1 and
r2. Each round produces an additional token on place E, making this place unbounded.
This cycle can be terminated by firing of transition r3, which brings the circulating
token from the left to the right side of the Petri net. The place set {A, B} cannot get
tokens again as soon as it got clean. Thus, it is a (proper) structural deadlock. On the
contrary, the place set {C, D, E} cannot become clean again as soon as it got a token.
The repeated firing of r4 and r5 reduces the total token number, but cannot remove
all of them. Thus, the place set {C, D, E} is a (proper) trap.

(5) Dynamic Decision of Behavioural Properties. In order to decide live-
ness and reversibility we need to construct the state space. This could be done
according the partial order semantics or the interleaving semantics. To keep
things simple in this introductory tutorial we consider here the interleaving se-
mantics only, which brings us to the reachability graph.

Definition 11 (Reachability graph). Let N = (P, T, f, m0) be a Petri net.
The reachability graph of N is the graph RG(N ) = (VN , EN ), where

– VN := [m0〉 is the set of nodes,
– EN := { (m, t, m′) | m, m′ ∈ [m0〉, t ∈ T : m[t〉m′} is the set of arcs.

The nodes of a reachability graph represent all possible states (markings) of the
net. The arcs in between are labelled by single transitions, the firing of which
causes the related state change, compare Figure 12. The reachability graph gives
us a finite automaton representation of all possible single step firing sequences.
Consequently, concurrent behaviour is described by enumerating all interleav-
ing firing sequences; so the reachability graph reflects the behaviour of the net
according to the interleaving semantics.

The reachability graph is finite for bounded nets only. A branching node
in the reachability graph, i.e. a node with more than one successor, reflects
either alternative or concurrent behaviour. The difference is not locally decidable
anymore in the reachability graph. For 1-bounded ordinary state machines, net
structure and reachability graph are isomorphic.
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m1 2B, E m2A, B, E

r1
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Fig. 12. A Petri net (left) and its reachability graph (right). The states are given in a
shorthand notation. In state m0, transitions r1 and r2 are in a dynamic conflict; the
firing of one transition disables the other one. In state m2, transitions r2 and r3 are
concurrently enabled; they can fire independently, i.e. in any order. In both cases we
get a branching node in the reachability graph.

Reachability graphs tend to be huge. In the worst-case the state space grows
faster than any primitive recursive function4, basically for two reasons: concur-
rency is resolved by all interleaving sequences, see Figure 13, and the tokens in
over-populated P-invariant can distribute themselves fairly arbitrarily, see Figure
14. The state space explosion motivates the static analyses, as discussed in the
preceding analysis steps. If we succeed in constructing the complete reachability
graph, we are able to decide behavioural Petri net properties.

– A Petri net is k-bounded iff there is no node in the reachability graph with
a token number larger than k in any place.

– A Petri net is reversible iff the reachability graph is strongly connected.
– A Petri net is deadlock-free iff the reachability graph does not contain ter-

minal nodes, i.e., nodes without outgoing arcs.
– In order to decide liveness, we partition the reachability graph into strongly

connected components (SCC), i.e. maximal sets of strongly connected nodes.
A SCC is called terminal if no other SCC is reachable in the partitioned
graph. A transition is live iff it is included in all terminal SCCs of the parti-
tioned reachability graph. A Petri net is live iff this holds for all transitions.

The occurrence of dynamic conflicts is checked at best during the construction
of the reachability graph, because branching nodes do not necessarily mean al-
ternative system behaviour.

Running Example. We already know that the net is bounded, so the reacha-
bility graph has to be finite. It comprises in the Boolean token interpretation 118
states out of 222 theoretically possible ones; see Table 1 for some samples of the
size of the state space in the integer token semantics (discrete concentration lev-
els). Independently of the size, the reachability graph we get forms one strongly
connected component. Therefore, the Petri net is reversible, i.e. each system state

4 To be precise: the dependence of the size of a reachability graph on the size of the
net cannot be bounded by a primitive recursive function [PW03].
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p21p11

p22

pn1

pn2

Fig. 13. State explosion problem 1. There are n! interleaving sequences from m (all
places p∗1 carry a token) to m′ (all places p∗2 carry a token), causing 2n−2 intermediate
states.

ri+1
pi+2

pi+1

pn−1
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p1
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p2r1

rn

ri

rn−1
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Fig. 14. State explosion problem 2. The k tokens are bound to circulate within the
given cycle. They can arbitrarily distribute themselves on the n places, forming a
P-invariant. There are (n + k − 1)!/[(n − 1)! k!] possibilities for this distribution (com-
binations with repetition). Each distribution defines a state.

is always reachable again. Further, each transition (reaction) appears at least once
in this strongly connected component, therefore the net is live. There are dynamic
conflicts, e.g. between r2 and r3 in all states, where Raf RasGTP is marked.

Moreover, from the viewpoint of the qualitative model, all of these states of the
reachability graph’s only strongly connected component are equivalent, and each
could be taken as an initial state resulting in exactly the same total (discrete)
system behaviour. This prediction will be confirmed by the observations gained
during quantitative analyses, see Sections 5.2 and 6.2.

This concludes the analysis of general behavioural net properties, i.e. of prop-
erties we can speak about in syntactic terms only, without any semantic knowl-
edge. The next step consists in a closer look at special behavioural net properties,
reflecting the expected special functionality of the network.

Table 1. State explosion in the running example

levels IDD data structurea reachability graph
number of nodes number of states

1 52 118
4 115 2.4 ·104

8 269 6.1 ·106

40 3,697 4.7 ·1014

80 13,472 5.6 ·1018

120 29,347 1.7 ·1021

a This computational experiment has been performed with idd-ctl, a model checker
based on interval decision diagrams (IDD).
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(6) Model Checking of Special Behavioural Properties. Temporal logic
is particularly helpful in expressing special behavioural properties of the ex-
pected transient behaviour, whose truth can be determined via model checking.
It is an unambiguous language, providing a flexible formalism which considers
the validity of propositions in relation to the execution of the model. Model
checking generally requires boundedness. If the net is 1-bounded, there exists a
particularly rich choice of model checkers, which get their efficiency by exploiting
sophisticated data structures and algorithms.

One of the widely used temporal logics is the Computational Tree Logic (CTL).
It works on the computational tree, which we get by unwinding the reachability
graph, compare Figure 15. Thus, CTL represents a branching time logic with
interleaving semantics.

The application of this analysis approach requires an understanding of tem-
poral logics. Here, we restrict ourselves to an informal introduction into CTL.
CTL - as any temporal logic - is an extension of a classical (propositional) logic.
The atomic propositions consist of statements on the current token situation in
a given place. In the case of 1-bounded models, places can be read as Boolean
variables, with allows propositions such as RafP instead of m(RafP ) = 1.
Likewise, places are read as integer variables for k-bounded models, k �= 1.

Propositions can be combined to composed propositions using the standard
logical operators: ¬ (negation), ∧ (conjunction), ∨ (disjunction), and → (impli-
cation), e.g. RafP ∧ ERKP .

The truth value of a proposition may change by the execution of the net; e.g.
the proposition RafP does not hold in the initial state, but there are reachable
states where Raf is phosphorylated, so RafP holds in these states. Such tem-
poral relations between propositions are expressed by the additionally available
temporal operators.

In CTL there are basically four of them (neXt, Finally, Globally, Until),
which come in two versions (E for Existence, A for All), making together eight
operators. Let φ[1,2] be an arbitrary temporal-logic formulae. Then, the following
formulae hold in state m,

– EX φ : if there is a state reachable by one step where φ holds.
– EF φ : if there is a path where φ holds finally, i.e., at some point.
– EG φ : if there is a path where φ holds globally, i.e., forever.
– E (φ1 U φ2) : if there is a path where φ1 holds until φ2 holds.

The other four operators, which we get by replacing the Existence operator by
the All operator, are defined likewise by extending the requirement ”there is
a path” to ”for all paths it holds that”. A formula holds in a net if it holds in
its initial state. See Figure 16 for a graphical illustration of the eight temporal
operators.

Running Example. We confine ourselves here to two CTL properties, checking
the generalizability of the insights gained by the partial order run of the I/O
T-invariant. Recall that places are interpreted as Boolean variables in order to
simplify notation.
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Fig. 15. Unwinding the reachability graph (left) into an infinite computation tree
(right). The root of the computation tree is the initial state of the reachability graph.
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Fig. 16. The eight CTL operators and their semantics in the computation tree, which
we get by unwinding the reachability graph, compare Figure 15. The two path quan-
tifiers E, A relate to the branching structure in the computation tree: E - for some
computation path (left column), A - for all computation paths (right column).
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Property Q1: The signal sequence predicted by the partial order run of the
I/O T-invariant is the only possible one. In other words, starting at the initial
state, it is necessary to pass through states RafP, MEKP, MEKPP and ERKP
in order to reach ERKPP.

¬ [ E ( ¬ RafP U MEKP ) ∨ E ( ¬ MEKP U MEKPP ) ∨
E ( ¬ MEKPP U ERKP ) ∨ E ( ¬ ERKP U ERKPP ) ]

Property Q2: Dephosphorylation takes place independently. E.g., the dura-
tion of the phosphorylated state of ERK is independent of the duration of the
phosphorylated states of MEK and Raf.

( EF [ Raf ∧ ( ERKP ∨ ERKPP ) ] ∧ EF [ RafP ∧ ( ERKP ∨ ERKPP ) ] ∧
EF [ MEK ∧ ( ERKP ∨ ERKPP ) ] ∧
EF [ ( MEKP ∨ MEKPP ) ∧ ( ERKP ∨ ERKPP ) ] )

Temporal logic is an extremely powerful and flexible language to describe
special properties, however needs some experience to get accustomed to it. Ap-
plying this analysis technique requires seasoned understanding of the network
under investigation, combined with the skill to correctly express the expected
behaviour in temporal logics.

In subsequent sections we will see how to employ the same technique in a quan-
titative setting. We will use Q1 as a basis to illustrate how the stochastic and
continuous approaches provide complementary views of the system behaviour.

4.3 Summary

To summarize the preceding validation steps, the model has passed the following
validation criteria.

– validation criterion 0 All expected structural properties hold, and all
expected general behavioural properties hold.

– validation criterion 1 The net is CPI, and there are no minimal P-invariant
without biological interpretation.

– validation criterion 2 The net is CTI, and there are no minimal T-
invariant without biological interpretation. Most importantly, there is no
known biological behaviour without a corresponding, not necessarily mini-
mal, T-invariant.

– validation criterion 3 All expected special behavioural properties ex-
pressed as temporal-logic formulae hold.

One of the benefits of using the qualitative approach is that systems can be
modelled and analysed without any quantitative parameters. In doing so, all
possible behaviour under any timing is considered. Moreover the qualitative step
helps in identifying suitable initial markings and potential quantitative analysis
techniques. Now we are ready for a more sophisticated quantitative analysis of
our model.
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5 The Stochastic Approach

5.1 Stochastic Modelling

As with a qualitative Petri net, a stochastic Petri net maintains a discrete num-
ber of tokens on its places. But contrary to the time-free case, a firing rate
(waiting time) is associated with each transition t, which are random variables
Xt ∈ [0, ∞), defined by probability distributions. Therefore, all reaction times
can theoretically still occur, but the likelihood depends on the probability dis-
tribution. Consequently, the system behaviour is described by the same discrete
state space, and all the different execution runs of the underlying qualitative
Petri net can still take place. This allows the use of the same powerful analysis
techniques for stochastic Petri nets as already applied for qualitative Petri nets.

For better understanding we describe the general procedure of a particular
simulation run for a stochastic Petri net. Each transition gets its own local
timer. When a particular transition becomes enabled, meaning that sufficient
tokens arrive on its preplaces, then the local timer is set to an initial value,
which is computed at this time point by means of the corresponding probability
distribution. In general, this value will be different for each simulation run. The
local timer is then decremented at a constant speed, and the transition will fire
when the timer reaches zero. If there is more than one enabled transition, a race
for the next firing will take place.

Technically, various probability distributions can be chosen to determine the
random values for the local timers. Biochemical systems are the prototype for
exponentially distributed reactions. Thus, for our purposes, the firing rates of
all transitions follow an exponential distribution, which can be described by
a single parameter λ, and each transition needs only its particular, generally
marking-dependent parameter λ to specify its local time behaviour. The follow-
ing definition summarises this informal introduction.

Definition 12 (Stochastic Petri net, Syntax). A biochemically interpreted
stochastic Petri net is a quintuple SPN Bio = (P, T, f, v, m0), where

– P and T are finite, non empty, and disjoint sets. P is the set of places, and
T is the set of transitions.

– f : ((P × T ) ∪ (T × P )) → IN0 defines the set of directed arcs, weighted by
nonnegative integer values.

– v : T → H is a function, which assigns a stochastic hazard function ht to
each transition t, whereby
H :=

⋃
t∈T

{
ht | ht : IN|•t|

0 → IR+
}

is the set of all stochastic hazard func-
tions, and v(t) = ht for all transitions t ∈ T .

– m0 : P → IN0 gives the initial marking.

The stochastic hazard function ht defines the marking-dependent transition rate
λt(m) for the transition t. The domain of ht is restricted to the set of preplaces
of t to enforce a close relation between network structure and hazard functions.
Therefore λt(m) actually depends only on a sub-marking.
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Stochastic Petri Net, Semantics. Transitions become enabled as usual, i.e.
if all preplaces are sufficiently marked. However there is a time, which has to
elapse, before an enabled transition t ∈ T fires. The transition’s waiting time
is an exponentially distributed random variable Xt with the probability density
function:

fXt(τ) = λt(m) · e(−λt(m)·τ), τ ≥ 0.

The firing itself does not consume time and again follows the standard fir-
ing rule of qualitative Petri nets. The semantics of a stochastic Petri net (with
exponentially distributed reaction times for all transitions) is described by a
continuous time Markov chain (CTMC). The CTMC of a stochastic Petri net
without parallel transitions is isomorphic to the reachability graph of the under-
lying qualitative Petri net, while the arcs between the states are now labelled by
the transition rates. For more details see [MBC+95], [BK02].

Based on this general SPN Bio definition, specialised biochemically inter-
preted stochastic Petri nets can be defined by specifying the required kind of
stochastic hazard function more precisely. We give two examples, reading the
tokens as molecules or as concentration levels. The stochastic mass-action haz-
ard function tailors the general SPN Bio definition to biochemical mass-action
networks, where tokens correspond to molecules:

ht := ct ·
∏

p∈•t

(
m(p)
f(p, t)

)
, (1)

where ct is the transition-specific stochastic rate constant, and m(p) is the cur-
rent number of tokens on the preplace p of transition t. The binomial coefficient
describes the number of unordered combinations of the f(p, t) molecules, re-
quired for the reaction, out of the m(p) available ones.

Tokens can also be read as concentration levels, as introduced in [CVGO06].
The current concentration of each species is given as an abstract level. We as-
sume the maximum molar concentration is M , and the amount of different levels
is N +1. Then the abstract values 0, . . . , N represent the concentration intervals
0, (0, 1 ∗ M/N ], (1 ∗ M/N, 2 ∗ M/N ], . . . , (N − 1 ∗ M/N, N ∗ M/N ]. Each
of these (finitely many) discrete levels stands for an equivalence class of (in-
finitely many) continuous states. The stochastic level hazard function tailors the
general SPN Bio definition to biochemical mass-action networks, where tokens
correspond to concentration levels; for ordinary nets we get:

ht := kt · N ·
∏

p∈•t

(
m(p)
N

), (2)

where kt is the transition-specific deterministic rate constant, and N the number
of the highest level. The transformation rules between the stochastic and deter-
ministic rate constants are well-understood, see e.g. [Wil06]. In practice, kinetic
rates are taken from literature, textbooks, etc. or determined from biochemical
experiments. A hazard function (2) is the means whereby the continuous model
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(see the framework in Figure 2 and Section 6) can be approximated by the
stochastic model; this can generally be achieved by a limited number of levels –
see Section 5.2.

We only consider here the level se-
mantics. Since the continuous concen-
trations of proteins in our running
example are all in the same range
(0.1. . . 0.4 mMol in 0.1 steps), we em-
ploy a model with only 4, and a sec-
ond version with 8 levels, compare
Figure 17.

The corresponding CTMCs (and
reachability graphs) comprise 24,065
states for the 4 level version and
6,110,643 states for the 8 level version,
compare Table 1.

Fig. 17. The partitioning of the con-
centration scale into discrete levels

5.2 Stochastic Analysis

Due to the isomorphy of the reachability graph and the CTMC, all qualitative
analysis results obtained in Section 4 are still valid. The influence of time does
not restrict the possible system behaviour. Specifically it holds that the CTMC
of our case study is reversible, which ensures ergodicity; i.e. we could start the
system in any of the reachable states, always resulting in the same CTMC with
the same steady state probability distribution.

Additionally, probabilistic analyses of the transient and steady state behaviour
are now available. Generally, this can be done in an analytical as well as in a simu-
lative manner. The analytical approach works on the CTMC, which therefore has
to be finite. Consequently, the net to be analysed has to be bounded. On the con-
trary, the simulative approach works also for systems with infinite state space or
state space beyond the current limits of exact analyses, and for systems with com-
plex dynamics as semi-Markov processes or generalized semi-Markov processes.

In order to use the probabilistic model checker PRISM [PNK06] for the an-
alytical approach, we encode the running example in its modelling language.
We follow the technique proposed in [DDS04], which is more natural for Petri
nets than the one proposed in [CVGO06] for algebraic models. This translation
requires knowledge of the boundedness degree of all species involved, which we
acquire by the structural analysis technique of P-invariants.

In the following the reader is assumed to be familiar with related standard
techniques and terminology.

(1) Equivalence Check by Transient Analysis. We start with transient
analysis to prove the sufficient equivalence between the stochastic model in the
level semantics and the corresponding continuous model, justifying the inter-
pretation of the properties gained by the stochastic model also in terms of the
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continuous one. PRISM permits the analysis of the transient behaviour of the
stochastic model; e.g., the concentration of RafP at time t is given by:

CRafP (t) = 0.1
s ·

4s∑

i=1

(
i · P (LRafP (t) = i)

)

︸ ︷︷ ︸
expected value of LRafP (t)

.

The random variable LRafP (t) stands for the level of RafP at time t. We set
s to 1 for the 4 level version, and to 2 for the 8 level version. The factor 0.1

s
calibrates the expected value for a given level to the concentration scale. In
the 4 level version a single level (token) represents 0.1 mMol and 0.05 mMol in
the 8 level version. Figure 18 shows the simulation results for the species MEK
and RasGTP in the time interval [0..100] according to the continuous and the
stochastic models respectively. These results confirm that 4 levels are sufficiently
adequate to approximate the continuous model, and that 8 levels are preferable
if the computational expenses are acceptable.

(2) Analytical Stochastic Model Checking. In Section 4.2 we employed
CTL to express behavioural properties. Since we have now a stochastic model,
we apply Continuous Stochastic Logic (CSL), which replaces the path quantifiers
(E, A) in CTL by the probability operator P��p, whereby �� p specifies the prob-
ability of the given formula. For example, introducing in CSL the abbreviation
Fφ for trueUφ, the CTL formula EFφ becomes the CSL formula P≥0[Fφ ],
and AFφ becomes P≥1[Fφ ].

We give two properties related to the partial order run of the I/O T-invariant,
see Section 4.2 and qualitative property Q1 therein, from which we expect a con-
secutive increase of RafP, MEKPP and ERKPP. Both properties are expressed
as so-called experiments, which are analysed varying the parameter L over all
levels, i.e. 0 to N. For the sake of efficiency, we restrict the U operator to 100
time steps. Note that places are read as integer variables in the following.

Property S1a: What is the probability of the concentration of RafP increasing,
when starting in a state where the level is for the first time at L (the latter side
condition is specified by the filter given in braces)?

P=? [ ( RafP = L ) U<=100 ( RafP > L ) { RafP = L } ]

The results indicate, see Figure 19(a), that it is absolutely certain that the
concentration of RafP increases from level 0 and likewise there is no increase from
level N; this behaviour has already been determined by the qualitative analysis.
Furthermore, an increase in RafP is very likely in the lower levels, increase and
decrease are almost equally likely in the intermediate levels, while in the higher
levels, but obviously not in the highest, an increase is rather unlikely (but not
impossible). In summary this means that the total mass, circulating within the
first layer of the signalling cascade, is unlikely to be accumulated in the activated
form. We need this understanding to interpret the results for the next property.
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Fig. 18. Comparison of the concentration traces

Property S2a: What is the probability that, given the initial concentrations of
RafP, MEKPP and ERKPP being zero, the concentration of RafP rises above
some level L while the concentrations of MEKPP and ERKPP remain at zero,
i.e. RafP is the first species to react?

P=? [ ( ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ) U<=100 ( RafP > L )
{ ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ∧ ( RafP = 0 ) } ]

The results indicate, see Figure 19(b), that the likelihood of the concentration
of RafP rising, while those of MEKPP and ERKPP are zero, is very high in
the bottom half of the levels, and quite high in the lower levels of the upper
half. The decrease of the likelihood in the higher levels is explained by property
S1. Property S2 is related to the qualitative property Q1 (Section 4.2), and the
continuous property C1 (Section 6.2) – the concentration of RafP rises before
those of MEKPP and ERKPP.

Due to the computational efforts of analytical stochastic model checking, we
are only able to treat properties over a stochastic model with 4 or at most 8
levels. This restricts the kind of properties that we can prove; e.g., in order
to check increases of MEKPP and ERKPP – as suggested by the qualitative
property Q1 and done above for RafP in the stochastic properties S1 and S2 –
we would need 50 or 200 levels respectively.
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Fig. 19. Probability of the accumulation of RafP. (a) property S1. (b) property S2.
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Analytical stochastic model checking becomes more and more impractical with
increasing size of the state space. In order to avoid the enormous computational
power required for larger state spaces, the time-dependent stochastic behaviour
can be simulated by dedicated algorithms, and evaluated by simulative stochastic
model checking, see next step, or approximated by a deterministic continuous
behaviour, see Section 6.

(3) Simulative Stochastic Model Checking. This approach of Monte Carlo
sampling handles large state spaces through approximating results by analysing
only a subset of the state space – a set of finite outputs from a stochastic simu-
lation algorithm (SSA), e.g. Gillespie’s exact SSA [Gil77].

The type of logic now suitable for describing properties changes from branch-
ing time (e.g., CSL operating over CTMC) to linear time. A linear time logic
operates in-turn over sets of linear paths through the state space, equivalent to
operating on simulation outputs. A given property holds if it holds in all paths.
Consequently, there are no path quantifiers in LTL.

We apply PLTL, a probabilistic linear time temporal logic [MC2]. This logic
extends standard LTL to a stochastic setting, with a P��p operator, such as
in CSL, and a filter construct, { φ }, defining the initial state of the property.
However, PLTL does not have the ability to embed probability operators or
perform steady state analysis.

The semantics is defined over sets of linear traces of temporal behaviour, in
this case by stochastic simulation runs. Each trace is evaluated to a Boolean
truth value, and the probability of a property holding true is computed by the
fraction of true values in the set over the whole set. Please note, the choice of
simulator and simulation parameters used to compute the sequence of states can
affect the semantics of the PLTL property and the correctness of the result.

This approach to model checking incorporates two approximations. The truth
value of a single trace is approximated by operating over a finite sequence of
states only; and the probability of the property is approximated through sam-
pling a finite number of traces (a subset of the model’s behaviours) only.

PLTL could be considered as a linear time counterpart to CSL, and can easily
be used to formalise the visual evaluation of diagrams as generated by determin-
istic/stochastic simulation runs or by recording experimental time series. We
repeat properties S1a and S2a. Notice that the properties no longer require time
bounds on temporal operators.

Property S1s: What is the probability of the concentration of RafP increasing,
when starting in a state where the level is for the first time at L (the latter side
condition is specified by the filter given in braces)?

P=? [ ( RafP = L ) U ( RafP > L ) { RafP = L } ]

We check this property using 100 simulation traces from Gillespie’s algorithm
with a simulation time of 300s as input to the PLTL model checker MC2 [MC2].

This property can be assessed with far greater numbers of tokens than possible
in the analytical approach. We highlight the efficiency of the simulative approach
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Table 2. Example figures for MC2 model checking of property S1 at varying number
of levels/molecules

Levels MC Timea Simulation Output Size

4 10 s b 750 KB
8 15 s b 1.5 MB

40 1.5 minutes b 7.5 MB
400 1 minute c 80 MB
4,000 30 minutes c 900 MB

a Both Gillespie simulation and MC2 checking.
b Computation on a standard workstation.
c Distributed computation on a computer cluster comprising 45 Sun X2200 servers
each with 2 dual core processors (180 CPU cores).

in Table 5.2 providing the time taken at varying numbers of tokens to perform
model checking.

We extend the analysis of property S1 up to 4,000 molecules, shown in Fig-
ure 20, and observe that when increasing the number of molecules, the behaviour
of the pathway tends towards the deterministic behaviour. The deterministic be-
haviour states that the protein RafP will always increase (property probability
1) until it reaches its maximum concentration value of around 0.1182 mMol.
With increasing molecules, the maximum possible number of molecules in the
stochastic behaviour of RafP tends towards the deterministic maximum (verti-
cal line). The stochastic behaviour is seen to tend towards a probability of 0.5
in its possible concentration range, due to the stochastic nature where there is
always a possibility of the protein decreasing or increasing when at a certain
concentration.

Property S2s: What is the probability that, given the initial concentrations of
RafP, MEKPP and ERKPP being zero, the concentration of RafP rises above
some level L while the concentrations of MEKPP and ERKPP remain at zero,
i.e. RafP is the first species to react?

P=? [ ( ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ) U ( RafP > L )
{ ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ∧ ( RafP = 0 ) } ]

To perform the analysis, we use the same simulation time (300s) and number of
runs (100) as per S1s. Similarly, we extend this analysis up to 4,000 molecules,
shown in Figure 21, and again note that the stochastic behaviour begins to ap-
proximate the deterministic behaviour. In the deterministic behaviour, only at
the initial state of the system are RafP, MEKPP and ERKPP all zero, hence
a probability of 1 at this state and probability of 0 elsewhere. With increas-
ing molecules, the stochastic behaviour becomes less curved and more step-like,
tending towards the vertical line in the deterministic behaviour.
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Fig. 20. Simulative stochastic model checking for property S1 at a varying number of
molecules; 4, 40, 400 and 4,000. This shows a progression towards the deterministic
behaviour as the number of molecules increases.
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Fig. 21. Simulative stochastic model checking for property S2 at a varying number of
molecules; 4, 40, 400 and 4,000. This shows a progression towards the deterministic
behaviour as the number of molecules increases.
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5.3 Summary

The stochastic Petri net contains discrete tokens and transitions which fire prob-
abilistically. In summary, our results show that

1. Transient analysis helps to decide on the number of tokens to adequately
describe the system.

2. The stochastic behaviour tends towards the deterministic behaviour. Thus
the stochastic model can be approximated by a continuous model, represent-
ing the averaged behaviour only.

3. Stochastic model checking allows a quantification of the probabilities at
which qualitative properties hold.

6 The Continuous Approach

6.1 Continuous Modelling

In a continuous Petri net the marking of a place is no longer an integer, but a
positive real number, called token value, which we are going to interpret as the
concentration of the species modelled by the place. The instantaneous firing of
a transition is carried out like a continuous flow.

Definition 13 (Continuous Petri net, Syntax ). A continuous Petri net is
a quintuple CON Bio = (P, T, f, v, m0), where

– P and T are finite, non empty, and disjoint sets. P is the set of continuous
places. T is the set of continuous transitions.

– f : ((P × T ) ∪ (T × P )) → IR+
0 defines the set of directed arcs, weighted by

nonnegative real values.
– v : T → H is a function which assigns a firing rate function ht to each

transition t, whereby
H :=

⋃
t∈T

{
ht|ht : IR|•t| → IR

}
is the set of all firing rate functions, and

v(t) = ht for all transitions t ∈ T .
– m0 : P → IR+

0 gives the initial marking.

The firing rate function ht defines the marking-dependent continuous transition
rate for the transition t. The domain of ht is restricted to the set of preplaces of
t to enforce a close relation between network structure and firing rate functions.
Therefore ht(m) actually depends only on a sub-marking.

Technically, any mathematical function in compliance with this restriction
is allowed for ht. However, often special kinetic patterns are applied, whereby
Michaelis-Menten and mass-action kinetics seem to be the most popular ones.

Please note, a firing rate may also be negative, in which case the reaction
takes place in the reverse direction. This feature is commonly used to model
reversible reactions by just one transition, where positive firing rates correspond
to the forward direction, and negative ones to the backward direction.
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Continuous Petri Net, Semantics. Each continuous marking is a place vec-
tor m ∈

(
R+

0

)|P |, and m(p) yields again the marking on place p, which is now
a real number. A continuous transition t is enabled in m, if ∀p ∈ •t : m(p) > 0.
Due to the influence of time, a continuous transition is forced to fire as soon as
possible.

The semantics of a continuous Petri net is defined by a system of ODEs,
whereby one equation describes the continuous change over time on the token
value of a given place by the continuous increase of its pretransitions’ flow and
the continuous decrease of its posttransitions’ flow, i.e., each place p subject to
changes gets its own equation:

dm (p)
dt

=
∑

t∈•p

f (t, p) v (t) −
∑

t∈p •

f (p, t) v (t) ,

Each equation corresponds basically to a line in the incidence matrix, whereby
now the matrix elements consist of the rate functions multiplied by the arc
weight, if any.

In other words, the continuous Petri net becomes the structured description of
the corresponding ODEs. Due to the explicit structure we expect to get descrip-
tions which are less error prone compared to those ones created manually from
the scratch. In fact, writing down a system of ODEs by designing continuous
Petri nets instead of just using a text editor might be compared to high-level
instead of assembler programming.

For our running case study, we derive the continuous model from the qual-
itative Petri net by associating a mass action rate with each transition in the
network.

We can likewise derive the continuous Petri net from the stochastic Petri net
by approximating over the hazard function of type (1), see for instance [Wil06].
In both cases, we obtain a continuous Petri net, preserving the structure of the
qualitative one, see our framework in Figure 2.

The complete system of nonlinear ODEs generated from the continuous Petri
net of our running example is given in [GHL07a], Appendix C.

The initial concentrations as suggested by the qualitative analysis correspond
to those given in [LBS00], when mapping nonzero values to 1. For reasons of
better comparability we have also considered more precise initial concentrations,
where the presence of a species is encoded by biologically motivated real values
varying between 0.1 and 0.4 in steps of 0.1.

6.2 Continuous Analysis

As soon as there are transitions with more than one preplace, we get a non-linear
system, which calls for a numerical treatment of the system on hand. In order
to simulate the continuous Petri net, exactly the same algorithms are employed
as for numerical differential equation solvers.

In the following the reader is assumed to be familiar with related standard
techniques and terminology.
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(1) Steady State Analysis. Since there are 22 species, there are 222, i.e.
4,194,304 possible initial states in the qualitative Petri net (Boolean token in-
terpretation). Of these, 118 were identified by the reachability graph analysis
(Section 4.2) to form one strongly connected component, and thus to be “good”
initial states. These are ‘sensible’ initial states from the point of view of biochem-
istry in that in all these 118 cases, and in none of the other 4,194,186 states,
each protein species is in a high initial concentration in only one of the following
states: uncomplexed, complexed, unphosphorylated or phosphorylated. These
conditions relate exactly to the 1-P-invariant interpretation given in our initial
marking construction procedure in Section 4.2.

We then compute the steady state of the set of species for each possible initial
state, using the MatLab ODE solver ode45, which is based on an explicit Runge-
Kutta formula, the Dormand-Prince pair [DP80], with 350 time steps.

In Figure 22 (a) we reproduce the computed behaviour of MEK for all 118
good initial states, showing that despite differences in the concentrations at early
time points, the steady state concentration is the same in all 118 states. We also
reproduce two arbitrary chosen simulations of the model, compare Figure 23. The
equivalence of the final states, compared with the difference in some intermediate
states is clearly illustrated in these figures.

In summary, our results show that all of the ’good’ 118 states result in the
same set of steady state values for the 22 species in the pathway, within the
bounds of computational error of the ODE solver. In [GHL07b] it is also shown
that none of the remaining possible initial states results in a steady state close
to that generated by the 118 markings in the reachability graph. See Table 4 in
[GHL07a], Appendix C for the steady state concentrations of the 22 species.

This is an interesting result, because the net considered here is not covered by
the class of net structures discussed in [ADLS06] with the unique steady state
property.

(2) Continuous Model Checking of the Transient Behaviour. Corre-
sponding to the partial order run of the I/O T-invariant, see Section 4.2, we
expect a consecutive increase of RafP, MEKPP, ERKPP, which we get con-
firmed by the transient behaviour analysis, compare Figure 22 (b). To formalise
the visual evaluation of the diagram we use the continuous linear logic LTLc
[CCRFS06] and PLTL [MC2] in a deterministic setting. Both are interpreted
over the continuous simulation trace of ODEs.

The following three queries confirm together the claim of the expected prop-
agation sequence. In the queries we have to refer to absolute values. The steady
state values are obtained from the steady state analysis in the previous section;
these are 0.12 mMol for RafP, 0.008 mMol for MEKPP and 0.002 mMol for
ERKPP, all of them being zero in the initial state. If a species’ concentration
is above half of its steady state value, we call this concentration level signifi-
cant. Note that in order to simplify the notation, places are interpreted as real
variables in the following.
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Fig. 22. (a) Steady state analysis of MEK for all 118 ‘good’ states. (b) Continuous
transient analysis of the phosphorylated species RasP, MEKPP, ERKPP, triggered by
RasGTP.
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Fig. 23. Dynamic behaviour for state 1 (left) and state 10 (right). State 1 corresponds
to the initial marking suggested by Section 4.2.

Property C1: The concentration of RafP rises to a significant level, while the
concentrations of MEKPP and ERKPP remain close to zero; i.e. RafP is really
the first species to react.

( (MEKPP < 0.001) ∧ (ERKPP < 0.0002) ) U (RafP > 0.06)

Property C2: if the concentration of RafP is at a significant concentration
level and that of ERKPP is close to zero, then both species remain in these
states until the concentration of MEKPP becomes significant; i.e. MEKPP is
the second species to react.

( (RafP > 0.06) ∧ (ERKPP < 0.0002) ) ⇒
( (RafP > 0.06)∧ (ERKPP < 0.0002) ) U (MEKPP > 0.004)

Property C3: if the concentrations of RafP and MEKPP are significant, they
remain so, until the concentration of ERKPP becomes significant; i.e. ERKPP
is the third species to react.

( (RafP > 0.06) ∧ (MEKPP > 0.004) ) ⇒
( (RafP > 0.06)∧ (MEKPP > 0.004) ) U (ERKPP > 0.0005)
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Note that properties C1, C2 and C3 correspond to the qualitative property
Q1, and that S2 is the stochastic counterpart of C1.

We recast these three continuous properties to PLTL and perform model
checking using MC2, which is fed with deterministic simulation traces up to
simulation time 400s, produced with the BioNessie simulator. A comparison of
the MC2 results to the Biocham results is summarised in Table 3.

Table 3. The results for the replication of C1, C2 and C3 queries in MC2, showing a
discrepancy in C2 with the Biocham results

Query Biocham BioNessie & MC2

C1 true true
C2 true false
C3 true true

The difference in the results is due to the different ODE solvers used in
BioNessie and Biocham. Due to the adaptive time steps used in Biocham’s ODE
solver, no state information is outputted for an important time period which is
a counter-example to the C2 query, shown in Figure 24. The fixed time step and
sufficient granularity of time points used in BioNessie do provide state informa-
tion which is a counter-example to this query, thus resulting in a false value. This
is an example of where the simulator choice affects the model checking result.
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Fig. 24. The output of Biocham simulation showing that it does not output a state
in the time period where ERKPP (bottom) > 0.0002 before MEKPP (top) > 0.004,
which is a counter example to C2.
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6.3 Summary

The continuous Petri net contains tokens with a continuous value and continuous
firing of transitions. In summary, our results show that

1. All of the 118 good states identified by the reachability graph of the validated
qualitative Petri net result in the same set of steady state values for the 22
species in the pathway.

2. None of the remaining possible initial states of the qualitative Petri net in
the Boolean semantics results in a final steady state close to that generated
by the good initial markings in the reachability graph.

3. Model checking this Petri net, which contains only a single deterministic
behaviour, is akin to analysing the average behaviour of the system. We
have shown that the properties as derived from the partial order run of the
qualitative model also hold in the average behaviour.

7 Tools

The running example in its interpretation as the three Petri net models have been
done using Snoopy [Sno08], a tool to design and animate or simulate hierarchical
graphs, among them the qualitative, stochastic and continuous Petri nets as
used in this chapter. Snoopy provides export to various analysis tools as well
as Systems Biology Markup Language (SBML) [HFS+03] import and export
[HRS08].

The qualitative analyses have been made with the Petri net analysis tool Char-
lie [Cha08]. Charlie’s result vector is inspired by the Integrated Net Analyser INA
[SR99], the analysis tool we have used for about 20 years. The exploration of the
state space growth for increasing level numbers has been done with idd-ctl, a CTL
model checker and reachability analyser utilising interval decision diagrams for
concise state space representations [Tov06]. The Model Checking Kit [SSE03] has
been used for qualitative model checking of 1-bounded models.

The quantitative analyses have been done using Snoopy’s build-in simulation
algorithms for stochastic and continuous Petri nets, and by BioNessie [Bio08],
an SBML-based simulation and analysis tool for biochemical networks. Addi-
tionally, MATLAB [SR97] was used to produce the steady state analysis of all
initial states in the continuous model.

We employed PRISM [PNK06] for probabilistic model checking of branching
time logic, MC2 [MC2], a model checker by Monte Carlo sampling, for probabilis-
tic and continuous model checking of linear time logic, and Biocham [CCRFS06]
for LTLc-based continuous model checking.

MorePetri nets tools and relatedmaterial canbe foundon thePetriNetsWorld’s
web page: http://www.informatik.uni-hamburg.de/TGI/PetriNets/.

8 Further Reading and Related Work

Petri nets, as we understand them today, have been initiated by concepts pro-
posed by Carl Adam Petri in his Ph.D. thesis in 1962 [Pet62]. The first substan-

http://www.informatik.uni-hamburg.de/TGI/PetriNets/
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tial results making up the still growing body of Petri net theory appeared around
1970. Initial textbooks devoted to Petri nets were issued in the beginning of the
eighties. General introductions into Petri net theory can be found, for example,
in [Mur89], [Rei82], [Sta90]; for a comprehensive textbook covering extended free
choice nets see specifically [DE95]. An excellent textbook for theoretical issues
is [PW03], which however is in German. The text [DJ01] might be useful, if you
just want to get the general flavour in reasonable time.

Petri nets have been employed for technical and administrative systems in
numerous application domains since the mid-seventies. The employment in sys-
tems biology has been first published in [Hof94], [RML93]. Recent surveys on
applying Petri nets for biochemical networks are [Cha07] and [Mat06], offering
a rich choice of further reading pointers, among them numerous case studies
applying Petri nets to biochemical networks. Besides the net classes introduced
in this chapter, coloured Petri nets, duration and interval time Petri nets as well
as hybrid Petri nets in various extensions have been employed.

Stochastic Petri nets are an established concept for performance and depend-
ability analysis of technical systems, see [MBC+95], [BK02], recently extended
by probabilistic model checking [DDS04]. An excellent textbook for numerical
solution of Markov chains is [Ste94]. An overview on stochastic issues for systems
biology is given in [Wil06]. The approximation of continuous behaviour by the
discretisation of species’ concentrations by a finite number of levels has been
proposed in [CVGO06]. The application of stochastic Petri nets to biochemical
networks was first proposed in [GP98], where they were applied to a gene regu-
latory network. Further case studies are discussed in [SPB01], [WMS05], [ST05],
[SSW05], [Cur06]. A precise definition of biochemically interpreted stochastic
Petri nets has been introduced in [GHL07b].

A comprehensive survey on timed Petri net concepts, among them continuous
and hybrid Petri nets, however not stochastic Petri nets, in the context of tech-
nical systems can be found in [DA05]. See [MFD+03] for cases studies employing
hybrid Petri nets to model and analyse biochemical pathways. A precise defini-
tion of biochemically interpreted continuous Petri nets has been introduced in
[GH06].

P- and T-invariants are well-known concepts of Petri net theory since the very
beginning [Lau73]. There are corresponding notions in systems biology, called
chemical moieties, elementary modes and extreme pathways, which are elabo-
rated in the setting of biochemical networks in [Pal06]. For biochemical systems
without reversible reactions, the notions T-invariants, elementary modes and ex-
treme pathways coincide. The validation of biochemical networks by means of
T-invariants is demonstrated in [HK04].

Model checking has been very popular for the verification of technical sys-
tems since the eighties. A good starting point for qualitative model checking
(CTL, LTL) is [CGP01]. For biochemical networks, qualitative model checking
(Boolean semantics) has been introduced in [EKL+02], [CF03], and analytical
stochastic model checking in [CVGO06], [HKN+06]. CSL, the stochastic coun-
terpart to CTL, has been originally introduced in [AAB00], and extended in
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[CBK03]. PRISM [PNK06] provides an efficient numerical implementation for
CSL model checking, also exploiting symbolic representations. Approximative
model checking of CSL using discrete event simulation of probabilistic models
has been proposed in [YS02] and implemented in the tool Ymer [YKNP06]. The
simulative stochastic model checker MC2 has been inspired by the idea of approx-
imative LTL checking of deterministic simulation runs, proposed in [APUM03],
[CCRFS06], [FR07].

The Biocham approach [CCRFS06], as it stands now, restricts itself to a
branching time Boolean semantics for qualitative models, while we consider the
more general case of integer semantics, which may collapse to the Boolean one.
Petri net based model checking also supports the partial order semantics. To
analyse continuous models, Biocham provides LTLc, which we used for continu-
ous model checking of the transient behaviour. Meanwhile, this step is facilitated
substantially by the extension introduced in [FR07], which permits the inference
of the variable values fulfilling a given temporal property from a (set of) contin-
uous simulation run(s).

Finally, there is a lot of activity relating stochastic and continuous models –
see [TSB04] for a review. Most work has ignored analysis but instead focussed
on simulation, at the molecular, inherently stochastic, level and the population
(continuous) level using differential equations, possibly stochastic, e.g. [AME04],
[Kie02] and [SK05].

The relation between systems of ordinary differential equations and the net
structure of the underlying Petri nets are discussed in [ADLS06].

The systematic qualitative analysis of a metabolic network is demonstrated in
[KH08], following basically the same outline as used in section 4.2. How to com-
bine qualitative and quantitative analysis techniques is elaborated in [HDG08]
for another signal transduction network and in [GHR+08] for a gene transduction
network.

9 Summary

In this paper we have described an overall framework that relates the three
major ways of modelling biochemical networks – qualitative, stochastic and con-
tinuous – and illustrated this in the context of Petri nets. In doing so we have
given a precise definition of biochemically interpreted stochastic and continuous
Petri nets. We have shown that the qualitative time-free description is the most
basic, with discrete values representing numbers of molecules or levels of con-
centrations. The qualitative description abstracts over two timed, quantitative
models. In the stochastic description, discrete values for the amounts of species
are retained, but a stochastic rate is associated with each reaction. The continu-
ous model describes amounts of species using continuous values and associates a
deterministic rate with each reaction. These two time-dependent models can be
mutually approximated by hazard functions belonging to the stochastic world.

We have illustrated our framework by considering qualitative, stochastic and
continuous Petri net descriptions of the ERK signalling pathway, based on the
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model from [LBS00]. We have focussed on analysis techniques available in each
of these three paradigms, in order to illustrate their complementarity. Timing
diagrams as produced by numerical simulation techniques are much harder to
assess in term of plausibility. That is why we start with qualitative analyses to
increase our confidence in the model structure. Our special emphasis has been on
model checking, which is especially useful for transient behaviour analysis, and
we have demonstrated this by discussing related properties in the qualitative,
stochastic and continuous paradigms. Although our framework is based on Petri
nets, it can be applied more widely to other formalisms which are used to model
and analyse biochemical networks.

The models developed over the three paradigms share the same structure, so
they should share some properties too. However, the interrelationships between
these models are not properly understood, yet.
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Abstract. In this chapter we introduce process algebras, a class of for-
mal modelling techniques developed in theoretical computer science, and
discuss their use within systems biology. These formalisms have a number
of attractive features which make them ideal candidates to be interme-
diate, formal, compositional representations of biological systems. As we
will show, when modelling is carried out at a suitable level of abstrac-
tion, the constructed model can be amenable to analysis using a variety
of different approaches, encompassing both individuals-based stochastic
simulation and population-based ordinary differential equations. We fo-
cus particularly on Bio-PEPA, a recently defined extension of the PEPA
stochastic process algebra, which has features to capture both stoichiom-
etry and general kinetic laws. We present the definition of the language,
some equivalence relations and the mappings to underlying mathemat-
ical models for analysis. We demonstrate the use of Bio-PEPA on two
biological examples.

1 Introduction

In recent years there has been increasing interest in the application of process al-
gebras in the modelling and analysis of biological systems [60,26,28,58,19,49,14].
Process algebras have some interesting properties that make them particularly
useful in describing biological systems. First of all, they offer compositionality,
i.e. the possibility of defining the whole system starting from the definition of its
subcomponents. Secondly, process algebras give a formal representation of the
system avoiding ambiguity. Thirdly, biological systems can be abstracted by con-
current systems described by process algebras: species may be seen as processes
that can interact with each other and reactions may be modelled using actions.
Finally, different kinds of analysis can be performed on a process algebra model.
These analyses provide conceptual tools which are complementary to established
techniques: it is possible to detect and correct potential inaccuracies, to validate
the model and to predict its possible behaviours.

The original work on process algebra modelling of biochemical pathways by
Regev et al. was based on the abstraction “processes as molecules” [60]. This
abstraction has proven to be fruitful and highly influential with most of the
subsequent work based on the same abstraction. However, it is not without its
drawbacks. It takes an inherently individual-based view of the system (i.e. views
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the system at the level of individual molecules) which has the consequence that
the state space, under all but the smallest examples, will be prohibitively large
and amenable only to analysis via simulation.

In recent years Calder et al. [14,15] have been experimenting with alterna-
tive abstractions using the stochastic process algebra, PEPA, which was origi-
nally defined for performance analysis of computer systems [42]. Two different
approaches have been proposed: one based on reagents (the so-called reagent-
centric view) and another based on pathways (pathway-centric view). In both
cases the species concentrations are discretized into levels, each level abstract-
ing an interval of concentration values. In the reagent-centric view the PEPA
sequential components represent the different concentration levels of the species.
In this approach the abstraction is “processes as species” and not “processes as
molecules”. In the pathway-centric approach adopts an alternative abstract view:
the processes represent sub-pathways. Here multiple copies of components repre-
sent levels of concentration. The two views have been shown to be equivalent[15].

Even though PEPA and other stochastic process algebras have proved use-
ful in studying signalling pathways, they do not readily allow us to represent
all the features of biological networks. The main difficulties are the definition
of stoichiometric coefficients (i.e. the coefficients used to show the quantitative
relationships of the reactants and products in a biochemical reaction) and the
representation of kinetic laws. Concerning stoichiometry, in the reagent-centric
view of PEPA stoichiometry is not represented explicitly. Furthermore, in other
process algebras it is not possible to render interactions with more than two re-
actants as biochemical interactions are abstracted by pairwise communications.
This is justified by appeal to Gillespie’s stochastic simulation algorithm which,
in the original version, assumes elementary (i.e. monomolecular and bimolecu-
lar) reactions. However, it is often convenient to model at a more abstract level,
where reactions involving more than two species are common (e.g. Michaelis-
Menten). In terms of kinetic laws, PEPA and other process algebras consider el-
ementary reactions with constant rates (mass-action kinetic laws). The problem
of extending to the domain of kinetic laws beyond basic mass-action (hereafter
called general kinetic laws) is particularly relevant, as these kinds of reactions
are frequently found in the literature as abstractions of complex situations whose
details are unknown. Reducing all reactions to the elementary steps is complex
and often impractical. In the case of process algebras such as π-calculus the
assumption of elementary reactions is motivated by the fact that they rely on
Gillespie’s stochastic simulation for analysis. Some recent works have extended
the approach of Gillespie to deal with complex reactions [1,17] but these exten-
sions are yet to be reflected in the work using process algebras. Previous work
concerning the use of general kinetic laws in process algebras and formal methods
was presented in [9,20]. These are discussed in Section 2.3.

In this chapter we give a tutorial introduction to Bio-PEPA, a new language
for the modelling and analysis of biochemical networks. A preliminary version
of the language was proposed in [22], with full details presented in [23]. Here, in
addition to defining the language we illustrate its use with a number of examples.
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Bio-PEPA is based on the reagent-centric view in PEPA, modified in order to
represent explicitly some features of biochemical models, such as stoichiometry
and the role of the different species in a given reaction. A major feature of Bio-
PEPA is the introduction of functional rates to express general kinetic laws.
Each action type represents a reaction in the model and is associated with a
functional rate.

The idea underlying our work is represented schematically in the diagram
in Fig. 1. The context of application is biochemical networks. Broadly speak-
ing, biochemical networks consist of some chemical species, which interact with
each other through chemical reactions. The dynamics of reaction are described
in terms of some kinetic laws. The biochemical networks can be obtained from
databases such as KEGG [46,45] and BioModels Database [8,56]1. From the bi-
ological model, we develop the Bio-PEPA specification of the system. This is an
intermediate, formal, compositional representation of the biological model. At
this point we can apply different kinds of analysis, including stochastic simula-
tion [36], analysis based on ordinary differential equations, numerical solution of
continuous time Markov chains (CTMC) and stochastic model checking using
PRISM [61,40]. It is worth noting that each of these analyses can help in under-
standing the system. The choice of one or more methods depends on the context
of application [68]. There exist some relations between the different kinds of
analysis. It is well-known that the results of stochastic simulations tend to the
ODEs solution when the number of elements is relatively high. Similarly, it is
shown in [35] that the numerical solution of the CTMC with levels (derived from
the PEPA pathway-centric view) tends to the solution of the ODEs when the
number of levels increases.

  Bio−PEPA system Biochemical Networks
(SBML, KEGG,...)

CTMC (with levels)

ODEs

PRISM

Stochastic simulation 

(model checking)

(Gillespie)

Fig. 1. Schema of the Bio-PEPA framework

The rest of the chapter is organised as follows. In the next section we outline
our modelling domain, biochemical networks, and discuss the development of
process algebras and their use to model biological systems. The recent develop-
ment of Bio-PEPA has been informed by earlier work using the PEPA process

1 The BioModels Database is a collection of SBML models. SBML is a widely used
XML-based format for representing models of biochemical reaction networks.
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algebra so this work is also briefly presented. In Section 3 we give a detailed
account of Bio-PEPA; its syntax, semantics, equivalence relations and analysis
techniques. The use of the language is illustrated in Section 4, in which the
translation of two biological models into Bio-PEPA and their subsequent anal-
ysis is described. Finally, in Section 5 we present some conclusions and future
perspectives.

2 Background

In this section we outline the application domain of this tutorial before giving an
introduction to process algebras. Subsequent sections will focus on one particular
process algebra, Bio-PEPA, but here we aim to give a broad overview of the class
of formalisms known as process algebras.

2.1 Application Domain: Biochemical Networks

The application domain of this tutorial concerns biochemical networks, such as
those collected in the Biomodels Database [56] and KEGG [46].

A biochemical system M is composed of:

1. a set of compartments C. These represent the locations of the various species;
2. a set of chemical species S. These species may be genes, proteins, etc.;
3. a set of reactions R. We consider irreversible reactions. Reversible reactions

are decomposed as a pair of forward and inverse reactions.
The general form of an irreversible reaction j is given by:

κ1jA1+κ2jA2+....+κnjjAnj

E1,E2,...I1,I2,...;fj−−−−−−−−−−−−→ κ′
1jB1+κ′

2jB2+....+κ′
mjjBmj

(1)
where Ah, h = 1, ..., nj, are the reactants, Bl, l = 1, ..., mj, are the prod-
ucts, Ev are the enzymes and Iu, the inhibitors. Enzymes and inhibitors
are represented differently from the reactants and products. Their role is to
enhance or inhibit the reaction, respectively. We call species such as these,
that are involved in a reaction without changing their concentration, modi-
fiers. The parameters κhj and κ′

lj are the stoichiometric coefficients. These
express the degree to which species participate in a reaction. The dynamics
associated with the reaction is described by a kinetic law fj , depending on
some parameters and on the concentrations of some species.

The best known kinetic law is mass-action: the rate of the reaction is propor-
tional to the product of the reactants’ concentrations. In published models it is
common to find general kinetic laws, which describe approximations of sequences
of reactions. They are useful when it is difficult to derive certain information from
the experiments, e.g. the reaction rates of elementary steps, or when there are
different time-scales for the reactions. Generally these laws are valid under some
conditions, such as the quasi-steady-state assumption (QSSA). This describes
the situation where one or more reaction steps may be considered faster than
the others and so the intermediate elements can be considered to be constant.
There is a long list of kinetic laws; for details see [65].
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2.2 Overview of Process Algebras

Process algebras are calculi that were originally motivated by problems associ-
ated with concurrent computer systems [51,43]. The objective was to specify and
formally reason about such systems. In subsequent years process algebras have
been used extensively to describe complex systems characterized by concurrency,
communication, synchronization and nondeterminism. Process algebras offer sev-
eral attractive features. The most important of these are compositionality, the
ability to model a system as the interaction of its subsystems, formality, the abil-
ity to give a precise meaning to all terms in the language, and abstraction, the
ability to build up complex models from detailed components but disregarding
internal behaviour when it is appropriate to do so.

The most widely known process algebras are Milner’s Calculus of Commu-
nicating Systems (CCS) [51] and Hoare’s Communicating Sequential Processes
(CSP) [43]. Process algebras are typically defined by a simple syntax and seman-
tics. The semantics may be given by axioms or inference rules expressed in an
operational way [57]. A system is defined as a collection of agents which execute
atomic actions. Some operators are introduced for combining the primitives. For
instance in CCS the main operators are:

prefix a.P , after action a the agent becomes a P
parallel composition P | Q, agents P and Q proceed in parallel
choice P + Q, the agent behaves as P or Q
restriction P\M , the set of actions M may not occur
relabelling P [a1/a0, ..], in this agent label a1 is renamed a0
the null agent 0, this agent cannot act (deadlock)

One of the main features of process algebras is the possibility to express commu-
nication between two processes. In some cases, such as CCS [51] and the π-calculus
[52], a communication between two parallel processes is enabled when one process
can perform an action a (receive) and the other process can perform the comple-
mentary action ā (send). So the actions must be complementary (input-output)
and share the same name (a in the case considered). The resulting communica-
tion has the distinguished label τ , which indicates an internal (invisible) action. A
distinguishing feature of π-calculus with respect to CCS is the possibility to repre-
sent name-passing: communicating processes can exchange names over channels
and consequently they may change their interaction topology.

The communication mechanism in CSP is different from the one described
above as there is no notion of complementary actions. In CSP, two agents com-
municate by simultaneously executing actions with the same label. Since during
the communication the joint action remains visible to the environment, it can
be reused by other concurrent processes so that more than two processes can be
involved in the communication (multiway synchronisation).

The analysis of the behaviours of the model, represented in a formal language,
is generally produced through a Labelled Transition System (LTS) derived from
the operational semantics. This may be regarded as a derivative tree or graph in
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which language terms form the nodes and transitions are the arcs. This structure
is a useful tool for reasoning about agents and the systems they represent: two
agents are considered to be equivalent if they are observed to perform exactly
the same actions and the resulting agents are also equivalent. Strong and weak
forms of equivalence are defined depending on whether the internal actions of
an agent are deemed to be observable.

In CCS and CSP, since the objective is qualitative analysis rather than quan-
titative, time and uncertainty are abstracted away. In the last two decades,
various suggestions for incorporating time and probability into these formalisms
have been investigated (see [54] for an overview of process algebras with time).
For example, Temporal CCS (TCCS) [53] extends CCS with fixed delays and
wait-for synchronisation (asynchronous waiting). Note that most of the timed
extensions, including TCCS, retain the assumption that actions are instanta-
neous and regard time progression as orthogonal to the activity of the system.
Probabilistic extensions of process algebras, such as PCCS [44], allow uncer-
tainty to be quantified using a probabilistic choice combinator. In this case a
probability is associated with each possible outcome of a choice.

In the early 1990s several stochastic extensions of process algebra (stochastic
process algebras or SPAs), were introduced. The motivation for SPA was perfor-
mance modelling and quantification, in the form of random variables character-
ising the duration of actions, was added to models. In most cases, the random
variables are assumed to be exponentially distributed and a rate is added to each
prefix to represent the parameter of the exponential distribution that describes
the dynamic behaviour of the associated action. A race condition is then assumed
to resolve conflicts: all the activities that are enabled in a given state compete
and the fastest one succeeds. The choice of the exponential distribution means
that each process algebra model is associated with a continuous time Markov
chain (CTMC) [42]. It is then possible to carry out performance analysis based
on this underlying mathematical model. Some examples of SPA are TIPP [38],
EMPA2 [4,5], PEPA [42], SPADE3 [67] and Stochastic π-calculus [59].

2.3 Process Algebras in Systems Biology

Recently, as a response to the need to model the dynamics of complex biolog-
ical systems, there have been several applications of process calculi in systems
biology [60,62,28,58,27,18,19,14]. These techniques are appropriate for formally
describing and analysing a biological system as a whole and for reasoning about
protein/gene interactions. Indeed, there is a strong correspondence between con-
current systems described by process algebras and biological ones: biological
entities may be abstracted as processes that can interact with each other and
reactions may be modelled as actions.

Process calculi have several properties that make them useful for studying
biological systems:

2 Originally called simply MPA.
3 Originally called CCS+.
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– they allow the formal specification of the system;
– they offer different levels of abstraction for the same biological system;
– they can make interactions explicit, in particular biological elements may be

seen as entities that interact and evolve;
– they support modularity and compositionality;
– they provide well-established techniques for reasoning about possible be-

haviours. They may be used not only for the simulation of the system, but
also for the verification of formal properties and for behavioural comparison
through equivalences.

Several process calculi have been proposed in biology. Each of them has different
properties able to render different aspects of biological phenomena. They may
be divided into two main categories:

– calculi defined originally in computer science and then applied in biology,
such as the biochemical stochastic π-calculus [60], CCS-R [28] and PEPA
[42];

– calculi defined specifically by observing biological structures and phenom-
ena, such as BioAmbients [19], Brane Calculi [18], κ-calculus [27], and Beta-
binders [58].

One of the first process algebras used in systems biology is the biochemical π-
calculus [60], a variant of the π-calculus defined to model biological systems.
The underlying idea of application of the π-calculus to biology is the molecule-
as-computation abstraction [63,60]: each biological entity and interaction is as-
sociated with an agent specification in the calculus. Specifically, molecules are
modelled as processes, interaction capabilities as channels, interactions as com-
munications between processes, modifications as state and channel changes and,
finally, compartments and membranes as restrictions. Two stochastic simulation
tools based on Gillespie [36] have been defined (BIOSPI [6] and SPIM [66]),
various applications have been shown [50,26,49,21] and some modified versions
have been proposed (e.g. SPICO[48] and Sp@ [69]).

CCS-R [28] is a variant of CCS with new elements which allow the capture of
reversibility. The interactions are described in terms of binary synchronised com-
munications, similarly to π-calculus. It was motivated by modelling reversible
reactions in biochemistry. The successor of CSS-R is the Reversible CCS (RCCS)
[31]. This calculus allows processes to backtrack if this is in agreement with a
notion of casual equivalence defined in the paper.

Beta-binders [58,64] are an extension of the π-calculus inspired by biological
phenomena. This calculus is based on the concept of bio-process, a box with some
sites (beta-binders) to express the interaction capabilities of the element, in which
π-calculus-like processes (pi-processes) are encapsulated. Beta-binders enrich the
π-calculus with some constructs that allow us to represent biological features,
such as the join between two bio-processes, the split of one bio-process into two,
the change of the bio-process interface by hiding, unhiding and exposing a site.
The Beta Workbench [64] is a collection of tools for the modelling, simulation and
analysis of Beta-binders system. The BetaWB simulator is based on a variant of
Gillespie’s algorithm.
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In most of the calculi considered it is not possible to represent all the features of
biochemical networks. Generally the kinetic laws are assumed to be mass-action
and reactions can have at most two reactants. Indeed these calculi refer to the stan-
dard Gillespie’s algorithm for the analysis and this assumes elementary reactions
(i.e. monomolecular or bimolecular) with constant rates. Furthermore, biological
reactions are abstracted as communications/interactions between agents and in
some process algebras such as π-calculus, CCS and Beta-binders, these actions are
pairwise. Therefore multiple-reactant multiple-product reactions cannot be mod-
elled in these calculi. In order to represent multiple-reactant multiple-product re-
actions, π-calculus and Beta-binders have been enriched with transactions [24,25].

A first proposal to deal with general kinetic laws has been shown in [9]. The
authors present a stochastic extension of Concurrent Constraint Programming
(CCP) and show how to apply it to biological systems. Here each species is
represented by a variable and the reactions are expressed by constraints on these
variables. The domain of application is extended to any kind of reactions and
the rate can be expressed by a generic function.

The possibility of representing general kinetic laws is also offered by
BIOCHAM [20], a programming environment for modelling biochemical sys-
tems, which supports making simulations and querying the model in temporal
logic. This language is not a process algebra, but it is based on a rule-based
language for modelling biochemical systems, in which species are expressed by
objects and reactions by reaction rules.

A similar approach is taken in the κ-calculus [27], based on the description of
protein interactions. Processes describe proteins and their compounds. A set of
processes model solutions and protein behaviour is given by a set of rewriting
rules, driven by suitable side-conditions. The two main rules concern activation
and complexation. A stochastic simulator for κ-calculus is described in [30]. A
few applications are reported, as in [29].

Finally, some calculi have been defined to model compartments and
membranes. Here we briefly describe Bio-ambients [19] and Brane calculi [18].
Bio-ambients are centered on ambients, bounded places where processes are con-
tained and where communication may happen. Ambients can be nested and or-
ganised in a hierarchy. This hierarchy may be modified by suitable operations
that have a biological interpretation. It is possible to have enter and exit primi-
tives to move an ambient into or out of another ambient or a merge for merging
two ambients together. Ambients contain compounds that interact via commu-
nication. Bio-ambients have been used to model compartments in BIOSPI [6].
A stochastic semantics for Bio-ambients has been formalized in [10]. There have
been some applications, for instance [3].

In Brane calculi [18] a system consists of nested membranes, which are collec-
tions of actions. Membranes may shift, merge, break apart and may be replen-
ished, leading to very expressive models, in which actions occur on membranes.
Membranes may be seen as oriented objects that must obey some restrictions on
orientation. In particular they must preserve bitonality, which requires nested
membranes to have opposite orientations.
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2.4 PEPA and Biological Systems

Performance Evaluation Process Algebra (PEPA) is a SPA originally defined for
the performance modelling of systems with concurrent behaviour [42]. In PEPA
each action is assumed to have a duration, represented by a random variable
with a negative exponential distribution. We informally introduce the syntax of
the language below. For more details see [42].

Prefix. The basic term is the prefix combinator (α, r).S. It denotes a component
which has action of type α and an exponentially distributed duration with
parameter r (mean duration 1/r), and it subsequently behaves as S.

Choice. The component S + R represents a system which may behave either
as S or as R. The activities of both S and R are enabled. The first activity
to complete distinguishes one of them and the other is discarded.

Constant. Constants are components whose meaning is given by a defining
equation C

def= S. They allow us to assign names to patterns of behaviour
associated with components.

Hiding. In S/H the set H identifies those activities which can be considered
internal or private to the component S.

Cooperation. The term P ��
L

Q denotes cooperation between P and Q over the
cooperation set L, that determines those activities on which the cooperands
are forced to synchronise. PEPA supports multiway synchronisation between
components: the result of synchronising on an activity α is thus another α,
available for further synchronisation. For action types not in L, the compo-
nents proceed independently and concurrently with their enabled activities.
In the context of performance evaluation the rate for the synchronised ac-
tivities is the minimum of the rates of the synchronising activities.

Recently, PEPA has been applied to the modelling and analysis of signalling
pathways. An initial study concerned the influence of the Raf Kinase Inhibitor
Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) [14]. In [15]
the PEPA representation of Schoeberl’s model [32] involving the MAP kinase
and EFG receptors is reported. The biological modelling in PEPA was motivated
by a desire to experiment with more abstract modelling than that afforded by
the processes as molecules mapping generally used in process algebra models.
Indeed a processes as species mapping is applied instead. In [14] two different
modelling styles were proposed, one based on the reagent-centric view and the
other on the pathway-centric view. The former focuses on the variation in the
concentrations of the reagents: the concentrations are discretized in levels, each
level representing an interval of concentration values. The level l can assume
values between 0 and Nmax (maximum level). The pathway-centric style provides
a different abstract view of the system and focuses on the subpathways. The two
representations were shown to be equivalent [14]. In addition to the standard
analysis offered by process algebras, in [13] a mapping from reagent-centric PEPA
models to a system of ordinary differential equations (ODEs), has been proposed.

From the applications discussed above PEPA has been shown to be appropri-
ate for the modelling of biological systems: it offers a high level of abstraction
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for the model and focuses on compositionality and on the interactions. Further-
more, by using PEPA as a modelling language it is possible to apply different
kinds of analysis, not only stochastic simulation, but also differential equations
and model checking.

However, not all the features of biochemical networks can be expressed using
the present version of PEPA: general kinetic laws are not considered and stoi-
chiometry is added by hand in the conversion of PEPA into ODEs. As observed
above, with a few exceptions (e.g. [9]) and a few cases (dimerization), these fea-
tures cannot be represented in other process algebras either. These and other
problems motivated us to develop a new process algebra, Bio-PEPA, which is
closely related to PEPA but better adapted to biological modelling.

3 Bio-PEPA: Definition of the Language

Our earlier experience using PEPA, and other stochastic process algebras, to
model biochemical networks, developed insights which we then used in the def-
inition of Bio-PEPA. We felt it was important to have a language which can
represent all reactions in a straightforward way as well as handle stoichiometry
and general kinetic laws. We retained the reagent-centric view previously used
in PEPA models of biochemical pathways as this had been demonstrated to
provide a flexible approach to modelling. For example, it is straightforward to
capture reactions with any number of participants, something that is not readily
captured in other process algebras such as the π-calculus. Moreover, once the
model is constructed it is amenable to a variety of different analysis techniques.

We adopt a high level of abstraction similar to the one proposed in formalisms
such as SBML [7], which have been widely adopted by biologists. Furthermore
we make the following assumptions:

1. Compartments are static, i.e. compartments are not actively involved in the
reactions — they are simply containers. The transport of a species from
one compartment to another is modelled by introducing two distinct com-
ponents for representing the species. The translocation is abstracted by a
transformation of one species into another. Compartments are included in
the definition of a Bio-PEPA system because the volume of the containing
compartment can impact on reactions of a species.

2. Reactions are irreversible reactions. A reversible reaction is represented as a
pair of irreversible reactions.

3.1 Discrete Concentrations and Granularity

Following the reagent-centric view, models are based not on individual molecules,
but on discrete levels of concentration within a species: each component repre-
sents a species and it is parametric in terms of concentration level. Some advan-
tages of this view are:

– It allows us to deal with uncertainty/incomplete information in the exact
number of elements (semi-quantitative data);
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– In a discrete state space representation the focus is on the concentration
levels rather than the number of elements. This means that the state space
is reduced as there are less states for each component.

– The population level view, in terms of continuously changing concentrations,
and the individual level view, counting molecules, are both easily recovered
from this abstract view.

This view was presented in [16]. The authors focused on the case of reactions
with mass-action kinetics and stoichiometry equal to one for all the reactants and
products. The granularity of the system has been expressed in terms of the num-
ber of levels, representing concentration intervals. Furthermore they considered
the same step size h and the same maximum level N for all the species.

In Bio-PEPA we adapt this approach to general kinetic laws, stoichiometry
greater than one and different numbers of levels for the species. The granularity
of the system is defined in terms of the step size h of the concentration intervals
instead of the number of levels. We define the same step size h for all the species4.
This is motivated by the fact that, following the law of conservation of mass,
there must be a “balance” between the concentrations consumed (reactants)
and the ones created (products). In the case the stoichiometry is greater than
one we need to consider concentration quantities proportional to stoichiometric
coefficients. Given a species i, we can assume that it has a maximum finite
concentration Mi. The number of levels for the species i is given by Ni + 1
where Ni = �Mi

h � (the integer value greater than or equal to Mi

h ). Each species
can assume the discrete concentration levels from 0 (concentration null) to Ni

(maximum concentration).
If li is the concentration level for the species i, the concentration is taken to

be xi = li × h.
When a finite state space CTMC is to be generated, for numerical analysis or

stochastic model checking, we must assume that there is a maximum concentra-
tion for each species. However, we can have a species without a limiting value:
we use a maximum level to capture all values greater than a given (high) value.

3.2 The Syntax

The syntax of Bio-PEPA is similar to that of PEPA but with some important
differences. As in PEPA a model is made up of a number of sequential compo-
nents; here there is one sequential component for each species. As we will see,
the syntax of Bio-PEPA is designed in order to collect the biological information
that we need. For example, instead of a single prefix combinator there are a
number of different operators which capture the role that the species plays with
respect to this reaction.

