

Lecture Notes in Computer Science 5035
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Andrea Lodi Alessandro Panconesi
Giovanni Rinaldi (Eds.)

Integer Programming
and Combinatorial
Optimization

13th International Conference, IPCO 2008
Bertinoro, Italy, May 26-28, 2008
Proceedings

13

Volume Editors

Andrea Lodi
DEIS, Università di Bologna
40136 Bologna, Italy
E-mail: andrea.lodi@unibo.it

Alessandro Panconesi
Dipartimento di Informatica
Università di Roma "La Sapienza"
00198 Rome, Italy
E-mail: ale@di.uniroma1.it

Giovanni Rinaldi
Istituto di Analisi dei Sistemi
ed Informatica “Antonio Ruberti” – CNR
00185 Rome, Italy
E-mail: rinaldi@iasi.cnr.it

Library of Congress Control Number: 2008927469

CR Subject Classification (1998): G.1.6, G.2.1, F.2.2, I.3.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-68886-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68886-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12278565 06/3180 5 4 3 2 1 0

Preface

The volume contains the papers selected for presentation at IPCO 2008, the
13th International Conference on Integer Programming and Combinatorial Op-
timization that was held in Bertinoro (Italy), May 26–28, 2008.

The IPCO series of conferences, sponsored by the Mathematical Program-
ming Society, highlights recent developments in theory, computation, and appli-
cation of integer programming and combinatorial optimization. The first confer-
ence took place in 1990; starting from IPCO 1995, the proceedings are published
in the Lecture Notes in Computer Science series.

The 12 previous IPCO conferences were held in Waterloo (Canada) 1990,
Pittsburgh (USA) 1992, Erice (Italy) 1993, Copenhagen (Denmark) 1995 [LNCS
920], Vancouver (Canada) 1996 [LNCS 1084], Houston (USA) 1998 [LNCS 1412],
Graz (Austria) 1999 [LNCS 1610], Utrecht (The Netherlands) 2001 [LNCS 2081],
Boston (USA) 2002 [LNCS 2337], New York (USA) 2004 [LNCS 2986], Berlin
(Germany) 2005 [LNCS 3509], and Ithaca (USA) 2007 [LNCS 4168]. The con-
ference is not held in the years when the International Symposium of the Math-
ematical Programming Society takes place.

A total of 95 papers were submitted, most of them of very high quality, from
which 32 were selected for presentation by the Program Committee that met in
Aussois (France) on January 8 and 9, 2008. The selection was based on originality
and quality, and reflects many of the current directions in integer programming
and combinatorial optimization research. As in the IPCO tradition, only around
30 papers could be presented at the conference, thus many submitted papers
meeting high standards of originality and quality could not be selected.

On behalf of the other members of the Program Committee, we would like
to thank all the external reviewers for their very valuable help in the evaluation
of the papers and all the authors of the submitted papers for their support of
the IPCO conferences. Finally, we like to thank the Mathematical Programming
Society for the support, the conference system EasyChair that was used to handle
the submissions, and the sponsors, IBM Research, ILOG, BiCi, IASI-CNR and
Università di Bologna, for their generosity.

March 2008 Giovanni Rinaldi
Andrea Lodi

Alessandro Panconesi

Organization

IPCO 2008 was held at the University Residential Center of Bertinoro (Forl̀ı-
Cesena), Italy, May 26–28, 2008.

Editors

Andrea Lodi
DEIS, Università di Bologna, viale Risorgimento 2, 40136 Bologna, Italy
andrea.lodi@unibo.it

Alessandro Panconesi
Dipartimento di Informatica, Università di Roma “La Sapienza”, via Salaria 113,

00198 Rome, Italy
ale@di.uniroma1.it

Giovanni Rinaldi
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” - CNR, viale

Manzoni 30, 00185 Rome, Italy
rinaldi@iasi.cnr.it

Program Committee

Karen Aardal (CWI, The Netherlands)
Gérard Cornuéjols (CMU, USA & LIF, Marseille, France)
Friedrich Eisenbrand (EPFL, Lausanne, Switzerland)
Michel X. Goemans (MIT, USA)
Ravi Kannan (Yale University, USA)
Andrea Lodi (Università di Bologna, Italy)
Alessandro Panconesi (Università “La Sapienza”, Rome, Italy)
Maurice Queyranne (University of British Columbia, Canada)
Franz Rendl (Universität Klagenfurt, Austria)
Giovanni Rinaldi, Chair (IASI-CNR, Rome, Italy)
András Sebö (CNRS, Grenoble, France)
Martin Skutella (Technische Universität Berlin, Germany)

Organizing Committee

Andrea Lodi (Università di Bologna)
Alessandro Panconesi (Università “La Sapienza” di Roma)
Andrea Tramontani (Università di Bologna)

VIII Organization

Local Arrangements

Andrea Bandini, Director (CeUB)
Eleonora Campori (CeUB)
Michela Schiavi (CeUB)

Table of Contents

Session 1

Perspective Relaxation of Mixed Integer Nonlinear Programs with
Indicator Variables . 1

Oktay Günlük and Jeff Linderoth

Disjunctive Cuts for Non-convex Mixed Integer Quadratically
Constrained Programs . 17

Anureet Saxena, Pierre Bonami, and Jon Lee

The Air Traffic Flow Management Problem: An Integer Optimization
Approach . 34

Dimitris Bertsimas, Guglielmo Lulli, and Amedeo Odoni

Session 2

The Induced Disjoint Paths Problem . 47
Ken-ichi Kawarabayashi and Yusuke Kobayashi

A Weighted Kt,t-Free t-Factor Algorithm for Bipartite Graphs 62
Kenjiro Takazawa

A New Algorithm for the Maximum Weighted Stable Set Problem in
Claw-Free Graphs . 77

Gianpaolo Oriolo, Ugo Pietropaoli, and Gautier Stauffer

A Polynomial Algorithm for Weighted Abstract Flow 97
Maren Martens and S. Thomas McCormick

Session 3

A Comparative Study of Linear and Semidefinite Branch-and-Cut
Methods for Solving the Minimum Graph Bisection Problem 112

Michael Armbruster, Marzena Fügenschuh,
Christoph Helmberg, and Alexander Martin

Binary Positive Semidefinite Matrices and Associated Integer
Polytopes . 125

Adam N. Letchford and Michael M. Sørensen

Vertex Cover Resists SDPs Tightened by Local Hypermetric
Inequalities . 140

Konstantinos Georgiou, Avner Magen, and Iannis Tourlakis

X Table of Contents

Session 4

Tight Bounds for Permutation Flow Shop Scheduling 154
Viswanath Nagarajan and Maxim Sviridenko

The Stochastic Machine Replenishment Problem . 169
Kamesh Munagala and Peng Shi

A Polynomial Time Approximation Scheme for the Square Packing
Problem . 184

Klaus Jansen and Roberto Solis-Oba

Session 5

Modeling Disjunctive Constraints with a Logarithmic Number of
Binary Variables and Constraints . 199

Juan Pablo Vielma and George L. Nemhauser

Computing with Multi-row Gomory Cuts . 214
Daniel G. Espinoza

Constraint Orbital Branching . 225
James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and
Stefano Smriglio

Session 6

A Fast, Simpler Algorithm for the Matroid Parity Problem 240
James B. Orlin

Degree Bounded Matroids and Submodular Flows . 259
Tamás Király, Lap Chi Lau, and Mohit Singh

Budgeted Matching and Budgeted Matroid Intersection Via the
Gasoline Puzzle . 273

André Berger, Vincenzo Bonifaci, Fabrizio Grandoni, and
Guido Schäfer

Session 7

Primal-Dual Schema for Capacitated Covering Problems 288
Tim Carnes and David Shmoys

Offline and Online Facility Leasing . 303
Chandrashekhar Nagarajan and David P. Williamson

Importance Sampling via Load-Balanced Facility Location 316
Aaron Archer and Shankar Krishnan

Table of Contents XI

Session 8

A Constant Approximation Algorithm for the a priori Traveling
Salesman Problem . 331

David Shmoys and Kunal Talwar

New Geometry-Inspired Relaxations and Algorithms for the Metric
Steiner Tree Problem . 344

Deeparnab Chakrabarty, Nikhil R. Devanur, and Vijay V. Vazirani

Min Sum Edge Coloring in Multigraphs Via Configuration LP 359
Magnús M. Halldórsson, Guy Kortsarz, and Maxim Sviridenko

Session 9

An Improved Algorithm for Finding Cycles Through Elements 374
Ken-ichi Kawarabayashi

The Stable Roommates Problem with Choice Functions 385
Tamás Fleiner

A New Approach to Splitting-Off . 401
Attila Bernáth and Tamás Király

Session 10

Can Pure Cutting Plane Algorithms Work? . 416
Arrigo Zanette, Matteo Fischetti, and Egon Balas

The Mixing Set with Divisible Capacities . 435
Michele Conforti, Marco Di Summa, and Laurence A. Wolsey

A Polynomial Time Algorithm for the Stochastic Uncapacitated
Lot-Sizing Problem with Backlogging . 450

Yongpei Guan and Andrew Miller

Lifting Integer Variables in Minimal Inequalities Corresponding to
Lattice-Free Triangles . 463

Santanu S. Dey and Laurence A. Wolsey

Author Index . 477

Perspective Relaxation of Mixed Integer

Nonlinear Programs with Indicator Variables

Oktay Günlük1 and Jeff Linderoth2

1 Mathematical Sciences Department, IBM T. J. Watson Research Center,
Yorktown Heights, NY 10598 USA

oktay@watson.ibm.com
2 Department of Industrial and Systems Engineering,

University of Wisconsin-Madison, 1513 University Avenue,
Madison, WI 53706, USA
linderoth@wisc.edu

Abstract. We study mixed integer nonlinear programs (MINLP) that
are driven by a collection of indicator variables where each indicator
variable controls a subset of the decision variables. An indicator variable,
when it is “turned off”, forces some of the decision variables to assume a
fixed value, and, when it is “turned on”, forces them to belong to a convex
set. Most of the integer variables in known MINLP problems are of this
type. We first study a mixed integer set defined by a single separable
quadratic constraint and a collection of variable upper and lower bound
constraints. This is an interesting set that appears as a substructure
in many applications. We present the convex hull description of this
set. We then extend this to produce an explicit characterization of the
convex hull of the union of a point and a bounded convex set defined by
analytic functions. Further, we show that for many classes of problems,
the convex hull can be expressed via conic quadratic constraints, and
thus relaxations can be solved via second-order cone programming. Our
work is closely related with the earlier work of Ceria and Soares (1996)
as well as recent work by Frangioni and Gentile (2006) and, Aktürk,
Atamtürk and Gürel (2007).

Finally, we apply our results to develop tight formulations of mixed
integer nonlinear programs in which the nonlinear functions are separable
and convex and in which indicator variables play an important role. In
particular, we present strong computational results with two applications
– quadratic facility location and network design with congestion – that
show the power of the reformulation technique.

1 Introduction

In this work, we study mixed integer nonlinear programs (MINLP) that are
driven by a collection of indicator variables where each indicator variable controls
a subset of the decision variables. In particular, we are interested in MINLPs
where an indicator variable, when it is “turned off”, forces some of the decision
variables to assume a fixed value, and, when it is “turned on”, forces them to

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 O. Günlük and J. Linderoth

belong to a convex set. We call such programs indicator-induced {0,1}-mixed
integer nonlinear programs.

A generic indicator-induced {0-1}-MINLP can be written as

min
(x,z)∈X×(Z∩Bp)

{cT x + dT z | gj(x, z) ≤ 0 ∀j ∈M, (xVi , zi) ∈ Si ∀i ∈ I} (1)

where z are the indicator variables, x are the continuous variables xVi denotes
the collection of continuous variables (i.e. xj , j ∈ Vi), and Ci is the set of
constraints controlled by the indicator variable zi. Sets X ⊆ R

n and Z ⊆ R
p are

polyhedral sets of appropriate dimension and Si is the set of points that satisfy
all constraints associated with the indicator variable zi:

Si
def=

{
(xVi , zi) ∈ R

|Vi| × B

∣∣∣∣∣ xVi = x̂Vi if zi = 0
xVi ∈ Γi if zi = 1

}
,

where

Γi
def= {xVi ∈ R

|Vi| | fj(xVi) ≤ 0 ∀j ∈ Ci, uk ≥ xk ≥ �k ∀k ∈ Vi}.

is bounded for all i ∈ I. The objective function in (1) is assumed to be linear
without loss of generality (if necessary, an additional variable can be used to
move the nonlinearity from the objective function to the constraint set.)

In this paper we study the convex hull description of the sets Si when Γi is a
convex set. Note that Γi can be convex even when some of the fj defining it are
non-convex. Let Sc

i = conv(Si). Using Sc
i , one can write a “tight” continuous

relaxation of (1)

min
(x,z)∈X×Z

{cT x + dT z | gj(x, z) ≤ 0 ∀j ∈M, (xVi , zi) ∈ Sc
i ∀i ∈ I} (2)

where Si in (1) is replaced by its convex hull and integrality requirement on
z is dropped. We assume that Z already contains bound constraints for z. We
call (2), the perspective relaxation of (1) as description of Sc

i involves perspective
functions which we discuss later. We also present computational results and show
that (2) indeed gives a strong relaxation when applied to a number of problems.
We also show that in some cases, Sc

i is representable as a second-order cone and
this improves computational effectiveness of our approach even further.

Indicator-induced MINLPs can be used to model many interesting problems.
Two applications that we study in detail in this paper are: (i) the quadratic-
cost uncapacitated facility location problem recently introduced in [1], and, (ii)
network design problem under queuing delay, first discussed in [2]. For other ex-
amples see [3,4,5] for portfolio optimization problems; or, [6] for a job-scheduling
problem with controllable processing times. In addition, certain classes of unit
commitment problems for electrical power generation can be formulated as
indicator-induced MINLPs.

Perspective Relaxation of MINLP with Indicator Variables 3

There has been some recent work on generating strong relaxations for convex
MINLPs. One line of work has been on extending general classes of cutting planes
from mixed integer linear programs. Specifically, [7] explain how the disjunctive
cutting planes of [8] can be applied for MINLP, [9] extend the Gomory cutting
plane procedure [10], and [11] extend the mixed integer rounding procedure
of [12] to conic mixed integer programs. A second line of work has focused
on generating problem specific cutting planes, for example see [1] for different
families of inequalities for a quadratic cost facility location problem. In some
cases these inequalities can be used to strengthen the perspective relaxation
even further.

There are two recent papers that are closely related with our work. Fran-
gioni and Gentile [13] have introduced a class of linear inequalities called per-
spective cuts for indicator-induced MINLPs. As we discuss later, perspective
cuts are essentially outer approximation cuts for Sc

i and therefore the perspec-
tive relaxation (2) can be viewed as implicitly including all (infinitely many)
perspective cuts to a straightforward relaxation of (1). Very recently, Aktürk,
Atamtürk, and Gürel [6] independently gave a strong characterization of Sc

i when
Γi = {x ∈ R

2 | xt
1 − x2 ≤ 0, u ≥ x1, x2 ≥ 0} for t ≥ 1. They use this characteri-

zation in an algorithm for solving some classes of nonlinear machine scheduling
problems.

2 A Quadratic Set with Variable Bounds

In this section we present a convex hull description of the following set

Q =
{

(w, x, z) ∈ R×R
n×B

n : w ≥
∑
i∈N

qix
2
i , uizi ≥ xi ≥ lizi, xi ≥ 0, ∀i ∈ N

}
,

where N = {1, 2, . . . , n}, qi ∈ R+ and ui, li ∈ R for all i = 1, 2, . . . , n. We then
use this insight to define the convex hull of more complicated mixed integer
nonlinear sets. Set Q appears in a number of non-linear mixed-integer programs
as a substructure and we present some examples of this in Section 4. To our
knowledge, the first convex hull description of Q was stated without proof in the
unpublished Ph.D. thesis [14].

2.1 A Simple Set

To understand the set Q, we first study a simpler mixed-integer set with only 3
variables, which can be obtained by setting n = 1 and q1 = 1.

Let

S =
{

(x, y, z) ∈ R
2 × B : y ≥ x2, uz ≥ x ≥ lz, x ≥ 0

}
where u, l ∈ R. We next show that the convex hull of S is given by

Sc =
{
(x, y, z) ∈ R

3 : yz ≥ x2, uz ≥ x ≥ lz, 1 ≥ z ≥ 0, x, y ≥ 0
}

.

4 O. Günlük and J. Linderoth

x

y

z = 1

z

y ≥ x2

Fig. 1. The set Sc

Note that even though
yz ≥ x2 is not a convex con-
straint (as its Hessian is not
positive semi-definite), it still
defines a convex set in R

3
+.

Lemma 1. conv(S) = Sc.

Geometrically, the set Sc con-
sists of all points that lie
above a line segment connect-
ing the origin to the point
(t, t2, 1) for each t ≥ 0, as
shown in Figure 1.

2.2 An Extended Formulation

Consider the following extended formulation of Q

Q̄ =
{
(w, x, y, z) ∈ R

1+n+n+n : w ≥
∑

i

qiyi, (xi, yi, zi) ∈ Si, ∀i ∈ N
}
,

where Si has the same form as the set S discussed in the previous section except
the bounds u and l are replaced with ui and li. Note that if (w, x, y, z) ∈ Q̄
then (w, x, z) ∈ Q, and therefore proj(w,x,z)(Q̄) ⊆ Q. On the other hand, for any
(w, x, z) ∈ Q, letting let y′

i = x2
i gives a point (w, x, y′, z) ∈ Q̄. Therefore, Q̄ is

indeed an extended formulation of Q, or, in other words, Q = proj(w,x,z)(Q̄).
Before we present a convex hull description of Q̄ we first define some basic

properties of mixed-integer sets which are not necessarily polyhedral. Using these
definitions, we then show some elementary observations which are known for
polyhedral sets.

Definition 1. Given a closed set P ⊂ R
n, point p ∈ P is called an extreme

point of P if it can not be represented as p = 1/2p1 + 1/2p2 for any p1, p2 ∈ P ,
p1 �= p2. Set P is called pointed if it has extreme points.

Definition 2. A closed, pointed set P ⊂ R
n is called integral with respect to a

subset of the indices I ⊆ {1, . . . , n} if for any extreme point p ∈ P , pi ∈ Z for
all i ∈ I.

Lemma 2. For i = 1, 2 let Pi ⊂ R
ni be a closed and pointed set which is

integral with respect to indices Ii. Furthermore, let P ′ = {(x, y) ∈ R
n1+n2 : x ∈

P1, y ∈ P2}.
(i) P ′ is integral with respect to I1 ∪ I2.

(ii) conv(P ′) = {(x, y) ∈ R
n1+n2 : x ∈ conv(P1), y ∈ conv(P2)}.

Perspective Relaxation of MINLP with Indicator Variables 5

Lemma 3. Let P ⊂ R
n be a given closed, pointed set and let P ′ = {(w, x) ∈

R
n+1 : w ≥ ax, x ∈ P} where a ∈ R

n.

(i) If P is integral with respect to I, then P ′ is integral with respect to I.
(ii) conv(P ′) = P ′′ where P ′′ = {(w, x) ∈ R

n+1 : w ≥ ax, x ∈ conv(P)}.
We are now ready to present the convex hull of Q̄. To that end, consider the set

Q̄c =
{

(w, x, y, z) ∈ R
1+n+n+n : w ≥

∑
i

qiyi, (xi, yi, zi) ∈ Sc
i , ∀i ∈ N

}
.

Lemma 4. The set Q̄c is integral with respect to the indices of z variables.
Furthermore, conv(Q̄) = Q̄c.

Proof. Let D = {x ∈ R
n, y ∈ R

n, z ∈ ×R
n : (xi, yi, zi) ∈ Si, i = 1, 2, . . . , n} so

that Q̄ = {w ∈ R, x ∈ R
n, y ∈ R

n, z ∈ ×R
n : w ≥∑n

i=1 qiyi, (x, y, z) ∈ D}.
By Lemma 3, the convex hull of Q̄ can be obtained by replacing D with its
convex hull in this description. By Lemma 2, this can simply be done by taking
convex hulls of Si’s, that is, by replacing Si with conv(Si) in the description
of D. Finally, by Lemma 3, Q̄c is integral.

2.3 Convex Hull Description in the Original Space

Let

Qc =
{
(w, x, z) ∈ R

1+n+n : w
∏
i∈S

zi ≥
∑
i∈S

(qix
2
i

∏
l∈S\{i}

zl), S ⊆ N

uizi ≥ xi ≥ lizi, xi ≥ 0, ∀i ∈ N
}
. (Π)

Notice that a given point p̄ = (w̄, x̄, z̄) satisfies inequality (Π) for a particular
S ⊆ N if an only if one of the following conditions hold: (i) z̄i = 0 for some
i ∈ S, or, (ii) if all zi > 0, then w̄ ≥∑i∈S qix̄

2
i /z̄i. Based on this observation we

next show that these (exponentially many) inequalities are sufficient to describe
the convex hull of Q in the space of the original variables.

Lemma 5. Qc = proj(w,x,z)(Q̄
c).

Proof. Let p̄ = (w̄, x̄, ȳ, z̄) ∈ Q̄c and define S(p̄) = {i : zi > 0}. Clearly
uiz̄i ≥ x̄i ≥ liz̄i and x̄i ≥ 0 for all i = 1, 2, . . . , n. Furthermore, inequality (Π) is
satisfied for all S such that S �⊆ S(p̄). In addition, notice that, as q ≥ 0,

w̄ ≥
∑

i∈S(p̄)

qiȳi ≥
∑

i∈S(p̄)

qix̄
2
i /z̄i ≥

∑
i∈S′

qix̄
2
i /z̄i

for all S′ ⊆ S(p̄). Therefore p̄ satisfies inequality (Π) for all S and proj(w,x,z)

(Q̄c) ⊆ Qc.

6 O. Günlük and J. Linderoth

Next, let p̄ = (w̄, x̄, z̄) ∈ Qc be given and let

ȳi =
{

0 z̄i = 0
x̄2

i /z̄i otherwise.

It is easy to see that (x̄i, ȳi, z̄i) ∈ Si for all i ∈ {1, 2, . . . , n}. Furthermore,

w̄ ≥
∑

i∈S(p̄)

qix̄
2
i /z̄i =

∑
i∈S(p̄)

qiȳi =
n∑

i=1

qiȳi

implying that (w̄, x̄, ȳ, z̄) ∈ Q̄c and therefore Qc ⊆ proj(w,x,z)(Q̄
c).

2.4 SOCP Representation

A second-order cone constraint is a constraint of the form

‖Ax + b‖2 ≤ cT x + d. (3)

The set of points x that satisfy (3) forms a convex set, and efficient and robust
algorithms exist for solving optimization problems containing second-order cone
constraints [15,16]. An interesting and important observation from a computa-
tional standpoint is that the nonlinear inequalities in the definitions of the sets
Sc and Q̄c can be written as second-order cone constraints. All the nonlinear
constraints in the definition Sc and Q̄c are of the simple form

x2 ≤ yz with y ≥ 0, z ≥ 0, (4)

and this is algebraically equivalent to the second-order cone constraint

‖(2x, y − z)T ‖ ≤ y + z.

Constraints of the form (4) are often called rotated second order cone constraints.
The computational benefit of dealing with inequalities (4) as second-order cone
constraints rather than general nonlinear constraints will be demonstrated in
Section 4.1.

3 A Generalization and Connections to Previous Work

We next extend the observations presented in Section 2 to describe the convex
hull of a point x̄ ∈ R

n and a bounded convex set defined by analytic functions.
In other words, using an indicator variable z ∈ {0, 1}, define

W 0 =
{
(x, z) ∈ R

n+1 : x = x̄, z = 0
}

and

W 1 =
{
(x, z) ∈ R

n+1 : fi(x) ≤ 0 for i ∈ I, u ≥ x− x̄ ≥ l, z = 1
}
,

where u, l ∈ R
n
+, and I = {1, . . . , t}. We are interested in the convex hull of

W = W 1 ∪W 0. Clearly, both W 0 and W 1 are bounded and W 0 is a convex set.
Furthermore, if W 1 is also convex then

conv(W) = {p ∈ R
n+1 : p = αp1 + (1− α)p0, p1 ∈W 1, p0 ∈W 0, 1 ≥ α ≥ 0}.

We next present a description of conv(W) in the space of original variables.

Perspective Relaxation of MINLP with Indicator Variables 7

3.1 Reformulation in the Original Space

To simplify notation we assume that x̄ = 0 in the remainder of this section. Note
that there is no loss of generality as this is an affine transformation. We next
write the description of conv(W) in open form

conv(W) =
{

(x, z) ∈ R
n+1 : 1 ≥ α ≥ 0, (XF)

x = αx1 + (1− α)x0, z = αz1 + (1− α)z0,

x0 = x̄, z0 = 0,

fi(x1) ≤ 0 for i ∈ I, u ≥ x1 − x̄ ≥ l, z1 = 1
}
.

The additional variables used in this description can be projected out to obtain
a description in the space of the original variables.

Lemma 6. If W 1 is convex, then conv(W) = W− ∪W 0, where

W− =
{
(x, z) ∈ R

n+1 : fi(x/z) ≤ 0 for i ∈ I, uz ≥ x ≥ lz, 1≥ z > 0
}
.

Proof. As x0, z0 and z1 are fixed in (XF), it is possible to substitute out these
variables. In addition, as z = α after these substitutions, we can eliminate α.
Furthermore, as x = αx1 = zx1, we can eliminate x1 by replacing it with x/z
provided that z > 0. If, on the other hand, z = 0, clearly (x, 0) ∈ conv(W) if
and only if (x, 0) ∈W 0.

We next show that W 0 is contained in the closure of W−.

Lemma 7. For 1 ≥ z > 0, let Qc(z) =
{
x ∈ R

n : fi(x/z) ≤ 0 for i ∈ I, uz ≥
x ≥ lz

}
. If all fi(x) are bounded in [l, u], then,

limz→0+ Qc(z) =
{
x ∈ R

n : x = 0
}

Proof. Let {zk} ⊂ (0, 1) be a sequence converging to 0. As, by definition, Qc(z) �=
∅ for z ∈ (0, 1), there exists a corresponding sequence {xk} such that xk ∈
Qc(zk). Clearly, uz ≥ xk ≥ lz and therefore {xk} converges to 0.

Combining the previous lemmas, we obtain the following result.

Corollary 1. conv(W) = closure(W−).

We would like to emphasize that even when f(x) is a convex function fi(x/z)
may not be convex. However, for z > 0 we have

fi(x/z) ≤ 0 ⇔ ztfi(x/z) ≤ 0 (5)

for any t ∈ R. In particular, taking t = 1 gives zfi(x/z) which is known to
be convex provided that f(x) is convex. We discuss this further in Section 3.2.

8 O. Günlük and J. Linderoth

We also note that if f(x) is SOCP-representable, then zfi(x/z) is also SOCP-
representable [17]. In particular, if W 1 is defined by SOCP-representable func-
tions, then so is conv(W). We will show the benefits of employing SOC solvers
for (non-quadratic) SOC-representable sets in Section 4.2.

We next show that when all fi(x) that define W 1 are polynomial functions,
convex hull of W can be described explicitly.

Lemma 8. Let fi(x) =
∑pi

t=1 cit

∏n
j=1 x

qitj

j for all i ∈ I. Let qit =
∑n

j=1 qitj and
qi = maxt{qit}. If all fi(x) are convex and bounded in [l, u], then conv(W) = W c,
where

W c =
{
(x, z) ∈ R

n+t+1 :
pi∑

t=1

citz
qi−qit

n∏
j=1

x
qitj

j ≤ 0 for i ∈ I,

zu ≥ x ≥ lz, 1≥ z ≥ 0,
}

.

Proof. Note that fi(x/z) =
∑pi

t=1 citz
−qit

∏n
j=1 x

qitj

j . Therefore, multiplying
fi(x/z) ≤ 0 by zqi , one obtains the expression above. Clearly, W c ∩ {z > 0} =
W− and W c ∩ {z = 0} = W 0.

3.2 Convex Hulls of Convex Sets

Given a collection of bounded convex sets, it is easy to define an extended formu-
lation to describe their convex hull using additional variables, similar to (XF).
It is however, not possible to produce a description in the space of original vari-
ables. The particular case we considered in the previous section involves only
two sets, one of which consists of a single point. For the sake of completeness we
next summarize some related results from [18].

Ceria and Soares [18] use perspective functions of the functions that define the
original sets to produce an extended formulation for the convex hull description.
If the original sets are defined by convex functions, their perspective functions
are also convex. More precisely, for t = 1, . . . , p, let Gt : R

n → R
mt be a mapping

defined by convex functions and assume that the corresponding set

Kt = {x ∈ R
n : Gt(x) ≤ 0}

is bounded. Let G̃t : R
n+1 → R

mt be the perspective mapping defined as

G̃t(λ, x) =

⎧⎨
⎩

λGt(x/λ) if λ > 0
0 if λ = 0
∞ otherwise

We next state a important observation from [18] that shows the use of per-
spective functions to obtain convex hulls of convex sets.

Lemma 9 ([18]). Let Kt be defined as above for t ∈ T = {1, . . . , T |}, and let
K = conv(∪|T |

t=1K
t). Then, x ∈ K if and only if the following nonlinear system

is feasible:

Perspective Relaxation of MINLP with Indicator Variables 9

x =
|T |∑
t=1

xt ; G̃t(λt, x
t) ≤ 0,

|T |∑
t=1

λt = 1, λt ≥ 0, t ∈ T

Furthermore, all G̃t are convex mappings provided that all Gt are convex.

Put into this context, our observations in Section 3.1 specialize Lemma 9 to the
case when |T | = 2 and one of the sets contain a single point. In this special
case Corollary 1 and Lemma 8 show that a description of the convex hull in the
original space can be obtained easily.

3.3 Perspective Cuts

Building on the work [18], Frangioni and Gentile [13] introduce the class of
perspective cuts for mixed integer programs of the form

min
(x,z)∈Rn×B

{
f(x) + cz | Ax ≤ bz

}
,

where (i) X = {x | Ax ≤ b} is bounded (also implying {x | Ax ≤ 0} = {0}),
(ii) f(x) is a convex function that is finite on X , and (iii) f(0) = 0. Under these
assumptions, they are able to show that for any x̄ ∈ X and s ∈ ∂f(x̄), the
following (linear) inequality

v ≥ f(x̄) + c + sT (x − x̄) + (c + f(x̄)− sT x̄))(z − 1) (6)

is valid for the equivalent mixed integer program

min
(x,z,v)∈Rn×B×R

{
v | v ≥ f(x) + cz, Ax ≤ bz

}
.

The inequalities (6) are derived from a first-order analysis of the convex envelope
of the perspective function of f(x).

A similar first-order argument can be used to derive inequality (6) from the
characterization of the convex hull of the union of a convex set and a point given
in Section 3. First define P 0 def=

{
(x, z, v) ∈ R

n+2 : x = 0, z = 0, v = 0
}
, and

P 1 def
=

�
(x, z, v) ∈ R

n+2 : Ax ≤ b, f(x) + c− v ≤ 0, ux ≥ x ≥ lx, uv ≥ v ≥ lv, z = 1
�

where bounds on variables x and v are introduced without loss of generality.
Corollary 1 states that conv(P 0 ∪ P 1) is the closure of

P− def=
{
(x, z, v) ∈ R

n+2 | Ax ≤ b, zf(x/z) + cz − v ≤ 0,

uxz ≥ x ≥ lxz, uvz ≥ v ≥ lvz, 1 ≥ z ≥ 0
}
.

For any z̄ > 0, a first-order (outer)-approximation of the nonlinear constraint
zf(x/z) + cz − v ≤ 0 about the point (x̄, z̄, v̄) gives

0 ≥ z̄f(x̄/z̄) + cz̄ − v̄ +

⎡
⎣ s

(−1/z̄)x̄T sx/z + f(x̄/z̄) + c
−1

⎤
⎦

T ⎡
⎣x− x̄

z − z̄
v − v̄

⎤
⎦ ,

10 O. Günlük and J. Linderoth

where s ∈ ∂f(x̄) and sx/z ∈ ∂f(x̄/z̄). Taking z̄ = 1, v̄ = f(x̄)+c, and rearranging
terms gives inequality (6) above.

4 Applications

In this section, two applications are described: a quadratic uncapacitated facility
location problem and a network design problem with nonlinear congestion con-
straints. In each case, the positive impact of the perspective reformulation and
the ability to model the nonlinear inequalities in the reformulations as second-
order cone constraints is demonstrated.

4.1 Separable Quadratic UFL

The Separable Quadratic Uncapacitated Facility Location Problem (SQUFL)
was introduced by [1]. In the SQUFL, there is a set of customers (N = {1, 2, . . . ,
n}), a set of facilities (M = {1, 2, . . . , m}), and each customer must have its
demand for a single commodity met by an open facility. There is a fixed cost ci

for opening a facility i ∈M . Meeting the demand of customer j ∈ N from facility
i ∈ M costs an amount proportional to the square of the quantity delivered. A
mixed integer nonlinear program for the SQUFL is

z∗ def= min
(x,z)∈R

mn
+ ×Bm

{∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijx
2
ij | xij ≤ zi ∀i ∈M, ∀j ∈ N,

∑
i∈M

xij = 1 ∀j ∈ N
}

. (7)

The variables zi indicate if facility i ∈ N is open, and xij is a decision variable
representing the fraction of customer j’s demand met from facility i. We let zR

be the optimal solution value of the relaxation of (7) in which the constraints
zi ∈ {0, 1} are replaced by zi ∈ [0, 1].

To write SQUFL as an indicator-induced MINLP, the auxiliary variables
yij ∀i ∈ M, j ∈ N are introduced. The objective function is changed to the
linear function

min
∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijyij ,

and the constraints
x2

ij − yij ≤ 0 ∀i ∈M, j ∈ N (8)

are added. In this reformulation, if the indicator variable zi = 0, then xij =
0 ∀j ∈ N and the constraints (8) become redundant, while if zi = 1, the con-
straints (8) become active. Thus, the constraints (8) can be replaced by their
perspective counterparts

x2
ij − ziyij ≤ 0 ∀i ∈M, ∀j ∈ N, (9)

and the resulting relaxation should be significantly tighter. We will let zP denote
the optimal solution value of the relaxation of the perspective reformulation.

Perspective Relaxation of MINLP with Indicator Variables 11

Computational Results. To test the strength of the perspective reformula-
tion, random instances were constructed with facilities and locations uniformly
distributed in the unit square. The fixed cost of opening facility i ∈ M was
taken to be ci = �U(1, 100)�. If pi ∈ [0, 1]2 was the location of facility i ∈M and
rj ∈ [0, 1]2 was the location of customer j ∈ N , then the variable cost parameter
was calculated as qij = 50‖pi − rj‖.

Instances are constructed in a similar manner in [1]. For m ∈ {10, 20, 30, 20}
and n ∈ {30, 50, 100, 200}, ten instances were created and solved using the non-
linear branch-and-bound algorithm available in the open-source MINLP code
BONMIN [19]. The instances were solved using both the original formulation (7)
and the perspective reformulation. All instances were solved on a 1.8GHz AMD
Opteron CPU.

Table 1 shows the results of this experiment. In the table, z̄R represents the
average value of the relaxation of the original formulation, z̄P the average value
of the relaxation of the perspective reformulation, and z̄∗ the average value
of the optimal solution found by BONMIN. The table also displays the number
of instances (out of 10) that were solved within a time limit of 8 hours, the
average number of nodes N̄ required to solve the instances, and the average CPU
time (T̄) in seconds for both the original and perspective formulations. Clearly,
reformulating the problem via the perspective reformulation has an enormous
impact on the ability to solve the problem.

The results in Table 1 indicate that the CPU time required to solve one node
of the branch-and-bound tree increases dramatically when the perspective for-
mulation is applied. BONMIN uses the interior-point solver Ipopt [20] for solving
relaxations that arise at nodes of the branch-and-bound tree. Ipopt is a solver

Table 1. Relaxation Values and Solution Times for SQUFL

Original Formulation Perspective Formulation

m n z̄R z̄P z̄∗ # Solved N̄ T̄ # Solved N̄ T̄

10 30 105.8 196.5 197.9 10 333 8.9 10 15 3.7
10 50 160.4 312.6 314.6 10 406 18.0 10 11 4.9
10 100 266.5 460.4 462.0 10 441 36.7 10 9 7.7
10 200 470.7 733.6 737.0 10 350 59.7 10 7 15.2
20 30 81.7 186.1 185.6 10 3452 213.7 10 37 39.9
20 50 111.6 274.8 276.2 10 5526 601.4 10 31 85.9
20 100 166.3 412.7 414.5 7 25901 12263.9 10 35 677.1
20 200 283.5 650.8 653.1 0 - - 10 27 1925
30 30 64.1 157.8 159.4 9 17837 1822.7 10 62 192.8
30 50 82.1 241.6 243.3 1 61062 23760.2 10 56 650.3
30 100 126.0 343.4 345.6 0 - - 10 51 4565.4
30 200 200.7 545.8 547.4 0 - - 9 44 16858.5
40 30 58.6 146.4 147.7 7 55660 9319.6 10 71 224.3
40 50 74.1 198.7 200.0 0 - - 10 85 3030.6
40 100 109.6 309.8 311.2 0 - - 10 64 8420.8
40 200 161.4 478.3 - 0 - - 0 - -

12 O. Günlük and J. Linderoth

for general nonlinear programs and is unable to exploit the special second-order
cone structure of the inequalities in the perspective reformulation. Even more
disturbing is the fact that since the functions x2 − yz appearing in the per-
spective reformulation are not convex, Ipopt cannot guarantee convergence to
a stationary point and its performance is highly dependent on the quality of the
initial iterate provided.

To eliminate the obstacles faced by a general NLP solver, the conic formu-
lations were solved with Mosek [16], a code specialized for problems of this
type. Table 2 shows the number of nodes (N) and CPU seconds (T) required
by Mosek v5.0 to solve large random instances of SQUFL formulated with the
perspective reformulation wherein the nonlinear inequalities are represented in
second-order-cone form. Note the order-of-magnitude improvement in solution
time, which comes solely from the reduced time to solve relaxations at nodes of
the branch-and-bound tree.

Table 3, taken from Table 1 of the paper of [1], shows the effectiveness of three
classes of cutting planes introduced there at closing the optimality gap at the root
node. In the table zR is the value of the relaxation of the original formulation,
zGLW is the value of the relaxation with three classes of valid inequalities added,
zP is the value of the relaxation of the perspective reformulation, and z∗ is the
optimal solution value. The table shows that the perspective reformulation is
significantly better at closing the integrality gap than are the cutting planes
of [1].

Table 2. SOCP Solution Times

m n T N

30 200 141.9 63
40 100 76.4 54
40 200 101.3 45
50 100 61.6 49
50 200 140.4 47

Table 3. Relaxation Bounds for SQUFL

m n zR zGLW zP z∗

10 30 140.6 326.4 346.5 348.7
15 50 141.3 312.2 380.0 384.1
20 65 122.5 248.7 288.9 289.3
25 80 121.3 260.1 314.8 315.8
30 100 128.0 327.0 391.7 393.2

The largest of the instances in Table 3 was solved to optimality by Lee [21] us-
ing BONMIN. The solution required 16697 CPU seconds and 45,901 nodes for the
original formulation, and a 21206 CPU seconds and 29277 nodes for the formu-
lation with additional inequalities added. The same instance was solved using
Mosek v5 on the perspective reformulation wherein the nonlinear inequalities
were written as second-order cone constraints. Solution of the instance required
only 44 branch-and-bound nodes and 23 CPU seconds to solve on Intel Pentium
4 CPU with a clock speed of 2.60GHz, a speedup factor of more than 700.

4.2 Network Design with Congestion Constraints

In this section, a model for constructing a communication network at minimum
cost meeting a design specification for total queuing delay is presented. Similar

Perspective Relaxation of MINLP with Indicator Variables 13

models appear in the works [2,22,23]. In the problem, there is a set of com-
modities K to be shipped over a capacitated directed network G = (N, A). The
capacity of arc (i, j) ∈ A is uij , and each node i ∈ N supplies or demands a
specified amount bk

i of commodity k. There is a fixed cost cij of opening each arc
(i, j) ∈ A, and we introduce {0-1} decision variables zij to indicate whether arc
(i, j) ∈ A is opened. The quantity of commodity k routed on arc (i, j) is measured
by the decision variable xk

ij . A typical function to measure the total weighted
congestion (or queuing delay) of a flow fij =

∑
k∈K xk

ij in the network is

ρ(f) def=
∑

(i,j)∈A

rij
fij

1− fij/uij
,

where rij ≥ 0 is a user-defined importance parameter for the queuing delay that
occurs on arc (i, j). We use a decision variables yij to measure the contribution
of the congestion on arc (i, j) to the total congestion ρ(f). The network should
be designed so as to keep the total queuing delay less than a given value β, and
this is to be accomplished at minimum cost. The resulting optimization model
can be written as

min
(x,y,z,f)∈R

|A|×|K|
+ ×R

|A|
+ ×B|A|×R

|A|
+

∑
(i,j)∈A

cijzij

subject to
∑

(j,i)∈A

xk
ij −

∑
(i,j)∈A

xk
ij = bk

i ∀i ∈ N, ∀k ∈ K

∑
k∈K

xk
ij − fij = 0 ∀(i, j) ∈ A

fij ≤ uijzij ∀(i, j) ∈ A (10)

yij ≥ rijfij

1− fij/uij
∀(i, j) ∈ A (11)∑

(i,j)∈A

yij ≤ β

An observation not previously made in the literature regarding this network
design problem is that the congestion inequalities (11) can be written as second-
order cone constraints. Multiplying both sides of the inequality by 1−fij/uij > 0,
adding rijf

2
ij to both sides of the inequality, and factoring the left-hand-side gives

an equivalent constraint

(yij − rijfij)(uij − fij) ≥ rijf
2
ij . (12)

Because yij ≥ rijfij and uij ≥ fij , (12) is precisely a constraint in rotated
second-order conic form (4).

The relaxation can be strengthened by noting that if zij = 0, then the con-
straints (10) force fij = 0, and the constraints (11) are redundant for the arc
(i, j). However, if zij = 1, then the definitional constraint (11) for the corre-
sponding yij must hold. We can then strengthen the formulation by applying

14 O. Günlük and J. Linderoth

the perspective reformulation. Specifically, each constraint (11) can be replaced
by its perspective counterpart:

zij

[
rijfij/zij

1− f/(uijzij)
− yij

zij

]
≤ 0. (13)

The constraints (13) can also be written as second order cone constraints in a
similar fashion to the non-perspective version (11). Specifically, simplifying the
left-hand size of the inequality (13), adding rijf

2
ij to both sides of the simplified

inequality and factoring gives the equivalent constraints

(yij − rijfij)(uijzij − fij) ≥ rijf
2
ij ,

which is a rotated second-order cone constraint since yij ≥ rijfij and uijzij ≥
fij . The fact that the inequalities in the perspective reformulation of (11) are
SOC-representable is no surprise. In fact, [17] (Page 96, Proposition 3.3.2) show
that the perspective transformation of a function whose epigraph is a SOC-
representable set is nearly always SOC-representable.

Computational Results. To assess the strength of the perspective reformula-
tion of this nonlinear network design problem, three test instances were created.
The first instance was the atlanta network from SNDLIB [24]. The second and
third instances were generated randomly. MPS files for all of the instances are
available on request from the authors.

Each of the instances in the test suite was solved using Mosek v5.0 using both
the original and perspective formulations of the problem on an Intel Pentium 4
CPU with a clock speed of 2.60GHz. A time limit of one CPU hour was imposed
on each run. Table 4 shows the sizes of each instance in the test suite, as well as
various characteristics of the solution. zroot is the value of the relaxation of the
root node of the branch-and-bound tree, (zL, zU) are the best lower and upper
bounds found in one hour of CPU time, # Nodes is the number of nodes in the
enumeration tree, and T is the CPU seconds on an Intel Pentium 4 CPU with a
clock speed of 2.60GHz.

Table 4. Impact of Perspective Reformulation on Network Design Instances

Original Form. Perspective Form.
Instance |N | |K| |A| zroot (zL, zU) # Nodes T zroot (zL, zU) # Nodes T

ATL 15 15 22 40.7 (55.4,55.4) 752 116.9 48.3 (55.4,55.4) 464 66.8
R1 20 20 44 37.7 (135.9,172.2) 2488 3600 78.8 (147.5,158.4) 5781 3600
R2 30 30 108 46.8 (140.8,326.9) 253 3600 59.9 (201.5,∞) 394 3600

For the network design problems, the perspective formulation is always quite
useful for improving the lower bounds, and in two of the cases, this translates into
improved performance. For the instance R2, Mosek was unable to find a feasible
solution to the instance when reformulated via the perspective transformation.

Perspective Relaxation of MINLP with Indicator Variables 15

5 Conclusions

In this work we derive an explicit characterization of the convex hull of the
union of a point and a bounded convex set defined by analytic functions. This
characterization can be used to produce strong “perspective” reformulations of
many practical mixed integer nonlinear programs. We also show that in many
cases, the nonlinear inequalities in the perspective reformulation can be cast
as second-order cone constraints, a transformation that greatly improves an in-
stance’s solvability. Computational results on two practical applications show the
power of the proposed techniques—in one case solving instances multiple orders
of magnitude faster than reported in the literature. Continuing work has two
primary thrusts: (1) Automatic detection of structures to which the perspective
transformation can be applied; and (2) Studying additional simple structures
occurring in practical MINLPs in the hope of deriving strong relaxations.

Acknowledgement

Author Linderoth would like to acknowledge support from the US Department
of Energy under grant DE-FG02-05ER25694, and by IBM, through the faculty
partnership program. The support of Mosek, ApS for donating licenses for their
software is also greatly appreciated.

References

1. Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separable convex
quadratic transportation-cost ufl. Technical Report RC24213 (W0703-042), IBM
Research Division (March 2007)

2. Boorstyn, R., Frank, H.: Large-scale network topological optimization. IEEE Trans-
actions on Communications 25, 29–47 (1977)

3. Perold, A.F.: Large-scale portfolio optimization. Management Science 30, 1143–
1160 (1984)

4. Bienstock, D.: Computational study of a family of mixed-integer quadratic pro-
gramming problems. Mathematical Programming 74, 121–140 (1996)

5. Jobst, N.J., Horniman, M.D., Lucas, C.A., Mitra, G.: Computational aspects of
alternative portfolio selection models in the presence of discrete asset choice con-
straints. Quantitative Finance 1, 489–501 (2001)

6. Aktürk, S., Atamtürk, A., Gürel, S.: A strong conic quadratic reformulation
for machine-job assignment with controllable processing times. Technical Report
BCOL Research Report 07.01, Industrial Engineering & Operations Research, Uni-
versity of California, Berkeley (2007)

7. Stubbs, R., Mehrotra, S.: A branch-and-cut method for 0-1 mixed convex program-
ming. Mathematical Programming 86, 515–532 (1999)

8. Balas, E., Ceria, S., Corneujols, G.: A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)

9. Cezik, M.T., Iyengar, G.: Cuts for mixed 0-1 conic programming. Mathematical
Programming 104, 179–202 (2005)

16 O. Günlük and J. Linderoth

10. Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-
2597, The RAND Corporation (1960)

11. Atamtürk, A., Narayanan, V.: Conic mixed integer rounding cuts. In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, Springer, Heidelberg (2007)

12. Nemhauser, G., Wolsey, L.: A recursive procedure for generating all cuts for 0-1
mixed integer programs. Mathematical Programming 46, 379–390 (1990)

13. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer
programs. Mathematical Programming 106, 225–236 (2006)

14. Stubbs, R.A.: Branch-and-Cut Methods for Mixed 0-1 Convex Programming. PhD
thesis, Northwestern University (December 1996)

15. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software 11-12, 625–653 (1999)

16. Mosek: Mosek ApS (2004), http://www.mosek.com
17. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. SIAM,

Philadelphia (2001)
18. Ceria, S., Soares, J.: Convex programming for disjunctive optimization. Mathe-

matical Programming 86, 595–614 (1999)
19. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird,

C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic
framework for convex mixed integer nonlinear programs. Discrete Optimization
(to appear)

20. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical
Programming 106(1), 25–57 (2006)

21. Lee, J.: Mixed-integer nonlinear programming: Some modeling and solution issues.
IBM Journal of Research & Development 51, 489–497 (2007)

22. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Endlewood Cliffs (1987)
23. Borchers, B., Mitchell, J.E.: An improved branch and bound algorithm for mixed

integer nonlinear programs. Computers & Operations Research 21, 359–368 (1994)
24. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0—survivable

network design library (2007) Optimization Online Preprint,
http://www.optimization-online.org/DB FILE/2007/08/1746.pdf

http://www.mosek.com
http://www.optimization-online.org/DB_FILE/2007/08/1746.pdf

Disjunctive Cuts for Non-convex Mixed Integer

Quadratically Constrained Programs

Anureet Saxena1, Pierre Bonami2, and Jon Lee3

1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA
anureets@andrew.cmu.edu

2 Laboratoire d’Informatique Fondamentale de Marseille,
CNRS-Université de Marseille, France
pierre.bonami@lif.univ-mrs.fr

3 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA
jonlee@us.ibm.com

Abstract. This paper addresses the problem of generating strong con-
vex relaxations of Mixed Integer Quadratically Constrained Program-
ming (MIQCP) problems. MIQCP problems are very difficult because
they combine two kinds of non-convexities: integer variables and non-
convex quadratic constraints. To produce strong relaxations of MIQCP
problems, we use techniques from disjunctive programming and the lift-
and-project methodology. In particular, we propose new methods for
generating valid inequalities by using the equation Y = xxT . We use
the concave constraint 0 � Y − xxT to derive disjunctions of two types.
The first ones are directly derived from the eigenvectors of the matrix
Y −xxT with positive eigenvalues, the second type of disjunctions are ob-
tained by combining several eigenvectors in order to minimize the width
of the disjunction. We also use the convex SDP constraint Y − xxT � 0
to derive convex quadratic cuts and combine both approaches in a cut-
ting plane algorithm. We present preliminary computational results to
illustrate our findings.

1 Introduction

In this paper we study the mixed integer quadratically constrained program
defined as follows:

min aT
0 x

s.t.
xT Aix + aT

i x + bi ≤ 0, i = 1 . . .m ;
xj ∈ Z, j ∈ NI ;

l ≤ x ≤ u,

(MIQCP′)

where N (n = |N |) denotes the set of variables, NI denotes the set of integer
constrained variables, Ai (i = 1 . . .m) are n×n symmetric (usually not positive
semidefinite) matrices, ai (i = 0 . . .m), l and u are n-dimensional vectors and
bi (i = 1 . . .m) are scalars. The decision variant of MIQCP′ is well known

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 17–33, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 A. Saxena, P. Bonami, and J. Lee

to be undecidable, even in the pure integer case, when the variables are not
bounded (see [10]). Many natural applications of MIQCP′ can be found in the
global-optimization literature. In this paper our focus is to derive tight convex
relaxations for MIQCP′ by using cutting plane approaches.

A standard approach to derive a convex relaxation of MIQCP′ is to first
introduce extra variables Yij = xixj in the formulation. Consequently, the fol-
lowing lifted reformulation of MIQCP′ is obtained

min aT
0 x

s.t.
Ai.Y + aT

i x + bi ≤ 0, i = 1 . . .m ;
xj ∈ Z, j ∈ NI ;

l ≤ x ≤ u ;
Y = xxT .

(MIQCP)

Note that the only non-convex constraint in MIQCP is the set of non-linear
equations Y = xxT , which can be relaxed as a pair of SDP inequalities Y −xxT �
0 and xxT − Y � 0. The former of these inequalities can be expressed as a LMI
(Linear Matrix Inequality) on the cone of positive semi-definite matrices, while
the latter non-convex inequality constitutes the topic of this paper.

One of the common predicaments for non-convex problems is that they are
composed of seemingly innocuous looking non-convex constraints (for example
xi ∈ {0, 1}) linked together through a set of (usually linear or convex) con-
straints. For instance, a mixed integer 0-1 program is composed of a linear pro-
gram and binary {0, 1} constraints on some of the variables. In these kind of
problems, convexifying the non-convex constraints per se does not yield any
significant improvement until the convexification process explicitly takes into
account the constraints linking the non-convexities together. For instance, con-
vexifying the 0-1 conditions on a set of binary variables in a MILP yields the
unit hypercube, which obviously offers little help in solving an MILP.

Interestingly, most of the existing convexification based approaches in MINLP
fail to take the linking constraints into account and work exclusively with simple
non-convex sets, and try to derive closed form expressions for the convexified
sets [23,24]. Some other approaches try to perform local convexification and
impose that by additional constraints. For instance, imposing the SDP constraint
Y − xxT � 0 falls into this category of approaches. Naturally, we are interested
in an approach which takes a holistic view of the problem and tries to capitalize
on the interaction between the problem constraints. In this paper, we propose
to use the framework of disjunctive programming to accomplish this goal.

Classical disjunctive programming of Balas [2] requires a linear relaxation of
the problem and a disjunction that is satisfied by all the feasible solution to the
problem. As is now customary in the MINLP literature, we will use the outer-
approximation (OA) of MIQCP as the quintessential linear relaxation. We use
the phrase “suitably defined OA” in this paper to emphasize the dependence of
OA under discussion on the incumbent solution (x̂, Ŷ) to the convex relaxation
of MIQCP.

Disjunctive Cuts for Non-convex MIQCP 19

As for the choice of disjunctions, we seek the sources of non-convexities in
MIQCP. Evidently, MIQCP has two of these, namely, the integrality con-
ditions on the xj (j ∈ NI) variables and the non-linear equations Y = xxT .
Integrality constraints have been used to derive disjunctions in MILP for the
past five decades, and we do not add anything new to this body of work. Our
main contribution lies in deriving valid disjunctions from Y = xxT , by analyzing
the eigenvectors of the matrix Ŷ − x̂x̂T , and deriving univariate expressions of
the form Y.ccT ≤ (cT x)2 which are subsequently used to derive disjunctive cuts.

The rest of the paper is organized as follows. In §2 we revisit some of the basic
ideas in disjunctive programming and give a detailed description of our disjunc-
tive cut generator. In §3 we derive a large class of valid disjunctions for MIQCP
and establish interesting connections with elementary 0-1 disjunctions in MILP.
§4 investigates the problem of designing disjunctions that use more problem in-
formation than is available from the eigenvectors of Ŷ − x̂x̂T . We introduce the
notion of the width of a disjunction, and show that disjunctions with smaller
widths are likely to give rise to stronger disjunctive cuts. We build on this obser-
vation and design a MILP model to find better disjunctions. A scheme for diver-
sifying the class of disjunctions based on the Grahm-Schmidt orthogonalization
procedure is briefly discussed. Finally, in §5, we report preliminary computa-
tional results on three types of instances: selected problems from GLOBALLib
[11], some examples of MIQCP instances from [12] which arise in chemical
engineering applications and some continuous boxed constrained QPs from [26].

2 Disjunctive Programming

In this section we review some of the basic ideas from disjunctive programming
and give a detailed description of our cut generator. Given a polytope P =
{x | Ax ≥ b}, a disjunction D =

∨q
t=1 (Dtx ≥ dt) and a point x̂ ∈ P , a central

question in disjunctive programming is to show that x̂ ∈ Q = clconv ∪q
t=1 {x ∈

P | Dtx ≥ dt} or find a valid inequality αx ≥ β for Q that is violated by x̂.
This question arises in several areas of computational optimization where the

specific form of the polytope P and disjunction D is governed by the underlying
application. For instance, in the context of mixed integer linear programming
(MILP), the polytope P usually represents the LP-relaxation of the MILP, while
the disjunctions are obtained by exploiting the integrality constraints (see for
example [3,4]). Similarly, in the context of probabilistic programming, P usually
represents the deterministic variant of the problem, whereas the disjunction is
derived from the so-called p-efficient frontier [19,18]. In the context of MIQCP,
P will represent a suitably chosen outer-approximation of MIQCP, while the
disjunction is obtained by exploiting the integrality constraints on the variables
xj (j ∈ NI) or from the eigenvectors of the matrix Y − xxT (see §3).

The theorem that follows formulates the separation problem mentioned above
as a linear program. It follows immediately from the results presented in [2].

Theorem 1. x̂ ∈ Q if and only if the optimal value of the following Cut-
Generation Linear Program (CGLP) is non-negative.

20 A. Saxena, P. Bonami, and J. Lee

min αx̂− β
s.t.

α = utA + vtDt, t = 1 . . . q ;
β ≤ utb + vtdt, t = 1 . . . q ;

ut, vt ≥ 0, t = 1 . . . q ;∑q
t=1 (utξ + vtξt) = 1,

(CGLP)

where ξ, ξt (t = 1 . . . q) are any non-negative vectors of conformable dimensions
that satisfy ξt > 0 (t = 1 . . . q). If the optimal value of the CGLP is negative,
and (α, β, u1, v1, . . . , uq, vq) is an optimal solution of the CGLP, then αx ≥ β is
a valid inequality for Q which cuts off x̂.

The constraint
∑q

t=1 (utξ + vtξt) = 1 of the CGLP, referred to as the normaliza-
tion constraint, plays a central role in determining the strength and numerical
stability of the resulting cut [4]. In our computational results, we used the fol-
lowing normalization:

1. ξt
i = 1, ∀ i = 1 . . .mt, t = 1 . . . q, where mt denotes the number of rows in

the matrix Dt.
2.

ξi =
{

0, for i ∈ L ;
||ai||1, otherwise,

where L denotes the set of lower-bound constraints in Ax ≥ b, while ai

denotes the ith row of the matrix A.

The above normalization has two important characteristics. First, it implic-
itly scales the constraints in Ax ≥ b (other than the lower-bound constraints)
so that all of them have a �1-norm of 1, which in turn significantly improves
the numerical properties of the resulting cut. Second, assigning a normalization
coefficient of zero to the lower-bound constraints allows us to handle these con-
straints as bounds on variables associated with the dual of the CGLP, thereby
speeding up the overall algorithm to solve the CGLP.

In order to use the machinery of disjunctive programming to strengthen the
formulation of MIQCP, we need a class of disjunctions that are satisfied by
every feasible solution to MIQCP. Note that MIQCP has two sources of non-
convexities, namely the integrality constraints on xj (j ∈ NI) variables, and
the equality constraints Y = xxT . While the former can be used to derive split
disjunctions, as is usually done in MILP, the latter need to be handled more
carefully. The section that follows gives a novel way of deriving valid disjunctions
from the constraints Y = xxT .

3 Valid Disjunctions for MIQCP

Note that for c ∈ R
n, any feasible solution to MIQCP satisfies (cT x)2 = Y.ccT ,

which in turn is equivalent to the following two inequalities (cT x)2 ≤ Y.ccT and

Disjunctive Cuts for Non-convex MIQCP 21

(cT x)2 ≥ Y.ccT . The former of these two inequalities is a convex quadratic
constraint that can be readily added to the formulation. The second constraint
(cT x)2 ≥ Y.ccT , on the other hand, gives rise to the following disjunction which
is satisfied by every feasible solution to MIQCP:
�

ηL(c) ≤ cT x ≤ θ
−(cT x)(ηL(c) + θ) + θηL(c) ≤ −Y.ccT

��� θ ≤ cT x ≤ ηU (c)
−(cT x)(ηU (c) + θ) + θηU (c) ≤ −Y.ccT

�
,

(1)

where ηL(c) = min{cT x | (x, Y) ∈ P̃}, ηU (c) = max{cT x | (x, Y) ∈ P̃}, P̃ is a
suitably chosen relaxation of MIQCP and θ ∈ (ηL(c), ηU (c)). In our computa-
tional experiments, we chose P̃ to be a suitably defined outer-approximation of
MIQCP, and θ = ηL(c)+ηU (c)

2 . The above disjunction can be derived by splitting
the range [ηL(c), ηU (c)] of the function cT x over P̃ into two intervals [ηL(c), θ]
and [θ, ηU (c)], and constructing a secant approximation of the function −(cT x)2

in each of the intervals, respectively. The above disjunction can then be used to
derive disjunctive cuts by using the apparatus of CGLP. Furthermore, for any
integer q > 1 a q-term disjunction can be obtained by splitting the [ηL(c), ηU (c)]
interval into q parts, and constructing a secant approximation of −(cT x)2 in
each one of the q intervals. Non-convex inequalities of the form (cT x)2 ≥ Y.ccT

are referred to as univariate expressions in the sequel.
From a computational standpoint, the only question that remains to be an-

swered is, how can we judiciously choose a vector c that is likely to give rise
to strong cuts. We describe two procedures for deriving such vectors; both of
these procedures use the eigenvectors of the matrix Ẑ = Ŷ − x̂x̂T where (x̂, Ŷ)
denotes the incumbent solution to the convex relaxation of MIQCP that we
want to cut off. Let c1, . . . , cn denote a set of orthonormal eigenvectors of Ẑ, and
let μ1 ≥ μ2 . . . ≥ μn be the corresponding eigenvalues.

Let k ∈ {1, . . . , n} and let c = ck. Note that if μk < 0, then (cT x)2 ≤ Y.ccT

is a valid convex quadratic cut which cuts off (x̂, Ŷ). If μk > 0, then (cT x)2 ≥
Y.ccT is a valid inequality (albeit non-convex) for MIQCP which cuts off (x̂, Ŷ).
Consequently, in this case the disjunction derived from (cT x)2 ≥ Y.ccT is a good
candidate for generating disjunctive cuts. In our computational experiments, we
added a convex quadratic cut for every negative eigenvalue of Ẑ, and generated
a disjunctive cut (if any) from every positive eigenvalue of Ẑ.

Several comments are in order. First, the relaxation of MIQCP obtained
by replacing Y = xxT by Y − xxT � 0 has been studied by several other au-
thors ([13,21,6,1]). From engineering viewpoint, incorporating the positive semi-
definiteness condition Y − xxT � 0 as part of the relaxation poses a serious
hurdle, since most general purpose solvers for nonlinear optimization (such as
Ipopt [27], FilterSQP [9]) are not designed to handle conic constraints of the

form Y − xxT � 0 (or equivalently
[

1 x
xT Y

]
� 0). Special purpose softwares

for conic programming (such as SeDuMi [22]), on the other hand, cannot handle

22 A. Saxena, P. Bonami, and J. Lee

arbitrary convex constraints. Since our solver for the convex relaxations Ipopt
[27] is a general purpose solver, we incorporated the effect of Y − xxT � 0 by
iteratively generating convex quadratic inequalities (cT x)2 ≤ Y.ccT derived from
eigenvectors c of Ẑ associated with negative eigenvalues.

Second, our approach of strengthening the relaxation of MIQCP by gener-
ating disjunctive cuts can also be viewed as convexifying the feasible region of
MIQCP. Convexification of non-convex feasible regions is an active research
area in MINLP community ([23,24,25,26]). Most of these convexificiation based
approaches, however, aim to convexify non-convex problem constraints individu-
ally, and often fail to exploit the interaction across problem constraints to derive
stronger cuts. A disjunctive programming based approach, such as the one pre-
sented in this paper, takes a holistic view of the problem and tries to draw
stronger inferences à la disjunctive cuts by combining information from all the
problem constraints.

Third, there is an interesting connection between univariate expressions
(cT x)2 ≥ Y.ccT derived from eigenvectors c of Ẑ, and elementary 0-1 disjunctions
encountered in MILP. For the sake of discussion, consider a mixed 0-1 program
min{c̃z | Ãz ≥ b̃, zj ∈ {0, 1} ∀j ∈ J}, and let z̃ be the optimal solution to the
LP-relaxation of this problem. Recall that the fractionality (or integer infeasi-
bility) of z̃j (j ∈ J) is defined to be min{z̃j, 1− z̃j}. Elementary 0-1 disjunctions
associated with components of z̃ with higher infeasibility are often preferred over
others for generating disjunctive cuts. With respect to MIQCP, the infeasibility
of (x̂, Ŷ) with respect to the univariate expression (cT x)2 ≥ Y.ccT can be defined
to be cT (Ŷ −x̂x̂T)c

||c||2 . Consequently, the problem of choosing a univariate expression

with maximum infeasibility can be phrased as, max||c||2=1 cT (Ŷ − x̂x̂T)c ; clearly
c1 is the optimal solution to this problem with optimal solution value of μ1.
To summarize, our choice of using the eigenvectors of Ẑ to construct univari-
ate expressions is akin to choosing the most fractional variable for generating a
lift-and-project cut in the MILP framework.

4 More Disjunctions

Note that univariate expressions derived from eigenvectors of Ẑ are oblivious
to other constraints in the problems. In other words, these eigenvectors are not
influenced by majority of the problem constraints, and hence do not completely
exploit the problem structure. In this section, we give a systematic procedure
for generating univariate expressions that utilize all the problem constraints, and
are hence likely to give rise to stronger cuts (also see §5).

For c ∈ R
n let ηL(c) = min{cT x | (x, Y) ∈ P} and ηU (c) = max{cT x | (x, Y) ∈

P} for a suitably chosen outer approximation P of MIQCP. Let η(c) = ηU (c)−
ηL(c) denote the width of the interval [ηL(c), ηU (c)]. The following inequality
represents the secant approximation of the function −(cT x)2 in the [ηL(c), ηU (c)]
interval, and is hence a valid disjunctive cut derived from the disjunction (1).

−cT x(ηL(c) + ηU (c)) + ηL(c)ηU (c) ≤ −Y.ccT . (2)

Disjunctive Cuts for Non-convex MIQCP 23

The proposition that follows gives a closed form expression for the maximum
error incurred by the secant approximation of the negative square function in a
bounded interval.

Proposition 1. Let f : R → R such that f(x) = −x2, and let g(x) = −x(a +
b)+ab represent the secant approximation of f(x) in the [a, b] (a, b ∈ R) interval;
then maxx∈[a,b] (f(x)− g(x)) = (a−b)2

4 .