4 There can be some exceptions to this assumption: 1) since modifiers remain constant
during reaction, we may define a different step size for each species which is only a
modifier; 2) any species which is involved on in creation/degradation reactions may
have a different step size.
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S ::= (α, κ) op S | S + S | C P ::= P ��
L

P | S(l)

where op = ↓ | ↑ | ⊕ | � | 	.
The component S is called sequential component (or species component) and

represents the species. The component P , called a model component, describes
the system and the interactions among components. We suppose a countable set
of sequential components C and a countable set of action types A. The parameter
l ∈ N represents the discrete level of concentration. The prefix term, (α, κ) op S,
contains information about the role of the species in the reaction associated with
the action type α:

– (α, κ) is the activity or reaction, where α ∈ A is the action type and κ is the
stoichiometric coefficient of the species in that reaction; information about
the rate of the reaction is defined elsewhere (in contrast to PEPA);

– the prefix combinator “op” represents the role of the element in the reaction.
Specifically, ↓ indicates a reactant, ↑ a product, ⊕ an activator, � an inhibitor
and 	 a generic modifier.

The choice operator, cooperation and definition of constant are unchanged.
In contrast to PEPA the hiding operator is omitted.

In order to fully describe a biochemical network in Bio-PEPA we need to define
structures that collect information about the compartments, the maximum con-
centrations, number of levels for all the species, the constant parameters and the
functional rates which specify the rates of reactions. In the following the function
name returns the names of the elements of a given Bio-PEPA component.

First of all we define the set of compartments.

Definition 1. Each compartment is described by “V: v unit”, where V is the
compartment name, “v” is a positive real number expressing the compartment
size and the (optional) “unit” denotes the unit associated with the compartment
size. The set of compartments is denoted V.

In Bio-PEPA compartments are static and they cannot change their struc-
ture/size. The set of compartments must contain at least one element. When
we have no information about compartments we add a default compartment
whose size is 1 and whose unit depends on the model.

Definition 2. For each species we define the element C : H, N, M0, M, V ,
where:

– C is the species component name,
– H ∈ N is the step size,
– N ∈ N is the maximum level,
– M0 ∈ R

+ ∪ { } is the initial concentration,
– M ∈ R

+ ∪ { } is the maximum concentration,
– V ∈ name(V) ∪ { } is the name of the enclosing compartment.

The set of all the elements C : H, N, M0, M, V is denoted N .
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In the definition the symbol “ ” denotes the empty string, indicating that the
last three components are optional. The initial concentration may added when
we want to compare our model results with the results in the literature. The
maximum concentration is used in the definition of the number of levels, but
generally it can be derived from the step size and the maximum number of
levels. Finally, if there is only one compartment for all the species in the model
we can omit it in the definition of N .

In order to specify the dynamics of the system we associate a functional rate
fαj with each action αj . This function represents the kinetic law of the associ-
ated reaction. For the definition of functional rates we consider mathematical
expressions with simple operations and operators involving constant parameters
and components. All the kinetic laws proposed in the book by Segel [65] can
be defined in this way. In addition, for convenience, we include some predefined
functions to express the most commonly used kinetic laws.

The predefined kinetic laws considered are mass-action (fMA), Michaelis-
Menten (fMM) and Hill kinetics (fH). They depend only on some parameters;
the components/species are derived from the context5. The functional rates are
defined externally to the components and are evaluated when the system is de-
rived. They are used to derive the transition rates of the system. In the functional
rates some parameter constants can be used. These must be defined in the model
by means of the set of parameter definitions K.

Definition 3. Each parameter is defined by “kname = value unit”, where
“kname”/∈ C is the parameter name, “value” denotes a positive real number and
the (optional) “unit” denotes the unit associated with the parameter. The set of
the parameters is denoted K.

Finally, we have the following definition for the set of sequential components:

Definition 4. The set Comp of sequential components is defined as

Comp ::= {C
def= S, where S is a sequential component }

We can define a Bio-PEPA system in the following way:

Definition 5. A Bio-PEPA system P is a 6-uple 〈V , N , K, FR, Comp, P 〉, where:

– V is the set of compartments;
– N is the set of quantities describing each species;

5 In the case of mass-action, the function fMA(r) is r ×
∏nj

i=1(Ci)
κi , where Ci i =

1, ..., nj are the nj distinct reactants involved in the reaction and κi is the associated
stoichiometric coefficients. The information about the reactants are derived from the
Bio-PEPA specifications of the system. In the case of Michaelis-Menten, the function
fMM(vM , KM ) is vM ×E×S/(KM +S), where E is the concentration of the enzyme
and S the concentration of the substrate. Also in this case E and S are derived from
the Bio-PEPA specifications. In the case of Hill kinetics, the function fH(v,K, n)
is v × Cn/(K + Cn), where C is the concentration of the element involved in the
reaction.
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– K is the set of parameter definitions;
– FR is the set of functional rate definitions;
– Comp is the set of definitions of sequential components;
– P is the model component describing the system.

In a well-defined Bio-PEPA system each element has to satisfy some (reasonable)
conditions. Details can be found in [23]. In the remainder of the chapter we con-
sider only well-defined Bio-PEPA systems. The set of such systems is denoted P̃ .

3.3 The Semantics

The semantics of Bio-PEPA is defined in terms of an operational semantics.
We define two relations over the processes. The former, called the capability
relation, supports the derivation of quantitative information and it is auxiliary
to the latter which is called the stochastic relation. The stochastic relation gives
us the rates associated with each action. The rates are obtained by evaluating the
functional rate corresponding to the action, divided by the step size of the species
involved, using quantitative information derived from the capability relation.

The capability relation is −→c ⊆ C ×Θ×C, where the label θ ∈ Θ contains the
quantitative information needed to evaluate the functional rate. We define the
labels θ as:

θ := (α, w)

where w is defined as w ::= [S : op(l, κ)] | w :: w, with S ∈ C, l the level and κ
the stoichiometric coefficient of the components. The order of the components is
not important. The rules governing the behaviour of components are presented
in the structured operational style [57] in Table 1. The rules should be read as
follows: if the transition above the line can be inferred then the transition below
the line can be deduced. The relation −→c is defined as the minimum relation
satisfying the rules reported in Table 1.

The first three axioms describe the behaviour of the three different prefix
terms. In the case of a reactant, the level decreases; in the case of a product, the
level increases; whereas in the case of modifiers, the level remains the same. For
reactants and products, the number of levels increment or decrement depends
on the stoichiometric coefficient κ. This expresses the degree to which a species
(reactant or product) participates in a reaction. Therefore some side conditions
concerning the present concentration level must be added to the rules. Specifi-
cally, for the reactants the level has to be greater than or equal to κ, whereas
for the products the level has to be less than or equal to (N − κ), where N is
the maximum level. The modifiers can have any possible value between 0 and
N . In all three cases the label θ records the level and the stoichiometry of the
associated component. The rules choice1 and choice2 have the usual meaning,
but note that choices only occur within a species component so both alternatives
are associated with the same level. The rule constant is used to define the be-
haviour of the constant term, defined by one or more prefix terms in summation.
The label contains the information about the level and the stoichiometric coeffi-
cient related to the action α. The last three rules report the case of cooperation.
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Table 1. Axioms and rules for Bio-PEPA

prefixReac ((α, κ)↓S )(l)
(α,[S :↓(l,κ)])−−−−−−−−−→c S (l − κ) κ ≤ l ≤ N

prefixProd ((α, κ)↑S )(l)
(α,[S :↑(l,κ)])−−−−−−−−−→c S (l + κ) 0 ≤ l ≤ (N − κ)

prefixMod ((α, κ) op S )(l)
(α,[S :op(l,κ)])−−−−−−−−−→c S (l) with op = �,⊕,� and 0 ≤ l ≤ N

choice1
S 1(l)

(α,w)−−−→c S ′1(l′)

(S 1 + S 2)(l)
(α,w)−−−→c S ′1(l′)

choice2
S 2(l)

(α,w)−−−→c S ′2(l′)

(S 1 + S 2)(l)
(α,w)−−−→c S ′2(l′)

constant
S (l)

(α,S ′ :[op(l,κ)])−−−−−−−−−−→c S ′(l′)

C(l)
(α,C:[op(l,κ)])−−−−−−−−−→c S ′(l′)

with C
de f
= S

coop1
P1

(α,w)−−−→c P′1

P1 ��L P2
(α,w)−−−→c P′1 ��L P2

with α � L

coop2
P2

(α,w)−−−→c P′2

P1 ��L P2
(α,w)−−−→c P1 ��L P′2

with α � L

coop3
P1

(α,w1)−−−−→c P′1 P2
(α,w2)−−−−→c P′2

P1 ��L P2
(α,w1@w2)−−−−−−−→c P′1 ��L P′2

with α ∈ L

The rules coop1 and coop2 concern the case when the action enabled does not
belong to the cooperation set. In this case the label in the conclusion contains
only the information about the component that fires the action. The rule coop3
describes the case in which the two components synchronize and the label re-
ports the information from both the components. The concatenation operator
of lists @ is used for this purpose.

In order to associate the rates with the transitions we introduce the stochastic
relation −→s ⊆ P̃ × Γ × P̃, where the label γ ∈ Γ is defined as γ := (α, rα),
with rα ∈ R

+. In this definition rα represents the parameter of a negative
exponential distribution. The dynamic behaviour of processes is determined by
a race condition: all activities enabled attempt to proceed but only the fastest
succeeds.

The relation −→s is defined as the minimal relation satisfying the rule

Final
P

(αj ,w)−−−−→cP
′

〈V , N , K, F , Comp, P 〉 (αj ,rα[w,N ,K])−−−−−−−−−−→s〈V , N , K, F , Comp, P ′〉
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The second component in the label of the conclusion represents the rate associ-
ated with the transition. The rate is calculated from the functional rate fα in
the following way:

rα[w, N , K] =
fα[w, N , K]

h

where h is the step size and fα[w, N , K] denotes the function fα is evaluated over
w, N and K. Specifically, for each component Ci we derive the concentration as
li ×h. Then we replace each free occurrence of Ci by (li ×h)κij , where κij is the
stoichiometric coefficient of the species i with respect to the reaction Rj . The
derivation of rates is discussed in some more detail later.

A Stochastic Labelled Transition System can be defined for a Bio-PEPA sys-
tem.

Definition 6. The Stochastic Labelled Transition System (SLTS) for a Bio-
PEPA system is (P̃ , Γ, −→s), where −→s is the minimal relation satisfying the rule
Final.

The states of SLTS are defined in terms of the concentration levels of the species
components and the transitions from one state to another represent reactions
that cause changes in the concentration levels of some components.

Note that using the relation −→c it is possible to define another labelled tran-
sition system (LTS ) as (C, Θ, −→c) which differs only in the transition labels.

Derivation of Rates. In the SLTS the states represent levels of concentration
and the transitions cause a change in these levels for one or more species. As we
have seen the number of levels depends on the stoichiometric coefficients of the
species involved.

Consider a reaction j described by a kinetic law fj and with all stoichiometric
coefficients equal to one. Following [16], we can define the transition rate as
(Δt)−1, where Δt is the time to have a variation in the concentration of one
step for both the reactants and the products of the reaction. Let y be a variable
describing one product of the reaction. We can consider the rate equation for
that species with respect to the given reaction. This is dy/dt = fj(x̄(t)), where x̄
is the set (or a subset) of the reactants/modifiers of the reaction. We can apply
the Taylor expansion up to the second term and we obtain

yn+1 ≈ yn + f(x̄n) × (tn+1 − tn)

Now we can fix yn+1−yn = h and then derive the time interval (tn+1−tn) = Δt
as Δt ≈ h/f(x̄n). From this we obtain the transition rate as f(x̄n)/h.

When the reaction has stoichiometric coefficients different from one, we can
consider an approach similar to the one above. However, in this case, we assume
mass action kinetics as this is generally the case for stoichiometric coefficient
greater than one. Let y be a product of the reaction. The approximation gives:

yn+1 ≈ yn + r × κ ×
nr∏

i=1

xκi

i,n × (tn+1 − tn)
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where r is the reaction constant rate, κ is stoichiometric coefficient of the product
y, xi i = 1, ..., nr are the reactants of the reaction, κi i = 1, ..., nr are the
associated stoichiometric coefficients, nr is the number of distinct reactants.

Now we can fix yn+1 −yn = κ×h and then derive the respective (tn+1 − tn) =
Δt as Δt ≈ h/(r ×

∏nr

i=1 xκi

i,n). From this expression we can derive the rate as
usual.

Note that this approach is based on an approximation, the accuracy of which
will depend on the time/concentration steps used.

From Biochemical Networks to Bio-PEPA. We define a translation,
tr BM BP , from a biochemical network M to a Bio-PEPA system P = 〈V , N ,
K, FR, Comp, P 〉, based on the following abstraction:

1. Each compartment is defined in the set V in terms of a name and an as-
sociated volume. Recall that currently in Bio-PEPA, compartments are not
involved actively in the reactions and therefore are not represented by pro-
cesses.

2. Each species i in the network is described by a constant component Ci ∈
Comp. The constant component Ci is defined by the “sum” of elementary
components describing the interaction capabilities of the species. We suppose
that there is at most one term in each species component with an action of
type α. A single definition can express the behaviour of the species at any
level.

3. Each reaction j is associated with an action type αj and its dynamics is
described by a specific function fαj ∈ FR. The constant parameters used in
the function can be defined in K.

4. The model P is defined as the cooperation of the different components Ci.

3.4 Some Examples

Now we present some simple examples in order to show how Bio-PEPA can be
used to capture some biological situations.

Example 1: Mass-action Kinetics. Consider the reaction 2X + Y
;fM−−−→3Z,

described by the mass-action kinetic law fM = r × X2 × Y . The three species
can be specified by the syntax:

X
def= (α, 2)↓X Y

def= (α, 1)↓Y Z
def= (α, 3)↑Z

The system is described by (X(lX0) ��
{α}

Y (lY 0)) ��
{α}

Z(lZ0), where lX0, lY 0 and
lZ0 denote the initial concentration level of the three components. The functional
rate is fα = fMA(r). The rate associated with a transition is given by:

rα =
r × (lX × h)2 × (lY × h)

h

where lX , lY are the concentration levels for the species X and Y in a given state
and h is the step size of all the species. The reaction can happen only if we have
at least 3 levels (0, 1, 2) for X , 2 levels for Y (0, 1) and 4 levels (0, 1, 2, 3) for Z.
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Example 2: Michaelis-Menten Kinetics. One of the most commonly used
kinetic laws is Michaelis-Menten. It describes a basic enzymatic reaction from
the substrate S to the product P and is written as S

E;fE−−−→P , where E is the
enzyme involved in the reaction. This reaction is an approximation of a sequence
of two reactions, under the quasi-steady state assumption (QSSA). The whole
sequence of reactions is described by the kinetic law fE = vM×E×S

(KM+S) . For more
details about the derivation of this kinetic law and the meaning of parameters
see [65].

The three species can be specified in Bio-PEPA by the following components:

S
def= (α, 1)↓S P

def= (α, 1)↑P E
def= (α, 1) ⊕ E

The system is described by (S(lS0) ��
{α}

E(lE0)) ��
{α}

P (lP0) and the functional rate
is
fα = fMM(vM , KM ).

The transition rate is given by:

rα =
vM × (lS × h) × (lE × h)

(KM + lS × h)
× 1

h

where lS , lE are the concentration levels for the species S and E in a given state
and h is the step size of all the species. The reaction can happen only if we have
at least 2 levels (0, 1) for all the species involved.

Example 3: Competitive Inhibition. Competitive inhibition is a form of
enzyme inhibition where binding of the inhibitor to the enzyme prevents binding
of the substrate and vice versa. In classical competitive inhibition, the inhibitor
binds to the same active site as the normal enzyme substrate, without undergoing
a reaction. The substrate molecule cannot enter the active site while the inhibitor
is there, and the inhibitor cannot enter the site when the substrate is there. This
reaction is described as:

S + E ←→ SE

SE −→ P + E

E + I ←→ EI

where S is the substrate, E the enzyme, I the inhibitor and P the product.
Under QSSA the intermediate species SE and EI are constant and we can
approximate the reactions above by a unique reaction S

E,I:fI−−−−→P , with rate

fI =
vc × S × E

S + KM (1 + I
KI

)
, where vc is the the turnover number (catalytic constant),

KM is the Michaelis-constant and KI is the inhibition constant.
The specification in Bio-PEPA is:

S
def= (α, 1)↓S P

def= (α, 1)↑P E
def= (α, 1) ⊕ E I

def= (α, 1) � I
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The system is described by ((S(lS0) ��
{α}

E(lE0)) ��
{α}

I(lI0)) ��
{α}

P (lP0) with func-
tional rate

fα = fCI((vc, KM , KI), S, E, I) =
vc × S × E

S + KM (1 + I
KI

)
.

The transition rate is given by:

rα =
vc × (lS × h) × (lE × h)
(lS × h + KM (1 + lI×h

KI
))

× 1
h

where lS, lE , lI are the concentration levels for the species S, E, I in a given
state and h is the step size of all the species. The reaction can happen only if
we have at least 2 levels (0, 1) for all the species involved.

Example 4: Degradation and Synthesis of a Species. Two particular re-
actions are those which describe the degradation and the creation of a species.
In order to model these reactions we need to add two auxiliary species compo-
nents to represent respectively the residue (Res) of the reaction and the creation
factor (CF ), i.e. genes or DNA.

Let us consider the degradation reaction A−→∅. We describe this reaction in
Bio-PEPA by introducing the component Res as the residue/product of the
reaction. The two species A and Res are defined as:

A
def= (α, 1)↓A Res def= (α, 1) 	 Res

The component Res is described by one or more sub-terms each of which de-
scribes a different degradation reaction.

In contrast the synthesis of a species ∅−→A is described by a new component
CF . The two species A and CF are described by:

A
def= (α, 1)↑A CF def= (α, 1) 	 CF

In the definitions of the components Res and CF we use the symbol 	 to
indicate that they do not change with the reaction.

3.5 Equivalences

It is sometimes useful to consider equivalences between models in order to de-
termine whether the systems represented are in some sense the “same”. In this
section we discuss some notions of equivalence for Bio-PEPA. We consider two
styles of equivalence which are commonly considered for process algebras: iso-
morphism, a structural equivalence, and bisimulation, a behavioural equivalence.
Some characteristics of the language impact on the definitions of equivalence and
we start by highlighting those. Firstly, there is no hiding operator or τ actions.
Therefore, in Bio-PEPA we do not have weaker forms of equivalence based on
abstracting τ actions. Secondly, in well-defined systems we have at most one
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action of a given type in each sequential term and each component describes the
behaviour of a single species. So we cannot have processes of the form “S + S”
and terms such as “A = a.C” (where A and C differ). Thirdly, if we have two
transitions between the processes P and P ′, they involve different action types
and they represent similar reactions that differ only in the kind/number of mod-
ifiers. Finally, we have defined two relations within the semantics. In one case
the labels contain the information about the action type and about the elements
involved. This is used as an auxiliary relation for the derivation of the second
one, in which the labels contain the information about the action type and the
rate (similarly to PEPA activity). Thus we have a choice of which relation on
which to base each notion of equivalence.

Recall that in Bio-PEPA we make a distinction between systems and model
components. However note that the only element that is modified by the transi-
tions of a Bio-PEPA system is the model component. All the other components
remain unchanged. Thus we define equivalences for the Bio-PEPA systems in
terms of equivalences for the model components. Specifically, we say that two
Bio-PEPA systems P1 and P2 are equivalent if their respective model compo-
nents are equivalent.

Auxiliary Definitions. Before we proceed it will be useful to make some auxil-
iary definitions. Firstly we consider the derivative of a component, the derivative
set and the derivative graph. We refer to the relation −→s, the case of −→c is analo-
gous, the only differences are in the label and in the fact that the former relation
refers to Bio-PEPA systems and the latter refers to model components.

Definition 7. If P (α,r)−−−→sP ′ then P ′ is a one-step −→s system derivative of P.

If P (α1,r1)−−−−→sP1
(α2,r2)−−−−→s....

(αn,rn)−−−−−→sP ′ then P ′ is a system derivative of P.
We can indicate the sequence

γ1−→s
γ2−→s....

γn−→s with
μ−→s, where μ denotes the

sequence γ1γ2, ...γn (possibly empty).

Definition 8. A system α-derivative of P is a system P ′ such that P (α,r)−−−→sP ′.
For each α ∈ A we have at most one system α-derivative of a system P.

Definition 9. The system derivative set ds(P) is the smallest set such that:

– P ∈ ds(P);

– if P ′ ∈ ds(P) and there exists α ∈ A(P ′) such that P ′ (α,r)−−−→sP
′′

then P ′′ ∈
ds(P), where A(P ′) is the set of action types currently enabled in the system
derivative P ′.

Definition 10. The system derivative graph D(P) is the labelled directed multi-
graph whose set of nodes is ds(P) and whose multi-set of arcs are elements in
ds(P) × ds(P) × Γ .

Note that in well-defined Bio-PEPA components the multiplicity of 〈Pi, Pj , γ〉
is always one.
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The definitions above refer to Bio-PEPA systems. The only components of
the system P = 〈V , N , K, F , Comp, P 〉 that evolves is the model component P .
The other components collect information about the compartments, the species,
the rates and report the definition of the species components. They remain un-
changed in the evolution of the system. In some cases it can be useful (and
simpler) to focus on the model component instead of considering the whole sys-
tem and use the other components for the derivation of the rates. We define a
function πP (P) = P , that, given a Bio-PEPA system returns the model compo-
nent. Then we define a (component) derivative of P by considering the model
component P ′ of the system derivative of P . Similarly, we define a (compo-
nent) α-derivative of P , (component) derivative set ds(P ) and the (component)
derivative graph D(P ) starting from the definitions for the associated system P .

In the derivation of the CTMC (see Section 3.6) we need to identify the actions
describing the interactions from one state to another.

Definition 11. Let P be a Bio-PEPA system and let P = πP (P). Let Pu, Pv

be two derivatives of a model component P with Pv a one-step derivative of Pu.
The set of action types associated with the transitions from the process Pu to the
process Pv is denoted A(Pu|Pv).

The next definition concerns the complete action type set of a system P and a
component P .

Definition 12. The complete action type set of a system P is defined as:

Ā = ∪Pi∈ds(P)A(Pi)

The complete action type set of a component P is defined similarly.

Other useful definitions are the ones concerning the exit rate and transition
rates. In the following we report the definition for the model components, but a
similar definition can be used for Bio-PEPA systems.

Definition 13. Let us consider a Bio-PEPA system P = 〈V , N , K, F , Comp, P 〉
and let P1, P2 ∈ ds(P ). The exit rate of a process P1 is defined as:

rate(P1) =
∑

{α|∃P2.P1
(α,rα[w,N ,K])−−−−−−−−−→sP2, P1=πP (P1)}

rα[w, N , K]

Similarly, the transition rate is defined as:

rate(P1 | P2) =
∑

{α|P1
(α,rα[w,N ,K])−−−−−−−−−→sP2, P1=πP (P1), P2=πP (P2)}

rα[w, N , K]

For the label γ in the stochastic relation, the function action(γ) = α extracts the
first component of the pair (i.e. the action type) and the function rate(γ) = r ∈ R

returns the second component (i.e. the rate).
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In the following we use the same symbol to denote equivalences for both the
system and the corresponding model component. In this section we present defi-
nitions of isomorphism and strong bisimulation which are similar to the relations
defined for PEPA in [42]. Furthermore we show some relationships between the
defined equivalences.

Isomorphism. Isomorphism is a strong notion of equivalence based on the
derivation graph of the components (systems). Broadly speaking, two compo-
nents (systems) are isomorphic if they generate derivation graphs with the same
structure and capable of carrying out exactly the same activities.

Wehave the following definition of isomorphismbased on the capability relation:

Definition 14. Let P1, P2 be two Bio-PEPA systems whose model components
are P and Q, respectively. A function F : ds(P ) → ds(Q) is a
component isomorphism between P and Q, with respect to −→c, if F is an in-
jective function and for any component P ′ ∈ ds(P ), A(P ′) = A(F(P ′)), with
rα[w, N , K] = r′α[F(w), N ′, K′] for each α ∈ A(P ), where F(w) is defined
component-wise over the list w, and for all α ∈ A the set of α-derivatives of
F(P ′) is the same as the set of F−images of the α-derivatives of P ′, with re-
spect to −→c.

This is a very strong relation because the labels associated with the capability
relation contain a lot of information, all of which must be matched. Formally,
we can define isomorphic components in the following way:

Definition 15. Let P1, P2 be two Bio-PEPA systems whose model components
are P and Q. P and Q are isomorphic with respect to −→c (denoted P =c Q),
if there exists a component isomorphism F between them such that D(F(P )) =
D(Q), where D denotes the derivative graph.

We can now define when two Bio-PEPA systems are isomorphic.

Definition 16. Let P1, P2 be two Bio-PEPA systems whose model components
are P and Q. P1 and P2 are isomorphic with respect to −→c (denoted P1 =c P2),
if P =c Q.

A similar structural relation based on the stochastic relation can also be defined
and used to characterise another form of isomorphism between systems (compo-
nents) =s (see [23] for details). Both isomorphisms, =c and =s are equivalence
relations, and congruences with respect to the combinators of Bio-PEPA. In
both cases they retain enough information about the structure and behaviour of
the isomorphic components to ensure that they give rise to identical underlying
Markov processes. However, =c is more strict than =s, i.e. there will be pairs of
systems (components) which satisfy =s but do not satisfy =c.

Equational Laws. Once an equivalence relation has been defined it can be
used to establish equational laws which may be used to manipulate models and
recognise equivalent terms. In the following the symbol “=” denotes either =c

or =s. The proof of the laws follow from the definition of isomorphism and the
semantic rules.
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Choice

1. (P + Q) ��
L

S = (Q + P ) ��
L

S

2. (P + (Q + R)) ��
L

S = ((P + Q) + R) ��
L

S

Cooperation

1. P ��L Q = Q ��L P

2. P ��L (Q ��L R) = (P ��L Q) ��L R

3. P ��K Q = P ��L Q if K ∩ (Ā(P) ∪ Ā(Q)) = L

4. (P ��L Q) ��
K

R =
{

P ��L (Q ��K R) if Ā(R) ∩ (L\K) = ∅ ∧ Ā(P) ∩ (K\L) = ∅
Q ��L (P ��K R) if Ā(R) ∩ (L\K) = ∅ ∧ Ā(Q) ∩ (K\L) = ∅

Constant If A
def= P then A = P

Bio-PEPA systems
Let P1 and P2 be two Bio-PEPA systems, with P=πP (P1) and Q=πP (P2).
If P = Q then P1 = P2.

Strong Bisimulation. The definition of bisimulation is based on the labelled
transition system. Strong bisimulation captures the idea that bisimilar compo-
nents (systems) are able to perform the same actions with same rates resulting in
derivatives that are themselves bisimilar. This makes the components (systems)
indistinguishable to an external observer. As with isomorphism we can develop
two definitions based on the two semantic relations. This time for illustration we
present the definitions based on the stochastic relation. The strong capability
bisimulation, ∼c, is defined similarly (see [23] for details).

Definition 17. A binary relation R ⊆ P̃×P̃ is a strong stochastic bisimulation,
if (P1, P2) ∈ R implies for all α ∈ A:

– if P1
γ−→sP ′

1 then there exists P ′
2 such that P2

γ−→sP ′
2 with (P ′

1, P ′
2) ∈ R.

– if P2
γ−→sP ′

2 then there exists P ′
1 such that P1

γ−→sP ′
1 with (P ′

1, P ′
2) ∈ R.

Definition 18. Let P1, P2 be two Bio-PEPA systems whose model components
are P and Q, respectively. P and Q are strong stochastic bisimilar, written P ∼s

Q, if (P1, P2) ∈ R for some strong stochastic bisimulation R.

Definition 19. Let P1, P2 be two Bio-PEPA systems whose model components
are P and Q, respectively. P1, P2 are strong stochastic bisimilar, written P1 ∼s

P2, if P ∼s Q.

Both ∼c and ∼s are equivalence relations and congruences with respect to the
combinators of Bio-PEPA. Moreover it is straightforward to see that isomor-
phism implies strong bisimulation in both cases.
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Example. Consider the following systems representing two biological systems.
The former system P1 represents a system described by an enzymatic reaction

with kinetic law
v1 × E × S

K1 + S
, where S is the substrate and E the enzyme. We

have that the set N is defined as {S : h, NS ; P : h, NP ; E : 1, 1} for some step size
h and maximum levels NS and NP . The component and the model components
are defined as:

S def= (α, 1)↓S E def= (α, 1) ⊕ E P def= (α, 1)↑P

The model component P1 is (S(lS0) ��
{α}

E(1)) ��
{α}

P (lP0). The functional rate is
fα = fMM(v1, K1).

The second system P2 describes an enzymatic reaction where the enzyme

is left implicit (it is constant). The rate is given by
v1 × S′

K1 + S′ , where S′ is the

substrate.
We have that the set N is defined as {S′ : h, NS′ ; P ′ : h, NP ′}.
The components are defined as S ′ def= (α, 1)↓S′ and P ′ def= (α, 1)↑P ′

and the model component P2 is S′(lS0) ��
{α}

P ′(lP0). In this case

fα = fMM ′((v1, K1), S′) =
v1 × S′

K1 + S′ and the component S′ and P ′ have

the same number of levels/maximum concentration of S and P .
We have that P1 ∼s P2, but P1 �c P2, because the number of enzymes is

different. The same relations are valid if the systems rather than the model
components are considered.

3.6 Analysis

A Bio-PEPA system is an intermediate, formal, compositional representation of
the biological model. Based on this representation we can perform different kinds
of analysis. In this section we discuss briefly how to use a Bio-PEPA system to
derive a CTMC with levels, a set of Ordinary Differential Equations (ODEs), a
Gillespie simulation and a PRISM model.

From Bio-PEPA to a CTMC. As for the reagent-centric view of PEPA,
the CTMC associated with the system refers to the concentration levels of the
species components. Specifically, the states of the CTMC are defined in terms of
concentration levels and the transitions from one state to the other capture some
variations in these levels. Hereafter we call the CTMC derived from a Bio-PEPA
system (or from a PEPA reagent-centric view system) CTMC with levels.

Theorem 1. For any finite Bio-PEPA system P = 〈V , N , K, FR, Comp, P 〉, if
we define the stochastic process X(t) such that X(t) = Pi indicates that the
system behaves as the component Pi at time t, then X(t) is a Markov Process.

The proof is not reproduced here but it is analogous the one presented for PEPA
[42]. Instead of the PEPA activity we consider the label γ and the rate is obtained
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by evaluating the functional rate in the system. We consider finite models to
ensure that a solution for the CTMC is at least theoretically feasible (in practice
the size of the state space may make the model intractable). The finiteness
assumption is equivalent to supposing that each species in the model has a
maximum level of concentration.

Theorem 2. Given (P̃ , Γ, −→s), let P be a Bio-PEPA system, with model com-
ponent P . Let nc = |ds(P )|, where ds(P ) is the derivative set of P . Then the
infinitesimal generator matrix of the CTMC for P is a square matrix Q (nc×nc)
whose elements qu,v are defined as

qu,v =
∑

αj∈A(Pu|Pv)

rαj if u �= v qu,u = −
∑

u�=v

qu,v otherwise.

where Pu, Pv are two derivatives of P .

It is worth noting that the states of the CTMC are defined in terms of the
derivatives of the model component. These derivatives are uniquely identified
by the levels of species components in the system, so we can give the following
definition of the CTMC states:

Definition 20. The CTMC states derived from a Bio-PEPA system can be de-
fined as vectors of levels σ = (l1, l2, ..., ln), where li , for i = 1, 2, ..., n is the level
of the species i and n is the total number of species.

Note that we can avoid consideration of the two levels for Res and CF as they
are always constant.

From this we can deduce that if two transitions are possible between a pair of
states, the actions involved are different and they represent reactions that differ
only in the modifiers and/or the number of enzymes used. The former point
follows from the definition of well-defined Bio-PEPA system. The second point
follows because the only possibility of having two transitions between two given
states is that the associated reactions have the same reactants and products. We
can see this by observing that the states depend on the levels and the reactions
cause some changes in these levels. The only elements that do not change during
a reaction are the modifiers.

The objective in forming the CTMC with levels is to generate a discrete
state space model for which the state space is not prohibitively large. Such a
model can then be subjected to numerical analysis, deriving the transient or
steady state probability distribution over the states of the model. This form of
analysis simultaneously considers all possible behaviours of the model. This is
quite distinct from stochastic simulation, also based on a CTMC, which only
considers a single trajectory over the state space of the model in each run, i.e.
each run captures only one possible behaviour of the model.

From Bio-PEPA to ODEs. The translation into ODEs is similar to the
method proposed for PEPA (reagent-centric view) [13]. It is based on the syntac-
tic presentation of the model and on the derivation of the stoichiometry matrix
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D = {dij} from the definition of the components. The entries of the matrix are
the stoichiometric coefficients of the reactions and are obtained in the following
way: for each component Ci consider the prefix subterms Cij representing the
contribution of the species i to the reaction j. If the term represents a reactant
we write the corresponding stoichiometry κij as −κij in the entry dij . For a
product we write +κij in the entry dij . All other cases are null.

Let tODE denote the mapping of a Bio-PEPA system P into a set of ODEs.
This mapping is based on the following steps:

1. Definition of the stoichiometry (n × m) matrix D, where n is the number of
species and m is the number of molecules;

2. Definition of the kinetic law vector (m × 1) vKL containing the kinetic laws
of each reaction;

3. Association of the variable xi with each component Ci and definition of the
vector (n × 1) x̄.

The ODE system is then obtained as:

dx̄

dt
= D × vKL

with initial concentrations xi0 = li0 × h, for i = 1, ..., n.
The following property holds:

Property 1. For a biochemical network M and a Bio-PEPA system P =
tr BM BP (M), we have that tODE(P) = tBODE(M), where tODE and tBODE

are the translation functions from Bio-PEPA and the biological system into
ODEs, respectively.

The ODE system derived from a Bio-PEPA system P is “equal” to the one ob-
tained directly from the biological network itself. This means that in the trans-
lation into Bio-PEPA no information for the derivation of ODEs is lost. This
result is unsurprising since in both cases the construction of the ODEs is based
on stoichiometric matrix. However the Bio-PEPA model can generally collect
more information than the respective ODEs. This can been seen by considering
examples which give rise to the same set of ODEs but which differ in their Bio-
PEPA representation. For example consider the Bio-PEPA models corresponding
to the following sets of reactions:

{A
r−→B + C; A

r−→B; A
r−→C + D}

and

{A
2r−→B + C; A

r−→D}.

The two Bio-PEPA models are different, but the ODE systems that we derive
from them coincide.
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From Bio-PEPA to Stochastic Simulation. Gillespie’s stochastic simu-
lation algorithm [36] is a widely-used method for the simulation of biochemical
reactions. It applies to homogeneous, well-stirred systems in thermal equilibrium
and constant volume, composed of n different species that interact through m
reactions. Broadly speaking, the goal is to describe the evolution of the system
X(t), described in terms of the number of elements of each species, starting from
an initial state. Every reaction is characterised by a stochastic rate constant cj ,
termed the basal rate (derived from the constant rate r by means of some simple
relations proposed in [36,68]). Using this it is possible to calculate the actual rate
aj(X(t)) of the reaction, that is the probability of the reaction Rj occurring in
time (t, t + Δt) given that the system is in a specific state.

The algorithm is based on the following two steps:

– Calculation of the next reaction to occur in the system;
– Calculation of the time at which that reaction occurs.

The calculations are based on two conditional density functions:

p(j | X(t)) = aj(X(t))/a0,

that is, the probability that the next reaction is Rj and

p(τ | X(t)) = a0e
a0X(t)τ ,

the probability that the next reaction occurs in [t + τ, t + τ + dτ ], where a0 =
m∑

v=1
av(X(t)).

The translation of a Bio-PEPA model to a simulation model amenable to
Gillespie’s algorithm is similar to the approach proposed for ODEs. The main
drawbacks are the definition of the rates and the correctness of the approach
in the case of general kinetic laws. Indeed Gillespie’s stochastic simulation algo-
rithm supposes elementary reactions and constant rates (mass-action kinetics). If
the model contains only this kind of reactions the translation is straightforward.
If there are non-elementary reactions and general kinetic laws, a widely-used
approach is to consider them translated directly into a stochastic context. This
is not always valid and some counterexamples have been demonstrated [11]. The
authors of [11] showed that when Gillespie’s algorithm is applied to Hill kinetics
in the context of the transcription initiation of autoregulated genes, the mag-
nitude of fluctuations is overestimated. The application of Gillespie’s algorithm
in the case of general kinetics laws is discussed by several authors [1,17]. Rao
and Arkin [1] show that this approach is valid in the case of some specific ki-
netic laws, such as Michaelis-Menten and inhibition. However, it is important to
remember that these laws are approximations, based on some assumptions that
specific conditions (such as “S � E” in the case of Michaelis-Menten) hold. The
approach we advocate is as in [47]: we apply Gillespie’s algorithm, but particu-
lar attention must be paid to the interpretation of the simulation results and to
their validity.
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The definition of a Gillespie model is based on:

– Definition of the state vector X̄. It is composed of n components Xi, repre-
senting the number of elements for each species i.

– Definition of the initial condition X̄0. The values are given by:

Xi0 = li0 × h × NA × vi molecules

where NA is the Avogadro number, i.e. the number of molecules in a mole
of a substance, and vi is the volume of the containing compartment Vi.

– Definition of the actual rate for each reaction. We have two cases:
1. Reactions described by the mass-action law and with constant rate rj .

The actual rate for the reaction is:

aj(X̄j) = cj × fh(X̄j)

where cj is the stochastic rate constant, fh is a function that gives the
number of distinct combinations of reactant molecules and X̄j are the
species involved in the reaction j. The stochastic rate constant is defined
in [68] as:

cj =
rj

(NA × v)ntot−1 ×
nj∏

u=1

κuj !

where nj is the number of distinct reactants in the reaction j, rj is the

rate of the reaction and ntot =
nj∑

u=1

κuj is the total number of reactants6.

Finally, the number of possible combinations of reactants is defined as

fh((X̄j) =
nj∏

u=1

(
Xp(u,j)

κuj

)
∼

nj∏

u=1

(Xp(u,j))κuj

nj∏

u=1

κuj !

2. Reactions with general kinetic laws fαj (k̄, C̄). The actual rate is:

aj(X̄j) = fαj (k̄, X̄j)

From Bio-PEPA to PRISM. PRISM [61] is a probabilistic model checker, a
tool for the formal modelling and analysis of systems which exhibit random or
probabilistic behaviour. PRISM has been used to analyse systems from a wide
range of application domains. Models are described using the PRISM language, a
simple state-based language and it is possible to specify quantitative properties
of the system using a temporal logic, called CSL [2] (Continuous Stochastic
6 We assume that all the species that are involved in the reaction as reactants are

inside the same compartment with volume v.
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Logic). For our purposes the underlying mathematical model of a PRISM model
is a CTMC and the PRISM models we generate from Bio-PEPA correspond to
the CTMCs with levels. However we present the translation separately as the
models are specified in the PRISM language.

The PRISM language is composed of modules and variables. A model is com-
posed of a number of modules which can interact with each other. A module
contains a number of local variables. The values of these variables at any given
time constitute the state of the module. The global state of the whole model is
determined by the local state of all modules. The behaviour of each module is
described by a set of commands. Each update describes a transition which the
module can make if the guard is true. A transition is specified by giving the new
values of the variables in the module, possibly as a function of other variables.
Each update is also assigned a probability (or in some cases a rate) which will
be assigned to the corresponding transition. It is straightforward to translate a
Bio-PEPA system into a PRISM model. We have the following correspondences:

– The model is defined as stochastic (this term is used in PRISM for CTMC).
– Each element in the set of parameters K is defined as a global constant.
– The maximum levels, the concentration steps and the volume sizes are de-

fined as global constants.
– Each species component is represented by a PRISM module. The species

component concentration is represented by a local variable and it can (gen-
erally) assume values between 0 and Ni. For each sub-term (i.e. reaction
where the species is involved) we have a definition of a command. The name
of the command is related to the action α (and then to the associated reac-
tion). The guards and the change in levels are defined according to whether
the element is a reactant, a product or a modifier of the reactions.

– The functional rates are defined inside an auxiliary module.
– In PRISM the rate associated with an action is the product of the rates of the

commands in the different modules that cooperate. For each reaction, we give
the value “1” to the rate of each command involved in the reaction, with the
exception of the command in the module containing the functional rates. In
this case the rate is the functional rate f , expressing the kinetic law. The rate
associated with a reaction is given by 1 × 1 × ... × f = f , as desired.

4 Examples

This section reports the translation of two biological models into Bio-PEPA
and some analysis results. The first example is taken from [37] and describes a
minimal model for the cascade of post-translational modifications that modulate
the activity of cdc2 kinase during the cell cycle. The second example is the
repressilator [33], a synthetic genetic network with an oscillating behaviour.

In the present work the stochastic and deterministic simulations are obtained
exporting the Bio-PEPA system by means of the derivations described in Section
3.6. An automatic translation is under implementation.
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4.1 The Goldbeter’s Model

In the following we show the translation of the Goldbeter’s model presented in
[37] into Bio-PEPA and we discuss the kinds of analysis that are possible for
it. Broadly speaking, the model describes the activity of the protein cyclin in
the cell cycle. The cyclin promotes the activation of a cdk (cdc2 ) which in turn
activates a cyclin protease. This protease promotes cyclin degradation, and thus
a negative feedback loop is obtained.

CYCLIN (C)

cdc2 inactive (M’)  

Protease inactive (X’) Protease active (X)

R1

R3

R4

R7
cdc2 active (M)

R2

R6

R5

Fig. 2. Goldbeter’s model

The Biological Model. A schema of the model is shown in Fig. 2. There are
three distinct species involved:

– cyclin, the protein protagonist of the cycle, represented by variable C;
– cdc2 kinase, in both active (i.e. dephosphorylated) and inactive form (i.e.

phosphorylated). The variables used to represent them are M and M ′, re-
spectively;

– cyclin protease, in both active (i.e. phosphorylated) and inactive form (i.e.
dephosphorylated). The variables are X and X ′.

A detailed list of reactions is reported in Table 2. The first two reactions
are the creation of cyclin and its degradation. The reactions R3-R6 are
enzymatic reactions describing the activation/deactivation of the biological
species cdc2 and protease. These reactions are activated through phosphoryla-
tion/dephosphorylation. The last reaction is the degradation of the cyclin trig-
gered by the protease.

Concerning the kinetic laws, the first two reactions have mass-action kinetics,
whereas the others all have Michaelis-Menten kinetics. We have some kinetic laws
in which the enzyme is explicit (reactions 3, 5), other ones in which it is implicit
(reactions 4, 6) as it is constant and abstracted within the Michaelis-Menten
parameter Vi.
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Table 2. Goldbeter model. The list of reactions.

id name react. prod. mod. kinetic laws
R1 creation of cyclin - C - vi

R2 degradation of cyclin C - - kd × C

R3 activation of cdc2 kinase M ′ M C
C × V1

(Kc + C)
M ′

(K1 + M ′)

R4 deactivation of cdc2 kinase M M ′ -
M × V2

(K2 + M)

R5 activation of cyclin protease X ′ X M
X ′ × M × V3

(K3 + X ′)

R6 deactivation of cyclin protease X X ′ -
X × V4

K4 + X

R7 degradation of cyclin C - X
C × Vd × X

C + Kd
triggered by protease

The Bio-PEPA System. The translation of the Goldbeter’s model into Bio-
PEPA is achieved in the following steps.

– Definition of the list V . In the model compartments are not considered. Here
we add the default compartment:

cell : 1.0 × 10−14 litre

– Definition of the set N . This is defined as:

C : h, NC , 0.01, 0.6, cell; M ′ : h, NM ′ , 0.99, 1, cell; M : h, NM , 0.01, 0.7, cell;
X ′ : h, NX′ , 0.99, 1, cell; X : h, NX , 0.01, 0.65, cell;
Res : 1, 1, , , cell; CF : 1, 1, , , cell;

The components Res and CF are added to represent degradation reactions
and the synthesis of the cyclin, respectively. The information about the initial
and the maximum concentrations are derived from Goldbeter’s paper. We
can fix the step size as 0.05. In this case the maximum levels are: NC = 12,
NM = 14, NX = 13, NM ′ = NX′ = 20. If we wanted to consider the finer
granularity h = 0.01 (corresponding to the initial concentration of some of
the species) we would have NC = 60, NM = 70, NX = 65, NM ′ = NX′ =
100.

– Definition of functional rates (FR) and parameters (K). The functional rates
are:

fα1 = fMA(vi); fα2 = fMA(kd); fα4 = fMM(V2, K2);
fα5 = fMM(V3, K3); fα6 = fMM(V4, K4); fα7 = fMM(Vd, Kd);

fα3 = fMM ′((V1, Kc, K1), M ′, C) =
V1 × C

Kc + C

M ′

K1 + M ′ ;



296 F. Ciocchetta and J. Hillston

The parameters are those reported in the original paper and we have:

vi = 0.025 μM.min−1; kd = 0.01 min−1; V1 = 12 μM.min−1; K1 = 0.02 μM;
V2 = 1.5 μM.min−1; K2 = 0.02 μM; V3 = 12 min−1; K3 = 0.02 μM;
Vd = 0.0625 μM.min−1; V4 = 2 μM.min−1; K4 = 0.02 μM; Kd = 0.02 μM ;
Kc = 0.5 μM

– Definition of species components (Comp) and of the model component (P ).

C
def= (α1, 1)↑C + (α2, 1)↓C + (α7, 1)↓C + (α3, 1) ⊕ C;

M ′ def= (α4, 1)↑M ′ + (α3, 1)↓M ′;

M
def= (α3, 1)↑M + (α4, 1)↓M + (α5, 1) ⊕ M ;

X ′ def= (α6, 1)↑X ′ + (α5, 1)↓X ′;

X
def= (α5, 1)↑X + (α6, 1)↓X + (α7, 1) ⊕ X ;

Res def= (α2, 1) 	 Res ;

CF def= (α1, 1) 	 CF ;

C(l0C) ��{α3 }
M(l0M) ��{α3 ,α4 }

M′(l0M′ ) ��{α5 ,α7 }
X(l0X) ��{α5 ,α6 }

X′(l0X′ ) ��{α2 }
Res(0) ��{α1 }

CF(1)

The levels are chosen to reflect the initial values of the species and are set
to l0C = l0M = l0X = 0 and l0M ′ = l0X′ = 20.

Analysis. In the following we report some observations about the analysis of
the Bio-PEPA system.

SLTS and CTMC By considering the step size h = 0.05 and the number of
levels given in the Bio-PEPA system we obtain a CTMC with 52 states and 185
transitions. The states are described by the vector:

(C(lC), M ′(lM ′), M(lM ), X ′(lX′), X(lX))

where the different components can assume different values according to the
possible number of levels for each species. This CTMC is not depicted.

Instead, for illustrative purposes, we present a simpler CTMC for our model,
obtained assuming h = 1 and considering only two levels for each species. The
vector N is modified accordingly. We show how to define the states and the tran-
sition rates of this CTMC starting from the Bio-PEPA system and the associated
transition system. The initial situation is with C, M and X absent (0) and the
other elements present (1). The initial state is (C(0), M ′(1), M(0), X ′(1), X(0)).
Figure 3 reports the stochastic transition system in this simplified case.

The numbers indicate the different transitions. Each transition is character-
ized by a label γi containing the information about the action type and the rate.
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(0,0,1,1,0)(0,1,0,1,0)

(0,1,0,0,1)(1,0,1,1,0)

(1,1,0,1,0) (0,0,1,0,1)

(1,0,1,0,1) (1,1,0,0,1)
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Fig. 3. The transition system for the Goldbeter’s model in the case of two levels

We have:

γ1 = (α1, r1) γ2 = (α2, r2) γ3 = (α3, r3) γ4 = (α4, r4)
γ5 = (α5, r5) γ6 = (α6, r6) γ7 = (α4, r7) γ8 = (α3, r8)
γ9 = (α1, r9) γ10 = (α2, r10) γ11 = (α7, r11) γ12 = (α4, r12)
γ13 = (α3, r13) γ14 = (α5, r14) γ15 = (α6, r15) γ16 = (α4, r16)
γ17 = (α2, r17) γ18 = (α6, r18) γ19 = (α1, r19) γ20 = (α2, r20)
γ21 = (α7, r21) γ22 = (α1, r22) γ23 = (α6, r23)

where

r1 = r9 = r19 = r22 = vi = 0.025, r2 = r10 = r20 = r17 = kd ×C = 0.0001,

r3 = r13 =
V1 ∗C
Kc +C

M′

(K1 + M′)
= 0.23, r4 = r7 = r12 = r16 =

V2 × M
(K2 + M)

= 2.66,

r5 = r14 =
V3 × M × X′

(K3 + X′)
= 0.117, r6 = r15 = r23 = r18 =

V4 × X
(K4 + X)

= 2.66,

r11 = r21 =
Vd ×C × X

(Kd +C)
= 0.00086

The states and transitions of the CTMC correspond directly to those of the
SLTS with the exception of the case when there are multiple transitions be-
tween the same two states. In this example we have only two transitions in the
CTMC whose rate is the sum of the rates of two single transitions in the SLTS.
In the graph above these cases correspond to the degradation of cyclin, that
can happen both with and without the protease. In the CTMC the rate asso-
ciated with the transition between the states (1, 0, 1, 0, 1) and (0, 0, 1, 0, 1) and
between (1, 1, 0, 0, 1) and (0, 1, 0, 0, 1) is given by the sum of the rates of the
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two degradation reactions kd × MC +
Vd × C × X

(Kd + C)
= 0.00096 μM.min−1. The

rates associated with the other transitions are the ones contained in the labels
γi above.

ODEs. The stoichiometry matrix D associated with the Bio-PEPA system
above is

R1 R2 R3 R4 R5 R6 R7
C +1 -1 0 0 0 0 -1 xC

M ′ 0 0 -1 +1 0 0 0 xM ′

M 0 0 +1 -1 0 0 0 xM

X ′ 0 0 0 0 -1 +1 0 xX′

X 0 0 0 0 +1 -1 0 xX

The vector that contains the kinetic laws is:

vT
KL =

(
vi × 1, kd × xC ,

V1 × xC

Kc + xC

xM ′

(K1 + xM ′ )
,

V2 × xM

(K2 + xM )
,
V3 × xM × xX′

(K3 + xX′)
,

V4 × xX

(K4 + xX)
,
Vd × xC × xX

(Kd + xC)

)

where “T” indicates the transpose of the vector. The system of ODEs is obtained
as dx̄

dt = D × vKL, with x̄T := (xC , xM ′ , xM , xX′ , xX), the vector of the species
variables:

dxC

dt
= vi × 1 − kd × xC − Vd × xC × xX

(Kd + xC)
;

dxM ′

dt
= − V1 × xC

Kc + xC
× xM ′

(K1 + xM ′ )
+

V2 × xM

(K2 + xM )
;

dxM

dt
=

V1 × xC

Kc + xC
× xM ′

(K1 + xM ′)
− V2 × xM

(K2 + xM )
;

dxX′

dt
= −V3 × xM × xX′

(K3 + xX′)
+

V4 × xX

(K4 + xX)
;

dxX

dt
=

V3 × xM × xX′

(K3 + xX′)
− V4 × xX

(K4 + xX)
;

The initial conditions are the ones reported in the set N . It is worth noting
that the system is equivalent, after some arithmetic manipulations, to the ODE
model presented in [37]. The analysis of the model using ODEs is reported in
Figure 8. The graphs coincide with results in the original paper.

PRISM. The full translation of the model into PRISM is reported in the Ap-
pendix A. The number of levels, the maximum concentrations and the param-
eters used in the kinetic laws are expressed using global constants. For each
species a module is constructed. The module representing the cyclin is:
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Fig. 4. ODE simulation results for two different instantiations of the model. The two
instantiations differ only in the values of the Michaelis-Menten constants. For Ki i =
1, 2, 3, 4 we have that Ki = 0.02 μM for the graph on the left and Ki = 40 μM for
the graph on the right. The initial concentrations are those reported in the Goldbeter’s
original paper: 0.01 μM for C, X and M . The simulation time is 100 minutes. In
first instantiation of the model, depicted in the figure on the left, we have sustained
oscillations whereas in the second, depicted in the figure on the right, we have no
oscillations.

module cyclin
cyclin : [0..Nc] init 0;
[creationC] cyclin < Nc → (cyclin′ = cyclin + 1);
[degradationC] cyclin > 0 → (cyclin′ = cyclin − 1);
[activationM ] cyclin > 0 → (cyclin′ = cyclin);
[degradationCX ] cyclin > 0 → (cyclin′ = cyclin − 1);
endmodule

The variable cyclin is local and represents the species “cyclin”. The possible
values are [0..Nc] (where Nc is the maximum level for cyclin) and the initial
value is set to 0. Cyclin is involved in four different reactions represented by four
commands. The name in the square brackets denotes the reaction. The guards
are defined according to whether cyclin is a reactant, product or modifier of the
reaction (this can be derived from the Bio-PEPA specification of the model). The
rate associated with each command is “1” with the exception of the command
in the module describing the functional rates. The functional rates are defined
in a specific module.

Extension of the Model with a Control Mechanism Based on Inhibi-
tion. The authors of [34] proposed an extension of Goldbeter’s model in order to
represent a control mechanism for the cell division cycle (CDC). Their approach
is based on the introduction of a protein that binds to and inhibits one of the
proteins involved in the CDC. This influences the initiation and the conclusion
of cell division and modulates the frequency of oscillations. Their approach is
based on the basic biochemical network of the CDC oscillations and not on the
details of the model so that it may work for other models of this kind. One
possible extension for Goldbeter’s model is reported in Figure 5.
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Protease inactive (X’) Protease active (X)

R7

R6

cdc2 active (M)
R4

cdc2 inactive (M’)

CYCLIN (C)
R1

INHIBITOR−CYCLIN (IC)

INHIBITOR (I)
R10

R3

R5

R8R9

R11

R13

R12

R2

Fig. 5. Extension of the Goldbeter’s model. An inhibitor is added.

Generally speaking, given a general CDC model with l proteins U1, U2, ...,Ul,
Gardner et al. show that the ODE model is modified in the following way (see
[34] for details):

dU1

dt
= f1(U1, U2, · · · , Ul) − a1 × U1 × Y + (a2 + θ × d1);

dU2

dt
= f2(U1, U2, · · · , Ul);

...
dUl

dt
= fl(U1, U2, · · · , Ul);

dY

dt
= vs − d1 × Y − a1 × U1 × Y + (a2 + θ × kd) × Z;

dZ

dt
= a1 × U1 × Y − (a2 + θ × d1 + θ × kd) × Z;

where:

– fi(U1, U2, ...) with i = 1, 2, ..., l are the functions of the standard model;
– U1 is the concentration of the target protein of the inhibitor, Y is the in-

hibitor and Z denotes the concentration of the inhibition-target complex.
U2,...,Ul are the other proteins involved in the cycle;

– a1 and a2 are the constant rates for the binding and for the release;
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– vs and d1 are the rate for the inhibitor synthesis and degradation;
– θ < 1 is the fraction of the degradation rates for the complex Z.

In the following we show how to modify the Bio-PEPA system in order to cap-
ture the new reactions and species. Bio-PEPA offers a compositional approach: it
is possible to compose the whole system by defining the simple subcomponents
that compose it. As observed in Section 1, compositionality is one of the main
properties of process algebras, that makes them particularly useful for capturing
of complex models. In our example, the new reactions and species can indeed be
added in a straightforward way, with minor modifications of the system speci-
fication. Broadly speaking, we need to define components for the new species,
some new terms to describe the new reactions and new functional rates. Finally,
the new components are added to the system component.

Here we consider l = 3, U1 = C, U2 = M and U3 = X . The inhibition-target
complex Z is thus IC in this case. This complex may dissociate in three distinct
ways (R9, R12 and R13 in Figure 5) since each of I and C may be degraded
during the dissociation. Note that we could obtain modulation of CDC frequency
by using an inhibitor of any of the proteins, so alternative models could be formed
with U1 = M or U1 = X .

We need to extend the Bio-PEPA model in the following way:

C
def= · · · + (α8, 1)↓C + (α9, 1)↑C + (α12, 1)↑C;

...
...

Res def= · · · + (α11, 1) 	 Res;

CF def= · · · + (α10, 1) 	 CF ;

I
def= (α8, 1)↓I + (α9, 1)↑I + (α10, 1)↑I + (α11, 1)↓I + (α13, 1)↑I;

IC def= (α8, 1)↑IC + (α9, 1)↓IC + (α12, 1)↓IC + (α13, 1)↓IC ;

where I stands for the inhibitor and IC for the inhibitor-cyclin complex in
Figure 5. The new functional rates, all described by mass-action kinetics:

fα8 = vs; fα9 = fMA(d1); fα10 = fMA(a1);
fα11 = fMA(a2); fα12 = fMA(θ × d1); fα13 = fMA(θ × kd)

The list of parameters must also be extended to reflect the new elements.
Finally the Bio-PEPA model is:

C (l0C ) ��
{α3}

M (l0M ) ��
{α3,α4}

M
′
(l0M ′ ) ��

{α5,α7}
X (l0X ) ��

{α5,α6}
X

′
(l0X ′ )

��
{α2}

Res(0 ) ��
{α1}

CF (1 ) ��
{α8,α9,α10,α11}

I (l0I ) ��
{α8,α9,α12,α13}

IC (l0IC )

The results of the ODE simulations corresponding to the new model are reported
in Fig. 6.
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Fig. 6. ODE simulation results for the extended model. The parameters of Goldbeter’s
model are as before. For the new parameters, in all the graphs d1 = 0.05, θ = 0.1
and Kdiss = a1

a2
= 1. The top graph corresponds to a1 = a2 = 0.3 and vs = 0.6, the

middle graph to a1 = a2 = 0.7 and vs = 1.4 and the lower graph to a1 = a2 = 0.05
and vs = 0.1. The initial values of C, X, M and I are 0.01μM . Simulation time is 100
minutes.
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4.2 The Repressilator

The repressilator is a synthetic genetic regulatory network with oscillating be-
haviour reported in [33]. The repressilator consists of three genes connected in
a feedback loop, such that the transcription of a gene is inhibited by one of the
other proteins. In the following we present the translation of the original model
into Bio-PEPA and we report some analysis results.

The Biological Model. A schema of network is reported in Figure 7.

 P2 mRNA2             G2 

            G3  mRNA3 P3             G1  mRNA1  P1

trl2tr2 d2 d5

tr1 trl1
d1d6trl3tr3 d3 d4

Fig. 7. Repressilator model

The species involved are:

– Three kinds of genes, hereafter denoted G1, G2, G3. These represent the
genes lacl, tetR and cI, respectively.

– The mRNAs transcribed from the three genes, hereafter denoted mRNA1,
mRNA2, mRNA3, respectively.

– The proteins corresponding to the three genes, denoted P1, P2, P3, respec-
tively. These represent the proteins associated with the previous genes i.e.
Lacl, TetR, CI.

The reactions are:

– The transcription of the three mRNAs with inhibition by one of the proteins.
These reactions are indicated as tr1, tr2, tr3. The genes are constant and
are kept implicit;

– The translation of mRNAs into the proteins, indicated as trl1, trl2, trl3;
– Degradation of both mRNAs and proteins, indicated as di with i = 1, ..., 6.

The transcription reactions are described by Hill kinetics, while the other reac-
tions have mass-action kinetic laws.
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The Bio-PEPA System. The definition of the Bio-PEPA corresponding to
the repressilator model is reported below. The parameters and the initial con-
centrations are one of the possibilities defined in the paper [33].

– Definition of compartments. There are no compartments defined explicitly
in the model. We consider the default compartment:

vCell : 1;

– Definition of the set N It is defined as:

mRNA1 : 1, 1, 0, , vCell; mRNA2 : 1, 1, 0, , vCell; mRNA3 : 1, 1, 0, , vCell;
P1 : 1, 1, 5, , vCell; P2 : 1, 1, 0, , vCell; P3 : 1, 1, 15, , vCell;
Res : 1, 1, , , vCell; CF : 1, 1, , , vCell;

It is worth noting that in the original model the genes are not represented
explicitly. In Bio-PEPA we introduce CF to define the transcription. For all
the species we consider two levels (high and low) and step h = 1. The initial
values (third elements) are those reported in the paper.

– Definition of the set FR and of the set of parameters. The set of functional
rates is:

ftr1 = fI((α, α0), P3, 2) =
α

1 + P32 + α0;

ftr2 = fI((α, α0), P1, 2) =
α

1 + P12 + α0;

ftr3 = fI((α, α0), P2, 2) =
α

1 + P22 + α0;

ftrl1 = fMA(β);
ftrl2 = fMA(β);
ftrl3 = fMA(β);
fdi = fMA(1) i = 1, 2, 3, 4, 5, 6;

All the three repressors have same behaviour except for their DNA-binding
specificities. We assume that all the degradation reactions have rate 1. The
other parameters are: α = 250; α0 = 0; β = 5.
These parameters have the following meaning:

• α0 is the number of protein copies per cell produced from a given pro-
moter type during growth in the presence of saturing amounts of the
repressor. In the case of the absence of the repressor this number is
α0 + α;

• β is the ratio of the protein decay rate to the mRNA decay rate.
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Fig. 8. Analysis of the model: ODE solution is depicted on the left and stochastic
simulation results (averaged over 100 runs) are depicted on the right. The parameters
are as reported in the text.

– Definition of the species components. The species components are:

mRNA1 def= (d1, 1)↓mRNA1 + (tr1, 1)↑mRNA1 + (trl1, 1) ⊕ mRNA1;

mRNA2 def= (d2, 1)↓mRNA2 + (tr2, 1)↑mRNA2 + (trl2, 1) ⊕ mRNA2;

mRNA3 def= (d3, 1)↓mRNA3 + (tr3, 1)↑mRNA3 + (trl3, 1) ⊕ mRNA3;

P1 def= (d4, 1)↓P1 + (trl1, 1)↑P1 + (tr3, 1) � P1;

P2 def= (d5, 1)↓P2 + (trl2, 1)↑P2 + (tr1, 1) � P2;

P3 def= (d6, 1)↓P3 + (trl3, 1)↑P3 + (tr2, 1) � P3;

CF def= (tr1, 1) 	 CF + (tr2, 1) 	 CF + (tr3, 1) 	 CF ;

Res def= (d1, 1) 	 Res + (d2, 1) 	 Res + (d3, 1) 	 Res
+ (d4, 1) 	 Res + (d5, 1) 	 Res + (d6, 1) 	 Res ;

– Definition of the model component. The model is defined as:
((

((((M1(lM10) <> M2(lM20)) ��M3(lM30)) ��{trl1,tr3}P1(lP10)) ��{trl2,tr1}P2(lP20)) ��{trl3,tr2}

P3(lP30)
)
��

{tr1,tr2,tr3}CF(1)
)
��

{d1,d2,d3,d4,d5,d6}Res(0)

The initial levels are defined according to the initial values of the model.

Analysis. We consider analysis based on both ODEs and stochastic simulation.
The analysis results are reported in Figures 8 and 9. In Figure 8 we have used
the parameters reported in the original paper. On the left, the ODE simulation
results are reported. An oscillating behaviour is shown by all three proteins.
On the right the results of stochastic simulation, averaged over 100 runs, are
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Fig. 9. Analysis of the model: as previously the ODE solution is depicted on the left
and the stochastic simulation results (averaged over 100 runs) are depicted on the right.
In this case the parameters differ from those reported in the text: α0 is 25 and the
initial values are P1 = 5, P2 = 10 and P3 = 15.

reported. In this case the average oscillating behaviour becomes weaker after
some time. This is probably due to the slight difference in phase in the 100
runs so that the averaged behaviour no longer shows oscillatory behaviour after
some time. Note that varying the values of α and β for the different elements
we obtain different amplitudes for the oscillations. In the case of Figure 9, the
three proteins reach a steady state, with both ODE and stochastic simulation.

5 Conclusions and Future Perspectives

In this chapter we have introduced systems biology modelling based on process
algebra, particularly focussing on Bio-PEPA. This new formalism is a modifica-
tion of the process algebra PEPA and is designed specifically for the modelling
and the analysis of biochemical networks. Bio-PEPA allows explicit representa-
tion of some features of biochemical networks, such as stoichiometry and gen-
eral kinetic laws which are not readily captured in other process algebra based
formalisms. Thus not only elementary reactions with constant rates, but also
complex reactions described by general kinetic laws can be considered. Each
reaction in the model is associated with an action type and a functional rate.
The potential to consider various kinds of kinetic laws permits us to model a
vast number of biochemical networks. Indeed complex reactions are frequently
found in biologists’ models as abstractions of sequences of elementary steps and
reducing these to elementary reactions is often undesirable, or even impossible.

Some notions of equivalence have been developed for Bio-PEPA and we have
shown how these may be used to compare models. In particular we presented def-
initions of isomorphism and strong bisimulation which are similar to the relations
defined for PEPA in [42]. These equivalences are motivated by the semantics of
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the language, in that they are standard notions of equivalence in process algebra,
and turn out to be quite strict with respect to the biological systems. In future
work we intend to investigate alternative forms of equivalence, motivated more
by the biological domain with the aim of finding equivalences which may be used
to manipulate and simplify models.

A principal feature of Bio-PEPA is the possibility of mapping the system to
different kinds of analysis. A single system description may be interpreted in
a number of ways, giving rise to ODEs for a population view of the system, a
stochastic simulation for an individuals-based view of the system, or a CTMC
with levels for a more abstract view of the system. Of course stochastic simulation
is also a CTMC-based representation of the system but the focus on individual
molecules means that such a CTMC is only amenable to analysis by simulation.
The advantage of the CTMC with levels is that it may have a state space small
enough to be tackled by numerical analysis, meaning that a different set of
analysis techniques may be used. In particular the numerical solution of a CTMC
captures all possible behaviours of the model, whereas each run of a simulation
only captures one trajectory through the state space, i.e. one possible behaviour.

Currently, a tool for the analysis of biochemical networks using Bio-PEPA is
under implementation and a translation from SBML into Bio-PEPA is planned.
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A Appendix A: PRISM Specification of the Goldbeter’s
Model

//Kind of model
stochastic

//Volume
const double cell = 1;

// Levels
const int Nc = 1;
const int Nm = 1;
const int Nx = 1;
const int Nxi = 1;
const int Nmi = 1;

//Steps
const double Hc = 0.01;
const double Hm = 0.01;
const double Hx = 0.01;
const double Hxi = 0.01;
const double Hmi = 0.01;

//Parameters
const double vi = 0.05;
const double vd = 0.025;
const double kd = 0.01;
const double Kc = 0.5;
const double V1 = 3;
const double V3 = 1;
const double Kd = 0.2;
const double V2 = 1.5;
const double V4 = 0.5;
const double K1 = 0.005;
const double K2 = 0.005;
const double K3 = 0.005;
const double K4 = 0.005;

//Modules

//module Cyclin
module cyclin
cyclin : [0..Nc] init 0;
[creationC] cyclin<Nc --> 1: (cyclin’ = cyclin+1);
[degradationC] cyclin>0 --> 1: (cyclin’ = cyclin-1);
[activationM] cyclin>0 --> 1: (cyclin’ = cyclin);
[degradationCX] cyclin>0 --> 1: (cyclin’ = cyclin-1);
endmodule

//module kinase inactive
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module kinasei
kinasei : [0..Nmi] init 1;
[activationM] kinasei>0 --> 1: (kinasei’ = kinasei-1);
[deactivationM] kinasei<Nmi --> 1: (kinasei’= kinasei+1);
endmodule

//module kinase active
module kinase
kinase : [0..Nm] init 0;
[activationM] kinase<Nm --> 1: (kinase’= kinase+1);
[deactivationM] kinase>0 --> 1: (kinase’ = kinase-1);
[activationX] kinase>0 --> 1: (kinase’ = kinase);
endmodule

//module protease inactive
module proteasei
proteasei : [0..Nxi] init 1;
[activationX] proteasei>0 --> 1: (proteasei’= proteasei-1);
[deactivationX] proteasei<Nxi --> 1: (proteasei’= proteasei+1);
endmodule

//module protease active
module protease
protease : [0..Nx] init 0;
[activationX] protease<Nx --> 1: (protease’ = protease+1);
[deactivationX] protease>0 --> 1: (protease’ = protease-1);
[degradationCX] protease>0 --> 1: (protease’ = protease);
endmodule

module Functional_rates
dummy: bool init true;
[creationC] cyclin<Nc --> vi/Hc: (dummy’=dummy);
[degradationC] cyclin<Nc --> (kd*cyclin*Hc)/Hc: (dummy’=dummy);
[activationM] cyclin>0 & kinasei>0 -->

((cyclin*Hc*V1 )/(Kc + cyclin*Hc))*((kinasei*Hmi)/(K1+kinasei*Hmi))
*(1/Hmi): (dummy’=dummy);

[activationX] kinase>0 & proteasei>0 -->
(kinase*Hm*proteasei*Hxi*V3/(K3+proteasei*Hxi))*(1/Hxi):
(dummy’=dummy);

[deactivationM] kinase>0 --> ((kinase*Hm*V2)/(K2 +kinase*Hm))*(1/Hm):
(dummy’=dummy);

[deactivationX] protease>0 --> (protease*Hx*V4/(K4 + protease*Hx))
*(1/Hx): (dummy’=dummy);

[degradationCX] cyclin>0 & protease>0 -->
((cyclin*Hc*vd *protease*Hx)/(cyclin*Hc + Kd))*(1/Hc): (dummy’=dummy);

endmodule
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Abstract. This paper presents a new programming language, BlenX.
BlenX is inspired to the process calculus Beta-binders and it is intended
for modelling any system whose basic step of computation is an inter-
action between sub-components. The original development was thought
for biological systems. Therefore this tutorial exemplifies BlenX features
on biology-related systems.