As a direct consequence of the above proposition it follows that secant approxi-
mation error incurred by (2) is proportional to η(c)2. Consequently, we can use
−η(c) as a metric to measure the strength of the disjunctive cuts obtainable from
Y.ccT ≤ (cT x)2. The proposition that follows show that η(c) can be computed
by solving a linear program.

Proposition 2. Let P = {(x, Y) | Ax + BY ≥ b}, where B is a tensor of
conformable dimensions. Then

η(c) = −max (u + v)T b
s.t.

uA = c ;
−vA = c ;
u.B = 0 ;
v.B = 0 ;
u, v ≥ 0.

To summarize, we are looking for vectors c ∈ R
n whose univariate expression

Y.ccT ≤ (cT x)2 is violated by (x̂, Ŷ) and has a small width η(c). Note that if
we restrict our attention to the subspace spanned by eigenvectors of Ẑ with
positive eigenvalues, then the first condition is automatically satisfied. Thus, we
can model the problem of determining a vector c that gives the best univariate
expression as

min η(c)− ε
(∑n

j=1 |λj |μj

)
s.t.

c =
∑n

j=1 λjcj∑n
j=1 |λj | = 1 ;

λj = 0, ∀j ∈ {1 . . . n} s.t. μj ≤ 0.

In the above model, the constraint
∑n

j=1 |λj | = 1 models that the �1-norm
of c expressed in the basis defined by (c1, . . . , cn) is equal to 1. The constraint
λj = 0 ∀j s.t μj ≤ 0 ensures that c lies in the subspace spanned by eigenvectors

of Ẑ with positive eigenvalues. The penalty term ε
(∑n

j=1 |λj |μj

)
(ε = 10−4) ex-

presses our desire to bias the c vector towards eigenvectors with large eigenvalues.
The above model can be easily recast as the following mixed integer program,
referred to as Univariate-expression Generating Mixed Integer Program

24 A. Saxena, P. Bonami, and J. Lee

min −(u + v)T b−∑n
j=1 λ+

j μjε

s.t.
uA = c ;
−vA = c ;
u.B = 0 ;
v.B = 0 ;
u, v ≥ 0 ;

c =
∑n

j=1 λjcj ;
zj − 1 ≤ λj , ∀j = 1 . . . n ;

λj ≤ zj, ∀j = 1 . . . n ;
λ+

j ≤ λj + 2(1− zj), ∀j = 1 . . . n ;
λ+

j ≤ −λj + 2zj, ∀j = 1 . . . n ;
λ+

j ≥ 0, ∀j = 1 . . . n ;∑n
j=1 λ+

j = 1 ;
λj = 0, ∀j ∈ {1 . . . n} s.t. μj ≤ 0 ;
zj ∈ {0, 1} j ∈ {1, . . . , n}.

(UGMIP)

Another idea that has played a significant role in the successful application of
general-purpose cutting planes in MILP is that of cut diversification [8,4]. Cut
diversification refers to the strategy of adding a batch of cuts each of which af-
fects a different part of the incumbent solution thereby triggering a collaborative
action and yielding improvements that cannot be obtained by a single cut. For
instance, the tremendous practical performance of Mixed Integer Gomory Cuts is
often attributed to their well-diversified nature (see [7]). Interestingly, the above
UGMIP can be easily augmented to generate a set of diversified vectors c instead
of a single vector. To see this, suppose a set of vectors ck =

∑n
j=1 λ

(k)
j cj (i =

1 . . .K) has already been generated, and we are interested in finding a vector c
that is different from ck (k = 1 . . .K). This can be accomplished by amending
the UGMIP by appending the following constraints which not only exclude the
vectors ck (k = 1 . . .K), but also ensure mutual orthogonality between any fea-
sible solution of UGMIP and ck (k = 1 . . . K):

n∑
j=1

λjλ
k
j = 0 ∀k = 1 . . .K .

In our computational experimentswe solvedUGMIPusingCPLEX10.1 enumerat-
ing atmost 2000branch-and-boundnodes.Furthermore, thediversification scheme
mentioned abovewas used iteratively until the resulting UGMIP became infeasible
or CPLEX was unable to find a feasible solution within the stipulated node limit.

5 Computational Results

We report preliminary computational results in this section. Since the aim of
these experiments was to assess the performance of different classes of cutting
planes and their relative strengths, we report the percentage duality gap closed
by each one of them at the root node. All of the experiments described in this
section used the following general setup:

Disjunctive Cuts for Non-convex MIQCP 25

1. Solve the convex relaxation of MIQCP.
2. Generate cutting planes to cut off (x̂, Ŷ).
3. If a violated cut was generated, then goto step (1), else STOP.

The above loop was repeated until a time-limit of 60 minutes was reached
or the code was unable to find any violated cut. We implemented the following
three variants of cutting planes discussed in the previous sections.

– Variant 1: Only convex quadratic cuts derived from eigenvectors associated
with negative eigenvalues of Ŷ − x̂x̂T were used.

– Variant 2: Same as Variant 1, except that disjunctive cuts from univariate
expression derived from eigenvectors of Ẑ with positive eigenvalues were also
used.

– Variant 3: Same as Variant 2 except that disjunctive cuts from additional
univariate expressions found by using the UGMIP machinery and diversifi-
cation scheme were also used.

The three variants were implemented using the open-source framework Bonmin
[5] from COIN-OR. The nonlinear solver used is Ipopt [27], the eigenvalue prob-
lems are solved using Lapack and the cut generation linear programs are solved
using CPLEX10.1. Two comments are in order. First, we strengthen the initial
convex relaxation of MIQCP by adding the following RLT inequalities [14,20],
for i, j ∈ {1 . . . n} such that i ≤ j,

yij − lixj − ujxi + liuj ≤ 0
yij − ljxi − uixj + ljui ≤ 0
yij − ljxi − lixj + lj li ≥ 0
yij − ujxi − uixj + ujui ≥ 0.

Second, while generating the disjunctive cuts we remove all the RLT inequalities
from the outer approximation except those which are binding at the incumbent
solution. While solving the CGLP we use a column generation based approach
to generate ut

i variables corresponding to non-binding RLT inequalities. Since
there is a huge number O(n2) of RLT inequalities, we found it more efficient
to use a column generation based approach to handle them while solving the
CGLPs thereby exploiting the reoptimization capabilities of the CPLEX linear
programming solver. Since Ipopt has a very limited support for warm-starting,
we found it more suitable to supply all the RLT inequalities simultaneously while
solving the convex relaxations.

Next we describe our computational results on the following three test-beds:
GLOBALLib [11], instances from Lee and Grossmann [12] and Box-QP instances.

GLOBALLib is a repository of 413 global optimization instances of widely
varying types and sizes. Of these 413 instances, we selected all problems with
at most 50 variables which can be easily converted into instances of MIQCP.
For instance, some of the problems have polynomial terms (x1x2x3x4x5, x3

1 etc)
which can be converted into quadratic expressions by introducing additional
variables. Similarly, some of the problems do not have explicit upper bounds on

26 A. Saxena, P. Bonami, and J. Lee

Table 1. Summary Results: GLOBALLib instances with non-zero Duality Gap

V1 V2 V3
>99.99 % gap closed 16 23 23
98-99.99 % gap closed 1 44 52
75-98 % gap closed 10 23 21
25-75 % gap closed 11 22 20
0-25 % gap closed 91 17 13
Total Number of Instances 129 129 129
Average Gap Closed 24.80% 76.49% 80.86%

Table 2. Summary of results on the Lee-Grossmann examples

Instance RLT Opt V1 V2 V3
Example 1 -58.70 -11 -58.70 -37.44 -37.44
Example 2 -414.94 -14 -93.19 -14.26 -14.26
Example 3 -819.66 -510.08 -793.15 -513.61 - 511.10
Example 4 -499282.59 -116,575 -472,727.49 -363,487.69 -359,618.10

the variables; for such problems we used linear programming techniques to deter-
mine valid upper bounds thereby making them amenable to techniques discussed
in this paper. The final set of selected problems comprised 160 instances.1

We found that Ipopt encounters numerical problems on 6 of the selected in-
stances, which were later excluded from our experiments. For one instance (alky-
lation) there is no known feasible solution which makes it difficult to assess the
performance of cutting planes. Out of the remaining 153 instances, 24 instances
have zero duality gap2; in other words the RLT relaxation already closes 100%
of the gap on these instances. Tables 3, 4 and 5 report the computational results
on the remaining 129 instances, while Table 1 reports the same in summarized
form. The second column of Tables 3, 4 and 5 reports the optimal value of the
RLT relaxation of MIQCP, while the third column reports the value of the
best known solution. Note that either variant 2 or variant 3 closes more than
99% of the duality gap on some of the instances (st qpc-m3a, st ph13, st ph11,
ex3 1 4, st jcbpaf2, ex2 1 9 etc) on which variant 1 is unable to close any gap.
Furthermore, variant 3 closes 10% more duality gap than variant 2 on some of
the instances (ex2 1 1, ex3 1 4, ex5 2 4, ex7 3 1, ex9 2 3, st pan2 etc) showing
the interest of disjunctions obtained from solution of the UGMIP problem.

Finally, in order to assess the performance of our code on the 24 instances with
no duality gap, we report the spectral norm of Ŷ − x̂x̂T in Table 6, where (x̂, Ŷ)
denotes the incumbent solution at the last iteration of the respective variant.
1 Which can be downloaded in AMPL .mod format from www.andrew.cmu.edu/user/

anureets/MIQCP
2 We define the duality gap closed by a relaxation I of MIQCP as, opt(I)−RLT

opt−RLT
×100,

where opt(I), RLT, and opt denote the optimal value of I, the RLT relaxation of
MIQCP and MIQCP, respectively.

Disjunctive Cuts for Non-convex MIQCP 27

Table 3. GLOBALLib Instances with non-zero Duality Gap (Part 1)

% Duality Gap Closed Time(sec)

Instance RLT OPT V1 V2 V3 V1 V2 V3

alkyl -2.7634 -1.7650 0.00 55.83 63.75 10.621 3619.874 3693.810

circle 0.0000 4.5742 45.74 99.89 99.84 0.218 0.456 0.664

dispatch 3101.2805 3155.2879 100.00 100.00 100.00 0.044 0.052 0.066

ex2 1 1 -18.9000 -17.0000 0.00 72.62 99.92 0.009 704.400 17.835

ex2 1 10 39668.0556 49318.0180 22.05 99.37 99.82 6.719 29.980 70.168

ex2 1 5 -269.4528 -268.0146 0.00 99.98 99.99 0.020 0.173 0.188

ex2 1 6 -44.4000 -39.0000 0.00 99.95 99.97 0.023 3397.650 54.326

ex2 1 7 -6031.9026 -4150.4101 0.00 41.17 45.58 0.188 3607.439 3763.506

ex2 1 8 -82460.0000 15639.0000 0.00 84.70 92.75 0.491 3632.275 3627.700

ex2 1 9 -2.2000 -0.3750 0.00 98.79 99.73 0.140 1587.940 3615.766

ex3 1 1 2533.2008 7049.2480 0.00 15.94 22.13 1.391 3600.268 3681.021

ex3 1 2 -30802.7563 -30665.5387 49.74 99.99 99.99 0.035 0.083 0.108

ex3 1 3 -440.0000 -310.0000 0.00 99.99 99.99 0.013 0.064 0.096

ex3 1 4 -6.0000 -4.0000 0.00 86.31 99.57 0.009 21.261 581.295

ex4 1 1 -173688.7998 -7.4873 100.00 100.00 100.00 0.287 0.310 0.444

ex4 1 3 -7999.4583 -443.6717 56.40 93.54 99.86 0.080 0.285 0.552

ex4 1 4 -200.0000 0.0000 100.00 100.00 100.00 0.247 0.243 0.532

ex4 1 6 -24075.0002 7.0000 100.00 100.00 100.00 0.185 0.308 0.508

ex4 1 7 -206.2500 -7.5000 100.00 100.00 100.00 0.128 0.114 0.165

ex4 1 8 -29.0000 -16.7389 100.00 100.00 100.00 0.043 0.059 0.103

ex4 1 9 -6.9867 -5.5080 0.00 43.59 37.48 0.008 1.307 1.273

ex5 2 2 case1 -599.8996 -400.0000 0.00 0.00 0.00 0.011 0.016 0.935

ex5 2 2 case2 -1200.0000 -600.0000 0.00 0.00 0.00 0.021 0.047 0.511

ex5 2 2 case3 -875.0000 -750.0000 0.00 0.36 0.31 0.016 0.358 0.474

ex5 2 4 -2933.3334 -450.0000 0.00 79.31 99.92 0.046 68.927 1044.400

ex5 2 5 -9700.0001 -3500.0001 0.00 6.27 6.37 1.825 3793.169 3618.084

ex5 3 2 0.9979 1.8642 0.00 7.27 21.00 0.355 245.821 3672.529

ex5 3 3 1.6313 3.2340 0.00 0.21 0.18 3764.946 3693.758 7511.839

ex5 4 2 2598.2452 7512.2301 0.00 27.57 26.41 1.141 3614.376 3866.626

ex7 3 1 0.0000 0.3417 0.00 0.00 85.43 0.313 5.582 3622.223

ex7 3 2 0.0000 1.0899 0.00 59.51 70.26 0.788 3609.704 3614.759

ex8 1 3 -7.7486E+12 1.0000 0.04 0.04 0.00 0.509 0.494 0.641

ex8 1 4 -13.0000 0.0000 100.00 100.00 100.00 0.020 0.038 0.051

ex8 1 5 -3.3333 0.0000 68.30 68.97 68.96 0.839 1.246 100.476

ex8 1 7 -757.5775 0.0293 77.43 77.43 95.79 75.203 75.203 3615.517

ex8 1 8 -0.8466 -0.3888 0.00 76.49 90.88 7.722 3607.682 3628.366

ex8 4 1 -5.0000 0.6186 91.84 91.09 86.49 3659.232 3642.131 4180.427

ex8 4 2 -5.0000 0.4852 94.07 93.04 87.87 3641.875 3606.071 3757.098

ex9 1 4 -63.0000 -37.0000 0.00 0.00 1.55 0.077 0.603 244.126

ex9 2 1 -16.0000 17.0000 54.54 60.04 92.02 3603.428 2372.638 3622.960

Note that we were able to generate almost feasible solutions (i.e spectral-norm
≤ 10−4) on 17 out of 24 instances.

The ex9
 instances in the GLOBALLib repository contain the linear comple-
mentarity constraints (LCC) xixj = 0 on a subset of variables. These constraints
give rise to the following disjunction, (xi = 0) ∨ (xj = 0), which in turn can
be embedded within the CGLP framework to generate disjunctive cuts. In order

28 A. Saxena, P. Bonami, and J. Lee

Table 4. GLOBALLib Instances with non-zero Duality Gap (Part 2)

% Duality Gap Closed Time(sec)

Instance RLT OPT V1 V2 V3 V1 V2 V3

ex9 2 2 -50.0000 100.0000 70.37 88.29 98.06 1227.898 3606.357 3610.411

ex9 2 3 -30.0000 0.0000 0.00 0.00 47.17 0.125 3.819 3625.114

ex9 2 4 -396.0000 0.5000 99.87 99.87 99.89 2.801 8.897 5.258

ex9 2 6 -406.0000 -1.0000 87.23 87.93 62.00 851.127 2619.018 1058.376

ex9 2 7 -9.0000 17.0000 42.31 51.47 86.25 3602.364 3628.249 3627.920

himmel11 -30802.7566 -30665.5387 49.74 99.99 99.99 0.053 0.082 0.120

house -5230.5433 -4500.0000 0.00 86.93 97.92 0.435 12.873 149.678

hydro 4019717.9291 4366944.1597 100.00 100.00 100.00 8.354 20.668 191.447

mathopt1 -912909.0091 0.0000 100.00 100.00 100.00 1.727 2.448 3.770

mathopt2 -11289.0001 0.0000 100.00 100.00 100.00 0.351 0.229 0.400

meanvar 0.0000 5.2434 100.00 100.00 100.00 0.179 0.276 0.657

nemhaus 0.0000 31.0000 53.97 100.00 100.00 0.836 0.198 0.355

prob05 0.3151 0.7418 0.00 99.78 99.49 0.007 0.165 0.173

prob06 1.0000 1.1771 100.00 100.00 100.00 0.023 0.024 0.031

prob09 -100.0000 0.0000 100.00 99.99 100.00 0.582 0.885 1.689

process -2756.5935 -1161.3366 7.68 88.05 95.03 6.379 3620.085 3611.299

qp1 -1.4313 0.0008 85.76 89.12 81.23 3659.085 3897.521 3700.918

qp2 -1.4313 0.0008 86.13 89.15 83.06 3643.188 4047.592 4255.863

rbrock -659984.0066 0.0000 100.00 100.00 100.00 0.353 3.194 5.611

st bpaf1a -46.0058 -45.3797 0.00 81.73 88.52 0.049 0.894 3.790

st bpaf1b -43.1255 -42.9626 0.00 90.73 92.86 0.047 3.299 12.166

st bpv2 -11.2500 -8.0000 0.00 99.99 99.99 0.033 0.029 0.034

st bsj2 -0.6260 1.0000 0.00 99.98 99.96 0.009 1.974 2.235

st bsj3 -86768.5509 -86768.5500 0.00 0.00 0.00 0.012 0.011 0.011

st bsj4 -72700.0507 -70262.0500 0.00 99.86 99.80 0.014 1.715 1.384

st e02 171.4185 201.1591 0.00 99.88 99.95 0.008 0.095 0.118

st e03 -2381.8947 -1161.3366 29.58 91.63 92.82 715.006 3639.297 3613.883

st e05 3826.3885 7049.2493 0.00 50.43 58.38 0.194 16.217 41.354

st e06 0.0000 0.1609 0.00 0.00 0.00 0.215 0.726 1.911

st e07 -500.0000 -400.0000 0.00 99.97 99.97 0.042 0.350 0.383

st e08 0.3125 0.7418 0.00 99.81 99.89 0.008 0.208 0.171

st e09 -0.7500 -0.5000 0.00 92.58 92.58 0.012 0.014 0.018

st e10 -29.0000 -16.7389 100.00 100.00 100.00 0.036 0.045 0.069

st e18 -3.0000 -2.8284 100.00 100.00 100.00 0.015 0.018 0.022

st e19 -879.7500 -86.4222 93.50 95.21 95.18 0.373 0.613 0.991

st e20 -0.8466 -0.3888 0.00 76.38 90.88 7.409 3610.271 3623.275

st e23 -3.0000 -1.0833 0.00 98.40 98.40 0.011 0.087 0.108

st e24 0.0000 3.0000 0.00 99.81 99.81 0.007 0.501 0.657

st e25 0.2473 0.8902 87.20 100.00 100.00 0.312 0.161 0.247

st e26 -513.0000 -185.7792 0.00 99.96 99.96 0.006 0.036 0.050

to test the effectiveness of these cuts, we amended our code to automatically
detect linear complementarity constraints, and use the corresponding disjunc-
tions along with the default medley of disjunctions to generate disjunctive cuts.
Table 7 reports our computational results. It is worth observing that while the
default version of our code is unable to close any significant gap on the ex9 1 4

Disjunctive Cuts for Non-convex MIQCP 29

Table 5. GLOBALLib Instances with non-zero Duality Gap (Part 3)

% Duality Gap Closed Time(sec)

Instance RLT OPT V1 V2 V3 V1 V2 V3

st e28 -30802.7566 -30665.5387 49.74 99.99 99.99 0.051 0.088 0.118

st e30 -3.0000 -1.5811 0.00 0.00 0.00 0.014 0.035 6.489

st e33 -500.0000 -400.0000 0.00 99.94 99.95 0.047 0.457 0.382

st fp1 -18.9000 -17.0000 0.00 72.62 99.92 0.009 658.824 18.013

st fp5 -269.4528 -268.0146 0.00 99.98 99.99 0.018 0.175 0.180

st fp6 -44.4000 -39.0000 0.00 99.92 99.97 0.025 3603.767 54.613

st fp7a -435.5237 -354.7506 0.00 45.13 53.58 0.151 806.493 1801.106

st fp7b -715.5237 -634.7506 0.00 22.06 55.51 0.153 11.941 3610.617

st fp7c -10310.4738 -8695.0122 0.00 44.26 57.10 0.181 3621.180 3672.666

st fp7d -195.5237 -114.7506 0.00 50.03 55.53 0.111 3627.749 3734.806

st fp8 7219.4999 15639.0000 0.00 0.83 3.17 0.331 4.911 88.867

st glmp fp2 7.0681 7.3445 0.00 45.70 49.74 0.009 0.732 1.170

st glmp kk92 -13.3548 -12.0000 0.00 99.98 99.98 0.023 0.038 0.053

st glmp kky -3.0000 -2.5000 0.00 99.80 99.71 0.011 0.133 0.248

st glmp ss1 -38.6667 -24.5714 0.00 89.30 89.30 0.031 0.556 0.736

st ht -2.8000 -1.6000 0.00 99.81 99.89 0.006 0.142 0.451

st iqpbk1 -1722.3760 -621.4878 97.99 99.86 99.99 3.825 5.086 286.844

st iqpbk2 -3441.9520 -1195.2257 97.93 100.00 100.00 2.515 31.614 243.169

st jcbpaf2 -945.4511 -794.8559 0.00 99.47 99.61 2.650 3622.733 3636.491

st jcbpafex -3.0000 -1.0833 0.00 98.40 98.40 0.012 0.085 0.114

st kr -104.0000 -85.0000 0.00 99.93 99.95 0.008 0.090 0.131

st m1 -505191.3385 -461356.9389 0.00 99.96 99.96 0.222 368.618 756.237

st m2 -938513.6772 -856648.8187 0.00 70.19 58.99 1.226 3641.449 3876.446

st pan1 -5.6850 -5.2837 0.00 99.72 99.92 0.007 0.926 0.771

st pan2 -19.4000 -17.0000 0.00 68.54 99.91 0.009 3038.430 26.401

st ph1 -243.8112 -230.1173 0.00 99.98 99.98 0.011 0.225 0.059

st ph11 -11.7500 -11.2813 0.00 99.46 98.19 0.007 0.910 0.337

st ph12 -23.5000 -22.6250 0.00 99.49 99.62 0.006 0.353 0.311

st ph13 -11.7500 -11.2813 0.00 99.38 98.80 0.009 0.751 0.703

st ph14 -231.0000 -229.7222 0.00 99.85 99.86 0.010 0.051 0.131

st ph15 -434.7346 -392.7037 0.00 99.83 99.81 0.009 0.476 0.541

st ph2 -1064.4960 -1028.1173 0.00 99.98 99.98 0.014 0.159 0.062

st ph20 -178.0000 -158.0000 0.00 99.98 99.98 0.007 0.036 0.049

st ph3 -447.8488 -420.2348 0.00 99.98 99.98 0.011 0.031 0.039

st phex -104.0000 -85.0000 0.00 99.96 99.96 0.007 0.088 0.088

st qpc-m0 -6.0000 -5.0000 0.00 99.96 99.96 0.007 0.015 0.023

st qpc-m1 -612.2714 -473.7778 0.00 99.99 99.98 0.009 0.223 0.233

st qpc-m3a -725.0518 -382.6950 0.00 98.10 99.16 0.025 3615.442 3727.123

st qpc-m3b -24.6757 0.0000 0.00 100.00 100.00 0.021 0.566 1.648

st qpk1 -11.0000 -3.0000 0.00 99.98 99.98 0.007 0.110 0.053

st qpk2 -21.0000 -12.2500 0.00 71.34 83.33 0.025 3599.788 3622.692

st qpk3 -66.0000 -36.0000 0.00 33.53 50.04 0.077 3621.930 3778.200

st rv1 -64.2359 -59.9439 0.00 96.19 98.44 0.023 3607.723 3602.339

st rv2 -73.0007 -64.4807 0.00 88.79 81.85 0.079 3601.528 44.550

st rv3 -38.5155 -35.7607 0.00 40.40 72.68 0.108 112.028 3807.828

st rv7 -148.9816 -138.1875 0.00 45.43 62.28 0.269 3640.861 3880.783

st rv8 -143.5829 -132.6616 0.00 29.90 45.80 0.663 3696.452 3874.801

st rv9 -134.9131 -120.1164 0.00 20.56 31.64 1.019 3920.213 3675.654

st z -0.9674 0.0000 0.00 99.96 99.95 0.009 2.749 0.790

30 A. Saxena, P. Bonami, and J. Lee

Table 6. GLOBALLib Instances with zero Duality Gap

Spectral Norm of Y − xxT

Instance RLT Opt V1 V2 V3

st e17 0.0019 0.0019 0.000000 0.000000 0.000000

st qpc-m3c 0.0000 0.0000 0.000000 0.000000 0.000000

st qpc-m4 0.0000 0.0000 0.000000 0.000000 0.000000

ex2 1 2 -213.0000 -213.0000 0.000000 0.000000 0.000000

ex2 1 4 -11.0000 -11.0000 0.000000 0.000000 0.000000

st e42 18.7842 18.7842 0.000000 0.000000 0.000000

st fp2 -213.0000 -213.0000 0.000000 0.000000 0.000000

st fp4 -11.0000 -11.0000 0.000000 0.000000 0.000000

st bpk1 -13.0000 -13.0000 0.000000 0.000000 0.000000

st bpk2 -13.0000 -13.0000 0.000000 0.000000 0.000000

st glmp fp1 10.0000 10.0000 0.000000 0.000000 0.000000

st ph10 -10.5000 -10.5000 0.000000 0.000000 0.000000

st bpv1 10.0000 10.0000 0.027262 0.000007 0.000007

st glmp ss2 3.0000 3.0000 0.043577 0.000021 0.000021

st glmp kk90 3.0000 3.0000 0.021689 0.000022 0.000022

st e34 0.0156 0.0156 0.064299 0.000030 0.000029

st e01 -6.6667 -6.6667 0.056653 0.000046 0.000046

st fp3 -15.0000 -15.0000 0.293089 0.302328 0.000139

ex2 1 3 -15.0000 -15.0000 0.297487 0.000962 0.000150

st glmp fp3 -12.0000 -12.0000 0.000637 0.000235 0.000235

ex14 1 2 0.0000 0.0000 0.171873 0.171873 0.001654

ex14 1 5 0.0000 0.0000 0.146196 0.229286 0.103878

ex14 1 6 0.0000 0.0000 0.182808 0.208698 0.219895

st robot 0.0000 0.0000 0.230963 0.227246 0.215491

Table 7. GLOBALLib Instances with Linear Complementarity Constraints

% Duality Gap Closed Time (sec)

Instance RLT Opt V2 V3 V2 V3

ex9 1 4 -63.0000 -37.0000 100.00 99.97 2.462 22.418

ex9 2 1 -16.0000 17.0000 99.95 99.95 3609.323 2351.308

ex9 2 2 -50.0000 100.0000 100.00 100.00 401.642 743.086

ex9 2 3 -30.0000 0.0000 99.99 99.99 27.718 522.123

ex9 2 4 -396.0000 0.5000 99.99 100.00 3.547 5.136

ex9 2 6 -406.0000 -1.0000 80.22 92.09 338.001 3652.873

ex9 2 7 -9.0000 17.0000 99.97 99.95 3607.258 3478.207

instance, when amended with disjunctive cuts from the linear complementarity
constraints it closes 100% of the duality gap.

Next we present our computational results on the MIQCP instances proposed
in [12]. These problem have both continuous and integer variables and quadratic
constraints. They are of relatively small size with between 10 and 54 variables.
Table 2 summarizes the experiment. RLT is the value of the RLT relaxation,

Disjunctive Cuts for Non-convex MIQCP 31

Table 8. Box QP Instances

% Duality Gap Closed Time (sec)

Instance wRLT OPT V1 V2 V3 V1 V2 V3

spar020-100-1 -1137 -706.5 58.66 95.40 99.64 3635.459 3638.200 3646.691

spar030-090-3 -2619.5 -1494 60.25 86.37 92.68 3730.348 3701.849 3607.885

spar040-060-2 -3011 -2004.23 43.05 55.79 61.63 3813.728 3707.992 3879.912

spar020-100-2 -1328.5 -856.5 70.36 93.08 97.81 3629.580 3636.665 3634.559

spar030-100-1 -2683.5 -1227.13 59.97 81.10 87.48 3647.126 3692.504 3624.834

spar040-060-3 -3532 -2454.5 56.60 72.63 79.30 3688.747 3764.079 3716.242

spar020-100-3 -1224 -772 70.70 97.47 99.97 3609.973 3632.560 3621.301

spar030-100-2 -2870.5 -1260.5 50.56 72.87 82.52 3662.868 3697.329 3753.816

spar040-070-1 -3194.5 -1605 53.82 64.03 70.28 3716.161 3642.681 3929.653

spar030-060-1 -1472.5 -706 32.55 60.00 73.32 3685.753 3823.051 3742.955

spar030-100-3 -2831.5 -1511.05 63.32 84.10 90.29 3712.164 3606.496 3682.094

spar040-070-2 -3446.5 -1867.5 45.84 57.91 63.86 3695.329 3756.377 3767.655

spar030-060-2 -1741 -1377.17 62.19 91.16 93.04 3731.242 3715.979 3748.334

spar040-030-1 -1162 -839.5 14.16 31.05 42.21 3694.667 3719.223 3874.422

spar040-070-3 -3833.5 -2436.5 50.57 62.94 69.89 3783.908 3693.666 3656.632

spar030-060-3 -2073.5 -1293.5 53.27 77.41 85.36 3666.710 3696.495 3702.028

spar040-030-2 -1695 -1429 13.92 27.74 31.29 3814.827 3937.898 3910.581

spar040-080-1 -3969 -1838.5 42.80 58.37 64.47 3710.865 3808.258 3811.056

spar030-070-1 -1647 -654 30.74 57.39 70.49 3685.224 3786.025 3679.571

spar040-030-3 -1322 -1086 2.35 28.00 34.74 3639.965 3798.683 4079.434

spar040-080-2 -3902.5 -1952.5 51.27 66.96 71.16 3667.295 4062.433 3845.179

spar030-070-2 -1989.5 -1313 61.19 86.60 92.26 3642.745 3708.212 3653.440

spar040-040-1 -1641 -837 17.42 33.31 37.70 3689.320 3817.844 3883.183

spar040-080-3 -4440 -2545.5 61.18 72.31 77.20 3703.711 4057.149 3806.478

spar030-070-3 -2367.5 -1657.4 73.58 88.66 92.85 3680.997 3744.044 3731.627

spar040-040-2 -1967.5 -1428 24.27 35.19 39.92 3839.449 3968.111 3667.330

spar040-090-1 -4490 -2135.5 54.63 66.64 72.50 3715.925 3781.044 3977.672

spar030-080-1 -2189 -952.729 41.71 69.67 78.41 3706.572 3600.777 3715.601

spar040-040-3 -2089 -1173.5 14.76 26.71 30.88 3718.280 3972.902 4002.336

spar040-090-2 -4474 -2113 55.86 66.46 70.59 3815.415 3931.349 3615.504

spar030-080-2 -2316 -1597 53.96 86.25 92.48 3690.453 3627.132 3702.961

spar040-050-1 -2204 -1154.5 23.12 36.72 43.34 3750.454 3819.720 3619.095

spar040-090-3 -4641 -2535 61.08 73.49 78.86 3808.143 4003.706 3777.561

spar030-080-3 -2504.5 -1809.78 69.28 91.42 95.70 3642.447 3666.392 3735.913

spar040-050-2 -2403.5 -1430.98 27.17 40.87 48.62 3738.085 3610.640 3757.075

spar040-100-1 -5118 -2476.38 65.26 76.24 79.10 3848.559 3853.573 3631.410

spar030-090-1 -2521 -1296.5 54.64 81.15 89.47 3702.696 3676.815 3657.596

spar040-050-3 -2715 -1653.63 20.75 33.95 43.11 3709.104 3639.977 3865.383

spar040-100-2 -5043 -2102.5 54.47 63.89 70.40 3759.668 3658.261 3771.344

spar030-090-2 -2755 -1466.84 56.33 82.66 88.79 3658.607 3646.756 3663.516

spar040-060-1 -2934 -1322.67 35.83 47.75 54.57 3648.720 3760.964 3724.381

spar040-100-3 -5196.5 -1866.07 52.41 59.92 65.08 3712.925 3842.685 3950.384

32 A. Saxena, P. Bonami, and J. Lee

Opt is the value of the global optimum of the problem and V1, V2 and V3 give
the strengthened bound obtained by each of the three variants. As can be seen
from the results Variants 2 and 3 close almost all the gap for the second and
third instance. For the first and fourth example, the gap closed is not as much,
but in all cases variant 2 and 3 close substantially more gap than variant 1.

Next, we present our results on box constrained QPs. The test bed consists of
a subset the test problems used in [26]. These problems are randomly generated
box QPs with A0 of various densities. For this experiment we ran the three
variants of our cut-generation procedures on the 42 problems with 20, 30 and 40
variables. We found that the RLT relaxation of these problem when amended
with the convex quadratic cuts already closes around 95% of the duality gap.
Hence, in order to better evaluate the performance of our cutting planes, we
weakened the initial RLT relaxation (referred to as wRLT in the sequel) by
removing the inequalities yii ≤ xi; these inequalities are envelope inequalities
associated with the product term yii = xixi.

Table 8 summarizes the experiments. The second column of the table reports
the optimal value of the wRLT relaxation, whereas the third column of the table
gives the value of the optimal solution as reported in [26]. Overall, Variant 1
closes substantially less gap than variants 2 and 3. On average the amount of
gap closed by Variant 1 is 46.81% while Variant 2 closes 65.28% and Variant 3
closes 71.51%.

Acknowledgments

Part of this work was done when the first author was visiting the IBM T.J. Wat-
son Research Center at Yorktown Heights, and their support is kindly acknowl-
edged. Research of the first author was also supported by the National Science
Foundation through grant DMI-0352885 and by the Office of Naval Research
through contract N00014-03-1-0133. Research of the second author was carried
out in part while affiliated with IBM T.J. Watson Research Center. Research of
the second author was also supported by ANR grant BLAN06-1-138894. Thanks
to Sam Burer for providing the box-QP instances.

References

1. Anstreicher, K.M.: Semidefinite Programming versus the Reformulation-
Linearization Technique for Nonconvex Quadratically Constrained Quadratic Pro-
gramming. Preprint. Optimization Online (May 2007)

2. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points.
Disc. Appl. Math. 89(1-3), 3–44 (1998)

3. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Math. Program. 58, 295–324 (1993)

4. Balas, E., Saxena, A.: Optimizing over the split closure. MSRR# 674, Tepper
School of Business, Carnegie Mellon Univ., Math. Program. A (to appear, 2005)

5. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D.,
Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An Algorithmic Framework
for Convex Mixed-integer Nonlinear Programs. Discrete Optimization (in press)

Disjunctive Cuts for Non-convex MIQCP 33

6. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for noncon-
vex quadratic programming via semidefinite relaxations. Math. Programming (to
appear)

7. Cornuéjols, G.: Revival of the Gomory cuts in the 1990’s. Annals of Operations
Research 149(1), 63–66 (2007)

8. Fischetti, M., Lodi, A.: Optimizing over the first Chvatal closure. Mathematical
Programming (to appear)

9. Fletcher, R., Leyffer, S.: User Manual for FilterSQP. Numerical Analysis Report
NA/181, Dundee University (1998)

10. Jeroslow, R.G.: There cannot be any algorithm for integer programming with
quadratic constraints. Operations Research 21(1), 221–224 (1973)

11. GLOBALLib, http://www.gamsworld.org/global/globallib/globalstat.htm
12. Lee, S., Grossmann, I.E.: A global optimization algorithm for nonconvex general-

ized disjunctive programming and applications to process systems. Computers and
Chemical Engineering 25, 1675–1697 (2001)

13. Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex
quadratic optimization problems. Optim. Methods and Software 15, 201–204 (2001)

14. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part I Convex underestimating problems. Math. Prog. 10, 147–175 (1976)

15. Nowak, I., Alperin, H., Vigerske, S.: LaGO - An object oriented library for solving
MINLPs. In: Bliek, C., et al. (eds.) Global Optimization and Constraint Satisfac-
tion, pp. 32–42. Springer, Berlin (2003)

16. Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear
Programming. Birkhauser, Basel (2005)

17. Vigerske, S.: http://projects.coin-or.org/LaGO
18. Saxena, A., Goyal, V., Lejeune, M.: MIP Reformulations of the Probabilistic Set

Covering Problem (2007) Optmization Online (e-print),
http://www.optimization-online.org/DB HTML//02/1579.html

19. Sen, S.: Relaxations for probabilistically constrained programs with discrete ran-
dom variables. Operations Research Letters 11(2), 81–86 (1992)

20. Sherali, H.D., Adams, W.P.: A reformulation-linearization technique for solving
discrete and continuous nonconvex problems. Kluwer, Dordecht (1998)

21. Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of
semidefinite cuts. J. Global Optim. 22, 233–261 (2002)

22. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optim. Methods and Software 11-12, 625–653 (1999)

23. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Soft-
ware, and Applications. Kluwer Academic Publishers, Boston (2002)

24. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed integer nonlinear
programs: A theoretical and computational study. Math. Prog. 99(3), 563–591
(2004)

25. Vandenbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic
programs with box constraints. Math. Prog. 102(3), 531–556 (2005)

26. Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex
quadratic programs with box constraints. Math. Prog. 102(3), 559–575 (2005)

27. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior
point filter line search algorithm for large-scale nonlinear programming. Math.
Prog. 106(1), 25–57 (2006)

http://www.gamsworld.org/global/globallib/globalstat.htm
http://projects.coin-or.org/LaGO
http://www.optimization-online.org/DB_HTML//02/1579.html

The Air Traffic Flow Management Problem:

An Integer Optimization Approach

Dimitris Bertsimas1, Guglielmo Lulli2, and Amedeo Odoni3

1 Sloan School of Management and Operations Research Center, M.I.T.
dbertsim@mit.edu

2 Dept. of Informatics, Systems and Communication, University of Milano “Bicocca”
guglielmo.lulli@disco.unimib.it

3 Dept. of Aeronautics and Astronautics and Operations Research Center, M.I.T.
arodoni@mit.edu

Abstract. In this paper, we present a new Integer Program (IP) for
the Air Traffic Flow Management (ATFM) problem. The model we pro-
pose provides a complete representation of all the phases of each flights,
i.e., the phase of taking-off, of cruising and of landing; suggesting all the
actions to be implemented to achieve the goal of safe, efficient, and ex-
peditious aircraft movement. The distinctive feature of the model is that
it allows rerouting decisions. These decisions are formulated by means
of “local” conditions, which allow us to represent such decisions in a
very compact way by only introducing new constraints. Moreover, to
strengthen the polyhedral structure of the underlying relaxation, we also
present three classes of valid inequalities.

We report short computational times (less than 15 minutes) on in-
stances of the size of the US air traffic control system that make it
realistic that our approach can be used as the main engine of managing
air traffic in the US.

1 Introduction

The continuous growth of the air transportation industry have put an enormous
strain on the aviation system. Congestion phenomena are persistent and arise
almost on a daily basis as a consequence of bad weather conditions which cause
sudden capacity reductions. In the year 2000, approximately one out of every four
flights in the United States was delayed or canceled, [6]. The resulting delays have
a significant economic impact. The Air Transport Association has estimated that
system delays drove an estimated $5.9 billion in direct operating costs for United
States airlines in 2005. Similar figures have been shown by European airlines.

As a result, air traffic flow management (ATFM) has become increasingly cru-
cial. ATFM attempts to prevent local demand-capacity imbalances by adjusting
the flows of aircraft on a national or regional basis. Until now, the ATFM have
been mainly focusing on airports’ congestion. On this subject, the most popular
approach, by far, has been the allocation of ground delays to departing flights, i.e.,
postponing their departure time. From the paper by Odoni [9], who was the first to
formalize this problem, a plethora of models and algorithms have been developed
to detect optimal strategies to assign ground delays to flights (see [1] and [6]).

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 34–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The ATFM Problem: An Integer Optimization Approach 35

However, it has become increasingly evident that very significant delays and
system throughput degradations have arisen from en-route airspace problems and
limitations. The problem posed by the en-route sector capacity constraints is per-
sistent and may take at least one more decade to resolve [4]. One of the implica-
tions of the simultaneous presence of airport and en-route airspace constraints is
that devising good strategies is a much more complicated task. Any mathemati-
cal model developed for this purpose has to consider a true network of capacitated
elements, en-route sectors and airports [8]. Moreover, a larger set of options to re-
solve congestion is available: ground holding, airborne holding, miles-in-tails and
rerouting, i.e., the possibility of reroute a flight on a different flight path if the
current route passes through a region that unexpectedly becomes congested.

As opposed to the airport congestion case, the research literature dealing
with en-route congestion is quite sparse. One of the first attempts to include
in the ATFM problem en-route capacity restrictions was by Helme [5], who
proposed a multi-commodity minimum-cost flow on a time-space network to
assign airborne and ground delay to aggregate flow of flights, commodities of
the network flow model. While the formulation of this model is straightforward
and easy to understand, its computational performance was rather weak. Lindsay
et al.[7] formulated a disaggregate deterministic 0-1 integer programming models
for deciding ground and airborne holding of individual flights in presence of both
airport and airspace capacity constraints. Bertsimas and Stock [2] presented a
deterministic 0-1 IP model to solve a similar problem. The model decides on the
departure time and sector occupancy time of each aircraft. The model enables
very efficient computation of optimal solutions, since several of the constraints
provide facets of the convex hull of solutions. However this model, as well as
those cited above, does not consider rerouting as an option. It assumes that the
flight path is known in advance and is fixed.

To the best of our knowledge the only work which considers rerouting, at a
least at a macroscopic level, is the work by Bertsimas and Stock Patterson [3].
They presented a dynamic, multi-commodity, integer network-flow model. The
model addressed routing as well as scheduling decisions, but it did not provide
computational performances aligned with the dimensions of real instances.

Modeling rerouting decisions has posed one of the greatest challenges in this
field of research. Our goal is to combine the model “flexibility” in terms of range
of decisions of model presented in [3] with the shown mathematical properties of
the model presented in [2], so that we are able to solve efficiently sized problems.
Herein, we present a mathematical model for the ATFM which includes all the
possible options to resolve air congestion, including rerouting. The scope of the
model is to suggest the time of departure, the route, the time required to cross
each sector and the time of arrivals taking into account the capacity of all sectors
and airports. The main feature of the model is the formulation of rerouting deci-
sions in a very compact way. With respect to previous models, the methodology
we presented does not require any additional variables, but it only introduces
new constraints. These constraints implement local routing conditions that are
sufficient for the purpose of the model. To strengthen the polyhedral structure
of the underlying relaxation, we also present three classes of valid inequalities.

36 D. Bertsimas, G. Lulli, and A. Odoni

The paper is organized as follows: In Section 2, we present the mathematical
model for the ATFM problem with rerouting, and three classes of valid inequal-
ities as well. The computational experience is reported in Section 3. Finally,
Section 4 contains conclusions and indications for future research.

2 The Mathematical Model

The mathematical model we present here, is intended to determine how to ad-
just the release time of each flight into the system (time of departure), how to
control its flight speed once in the air and how to reroute it in case of sectors’
congestion along the preferred path. As an underlying model we consider the
model proposed by Bertsimas and Stock [2].

Any origin-destination route is represented as a sequence of sectors flown by
an aircraft. In ATFM models which do not include rerouting as an option, the
sequence of sectors to be flown is pre-determined. To contemplate rerouting in
the mathematical model the set of possible sectors that might be flown has to
be enlarged.

Fig. 1. Given a flight f, the set Lf
i of sectors that follow sector i, and the set of sectors

Pf
i that precede sector j

A key element of the proposed model is the definition of routes. The origin-
destination routes can be represented by digraphs. The set of nodes of the
digraph (Sf) represents the set of capacitated elements of the airspace, e.g.,
airports and sectors. The set of arcs defines the sequence relations. There is an
arc from a node i to node a j if i and j are contiguous sectors and sector j can be
flown soon after sector i. In Figure 1, three different routes between the airport
of origin and of destination are reported. Within the ATFM framework, we may
suppose, without loss of generality, that the digraph of o-d routes is acyclic. This
allows us to equip the set of sectors with a binary relation, and hence envision
the set of possible routes within the framework of so-called partially ordered set
(poset). The airport of departure and arrival are the minimum and the maxi-
mum elements of the poset respectively. The set of possible routes between the
o-d pair corresponds to the set of maximal chains of the poset. To impose that
each flight follows exactly one route we use local conditions, that can be simply
stated as follows:

The ATFM Problem: An Integer Optimization Approach 37

– to fly a sector any aircraft has first to fly one of the previous sectors for at
least a number of time periods equal to their sector flight time;

or equivalently,

– if an aircraft is flying a sector, for at least a number of time periods equal to
its flight time, then immediately after it will fly only one of the subsequent
sectors.

To formally describe these routing conditions we introduce the following addi-
tional notation. For each sector i (∈ Sf) the subset of sectors which follow i is
denoted by Lf

i ⊂ Sf . Analogously the subset of sectors that precede i is denoted
by Pf

i ⊂ Sf (see Figure 1).
In what follows, we call forks all the sectors followed by more than one sector,

e.g., Sector i and Sector h in Figure 1, while those sectors preceded by more than
one sector are called joints, Sector j in the same figure.

2.1 The Mathematical Formulation

The model’s formulation requires definition of the following notation:

K ≡ set of airports,
S ≡ set of sectors,

Sf ⊆ S ≡ set of sectors that can be flown by flight f,
F ≡ set of flights,
T ≡ set of time periods,
C ≡ set of pairs of flights that are continued,

Pf
i ≡ set of sector i’s subsequent sectors,

Lf
i ≡ set of sector i’s previous sectors,

Dk(t) ≡ departure capacity of airport k at time t,
Ak(t) ≡ arrival capacity of airport k at time t,
Sj(t) ≡ capacity of sector j at time t,

df ≡ scheduled departure time of flight f,
af ≡ scheduled arrival time of flight f,
sf ≡ turnaround time of an airplane after flight f,

origf ≡ airport of departure of flight f,
destf ≡ airport of arrival of flight f,

lfj ≡ number of time units that flight f must spend in sector j,

T f
j = [T f

j , T̄ f
j] ≡ set of feasible time periods for flight f to arrive in sector j,

T f
j ≡ first time period in the setT f

j ,

T̄ f
j ≡ last time period in the setT f

j .

38 D. Bertsimas, G. Lulli, and A. Odoni

The Decision Variables. As mentioned above, the model herein presented is
based on the Bertsimas-Stock model [2] and we use the same decision variables.

wf
j,t =

{
1, if flight f arrives at sector j by time t,
0, otherwise.

This definition of the decision variables (wf
j,t) using “by” instead of “at” is

critical to the understanding of the formulation. If flight f arrives at time t at
sector j then both variable of time period t and subsequent ones will be set to 1
(i.e., wf

j,τ = 1 ∀τ ≥ t).

The Objective Function. As in most other ATFM models in the literature,
the model we propose minimizes a cost function which is a combination of both
airborne-holding delay (AH) and ground holding delay (GH), of the form α ·
AH + GH with α > 1. For convenience, we re-write the objective function as
α · TD − (α− 1) ·GH , being TD(= AH + GH) the total delay.

To ensure equity among flights, we include in the objective function cost
coefficients that are a super-linear function of the tardiness of a flight of the form
(t− af)1+ε, with ε close to zero. This will favour the assignment of a moderate
amount of total delay to each of two flights rather than the assignment of a small
amount to one and a large amount to the other.

For each flight f and for each time period t, we define the following cost
coefficients:

cf
td(t) = (t− af)1+ε ≡ total cost of delaying flight f for (t− af) unit of time,

cf
g (t) = (α− 1)(t− df)1+ε ≡ cost reduction for holding flight f on the ground

for (t− df) unit of time.

In view of the description above, the objective function is as follows:

Min
�
f∈F

�
���

�

t∈T
f
destf

cf
td(t) · (wf

destf ,t − wf
destf ,t−1) −

�

t∈T
f
origf

cf
g (t) · (wf

origf ,t − wf
origf ,t−1)

�
���

The Constraints∑
f∈F :origf=k

(wf
k,t − wf

k,t−1) ≤ Dk(t) ∀k ∈ K, t ∈ T . (1)

∑
f∈F :destf=k

(wf
k,t − wf

k,t−1) ≤ Ak(t) ∀k ∈ K, t ∈ T . (2)

∑
f∈F :j∈Sf

(wf
j,t −

∑
j′∈Lf

i

wf
j′,t) ≤ Sj(t) ∀j ∈ S, t ∈ T . (3)

wf
j,t ≤

∑
j′∈Pf

j

wf
j′,t−lfj′

∀f ∈ F , t ∈ T f
j , j ∈ Sf : j 	= origf .

(4)

The ATFM Problem: An Integer Optimization Approach 39

wf

j,T̄ f
j

≤
∑

j′∈Lf
j

wj′,T̄ f

j′
∀f ∈ F , j ∈ Sf : j 	= destf . (5)

∑
j′∈Lf

j

wf

j′,T̄ f

j′
≤ 1 ∀f ∈ F , j ∈ Sf : j 	= destf . (6)

wf
origf ,t − wf ′

destf′ ,t−sf
≤ 0 ∀(f, f ′) ∈ C, ∀t ∈ T f

k . (7)

wf
j,t−1 − wf

j,t ≤ 0 ∀f ∈ F , j ∈ Sf , t ∈ T f
j . (8)

wf
j,t ∈ {0, 1} ∀f ∈ F , j ∈ Sf , t ∈ T f

j . (9)

The first three sets of constraints take into account the capacities of various
aspects of the system. Constraints (1) ensure that the number of flights which
may take off from airport k at time t, will not exceed the departure capacity of
airport k at time t. Likewise, Constraints (2) ensure that the number of flights
which may arrive at airport k at time t, will not exceed the arrival capacity of
airport k at time t. Finally, Constraints (3) ensure that the sum of all flights
which may feasibly be in Sector j at time t will not exceed the capacity of Sector
j at time t. This difference gives the flights that are in Sector j at time t, since
the first term will be 1 if Flight f has arrived in sector j by time t and the second
term will be 1 if flight f has arrived at one of the next sectors by time t. So, the
only flights that will contribute a value of 1 to this sum are those flights that
have arrived at j and have not yet departed from j by time t. Constraints (4), (5)
and (6) represent connectivity between sectors. They stipulate that a flight can
not arrive at Sector j by time t if it has not arrived to one of the previous sectors
by time t− lfj′ . In other words, a flight cannot enter the next sector on its path
until it has spent lfj′ time units (the minimum possible) traveling through one of
the previous sectors in its current path. Moreover, Constraints (5) and (6) state
that a flight will certainly arrive to one of the subsequent sectors. Constraints
(7) represent connectivity between airports. They handle the cases in which a
flight is continued, i.e., the flight’s aircraft is scheduled to perform a later flight
within some time interval. We will call the first flight f ′ and the following flight
f . Constraints (8) represent connectivity in time. Thus, if a flight has arrived by
time t̃, then wf

j,t has to have a value of 1 for all later time periods (t ≥ t̃).
In what follows, we present three classes of valid inequalities with the scope

of strengthening the formulation.

Proposition 1: If Sector j is a fork, then constraints

wf
j,t ≥

∑
j′∈Lf

j :|Pf

j′ |=1

wf
j′,t+lfj′

∀f ∈ F , t ∈ T f
j .

are valid inequalities for the set of feasible solutions of ATFM.

The inequalities of Proposition 1 state that if a flight f has not crossed Sector
j by time t (wf

j,t = 0), it will not cross any of the subsequent sectors by time
t + lfj′ unless these subsequent sectors can be reached from elsewhere, as in the

40 D. Bertsimas, G. Lulli, and A. Odoni

cons.(4)

��
�

w2,t ≤ w1,t−l + w1′,t−l

w3,t ≤ w1,t−l

w4,t ≤ w1,t−l

v.i.1 w3,t + w4,t ≤ w1,t−l

Fig. 2. Valid inequality for a fork node

cons.(5)

��
�

wa,T ≤ wd,T + we,T

wb,T ≤ wd,T

wc,T ≤ wd,T

v.i.2 wb,T + wc,T ≤ wd,T

Fig. 3. Valid inequality for a joint sector

case of Sector 2 in Figure 2. The fork inequalities hold by Constraints (5) and
(8) in case wf

j,t = 1 and by Constraints (4) in case wf
j,t = 0.

Conditions given above can be extended to the case of a joint sector. If a
flight f do not cross Sector j then it have not crossed any of the previous sectors
unless these sectors are also adjacent to other sectors. Hence, let us restrict the
attention to sectors which are only adjacent to the joint sector among all the
previous ones, e.g., sectors b and c of the example in Figure 3.

Proposition 2: If Sector j is a joint, then constraints∑
j′∈Pf

j :|Lf

j′ |=1

wf

j′,T̄ f

j′
≤ wf

j,T̄ f
j

∀f ∈ F .

are valid inequalities for the set of feasible solutions of ATFM.

The joint inequalities hold by Constraints (5) if wf
j,t = 0 and by Constraints (4)

if wf
j,t = 1.

The network of possible routes, represented by an acyclic graph, naturally
defines a preorder relation on the set of sectors. Each o-d pair corresponds to a
chain of the poset and the Proposition in the sequel immediately follows:

Proposition 3: If A is an antichain for the ordered set defined on Sf , then
constraint ∑

j∈A
wf

j,T̄ f
j

≤ 1.

is a valid inequality for the set of feasible solutions of ATFM (named, antichain
inequality).

These conditions state that each flight follows exactly one route.

The ATFM Problem: An Integer Optimization Approach 41

cons.(6)

��
�

wa,T + wb,T ≤ 1
wb,T + wc,T ≤ 1
wc,T + wd,T ≤ 1

a.i. wa,T + wb,T + wc,T + wd,T ≤ 1

Fig. 4. Antichain inequality

Proposition 4: If Sector i is a fork and all the subsequent sectors can be reached
only from Sector i, i.e., {j ∈ Lf

i : |Pf
j | = 1} = Lf

i , then Constraints (5) are
equalities.

3 Computational Experience

In this section, we present the computational experience on the mathematical
model presented in §2.1, including the valid inequalities given in Proposition 1
- Proposition 4. We consider randomly generated instances whose dimension is
comparable to realistic ones. In particular, we consider two sets of instances. The
first one represents the ATFM problem at a regional level, e.g., east-cost or mid-
west US, while the second set, of larger instances, is more representative of the
Nation wide problem. The size of the instance depends on the time horizon, the
time discretization period, the number of sectors and airports and the demand at
each airport. By changing one or all the parameters above, we generate different
size instances.

The airspace is divided into equal size sectors, forming a grid. We also suppose
that the minimum amount of time to fly a sector is the same for all the flights
and for all the sectors. In order to generate instances which are consistent with
the hub-and-spoke operations we cluster airports into hubs and regional airports.
There are no flights connecting two regional airports, i.e., regional airports do
not have direct connections but they are connected to hubs. For each airport,
the demand of flights is randomly generated, drawn from a uniform distribution.
Again with the sake of being more adherent to real operations, we generate hubs’
demands considering both peak and off-peak periods. The average value of the
demand for peak (off-peak) periods is set equal to 15 (8) flights per period. The
nominal capacity of sectors and airports (capacity under good weather condi-
tions) is set to values which allow to accommodate all the air traffic without
incurring in too much air congestion.

To enforce sectors congestion, we suppose a capacity reduction of some sectors.
The reduction of capacity affects 3 sectors at a time, for 5 consecutive time
periods. Afterwards, three contiguous sectors experience capacity reduction for
other 5 consecutive time periods, and so on. In this way, we “simulate” the
effect of a bad weather front which move along a certain direction. We also
consider instances with larger weather front and with different speed (number
of time periods it stays in the sectors before moving forward), without affecting

42 D. Bertsimas, G. Lulli, and A. Odoni

the computational performance of the model. Herein we do not report all the
computational results for the sake of brevity.

One of the key elements of our model is the set Sf of sectors that can be
flown by flight f. By default, all the sector on the shortest o-d route of flight
f are included in Sf . If one or more of the sectors on the shortest route is
congested, additional sectors, those contiguous, are included in the set Sf . For
this purpose, sectors are considered congested if their demand exceeds 80% of
the capacity. The number of forks in a o-d pair gives a lower estimate of the
number of possible routes between the origin and the destination. On average,
the number of forks is about 3, meaning that on average we have at least 3
routes between each o-d pair, even though it can be much larger. In a case with
20 forks, we counted 121 o-d routes.

3.1 Regional Size Instances

The computational results for “regional” instances are reported here. These
instances include 20 airports, 10 of which are hubs, and 113 sectors which corre-
spond to about one third of the NAS airspace. We consider a five-hour time hori-
zon subdivided into 20 15-minute time units. All the instances manage roughly
3000 flights. The nominal capacity (capacity under good weather conditions) of
sectors is set to 71 flights per period. Five sets of instances have been consid-
ered, each with a different percentage of flight connections, as reported in the
first column of Table 1 (% of Conn.s). For instance, 50 indicates that half of the
flights have a flight connection. In the first column, it is also reported between
parenthesis the number of flights considered in the instance. Several scenarios for
capacity reduction are tested, from the nominal value to values close to zero (sec-
tor closed), reported in the second column of the Table 1. These two parameters,
i.e., percentage of connections and capacity, univocally identify each instance.

To compute optimal solutions we use the CPLEX-MIP solver 9.0, imple-
mented using AMPL as modeling language on a PC AMD-Xeon 4 processors
3 GHz, 8 GB RAM with Linux Ubuntu 4.03 OS. With these input data, the
mathematical program has the order of 270,000 constraints and 150,000 vari-
ables, after pre-processing. In the pre-processing phase about 160,000 constraints
and 200,000 variables are eliminated. Given the size of the instances, we accept
good solutions within an optimality gap of 1%. The gap of the solution is listed
in the fourth column of Table 1. To solve these instances, we also took advantage
of the CPLEX’s capabilities of generating constraints (cuts) based on polyhedral
considerations. In particular, we enable moderate generation of clique cuts, set-
ting the corresponding parameter to 1. The number of additional cuts of clique,
implied bound (Bound) and Gomory type are listed in the fifth, sixth and sev-
enth column of Table 1 respectively. Finally, in the last column, we report the
value of the objective function with the intention to provide a clue on the amount
of delay assigned.

What immediately appears from the computational results is that CPLEX
can compute good solution, if not optimal, in all the cases. The average solution
time is 241 seconds. In only one case, the instance with 50% of connections and

The ATFM Problem: An Integer Optimization Approach 43

Table 1. Computational results

Solution
% of Conn.s Capacity Time GAP CUTS Iter.s O.F.
(# of Flights) (secs.) (%) Clique Bound Gomory value

3 Infeasible
4 167.0 0.66 1551 394 46 143528 2972.3
5 352.2 0.28 2483 486 47 143763 2677.2
10 225.1 0.45 3340 537 50 142399 1853.8

50 20 383.4 0.21 3700 510 57 135670 949.5
(3003) 30 724.2 0.49 2046 513 68 130214 409.8

40 382.0 0.28 852 292 50 124178 164.3
50 116.1 0.00 1133 297 34 120932 129.0
60 161.3 0.00 1231 358 36 120613 123.9
70 213.5 0.00 1276 360 37 120417 123.1
6 Infeasible
7 194.5 0.61 1050 311 37 144194 2883.3
10 215.7 0.63 2014 406 45 142092 2381.4

60 20 207.3 0.72 2420 358 43 134586 1471.9
(3027) 30 480.9 0.02 2308 476 38 133793 829.5

40 390.8 0.00 2381 528 54 128156 455.4
50 191.3 0.00 1936 448 61 123506 342.5
60 213.4 0.41 2354 450 59 121359 297.6
70 204.4 0.40 2404 452 57 120385 280.1
10 Infeasible
11 194.8 0.06 - - 6 152028 3554.1
12 139.0 0.17 - - - 147699 3357.3
15 106.4 0.08 - - - 141554 2857.6

70 20 125.8 0.02 - - 6 142124 2303.3
(3140) 30 76.6 0.00 - - - 136489 1487.1

40 177.3 0.57 - - 11 135555 949.8
50 109.4 0.20 - - 10 127251 688.2
60 42.7 0.00 - - - 124369 612.8
70 42.8 0.00 - - - 123612 567.0
11 Infeasible
12 196.4 0.16 1284 331 48 157695 3080.7
15 248.3 0.04 1341 320 39 153471 2638.3

80 20 271.6 0.00 2169 409 48 153777 2149.6
(3240) 30 368.7 0.00 2039 393 45 146618 1398.6

40 326.5 0.47 1891 486 51 144897 930.0
50 203.9 0.00 1148 443 46 139034 660.2
60 237.6 0.98 1458 318 32 136602 564.7
70 148.9 0.72 1130 296 32 133049 517.5
14 Infeasible
15 235.7 0.99 2320 421 49 155881 2947.0

90 20 303.7 0.02 2694 523 43 150234 2325.9
(3196) 30 266.5 0.56 2374 440 55 148645 1581.0

40 327.6 0.75 1500 496 55 143615 1105.8
50 380.4 0.40 2461 436 62 138366 862.8
60 220.6 0.00 2512 395 51 134305 745.9
70 307.7 0.04 982 351 52 134156 695.2

44 D. Bertsimas, G. Lulli, and A. Odoni

30 flights per period of capacity, the solution time is larger than 10 minutes. This
is also the only instance for which the algorithm branched (68 nodes) in order
to compute the solution within the optimality tolerance. On average instances
with 50% of flight connections require longer computational time. This trend
is explained by the larger number of symmetries that this set of instances may
have, i.e., between flights flying the same o-d pair at the same time. On the
other side, the set of instances that shows better computational performances
is the set with 70% of flight connections. This set exhibits by far the smallest
computational time.

Moreover, the computational performances of the mathematical model do not
degrade as we consider instances close to the “infeasibility border”, as experi-
enced in [10] for instance.

3.2 National Size Instances

The instances of “national” size consider 30 airports, 10 of which are hubs, 145
sectors and 22 time periods. All the instances manage 6475 flights with 5180
connections (80%). For these instances the nominal capacity of the sector is set
to 130 flights per period. The capacity of sectors affected by the bad weather
front is here reported in percentage of the nominal capacity (first column of
Table 2).

To solve these instances we use the same setting for the CPLEX parameters as
in the regional case. In addition, a time limit of 3,600 seconds is imposed. With
these input data, the mathematical program has the order of 570,000 constraints
and 305,000 variables, after pre-processing. In the pre-processing phase about
280,000 constraints and 340,000 variables are eliminated (fixed).

For this set of instances the average computational time to provide a solution
within 1% is 987 secs. The median value is much smaller, equal to 710 secs.
Indeed, in one case, that is the instance with the effective capacity equal to

Table 2. Nation wide instances

Capacity O.F. Solution Time CUTS Iter.s GAP
(%) value (secs.) Clique Bound Gomory (%)
0 Infeasible
10 2620 891 14879 3664 55 266454 0.09
20 1672 643 11424 2917 32 256845 0.00
30 1108 988 7739 2356 60 244400 0.75
40 693 836 7920 1951 63 238985 0.00
50∗ 414 3600 5458 1743 67 242378 1.05
60 265 631 6232 1487 53 231241 0.00
70 154 889 5585 1151 77 227936 0.99
80 74 694 3632 1178 74 226179 0.00
90 23 710 5355 1009 69 221224 0.00
100 12 437 1346 707 65 218378 0.00
∗ 332 Branch-and-Bound nodes have been generated

The ATFM Problem: An Integer Optimization Approach 45

50% of its nominal value, the algorithm can’t compute a good solution with
1% optimality gap within the time limit of 3600 secs. This is also the only
case in which the algorithm requires the branching phase, exploring 332 branch-
and-bound nodes during its execution. However, accepting a larger optimality
tolerance, say 3%, then the algorithm computes a good solution in 569 secs. The
other statistics for this solution are as follows: objective function value of the
solution is 417 with an optimality gap of 2.58. During the pre-processing phase
5458 cuts of clique type, 1693 of implied bound-type and 67 of Gomory-type are
added. For all the instances the statistics are listed in Table 2.

To evaluate the effect of rerouting, we compare the solutions of the ATFM
model with and without rerouting respectively. When sectors’ capacity is close to
the nominal value the difference between the two solutions is rather small, both
in terms of ground and airborne holding delay. But, as the sectors’ capacity
decreases, the benefits of rerouting increase, in terms of smaller amounts of
both ground and airborne holding delay assigned. In the most congested case,
capacity equal to 10% of its nominal value, the reduction of ground delay is
almost 30% (from 949 to 733 time units). The airborne holding delays decrease
as well, dropping from 150 time units to 126 with an improvement of 19%. It is
important to note that such a benefit is gained with a small amount of rerouting
actions. Even in the most congested case, the number of rerouted flights (220)
is rather small, which corresponds to 3.4% of the total flights.

4 Conclusions

In this paper, we presented a new mathematical model for the Air Traffic Flow
Management problem. The key feature of the model is that it also includes
rerouting decisions and they are are formulated in a very compact way. In fact, it
does not require any additional variable, but it only introduces new constraints,
which implements local routing conditions. We also presented three classes of
valid inequalities with the scope of strengthening the polyhedral structure of the
underlying relaxation.

A wide computational analysis on realistic instances demonstrated the viabil-
ity of the proposed model. We solved realistic instances of the problem in short
computational times, which are consistent with the decision process inside the
ATFM Central Unit. Given that our approach includes all the air traffic control
decisions (ground holding, air holding, adjusting speed of aircraft and rerouting)
combined with the attractive computational times, makes us optimistic that this
approach may succeed in becoming the main air traffic control engine.