1 Introduction

In recent times a large effort has been devoted to the application of computer
science formal specification approaches in the realm of biological modelling, sim-
ulation and analysis. A successful strand of these activities is related to the use
of process calculi: simple formalisms made up of a very limited set of operators
to describe interaction-driven computations and originated from the CCS [18]
and CSP [15] precursors.

Process calculi are usually based on the notion of communication described
through a set of actions and reactions (complementary actions, or simply co-
actions), temporally ordered. To denote such a chain of events, the action prefix
operator is used, which is written as an infix dot. For instance, a!.b?.P denotes
a process that may offer a, then offers b, and then behaves as process P . The
behaviour of the process consists of sending a signal over a channel named a
(a!) and waiting for a reply over a channel named b (b?). Parallel composition
(denoted by the infix operator “ |”, as in P |Q) allows the description of processes
which may run independently in parallel and also synchronize on complementary
actions (a send and a receive over the same channel). Communication is binary
and synchronous. If we have more than one process willing to send a signal over
a channel, but only one process willing to receive a signal on the same channel
we will select non deterministically the pair of processes that synchronize. Since
non deterministic behaviour is inherent to concurrent systems where we cannot
make any assumption on the relative speed of processes, we also introduce the
summation operator to specify non deterministic behaviour. The process P + Q
behaves either as P or as Q. The selection of an alternative discards the other
forever. Note that instead parallel composition is such that the non moving
process is unaffected and it is still available after the move of the other. To
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represent a deadlock situation, where the process is unable to perform any sort
of action or co-action, the nil operator is used.

The behavior of a system is given by the ordered sequence of actions and
reactions that a system can perform. Despite of its simplicity, the language con-
tains the crucial ingredients for the description of concurrent and cooperating
systems. Actions and co-actions, that are usually seen as input and output ac-
tivities, can be the abstract view of any sort of complementarities. Actions could
well correspond to the abstract view of requests sent by an operating system to
a printer manager, or the conformational changes that take place in a receptor
protein in response to its binding with the signal molecule. What is crucial to
notice here is that, whichever is the level of abstraction considered, by its own
nature a process algebra describes a system in terms of what its subcomponents
can do rather than of what they are.

The first process calculus applied to biological problems has been the stochas-
tic π-calculus [20] for which run-time supports that allow for the simulation of
the models have implemented [19], then followed by other calculi as BioAmbi-
ents [24], Brane Calculi [2], CCS-R [4], k-calculus [3], PEPA [14]. For a general
introduction to the use of process calculi in biology see [8, 23]. The experience
done with the stochastic π-calculus to model biological systems shows limita-
tions of the classical process calculi approach for life science modelling. The
main drawbacks are two:

1. the modularity (encapsulation) features needed to limit complexity and for
fostering scalability and incremental model building that is implemented
through the restriction or scope operator;

2. key-lock mechanism of communication. Two processes can synchronize only
if the share exactly the same channel name. The biological situation is quite
different. In fact two molecules interact if they have a certain degree of
affinity or sensitivity which usually is different from exact complementarity
of their structure.

An attempt to overcome the above limits has been done through the definition
of the calculus Beta-binders [21]. The novelty of this calculus is given by the
introduction of boxes with interfaces identified by unique identifiers that express
the interaction capabilities of the processes encapsulated into the boxes.

Boxes can be interpreted as biological entities, i.e. components that interact
in a model to accomplish some biological function: proteins, enzymes, organic or
inorganic compounds as well as cells or tissues. The interaction sites on boxes
are called binders ; as for biological entities, a box has an interface (its set of
binders) and an internal structure that drives its behaviour (see Fig. 1). For
example, when a box is used to model a protein domain, binders can be used
to represent sensing domains and effecting domains. Sensing domains are the
places where the protein receives signals, effecting domains are the places that
a protein uses for propagating signals, and the internal structure codifies for
the mechanism that transforms an input signal into a protein conformational
change, which can result in the activation or deactivation of another domain.
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(a) (b)

Fig. 1. Boxes as abstractions of biological entities. Active sites, or domains, in a protein
are represented as binders on the box interface.

This is inspired by the available knowledge of protein structure and function
(see for example [27]).

Signals are represented as messages exchanged over communication channels.
Consider the pairs x : A on a binder (see Fig. 1(b)): the binder name x is the
name used by the internal process to perform input/output actions, while the
binder identifier A expresses the interaction capabilities at x. When composing
different boxes together, we use the binder identifier A to express the possible
interactions between boxes; in other words, two boxes with binder identifiers A
and C can interact only if A is affine to C.

Starting from this basic idea we moved from process calculi toward program-
ming languages with run-time stochastic support. In this paper we present an
introduction to the BlenX language and to its supporting modelling, analysis and
visualization tools. The requirements we followed in the definition of BlenX and
that now are the distinguishing features of BlenX are:

– dynamically varying interfaces of biological components;
– sensitivity-based interaction;
– one-to-one correspondence between biological components and boxes speci-

fied in the model;
– description of complexes an dynamic generation of complexes;
– spatial information;
– hybrid parameter specification;
– de-coupling of qualitative description from the quantities needed to drive

execution;
– events;
– Markov chain generation;
– biochemical reactions generation.
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The paper is organized as follows. The next section briefly recall the compu-
tational tools built around BlenX to write and edit programs, to execute or
transform them, to inspect the outcome of executions. Since the BlenX language
is stochastic, Section 3 recalls the basics of stochasticity we need in the follow-
ing development. Section 4 introduces the primitives and programming ideas
of BlenX. Section 5 reports some biological examples modelled in BlenX and
simulated through the Beta Workbench.

2 The Beta Workbench

The Beta Workbench (BWB for short), is a set of tools to design, simulate and
analyse models written in BlenX1.

Fig. 2. The logical strucure of BWB

The core of BWB is a command-line application (core BWB) that hosts three
tools: the BWB simulator, the BWB CTMC generator and the BWB reactions
generator. These three tools share the BlenX compiler and the BlenX runtime
environment. The core BWB takes as input the text files that represent a BlenX
program (see Sec. 4), passes them to the compiler that translates these files into
a runtime representation that is then stored into the runtime environment. The
logical arrangement of the computational blocks above is depicted in Fig. 2.

The BWB simulator is a stochastic simulation engine. The runtime environ-
ment provides the stochastic simulation engine with primitives for checking the
1 BWB is available at http://www.cosbi.eu/Rpty_Soft_BetaWB.php
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current state of the system and for modifying it. The stochastic simulation en-
gine drives the simulation handling the time evolution of the environment in
a stochastic way and preserving the semantics of the language. The stochastic
simulation engine implements an efficient variant of the Gillespie’s algorithms
described in [12, 13].

When rates are drawn from an exponential distribution (see Sec. 3) and models
are finite-state, a BlenX program give rise to a continuous-time Markov process
(CTMC). The BWB CTMC generator adds to the core blocks a set of iterators
to exhaustively traverse the whole state space of a BlenX program. The CTMC
generator also labels all the transitions between states with their exponential rate.

Fig. 3. The graph of all the reactions generated by the BWB Reactions generator

The BWB reactions generator identifies state changes that can be performed
by entities and complexes generated by the execution of a BlenX program and
produces a description of the system as a list of species and a list of chemical
reactions in which species are involved. These lists are abstracted as a digraph
in which nodes represent species and edges represent reactions (see Fig. 3). This
graph can be reduced to avoid presence of reactions with infinite rate. The final
result is an SBML description of the original BlenX program (Fig. 4).

The core BWB is enriched by two tools for input/output operations: the BWB
designer and the BWB plotter.

The BWB designer is a tool that allows to write BlenX programs both in a
textual and in a graphical way. The two representations are interchangeable: the
tool can parse and generate the graphical representation from any valid BlenX
program, and generate the textual representation from the graphical form (see
the upper left and the bottom left parts of Fig. 5). In particular, it is possible
to draw boxes, pi-processes, interactions, events and to form complexes using
graphs (see Figures 5 and 6). The textual representation can then be used as
input to the core BWB.
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Fig. 4. The SBML file generated by the BWB Reactions generator

Fig. 5. The model of a complex pathway in the designer

The BWB plotter is a graphical tool that parses and display simulation outputs
as changes in concentrations (Fig. 7), graphs of the reactions executed by the
simulator (Fig. 8) and other views of the relations between entities and reactions.
The BWB plotter provides to the user a picture of the dynamic behaviour of a
simulated model and the topology of the network that originated that behaviour.
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Fig. 6. Definition of a complex through the Designer interface

3 Stochastic Rates

The stochastic approach to chemical kinetics has been proved to be grounded on
a physical base; early experimental studies (see as e.g. [26], [25]) have demon-
strated that stochastic effects can be significant in cellular reactions. More recent
experimental studies show the importance of noise in gene regulation:

The proliferation of both noise and noise reduction systems is a hallmark
of organismal evolution – Federoff et al. [6]

Transcription in higher eukaryotes occurs with a relatively low frequency
in biologic time and is regulated in a probabilistic manner – Hume [16]

Gene regulation is a noisy business – Mcadams et al. [17]

These studies, together with the success of Monte Carlo stochastic simulation
techniques in the quantum physics simulation, have ignited widespread interest
in stochastic simulation techniques for biochemical networks.

The stochastic approach to chemical kinetics was first employed by Delbruck
in the ’40s. The basic assumptions of this approach are that a chemical reaction
occurs when two (or more) molecules of the right type collide in an appropriate
way, and that these collisions in a system of molecules in thermal equilibrium
are random.

Moreover, Gillespie in [10, 11] makes some simplifying assumptions to avoid
difficulties generated by the usual procedure of estimating the collision vol-
ume for each particle; he assumes that the system is in thermal equilibrium.
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Fig. 7. The Plotter displaying the result of a simulation of the MAPK cascade with
the BWB simulator

Fig. 8. The Plotter displaying the graphs of reactions executed during a simulation
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This assumption means that the considered system is a well-stirred mixture of
molecules. Furthermore, the assumption that the number of non-reactive colli-
sions is much higher than the number of chemical reactions makes it possible to
state that the molecules are randomly and uniformly distributed at all times.

All stochastic methods rely on these assumptions; furthermore, we can observe
that biological systems can be modeled on different levels of abstraction, but
models at each level follow the same pattern:

– pairs entity type, quantity;
– interactions between the entities.

For example, in the case of biochemical models entities are molecules and inter-
actions are coupled chemical reactions.

Therefore we can reduce the parameters needed to describe a system to:

– the entities, usually referred to as species, present in the system S1, ..., SN ;
– the number and type of interactions, called reaction channels, through which

the molecules interact R1, ..., RM ;
– the state vector X(t) of the system at time t , where Xi(t) is the number of

molecules of species Si present at time t.

The state vector X(t) is a vector of random variables, that does not permit to
track the position and velocity of the single molecules.

3.1 Base Rate and Actual Rate

For each reaction channel Rj a function aj , called the propensity function for
Rj , is defined as:

aμ = hμcμ for μ = 1, . . . , M (1)

such that hμ is the number of distinct reactant combinations for reaction Rμ

and cμ is a constant depending on physical properties of the reactants and

a0 =
M∑

μ=1

aμ

The cμ constant is usually called base rate, or simply rate of an action, while the
value of the function aμ is called the actual rate.

Gillespie derives a physical correct Chemical Master Equation (CME) from
the above representation of biochemical interactions. Intuitively, this equation
shows the stochastic evolution of the system over time, which is indeed a Markov
process.

Gillespie also presented in [11] an exact procedure, called exact stochastic
simulation, to numerically simulate the stochastic time evolution of a biochemical
system, thus generating one single trajectory. The procedure is based on the
reaction probability density function P (τ, μ), which specifies the probability that
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the next reaction is an Rμ reaction and that it occours at time τ . The analytical
expression for P (τ, μ) is:

P (τ, μ) =
{

aμ exp(−a0τ) if 0 ≤ τ < ∞ and μ = 1, . . . , M
0 otherwise

where aμ is the propensity function.
The reaction probability density function is used in a stochastic framework

to compute the probablility of an action to occour. The way of computing the
combinations hμ, and consequentely the actual rate aμ, varies with the different
kind of reactions we consider.

Rate of a monomolecular Reaction: the simplest kind of reactions we can
encounter are first-order reactions, usually referred to as monomolecular reac-
tions, that take the form:

S1 → S2...Sn

In this case, the number of combinations hμ is equal to n, where n is the number
of entities (the cardinality) of S1.

Rate of a bimolecular Reaction: second-order reactions, usually referred to
as bimolecular reactions, take the form:

S1 + S2 → S3...Sn or S1 + S1 → S2...Sn

The second case explicitly consider the fact that the two elements reacting are
indeed of the same species, as in homodimerization reactions.

To obtain hμ, we have to compute the number of all possible interactions that
can take place between elemets of the first species and elements of the second
species. Let n be the cardinality of the species S1, and m the cardinality of the
species S2.

In the former case, the number of combinations hμ is equal to n · m, while in
the latter the number of combinations hμ is equal to n·(n−1)

2 .

Constant Rates: constant rates are used when the number of combinations hμ

is not meaningful; in this case hμ = 1, so the base rate constant cμ is directly used
as the exponent of the exponential distribution form which a time of execution
will be sampled.

Rate Functions: the computation of the reaction probability density function
has been proved by Gillespie to be exact, in the sense that a Monte Carlo sim-
ulation of the method represents a random walk that is an unbiased realization
of the master equation.

However, when a specie represents a higher aggregation entity (e.g. a cell)
then the input-output relation can exhibit a non-linear behaviour (e.g. sigmoidal
dose-responses for signaling molecules). In this case, we let the user specify a rate
functions, that is used in place of the Gillespie method to compute the propensity
function.
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Note that in this case the proof that the method, and so the algorithm, is
exact does not hold anymore. It is up to the user that choose a rate function
demonstrate that the assumptions he/she made are realistic and that the pro-
duced results are correct. We are only providing the BlenX programmer with
the highest flexibility in specifying the quantitative parameters that drive the
simulation engine.

4 The Language

A BlenX program is made of an optional declaration file for the declaration
of user-defined constants and functions, a binder definition file that associates
unique identifiers to binders of entities used by the program and a program file,
that contains the program structure.

All the BlenX files share the syntax definition of identifiers, numbers and rates
as reported below:

Letter ::= [a − zA − Z]
Digit ::= [0 − 9]
Exp ::= [Ee][+]?{Digit}
real1 ::= {Digit}+{Exp}
real2 ::= {Digit}∗ Digit+({Exp})?
real3 ::= {Digit}+ Digit∗({Exp})?

Real ::= real1 | real2 | real3
Decimal ::= {Digit}+

Id ::= ({Letter}|_)({Letter}|{Digit}|_)∗

number := Real | Decimal

rate := number | rate ( Id ) | inf

Note that in the following sections, during the description of the programming
constructs, we prefix qualifying words to Id in order to clarify the kind of iden-
tifier that can occour in a given position. We will write boxId, binderId, funcId
and varId to specify identifiers referring to boxes, binders, functions and vari-
ables respectively. Syntactically, they are all equal to Id; the disambiguation is
done by the BlenX compiler using a symbol table. For examples, if an identifier
Id is used in a function declaration, it will be stored as a funcId in the symbol
table.

4.1 The Declaration File

A declaration file is a file with .decl extension that contains the definition of
variables, constants and functions. Since these constructs are optional, it is pos-
sible to skip the definition of the whole file. The declaration file has the following
syntax:
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declarations ::=
decList

decList ::=
dec

| dec decList

dec ::=
let Id : function = exp ;

| let Id : var = exp ;
| let Id : var = exp init number;
| let Id ( number ) : var = exp ;
| let Id : const = exp ;

exp ::=
number

| Id
| | Id |
| log ( exp )
| sqrt ( exp )
| exp ( exp )
| pow ( exp , exp )
| exp + exp
| exp − exp
| exp ∗ exp
| exp / exp
| −exp
| +exp
| ( exp )

An expression is made up of operators and operands. The syntax for the expres-
sion exp and the possible algebraic operators that can be used is given in the
previous table. Operator precedence follows the common rules found in every
programming language. + and − have the precedence when used as unary op-
erators, while × and / have the precedence w.r.t. + and − when used as binary
operators.

A state variable or simply variable is an identifier that can assume real mod-
ifiable values (Real value). The content of a variable is automatically updated
when the defining expression exp changes; The content of the variable can also
be changed by an update event (see Sec. 4.7). In this case, the function associ-
ated with the event is evaluated and the variable is updated with the resulting
value. After the variable identifier and the var keyword, the user has to specify
the expression used to control the value of the variable and an optional initial
value after the init keyword. Examples of variable declarations follows:
let v1 : var = 10 * |A|;
let mCycB : var = 2 * |X| * log(v1) init 0.1;

In addition, we define another type of variables, called continuous variables.
These variables depend on time and their value is still determined by an
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expression. Consider for example the following equation, commonly used to ex-
press the growth of mass in a cell-cycle model:

δm

δt
= μ · m

This equation expresses the continuous variation of mass during time. If we
discretize it we obtain:

Δm
Δt = μ · m → Δm = μ · m · Δt

To update the m variable every Δt, we can write the following expression:

mt(i) = mt(i−1) + Δm → mt(i) = mt(i−1) + (μ · m · Δt)

The syntax to write the previous equation, given a Δt of 0.1, is:

let m(0.1): var = mu * m init 0.2;

More generally, in a continuous variable declaration the user has to specify the
Id of the variable, immediately followed by the Δt value. The expression after
the = sign is used to compute the delta value, with Δt implicit. Therefore,
the declaration let v(t): var = exp; corresponds to the differential equation
δv
δt = exp.

A constant is an identifier that assumes a value that cannot be changed at
run-time and specified through a constant expression (an expression that does
not rely on any variable or concentration |Id| to be evaluated). As an extension,
BlenX allows the use of constant expressions. Examples of constant declarations
and of constant expressions follow:

let c1 : const = 1.0;
let pi : const = 3.14;
let c2 : const = (2.5 + 1) / (2.5 - 1);
let c3 : const = (4.0/3.0) * pi * pow(c1, 3);
let e: const = exp(1.0);

In the current version of BlenX, functions are parameterless and always return
a Real value. As is, a function is only a named expression that can be used
to evaluate a rate or to update the content of a state variable. An example of
function definition follows:

let f1 : function =
(k5s / alpha) / (pow( (J5 / (m * alpha * |X|) ) , 4) + 1);

Notice that when a program contains continuous variables, then the CTMC
generation is not allowed.

4.2 The Binder Definition File

The binder definition file is a file with .types extension that stores all the binder
identifiers that can be used in the declaration of binders (see Sec. 4.4) and the
affinities between binders associated with a particular identifier.
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Affinities are a peculiar feature of BlenX. The interaction mechanism of many
biological modelling languages is based on the notion of exact complement of
communication channel names, as in computer science modelling where two
programs can interact only if they know the exact address of the interacting
partners. In BlenX instead interactions are guided by affinities between a pair of
binder identifiers. There are three advantages in this approach: it allows us to
avoid any global policy on the usage of names in order to make components in-
teract; it relaxes the exact, or key-lock, style of interaction of exact name pairing;
it permits a better separation of concerns, as it allows us to put interaction in-
formation in a separate file that can be modified or substituted without altering
the program. The usage of affinities in a separate file is comparable to program
interactions guided by contracts or service definitions, like in some web-service
models (see [1]).

affinities ::=
{ binderIdList }

| { binderIdList }%%{ affinityList }
binderIdList :

binderId
| binderId, binderIdList

affinity ::=
( binderId, binderId, rate )

| ( binderId, binderId, funcId )
| ( binderId, binderId, rate, rate, rate )

affinityList :=
affinity

| affinity, affinityList

An affinity is a tuple of three or five elements. The first two elements are binder
identifiers declared in the binderIdList, while the other elements can either be
rate values or a single function identifier. If the affinity tuple contains a single
rate value, then the value is interpreted as the base rate of inter-communication
(Sec. 4.5) between binders with identifier equal to the first and second binderId
respectively.

If the affinity tuple contains three rate values, these values are interpreted as
the base rate for complex, decomplex (see Sec. 4.6 for the definition of complexes)
and inter-complex communication between binders with identifier equal to the
first and second binderId respectively.

When the element after the two binderIds is a function identifier, the expres-
sion associated to the function will be evaluated to yield a value, then interpreted
as the rate of inter-communication.

4.3 The Program File

The central part of a BlenX program is the program file. The program file has a
.prog extension; it is generated by the following BNF grammar:
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program ::=
info 〈〈 rateDec 〉〉 decList run bp

| info decList run bp

info ::=
[ steps = decimal ]

| [ steps = decimal, delta = number ]
| [ time = number ]

rateDec ::=
Id : rate

| CHANGE : rate
| EXPOSE : rate
| UNHIDE : rate
| HIDE : rate
| BASERATE : rate
| rateDec, rateDec

decList ::=
dec

| dec decList

dec ::=
let Id : pproc = process ;

| let Id : bproc = box ;
| let Id : complex = complex ;
| let Id : prefix = actSeq ;
| let Id : bproc = Id 〈〈 invTempList 〉〉 ;
| when ( cond ) verb ;
| template Id : pproc 〈〈 decTempList 〉〉 = process ;
| template Id : bproc 〈〈 decTempList 〉〉 = box ;

bp ::=
Decimal Id

| Decimal Id 〈〈 invTempList 〉〉
| bp || bp

A prog file is made up of an header info, an optional list of rate declarations
(rateDec), a list of declarations decList, the keyword run and a list of starting
entities bp.

The info header contains information used by the BWB simulator that will
execute the program. A stochastic simulation can be considered as a succession of
timestamped steps that are executed sequentially, in non-decreasing time order.
Thus, the duration of a simulation can be specified as a time, intended as the
maximum timestamp value that the simulation clock will reach, or as a number
of steps that the simulator will schedule and execute. The delta parameter
can be optionally specified to instruct the simulator to record events only at a
certain frequency (and not every time and event is simulated).
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A BlenX program is a stochastic program: every single step that the program
can perform has a rate associated to it, representing the frequency at which
that step can, or is expected to, occur. The rateDec specifies the global rate
associations for individual channel names or for four particular classes of actions
that a program can perform. In addition, a special class BASERATE can be
used to set a common basic rate for all the actions that do not have an explicit
rate set. The explicit declaration of a rate in the definition of an action has the
precedence on this global association (see Sec. 4.4).

The list of declarations decList follows. Each declaration is a small, self-
contained piece of code ended by a ‘;’. A declaration can be named, e.g. it
can have an Id that designates uniquely the declaration unit in the program, or
it can be nameless. Declarations of boxes, processes, sequences of prefixes and
complexes must be named2, while events are nameless.

4.4 Processes and Boxes

Boxes are generated by the following BNF grammar:

box ::=
binders [ process ]

binders ::=
# ( Id : rate, Id )

| # ( Id, Id )
| #h ( Id : rate, Id )
| #h ( Id, Id )
| binders, binders

process ::=
par

| sum

The intuition is that a box represents an autonomous biological entity that has its
own control mechanism (the process) and some interaction capabilities expressed
by the binders.

A binders list is made up of a non empty list of elementary binders of
the form #(Id : rate, Id) (active with rate), #(Id, Id) (active without rate),
#h(Id : rate, Id) (inactive with rate), #h(Id, Id) (inactive without rate), where
the first Id is the subject of the binder, rate is the stochastic parameter that
quantitatively drives the activities involving the binder (hereafter, stochastic
rate) and the second Id represents the identifier of the binder. Binder identifiers
cannot occur in processes while subjects of binders can. The subject of an ele-
mentary beta binder is a binding occurrence that binds all the free occurrences
of it in the process inside the box to which the binder belongs. Hidden binders
2 Note that some language constructs, i.e. processes and sequences, can appear

throughout a program without a name; they must be named only when they ap-
pear as a declaration.
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are useful to model interaction sites that are not available for interaction al-
though their status can vary dynamically. For instance a receptor that is hidden
by the shape of a molecule and that becomes available if the molecule interacts
with/binds to other molecules. Given a list of binders, we denote the set of all its
subjects with sub(binders). A box is considered well-formed if the list of binders
has subjects and identifiers all distinct. Well-formedness of each box defined in a
BlenX program is checked statically at compile-time. Moreover, well-formedness
is preserved during the program execution. The BlenX graphical representation
of a box is:

process

#(Name : rate, Id) #h(Name1 : rate1, Id1)

Boxes are generated by the following BNF grammar:

process ::=
par

| sum

par ::=
parElem

| sum | sum
| sum | par
| par | sum
| par | par
| ( par )

sum ::=
sumElem

| sum + sum
| ( sum )

sumElem ::=
nil

| seq
| if condexp then sum endif

parElem ::=
Id

| Id 〈〈 invTempList 〉〉
| rep action . process
| if condexp then par endif

seq ::=
action

| action . process
| Id . process

A process can be a par or a sum. The non-terminal symbol par composes through
the binary operator | two processes that can concurrently, while the non-terminal
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symbol sum of the productions of process is used to introduce guarded choices of
processes, composed with the operator +. The + operator act intuitively as an
or operator, meaning that at a certain step a process offers a choice of different
possible actions such that the execution of each of them eliminates the others.
By the contrary, the | operator act intuitively as an and operator, meaning that
processes composed by | run effectively in parallel.

Notice that we can put in parallel processes also with the constructs Id and
Id 〈〈 invT empList 〉〉, meaning that we are instantiating a template (see Section
4.9) or an occurrence of a process previously defined. As an example, consider
the following sequence of processes definition:
let p1 : pproc = nil ;
let p2 : pproc = nil | p1 ;

Process p2 is defined as a parallel composition of the nil process and an instance
of the p1 process. In BlenX the definition of a process can only rely on identifiers
of previously defined processes. Mechanisms of recursive definitions and mutual
recursive definitions are not admitted.

The rep operator is used to replicate copies of the process passed as argument.
Note that we use only guarded replication, i.e. the process argument of the rep
must have a prefix action that forbids any other action of the process until it
has been consumed. The nil process does nothing (it is a deadlocked process),
while the if-then statement allows the user to control, through an expression,
the execution of a process. The non-terminal symbol seq identifies an action,
a process prefixed by an action and a process prefixed by an Id. When in a
program we have a process defined using the statement Id.process we statically
check that the Id corresponds to a previously defined sequence of prefixes.

4.5 Actions

The actions that a process can perform are described by the syntactic category
action.

action ::=
Id ! ( Id )

| Id ! ()
| Id ? ( Id )
| Id ? ()
| delay ( rate )
| expose ( Id : rate , Id )
| hide ( Id )
| unhide ( Id )
| ch ( Id, Id )
| expose ( rate, Id : rate, Id )
| hide ( rate, Id )
| unhide ( rate, Id )
| ch ( rate, Id, Id )

The first four actions are common to most process calculi. The first pair of actions
represent an output/send of a value on a channel, while the second pair repre-
sent the input/reception of value or a signal on a channel. The remaining actions
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are peculiar of the BlenX language. The definition of free names for processes is
obtained by stipulating that Id?(Id′).process is a binder for Id′ in process and
that expose(Id : rate, Id).process and expose(rate, Id : rate, Id).process are
binders for Id in process. The definitions of bound names and of name substitu-
tion are extended consequently. The definition of free and bound names for boxes
is obtained by specifying that the set of free names of a box binders[process] is
the set of free names of the process minus the set sub(binders) of subjects of the
binders. Moreover, as usual two processes process and process′ are α-equivalent
if process′ can be obtained from process by renaming one or more bound names
in process, and vice versa. As usual renaming avoids name clashes, i.e. a free
name never becomes bound after the renaming. More details of this definitions
can be found in [22, 5].

Species: In BlenX species are defined as classes of boxes which are structurally
congruent. The structural congruence for boxes, denoted with ≡, is the smallest
relation which satisfies the following laws:

− process ≡ process′, if process and process′ are α-equivalent
− process | nil ≡ process

− process1 | (process2 | process3) ≡ (process1 | process2) | process3

− process1 | process2 ≡ process2 | process1

− sum | nil ≡ sum

− sum1 | (sum2 | sum3) ≡ (sum1 | sum2) | sum3

− sum1 | sum2 ≡ sum2 | sum1

− !action.process ≡ action.(process | !action.process)

− binders[process] ≡ binders[process′], if process ≡ process′

− binders, binders′[process] ≡ binders′, binders[process]

− #(Id : rate, Id1), binders[process] ≡ #(Id′ : rate′, Id1), binders[process{Id′
/Id}]

if Id′ �∈ sub(binders)

− #(Id, Id1), binders[process] ≡ #(Id′, Id1), binders[process{Id′
/Id}]

if Id′ �∈ sub(binders)

− #h(Id : rate, Id1), binders[process] ≡ #h(Id′ : rate′, Id1), binders[process{Id′
/Id}]

if Id′ �∈ sub(binders)

− #h(Id, Id1), binders[process] ≡ #h(Id′, Id1), binders[process{Id′
/Id}]

if Id′ �∈ sub(binders)

Consider for example the program:
...
let b1 : bproc = #(x:1,A)
[ ( x!().nil + z?(w).w!().nil ) | x!(z).nil ];

...
let b2 : bproc = #(y:1,A)
[ y!(z).nil | ( z?(t).t!().nil + y!().nil ) ];

...

In the example we have b1 ≡ b2, hence the boxes belong to the same species. No-
tice that if we have multiple definition of boxes that represent the same species,
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then at run-time they are collected together and the species name is taken from
the first definition (e.g. in the example the name of the corresponding species is
b1). Hereafter, when we say that in a particular state of execution of a program
the cardinality of a box species b1 is n we mean that in that state of execution
the number of boxes structurally congruent to b1 is n.

Intra-communication: consider the following piece of code:

let p : pproc =
x!(m).nil + y?(z).z?().nil + y?().nil ;

let b1 : bproc = #(x:1,A),#h(m,B)
[ p | x?(z).z!(c).nil + x?().nil + y!().nil ];

Box b1 has a binder #(x : 1, A) and an internal process defined as a parallel
composition of the sum process p and the sum process x?(z).z!(c).nil + y!().nil.
Each sum composes processes guarded by input or output actions. Parallel pro-
cesses that perform complementary actions on the same channel inside the same
box can synchronize and eventually exchange a message, generating an intra-
communication. In the example, several intra-communications can be performed.
Indeed, each output in the first sum can synchronize with an input on the same
channel in the other sum, and vice-versa. Consider the input/output pair:

x!(m).nil + ... | x?(z).z!(c).nil + ...

x?(z) represents an input/reception of something that will instantiate the place-
holder z over channel x, while x!(m) represent an output/send of a value m over
channel x. The placeholder z in the input is a binding occurrence that binds all
the free occurrences of z in the scope of the prefix x?(z) (in this case in z!(c).nil).
Sometimes the channel name x is called the subject and the placeholder/value
z is called the object of the prefix. The execution of the intra-communication
consumes the input and output prefixes and the object m of the output flows
from the process performing the output to the one performing the input:

nil | m!(c).nil

The flow of information affects the future behavior of the system because all the
free occurrences bound by the input placeholder are replaced in the receiving
process by the actual value sent by the output (in the example z is substituted
by m). The graphical representation of the intra-communication is

x!(m).nil + ...|x?(z).z!(c).nil + ...

#(x : 1, A) #(m, B)

→ nil | m!(c).nil

#(x : 1, A) #(m, B)

If an input has no object and it is involved in a intra-communication:

x!(m).nil + ... | x?().nil + ...

then the two prefixes are consumed and no substitution is performed:
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nil | nil

If an output has no object and is involved in an intra-communication:

... + y?(z).z?().nil + ... | ... + y!().nil + ...

then the two prefixes are consumed and the substitution in the process prefixed
by the input is performed by using a reserved string $emp on which no further
intra-communication is allowed.

$emp?().nil | nil

Notice that the string $emp cannot be generated by the regular expression defin-
ing the Id (see Section 4).

If object-free outputs and inputs synchronize in an intra-communication:

... + y?().nil + ... | ... + y!().nil + ...

then the two prefixes are consumed, generating the process:

nil | nil

The stochastic nature of BlenX emerges in the above examples through the rates
associated to the input/output channels. In particular, if the channel is bound to
a binder, the rate is specified in the binder definition; if the binder is #(x : 1, A)
(or #h(x : 1, A)) the rate associated to an intra-communication over channel x
is 1, while if the binder is #(x, A) (or #h(x, A)) the associated rate is assumed
to be 0 and hence no intra-communications over channel x can happen.

If the channel is not bound to a binder, then the rate has to be defined in the
global rateDec. In particular, if rateDec is:

<< ... , x : 2.5 , ... >>

the rate associated to an intra-communication over channel x is 2.5. Instead, if
no specific x rate definition appears in the rateDec list, then the BASERATE
definition is used. If also no BASERATE definition appears in the rateDec list,
then a compile time error is generated. In the example, intra-communications over
channel y need a specific definition or the BASERATE in the rateDec list.

Since to each communication channel in a box we can associate an unique
rate r, then the overall propensity of performing an intra-communication on a
channel x is given by the following formula:

r × ((In(x) × Out(x)) − Mix(x))

where In(x) identifies all the enabled input on x, Out(x) the enabled output on
x and Mix(x) all the possible combinations of input/output within the same
sum. As an example, consider the box:

let b1 : bproc = #(x,A),#h(m,B)
[ x?().nil + x!().nil + x!().nil |
x?().nil + x!().nil + x!().nil ]
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Let the rate associated to x be 3, the overall propensity associated to an intra-
communication on the channel x is calculated using the previous formula ob-
taining:

3 × ((2 × 4) − 4) = 12

where term (2 × 4) represents all the combinations of input/output and the last
4 represents the combinations contained in the same sum and hence the ones
that cannot give raise to an inter-communication.

Notice that multiplying 12 by the cardinality of the species b1 we obtain the
overall propensity that a box of that species performs an intra-communication
on channel x.

Hide: consider the following box:

let b1 : bproc = #(x:1,A)
[ hide(2,x).nil + hide(x).nil ]

Box b1 can perform two hide actions. The execution of both actions cause the
modification of the box interface hiding the binder #(x : 1, A). The graphical
representation of the actions is

hide(2, x).nil + hide(x).nil

#(x : 1, A)

→ nil

#h(x : 1, A)

The only difference between the actions is the stochastic rate association.
Indeed, the first action specifies its own rate and hence is performed with a rate
of value 2. For the second action, a rate has to be defined in the global rateDec.
In particular, if rateDec is:

<< ... , HIDE : 4 , ... >>

the rate associated to the all hide actions is 4. Instead, if no specific HIDE
rate definition appears in the rateDec list, then the BASERATE definition
is used. If also no BASERATE definition appears in the rateDec list, then a
compile-time error is generated.

To compute the overall propensity associated to hide actions performed by
boxes of a given species, we need to calculate all the possible combinations.
This combination is obtained by multiplying the number of all the enabled hide
actions hide(r, x) on the same binder with the same rate r and the number of all
the enabled hide actions hide(x) on the same binder by the corresponding base
rates. The overall propensity is then obtained by multiplying this combination
with the cardinality of the species.

Notice that an hide action on an binder which is already hide is not enabled.
A definition of an hide action on a name which is not a binder is not enabled
and generates a compile-time warning.
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Unhide: consider the following box:

let b1 : bproc = #h(x:1,A)
[ unhide(2,x).nil + unhide(x).nil ]

Box b1 can perform two unhide actions. The execution of both actions cause the
modification of the box interface unhiding the binder #h(x : 1, A). The graphical
representation of the actions is

unhide(2, x).nil + unhide(x).nil

#h(x : 1, A)

→ nil

#(x : 1, A)

The only difference between the actions is the stochastic rate association.
Indeed, the first action specifies its own rate and hence is performed with a rate
of value 2. For the second action, a rate has to be defined in the global rateDec.
In particular, if rateDec is:

<< ... , UNHIDE : 4 , ... >>

the rate associated to the hide action is 4. Instead, if no specific UNHIDE rate
definition appears in the rateDec list, then the BASERATE definition is used.
If also no BASERATE definition appears in the rateDec list, then a compile
time error is generated.

To compute the overall propensity associated to unhide actions performed by
boxes of a given species, we need to calculate all the possible combinations. This
combination is obtained by multiplying the number of all the enabled unhide
actions unhide(r, x) on the same binder with the same rate r and the number
of all the enabled unhide actions unhide(x) on the same binder by the corre-
sponding base rates. The overall propensity is then obtained by multiplying this
combination with the cardinality of the species.

Notice that an unhide action on an binder which is already unhidden is not
enabled and that a definition of an unhide action on a name which is not a binder
is not enabled and generates a compile-time warning.

Change: consider the following box:

let b1 : bproc = #(x:1,A)
[ ch(2,x,D).nil + ch(x,D).nil ]

Box b1 can perform two change actions. The execution of both actions cause the
modification of the box interface changing the value A of the binder #(x : 1, A)
into D. The graphical representation of the actions is

ch(2, x, D).nil + ch(x, D).nil

#(x : 1, A)

→ nil

#(x : 1, D)
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The first action specifies its own rate and hence is performed with a rate of
value 2. For the second action, a rate has to be defined in the global rateDec.
In particular, if rateDec is:

<< ... , CHANGE : 4 , ... >>

the rate associated to the hide action is 4. Instead, if no specific CHANGE rate
definition appears in the rateDec list, then the BASERATE definition is used.
If also no BASERATE definition appears in the rateDec list, then a compile
time error is generated.

To compute the overall propensity associated to change actions performed by
boxes of a given species, we need to calculate all the possible combinations. This
combination is obtained by multiplying the number of all the enabled change
actions ch(r, x, D) on same values and the number of all the enabled change
actions ch(x, D) on same binders and with equal substituting types by the cor-
responding base rates. The overall propensity is then obtained by multiplying
this combination with the cardinality of the species.

Die: consider the following box:

let b1 : bproc = #(x:1,A)
[ die(2).nil ]

Box b1 can perform a die action. The execution of the action eliminates the
related box. The graphical representation of the action is

die(2).nil

#(x : 1, A)

→ Nil

The action is executed with the specified rate of value 2. To compute the over-
all propensity associated to die actions we calculate the number of all the enabled
die actions die(r) on same rates and multiply this values by the corresponding
base rates and by the cardinality of the species.

Delay: consider the following box:

let b1 : bproc = #(x:1,A)
[ delay(2).nil ]

Box b1 can perform a delay action. The execution of the action allows the box
to evolve internally. The graphical representation of the action is

delay(2).nil

#(x : 1, A)

→ nil

#(x : 1, A)
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The action is executed with the specified rate of value 2. Moreover, Nil is used
to identify a deadlocked box which does nothing. To compute the overall propen-
sity associated to delay actions we calculate the number of all the enabled delay
actions delay(r) on same rates and multiply this values by the corresponding
base rates and by the cardinality of the species.

Expose: consider the following box:

let b1 : bproc = #(x:1,A)
[ expose(2,x:3,B).x!() + expose(x:3,B).x!() ]

Box b1 can perform two expose actions. The execution of both actions add a new
binder #(y : 3, B) to the interface, by renaming the subject into a new name to
avoid clashes of names (x renamed into y with all the occurrences bound by the
subject in the expose). The graphical representation of the actions is

expose(2, x : 3, B).x!() + expose(x : 3, B).x!()

#(x : 1, A)

→ y!()

#(x : 1, A) #(y : 3, B)

The first action specifies its own rate and hence is performed with a rate of
value 2. For the second action, a rate has to be defined in the global rateDec.
In particular, if rateDec is

<< ... , EXPOSE : 4 , ... >>

the rate associated to the hide action is 4. Instead, if no specific EXPOSE
rate definition appears in the rateDec list, then the BASERATE definition
is used. If also no BASERATE definition appears in the rateDec list, then a
compile-time error is generated. Expose actions are considered separately and
hence the overall propensity that a box species perform an expose action is cal-
culated multiplying the rate associated to the action by the action rates and by
the cardinality of the box species performing the action.

Notice that an expose action of a binder identifier which is already present in
the set binders of the box is not enabled.

If-then Statement: consider the following box:

let b1 : bproc = #(x:1,A)
[ if (x,unhidden) and (x,A) then x!().nil ]

Box b1 can perform the output action x!() only if the conditional expression is
satisfied by the actual configuration of the binders of the box containing the
if-then statement. In this example if the binder with subject x is unhidden and
its binder identifier is A, then the output can be executed. The general form of
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the conditional expressions of if-then statements are generated by the following
BNF grammar:

condexp ::=
atom

| condexp and condexp
| condexp or condexp
| not condexp
| ( condexp )

atom ::=
( Id, Id )

| ( Id, hidden )
| ( Id, unhidden )
| ( Id, bound )
| ( Id, Id, hidden )
| ( Id, Id,unhidden )
| ( Id, Id, bound )

Conditional expressions are logical formulas built atoms (conditions on binder
states) connected by classical binary logical operators (and,or,not). In the atoms
the first Id identifies the subject of a binder, while the second Id (if present) iden-
tifies the binder identifier. The keywords hidden, unhidden and bound identify the
three states in which a binder can be. As an example, the conditional expression:

(x,A) and ( not(y,B,hidden) or (z,bound) )

is satisfied only if the box has a binder with subject x of type A and has a
binder with subject y which is not hidden and with type different from B or has
a bound binder with subject z (see Section 4.6). Notice that boxes of the form:

let b1 : bproc = #(x:1,A)
[ if (y,unhidden) and (x,A) then x!().nil ]

let b1 : bproc = #(x:1,A)
[ y?(x).if (x,unhidden) and (x,A) then x!().nil ]

generates compile-time warnings. Indeed, in the first case the (y, unhidden) do not
refer to any binder of the box, while in the second case the atom (x, unhidden) is
bound by the input y?(x) and not by the subject of the binder. In general, at
run-time atoms on binders which are not present are evaluated as false value.

Inter-communication: processes in different boxes can perform an inter- com-
munication (distinct from the intra-communication described above) if one sends
a value y over a link x that is bound to an active binder of the box #(x : r, A)
and a process in another box is willing to receive a value from a compatible
binder #(y : s, B) through the action y!(z). The two corresponding binders are
compatible if a compatibility value (i.e. a stochastic rate) greater than zero is
specified in the binder declaration file
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{...,A,...,B,...}
%%
{ ... , (A,B,2.5), ... }

Note that intra-communications occur on perfectly symmetric input/output
pairs that share the same subject, while inter-communication can occur between
primitives that have different subjects provided that their binder identifiers are
compatible. This new notion of communication is particularly relevant in biology
where interactions occur on the basis of sensitivity or affinity which is usually
not exact complementarity of molecular structures. The same substance can in-
teract with many other in the same context, although with different levels of
affinity expressed through different properties.

The graphical representation of an inter-communication is:

x?(m).nil

#(x : 1, A)

y!(z).nil

#(y : 3, B)

→ nil

#(x : 1, A)

nil

#(y : 3, B)

If the compatibility is specified by a stochastic rate, the overall propensity of the
inter-communication is computed as bimolecular rate (see Section 3), considering
all the possible combinations of inputs on channel x in the first box and outputs on
y in the second box and multiplying this value with the product of the cardinality
of the box species in the system. As an example consider the program:

...
let b1 : bproc = #(x:1,A)
[ x!().nil + x!().nil | x!().nil ];

...
let b2 : bproc = #(y:3,B)
[ y?().nil | y?().nil ];

...
let b3 : bproc = #(z:2,C)
[ z?().nil ];

run 10 A || 20 B || 5 b3

Assuming boxes b1 and b2 defines two different species, the overall propensity of
the inter-communication on boxes species A and B is

(2.5 × (3 × 2)) × (10 × 20)

where 2.5 is the basal rate, (3 × 2) is the number of combinations of inputs and
outputs and (10 × 20) is the product of the cardinality of the two box species.

If the compatibility is expressed by a function defined in the declaration file:

{...,A,...,B,...}
%%
{ ..., (A,B,f1), ... }

then the overall propensity of the inter-communication is computed as a rate
function (see Section 3) and therefore it does not depend directly on the cardi-
nality of the involved species. In the example, if the function f1 is as:
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...
let f1 : function = 2 * pow(|b3|,2);
...

the overall propensity of the inter-communication has value 50.
Notice that in an inter-communication, values corresponding to binder sub-

jects cannot be sent.

4.6 Complexes

A complex is a graph-like structure where boxes are nodes and dedicated com-
munication bindings are edges. Figure 9 report an example is reported, where
b0 = #(x : r0, A0) and b1 = #(y : r1, A1). In BlenX, complexes are not defined

process1

b0 b1

process2

b0 b1

process3

b0 b1

process4

b0 b1

Fig. 9. Example of complex

as species, but as graph-like structures of box species. Complexes can be cre-
ated automatically during the program execution or they can be instantiated
also in the initial program. A complex can be defined using the following BNF
grammar:

complex ::=
{ ( edgeList ) ; nodeList }

edgeList ::=
edge

| edge, edgeList

edge ::=
( Id, Id, Id, Id )

nodeList ::=
node

| node nodeList

node ::=
Id : Id = ( complBinderList ) ;

| Id = Id ;

complBinderList ::=
Id

| Id, complBinderList
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A complex is created by specifying the list of edges (edgeList) and the list of
nodes (nodeList). Each edge is a composition of 4 Ids. The first and the third
identifiers represent node names, while the others represent subject names. Each
node in the nodeList associates to a node name the corresponding box name and
specifies the subjects of the bound binders. As an example, consider the program:

...
let b1 : bproc = #(x:r0,A0),#(y:r1,A1)
[ x!().nil ];

...
let b2 : bproc = #(x:r0,A0),#(y:r1,A1)
[ y!().nil ];

...
let C : complex =
{
(
(Box0,y,Box1,x),(Box1,y,Box2,x),
(Box2,y,Box3,x),(Box3,y,Box0,x)

);
Box0:b1=(x,y);
Box1:b2=(x,y);
Box2=Box0;
Box3=Box1;

}
...

The complex C defines a complex with a structure equivalent to the one reported
in Figure 9. A complex can also be generated automatically at run-time thorough
a set of primitives for complexation and decomplexation. The ability of two boxes
to form and break complexes is defined in the bind declaration file by specifying
for pairs of binder identifiers triples of stochastic rates:

{...,A,...,B,...}
%%
{ ..., (A,B,1.5,2.5,10), ... }

Complex and decomplex operations create and delete dedicated communication
bindings between boxes. The biological counterpart of this construct is the bind-
ing of a ligand to a receptor, or of an enzyme to a substrate through an active
domain. Given two boxes with binder with identifiers A and B respectively, the
complex operation creates, with rate 1.5, a dedicated communication binding:

process

#(x : 1, A)

process1

#(y : 2, B)

→ process

#c(x : 1, A)

process1

#c(y : 2, B)
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while the decomplex operation deletes, with rate 2.5, an already existing binding:

process

#c(x : 1, A)

process1

#c(y : 2, B)

→ process

#(x : 1, A)

process1

#(y : 2, B)

Finally, the inter-complex communication operation enables, with rate 10, a com-
munication between complexed boxes through the complexed binders:

x?().nil

#c(x : 1, A)

y!().nil

#c(y : 2, B)

→ nil

#c(x : 1, A)

nil

#c(y : 2, B)

Notice that a binder in bound status is identified by #c(y : B)s where c means
that the corresponding box is part of a complex. It is important to underline
that, although the bound status cannot be explicitly specified trough the syntax
of the language and is used only as an internal representation, a binder in bound
status is different from a hidden or unhidden binder and hence the structural
congruence definition has to be extended accordingly:

− #c(Id : rate, Id1), binders[process] ≡ #c(Id′ : rate′, Id1), binders[process{Id′
/Id}]

if Id′ �∈ sub(binders)

− #c(Id, Id1), binders[process] ≡ #c(Id′, Id1), binders[process{Id′/Id}]
if Id′ �∈ sub(binders)

4.7 Events

Events specify statements, or verbs, to be executed with a specified rate and/or
when some conditions are satisfied. A single event is the composition of a con-
dition cond and an action verb (recall the syntax of declarations in Sect. 4.3).

dec ::=
| ...
| when ( cond ) verb ;
| ...

Conditions. Events are used to express actions that are enabled by global
conditions, expressed by cond. Conditions are used to trigger the execution of an
event when some elements are present in the system, when a particular condition
is met, with a given rate, or at a precise simulation time or simulation step.

cond ::=
entityList : EvExpr : rate

| entityList : EvExpr : funcId
| entityList : EvExpr :
| entityList :: rate
| entityList :: funcId
| : EvExpr :
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entityList ::=
boxId

| boxId, entityList

EvAtom ::=
| Id | = Decimal

| | Id | < Decimal
| | Id | > Decimal
| | Id | ! = Decimal
| time = Real
| steps = Decimal
| stateOpList

EvExpr ::=
EvAtom

| EvExpr and EvExpr
| EvExpr or EvExpr
| not EvExpr
| ( EvExpr )

More precisely, a condition cond consists of three parts: entityList, a list of boxes
present in the system; an expression used to enable or disable the event; a rate
or rate function, used to stochastically select and include them in the set of
standard interaction-enabled actions.

EvExpr can be combined through logical operators starting from atoms; fur-
thermore, a condition can specify both an EvExpr and a rate (see definition
of cond), so that we can simultaneously address rates and conditions (e.g. on
structures and concentrations of species). As an example, consider the following
event:

when(A, B : (|A| > 2 and |B| > 2) : rate(r1)) join (C);

The entities involved in the event are A and B, as they appear in the entityList ;
moreover, the EvExpr requires the cardinality of both the species identified by
boxes A and B to be greater than two, so the event will fire only when there
are at least two A and two B in the system. When the condition is satisfied, the
event will fire with rate r1.

The EvAtoms evaluate to the boolean values true and false, and can be
used to express conditions over concentrations of species identified by an Id
(| Id | op Decimal, where op ∈ <, >, =, ! =) or over simulation time or simula-
tion steps.

A condition on simulation time will be satisfied as soon as the simulation
clock is greater or equal to the specified time; a conditions on simulation steps
will be satisfied as soon as the step count will exceed the number specified in the
EvAtom. In both cases, the condition will remain true until the event is fired.
So, events for which the only condition specified is the number of steps or the
execution time are guaranteed to fire exactly once. For example, the event:

when(A : time = 3.0 : inf) delete;
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will fire as soon as the simulation clock reaches 3.0, removing one A form the
system.

It is important to make a remark: Ids that can appear in the EvExpr must
be entities that appear in the entityList. The following code:

when(A, B : (|C| > 2) : rate(r1)) join (C);

will produce a compilation error. The only exception is when the entityList is
empty (the sixth case in the BNF declaration of cond). In this case, the Ids in
the expression can be chosen among all the betaIds or varIds already declared,
with no restrictions.

If more complex expressions are needed (i.e. for expressing conditions on more
species in the system) it is possible to use a rate function instead (see Sect. 4.1).

Note that the number of Ids specified in the entityList depends on the event
verb that is used for the current event. See the next section for more details on
this point.

Events, like all the other actions that can trigger an execution in a BlenX
program, can have an associated rate. It is possible to specify both rate constants
(form 1, 4 in the BNF specification of cond) or rate functions (form 2, 5 in the
BNF specification of cond). The rate constants are treated differently in the case
of events with or without explicit EvExprs. When there is no EvExpr, the rate is
computed as a monomulecular or bimolecular rate, using the concepts introduced
in Sec. 3. In the monomolecular case, the number hμ of reactant combinations
is equal to the cardinality of the species designated by the unique box in the
entityList, in the bimolecular case the number hμ of reactant combinations is
the product of the cardinalities of the species designated by the first and second
box in the entityList.

When a condition is present, the rate is a constant rate (see Sec. 3.1). This is
to avoid the case in which a decimal value used in a comparison operation in a
EvAtom can influence the rate of that action. Consider the two following pieces
of code:

when (A : |A| > 2 : r) delete(2);

and

when (A : |A| > 10 : r) delete(2);

The second event will be triggered when there is an higher concentrations of
boxes of species A, ten in this case. If we use the monomulecular way of comput-
ing the actual rate, the second event will be triggered with an higher rate than
the first one, as monomolecular rates are proportional to the reactants concen-
tration. What we intuitively expect, however, is that the two actions will take
place with the same actual rate, hence the event rate is considered as a constant
rate. Consider also the following example:

when (A : |A| = 0 : r) new;
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Intuitively, this event introduces a box of species A with a given rate when there
are no such entities in the system. If we compute the rate in the usual way, the
event will be never executed (which is clearly different form what we expect).

For the case in which rates are specified as functions (form 2, 5 in the BNF
specification of cond), the function is evaluated and the resulting value is used
directly to compute the propensity function (see Sec. 3.1).

Verbs. Events can split an entity into two entities, join two entities into a single
one, inject or remove entities into/from the system. Events are feature is essen-
tial to program perturbation of the systems triggered by particular conditions
emerging during simulation and to observe how the overall behaviour is affected.
An example could be the knock-out of a gene at a given time.

verb ::=
split ( boxId, boxId )

| join ( boxId )
| new ( Decimal )
| delete ( Decimal )
| new
| delete
| update ( varId, funcId )

Verbs and conditions have some dependencies: not all verbs can apply to all
conditions. The entityList in cond is used by the event to understand which
species the event will modify; at the same time, the verb dictates which action
will take place. Indeed, a verb specify how many entities will be present in the
entityList :

– the split verb requires exactly one entity to be specified in the condition
list;

– the join verb requires exactly two entities to be specified in the condition
list;

– the new and delete verbs requires exactly one entities to be specified in the
condition list;

– the update verb requires that the condition list is empty (form 6 in the
BNF specification of cond).

The split verb removes one box of the specified species from the system, and
substitutes it with the two other entities specified in the ( boxId, boxId ) pair.
In the following piece of code:

when(A :: r) split(B, C);

One A will be substituted by one B and one C, leading to the following be-
haviour:

PA

#(x, A)

→ PB

#(x, B)

PC

#(x, C)
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The join verb removes two boxes, one for each of the species specified in the list,
from the system, and introduces on box of the species specified in its (boxId)
argument:

when(A, B :: r) join(C);

One A and one B will be joined in one C, leading to the following behaviour:

PA

#(x, A)

PB

#(x, B)

→ PC

#(x, C)

The target of the join, i.e. the box specified as argument, is optional:

when(A, B :: r) join;

If no box is specified, a new box, automatically generated form two originating
boxes, will be introduced into the system:

PA

#(x, A)

PB

#(x, B)

→ PA | PB

#(x, A) #(x, B)

The new box will have as the interface the union of the interfaces of boxes A and
B, and as its internal process the parallel composition of the internal processes
of A and B.

The new and delete verbs introduce and remove boxes. New will introduce
into the system one copy (in its parameterless variant) or n copies (in its sec-
ond variant) of the single entity present in the event list. As for the other
events, the event is triggered with a certain rate and/or with a condition ex-
pression is met. The behaviour of delete is complementary: it will remove one
or more boxes from the system when its cond triggers the event. Note that
in the case of delete a box of the species specified in the entity list must be
present:

when(A : |A| = 0 : inf) delete;
when(A : |A| = 0 : inf) new(2);

The first event will never fire, while the second one will fire as soon as there are
no more boxes of species A in the system. Other examples of valid events are:

when(A : (|A| > 1 and |A| < 10) : inf) new(100);
when(A :: r) delete;
when(A : (|A| = 2) and (steps = 3000) : inf) delete(2);

This set of event will produce oscillations of the concentrations of A, by intro-
ducing some boxes when the concentrations falls under a threshold and deleting
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them with a decay of rate r, until the simulation reaches 3000 steps; after that,
all As are deleted from the system and no further evolution is possible.

The update verb is used to modify the value of a variable in the system.
When the event is fired, the function funcId and the resulting value is assigned
to the variable varId. Functions and variables are explained in greater detail
in Sec. 4.1; here it is sufficient to know that variables are global Ids bound to
real values, and that functions are mathematical expressions on variables and
cardinality of entities that evaluate to a real value.

The condition of an update event has no entities in its entityList, and no
rate or rate function in its rate part: the event is triggered as soon as its EvExpr
evaluates to true. Jointly to an update event it is possible to use a particular
kind of condition, based on the traversal of successive states.

statOpList :
stateOp

| stateOp, stateOpList

statOp :
Id ← Real

| Id → Real

The list of states to be traversed are expressed in a stateOpList ; each stateOp
element in the list expresses a condition on the quantity of an Id (i.e. cardinality
of boxes for boxId or the value bound to a variable for varId).

StateOps are examined in sequence, one after the other. We say that a stateOp
becomes valid when the condition on its Id is met for the first time. The ‘→’
operator recognizes when the quantity bound to Id becomes greater than the
specified real value, while the ‘←’ operator recognizes when the quantity bound
to Id becomes smaller than the specified real value.

When a stateOp becomes valid, the EvExpr passes to the evaluation of the
following stateOp of the list. As soon as the last state in the stateOpList becomes
valid, the EvExpr evaluates to true, so the event (update, in this case) can be
fired. Once fired, the EvExpr restart its evaluation from the beginning of the
stateOpList, waiting for the first stateOp to become valid again.

For instance, to recognize the oscillatory behaviour in Fig. 10, we can use the
following piece of BlenX code:

let n : var = 1;
let f : function = n + 1;
...
when (: A -> 20, A <- 20 :) update (n, f);

This code updates the variable n, also depicted in the figure, by incrementing it
at every oscillation.

The concatenation of an arbitrary succession of states allows to overcome
possible limitations that are often encountered when dealing with a stochastic
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Fig. 10. The species A exhibits an oscillating behaviour, captured by a state-list con-
dition. n is a variable that “counts” the number of oscillations.

Fig. 11. The species A exhibits an oscillating behaviour, but data has some noise: the
state-list condition cannot capture it and n is updated in a wrong way

approach, mainly noise. As an example, look at Fig. 11: the simple state list
just introduced is not enough to capture the correct period of oscillations, as
highlighted in the upper-right corner of the figure.

It is easy to solve this issues adding more states to the stateOpList :

let n : var = 1;
let f : function = n + 1;
...
when (:A -> 10, A -> 20, A <- 20, A <- 10:) update (n, f);

This event can capture correctly the behaviour of the noisy oscillating system,
as depicted in Fig. 12.
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Fig. 12. The new state-list condition is able to capture the oscillations correctly

4.8 Prefixes

Prefixes are generated by the following BNF grammar:

dec ::=
...

| let Id : prefix = actSeq ;

actSeq ::=
action

| action . prefix

In other words, a prefix is an object bound to a sequence of actions. Prefixes
are used exclusively in templates (see Sec. 4.9). Templates can contain variable
parts; among these parts, it is possible to specify a variable prefix that can
be substituted with a custom sequence of actions when instantiated. An exam-
ple of the usage of prefixes for easing template definitions is given in the next
Section.

4.9 Templates

Templates, often referred to as generics or parametric processes, are a feature
of many programming languages that allows code in an extended grammar in
which code can contain variable parts that are then instantiated later by the
compiler with respect to the base grammar.

In BlenX template code is specialized and instantiated at compile time using
binder identifiers, code or names that are passed as template arguments. There-
fore, BlenX provides a grammar for defining templates and code to instantiate
and use them.
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Template Declaration. It is possible to define templates for processes, boxes
and sequences. The BNF for template declaration and definition is the following:

dec ::=
...

| template Id : pproc 〈〈 formList 〉〉 = piProcess ;
| template Id : bproc 〈〈 formList 〉〉 = betaProcess ;

form ::=
name Id

| pproc Id
| binder Id
| prefix Id

formList ::=
form

| form, formList

The declaration of a template bproc or pproc follows closely the declaration
of their standard counterparts, with the let keyword substituted by template,
and an additional list of template formal parameters enclosed by double angular
parenthesis.

The template parameter formList is a comma-separated list of forms; each
form declares a template argument made up of a keyword anong name, pproc,
binder, prefix followed by an Id. The Id will be added to the environment of
the object being defined, acting as a placeholder for the object that will be used
during parameter instantiation. For example, in the following code:

template P : pproc<<pproc P1, name N1, name N2, binder T1>> =
x?().N1!().ch(N2, T1).P1;

we do not have to define the pproc P1, nor we have to insert the binder identifier
T 1 into the type file: this piece of code will compile without errors, as the process
P1 and the binder identifier T 1 are inserted into P ’s environment as template
arguments. P will be treated by the compiler as pproc with four template ar-
guments: a process, two names and a binder identifier. Note that the notion of
“name” is pretty general: it can be any name appearing into the template, being
it a channel name, an action argument or a binder name.

Template Instantiation. A declared template (pproc or bproc) is held by the
compiler in its symbol-table in order to satisfy following invocations or instan-
tiations of that template. Template instantiation is the compile time procedure
that substitute the template formal parameters with the actual parameter with
which the template object will be used. For example, the following code is a
possible instantiation of the previous pproc template:

let NilProc : pproc = nil;
let B : bbproc = #(z, Z)

[ P<<NilProc, y, z, Z2>> | y?().nil ];

The code generate by the compiler as the result of this instantiation is equivalent
to the following hand-written code:
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let NilProc : pproc = nil;
let B : bbproc = #(z, Z)

[ x?().y!().ch(z, Z2).NilProc | y?().nil ];

More precisely, a template is instantiated by using the Id of the template (pproc
or bproc) and providing it with a list invTempList of comma-separated template
invocations invTempElems, whose kind has to match the kind of the template
formal parameters.

invTempElem ::=
Id

| Id 〈〈 invTempList 〉〉
| ( Id, unhidden )
| ( Id, hidden )

invTempList ::=
invTempElem

| invTempElem, invTempList

bp ::=
...

| Decimal 〈〈 invTempList 〉〉

Note that templates do not increase the expressive power of the language, they
only make it easier to write generic and reusable code. Consider the following
code:

template rep : pproc<<name x, pproc P>> = !x?().(P.nil);

template detach : pproc<<name x, prefix P, binder T, name y>> =
x?().P.ch(x, UN).hide(x).ch(x, T).unhide(x).y!().nil;

The first template is the general pattern of a replicating process, that performs
some actions and then gets back to its original state. The second template is
the general pattern of an entity that waits for a signal on a binder, responds by
performing some action and then forces an unbind.

Enzymes that catalyse a reaction with a substrate and then detach from it
can then be written as follows:

let E1p : prefix = delay(rate).p!(). ... ;
let E1p : prefix = ... ;

let E1 : bproc = #(p, TyrDomain) =
[ rep<<y, detach<<p, E1p, TyrDomain, y>> >> ];

let E2 : bproc = #(q, XYDomain) =
[ rep<<r, detach<<q, E2p, XYDomain, r>> >> ];

The programmer has only to define the prefix that codifies for the response (E1p
and E2p), without having to worry how to write code for forcing the detachment
of the substrate.
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5 Examples

This section reports some classical examples inspired by biology and it shows
how BlenX can easily used to model them.

5.1 Enzymatic Reactions

Most of the chemical reactions that happen in living organism are very slow,
even when thermodynamically favored. The common way to speed up a reaction
is to add a catalyst to the reaction itself; in cells, enzymes play the role of
catalysts.

Enzyme - Substrate: a simplistic mechanism for the catalysis of a product P
from a substrate S is the following:

E + S
k−→ E + P

This very simple bimolecular reaction can be modelled using an inter communi-
cation between the box representing the enzyme E and the box representing the
substrate S. Basically, the E box outputs a message through its binder, while
the S box waits an input on its binder. When an input is received, S reacts by
changing its structure or interface (the identifier of its binder, for example) and
becomes a new species codifying for the product P :

[steps = 1000]
<<BASERATE:inf>>

let Enzyme : bproc = #(x,DE)
[ rep x!().nil ];

let S : bproc = #(y,DS)
[ y?().ch(y, DP).nil ];

run 1 Enzyme || 100 S

Complementary shape of molecules domains are responsible for enzymes selec-
tivity. In our model, domains are represented as binders and their specificity is
represented by the affinity between the binder identifiers DE and DS. Hence,
the affinity drives the ability of the Enzyme to interact with the Substrate. We
want the enzyme E to catalyse the product P with rate k, so the identifier of
the binder DE on E is set to have an affinity k with the identifier DS of the
binder on S:

{ DE, DS, DP }
%%
{ DE, DS, k }

where k is a Real value or inf .
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Michaelis-Menten: the mechanism just introduced is too simplistic and do
not approximate well the dynamics of enzymatic reactions. Realistically, the
substrate must somehow bind to the enzyme before the enzyme can do its work:

E + S
k1−−⇀↽−−

k−1

ES
k2−→ E + P

where ES is an enzyme-substrate complex. This behaviour is captured by the
Michaelis-Menten kinetics, one of the most important chemical reaction mecha-
nisms in biochemistry used to describe the catalysis of biological chemical reac-
tions. The most convenient derivation of the Michaelis-Menten equation is based
on the quasi steady state approximation, where it is assumed that the concen-
tration of the substrate-bound enzyme (and hence also the unbound enzyme)
change much more slowly than those of the product and substrate.

Due to this assumption, it is possible to express the relationship between the
substrate concentration and the bound and unbound enzyme concentrations in
terms of the various rate constants:

v =
vmax[S]

Km + [S]

where the Michaelis constant Km is defined as k−1+k2
k1

.
As introduced in Sec. 4.1, BleX allows programmers to define the affinity

between binder identifiers using a triple of values or a function. The previous
example can be easily changed to use Michaelis-Menten kinetics instead of the
standard mass-action law, by changing the type file:

{ DE, DS, DP }
%%
{ DE, DS, f1 }

where f1 is defined in the declaration file as:

let VMax : const = 100;
let Km : const = 1.0;
let f1: function = VMax * (|S| / (Km + |S|));

Michaelis-Menten with Inhibitor: enzyme inhibitors are molecules that bind
to an enzyme, blocking or decreasing enzymatic activity. Since this way of reg-
ulating the enzymatic activity is easy to obtain and can correct a metabolic
imbalance, many drugs are enzyme inhibitors.

There are several possibilities for an inhibitor I to interfere with enzymatic
reactions: the binding of an inhibitor can stop a substrate from entering the
enzyme’s active site, or alternatively hinder the enzyme from catalysing its re-
action:

E + I
k

′
1−−⇀↽−−

k
′
−1

EI
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ES + I
k

′′
1−−⇀↽−−

k
′′
−1

ES + I

In the second case, the inhibitor binds to the enzyme-substrate complex and
alters the action of the enzyme on the substrate. The derivation of the Michaelis-
Menten equation is the same as for the uninhibited mechanism except for an
additional term in the expression for the total enzyme concentration and a new
transient, EI. The derived equation is:

v =
vmax[S]

Km + [S] + Km
k

′
−1

k
′
1

[I]

Note how even in this case the concentration of intermediate complexes EI
and ES, along with the concentration of product P , are not present in the
final equation. It is straightforward to modify our BlenX model to introduce the
inhibitor, by changing the f1 function.

let ki1 : const = ... ;
let ki2 : const = ... ;
let f1 : function = (VMax * |S|)/(Km + |S| + Km * (ki1/ki2) * Ci);

where Ci is the constant concentration of the inhibitor I and ki1 and ki2 are
the constants of dissociation and association of the enzyme E with the inhibitor
I. The simulated system exhibits the dynamic behaviour of Fig. 13(a).

Enzyme with Inhibitor - Detailed Model: consider again the bio-chemical
representation of an enzymatic reaction, adding a little more detail:

E + S �KES

K−1
ES

ES ⇀KEP EP ⇀KP E + P

We consider every intermediate complex and conformation in this model. As
before, we define boxes for the enzyme and the substrate:

[steps = 1000]
<< BASERATE:inf >>

let E : bproc = #(x,DE)[ rep x!().nil ];
let S : bproc = #(y,DS)[ y?().ch(y,P).nil ];

run 1 E || 100 S

and we set their interaction capabilities and affinities in the corresponding type
file:

{ DS, DP, DE }
%%
{ (DS, DE, 1.0, 1.0, 1.0),
(DP, DE, 0.0, 1.0, 0.0) }
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We set the affinity between DE and DS as (KES , K−1
ES, KEP ), as they represent

respectively the rate of binding, unbinding and communication between E and
S; in the same way, we define the affinity between DE and Dp as (0, KP , 0), as
the enzyme E and the product P can only dissociate.