References

1. Bertsimas, D., Odoni, A.: A critical survey of optimization models for tactical and
strategic aspects of air traffic flow management. Technical report, NASA (1997)

2. Bertsimas, D., Stock, S.: The Air Traffic Management Problem with Enroute Ca-
pacities. Operations Research 46, 406–422 (1998)

46 D. Bertsimas, G. Lulli, and A. Odoni

3. Bertsimas, D., Stock Patterson, S.: The Traffic Flow Management Rerouting Prob-
lem in Air Traffic Control: A Dynamic Network Flow Approach. Transportation
Science 34, 239–255 (2000)

4. EUROCONTROL Performance Review Commission, Performance Review Report,
Brussels (2004)

5. Helme, M.: Reducing air traffic delay in a space-time network. In: IEEE Interna-
tional Conference on Systems, Man and Cybernetics, vol. 1, pp. 236–242 (1992)

6. Hoffman, R., Mukherjee, A., Vossen, T.: Air Traffic Flow Management. Working
Paper (2007)

7. Lindsay, K., Boyd, E., Burlingame, R.: Traffic flow management modeling with the
time assignment model. Air Traffic Control Quarterly 1, 255–276 (1993)

8. Lulli, G., Odoni, A.R.: The European Air Traffic Flow Management Problem.
Transportation Science 41, 1–13 (2007)

9. Odoni, A.R.: The Flow Management Problem in Air Traffic Control. In: Odoni,
A.R., Bianco, L., Szego, G. (eds.) Flow Control of Congested Networks, pp. 269–
288. Springer, Berlin (1987)

10. Vranas, P.B., Bertsimas, D., Odoni, A.R.: The Multi-Airport Ground Holding
Problem in Air Traffic Control. Operations Research 42, 249–261 (1994)

The Induced Disjoint Paths Problem

Ken-ichi Kawarabayashi1,� and Yusuke Kobayashi2,��

1 National Institute of Informatics, Tokyo 101-8430, Japan
k keniti@nii.ac.jp

2 University of Tokyo, Tokyo 113-8656, Japan
Yusuke Kobayashi@mist.i.u-tokyo.ac.jp

Abstract. For a graph G and a collection of vertex pairs {(s1, t1), . . . ,
(sk, tk)}, the disjoint paths problem is to find k vertex-disjoint paths
P1, . . . , Pk, where Pi is a path from si to ti for each i = 1, . . . , k. This
problem is one of the classic problems in combinatorial optimization
and algorithmic graph theory, and has many applications, for example
in transportation networks, VLSI layout, and recently, virtual circuits
routing in high-speed networks.

As an extension of the disjoint paths problem, we introduce a new
problem which we call the induced disjoint paths problem. In this prob-
lem we are given a graph G and a collection of vertex pairs {(s1, t1), . . . ,
(sk, tk)}. The objective is to find k paths P1, . . . , Pk such that Pi is a path
from si to ti and Pi and Pj have neither common vertices nor adjacent
vertices for any distinct i, j.

This problem setting is a generalization of the disjoint paths prob-
lem, since if we subdivide each edge, then desired disjoint paths would
be induced disjoint paths. The problem is motivated by not only the
disjoint paths problem but also the recognition of an induced subgraph.
The latter has been developed in the recent years, and this is actually
connected to the Strong Perfect Graph Theorem [4], and the recognition
of the perfect graphs [2].

In this paper, we shall investigate the complexity issues of this prob-
lem. The induced disjoint paths problem has several variants depending
on whether k is a fixed constant or a part of the input, whether the graph
is directed or undirected, and whether the graph is planar or not. We
show that the induced disjoint paths problem is

(i) solvable in polynomial time when k is fixed and G is a directed
planar graph,

(ii) solvable in linear time when k is fixed and G is an undirected
planar graph,

(iii) NP-hard when k = 2 and G is an acyclic directed graph,
(iv) NP-hard when k = 2 and G is an undirected general graph.

(i) generalizes the result by Schrijver [22], while (ii) generalizes the
result by Reed, Robertson, Schrijver and Seymour [17].

� Research partially supported by JSPS Postdoctoral Fellowships for Research
Abroad.

�� Supported by the Research Fellowship of the Japan Society for the Promotion of
Science for Young Scientists.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 47–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 K. Kawarabayashi and Y. Kobayashi

1 Introduction

1.1 Disjoint Paths Problem

The disjoint paths problem (DPP) is the following.

Disjoint paths problem (DPP)

Input: A graph G, k pairs of vertices (s1, t1), (s2, t2), . . . , (sk, tk) in G (which
are sometimes called “terminals”).

Output: Pairwise vertex-disjoint paths P1, . . . , Pk in G such that Pi joins si

and ti for i = 1, 2, . . . , k.

This problem is one of the classic problems in algorithmic graph theory and
combinatorial optimization.

If k is as a part of the input of the problem, then this is one of Karp’s
NP-complete problems [11], and it remains NP-complete even if G is constrained
to be planar (Lynch [14]). The disjoint paths problem has been attracted interest
from 1980’s. This is because it is closely related to transportation networks, VLSI
layout, and recently, virtual circuits routing in high-speed networks. A basic
technical problem here is to interconnect certain prescribed “channels” on the
chip, and wires belonging to different sets of pins should not touch each other. In
this simplest form, the problem mathematically amounts to finding disjoint trees
in a graph or disjoint paths in a graph, each connecting a given set of vertices.

Fortune, Hopcroft and Wyllie [10] proved that the directed version of the
problem (DDPP) is NP-hard even if k = 2, whereas the problem can be solved
in polynomial time when the given digraph is acyclic and k is fixed. However,
it was shown that the disjoint paths problem in undirected graphs (DPP) is
solvable in polynomial time when k = 2 [24,25,26].

Perhaps the biggest achievement in this area is Robertson and Seymour’s
polynomial time algorithm (actually O(n3) algorithm, where n is the number
of vertices of the graph) for the disjoint paths problem when the number of
terminals, k, is fixed. Actually, this algorithm is one of the spin-offs of their
seminal work on Graph Minor project, spanning 23 papers, and giving several
deep and profound results and techniques in Discrete Mathematics. The time
complexity was improved by Reed, who gave an O(n2) algorithm for the disjoint
paths problem.

On the other hand, Schrijver [22] gave a polynomial time algorithm for the
DDPP when G is a directed planar graph and k is fixed. For the DPP for planar
graphs, Reed et al. [17] gave a linear time algorithm for fixed k.

We summarize the known results on the problem in Table 1 (see [23] for more
results).

1.2 Induced Disjoint Paths Problem

As a generalization of the disjoint paths problem, we introduce a new prob-
lem called induced disjoint paths problem. Let G be a graph and P1, . . . , Pk be

The Induced Disjoint Paths Problem 49

Table 1. Complexity of DDPP and DPP

DDPP DPP

k: constant NP-hard P [20]
(Planar digraph : P [22]) (Planar graph : Linear [16,17])
(Acyclic digraph : P [10])

k: variable NP-hard (see [11]) NP-hard (see [11])
(Planar digraph : NP-hard [14]) (Planar graph: NP-hard [14])
(Acyclic digraph : NP-hard [7])

connected subgraphs in G. We say that P1, . . . , Pk are induced if Pi and Pj

have neither common vertices nor adjacent vertices for any distinct i, j. In other
words, P1, . . . , Pk are induced if the following two conditions hold:

– Any pair of subgraphs have no common vertices.
– Let H be the graph obtained by contracting all edges in P1, . . . , Pk. For each

i = 1, . . . , k, let pi be the vertex of H that corresponds to all vertices on Pi.
Then {p1, p2, . . . , pk} is a stable set in H .

We note that even if P1, . . . , Pk are induced each Pi is not necessarily induced by
some vertex set. The induced disjoint paths problem is the following problem.

Induced disjoint paths problem (IDPP)

Input: A graph G=(V, E) and a collection of vertex pairs {(s1, t1), . . . , (sk, tk)}.
Output: Induced disjoint paths P1, . . . , Pk in G, where Pi is a path whose end

vertices are si and ti for each i = 1, . . . , k.

For a digraph D = (V, A), we also introduce a new problem called directed in-
duced disjoint paths problem. Let P1, . . . , Pk be dipaths in D. As with undirected
graphs, we say that P1, . . . , Pk are induced if Pi and Pj have neither common
vertices nor adjacent vertices for any distinct i, j. The directed induced disjoint
paths problem is defined as follows.

Directed induced disjoint paths problem (DIDPP)

Input: A directed graph D = (V, A) and a collection of vertex pairs {(s1, t1),
. . . , (sk, tk)}.

Output: Induced disjoint dipaths P1, . . . , Pk in D, where Pi is a dipath from
si to ti for each i = 1, . . . , k.

The induced disjoint paths problem is an extension of the disjoint paths prob-
lem, because any instance of the disjoint paths problem can be reduced to an
instance of the induced disjoint paths problem by subdividing every edge into
two edges. Similarly, the directed induced disjoint paths problem is an extension
of the directed version of the disjoint paths problem.

Our motivation for the IDPP and the DIDPP is not only an extension of the
disjoint paths problem, but also detecting an induced subgraph. The latter area

50 K. Kawarabayashi and Y. Kobayashi

has been developed in the recent years, and this is actually connected to the
Strong Perfect Graph Theorem [4], and the recognition of the perfect graphs
[2]. Let us give some examples. It is easy to test whether or not G has an even
cycle, or an odd cycle. But it had been a long open question to test an even hole.
This was finally done in [3,5,6]. As far as we are aware, the recognition problem
for an odd hole is still open, although there is a polynomial time algorithm
to test an odd hole or an anti odd hole in [2], which is, in fact, equivalent to
the recognition of the perfectness by the Strong Perfect Graph Theorem [4]. As
we see here, finding an induced subgraph is a hard problem. So it would be
interesting to see whether or not the DPP or the DDPP can be extended to the
induced versions. This is our second motivation. In fact, this motivation creates
some of work for a similar concept “induced minor”, see [8,9].

Let us address the complexity issues concerning the IDPP and the DIDPP. By
the above reduction, we see that the variants of the (directed) induced disjoint
paths problem which correspond to NP-hard variants of the (directed) disjoint
paths problem are NP-hard, that is, we obtain the following results:

– When k is a part of the input, the IDPP is NP-hard even if the given graph
is planar.

– When k is a part of the input, the DIDPP is NP-hard even if the given
digraph is acyclic or planar.

– The DIDPP is NP-hard even if k = 2.

1.3 Our Contribution

In this paper, we reveal the time complexity of several variants of the IDPP and
the DIDPP as shown in Table 2. More precisely, we prove the following:

Theorem 1. The induced disjoint paths problem is

(i) solvable in polynomial time when k is fixed and G is a directed planar
graph,

(ii) solvable in linear time when k is fixed and G is an undirected planar graph,
(iii) NP-hard when k = 2 and G is an acyclic directed graph,
(iv) NP-hard when k = 2 and G is an undirected general graph.

(i) generalizes the result by Schrijver [22], while (ii) generalizes the result by
Reed, Robertson, Schrijver and Seymour [17].

The rest of the paper is organized as follows. In Section 2, we prove (iii)
and (iv) of Theorem 1, that is, we present NP-hardness results saying that the
IDPP is NP-hard even if k = 2, and the DIDPP is NP-hard even if the given
digraph is acyclic and k = 2. In Section 3, we show that the DIDPP is solvable
in polynomial time when the given digraph is planar and k is fixed, which shows
(i) of Theorem 1. Although this result implies that the IDPP is also solvable in
polynomial time when the given graph is planar and k is fixed, this variant can
be solved in linear time. In Section 4, we present this linear algorithm and shows
(ii) of Theorem 1.

The Induced Disjoint Paths Problem 51

Here we make some remarks on the proof of (ii). In order to prove (ii), we shall
consider somewhat more general problem, which is called “induced c-embedded
k-realizations”. Non-induced version of this problem was considered by Reed
[16]. We would like to use the method in [16,17], but there is one issue here. We
need to prove that a given linkage must be induced. This makes a difference,
and in order to apply the method [16,17], we need to prove the induced version
of the theorems in [16]. This is our main challenge in the proof of (ii), and the
most of the proof of (ii) is devoted to prove these results. Some graph minor
tools are necessary. In fact, we need to generalize some of the results in Graph
Minors VII [18] to the induced version. Some of the proofs there work for our
case too, but some need to be extended to the induced version.

Before going to details, let us mention some notations.

Table 2. Complexity of DIDPP and IDPP

DIDPP IDPP

k: constant NP-hard NP-hard
(Planar digraph : P) (Planar graph : Linear)

(Acyclic digraph : NP-hard)

k: variable NP-hard NP-hard
(Planar digraph : NP-hard) (Planar graph: NP-hard)
(Acyclic digraph : NP-hard)

1.4 Basic Notation

For an undirected graph (or simply a graph) G = (V, E), let uv denote an edge
connecting u and v. For V ′ ⊆ V , the subgraph induced by V ′ is a subgraph
G′ = (V ′, E′), where E′ consists of all edges of G spanned by V ′.

For a directed graph (or a digraph) D = (V, A), let (u, v) denote an arc which
starts in u and ends in v, and for an arc a = (u, v) we define a−1 = (v, u). For
vertices v0, v1, . . . , vl and arcs a1, . . . , al, a sequence P = (v0, a1, v1, a2, . . . , al, vl)
is called a directed path (or a dipath) if ai = (vi−1, vi) for i = 1, . . . , k. If no
confusion may arise, we sometimes denote P = (a1, . . . , al) or identify P with
its arc set {a1, . . . , al}.

2 Hardness Results

In this section, we give two NP-hardness results. These results indicate that
the (directed) induced disjoint paths problem is essentially different from the
(directed) disjoint paths problem.

First, we show that the IDPP is NP-hard even if k = 2, whereas the DPP is
solvable in polynomial time if k is fixed.

Given a graph G, we say that a cycle C is a hole (or an induced cycle) if C is
a cycle of G induced by some set of vertices. In other words, C is called a hole
if C has no chords. The problem of finding a hole that passes through two given
vertices is NP-hard [1].

52 K. Kawarabayashi and Y. Kobayashi

Theorem 2. The induced disjoint paths problem (IDPP) is NP-hard, even if
k = 2.

Proof. We show that the problem of finding a hole that passes through u and v
can be reduced to the IDPP with k = 2.

Let uu− and uu+ be edges incident to u, and let vv− and vv+ be edges
incident to v. It is enough to show that the problem of finding a hole traveling
u−, u, u+, v−, v, and v+ in this order can be reduced to the IDPP, because the
number of choices of u−, u+, v−, and v+ is at most |V |4.

Construct G′ from G by replacing u, v and all edges incident to them with
new vertices s1, s2, t1, t2 and edges s1u

+, v−t1, s2v
+, u−t2. Then we can solve

the original problem in G by solving the IDPP in G′, and hence the IDPP is
NP-hard, even if k = 2.

We next show that the DIDPP is NP-hard even if the given digraph is acyclic
and k = 2, whereas the DDPP is solvable in polynomial time when the given
digraph is acyclic and k is fixed.

Theorem 3. The directed induced disjoint paths problem (DIDPP) is NP-hard,
even if the given digraph D = (V, A) is acyclic and k = 2.

Proof. It is enough to show that 3-SAT can be reduced to the DIDPP in acyclic
digraphs with k = 2. Let C1 ∧ C2 ∧ · · · ∧ Cm be an instance of 3-SAT with n
variables x1, . . . , xn.

We construct an acyclic digraph D = (V, A) as follows (see Fig. 1). Let W =
{w1, w̄1, . . . , wn, w̄n} be a set of vertices, where wi and w̄i correspond to the
variable xi for each i = 1, . . . , n. For each j = 1, . . . , m, let vj,1, vj,2, vj,3 be
vertices, which correspond to the literal Cj , and define Vj = {vj,1, vj,2, vj,3}. Let
P = {p0, p1, . . . , pn} and Q = {q0, q1, . . . , qm} be sets of vertices, and define the
vertex set V by V = W ∪ (

⋃m
j=1 Vj) ∪ P ∪Q.

Define arc sets Ap and Aq by

Ap = {(pi−1, wi), (pi−1, w̄i), (wi, pi), (w̄i, pi) | i = 1, . . . , n},
Aq = {(qj−1, vj,i), (vj,i, qj) | j = 1, . . . , m, i = 1, 2, 3},

and let Ax be the arc set defined as follows: (w̄i, vj,l) ∈ Ax if the l-th element
of Cj is xi and (wi, vj,l) ∈ Ax if the l-th element of Cj is x̄i. The arc set A is
defined by A = Ap ∪Aq ∪Ax.

We now show that solving the DIDPP in D = (V, A) with respect to s1 =
p0, t1 = pn, s2 = q0, and t2 = qm is equivalent to solving the original 3-SAT.

For each i = 1, . . . , n, every dipath from s1 to t1 goes through exactly one
of wi and w̄i. Then, we can see with the following observation that assigning
“true” or “false” to xj in the 3-SAT problem corresponds to deciding that P1

goes through wi or w̄i in the DIDPP, respectively.
Suppose that the l-th element of Cj is xi (resp. x̄i). Then, if we assign “true”

(resp. “false”) to xi then Cj is satisfied in 3-SAT, which corresponds to the fact
that if P1 goes through wi (resp. w̄i) then P2 can go through vj,l from qj−1 to qj

The Induced Disjoint Paths Problem 53

x1 x2 xn

w̄nw̄2w̄1

t1 = pn

C1

s2 = q0 t2 = qm

C2 Cm

= x1 ∨ x̄2 ∨ x5

w1 w2 wn

s1 = p0

p1 p2 pn−1

q1 q2 qm−1

v1,1

v1,3

Fig. 1. Construction of D

in the DIDPP. Thus, Cj is satisfied for every j = 1, . . . , m in the 3-SAT problem
if and only if P2 can go from q0 to qm in the DIDPP.

By the above arguments, 3-SAT can be reduced to the DIDPP in an acyclic
digraph with k = 2.

3 Polynomial Time Algorithm for the DIDPP in Planar
Graphs

When the given digraph D is planar and k is fixed, Schrijver gave a polynomial
time algorithm for the directed disjoint paths problem [22]. As a generalization
of this result, when the given digraph D is planar and k is fixed we give a
polynomial time algorithm for the directed induced disjoint paths problem.

Theorem 4. The directed induced disjoint paths problem is solvable in polyno-
mial time, if the given digraph D = (V, A) is planar and k is a fixed constant.

Before giving the proof of Theorem 4, we show that a polynomial time algorithm
for the undirected version is obtained from Theorem 4.

Corollary 1. The induced disjoint paths problem is solvable in polynomial time,
if the given graph is planar and k is a fixed constant.

Proof. Consider an instance of the induced disjoint paths problem in a planar
undirected graph G = (V, E). Let D = (V, A) be the directed graph obtained
from G by replacing every edge uv ∈ E with two arcs (u, v) and (v, u). Then solv-
ing the induced disjoint paths problem in G corresponds to solving the directed

54 K. Kawarabayashi and Y. Kobayashi

induced disjoint paths problem in D, and hence the original induced disjoint
paths problem is solvable in polynomial time by Theorem 4.

The rest of this section is devoted to the proof of Theorem 4.

3.1 Preliminaries for the Proof

Let D = (V, A) be a directed planar graph, and {(s1, t1), . . . , (sk, tk)} be a
collection of vertex pairs. The vertices s1, . . . , sk, t1 . . . , tk are called terminals.
Without loss of generality, we assume that D is weakly connected and each
terminal is incident to exactly one arc. We fix a planar embedding of D. Let F
be the set of all faces of D, and R ∈ F be the unbounded face of D. For a ∈ A,
let left(a) and right(a) be the faces in F at the left-hand side and the right-hand
side of a, respectively.

Let (Gk, ·) be the free group generated by g1, g2, . . . , gk, and let 1 denote its
unit element. More precisely, Gk consists of all words b1 · · · bt, where t ≥ 0 and
b1, . . . , bt ∈ {g1, g

−1
1 , . . . , gk, g−1

k } such that bibi+1 �= gjg
−1
j and bibi+1 �= g−1

j gj

for i = 1, . . . , t− 1 and j = 1, . . . , k. The product x · y of two words is obtained
from the concatenation xy by deleting iteratively all gjg

−1
j and g−1

j gj .
We say that a function φ : A→ Gk is a flow if the following three conditions

hold.

– For i = 1, . . . , k, the arc a leaving si satisfies that φ(a) = gi.
– For i = 1, . . . , k, the arc a entering ti satisfies that φ(a) = gi.
– For each vertex v ∈ V \ {s1, . . . , sk, t1, . . . , tk},

φ(a1)ε1 · φ(a2)ε2 · · · · · φ(al)εl = 1,

where a1, . . . , al are the arcs incident with v, in clockwise order, and εi = +1
if ai leaves v and εi = −1 if ai enters v.

Note that φ(a) represents the dipaths which go through the arc a. For example,
if φ(a) = g1g2 then dipaths P1 and P2 go through the arc a and P1 is to the left
of P2, and if φ(a) = g−1

3 then a dipath P3 goes through the arc a in the reverse
direction of a. The definition of flows means that no pair of dipaths cross at
any vertices. We note here the relation between directed induced disjoint paths
(or directed disjoint paths) and flows. Given a solution Π = (P1, . . . , Pk) of the
DIDPP (or the DDPP), we define a function ψΠ : A→ Gk by

ψΠ(a) =

{
gi if a is an arc on Pi,

1 otherwise.

Then ψΠ is obviously a flow.
We say that two functions φ, ψ : A → Gk are R-homologous if there exists a

function f : F → Gk such that

– f(R) = 1,
– f(left(a))−1 · φ(a) · f(right(a)) = ψ(a) for each arc a ∈ A.

It can be easily seen that if φ is a flow and ψ is R-homologous to φ, then ψ is
also a flow.

The Induced Disjoint Paths Problem 55

3.2 Proof of Theorem 4

Schrijver’s algorithm is obtained from the following two propositions for the
DDPP in an embedded planar digraph.

Proposition 1 (Schrijver [22]). For each fixed k, we can find in polynomial
time a collection of flows φ1, . . . , φN with the property that for each solution Π
of the DDPP, ψΠ is R-homologous to at least one of φ1, . . . , φN .

Proposition 2 (Schrijver [22]). There exists a polynomial time algorithm
that, for any flow φ, either finds a solution Π of the DDPP such that ψΠ is
R-homologous to φ or concludes that such a solution does not exist.

Proposition 1 implies the following as a corollary, because induced disjoint paths
are a special case of disjoint paths.

Proposition 3. For each fixed k, we can find in polynomial time a collection of
flows φ1, . . . , φN with the property that for each solution Π of the DIDPP, ψΠ

is R-homologous to at least one of φ1, . . . , φN .

For the proof of Theorem 4, we need the following proposition, which is the
DIDPP version of Proposition 2.

Proposition 4. There exists a polynomial time algorithm that, for any flow φ,
either finds a solution Π of the DIDPP such that ψΠ is R-homologous to φ or
concludes that such a solution does not exist.

In [22], Schrijver gives a polynomial time algorithm for a problem called coho-
mology feasibility problem (CFP), and proves Proposition 2 using this algorithm.
Proposition 4 can be also shown with the aid of this algorithm for the CFP, but
we omit the proof (see [13]).

Our algorithm for the DIDPP is obtained from Proposition 3 and Proposi-
tion 4 as follows.

Proof for Theorem 4. By Proposition 3, we can find a collection of flows φ1, . . . ,
φN such that for each solution Π of the DIDPP, ψΠ is R-homologous to at
least one of φ1, . . . , φN . By Proposition 4, we can either find a solution Π of the
DIDPP such that ψΠ is R-homologous to φi or conclude that such a solution
does not exist, for each i = 1, . . . , N . Thus we can solve the DIDPP in polynomial
time when the given digraph is planar and k is a fixed constant.

4 Linear Time Algorithm for the IDPP in a Planar
Graph

In this section, we give a linear time algorithm that solves the IDPP in a planar
graph when k is fixed. Our algorithm is based on the algorithms of [16,17] for
the DPP in a planar graph.

56 K. Kawarabayashi and Y. Kobayashi

In [16], Reed introduced a new problem called c-embedded k-realizations, which
generalizes the disjoint paths problem in a planar graph, and gave a linear time
algorithm for the c-embedded k-realizations. Let G = (V, E) be a graph and
X ⊆ V be a vertex set whose element is called a terminal. A partition X =
{X1, X2, . . . , Xp} of X is realizable if there are disjoint trees T1, . . . , Tp in G
such that Xi ⊆ Ti for i = 1, . . . , p. Let Σ be a surface obtained by removing
from the plane c open disks whose closures are disjoint. Such a surface is called
a punctured plane and each disk is called a cuff. The boundary of Σ is denoted
by bd(Σ). The c-embedded k-realizations is described as follows.

c-embedded k-realizations

Input: A graph G = (V, E) embedded on a punctured plane Σ with at most c
cuffs, and a terminal set X ⊆ V ∩ bd(Σ) with |X | = k.

Output: All realizable partitions of X in G.

Reed [16] and Reed et al. [17] gave a linear time algorithm for the c-embedded
k-realizations when c and k are fixed. A linear time algorithm for the DPP in a
planar graph is immediately derived from these results.

To give a linear time algorithm for the IDPP in a planar graph, we introduce
the induced version of the c-embedded k-realizations. Let G = (V, E) be a graph
and X ⊆ V be a terminal set. A partition X = {X0, X1, X2, . . . , Xp} of X with
a special set X0 is induced-realizable if there are induced trees T1, . . . , Tp in G
such that Xi ⊆ Ti and X0 ∩ Ti = ∅ for i = 1, . . . , p. We consider the following
problem, which is a generalization of the induced disjoint paths problem in a
planar graph.

c-embedded induced k-realizations

Input: A graph G = (V, E) embedded on a punctured plane Σ with at most c
cuffs, and a terminal set X ⊆ V ∩ bd(Σ) with |X | = k.

Output: All induced-realizable partitions of X in G.

In the rest of this section, we give a linear time algorithm that solves the
c-embedded induced k-realizations for any fixed c and k.

Theorem 5. The c-embedded induced k-realizations can be solved in linear time
for any fixed c and k.

4.1 Deletable Vertex

Suppose we are given an instance of the c-embedded k-realizations (resp.
c-embedded induced k-realizations). We say that a vertex v ∈ V \X is deletable
if any realizable (resp. induced-realizable) partition X of X in G is also real-
izable (resp. induced-realizable) in G − v. A vertex v ∈ V \ X is l-isolated if
there exist l disjoint cycles C1, C2, . . . , Cl bounding disks Δ1, Δ2, . . . , Δl such
that v ∈ Δ1 − C1, Δ1 ⊆ Δ2 ⊆ · · · ⊆ Δl, and Δl does not intersect bd(Σ).

The Induced Disjoint Paths Problem 57

The following theorem, which is a part of the main result of [21], gives a
sufficient condition for a vertex to be deletable, and plays an important role in
algorithms for the c-embedded k-realizations [16,17].

Theorem 6 ([21], see [16] for a shorter proof). For any k, there exists an
integer f(k) such that for any instance of the c-embedded k-realizations every
f(k)-isolated vertex is deletable.

The following theorem is the induced version of Theorem 6, which will be used
in our algorithm for the c-embedded induced k-realizations.

Theorem 7. For any k, there exists an integer h(k) such that for any instance
of the c-embedded induced k-realizations every 2h(k)-isolated vertex is deletable.

Theorem 7 is one of the biggest achievements of this section, but we omit the
proof due to space limitations (see [12]).

4.2 Algorithm

For a description of our algorithm for the c-embedded induced k-realizations, we
give some preliminaries. A curve J ⊆ Σ is proper if J ∩G ⊆ V , and its length is
defined as |J ∩G|. An I-arc is a proper non-self-intersecting curve in Σ. We say
that J ⊆ Σ is an O-arc if J is a proper non-self-intersecting (except for its end
vertices) closed curve in Σ such that each component of Σ − J contains a cuff.

When c ≥ 2, we can transform an instance of the c-embedded induced
k-realizations into some instances with fewer cuffs by executing Algorithm
Cuff Reduction described below. This algorithm is similar to algorithms
in [16,17] for the c-embedded k-realizations, and runs in linear time.

Algorithm Cuff Reduction

Input: An instance of the c-embedded induced k-realizations, where c ≥ 2.
Output: Some instances of the c′-embedded induced k′-realizations, where c′ <

c and k′ is at most a constant depending on c and k.

Step 1. If there exists an O-arc J with length at most 8h(k) + 2 such that
each component of Σ − J contains at least two cuffs, then consider the
inside and the outside of J separately (see Fig. 2). More precisely, let D1, D2

be components of Σ − J , and consider the following two instances: one is
in D1 ∪ J with terminals (X ∩ D1) ∪ (J ∩ V) and the other is in D2 ∪ J
with terminals (X ∩D2) ∪ (J ∩ V). Then, we can reduce the instance into
two instances with fewer cuffs, and stop the algorithm. We note that the
solution of the original instance is obtained by unifying the solutions of two
small instances in constant time.

If such O-arc does not exist, go to Step 2.
Step 2. If there exists an O-arc J with length at most 8h(k) + 2 such that

one component of Σ − J contains exactly one cuff C, then take the shortest
one among such O-arcs. If there exist some shortest O-arcs, choose such an

58 K. Kawarabayashi and Y. Kobayashi

O-arc with the minimal bounding disk. As the same way as Step 1, we reduce
the instance into two instances: one is an instance with two cuffs and the
other is an instance with c cuffs in a smaller graph. For each obtained graph,
execute Step 2 repeatedly, and if such O-arc does not exist in every graph,
then execute Step 3 for each resulted graph.

Step 3. It suffices to consider the case when there is no O-arc with length at
most 8h(k) + 2. Denote cuffs by C1, . . . , Cc, and find the shortest I-arc Ji,j

connecting Ci and Cj for distinct 1 ≤ i, j ≤ c. Let J be the shortest I-arc
among all Ji,j .
3-1. If the length of J is at most 4h(k) + 2, then “open” Σ along J and

reduce the instance into an instance with c−1 cuffs (see Fig. 3). More
precisely, for each vertex v on J , split v into two vertices v1, v2 and
replace every edge vu incident to v by v1u or v2u so that J is contained
in a new face. Furthermore, add all vertices in {v1, v2 | v ∈ J} to
terminals. Then, the instance is reduced into an instance with c − 1
cuffs, and stop the algorithm.

3-2. If the length of J is more than 4h(k)+2, delete all vertices of J except
the first 2h(k) + 1 and the last 2h(k) + 1. Then, since the length of J
becomes 4h(k) + 2, execute the same procedure as Step 3-1.

J

cuffs

J J

cuffs

cuffs

Fig. 2. Reduction to instances with fewer cuffs

To see the correctness of Algorithm Cuff Reduction, we prove that all vertices
deleted in Step 3-2, say Q, are deletable.

Proposition 5. Deleting Q does not affect realizability of the original instance.

For a proof of this proposition, we use the following characterization of l-isolated
vertices. For a vertex v in a graph G, let dG(v) denote the minimum number of
vertices of G on the interior of an I-arc J , where J is taken over all I-arcs of Σ
with one endpoint v and the other in bd(Σ). Then, the following theorem holds.

Theorem 8 ([16,19]). Suppose that G has no O-arc with length at most 2l for
some positive integer l. Then, a vertex v is l-isolated if and only if dG(v) ≥ l.

The Induced Disjoint Paths Problem 59

J J

copy of J

cuffs

one cuff

Fig. 3. “Open” Σ along J

Now we are ready to show Proposition 5. Note that when we execute Step 3-2,
we assume that the graph has no O-arc with length at most 8h(k) + 2 and J is
the shortest I-arc with its endpoints in bd(Σ).

Proof for Proposition 5. By Theorem 7, it suffices to show that each vertex v is
2h(k)-isolated in G− (Q \ {v}).

First, we show that G−Q has no O-arc with length at most 4h(k). Let C be
an O-arc in G −Q with minimum length. We may assume that C intersects G
only in its vertices. Then, there exist x, y ∈ Q such that two components K, K ′

of C−{x, y} satisfy that K∩V ⊆ Q and K ′∩Q = {x, y}. Since J is the shortest
I-arc, the length of K is less than or equal to that of K ′. Thus, if the length
of C is at most 4h(k) in G − Q, then C is an O-arc in G with length at most
8h(k) + 2, which contradicts the assumption.

On the other hand, as J is the shortest I-arc, we can see that dG−(Q\{v})(v) ≥
2h(k) holds for each vertex v ∈ Q.

Thus, by Theorem 8, each vertex v ∈ Q is 2h(k)-isolated in G− (Q \ {v}).

Proposition 6. Algorithm Cuff Reduction runs in linear time.

Proof. In Steps 1 and 2, by using the augmenting path method of Ford and
Fulkerson in G, we can find O-arcs with length at most 8h(k)+2 in linear time.
We note that the total number of finding augmenting paths is at most 8h(k)+3,
which is constant. We also note that since the number of repetition of Step 2 is
at most |V |, the total number of vertices increases by at most 2(8h(k) + 2)|V |.

In Step 3, by adding cuffs to Σ, we regard G = (V, E) as a graph embedded
on a plane. Let F be a face set of G and F1, F2, . . . , Fc ∈ F be faces containing
cuffs C1, C2, . . . , Cc, respectively. We consider an auxiliary graph called radial
graph in [15] whose vertex set is V ∪ F and whose edge set is

{vF | v ∈ V, F ∈ F , v is on the boundary of F}.

Then, by finding the shortest path from Fi to Fj in the radial graph for each
1 ≤ i, j ≤ c, we can find J . Since the number of vertices in the radial graph is
at most 3|V | − 4, it can be done in linear time.

60 K. Kawarabayashi and Y. Kobayashi

We note that since the number of vertices increases by at most 2(4h(k) + 2) in
Step 3, by executing Algorithm Cuff Reduction, the total number of vertices of
obtained graphs is at most |V |+ (2(8h(k) + 2) + 2(4h(k) + 2))|V | = (24h(k) +
9)|V |. Thus, by repeating Algorithm Cuff Reduction, we can reduce the original
instance into some instances with one cuff in linear time, and the total number of
vertices is at most a constant multiple of |V |. Although the original instance may
be reduced into O(|V |) instances, the running time is O(|V |) in total, because
the total number of vertices is O(|V |).

When c = 1, we can determine whether a given partition X = {X0, X1, . . . ,
Xp} is induced-realizable or not in linear time by a greedy algorithm.

As a consequence of the above arguments, we can solve the c-embedded in-
duced k-realizations in linear time, which completes Theorem 5.

Acknowledgments

The authors are thankful to Kazuo Murota, Satoru Iwata, and Kazuhisa Makino
for their helpful comments on the work.

References

1. Bienstock, D.: On the complexity of testing for even holes and induced odd paths.
Discrete Math. 90, 85–92 (1991)

2. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P.D., Vuskovic, K.: Recognizing
Berge graphs. Combinatorica 25, 143–186 (2005)

3. Chudnovsky, M., Kawarabayashi, K., Seymour, P.D.: Detecting even holes. J.
Graph Theory 48, 85–111 (2005)

4. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect
theorem. Annals of Mathematics 64, 51–219 (2006)

5. Cornuéjols, G., Conforti, M., Kapoor, A., Vusksvic, K.: Even-hole-free graphs I.
Decomposition theorem. J. Graph Theory 39, 6–49 (2002)

6. Cornuéjols, G., Conforti, M., Kapoor, A., Vusksvic, K.: Even-hole-free graphs. II.
Recognition algorithm. J. Graph Theory 40, 238–266 (2002)

7. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing 5, 691–703 (1976)

8. Fellows, M.R.: The Robertson-Seymour Theorems: a survey of applications. In:
Comtemporary Mathematics, vol. 89, pp. 1–18. American Mathematical Society
(1987)

9. Fellows, M.R., Kratochvil, J., Middendorf, M., Pfeiffer, F.: The complexity of in-
duced minors and related problems. Algorithmica 13, 266–282 (1995)

10. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoretical Computer Science 10, 111–121 (1980)

11. Karp, R.M.: On the computational complexity of combinatorial problems. Net-
works 5, 45–68 (1975)

12. Kawarabayashi, K., Kobayashi, Y.: A linear time algorithm for the induced disjoint
paths problem in planar graphs (manuscript)

13. Kobayashi, Y.: An extension of the disjoint paths problem, METR 2007-14, De-
partment of Mathematical Informatics, University of Tokyo (2006)

The Induced Disjoint Paths Problem 61

14. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem.
SIGDA Newsletter 5(3), 31–36 (1975)

15. Mohar, B., Thomassen, C.: Graphs on Surfaces. The Johns Hopkins University
Press, Baltimore, London (2001)

16. Reed, B.: Rooted routing in the plane. Discrete Applied Math. 57, 213–227 (1995)
17. Reed, B.A., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in

planar graphs in linear time. In: Contemporary Mathematics, vol. 147, pp. 295–301.
American Mathematical Society (1993)

18. Robertson, N., Seymour, P.D.: Graph minors. VII. Disjoint paths on a surface.
Journal of Combinatorial Theory Ser. B 45, 212–254 (1988)

19. Robertson, N., Seymour, P.D.: Graph minors. XI. Circuits on a surface. Journal of
Combinatorial Theory Ser. B 60, 72–106 (1994)

20. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory Ser. B 63, 65–110 (1995)

21. Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage
problems (manuscript)

22. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM Journal
on Computing 23, 780–788 (1994)

23. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

24. Seymour, P.D.: Disjoint paths in graphs. Discrete Mathematics 29, 293–309 (1980)
25. Shiloach, Y.: A polynomial solution to the undirected two paths problem. Journal

of the ACM 27, 445–456 (1980)
26. Thomassen, C.: 2-linked graphs. European Journal of Combinatorics 1, 371–378

(1980)

A Weighted Kt,t-Free t-Factor Algorithm

for Bipartite Graphs

Kenjiro Takazawa

University of Tokyo, Tokyo 113-8656, Japan, and
Kyoto University, Kyoto 606-8502, Japan
takazawa@misojiro.t.u-tokyo.ac.jp

Abstract. For a simple bipartite graph and an integer t ≥ 2, we consider
the problem of finding a minimum-weight t-factor under the restriction
that it contains no complete bipartite graph Kt,t as a subgraph. When
t = 2, this problem amounts to the minimum-weight square-free 2-factor
problem in a bipartite graph, which is NP-hard. We propose, however, a
strongly polynomial algorithm for a certain case where the weight vector
is vertex-induced on any subgraph isomorphic to Kt,t. The algorithm
adapts the unweighted algorithms of Hartvigsen and Pap, and a primal-
dual approach to the minimum-cost flow problem. The algorithm is fully
combinatorial, and thus provides a dual integrality theorem, which is
tantamount to Makai’s theorem dealing with maximum-weight Kt,t-free
t-matchings.

1 Introduction

Let G = (V, E) be a simple undirected graph, that is, G has neither parallel
edges nor self-loops. Throughout this paper, we assume that the given graphs
are simple. For a vector b ∈ ZV

+ , an edge set M ⊆ E is said to be a b-matching
if every vertex v ∈ V is incident to at most b(v) edges in M , and a b-factor if
every vertex v ∈ V is incident to exactly b(v) edges in M . If b(v) = t for every
v ∈ V , we simply refer to b-matchings/factors as t-matchings/factors.

Let us denote a cycle of length k by Ck. For a b-matching/factor M with
b(v) ≤ 2 for each v ∈ V , we say that M is Ck-free if M contains no cycles of
length k or less. The Ck-free 2-factor problem is to find a Ck-free 2-factor in
a given graph. Note that the case where k ≤ 2 is exactly the classical simple
2-factor problem, which can be solved efficiently.

One important aspect of the Ck-free 2-factor problem is that it is a relaxation
of the Hamilton cycle problem. From this point of view, it is easily seen that this
problem is NP-hard when |V |/2 ≤ k ≤ |V |−1. Moreover, Papadimitriou showed
that the problem is NP-hard when k ≥ 5 (see [1]). On the other hand, for the
case where k = 3, an augmenting path algorithm is given by Hartvigsen [11].
The C4-free 2-factor problem is left open.

The weighted Ck-free 2-factor problem is to find a Ck-free 2-factor that min-
imizes the total weight of its edges for a given weighted graph. The problem is
NP-hard when k ≥ 5, which follows from the NP-hardness of the unweighted

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 62–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Weighted Kt,t-Free t-Factor Algorithm for Bipartite Graphs 63

problem, and so is the case where k = 4 [23]. The weighted C3-free 2-factor
problem is unsettled. Polyhedral structures of Ck-free 2-factors are studied in
Cunningham and Wang [3]. Related works also appear in [2,14,20].

We now focus on bipartite graphs. Note that it suffices to consider the cases
where k is even. While the C6-free 2-factor problem in bipartite graphs is
NP-hard [10], C4-free 2-factors in bipartite graphs are tractable and studied ac-
tively. We remark that a C4-free 2-matching/factor in a bipartite graph, which
is a 2-matching/factor that does not contain C4, is often referred to as a square-
free 2-matching/factor. Since the complement of an (n− 3)-connected bipartite
graph is a square-free 2-matching, the theory of square-free 2-matching can be
applied to the vertex-connectivity augmentation problem.

The first result on square-free 2-matchings was due to Hartvigsen [12], who
proposed a characterization of graphs that admit square-free 2-factors and a
combinatorial algorithm for finding one. This was followed by a min-max formula
by Z. Király [15]. Then Hartvigsen [13], the journal version of [12], presented
a full description of his algorithm and a constructive proof for the min-max
formula.

As for the weighted Ck-free 2-factor problem in bipartite graphs, the
NP-hardness when k ≥ 6 follows from that of the unweighted problem. Moreover,
Z. Király proved that the weighted square-free 2-factor problem is also NP-hard
(see [6]).

An attractive generalization of the square-free 2-factor problem is the Kt,t-free
t-factor problem, proposed by Frank [6]. In a bipartite graph, a t-matching/factor
is said to be Kt,t-free if it contains no Kt,t as a subgraph. Note that the case
where t = 2 is exactly the square-free 2-factor problem. Using a general frame-
work of Frank and Jordán [7] on covering crossing bi-supermodular functions on
pairs of sets, Frank [6] provided a min-max formula for Kt,t-free t-matchings,
which extends Z. Király’s formula [15] for the special case of t = 2. Through this
approach, one can compute the size of the maximum Kt,t-free t-matching in poly-
nomial time by the ellipsoid method or a combinatorial method by Fleiner [5].
Moreover, one can find a maximum Kt,t-free t-matching combinatorially by ap-
plying Végh and Benczúr’s algorithm for covering pairs of sets [22]. A direct
approach to this problem was done by Pap [17,18,19]. He gave a combinatorial
proof for Frank’s min-max formula, which implies a polynomial-time algorithm.
We remark that applying Pap’s algorithm to the case when t = 2 results in an
algorithm different from Hartvigsen’s algorithm.

The weighted Kt,t-free t-factor problem in bipartite graphs has also been
considered. As mentioned, this problem is NP-hard even when t = 2. How-
ever, Makai [16] showed a linear programming description of maximum-weight
Kt,t-free t-matchings and proved its dual integrality for a certain class of weight
vectors called vertex-induced. For a weight vector w ∈ RE and a subgraph H of
G, w is said to be vertex-induced on H if there exists a function πH : V (H)→ R
such that w(uv) = πH(u) + πH(v) for every uv ∈ E(H). Here, V (H) and
E(H) denote the vertex set and edge set of H , respectively, and uv denotes

64 K. Takazawa

an edge connecting u, v ∈ V (H). The class considered by Makai [16] is that w is
vertex-induced on any subgraph isomorphic to Kt,t. Applying the ellipsoid
method to Makai’s description, one obtains a polynomial algorithm for this class
of weighted bipartite graphs, which could be made strongly polynomial by Frank
and Tardos’ method [8].

This paper presents a combinatorial primal-dual algorithm to find a minimum-
weight Kt,t-free t-factor in a weighted bipartite graph whose weight vector is
vertex-induced on any subgraph isomorphic to Kt,t. The primal part of the al-
gorithm is a variant of Hartvigsen’s and Pap’s algorithms, while the dual part
is based on the framework of a primal-dual approach to the minimum-cost flow
problem [4,21]. The algorithm is fully combinatorial, so the output of the algo-
rithm is integer if the weight vector is integer. Thus, the algorithm implies dual
integrality of an LP-formulation for the problem, which corresponds to Makai’s
theorem [16]. The complexity of the algorithm is O(tn2D), where n is the number
of vertices and D is the time to execute a shortest path algorithm with nonneg-
ative length. Incorporating Fredman and Tarjan’s implementation of Dijkstra’s
algorithm [9], we get a strongly polynomial complexity O(tn2m + tn3 log n),
where m is the number of edges.

This paper is organized as follows. Section 2 describes a maximum-cardinality
square-free 2-matching algorithm, and Sect. 3 extends it to a minimum-weight
square-free 2-factor algorithm. Section 4 provides a further extension of the al-
gorithm to the weighted Kt,t-free t-factor problem. Finally, Sect. 5 discusses
the relation between minimum-weight Kt,t-free t-factors and maximum-weight
Kt,t-free t-matchings.

Before closing this section, let us prepare some notations and definitions used
in the following sections. Let G = (V, E) be an undirected graph with vertex
set V and edge set E. An edge connecting u, v ∈ V is denoted by uv. For a
vertex v ∈ V , δv ⊆ E denotes the set of edges incident to v. For Z ⊆ V ,
the subgraph induced by Z is denoted by G[Z] = (Z, E[Z]), that is, E[Z] =
{uv | u, v ∈ Z, uv ∈ E}. For a subgraph H of G, V (H) and E(H) denote the
vertex set and edge set of H , respectively, i.e., H = (V (H), E(H)). A cycle is
a subgraph ({v1, . . . , vk}, {e1, . . . , ek}) where vi �= vj if i �= j, ei = vivi+1 for
i = 1, . . . , k − 1 and ek = vkv1. A cycle consisting of k edges is denoted by Ck.

When we denote a graph by G = (U, V ; E), we mean that G is bipartite, that
is, the vertex set and edge set of G are U ∪ V and E, respectively, and E[U]
and E[V] are empty. For subgraph H of G, U(H) (resp. V (H)) denotes the set
of vertices in U (resp. V) that belong to H . A complete bipartite graph Ks,t

is a simple bipartite graph (U, V ; E) with |U | = s, |V | = t and E = {uv |
u ∈ U , v ∈ V }. Recall that K2,2 is isomorphic to C4, and is often called a square.
For a subgraph H of G, a component in H isomorphic to K2,2 is called a square-
component and the number of square-components in H is denoted by c(H). For
a bipartite graph G, let St denote the family of all its subgraphs isomorphic to
Kt,t. We often abbreviate S2 as S.

For a directed graph G = (V, A) with vertex set V and edge set A, we denote
an edge e from u to v by uv, as far as it causes no confusion whether e is

A Weighted Kt,t-Free t-Factor Algorithm for Bipartite Graphs 65

directed or undirected. For e = uv ∈ A, the initial and terminal vertex of e are
denoted by ∂+e and ∂−e, respectively, that is, ∂+e = u and ∂−e = v. A path is
a subgraph ({v1, . . . , vk}, {e1, . . . , ek−1}) where vi �= vj if i �= j and ei = vivi+1

for i = 1, . . . , k − 1.
For two sets F1, F2 ⊆ E, the symmetric difference (F1 \ F2) ∪ (F2 \ F1) is

denoted by F1	F2. For a vector x ∈ RE and F ⊆ E, define x(F) =
∑

e∈F x(e).

2 A Maximum Square-Free 2-Matching Algorithm

This section describes an algorithm to find a maximum square-free 2-matching
in bipartite graphs. The algorithm is based on algorithms of Hartvigsen [12,13]
and Pap [17,18,19], but different from both. Our algorithm uses the shortest
augmenting path, whereas Pap’s algorithm does not involve the length of aug-
menting paths. Using the shortest path yields some simplicity, especially in
the shrinking procedure, which makes the algorithm suitable for a weighted
extension.

Let G = (U, V ; E) be a bipartite graph and M ⊆ E be a square-free
2-matching in G. First, construct an auxiliary directed graph GM = (U, V ; A)
in the following manner. Define the directed edge set A by

A = {uv | u ∈ U , v ∈ V , uv ∈ E \M} ∪ {vu | v ∈ V , u ∈ U , uv ∈M}.

Where it causes no confusion, we identify the undirected edge uv in G and the
directed edge uv (or vu) in GM . We also define two subsets U◦ ⊆ U and V ◦ ⊆ V
by U◦ = {u | u ∈ U , |δu ∩M | < 2}, V ◦ = {v | v ∈ V , |δv ∩M | < 2}.

Then, find a shortest path P from U◦ to V ◦ and consider the edge set M ′ =
M	E(P). Observe that M ′ is a 2-matching with |M ′| = |M | + 1. Hence, if
M ′ is square-free, then M ′ is a larger square-free 2-matching. We refer to the
procedure to obtain M ′ as an augmentation.

What if, however, M ′ contains squares? Suppose M	E(P) contains a square
S. Since P is the shortest U◦-V ◦ path, we have that |M ∩ E(S)| = 3, a de-
tailed discussion of which will appear in Proposition 1. Denote U(S) = {u1, u2},
V (S) = {v1, v2} and {u1v1} = E(P) ∩ E(S) (see Fig. 1). Then, what we do is
to “shrink” S. Identify u1 and u2 to obtain a new vertex uS , and v1 and v2 to
obtain a new vertex vS . Then, delete all edges in E(S) and connect uS and vS

by an M -edge. If an edge in E \E(S) had been incident to u1 or u2 (resp. v1 or
v2), the edge is incident to uS (resp. vS) in the resulting graph. We allow parallel
edges to appear in this procedure. If an edge had belonged to M , it also belongs
to M in the new graph, and otherwise it does not. We denote the resulting graph
by G̃ = (Ũ , Ṽ ; Ẽ) and refer to the new M -edge uSvS as a shrunk square. Note
that it follows from |M ∩ E(S)| = 3 that the new M is a simple 2-matching in
G̃ and may contain a square that includes shrunk squares.

If more than one square appears in M	E(P), we shrink the square which is
“closest” to U◦. That is, we shrink the square whose non-M -edge appears the

66 K. Takazawa

u1 v1

v2 u2

uS vS

P

Fig. 1. Shrinking of a square (bold line : M -edge)

first in P . We refer to the procedure to obtain a new graph and 2-matching as
Shrink(M, P).

Then, we recursively execute the above procedures. Here, we have to take care
that the U◦-V ◦ path does not contain shrunk squares. In order to achieve this,
we search a U◦-V ◦ path in a subgraph G̃′

M of G̃M obtained by deleting all the
shrunk squares. Then, set b ∈ {1, 2}Ũ∪Ṽ by

b(v) =

{
1 (v is an end vertex of a shrunk square deleted from G̃M),
2 (otherwise),

(1)

and modify the definition of U◦ and V ◦ by

U◦ = {u | u ∈ Ũ , |δu ∩M | < b(u)}, V ◦ = {v | v ∈ Ṽ , |δv ∩M | < b(v)}. (2)

This means that what we deal with is a square-free b-matching M in G̃′
M . Thus,

one would see that the shrunk squares get neither incident to each other nor
nested.

After an augmentation, we expand every shrunk square to obtain the original
bipartite graph G. Let uSvS be a shrunk square that is obtained by shrinking S
with U(S) = {u1, u2} and V (S) = {v1, v2}. Now, replace the vertices uS , vS

and edge uSvS by K2,2 induced by U(S) ∪ V (S). An edge incident to uS or vS

is connected to a vertex in U(S) ∪ V (S) to which the edge had been incident
before shrinking S. Next, determine M -edges. An M -edge before expanding S
also belongs to M . Then, pick up three edges in E(S) to be in M so that M forms
a 2-matching. Figure 2 illustrates an example of expanding a shrunk square. By
expanding every shrunk square, we obtain the original bipartite graph G and a
new square-free 2-matching M of one larger size.

uS vS

v2 u2

u1 v1

Fig. 2. Expanding of a square (bold line : M -edge)

A Weighted Kt,t-Free t-Factor Algorithm for Bipartite Graphs 67

The procedures are summarized below.

Algorithm Maximum Square-Free 2-Matching
Step 0: Set M = ∅ and G̃ = G.
Step 1: If |M | = 2 min{|U |, |V |}, then halt. (M is a square-free 2-factor.)
Step 2: Construct an auxiliary directed graph G̃′

M . In G̃′
M , define b by (1) and

search for a shortest path from U◦ to each vertex. Let R ⊆ Ũ ∪ Ṽ be the set
of the reachable vertices from U◦. If V ◦ ∩ R = ∅, then expand each shrunk
square and halt. (M is a maximum square-free 2-matching.)

Step 3: Let P be the shortest path from U◦ to V ◦. If M	Ẽ(P) contains a
square in G̃′

M , then execute Shrink(M, P) and go to Step 2.
Step 4: Replace M by M	Ẽ(P) and expand every shrunk square. Then, go to

Step 1.

Here, we show that if M	Ẽ(P) contains a square S then |M ∩ Ẽ(S)| = 3.

Proposition 1. Let S be a square in G̃′
M that appears in M	Ẽ(P). Then, it

holds that |M ∩ Ẽ(S)| = 3.

Proof. Since Ẽ(S) ⊆ M	Ẽ(P), the edges in Ẽ(S) can be partitioned into two
parts, ẼM = M ∩ Ẽ(S) and ẼP = Ẽ(P) ∩ Ẽ(S). We prove that |ẼP | = 1.

As M is square-free in G̃′
M , we have that |ẼP | ≥ 1. As P visits each vertex

at most once and the edges of M and E \M lie alternately in P , we have that
|ẼP | ≤ 2. Hence, it suffices to show that |ẼP | �= 2.

Denote U(S) = {u1, u2} and V (S) = {v1, v2}. To the contrary we assume,
without loss of generality, that ẼP = {u1v1, u2v2} and u1v1 appears earlier than
u2v2 in P . Let us denote the subpath of P which is from the initial vertex of
P to v1 by P1, and which is from u2 to the terminal vertex of P by P2. Here,
by connecting P1, u2v1 and P2, we obtain another U◦-V ◦ path, which is shorter
than P . This contradicts that P is the shortest U◦-V ◦ path in G̃′

M . �
Now, what is left is to prove that M is maximum when the algorithm halts in
Step 2. The following is a min-max formula for square-free b-matchings.

Theorem 2 ([15]). Let G = (U, V ; E) be a bipartite graph and b ∈ {0, 1, 2}U∪V .
Then, the size of the maximum square-free b-matching in G is equal to

min{b(U ∪ V \ Z) + |E[Z]| − c(G[Z]) | Z ⊆ U ∪ V }.

The following observation enables us to adapt Pap’s proof [19] for Theorem 2 to
verify the maximality of M , a detailed discussion of which is omitted.

Proposition 3. Let S′ = {S | S ∈ S, S is shrunk into uSvS in G̃} Then, for
uS of S ∈ S′, G̃′

M has a path from U◦ to uS consisting of edges that was in a
shortest path used in shrinking a square S′ ∈ S′ and closer to U◦ than uS′ .

Proof. The proof is by induction on the number of shrinkings. The statement is
obvious immediately after shrinking S.

68 K. Takazawa

Now, suppose P is a path from U◦ to uS that satisfies the condition in the
statement and consider subsequent shrinkings. A shrinking that does not delete
any edge in Ẽ(P) does not matter. If a shrinking deletes an edge e ∈ Ẽ(P), then
it holds that e ∈ M . For, if e �∈ M , a square Se appears when e turns to be
an M -edge by Proposition 1, which contradicts that e had been in a shortest
path used in shrinking S′ ∈ S′ and closer to U◦ than uS′ . Let e ∈ M ∩ Ẽ(P)
be deleted in a subsequent shrinking (an example is shown in Fig. 3). Here,
∂−e ∈ Ũ is shrunk into uS′′ , which is reachable from U◦. On the other hand, uS

is reachable from uS′′ by tracing the subpath of P that had connected ∂−e and
uS. Therefore, the statement is maintained in shrinking S′′. �

uS vS

vSuS

e

uS′′ vS′′

Fig. 3. Reachability of uS (bold line : M -edge)

3 A Weighted Square-Free 2-Factor Algorithm

This section deals with the weighted square-free 2-factor problem. Let (G, w) be
a weighted bipartite graph with G = (U, V ; E) and w ∈ RE

+. Throughout this
section, we assume that |U | = |V |. We also assume that w is vertex-induced on
any square. That is, we assume that, for any square S with U(S) = {u1, u2}
and V (S) = {v1, v2}, there exists a potential function πS : U(S) ∪ V (S) → R
such that w(uivj) = πS(ui) + πS(vj) for any i, j ∈ {1, 2}. In other words, it
holds that w(u1v1) + w(u2v2) = w(u1v2) + w(u2v1). We propose an algorithm
to find a square-free 2-factor M that minimizes w(M) if exists, or otherwise
determine that no square-free 2-factor exists in G. The algorithm, based on
the primal-dual framework of the minimum-cost flow algorithm [4,21], extends
Algorithm Maximum Square-Free 2-Matching.

Let x ∈ RE . The following is a linear programming relaxation of an integer
program for the minimum-weight square-free 2-factor problem:

(P) minimize wx

subject to x(δv) = 2 (∀v ∈ U ∪ V),
x(E(S)) ≤ 3 (∀S ∈ S),
0 ≤ x(e) ≤ 1 (∀e ∈ E).

A Weighted Kt,t-Free t-Factor Algorithm for Bipartite Graphs 69

One would see that the incidence vector of a square-free 2-factor is a feasible
solution for (P). In what follows, we often identify an edge set M and its incidence
vector x.

Consider the dual problem of (P). Let p ∈ RU∪V , q ∈ RE and r ∈ RS . The
dual problem is given by

(D) maximize 2(p(U)− p(V))− q(E) − 3r(S)

subject to p(u)− p(v)− q(e)−
∑

S : e∈E(S)

r(S) ≤ w(e) (∀e = uv ∈ E),

q, r ≥ 0.

The complementary slackness conditions of (P) and (D) are

x(e) > 0⇒ p(u)− p(v)− q(e)−
∑

S : e∈E(S)

r(S) = w(e), (3)

q(e) > 0⇒ x(e) = 1, (4)
r(S) > 0⇒ x(E(S)) = 3. (5)

In what follows, we present an algorithm to find feasible solutions for (P) and
(D) which satisfy (3)–(5) by extending Algorithm Maximum Square-Free
2-Matching. Roughly speaking, we maintain a square-free 2-matching M , con-
struct an auxiliary directed graph G̃M , search for a U◦-V ◦ path P in its sub-
graph G̃′

M , and then augment M by substituting M	Ẽ(P) for M or shrink
a square. In these procedures, we also take dual solutions into account. In
particular, a significant difference from Algorithm Maximum Square-Free
2-Matching is that we do not expand a shrunk square uSvS after an augmen-
tation if r(S) > 0, and such a shrunk square is used in the subsequent searching
for a U◦-V ◦ path.

Now, let us consider the details. Let G̃M = (Ũ , Ṽ ; A) be an auxiliary di-
rected graph, which may have resulted from repeated shrinking and expanding
of squares. Recall that the M -edges (including all shrunk squares) are oriented
in the direction from Ṽ to Ũ , and other edges in the opposite direction. For G̃M ,
a length function l : A→ R is defined by

l(e) =

⎧⎪⎨
⎪⎩

w(e) − p(u) + p(v) (e �∈M and corresponds to uv ∈ E),
−w(e) + p(u)− p(v) (e ∈M and corresponds to uv ∈ E),
r(S) (e is a shrunk square uSvS).

Remark that p is defined on U ∪ V , the vertex set of the original bipartite
graph G, while l is defined on A, the edge set of G̃M .

In the auxiliary graph G̃M , we establish the following optimality criterion.

Theorem 4. Let M be a simple 2-factor in G̃M such that each square in M
contains shrunk squares, and let p ∈ RU∪V and r ∈ RS . If the following (6)–(8)
hold, then we can expand M to obtain a minimum-weight square-free 2-factor in
(G, w) and determine q so that (p, q, r) forms an optimal solution for (D):

70 K. Takazawa

r ≥ 0 and r(S) > 0 only if S is shrunk; (6)
∀e ∈ A, l(e) ≥ 0; (7)
∀shrunk square uSvS, ∀e = uv ∈ E(S), p(u)− p(v)− r(S) = w(e). (8)

Proof. We prove the theorem by showing how to construct feasible solutions for
(P) and (D) that satisfy (3)–(5).

Let e = uv ∈ E be an edge not shrunk in G̃M . If e �∈M , then by (7) we have
that l(e) = w(e)− p(u)+ p(v) ≥ 0. Now, set q(e) = 0 to have (3) and (4) hold in
e. If e ∈ M , then l(e) = −w(e) + p(u)− p(v) ≥ 0 by (7). Set q(e) = l(e), which
gets (3) and (4) to hold in e.

Let e = uv ∈ E belong to E(S) of a shrunk square uSvS in G̃M . For such e,
set q(e) = 0. Then, by (8), we have that (3) and (4) hold in e regardless whether
x(e) = 0 or x(e) = 1 after expanding S.

Now we have determined q(e) on every e ∈ E. From the above construction,
one would appreciate the feasibility of (p, q, r) for (D). Moreover, by expanding
all shrunk squares in G̃M , we obtain a square-free 2-factor in G, a feasible solution
for (P). For this pair of solutions for (P) and (D), it follows from (6) that (5)
holds. Therefore, (3)–(5) hold for this pair of solutions for (P) and (D). �

Now, let us describe the minimum-weight square-free 2-factor algorithm. The
algorithm keeps a square-free 2-matching M and a dual solution (p, r) that
satisfy (6)–(8), and increases |M | until it attains the maximum.

Algorithm Minimum-Weight Square-Free 2-Factor

Step 0: Set M = ∅, p = 0, r = 0 and G̃ = G.
Step 1: If |M | = 2|Ũ |, then expand every shrunk square and halt. (M is a

minimum-weight square-free 2-factor.)
Step 2: Construct an auxiliary directed graph G̃M = (Ũ , Ṽ ; A) and delete

shrunk squares that are created after the latest augmentation to obtain a
new graph G̃′

M . Then, in G̃′
M , define b by (1) and search for a shortest path

with respect to (w.r.t.) l from U◦ to each vertex. Let R ⊆ Ũ ∪ Ṽ be the set
of the reachable vertices from U◦ and define d : Ũ ∪ Ṽ → R by

d(v) =

{
distance from U◦ to v w.r.t. l (v ∈ R),
max{d(v) | v ∈ R} (otherwise).

If V ◦ ∩R = ∅, then halt. (No square-free 2-factor exists.)
Step 3: Let P be the shortest path from U◦ to V ◦. If more than one shortest

path exists, select a path with the minimum number of edges. If P contains
a shrunk square, apply Dual-Update (described below), expand every shrunk
square in P , and then go to Step 2.

Step 4: If M	Ẽ(P) contains a square without shrunk squares, apply Dual-
Update, execute Dual-Shrink(M, P) (described below), and then go to Step 2.

Step 5: Apply Dual-Update, replace M by M	Ẽ(P), and expand every shrunk
square S with r(S) = 0. Then, go to Step 1.

A Weighted Kt,t-Free t-Factor Algorithm for Bipartite Graphs 71

We remark that a shrunk square uSvS with r(S) > 0 is not expanded in Step 5,
and belongs to G̃′

M after the augmentation.
In the procedure Dual-Update, we change the dual solution as follows:

p(v) := p(v)− d(v) (v ∈ U ∪ V),

r(S) :=

{
r(S) − d(uS) + d(vS) (S is shrunk),
r(S) (otherwise),

where d(v) for a vertex v ∈ (U ∪ V) \ (Ũ ∪ Ṽ) that is shrunk into vS ∈ Ũ ∪ Ṽ is
defined by d(vS).

The procedure Dual-Shrink(M, P) is twofold: update of p in two vertices; and
Shrink(M, P). We have that M	Ẽ(P) contains squares which does not contain
shrunk squares. For such a square S, it holds that |M ∩ Ẽ(S)| = 3, which is
proven later (Proposition 5). Let S be the nearest square from U◦ among the
squares in M	Ẽ(P), and denote Ũ(S) = {u1, u2}, Ṽ (S) = {v1, v2}. Without
loss of generality, we assume u1v1 ∈ Ẽ(P) \M . Then, p(u2) and p(v2) by

p(u2) := p(u2)− l(u2v1), p(v2) := p(v2) + l(u1v2),

and call Shrink(M, P).
Now, let us confirm the validity of the algorithm. Note that (6)–(8) hold at

the beginning of the algorithm. We prove that these conditions are maintained
throughout the algorithm.

Proposition 5. Throughout the algorithm, the following (i) and (ii) hold:

(i) l(e) ≥ 0 for each edge e in G̃′
M ;

(ii) if a square S without shrunk squares appears in M	Ẽ(P), it holds that
|M ∩ Ẽ(S)| = 3.

Proof. We prove that (ii) holds under the assumption of (i), and (i) is maintained
when (ii) holds. Then, since (i) holds at the beginning of the algorithm, (i) and
(ii) inductively hold throughout the algorithm.

Let S be a square without shrunk squares such that Ẽ(S) ⊆M	Ẽ(P). Denote
Ũ(S) = {u1, u2}, Ṽ (S) = {v1, v2}, and ẼP = Ẽ(P) ∩ Ẽ(S). By the argument
in the proof for Proposition 1, it suffices to show that |ẼP | �= 2 in order to
prove (ii).

Assume to the contrary that ẼP = {u1v1, u2v2} and u1v1 appears earlier than
u2v2 in P . Then, it holds that

∑
e∈Ẽ(S) l(e) = 0 since w is vertex-induced on S.

Hence, it follows from (i) that l(e) = 0 for all e ∈ Ẽ(S). Now, as is described in
the proof for Proposition 1, we have another U◦-V ◦ path P ′, which is obtained
by taking v1u2 as a shortcut for P . It follows from (i) and l(v1u2) = 0 that P ′,
which has fewer edges than P , is no longer than P w.r.t. l. This contradicts the
choice of P .