This very simple and short program is able to reproduce the desired dynamic
behaviour. Let us consider an enzyme E and a substrate S in their initial con-
figuration:

E

(x, DE)

S

(y, DS)

The enzyme E and the substrate S can complex together with rate KES :

rep x!().nil

(x, DE)

y?().ch(y, P ).nil

(y, DS)

and consume an inter-communication through the dedicated connection. After
the communication, the substrate S consume immediately the action ch because
its rate is infinite3 and the pi-process of the enzyme E is replicated. The resulting
system is:

rep x!().nil

(x, DE)

y?().////////////ch(y, P ).nil

(y, DP )

Now the two entities will decomplex with rate KP , because of the affinity between
DE and DP , by producing the two boxes:

rep x!().nil

(x, DE)

P

(y, DP )

The substrate S has been converted to the product P in the resulting system.
This representation of the enzymatic reaction mechanism is pretty accurate,

as we do not make any assumption on the relative speed of each reaction. Fur-
thermore, it is trivial to modify the system to introduce competitive inhibition.
3 Since no rate is associated to the change operation, we consider the BASERATE.
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(a) Michaelis-Menten with inhibitor (b) Detailed model

Fig. 13. The observed dynamic behaviour of the Enzyme-Substrate-Inhibitor system

Assume we have a bio-chemical representation of this competitive inhibition
mechanism:

EI + S �K−1
EI

KEI
I + E + S �KES

K−1
ES

ES + I ⇀KEP EP + I ⇀KP E + P + I

this mechanism can be obtained by adding to the previous BlenX program a box
representing the inhibitor, putting it in parallel with the existing enzymes and
substrates.

let I : bproc = #(z,DI)[ nil ];

run 10 E || 100 S || 10 I

We also have to update the type file with affinity information:

{ ... , DI }
%%
{ ... ,
(DE,DI,1.,1.,0.) }

As the affinity between DI and DE is equal to (KEI , K
−1
EI , 0), we have that the

enzyme E can bind with the substrate S or with the inhibitor I:

nil

(z,DI)

rep x!().nil

(x,DE)

S

(y,DS)
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Since a binder can be complexed with only another binder at a time, the re-
sulting behaviour is exactly the one of the competitive inhibition. The dynamics
of this system are reported in Fig. 13.

It is straightforward to see how it is possible to construct and modify in a
compositional way complicated scenarios in which we have multi-substrate and
multi-products reactions with competitive inhibition mechanisms.

5.2 Oscillatory Behaviour

Many biological and ecological systems exhibit an oscillatory behaviour: the
circadian rhythm, a roughly-24-hour cycle in the physiological processes of liv-
ing beings; gene regulation networks; activator/inhibitor systems with feedback
loops; Lotka-Volterra dynamics. Here we show with two simple examples how to
codify these mechanisms in BlenX.

Repressilator: the repressilator is a synthetic genetic regulatory network, de-
signed specifically to exhibit a stable oscillation which is reported via the expres-
sion of a protein [7]. It acts like a clock but resembles no known natural clock.
The network was implemented in Escherichia coli using standard molecular bi-
ology methods, and observations were performed that verify that the engineered
colonies do indeed exhibit the desired oscillatory behavior.

The repressilator consists of three genes connected in a feedback loop, such
that each gene represses the next gene in the loop, and is repressed by the
previous gene (see the left part of Fig. 14).

Fig. 14. Left: the structure of the Repressilator oscillatory network. Right: the observed
time course of a stochastic simulation of the network.

The repressilator can be easily codified in BlenX using a process for each of
the genes, a process for each of the proteins and events for transcription of a
gene and the following production of a protein. Even better, as the high level
behaviour of the three proteins and of the three genes is the same, it is possible
to create a template for them
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[steps = 20000]
<< BASERATE : inf >>

// Process definitions
let geneProc : pproc =

delay(0.1).nil + //transcribe
signal?().delay(0.0001).rec!(); //a protein attaches

let proteinProc : pproc =
die(0.001) + //decay (be degraded)
signal!().rec!() ; //attach to a gene

// Template for a recurring pproc
template repp : pproc <<pproc P>> =

((rep rec?().P) | P);

let geneRep : pproc = repp<<geneProc>>;
let proteinRep : pproc = repp<<proteinProc>>;

//The process that represent a transcribed strand of DNA
let nilProc : pproc = (rep rec?().geneProc);

// Genes and Proteins templates
template Gene : bproc <<binder T,pproc P>> = #(signal:inf,T)

[ P ];
template Protein : bproc <<binder T>> = #(signal:inf,T)

[ proteinRep ];

and to instantiate the appropriate code for the three copies:

// Genes definitions
let GeneA : bproc = Gene<<GA,geneRep>>;
let GeneB : bproc = Gene<<GB,geneRep>>;
let GeneC : bproc = Gene<<GC,geneRep>>;

// Proteins definitions
let ProteinA : bproc = Protein<<A>>;
let ProteinB : bproc = Protein<<B>>;
let ProteinC : bproc = Protein<<C>>;

As a commodity, we also define three boxes ExpressN . These three processes
define species that are structurally congruent to intermediate states of GeneN
boxes, representing “ready for transcription” states. The ExpressN boxes are
not used in the program; they unique purpose is to capture a particular state of
genes and trigger an event:

let ExpressA : bproc = Gene<<GA,nilProc>>;
let ExpressB : bproc = Gene<<GB,nilProc>>;
let ExpressC : bproc = Gene<<GC,nilProc>>;
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Events can now be easily defined:

// Genes expressions definitions
when ( ExpressA :: inf ) split ( GeneA , ProteinA ) ;
when ( ExpressB :: inf ) split ( GeneB , ProteinB ) ;
when ( ExpressC :: inf ) split ( GeneC , ProteinC ) ;

The prog file is completed with the set-up of the initial conditions:

// Init
run 1 GeneA || 1 GeneB || 1 GeneC

The behaviour of the simulated system is the cyclical behaviour depicted on the
right side of Fig. 14.

Cell-cycle: The cell cycle is a complex network of biochemical phenomena
that controls the duplication of the cell. The cycle is usually subdivided into
four phases (G1, S, G2, M). The transition between them is driven by cyclin-
dependent protein kinases (Cdks) that, when bound to a cyclin partner, are
able to make cells to progress along their cycle. A simple model of this mecha-
nism can be obtained just by studing the hysteresis loop that derives from the
fundamental antagonistic relationship between the APC (Anaphase Promotig
Complex) and cyclin/Cdk dimers: APC (with two auxiliary proteins Cdc20 and
Cdh1) extinguishes Cdk activity by destroying its cyclin partners, whereas cy-
clin/Cdk dimers inhibit APC activity by phosporylating Cdh1. This antago-
nism creates two stable steady states: a G1 state with low cyclin/Cdk activ-
ity and an high Cdh1/APC activity, and a S-G2-M state with the opposite
configuration.

The following code represent a simplified model of this biochemical system:
[steps = 2000, delta = 0.2]

let X : bproc = #(x:0,X)[ nil ];
when(X :: X_synthesis) new(1);
when(X :: X_self_degradation ) delete(1);
when(X :: X_degraded_by_Y ) delete(1);

let Y : bproc = #(y:0,Y)[ nil ];
let Y_IN : bproc = #(y_in:0,Y_IN) [ nil ];
when( Y_IN :: Y_self_activation ) split(Nil, Y);
when( Y_IN :: Y_activation_with_A ) split(Nil, Y);
when( Y :: Y_deactivation ) split(Nil, Y_IN);

let A : bproc = #(a:0,A)[ nil ];
when(A :: A_synthesis ) new(1);
when(A :: A_collaborate_M_X ) new(1);
when(A :: A_self_degradation ) delete(1);

when ( : mCycB -> 0.2, mCycB <- 0.1 : ) update (m, mass_div);

run 4 X || 424 Y || 424 A
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Fig. 15. The observed dynamic behaviour of the Cell-Cycle system

In this code, X and Y are representing the cyclin/Cdk dimer and the active
Cdh1/APC complex respectively, and A is an activator (Cdc14) that is activated
indirectly by a complex pathway that involves the activation of Cdc20.

Events are used together with functions to obtain a high-level model that is
the straightforward translation of the ODE model found in biological textbooks,
for example in Chapter 10 of [9]. Split events with rate functions are used to
model Michaelis-Menten reaction kinetics, while synthesis of new compounds is
modelled using new events and degradation using delete events.

The func file holds the constant definitions:

let mu : const = 0.005 ;
let k1 : const = 0.04;
let k2p : const = 0.04;
let k2s : const = 1;
let J3 : const = 0.04;
let k3p : const = 1;
let k3s : const = 10;
let k4 : const = 35;
let J4 : const = 0.04;
let k5p : const = 0.005;
let k5s : const = 0.2;
let J5 : const = 0.3;
let k6 : const = 0.1;
let mstar : const = 10;
let alpha : const = 0.00236012;
let n : const = 4;
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and also the definition of functions used by the events in the main prog file:

let m(0.1): var = mu * m * (1 - m/mstar) init 0.45;
let mass_div : function = m / 2;
let mCycB : var = m * |X| * alpha;

let X_synthesis: function = k1 / alpha ;
let X_self_degradation : function = k2p * |X|;
let X_degraded_by_Y : function = k2s * alpha * |X| * |Y|;

let Y_self_activation : function =
(k3p * |Y_IN|) / (J3 + alpha * |Y_IN|) ;

let Y_activation_with_A : function =
(k3s * alpha * |A| * |Y_IN|) / (J3 + alpha * |Y_IN|);

let Y_deactivation : function =
(k4 * m * alpha * |X| * |Y|) / (J4 + alpha * |Y|);

let A_synthesis : function = k5p / alpha ;
let A_collaborate_M_X : function =

(k5s / alpha) / (pow( (J5 / (m * alpha * |X|) ) , 4) + 1);
let A_self_degradation : function = k6 * |A|;

The mass is considered in our model as a time-dependent variable, which is
involved in the calculations of some of the rate functions and which is driven by
a specific ODE. Mass halving due to cell division is controlled by a condition
on the concentration of a specific variable (e.g. mCycB, somehow related to the
concentration of X); an update event controls the value of the mass, adjusting
it whenever the concentration of mCycB cross above a threshold level and then
drops below another threshold. This mechanism is described in detail in Sec. 4.7.

5.3 Self-assembly

Self-assembly is a process in which a disordered system of components forms an
organized structure as a consequence of specific, local interactions among the
components themselves, without an external coordination. In this example we
consider a population of boxes that through complexation and decomplexation
primitives and a communicating protocol organize themselves to form binary
balanced trees. We consider a tree structure to be balanced if all the leaves
in the tree are at the same depth w.r.t the root node. An initial system is a
composition of boxes called Initiators and boxes called Nodes. Initiators start
the construction of trees; they complex to Nodes which, after an exchange of
signals at infinite rates, become Roots of different trees.

initiatorP

#(x,A)

nodeP

#(x,P ) #h(y, L) #h(z, R)
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↓

initiatorP

#c(x,A)

nodeP

#c(x, P ) #h(y, L) #h(z, R)

↓∗

nil

#c(x,A)

rootP

#c(x, P ) #(y,L) #(z, R)

When activated, a Root can bind with other Nodes on the previously hidden
binders #(b : L)0 and #(c : R)0. Now, all the Nodes that perform a complexation
with the Root are activated as Child boxes. The internal behaviour of a Root is
defined by the process

let rootP : pproc = rep y?().z?().y!(node).z!(node).nil;

meaning that recursively a Root waits for signals from all his children and then
propagates to them a signal with object node. The internal behaviour of a Child
is defined by the process

let childP : pproc = rep y?().z?().x!().x?(m).y!(m).z!(m).nil;

meaning that recursively a Child waits for signals from all his children, then sends
a signal to his parent, waits for a signal from his parent and finally propagates
that signal to his child. The local behaviours of Roots and Child generates,
in combination with the ability of boxes to bind together, a global behaviour
which results in the creation of binary balanced trees. In general, starting with
a population of Initiators and Nodes a simulation generates populations of trees
as those reported in Figure 16.

Notice that given a tree of depth level n, the depth level n − 1 is always
complete. Moreover, notice that when the missing Node binds to the tree, then
signals from all the Child nodes are propagated recursively to the Root which
propagates the acknowledgment with subject node till to the leaves, which finally
become Child and hence active. The complete code of the example is:
[ steps = 100 ]

<< BASERATE:inf >>

// Initiator Definition
let I : bproc = #(x,I)
[ x?().x!(root).nil ];

// Node Definition
let rootP : pproc =
rep y?().z?().y!(node).z!(node).nil ;
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Fig. 16. Example of generated tree

let childP : pproc =
rep y?().z?().x!().x?(m).y!(m).z!(m).nil ;

let nodeP : pproc =
x!().x?(t).( t!() | (

node?().unhide(y).unhide(z).childP +
root?().unhide(y).unhide(z).rootP

) );

let Node : bproc = #(x,P),#h(y,L),#h(z,R)
[ nodeP ];

// Init
run 2 I || 10 Node

where the corresponding type file is:

{P,L,R,I}
%%
{(I,P,100,0,inf),(L,P,1,0,inf),(R,P,1,0,inf)}
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6 Conclusions

We presented the basic primitives and components of the new biology-inspired
language BlenX. We then showed the usability of BlenX reporting some models
of biological examples. We also briefly described the input/output supporting
tools of BlenX. The BlenX environment is under further development to address
relevant (biological) questions like spatial modelling and simulation as well as
multi-level, multi-scale modelling of large systems.
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Abstract. This paper reports on our experience in modelling whole
cells with process calculi. We followed a holistic approach, aiming at
investigating the behaviour of biological objects at the system level, in
particular of a hypothetical and a of real prokaryote. These cells, namely
VICE and Escherichia coli, have been specified through the π-calculus,
endowed with a stochastic semantics. We describe a couple of variants of
the π-calculus and briefly survey three interpreters of it, with increasing
efficiency. We show how the usage of tools based on process calculi greatly
helped us in designing the virtual cell VICE, and in comparing it with
other prposals. The main properties of the in silico experiments on VICE
and on Escherichia coli are then discussed and shown in agreement with
those of real prokaryoptes acting in vivo/vitro.

1 Introduction

The outstanding improvement of wet-lab techniques have strongly influenced
experimental biology in the last few years. In particular, high-throughput tech-
niques are rapidly making available a large amount of biological data, while novel
or enhanced analytical methods (e.g. NMR, MS, etc.) permit to obtain more ac-
curate measures and to detect very small amount of substances in a single cell,
e.g. the concentration of metabolites. Even though the knowledge about the
structure and the components list of many living organisms are quickly growing,
understanding the dynamics underlying the biological machinery is a task far
from being accomplished. In other words, the knowledge we lack in the post-
genomic era of biology regards the functioning of living organisms more than
their structure.

To reconstruct the functioning of a living cell is the main goal of molecular
biologists, who have embraced a holistic point of view to finalize their research.
The same point of view is shared by the recent field of synthetic biology, where
the main goal is to synthesise a whole organism completely de novo. A pre-
liminary global design of the wanted organism is obviously mandatory, before
starting its synthesis.
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In representing a cell as a whole, the crucial point is again acquiring in-
formation about the function played by its different molecular entities (genes,
proteins, metabolites, etc.) and about their mutual interactions. Estabilishing
these relationships between biological molecules and their function however is
absolutely non trivial in most of the cases. The most relevant difficulties arise
in the investigation of emergent properties, that come into play only when the
parts composing the whole system interact [24]. Living organisms tipically act as
complex systems and so most of their relevant properties are indeed emergent.
Using the words of Schrödinger: “Life is an emergent rather than an immanent
or inherent property of matter”.

Presently, experimental wet-lab approaches are scarcely adequate to cope with
this kind of global problems: even the so-called -omic techniques seem able to
provide only some snapshots of the complete movie.

Instead, in silico methods are a promising alternative to address these prob-
lems at the system level. These methods offer advantages both from a practical
and from a theorethical point of view. On the one hand, it is possible to use
technologies less expensive and time demanding with respect to wet-lab ones.
On the other hand, theorethical computer science offers challenging, new ways
of looking at living matter. Indeed computer science not only provides us with
algorithms to describe, store and analyze huge quantities of data, but it is also
possible to interpret biological facts computationally. The best examples of this
are perhaps the “cells-as-computation” or the “molecules-as-computation” ap-
proaches [31] described in more detail in Section 2.

Generally speaking, in silico methods consist in describing the object of in-
terest through a formal language and in rendering this description executable.
Such a formal executable model can be exercised to give rise to computer-based
simulations, the results of which are then analyzed to acquire knowledge about
the investigated phenomena.

Ordinary or Stochastic Differential Equations are possibly the most used such
formalisms, upon which powerful in silico techniques have been developped, e.g.
Flux Balance Analysis, Metabolic Control Analysis or Metabolic Flux Analysis
(see [29,9] for a comprehensive review). These methods have been successfully
used to investigate properties of biological systems [10], although they seem to
be hard to compose and modify, and often require close acquaintance with them
to be used efficiently.

Also process calculi offer features for describing biological systems. This kind
of formal languages have been developped to specify and reason about concurrent
systems, i.e. systems made of a huge number of autonomous entities, geographi-
cally distributed and capable of exchanging information through communication
channels and of cooperating to achieve common goals. Biological systems clearly
fit this description and can therefore be described in terms of process calculi. An
advantage of these formalisms is compositionality. This feature allows the user
to describe a given system simply by putting together the specifications of its
sub-systems, so facilitating the study of various biological phenomena, e.g. the
cross-talk among signal transduction pathways or the evolution of biochemical
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pathways[32]. Moreover, compositionality helps in integrating existent and new
knowledge into a coherent framework. Indeed, as the information on the studied
phenomenon eventually grows, the correspondent specification can be updated,
by just adding the formal descriptions of the new elements. Furthermore, pertur-
bative “what-if” experiments can be performed by acting locally, i.e. by varying
the selected parameters in a single point of the description, with no need of
changing the whole specification.

These characteristics helped us to realize and study large scale models of bi-
ological systems, such as whole cell specifications of ideal and real prokaryotes.
In this way we have been able to investigate the properties of biological objects
at the system level, following a holistic approach. This approach is particularly
interesting for biologists, because each subpart of the described object can be
studied when embedded in its context. Indeed, as we have verified in our ex-
perimentation, the properties exhibited by a biological entity in isolation can
significantly differ if the same entity is observed when interacts with other parts
of the system.

We used the π-calculus to model biological systems, actually some stochastic
variants of it. In the following section we will detail some technical aspects of the
calculus and in particular of the abstract machines that we have implemented
to run the specifications of our virtual cells. Section 3 will present our two case
studies. We shall first report on VICE, a VIrtual simplified prokaryotic CEll
possessing a minimal genome, yet exhibiting those properties necessary for an
organism to live. Subsequently, we shall discuss some results drawn from the
formal description of the metabolic pathways of the real prokaryote Escherichia
coli, in particular due to gene knock-out and enzyme inhibition.

2 Modelling Biological Systems with the π-Calculus

We assume the reader familiar with process calculi, so in this section we shall
briefly survey how to use the π-calculus for representing the behaviour of living
matter. We shall then report on our own experience with a couple of variants
of the π-calculus and on the abstract machines used to run the specifications of
the virtual cells we wrote using them.

We follow the already mentioned approach of “cells as computation” [31],
that takes as starting point the observation that there is “a strong correspon-
dence between the syntax of the π-calculus and the biochemical networks” and
that “biologists typically characterize molecules by what they can do.” Indeed,
Regev and Shapiro realized that there is little difference between a network of
autonomously computing and interacting agents, geographically dispersed, and
a biological network, in particular at the bio-chemical level. E.g., a metabolic
pathway has a number of reactants floating in a solution, pairs of which inter-
act through their active sites according to reaction rules, governed by stochastic
laws. Each reactant can be represented by a π-process and interaction sites by
complementary communication channels. The occurrence of a reaction on a site
between two reactants is then interpreted as the occurrence of a transition, that
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embodies the communication between the corresponding processes possessing
the channel associated with that interaction site.

A delicate point concerns the stochastic behaviour of living matter, as the π-
calculus has a non-deterministic semantics. To account for that, the π-calculus
has been extended with a quantitative, stochastic semantics in [28], that builds
upon [27]. Roughly speaking, each channel is associated with a specific rate r,
the parameter of an exponential distribution related to the stochastic behaviour
of the inputs and outputs along that channel. The bio-chemical counterpart of
r is the specific rate constant (aka microscopic rate constant) of the described
chemical reaction. Determining the rates of transitions is a very hard task —
as well as finding those of the real biochemical reactions! A commonly accepted
way of computing the actual rates of transitions relies on embedding in the se-
mantics of the stochastic π-calculus the Stochastic Simulation Algorithm (SSA),
proposed by Gillespie [16,15] and proved to correctly approximate the chemical
master equation [17]. We refer the reader to [17] for a survey of this MonteCarlo
algorithm and of some variants of it. Here we only recall that it numerically
simulates the time evolution of a chemically reacting system, taking into ac-
count the randomness in chemical systems. As a matter of fact, the actual rate
of a transition is computed starting from (two random numbers,) the number of
the reactants/processes which could have generated the same molecular collision
and the so-called basal rate b (unfortunately not easy to obtain from the kinetic
constants).

Needless to say, the important point is that a computation of a network of
processes can now be interpreted as a virtual experiment over the modelled
biological system. Standard tools can then be used to statistically analyse these
experiments, to perform markovian analysis on the whole stochastic behaviour,
to model-check logical properties of the system, or to translate the obtained
results in the more traditional continuous representations.

2.1 The Enhanced π-Calculus

Our first approach [4] to the specification of a whole cell begun with using a very
expressive operational semantics of the full π-calculus, called Enhanced Opera-
tional Semantics (EOS) [7]. The main motivation was to exploit the features that
EOS offers for deriving in a mechanical way various aspects of process computa-
tions. We were particularly interested in expressing causal dependencies between
transitions, so expressing, e.g., the need of some bio-chemical reactions to oc-
cur before a selected one [6]. Also, we were unaware of Gillespie’s work at that
time, and we had already used EOS for deriving stochastic information and mak-
ing markovian analyses on the system activities. Our approach was succesfully
applied to study the performance of systems [26].

Intuitively we assigned a rate to a π-calculus transition as follows. We con-
sidered first the execution of an action on a dedicated machine that has only
to perform it, and we estimated the corresponding “primary” rate r. Then, we
took into account the syntactic context in which the action is placed. Indeed, the
context represents the environment in which the corresponding communication
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occurs. The actual rate of a transition was finally given by a suitable combina-
tion of the estimate of the action performed, of the quantities of the reactants
involved, and of the effects due to the operators of the context — a sort of
home-made SSA.

A crucial point was determining the primary rates. As reported in
sub-sections 3.1 and 3.2, we mainly investigated VICE metabolome and we found
it more adequate to slightly deviate from the usage of channels to represent
interaction sites. Instead, channels stood for the enzymes that cathalyse a re-
action. We therefore defined primary rates in agreement with some biological
considerations on the kinetical and thermodynamical aspects of the described
biochemical reaction, linking each reaction rate to a measurable biological pa-
rameter. In brief, for the kinetic parameters we considered the constants KM of
Michaelis-Menten [14,20]. For thermodynamical constraints, since we considered
VICE at its steady-state, we could split the relevant biochemical reactions in two
classes:

– near-equilibrium reactions, where r is close to the equilibrium constant, and
the rates of a reaction and of its reverse are close; or

– non-equilibrium reactions, where rates of direct and reverse reactions greatly
differ.

According to Metabolic Control Theory [13], the choice above reflected the con-
trol strength of the enzymes involved in a pathway. This quantifies the impact
of the activity of an enzyme on the overall flux of a pathway: the greater the
control strength, the more perturbated the flux when the enzyme is inhibited
[12,13].

Due to the rich and expressive semantic machinery, the abstract machine
running the EOS specification of VICE was rather inefficient. E.g., it took about
8 hours to carry on a simulation, i.e. a virtual experiment involving about 103

metabolites/processes and consisting of 4 × 104 reactions/transitions. Actually,
most of the time was spent in mechanically deriving the rates, according to the
EOS rules. Additionally, we realised that only a fragment of the π-calculus was
actually needed for specifying the virtual cells of interest. A simplification was
then in order.

2.2 A Simplified Calculus

Even though we firstly exploited the full π-calculus, we found it sufficient a small
subset of it for specifying biochemical pathways of prokaryote-like virtual cells.
This subset is very similar to the Chemical Ground Form proposed by Cardelli in
[2]. Indeed, no message passing was actually needed, as synchronization suffices.
Moreover, restriction ν was useless, because we were not interested in modelling
intracellular compartments that prokaryotes do not possess. Additionally, we
only had stochastic guarded choices. As usual, we associated each channel a,
representing an enzyme, with a corresponding reaction rate, written rate(a). The
actual rate of a transition/reaction, is computed using Gillespie’s SSA, slightly
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modified. Indeed, we imposed an upper bound to the rate of channels, called
“top-rate,” and the actual rate of a transition cannot exceed the top-rate of
the involved channel. In this way, we described saturation, a typical feature
of reactions catalysed by enzymes, like those occurring in metabolic pathways.
Actually, the capability of an enzyme to catalyse a reaction grows up until it
reaches its maximum value, usually known as Vmax.

More formally, let Chan = {a, b, . . .} be a set of communication channels and
Hid = {τ1, τ2, . . .} be a set of hidden, internal channels, with Chan ∩ Hid = ∅.
Let rate, top rate : Chan ∪ Hid → �+ be the functions associating channels
with their basal and top-rate respectively, with the condition:

∀x ∈ Chan ∪ Hid 0 < rate(x) ≤ top rate(x)

Finally, given the set of constant names {A, B, . . .}, the set P of processes
P, Q, . . . are defined by the following BNF-like grammar:

P ::= Nil | π.A | P |Q |
∑

i∈I

πi.A

where:

– π is a prefix of the form a, a for an input or output on a, and τ for a silent
move;

– each constant A has a unique defining equation A
�
= P .

As usual the operational semantic comprises the standard structural congruence
≡, i.e. the minimal congruence such that both (P/≡, +, Nil) and (P/≡, |, Nil)
are abelian monoids and P + P ≡ P . The inference rules defining the dynamics
of our tiny calculus are in Table 1. The definition is layered: the final step only
computes the actual rate g(P, Q, r) of the transition P to Q through a call to
the function g that implements our slight refinement of Gillespie’s SSA.

Table 1. Inference rules

(a.A +
∑

i Pi)|(a.B +
∑

j Qj)
r−→ A|B where r = rate(a)

P
r−→ Q

P |R r−→ Q|R
P

r−→ Q

A
r−→ Q

A
�
= P

P
r−→ Q

P
q

=⇒ Q
where q = g(P, Q, r)
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We designed and built an abstract machine, called BEAST, that implements
the operational semantics defined above [5]. Its design is rather classical, and has
been greatly inspired by SPiM [3]. Just to give a rough idea of the computational
performance of BEAST, consider a system made of about 2×106 processes, each
with 10 stochastic choices in average. On an AMD Athlon 1.5 GHz duo with 1
Gb of RAM, the simulation of about 3 × 104 transitions took about 10 hours —
much better than the EOS machine, but not yet enough for our desiderata.

We took then further advantage from the relative simplicity of the π-calculus
fragment we tailored to model biochemical pathways. The next sub-section de-
scribes a very efficient interpreter of it, that we used to perform large-scale
simulations.

2.3 Towards a Matrix-Based Interpreter

Here we shall present a representation of (stochastic) π-processes exploiting stoi-
chiometric matrices. Through it, we could implement a quite efficient interpreter
of the ν-free fragment of the π-calculus, and slightly extend Cardelli’s observation
that reducing the π-calculus to the Chemical Ground Form allows for a direct
translation of it into matrix representation [2]. Also, such representation enabled
us to slightly extend the binary communication primitive of the π-calculus to
allow more than two processes to interact. Of course, the new communication
required us to also extended the quantitative part of the semantics that dictates
the rate, taking into account all the processes involved.

This feature turns out to help in specifying more naturally biochemical path-
ways, since biochemists often happen to use reactions involving more than two
reactants. These type of reactions do not actually take place in nature, but they
are widely used, because they greatly simplify the description of biochemical
systems. Indeed, biochemists use to coalesce a set of coupled reactions into a
single generalised reaction, obtained by neglecting intermediate products.

For example, consider the biochemical system containing the following re-
versible, enzymatically catalysed reactions

E + S
k1�

k−1

ES
k2�

k−2

E + P

where E is the enzyme, S is the substrate, P is the product, ES is the enzyme-
substrate complex, and the k’s are the reaction rate coefficients. As said, it is
very common to neglect the production of the complex ES and to describe the
above as a single reversible reaction. This system is compactly represented by
the following matrices, which express all the details given by the equation above
and at the same time they are closer to the generalised reaction biochemists
would use:

k =

⎛

⎜⎜⎝

k1
k−1
k2
k−2

⎞

⎟⎟⎠ R =

⎛

⎜⎜⎝

1 0 0 0
0 0 0 1
1 0 0 1
0 1 1 0

⎞

⎟⎟⎠ Σ =

⎛

⎜⎜⎝

−1 +1 0 0
0 0 +1 −1

−1 +1 +1 −1
+1 −1 −1 +1

⎞

⎟⎟⎠
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where k is the vector containing the kinetic coefficients, R is the reactant matrix
and Σ is the stoichiometric matrix, where the rows are indexed by the reactants
(in our case S, P, E and ES in the order), the columns by the reactions, and the
entries say which reactants disappear and which are produced (in our case, the
first column says that one element of S and of E are consumed producing a new
copy of ES). 1

This representation allows to efficiently compute the reaction rates v of ele-
mentary reactions through matrix operations, yielding the complete set of ordi-
nary differential equations:

{
v = diag(k) e(R

T log(x))

dx/dt = Σv

where diag(k) is the matrix containing the kinetic parameters at its diagonal, v is
the vector with reaction rates and x is the vector of the substance concentrations

v =

⎛

⎜⎜⎝

v1
v−1
v2
v−2

⎞

⎟⎟⎠ x =

⎛

⎜⎜⎝

[S]
[P ]
[E]

[ES]

⎞

⎟⎟⎠

A direct benefit of the matrix representation approach is that we could implement
a fast interpreter for the subset of the π-calculus we choose, and even in presence
of name-passing, i.e. for the full π-calculus except for restriction ν. All we had
to do was building a front-end translator from the π-calculus processes to their
representation as matrices. We then simply exploited the environment MATLAB

that offers powerful and very efficient built-in routines for matrix computations.
Note that the matrices diag(k), R and Σ are all sparse, and thus they require
little storage. More importantly, computations run very quickly because of this.

Efficiency was our main target, because we had to perform large simulations in
order to obtain sensible statistical results. Our longest experiments where made
of 108 transitions and involved 107 processes. Just to compare the matrix-based
interpreter with those of the previous sub-sections, consider one such simulation
took only a few minutes on the same machine mentioned at the end of sub-
section 2.2.

3 Modelling Whole-Cell Systems

As already mentioned in the introduction, we are interested in investigating
biological phenomena at the system level. In the following sub-sections we re-
port on our efforts in projecting, building and simulating whole-cell scale formal
1 The stoichiometric matrix Σ alone might seem to suffice because the reactant matrix

R can be deduced from Σ by only considering the negative elements. However, the
reactant matrix is needed in the inside loop of the Gillespie algorithm, so it would be
inefficient to recalculate R from Σ each time. Additionally, in generalised reactions
a substance may occur both as reactant and as product, thereby being cancelled out
in Σ, which shows R indispensable.
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models. First we will describe how we designed the genome of VICE, our ideal
prokaryote. Then we will discuss our steps towards building up and simulating
the description of all the constitutive metabolic pathways of a real prokaryote,
namely Escherichia coli.

3.1 From the Minimal Gene Set to VICE

In [4] we specified a hypothetical prokaryote with a very basic structure, yet
significantly close to a real cell. Our starting point was the Minimal Gene Set
(MGS) proposed by Mushegian and Koonin ([25]), composed by 237 genes. The
authors obtained this minimal genome by intersecting the complete genomes of
Haemophilus influenzae and Mycoplasma genitalium and manually eliminating
all the functionally redundant elements.

We specified in the π-calculus the whole set of pathways composed by the
enzymes encoded by the 237 genes and the corresponding substrate and products.
In particular the “MGS-prokaryote” possess:

– the Glycolytic Pathway;
– the Pentose Phosphate Pathway;
– pathways involved in nucleotyde, aminoacids, coenzyme, lipids and glycerol

metabolism;
– a set of membrane carriers for metabolite uptake, including the PTS carrier.

To study the characteristics of the MGS-prokaryote, we run simulations using the
interpreter for the enhanced π-calculus mentioned in 2.1. Simulations play the
role of “virtual experiments” and have been performed considering an optimal
virtual environment, characterized by the following conditions:

– the physical and chemical conditions of the external medium are ideal: pres-
sure, temperature, pH and total ion activity are supposed not to request any
adaptive response from the cell;

– the essential metabolites are present in the external medium in non-limiting
concentration, e.g. the needed nutrients among which glucose;

– the external environment is shaped to remove all the potentially toxic catabo-
lites;

– biological competitors are completely banned.

These assumptions reflect the typical conditions of the so-called continuous cul-
ture in vitro, in which bacteria are artificially grown in a medium that is con-
tinuously refreshed.

The input file contains the definitions of all the metabolites inside the cell, the
initial intracellular concentrations of metabolites and the rates of enzymatic activ-
ities, derived from the available real experimental data and determined from the
Michaelis-Menten kinetics, as described in Section 2.1. At the end of each virual
experiment, we determined the time course of the concentration of any virtual
metabolite and we inspected the usage rate of the enzymes specified in the defini-
tions. Using these data, it is possible to evaluate the functionality of the specified
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Fig. 1. Time course of ATP in the MGS-prokaryote . The concentration of metabolites
(in arbtrary units) is plotted vs the number of transitions.

metabolic pathways and therefore to test the presence of “broken pipes”, i.e. if
there were enough genes in the MGS to encode all the necessary enzymes.

A large number of simulations had been run, differing in the initial values of
some parameters such as the time interval of the observation (roughly, the total
number of transitions) and the amount of glucose in the extracellular environ-
ment. We then inspected the output of the computations, and we found that in
all the studied cases, the MGS-prokayiote could not reach a steady state: indeed
the amount of most of the essential metabolites fell to zero in a short period, as
clearly shown in Figure 1 that display the time course of ATP a typical element
to monitor.

To make sure that this negative result was not influenced by stochastic fluctu-
ations, we also inspected the list of the transition executed during the simulation
runs. We found that all the computations resulted to be qualitatively “similar”
i.e. composed by the same kind of transitions. Thus the studied metabolite was
not produced because of “structural” reasons (e.g. a broken pipe), so we could
say that the MGS-prokaryote does not possess enough components to achieve
homeostasis which is a fundamental capability of living organisms: a cell with
such a genome is not able to live, at least in silico.

We then approached the problem to establish which genes present in the MGS
were really necessary and which were missing for this cell to live. We manually
inspected all the metabolic pathways examining all the possible situations of
missing or duplicated functions. In the case of a suspect functional deletion
or duplication, we modified the MGS adding genes pertaining to Mycoplasma
genitalium or Haemophilus influenzae or deleting one of the duplicated elements
according a case-by-case criterion.

Once a modification had been made, we iteratively performed several simu-
lations on the newly proposed genome and we evaluated the time-course of the
metabolites. Finally, our efforts converged to the hypothetical genome of VICE.
This virtual prokaryote is able to reach, after a while, a steady state in all its
metabolites and additionally it exhibits the required capabilities of producing
biomass. As an example of time course approaching the steady state, see Figure 2
that shows the plot of ATP vs. time.
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Fig. 2. Time course of ATP in VICE. The concentration of metabolites (in arbtrary
units) is plotted vs the number of transitions.

Fig. 3. Time course of Phosphatydil ethanolamine in VICE. The concentration of
metabolites (in arbtrary units) is plotted vs the number of transitions.

Fig. 4. Time course of Phospatydil glicerol in VICE. The concentration of metabolites
(in arbtrary units) is plotted vs the number of transitions.

Figures 4, 3 and 5 display the time courses of Phosphatydil ethanolamine,
Phospatydil glicerol and of the total protein quantity as representative of the
overall trend of the biomass. These three plots show the concentration of the
three metabolites growing with time suggesting that the biomass produced by
VICE increases over time, similarly to what happens to real prokaryotes.
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Fig. 5. Time course of the total amount of proteins in VICE. The concentration of
metabolites (in arbtrary units) is plotted vs the number of transitions.

Fig. 6. Metabolites along the glycolitic pathway of VICE (foreground) and of real
prokaryotes (bacground)

Moreover, when we computed the relative proportions of the amount of
metabolites along the glycolitic pathway of VICE, it turned out that the ob-
tained values are compatible to that of a real prokaryote, as shown in fig. 6.

To verify whether the trend of metabolites time course reached the steady
state (i.e. it approached a constant value) we performed a regression analysis
that confirmed our claim. Moreover, we exhaustively searched the computations
and we found that all the pathways have been followed with almost the same
probability. This means that VICE endows sufficient components in its genome.
Also, all the components of VICE turned out to be necessary as each of them
has been used during some computations.

Comparing the genome of VICE with MGS, we note that the most important
difference is due to the insertion in VICE of 7 genes which play fundamental
roles and the deletion of 76 genes present in the MGS. At the end of all these
refinements, VICE resulted to be equipped by: Glycolytic pathway, pathways for
Pyruvate metabolism, for Reduced-NAD oxidation and ATP synthesis, for lipid
metabolism, for DNA/RNA synthesis, salvage pathways for nucleotyde synthesis,
systems for metabolites uptake.
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To keep as small as possible the specification of our virtual cell, we introduced
some simplifications in our proposal. In particular:

– we grouped in a single entity all the multi-enzymatic complexes (such as the
Pyruvate-Dehydrogenase-complex, the ATP-syntase complex and the trans-
membrane ion carriers) when they act as a single cluster;

– we used a “black-box” representation for those pathways leading to the syn-
thesis of macromolecules such as DNA, RNA and proteins.

Furthermore, we did not specify control mechanisms like gene transcription reg-
ulation or signalling pathways, because we were designing an autonomous cell,
living in an optimal environment. Finally, we did not endow our “minimal”
prokaryote with the structural elements necessary to sustain other biological
function, such as:

– protein turnover;
– cell-membrane lipidic components turnover;
– production and secretion of exopolysaccharides for capsular formation.

Summing up by analyzing the behaviour of VICE, we found that:

– VICE modifies the external environment. Indeed, when we examined the
initial and final state of each computation, we found them different, because
a certain amount of Glucose-6-phosphate was catabolized, yielding energy
and other metabolites;

– VICE possess homeostatic capabilities: it reaches the steady state, starting
from an non-steady state condition;

– VICE biomass increase with time;
– all VICE components are necessary and sufficient;
– at the steady state, the distribution of the amount of VICE metabolites along

glycolitic pathway is similar to that of real prokaryotes.

This clearly supports our claim that, at least in silico, VICE behaves as a living
cell acting in vivo in similar circumstancies.

The fact that the designed genome is minimal is further supported by the com-
parison of our results with those obtained by some authors that recently used a
wet-lab approach to characterize the minimal gene set necessary to sustain bac-
terial life [18]. Their study involved Mycoplasma genitalium, whose genome was
supposed to be a close approximation of a minimal one. The experimentation
consisted of knocking-out Mycoplasma genitalium genes through global trans-
poson mutagenesis. The resulting viable mutant strains were isolated and their
genome analyzed to identify the distrupted genes. These genes was assumed to
be dispensable for bacterial life. Below we compare the results of [18] with ours.
The diagram depicted in Figure 7 shows the relationships between the set of
genes considered not dispensable in [18] (call it R-genome), the MGS and the
genome of VICE.

The intersection between the three sets contains 169 elements. Because these
genes resulted not dispensable according to all the three approaches, they are
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Fig. 7. Relationships between the set of genes considered not dispensable in [18] (R),
those included in the MGS (M) and those composing the genome of VICE (V)

likely to be necessary for a minimal bacterium. Note that these genes repre-
sents the 90% (169/187) of VICE’s genome. This can be seen as an argument
for supporting the validity of our method, and more generally of the techniques
in silico. Moreover, consider that all but one the genes of VICE (i.e. 186/187)
are included also in R-genome or in MGS. In other words the probability of ob-
taining a false positive (i.e. a necessary gene that resulted to be not dispensable
according to the last two approaches) is 1/187. Additionally, if we assume not
dispensable all the genes contained in the intersection of R-genome with MGS
(namely 169 + 48), the probability of obtaining a false negative, i.e. the proba-
bility of considering dispensable an essential gene, is 48/187. Summing up and
referring again to Figure 7, it results that:

– the genes in VICE are 187 and all are essential;
– the genes present in VICE and in MGS and in R-Genome are 169;
– only one gene is in VICE but not in R-genome or MGS (1/187 false positives);
– the genes included in R-genome and in MGS but not in VICE are 48 (48/187

false negatives)

3.2 Regulation Mechanisms in VICE

In a second experimental series we focused our attention on those aspects of
VICE concerning the regulation of metabolite flux through metabolic pathways.
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An interesting case study is represented by the glycolytic pathway. It presents
a broad range of complex interactions between enzymes and their regulatory
metabolites, the dynamics of which has intensively been studied [22]. In par-
ticular we concentrated on feedback control circuits. To this purpose, we com-
positionally added a feedback circuit to VICE. Specifically, we modelled the
regulatory circuit related to the phosphofruttokinase (PFK), a key enzyme of
the glycolytic pathway. The behaviour of bacterial PFK is particularly inter-
esting, because it is regulated by ADP and Phospho-Enol-Pyruvate (PEP), dif-
ferently from the usual eukaryotic regulation, based on ATP and fructose-1,6-
bisphosphate [8]. ADP acts on the enzyme enhancing its catalytical capability
and accelerates the correspondent reaction. PFK feedback control circuit has
been proposed in [8] to be the main responsible for oscillatory behaviour that is
exhibited in the concentration of some metabolites of glycolitic pathway. Indeed
the literature reports that in real prokaryotes the time course of the concentra-
tion of these metabolites follows oscillatory patterns when the cell is subject to
particular feeding rates.

In order to study in silico this complex behaviour, we designed some experi-
ments using the specially tailored version of the stochastic π-calculus, described
in Section 2.2.

We performed two classes of experiments: in the first one, we provided VICE

with a large reservoire of glucose, while in the second this nutrient was given at a
constant rate. The first feeding regimen is intended to check whether the new im-
plementation of VICE still has the homeostatic properties described in Section 3.1.
The second regimen is used to detect the emergence of oscillatory patterns in pres-
ence of the PFK feedback control circuit. Again, all our tests have been carried on
assuming that the virtual cell acts in the ideal environmentdiscussed in Section 3.1.

It turned out that, when fed with a large amount of glucose, VICE reaches
its steady state after a certain initial period of time, as shown in Figure 8.
It depicts the time course distribution of the concentrations of three selected
metabolites, namely pyruvate, diacilglycerol and phosphoribosylpyrophosphate.
These metabolites represents critical nodes in the entire metabolic network, so
their behaviour gives a sketch of the overall trend of VICE. The distributions
displayed in Figure 8 are affected by white gaussian noise. This is because BEAST

is indeed stochastic, due to Gillespie’s SSA it embodies.
We also compared some aspects of the behaviour of the cell with that of

real prokaryotes acting in vivo in similar circumstances [20]. In particular, we
examined the time course distribution of certain metabolites concentration that
are representative of the modelled pathways. We computed ATP vs. ADP and
NAD vs. ATP. These ratios express a measure of the cellular energy content in
two different ways. We also computed the ratio glucose-6-phosphate vs. fructose-
1,6-bisphosphate, giving the trend of metabolic flux along glycolisis. Table 3
shows that the selected ratios significantly match those of real organisms, we
computed from the values of [1], obtained in vivo.

These results confirm that the VICE still exhibits some capability of “living”
in silico, also enriched with a regulatory mechanism.
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Fig. 8. Time course distribution of pyruvate (pyr), diacilglycerol (dag), phosphoribo-
sylpyrophosphate (prpp). The concentration of metabolites is plotted vs the number
of transitions.

Table 2. Metabolites Ratio Comparison

ATP/ADP glu6p/fru16bp NAD/ATP

Real 0.775 0.067 11.452

Virtual 0.697 0.053 10.348

We then ran BEAST (see Section 2.2) simulating the condition of continue
glucose feeding. It turned out that sustained oscillations emerged, for certain
feeding rates within a range compatible with that established through experi-
ments in vivo. Figure 9 displays the oscillations of fructose-6-phosphate and of
fructose-1,6-bisphosphate. In spite of white gaussian noise, the two plots have a
clear constant period and amplitude. We confirmed this assessment through a
χ2-test, that compared the above experimental distributions against sinusoidal
model curves. Our experimental, virtual data significantly approach the corre-
spondent values on the model curve. The reader may be interested in comparing
Figure 9 with Figure 10, that shows the oscillations of the same metabolites in
experiments carried on in vivo.

An interesting side result derives by simulating the glycolitic pathway in a
stand-alone configuration (extracted from VICE). It turned out that the oscilla-
tory pattern emerges both in the stand alone and in the whole-cell glycolisis, but
the oscillation amplitude is significantly different. This suggests us that simulat-
ing a whole cell could lead to more realistic models, whereas single circuits can
generate metabolites, whose concentration varies over a too wide range, because
of a relative lacking of constraints. In our view, this confirms that the holistic
approach is worth pursuing.
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Fig. 9. In silico oscillations of fructose-6-phosphate (f6p) and fructose-1,6-bisphosphate
(fdp) in the glycolysis

Fig. 10. In vivo oscillations of fructose-6-phosphate (f6p) and fructose-1,6-
bisphosphate (fdp) in the glycolysis. Adapted from [22]

3.3 Escherichia Coli

Here we discuss our work in formally describing and simulating a real prokaryote
through the stochastic π-calculus discussed in sub-section 2.3. We chosed to de-
scribe Escherichia coli, a prokaryote that has been largely investigated, both with
molecular biology techniques and in silico (see e.g. [10,21]). Indeed, Escherichia
coli has an average complexity, and it has been explored at a very fine detail,
making it one of the most known organisms in the world. We considered the set
of the energetic and biosynthetic metabolic pathways of Escherichia coli defined
in [11,30]. We specified all the pathways in this set, except for a few of those
needed for using some carbohydrates as carbon and energy sources. It was par-
ticularly difficult to estimate the kinetic parameters of the involved reactions. We
determined satisfactory approximations of them relying on the so-called Quasi
Steady State Assumption, that gives a safe estimate of the actual reaction rates.
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Table 3. Metabolites ratio obtained in silico and reported in the literature

Ratio reported in the literature Ratio obtained in silico

ATP/ADP 3.2 4.1
NAD/NADH 19 17.1

NADP/NADPH 1.2 1.9

We also took into account the Gibbs free energy of formation of metabolites [21],
and a fuzzy measure of the activation energy of each biochemical reaction.

We first performed in silico experiments to confirm that our proposal was
safe, checking in particular that it shows the basic property of homeostasis. For
this pourpose, we studied the behaviour of Escherichia coli in interphase by re-
peatedly running its specification. Since ours is a genome-scale model of a whole
cell, we are able to simultaneously examine all its metabolic pathways, as well
as their interactions. In particular we checked whether our virtual Escherichia
coli was able to “survive” in an “ideal” environment with enough nutrients and
in which chemical and physical paramenters are kept constant. These are the
typical conditions of the continuous culture in vitro.

We ran some hundred simulations, using the interpreter described in sub-
section 2.3. We were interested in observing whether the time course distribution
of metabolites reaches a plateau, i.e. whether the virtual cell reaches its steady
state after a certain initial period of time. Indeed, the plot of this time course
clearly approaches a constant value. A linear regression analysis confirmed that
the distribution of metabolites concentration is fitted by a horizontal line.

We then compared the distributions coming out from our simulations with
those of the real Escherichia coli at the steady state. To do that, we computed
the ratio between physiologically related pairs of metabolites, becausethese ratios
give indications about physiological parameters of the organism. For example,
the ratio ATP/ADP measures the energetic level of the cell. The values obtained
in this way are close to those measured in vivo [21], as shown in Table 3.

These findings represent a clue that both our description and the chosen
parameters are adequate to represent the behaviour of Escherichia coli in the
given conditions. Anyway, deeper analysis need to be performed in order to
support the claim that our proposal is safe.

A particular attention has to be dedicated to the problem of stiffness. Indeed
the biochemical reactions considered in our model are characterized by reaction
rates spanning over six to seven orders of magnitude. Under these conditions, it
may happen that Gillespie’s SSA spends all the simulation time to execute only
the fastest reactions. Therefore the amount of processes involved in the slowest
reactions do not change over time, because these reactions are never selected.
So the simulation of a stiff system may show a plateau because the system has
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Table 4. Metabolites produced per unit of glucose consumed

Succinate Lactate Formate
in vivo / in silico in vivo / in silico in vivo / in silico

wild type .10 / .31 .09 / .13 .40 / .62
null ppc mutant .03 / .06 .21 / .24 .35 / .50

reached a steady state, but also because the observed reactions never occur and
so the plot shows a “flat line.”

To further validate our model, we performed some perturbative experiments.
We “knocked-out” three selected genes, namely the ppc, the pgi and zwf genes,
similarly to what done in vivo [19,23]. In silico this corresponds to rule out from
the specification the enzymes encoded by the selected genes. This experimenta-
tion is at avery preliminar stage and the results need to be validated properly.
Below, we will present some results showing the agreement betwen in silico and
in vitro results, at least at a qualitative level.

Knockout of ppc gene. This gene encodes for the enzyme Phosphoenolpyruvate
Carboxylase, an enzyme belonging to the glycolytic pathway. In vivo knock-out
are performed in an anaerobic glucose-limited environment [19]. We mimicked
this condition by removing the processes corresponding to oxigen from the extra-
cellular environment, and by providing a limited reservoir of glucose. The results
in vivo and ours are in Table 4 — we display the amount of metabolite produced
per unit of glucose consumed. Although there are some differennces in the two
cases, the behavioural trend after the knock-out of the gene is similar: succinate
and formate production result lowered, while lactate production increased with
a similar rate.

Knockout of pgi and zwf genes. These genes encode for Phosphoglucose iso-
merase (an enzyme of glycolytic pathway) and Glucose-6-phosphate dehydro-
genase (the first enzyme of Penthose Phosphate Pathway), respectively. The
experiments in vivo have been carried on in glucose or ammonia limited cultures
[23]. In our simulations we modelled these constraints, by providing a limited
reservoir of extracellular glucose or ammonia. We do not report here the results
of our simulations, mainly beacause for glucose limited cultures, the data in the
real case are below the detection limits. Anyway, the quantities measured in
silico and in vivo differ, but there is a qualitative agreement in the behaviour of
the real and virtual Escherichia coli. Indeed, in both prokaryotes, the production
rates of acetate and pyruvate are low in glucose limited condition and increase
in ammonia limited condition, both for mutants and wild types. Furthermore, in
the ammonia limited condition, the rate of production of acetate and pyruvate
per unit of ammonia consumed is the highest for zfw mutants and the lowest for
pgi mutants.
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Abstract. We describe the Calculus of Looping Sequences (CLS) which
is suitable for modeling microbiological systems and their evolution. We
present two extensions, CLS with links (LCLS) and Stochastic CLS.
LCLS simplifies the description of protein interaction at a lower level of
abstraction, namely at the domain level. Stochastic CLS allows us to de-
scribe quantitative aspects of the modeled systems, such as the frequency
of chemical reactions. As examples of application to real biological sys-
tems, we show the simulation of the activity of the lactose operon in
E.coli and the quorum sensing process in P.aeruginosa, both described
with Stochastic CLS.

1 Introduction

Cell biology, the study of the morphological and functional organization of cells,
is now an established field in biochemical research. Computer Science can help
research in cell biology in several ways. For instance, it can provide biologists
with models and formalisms capable of describing and analyzing complex sys-
tems such as cells. In the last few years many formalisms originally developed by
computer scientists to model systems of interacting components have been ap-
plied to Biology. Among these, there are Petri Nets [29], Hybrid Systems [1], and
the π-calculus [15,42]. Moreover, new formalisms have been defined for describ-
ing biomolecular and membrane interactions [4,11,13,17,36,40]. Others, such as
P Systems [31,32], have been proposed as biologically inspired computational
models and have been later applied to the description of biological systems.

The π–calculus and new calculi based on it [36,40] have been successful in the
description of biological systems, as they allow systems to be described in a com-
positional way. However, these calculi offer very low–level interaction primitives,
causing models to become very large and difficult to understand. Calculi such as
those proposed in [11,13,17] give a more abstract description of systems and of-
fer special biologically motivated operators. However, they are often specialized
to the description of some particular kinds of phenomena such as membrane or
protein interactions. Finally, P Systems have a simple notation and are not spe-
cialized to the description of a particular class of systems, but they are still not
completely general. For instance, it is possible to describe biological membranes
and the movement of molecules across membranes, and there are some variants
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able to describe also more complex membrane activities. However, the formalism
is not flexible enough to allow an easy description of new activities observed on
membranes without extending the formalism itself.

Therefore, the need has arisen for a formalism with a simple notation, hav-
ing the ability of describing biological systems at different levels of abstraction,
having some notions of compositionality and being flexible enough to allow the
description of new kinds of phenomena, without being specialized to the descrip-
tion of a particular class of systems. For this reason in [7] we have introduced
the Calculus of Looping Sequences (CLS).

CLS is a formalism based on term rewriting with some features, such as a
commutative parallel composition operator, and some semantic means, such as
bisimulations, which are common in process calculi. All this permits us to com-
bine the simplicity of notation of rewriting systems with the advantage of a form
of compositionality.

Given an alphabet of symbols representing basic biological entities, such as
genes, proteins and other macro–molecules, CLS terms are constructed by apply-
ing to these symbols operators of sequencing, looping, containment and parallel
composition. Terms constructed by means of these operators represent biological
structures such as DNA sequences and membranes. Rewrite rules can be used
to model biological events that permit the system to evolve. In particular, they
can be used to model biochemical reactions and structure rearragements such as
membrane fusion and dissolution.

Some variants of CLS have been defined in [30]. Moreover, in [5,6], two ex-
tensions have been introduced. The first, CLS with links (LCLS), allows the
description of protein interaction at a lower level of abstraction, namely at the
domain level. The second, Stochastic CLS, allows the description of quantitative
aspects of the modeled systems such as the frequency of chemical reactions. For
Stochastic CLS a simulator has been developed [14] that allows simulating the
evolution of biological systems over time.

In [8,9] we have defined bisimulations for CLS. Bisimulations may be used to
compare the behaviour of two systems and as an alternative technique to verify a
property of a system. This can be done by assessing the bisimilarity of a system
with a system one knows to enjoy that property.

In this paper, we describe CLS and its two extensions, and we show two
examples of application to real biological systems. While the formulations of
CLS and LCLS differ slightly from those given in [7,5], the present formulation
of Stochastic CLS is new and is more convenient than the one in [6] when dealing
with biochemical systems. As examples of application to real biological systems,
we show the simulation of the activity of the lactose operon in E.coli and the
quorum sensing process in P.aeruginosa, both described with Stochastic CLS.

2 Setting the Context

Both the qualitative and the quantitative aspects of biological systems are inter-
esting. The former are related to state dependent properties, such as reachability
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of states or existence of equilibria and stable states; the latter are related to time
and probability dependent properties, like the time needed to reach a certain state
and the probability of reaching a certain state in a given time or in any time.
We briefly describe some notable examples of formalisms that have been used in
the last few years for modeling both aspects.

As regards qualitative aspects of biological systems, Lindenmayer systems (or
L systems) [38] are one of the oldest formalisms. An L system is a formal grammar
most famously used to model the growth processes of plant development.

In the tradition of automata and formal language theory, more recently Paun
has proposed P Systems [31,32]. P Systems introduce the idea of membrane com-
puting in the subject of natural computing. They represent a new computational
paradigm which allows NP-complete problems to be solved in polynomial time
(but in exponential space), have originated a huge amount of work and recently
have been also applied to the description of biological systems (see [39] for a
complete list of references).

A pioneering formalism for the description of biological systems is the κ–
calculus of Danos and Laneve [17]. It is a formal language for protein interactions,
is enriched with a very intuitive visual notation and has been encoded into the
π–calculus. The κ–calculus idealizes protein-protein interactions, essentially as
a particular restricted kind of graph–rewriting operating on graphs with sites.
A formal protein is a node with a fixed number of sites, and a complex (i.e.
a bundle of proteins connected together by low energy bounds) is a connected
graph built over such nodes, in which connections are established between sites.
The κ–calculus has been recently extended to model also membranes [28].

An example of direct application of a model for concurrency to biochemi-
cal systems has been shown by Regev and Shapiro in [41] and by Regev, Sil-
verman and Shapiro in [42]. Their idea is to describe biomolecular pathways
as π–calculus processes. Chemical reactions between biological components are
modeled as communications on channels whose names can be passed and shar-
ing names of private channels allows the description of biological compartments.
Regev, Panina, Silverman, Cardelli and Shapiro in [40] defined the BioAmbi-
ents calculus, a model inspired by both the π–calculus and the Mobile Ambients
calculus [12], which can be used to describe biochemical systems with a notion
of compartments (as, for instance, membranes). An extension of the π–calculus
for the description of membranes and of biological interfaces is the Beta–binders
calculus defined by Priami and Quaglia in [36]. More details of membrane inter-
actions have been considered by Cardelli in the definition of Brane Calculi [11],
which are elegant formalisms for describing intricate biological processes involv-
ing membranes. A refinement of Brane Calculi has been introduced by Danos
and Pradalier in [18].

We mention also some works by Harel [23] and Kam et al.[26], in which the
challenging idea is introduced of modelling a full multi–cellular animal as a re-
active system. The multi–cellular animal should be, specifically, the C.elegans
nematode worm, which is complex, but well defined in terms of anatomy and ge-
netics. Moreover, Harel proposes to use the languages of Statecharts [22] and Live
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Sequence Charts (LSC) [16], which are visual notations with a formal semantics
and are commonly adopted in the specification of software projects. Harel et al.
apply the same formalisms also to cellular and multi–cellular systems related to
the immune systems of living organisms in [25] and [21].

As regards quantitative aspects of biological systems, they are usually de-
scribed by biologists by means of differential equations. Each equation gives the
transformation rate of one of the components of the described system. Hence,
the dynamics of the system can be studied analitically and simulations can be
performed by using a computer tool for solving differential equations. This tech-
nique has been successfully used in a huge number of cases, but it suffers from
the following drawbacks: (i) the solution of a set of differential equations gives
a unique “average” behavior of the system, and does not model stochastic fluc-
tuations of the quantities of the involved components; (ii) when the size and
the complexity of the modeled system increases, differential equations become
difficult to manage; (iii) the approach assumes quantities to be expressed as con-
tinuous values, and this could lead to erroneous approximations, in particular
when the number of components of the system is very small.

An alternative approach to the simulation of biological systems is the use
of stochastic simulators. This kind of tools are usually based on simulation al-
gorithms proved to be correct with respect to the kinetic theory of chemical
reactions. The most used and well–established of such algorithms is the one in-
troduced by Gillespie in [24]. In his paper, Gillespie shows that the quantity of
time spent between the occurrences of two chemical reactions is exponentially
distributed, with the sum of the kinetic rates of the possible reactions as the
parameter of the exponential distribution. This allows him to give a very simple
and exact stochastic algorithm for simulating chemical reactions.

Gillespie’s algorithm is the trait–d’union between simulation of biological sys-
tems and stochastic process algebras, and permits the latter to be easily applied
to the description of biological systems. In particular, the stochastic π–calculus
[35,37] has been successfully applied to the (quantitative) modeling of biological
systems. In this extension of the π–calculus, kinetic constants are associated with
communication channels and determine the stochastic behaviour of the model, in
terms of communications, as in Gillespie’s algorithm they determine occurrences
of chemical reactions. Analogous stochastic extensions have been proposed for
other formalisms such as P Systems [34], BioAmbients [10] and Beta–binders
[19], and simulation tools have been developed.

The transition system obtained by the semantics of a stochastic formalism
may be transformed into a Continuous Time Markov Chain (CTMC). If the set
of states of the CTMC is manageable, a standard probabilistic model checker
(such as PRISM [27]) can be used to verify properties of the described system.

3 The Calculus of Looping Sequences (CLS)

In the next sections we introduce the Calculus of Looping Sequences (CLS) and
two variants, CLS with links (LCLS) and Stochastic CLS. The former is a variant
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to model protein interaction at the domain level. The latter, equipped with a
stochastic semantics, permits the description of quantitative aspects of biological
systems. For all the formalisms presented here we show the modeling of some
real biological systems.

3.1 The Basic Formalism

CLS is based on term rewriting, hence a CLS model consists of a term and a set
of rewrite rules. The term is intended to represent the structure of the modeled
system, and the rewrite rules to represent the events that may cause the system
to evolve.

We start with defining the syntax of terms. We assume a possibly infinite
alphabet E of symbols ranged over by a, b, c, . . ..

Definition 1 (Terms). Terms T and sequences S are given by the following
grammar:

T ::= S
∣∣ (

T
)L � T

∣∣ T | T

S ::= ε
∣∣ a

∣∣ S · S

where a is a generic element of E, and ε represents the empty sequence. We
denote with T the infinite set of terms, and with S the infinite set of sequences.

In CLS we have a sequencing operator · , a parallel composition operator | , a
looping operator

( )L and a containment operator � . Sequencing can be used
to concatenate elements of the alphabet E . The empty sequence ε denotes the
concatenation of zero symbols. By definition, looping and containment are always
applied together, hence we can consider them as a single binary operator

( )L � .
Brackets can be used to indicate the order of application of the operators, and
we assume

( )L � to have precedence over | .
The biological interpretation of the operators is the following: the main enti-

ties which occur in cells are DNA and RNA strands, proteins, membranes, and
other macro–molecules. DNA strands (and similarly RNA strands) are sequences
of nucleic acids, but they can be seen also at a higher level of abstraction as se-
quences of genes. Proteins are sequence of amino acids which usually have a very
complex three–dimensional structure. In a protein there are usually (relatively)
few subsequences, called domains, which actually are able to interact with other
entities by means of chemical reactions. CLS sequences can model DNA/RNA
strands and proteins by describing each gene or each domain with a symbol of
the alphabet. Membranes are closed surfaces, often interspersed with proteins,
which may have a content. Looping and containment allow the representation
of membranes with their contents. For example, the term

(
a | b

)L � c repre-
sents a membrane with the elements a and b on its surface and containing the
element c. Other macro–molecules can be modeled as single alphabet symbols,
or as short sequences. Finally, juxtaposition of entities can be described by the
parallel composition of their representations.
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Fig. 1. A visual representation of some examples of CLS terms

In Figure 1 we show the visual representation of some examples of CLS terms.
Term (i),

(
ε
)L � virus |

(
a | b · c | a · b

)L �
(
n
)L � DNA, represents an

environment where there exist a virus, represented by
(
ε
)L � virus, and a cell

represented by
(
a | b · c | a · b

)L �
(
n
)L � DNA. The cell has three proteins

on its external membrane, represented by the sequences a, b · c and a · b, and
contains a membrane with surface n, representing the nucleus and containing
a DNA strand, represented by the sequence DNA. Term (ii),

(
a | b · c | a · b |

(
ε
)L � virus

)L �
(
n
)L � DNA, represents the same cell of term (i) but with

the virus attached to the surface of its external membrane. Finally, term (iii),(
a | b · c | a · b

)L � (virus |
(
n
)L � DNA), represents the state in which the virus,

dissolving its external membrane, has entered the cell.
In CLS we may have syntactically different terms representing the same struc-

ture. We introduce a structural congruence relation to identify such terms.

Definition 2 (Structural Congruence). The structural congruence relations
≡S and ≡ are the least congruence relations on sequences and on terms, respec-
tively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

S1 ≡S S2 implies S1 ≡ S2

T1 | T2 ≡ T2 | T1 T1 | (T2 | T3) ≡ (T1 | T2) | T3

T | ε ≡ T
(
ε
)L � ε ≡ ε

Rules of the structural congruence state the associativity of · and | , the com-
mutativity of the latter and the neutral role of ε.

Note that there exist variants of the CLS formalism having a different syntax
of terms and a different structural congruence relation. Among these variants it
is worth mentioning those defined in [8] and in [30]. In the former, the looping
operator can be applied only to a single sequence of alphabet symbols, and
such a sequence can rotate by applying an axiom of the structural congruence.
In the latter, called CLS+, the looping operator can be applied to a parallel
composition of sequences, but not to other loopings.

Rewrite rules will be defined essentially as pairs of terms, with the first term
describing the portion of the system in which the event modeled by the rule may
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occur, and the second term describing how that portion of the system changes
when the event occurs. In the terms of a rewrite rule we allow the use of variables.
As a consequence, a rule will be applicable to all terms which can be obtained by
properly instantiating its variables. Variables can be of three kinds: two of these
are associated with the two different syntactic categories of terms and sequences,
and one is associated with single alphabet elements. We assume a set of term
variables TV ranged over by X, Y, Z, . . ., a set of sequence variables SV ranged
over by x̃, ỹ, z̃, . . ., and a set of element variables X ranged over by x, y, z, . . ..
All these sets are possibly infinite and pairwise disjoint. We denote by V the set
of all variables, V = TV ∪ SV ∪ X , and with ρ a generic variable of V . Hence, a
pattern is a term that may include variables.

Definition 3 (Patterns). Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
∣∣ (

P
)L � P

∣∣ P | P
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of E, and X, x̃ and x are generic elements of TV, SV
and X , respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to pat-
terns. An instantiation is a partial function σ : V → T . An instantiation must
preserve the type of variables, thus for X ∈ TV, x̃ ∈ SV and x ∈ X we have
σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E , respectively. Given P ∈ P , with Pσ we
denote the term obtained by replacing each occurrence of each variable ρ ∈ V
appearing in P with the corresponding term σ(ρ). With Σ we denote the set of
all the possible instantiations and, given P ∈ P , with V ar(P ) we denote the set
of variables appearing in P . We can now define rewrite rules.

Definition 4 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 �→ P2, where P1, P2 ∈ P, P1 �≡ ε and such that V ar(P2) ⊆
V ar(P1). We denote with 
 the infinite set of all the possible rewrite rules.

A rewrite rule P1 �→P2 states that a term P1σ, obtained by instantiating variables
in P1 by some instantiation function σ, can be transformed into the term P2σ.
For instance, the rule a · b | b · x̃ �→ c · x̃ prescribes the replacement, with respect
to an instantiation function σ, of a sequence a · b and a sequence b · σ(x̃) with a
sequence c ·σ(x̃). If the term to which the rule is applied is a ·b | b ·a ·b | c, and we
assume an instantiation function σ = {(x̃, a · b)}, the result of applying the rule
to the term is c · a · b | c. The rule p |

(
m | Y

)L � X �→
(
m | Y | p

)L � X could
describe the attachment of element p to a membrane containing on its surface
at least an element m. As in the previous example, the membrane to which the
element p gets attached, depends on the instantiation of variables X and Y .

With reference to Figure 1, the rewrite rule that transforms the state repre-
sented by term (i) into the state represented by term (ii) could be

(
ε
)L � virus |

(
X

)L � (Y |
(
n
)L � DNA) �→

(
X |

(
ε
)L � virus

)L � (Y |
(
n
)L � DNA). Analo-

gously, the rule which transforms the state represented by term (ii) into the state
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represented by term (iii) could be
(
X |

(
ε
)L � virus

)L � (Y |
(
n
)L � DNA) �→

(
X

)L � (Y | virus |
(
n
)L � DNA).

We now define the semantics of CLS as a transition system in which states
correspond to terms and transitions correspond to rule applications.

Definition 5 (Semantics). Given a finite set of rewrite rules R ⊆ 
, the se-
mantics of CLS is the least transition relation → on terms closed under structural
congruence ≡ and satisfying the following inference rules:

P1 �→P2 ∈ R P1σ �≡ ε σ ∈ Σ

P1σ → P2σ

T1 → T2

T | T1 → T | T2

T1 → T2(
T

)L � T1 →
(
T

)L � T2

T1 → T2(
T1

)L � T →
(
T2

)L � T

Note that, by the definition of the semantics, a rule cannot be applied to a
portion of a sequence. This means that a rule such as b �→ d cannot be applied
to a·b·c (so to obtain a·d·c). This constraint is necessary because the application
of a rule to a portion of a sequence could lead to syntactically wrong terms. For
instance, if it would be possible to apply b �→ d | e to a · b · c, one would obtain
a ·(d | e)·c as a result which is not a valid term. However, the constraint does not
reduce the expressiveness of the formalism because, in order to modify a portion
of a system, one can replace any rule such as b �→ d with x̃ · b · ỹ �→ x̃ · d · ỹ.

Finally, a model in CLS is given by a term describing the initial state of the
system and by a set of rewrite rules describing all the events that may occur.

Examples. A well–known example of biomolecular system is the epidermal
growth factor (EGF) signal transduction pathway [44,33]. If EGF proteins are
present in the environment of a cell, they should be interpreted as a prolifera-
tion signal from the environment, and hence the cell should react by synthesiz-
ing proteins which stimulate its proliferation. A cell recognizes the EGF signal
because it has on its membrane some EGF receptor proteins (EGFR), which
are transmembrane proteins (they have some intra–cellular and some extra–
cellular domains). One of the extra–cellular domains binds to one EGF protein
in the environment, forming a signal–receptor complex on the membrane. This
causes a conformational change on the receptor protein that enables it to bind
to another signal–receptor complex. The formation of the binding of the two
signal–receptor complexes (called dimerization) causes the phosphorylation of
some intra–cellular domains of the dimer. This, in turn, causes the internal do-
mains of the dimer to be recognized by a protein that is inside the cell (in the
cytoplasm), called SHC. The protein SHC binds to the dimer, enabling a long
chain of protein–protein interactions, which finally activate some proteins, such
as one called ERK, which bind to the DNA and stimulate synthesis of proteins
for cell proliferation.

Now, we use CLS to build a model of the first steps of the EGF signaling
pathway up to the binding of the signal-receptor dimer to the SHC protein.

We model the EGFR,EGF and SHC proteins as the alphabet symbols EGFR,
EGF and SHC, respectively. The cell is modeled as a looping applied to a
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parallel composition of sequences (representing the external membrane) initially
composed only by symbols EGFR, containing symbols SHC and surrounded
by symbols EGF . The rewrite rules modeling the first steps of the pathway are
the following:

EGF |
(
EGFR | Y

)L � X �→
(
CPL | Y

)L � X (R1)
(
CPL | CPL | Y

)L � X �→
(
CPL · CPL | Y

)L � X (R2)
(
CPL · CPL | Y

)L � X �→
(
CPLp · CPLp | Y

)L � X (R3)
(
CPLp · CPLp | Y

)L � (SHC | X) �→
(
CPLp · CPLp · SHC | Y

)L � X (R4)

Rule R1 describes the binding of a EGF protein to a EGFR receptor protein
on the membrane surface. The result of the binding is a signal-receptor complex
denoted CPL. Rule R2 describes the dimerization of two signal-receptor com-
plexes, the result is a sequence of two signal-receptor CPL symbols. Rule R3
describes the phosphorylation (and activation) of a signal-receptor dimer, that
is the replacement of a CPL · CPL sequence with CPLp · CPLp. Finally, rule
R4 describes the binding of an active dimer CPLp · CPLp to a SHC protein
contained in the cytoplasm. The result is a CPLp ·CPLp ·SHC sequence placed
on the membrane surface.

A possible initial term for the model in this example is given by a membrane
having, on its surface, a parallel composition of symbols EGFR and, inside,
some symbols SHC and, outside, some symbols EGF . A possible evolution of
such a term by means of application of the given rewrite rules is the following
(we write on each transition the name of the applied rewrite rule):

EGF | EGF |
(
EGFR | EGFR | EGFR | EGFR

)L � (SHC | SHC)
(R1)−−−→ EGF |

(
EGFR | CPL | EGFR | EGFR

)L � (SHC | SHC)
(R1)−−−→

(
EGFR | CPL | EGFR | CPL

)L � (SHC | SHC)
(R2)−−−→

(
EGFR | CPL · CPL | EGFR

)L � (SHC | SHC)
(R3)−−−→

(
EGFR | CPLp · CPLp | EGFR

)L � (SHC | SHC)
(R4)−−−→

(
EGFR | CPLp · CPLp · SHC | EGFR

)L � SHC

We show another example of modeling of a biomolecular system with CLS,
that is the modeling of a simple gene regulation process. This kind of processes
are essential for cell life as they allow a cell to regulate the production of proteins
that may have important roles, for instance in metabolism, growth, proliferation
and differentiation.

The example we consider is as follows: we have a simple DNA fragment con-
sisting of a sequence of three genes. The first, denoted p, is called promoter and is
the place where a RNA polymerase enzyme (responsible for translation of DNA
into RNA) binds to the DNA. The second, denoted o, is called operator and it
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is the place where a repressor protein (responsible for regulating the activity of
the RNA polymerase) binds to the DNA. The third, denoted g, is the gene that
encodes for the protein whose production is regulated by this process.

When the repressor is not bound to the DNA, the RNA polymerase can scan
the sequence of genes and transcribe gene g into a piece of RNA that will be
later translated into the protein encoded by g. When the repressor is bound
to the DNA, it becomes an obstacle for the RNA polymerase that cannot scan
anymore the sequence of genes.

The CLS model of this simple regulation process is a follows. The sequence of
genes is represented as the CLS sequence p · o · g, the RNA polymerase enzyme as
polym, the repressor protein as repr, and the piece of RNA obtained by the trans-
lation of gene g as rna. The rewrite rules describing the process are the following:

polym | p · x̃ �→ pp · x̃ (R1)
repr | x̃ · o · ỹ �→ x̃ · ro · ỹ (R2)

pp · o · x̃ �→ p · po · x̃ (R3)
x̃ · po · g �→ x̃ · o · pg (R4)

x̃ · pg �→ polym | rna | x̃ · g (R5)

Rules R1 and R2 describe the binding of the RNA polymerase and of the
repressor to the corresponding genes in the DNA sequences. The results of these
bindings are that the symbols representing the two genes are replaced by pp
and ro, respectively. Rules R3, R4 and R5 describe the activity of the RNA
polymerase enzyme in the absence of the repressor: it moves from gene p to gene
o in rule R3, then it moves from gene o to gene g in rule R4, and finally it
produces the RNA fragment and leaves the DNA in rule R5. Note that, in order
to apply rule R3, the repressor must not be bound to the DNA.

The only possible evolution of a term representing an initial situation in which
no repressors are present is

polym | p · o · g
(R1)−−−→ pp · o · g

(R3)−−−→ p · po · g
(R4)−−−→ p · o · pg

(R5)−−−→ polym | rna | p · o · g

that represents the case in which the RNA polymerase enzyme can scan the
DNA sequence and transcribe gene g into a piece of RNA. When the repressor
is present, instead, a possible evolution is

repr | polym | p · o · g
(R1)−−−→ repr | pp · o · g

(R2)−−−→ pp · ro · g

that corresponds to a situation in which the repressor stops the transcription of
the gene by hampering the activity of the RNA polymerase.

3.2 An Extension for the Modeling of Protein Interaction at the
Domain Level

To model a protein at the domain level in CLS it would be natural to use a sequence
with one symbol for each domain. However, the binding between two domains of
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two different proteins, that is the linking between two elements of two different
sequences, cannot be expressed in CLS. To represent this, CLS has been extended
in [5] by labels on basic symbols. If in a term two symbols have the same label,
we intend that they represent domains that are bound to each other. If in a term
there is a single symbol with a certain label, we intend that the term represents
only a part of a system we model, and that the symbol will be linked to another
symbol in another part of the term representing the full model.

As membranes create compartments, elements inside a looping sequence can-
not be linked to elements outside. Elements inside a membrane can be linked
either to other elements inside the membrane or to elements of the membrane
itself. An element can be linked at most to another element. The partner to
which an element is bound can be different at different times, and a domain able
to bind to multiple partners simultaneously could be described by using more
elements instead of a single one.

For the sake of simplicity, the syntax of terms of the CLS with links (LCLS)
is defined as in [5], namely the looping operator can be applied only to a single
sequence rather than a LCLS term.

Definition 6 (Terms). Terms T and sequences S of LCLS are given by the
following grammar:

T ::= S
∣∣ (

S
)L � T

∣∣ T | T

S ::= ε
∣∣ a

∣∣ an
∣∣ S · S

where a is a generic element of E, and n is a natural number. We denote with
T the infinite set of terms, and with S the infinite set of sequences.

Definition 7 (Structural Congruence). The structural congruence relations
≡S and ≡ are the least congruence relations on sequences and on terms, respec-
tively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

S1 ≡S S2 implies S1 ≡ S2 and
(
S1

)L � T ≡
(
S2

)L � T

T1 | T2 ≡ T2 | T1 T1 | (T2 | T3) ≡ (T1 | T2) | T3 T | ε ≡ T
(
ε
)L � ε ≡ ε

(
S1 · S2

)L � T ≡
(
S2 · S1

)L � T

Note that, differently from the structural congruence relation of CLS, in this
case the sequence to which the looping operator is applied can be rotated by
axiom

(
S1 · S2

)L � T ≡
(
S2 · S1

)L � T . For instance, the sequence
(
a · b3 · c

)L � d

is equivalent to the sequence
(
b3 · c · a

)L � d and to the sequence
(
c · a · b3

)L � d.
Patterns of LCLS are similar to those of CLS, with the addition of the labels.

Definition 8 (Patterns). Patterns P and sequence patterns SP of LCLS are
given by the following grammar:

P ::= SP
∣∣ (

SP
)L � P

∣∣ P | P
∣∣ X

SP ::= ε
∣∣ a

∣∣ an
∣∣ SP · SP

∣∣ x̃
∣∣ x

∣∣ xn



398 R. Barbuti et al.

where a is an element of E, n is a natural number and X, x̃ and x are elements
of TV, SV and X , respectively. We denote with P the infinite set of patterns.

Note that an LCLS term is also an LCLS pattern; everything we define for pat-
terns will be immediately defined also for terms. Moreover, in what follows, we
will often use the notions of compartment and of top–level compartment of a pat-
tern. A compartment is a subpattern that is the second operand of a containment
operator and in which the contents of inner containment operators are not con-
sidered. The top–level compartment is the portion of the pattern that is not the
content of any containment operator. For instance, the top–level compartment
of a pattern P = a |

(
b
)L � c |

(
d
)L � (X |

(
e
)L � f) is a |

(
b
)L � ε |

(
d
)L � ε.

Other compartments in P are c, X |
(
e
)L � ε, and f .

An LCLS pattern is well–formed if and only if a label occurs no more than
twice, and two occurrences of a label are always in the same compartment. The
following type system will be used for deriving the well–formedness of patterns.

In each inference rule the conclusion has the form (N, N ′) |= P , where N and
N ′ are sets of natural numbers with N the set of labels used twice and N ′ the
set of labels used only once in the top–level compartment of P .

Definition 9 (Type System). The typing algorithm for LCLS patterns is de-
fined by the following inference rules:

1.
(
∅, ∅

)
|= ε 2.

(
∅,∅

)
|= a 3.

(
∅, {n}

)
|= an

4.
(
∅, ∅

)
|= x 5.

(
∅, {n}

)
|= xn 6.

(
∅, ∅

)
|= x̃ 7.

(
∅, ∅

)
|= X

8.

(
N1, N

′
1
)

|= SP1
(
N2, N

′
2
)

|= SP2 N1 ∩ N2 = N ′
1 ∩ N2 = N1 ∩ N ′

2 = ∅(
N1 ∪ N2 ∪ (N ′

1 ∩ N ′
2), (N

′
1 ∪ N ′

2) \ (N ′
1 ∩ N ′

2)
)

|= SP1 · SP2

9.

(
N1, N

′
1
)

|= P1
(
N2, N

′
2
)

|= P2 N1 ∩ N2 = N ′
1 ∩ N2 = N1 ∩ N ′

2 = ∅(
N1 ∪ N2 ∪ (N ′

1 ∩ N ′
2), (N

′
1 ∪ N ′

2) \ (N ′
1 ∩ N ′

2)
)

|= P1 | P2

10.

(
N1, N

′
1
)

|= SP
(
N2, N

′
2
)

|= P N1 ∩ N2 = N ′
1 ∩ N2 = N1 ∩ N ′

2 = ∅ N ′
2 ⊆ N ′

1(
N1 ∪ N ′

2, N
′
1 \ N ′

2

)
|=

(
SP

)L � P

where a is a generic element of E, n is a natural number, and X, x̃ and x are
generic elements of TV, SV and X , respectively. We write |= P if there exist
N, N ′ ⊂ IN such that (N, N ′) |= P , and �|= P otherwise.

Rules 1–7 are self explanatory. Rule 8 states that a sequence pattern SP1 · SP2
is well–typed if there are no labels occurring either four times (N1 ∩ N2 = ∅) or
three times (N ′

1 ∩ N2 = N1 ∩ N ′
2 = ∅). Labels occurring twice in SP1 · SP2 are

those which occur twice either in SP1 or in SP2 together with labels occurring
once both in SP1 and in SP2. Rule 9 for the parallel composition is analogous to
rule 8. Rule 10 states that the only labels which can be used for typing

(
SP

)L � P
must be different from those used for typing P . Moreover the labels used once in
P must be used once in SP , that is these labels are used to bind elements inside
the membrane to elements on the membrane itself. As an example, the pattern



The Calculus of Looping Sequences 399

P ≡ a1 |
(
b1 · b2

)L � c · c2 · c can be typed as follows.

(∅, {1}) |= a1 (by rule 3)

(∅, {1, 2}) |= b1 · b2 (by rules 3 and 8)

(∅, {2}) |= c · c2 · c (by rules 2, 3 and 8)

({2}, {1}) |=
(
b1 · b2)L � c · c2 · c (by rule 10)

({1, 2}, ∅) |= P (by rule 9)

On the contrary, the pattern a1 |
(
b
)L � c1 cannot be typed because the premise

N ′
2 ⊆ N ′

1 of rule 10 of the type system is not satisfied. Similarly, �|= a1 | b1 | c1

and �|= a1 |
(
b1

)L � c1 hold since the premises of rules 9 and 10, respectively, are
not satisfied.

The type system can be used to introduce a concept of well–formedness.

Definition 10 (Well–Formedness of Patterns). A pattern P is well–formed
if and only if |= P holds.

The use of labels to represent links is not new. In [17] well–formedness of terms
is given by a concept of graph–likeness. We notice that in our case membranes,
which are not present in the formalism of [17], make the treatment more com-
plicated. In [28], where the concept of membrane is introduced, well–formedness
of terms is given intuitively and not formally defined.

In the following we shall use a notion of multiset of labels and set of links of a
pattern. The former represents the multiset of all the labels appearing in the top
level compartment of a pattern, the latter represents the set of labels that occur
twice in the top–level compartment of a pattern. We shall denote with #(e, M)
the number of occurrences of element e in the multiset M .

Definition 11. The multiset of labels of a pattern P is LM (P ) where:

LM (ε) = ∅ LM (ν) = ∅ LM (νn) = {n} LM (x̃) = ∅

LM (SP1 · SP2) = LM (SP1) ∪ LM (SP2) LM (P1 | P2) = LM (P1) ∪ LM (P2)

LM (
(
SP

)L � P ) = LM (SP ) ∪ (LM (SP ) ∩ LM (P )) LM (X) = ∅

where ν ∈ E ∪ EV , n ∈ IN, P1, P2 are any pattern, SP is any sequence pattern.

Definition 12. The set of links of a pattern P is L(P ) = {n|#(n, LM (P )) = 2},

As an example, given pattern P ≡ a1 |
(
b1 · b2

)L � c · c2 · c3 | a3, we have that
LM (P ) = {1} ∪ {1, 2}∪ ({1, 2}∩ {2, 3}) = {1, 1, 2, 2} and, consequently, L(P ) =
{1, 2} because link labeled by number 3 is not in the top–level compartment of
P . If P is a well–formed pattern, there exists N ⊂ IN such that (L(P ), N) |= P .

Let A be the set of all total injective functions α : IN → IN. Given α ∈ A,
the α–renaming of an LCLS pattern P is the pattern Pα obtained by replacing
every label n in P by α(n). For example, let P be a1 |

(
b2

)L � c2 and α be
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such that α(n) = n + 1. We have that Pα ≡ a2 |
(
b3

)L � c3. It is easy to note
that, since α is injective, the application of α−renaming to well–formed patterns
preserves the well-formedness.

Links in a term are placeholders: the natural number used in the two labels of
a link has not a particular meaning. Hence, we can consider as equivalent pat-
terns which differ only in the values of their links. This equivalence is formally
defined as follows.

Definition 13 (α–equivalence). The α–equivalence relation =α on LCLS pat-
terns is the least equivalence relation which satisfies the following rules:

1.
P1 ≡ P2

P1 =α P2
2.

ni �∈ LM (SPj) i = 1, 2 j = 1, 2, 3

SP1 · νn1 · SP2 · μn1 · SP3 =α SP1 · νn2 · SP2 · μn2 · SP3

3.
ni �∈ LM (SPj) i = 1, 2 j = 1, 2, 3, 4

SP1 · νn1 · SP2 | SP3 · μn1 · SP4 =α SP1 · νn2 · SP2 | SP3 · μn2 · SP4

4.
ni �∈ LM (SPj) ∪ LM (P ) i = 1, 2 j = 1, 2, 3, 4

(
SP1 · νn1 · SP2

)L � (SP3 · μn1 · SP4 | P ) =α

(
SP1 · νn2 · SP2

)L � (SP3 · μn2 · SP4 | P )

5.
ni �∈ LM (SPj) ∪ LM (P ) i = 1, 2 j = 1, 2, 3, 4

SP1 · μn1 · SP2 |
(
SP3 · νn1 · SP4

)L � P =α

SP1 · μn2 · SP2 |
(
SP3 · νn2 · SP4

)L � P

6.
ni �∈ LM (SPj) ∪ LM (Pk) i = 1, 2 j = 1, 2, 3, 4 k = 1, 2

(
SP1 · μn1 · SP2

)L � P1 |
(
SP3 · νn1 · SP4

)L � P2 =α

(
SP1 · μn2 · SP2

)L � P1 |
(
SP3 · νn2 · SP4

)L � P2

7.
ni �∈ LM (SPj) ∪ LM (Pk) i = 1, 2 j = 1, 2, 3, 4 k = 1, 2

(
SP1 · μn1 · SP2

)L � (P1 |
(
SP3 · νn1 · SP4

)L � P2) =α

(
SP1 · μn2 · SP2

)L � (P1 |
(
SP3 · νn2 · SP4

)L � P2)

8.

P1 =α P2 P3 =α P4

LM (P1) ∩ L(P3) = L(P1) ∩ LM (P3) = ∅

LM (P2) ∩ L(P4) = L(P2) ∩ LM (P4) = ∅

P1 | P3 =α P2 | P4

9.

SP1 =α SP2 P1 =α P2

LM (SP1) ∩ L(P1) = L(SP1) ∩ LM (P1) = ∅

LM (SP2) ∩ L(P2) = L(SP2) ∩ LM (P2) = ∅

(
SP1

)L � P1 =α

(
SP2

)L � P2

where ν, μ ∈ E ∪ EV , n1, n2 ∈ IN, P1, P2, P3, P4 are any pattern, SP1, SP2, SP3,
SP4 are any sequence pattern.
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Rule 1 says that structurally congruent patterns are also α–equivalent. rules from
2 to 7 describe the ridenomination of the two labels of a link with fresh labels. Each
rule deals with a possible situation in which a link may occur. Rule 2 deals with
links between two elements of the same sequence, rule 3 with links between two
elements of two sequences composed in parallel, and so on. Rules 8 and 9 describe
the closure of the relation with respect to parallel composition and containment.

As an example, the term a1 · b2 · c1 · d |
(
e2 · f3 · g

)L � h3 · i is α−equivalent

to the term a4 · b5 · c4 · d |
(
e5 · f6 · g

)L � h6 · i as rules 2 and 8 can be used to
replace link 1 with link 4, rules 5 and 8 to replace link 2 with link 5 and rules 4
and 8 to replace link 3 with link 6.

Note that the labels occurring only once in a pattern P are not renamed by
the α–equivalence relation. Instead, the application of an α–renaming function
to P may change these labels. Moreover, labels which occur twice in more than
one compartment of the pattern can be renamed differently in each compartment
by the α–equivalence relation, while they are all renamed by the same value by
applying some α–renaming function.

As in CLS, rewrite rules in LCLS are pairs of patterns, but in this case we
require that the two patterns are well–formed.

Definition 14 (Rewrite Rules). Arewrite rule is a pair of well–formed patterns
(P1, P2), denoted with P1 �→P2, where P1, P2 ∈ P,P1 �≡ ε, and such that V ar(P2) ⊆
V ar(P1). We denote with 
 the infinite set of all the possible rewrite rules.

Now, we can define the semantics of LCLS.

Definition 15 (Semantics). Given a set of rewrite rules R ⊆ 
, the semantics
of LCLS is the least transition relation → on well–formed terms closed under ≡
and =α, and satisfying the following inference rules:

(app)
P1 	→ P2 ∈ R P1σ �≡ ε σ ∈ Σ α ∈ A

P1ασ → P2ασ

(par)
T1 → T ′

1 L(T1) ∩ L(T2) = {n1, . . . , nM} n′
1, . . . , n

′
M fresh

T1 | T2 → T ′
1{n′

1, . . . , n
′
M/n1, . . . , nM} | T2

(cont)
T → T ′ L(S) ∩ L(T ′) = {n1, . . . , nM} n′

1, . . . , n
′
M fresh

(
S

)L � T →
(
S

)L � T ′{n′
1, . . . , n

′
M/n1, . . . , nM}

where the symmetric rule for the parallel composition is omitted.

Rule (app) says that a rewrite rule P1 �→ P2 can be applied to a term that can
be obtained from P1 by some renaming α and instantiation σ. The result of
the application is P2 renamed and instantiated in the same manner. Rule (par)
describes the derivation of a transition from a state represented by a parallel
composition of terms. In such a state, for the set of links {n1, . . . , nM} of both T1
and T2, a set of fresh links {n′

1, . . . , n
′
M} is assumed. The fresh links substitute in

T ′
1 the links with the same name T1 and T2. Rule (cont) describes the derivation

of a transition from a state given by a looping. Also in this case fresh links are
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assumed and substituted into the term which describes the new content of the
membrane T ′. It is worth noting that, as the semantics is defined over well–
formed terms, no transitions can be derived that lead to non well–formed terms.
As a consequence, rewrite rules cannot be applied if they transform a term into
another which is not well–formed. For instance, rewrite rule a1 �→ a cannot be
applied to

(
c
)L � (a1 | b1 ·b) as it would result in

(
c
)L � (a | b1 ·b) that is not well–

formed. We have introduced this restriction on the the domain of the semantics
for the sake of simplicity. In [5] we have given a more complex semantics which
preserves well–formedness without the need of this restriction.

Example. We model in LCLS the steps of the EGF pathway (see example in
Section 3.1) up to the binding of the protein SHC to the dimer. We model the
EGFR protein as the sequence RE1 · RE2 · RI1 · RI2, where RE1 and RE2 are
two extra–cellular domains and RI1 and RI2 are two intra–cellular domains.
The membrane of the cell is modeled as a looping sequence which could contain
EGFR proteins. Outside the looping sequence (i.e. in the environment) there
could be EGF proteins, and inside (i.e. in the cytoplasm) there could be SHC
proteins. The rewrite rules modeling the pathway are the following:

EGF |
(
RE1 ·x̃

)L � X �→
(
SRE1 ·x̃

)L � X (R1)
(
SRE1 ·RE2 ·RI1 ·RI2 ·x̃·SRE1 ·RE2 ·RI1 ·RI2 ·ỹ

)L � X �→
(
SRE1 ·R1

E2 ·RI1 ·RI2 ·SRE1 ·R1
E2 ·RI1 ·RI2 ·x̃·ỹ

)L � X (R2)
(
R1

E2 ·RI1 ·x̃·R1
E2 ·RI1 ·ỹ

)L � X �→
(
R1

E2 ·PRI1 ·x̃·R1
E2 ·RI1 ·ỹ

)L � X (R3)

(
R1

E2 ·PRI1 ·x̃·R1
E2 ·RI1 ·ỹ

)L � X �→
(
R1

E2 ·PRI1 ·x̃·R1
E2 ·PRI1 ·ỹ

)L � X
(R4)

(
R1

E2 ·PRI1 ·RI2 ·x̃·R1
E2 ·PRI1 ·RI2 ·ỹ

)L � (SHC | X) �→
(
R1

E2 ·PRI1 ·R2
I2 ·x̃·R1

E2 ·PRI1 ·RI2 ·ỹ
)L � (SHC2 | X) (R5)

Rule R1 represents the binding of the EGF protein to the receptor domain
RE1 with SRE1 as a result. Rule R2 represents that when two EGFR proteins
activated by proteins EGF occur on the membrane, they may bind to each other
to form a dimer (shown by the link 1). Rule R3 represents the phosphorylation
of one of the internal domains RI1 of the dimer, and rule R4 represents the
phosphorylation of the other internal domain RI1 of the dimer. The result of
each phosphorylation is PRI1. Rule R5 represents the binding of the protein
SHC in the cytoplasm to an internal domain RI2 of the dimer. Remark that the
binding of SHC to the dimer is represented by the link 2, allowing the protein
SHC to continue the interactions to stimulate cell proliferation.

Let us denote the RE1 ·RE2 ·RI1 ·RI2 by EGFR. By starting from a cell with
some EGFR proteins on its membrane, some SHC proteins in the cytoplasm
and some EGF proteins in the environment, a possible evolution is the following
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(we write on each transition the name of the rewrite rule applied):

EGF | EGF |
(
EGFR·EGFR·EGFR·EGFR

)L � (SHC | SHC)

(R1)−−−→ EGF |
(
SRE1 ·RE2 ·RI1 ·RI2 ·EGFR·EGFR·EGFR

)L � (SHC | SHC)

(R1)−−−→
(
SRE1 ·RE2 ·RI1 ·RI2 ·EGFR·SRE1 ·RE2 ·RI1 ·RI2 ·EGFR

)L � (SHC | SHC)

(R2)−−−→
(
SRE1 ·R1

E2 ·RI1 ·RI2 ·SRE1 ·R1
E2 ·RI1 ·RI2 ·EGFR·EGFR

)L � (SHC | SHC)

(R3)−−−→
(
SRE1 ·R1

E2 ·PRI1 ·RI2 ·SRE1 ·R1
E2 ·RI1 ·RI2 ·EGFR·EGFR

)L � (SHC | SHC)

(R4)−−−→
(
SRE1 ·R1

E2 ·PRI1 ·RI2 ·SRE1 ·R1
E2 ·PRI1 ·RI2 ·EGFR·EGFR

)L � (SHC | SHC)

(R5)−−−→
(
SRE1 ·R1

E2 ·PRI1 ·R2
I2 ·SRE1 ·R1

E2 ·PRI1 ·RI2 ·EGFR·EGFR
)L �(SHC2 | SHC)

3.3 A Stochastic Extension

In CLS only qualitative aspects of biological systems are considered, such as
their structure and the presence (or the absence) of certain molecules. As a
consequence, on CLS models it is only possible to verify properties such as
the reachability of particular states or causality relationships between events. It
would be interesting to verify also properties such as the time spent to reach a
particular state, or the probability of reaching it. To face this problem, in [6] we
have developed a stochastic extension of CLS, called Stochastic CLS, in which
quantitative aspects, such as time and probability, are taken into account.

The standard way of extending a formalism to model quantitative aspects of
biological systems is by incorporating the stochastic framework developed by
Gillespie with its simulation algorithm for chemical reactions [24] in the seman-
tics of the formalism. This has been done, for instance, for the π–calculus [35,37].
The idea of Gillespie’s algorithm is that a rate constant is associated with each
chemical reaction that may occur in the system. Such a constant is obtained by
multiplying the kinetic constant of the reaction by the number of possible com-
binations of reactants that may occur in the system. The resulting rate constant
is then used as the parameter of an exponential distribution modeling the time
spent between two occurrences of the considered chemical reaction.

The use of exponential distributions to represent the (stochastic) time spent
between two occurrences of chemical reactions allows the description of the sys-
tem as a Continuous Time Markov Chain (CTMC), and consequently it allows
the verification of properties of the described system by means of analytic tools
and by means of stochastic model checkers.

In Stochastic CLS, the incorporation of Gillespie’s stochastic framework is not
a simple exercise. The main difficulty is counting the number of possible reactant
combinations of the chemical reaction described by a rewrite rule. Reactants are
given by the left pattern in a rewrite rule, which may contain variables. A rewrite
rule can be applied in different positions of the term which describes the state
of the system. In order to compute the rate of application of the rule we have to
count the number of different positions where the rewrite rule can be applied,
by taking into account instantiation of variables.
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We have defined the Stochastic CLS in [6], and showed how to derive a CTMC
from the semantics of a system modeled in the formalism. This allows performing
simulation and verification of properties of the described systems, for instance
by using stochastic model checkers, such as PRISM [27].

In the present work the semantics given in [6] is slightly revised. In particular,
the rewrite rules defined in [6] are enriched, with respect to those of CLS, with
a rate function while, here, they are enriched with a kinetic constant. Rate
functions, built over the domain of the instantiation functions σ, were assumed
to be defined in order to correctly compute the rate of the modeled chemical
reaction. Intuitively, a rule with left hand side a |

(
c | X

)L � ε modeling a
reaction with reactants a and c, where c is placed on the surface of a membrane,
should have a rate which depends on the number of c appearing on the surface
itself, that is on the instantiation of X . In the semantics of [6], the computation
of the number of c appearing at in the term σ(X) is assumed to be done by
the rate function associated with the rule. Differently, the semantics we define
here, embeds such a computation. Obviously, the version of Stochastic CLS of
[6] is more general as any function can be associated with a rule to specify how
the rule rate has to be computed. However, the restrictions we introduce here
simplify the modeling of biochemical systems.

Now we can define Stochastic CLS. The syntax of terms and the structural
congruence relations are the same as those of CLS defined in Section 3.1.

As regards patterns, in Stochastic CLS we distinguish between the patterns
that will be used on the left hand side of rewrite rules (called left patterns)
and those that will be used on the right hand side of rewrite rules (called right
patterns). In particulal, we will impose restrictions on the use of term variables
of left patterns in order to simplify the definition of the stochastic semantics.

Definition 16 (Patterns). Left patterns PL and right patterns PR of Stochas-
tic CLS are given by the following grammar:

PL ::= SP
∣∣ (

PX

)L � PX

∣∣ PL | PL

PX ::= PL

∣∣ PL | X

PR ::= SP
∣∣ (

PR

)L � PR

∣∣ PR | PR

∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where X, x̃ and x are generic elements of TV, SV and X , respectively. The sets
of all left and right patterns are denoted with PL and PR, respectively.

We assume the structural congruence relation to be trivially extended to patterns.
Furthermore, note that right patterns PR are exactly the same as CLS patterns
(see Definition 3) while left patterns PL contain the following restrictions:

– term variables cannot appear in a parallel composition at the top–level of
the pattern. In other words, they must always appear in an operand of some
looping and containment operator. For example, a·b | X is not a syntactically
correct left pattern, whereas

(
a
)L � (a ·b | X) and

(
a ·b | X

)L � a are correct;
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– a parallel composition cannot have among its components more than one
term variable which is not involved in the application of some looping and
containment operator. For example,

(
a
)L � (a·b | X | Y ) is not a syntactically

correct term, whereas
(
a
)L � (a · b | X |

(
Y

)L � Z) is correct.

These restrictions simplify the definition of the stochastic semantics and the
development of a simulator of Stochastic CLS models. In fact, the restrictions
allow us to prove that for all P ∈ PL and σ, σ′ ∈ Σ, Pσ ≡ Pσ′ implies that for
all X ∈ TV it holds σ(X) ≡ σ′(X). This means that the instantiation of term
variables in the application of a rewrite rule to a specific portion of a term is
always unique. This result is important in the definition of the stochastic seman-
tics because, as we shall see, to compute the application rate of a rule we will
need to count the number of occurrences of some sequences in the instantiation
of the term variables of the rule.

The restrictions we impose do not reduce significantly the expressiveness of
the formalism in the modeling of biological systems. As regards the use of term
variables at top–level of a left pattern of a rule, by the definition of the seman-
tics, such a rule could rewrite any portion of the term representing the state of
the system. From a biological perspective, this would correspond to modeling
a reaction with an uncertain number of reactants. Analogously, two term vari-
ables inside a looping or a containment operator of a rule could be instantiated
in many different ways correspondingly to different partitions of the term. From
a biological perspective, this would represent a reaction between, for instance,
two arbitrary portions of the content of a membrane. Consequently, as chemical
reactions happen usually between a fixed and small number of reactants, the
restriction appears to be reasonable.

We now introduce stochastic rewrite rules.

Definition 17 (Stochastic Rewrite Rules). A stochastic rewrite rule is a
pair of patterns and a kinetic constant (P1, P2, k), denoted with P1

k�→P2, where
P1 ∈ PL, P2 ∈ PR, P1 �≡ ε, k ∈ R and such that V ar(P2) ⊆ V ar(P1). We denote
with 
 the infinite set of all the possible rewrite rules.

As said above, we distinguish between the patterns on the left and on the right
hand sides of a (stochastic) rewrite rule, and we assume some restrictions on the
use of term variables on the left hand side. As examples of forbidden rules, consider
a | X �→ a and

(
b
)L � (X | Y ) �→

(
b
)L � X . The former removes from the term to

which it is applied an arbitrary number of components of a parallel composition
where a appears. The latter removes an arbitrary portion of the content of any(
b
)L occurring in the term to which it is applied. The left hand sides of both of

these rules violate the restrictions we have imposed on left patterns.
Stochastic rewrite rules will be applied with a frequency that corresponds to

the rate of occurrence of chemical reactions computed by Gillespie’s algorithm
[24]. This means that a rule such as a | b

k�→ c, modeling the formation of a
complex c as result of the binding of two molecules a and b, will be applied with
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a frequency proportional to k and to the number of possible combinations of
elements a and b in the term to which the rule is applied. For instance, if the
rule is applied to term a | a | b | b | b, then its application rate will be 6k. Instead,
if the rule is applied to a | a | b |

(
c
)L � (a | a | b | b), then its application rate

will be 2k if the rule is applied to a pair a, b at the top–level of the term, and
will be 4k if the rule is applied to a pair a, b contained in the looping.

More complex is the case of a rule such as a |
(
b·x̃ | X

)L � Y
k�→

(
c·x̃ | X

)L � Y ,
modeling the binding of a molecule a with a portion b of a molecule on the
surface of some membrane. In this case, the frequency of application of the rule
should be proportional to the number of symbols a in the term and to the
number of sequences starting with b in the instantiation of X plus one (the
instantiation of b · x̃). For instance, the rate of application of the rule to the term
a | a | a |

(
b · a | b · a

)L � c should be 6k.
The application rate of a rewrite rule will be computed by the semantics of

Stochastic CLS. Before defining it, we need to introduce some auxiliary functions.
Let n : T × T → N be a function such that n(T, T ′) computes the number of
occurrences of the term T ′, assumed either to be a sequence or to have the form(
T1

)L � T2, as a component of the parallel composition at the top–level of T .
Formally,

n(T1 | T2, T
′) = n(T1, T

′) + n(T2, T
′)

n(S, S′) =

{
1, if S ≡ S′

0, otherwise

n(
(
T1

)L � T2,
(
T ′

1
)L � T ′

2) =

{
1, if T1 ≡ T ′

1 and T2 ≡ T ′
2

0, otherwise

For instance, n(a · b | a · b, a · b) = 2 and n(
(
m

)L � a |
(
m

)L � b,
(
m

)L � a) = 1.
Furthermore, let us denote with T the set containing all the sequences and all
the membranes (with their content) appearing at top–level in T . For instance,
if T ≡ a | a |

(
a
)L � b |

(
a | a

)L � b, then T = {a,
(
a
)L � b,

(
a | a

)L � b}.
Let comb : PL × Σ → IN be a function which, given a left pattern PL and an
instantiation function σ, computes the number of combinations of reactants of
PL in PLσ. The function comb can be recursively defined as follows:

comb(SP, σ) = 1
comb(PL1 | PL2, σ) = comb(PL1, σ) · comb(PL2, σ)

comb(
(
PX1

)L � PX2, σ) = comb′(PX1, σ) · comb′(PX2, σ)

where comb′ is defined as follows:

comb′(PL, σ) = comb(PL, σ)

comb′(PL | X, σ) =
∏

T∈PLσ

(
n(PLσ | σ(X), T )

n(PLσ, T )

)
· comb(PL, σ) .
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The reactants of a left pattern are the sequence patterns it contains. As a con-
sequence, for a single sequence pattern, comb is 1. For the parallel composition
of two left patterns comb is the product of the values of comb for the two com-
ponents. For looping and containment of two patterns, note that the restriction
we have imposed on left patterns ensures that in each pattern there may be at
most one term variable. Therefore, one must count the occurrences of reactant
combinations in the instantiations of such variables. This implies the computa-
tion of a binomial coefficient for each distinct reactant, and the result of this
computation is given by comb′. If in the considered pattern there are no term
variables, then comb′ is equal to comb. If a term variable is present, then comb′

gives the product of all binomial coefficients for each distinct reactant, namely
for each element of the set PLσ, multiplied by the number of combinations of
reactants which may result from PL.

For instance, given σ = {(X, b | c), (Y, a | c | c)} and PL ≡ a | a |
(
b |

X
)L � (c | Y ), we have comb(PL, σ) = 1 · 1 · comb′(b | X, σ) · comb′(c | Y, σ) =

2 · 3 = 6.
Now we must also take into account the fact that in the context in which

a rewrite rule applies there may be other reactants, and therefore the rate of
application of the rule should be consequentially increased.

If we have a rewrite rule PL
k�→ PR, we have seen that we can compute

the number of combinations of reactants of such a rule in PLσ as comb(PL, σ).
However, if the term to which the rule is applied is PLσ | T , then the number of
combinations of reactans should become

comb(PL, σ) ·
∏

T ′∈PLσ

(
n(PLσ | T, T ′)

n(PLσ, T ′)

)
.

In fact,
∏

T ′∈PLσ

(n(PLσ|T,T ′)
n(PLσ,T ′)

)
is the number of combinations of components

of PLσ in the extended term PLσ | T , that is the number of positions in PLσ | T
where a rule with left hand side PL can be applied.

As an example, if PL ≡
(
a
)L � (b | X), σ(X) = b and T ≡

(
a
)L � (b | b) | c,

then PLσ | T is
(
a
)L � (b | b) |

(
a
)L � (b | b) | c and the number of combinations

of reactants of PL in PLσ | T is comb(PL, σ) ·
∏

T ′∈PLσ

(n(PLσ|T,T ′)
n(PLσ,T ′)

)
= 2 ·

(2
1

)
= 4.

In fact, in PL | T there are four pairs of reactants a and b to which a rule with
PL on the left hand side could be applied.

Our aim is to compute compositionally this increase of the rate of application
of a rule due to some reactant that is in the context of the portion of the term
to which the rule applies. To this purpose we define, as follows, an auxiliary
function binom : T × T × T → Q:

binom(T1, T2, T3) =
∏

T∈T1

n(T3,T )∏

i=1

n(T2, T ) + i

n(T2, T ) − n(T1, T ) + i
.
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The following two propositions show that binom can be used to compute the
increase of the application rate we are interested in, and that such and increase
can be computed compositionally.

Proposition 1. Given PL ∈ PL, T ∈ T and σ ∈ Σ it holds

binom(PLσ, PLσ, T ) =
∏

T ′∈PLσ

(
n(PLσ | T, T ′)

n(PLσ, T ′)

)
.

Proof. By the definition of binom it follows

binom(PLσ, PLσ, T ) =
∏

T ′∈PLσ

n(T,T ′)∏

i=1

n(PLσ, T ′) + i

n(PLσ, T ′) − n(PLσ, T ) + i
=

=
∏

T ′∈PLσ

(n(Pσ, T ′) + n(T, T ′)) · (n(Pσ, T ′) + n(T, T ′) − 1) · · · (n(Pσ, T ′) + 1)

n(T, T ′)!

since n(PLσ, T ′) + n(T, T ′) = n(PLσ | T, T ′) this is equal to
∏

T ′∈PLσ

n(PLσ | T, T ′) · (n(PLσ | T, T ′) − 1) · · · (n(PLσ | T, T ′) − n(T, T ′) + 1)

n(T, T ′)!
=

=
∏

T ′∈PLσ

n(PLσ | T, T ′)!

n(T, T ′)! · (n(PLσ | T, T ′) − n(T, T ′))!
=

∏

T ′∈PLσ

(
n(PLσ | T, T ′)

n(T, T ′)

)

and, by the well–known property of binomial coefficients such that
(
n
k

)
=

(
n

n−k

)
,

this is equal to
∏

T ′∈PLσ

(
n(PLσ | T, T ′)

n(PLσ, T ′)

)
.

��

Proposition 2. Given PL ∈ PL, T1, T2 ∈ T and σ ∈ Σ it holds

binom(PLσ, PLσ, T1 | T2) = binom(PLσ, PLσ, T1) · binom(PLσ, PLσ | T1, T2) .

Proof. By Proposition 1 the property we have to prove can be rewritten as

∏

T∈PLσ

(
n(PLσ | T1 | T2, T )

n(PLσ, T )

)
=

∏

T∈PLσ

(
n(PLσ | T1, T )

n(PLσ, T )

)
· binom(PLσ, PLσ | T1, T2) =

=
∏

T∈PLσ

(
n(PLσ | T1, T )

n(PLσ, T )

)
·

∏

T∈PLσ|T1

n(T2,T )∏

i=1

n(PLσ | T1, T ) + i

n(PLσ | T1, T ) − n(PLσ, T ) + i

Now, let n, m, k ∈ N be such that k ≤ n. The following equation holds:
(

n + m

k

)
=

(n + m)!

k!(n + m − k)!
=

(n + m) · · · (n + 1) · n · · · (k + 1)

(n + m − k)!
=

=
(n + m) · · · (n + 1)

(n + m − k) · · · (n + 1 − k)
· n · · · (k + 1)

(n − k)!
=

(
m∏

i=1

n + i

n + i − k

)
·
(

n

k

)
.



The Calculus of Looping Sequences 409

This resuls and the fact that n(PLσ | T1 | T2, PLσ) = n(PLσ | T1, PLσ) +
n(T2, PLσ), are used in what follows:

∏

T∈PLσ

(
n(PLσ | T1 | T2, T )

n(PLσ, T )

)
=

∏

T∈PLσ

(
n(PLσ | T1, T ) + n(T2, T )

n(PLσ, T )

)
=

=
∏

T∈PLσ

⎛

⎝
(

n(PLσ | T1, T )

n(PLσ, T )

)
·
n(T2,T )∏

i=1

n(PLσ | T1, T ) + i

n(PLσ | T1, T ) − n(PLσ, T ) + i

⎞

⎠ =

=

⎛

⎝
∏

T∈PLσ

(
n(PLσ | T1, T )

n(PLσ, T )

)⎞

⎠ ·

⎛

⎝
∏

T∈PLσ

n(T2,T )∏

i=1

n(PLσ | T1, T ) + i

n(PLσ | T1, T ) − n(PLσ, T ) + i

⎞

⎠ =

=

⎛

⎝
∏

T∈PLσ

(
n(PLσ | T1, T )

n(PLσ, T )

)⎞

⎠ · binom(PLσ, PLσ | T1, T2) .

��
As an example, if we assume PL ≡ a | b and σ = ∅, we have comb(PL, σ) =
1. Let us consider the terms T1 = a | c and T2 = a | b. We have that the
number of combinations of reactants of PL in PLσ | T1 | T2 is comb(PL, σ) ·∏

T∈{a,b}
(n(a|b|a|c|a|b,T )

n(a|b,T )

)
=

(3
1

)(2
1

)
= 6. By applying binom compositionally, we

obtain comb(PL, σ) · binom(a | b, a | b, a | c) · binom(a | b, a | b | a | c, a | b) =
1 · 2 · 3 = 6.

The stochastic semantics of Stochastic CLS can be defined as follows.

Definition 18 (Semantics). Given a finite set of stochastic rewrite rules R,

let
R,T,r,b−−−−→, with R ∈ R, T ∈ T , r ∈ R and b ∈ Q, be the least labeled transition

relation on terms closed with respect to ≡ and satisfying the following inference
rules:

1.
R : PL

k�→ PR ∈ R σ ∈ Σ PLσ �≡ PRσ

PLσ
R,PLσ,k·comb(PL,σ),1−−−−−−−−−−−−−−→ PRσ

2.
T1

R,T,r,b−−−−→ T2

T1 | T3
R,T,r,b·binom(T,T1,T3)−−−−−−−−−−−−−−−→ T2 | T3

3.
T1

R,T,r,b−−−−→ T2

(
T1

)L �T3
R,

(
T1

)L �T3,r·b,1
−−−−−−−−−−−−→

(
T2

)L � T3

4.
T1

R,T,r,b−−−−→ T2

(
T3

)L � T1
R,

(
T3

)L �T1,r·b,1
−−−−−−−−−−−−→

(
T3

)L � T2

The semantics of Stochastic CLS is the least labeled transition relation on terms
R,r−−→, with R ∈ R and r ∈ IR, satisfying

T1
R,T,r,b−−−−→ T2

T1
R,r·b−−−→ T2
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The semantics is defined as a labeled transition system where each transition
T1

R,r−−→ T2 represents the application of the stochastic rewrite rule R to a subterm
of T1 yielding term T2, and where r ∈ R specifies the application rate.

The definition uses an auxiliary transition relation, whose transitions are of
the form T1

R,T,r,b−−−−→ T2. The following labels appear on transitions:

– R, that is the rewrite rule applied and which is used to distinguish between
two transitions corresponding to the application of different rules, which have
the same application rate and take to the same result;

– T , that is either the instantiation of the left hand side of rule R or a term
consisting of a looping and containment operator applied to a term which
contains the instantiation of the left hand side of R;

– r, that is the application rate of R to T ;
– b, that is the number of occurrences of T in the term which is transformed,

with the exclusion of occurrences inside looping and containment operators.

The auxiliary transition relation
R,T,r,b−−−−→ is defined by four inference rules. Rule

1 allows to derive a transition corresponding to the instantiation of a rewrite
rule. Its rate is obtained by multiplying the kinetic constant of the rule, k, with
the number of different reactant combinations appearing in the instantiation of
the left pattern, namely the result of applying the function comb. Transitions
which correspond to rule applications that do not modify terms are excluded
by the condition PLσ �≡ PRσ.Rule 2 uses the function binom to compute the
number of different reactant combinations for the state T1 | T3, by assuming
that b is the number of different reactant combinations for the only term T1.
Finally, rules 3 and 4 deal with looping and containment. In both the rules, the
second label of the premises, namely T , is substituted by the label

(
T1

)L � T3

or
(
T3

)L � T1, respectively. This because, if the term is furtherly composed in

parallel with other terms, bisim should count the occurrences of
(
T1

)L � T3 or
(
T3

)L � T1 rather than of the sole T .

The main transition relation
R,r−−→ of the semantics is obtained by from the

auxiliary relation by removing from all transitions the second label T , used only
to compositionally compute the application rate of the rule, and by multiplying,
and by multiplying their third and fourth labels r and b, so to obtain the total
application rate.

As a simple example of application of the semantics, let us consider a Stochas-
tic CLS model consisting of the term

T ≡
(
m

)L � (a | a) |
(
m

)L � (a | a) | a · b | a

and of the rewrite rules

R1 :
(
m

)L � X
k1�→ ε R2; a · b · x̃ k2�→ a | b | x̃ R3 : a

k3�→ b .
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As regards rule R1, it is possible to derive, given an instantiation function σ =
{(X, a | a)}, the following transition of the auxiliary relation of the semantics:

R1 :
(
m

)L � X
k1�→ ε σ = {(X, a | a)}

(
m

)L � (a | a)
R1,

(
m

)L � (a|a),k1,1
−−−−−−−−−−−−−−→ ε

T
R1,

(
m

)L � (a|a),k1,2
−−−−−−−−−−−−−−→

(
m

)L � (a | a) | a · b | a

Note that the transition from state T has the forth label equal to 2 because
binom(

(
m

)L � (a | a),
(
m

)L � (a | a),
(
m

)L � (a | a) | a · b | a) = 2.
Finally, the corresponding main transition is

T
R1,2·k1−−−−−→

(
m

)L � (a | a) | a · b | a .

Note that, as term T contains two occurrences of
(
m

)L � (a | a), then the rule
is correctly applied with rate 2 · k1.

Differently, as regards rule R2, given an instantiation function σ = {(x̃, ε)},
it is possible to derive, after the application of the auxiliary transition relation
R,T,r,b−−−−→, the transition

T
R2,k2−−−−→

(
m

)L � (a | a) |
(
m

)L � (a | a) | a | b | a .

Also in this case the value computed as rate is correct because T contains just
one sequence a · b.

Finally, as regards rule R3, it is possible to derive the following transition:

R3 : a
k3�→ b σ = ∅

a
R3,a,k3,1−−−−−−→ b

a | a
R3,a,k3,2−−−−−−→ a | b

(
m

)L � (a | a)
R3,

(
m

)L � (a|a),2·k3,1
−−−−−−−−−−−−−−−→

(
m

)L � (a | b)

T
R3,

(
m

)L � (a|a),2·k3,2
−−−−−−−−−−−−−−−→

(
m

)L � (a | b) |
(
m

)L � (a | a) | a · b | a

As expected, the semantics of Stochastic CLS gives the transition

T
R3,4·k3−−−−−→

(
m

)L � (a | b) |
(
m

)L � (a | a) | a · b | a

where the rate is 4 · k3 because there are 4 different sequences a to which the
rule R3 can be applied.

Example. Let us consider the simple regulation process we modeled with CLS
in Section 3.1. We now extend the CLS model by including a kinetic constant
in each rewrite rule. The result is a Stochastic CLS model. In order to make the
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Fig. 2. Simulation result of the regulation process: number of RNA molecules over time

model a little more realistic we add two rewrite rules describing the unbinding
of the RNA polymerase and of the repressor from the DNA. Hence, the rewrite
rules of the Stochastic CLS model are the following:

polym | p · x̃
0.1�−→ pp · x̃ (R1)

pp · x̃ 2�−→ polym | p · x̃ (R1’)

repr | x̃ · o · ỹ
1�−→ x̃ · ro · ỹ (R2)

x̃ · ro · ỹ 10�−→ repr | x̃ · o · ỹ (R2’)

pp · o · x̃ 100�−→ p · po · x̃ (R3)

x̃ · po · g 100�−→ x̃ · o · pg (R4)

x̃ · pg
30�−→ polym | rna | x̃ · g (R5)

We have developed a simulator based on Stochastic CLS, and we used it
to study the behaviour of the regulation process. In particular, we performed
simulations by varying the quantity of repressors and we observed the production
of RNA fragments in each case. The initial configuration of the system is given
by the following term

repr | . . . | repr︸ ︷︷ ︸
n

| polym | . . . | polym︸ ︷︷ ︸
100

| p · o · g

and we performed simulations with n = 0, 10, 25 and 50. The results of the
simulations are shown in Figure 2. By varying the number of repressors from 0
to 50 the rate of transcription of the DNA into RNA molecules decreases.
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4 Application Examples

We present two biological systems modeled with Stochastic CLS. The first de-
scribes the regulation process of the lactose operon in Escherichia coli. The
second describes an example of quorum sensing, namely the ability of bacteria
of monitoring their population density and modulating their gene expressions
according to this density. We show the results of simulations of both models.

4.1 Application to the Modeling of Metabolic Pathways

We give a Stochastic CLS model of the well–known regulation process of the
lactose operon in Escherichia coli.

The lactose operon is a sequence of genes that are responsible for producing
three enzymes for lactose degradation, namely the lactose permease, which is
incorporated in the membrane of the bacterium and actively transports the
sugar into the cell, the beta galactosidase, which splits lactose into glucose and
galactose, and the transacetylase, whose role is marginal.

The first three genes of the operon (i,p,o) regulate the production of the
enzymes, and the last three (z, y, a), called structural genes, are transcribed
(when allowed) into the mRNA for beta galactosidase, lactose permease and
transacetylase, respectively.

The regulation process is as follows (see Figure 3): gene i encodes the lac Re-
pressor, which, in the absence of lactose, binds to gene o (the operator). Tran-
scription of structural genes into mRNA is performed by the RNA polymerase
enzyme, which usually binds to gene p (the promoter) and scans the operon
from left to right by transcribing the three structural genes z, y and a into a
single mRNA fragment. When the lac Repressor is bound to gene o, it becomes
an obstacle for the RNA polymerase, and transcription of the structural genes is
not performed. On the other hand, when lactose is present inside the bacterium,
it binds to the Repressor and this cannot stop anymore the activity of the RNA

i p o z y a

R  RNA

Polime-

  rase
NO TRANSCRIPTION

a)

i p o z y a

R

  RNA

Polime-

  rase

b)

LACTOSE

lac Repressor R

 beta-gal.  permease  transacet.

Fig. 3. The regulation process in the Lac Operon
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polymerase. In this case the transcription is performed and the three enzymes
for lactose degradation are synthesized.

A detailed mathematical model of the regulation process can be found in [46].
It includes information on the influence of lactose degradation on the growth of
the bacterium.

We give a Stochastic CLS model of the gene regulation process, with stochastic
rates taken from [45]. We model the membrane of the bacterium as the loop-
ing sequence

(
m

)L, where the alphabet symbol m generically denotes the whole
membrane surface in normal conditions. Moreover, we model the lactose operon
as the sequence lacI · lacP · lacO · lacZ · lacY · lacA (lacI−A for short), in which
each symbol corresponds to a gene. We replace lacO with RO in the sequence
when the lac Repressor is bound to gene o, and lacP with PP when the RNA
polymerase is bound to gene p. When the lac Repressor and the RNA polymerase
are unbound, they are modeled by the symbols repr and polym, respectively. We
model the mRNA of the lac Repressor as the symbol Irna, a molecule of lactose
as the symbol LACT , and beta galactosidase, lactose permease and transacety-
lase enzymes as symbols betagal, perm and transac, respectively. Finally, since
the three structural genes are transcribed into a single mRNA fragment, we
model such mRNA as a single symbol Rna.

The initial state of the bacterium when no lactose is present in the environ-
ment and when 100 molecules of lactose are present are modeled by the following
terms (where n × T stands for a parallel composition T | . . . | T of length n):

Ecoli ::=
(
m

)L � (lacI−A | 30 × polym | 100 × repr) (1)
EcoliLact ::= Ecoli | 100 × LACT (2)

The transcription of the DNA, the binding of the lac Repressor to gene o,
and the interaction between lactose and the lac Repressor are modeled by the
following set of rules:

lacI ·x̃ 0.02�−→ lacI ·x̃ | Irna (S1)

Irna
0.1�−→ Irna | repr (S2)

polym | x̃·lacP ·ỹ 0.1�−→ x̃·PP ·ỹ (S3)

x̃·PP ·ỹ 0.01�−→ polym | x̃·lacP ·ỹ (S4)

x̃·PP ·lacO·ỹ 20.0�−→ polym | Rna | x̃·lacP ·lacO·ỹ (S5)

Rna
0.1�−→ Rna | betagal | perm | transac (S6)

repr | x̃·lacO·ỹ 1.0�−→ x̃·RO·ỹ (S7)

x̃·RO·ỹ 0.01�−→ repr | x̃·lacO · ỹ (S8)

repr | LACT
0.005�−→ RLACT (S9)

RLACT
0.1�−→ repr | LACT (S10)
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Rules (S1) and (S2) describe the transcription and translation of gene i into
the lac Repressor (assumed for simplicity to be performed without the inter-
vention of the RNA polymerase). Rules (S3) and (S4) describe binding and
unbinding of the RNA polymerase to gene p. Rules (S5) and (S6) describe the
transcription and translation of the three structural genes. Transcription of such
genes can be performed only when the sequence contains lacO instead of RO,
that is when the lac Repressor is not bound to gene o. Rules (S7) and (S8) de-
scribe binding and unbinding of the lac Repressor to gene o. Finally, rules (S9)
and (S10) describe the binding and unbinding, respectively, of the lactose to the
lac Repressor. The following rules describe the behaviour of the three enzymes
for lactose degradation:

(
X

)L � (perm | Y ) 0.1�→
(
perm | X

)L � Y (S11)

LACT |
(
perm | X

)L � Y
0.001�→

(
perm | X

)L � (LACT |Y ) (S12)

betagal | LACT
0.001�→ betagal | GLU | GAL (S13)

Rule (S11) describes the incorporation of the lactose permease in the mem-
brane of the bacterium, rule (S12) the transportation of lactose from the en-
vironment to the interior performed by the lactose permease, and rule (S13)
the decomposition of the lactose into glucose (denoted GLU) and galactose (de-
noted GAL) performed by the beta galactosidase. The following rules describe
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the degradation of all the proteins and pieces of mRNA involved in the process:

perm
0.001�→ ε Irna

0.001�→ ε transac
0.001�→ ε (S14-S16)

repr
0.002�→ ε betagal

0.01�→ ε Rna
0.01�→ ε (S17-S19)

RLACT
0.002�→ LACT (S20)

We have simulated the evolution of the bacterium in the absence of lactose
(modeled by the term Ecoli of Eq. (1)) and in the presence of 100 molecules of
lactose in the environment (modeled by the term EcoliLact of Eq. (2)).

In Figure 4 we show the results of the two simulations. The first graph shows
that in the absence of lactose the production of the beta galactosidase and lactose
permease enzymes starts after more than 750 seconds, and that the number of
such enzymes is always smaller than 20. The amount of time elapsed before the
production of these enzymes does not depend on the presence of the lactose in the
environment, as the lactose cannot enter the bacterium until some molecules of
permease have joint the membrane. Once some molecules of lactose permease join
the membrane, the lactose starts entering the bacterium and being transformed
into glucose (see the third graph).

4.2 Application to the Modeling of Quorum Sensing

Traditionally, bacteria have been studied as independent individuals. Now, it is
recognised that many bacteria have the ability of monitoring their population
density and modulating their gene expressions according to this density. This
process is called quorum sensing.

The process of quorum sensing consists in two activities, one involving one
or more diffusible small molecules (called autoinducers) and the other involving
one or more transcriptional activator proteins (R-proteins) located within the
cell. The autoinducer can cross the cellular membrane, and thus it can diffuse
either out or in bacteria.

The production of the autoinducer is regulated by the R-protein. The R-
protein by itself is not active without the corresponding autoinducer. The au-
toinducer molecule can bind to the R-protein to form an autoinducer/R-protein
complex, which binds to a target of the DNA sequence enhancing the tran-
scription of specific genes. Usually, these genes regulate both the production of
specific behavioural traits (as we will show in the following) and the production
of the autoinducer and of the R-protein.

At low cell density, the autoinducer is synthesized at basal levels and diffuse in
the environment where it is diluted. With high cell density both the extracellu-
lar and intracellular concentrations of the autoinducer increase until they reach
thresholds beyond which the autoinducer is produced autocatalytically. The au-
tocatalytic production results in a dramatic increase of product concentration.

Quorum sensing behaviour is very widespread in bacteria. An example is
the regulation the bioluminescence in the symbiotic marine bacterium Vibrio
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Fig. 5. A schematic description of the las system in P. aeruginosa.

fischeri, which colonizes the light organs of marine fishes and squids. The bacteria
only luminesce when they are found in high concentrations in the light organs,
while they do not emit light when they are free swimming [43]. Another example
is given by the bacterium Pseudomonas aeruginosa, a prevalent human pathogen
[20]. The ability of P. aeruginosa to infect a host mainly is based on controlling
its virulence by quorum sensing. The level of virulence expressed by isolated
bacteria is very low, thus avoiding host response. When a colony has reached
a certain density, the production of virulence factors is autoinduced by quorum
sensing, and it is generally sufficient to overcome the defenses of the host.

The quorum sensing system of P. aeruginosa has two regulatory systems. In
this paper we are interested in the one regulating the expression of elastase LasB,
named the las system. The two enzymes, LasB elastase and LasA elastase, are
responsible for pulmonary hemorrhages associated with P. aeruginosa infections.

A schematic description of the las system is shown in Fig.5. The autoinducer
3-oxo-C12-HSL and the transcriptional activator protein LasR are produced at
basal rates. The LasR/3-oxo-C12-HSL dimer is the activated form of LasR. It
promotes the production of itself, of the autoinducer and of the LasB enzyme.
The formation of the dimer is controlled mainly by the concentration of the
autoinducer, which is influenced by the number of bacteria.

We now give the Stochastic CLS model of the quorum sensing process. We do
not model the production of the LasB as it has no active role in the regulation
process. The initial state of each bacterium is:

Bact ::=
(
m

)L � (lasO · lasR · lasI)

where the looping sequence
(
m

)L represents the bacterium membrane, lasO the
target of the DNA sequence where LasR/3-oxo-C12-HSL complex binds to for
promoting DNA transcription, and lasR and lasI the genes that encode LasR
and the autoinducer, respectively.

This model shows one of the advantages of using terms for describing the
structure of biological systems in Stochastic CLS. In fact, in order to model a
population of n bacteria we have to describe only one bacterium, and then com-
pose n copies of such a description by using the parallel composition operator.
In other words, we model a population of n bacteria simply as n × Bact.

We now give the rewrite rules describing the protein/protein and protein/
DNA interactions in the described systems. Again, we have only to give the
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rules for one bacterium, and they will be applicable in all the n bacteria of the
considered population.

lasO · lasR · lasI
20�−→ lasO · lasR · lasI | LasR (S1)

lasO · lasR · lasI
5�−→ lasO · lasR · lasI | LasI (S2)

LasI
8�−→ LasI | 3oxo (S3)

3oxo | LasR
0.25�−→ 3R (S4)

3R
400�−→ 3oxo | LasR (S5)

3R | lasO · lasR · lasI
0.25�−→ 3RO · lasR · lasI (S6)

3RO · lasR · lasI
10�−→ 3R | lasO · lasR · lasI (S7)

3RO · lasR · lasI
1200�−→ 3RO · lasR · lasI | LasR (S8)

3RO · lasR · lasI
300�−→ 3RO · lasR · lasI | LasI (S9)

(
m

)L � (3oxo | X) 30�−→ 3oxo |
(
m

)L � X (S10)

3oxo |
(
m

)L � X
1�−→

(
m

)L � (3oxo | X) (S11)

LasI
1�−→ ε LasR

1�−→ ε 3oxo
1�−→ ε (S12 − S14)

Rules (S1) and (S2) describe the production from the DNA of proteins LasR
and LasI, respectively. For the sake of simplicity we do not model the transcrip-
tion of the DNA into mRNA. Rule (S3) describes the production of the autoin-
ducer 3-oxo-C12-HSL, denoted 3oxo, performed by the LasI enzyme. Rules (S4)
and (S5) describe the complexation and decomplexation of the autoinducer and
the LasR protein, where the complex is denoted 3R. Rules from (S7) to (S9)
describe the binding of the activated autoinducer to the DNA and its influence
in the production of LasR and LasI. Rules (S10) and (S11) describe the autoin-
ducer exiting and entering the bacterium. The kinetic constants associated with
these two rules give a measure of the autoinducer dilution. Finally, rules from
(S12) to (S14) describe the degradation of proteins.

We have simulated the behavior of a population of P. aeruginosa by vary-
ing the number of individuals. In Figure 6 we show how the concentration of
the autoinducer varies inside bacteria when the population is composed by one,
five and twenty individuals. In the last two cases we show the autoinducer con-
centration inside one only bacterium (the concentrations inside the others are
analogous).

When the number of bacteria increases, also the concentration of the autoin-
ducer in the extracellular space increases. As a consequence the concentration
of the autoinducer in the intracellular spaces increases as well and the quorum
sensing process starts. Note that the kinetic constants of rules (S10) and (S11)
regulating the autoinducer exiting and entering the membrane cause the bacteria
to maintain the autoinducer production mostly at a basal rate when the popu-
lation size is one or five. When the population size is twenty the quorum sensing
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Fig. 6. Simulation results: quantity of autoinducer inside one bacterium in a popula-
tion of one (left), five (center) and twenty (right) bacteria

starts after a few seconds thus causing a very high autocatalytic autoinducer
production. Increasing the ratio between kinetic constants of (S10) and (S11)
would cause the quorum sensing to be triggered when the number of individuals
is bigger.

5 Conclusion and Future Perspectives

We have presented the Calculus of Looping Sequences (CLS) suitable to de-
scribe microbiological systems and their evolution. Terms of the calculus are
constructed by basic constituent elements and operators of sequencing, looping,
containment and parallel composition. The looping operator, together with the
containment one, permits the description of arbitrarily nested membranes and
of sequences on the surface and inside the membranes themselves. The evolution
of a term is modeled by a set of rewrite rules and the semantics is a transition
system, in which states correspond to terms, and transitions correspond to rules
applications. We have presented two extensions, CLS with links (LCLS) and
Stochastic CLS. LCLS allows the description of protein interaction at a lower
level of abstraction, namely at the domain level. Stochastic CLS allows the de-
scription of quantitative aspects of the modeled systems, such as the frequency
of chemical reactions. As examples of application to real biological systems, we
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have shown the simulation of the activity of the lactose operon in E.coli and the
quorum sensing process in P.aeruginosa, both described with Stochastic CLS.

The CLS formalism, with its extensions LCLS and Stochastic CLS, fulfill the
wanted request of having a simple notation, having the ability of describing
biolgical systems at different abstraction levels, and being flexible enough to
allow the description of new kinds of phenomena. In fact rewrite rules as those
of CLS are more similar to the reaction notation employed by biologists and
a model may be understood easier than models based, for instance, on process
calculi. CLS basic elements and operators allow us to choose the level of detail
of a model. As an example a cell may be described either as a single alphabet
symbol or as the application of looping and containment operator to a term
describing the membrane and to a term describing the cell content. Another
example may be the model of a DNA strand which can be described either as
a single alphabet symbol or as a sequence of symbols representing genes or as a
sequence of symbols representing nucleic acids. Finally, the absence of constraints
on rewrite rules allows new phenomena to be described easily.

We are presently working on another extension of CLS, called Topological
CLS (TCLS), that integrates space and time into CLS. The aim of TCLS is to
enable a more accurate description of those biological processes whose behaviour
depends on the exact position of the elements. In particular, TCLS allows the
description of the position of biological elements, and of space they take up
in a 2D/3D space. The elements may move autonomously during the passage of
time, and may interact when constraints on their positions are met. In particular,
rewrite rules are extended with a function that constrains application of the rule
depending on the exact positions of the elements involved. Similarly to Stochastic
CLS, rewrite rules are also endowed with a reaction rate. Moreover, we model the
space occupied by each object as a hard sphere, hence space conflicts may arise
during the evolution. These conflicts are resolved by an appropriate algorithm,
which rearranges the position of the elements by assuming that they push each
other when they are too close.

The development of a simulator based on the Stochastic CLS has suggested
the introduction of an intermediate language for the simulation of biological sys-
tems. Such a language, the Stochastic String MultiSet Rewriting (sSMSR) [2,3],
is based on multiset rewriting. Multiset elements are strings built over a given
alphabet and the state of a sSMSR system is represented by a multiset of strings.
The evolution of a multiset is modeled by rewrite rules which rewrite multisets.
Rules may contain variables that can be used to match either individual sym-
bols or portions of the strings which are involved in the application of a rule.
Furthermore rules can contain two different maching operators. The first allows
a rule to be applicable to a multiset of strings only if such a multiset contains
a single string with a certain prefix (unique matching), the second applies only
if all the strings with the same given prefix are involved in the rule application
(maximal matching). Finally, we have that fresh symbols, namely symbols that
are present neither in the multiset of strings to which the rule is applied nor
in the applied rewrite rule, can be generated when a rewrite rule is applied.
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The use of strings as multiset elements and of operations on strings in rewrite
rules allows the development of a simulator for sSMSR based on efficient data
structures and pattern matching algoritms. The features of sSMSR can ease the
translation of high level languages. In [3] we defined both the encoding of the
Stochastic CLS and of the stochastic π−calculus into sSMSR.
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33. Pérez-Jiménez, M., Romero-Campero, F.: A study of the robustness of the egfr

signalling cascade using continuous membrane systems. In: Mira, J., Álvarez, J.R.
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Abstract. Hybrid Systems are dynamical systems presenting both dis-
crete and continuous evolution. Hybrid Automata are a formal model for
hybrid systems, originally proposed to study embedded systems, where
a discrete control acts on a continuously changing environment.

The presence of both discrete and continuous dynamics makes this
formalism appealing also for modeling biological systems. However, the
situation in this case is subtler, as there is no natural separation into
discrete and continuous components. No surprise, then, that hybrid au-
tomata have been used in systems biology in rather different ways. Some
approaches, like the description of biological switches, concentrate on
the use of model-checking routines. Other applications, like the switch-
ing between continuous and discrete/stochastic simulation, focus on the
exploitation of the interplay between discreteness and continuity in or-
der to reduce the computational burden of numerical simulation, yet
maintaining an acceptable precision.

We will survey the use of hybrid automata in systems biology, through
a series of cases studies that we deem interesting and paradigmatic.

Introduction

In this survey we will discuss some aspects of the interplay between discreteness
and continuity in the context of biological modeling. Biological models can be
formalized in many ways and, common to most of such many formalisms, is the
attempt of the proposed tools of favoring the isolation and study of system’s
properties: properties pertaining to a system as such, in opposition to properties
readable and explainable as a (linear/simple) combinations of properties of its
parts. We believe that, in order to give a contribution towards the understanding
of systems’s properties, we must come to terms with our, often limited, capabili-
ties of combining mathematical tools of (very) different computational nature. In
particular we see as major bottlenecks along the way the combination of discrete
and continuous modeling tools/ideas and the computational limitations imposed
by the use of fully stochastic methods.

Given the above premises, we decided to concentrate on the use of the so-called
hybrid automata: formal tools designed to combine a collection of dynamical
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systems into a network allowing a discrete control on the evolution of fluxes.
Researchers have used the potential of hybrid automata to study important
biological applications. We will briefly report on examples—specifically genetic
regulatory networks and bacterial chemotaxis—trying to show how Nature is
much more easily mimicked using a mix of discrete and continuous ingredients.

Even though important, the faithfulness in modeling will not be our only
aim. As a matter of fact, what we believe is the most intriguing use of hy-
brid automata, is in the attempt to tackle computational problems arising in
modeling biological systems. If, on the one hand, a discrete and stochastic
approach to biological modeling is by far the methodology having firmer phys-
ical bases, on the other hand a sort of original sin of such an approach im-
poses high (often unbearably) computational costs. We will review two—in a
sense “non standard”—uses of hybrid automata consisting in employing the dis-
crete control as a means to switch among possible modeling methods in the
attempt to adapt to the most precise/economic available computational tech-
nique. In such example we will come across a view—extremely inspiring and
popular—that calls communication and concurrency into play. In fact, the vi-
sion of computation as an emergent property of the process of communication,
a property strictly pertaining to the system of interacting agents as such, re-
sembles closely the idea that high level cellular processes emerge from complex
patterns of low-level interactions. Therefore, modeling biological phenomena can
be seen as the activity of modeling a complex communication network—at dif-
ferent levels of details. In fact, the stochastic ingredient is much more elegantly
entered into the picture whenever communication provides the background ma-
chinery (stochastic process algebras). In our opinion this is a deep and impor-
tant point, having to do with the correct choice of the computation model when
modeling biological phenomena. Our examples touch upon this point and try
to illustrate how introducing a limited amount of continuity in a discrete and
stochastic system is a delicate issue. An important ingredient to tackle this
problem is the use of formal languages like process algebras to describe bio-
logical systems. In fact, this modeling paradigm, matching interactions with
communications, requires the modeler to focus deeply on the logical structure
of interactions going on in the system. This effort, in turn, allows to identify
those components that are inherently discrete and those amenable of continuous
approximation.