Next, we prove that (i) is maintained under the assumption of (ii). Consider
Dual-Update. Pick up a directed edge e ∈ A. By the definition of d, it holds

72 K. Takazawa

that d(∂−e) ≤ d(∂+e) + l(e). If e = uv is in the direction from Ũ to Ṽ , the
shift of l(e) in Dual-Update is −(−d(u)) − d(v) = d(∂+e) − d(∂−e) ≥ −l(e). If
e = vu is not shrunk and in the direction of Ṽ to Ũ , i.e., e ∈ M , then the shift
of l(e) is −d(u)− (−d(v)) = −d(∂−e)+d(∂+e) ≥ −l(e). Finally, if e = vSuS is a
shrunk square, the shift of l(e) is −d(uS) + d(vS) = −d(∂−e) + d(∂+e) ≥ −l(e).
Therefore, in any case we have that l(e) ≥ 0 after Dual-Update. Moreover, for
a shortest U◦-V ◦ path P , the above inequalities hold with equality for each
e ∈ Ẽ(P) and hence l(e) = 0 after Dual-Update. Thus, in an augmentation using
P , in which l(e) changes to −l(e) for e ∈ Ẽ(P), (i) is maintained.

Consider Dual-Shrink(M, P). Since (ii) holds, the procedure Dual-Shrink(M, P)
is valid. In Dual-Shrink(M, P), l changes only on the edges in δu2 ∪ δv2. One
would easily see that l(u1v2) and l(u2v1) becomes zero by the update of p(u2)
and p(v2). As we have applied Dual-Update just before Dual-Shrink(M, P), we
have l(u1v1) = 0. Moreover, since w is vertex-induced on S, it holds that
l(u2v2) − l(u1v1) = l(u1v2) + l(u2v1), which implies that l(u2v2) also becomes
zero. Meanwhile, for an edge e ∈ (δu2 ∪ δv2)\ Ẽ(S), we have that e �∈M . Hence,
the shift of l(e) is equal to l(u2v1) for e ∈ δu2 and equal to l(u1v2) for e ∈ δv2.
Therefore, l(e) ≥ 0 is kept for every edge in δu2 ∪ δv2 in Dual-Shrink(M, P). �
The above argument induces the following corollaries.

Corollary 6. After Dual-Update, l(e) = 0 for every edge e ∈ Ẽ(P).

Corollary 7. When we shrink a square S, l(e) = 0 for every e ∈ Ẽ(S).

It follows from Corollary 7 that (8) holds for S when we shrink S, which is the
purpose of the update of p(u2) and p(v2) in Dual-Shrink(M, P).

Proposition 8. Let uSvS be a shrunk square created after the latest augmenta-
tion. Then, d(uS) = 0 until the next augmentation.

Proof. It follows from Proposition 3 that uS is reachable from U◦ in G̃′
M by

traversing edges that had been in a shortest U◦-V ◦ path. By Corollary 6, such
an edge e has its length l(e) = 0 in Dual-Update executed when e ∈ Ẽ(P), and
l(e) remains to be zero until the next augmentation. �
Proposition 9. Throughout the algorithm, (6)–(8) hold.

Proof.
Condition (6). Since we change r(S) only if S is shrunk and expand

uSvS only if r(S) = 0, it holds that r(S) = 0 for every non-shrunk square S.
Moreover, we have seen in Proposition 5 that r(S) = l(uSvS) ≥ 0 for ev-
ery shrunk square uSvS in G̃′

M . As for a shrunk square uSvS not in G̃′
M ,

in other words created after the latest shrunk, d(uS) = 0 by Proposition 8,
which implies r(S) ≥ 0 after a Dual-Update. In Dual-Shrink(M, P), r(S) is
not changed since Dual-Shrink(M, P) is executed for a square containing no
shrunk square.

Condition (7). Already proved.

A Weighted Kt,t-Free t-Factor Algorithm for Bipartite Graphs 73

Condition (8). By Corollary 7, (8) holds when S is shrunk. Consider the shift
of p(u) − p(v) − r(S) in subsequent Dual-Update for e = uv ∈ E(S). The
variables are changed as follows:

p(u) := p(u)− d(uS), p(v) := p(v)− d(vS), r(S) := r(S) − d(uS) + d(vS).

Then, p(u)−p(v)−r(S) does not change in Dual-Update. In Dual-Shrink(M, P),
the variables concerned are not changed. �

By Theorem 4 and Proposition 9, if the algorithm halts in Step 1, then we have
a minimum-weight square-free 2-factor M and a dual optimal solution. If the al-
gorithm halts in Step 2, G has no square-free 2-factor. This is shown by a similar
argument as that for Algorithm Maximum Square-Free 2-Matching.

Let us discuss the complexity of the algorithm. Recall that |U ∪ V | = n and
|E| = m. The following is an easy observation, but plays a key role in analyzing
the complexity.

Proposition 10. A shrunk square created in Step 4 is not expanded until the
next augmentation.

Proof. We search a U◦-V ◦ path P in G̃′
M , which does not contain shrunk squares

created after the latest augmentation, and a shrunk square expanded by the next
augmentation is contained in P . �
The bottleneck part of the algorithm lies in Step 2, determining the distance
from U◦ to every vertex. It follows from Proposition 5 that this can be com-
puted by a shortest path algorithm with nonnegative length. By Proposition 10,
we apply a shortest path algorithm O(n) times between augmentations. Since
augmentations happen at most n times throughout the algorithm, the total com-
plexity is O(n2D), where D is the time to execute a shortest path algorithm with
nonnegative length. Incorporating Fredman and Tarjan’s version of Dijkstra’s al-
gorithm [9], we get a strongly polynomial complexity O(n2m + n3 log n).

Theorem 11. Algorithm Minimum-Weight Square-Free 2-Factor runs
in O(n2m + n3 log n) time.

We should remark here that Algorithm Minimum-Weight Square-Free 2-
Factor is fully combinatorial, that is, it consists of only addition, subtraction,
and comparison. Thus, the algorithm leads to the following integrality theorem.

Theorem 12. Let (G, w) be a weighted bipartite graph such that G admits a
square-free 2-factor and w ∈ RE

+ is integer and vertex-induced on any square.
Then, the linear program (P) has an integral optimal solution. Moreover, the dual
problem (D) also has an integral optimal solution (p, q, r) such that the elements
in {S | S ∈ S, r(S) > 0} are pairwise disjoint.

4 Extension to Kt,t-Free t-Factors

We can naturally extend Algorithm Minimum-Weight Square-Free
2-Factor to the minimum-weight Kt,t-free t-factor problem. Let (G, w)

74 K. Takazawa

be a weighted bipartite graph with G = (U, V ; E) and w ∈ RE
+. Assume that

|U | = |V | and w is vertex-induced on any Kt,t in G.
Let x ∈ RE , p ∈ RU∪V , q ∈ RE and r ∈ RSt . The following is a lin-

ear programming relaxation of an integer program for the minimum-weight
Kt,t-free t-factor problem:

(Pt) minimize wx

subject to x(δv) = t (∀v ∈ U ∪ V),

x(E(S)) ≤ t2 − 1 (∀S ∈ St),
0 ≤ x(e) ≤ 1 (∀e ∈ E).

The dual problem of (Pt) is

(Dt) maximize t(p(U)− p(V))− q(E)− (t2 − 1)r(St)

subject to p(u)− p(v)− q(e)−
∑

S : e∈E(S)

r(S) ≤ w(e) (∀e = uv ∈ E),

q, r ≥ 0.

We describe an algorithm for the minimum-weight Kt,t-free t-factor problem
by mentioning the differences from Algorithm Minimum-Weight Square-
Free 2-Factor. First, let us remark the procedure Dual-Shrink(M, P). If a
Kt,t, denoted byS, appears in M	Ẽ(P), then we have that |M ∩ Ẽ(S)| = t2−1.
Let S be a Kt,t in M	Ẽ(P) closest from U◦. Denote Ũ(S) = {u1, . . . , ut} and
Ṽ (S) = {v1, . . . , vt}, and suppose u1v1 �∈ M . We update the dual valuable as
follows:

p(ui) := p(ui)− l(uiv1), p(vi) := p(vi) + l(u1vi) (i = 2, . . . , t).

Then, we identify the vertices in Ũ(S) (resp. Ṽ (S)) to obtain a new vertex uS

(resp. vS) so that S is shrunk into a single edge uSvS . The edge uSvS belongs
to M and is referred to as a shrunk Kt,t.

Next, in an auxiliary directed graph G̃′
M , the vector b is defined by

b(v) =

⎧⎪⎨
⎪⎩

1 (v is an end vertex of a shrunk Kt,t deleted from G̃M),
2 (v is an end vertex of a shrunk Kt,t in G̃′

M),
t (otherwise).

(9)

Then, U◦ and V ◦ is determined by (2) according to (9).
Let us discuss the complexity. Recall that n = |U ∪ V |, m = |E| and D is

the time for a shortest paths algorithm with nonnegative length. After searching
for a shortest path P , we check whether M	Ẽ(P) contains a Kt,t, which takes
O(m) time, smaller than the complexity of a shortest path algorithm. Hence, it
takes O(nD) time between augmentations. Since augmentations happen at most
tn/2 times, the total complexity is O(tn2D), which gets to O(tn2m + tn3 log n)
by employing D = O(m + n log n) [9].

A Weighted Kt,t-Free t-Factor Algorithm for Bipartite Graphs 75

Theorem 13. The algorithm for the minimum-weight Kt,t-free t-factor problem
runs in O(tn2m + tn3 log n) time.

As was true for Algorithm Minimum-Weight Square-Free 2-Factor, the
algorithm for the minimum-weight Kt,t-free t-factor problem is fully combinato-
rial, and thus implies the following integrality theorem.

Theorem 14. Let (G, w) be a weighted bipartite graph such that G admits a
Kt,t-free t-factor and w ∈ RE

+ is integer and vertex-induced on any Kt,t. Then,
the linear program (Pt) has an integral optimal solution. Moreover, the dual
problem (Dt) also has an integral optimal solution (p, q, r) such that the elements
in {S | S ∈ St, r(S) > 0} are pairwise disjoint.

5 Concluding Remarks

This paper has dealt with the minimum-weight Kt,t-free t-factor problem in
bipartite graphs, whereas Makai [16] considered the maximum-weight Kt,t-free t-
matching problem. Let us close this paper by mentioning that these two problems
are equivalent.

In fact, the two problems are polynomially reducible to each other. Given
an instance (G, w) of the minimum-weight Kt,t-free t-factor problem such that
G = (U, V ; E) and w is vertex-induced on any Kt,t, consider a weight vector w′ ∈
RE defined by w′(e) = L − w(e), where L is a sufficiently large number. Note
that w′ is vertex-induced on any Kt,t in G. Then, a maximum-weight Kt,t-free
t-matching in (G, w′) is a maximum cardinality Kt,t-free t-matching and hence
gives a solution of the minimum-weight Kt,t-free t-factor problem in (G, w).

Conversely, let us given an instance (G, w) of the maximum-weight Kt,t-free
t-matching problem, where G = (U, V ; E) and w is vertex-induced on any Kt,t.
We also assume that |U | ≥ t and |V | ≥ t, as is to be expected. Then, construct
a new weighted graph (G′, w′) as follows. If |U | �= |V |, add isolated dummy
vertices to have |U | = |V |. For any pair of vertices u ∈ U and v ∈ V , add 2t + 2
vertices u0, u1, . . . , ut, v0, v1, . . . vt and edges

{uv0, u0v} ∪ ({uivj | i ∈ {0, 1, . . . , t}, j ∈ {0, 1, . . . , t}} \ {u0v0}) .

Then, define a new weight vector w′ by

w′(e) =

{
L− w(e) (e ∈ E),
L (e : new edge),

where L is a sufficiently large number. Now, observe that w′ is vertex-induced
on any Kt,t in G′ and G′ admits a Kt,t-free t-factor. Moreover, for a minimum-
weight Kt,t-free t-factor M in (G′, w′), M ∩ E is a maximum-weight Kt,t-free
t-matching in (G, w).

Acknowledgements

The author is grateful to Satoru Iwata for discussions on this topic. This work
is supported by Grant-in-Aid for JSPS Fellows.

76 K. Takazawa

References

1. Cornuéjols, G., Pulleyblank, W.R.: A matching problem with side conditions. Dis-
crete Math. 29, 135–159 (1980)

2. Cunningham, W.H.: Matching, matroids, and extensions. Math. Program. 91, 515–
542 (2002)

3. Cunningham, W.H., Wang, Y.: Restricted 2-factor polytopes. Math. Program. 87,
87–111 (2000)

4. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19, 248–264 (1972)

5. Fleiner, T.: Uncrossing a family of set-pairs. Combinatorica 21, 145–150 (2001)
6. Frank, A.: Restricted t-matchings in bipartite graphs. Discrete Appl. Math. 131,

337–346 (2003)
7. Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. J. Comb. Theory,

Ser. B 65, 73–110 (1995)
8. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation

in combinatorial optimization. Combinatorica 7, 49–65 (1987)
9. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM 34, 596–615 (1987)
10. Geelen, J. F.: The C6-free 2-factor problem in bipartite graphs is NP-complete

(unpublished, 1999)
11. Hartvigsen, D.: Extensions of Matching Theory. Ph.D. thesis, Carnegie Mellon

University (1984)
12. Hartvigsen, D.: The square-free 2-factor problem in bipartite graphs. In:

Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610,
pp. 234–241. Springer, Heidelberg (1999)

13. Hartvigsen, D.: Finding maximum square-free 2-matchings in bipartite graphs. J.
Comb. Theory, Ser. B 96, 693–705 (2006)

14. Hell, P., Kirkpatrick, D., Kratochv́ıl, J., Kr̆́ız̆, I.: On restricted two-factors. SIAM
J. Discrete Math. 1, 472–484 (1988)

15. Király, Z.: C4-free 2-matchings in bipartite graphs. Technical report, TR-2001-13,
Egerváry Research Group (1999)

16. Makai, M.: On maximum cost Kt,t-free t-matchings of bipartite graphs. SIAM J.
Discrete Math. 21, 349–360 (2007)

17. Pap, G.: Alternating paths revisited II: restricted b-matchings in bipartite graphs.
Technical report, TR-2005-13, Egerváry Research Group (2005)

18. Pap, G.: A Constructive Approach to Matching and Its Generalizations. Ph.D.
thesis, Eötvös Loránd University (2006)

19. Pap, G.: Combinatorial algorithms for matchings, even factors and square-free 2-
factors. Math. Program. 110, 57–69 (2007)

20. Russell, M.: Restricted Two-Factors. Master’s thesis, University of Waterloo (2001)
21. Tomizawa, N.: On some techniques useful for solution of transportation network

problems. Networks 1, 173–194 (1971)
22. Végh, L.A., Benczúr, A.A.: Primal-dual approach for directed vertex connectiv-

ity augmentation and generalizations. In: Proc. 16th ACM-SIAM Symposium on
Discrete Algorithms, pp. 186–194. ACM-SIAM, New York (2005)

23. Vornberger, O.: Easy and hard cycle covers. Universität Paderborn (preprint, 1980)

A New Algorithm for the Maximum Weighted

Stable Set Problem in Claw-Free Graphs

Gianpaolo Oriolo1, Ugo Pietropaoli1, and Gautier Stauffer2

1 Università di Roma “Tor Vergata”, Dipartimento di Ingegneria dell’Impresa,
via del Politecnico 1, 00133 Roma, Italy
{oriolo,pietropaoli}@disp.uniroma2.it

2 IBM Research, Zurich Research Lab, Säumerstrasse 4, 8034 Rüschlikon, Switzerland
gst@zurich.ibm.com

Abstract. In this paper, we introduce two powerful graph reductions
for the maximum weighted stable set (mwss) in general graphs. We show
that these reductions allow to reduce the mwss in claw-free graphs to
the mwss in a class of quasi-line graphs, that we call bipolar-free. For
this latter class, we provide a new algorithmic decomposition theorem
running in polynomial time. We then exploit this decomposition result
and our reduction tools again to transform the problem to either a single
matching problem or a longest path computation in an acyclic auxil-
iary graph (in this latter part we use some results of Pulleyblank and
Shepherd [10]). Putting all the pieces together, the main contribution
of this paper is a new polynomial time algorithm for the mwss in claw-
free graphs. A rough analysis of the complexity of this algorithm gives
a time bound of O(n6), where n is the number of vertices in the graph,
and which we hope can be improved by a finer analysis. Incidentally,
we prove that the mwss problem can be solved efficiently for any class
of graphs that admits a “suitable” decomposition into pieces where the
mwss is easy.

1 Introduction

A graph is claw-free if no vertex has a stable set of size three in its neighborhood.
While the stable set problem is NP-hard in general, it can be solved in polyno-
mial time for claw-free graphs [8,11,12,6]. The stable set problem on claw-free
graphs is a fundamental generalization of the matching problem. In particular,
from an algorithmic point of view, it generalizes the matching problem in two
different ways, and all the current algorithms exploit either one of those two
generalizations.

A first way to see this problem as a generalization of the matching problem is
in terms of augmenting paths. Berge [1] proved that a matching M is maximal
for a graph G if and only if there is no alternating path that is augmenting for
M . This property, often called the augmenting path property, can be extended
to stable sets in claw-free graphs as Berge also observed [2]. Indeed he proved
that a stable set S is maximal for a claw-free graph G if and only if there is no

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 77–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 G. Oriolo, U. Pietropaoli, and G. Stauffer

alternating path that is augmenting for S. The algorithms by Sbihi [11], Minty
[8,9] or the variation of Minty’s algorithm given by Schrijver [12] are based on
the detection of augmenting paths.

Another way to see the stable set problem in claw-free graphs as a generaliza-
tion of the matching problem is in terms of graph structure. Indeed, line graphs
are those graphs that can be obtained from a (possibly non simple) undirected
graph G by bijectively mapping the edges of G to the vertices of a new graph
L(G) and by connecting two vertices in L(G) if the corresponding edges are in-
cident in G. It is straightforward to observe that for each vertex v in L(G), N(v)
can be covered by two cliques. The graphs with this latter property are called
quasi-line graphs. Quasi-line graphs (and thus line graphs) are claw-free. Now,
due to the one-to-one mapping between the edges of a graph G and the vertices
of its line graph L(G) and by definition of adjacencies in L(G), there is also a
one-to-one correspondence between matchings in G and stable sets in L(G) and
thus the stable set problem in claw-free graphs is a generalization of the stable
set problem in line graphs, which is a matching problem. Lovász and Plummer
[6] defined graph reductions that preserve the stability number to reduce the
unweighted stable set problem in a claw-free graph to an unweighted stable set
problem in a line graph.

Unfortunately Lovász-Plummer’s approach does not deal with the weighted
version of the stable set problem on claw-free graphs. Therefore, the only algo-
rithm for the weighted case is the one given in 1980 by Minty [8,9] (and the
slightly different version discussed in Schrijver [12]). This algorithm is not very
“natural”, as it converts the original problem to the problem of detecting aug-
menting paths in some auxiliary graphs, called “Edmonds graphs”, on which
some matching problems are solved. Moreover, its overall complexity is O(n6),
where n denotes the number of vertices in the original graph.1 The question
of finding a more direct and fast algorithm arises therefore naturally, as for in-
stance it was recently pointed out in [7] “. . . one needs a better reduction from
weighted claw-free to weighted line graphs, which seems to be a challenging
research problem.”

We also point out that an elegant algorithm has been given by Pulleyblank
and Shepherd [10] for the maximum weighted stable set mwss problem on a
subclass of claw-free graphs, called distance claw-free. The algorithm is based on
finding a longest path in an acyclic digraph and has complexity O(n3).

In this paper, we propose a new algorithm for the maximum weighted stable
set (mwss) problem in claw-free graphs. The algorithm is based on graph reduc-
tions and on a new decomposition theorem for a class of quasi-line graphs, that
we call bipolar-free. First, we perform graph reductions that somehow extend
the approach of Lovász and Plummer to the weighted case as to end up with
an mwss problem on a bipolar-free quasi-line graph. We here use our decompo-
sition theorem stating that a bipolar-free quasi-line graph that is not distance
claw-free can be decomposed into at most n distance claw-free graphs, that,

1 In [7], it is claimed that the complexity of Minty’s algorithm is O(n7); we have
however not been able to convince ourselves that this is correct.

A New Algorithm for the Maximum Weighted Stable Set Problem 79

because of their properties, we call distance simplicial. When the graph is dis-
tance claw-free, we use the algorithm by Pulleyblank and Shepherd [10] and
otherwise, using our decomposition, it is possible to evaluate an mwss for the
original graph by solving a single matching problem. A rough analysis of the com-
plexity of the proposed algorithm gives a time bound of O(n6), which we hope
can be improved by a finer analysis, that we defer to the journal version of
the paper. The steps of the algorithm are summarized below with pointers to
the corresponding results in the paper.

Sketch of the Algorithm

1. Check that G contains a stable set of size 4 by enumeration (O(n4))
– If not, find an mwss by enumeration in O(n3) and stop.

2. Check that G is quasi-line (by detecting 5-wheels)
– If not, reduce the mwss problem on G to the mwss problem on a graph

G′ which is either quasi-line or α(G′) ≤ 3 (O(n4), see Lemma 13). If
α(G′) ≤ 3, solve the problem on G′ by enumeration.

3. G′ is a quasi-line graph (possibly, G′ = G). Check that G′ is bipolar-free (by
detecting bipolar pairs)

– If not, add appropriate edges to turn G′ into a bipolar-free quasi-line
graph G′′ with the same vertex set and αw(G′′) = αw(G′) (O(n6), see
Lemma 17). Every stable set of G′′ is also a stable set of G′.

4. G′′ is a bipolar-free quasi-line graph (possibly, G′′ = G′). Check whether G′′

has strongly regular articulation cliques (O(n3), see Lemma 20)
– If not, G′′ is distance claw-free: find an mwss using the algorithm from

[10] (O(n3))
– else decompose G′′ into distance simplicial strips, evaluate the crucial

stable sets for each of them, and solve a matching problem to re-combine
them to an mwss of G′′ (O(n4), see Lemmas 31 and 5) and therefore
of G′.

The paper is organized as follows. In Section 2, we introduce two graph reduc-
tions for the mwss in general graphs. In Section 3 we show how to use our first
reduction to transform the mwss problem on a claw-free graph to the same prob-
lem on a quasi-line graph. In Section 4 we show how to make use of our second
reduction to reduce the mwss problem on quasi-line graphs to the mwss problem
on bipolar-free quasi-line graphs. Finally, Section 5 is devoted to prove a decom-
position theorem for this last class of graphs describing their structure, and to
present the resulting algorithm for the mwss on the class of claw-free graphs.

Definitions and Notations
We close the introduction with some definitions and notations. Every graph
G(V, E) will be undirected and simple, i.e. without loops and parallel edges.
The graph complement of G is denoted by G. A matching in G is a set of
edges that are pairwise non-incident. A stable set in G is a set of vertices which
are pairwise non-adjacent. The stability number of G is the size of a stable set

80 G. Oriolo, U. Pietropaoli, and G. Stauffer

of maximum cardinality and it is denoted by α(G). Given a weight function
w : V �→ R, the weighted stability number is the weight of an mwss in G and is
denoted by αw(G). Given a set U ⊆ V , we denote by G[U] the graph induced
by the vertices in U . When no confusion can arise, we write α(U) and αw(U)
instead of α(G[U]) and αw(G[U]), respectively. Moreover, we denote by w(U)
the sum of the weights of all vertices of U . A clique in G is a set of pairwise
adjacent vertices. We say that a clique K is maximal if there does not exist a
clique K ′ ⊃ K.

Given a vertex u ∈ V , we denote by NG(u) the neighbors of u in G, i.e. NG(u)
:= {v ∈ V : (u, v) ∈ E}. When no confusion can arise, we denote NG(u) by
N(u). A vertex u ∈ V is said to be universal to v if u is adjacent to v and
to every vertex in N(v) \ {u}; we denote by U(v) the set of vertices that are
universal to v. A vertex u ∈ V is said to be simplicial if N(u) is a clique.
Given a set U ⊆ V , we denote by E(U) the edges with both endpoints in U ,
by δ(U) the edges with one endpoint in U and the other in V (G) \ U and by
N(U) the set {v ∈ V \ U : (u, v) ∈ E, for some u ∈ U}. We also denote for all
j ≥ 2, Nj(U) := N(Nj−1(U)) \ Nj−2(U) with the convention N0(U) := U and
N1(U) := N(U). A vertex u ∈ V is said to be strongly simplicial if N(u) and
N2(u) are cliques. Given two sets U, U ′ ⊆ V , we denote by E(U : U ′) the edges
with one end in U and the other in U ′. Two disjoint sets of vertices A, B are
said to be complete (resp. anticomplete) if E(A : B) = {(a, b) : a ∈ A, b ∈ B}
(resp. E(A : B) = ∅).

A path P of length k in G(V, E) is an ordered sequence of edges (e1, ..., ek)
where ei = (vi, vi+1), vi ∈ V for all i = 1, ..., k and (v1, vk+1)
∈ E (repetition
of edges is not allowed). We denote P = (e1, ..., ek). Since we consider simple
graphs, we can also define P by the ordered sequence of vertices (v1, ..., vk+1)
that are visited.

A claw (c; v1, v2, v3) is a graph with vertex set {c, v1, v2, v3} and edge set
{(c, v1), (c, v2), (c, v3)}. A 5-wheel (c; v1, ..., v5) is a graph with vertex set {c,
v1, ..., v5} and edge set

⋃5
i=1{(c, vi), (vi, vi+1)} (with the convention v6 = v1). A

net (u1, u2, u3; v1, v2, v3) is a graph with vertex set {u1, u2, u3, v1, v2, v3} and
edge set {(v1, v2), (v2, v3), (v3, v1), (u1, v1), (u2, v2), (u3, v3)}. A gem (v1, v2, v3,
v4, v5) is the graph with vertex set {v1, ..., v5} and edge set {(v1, v2), (v1, v3),
(v2, v3), (v2, v4), (v3, v4), (v3, v5), (v4, v5)}.

Finally, for a set S, a family of subsets {S1, .., Sk} is called a laminar family
if, for 1 ≤ i < j ≤ k, Si ∩ Sj
= ∅ implies Si ⊆ Sj or Sj ⊆ Si.

2 Reductions for the Maximum Weighted Stable Set
Problem

2.1 A Simple Reduction for Strips-Composed Graphs

Chudnovsky and Seymour [3] introduced a composition operation in order to
define their decomposition result for claw-free graphs. This composition proce-
dure is general and applies to non-claw-free graphs as well. We borrow a couple

A New Algorithm for the Maximum Weighted Stable Set Problem 81

of definitions from their work (even if our definition of gluing is slightly differ-
ent). A strip (G, a, b) is a graph (not necessarily connected) with two designated
simplicial vertices a and b. Observe that, by definition, if a and b are adjacent,
then N(a) ∪N(b) is a clique.

Given two vertex-disjoint strips (G1, a1, b1) and (G2, a2, b2), we define the
gluing of those two strips as the union of G1 \ {a1, b1} and G2 \ {a2, b2} together
with all edges between NG1(a1) and NG2(a2) and all edges between NG1(b1) and
NG2(b2). Moreover, we add all edges between NG1(a1) and NG1(b1) when a2 and
b2 are adjacent (and vice versa). Observe that this operation is closely related to
the definition of 2-join (cf. [4]). Note also that gluing (G1, a1, b1) and (G2, b2, a2)
would not result in the same graph.

We can generalize the operation of gluing to several strips by introducing a
composition operation.

Definition 1. Let G0 be a disjoint union of cliques with 2k vertices and (G1, a1,
b1), . . . , (Gk, ak, bk) k vertex disjoint strips with (ai, bi)
∈ E(Gi) for i = 1, ..., k.
Let φ be a one-to-one mapping from {a1, ..., ak, b1, ..., bk} to V (G0). For all
i = 1, ..., k, define Gi as the gluing of (Gi, ai, bi) with (Gi−1, φ(ai), φ(bi)). The
graph Gk is the composition of the strips (Gi, ai, bi), i = 1, ..., k w.r.t. (G0, φ).

It is a simple exercise to prove that the composition does not depend on the
order of the strips. In the following, we will refer to a graph that, as Gk, can
be obtained by this procedure as a strips-composed graph. We will also use the
following alternative definition for strips-composed graphs.

Definition 2. Let (G1, a1, b1), . . . , (Gk, ak, bk) be k vertex disjoint strips with
(ai, bi)
∈ E(Gi) for i = 1, ..., k and let P := {P1, ..., Pm} be a partition of the
vertices {a1, ..., ak, b1, ..., bk}. Let G0 be the union of the graphs Gi \ {ai, bi},
i = 1, ..., k. For all j = 1, ..., m, define Gj as the graph obtained from Gj−1 by
adding all edges between N(u) and N(v) for all u, v ∈ Pj. The graph Gm is the
composition of the strips (Gi, ai, bi), i = 1, ..., k w.r.t. the partition P.

It is again a simple exercise to prove that the composition does not depend on
the order of the classes in the partition. It is also easy to prove that the two def-
initions are equivalent, i.e. they define the same class of graphs, and that we can
pass easily from one representation to the other. Indeed, the disjoint cliques of G0

(together with φ) define a natural partition of the vertices {a1, ..., ak, b1, ..., bk}
and from a partition it is easy to define a suitable set of disjoint cliques and a
mapping. We skip the details. In both cases, we say that (Gi, ai, bi), i = 1, ..., k
define a strip decomposition, either of Gk w.r.t. (G0, φ) or for Gm w.r.t. P .

The different strips involved in the composition can be complex objects. Nev-
ertheless, when we are dealing with stable set problems, there is a simple reduc-
tion that allows to get rid of non desirable strips (e.g. non-line strips).

Lemma 3. Let G be the gluing of two strips (H, a, b) and (H ′, c, d) where (a, b)
∈
E(H). Let w : V �→ R be a weight function on the vertices of G. Let G′ be the
gluing of (T, v1, v5) and (H ′, c, d), where (T, v1, v5) is a gem. Let A := NH(a),

82 G. Oriolo, U. Pietropaoli, and G. Stauffer

B := NH(b), C = NH′(c) and D = NH′(d) and define a weight function w′ for
G′ as follows:

– w′(v) = w(v) if v ∈ V (H ′ \ {c, d})
– w′(v2) := wB − wA∪B

– w′(v3) = wH − wA∪B

– w′(v4) := wA − wA∪B.

where wH is the weight of an mwss in H \ {a, b} if (c, d)
∈ H ′ or the weight of
an mwss in H \ {a, b} picking at most one vertex in A ∪B if (c, d) ∈ H ′, while
wB (resp. wA, wA∪B) is the weight of an mwss in H \ {a, b} not intersecting B
(resp. A, A ∪B). Then αw′(G′) = αw(G)− wA∪B.

Proof. Let S be an mwss in G. We have to deal with four cases. Either S does
not pick any vertex in C ∪D or it picks a vertex in D but not in C, or it picks a
vertex in C but not in D, or it picks a vertex in C and a vertex in D (possibly
the same if C ∩D
= ∅).

Let us analyse the first situation. We claim that w(S ∩ V (H)) = wH . If c
and d are not adjacent, S ∩ V (H) must be an mwss in V (H) \ {a, b}: otherwise,
if wS∩V (H) < wH = w(SH), for some suitable stable set SH ⊆ V (H) \ {a, b},
SH ∪ (S ∩ V (H ′)) would be a better stable set for G (it is a stable set, since
there are no adjacencies between V (H) and V (H ′) \ (C ∪D) in G and there is
no new adjacency in G[V (H)]). If c and d are adjacent, then S ∩ V (H) takes at
most one vertex in A ∪ B (by definition A is complete to B in G in that case)
and must thus be an mwss in V (H) \ {a, b} picking at most one vertex in A∪B
for the same reasons.

Now in G′, S′ = {v3} ∪ (S ∩ V (H ′)) is a stable set (since S does not intersect
C ∪D). But w′(S′) = w′(S ∩ V (H ′)) + w′(v3) = w(S ∩ V (H ′)) + wH −wA∪B =
w(S∩V (H ′))+w(S∩V (H))−wA∪B = w(S)−wA∪B . Hence αw′(G′) ≥ αw(G)−
wA∪B. The three other cases can be analyzed similarly.

Conversely, let S′ be an mwss in G′. Again we have to deal with the four
cases above. Let us analyze the case where S′ does not intersect C ∪D: in this
case, w.l.o.g., we may assume that v3 ∈ S′ (since w′(v4) ≤ w′(v3) ≥ w′(v2)).
Thus let S′′ be an mwss in H \ {a, b} (picking at most one vertex in A ∪ B
if c and d are adjacent). S = S′′ ∪ (S′ ∩ V (H ′)) is a stable set in G. But
w(S) = w(S′′) + w(S′ ∩ V (H ′)) = wH + w′(S′ ∩ V (H ′)) = w′(v3) + wA∪B +
w′(S′ ∩ V (H ′)) = w′(S′) + wA∪B. Thus αw′(G′) ≤ αw(G) − wA∪B. Again the
three other cases can be analyzed similarly. �
Let (H, a, b) be a strip and let SH be an mwss in H \ {a, b} (picking at most
one vertex in A ∪B if c and d are adjacent), SB, (resp. SA, SA∪B) an mwss in
H \ {a, b} not intersecting B (resp. A, A ∪ B). We say that SH , SB, SA, SA∪B

are the crucial mwss for (H, a, b).