It goes without saying that we will not be neither fully updated nor complete
in our quotations and choices: we apologize for that. The reader should consider
the reported examples and experiences as a (biased) collection of cases allowing
us to illustrate our general considerations on the subject.

Basics

We begin with an informal definition of hybrid automata. Hybrid automata are
collections of dynamical systems on the same set of (continuous) variables linked
by a finite network controlling discrete jumps in the evolution. A set of variables
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evolving continuously in time is fixed, and discrete control events are allowed
to happen. When discrete events happen the automaton enters its next mode,
where the laws governing the flow of continuous variables may change.

Formally, a hybrid automaton is a tuple

H = 〈Z, V , E , Inv ,Dyn,Act ,Reset〉,

where:

– Z = {Z1, . . . , Zn} is a finite set of real-valued variables (the time derivative
of Zj is denoted by Żj , while the value of Zj after either a time step or a
change of mode is indicated by Z ′

j).
– G = 〈V , E〉 is a finite labeled graph, called control graph. Vertices v ∈ V

are the (control) modes, while edges e ∈ E are called (control) switches and
model the happening of a discrete event.

– Associated with each vertex v ∈ V there is a formula intensionally defining
the set of tuples admissible within mode v, that is Inv(v)[Z]. Such formula,
also called invariant condition, must be true during the continuous evolution
of variables in mode v and forces a change of mode to happen when is
violated.

– Dyn(v)[Z] is a set of (ordinary) differential equations associated to v ∈ V
and specifying the dynamics of the variables within mode v ∈ V .

– Edges e ∈ E of the control graph are labeled by Act(e)[Z], a formula on
Z stating for what values of variables transition (switch) e is active: the
so-called activation region.

– Reset(e)[Z, Z ′] is a formula on Z ∪Z ′ specifying the change of the variables’
values after transition e has taken place.

Non-determinism is intrinsically captured by the above definition. If one
thinks of traces of the system, namely the time traces of the continuous vari-
ables, the activation conditions are, in general, non-deterministic (as well as re-
sets). Hence, there will be different traces depending upon the non-deterministic
choices made at activation and reset stages.

The above informal description of hybrid automaton can, obviously, be for-
malized. Such a formalization would need to specify more precisely what kind
of systems of differential equations are admitted as dynamics. Below we do give
a formal definition, but taking a different position allowing us not to enter into
analysis technicalities and to comment on decidability issues related with hybrid
automata.

The idea is to fix a logical language L and a model M for such language,
require all formulæ to be written in L and give the definition of hybrid automata
as parametric on M. The advantage will be that, for sufficiently expressive
L, the dynamics will still be expressible but, moreover, if the decidability of
M-satisfiability can be proved for L-formulae, most of the properties of the
corresponding hybrid automata are guaranteed.
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Definition 1 (Hybrid Automaton). Let L be a first-order language over the
reals, M be a model of L, and Inv, Dyn, Act and Reset be formulæ of L. A
hybrid automaton (of dimension k) H = 〈Z, Z ′, V, E, Inv, Dyn, Act, Reset〉
over M, consists of the following components:

1. Z = {Z1, . . . , Zk} and Z ′ = {Z ′
1, . . . , Z

′
k} are two sets of variables ranging

over the reals;
2. 〈V , E〉 is a finite directed graph; the vertices of V are called locations, or

control modes, the directed edges in E are sometimes called control switches;
3. Each v ∈ V is labeled by the two formulæ Inv(v)[Z] and Dyn(v)[Z, Z ′, T ]

such that if Inv(v)[p] holds in M, then Dyn(v)[p, p, 0] holds as well;
4. Each e ∈ E is labeled by the formulæ Act(e)[Z] and Reset(e)[Z, Z ′].

The key feature in the above definition is the use of formulæ to define flows in
place of differential equations: if Dyn(v)[Z, Z

′
, T ] holds, then Z

′
can be reached

from Z in T units of time. This approach is extremely general: we admit an
infinite number of flows possibly self-intersecting, freely governed by the for-
mula Dyn (belonging to a decidable class). The merits of this approach are
fully discussed in [PAM+05]. The key point is that when dynamics are given in
explicit form (i.e. by differential equations), using the first few terms of their
Taylor expansion formulae, a fully symbolic computation method can be ap-
plied to study traces of hybrid automata. The advantages are manyfold: On the
one hand, since a numerical approximation of solutions of differential equation
is—in general—necessary, the symbolic approach allows a sort of built-in (sym-
bolic) approximation, whose error is explicitly tied with computational costs.
On the other hand, the approach consents the study of situations in which no
explicit form for the dynamics is available: an interesting situation of this kind
is presented in Section (3).

The key to guarantee decidability when working with the above definition is to
consider, given a formula ψ[Z] and a model M, the set of tuples of values satisfy-
ing ψ in M as Sat(M, ψ), i.e., Sat(M, ψ) def= {p | M |= ψ[p]}. When M is clear
from the context we will simply write Sat(ψ). The decidability of Sat(Inv(v)),
Sat(Act(e)), and Sat(Reset(e)), is a prerequisite to decide properties of the hy-
brid automata. Moreover, from the basic formulæ involved in the definition of
hybrid automata other formulæ can be introduced. For example, define the for-
mula Reset(e)[Z] def= ∃Z ′ Inv(v)[Z ′] ∧ Act(e)[Z ′] ∧ Reset(e)[Z ′, Z] ∧ Inv(u)[Z],
where e = 〈v, u〉, expressing the set of states reachable by edge e. The decidabil-
ity of Sat(Reset(e)) will be a further issue when studying computational issues
on hybrid automata.

The above approach is similar to the one followed in [BMRT04], based on
o-minimal hybrid automata. Note particularly that o-minimal hybrid automata
[LPS00, BMRT04] are a special case of our hybrid automata and rectangular
hybrid automata [PV94, HK96, Kop96] can be easily mapped into a subclass of
the above definition



428 L. Bortolussi and A. Policriti

1 Hybrid Automata and Genetic Regulatory Networks

In this section we present the basic ideas behind what can be argued to be one of
the most simple and natural uses of hybrid automata: a formalism to computa-
tionally study collections of continuous trajectories representing concentrations.

In particular, we will describe a use of hybrid automata to model genetic
regulatory networks, thinking of “quantities” as values for gene expressions. Our
reference work for this line of research is [BB06], a paper whose main tools
(transition systems) can be easily recast into the hybrid automata formalism,
giving us the possibility to exemplify on various aspects of the potential and
specificities of their use.

A set of variables X = {X1, . . . , Xn} will describe the state of a genes’ net-
work, as an n-tuple of real values associated to the concentration of the n
genes’ products of the network. It is rather natural to assume a minimum (equal
to 0) and a maximum (equal to a fixed parameter Mi) for each gene’s product
concentration. From this assumption it follows that the entire states’ space is,
in fact, a fairly simple geometrical object: a cartesian product of intervals, also
called a hyper-rectangular polytope. Assuming the same structure also for a set
P of unknown quantities (the parameters of our network) we can formally speak
of the following two spaces:

X = Πn
i=1[0, Mi], P = Πp

j=1[mpj , Mpj ].

The analysis of the temporal evolution of X is the first objective of the study
but, equivalently important, is the ability to tune up parameters—analyzing the
parameters’ space P—in order to guarantee “expected behaviors” within the
model. A key preliminary point to perform an objective analysis of both X and
P is a precise definition of “expected (unwanted) behaviors”. To this end it is
customary to introduce a logic allowing us to express properties and measure
our ability to computationally decide the satisfiability of sentences (formulae).
Such logic can be exemplified by one of the most celebrated temporal logic
formalism, the so called Linear Time Temporal Logic (LTL, a classic in the field
of verification), whose definition can be given as follows:

Definition 2. An LTL-formula is either an atomic formula A chosen in a fi-
nite alphabet AP of atomic propositions, or is a boolean combination of LTL-
formulae, or is obtained using the (modal) connectives X (neXt) or U (Until)
as Xφ or ψUφ, respectively, with φ and ψ LTL-formulae.

The semantics of LTL-formulæ is natural: a discrete time is assumed and the
truth of Xφ is defined as the truth of φ at the next time instant, while ψUφ is
true if and only if ψ is true for all time instants preceding the first time instant
at which φ is true. Many variants of the above outlined definition are available
in the literature and we refer the reader to [Eme90] for a complete survey of such
variants and for references relative to the actual expressive power of the (at first
sight minimal) syntactic tool-set defining LTL. The most important issues for
us here are the following:
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– truth of LTL-formulæ is to be referred to LTL-structures ;
– all important questions on LTL-formulæ (i.e. satisfiability, validity, model-

checking, etc.) can be computationally decided—often, practically, even
efficiently—on finite LTL-structures.

In view of the above two points, it turns out natural to ask whether is possible to
define finite LTL-structures in which deciding (at least) LTL-formulae, relative
to genetic regulatory networks.

Such structures can be defined starting from hybrid automata specifying the
dynamics of our vectors X and P .

As the reader can imagine, it is natural to proceed by first giving a general
format to the dynamics of values and parameters vectors, and then restricting the
mathematical nature of functions expressing the dynamics, in order to guarantee
computability. The computability constraint must come to term with a further
constraint crucial for biological applications: the class of dynamics that can be
specified using the chosen functions must be sufficiently expressive.

In the case under study, X is assumed to vary satisfying, for i ∈ {1, . . . , n},

Ẋi = fi(X, P ) = Prodi(X, P ) − Degi(X, P )Xi, (1)

and the functions Prodi(X, P ) and Degi(X, P )—expressing production and
degradation of each gene—are required to be piecewise multi-affine functions,
that is multi-variables polynomials of degree at most 1 in each of the variables.
As regulation is traditionally represented by a non-linear sigmoidal functions,
piecewise multi-affine function turn out to be well suited for genetic regulatory
networks (sigmoidal functions can be approximated by ramp functions, express-
ible as piecewise multi-affine).

The mathematical characterizations of production and degradation functions
given above is one among many possible and is introduced in order to guar-
antee computability. Such computability begins with a discretisation of the
states’ space, as a preliminary step in the construction of the finite
LTL-structures on which the analysis will be performed. This discretisation
can be described in two steps: first a hybrid automata is produced and then
a finite LTL-structure similar (in a formal sense) is introduced, allowing an
effective control on LTL-properties of the given regulatory network. The au-
thors of [BB06], for example, perform the first discretisation step, by exploiting
a simple observation relative to the syntactic structure of LTL-formulae and
functions’ dynamics: the relevant values of each gene’s product concentration
are, essentially, the constants involved in (atomic) LTL-formulæ (plus its max-
imum value) and the threshold constants appearing in the dynamics. Such an
observation allows to break the variability’s range of each component of X in
a finite number of intervals and, consequently, the entire states’ space in a fi-
nite number of hyper-rectangles. This defines a cellular decomposition of the
initial hyper-rectangle containing variability’s values for gene’s products concen-
trations. Formally we have:

Rc = {x ∈ X | ∀i ∈ {1, . . . , n}(λci

i < Xi < λci+1
i )},
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where c = {c1, . . . , cn} consists of one of the relevant variables’ values (the λ’s)
for each of the genes. The condition λci

i < Xi < λci+1
i expresses the constraint

on the i-th gene to belong to one of its variability regions.
On the ground of the above cellular decomposition of the states’ space, a

partial definition of hybrid automata can be given very naturally:

– the invariant regions corresponds the hyper-rectangles Rc’s and, therefore,
can be easily expressed as conjunction of inequalities;

– continuous dynamics can be expressed simply requiring the existence of a
solution for the system of differential equations (1) connecting two states in
the same hyper-rectangle.

What is missing here, in order to complete the definition of hybrid automata,
are the activation and reset conditions, as well as the entire discrete part of the
automata. Activation and reset conditions are simple: the former correspond to
boundaries and latter are identities.

The discrete part of the automata (the graph 〈V , E〉) is, in principle, also easy
to determine:

– locations (nodes in V) are hyper-rectangles Rc’s;
– a transition between two locations Rc and Rc′ is introduced, whenever Rc

and Rc′ are adjacent or equal, and a continuous trace ξ—solution of (1)—
allows to move from x ∈ Rc to x′ ∈ Rc′ in a time interval τ ∈ 	+: ξ(0) = x
and ξ(τ) = x′.

This is in fact what can be done starting from the definition, given in [BB06],
of Embedding Transition Systems, which are, essentially, hybrid automata with
understood activation and reset conditions.

As a matter of fact, the discrete part of the automata is the more interest-
ing one. On the one hand, it can be determined exploiting results on values of
multi-affine functions on hyper-rectangular polytopes: any value of a multi-affine
function f on a hyper-rectangular polytope P can be obtained as a linear com-
bination of values of f on the vertices of P : this feature, ultimately, guarantees
computability. On the other hand it can be seen as a quotient of the continuous
states’ space whose equivalence classes are the hyper-rectangles. Such quotient
is in fact a (finite) LTL-structure, sufficient to simulate the continuous dynam-
ics of the automaton in the following sense: any continuous time evolution of
the hybrid automaton leaves a “blueprint”—sometimes called the correspondig
path—on the LTL-structure. Even though the converse of this property is, ob-
viously, false, the study of LTL-formula satisfiability/validity on this discrete
structure can be carried out effectively.

Summarizing, three key ingredients of the technique are the following:

– the existence of a class of mathematical functions (multi-affine) with nice
mathematical properties and sufficient expressive power to be used as ap-
proximations of real concentration’s fluxes;

– the possibility of carrying out a syntactic analysis of LTL-formulae and
dynamics’ functions, allowing to produce a finite set of vertices representing
regions of the states’ space, homogeneous with respect to LTL-satisfiability;
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– a theoretical result on values of multi-affine functions allowing us to draw
edges faithfully representing dynamics among the regions produced as above.

As we said, the finite graph built using the above ingredients is the LTL-structure
on which the computational study can be performed.

Summarizing, the technique shows how to use, in place of a non-linear math-
ematical description of a genetic regulatory network, a controlled net of local
descriptions given in simpler mathematical terms.

The real power of such a study comes at this point and it is based on the
following two features:

1. piecewise multi-affine function are well-suited for simulating gene’s expres-
sion, maintaining the possibility of computing an LTL-structure on which
performing a simulation analysis;

2. a thorough analysis of the parameters’ space can be carried out, address-
ing, in addition, such issues as system’s robustness with respect to parame-
ters’ variation and—most important—synthesis of parameters’ values guar-
anteeing given properties.

The method presented is implemented in the RoVerGeNe (Robust Verifica-
tion of Genetic Networks), interfaced with teh NuSMV model checker for LTL-
analysis. . Further applications and refinements of the technique can be found
in [BBW07]. A literature review on Genetic Regulatory Networks can be found
in [dJ02].

We conclude this part pointing out that the above casting of the results
of [BB06] in a hybrid automata perspective can be argued to add an unnec-
essary overload of formalism. The more minimalist approach of [BB06] is prefer-
able, introducing only what is sufficient for the application. From an engineering
point of view this is true and is it ultimately due to the fact that the collec-
tion of continuous traces under study is essentially “well-behaving”: traces are
(non intersecting) solutions of differential equations, there is no independent
discrete control superimposed to the continuous evolutions, and discreteness is
introduced using a very simple equivalence relation partitioning the states’ space
guided by the constants appearing directly in the formulæ to be analyzed.

Technically speaking, the last point is the crucial one and sheds some light on
the difficulties involved in more advanced decidability results related to hybrid
automata. In such more complex cases, as the ones we will overview below,
the discrete control is somehow independent from the continuous part of the
automaton. During the discretisation activity, the control and the quotienting
step interact in a loop that produces much more complicate (in general not
even finite) discrete structures. Keeping the size and the effectiveness of the
construction of such structures under control, is the challenge.

2 Hybrid Automata and Bacterial Chemotaxis

In this section we illustrate a use of hybrid automata differing from the one
presented in the previous section mainly in the following two points:
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– instead of employing hybrid automata only to reason on a mathematical
representation—families of fluxes on a discrete grid of geometrically char-
acterized regions—they are used as a means to formally render continuous
evolutions paired with a discrete control, found in Nature;

– the formal machinery that turns out necessary to solve decidability issues in
this context, is a generalization of the situation we found in Section (1)—
essentially, very similar to the case of timed automata (see [AD94])—and will
allow us to illustrate important issues related with decidability on hybrid
automata analysis.

We begin with the second of the above two points, considering the possible
reasons for undecidability in hybrid automata theory. There is one main rea-
son that—in most of the cases—is responsible for undecidability: the dynamics
within a region R, associated to a node of the discrete part of the automaton,
forces a partition of regions R′ reachable from R, which triggers an infinite par-
titioning process not allowing a finite discretisation of the states’ space. If this
turns out to be the case, decidability is in danger, even though there are cases
in which decidability can be lost even if a finite discretisation is possible.

The above observation is, ultimately, as to say that a finite (bi)simulation
quotient cannot be produced for the automaton under study.

It is not surprising that whenever some basic level of decidability is guaranteed
(e.g. the decidability of the class of formulæ defining invariants, for example),
the role played by resets is crucial in proving effectiveness of methods on classes
of hybrid automata.

Consider, as an example is the class of order-minimal hybrid automata defined
as follows:

Definition 3 (O-Minimal Theory). Let L be a first-order language whose set
of relational symbols includes a binary symbol ≤ and let M be a model of L in
which ≤ is interpreted as a linear order. The theory T (M) is order minimal, or
simply o-minimal, if every set definable in T (M) is a finite union of points and
intervals (with respect to ≤).

Definition 4. Let T (M) be a decidable o-minimal theory (over the reals). An
hybrid automaton H over M is an o-minimal hybrid automaton, if for each
v ∈ V , e ∈ E, the formulæ Dyn(v), Inv(v), Act(e), Reset(e) are formulæ of
T (M).

On the ground of the above definition it can be shown that constant reset o-
minimal hybrid automata whose dynamics are smooth solutions of vectorial
fields, have all temporal logic properties (e.g. reachability and model-checking)
decidable (see [BMRT04]). This can is proved through a quotient by bisimula-
tion that reduces to a finite number of cases the temporal analysis of the entire
states’ space.

Moreover, constant reset o-minimal hybrid automata with no further con-
straint on dynamics are decidable, even though in that case the bisimulation
quotient is not finite (see [CPM05]).
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Fig. 1. Escherichia coli

It is clear that applications to systems biology must face the problem of what
can be modeled with decidable hybrid automata (such as the o-minimal ones).
Moreover, both the level of expressiveness of languages chosen for biological
modeling, and the decidability issue for those languages, must be taken into
account.

Our reference paper in this section is [CMPM05], where a very natural exten-
sion of the class of o-minimal hybrid automata is proved decidable and shown
to be useful (in a sort of paradigmatic way) with respect to biological modeling.
The authors of [CMPM05] start from the consideration that in biological mod-
eling identity reset are crucial in order to model quantities variable in time, but
maintaining their value across changes of modes. As a matter of fact this is a very
natural statement: resetting every value to a constat after each mode’s change
is a very strong and un-natural constraint. The definition of Independent Dy-
namics Hybrid Automata, therefore, states that the variables of the automaton
are divided into two groups: independent and dependent variables, respectively.
The former are subject to a dynamics that is mode-independent (as in initialized
rectangular automata [HHK95], [HK96]), while the latter are free to vary accord-
ing to a standard dynamics and are subject to the constant reset requirement.
Moreover, a constant amount of time is required to be spent in each mode.

O-minimal IDA-reachability over bounded time intervals is decidable. This
is proved by showing that only finite length walks over the discrete part of the
automaton are possible and, therefore, a decidability procedure checking all such
paths can be designed.

Escherichia coli provides an example of mechanism for movement (bacterial
chemotaxis) that can be modeled within the framework of hybrid automata as
defined in [CMPM05]. The strategy has the goal of responding to a chemical
gradient in its environment by detecting the concentration of ligands through a
number of receptors. After sensing the environment, the reaction is a driving of
“flagella motors” in one of two ways:

– “runs” – moves in a straight line by moving its flagella counterclockwise
(CCW), or

– “tumbles” – randomly changes its heading by moving its flagella clockwise
(CW).
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The variables involved are the following (see Figure 2):

YP : CheY in phosphorylated form;
Y0: CheY in un-phosphorylated form;

BP : CheB in phosphorylated form;
B0: CheB in un-phosphorylated form;
Z: CheZ in un-phosphorylated form;

LT : bound receptors;
T : un-bound receptors;
w: angular velocity of flagella.

The response is mediated through the molecular concentration of CheY in a
phosphorylated form, which in turn is determined by the ligands bound (in
more possible forms) at the receptors. The ratio of y = YP /Y0 determines a bias
with an associated probability that flagella will exert a CW rotation. The most
important output variable is the angular velocity w that takes discrete values
+1 for CW and −1 for CCW. The full pathway involves other molecules: CheB
and CheZ (Z) whose continuous evolution is determined by a set of differential
algebraic equations derived through kinetic mass action formulation.

The model in the above example captures the essence of how an E. coli cell
performs a biased random walk by transiently decreasing its tumbling frequency
to move towards a region with greater ligand concentration. This use of the
discrete part of the automata to mimic stochastic behavior is interesting and,
as stochastic simulation is computationally demanding, shows the potential of
hybrid automata. We will come back on this points in the following two sections.

The authors of [CMPM05] mention the fact that model in the above example
is also sensible more to concentration gradients than to absolute concentrations.
This is in accordance with observations as, in fact, E. coli adapts quickly as
it compares its environment during the immediate past to what existed a little
earlier.

As opposed to the case of Section (1), the use of hybrid automata presented
in this section illustrates the potential of the formal tool in combining discrete
and continuous aspects of modeling. If in the case of genetic regulatory network

y = Yp

Y0
> θ ∧ ω′ = +1 ∧ Y ′

P = YP ∧ Y ′
0 = Y0 ∧

B′
P = BP ∧ B′

0 = B0 ∧ Z ′ = Z ∧ P ′ = P

y = Yp

Y0
< θ ∧ ω′ = −1 ∧ Y ′

P = YP ∧ Y ′
0 = Y0 ∧

B′
P = BP ∧ B′

0 = B0 ∧ Z ′ = Z ∧ P ′ = P

ω = −1

ẎP = kyP (Y0 − YP ) − k−yZYP

ḂP = kbP (B0 − BP ) − k−bBP

P = LT2p + LT3p + LT4p+
T2p + T3p + T4p

ω = +1

ẎP = kyP (Y0 − YP ) − k−yZYP

ḂP = kbP (B0 − BP ) − k−bBP

P = LT2p + LT3p + LT4p+
T2p + T3p + T4p

RUN [CCW] TUMBLE [CW]

Fig. 2. An IDA capturing the run-tumble mechanism of E. coli.
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discreteness was only employed to prove that a computational analysis of a
collection of continuous traces was possible, in this case a discrete control is
integral part of the construction and has a direct correspondence in the biological
situation under study. The technical aspects involved in maintaining decidability
in the bacterial chemotaxis example are a sort of “ground” decidability relative
to the basic formulæ of the language—decidability of o-minimal theory in the
example above—, and a finite partitioning of the states’ space performed using
the discrete control as guide—reducing the reachability issue to a finite number
of verifications.

3 Switching between Simulation Techniques

In this section we discuss a inherently different use of the formalism of hybrid
automata, consisting in their exploitation as a switch between two different sim-
ulation techniques for the same phenomenon. The general theme is the choice
between a discrete-stochastic methodology and a continuous-deterministic one.
In general terms, the issue of choosing between these two approaches reaches
back in years and spans across many disciplines. From a computational point of
view—as well as for further reasons that will become apparent in the following—a
crucial contribution on this subject was given by D. Gillespie in the seventies (see
[Gil76] and [Gil77]). What is known today as the Gillespie algorithm was pro-
posed in those years as a stochastic simulation method to numerically simulating
a mixture of interacting molecular species. Even though a completely continuous-
deterministic approach, based on ordinary differential equations, could be taken
to tackle this problem, Gillespie started from two crucial observations:

– a discrete-stochastic modeling approach has much firmer physical basis than
the continuous-deterministic one;

– when small numbers of molecules are present and fluctuations play a central
role, the deterministic-stochastic approach captures behaviors that are lost
by the continuous deterministic one.

Starting from such observations and trying to avoid the mathematical compli-
cations involved in an attempt to analytically solve the Master equation defined
by the discrete-stochastic approach, Gillespie came out with his elegant and
extremely effective alternative numerical algorithms.

The situation is therefore the following: given a physical (biological) phe-
nomenon two possible simulation techniques are available,

1. a continuous-deterministic one, involving variables regulated by differential
equations;

2. a discrete-stochastic one, involving the use of Gillespie algorithm to deter-
mine the sequence of reactions taking place.

The idea is to use hybrid automata to combine within a single framework the two
methods, switching between the two when system’s variables satisfy a suitable
condition, for instance when a variable reaches a certain threshold.
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Fig. 3. The Repressilator

Our reference paper for this section is [ABI01], where the example chosen
to illustrate the technique is a “classic” called Repressilator (see [EL00]). The
Repressilator is a synthetic network of three genes expressing proteins repressing
each other in cycle (see Figure 1).

The Repressilator can be simulated using the following differential equa-
tions defined as acting on variables PLacI, PTetR, PcI, representing the concen-
tration of three kind of modeled proteins, and by three additional variables
MLacI, MTetR, McI, representing the three mRNA’s concentrations.

⎧
⎪⎨

⎪⎩

ṖLacI = −β(PLacI − MLacI); ṀLacI = −MLacI + α
1+P n

cI
+ α0;

ṖTetR = −β(PTetR − MTetR); ṀTetR = −MTetR + α
1+P n

LacI
+ α0;

ṖcI = −β(PcI − McI); ṀcI = −McI + α
1+P n

T etR
+ α0;

(2)

where α, α0 and β are parameters and n is a Hill’s coefficient. More specifically,
β is the ratio of protein decay rate and mRNA decay rate, α0 is the rate of
transcription when the repressor is bound (i.e., a measure of the “leakage” of the
repressor), and α+α0 is the rate of transcription when the repressor is not bound.
Protein concentration is measured in units of Km, the number of repressors
necessary to half-maximally repress a promoter, while mRNA concentration is
re-scaled by the average number of proteins produced per mRNA molecule. The
repression is modeled by Hill’s equations with exponent n = 2 (or greater);
this indicates a cooperative effect among repressors in the inhibition of the gene
transcription. In [EL00], the authors discuss the properties of the phase space:
there is a unique steady state which is stable for some parameter’s values and
becomes unstable for others, generating a stable limit cycle (see Figure 4 for
an example of oscillations). In particular, the size of the unstable region, in
which the solution of the equations oscillates, increases proportionally with the
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Fig. 4. The oscillating behavior of Repressilator for parameters’values α = 250, β = 5,
α0 = 0

Hill’s coefficient n, and inversely with the leakage rate α0. This means that the
cooperative effect of binding stabilizes the oscillatory behavior of the system.
Interestingly, in the stable region near the stability border, the steady state is
reached through dumping oscillations (an example is given in Figure 5).

The corresponding hybrid automaton consists of two modes only, correspond-
ing to the two simulating techniques available for Repressilator:

1. the first mode has six continuous variables and a dynamics consisting of the
differential equations 2;

2. The second mode should specify the stochastic dynamics. In order to avoid
the explicit introduction of stochastic evolution within the framework of hy-
brid automata (obtaining the so-called Stochastic Hybrid Automata [BL04]),
the dynamics can be non-deterministically approximated using suitable for-
mulae. For instance, the invariant region could be defined as a tube con-
taining the limit cycle, while the discrete dynamics can be rendered using
looping edges with appropriate activation and resets.

A delicate issue of this alternation is the fact that, ultimately, the switch imposes
a transition from a Hill type equation description to a stochastic mass action de-
scription. Consequently, kinetic parameters are different between the two models.

In [ABI01] the switch between modes is regulated simply by monitoring the
amount of different types of mRNA molecules and proteins in the system: when-
ever one such value drops below a certain threshold, a switch from continuous-
deterministic to discrete-stochastic behavior takes place. We believe that a more
careful study of this kind of switch is necessary: looking at Figure 4, where an os-
cillatory solution of the ODE is shown, we can see that, if the switching thresholds
is just slightly above the minimum concentration of proteins, then the switching
condition would always be true! An alternative choice for the mechanism govern-
ing the switch could be, for example, monitoring the distance of mRNA or protein
concentrations from their steady state value: whenever such value drops below a
given threshold (say half the minimum distance of the limit cycle), a switch from
continuous-deterministic to discrete-stochastic behavior takes place.
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Fig. 5. Dumping oscillations of a continuous-deterministic model of Repressilator (pa-
rameters are α = 100, β = 200, and α0 = 0) and stochastic oscillation behavior for the
corresponding discrete-stochastic model

Moreover, the use of a non-deterministic approximation of stochastic dynamics
within hybrid automata may introduce spurious behaviors (i.e. traces having
extremely low probability of being observed in the stochastic system).

Actually, the reader can check how the system of ODE is sensitive to param-
eters’ change. In fact, for a large number of combination of parameters’ values,
the oscillating behavior can either be not present at all, or asymptotically disap-
pearing in time through dumping oscillations (see Figure 5). The introduction
of the above control switch, therefore, can be seen as a means to guarantee a
higher overall level of robustness to the network.

Hybrid automata used as illustrated above are, again, a tool to formalize and
model situations that need to have some kind of switch between continuous and
discrete. The limit of the Repressilator example is the fact that there is no real
discrete control coupled with the system of differential equation describing the
behavior: in one of the two modes the dynamics is fully governed by a single
system of differential equations, while in the other is entirely governed stochasti-
cally (or by a non-deterministic approximation). No additional discrete control is
present in either case. Actually, instead of globally switching the dynamics from
continuous to discrete/stochastic, one can imagine to use the control structure
of hybrid automata to perform this switch locally, in order to govern discretely
only those variables having sufficiently low concentration. To the best of our
knowledge the applications of this technique have not been exemplified in such
more interesting cases in the literature.

4 Governing the Discrete and Continuous Parts

In this section we briefly discuss a recently proposed methodology investigat-
ing the possibility to pass from a stochastic process algebra model to a hybrid
automaton, in which the degree of continuity can be tunable by the user.
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Table 1. Syntax of restricted sCCP

Prog = D.N D = ε | D.D | p : −A
π = [g(X) → u(X, X ′)]λ M = π.G | M + M

G = 0 | p | M A = 0 | M
N = A | A ‖ N

In order to clarify the approach we need to introduce a simple stochastic pro-
cess algebra suitable for programming and based on the Concurrent Constraint
paradigm [Sar93]. Our reference papers for this section will be [BP08a, BP08b].

A stochastic Concurrent Constraint program consists of a set of agents inter-
acting via a shared store, containing a finite set of variables X = {X1, . . . , Xn},
usually taking integer values. A configuration c of the store is a “snapshot” of the
variables’ values. The basic action π executable by agents is a guarded update of
some variables. In addition, the language has all the basic constructs of process
algebras: non-deterministic choice, parallel composition, and recursive calls.

The characteristic feature of sCCP is the fact that each action π is given
a stochastic duration by associating to it an exponentially distributed random
variable. Moreover, the rate of stochastic durations depends on the state of the
system through a function λ : X → R

+. Therefore, durations are sensitive to the
overall status of the system and this allows to reflect locally (on communications)
global properties of the model. Stochastic actions, denoted by [π]λ, permit to
define a structural operational semantic [Bor06] by a transition relation, from
which a Continuous Time Markov Chain [Wil06] can be inferred.

More precisely, a sCCP program is a tuple N = (Prog, X, init(X)), where

1. Prog is defined according to the grammar of Table 1;
2. X is the set of variables of the store (with global scope);
3. init(X) is a predicate on X of the form X = x0, assigning an initial value

to store variables.

Analyzing the syntactic structure of sCCP programs, it can be proved that
one such program is always a parallel composition of a finite and constant (at
run time) number of sequential components, i.e. of agents not containing any
occurrence of the parallel operator. Moreover, the number of different states
(disregarding the value of variables) of each sequential agent is finite, so that its
transition system is a finite labeled multi-graph.1

As a first step to move from from stochastic process algebras to hybrid au-
tomata, we observe that we can define a fluid-flow approximation [Hil05] of the
entire sCCP program, by treating variables as continuous and describing their
time-evolution by means of ODEs [Bor07, BP07].

1 The CTMC can, however, have an infinite number of states, because the configu-
rations of a sCCP program, i.e. the state of agents plus the value of variables, are
generally infinite.
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Starting from a sCCP network N , consider the transition system associated
to each sequential component Ai in N and associate a fresh continuous variable
to each different state. Such variables, together with all variables X of the store,
will be governed by differential equations.

Differential equations can be introduced defining an interaction matrix I of
the sCCP-network. This matrix captures the effect of each action of a sequential
agent (i.e. of each edge in the transition systems) on system’s variables: it has
as many rows as system’s variables and as many columns as the edges in the
transition systems of all components, each entry I[X, e] storing the neat vari-
ation on the variable X caused by the update of edge e. In order to write the
ODEs, we simply need to store in a vector r the (functional) rates of each tran-
sition, following the same order used in the interaction matrix, and compute the
product I · r.

The above technique discusses the construction of a system of differential
equations governing the entire network. The crucial point in using hybrid au-
tomata is, instead, to use different systems of differential equations depending
on the state in which each sequential agent is on. More specifically, the transla-
tion of a sCCP network N to a hybrid automaton proceeds in two phases: first,
each sequential component Ai of N is converted into a hybrid automaton, then
these hybrid automata are ”glued” together using a suitable product of automata
construction.

The first part of the construction, namely the definition of hybrid automata
associated to sequential components of the network, is more or less direct: the
control graph coincides with the transition system of the component, after re-
moving all looping edges. Flows, instead, are obtained by localizing the general
technique to a single state of a sequential component, considering only edges of
the transition system looping in that state. The net effect will be a reduction
of the hybrid automata variables to the variables of the constraint store. The
delicate point in this phase is the definition of activation conditions on edges, in
order to capture the timing of the associated events. Activation conditions are
defined introducing one variable Ye for each edge e, whose purpose is to control
time varying rates λ = λ(t).2 The crucial observation is the fact that every tran-
sition, when isolated from the context, constitute a non-homogeneous Poisson
process [Ros96]. Thus, we can define the cumulative rate function

Λ(t) =
∫ t

t0

λ(s)ds,

which is a monotone function of t and use the fact, following from the the-
ory of non-homogeneous Poisson processes, that the number of firings at time t
behaves like a Poisson variable with rate equal to Λ(t). Hence, the average num-
ber of firings of the transition at time t equals Λ(t). Therefore, we may activate
the transition whenever Λ(t) ≥ 1, corresponding to the happening of at least one

2 Rates depend on store variables, which vary continuously over time. Hence, also
rates are time-varying functions.
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firing on average. This condition is expressed in the hybrid automaton as Ye ≥ 1,
with the associated transition variable Ye evolving according to

Ẏe =
dΛ(t)

dt
= λ(X). (3)

The above point is the kernel of the construction: in order to properly define
activation conditions reflecting stochastic behavior in a given interval of time, it
is sufficient to control cumulative rate functions.

The above discussion can be synthesized in a definition of hybrid automata
associated to a given sequential component, which can be summarized as follows.
Let A be a sCCP sequential agent operating on store variables X . The hybrid
automaton H(A) = (V , E , Z,Dyn, Inv ,Act ,Reset) associated to A is defined by

1. the control graph 〈V , E〉 is the transition system associated to A, with looping
edges removed;

2. the variables are Z = X ∪ {Ye | e ∈ E};
3. for each v ∈ V , the dynamics is governed by the equations induced by the

interaction matrix of component A or by (3);
4. Inv(v) = true for each v ∈ V ;
5. Act(e) is true if Ye ≥ 1 and the guard of e ∈ E holds;
6. Reset(e) resets variables according to the update of e and sets Ye to 0 for

each e ∈ E .

To complete the construction, hybrid automata associated to sequential com-
ponents have to be combined together to form the hybrid automaton of the
network. The key point is that the same variable of the store must be allowed
to be modified by several agents concurrently. Hence, the product automaton
must superimpose fluxes, adding the right-hand side of the differential equations
of each component for all shared variables. An almost classical product of two
hybrid automata can be carried out (see [Hen96]), with the only difference of a
special treatment of fluxes for variables shared among the factors.

Modes of the automaton H(N ) are the combination of modes of the sequential
components; in total, H(N ) has |V(A1)| × . . . × |V(An)| states. In addition, the
variables of H(N ) are the store variables X of the system, shared by all com-
ponents, for which fluxes are added, and the variables involved in the activation
conditions of transitions, which are local within each component.

Fig. 6. Hybrid automaton associated to the sCCP program Gf (X, Y ) (left) and
Deg(X) (right)
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(a) Stochastic system

(b) ODE

(c) Hybrid Automaton

Fig. 7. Numerical simulation of Repressilator for the stochastic model ( 7(a)), the ODE
model ( 7(b)), and the hybrid automaton model ( 7(c)). Parameters are kp = 1, kb = 1,
ku = 0.0001, and kd = 0.001.

As an example to illustrate the use of this technique, we consider a simpler
model of the Repressilator (see Section 3), presented in [BCP06]. Each gene is
modeled as a two-state machine: it can be active, producing proteins, or re-
pressed, producing nothing. Inhibition of a gene is caused by the binding of a
single repressor, hence no cooperativity is assumed. Moreover, the transcription
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and translation are condensed in a single step. In sCCP, the formal model of the
gene is

Gf (X, Y ):-[∗ → X ′ = X + 1]kp .Gf (X, Y ) + [Y ≥ 1 → ∗]kbY .Gb(X, Y )
Gb(X, Y ):-[∗ → ∗]ku .Gf (X, Y )

Deg(X):-[X ≥ 1 → X ′ = X − 1]kdX .Deg(X),

where Deg implements the first-order degradation of the protein, Gf and Gb

are the free and repressed states of the gene, respectively, X is the protein
produced by the gene and Y is the repressor. Henceforth, the complete model
of repressilator is

Gf (A, C) ‖ Gf (B, A) ‖ Gf (C, B) ‖ Deg(A) ‖ Deg(B) ‖ Deg(C).

In Figure 6 we show the hybrid automata associated to Gf (X, Y ) and Deg(X).
The automaton of the entire Repressilator, obtainable by the product construc-
tion, has 8 states in total, one for each possible combination of states of the three
composing genes.

Figure 7 compares the dynamics of the stochastic model, of the associated
ODE, and of the hybrid automaton. As we can see, the oscillatory behavior is
manifest in the stochastic and hybrid systems, but absent in the differential one.
This difference is caused by the fact that in the ODE the state of each gene is
represented by a continuous variable taking values in [0, 1], thus leveling out the
discrete switching dynamics of gene activation and deactivation. As a matter
of fact, it is this switching dynamics that induces the oscillatory pattern in the
stochastic and hybrid systems.

The mapping from sCCP to hybrid automata presented above introduces a
fixed degree of continuity depending on the structure of agents: all store variables
are approximated as continuous, even if they represent molecules present in a low
number of copies in the system. An higher degree of tunability can be achieved
by parameterizing the transformation w.r.t. the actions treated as continuous
and the ones kept discrete. We explain this concept with an example. Consider
the simple procaryote genetic network depicted in Figure 8: there is one single

Fig. 8. Diagram of a simple self-repressing genetic network of a procaryote
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gene, whose product, as a dimer, represses its own production. We can describe
this network by the following list of reactions:

Gf + P2 →kb
Gb; Gb →ku Gf + P2; Gf →kp Gf + r; r →kd1

∅;
r →kt r + P ; P →kdim1

P2; P2 →kdim2
P ; P →kd2

∅.
(4)

(a) Stochastic system

(b) ODE

(c) Hybrid Automaton

Fig. 9. Numerical simulation of simple genetic network of Figure8 for the stochastic
model ( 9(a)), the ODE model ( 9(b)), and the hybrid automaton model ( 9(c)).
Parameters are kp = 0.01, kb = 1, ku = 10, kt = 10, kdim1 = 1, kdim2 = 1, kd1 = 0.1,
and kd2 = 0.01.
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This example is taken from [Wil06], where it is modeled using Stochastic Petri
Nets [HR04]. The example was intended to show how the behavior of stochas-
tic and deterministic mass action models can differ (see Figure 9). In fact, the
stochastic simulation of the network of Figure 9(a) shows a typical pattern of
expression in “bursts”, caused by the small half-life of mRNA w.r.t. gene tran-
scription rate. The mass action ODE obtained from reactions (4), instead, exhibit
a milder behavior, asymptotically converging to a steady state (Figure 9(b)). As
a matter of fact, the amount of mRNA molecules is very low, usually alternating
between 0 and 1. Therefore, approximating this quantity as continuous creates a
divergent behavior from the stochastic model. In the associated hybrid automata,
we can choose to treat as continuous only the last four reactions of (4), keeping
discrete the first four, i.e. all those concerning the repression of the gene and
the production and degradation of mRNA. In terms of the mapping previously
defined, this corresponds in maintaining some looping edges of the transition
system as edges of the hybrid automaton. In general, the previous mapping can
be generalized by partitioning the set of edges of the transition system in two
sets: those treated as discrete and those treated as continuous. The simulation
of the hybrid automaton obtained from reactions (4) is shown in Figure 9(c):
it presents a pattern of expression closer to the original stochastic system, the
only difference being the regularity of the period of proteins’ bursts.

The approach presented here is in line with the spirit of Section 3. The
crucial difference, however, is that continuous and discrete dynamics can be
mixed, exploiting the discrete control of hybrid automata. Moreover, the tun-
ability of the degree of continuity provides a framework to study the inter-
play of continuous and discrete evolution in the light of systemic behaviors.
This approach can be further extended introducing also the stochastic ingredi-
ent, ending up in using the so called stochastic hybrid automata [BL04]. This
would add a further degree of tunability, involving the level of stochasticity
of the model. Within this more general framework, hybrid stochastic simula-
tion algorithms like [Neo04] can be easily described, showing that hybrid au-
tomata can also help in reducing the computational burden in the analysis of
models.

5 Conclusion

In this survey we reviewed, from a personal perspective, a few issues related
with the use of hybrid systems for biological modeling. Our starting point was
the observation that, instrumental to the ultimate goal of Systems Biology—
i.e. the isolation and study of systemic properties of biological networks—, is
the set up of a formalism allowing to reason on both continuous and discrete
aspects of the dynamics of biological systems. In this respect the proposal of
modeling biological systems as hybrid systems and formalize their study by
hybrid automata, is somehow natural. However, we must keep in mind that
hybrid automata were born to combine continuous evolution and discrete con-
trol. In this respect they were directed more toward an attempt to provide the
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correct framework for designing a discrete control interacting with a continu-
ous environment. Biological system are much less “artificial”, as they do not
provide any clear-cut view on the discrete control present in the system un-
der study. As a matter of fact, the modeler usually only “feels” the presence
of a discrete control over a continuous environment, while in reality things can
be described in an entirely different manner. Consider, for example, the gen-
eral fact that in, in biological systems, the dynamics of the environment is,
ultimately, a discrete and stochastic sequence of events. At the same time the
kind of control that can be distilled from available data on biological networks,
is only a partial view on the functionalities of the system. All in all, a much
more complex situation than the one that has to be faced in studying embedded
systems!

Nevertheless we believe the use of hybrid automata has a great potential in
biological modeling. We tried to exemplify on the variants of this potential by
providing examples of definition and uses of hybrid automata in modeling bio-
logically significant scenarios. Such scenarios provided also us the possibility to
show the various level of complexity (sometimes given in very precise decidability
terms) of the implementation machinery required.

Very effective methods to analyze, control, and synthesize Genetic Regulatory
Networks can be cast into hybrid automata formalism to illustrate a basic level
of logical complexity. The discrete part of the automata, in these cases, is sug-
gested by a syntactic analysis of the query language and of the mathematical
specification of dynamics. The implementation complexities in these cases do
not stem from the logic but from the mathematics of the formalism. This part
of our study was presented in Section (1).

In Section (2) a deeper level in control-analysis is illustrated, by showing how
to model a discrete control in Bacterial Chemotaxis and how to constrain the
logical format of dynamics in order to maintain decidability. Decidability issues
related with the logical formulæ employed in the dynamics’definition are taken
into account here. A higher level of logical complexity is involved, witness the
fact that reachability becomes the crucial implementation issue.

In Section (3) and Section (4), instead, a different level of interaction be-
tween control and dynamics is illustrated. In the first case the possibility is
mentioned to switch between continuous-deterministic and discrete-stochastic
simulation modes. This is obtained by using the discrete-control capabilities of
hybrid automata. In the last section it is shown how, using a stochastic pro-
cess algebra simulation method as starting point, different levels of continu-
ous/discrete subdivisions can be envisaged in designing the corresponding hybrid
automata.

Continuous and discrete aspects of (biological) modeling drive researchers
quickly into deep considerations concerning non-determinism, stochastic dynam-
ics, and time ontology. Perhaps more important than this—from an Informat-
ics3 point of view—is the fact that the design and analysis of proper means for

3 We prefer the term Informatics to Computer Science, as it clearly point at the
difficulties to be faced in properly treating transfer and storage of information.
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dealing with continuous and discrete aspects of modeling, is a kernel problem in
the computational treatment of mathematical language.
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Abstract. The modelling of biological systems led to the explicit in-
troduction of compartments in several bio-oriented process calculi. In
this tutorial we show how different compartment semantics can be ob-
tained by means of a simple and conservative extension of the standard
pi-calculus, the pi@ calculus. Significant examples are given through the
encoding of two well known bio-inspired process calculi: BioAmbients
and Brane Calculi.

Keywords: pi-calculus, priority, polyadic synchronisation, BioAmbients,
Brane Calculi.

1 Introduction

There is an increasing awareness that complex biological systems can be better
understood and studied at a system level, where a network of biochemical cells
can be seen as a computing machinery, made of processing agents which interact
and cooperate to achieve a common goal. This informal description applies to
concurrent system as well, hence it is natural to use techniques from the global
computing field to study the behaviour of biological cells. Particularly promising
is the use of process calculi, which are formalisms used to describe concurrent and
mobile systems. Process calculi are equipped with a formal semantics describing
their behaviour, and plenty of tools for the static and dynamic analysis of systems
have been produced, in particular simulators. These tools can be therefore used
in the field of biological organisms, as well, to analyse and possibly predict their
behavior. The pioneering work on modelling biochemical systems with a calculus
is the work by Fontana and Buss [1] where a version of the lambda-calculus is
used. A better account of pathways descriptions is proposed in [2] by Regev,
Silverman and Shapiro, who use the π-calculus [3], a well-known formalism for
mobility.
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This first case-study on the use of π-calculus for the modeling of biological
processes raised an enormous interest for the potential application of process cal-
culi techniques to Systems Biology. The direct employment of π-Calculus allowed
the formalisation of several biological mechanisms, and even more by means of
its variants and extensions [4,5,6] that permitted the representation or analysis
in silico of complex cellular processes [7,8]. Nonetheless, π-calculus is not the
ultimate answer: it is difficult to model some other aspects of biological systems
that cannot be ignored, if one wishes to obtain descriptions at a higher abstrac-
tion level and with higher biological faithfulness. A basic missing abstraction
is the notion of compartment: a cell is composed of different materials that are
confined in different areas of the cell (the compartments), usually separated by
suitable membranes (i.e., semi-permeable barriers), ensuring that certain sub-
stances always stay into the compartment while other substances stay out of
it. Similarly, any non-trivial biological system is a construct in which various
components in different compartments execute different “computations”, and
the results of these computations can be communicated among the components
through the compartments.

To this aim, more complex calculi have been proposed, such as Brane Calculi
[9] and its variants [10], Bioambients [11], Beta binders [12,13], the K-calculus
[14], BioK [15] which are based on or get inspiration from π-calculus, enriched
with some powerful mechanisms for compartmentalised computation. Even if
they present many common features, each calculus focuses its attention on par-
ticular biological entities or mechanisms. Their similarity induces the interest for
a parallel analysis, but their specialisation does not allow a direct comparison.
Moreover, there is a lack of techniques and tool support for these calculi, because
the added features are often radically new and the existing theories and tools
cannot be adapted easily.

In this paper, we propose a novel calculus, called π@ (to be pronounced as
the French word “paillette”), designed specifically to overcome the problems sin-
gled out above. It is a simple, conservative and powerful extension to π-calculus,
with two new basic mechanisms: polyadic synchronisation and prioritised com-
munication. In particular, polyadic synchronisation [16] allows for the model-
ing of compartments in a natural way, but still in the classic message-passing
flavour typical of π-calculus.; priority instead is extremely useful for implement-
ing transactional mechanisms that are essential when dealing with compartment
operations (e.g., dissolution of a membrane) that involve many components that
are to be updated consequently. Its simple syntax and semantics, very close
to π-calculus, allow a natural extension of many properties and results already
stated for standard π-calculus, thus facilitating π@ theoretical analysis. On the
other hand, it is so powerful that it can be used with a pivotal role for com-
paring the various compartment-based formalisms. In this sense, we claim that
π@ is the right compromise between the simple and elegant theory of π-calculus
and the biological needs for modeling compartmentalised behavior. In order to
match these expectations even more strikingly, we define a simpler sublanguage,
called core-π@, where polyadic synchronisation is limited to its simplest form
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(two names at most are used in a channel name) and priority levels can only be
two, and we show its great flexibility in modelling biological systems.

In this paper we show π@ and core-π@ at work by encoding two well-known
compartment-based formalisms: BioAmbients and Brane Calculi. Their straight-
forward embedding in the same language allows to understand clearly their struc-
tural/semantical common points and differences and provides their ready-to-run
implementation on top of a common platform. For the second language we show
both encodings in π@ and core-π@, the former being more easily understandable,
but the latter justifying our claim that, for systems biology modelling, core-π@
is enough.

The paper is organised as follows. Section 2 is a gentle introduction to the ba-
sic features of the π-calculus, in particular of its syntax and reduction semantics
via a structural congruence. It also comprises a non-trivial example of a biologi-
cal system modelled in π-calculus: the insuline secretion process of a pancreatic
β cell in response to a rise of glucose in the blood. We discuss the limitations
of this representation, in particular for the difficulties in handling properly the
surrogate of compartments that π-calculus is able to express and for the lack
of transactional mechanisms. For these reasons, Section 2.3 introduces polyadic
synchronisation and Section 2.4 a form of prioritised communication, which con-
stitute the basic ingredients added to π-calculus to obtain the language π@.
This language is described in Section 3, with its syntax and reduction seman-
tics. Moreover, the same biological case-study of the insuline secretion process is
now modeled in π@, showing that the new representation is much more faithful.
Section 3 ends with the presentation of core-π@, the minimal subcalculus of π@
that we claim is powerful enough to model complex biological systems. Section
4 is devoted to present the encodings of BioAmbents and Brane Calculi into π@
(and for the second language also in core-π@). Finally, Section 5 reports some
related work, further research and conclusive remarks.

2 Setting the Context

2.1 The π-Calculus

The π-Calculus [17,18] is a derivation of CCS [19] where parallel processes in-
teract through synchronisation over named channels, with the capability of re-
ceiving new channels and subsequently using them for the interaction with other
processes, in order to model mobility.

Names constitute the basic entities of the calculus. Each name represents a
channel which can be used for synchronisation by parallel processes. For example,
the system

a(x).P
∣∣ a〈z〉.Q (1)

represents two parallel processes a(x).P and a〈z〉.Q, the first one ready to receive
some datum (whose local name is x) over the channel a, the second one ready
to send some datum z over the same channel a. The datum z represents in
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turn another channel, which can be used by the first process for subsequent
communications.

If a〈z〉.Q sends z to a(x).P , then the subsequent behaviour of the two processes
is specified by the expressions Q and P respectively. More precisely, we write
that the system of Expr. (1) may evolve in the following way:

a(x).P
∣∣ a〈z〉.Q → P{z/x}

∣∣ Q (2)

where P{z/x} represents the process P where all the occurrences of the place-
holder x have been replaced by z. Here, x is said to be a bound name, in oppo-
sition to a which is free.

The transition of the system a(x).P
∣∣ a〈z〉.Q to the system P{z/x}

∣∣ Q
is governed by to reduction relation “→”, which states that two processes may
exchange data if they are ready to perform input/output respectively over the
same channel.

The nondeterministic choice between two (or more) possible transitions is
denoted by the choice operator “+”. For example, in the system

a(x).P ′ + b(y).P ′′ ∣∣ a〈z〉.Q
∣∣ b〈w〉.R

the first process may undergo two different, equally possible transitions, caused
by a synchronisation with the second process or the third one, respectively. The
first transition can be written as

a(x).P ′ + b(y).P ′′ ∣∣ a〈z〉.Q
∣∣ b〈w〉.R → P ′{z/x}

∣∣ Q
∣∣ b〈w〉.R

while the second as

a(x).P ′ + b(y).P ′′ ∣∣ a〈z〉.Q
∣∣ b〈w〉.R → P ′′{w/y}

∣∣ a〈z〉.Q
∣∣ R

Depending on the occurring transition, the future behaviour of the first process
is denoted by P ′{z/x} or P ′′{w/y} respectively.

Since the order used for enumerating the possible choices is meaningless, i.e.
the choice operator is commutative (and associative), we write that

a(x).P ′ + b(y).P ′′ ≡ b(y).P ′′ + a(x).P ′

where “≡” represents a congruence relation between processes that are meant
to be characterised by the same behaviour.

Anyway, the choice operator is not the first cause of nondeterminism. As usual
for concurrent calculi, the parallelism of the system can produce nondeterministic
behaviour. For example, the system

a(x).P
∣∣ a〈z〉.Q

∣∣ a〈w〉.R

is subjected to two transitions, depending on the process that will actually per-
form the output operation on channel a:

a(x).P
∣∣ a〈z〉.Q

∣∣ a〈w〉.R → P{z/x}
∣∣ Q

∣∣ a〈w〉.R
a(x).P

∣∣ a〈z〉.Q
∣∣ a〈w〉.R → P{w/x}

∣∣ a〈z〉.Q
∣∣ R
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It is possible to prevent unwanted interactions between processes by limiting the
scope of a name:

(ν a)
(
a(x).P

∣∣ a〈z〉.Q
) ∣∣ a〈w〉.R (3)

Thanks to the restriction operator “ν ”, the name a in the first two processes
represents a private channel between them. Even if the same name a occurs also
in the third process, it constitutes a completely different communication channel.
Any renaming of the restricted channels (as well as bound names, by a procedure
called alpha-conversion) has no effect on the behaviour of the systems. In fact
the following expression

(ν b)
(
b(x).P

∣∣ b〈z〉.Q
) ∣∣ a〈w〉.R

is equivalent to Expr. 3, since b(x).P and b〈z〉.Q are able to exchange data
exactly as before.

In order to model recursive behaviour, an operator of replication is introduced
in the language. A process P preceded by “!” is thought as being replicated an
unlimited number of times. That is

! P ≡ P
∣∣ P

∣∣ · · ·

The formal definition of π-Calculus grammar follows.

Definition 1. Let

N be a set of names on a finite alphabet, x, y, z, . . . ∈ N ;
N = {x | x ∈ N}

The syntax of π-Calculus is defined in terms of the following grammar:

P ::= 0
∣∣∣

∑

i∈I

πi.Pi

∣∣∣ P
∣∣ Q

∣∣∣ ! P
∣∣∣ (ν x)P

π ::= τ
∣∣∣ x(y)

∣∣∣ x〈y〉

where

– 0 represents the null process;
– x(y) expresses the capability of performing an input on the channel x and

receiving a datum which is then bound to the name y;
– x〈y〉 expresses the capability of sending the name y on the channel x;
– τ is the invisible, uncontrollable action;
– P

∣∣ Q represents the parallel composition of processes;
– ! P stands for the unlimited replication of process P ;
–

∑
i∈I πi.Pi represents the nondeterministic choice between several input/

output communication capabilities, denoted also as π1.P1 + π2.P2 + . . .;
– (ν x)P represents the scope restriction of the name x to process P .

The full definition of the congruence relation ≡ follows. It depends in turn on
the function fn(P ) which returns the set of free names occurring in P .
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Definition 2. The congruence relation ≡ is defined as the least congruence sat-
isfying alpha conversion, the commutative monoidal laws with respect to both
(

∣∣ ,0) and (+,0) and the following axioms:

(ν x)P
∣∣ Q ≡ (ν x)(P

∣∣ Q) if x /∈ fn(Q)

(ν x)P ≡ P if x /∈ fn(P )

! P ≡ ! P
∣∣ P

where the function fn is defined as

fn(τ )
def
= ∅ fn(x(y))

def
= {x}

fn(x〈y〉) def
= {x, y} fn(0)

def
= ∅

fn(π.P )
def
= fn(π) ∪ fn(P ) fn(

∑
i∈I πi.Pi)

def
=

⋃
i fn(πi.Pi)

fn(P
∣∣ Q)

def
= fn(P ) ∪ fn(Q) fn(! P )

def
= fn(P )

fn((ν x)P )
def
= fn(P ) \ {x}

The relation describing the possible transitions of a process is defined in terms
of few simple reduction rules, which exploit the congruence relation previously
given.

Definition 3. π-Calculus semantics is given in terms of the reduction system
described by the following rules:

TAU:
τ.P → P

COMM:
(μ(y).P + M)

∣∣ (μ〈z〉.Q + N) → P{z/y}
∣∣ Q

PAR:
P → P ′

P
∣∣ Q → P ′

∣∣ Q
RES:

P → P ′

(ν x)P → (ν x)P ′

STRUCT:
P ≡ Q P → P ′ P ′ ≡ Q′

Q → Q′

The TAU rule represents an internal, unobservable change of state of some pro-
cess P. The transition of Expr. (2) is formalised by rule COMM. The PAR rule
describes the meaning of the parallel operator: each process capable of some
internal transition, can evolve even when put in parallel with other processes.
The RES rule allows transition of processes in presence of restricted names. The
key role of restriction (as well as the semantics of the replication) is hidden by
rule STRUCT, which states that if two processes are structurally congruent,
then they can perform the same transitions. For an extended treatment of the
π-Calculus we refer to [17,18,20,21].

The key idea behind the modelling of biological systems by means of the π-
Calculus is that biochemical elements can be seen as parallel processes, and their
interaction as communication. In particular, each molecule of the system can be
represented by a process and its reaction with other molecules can be modelled
as a communication over a fixed channel. For example, the chemical reaction

R : R1 + R2 → P1 + P2
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where the molecules R1 and R2 react according to reaction R, and release P1
and P2 as products of the reaction, can be modelled in π-Calculus as

R1 � r.P1 R2 � r.P2 R1
∣∣ R2 → P1

∣∣ P2

where each process is named as the corresponding molecule, and reaction R is
associated with channel r.

Furthermore, the communication of restricted names between π-Calculus pro-
cesses can be exploited for the modelling of local bounds between molecules. If
M1 and M2 represent two molecules ready to bind, the corresponding expression
in π-Calculus is

M1 � (ν b)(bind〈b〉.M ′
1) M2 � bind(x).M ′

2

M1
∣∣ M2 → (ν b)(M ′

1

∣∣ M ′
2{b/x}) (b /∈ fn(M ′

2))

where M ′
1 and M ′

2{b/x} (and no other process) share the name b after their
reaction.

Restriction may be also exploited in order to model compartments. A com-
partment can be thought as a box separating the external environment from its
content. A typical biological example is the cell: its external membrane protects
from the dispersion of cell material and regulates the exchange of substances.
From an external point of view, the content of the compartment is completely
hidden by the compartment itself. Hence we may represent in π-Calculus the
compartment C as

(ν c1, . . . , ck)
(
M1

∣∣ · · ·
∣∣ Ml

∣∣ P1
∣∣ · · ·

∣∣ Pn)

where the compartment C is represented by a set of restricted names c1, . . . , ck,
the content of C is constituted by P1, . . . , Pn under the hypothesis that

fn(P1
∣∣ · · ·

∣∣ Pn) ⊆ {c1, . . . , ck}

i.e. the direct interaction of such elements with some external process is pre-
vented by restricting all their channels. The set of processes M1

∣∣ · · ·
∣∣ Ml

constitutes an interface of the compartment to the external world, that is, in
the case of a cell, the membrane itself (and in particular all the transmembrane
channels and proteins). These would constitute the only processes enabled to
interact with the outer environment.

2.2 Modelling Biological Systems in π-Calculus

We can now try to model in π-Calculus the simple biological system drawn
in Fig. 1. The figure sketches the insuline secretion process of a pancreatic β
cell in response to a rise in glucose in the blood. The glucose is transported
inside the cell by a transmembrane channel protein, GLUT 2. Here it undergoes
glycolysis, which leads to the production of pyruvate and ATP. The rise in ATP
concentration inhibits the action of K+ channels, which in turn causes a rise
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Fig. 1. Insuline secretion in pancreatic β cells in response to a rise in glucose
concentration. (1) The rise in glucose concentration of the blood is reflected by
a rise in glucose inside the cell, as a consequence of the action of GLUT2 glucose
transporter. (2) The rise of glucose accelerates the conversion of ADP into ATP , with
consequent rise in intracellular ATP concentration. (3) ATP inhibits the action of
ATP -sensitive K+ channels, which reduce the expulsion rate of K+ ions from the cell.
(4) The increasing presence of K+ depolarises the membrane and triggers the opening
of voltage-sensitive Ca2+ channels. (5) Fusion proteins are activated by Ca2+ ions and
(6) trigger the exocytosis of secretory vesicles containing insuline.

in K+ ions near the membrane and consequently its depolarisation. Voltage-
sensitive Ca2+ channels are therefore activated and allow the entry of Ca2+

ions, which activate the fusion of the insuline-containing vesicles with the cell
membrane (exocytosis), with subsequent dumping of insuline molecules into the
blood.

The corresponding π-Calculus system will be composed of a compartment C
representing the cell, with the shape

(ν c1, . . . , ck)
(
CHAN1

∣∣ · · ·
∣∣ CHANl∣∣ MOL1

∣∣ · · ·
∣∣ MOLn∣∣ V ES

∣∣ · · ·
∣∣ V ES

)

where membrane channels CHANi are the only processes aware of names ex-
ternal to the cell itself, unlike the molecules MOLi and the insuline vesicles
V ES.

The first elements to model are the glucose molecule and the glucose channel.
The entry of glucose inside the cell can be modelled as an interaction between
the process representing the glucose molecule and that representing the glucose
channel. If the glucose molecule is represented by the process GLU , since its
interaction with processes external to the cell must be prevented after its entry,
it is worth substituting all the channels of GLU with new restricted names.
Furthermore, the GLU process must exhibit some sort of recursive behaviour,
because it must be able to synchronise at any time with some glucose channel and
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then be ready again for the other chemical interactions. Such recursive behaviour
may be captured by an expression like

GLU � glutrans.GLU + glureact.PY R

where the channel glutrans carries the interaction with the glucose channel,
while a synchronisation over glureact triggers the glycolysis of GLU with conse-
quent production of pyruvate PY R. The recursive behaviour would be obtained
by direct recursion (after the transportation, indicated by the synchronisation
over glutrans, the process becomes GLU again), but since it is not allowed in
the version of the π-Calculus considered here, it must be encoded by combining
replication and restriction, in the following way:

GLU � (ν g)
(
g

∣∣ ! g.(glutrans.g + glureact.PY R)
)

The internal synchronisation over g allows to spawn a new subprocess

(glutrans.g + glureact.PY R)

able to interact nondeterministically either over glureact and generate PY R, or
synchronise over glutrans and then produce another coin g, thus returning in
its initial state. The above formalisation still lacks a significant detail: after the
interaction over glutrans and the entry in the cell, the process GLU must own
a new set of restricted names. Such names must be received by GLU during the
interaction with the glucose transporter:

GLU(glutrans, glureact) �
(ν g)

(
g〈glutrans, glureact〉

∣∣ ! g(t, r).(t(nt, nr).g〈nt, nr〉 + r.PY R)
) (4)

Now the internal synchronisation over g spawns a new subprocess GLUSUB

GLU(glutrans, glureact) →
(ν g)

(
GLUSUB

∣∣ ! g(t, r).(t(nt, nr).g〈nt, nr〉 + r.PY R)
)

with
GLUSUB � glutrans(nt, nr).g〈nt, nr〉 + glureact.PY R

where the placeholders t, r have been replaced by glutrans, glureact respectively
in consequence of the input/output operation. GLUSUB is ready to react over
glureact or to trigger the simulated movement of GLU inside some other com-
partment whose respective names for the reaction and transportation of glucose
are received as nr and nt by GLU at the time of the transportation itself.

The glucose transporter GLUT 2, represented by the process GLUCHAN ,
can be easily modelled as

GLUCHAN(gtout, gtin, grin) � ! gtout〈gtin, grin〉

where gtout is the channel for glucose transportation outside the cell, gtin is the
name used for the same purpose but inside the cell, and grin is the channel for
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the glycolysis of GLU inside the cell. As previously noticed, GLUCHAN is a
cross-compartment process, since it must be aware of channels both inside and
outside the cell.

The effect of glycolysis is the conversion of ADP into ATP . Even if such
process involves several other chemical components, for sake of simplicity it can
be easily modelled as direct interaction between the ADP and GLU molecules.
For the same reason, the inhibition of K+ channel proteins by ATP can be
modelled as direct interaction between the ATP molecule and the K+ channel
proteins, over some name inhk:

ADP (glureact, inhk) � glureact.ATP (inhk)

ATP (inhk) � inhk

Since the consequent behaviour of the ATP molecule is not relevant for the
present purposes, the corresponding process lacks any recursive formalisation.

In order to model the potassium molecule and channel protein, similar con-
siderations can be applied. In particular, the potassium molecule K may be
represented as

K(ktrans, kreact) �
(ν k)

(
k〈ktrans, kreact〉

∣∣ ! k(t, r).(t(nt, nr).k〈nt, nr〉 + r)
)

Despite of their similarity, the processes GLU and K differ in the product of
their reactions: GLU reduces to PY R, while in the current formalisation K
reduces to the null process.

The expression of the K+ channel protein, KCHAN , is a little more complex
than the corresponding process GLUCHAN . In fact, KCHAN can be inhibited
in consequence of ATP binding. In other words, its recursive behaviour shall be
interrupted after an interaction over the inhk channel. This effect can be achieved
by a slight modification of the recursion used for GLU :

KCHAN(ktin, ktout, krout, inhk) �
(ν kc)

(
kc

∣∣ ! kc.(inhk + ktin〈ktout, krout〉.kc)
)

After the interaction over inhk, the coin kc is not replicated and any further
action of the process KCHAN is prevented.

The polarisation of the membrane caused by the rise in K+ concentration
after the inhibition of K+ channels can be modelled by a fictitious process POL
triggered by K+ ions, which then activates the Ca2+ channels:

POL(kreact, caact) � kreact.caact

The Ca2+ channel protein is formalised as the process CACHAN , which closely
resembles GLUCHAN :

CACHAN(catout, catin, carin, caact) � caact.! catout〈catin, carin〉
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The channel is activated only after interaction over caact, as required. The cal-
cium process CA is defined exactly as K:

CA(catrans, careact) �
(ν c)

(
c〈catrans, careact〉

∣∣ ! c(t, r).(t(nt, nr).c〈nt, nr〉 + r)
)

The stimulation of the exocytosis by the rise in Ca2+ concentration can be
modelled as mediated by a docking protein DOCKP which is activated by Ca2+

ions and trigger the expulsion of the insuline molecules INS contained in the
vesicle V ES:

DOCKP (careact, dockves, insout) � careact.dockves〈insout〉

Since the vesicle V ES (as well as all the INS molecules inside it) is completely
embedded inside the cell, the DOCKP process must also communicate to V ES
the external name(s) insout which enables the communication of the processes
INS with the environment surrounding the cell.

V ES(dockves) � (ν insin)
(
dockves(insout).! insin.INS(insout)∣∣ INS(insin)

∣∣ · · ·
∣∣ INS(insin)

)

The process V ES represents another compartment, where all the names of the
embedded processes (INS) are restricted, while only one cross-compartment
process filters their interaction with the external environment. In this very simple
model, the INS processes are formalised as

INS(ins) � ins

Finally, the whole system can be summarised as

SY S � GLU(gtout, grout)
∣∣ K(ktout, krout)

∣∣ Ca(catout, carout)
∣∣

(ν gtin, grin, ktin, krin, catin, carin, inhk, caact, dockves, insin)
(
GLU(gtin, grin)

∣∣ GLUCHAN(gtout, gtin, grin)
∣∣ K(ktin, krin)

∣∣ KCHAN(ktout, ktin, krin, inhk)
∣∣

∣∣ ADP (grin, inhk)
∣∣ ATP (inhk)

∣∣ POL(krin, caact)
∣∣ Ca(catin, carin)

∣∣ CACHAN(catout, catin, carin, caact)
∣∣ DOCKP (carin, dockves, insout)

∣∣ V ES(dockves)
)

This modelling approach in π-Calculus allows to express somehow the idea of
compartments, but reveals several drawbacks.

The most evident is the need to encode compartment scoping by restricting
all the free names of the enclosed processes. As even worse consequence we have
that cross-compartment processes must handle all the names of the interacting
processes, taking care of the correspondence between distinct names represent-
ing the same channel inside different compartments. The model becomes even
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more complicated when such processes need to create new restricted names and
communicate them externally. If we then require compartment operations which
affect their nesting structure (merging, splitting, creation, movement of whole
compartments) the above approach becomes practically unfeasible, both for the
difficulties in name handling and the impossibility of ensuring atomicity of such
complex operations without a purely centralised implementation.

Such issues can be overcome by the simple extensions that are presented in
the next subsections.

2.3 Polyadic Synchronisation

In the π-Calculus, channels and transmitted names are usually synonyms.
Polyadic synchronisation [16] consists in giving structure to channels: each chan-
nel is composed of one or more names and identified by all of them in relation
to the exact sequence of their occurrence. For example, an email address is usu-
ally written in the form username@domain, where username and domain are
two strings – two names – both necessary to identify the given email address.
Moreover, their order is crucial since domain@username specifies another, likely
nonexistent, address. Similarly, polyadic synchronisation (in its simplest form)
provides the capability of writing channels as name1@name2. In other words, a
channel is indicated by a vector of two names (name1, name2) and communica-
tion between two processes may happen only if they are pursuing a synchroni-
sation along channels denoted by the same names.

Apart from this, communication happens in the same way as in the π-Calculus.
For example, the transition

polyadic@comm〈d〉.P
∣∣ polyadic@comm(x).Q → P

∣∣ Q{d/x}

produces the same renaming effect of a π-Calculus transition, but with one
difference: in the π-Calculus, the transmission of a name always stands for the
transmission of a channel, while in the above example the transmitted name
constitutes only one component of it.

An extended form of polyadic synchronisation allows for the use of more than
two names for each channels, like in the following example:

@c1@c2@c3〈d〉.P
∣∣ c1@c2@c3(x).Q → P

∣∣ Q{d/x}

In general, there is no limit to the length of the vector of names representing a
channel.

For concision and readability, polyadic synchronisation is often used also in
conjunction with polyadic communication:

polyadic@comm〈a, b, c〉.P
∣∣ polyadic@comm(x, y, z).Q →

P
∣∣ Q{a/x, b/y, c/z}

The benefits in terms of simplicity of biological modellings are immediate in
presence of compartments. For example, if the π-calculus process

M(m1, . . . , mn) � π.M ′ + . . .
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is a molecule subjected to movement across the cellular membrane (like the GLU
process of Expr. (4)), all of its channels must be restricted after its conveyance
into the cell:

M(mout
1 , . . . , mout

n )
∣∣ (ν min

1 , . . . , min
n , . . .)(M(min

1 , . . . , min
n )

∣∣ · · · )

In particular, any channel protein able to convey the above molecule across differ-
ent compartments should be aware of all the names mout

1 , . . . , mout
n , min

1 , . . . , min
n .

Polyadic synchronisation allows to model the compartment just as one restricted
name. For example, the above system may be converted as

M(m1, . . . , mn, cout)
∣∣ (ν cin, . . .)(M(m1, . . . , mn, cin)

∣∣ · · · )

where each input or output action π.M ′ inside M has been encoded as π@c.M ′,
and c represents the compartment M lies in (cout or cin in the above example).
In this way, only one restricted name is needed to formalise a new compartment,
regardless of all the channels the enclosed processes may use. This substantial
simplification affects also the formalisation of cross-compartment processes: they
need to handle only one additional name for each compartment they partially
reside in.

2.4 Priority

The idea behind the notion of priority applied here to the π-Calculus [22] is
very similar to the mechanisms adopted for the implementation of schedulers
which allow to give processes several levels of priority, in dependence of their
requirements (responsiveness, cpu load, real-time constraints, etc) for the task
they accomplish.

In this paper we consider a particular kind of priority characterised by global,
immediate preemption: each process denoted by high priority holds the central
processing unit and executes its job before any low priority process may perform
some other task. In π-Calculus setting, this is equivalent to force high priority
synchronisations or communications to happen before any low priority action.
A high priority action is indicated by underlining the name of the channel. For
example, the expression

l〈a〉.P
∣∣ h〈b〉.Q

contains two processes with different, increasing priority. In the above situation,
both are blocked: in fact, no other process is ready to receive over the channel
l or h. In presence of some process listening on channel l, the first process may
react in the following way:

l〈a〉.P
∣∣ l(x).P ′ ∣∣ h〈b〉.Q → P

∣∣ P ′{a/x}
∣∣ h〈b〉.Q

In fact, this would be the only possible transition since no other reduction is
available. Conversely, when both high and low priority actions are enabled, low-
priority synchronisations can occur only after high-priority ones:
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l〈w〉
∣∣ l(x).P

∣∣ h〈y〉
∣∣ h(z).Q � 0

∣∣ P{w/x}
∣∣ h〈y〉

∣∣ h(z).Q

l〈w〉
∣∣ l(x).P

∣∣ h〈y〉
∣∣ h(z).Q → l〈w〉

∣∣ l(x).P
∣∣ 0

∣∣ Q{y/z} →
0

∣∣ P{w/x}
∣∣ 0

∣∣ Q{y/z}

The first of the two transitions is not allowed because interactions on low-priority
channel l may happen only after the high-priority communication on channel h.

For sake of clarity, communications between channels with the same name but
different priorities are forbidden. For example, in the following system there are
no possible reductions:

c〈a〉.P
∣∣ c(x).Q

An additional level of priority can be denoted by double underlining a channel
name:

l〈a〉.P
∣∣ h〈b〉.Q

∣∣ u〈c〉.R

If any reduction is available over the u channel, it preempts any reduction over
h and l. Additional levels of priority require the introduction of integer num-
bers as labels added to each input/output operation. For this reason the above
expression may be also written as follows:

2 : l〈a〉.P
∣∣ 1:h〈b〉.Q

∣∣ 0:u〈c〉.R

where 0 denotes the highest level of priority. The choice of identifying higher
priority levels with decreasing integer numbers is arbitrary and does not affect
the semantics or expressiveness of the language.

Since three levels of priority suffice for the purposes of this paper, only the
first of these two syntaxes will be used in the encodings and modelling examples,
for its conciseness and readability.

For a detailed survey of priority in process algebras, we refer to [22].
At first sight, the idea of priority seems foreign and unnecessary for biological

modelling purposes. Anyway, the complexity of this realm makes almost impos-
sible the design of a suitable and complete modelling language. The presence of
several priority levels for operations allows to compose high-level, complex op-
erations as sequences of several simple, low-level steps (transitions) by avoiding
any interference of external processes with the involved elements. Such low-level
transitions can be composed in different ways, depending on the abstraction
adopted to formalise the system of interest. This effect can be achieved by en-
coding each high-level operation as a list of high priority actions, preceded by a
single low priority operation which act as a guard. For example, if the processes
P1, P2, P3, P4 represents four proteins which can bind together and form a new
complex C, they can be modelled in π-Calculus by exploiting the restriction
operator and representing the binding as the sharing of a private name:

(ν b)P1
∣∣ P2

∣∣ P3
∣∣ P4 → · · · → (ν b)

(
P ′

1

∣∣ P ′
2

∣∣ P ′
3

∣∣ P ′
4
)
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Since more than one transition is needed to accomplish the whole process, if one
of the requirements is its atomicity (this is often necessary when the modelled
processes may meanwhile interact with other elements and give rise to unde-
sirable situations not pertaining to the original model) then there is no way to
obtain a satisfactory modelling in π-Calculus. Priority instead allows to ensure
that no other process can interfere during the formation of the above complex.
The four molecules can be formalised as

P1 � l〈b〉.h1〈b〉.h2〈b〉.P ′
1 P2 � l(x).P ′

2

P3 � h1(x).P ′
3 P4 � h2(x).P ′

4

so that after the first synchronisation of P1 and P2 over the low priority channel
l, a sequence of (two) high priority communications between P1 and P3, P4 is
triggered and cannot be interrupted by any other process. In fact, the possibility
of performing the initial low priority action over l guarantees that any other
high priority operation occasionally available in the system has been previously
consumed.

3 Description of the Formalism

3.1 The π@ Language

The π@ language joins the expressiveness of polyadic communication and pri-
ority in order to model both localisation of processes inside compartments and
atomicity of complex operations that require more than one reduction step for
their completion. Thanks to the simplicity of such extensions, π@ is very close
to the π-Calculus: from a syntactical point of view the only difference is the
structure of channels, composed of multiple names and tagged by the priority of
the action. We use μ to denote a vector of names x1, . . . , xn and k : μ to denote
a channel, that is a natural number k specifying the priority level followed by
a vector of names μ. In particular, k : μ represents an output operation along
channel k : μ, while k : α stands for a generic input, output or silent action τ of
priority level k.

Definition 4. Let

N be a set of names on finite alphabet, x, y, z, . . . ∈ N ;
N+ =

⋃
i>0 N i , μ ∈ N+ ;

N+
= {μ | μ ∈ N+} ;

α ∈
(

N+ ∪ N+ ∪ {τ}
)

;

The syntax of π@ defined in terms of the following grammar:

P ::= 0
∣∣∣

∑

i∈I

πi.Pi

∣∣∣ P
∣∣ Q

∣∣∣ ! P
∣∣∣ (ν x)P

π ::= k :: τ
∣∣∣ k :μ(x)

∣∣∣ k :μ〈x〉
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As previously introduced, the following abbreviations are used for readability:

μ(x) = 2:μ(x) μ〈x〉 = 2:μ〈x〉
μ(x) = 1:μ(x) μ〈x〉 = 1:μ〈x〉
μ(x) = 0:μ(x) μ〈x〉 = 0:μ〈x〉

The definition for structural congruence ≡ is exactly the same as given for π-
Calculus, where the function fn is naturally extended to the π@ syntax, that is

fn(k : μ(y))
def
= {μ1, . . . , μn}

fn(k : μ〈y〉) def
= {μ1, . . . , μn, y}

where μ = μ1@ · · ·@μn. The reduction semantics is very similar, but defined in
terms of an auxiliary function Ik(P ), representing the set of actions of priority
k which the process P may immediately execute. For example, if

P = a.Q
∣∣ b

∣∣ c.R
∣∣ d + e.S

∣∣ a.T

then I0(P ) = {c, e}, I1(P ) = {b, d}, I2(P ) = {a, a, τ}, where the availability of
τ action derives from the interaction of the first and last process.

Definition 5. Let Ik(P ) be

Ik( ∑

i

li :αi.Pi

)
= {αi | li = k};

Ik
(
(ν y) P

)
= Ik(P ) \

{
α | y ∈ {x1, . . . , xn}∧

(α = x1@ . . . @xn ∨ α = x1@ . . . @xn)
}
;

Ik(
!P

)
= Ik(P

∣∣ P );

Ik
(
P

∣∣ Q
)

= Ik(P ) ∪ Ik(Q) ∪ {τ | Ik(P ) ∩ Ik(Q) �= ∅},

Ik(Q) =
{
α | α ∈ Ik(Q)

}

π@ semantics is given in terms of the following reduction system:

τ /∈
⋃

i<k Ii(M)

k :τ.P + M →k P

P →k P ′

(ν x)P →k (ν x)P ′

τ /∈
⋃

i<k Ii(M
∣∣ N)

(k :μ(y).P + M)
∣∣ (k :μ〈z〉.Q + N) →k P{z/y}

∣∣ Q

P →k P ′ τ /∈
⋃

i<k Ii(P
∣∣ Q)

P
∣∣ Q →k P ′

∣∣ Q

P ≡ Q P →k P ′ P ′ ≡ Q′

Q →k Q′

π@ reduction rules are exactly the same of π-Calculus, except for the additional
condition τ /∈

⋃
i<k Ii(. . .) which avoids the execution of low priority actions

if higher priority communications (represented by τ actions) are immediately
available.



π@: A π-Based Process Calculus for the Implementation 465

3.2 Modelling the Insuline Example in π@

The benefits deriving from polyadic synchronisation and priority for biological
modellings can be noticed as soon as even very simple systems are formalised,
like the one in Fig. 1 already described into the π-Calculus. We have previously
discussed why a faithful description of a compartment in π-Calculus implies
that all the names of the enclosed processes are restricted, in order to prevent
their interaction with the external environment. On the contrary, π@ allows to
characterise each compartment by means of a single restricted name, as shown
in Sect. 2.3. Therefore, the shape of the system of Fig. 1 becomes

(ν cin)
(
CHAN1

∣∣ · · ·
∣∣ CHANl∣∣ MOL1

∣∣ · · ·
∣∣ MOLn∣∣ V ES

∣∣ · · ·
∣∣ V ES

)

where the cell is represented by the restricted name cin, the cross-compartment
processes CHAN1, . . . , CHANl communicate to the external environment by a
corresponding name cout, and the set of free names of the processes MOL1, . . .,
MOLn, V ES is irrelevant for their confinement inside the compartment, as soon
as cout does not appear in such set and cin constitutes one of the names which
identify each channel.

Therefore, the GLU process of Expr. (4) may be translated as follows:

GLU(comp, gt, gr) � (ν g)(
g〈comp〉

∣∣ ! g(c).(gt@c(cnew).g〈cnew〉 + gr@c.PY R)
) (5)

The behaviour of the process is almost the same: replication is exploited for
encoding the recursive behaviour of the molecule, which is always ready either
to react or to be moved into another compartment. These two capabilities are
formalised by an interaction over gr@c and gt@c respectively, where c represents
the name of the compartment the molecule lies in. The movement of the molecule
to another compartment is reflected by receiving a new compartment name and
forgetting the previous one. Since such name appears in all the channels that
allow the molecule to interact with the other processes, GLU can interact only
with elements enclosed in its same compartment. The simplification of Expr.
(4) w.r.t. Expr. (5) is minimal for the reason that the description of the GLU
molecule includes only two public channels, but it becomes significant as soon
as their number grows.

It is worth remarking that the current semantics of GLU may not correspond
to the intended behaviour of the glucose molecule in the original biological model:
if it requires the movement of the molecule across compartments to be instan-
taneous, then Expr. (5) does not constitute a correct formalisation because of
the additional internal step needed to spawn the molecule inside the target com-
partment. Priority addresses exactly this very common modelling problem: it is
possible to use high priority reductions to model all the operations that in the
original model are purely atomic or not present at all:
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GLU(comp, gt, gr) � (ν g)(
g〈comp〉

∣∣ ! g(c).(gt@c(cnew).g〈cnew〉 + gr@c.PY R)
) (6)

The corresponding expression of the GLUT 2 glucose transporter can be slightly
simplified as well:

GLUCHAN(cout, cin, gt) � ! gt@cout〈cin〉

Now, the channel process does not need to know all the names of the transported
molecule. This is a very valuable property, since it means that there is no need
to change the expression of the glucose transporter each time the formalisation
of GLU changes, for example after the addition of new reaction capabilities. As
previously discussed, GLUCHAN is characterised by the presence of two com-
partment names, for the reason that it represents a cross-compartment molecule.

The processes representing ADP and ATP are almost unchanged:

ADP (glureact, inhk, c) � glureact@c.ATP (inhk, c)

ATP (inhk, c) � inhk@c

In this case the use of polyadic synchronisation seems to make more complicated
the expression of the above molecules, but the benefit will appear after the
formalisation of the whole cell.

For the description of the potassium molecule K the same principles leading
to Expr. (6) can be applied:

K(kt, kr, comp) �
(ν k)

(
k〈comp〉

∣∣ ! k(c).(kt@c(cnew).k〈cnew〉 + kr@c)
)

Even in this case the high priority of internal reductions can provide a more
faithful modelling, like for the potassium channel KCHAN :

KCHAN(cin, cout, inhk) �
(ν kc)

(
kc

∣∣ ! kc.(inhk + kt@cin〈cout〉.kc)
)

The remaining processes can be translated in the same way:

POL(c, kreact, caact) � kreact@c.caact@c

CACHAN(cout, cin, cat, caact) � caact@cin.! cat@cout〈cin〉
CA(comp, cat, car) � (ν ca)

(
ca〈comp〉

∣∣

! ca(c).(cat@c(cnew).ca〈cnew〉 + car@c)
)

DOCKP (cin, car, dockves, cout) � car@cin.dockves@cin〈cout〉
INS(c, ins) � ins@c

Since the vesicle V ES constitutes another, nested compartment inside the
cell, it can be as well represented by a new restricted name:

V ES(cout, dv, ins) � (ν vcin)
(
dv@cout(cext).! ins@vcin.INS(cext, ins)
∣∣ INS(vcin, ins)

∣∣ · · ·
∣∣ INS(vcin, ins)

)
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The internal compartment name for V ES is vcin, while cout stands for the name
corresponding to the cell compartment. cext will be bound to the name of the
compartment surrounding the cell, where the insuline molecules will be dumped
after the exocytosis of the vesicle V ES.

If the process of exocytosis is abstracted as a single, atomic operation, then pri-
ority can be used for the loop of the process expelling all the insuline molecules.
It may be modified as follows:

dv@cout(cext).! ins@vcin.INS(cext, ins)

and the INS molecules accordingly:

INS(c, ins) � ins@c

In this way any sequence of movement of INS molecules would appear as atomic.
The presence of the high priority action immediately after the replication con-
stitutes a very dangerous operation: a high priority loop of this kind may block
the whole system if there is no guaranty on its termination. In the case of the
V ES process the finite number of INS molecules guarantees such termination.

Finally, the whole system is represented as follows:

SY S � GLU(cout, gt, gr)
∣∣ K(cout, kt, kr)

∣∣ Ca(cout, cat, car)
∣∣

(ν cin)
(
GLU(cin, gt, gr)

∣∣ GLUCHAN(cout, cin, gt)
∣∣ K(kt, kr, cin)

∣∣ KCHAN(cin, cout, inhk)
∣∣

∣∣ ADP (gr, inhk, cin)
∣∣ ATP (inhk, cin)

∣∣ POL(cin, kr, caact)
∣∣ Ca(cin, cat, car)

∣∣ CACHAN(cout, cin, cat, caact)
∣∣ DOCKP (cin, car, dockves, cout)

∣∣ V ES(cout, dockves, ins)
)

Like the V ES compartment, the β cell is denoted by only one restricted name, cin.

3.3 The Core-π@ Language

The π@ language is characterised by the capability of using an unbounded num-
ber of names for channels and of priority levels for reductions. The writing of
complex encoding like those presented in Sect. 4.5 and 4.8 can be significantly
simplified by such flexibility. Anyway, two levels of priority and two names for
each channel are sufficient for most of the purposes, like the modelling examples
previously shown. For this reason we introduce a subcalculus of π@, denoted
as core-π@, characterised by only two levels of priority (i.e. normal actions and
prioriotised actions) and two names for each channel. A valuable property of
this core-π@ is its straighforward mapping into its stochastic counterpart Sπ@
[23,24].

We introduce three distinct sets of names N , P , C denoting respectively un-
prioritised actions, prioritised actions and compartments. Each channel x@a is
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denoted by an action name and a compartment name. In order to keep notation
simple, compartment names may be omitted when superfluous.

Definition 6. Let N , P , C be distinct sets of names on finite alphabet, with m, n
ranging over N , p, q over P, a, b over C and x, y over X = N ∪P ∪C. The syntax
of the core-π@ language is defined as

P ::= 0
∣∣∣

∑

i∈I

πi.Pi

∣∣∣ P
∣∣ Q

∣∣∣ ! π.P
∣∣∣ (ν x)P

π ::= τ
∣∣∣ n@a(x)

∣∣∣ n@a〈x〉
∣∣∣ τ

∣∣∣ p@a(x)
∣∣∣ p@a〈x〉

where x represents one or more names x1, . . . , xi ranging over X .

Like for π@, the semantics of this core-π@ is given by means of a reduction
system based on the following congruence relation.

Definition 7. The congruence relation ≡ is defined as the least congruence sat-
isfying alpha conversion, the commutative monoidal laws with respect to both
(

∣∣ ,0) and (+,0) and the following axioms:

(ν x)P
∣∣ Q ≡ (ν x)(P

∣∣ Q) if x /∈ fn(Q)

(ν x)P ≡ P if x /∈ fn(P )

! π.P ≡ π.(! π.P
∣∣ P )

where the function fn is defined as

fn(τ ) �∅ fn(τ) �∅
fn(n@a(x)) �{n, a} fn(n@a〈x〉) �{n, a,x}
fn(p@a(x)) �{p, a} fn(p@a〈x〉) �{p, a,x}

fn(0) �∅ fn((ν x)P ) � fn(P ) \ {x}

fn(π.P ) � fn(π) ∪ fn(P ) fn(
∑

i∈I

πi.Pi) �
⋃

i

fn(πi.Pi)

fn(P
∣∣ Q) � fn(P ) ∪ fn(Q) fn(! π.P ) � fn(π.P )

Definition 8. Core-π@ semantics is given in terms of the following reduction
system:

τ.P + M � P

M �/ M ′

τ.P + M → P

P � P ′

(ν x)P � (ν x)P ′
P → P ′

(ν x)P → (ν x)P ′

(p@a(x).P + M)
∣∣ (p@a〈y〉.Q + N) � P{y/x}

∣∣ Q

M
∣∣ N �/ R

(n@a(x).P + M)
∣∣ (n@a〈y〉.Q + N) → P{y/x}

∣∣ Q

P � P ′

P
∣∣ Q � P ′

∣∣ Q

P → P ′ P
∣∣ Q �/ R

P
∣∣ Q → P ′

∣∣ Q

P ≡ Q P � P ′ P ′ ≡ Q′

Q � Q′
P ≡ Q P → P ′ P ′ ≡ Q′

Q → Q′
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The presence of only one additional level of priority allows to avoid the definition
of the Ik() function of Def. 5. On the other hand, the definition of the reduction
relation requires two rules for each corresponding rule of π@ semantics.

4 Application Examples

The key feature which differentiates many recent bio-inspired calculi from the
π-Calculus is the explicit formalisation of compartments. BioAmbients is a mod-
ified version of the Ambient calculus [25,26], where compartments are repre-
sented by ambients, a sort of boxes containing processes or other nested boxes.
In Brane compartments are bounded by membranes, on the surface of which
processes compute. Both ambients and membranes are organised in a tree struc-
ture, both can dinamically modify this structure by performing for example
merge, enter/exit or exo operations. The central issue is how they modify this
structure: the most observable difference is the bitonality preserved by brane
semantics and totally absent in BioAmbients, which corresponds to the preser-
vation of the parity of the nesting level of processes. As remarked in [9], this
peculiarity is enough to preclude an immediate embedding of one language into
the other.

Consequently, on the one hand they gain faithfulness because of their ad-
ditional primitives designed to model the addressed biological phenomena, on
the other their specialisation does not allow to mutually translate the mod-
els expressed in each language. Furthermore, the high abstraction level of such
primitives hides the mechanisms underlying the idea of compartment, whose
unfolding can reveal their strong resemblance.

π@ features were chosen to overcome all these issues: the lack of a predefined
semantics for compartments together with the possibility of expressing locali-
sation by means of polyadic synchronisation and complex atomic operations by
means of priority place π@ one abstraction level underneath, as a sort of assembly
language for compartmentalised formalisms. As previously discussed, it allows to
simplify consistently w.r.t. the π-Calculus the formalisation of biological models
which embed the notion of compartment. In this section we show that π@ is also
able to supply the same high level features offered by bio-oriented languages like
BioAmbients and Brane calculi. In particular, we show how both of them can
be encoded directly into π@, by unfolding the basic functioning of compartment
semantics and providing a common platform for their direct comparison and
implementation.

4.1 Basic Ideas

Compartment and their nesting are very intuitive abstractions: the simple state-
ment that an object is enclosed in a box suggests that it is someway isolated from
the external context; putting one box into another means that, after the opera-
tion, the inner box with all its content are located inside the outer one; merging
the content of two boxes implies putting in the same box all the enclosed objects.
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To obtain this behaviour in π@ we must recognise the exact meaning of every
operation on compartments and reproduce step by step the same semantics.

The first concept to unfold is nesting: compartments compose a dynamical
tree structure which must be encoded in π@. As suggested in [21], these kind
of structures can be represented as a set of processes linked by the share of
private channels between parent and child nodes. The encoding of the insuline
secretion process is a simple example of this situation: the cell and the insuline
vesicles define the boundaries of compartments linked by the presence of cross-
compartment processes (like cross-membrane molecular channels) which are able
to interact with elements located in both compartments. Like in [2], the scoping
of private names represents the boundaries of such compartments, but thanks to
polyadic synchronisation each private name may represent an unlimited number
of private communication channels, as discussed during the modelling of the
insuline example. If each node is supplied with one distinctive name, the simplest
way to encode the tree is by ensuring that each node knows the name identifying
its parent compartment.

Therefore, trivial changes in the tree structure may affect an unlimited number
of processes: the simple disclosure of a compartment implies that all contained
processes must be notified of their new parent compartment name. The same
situation occurs when splitting or merging the content of two compartments,
like in BioAmbients merge+ /merge− and Brane exo/exo⊥ operations. In π@
this turns out to be a sort of multicast communication, where specific groups of
nodes – that is sibling and child processes – must receive on the proper channel a
new compartment name. This result is achieved by a smart use of priority levels:
a high priority loop notifies in turn all the interested processes and ends when
such processes do not exist anymore. By a single line of code, we obtain in π@
the same mechanism typical of broadcast communication:

BCAST � ! bcast(x, y).(τ + x〈y〉.bcast〈x, y〉)

The above process can be triggered by an output operation bcast〈chn, newchn〉
and terminate when no high priority synchronisations are available, leaving no
residual terms. Obviously, a high priority complementary output loop
! bcast〈chn, newchn〉 would cause the system to hang, since it prevents any
other computation with normal priority. The avoidance of such high priority
and non-terminating loops is often not trivial. In particular, an homomorphic
translation of the replication operator would immediately cause them to appear,
as we will discuss in the following encodings. This is one of the most difficult
translation issues and will force us to represent indirectly the encoded replicated
processes, by keeping explicit track of each replicated instance in our encoding
functions.

4.2 Requirements

The fundamental criterion guiding any encoding is the preservation of some ad-
dressed semantics. According to [27], this often means that the encoding function



π@: A π-Based Process Calculus for the Implementation 471

[[
·
]]

must at least fulfill the notion of operational correspondence, characterised
by two complementary properties: completeness and soundness. The first means
that every possible execution of the source language may be simulated by its
translation, the second ensures that all the states reached by the translation
correspond to some state of the source. Since all the languages we consider are
Turing-complete (even Brane [28], despite of its simplicity), as usual for con-
current languages we require some additional criteria. As remarked in [29], a
reasonable encoding should also preserve the degree of distribution of the source
language (i.e. homomorphism w.r.t. parallel composition) and should not depend
on the channel (or compartment) names of the term to be encoded. This also
implies a very valuable property, that is modular compilation, as discussed in
[30]. In addition to the cited criteria, we also require the encoding to preserve the
termination or diverging behaviour of the translated term, in order to obtain a
totally faithful encoding function. The following definition formalises the notion
of reasonable encoding used in this paper.

Definition 9. An encoding
[[

·
]]

is reasonable if it enjoys the following proper-
ties:

1. homomorphism w.r.t. parallel composition:

[[
P1

∣∣ P2
]]

=
[[

P1
]] ∣∣ [[

P2
]]

2. renaming preserving: for any permutation of the source names θ,
[[

θ(P )
]]

= θ(
[[

P
]]
)

3. termination invariance:

P ⇓ ⇐⇒
[[

P
]]

⇓ P ⇑ ⇐⇒
[[

P
]]

⇑

4. operational correspondence:

(a) if P → P ′ then
[[

P
]]

→∗ [[
P ′ ]]

,

(b) if
[[

P
]]

→∗ Q then ∃P ′ : P →∗ P ′ ∧ Q →∗ [[
P ′ ]]

.

4.3 BioAmbients

The BioAmbient calculus rises as an enhancement of the π-Calculus in order
to overcome the same technical difficulties we encountered during the modelling
example of insuline secretion in β cells. More precisely, BioAmbients joins the
communication power of the π-Calculus and the compartment abstraction given
by the Ambient calculus [25,26]. Compartments are represented by ambients,
denoted by square brackets:

Sys � [P
∣∣ Q

∣∣ [R]]
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The above system Sys is composed of one root ambient containing three ele-
ments: the processes P and Q, and another nested ambient [R], which in turns
contains another process R.

Processes can communicate in the style of the π-Calculus, but communication
capabilities are extended to fit the needs of the new setting denoted by ambients.
Processes can interact if they lie in the same ambient or in nearby ambients,
where two ambients are nearby if one of them is directly nested into the other
or they are children of the same parent ambient. Therefore, four directions of
communications are introduced:

– intra-ambient, for processes inside the same ambient;
– sibling-to-sibling, when processes lie in compartments children of the same

parent ambient;
– child-to-parent, for a process willing to communicate with a process located

in the parent ambient;
– parent-to-child, representing the counterpart of the previous one.

Intra-ambient communication is denoted by the prefix local:

Sys � [local chan!{d}.P
∣∣ local chan?{x}.Q

∣∣ [R]]

The process local chan!{d}.P is ready to send some datum d over the channel chan
to some process which must be located into same ambient. local chan?{x}.Q is a
candidate for such synchronisation, since it is listening on the same channel inside
the same ambient. For these reason, the above system can reduce in the following
way:

Sys � [local chan!{d}.P
∣∣ local chan?{x}.Q

∣∣ [R]] →
[P

∣∣ Q{d/x}
∣∣ [R]]

The effect of the communication is the same as for the π-Calculus: the name d
is received and substituted for the local placeholder x in Q.

Sibling-to-sibling communication is denoted by the prefix s2s:

Sys � [[s2s chan!{d}.P
∣∣ Q]

∣∣ [s2s chan?{x}.R
∣∣ S]] →

[[P
∣∣ Q]

∣∣ [R{d/x}
∣∣ S]]

Parent-to-child and child-to-parent are complementary, denoted by c2p and
p2c prefixes, and permit both the input/output directions:

Sys1 � [[c2p chan!{d}.P
∣∣ Q]

∣∣ p2c chan?{x}.R
∣∣ S] →

[[P
∣∣ Q]

∣∣ R{d/x}
∣∣ S]

Sys2 � [[c2p chan?{x}.P
∣∣ Q]

∣∣ p2c chan!{d}.R
∣∣ S] →

[[P{d/x}
∣∣ Q]

∣∣ R
∣∣ S]

In Sys1 the outer process R receives the datum, while in Sys2 it sends the datum
to the inner process P .
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In addition to the above communications, BioAmbients inherits from Mobile
Ambients the operations needed to change dynamically the structure of nesting
of ambients. Such operations are called capabilities. Processes cause the movement
of whole ambients across the nesting tree, in agreement with the basic intuitions
behind compartment semantics. For example, it is possible to cause the merging of
two sibling ambients (children of the same parent ambient) in the following way:

[[merge+ n.P
∣∣ Q]

∣∣ [merge− n.R
∣∣ S]

∣∣ T ] →
[[P

∣∣ Q
∣∣ R

∣∣ S]
∣∣ T ]

The merge+ and merge− capabilities are complementary and can be triggered
only if the name n matches.

Ambients can also enter some other sibling ambient

[[enter n.P
∣∣ Q]

∣∣ [accept n.R
∣∣ S]

∣∣ T ] →
[[[P

∣∣ Q]
∣∣ R

∣∣ S]
∣∣ T ]

or exit their own parent ambient

[[[exit n.P
∣∣ Q]

∣∣ expel n.R
∣∣ S]

∣∣ T ] →
[[[P

∣∣ Q]
∣∣ [R

∣∣ S]
∣∣ T ]

by additional complementary capabilities, enter/accept and exit/expel.
We now give the definitions for the syntax, structural congruence and reduc-

tion semantics of BioAmbients, in the same style of π-Calculus and π@ semantics.
For further details we refer to [11].

Definition 10. Let N be a set of names on a finite alphabet, n, m, p, . . . ∈ N .
The syntax of BioAmbients is defined as

π ::= $n!{m}
∣∣∣ $n?{m}

$ ::= local
∣∣∣ s2s

∣∣∣ p2c
∣∣∣ c2p

M, N ::= enter n
∣∣∣ accept n

∣∣∣ exit n
∣∣∣ expel n

∣∣∣ merge+ n
∣∣∣ merge− n

P, Q ::= (new n)P
∣∣∣ P

∣∣ Q
∣∣∣ ! P

∣∣∣ [P ]
∣∣∣

∑
i∈I

πi.Pi

∣∣∣
∑

i∈I
Mi.Pi

Definition 11. The congruence relation ≡ is defined as the least congruence
satisfying the following rules:

P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

P |0 ≡ P [0] ≡ 0

!0 ≡ 0 !P ≡ P |!P
(new n)0 ≡ 0 (new n)(new m)P ≡ (new m)(new n)P

(new n)(P |Q) ≡ P |(new n)Q if n /∈ fn(P )

(new n)[P ] ≡ [(new n)P ]

$n?{m}.P ≡ $n?{p}.P{p/m} if p /∈ fn(P )

(new n)P ≡ (new m)P{m/n} if m /∈ fn(P )
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where fn(P ) is naturally extended to BioAmbients processes.

Definition 12. BioAmbients semantics is given in terms of the reduction sys-
tem described by the following rules:

[(T + enter n.P )|Q]|[T ′ + accept n.R)|S] → [[P |Q]|R|S]

[[(T + exit n.P )|Q]|(T ′ + expel n.R)|S] → [P |Q]|[R|S]

[(T + merge+ n.P )|(Q]|[T ′ + merge− n.R)|S] → [P |Q|R|S]

(T + local n!{m}.P )|(local n?{p}.Q + T ′) → P |Q{m/p}
(T + p2c n!{m}.P )|[(c2p n?{p}.Q + T ′)|R] → P |[Q{m/p}|R]

[R|(T + c2p n!{m}.P )]|(p2c n?{p}.Q + T ′) → [R|P ]|Q{m/p}
[R|(T + s2s n!{m}.P )]|[(s2s n?{p}.Q + T ′)|S] → [R|P ]|[Q{m/p}|S]

P → Q

(ν n)P → (ν n)Q

P → Q

[P ] → [Q]

P → Q

P |R → Q|R
P ≡ P ′ P → Q Q ≡ Q′

P ′ → Q′

4.4 Modelling the Insuline Example in BioAmbients

The example of Fig. 1 can be exploited again to explain the basic modelling
ideas which may be applied in BioAmbients.

Since BioAmbients embeds directly the π-Calculus (we can obtain a straight-
forward translation just by substituting each π input/output operation with a
local communication) we may start sketching the modelling of the GLU molecule
of Expr. (4) in the following way:

GLU(. . .) � (ν g)(local g!{. . .}
∣∣ ! local g?{. . .}.GLU ′(g, . . .))

GLU ′ should both listen for a possible transportation of the molecule into an-
other compartment and communicate its ability of reacting as glucose. We may
then try to take advantage of the multiple directions of communication of BioAm-
bients and use just a unique name glu in the local direction for reacting, and in
the c2p and p2c directions for modelling the movement to a new compartment:

GLU ′(g, glu, . . .) � local glu!{}.PY R(. . .) +
p2c glu?{g′, glu′, . . .} +
c2p glu?{g′, glu′, . . .}

Unfortunately, in this way we cannot exploit at all the abstraction of ambient
and neither the directions of communication, because we are still modelling
the localisation of processes by means of names: even if GLU ′ receives some
new set of names after the p2c or c2p communication, it is not able to change
ambient without some exit or enter capability. Consequently, in order to take
some advantage from the novel primitives introduced in BioAmbients, we must
forget the idea of name as means to model mobility or localisation, and leave
this job to ambients: even a simple molecule like GLU should be modelled as an
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ambient on its own. Furthermore it may be possible to exploit the way ambients
move as a whole in order to simplify the expression for GLU :

GLU � [! enter glu
∣∣ ! exit glu

∣∣ c2p glu?{}.PY R]

The above formalisation embeds the idea that the movement into a new ambi-
ent and the chemical reactivity are completely orthogonal and independent. The
exit glu capability is superfluous, since in the simple model of the system we
are considering the glucose molecules are not going to leave the cell once they
entered, but it is valid in general for any molecule or element undergoing some
sort of “passive” conveyance into other compartments without knowledge of its
direction. The movement of the ambient as a whole preserves the integrity of
the process even if composed of several parallel subprocesses, but the previous
expression does not describe correctly the real behaviour of the glucose molecule:
in fact, after its degradation into PY R, the GLU process is still able to be trans-
ported across compartments, even if the molecule itself may not exist anymore.
Consequently we are forced to exploit the same expedient used for π-Calculus
and π@ modelling, even in presence of ambients:

GLU � [local glu!{}
∣∣ ! local glu?{}.(enter glu.local glu!{} +

exit glu.local glu!{} +
c2p glu?.PY R)]

Now the movement of the molecule is allowed in either direction and disabled af-
ter its degratation. It is worth noticing how the introduction of multiple commu-
nication directions (local, s2s, p2c, c2p) and capabilities (merge, enter/accept,
exit/expel) reduces the number of channel names needed: each name embeds in
fact seven distinct interactions. The scoping induced by ambients allows also to
avoid the use of restriction, at least in this simple case.

The corresponding expression for the glucose channel becomes very simple:

GLUCHAN � ! accept glu

Even if the previous expression of GLU is correct intuitively, the mixing of
communications and capabilities is not allowed in BioAmbients. A slight correc-
tion allows to overcome this issue:

GLU � [local glu!{}
∣∣ ! local glu?{}.(s2s gludock!{}.enter glu.local glu!{}+

c2p gludock!{}.exit glu.local glu!{}+
c2p glu!.PY R)]

and GLUCHAN must be corrected accordingly:

GLUCHAN � ! s2s gludock?{}.accept glu

The direction s2s is justified by the structure of the system: the GLU molecule
external to the cell is an ambient sibling of the ambient represented by the cell
itself, where the process GLUCHAN resides.
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The formalisation of GLU as an ambient affects the expression of ADP . The
local reaction (inside the cell) of glycolysis becomes a inter-ambient communi-
cation, reflected by the p2c direction:

ADP � p2c glu?{}.ATP

The interaction of ATP can be instead considered local, as soon as the potassium
channel is not modelled as an ambient:

ATP � local inhk!{}

Under this hypothesis, the process KCHAN is not substantially different from
the corresponding π-Calculus expression:

KCHAN � (ν kc)(local kc!{}
∣∣ ! local kc?{}.(local inhk?{}

+ p2c kdock!{}.expel k{}.local kc!{}))

The loop which spawns a new KCHAN subprocess is disabled after the inhi-
bition by the ATP molecule. The expulsion of potassium K from the current
ambient is modelled in agreement with the previous considerations about the
molecule GLU :

K � [local k!{}
∣∣ ! local k?{}.(s2s kdock!{}.enter k.local k!{}+

c2p kdock!{}.exit k.local k!{}+
c2p k!)]

The other processes can be encoded by following similar considerations:

POL � p2c k?{}.local act!{}
CACHAN � local act?{}.! s2s cadock!{}.accept ca

CA � [local ca!{}
∣∣ ! local ca?{}.

(s2s cadock!{}.enter ca.local ca!{}+
c2p cadock!{}.exit ca.local ca!{}+
c2p ca!{})]

DOCKP � p2c ca?{}.expel dockves

The encoding of the vesicle V ES requires more attention. In the biological
model, the insuline molecules do never lie inside the cell. Therefore, if in BioAm-
bients V ES is represented by an ambient, one way to carry the operation would
be to make the V ES ambient exit the cell and afterwards dump all the insuline
molecules INS in the blood:

V ES � [exit dockves.! expel ins
∣∣ [exit ins.INS]

∣∣ · · ·
∣∣ [exit ins.INS]]

Anyway, this encoding does not exploit the expressive power of ambients. A
smarter approach would merge the content of V ES with the ambient corre-
sponding to the blood vessel after the expulsion of the vesicle from the cell:

V ES � [exit dockves.merge+ insves
∣∣ [INS]

∣∣ · · ·
∣∣ [INS]]
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This encoding requires that some complementary process is ready for the merge
operation in the parent ambient of the cell:

V ESMERGE � ! merge− insves

It is worth remarking that in both cases the exocytosis process is not modelled
atomically. Finally, the system is given by the following expression:

SY S � GLU
∣∣ K

∣∣ CA
∣∣ V ESMERGE

∣∣

[GLU
∣∣ GLUCHAN

∣∣ K
∣∣ KCHAN

∣∣ ADP
∣∣ ATP

∣∣ POL
∣∣

CA
∣∣ CACHAN

∣∣ DOCKP
∣∣ V ES]

Thanks to the introduction of ambients, there is no need to keep explicit trace of
the free names of each process. Unfortunately, possible problems emerging from
the need of atomicity for complex operations are not resolved, exactly like in
π-Calculus.

After this short introduction to BioAmbients modelling, we are now able to
grasp the key ideas which allow to encode BioAmbients into the π@ calculus.

4.5 Encoding BioAmbients into π@

As we have just seen, ambients are containers organised in a tree structure: run-
ning processes and nested sub-ambients are located inside them. If each node
of the tree represents an ambient, nodes are complex structures: each node may
contain zero or more parallel processes and may interact with zero or more nested
sub-ambients. Consequently, for the implementation of this tree structure into
π@, each encoded BioAmbients process must be aware of the name of its con-
taining (immediate) ambient, but also of the name indicating the parent of its
immediate ambient. In other words, the encoding function

[[
·
]]α from BioAmbi-

ents processes to π@ processes which we are now ready to formalise requires the
(bound) names a and pa, representing the immediate ambient and the parent
ambient of each BioAmbients process respectively. This is in accordance with
the modelling of cross-compartment objects in π@ (like ion channels) previously
shown: in fact, every BioAmbients process may likely interact with some other
process placed in some child or parent or sibling ambient, that is every BioAm-
bients process is a potential cross-compartment element.

The similarity between the basic π-Calculus operators and the corresponding
operators inherited by Bioambients allows to encode some of them homomor-
phycally in π@. This is the case of parallel composition and restriction:

[[
P

∣∣ Q
]]α

a,pa
�

[[
P

]]α

a,pa

∣∣ [[
Q

]]α

a,pa[[
(new n)P

]]α

a,pa
� (ν n)

[[
P

]]α

a,pa

According to the previous considerations, the encoding function is decorated
with two names representing the ambient a where the encoded process resides
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and the outer ambient pa. The name a of the ambient can be used for local
communication directions: 1

[[
local n!{m}.P

]]α∗
a,pa

� local@n@a〈m〉.(
[[

P
]]α

a,pa
)

[[
local n?{m}.P

]]α∗
a,pa

� local@n@a(m).(
[[

P
]]α

a,pa
)

The name pa of the parent ambient can be exploited for any s2s, c2p/p2c or am-
bient capability (merge, exit/expel, enter/accept). For example, the s2s com-
munication can be encoded in the following way:

[[
s2s n!{m}.P

]]α∗
a,pa

� s2s@n@pa〈m〉.(
[[

P
]]α

a,pa
)

[[
s2s n?{m}.P

]]α∗
a,pa

� s2s@n@pa(m).(
[[

P
]]α

a,pa
)

This encoding explains where such sibling-to-sibling communication is reason-
ably happening, that is inside the only compartment known by both processes:
their parent ambient. Nevertheless, the effect of the communication is limited to
the substitution of a name in the scope of the receiving process

[[
P

]]α

a,pa
. The

possibility of exploiting an unbounded number of names (three in this case) for
each π@ channel allows to model easily the “triple matching” typical of BioAm-
bients actions: in fact, in addition to their “proximity” (i.e. the localisation in
the same ambient or parent ambient), the interaction between two processes can
happen only if both the direction (local, c2p/p2c or s2s) and the name n match.

The same considerations hold for c2p/p2c communication:
[[

p2c n!{m}.P
]]α∗

a,pa
� p2c@n@a〈m〉.(

[[
P

]]α

a,pa
)

[[
c2p n?{m}.P

]]α∗
a,pa

� p2c@n@pa(m).(
[[

P
]]α

a,pa
)

While two processes able to perform a local or s2s communication lie in a sym-
metrical position, the c2p/p2c operation introduces asymmetry in the system,
since one process must be located in the parent ambient of the other. This is
reflected by the compartment names used in the π@ encoding: the outer process
uses its ambient name a to communicate, while the inner process its parent am-
bient name pa. There would be no way to make such operation happen inside the
child ambient, since the outer π@ process does not know (and must not know,
in agreement with the abstraction of compartment scoping previously discussed)
any name associated with the inner ambients.

The correspondence between ambient and parent ambient names of nested
compartments is stated by the encoding of the compartment operator [·]:

[[
[ P ]

]]α

a,pa
� (ν c)

[[
P

]]α

c,a

At first sight it corresponds to the encoding of the restriction operator of BioAm-
bients. The substantial difference can be devised in the names appearing as pa-
rameters of the encoding function in the right-hand side of the expression: the
1 The difference between the two mutually recursive encoding functions

[[ ]]α

a,pa
and

[[ ]]α∗
a,pa

will be clarified later on.
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restricted name c represents the new ambient of the process P , while a represents
both the ambient of [ P ] and the parent ambient of P .

So far, all the problems deriving from the introduction of compartments have
been solved by the only use of polyadic synchronisation. The atomicity-related
problems noticed during the formalisation of compartments in the π-Calculus
would emerge now in the attempt of encoding BioAmbients capabilities in π@.
Consider for example the simple merge capability:

[merge+ .P
∣∣ Q1

∣∣ · · ·
∣∣ Qn]

∣∣ [merge− .R
∣∣ S1

∣∣ · · ·
∣∣ Sm] →

[P
∣∣ Q1

∣∣ · · ·
∣∣ Qn

∣∣ R
∣∣ S1

∣∣ · · ·
∣∣ Sm]

(7)

The encoding in π@ of the above system before the reduction would require
two distinct restricted names corresponding to each of the ambients ready to
be merged. After their merging, only one of such names must be present. This
means that either n + 1 or m + 1 π@ processes must have replaced the name
corresponding to their current ambient. Furthermore, BioAmbients semantics
requires that all of these n + 1 or m + 1 changes in the structure of the system
happen instantaneously, that is no other communication or capability can be
executed meanwhile. The only way to grant this constraint in the standard π-
Calculus (without introducing some divergent behaviour) would be to put as
guard some centralised monitor process which enables the occurrence of one
operation at a time, with the consequence of excluding any concurrent feature
from the encoded system.

The presence of priority in π@ allows instead to overcome easily such kind of
issues without any explicit centralised mechanism. The occurrence of the above
merge synchronisation can be followed by a sequence of high priority synchroni-
sations which notify all the involved processes of their new ambient (or parent
ambient) name. This sequence of high priority operation is actually a loop which
must terminate when all the addressed processes have received the desired data.
A remarkable feature of such loop is that for any compartment-related opera-
tion of BioAmbients (but also of Brane) all these processes reside in the same
compartment. This peculiarity allows to express the loop in a very general way:

BCAST � ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉 + τ )

The BCAST process implements a loop triggered by the receiving of three
names: the first two names are used to identify the channel x@y over which
the communication loop will be executed. The third name is a datum which is
sent to all the processes listening on x@y, representing the name of some am-
bient where some group of processes is going to move. The use of two levels of
(high) priority (denoted by single or double-underlined actions, corresponding
to integer levels 1 and 0 respectively) provides two very important properties:

– once triggered, the loop will execute entirely before the occurrence of any
other encoded BioAmbients operation, since all such operations – both com-
munications, as we have showed, and capabilities, as we will show – are
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guarded by an initial low priority (integer level 2 of priority, corresponding
to no underline) actions;

– the loop will end without leaving any “garbage” which may interfere with
the system later on.

The first property is granted by the high priority of the replicated bcast input.
After the communication of the datum z over the channel x@y, the process
spawns another copy of itself by means of the same expedient previously showed
for the encoding of recursive behaviour by exploitation of replication. The pres-
ence of the τ action with an intermediate prioritised level allows to terminate the
loop when all the processes listening on x@y have actually received the datum
z, so that the remainder of the BCAST process disappears completely before
any other communication or capability may be performed.

Consequently, the implementation in π@ of the merge capability requires to
trigger the BCAST loop with the correct parameters. First, we need to under-
stand where two processes performing a merge+/merge− capability are located:
by checking the semantic rules of Def. 12 we can see that such processes must
be located in sibling ambients (ambients that are children of the same outer
ambient), i.e. the corresponding synchronisation in π@ happens in the parent
ambient, exactly as showed for the s2s communication. Second, the communi-
cation must carry on the name associated with one of the two ambients, so that
the receiving process can use it as new compartment name for all of its subse-
quent synchronisations and forward it to all the other processes affected by the
structural change in the ambient tree. Since the merging of two ambients is a
symmetrical operation, the choice of the name to be communicated is arbitrary.
Here we choose to keep the name associated with the ambient of the process
exhibiting the merge+ capability:

[[
merge+ n.P

]]α∗
a,pa

� merge@n@pa〈a〉.(
[[

P
]]α

a,pa
)

In agreeement with the above considerations, the encoding of merge+ is located
in the parent ambient pa and communicates the name a of its ambient to the
process ready for the complementary merge−:

[[
merge− n.P

]]α∗
a,pa

� merge@n@pa(x).

bcast〈merge, a, x〉.(
[[

P
]]α

x,pa
)

The merge− operation implies the receiving of some name to be substituted
for the placeholder x which will be used as new ambient in (

[[
P

]]α

x,pa
), while

the parent ambient pa remains unchanged exactly like in the original BioAm-
bients system. The subterm bcast〈merge, a, x〉 triggers the BCAST loop which
in turn notifies all the sibling processes (represented by the siblings S1, . . . , Sm

of R in Expr. (7)) of their new ambient x (which, again, at this time has been
replaced by the name of the ambient sent by the process performing the com-
plementary merge+ capability). The name merge used to denote the channels
merge@n@a and merge@n@pa is completely arbitrary and allows to distinguish
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this broadcast-like communication occurring after the merging of compartments
from the other broadcast-like loops that are triggered by the translation of the
other BioAmbients capabilities.

Similar considerations lead to the encoding of the enter/accept and exit/expel
capabilities. Their partial asymmetry requires to bring attention to the names
transmitted during the reduction and the way they are used afterwards.

The enter/accept reduction is triggered by two processes whose localisation
is symmetrical w.r.t. the global tree structure of the system: they are inside
ambients children of the same parent ambient, exactly like in the case of the
merge operation. After the reduction, anyway, their situation is asymmetrical
since their respective ambients are one the child of the other. Consequently, the
process performing the accept capability is not going to change location but must
communicate the name corresponding to its ambient to the process ready for the
enter capability, which will use such name to denote its new parent ambient:

[[
accept n.P

]]α∗
a,pa

� enter@n@pa〈a〉.(
[[

P
]]α

a,pa
)

[[
enter n.P

]]α∗
a,pa

� enter@n@pa(x).bcast〈pa, a, x〉.(
[[

P
]]α

a,x
)

As for the merge− operation, the encoding of the enter capability triggers the
BCAST loop which notifies all the involved processes of their new parent am-
bient.

The exit/expel reduction is the converse of the previous one: the two pro-
cesses performing it lie in an asymmetrical position and end to be symmetrically
distributed w.r.t. the ambient tree. In this case the process exhibiting the exit
capability and all of its siblings must be notified of their new parent ambient,
represented by the name of the parent ambient of the process performing the
complementary expel:

[[
expel n.P

]]α∗
a,pa

� expel@n@a〈pa〉.(
[[

P
]]α

a,pa
)

[[
exit n.P

]]α∗
a,pa

� expel@n@pa(x).bcast〈pa, a, x〉.(
[[

P
]]α

a,x
)

The enter/accept and exit/expel capabilities differ from merge+ /merge− for
a subtle particular: in the merge− operation the name merge was sent as first
parameter to BCAST , while in the other two the name pa was used. We may
have used two distinct names enter, exit for indicating the change of the name
of the parent compartment in consequence of each of such capabilities, but their
effect is actually the same, so they can be condensed in the simple idea of “sub-
stitution of parent compartment name”. Similar reasoning can be argued for the
encoding of Brane actions.

A substantial consequence of the above encodings of BioAmbients capabilities
is the silent assumption that all the encoded processes are always listening on the
right channels for possible changes of their ambient or parent ambient names,
independently of the other actions they are ready to perform. Furthermore, after
the receiving of a new ambient or parent ambient name in consequence of the
triggering of the BCAST loop, each notified process must return exactly in its



482 C. Versari and R. Gorrieri

previous state, except for the substitution of the old ambient or parent ambient
name with the new one just received. As an example, consider again the situation
of Expr. (7): the π@ processes corresponding to S1, . . . , Sm are going to change
their ambient name after the BCAST loop triggered by P and R. This means
that each of those m processes is listening on some channel merge@a, with a
representing their current ambient name. More exactly, each of them is listening
simultaneously on

– merge@a in order to be notified of the merging of their ambient,
– merge@pa for the merging of their parent ambient, and
– pa@a for the change of the name of their parent ambient in consequence of

an exit or an accept operation.

In order to denote concisely this property, we may say that the π@ encoding of
each BioAmbients communication or capability is put in nondeterministic choice
with the three options expressed by the following process:

TREE(b, a, pa) � pa@a(x).b〈a, x〉 + merge@pa(x).b〈a, x〉+
merge@a(x).b〈x, pa〉 (8)

The three expressions with shape b〈a, x〉 or b〈x, pa〉, as we will see later on,
spawn another copy of the original process which will use the first received name
as ambient and the second one as parent ambient. It is worth noticing the use
of the received name x after each choice branch:

– the name received over pa@a is used as new parent ambient name, as required
by the exit and enter capabilities;

– the name received over merge@a is used as new ambient name, when the
merging operation affects the local ambient;

– the name received over merge@pa is used as new parent ambient name, when
the merging operation affects the parent ambient.

After the execution of the BCAST loop, all the notified processes return
to their previous state, that is they are ready again to behave as S1, . . . , Sm

in the case of Expr. (7), even if they are located in a new compartment. In
other words, the encoding of each communication or capability is represented by
a loop which allows the process to return in its previous state after receiving some
new ambient or parent ambient name. With a slight abuse of notation we may
then write that each communication or capability choice of BioAmbients can be
encoded as follows:

[[ ∑
i∈I, I �=∅ ξi.Pi

]]α

a,pa
�

(ν s)(s〈a, pa〉
∣∣ ! s(na, npa).SUBSUM(s, na, npa))

(9)

where SUBSUM is just a shorthand for the following expression (since its def-
inition does not depend only on the names s, na, npa but also on the branches
of the choice

∑
i ξi.Pi):
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SUBSUM(s, na, npa) �
∑

i∈I, I �=∅
[[

ξi.Pi

]]α∗
na,npa

+ TREE(s, na, npa)
(10)

Here, replication is exploited as usual for the modelling of recursive behaviour,
which is needed in order to make each process return to the original state after
the interaction with some triggered BCAST loop. The presence of the TREE
process as part of the choice grants that each encoded process is listening on
the right channels and ready to “be passively moved” inside some new ambient
or parent ambient in consequence of the structural change in the nesting tree
that has been triggered by another pair of processes.

∑
ξi.Pi represents either

a choice between capabilities or between communications, since they are kept
distinct in the definition of BioAmbients grammar. In the particular case of a
single-branched choice in the form π.P or M.P the encoding is the same even
if the choice operator is not written explicitly, because we still need to preserve
the implicit choice branches with recursive behaviour expressed by TREE. The
function

[[
·
]]α∗ decorated with an additional star denotes the encoding of each

communication or capability, in order to distinguish it from the encoding of
single-branched choices.

This π@ encoding of the choice operator determines severe consequences on
the expression of BioAmbients replication. If we consider the following example

[ ! merge+ n.P
∣∣ Q]

∣∣ [merge− .R
∣∣ S ] →

[ ! merge+ n.P
∣∣ P

∣∣ Q
∣∣ R

∣∣ S ]
(11)

then we may suppose to encode the replication homomorphically:
[[

! P
]]α

a,pa
� !

[[
P

]]α

a,pa
(12)

Unfortunately this would cause a high priority loop without termination in Expr.
(9). In fact, each encoded process

[[ ∑
ξi.Pi

]]α

a,pa
undergoes an internal, high pri-

ority reduction on the private channel s which spawns a new copy of a subprocess
SUBSUM(s, a, pa). Consequently, a direct replication of Expr. (9) by Expr. (12)
would cause an unbounded number of such reductions to happen immediately.
Their high priority level would hang the entire system. It would be possible to
overcome the problem by correcting the encoding of the choice in the following
way:

[[ ∑
i∈I, I �=∅ ξi.Pi

]]α

a,pa
�

(ν s)(SUBSUM(s, a, pa)
∣∣ ! s(na, npa).SUBSUM(s, na, npa))

(13)

with SUBSUM corresponding to Expr. (10). The internal high priority reduc-
tion is eliminated because the spawned term SUBSUM(s, a, pa) is now explicitly
written in the encoding. The replication of Expr. (13) by Expr. (12) now can
successfully translate the BioAmbients system of Expr. (11). In fact, after the
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first reduction on merge@n@pa, a copy of
[[

P
]]α is spawned while the original[[

! merge+ n.P
]]α is kept and ready to execute another merge+ reduction, in

accordance with the right-hand side of Expr. (11).
Anyway, Expr. (12) is far from being correct. In fact, if we consider the fol-

lowing system

[merge+ .P
∣∣ Q]

∣∣ [merge− .R
∣∣ ! S] →

[P
∣∣ Q

∣∣ R
∣∣ ! S]

(14)

where the replication acts on the process S which is sibling of the process under-
going the merge− reduction, we may immediately notice the presence of another
high priority non-terminating loop, even without unfolding the encoding of the
whole system. We just need to recall the meaning of “replication of S” as “an
unbounded number of copies of S”:

! S ≡ ! S
∣∣ S ≡ ! S

∣∣ S
∣∣ S ≡ ! S

∣∣ S
∣∣ S

∣∣ S
∣∣ · · ·

The encoding of replication of Expr. (12) would require each of the copies of[[
S

]]α represented by !
[[

S
]]α to be notified of the change of compartment name

triggered by the merge operation. Since such number of copies is unbounded and
the loop is characterised by high priority, the system would hang immediately.

Consequently, we are forced to introduce an indirect encoding of BioAmbients
replication by changing the intuitive abstraction of the replication operator itself.
Even if ! P represents an unlimited number of copies of P , there is no need to
unfold all of such copies. More precisely, we may think that there is no need
to unfold more than just one copy of P at each time. In other words, we may
represent ! P as ! P

∣∣ P and consider to unfold a new copy of P only when its
previous copy undergoes some reduction P → P ′. Actually this is equivalent to
keep each replication in a sort of normal form where each replicated process is
exactly unfolded once. Supposing that P → P ′, the reduction

! P → ! P
∣∣ P ′

would be then written as

! P
∣∣ P → ! P

∣∣ P
∣∣ P ′

where the copy of P in the right-hand side of the expression is unfolded from
! P only after the reduction of the first copy of P in the left-hand side to P ′.

This behaviour can be straightforwardly obtained in π@ by encoding each
BioAmbients replication as a loop where one copy of

[[
P

]]α is always unfolded
and undergoes the corresponding reductions of the BioAmbients process P . Dur-
ing any of such reductions,

[[
P

]]α causes another copy of itself to spawn in order
to grant that the semantics of ! P is preserved. Furthermore, the encoding of
! P must observe the same migration rules expressed by the TREE process of
Expr. (8). In order to allow

[[
P

]]α
to spawn a new copy of itself whenever it
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undergoes some reduction we must introduce a new parameter in the encoding
function, which represents the private channel over which the spawning event will
be communicated: this parameter is needed because the encoding of the action
which causes P to reduce may be several nested calls later w.r.t. the recursive
definition of

[[
! P

]]α. In fact, consider the following system:

S � ! (local n?.Q′
1

∣∣ Q2)

Its encoding in π@ requires three recursive calls of the encoding function
[[

·
]]α,

one for each of the following subsystems:

S � ! P P � Q1
∣∣ Q2 Q1 � local n?.Q′

1

By the previous considerations, we can keep one copy of P always unfolded and
write S in the following way:

S � ! P
∣∣ P

After the reduction of Q1 to Q′
1, the system should appear as

S
∣∣ local n!.0 → ! P

∣∣ P
∣∣ Q′

1

∣∣ Q2

where one copy of P is still unfolded. The unfolding of the corresponding π@
process

[[
P

]]α must be triggered by the local n communication of
[[

Q1
]]α.

In other words, the π@ process
[[

Q1
]]α must cause

[[
! P

]]α to spawn a new
copy of

[[
P

]]α, even if
[[

! P
]]α is defined recursively in function of

[[
P

]]α,
in turn defined in function of

[[
Q1

]]α. The only way to achieve this result is
by introducing some new name k passed as parameter from

[[
! P

]]α until the
recursive call of the encoding function

[[
Q1

]]α, which will use it to spawn a
new copy of

[[
P

]]α as soon as the local n operation is executed. Hence, the
encoding of the local communication (and of all the other communications and
capabilities) should be modified as follows:

[[
local n?{m}.P

]]α∗
k,a,pa

� local@n@a(m).(
[[

P
]]α

a,pa

∣∣ unfold@k) (15)

unfold@k spawns a new copy of
[[

P
]]α in the encoding of ! P :

[[
! P

]]α

a,pa
� (ν k)(BANG(k, a, pa)

∣∣ [[
P

]]α

k,a,pa

∣∣

! new@k(na, npa).
[[

P
]]α

k,na,npa
)

BANG(k, a, pa) � ! k(na, npa).SUBBANG(k, na, npa)
∣∣ SUBBANG(k, a, pa)

SUBBANG(k, na, npa) � unfold@k.new@k〈na, npa〉.k〈na, npa〉 +

TREE(k, na, npa)

(16)
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The recursive call
[[

P
]]α

k,na,npa
, together with the new encodings suggested by

Expr.(15), ensures that each communication or capability appearing after the
above replication will spawn a new copy of

[[
P

]]α with a high priority reduction
on the channel unfold@k. Such spawning is mediated by the BANG subpro-
cess, which regulates also the relocation of

[[
! P

]]α

a,pa
by direct embedding of

the TREE subprocess discussed previously. It is worth remarking that such re-
location in practice affects only the subprocess BANG, which is the only process
regulating where (in terms of ambient and parent ambient) the following copies
of

[[
P

]]α will be spawned. In accordance with the previous considerations, one
copy (at least one, more precisely) of

[[
P

]]α is always kept unfolded. The relo-
cation of this spawned copy into some new ambient or parent ambient after some
merge or exit/expel or enter/accept capability happens transparently, since it
already embeds in the correct way the subprocess TREE as part of each encoded
choice.

Two remarks allow to refine Expr. (16), which is still not correct.
First, replications may be nested and more than one unfolding may be needed

after some reduction. As an example, consider the following system

S �! (ν x)! local n?.R′

which we rewrite in terms of some additional shorthands:

S �! P P � (ν x)Q Q �! R R � local n?.R′

The unfolding of one copy of each replicated process leads to the following ex-
pression:

S ≡ ! P
∣∣ (ν x)(! R

∣∣ R)

The reduction of R to R′ requires two unfoldings : one of P and one of R, cor-
responding to one unfolding for each replication appearing before the commu-
nication or capability (i.e. each replication appearing as ancestor not followed
by choice in the syntactic tree generating the BioAmbients expression). Conse-
quently, one name k as additional parameter in the corresponding π@ encoding
is not enough if more than one nested replication is present in the BioAmbients
process. Hence, the parameter k must be replaced by the set K = {k1, k2, . . . , kn}
containing one name for each encoded replication which must be unfolded. This
set is added with a new name after the encoding of each replication and becomes
empty after the encoding of any BioAmbients choice, since any subsequent re-
duction of R′ does not affect the replication of P and R anymore.

Second, the constant unfolding of one copy of a replicated process is not
sufficient to express its full behaviour. Consider for example the following system:

S � ! P P � (local n?.P1 + local n!.P2)

If we unfold only one copy of P , we miss the reduction that may happen between
two distinct copies of P themselves. In fact we have that

S ≡ ! P
∣∣ P

∣∣ P → ! P
∣∣ P1

∣∣ P2
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where P1 and P2 follow the reduction over local n. Consequently, at least two
copies of

[[
P

]]α must be constantly kept unfolded in the corresponding encoded
process.

Expr. (16) can be then modified as follows:
[[

! P
]]α

K,a,pa
� (ν k)(BANG(k, a, pa)

∣∣
[[

P
]]α

K∪{k},a,pa

∣∣ [[
P

]]α

K∪{k},a,pa

∣∣

! new@k(na, npa).
[[

P
]]α

K∪{k},na,npa
)

The encoding of communications and capabilities is updated accordingly:

[[
local n?{m}.P

]]α∗
K,a,pa

� local@n@a(m).
([[

P
]]α

∅,a,pa

∣∣

unfold@k1
∣∣ · · ·

∣∣ unfold@kn

)

with K = {k1, . . . , kn}.
The full definition of

[[
·
]]α is given in Table 1 and Table 2. Here, the names

oa and opa represent two fictitious names needed for the correct initialisation of
the encoding function, and corresponding to the outermost ambient and parent
ambient of the entire encoded system.

The encoding function
[[

·
]]α enjoys the requirements discussed in section 4.2,

as stated by the following theorem.

Theorem 1.
[[

·
]]α is a reasonable encoding (modulo structural congruence),

that is: let P , P1, P2 be BioAmbients processes, let Q be a π@ process, then

1.
[[

P1
∣∣ P2

]]α =
[[

P1
]]α ∣∣ [[

P2
]]α;

2. for any permutation of the source names θ,
[[

θ(P )
]]α = θ(

[[
P

]]α);

3. P ⇓ iff
[[

P
]]α ⇓, P ⇑ iff

[[
P

]]α ⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[

P
]]α →∗ [[

P2
]]α;

(b) if
[[

P
]]α →∗ Q then ∃P1 : P →∗ P1 ∧ Q →∗ [[

P1
]]α.

4.6 Brane Calculi

The peculiar spatial rearrangement typical of biological membranes inspired the
definition of Brane Calculi [9]. Here membranes constitute both the boundaries
of compartments and the place where “computation” happens, that is where con-
current processes are thought to be located and to interact with the surrounding
environment. Membranes are denoted by (| · |) and can be nested, exactly like
ambients. In the following expression, the system S is composed of an outer
membrane whose behaviour is specified by σ:

S � σ(| P ◦ ρ(| Q |) ◦ R |) (17)
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Table 1. Encoding of BioAmbients processes into π@

[[
0

]]α � 0
[[

P
∣∣ Q

]]α �
[[

P
]]α ∣∣ [[

Q
]]α

[[
(new n)P

]]α �
[[

(new n)P
]]α

∅,oa,opa[[
[ P ]

]]α �
[[

[ P ]
]]α

∅,oa,opa[[
! P

]]α �
[[

! P
]]α

∅,oa,opa[[
0

]]α

K,a,pa
� 0

[[
P

∣∣ Q
]]α

K,a,pa
�

[[
P

]]α

K,a,pa

∣∣ [[
Q

]]α

K,a,pa[[
(new n)P

]]α

K,a,pa
� ν n

[[
P

]]α

K,a,pa[[
[ P ]

]]α

K,a,pa
� ν c

[[
P

]]α

K,c,a[[
! P

]]α

K,a,pa
� (ν b)(BANG(b, a, pa)

∣∣
[[

P
]]α

K∪{b},a,pa

∣∣ [[
P

]]α

K∪{b},a,pa

∣∣

! new@b(na, npa).
[[

P
]]α

K∪{b},na,npa
)

[[ ∑
i∈I, I �=∅

ξi.Pi

]]α

K,a,pa
� BCAST

∣∣ ν s(! s(na, npa).

( ∑
i∈I, I �=∅

[[
ξi.Pi

]]α∗
K,na,npa

+ TREE(s, na, npa)
) ∣∣

∑
i∈I, I �=∅

[[
ξi.Pi

]]α∗
K,a,pa

+ TREE(s, a, pa))

BANG(b, a, pa) � ! b(na, npa).SUBBANG(b, na, npa)
∣∣ SUBBANG(b, a, pa)

SUBBANG(b, na, npa) � unfold@b.new@b〈na, npa〉.b〈na, npa〉 +

TREE(b, na, npa)

TREE(b,na, npa) � npa@na(x).b〈na, x〉 + merge@npa(x).b〈na, x〉+
merge@na(x).b〈x,npa〉

BCAST � ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉 + τ)

The outer membrane contains another membrane, whose behaviour is specified
by ρ and whose content is Q.

S, P, Q, R are called systems : each system represents a collection of zero or
more membranes that may be nested as we have just seen or composed in par-
allel by means of the operator ◦, like the three systems P , ρ(| Q |) and R. Systems
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Table 2. Encoding of BioAmbients communications and capabilities into π@

[[
enter n.P

]]α∗
K,a,pa

� enter@n@pa(x).bcast〈pa, a, x〉.(
[[

P
]]α

∅,a,x

∣∣ ΠK)
[[

accept n.P
]]α∗

K,a,pa
� enter@n@pa〈a〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

exit n.P
]]α∗

K,a,pa
� expel@n@pa(x).bcast〈pa, a, x〉.(

[[
P

]]α

∅,a,x

∣∣ ΠK)
[[

expel n.P
]]α∗

K,a,pa
� expel@n@a〈pa〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

merge− n.P
]]α∗

K,a,pa
� merge@n@pa(x).

bcast〈merge, a, x〉.(
[[

P
]]α

∅,x,pa

∣∣ ΠK)
[[

merge+ n.P
]]α∗

K,a,pa
� merge@n@pa〈a〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

local n!{m}.P
]]α∗

K,a,pa
� local@n@a〈m〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

local n?{m}.P
]]α∗

K,a,pa
� local@n@a(m).(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

s2s n!{m}.P
]]α∗

K,a,pa
� s2s@n@pa〈m〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

s2s n?{m}.P
]]α∗

K,a,pa
� s2s@n@pa(m).(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

p2c n!{m}.P
]]α∗

K,a,pa
� p2c@n@a〈m〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

c2p n?{m}.P
]]α∗

K,a,pa
� p2c@n@pa(m).(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

c2p n!{m}.P
]]α∗

K,a,pa
� c2p@n@pa〈m〉.(

[[
P

]]α

∅,a,pa

∣∣ ΠK)
[[

p2c n?{m}.P
]]α∗

K,a,pa
� c2p@n@a(m).(

[[
P

]]α

∅,a,pa

∣∣ ΠK)

ΠK � unfold@k1
∣∣ · · ·

∣∣ unfold@kn ,

with K = {k1, . . . , kn}

specify the global structure of each Brane expression, i.e. the shape of the tree
of nested or sibling membranes.

σ and ρ are called (mem)branes : each brane specifies the behaviour of the
membrane w.r.t. the other membranes, by indicating which type of actions may
be performed. For example, if

σ � exo⊥.σ′ ρ � exo.ρ′

the system of Expr. (17) becomes

S � exo⊥.σ′(| P ◦ exo.ρ′(| Q |) ◦ R |) (18)

σ specifies that the outer membrane is ready to perform an exo⊥ action, while
ρ is ready to perform the complementary exo action. The exo/exo⊥ reduction
formalises exocytosis, corresponding to the same phenomenon described in the
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example of insuline secretion. In consequence of the exocytosis, the content Q
of the inner membrane is expelled out of the external membrane, and the two
membranes are merged together:

S → S′ S′ � Q ◦ σ′|ρ′(| P ◦ R |) (19)

The expression σ′|ρ′ denotes the parallel composition of branes, where the ‘|’
operator is kept distinct from the ‘◦’ operator for the parallel composition of
systems. The peculiar behaviour of exocytosis preserves bitonality, that is the
parity of the level of nesting of each Brane process w.r.t. the tree structure
of membranes. In fact, consider the level of nesting of Q before and after the
reduction: if we match such level with the number of membranes that surround
a given process, then Q passes from level 2 to level 0 of nesting. Any exo/exo⊥

operation will never move some process P from an odd level to an even one, or
vice versa. This property is preserved not only by the exo/exo⊥ action, but by
all the actions of Brane.

The phago/phago⊥ reduction causes the inverse effect of the exocytosis: an
external process is engulfed by a sibling membrane by surrounding it with a
portion of the membrane itself. For example, if

Q � phago.γ(| T |) ρ′ � phago⊥(τ).ρ′′

then the system S′ of Expr. (19) becomes

S′ � phago.γ(| T |) ◦ σ′|phago⊥(τ).ρ′′(| P ◦ R |)

and can undergo the following reduction:

S′ → σ′|ρ′′(| P ◦ R ◦ τ(| γ(| T |) |) |)

The external system γ(|T |) has been engulfed and surrounded by the membrane
τ , which is thought as a portion of the original external membrane of S′.

The pino action is the simplest operation on membranes: it corresponds to
the inward bending of a membrane which produces a new internal membrane
without any content:

pino(σ).ρ(| P |) → ρ(| P ◦ σ(| |) |)

The pino action has no complementary pino⊥ co-action.
In [9], two calculi are presented: the phago-exo-pino and the mate-bud-drip

variants.
A study on the relative expressive power of the two variants is reported in

[28], where it is shown that the phago-exo-pino calculus is strictly more expres-
sive than the mate-bud-drip one. Therefore, only the phago-exo-pino variant is
considered here.

The formal definition of Brane follows, given in terms of a reduction semantics
exactly like for the previous calculi.
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Definition 13. Let N be a set of names on a finite alphabet, n, m, p, . . . ∈ N .
The syntax of Brane is defined as

P, Q ::= �
∣∣ P ◦ Q

∣∣ !P
∣∣ σ(|P |)

σ, τ ::= 0
∣∣ σ|τ

∣∣ !σ
∣∣ a.σ

a ::= phagon

∣∣ phago⊥
n (σ)

∣∣ exon

∣∣ exo⊥
n

∣∣ pino(σ)

Definition 14. The congruence relation ≡ is defined as the least congruence
satisfying the following rules:

P ◦ Q ≡ Q ◦ P σ|τ ≡ τ |σ
P ◦ (Q ◦ R) ≡ (P ◦ Q) ◦ R σ|(τ |ρ) ≡ (σ|τ )|ρ

P ◦ � ≡ P σ|0 ≡ σ

!� ≡ � !0 ≡ 0

!(P ◦ Q) ≡ !P ◦ !Q !(σ|τ ) ≡ !σ|!τ
!!P ≡ !P !!σ ≡ !σ

!P ≡ P◦ !P !σ ≡ σ|!σ
0(| � |) ≡ �

P ≡ Q =⇒ P ◦ R ≡ Q ◦ R σ ≡ τ =⇒ σ|ρ ≡ τ |ρ
P ≡ Q =⇒ !P ≡!Q σ ≡ τ =⇒ !σ ≡!τ

P ≡ Q ∧ σ ≡ τ =⇒ σ(|P |) ≡ τ (|Q|) σ ≡ τ =⇒ a.σ ≡ a.τ

Definition 15. Brane semantics is given in terms of the reduction system de-
scribed by the following rules:

P → Q

P ◦ R → Q ◦ R

P → Q

σ(|P |) → σ(|Q|)
Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′

phagon.σ|σ0(|P |) ◦ phago⊥
n (ρ).τ |τ0(|Q|) → τ |τ0(|ρ(|σ|σ0(|P |)|) ◦ Q|)

exo⊥
n .τ |τ0(|exon.σ|σ0(|P |) ◦ Q|) → P ◦ σ|σ0|τ |τ0(|Q|)

pino(ρ).σ|σ0(|P |) → σ|σ0(|ρ(| � |) ◦ P |)

For further details on Brane calculi we refer to [9].

4.7 Modelling the Insuline Example in Brane

In order to allow the reader to become a little familiar with the Brane language,
we now show how the insuline secretion model can be expressed in this calculus.
The explicit presence in the target model of molecules and molecule channels
makes unfeasible its expression in the core phago-exo-pino variant of Brane that
we formalised in the previous section.
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Therefore we consider an additional class of actions which are proposed in [9]
in order to handle explicitly sets of molecules, reactions and cross-membrane con-
veyance. The grammar of processes is then extended with molecules m1, . . . , mn

and multisets of molecules

p, q � m1 ◦ . . . ◦ mk

Multisets of molecules can be used to define molecular reactions, which constitute
an additional class of Brane actions and have the following shape:

p1(p2) ⇒ q1(q2)

with p1, p2, q1, q2 multisets of molecules. Like the other actions, molecular reac-
tions are thought to be located on membranes and are part of branes. p1 and p2
represent the multisets of molecules which must be present outside and inside
the membrane respectively, in order to allow the molecular reaction to occur.
The multiset q1 represents the molecules released outside the membrane after
the reaction, while q2 the molecules released inside it.

A cross-membrane channel like the calcium channel of Fig. 1 can be easily
modelled as follows:

S � CA2+ ◦ CA2+ ◦ !CA2+() ⇒ (CA2+)(| P |)

The molecular reaction !CA2+() ⇒ (CA2+) is enabled independently of the
molecules present inside the membrane, and requires (at least) one molecule of
CA2+ to be located outside of it. After the reaction, the molecule is released
inside the membrane while disappears outside of it:

S → CA2+ ◦ !CA2+() ⇒ (CA2+)(| CA2+ ◦ P |)

The chemical reaction

m1 + m2 → m3 + m4

where the molecules m1, m2 appear as reactants and m3, m4 as products of the
reaction, may be represented in Brane by the following action if we model the
reaction as happening on the outer surface of the membrane:

m1 ◦ m2() ⇒ m3 ◦ m4()

or
(m1 ◦ m2) ⇒ (m3 ◦ m4)

if we want it to be located on the inner surface.
The explicit handling of molecular reactions in the calculus allows to model

the processes GLU , ATP , ADP , PY R, CA, K and INS as simple molecules.
Their behaviour is completely passive and specified by the molecular reactions
present in the other processes.



π@: A π-Based Process Calculus for the Implementation 493

The cross-membrane channel GLUCHAN , whose function is the conveyance
of glucose inside the cell, is expressed straightforwardly:

GLUCHAN � !GLU() ⇒ (GLU)

Glycolysis can be modelled as molecular reaction occurring inside the cell mem-
brane:

GLY COL � !(GLU ◦ ADP ) ⇒ (ATP ◦ PY R)

The encoding of the potassium channel requires it to be deactivated after its bind-
ing to some ATP molecule. The simplest way to obtain this behaviour with a sin-
gle molecular reaction is the introduction of a fictitious catalyst KCHANCAT
present inside the cell, which allows the channel process KCHAN to move the
potassium ions across the membrane as soon as it does not disappear:

KCHAN � ! (KCHANCAT ◦ K) ⇒ K(KCHANCAT )

Such catalyst disappears in consequence of the presence of ATP :

KCHANINH � ! (KCHANACT, ATP ) ⇒ ()

The process of polarisation of the membrane POL can be modelled as molecular
reaction as well:

POL � (K) ⇒ (ACT )

ACT is another fictitious molecule which activates the calcium channel:

CACHAN � (ACT ) ⇒ ().! CA() ⇒ (CA)

The exocytosis of the vesicles is now rendered straightforwardly by the exo/exo⊥

reduction:
V ES � exo(| INS ◦ · · · ◦ INS|)

Obviously, on the external membrane there must be some process ready to exe-
cute the complementary action:

DOCKP � (CA) ⇒ ().exo⊥

Finally, the system can be expressed as follows:

SY S � GLU ◦ K ◦ CA ◦
σ(| KCHANACT ◦ K ◦ ADP ◦ ATP ◦ CA ◦ V ES |)

with

σ � GLUCHAN | GLY COL | KCHAN | KCHANINH |
POL | CACHAN | DOCKP

The addition of molecular reactions makes Brane a powerful language for bi-
ological modelling. This is evident in the formalisation of the previous example,
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which perfectly suited the bitonal properties of Brane. Anyway, the expression
of behaviours that are not included in the design of the calculus (like the calcium
channel CACHAN , or other compartment-related operations which do not pre-
serve bitonality) requires either the extension of the language with additional
primitives or the introduction of intermediate, fictitious elements which may
lead again to the same atomicity problems encountered during the modelling
with π-Calculus or BioAmbients.

4.8 Encoding Brane into π@

Like ambients, membranes are organised in tree structures: each node of the tree
may contain membrane processes or nested membranes. Unlike BioAmbients,
Brane Calculi present two main entities: systems and branes. Their distinction
implies slightly different translations, because the encoding function of systems
needs only two parameters (K, the set corresponding to the bang operators in
front of the system and pc, the name representing the parent compartment)
while an additional parameter is needed for encoding branes (c, the name of
the compartment where the brane process resides). In fact, branes represent the
boundaries of compartments: each new membrane corresponds to the definition
of a new compartment, i.e. the name of the immediate compartment where the
associated π@ process is located. Consequently, the function

[[
·
]]β from Brane

to π@ has two formal parameters when applied to the parallel composition of
systems

[[
P ◦ Q

]]β

K,pc
�

[[
P

]]β

K,pc

∣∣ [[
Q

]]β

K,pc

and three for the parallel composition of branes:

[[
σ

∣∣ ρ
]]β

K,c,pc
�

[[
σ

]]β

K,c,pc

∣∣ [[
ρ

]]β

K,c,pc

Their encoding is almost the same as the encoding of parallel composition of
BioAmbients processes. The names c and pc play the same role of a and pa for
the encoding function

[[
·
]]α. The rise of the additional name c occurs after the

first application of
[[

·
]]β to branes:

[[
σ(|P |)

]]β

K,pc
� (ν c)(

[[
σ

]]β

K,c,pc

∣∣ [[
P

]]β

K,c
)

The encoding of a membrane corresponds to the introduction of the new name
c that is used as compartment for branes, and as parent compartment for the
inner system P . Any encoded brane occurring in

[[
P

]]β

K,c
will use the above

name c as parent compartment and will be able to interact over it with the
surrounding branes represented here by

[[
σ

]]β

K,c,pc
. The name pc of the parent

compartment is known only by the branes placed in the outer membrane, in
accordance with the same intuition of compartment nesting exploited for the
encoding of ambients.
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The basic actions exo/exo⊥, phago/phago⊥ and pino are encoded almost like
BioAmbients capabilities: each operation of the original language is translated
with a synchronisation followed by a sequence of high priority actions which
manage the reorganisation of the tree structure and the unfolding of replicated
processes involved in the computation.

For example, the translation of the exo/exo⊥ actions requires three names for
each channel and triggers the BCAST loop whose definition is exactly the same
as for

[[ ]]α:2

[[
exon.σ

]]β∗
K,c,pc

� exo@n@pc(x).bcast〈exo, c, x〉.(
[[

σ
]]β

∅,pc,x

∣∣ ΠK) (20)
[[

exo⊥n .σ
]]β∗

K,c,pc
� exo@n@c〈pc〉.(

[[
σ

]]β

∅,c,pc

∣∣ ΠK) (21)

The asymmetry of the situation reminds the encoding of the exit/expel capa-
bility, since the internal process listens on the channel exo@n@pc intuitively
located in the parent compartment pc, while the external process is ready to
send on the local channel exo@n@c. The main difference is in the choice and
use of the transmitted name pc by the TREE subprocess and in the compart-
ment where the broadcast effect of BCAST occurs. In order to understand the
rearrangement of the membrane tree structure, consider the following example:

S � · · · ◦
c2︷ ︸︸ ︷

σ(| τ(| P |)︸ ︷︷ ︸
c3

|)

︸ ︷︷ ︸
c1

σ � exo⊥.σ′|ρ τ � exo.ρ′|γ

c1 represents the parent compartment of the whole system S, while c2 is both the
compartment of σ and the parent compartment of τ (and of the entire subsystem
τ(| P |)). The system S can reduce as follows:

S → S′ S′ � · · · ◦ P ◦
c2︷ ︸︸ ︷

σ′|ρ|ρ′|γ(| · |)︸ ︷︷ ︸
c1

Two kinds of structural changes can be noticed in the reduction from S to S′.
First, the parent compartment of P after the reduction coincides with the parent
compartment c1 of S: this justifies the name pc transmitted by the encoded exo⊥

process. Second, the branes ρ′ and γ changed both their compartment and their
parent compartment. In fact, before the reduction, they were respectively c3 and
c2, while after the reduction they become c2 and c1. This means that the corre-
sponding π@ processes must replace their previous compartment name c3 by their
parent compartment c2, and use as new parent compartment the name c1 sent
by the process performing the

[[
exo⊥

]]β action. The recursive call
[[

σ
]]β

∅,pc,x
of

Expr. (20) reflects this behaviour, as well as the definition of the TREE process:

2 Also for this encoding, we use two mutually recursive functions
[[ ]]β

K,c,pc
and

[[ ]]β∗
K,c,pc

, whose precise role will be clear later on.
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TREE(b, c, pc) � exo@pc(x).b〈c, x〉 +

exo@c(x).b〈pc, x〉 +
pc@c(x).b〈c, x〉

The first branch of the choice is followed, in the previous example, by the sub-
system P which receives the name of its new parent compartment. The second
branch is followed by the brane γ which receives the name of its new parent
compartment but replace also the name of its immediate compartment by the
name of the previous parent compartment.

The third branch is needed for the encoding of the phago/phago⊥ reduction:

[[
phagon.σ

]]β∗
K,c,pc

� phago@n@pc(x).bcast〈pc, c, x〉.(
[[

σ
]]β

∅,c,x

∣∣ ΠK)
[[

phago⊥n (ρ).σ
]]β∗

K,c,pc
� (ν x)

(
phago@n@pc〈x〉.

(
[[

σ
]]β

∅,c,pc

∣∣ [[
ρ

]]β

∅,x,c

∣∣ ΠK)
)

In this case, the name transmitted by the
[[

phago⊥
]]β process corresponds to

the new created membrane that surrounds the engulfed process and is used as
new parent compartment.

The pino action has a similar, but simpler encoding:

[[
pino(ρ).σ

]]β∗
K,c,pc

� (ν x)τ.(
[[

σ
]]β

∅,c,pc

∣∣ [[
ρ

]]β

∅,x,c

∣∣ ΠK)

In the right-hand side of the encoding, the reduction τ represents an invisible
π@ transition, and must not be confused with the notation used for branes.
The lack of complementary action and the very localised effect allows to disre-
gard any broadcast loop. The new created membrane is represented by a new
restricted name x used as local compartment by

[[
ρ

]]β

∅,x,c
, whose parent com-

partment coincides with the immediate compartment of the encoded process[[
pino(ρ).σ

]]β

K,c,pc
.

The sequential composition of branes σ.σ′ is encoded exactly like the choice
operator of BioAmbients, as a sort of single-branch choice:

[[
a.σ

]]β

K,c,pc
� BCAST

∣∣ ν s(! s(nc, npc).

(
[[

a.σ
]]β∗

K,nc,npc
+ TREE(s, nc, npc))

∣∣
[[

a.σ
]]β∗

K,c,pc
+ TREE(s, c, pc))

The presence of two distinct replication operators in Brane leads to two
slightly different encodings which reflect the fact that systems are only pro-
vided with parent compartment, while branes are also aware of their immediate
compartment. The encoding of branes replication is the same as the one seen for
BioAmbients replication:
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[[
! σ

]]β

K,c,pc
� (ν b)(BANG(b, c, pc)

∣∣
[[

σ
]]β

K∪{b},c,pc

∣∣ [[
σ

]]β

K∪{b},c,pc

∣∣

! new@b(nc, npc).
[[

σ
]]β

K∪{b},nc,npc
)

BANG(b, c, pc) � ! b(nc, npc).SUBBANG(b, nc, npc)
∣∣

SUBBANG(b, c, pc)

SUBBANG(b, nc, npc) � unfold@b.new@b〈nc, npc〉.b〈nc, npc〉 +

TREE(b, nc, npc)

The encoding of systems replication is simplified by the absence of name for the
immediate compartment, which allow to shrink the definition in the following
way:

[[
! P

]]β

K,pc
� (ν b)(BANG′(b, pc)

∣∣
[[

P
]]β

K∪{b},pc

∣∣ [[
P

]]β

K∪{b},pc

∣∣

! new@b(npc).
[[

P
]]β

K∪{b},npc

BANG′(b, npc) � ! b(npc).SUBBANG′(b, npc)
∣∣

SUBBANG′(b, pc)

SUBBANG′(b, npc) � unfold@b.new@b〈npc〉.b〈npc〉 +

exo@npc(x).b〈x〉

Instead of the three branches of the TREE process, only one is present, since
only one of those branches (triggered by a reduction over exo@npc) is related to
changes of the parent compartment name.

The full definition of
[[

·
]]β is given in Table (3) and Table (4). Similarly

to BioAmbients encoding, oc and opc are placeholders standing for the com-
partment and parent compartment of the outermost processes. The non-trivial
encoding in π@ of molecular reactions and other extensions proposed in [9] is
not strictly related to compartment semantics, but is being considered due to
its relevance in chemical modelling.

Also the encoding function
[[

·
]]β enjoys the requirements discussed in section

4.2:

Theorem 2.
[[

·
]]β

is a reasonable encoding (modulo structural congruence),
that is: let P , P1, P2 and ρ1, ρ2 be respectively Brane systems and processes, let
Q be a π@ process, then

1.
[[

P1 ◦ P2
]]β =

[[
P1

]]β ∣∣ [[
P2

]]β

[[
ρ1

∣∣ ρ2
]]β =

[[
ρ1

]]β ∣∣ [[
ρ2

]]β

2. for any permutation of the source names θ,
[[

θ(P )
]]β = θ(

[[
P

]]β);
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Table 3. Encoding of Brane processes into π@

[[
�

]]β � 0
[[

P ◦ Q
]]β �

[[
P

]]β ∣∣ [[
Q

]]β

[[
! P

]]β �
[[

! P
]]β

∅,oc
[[

σ(|P |)
]]β �

[[
σ(|P |)

]]β

∅,oc
[[

�
]]β

K,pc
� 0

[[
P ◦ Q

]]β

K,pc
�

[[
P

]]β

K,pc

∣∣ [[
Q

]]β

K,pc
[[

σ(|P |)
]]β

K,pc
� (ν c)(

[[
σ

]]β

K,c,pc

∣∣ [[
P

]]β

K,c
)

[[
0

]]β

K,c,pc
� 0

[[
σ

∣∣ ρ
]]β

K,c,pc
�

[[
σ

]]β

K,c,pc

∣∣ [[
ρ

]]β

K,c,pc
[[

! P
]]β

K,pc
� (ν b)(BANG′(b, pc)

∣∣
[[

P
]]β

K∪{b},pc

∣∣ [[
P

]]β

K∪{b},pc

∣∣

! new@b(npc).
[[

P
]]β

K∪{b},npc
)

[[
! σ

]]β

K,c,pc
� (ν b)(BANG(b, c, pc)

∣∣
[[

σ
]]β

K∪{b},c,pc

∣∣ [[
σ

]]β

K∪{b},c,pc

∣∣

! new@b(nc, npc).
[[

σ
]]β

K∪{b},nc,npc
)

BANG(b, c, pc) � ! b(nc, npc).SUBBANG(b, nc, npc)
∣∣

SUBBANG(b, c, pc)

BANG′(b, npc) � ! b(npc).SUBBANG′(b, npc)
∣∣

SUBBANG′(b, pc)

SUBBANG(b, nc, npc) � unfold@b.new@b〈nc, npc〉.b〈nc, npc〉 +

TREE(b, nc, npc)

SUBBANG′(b, npc) � unfold@b.new@b〈npc〉.b〈npc〉 +

exo@npc(x).b〈x〉

TREE(b,nc, npc) � npc@nc(x).b〈nc, x〉 + exo@npc(x).b〈nc, x〉+
exo@nc(x).b〈npc, x〉

3. P ⇓ iff
[[

P
]]β ⇓, P ⇑ iff

[[
P

]]β ⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[

P
]]β →∗ [[

P2
]]β;

(b) if
[[

P
]]β →∗ Q then ∃P1 : P →∗ P1 ∧ Q →∗ [[

P1
]]β

.
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Table 4. Encoding of Brane actions into π@

[[
a.σ

]]β

K,c,pc
� BCAST

∣∣ (ν s)(! s(nc, npc).

(
[[

a.σ
]]β∗

K,nc,npc
+ TREE(s, nc, npc))

∣∣
[[

a.σ
]]β∗

K,c,pc
+ TREE(s, c, pc))

[[
phagon.σ

]]β∗
K,c,pc

� phago@n@pc(x).bcast〈pc, c, x〉.(
[[

σ
]]β

∅,c,x

∣∣ ΠK)

[[
phago⊥

n (ρ).σ
]]β∗

K,c,pc
� (ν x)

(
phago@n@pc〈x〉.(

[[
σ

]]β

∅,c,pc

∣∣ [[
ρ

]]β

∅,x,c

∣∣ ΠK)
)

[[
exon.σ

]]β∗
K,c,pc

� exo@n@pc(x).bcast〈exo, c, x〉.(
[[

σ
]]β

∅,pc,x

∣∣ ΠK)

[[
exo⊥

n .σ
]]β∗

K,c,pc
� exo@n@c〈pc〉.(

[[
σ

]]β

∅,c,pc

∣∣ ΠK)
[[

pino(ρ).σ
]]β∗

K,c,pc
� (ν x)τ.(

[[
σ

]]β

∅,c,pc

∣∣ [[
ρ

]]β

∅,x,c

∣∣ ΠK)

ΠK � unfold@k1
∣∣ · · ·

∣∣ unfold@kn ,

K = {k1, . . . , kn}
BCAST � ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉 + τ)

4.9 Encoding Brane into Core-π@

In the encodings of BioAmbients and Brane previously defined, we used three
priority levels and up to three names for each channel in π@. In order to provide
similar encodings in core-π@, we need now to use not more than two names for
channel and two priority levels.

The expedient for reducing the number of names needed for encoding capa-
bilities and actions is very simple: for example, the exon/exo⊥n action can be
encoded with the only name exo n (where the underscore character ’ ’ is used
just for sake of clarity and is part of the string representing the name) instead of
the two names exo and n joint by polyadic synchronisation as exo@n. Anyway,
the (unique) consequence of this change in the encoding is the multiplication of
the names needed for representing each private name in BioAmbients. In fact,
each BioAmbients name n must now be translated as a vector

(enter n, expel n, merge n, local n, s2s n, p2c n, c2p n)

in order to allow each different communication or capability to operate indepen-
dently. Since Brane lacks restriction and name passing, its encoding in π@ is not
affected by such conversion.

The reduction of the number of levels of priority influences the encoding of
both languages. In the definition of the previous encoding functions, one priori-
tised intermediate level was used to “garbage-collect”, by means of a prioritised
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τ action, the BCAST processes which terminated the loop with broadcast-like
effect. Here we recall the definition of BCAST :

BCAST � ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉 + τ )

A naive way to reduce the number of priority levels would be to decrease the
priority level of both the τ transition (which would become a normal low priority
transition) and all the other high priority reductions (which would still be pri-
oritised). The definition of the BCAST process would be consequently modified
as follows:

BCAST � ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉 + τ)

The problem with this definition of BCAST is that there is no way to know when
the above τ transition will be executed and the loop will terminate its action. In
principle this would not constitute an important issue, since the high priority of
the reductions over x@y and bcast would force the loop to be interrupted when
all the processes waiting for a possible broadcast on the corresponding channel
have been notified of the new compartment or ambient name. Unfortunately, a
spurious process

SP � x@y〈z〉.bcast〈x, y, z〉 + τ

would still be around, ready to interfere with the normal behaviour of the sys-
tem over some channel x@y. Such interference may happen for example in the
encoding of the following Brane system:

S �
c1︷ ︸︸ ︷

phago.σ|σ′(| P |)︸ ︷︷ ︸
c2

◦ phago⊥(exo.γ).exo⊥.ρ(| Q |)︸ ︷︷ ︸
c3

c1 represents the name of the parent compartment of the whole system S, c2
and c3 are the names corresponding to the immediate compartments of its two
subsystems. S undergoes the following reductions:

S → S′ → S′′

with

S′ � exo⊥.ρ(|
c4︷ ︸︸ ︷

exo.γ(| σ|σ′(| P |)︸ ︷︷ ︸
c2

|) ◦ Q |)

and

S′′ �
c1︷ ︸︸ ︷

σ|σ′(| P |)︸ ︷︷ ︸
c2

◦ ρ|γ(| Q |)

After the first reduction, a fresh membrane is represented by the name c4 which
is then lost after the following exo operation. The BCAST loop triggered by
the encoding of the first reduction would be spawned by the process performing
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the phago action with parameters c1, c2, c4, in order to make all the branes in σ′

replace their parent compartment c1 by the fresh compartment c4. Such BCAST
loop may leave the following spurious process:

SP � c1@c2〈c4〉.bcast〈c1, c2, c4〉 + τ

The use of three priority levels, with an intermediate prioritised level for τ , would
have forced SP to disappear before the transition

[[
S′ ]]β →

[[
S′′ ]]β

while with only two levels it may be still present in parallel composition with[[
S′′ ]]β . This means that the subprocess

[[
σ|σ′(| P |)

]]β of the encoded system
S′′ may be still subject to the effect of SP and be moved again into the parent
compartment identified by c4, even if such compartment is not present anymore
in the original Brane process.

In order to avoid this annoying side effect, we must ensure that any residual
SP process is totally isolated from the the system. This can be achieved by using
two names c, cb for each compartment, c for the low-priority synchronisation of
processes corresponding to actions, communications and capabilities, while cb for
the high-priority sequence of broadcast actions. After each broadcast, the name
cb is forgotten completely by all the processes and replaced by a new name c′b for
the next broadcast. Consequently, each SP process remaining after the regular
end of the broadcasting loop is not able to communicate with the system, so it
is going to disappear spontaneously by executing the internal τ action after a
while. If we denote any pair of names n, nb as n̈, the new encoding functions[[

·
]]β′

from Brane to core-π@ and
[[

·
]]α′

from BioAmbients to core-π@ have

almost the same shape as the previous functions
[[

·
]]β and

[[
·
]]α. For example,

the parallel composition of Brane systems is encoded as
[[

P ◦ Q
]]β′

K,p̈c
�

[[
P

]]β′

K,p̈c

∣∣ [[
Q

]]β′

K,p̈c

with the only difference of the names of compartments which are now paired
as discussed. The definition of the processes TREE and BCAST reveals how
name pairs are handled:

BCAST � ! bc@bcast(x, y, nyb, z̈).
(τ + x@y〈nyb, z̈〉.bc@bcast〈x, y, nyb, z̈〉)

TREE(b, c̈, p̈c) � pc@cb(ncb, ẍ).cycle@b〈c, ncb, ẍ〉+
exo@pcb(npcb, ẍ).cycle@b〈c̈, ẍ〉+
exo@cb(ncb, ẍ).cycle@b〈p̈c, ẍ〉

The presence of the names bc and cycle is due to the definition of core-π@
grammar, which does not allow to denote channels by means of only one name.

The BCAST process is not substantially changed, except for the number of
names (five instead of three) handled during the loop: the first two identify the
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Table 5. Encoding of Brane processes into core-π@

[[
�

]]β′
� 0

[[
P ◦ Q

]]β′
�

[[
P

]]β′ ∣∣ [[
Q

]]β′

[[
! P

]]β′
�

[[
! P

]]β′

∅,öc

[[
σ(|P |)

]]β′
�

[[
σ(|P |)

]]β′

∅,öc

[[
�

]]β′

K,p̈c
� 0

[[
P ◦ Q

]]β′

K,p̈c
�

[[
P

]]β′

K,p̈c

∣∣ [[
Q

]]β′

K,p̈c

[[
σ(|P |)

]]β′

K,p̈c
� (ν c̈)

([[
σ

]]β′

K,c̈,p̈c

∣∣ [[
P

]]β′

K,c̈

)

[[
0

]]β′

K,c̈,p̈c
� 0

[[
σ

∣∣ ρ
]]β′

K,c̈,p̈c
�

[[
σ

]]β′

K,c̈,p̈c

∣∣ [[
ρ

]]β′

K,c̈,p̈c

[[
! P

]]β′

K,p̈c
� (ν b)

(
BANG′(b, p̈c)

∣∣
[[

P
]]β′

K∪{b},p̈c

∣∣ [[
P

]]β′

K∪{b},p̈c

∣∣

! new@b(n̈pc).
[[

P
]]β′

K∪{b}, ¨npc

)

[[
! σ

]]β′

K,c̈,p̈c
� (ν b)

(
BANG(b, c̈, p̈c)

∣∣
[[

σ
]]β′

K∪{b},c̈,p̈c

∣∣ [[
σ

]]β′

K∪{b},c̈,p̈c

∣∣

! new@b(n̈c, ¨npc).
[[

σ
]]β′

K∪{b},n̈c, ¨npc

)

BANG(b, c̈, p̈c) � ! cycle@b(n̈c, n̈pc).SUBBANG(b, n̈c, ¨npc)
∣∣

SUBBANG(b, c̈, p̈c)

BANG′(b, ¨npc) � ! cycle@b( ¨npc).SUBBANG′(b, ¨npc)
∣∣

SUBBANG′(b, p̈c)

SUBBANG(b, n̈c, ¨npc) � unfold@b().new@b〈n̈c, ¨npc〉.cycle@b〈n̈c, ¨npc〉 +

TREE(b, n̈c, ¨npc)

SUBBANG′(b, ¨npc) � unfold@b().new@b〈n̈pc〉.cycle@b〈 ¨npc〉+
exo@npcb(nnpcb, ẍ).cycle@b〈ẍ〉

TREE(b, n̈c, ¨npc) � npc@ncb(nncb, ẍ).cycle@b〈nc, nncb, ẍ〉+
exo@npcb(nnpcb, ẍ).cycle@b〈n̈c, ẍ〉+
exo@ncb(nncb, ẍ).cycle@b〈n̈pc, ẍ〉
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Table 6. Encoding of Brane actions into core-π@

[[
a.σ

]]β′

K,c̈,p̈c
� BCAST

∣∣ (ν s)
(
! cycle@s(n̈c, ¨npc).

(
[[

a.σ
]]β′∗

K,n̈c, ¨npc
+ TREE(s, n̈c, ¨npc))

∣∣
[[

a.σ
]]β′∗

K,c̈,p̈c
+ TREE(s, c̈, p̈c)

)

[[
phagon.σ

]]β′∗
K,c̈,p̈c

� phago n@pc(ẍ).

(ν ncb)(bc@bcast〈pc, cb, ncb, ẍ〉.(
[[

σ
]]β′

∅,c,ncb,ẍ

∣∣ ΠK)

[[
phago⊥

n (ρ).σ
]]β′∗

K,c̈,p̈c
� (ν ẍ)

(
phago n@pc〈ẍ〉.(

[[
σ

]]β′

∅,c̈,p̈c

∣∣ [[
ρ

]]β′

∅,ẍ,c̈

∣∣ ΠK

)

[[
exon.σ

]]β′∗
K,c̈,p̈c

� exo n@pc(ẍ).

(ν ncb)( bc@bcast〈exo, cb, ncb, ẍ〉.
[[

σ
]]β′

∅,p̈c,ẍ

∣∣ ΠK)

[[
exo⊥

n .σ
]]β′∗

K,c̈,p̈c
� exo n@c〈p̈c〉.(

[[
σ

]]β′

∅,c̈,p̈c

∣∣ ΠK)

[[
pino(ρ).σ

]]β′∗
K,c̈,p̈c

� (ν ẍ)τ.(
[[

σ
]]β′

∅,c̈,p̈c

∣∣ [[
ρ

]]β′

∅,ẍ,c̈

∣∣ ΠK)

ΠK � unfold@k1〈〉
∣∣ · · ·

∣∣ unfold@kn〈〉
with K = {k1, . . . , kn}

BCAST � ! bc@bcast(x, y, nyb, z̈).

(τ + x@y〈nyb, z̈〉.bc@bcast〈x, y, nyb, z̈〉)

channel x@y where the broadcast will occur, while z̈ = z, zb denote the two
names associated with the compartment undergoing some structural change.
The name nyb constitute the replacement of y for the next broadcast occurring
in the related compartment.

Accordingly, the TREE subprocess receives the three names ncb, ẍ (with ẍ =
x, xb) instead of only one. ncb is used in the first branch of the choice as new
broadcast name associated with c in substitution to cb, in consistency with the
encoded phago operation which updates the names of the parent compartment
pc for all the processes in c. The encoded exo action is characterised by the
peculiar property of eliminating already the name of the inner compartment
where the broadcast happens, so that the new name ncb is useless in the second
and third branch of the TREE process (and in fact it disappears). The same
would happen with BioAmbients merge capability.

The encoding of actions should be consistently updated. The phago⊥ co-action
is not substantially changed:

[[
phago⊥n (ρ).σ

]]β′∗
K,c̈,p̈c

� (ν ẍ)
(
phago n@pc〈ẍ〉.
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(
[[

σ
]]β′

∅,c̈,p̈c

∣∣ [[
ρ

]]β′

∅,ẍ,c̈

∣∣ ΠK

)

Each action which triggers a BCAST process requires the creation of the new
name ncb previously discussed:

[[
phagon.σ

]]β′∗
K,c̈,p̈c

� phago n@pc(ẍ).(ν ncb)

(bc@bcast〈pc, cb, ncb, ẍ〉.(
[[

σ
]]β′

∅,c,ncb,ẍ

∣∣ ΠK)

ncb is substituted for cb here as well, as we can notice from the parameters used
in the recursive call of the encoding function.

In Table 5 and Table 6 the full encoding of Brane into core-π@ is reported.
The encoding of BioAmbients is based on the same ideas and does not require
further insights, so it is left as exercise to the reader.

5 Conclusion and Future Perspectives

The language π@ has been introduced with the aim to play a pivotal role in
comparing the many compartment-based. bio-inspired process calculi. Its dis-
tinguishing features is that it is a plain, conservative extension to π-calculus
with the additional features of polyadic synchronisation and prioritised com-
munication. Our claim is substantiated by the encoding of two well-known such
formalisms, BioAmbients and Brane Calculi, into π@, and this is even reinforced
by a recent paper [31] offering an encoding into π@ of Beta-binders [12,13], an-
other complex model for compartmentalised, bio-inspired behaviour.

The kernel language core-π@ is extremely interesting because it can be pro-
vided of a stochastic semantics in a very simple and clean way. In [23,24] the
stochastic language Sπ@ (stochastic paillette) is proposed as a natural stochastic
version of core-π@, and provided with a generalisation of Gillespie simulation al-
gorithm [32] to multi-compartments. Its stochastic semantics is obtained by the
simple addition of polyadic synchronisation to the stochastic π-Calculus, thanks
to the possibility of exploiting infinite rate transitions as alternative definition
of (one additional level of) priority.

This opens the way to multi-compartment simulation algorithms also for all
the bio-inspired calculi that can be encoded faithfully into core-π@, such as Brane
Calculi and BioAmbients. Higher level semantic features like those considered in
[33] may constitute a valid mean to facilitate the organisation of the code and
increase readability and usability of such encodings.

One of the two key features of π@ is priority. However, the power of the global
preemption mechanism which it is based on seems to prevent the definition of en-
codings that are not centralised (i.e., such that the execution can be parallelised
or distributed). This seems an obstacle that cannot be overcome. In [34] we have
studied the expressive power of two forms of priority (i.e., global and local) and
showed that they give to π-calculus a strict increase of expressiveness, so strong
that it seems impossible to identify prioritised construct easier to implement in
a parallel, if not distributed, framework.
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Abstract. We present uniformly four related models for the represen-
tation of biochemical systems recently proposed in the literature in dif-
ferent publications. Namely, we consider Stochastic Automata Collectives
(SAC) [2], Stochastic Polyautomata Collectives (SPC) [2], Chemical Ground
Form (CGF) [3], and Biochemical Ground Form (BGF) [4].

1 Introduction

The aim of this paper is to provide a unified introduction to four related models
for the representation of biochemical systems recently proposed in the literature
in three different papers. Namely, we present Stochastic Automata Collectives
(SAC) [2], Stochastic Polyautomata Collectives (SPC) [2], the Chemical Ground
Form (CGF) [3], and the Biochemical Ground Form (BGF) [4]. The first pair of
models are based on a graphical automata-based notation, while the second pair
of models have been defined with a formal syntax and semantics similar to those
of traditional (stochastic) process algebras.

We unify the presentation of the four models presenting for all of them both
a graphical and a process algebraic notation. For the sake of readability, we do
not report the definition of the formal semantics of the calculi that can be found
in [4]. Moreover, we gently introduce the four models using several examples
that allow us to focus on the specific differences and similarities among the four
different models.

The remainder of the paper is divided in four Sections, one for each of the
considered models.

2 Stochastic Automata Collectives

In this section we introduce Stochastic Automata Collectives (SAC), the notation
for the representation of chemical systems presented in [2]. In that paper, SAC are
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only informally presented. In order to equip this model with a formal semantics,
we simply observe that this model is a fragment of CGF, a process algebra whose
formal syntax and semantics have been defined in [3]. We characterize the precise
fragment defining a syntax for SAC as a subset of the syntax of CGF. The reader
interested in the definition of the formal semantics of SAC can then refer to [3]
where the semantics of the whole CGF is reported.

Before presenting SAC, we introduce the running example for this section.

Example 1 (Two-stations rotaxane). We consider two-stations rotaxanes [10]
(simply called rotaxanes in the following), which are supramolecular systems
composed of an axle surrounded by a ring-type molecule. Bulky chemical moi-
eties (“stoppers”) are placed at the extremities of the axle to prevent the disas-
sembly of the system. In rotaxanes containing two different recognition sites on
the axle (“stations”), it is possible to switch the position of the ring between the
two stations by an external energy input (called the “stimulus”) as illustrated
in Figure 1. The part (a) of the figure represents the structure of the rotaxane,

Fig. 1. Representation of a rotaxane with stations A and B (a) and its energy curves
before (b) and after (c) the stimulus activating the ring movement from A to B

while in part (b) and (c) the energy curves before and after the stimulus are
depicted: in the former the energy minimum corresponds to station A, while in
the latter it corresponds to station B. For this reason, the stimulus triggers the
shuttling of the ring from station A to station B.

It is worth mentioning that several rotaxanes of this kind, known as molecular
shuttles, have been already developed (see [5] and the references therein) and
used for building more complex systems [8,7,1].

We complete the example presenting a modeling of the behavior of the rotax-
ane given in chemical reaction style. We call the two stations of the rotaxane A
and B, respectively, and we call S the species of the molecules that stimulates
the movement of the ring from station A to station B. We consider four distinct



A Gentle Introduction to SPC and the BGF 509

species for the representation of the rotaxane: RA (resp. RB) representing the
nonstimulated rotaxane with the ring in position A (resp. B), and RA

s (resp. RB
s )

representing the stimulated rotaxane with the ring in position A (resp. B).
The chemical reactions are as follows (here we abstract away from the rates

of the reactions that will be discussed in the next Example 2):

RA + S → RA
s

RB + S → RB
s

RA
s ↔ RB

s

RA ↔ RB

We consider two bi-molecular reactions and two mono-molecular invertible re-
actions. The first two represents the reaction between the stimulus and the ro-
taxane. As the rotaxane has two nonstimulated species RA and RB, we need
to consider two distinct reactions, one for each of these species. The two mono-
molecular bidirectional reactions model the movement of the ring. We need to
consider two distinct reactions because by Brownian motion we can assume that
the ring can move from station A to station B, and vice versa, both when the
rotaxane is stimulated and when it is not stimulated.

We now introduce SAC. It is an automata based notation in which each state of
an automaton corresponds to a chemical species X , and each outgoing transition
from state X represents one possible reaction in which the molecules of species
X can be engaged. The transitions are labeled with one of three possible kinds of
labels. The label τ(r) indicates the possibility for one molecule to be engaged in
a unary reaction with stochastic rate r. On the contrary, the transitions labeled
with ?a(r) and !a(r) models the complementary transitions executed by the two
reacting molecules. The name a is a name used to identify the reaction, while r
is a stochastic rate; both the name a and the rate r must match for the reaction
to be enabled. For instance, if the states associated to the species X and Y
have outgoing transitions labeled with ?a(r) and !a(r), respectively, we have that
one molecule of species X can react with one molecule of species Y , and the
time needed for this reaction to occur is distributed according to exponential
distribution with rate r. The target states of the transitions represent the species
of the product of the reaction. For instance, if the two above transitions labeled
with ?a(r) and !a(r) have the species X ′ and Y ′ as target state, respectively, we
have that the product of the reaction is given by two molecules, one of species
X ′ and one of species Y ′.

As a less trivial example of SAC, we model the rotaxane of the Example 1.

Example 2 (Modeling rotaxanes in SAC –graphical notation–). We present the
modeling of rotaxanes in SAC. The main difference between this new modeling
and the one proposed in the Example 1 is that it is molecular oriented instead of
reaction oriented. In other words, the modeling approach of SAC is based on the
description of the behavior of a molecule based on the sequence of reactions in
which a molecule can be engaged during its lifetime. Such behavior is depicted
in Figure 2. It is worth noting that the SAC modeling is based on two distinct
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Fig. 2. Behavior of a rotaxane depicted as a stochastic automata collective

automata; one for the description of the behavior of the stimulus S, and one for
the behavior of the rotaxane. The stimulus can only be engaged in a reaction
(that we call a) in order to stimulate the rotaxane. After this reaction, the
molecule is “consumed” (i.e. it forms a complex with the rotaxane). Consumed
molecules, are modeled with a special species that we denote with 0. On the
contrary, the modeling of the rotaxane includes bi-directional transitions for
the ring shuttling, and the complementary transitions for the reaction with the
stimulus.

We conclude this example reporting a discussion about the rates that are in-
cluded in the SAC modeling as symbolic (i.e. we use names instead of positive real
numbers) subscripts of the transition labels. The rate r is the stochastic rate for
the bi-molecular reaction between the rotaxane and the stimulus. As far as the
ring shuttling is concerned, we recall that, by Brownian motion, we assume that
the ring can move from station A to station B, and vice versa, both when the
rotaxane is stimulated and when it is not stimulated. Different rates are consid-
ered for these movements: AtoB (resp. AtoBs) for the movement from station
A to station B when the rotaxane is nonstimulated (resp. stimulated), BtoA
(resp. BtoAs) for the opposite movement. According to the energy minimum in
the two distributions in Figure 1 parts (b) and (c), we have that AtoB < BtoA
and AtoBs > BtoAs. Thus, according to the stochastic behavior of these mono-
molecular reactions, when the rotaxane is stimulated (resp. nonstimulated), the
sojourn time of the ring on station A (resp. B) is longer than the sojourn time
on station B (resp. A).

We complete this section describing a formal syntax for SAC. This is obtained
as a fragment of a process algebra, called Chemical Ground Form (CGF) defined
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in [3]. According to this syntax, each species has an associated definition describ-
ing the possible actions for the molecules of that species. There are three kinds
of actions that coincide with the possible labels for transitions in SAC. Namely,
we have the action τ(r) indicating the possibility for a molecule to be engaged in
a unary reaction. For instance, the definition A = τ(r); B is used to specify the
possibility for one molecule of species A to be engaged in a unary reaction that
produces one molecule of species B. Binary reactions have two reactants. The
two reactants perform two complementary actions ?a(r) and !a(r), where a is a
name used to identify the reaction; both the name a and the rate r must match
for the reaction to be enabled. For instance, given the definitions A =?a(r); C and
B =!a(r); D, we have that two molecules of species A and B can be engaged in a
binary reaction that produces two molecules, one of species C and one of species
D. If the molecules of one species can be engaged in several reactions, then the
corresponding definition admits a choice among several actions. The syntax of
choice is as follows: A = τ(r); B⊕?a(r′); C, meaning that molecules of species A
can be engaged in either a unary reaction that produces a molecule of species
B, or in a binary reaction with another molecule able to execute the comple-
mentary action !a(r′). In the second case, the molecule of species A contributes
to the reaction by producing a new molecule of species C.

We are now ready to define formally the syntax for Stochastic Automata
Collectives.

Definition 1 (Stochastic Automata Collectives (SAC)). Consider the fol-
lowing denumerable sets: Species ranged over by variables X, Y , · · ·, Channels
ranged over by a, b, · · ·, Moreover, let r, s, · · · be rates (i.e. positive real num-
bers).
The syntax of SAC is as follows (where the big

∣∣ separates syntactic alternatives
while the small | denotes parallel composition):

E ::= 0
∣∣ X =M, E Reagents

M ::= 0
∣∣ π; X ⊕ M Molecule

P ::= 0
∣∣ X |P Solution

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output prefix
SAC ::= (E, P ) Reagents and initial Solution

Given a SAC (E, P ), we assume that all variables occurring in P occur also in
E. Moreover, for every variable X occurring in E, there is exactly one definition
X = M in E.

In the following, trailing 0 are usually left implicit, and we use | also as an
operator over the syntax: if P and P ′ are 0-terminated lists of variables, accord-
ing to the syntax above, then P |P ′ means appending the two lists into a single
0-terminated list. Therefore, if P is a solution, then 0|P , P |0, and P are syn-
tactically equal. Moreover, the solution composed of k instances of X is denoted
with

∏
k X .
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As an example of exploitation of the SAC syntax, we report the syntax for the
modeling of the rotaxane graphically depicted in the Figure 2 and discussed in
the Example 2.

Example 3 (Modeling rotaxanes in SAC –formal syntax–). We can consider the
following definitions for the species RA, RB, RA

s , RB
s , and S used in the previous

examples.
RA = τ(AtoB); RB⊕?s(r); RA

s

RB = τ(BtoA); RA⊕?s(r); RB
s

RA
s = τ(AtoBs); RB

s

RB
s = τ(BtoAs); RA

s

S = !s(r);0

where 0 specifies reactions which have no product. Let E be the sequence of
definitions of the species RA, RB, RA

s , RB
s , and S are defined above. A solution

with one instance of non-stimulated rotaxane with the ring on station A and 2
instances of stimulus, is represented by the SAC (E, RA|S|S).

As already discussed, the syntax of SAC is obtained as a fragment of the process
algebra CGF defined in [3]. More precisely, the fragment is simply obtained im-
posing that after an action π only one molecule can be produced, i.e. using the
syntax π; X instead of the more general syntax π; (X1| · · · |Xn) of CGF. In [3] also
the formal semantics for CGF is defined; here we simply recall how the semantics
is defined without reporting the full definition (the interested reader can refer
to [3]).

The semantics is obtained associating to each term of the process algebra
a Continuous Time Markov Chain (CTMC). Such CTMC is obtained in two
steps. First, a labeled transition graph (LTG) is defined which represents all
possible actions that can be executed by the molecules in the considered solution.
Second, a CTMC is extracted from such labeled transition graph by collapsing
those transitions which share the same source and target solutions in one CTMC
transition, whose rate is the sum of the rates of the collapsed transitions.

More precisely, the labeled transition graph is a labaled transition system
among solutions that consider two possible kinds of labels: i : r and i, j : r
representing, respectively, mono-molecular reactions with rate r involving the
i-th molecule and bi-molecular reactions with rate r involving the i-th and the
j-th molecules. As an example of labeled transition graph, we consider the SAC
(E, RA|S|S) defined in the example 3.

Example 4 (LTG of a rotaxane). As an example of labeled transition graph, we
show in Figure 3 the LTG of the SAC (E, RA|S|S) defined the Example 3. It is
worth noting that due to the presence of two stimulating molecules there exist
two pairs of transitions sharing the same source and target solutions.

As reported above, the extraction of the CTMC from one labeled transition
graph simply requires the collapsing of those transitions which share the same
source and target solutions in one CTMC transition, whose rate is the sum of
the rates of the collapsed transitions. As an example, we discuss the CTMC of
the solution considered in the Example 4.
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Fig. 3. Labeled Transition Graph of the SAC (E, RA|S|S)

Example 5 (CTMC of a rotaxane). As an example of Continuous Time Markov
Chain extracted from a Labeled Transition Graph, we show in Figure 4 the
CTMC obtained from the LTG in Figure 3. It is worth noting that the CTMC

Fig. 4. Continuous Time Markov Chain of the SAC (E, RA|S|S)

has the same states of the corresponding LTG. There are two differences: the
transitions are labeled only with the stochastic rates, and the transitions sharing
the same source and target solutions collapse in a unique transition, with rate
equal to the sum of the rates of the collapsed transitions.

The CTMC semantics allows us to interpret the behavior of a SAC (E, P ) as
follows. Given any state T of the CTMC of (E, P ), if it has n outgoing transitions
labeled with r1, · · ·, rn, then the probability that the sojourn time in T is less
than t is exponentially distributed with rate

∑
i ri, i.e. Prob{delay < t} =

1 − e−t
∑

i ri , and the probability that the j-th transition is taken is rj/(
∑

i ri).

3 Chemical Ground Form

One of the main feature of SAC is that the number of molecules in a modeled
solution is an invariant, in fact when a molecule engage a reaction it produces
exactly one new molecule. This is guaranteed by the syntax of molecule def-
initions π; X , according to which an actions π is always followed by one and
only one species X . In [3], an extension of the model is considered in which the
product can be a multiset of species, namely, the new syntax of action execution
is π; (X1| · · · |Xn). The new model is called Chemical Ground Form (CGF). The
motivation for the definition of CGF is to obtain a process algebraic modeling of
basic chemistry. As in basic chemistry there is no limitation to the number of
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molecules in the product of one reaction, it is necessary to admit more than one
molecule as the product of one action.

The syntax and semantics of CGF can be found in [3]. We recall the syntax.

Definition 2 (Chemical Ground Form (CGF)). Consider the following de-
numerable sets: Species ranged over by variables X, Y , · · ·, Channels ranged
over by a, b, · · ·, Moreover, let r, s, · · · be rates (i.e. positive real numbers).
The syntax of CGF is as follows:

E ::= 0
∣∣ X =M, E Reagents

M ::= 0
∣∣ π; P ⊕ M Molecule

P ::= 0
∣∣ X |P Solution

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output prefix
CGF ::= (E, P ) Reagents and initial Solution

Given a CGF (E, P ), we assume that all variables occurring in P occur also in
E. Moreover, for every variable X occurring in E, there is exactly one definition
X = M in E.

It is worth observing that the difference between the syntax of SAC and the syntax
of CGF is that after the execution of one action π a solution, i.e. a multiset of
molecules, can be specified as the product of the action. We call molecule splitting
this possibility for one reactant to produce more than one molecule.

In [3] CGF is proved to be equivalent to basic chemistry both for discrete state
and continuous state semantics. Discrete state semantics describe a solution as
a multiset of molecules (i.e. for each molecule the exact number of instances is
known) while continuous state semantics model a solution indicating the con-
centration of each species of interest (i.e. each species has an associated real
number quantifying the concentration). By basic chemistry we mean systems
modeled by a finite set of mono-molecular and bi-molecular reactions. To prove
this equivalence result, CGF is equipped with both a discrete state semantics de-
fined in terms of CTMC and a continuous state semantics defined in terms of
ordinary differential equations. In this paper, we consider only the discrete state
semantics.

We now present the running example for this section.

Example 6 (Counting the number of reactions). This example is not inspired by a
specific chemical system, but it is proposed on purpose to focus on the increment
of expressive power of CGF with respect to SAC. The idea is to consider two kinds
of bi-molecular reactions, the first one called a and the second one called b.
We present a system in which an arbitrary number of reactions of kind a are
executed, and then a corresponding number of reactions of kind b occurs. In
order to define such a system, we need the ability to “count” the number of
occurrences of the reaction of kind a.

We can define such system in CGF considering two pairs of species: A and A′ as
the reactants of the reaction a and B and B′ as the reactants of the reaction b:
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A = !a(h); (A|B) ⊕ τ(l); B′

A′ = ?a(h); A′

B = !b(h);0
B′ = ?b(h); B′

We assume that the rate h is greater than the rate l. We consider, as initial
solution, one instance of species A and one of species A′: formally, we consider
the CGF (E, A|A′) where E includes the definitions of the species A, A′, B, and
B′ as reported above.

As done in the previous section for SAC, we do not report the formal definition of
the semantics that can be found in [3]. We simply recall that it is defined in terms
of CTMCs obtained in two steps: first a labeled transition graph is associated
to a CGF, then a CTMC is extracted from this labeled transition graph. As an
example, we discuss the CTMC of the CGF (E, A|A′) defined in the Example 6.

Example 7. We present in Figure 5 the CTMC that, following the technique
already described in the previous section (and formlized in [3]), is associated to
the CGF (E, A|A′) of the Example 6. As we assume that the rate h is greater than

Fig. 5. Continuous Time Markov Chain of the CGF (E,A|A′)

l, the initial solution more probably will select the reaction of kind a depicted
horizontally in the Figure. Due to the fairness implicit in stochastic systems, the
transition with the lower rate l cannot be delayed indefinitely, thus eventually
one of the states of the second row will be reached with probability one. At this
point of the computation, a number of transitions of kind b will be executed that
coincides with the number of transitions of kind a already executed.

We complete the section showing how the graphical notation of SAC can be ex-
tended to cope also with molecule splitting of CGF. The idea is to separate, in case
of splitting, the transitions in two parts adding an intermediary state. This new
intermediary state is graphically represented with a line. We use one transition
from the state representing the species of the reactant leading to the new inter-
mediary transition. This transition is labeled with the executed action. Then, we
use as many (unlabeled) transitions as the number of produced molecules. Each
transition is from the new intermediary state to the state representing the species
of one of the product. As an example, we show the graphical representation of
the system described in the Example 6.
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Fig. 6. Graphical representation of the CGF described in the Example 6

Example 8. The definitions of the species A, A′, B, and B′ reported in the
Example 6 can be graphically rendered as in the Figure 6. The only novelty with
respect to the graphical notation of SAC is in one splitting that occur when a
molecule of species A is engaged in one reaction with one molecule of species A′:
in this case, the molecule splits and produces one molecule of species A and one
of species B.

4 Stochastic Polyautomata Collectives

Stochastic Polyautomata Collectives (SPC) have been proosed in [2] as an exten-
sion of SAC able to capture the essential primitives of biochemistry. Biochemistry
is obviously based on chemistry, and in principle one can always express the be-
havior of a biochemical systems by a collections chemical reactions. But there
is a major practical problem with that approach: the collection of reactions for
virtually all biochemical systems is an infinite one. For example, just to express
the chemical reactions involved in linear polymerization, we need to have a dif-
ferent chemical species for each length n of polymer Pn, with reactions to grow
the polymer: Pn + M → Pn+1. While each polymer is finite, the set of possible
polymerization reactions is infinite.

Nature adopts a more modular solution: the act of joining two molecules is
called complexation, and polymers are made by iteratively complexing monomers.
Each monomer obeys a finite simple set of rules that leads to the formation of poly-
mers of any length; therefore, it seems that there should be a finite way of describ-
ing such systems. One can start by writing pseudo-reactions like P +M → P :M ,
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where P : M is meant to represent a P (olymer) molecule attached to an extra
M(onomer), yielding a longer polymer. However, there are in general many pos-
sible ways (that is, many different patches on the surface of a molecule) by which
one molecule can exclusively form a complex with other molecules, and soon one
needs to describe the interface of each molecule. This situation, while not com-
monly found in basic chemistry, is particularly acute in biochemistry, where vir-
tually all reactions are governed by enzymes and molecular machines, which are
themselves often built by complexation, and which usually operate by complexing
with their reactants.

Both SAC and CGF have been extended to model also a minimalistic form of
complexation. In this section we present Stochastic Polyautomata Collectives
(SPC), the extension of the former with primitives for association (i.e. the cre-
ation of a complex) and dissociation (i.e. the separation of parts of the com-
plex). This model has been presented in [2]. More precisely, two additional pairs
of complementary prefixes, &?a(r), &!a(r) for association and %?a(r), %!a(r) for
dissociation are added. Before presenting the formal syntax of SPC, we introduce
the new primitives informally by means of examples. To simplify the notation,
in the examples we abstract away from the stochastic rates, e.g., we write &?a
instead of &?a(r).

Example 9 (Linearly growing polymer). Each complexation event involves ex-
actly two partners. We imagine that the partners have two complementary sur-
face patches that can interlock. If c represents a surface shape (say, a paraboloid),
then !c indicates one of the two patches (say, the convex one) and ?c indicates the
complementary patch (the concave one). Then, &!c is the action that presents
the convex patch, and &?c is the action that presents the concave patch. When
two such association actions meet, an actual complexation event can take place,
joining the two complementary surfaces.

A linearly growing polymer could be represented as follows, using a seed S
and a collection of equal monomers M . The seed starts the chain by present-
ing a concave patch ?c: this is our initial, zero-length, polymer. Each monomer
presents a convex patch !c, which can bind with an existing polymer on the
complementary concave patch. After (and only after) such a binding, a bound
monomer M ′ presents another concave patch ?c, so that the polymer can keep
growing. Both the seed and each monomer can have further behavior, S′ and
M ′′.

S = &?c; S′

M = &!c; M ′

M ′ = &?c; M ′′

Each complexation event creates a unique bond between exactly the two molecules
that are joined to each other. This bond needs to be represented somehow, to
make sure that a molecule can bind with only one other molecule at a time on
any given patch. We represent such a bond as a unique key k that is shared by
the two complexed molecules (think of k as a fresh number, or as a fresh channel
in π-calculus [9]). Such unique keys, and related information, are collected in the
association history of each molecule. So, the first interaction of an S with an M ,
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which initially have empty association histories (0), proceeds as follows:

S0 | M0 → S′
〈?c,k1〉 | M ′

〈!c,k1〉

Interaction with a second monomer then introduces a second fresh key in the
histories:

S0 | M0 | M0 → S′
〈?c,k1〉 | M ′

〈!c,k1〉 | M0 → S′
〈?c,k1〉 | M ′′

〈?c,k2〉::〈!c,k1〉 | M ′
〈!c,k2〉

and so on. In any configuration, we can reconstruct from the association histories
who is bound to whom, and on what surface the bond was formed. Note that
the description of the system is finite (3 reagents, S, M , M ′), but that polymers
of any length can be assembled.

Example 10 (Branching polymer). After complexation, a molecule is still free to
perform additional complexations or other interactions. That is, complexation
places no restrictions on the behavior of the original molecules, except for the fact
that new complexations cannot occur on surfaces that are already occupied, and
that decomplexations must happen consistently with prior complexations (as we
discuss shortly). To illustrate this freedom, let us modify the previous example
and allow each bound monomer to offer a seed for growing a new polymer branch:

S = &?c; S′

M = &!c; M ′

M ′ = &?c; S

When an M ′ turns into a seed S, that is a seed with an non-empty association
history that connects it to its current branch, but that can also start a new
branch. If we do not wish to start a branch at every monomer, we can modify
M ′ to something like M ′ = &?c; S ⊕ τ ; M ′′, so that an M ′ has a temporary
potential to act as a seed, but after some delay (τ) it may change to an M ′′ that
is not a seed. By adjusting the stochastic rates of the delay and of c, we can
produce different (stochastic) branching factors.

Example 11 (Actin-like polymer). Decomplexation is the inverse of complexation,
that is, two formerly joined molecules can dissociate. We indicate by %!c the
attempt to dissociate from the convex side, and %?c the attempt to dissociate
from the concave side. When two complexed molecules attempt complementary
dissociations, an actual decomplexation event can take place. To illustrate this
situation, we describe a different kind of linear polymer: one that can grow only
at one end, and can shrink only at the other end. There are four molecular states
for each monomer: Mf (free monomer), M l (monomer bound on the left), M r

(monomer bound on the right), and M b (monomer bound on both sides). Each
monomer has a left convex surface and a complementary right concave surface. A
polymer should associate (grow) only on the right and should dissociate (shrink)
only on the left.

Mf = &!c; M l ⊕ &?c; M r

M l = %!c; Mf ⊕ &?c; M b

M r = %?c; Mf

M b = %!c; M r
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A free monomer Mf can either associate on the left convex surface and become
bound on the left, or associate on the right concave surface and become bound
on the right. A monomer M l bound only on the left can either dissociate on the
left (if allowed by its partner, which must in fact be an M r in this case) and
return free, or associate on the right (with an Mf ) and become bound on both
sides. A monomer M r bound only on the right can only dissociate on the right:
that is, a polymer cannot grow on the left. A monomer M b bound on both sides
can only dissociate on the left (with an M r): that is, a polymer cannot shrink
on the right or break in the middle. These rules cover also the base cases when
a polymer of length 2 initially forms or finally dissolves.

A decomplexation should succeed only between a pair of molecules that were
actually complexed in their past history, and this can be checked by inspecting
the unique keys introduced during complexation. For example let us consider
two Mf molecules that complex and then immediately decomplex:

Mf
0 | Mf

0 → M l
〈!c,k〉|M r

〈?c,k〉 → Mf
0 |Mf

0

The second transition is allowed to happen because M l offers %!c, M r offers
the complementary %?c, and the same key k appears in both association his-
tories on the c interface (and with the correct convexity). As a consequence of
decomplexation, the keys are removed from the histories.

After this gentle introduction to SPC by means of examples, we present the
formal definition of its syntax. The main novelty deals with the association
histories which are added to each molecule to keep track of the association keys
representing the bonds currently active between the molecule itself, and the other
molecules to which it is complexed.

Definition 3 (Stochastic Polyautomata Collectives (SPC)). Consider the
following denumerable sets: Species ranged over by variables X, Y , X1, X2, · · ·,
Channels ranged over by a, b, · · ·, a set of Association keys ranged over by k,
k′, · · ·. Moreover, let r, s, · · · be rates (i.e. positive real numbers).
The syntax of SPC is as follows:

E ::= 0
∣∣ X =M, E Reagents

M ::= 0
∣∣ π; X ⊕ M Molecule

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output prefix∣∣ &?a(r)
∣∣ &!a(r) Association prefixes∣∣ %?a(r)
∣∣ %!a(r) Dissociation prefixes

P ::= 0
∣∣ XH |P Solution

H ::= 0
∣∣ 〈?a, k〉 :: H

∣∣ 〈!a, k〉 :: H Association history
BGF ::= (P, S) Reagents and initial Solution

Given a BGF (E, P ), we assume that all variables occurring in P occur also in E.
Moreover, for every variable X occurring in E, there is exactly one definition
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X = M in E. Moreover, each association key k in P , occur in exactly two
complementary associations 〈?a, k〉 and 〈!a, k〉, that appear in the association
histories H and H ′ of two distinct molecules XH and X ′

H′ .

The syntax of SPC has been obtained as a fragment of the Biological Ground
Form (BGF), a process algebra defined in [4]. More precisely, SPC is as the frag-
ment of BGF without molecule splitting. In [4], the formal semantics of BGF is
defined; clearly, this applies also to its fragment SPC.

We complete the section presenting an example of graphical notation for SPC,
depicting the representation of the actin-like polymer described in the Exam-
ple 11.

Example 12 (Graphical representation of the actin-like polymer). The graphical
representation of SPC simply includes four new labels for the new actions &?a(r),
&!a(r), %?a(r) and %!a(r). As an example, we depict in the Figure 7 the repre-
sentation of the behavior of an actin-like polymer as described in the Example 11
(as done in that example, we abstract away from the rates).

Fig. 7. Graphical representation of the actin-like polymer described in the Example 11

5 Biochemical Ground Form

We now move to the last model considered in this paper, the Biochemical Ground
Form (BGF). This model includes all mechanisms discussed in this paper, both
molecule splitting and complexation. The main technical problem deals with the
specification of the distribution of the associations in the association history of
one reactant over the different products of a splitting. In fact, in case a molecule
forks it is necessary to specify how its associations are distributed over the
produced molecules. This information is described by means of a new syntactic
category called association markers. These are additional information associated
to the produced molecule, that completely and uniquely define the distribution of
associations, that is, all possible associations of one reactant should be reported
in one and only one association marker of the product.



A Gentle Introduction to SPC and the BGF 521

The formal syntax of BGF is defined as follows.

Definition 4 (Biochemical Ground Form (BGF)). Consider the following
denumerable sets: Species ranged over by variables X, Y , X1, X2, · · ·, Channels
ranged over by a, b, · · ·, a totally ordered set of Association keys ranged over by
k, k′, · · ·. Moreover, let r, s, · · · be rates (i.e. positive real numbers).
The syntax of BGF is as follows:

E ::= 0
∣∣ X =M, E Reagents

M ::= 0
∣∣ π; P ⊕ M Molecule

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output prefix∣∣ &?a(r)
∣∣ &!a(r) Association prefixes∣∣ %?a(r)
∣∣ %!a(r) Dissociation prefixes

P ::= 0
∣∣ Xh|P Product

h ::= 0
∣∣ ?a :: h

∣∣ !a :: h Association markers
S ::= 0

∣∣ XH |S Solution
H ::= 0

∣∣ 〈?a, k〉 :: H
∣∣ 〈!a, k〉 :: H Association history

BGF ::= (E, S) Reagents and initial Solution

Given a BGF (E, S), we assume that all variables occurring in S occur also in E.
Moreover, for every variable X occurring in E, there is exactly one definition
X = M in E. Moreover, each association key k in P , occur in exactly two
complementary associations 〈?a, k〉 and 〈!a, k〉, that appear in the association
histories H and H ′ of two distinct molecules XH and X ′

H′ .

As discussed above, a well formed BGF should be defined in such a way that
every time a molecule splits, it is always possible to define the way in which the
associations in the history of the reactants are distributed over the products.
The reader interested in the formalization of this notion of well formed CGF can
refer to [4], where also the formal definition of the semantics can be found.

We complete this section with an extension of the example of the actin-like
polymer discussed in the Example 11. The idea is to allow a fully bound monomer
to split into two independent monomers, each one inheriting one of the two
bonds. In this way, the polymer breaks in two new independent polymers.

Example 13 (Breaking polymer). To illustrate complexation in combination with
molecule splitting, we describe a linearly growing polymer similar to the actin-
like polymer of the Example 11 in which each monomer, once bound on both
sides, is free to split into two new monomers each one inheriting one of the two
bonds. The definition is as follows:

Mf = &!c; M l ⊕ &?c; M r

M l = %!c; Mf ⊕ &?c; M b

M r = %?c; Mf

M b = %!c; M r ⊕ τ ; (M l
!c|M r

?c)
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Fig. 8. Graphical representation of the breaking polymer described in the Example 13

It is worth observing that in case of splitting of the molecules of species M b,
it is necessary to indicate also how to split the associations among the two
produced molecules of species M l and M r, respectively. This is obtained adding
the association marker corresponding to the bonds to be split.

Also the graphical representation for CGF that we consider need to add graph-
ical notation for dealing with association splitting. This is achieved adding the
association markers as labels of the transitions incoming into the species of the
products of a splitting reaction. As an example, we depict the graphical repre-
sentation of the breaking polymer of the Example 13.

Example 14 (Graphical representation of the breaking polymer). The graphical
representation of BGF simply combine those of CGF and SPC with the addition of
association markers as labels for the transitions representing the target states in
case of splitting. As an example, we depict in the Figure 8 the representation of
the behavior of an breaking polymer as described in the Example 13 (as done in
that example, we abstract away from the rates).
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