Remark 4. From the proof of the above lemma not only one can get αw(G) from
αw′(G′), but also one can build an mwss for G from an mwss for G′ in constant
time, if the crucial mwss for (H, a, b) are given.

A New Algorithm for the Maximum Weighted Stable Set Problem 83

We have a result similar to Lemma 3 for strips-composed graphs.

Lemma 5. Let G be the composition of the strips (Gi, ai, bi), i = 1, ..., k w.r.t.
a partition P. Suppose that the crucial mwss can be computed in time O(pi(n))
for the different strips i = 1, ..., k (n being the number of vertices of G). Then
the mwss problem on G can be solved in time O(

∑
i=1,...,k pi(n) + match(n)),

where match(n) is the time required to solve a matching problem on a graph with
n vertices. If pi(n) is polynomial for each i, then the mwss problem can be solved
in polynomial time.

Proof. First of all, as we pointed out above, we can equivalently express G as
the composition of the strips (Gi, ai, bi), i = 1, ..., k, w.r.t. some pair (G0, φ). We
now use the procedure defined in Lemma 3 and associate to each strip (Gi, ai, bi)
a gem (T i, vi

1, v
i
5) with suitable weights. Let H be the composition of the strips

(T i, vi
1, v

i
5), i = 1, ..., k w.r.t. (G0, φ). For each strip i, let wAi∪Bi

be the weight
of an mwss in Gi \ {ai, bi} not intersecting Ai ∪ Bi, where Ai = NGi(ai) and
Bi = NGi(bi).

Claim 6. αw(H) = αw(G)−∑
i=1,...,k wAi∪Bi

.

Proof. G is the composition of (G1, a1, b1), . . . , (Gk, ak, bk) w.r.t. (G0, φ). Let G′

be the composition of (G1, a1, b1), . . . , (Gk−1, ak−1, bk−1), (T k, vk
1 , vk

5) w.r.t.
(G0, φ). It follows from Lemma 3 that αw(G) = αw(G′) + wAk∪Bk

. Recall that
the composition does not depend on the order of the strips, i.e. G′ is also the
composition of (G1, a1, b1), . . . , (Gk−2, ak−2, bk−2), (T k, vk

1 , vk
5), (Gk−1, ak−1,

bk−1) w.r.t. (G0, φ). We now define G′′ to be the composition of (G1, a1, b1), . . . ,
(Gk−2, ak−2, bk−2), (T k, vk

1 , vk
5), (T k−1, vk−1

1 , vk−1
5) w.r.t. (G0, φ). We have that

αw(G′) = αw(G′′) + wAk−1∪Bk−1
. The claim follows by iterating this reasoning.

(End of the claim.)

Claim 7. H is the line graph of a graph F and F can be built in time O(k).

Proof. First, note that H has 3k vertices. G0 is a graph with 2k vertices that is

the disjoint union of p cliques. By definition, each clique of G0 induces a clique of
H . We then consider the family K of cliques of H that is made of the p previous
cliques together with the cliques {v1

2 , v
1
4}, . . . , {vk

2 , vk
4}. It is easy to see that K

covers all the edges of H and that every vertex of H belongs to exactly 2 cliques
of K. It is shown in [6] that, in this case, H is the line graph of a graph F , that
can be built as follows. For each clique K in K, we associate a vertex vK in F .
For all vertices vK
= vK′ , we add |K ∩ K ′| edges (vK , vK′). Observe that we
can build F directly from G, i.e. we do not need to build H , in time O(k), since
|V (F)| = k + p ≤ 3k and |E(F)| = |V (H)| = 3k. (End of the claim.)

We are thus left with solving a weighted matching problem in F . The weights
of the edges of F (vertices of H) can be given in time O(

∑
i=1,...,k pi(n)). More-

over, it follows by induction from Remark 4 that an mwss of G can be built in
time O(k) from an mwss of H , i.e. a maximum weighted matching of F . Observe
that k = O(n). The statement follows. �

84 G. Oriolo, U. Pietropaoli, and G. Stauffer

We want to stress again that Lemma 3 and Lemma 5 apply not only to claw-free
graphs, but to all graphs that can be obtained as the composition of strips.

2.2 Semi-homogeneous Pairs of Cliques

The notion of semi-homogeneous pair of cliques extend the classical concept of
homogeneous pair of cliques (a pair of cliques (A, B) is homogeneous if for all
x ∈ V \ {A ∪ B}, x is either complete to A ∪ B or anti-complete to A ∪ B or
complete to A (resp. B) and anti-complete to B (resp. A)).

Definition 8. A pair of cliques (A, B) in a graph G(V, E) is semi-homogeneous
if for all x ∈ V \ {A ∪ B}, x is either complete to A or complete to B or anti-
complete to A ∪B.

Lemma 9. Let G = (V, E) be a graph with a weighted function w on its vertices.
Let (A, B) be a semi-homogeneous pair of cliques. Let {a, b} be an mwss of size
two in A ∪ B. Adding any edge different from (a, b) between a vertex of A and
vertices of B does not change αw; moreover, every stable set of the new graph is
a stable set of G with the same weight.

Proof. Suppose that S is an mwss of G picking a vertex a′ in A and a vertex
b′ in B. For all s ∈ S \ {a′, b′}, s is neither complete to A nor to B. Thus since
(A, B) is semi-homogeneous, s is anti-complete to A ∪ B. Therefore we could
replace a′ by a and b′ by b and getting a stable set of weight as big. �
We will use the previous lemma to get rid of some “annoying” pairs of vertices
in quasi-line graphs, that we call bipolar. In fact we will show that if a quasi-line
graph has a bipolar pair of vertices, then it contains a semi-homogeneous pair of
cliques (A, B) such that there are at least two missing edges between A and B.

3 From Claw-Free Graphs to Quasi-Line Graphs

Recall that a graph G is quasi-line if, for all v in V (G), N(v) can be covered by
two cliques, that is, G[N(v)] is bipartite. Therefore, a claw-free graph G is not
quasi-line if and only if there exists a vertex v with an odd-hole in G[N(v)].

While claw-free graphs with small stability number can be significantly dif-
ferent from quasi-line graphs, Fouquet [5] proved that claw-free graphs with
stability number greater than 3 do not differ that much from quasi-line graphs.

Lemma 10. [5] A connected claw-free graph G with α(G) ≥ 4 that does not
contain a 5-wheel is quasi-line.

We have now a couple of lemmas whose proofs we defer to the journal version of
the paper. The first one deals with the gluing operation that we defined in the
previous section for general graphs. When we restrict to claw-free graphs, this
operation preserves the structure of the graph.

A New Algorithm for the Maximum Weighted Stable Set Problem 85

Lemma 11. The gluing of two claw-free strips is a claw-free graph.

The second lemma shows that a connected claw-free G, that is not quasi-line and
has stability number at least four, is indeed the gluing of two claw-free strips.

Lemma 12. Let G(V, E) be a connected claw-free graph with α(G) ≥ 4. Let
W := (a; u1, u2, u3, u4, u5) be a 5-wheel. Then G is the gluing of two claw-
free strips (H1, a1, b1) and (H2, a2, b2) where W is a subgraph of H1, α(G[H1 \
{a1, b1}]) ≤ 3 and (a1, b1)
∈ E(H1). The two graphs H1 and H2 can be built in
time O(n3).

Lemma 13. Let G(V, E, w) be a claw-free graph, with n vertices and w : V �→ R.
There exists a claw-free graph G̃(Ṽ , Ẽ, w̃), with w̃ : Ṽ �→ R such that:

– αw(G) = αw̃(G̃) and |Ṽ | ≤ n;
– either G̃ is quasi-line or α(G̃) ≤ 3.

Moreover, the graph G̃ can be built in time O(n4), while an mwss for G can be
built in time O(n) from one in G̃.

Proof. The statement is trivial if either G is quasi-line or α(G) ≤ 3, so suppose
G is not quasi-line and with α(G) ≥ 4. There must exist a vertex v with an
odd-hole in G[N(v)]. Indeed detecting an odd-hole in a graph H that is triangle-
free is standard (G[N(v)] is triangle-free since G is claw-free) and can be done
in O(m). We need to visit an auxiliary graph H ′, where each vertex u ∈ V (H)
is duplicated into u′, u′′ and, for each edge (u, v) ∈ E(H), we add two edges
(u′, v′′) and (u′′, v′) in H ′. It is not difficult to see that a path of minimum
length connecting u′ to u′′ corresponds, after shrinking duplicated vertices, to a
shortest odd hole in H . Since G is not quasi-line, in time O(nm) we must detect
an odd-hole in some G[N(v)]: we take the smallest one. This has to be a 5-hole
by Lemma 10.

So we have detected a 5-wheel in G. Using Lemma 12, we build in time
O(n3) the claw-free strips (H1, a1, b1) and (H2, a2, b2), where H1 has an induced
subgraph that is a 5-wheel and (a1, b1)
∈ E(H1). We replace H1 by a gem and
define the graph G′(V ′, E′, w′) that is the gluing of (H2, a2, b2) with the gem, as
in Lemma 3. Therefore, αw(G) = αw′(G′) + wA∪B. Note that the crucial stable
sets for H1, and therefore the weights w′ on the vertices of the gem, can be
computed in O(n3) by enumeration since α(G[H1 \{a1, b1}]) ≤ 3. G′ is claw-free
because of Lemma 11.

Observe that, all together, G′ can be built in time O(n3) from G. Now observe
that G′ contains less vertices (at least two less) than G. If either α(G′) ≤ 3 or
G′ is quasi-line, we stop and let G̃ = G′, else we repeat this procedure (at most
O(n) times since we remove at least two vertices each time). Therefore, G̃ can be
built in time O(n4) from G and has less than n vertices. Finally, we may build
an mwss of G from an mwss of G̃ in time O(n) by applying inductively Remark
4. The statement follows. �

86 G. Oriolo, U. Pietropaoli, and G. Stauffer

We are now left to solve the stable set problem in quasi-line graphs. Even if
quasi-line graphs are more friendly from a structural point of view than claw-
free graphs, there is a configuration that always annoyed us and can be easily
removed when dealing with the stable set problem: bipolar pairs of vertices.

4 From Quasi-Line Graphs to Bipolar-Free Quasi-Line
Graphs

Lovász and Plummer [6] called regular a vertex of a claw-free graph such that
{v} ∪ N(v) can be covered by two maximal cliques. We say that v is strongly
regular when this covering is unique. Recall that U(v) is the set of vertices that
are universal to some vertex v.

Lemma 14. A vertex v of a quasi-line graph G(V, E) is strongly regular if and
only if H = G[N(v) \ U(v)] is connected. In this case, (H1 ∪ U(v) ∪ {v}, H2 ∪
U(v) ∪ {v}) is the unique pair of maximal cliques covering {v} ∪ N(v), where
(H1, H2) are the classes of the (unique) bi-coloring of V (H).

Definition 15. Given a quasi-line graph G and two vertices v1, v2 that are not
universal to each other (i.e., v1 is not universal to v2 and v2 is not universal to
v1), we say that they form a bipolar pair if there exists a maximal clique K such
that v1, v2 ∈ K and (N(v1) ∪N(v2)) \K is a clique.

A quasi-line graph without bipolar pairs of vertices is said to be bipolar-free.
The notion of bipolar pair of vertices for quasi-line graphs is closely related to
the more general concept of semi-homogeneous pair of cliques that we defined
in Section 2.2, as it is confirmed by the following lemma.

Lemma 16. Let G be a quasi-line graph and let (v1, v2) be a bipolar pair. Let
A = {v1, v2} and B =

(
N(v1)\ (N(v2)∪{v2})

)∪(
N(v2)\ (N(v1)∪{v1})

)
. Then

(A, B) is a semi-homogeneous pair of cliques in G.

Proof. We have to prove that a vertex v
∈ A∪B that is neither complete to A nor
to B is anticomplete to A∪B. By hypothesis, (v1, v2) is a bipolar pair, i.e. there
exists a maximal clique K such that v1, v2 ∈ K and (N(v1)∪N(v2))\K is a clique.
Assume w.l.o.g. that v is not adjacent to v2. In particular, v
∈ K. Moreover,
v is not adjacent to v1, since otherwise, v ∈ (N(v1) \ N(v2)) ⊆ B. Assume
that v is not anti-complete to B, then there exists w w.l.o.g. in N(v2) \ N(v1)
that is adjacent to v (w exists since v1 is not universal to v2). But then v is
complete to N(v1) \N(v2). Indeed suppose that there is z ∈ N(v1) \N(v2) not
adjacent to v, then (w; z, v2, v) is a claw. But we can apply the same reasoning
with w ∈ N(v1) \N(v2) to show that v is complete to N(v2) \N(v1). Thus v is
complete to B a contradiction. �
Lemma 17. Let G(V, E, w) be a quasi-line graph with n vertices and w : V �→
R. There exists a bipolar-free quasi-line graph G′(V, E′, w), with E′ ⊇ E, such
that αw(G) = αw(G′). Moreover, the graph G′ can be built in time O(n6).

A New Algorithm for the Maximum Weighted Stable Set Problem 87

Proof. Let w : V �→ R be the weight function on the vertices of G. Our procedure
goes as follows. We detect a bipolar pair of vertices for G, if any. If G has no
bipolar pairs of vertices, we stop. Else, let v1, v2 be a bipolar pair for G. We
know from Lemma 16 that A = {v1, v2} and B =

(
N(v1) \ (N(v2) ∪ {v2})

) ∪(
N(v2) \ (N(v1) ∪ {v1})

)
form a semi-homogeneous pair of clique. Without loss

of generality assume that {v2, w1} is an mwss of size two in A∪B. We define a
graph G′ by adding to G every edge different from (v2, w1) between a vertex of
A and vertices of B. We know from Lemma 9 that αw(G) = αw(G′) and every
stable set of G′ is a stable set of G with the same weight. The graph G′ is still
quasi-line (see the following). If G′ has no more bipolar pairs of vertices, we stop;
else we iterate. Since we cannot add more than O(n2) edges to G, we iterate at
most O(n2) times.

Our proof follows by induction if we prove that:

1 Detecting a bipolar pair of vertices of a quasi-line graph G, if any, can be
done in time O(n4).

2 G′ is still quasi-line.

1. Let u and v be a pair of vertices that are not universal to each other. It is
straightforward to see that they form a bipolar pair if and only if G[N(u) ∪N(v)]
is bipartite and admits a bi-coloring where u and v get the same color. Therefore,
we can detect a bipolar pair of vertices in time O(n4).

2. We consider the case where G′ = G∪ (v1, w2), i.e. A is complete to B but for
the edges {v2, w1} and (v1, w2) (the general case follows easily by induction).

We want to show that G′ is still quasi-line, i.e. the neighborhood of each vertex
can be covered by two cliques. Observe that, by definition, E(G) ⊂ E(G′) and,
by hypothesis, G is quasi-line. Therefore, for any vertex v
∈ {v1, w2}, NG′(v)
can be still covered by two cliques, since NG′(v) = NG(v). As far as v1 and w2

are concerned, it will be enough to show that:

(i) there exist two cliques of G covering NG(v1) ∪ {w2};
(ii) there exist two cliques of G covering NG(w2) ∪ {v1}.
First, we need some definitions and a claim. Let K1 (K2, resp.) be a maximal

clique such that K and K1 (K and K2, resp.) cover N(v1) (N(v2), resp.).
Denote by S1, S2, . . . , S8 a partition of the vertex set V (G) of G, defined as

follows: S1 = {v : v ∈ (K ∩ K1) \ K2}, S2 = {v : v ∈ (K ∩ K2) \ K1}, S3

= {v : v ∈ K2 \ (K1 ∪ K)}, S4 = {v : v ∈ K1 \ (K2 ∪ K)}, S5 = {v : v ∈
K ∩K1 ∩K2}, S6 = {v : v ∈ (K1 ∩K2) \K}, S7 = {v : v ∈ K \ (K1 ∪K2)}, S8

= {v : v ∈ V \ (K ∪K1 ∪K2)}.
Claim 18. If there exists z ∈ S8 such that (z, w2) ∈ E or (z, w1) ∈ E, then z
is complete to S3 and to S4.

Proof. W.l.o.g. suppose ∃z ∈ S8 s.t. (z, w2) ∈ E. First we prove that z is
complete to S4. In fact, S4, z, v2 ⊆ N(w2). Moreover S4 ∪ {z} is anticomplete to
v2. Thus, S4 ∪ {z} must be a clique, since G is quasi-line. Now we prove that z

88 G. Oriolo, U. Pietropaoli, and G. Stauffer

is complete to S3. In fact, S3, z, v1 ⊆ N(w1). Moreover S3 is not complete to v1

and z is not adjacent to v1. Thus, S3∪{z} must be a clique, since G is quasi-line.
(End of the claim.)

(i). From the above definitions, NG(v1) = S1 ∪ S5 ∪ S2 ∪ S7 ∪ S4 ∪ S6. Since
S1 ∪ S5 ∪ S2 ∪ S7 = K and S4 ∪ S6 ∪ {w2} are both cliques of G, by hypothesis
or construction, the statement follows.

(ii). We have: NG(w2) = S3∪S6∪S4∪S2∪S5∪ S̃1∪ S̃7∪ S̃8, where S̃i denotes
the set of vertices belonging to Si that are adjacent to w2. Observe that v1 is
complete to S6 ∪ S2 ∪ S5 ∪ S̃1 ∪ S̃7. Therefore, in order to prove our statement,
it is enough to show that there exist two cliques KL, KR of G covering NG(w2)
and such that S3∪S4 ∪ S̃8 belongs to a same clique, say KL. This is the same as
showing that there is a valid bi-coloring of the bipartite graph H = G[NG(w2)]
such that S3, S4, S̃8 get the same color, which for our purposes will be either red
or blue. In the following, we build such a coloring.

S̃7

S̃8

S2

S3

S4

S5

S6

S̃1

Fig. 1. The possible adjacencies in H . Two sets are connected by a dotted edge if and
only if they are not complete to each other in G. S4 and S3 are complete by hypothesis;
S̃8 is complete to S3 ∪ S4 by Claim 18; other pairs that are complete belong to a same
clique in {K, K1, K2}.

The graph H is in general not connected and in Fig. 1 we represent the
possible adjacencies in H among the sets S̃1, S2, S3, S4, S5, S6, S̃7, S̃8, i.e. two
sets are connected by a dotted edge if and only if they are not complete to each
other in G. Consider the component C1 in H containing v2 and say v2 is blue.
The set S4 and S̃8 are anticomplete in G to v2 and thus they are in C1 and
they have to be red. By maximality of the clique K1, each vertex in S2 has a
non-neighbor in S4 and thus S2 is in C1 and has to be blue. Consider a vertex
v ∈ S5. By definition, v is complete to each Si but, possibly, S8. Therefore, if v
is complete to S̃8, then it is a singleton for H and thus can be made arbitrarily
blue; else v belongs to C1 and it is again blue.

So far we have seen that there exists a valid partial bi-coloring of H such that
w.l.o.g. S4 and S̃8 are red while S2 and S5 are blue. We now show that also the
vertices of S3 that are in C1 are red. Observe that, since H is bipartite and C1

A New Algorithm for the Maximum Weighted Stable Set Problem 89

is connected, the coloring of the vertices of C1 is forced: vertices that have even
distance from the vertices in S4 ∪ S̃8 are red, vertices that have odd distance
from the vertices in S4 ∪ S̃8 are blue; therefore it is enough to show that no
vertex of S3 ∩ V (C1) has odd distance from some vertex in S4 ∪ S̃8. Therefore,
suppose to the contrary that s3 ∈ S3 and x ∈ S4 ∪ S̃8 have odd distance and
assume w.l.o.g. their distance to be minimum. Let P = (s3, u2, u3, . . . , u2k ≡ x)
be a path attaining such minimum distance.

We base our analysis on the possible edges in H from the graph of Fig. 1.
Recall that the sets S̃1, S2, S3, S4, S5, S6, S̃7 are cliques for G (and therefore
stable sets for H). It is clear that P does not contain any vertex of S̃1 (since
P is of minimum distance between S3 and S4 ∪ S̃8, in this case it would be a
path of length 2 from S3 to S̃8). Analogously, P cannot take any vertex from
S4, else P would be an even path from s3 to S4, and it cannot take any edge
from S̃7 to S8, else P would be an even path from S3 to S̃8. It is thus clear
that P alternates between vertices of S̃7 and S6 before ending with a vertex of
S8: namely, u3, u5, . . . , u2k−1 ∈ S6 and u2, u4, . . . , u2k−2 ∈ S̃7. Let V (P) be the
vertices in P ; it follows that the vertices in V (P)∩S6 are blue while the vertices
in V (P) ∩ S̃7 are red. Therefore, in H there cannot be adjacencies between
vertices in S4 and vertices in V (P) ∩ S̃7, that is, vertices in S4 are complete to
vertices in V (P)∩ S̃7 in G. Now observe that P is of minimum distance, hence it
is an induced odd path of H . The subgraph of H induced by V (P) ∪ {v1} is an
induced odd-hole (v1 is complete in G to S6, S̃7 and anticomplete to S̃8 and S3).
Therefore G[V (P)∪{v1}] is an induced anti-hole. But (V (P)∪{v1}) ⊆ NG(w1).
Indeed w1 is complete to S6, v1, S3 by definition, to S̃8 by the previous claim
and, since it belongs to S4, it is complete to V (F)∩ S̃7 as we have just observed.
It follows that NG(w1) contains an odd antihole, but this is in contradiction with
G being quasi-line. Therefore, the vertices of S3 that are in C1 are red.

Finally, let Q be the set of vertices of H that are not in C1 and are not from
S5. It follows from above that Q ⊆ S̃1 ∪ S̃7 ∪ S3 ∪ S6. Clearly, any coloring for
the vertices of Q that is valid for H [Q] is also valid for H . In particular, we may
give color red to the vertices of Q ∩ (S3 ∪ S6) and color blue to the vertices in
Q ∩ (S̃1 ∪ S̃7).

We have therefore built a valid bi-coloring for H where S3, S4, S̃8 get the same
color (red) and statement (ii) is proved. �

From Lemma 13 and Lemma 17, we know that in order to solve the mwss
problem in claw-free graphs, we only need to be able to solve the mwss problem
in bipolar-free quasi-line graphs. We will now analyze the structure of those
graphs in order to devise a polynomial time algorithm.

5 A Decomposition Theorem for Bipolar-Free Quasi-Line
Graphs

In this section we give our main structural result, concerning the structure of
bipolar-free quasi-line graphs. In particular, we will show that a rich class of

90 G. Oriolo, U. Pietropaoli, and G. Stauffer

bipolar-free quasi-line graphs is the composition of suitable strips that can be
found by identifying articulation cliques.

Definition 19. A maximal clique K of a graph G is an articulation clique if,
for each v ∈ K, N(v) \K is a clique.

An articulation clique K of a quasi-line graph G(V, E) is called strongly regular
if each vertex v ∈ K is strongly regular. Observe that K is a strongly regular
articulation clique if and only if, for each v ∈ K, there is a unique pair of
maximal cliques covering N(v) ∪ {v} and K is one of these cliques. Detecting if
a quasi-line graph has a strongly regular articulation clique is therefore easy.

Lemma 20. One can check in time O(n3) if a quasi-line graph G(V, E) has
a strongly regular articulation clique. Actually, one can list all strongly regular
articulation cliques in time O(n3).

Proof. In order to detect a strongly regular articulation clique, we first build the
set R of strongly regular vertices and, for each vertex v ∈ R, the unique pair of
maximal cliques (K1(v), K2(v)) covering N(v) ∪ {v}. That can be done in time
O(n3), thanks to Lemma 14. Let K(R) = {K1(v), K2(v), v ∈ R}. A clique K
of G is a strongly regular articulation one if and only if K ⊆ R and, for each
v ∈ K, K ∈ {K1(v), K2(v)}. Since |K(R)| ≤ 2n, it follows that we can list all
strongly regular articulation cliques in time O(n3). �
Definition 21. A maximal clique K is a net clique if there exists a stable set
of size three {s1, s2, s3} in N(K) and each vertex in K is adjacent to at most
one vertex in {s1, s2, s3}.
Lemma 22. In a quasi-line graph, a net clique K is a strongly regular articu-
lation clique.

Proof. It is enough to show that, for every vertex v ∈ K, there exists a maximal
clique K(v) such that (K, K(v)) is the unique covering of N(v) into two maximal
cliques.

By definition, there exists a stable set {s1, s2, s3} ⊆ N(K) and each v ∈ K
is adjacent to at most one vertex in {s1, s2, s3}. So let K1 = K ∩ N(s1), K2 =
K ∩N(s2), K3 = K ∩N(s3), K4 = K \ (K1 ∪K2 ∪K3) (K1, K2, K3
= ∅ since
{s1, s2, s3} ⊆ N(K)).

First, suppose v ∈ K1. Let (Q1, Q2) be a pair of maximal cliques such that
N(v)∪ {v} = Q1 ∪Q2 (such a pair exists, since the graph is quasi-line). Assume
w.l.o.g. that s1 ∈ Q1, it follows that K \ K1 ⊆ Q2. We now show that every
vertex z ∈ N(v) \K is not complete to K \K1. Suppose the contrary, i.e. there
exists z ∈ N(v) \ K that is complete to K \ K1. Since K is maximal, there
exists w ∈ K1, w
= v, such that (w, z)
∈ E. Since z is adjacent to v, it cannot
be adjacent to both s2 and s3 (otherwise there would be the claw (z; s2, s3, v)).
Assume w.l.o.g. z is not linked to s3. Let z3 be a vertex in K3. Then (z3; s3, w, z)

A New Algorithm for the Maximum Weighted Stable Set Problem 91

is a claw, a contradiction. Therefore, every vertex in z ∈ N(v)\K is not complete
to K\K1 and so it must belong to Q1. It follows that Q1 = (N(v)\K)∪{v}∪U(v)
and Q2 = K, that is, (Q1, K) is the unique covering of N(v) into two maximal
cliques. The same holds for any vertex v in K2 or K3.

Now suppose that v ∈ K4. If v is a simplicial vertex, then the statement is
trivial. Now suppose that there exists w
∈ K such that (w, v) ∈ E. Observe
that w is adjacent to at most one vertex of {s1, s2, s3}: if the contrary, assume
w.l.o.g. s1, s2 ∈ N(w), there would be the claw (w; v, s1, s2). Hence there exists
a stable set of size three in {w, s1, s2, s3} containing w and we are back to the
previous case. �
Definition 23. Let K be an articulation clique. For every v ∈ K, we define:

Q(v) =
{ {v} if v is simplicial

Q(v) = U(v) ∪ {v} else .

Moreover, we let Q(K) be the family of inclusion-wise maximal cliques in {Q(v),
v ∈ K} and say that v generates Q, for some Q ∈ Q(K), if Q = Q(v).

Lemma 24. Let G(V, E) be a quasi-line graph and K ⊆ V an articulation
clique. The following statements hold:

(i) For each v ∈ K, v ∈ Q(v) ⊆ K.
(ii) For each u, v ∈ K, if u ∈ Q(v) then Q(u) ⊆ Q(v).

(iii) If G is bipolar-free, then Q(K) defines a partition of K.
(iv) If G is bipolar-free and Q ∈ Q(K), then N(Q) \K is a clique.

Proof. Let v be a vertex of K. (i) It is trivial if v is simplicial. Else, let u be
a vertex in N(v) \ K. Since K is maximal, there exists some vertex z ∈ K
such that (u, z)
∈ E; therefore u is not universal to v and does not belong to
Q(v). (ii) Suppose that u, v ∈ V , u
= v. Observe that v is not simplicial. The
statement is trivial if u is simplicial. So assume that it is not. Let z ∈ Q(u),
we want to show that z ∈ Q(v). It is trivial if z ≡ u, so assume that z
= u.
By definition, N(u) ∪ {u} ⊆ N(z) ∪ {z}. On the other hand, since u ∈ Q(v),
N(v) ∪ {v} ⊆ N(u) ∪ {u}. Therefore, N(v) ∪ {v} ⊆ N(z) ∪ {z}. (iii) It follows
from (i) that, in order to show that Q(K) defines a partition of K, it is enough
to show that the family {Q(v), v ∈ K} is laminar. Suppose to the contrary that
that there exist u, v with Q(v) ∩Q(u), Q(v) \Q(u), Q(u) \Q(v)
= ∅. Therefore
u and v are not simplicial and it follows from (ii) that v
∈ Q(u) and u
∈ Q(v).
That is, u and v are not universal to each other. Therefore, there exists z such
that (z, v) ∈ E and (z, u)
∈ E. Similarly, there exists y such that (y, u) ∈ E and
(y, v)
∈ E. Let w ∈ Q(v) ∩Q(u). Observe that N(u) \K and N(v) \K belong
to N(w), since w is universal to u and v. On the other hand, K is an articula-
tion clique, therefore N(w) \ K is a clique. It follows that (N(u) ∪ N(v)) \ K
is a clique. Then (u, v) is a bipolar pair, a contradiction. (iv) Suppose the con-
trary. There exist x, y ∈ N(Q)\K such that (x, y)
∈ E. Since K is an articulation

92 G. Oriolo, U. Pietropaoli, and G. Stauffer

clique, it follows that no vertex of Q is joined to both x and y. Therefore there
exist u, v ∈ Q such that (u, y) ∈ E, (u, x)
∈ E, (v, x) ∈ E, (v, y)
∈ E. Neither
u nor v can generate Q, as (u, y) ∈ E and (u, x)
∈ E, as well as (v, x) ∈ E
and (v, y)
∈ E. Therefore there exists w ∈ K that generates Q. Such a vertex w
is not simplicial (otherwise it could not generate Q), thus there exists a vertex
n
∈ K such that (n, w) ∈ E. The neighbors of w outside K must be universal
to u and v, thus (n, u) ∈ E and (n, v) ∈ E (therefore n
∈ {x, y}). For the same
reason x, y
∈ N(w). Finally, (n, x) ∈ E and (n, y) ∈ E, otherwise u or v would
be vertices of K with a stable set of size 2 in their neighborhood outside K. It
follows that (n; x, y, w) is a claw, which is a contradiction. �
Definition 25. Let G be a bipolar-free quasi-line graph and K an articulation
clique with Q(K) = {Q1, ..., Qk}. The ungluing of the articulation clique K
produces the graph G|K , defined as follows:

1. Remove all the edges between vertices of Qi and vertices of Qj, for i, j ∈
{1, ..., k}, i
= j.

2. Add a set A(K) := {a1, ..., ak} of artificial vertices. For each i ∈ {1, ..., k},
let NG|K (ai) = Qi.

We defer to the journal version of this paper the proof of the following lemma,
showing that the ungluing operation preserves quasi-lineness, bipolar-freeness
and has other useful properties.

Lemma 26. Let K be an articulation clique in a connected bipolar-free quasi-
line graph G. The following statements hold:

(i) G|K is quasi-line.
(ii) G|K is bipolar-free.

(iii) In each component of G|K there is a vertex from G and a vertex from
A(K). Moreover each vertex from A(K) is strongly simplicial and all ver-
tices of A(K) are pairwise non-adjacent in G|K .

(iv) If w
∈ K is simplicial for G, then w is simplicial for G|K too.

5.1 Distance Simplicial Graphs

Pulleyblank and Shepherd [10] showed that, given a fixed k, the mwss prob-
lem can be solved via longest paths in an acyclic digraph in time O(nk+1) for
connected graphs with a vertex v having α(Nj(v)) ≤ k for all j. This moti-
vated them to define distance claw-free a connected graph such that, for every
v and every j, α(Nj(v)) ≤ 2. Trivially, distance claw-free graphs are a subclass
of claw-free graphs and it follows from what above that one can solve the mwss
problem in distance claw-free graphs in time O(n3). They also proved that a
connected claw-free graph that is not distance claw-free has an induced net. We
have therefore the following lemma, whose proof is omitted.

Lemma 27. Let G be a connected claw-free graph. If G is not distance claw-free
then it has an induced net clique.

A New Algorithm for the Maximum Weighted Stable Set Problem 93

Definition 28. A connected graph G(V, E) is distance simplicial if there exists
a vertex v ∈ V such that Nj(v) is a clique for each j.

It follows from above that the mwss problem can be solved in time O(n2) for
distance simplicial graphs. It is possible to show that a distance simplicial graph
is distance claw-free, but, since we do not need this statement for the following,
we defer it and its proof to the journal version of this paper.

We also defer the proof of the following lemma, showing that a claw-free graph
with a strongly simplicial vertex is either distance simplicial or has a net-clique
K, that we can use to unglue G. Moreover, G|K has some useful properties.

Lemma 29. Let G(V, E) be a connected claw-free graph with a strongly simpli-
cial vertex a. If G is not distance simplicial, then it has an induced net clique
K, where K = Nj−1(a) ∪H, with H ⊆ Nj−2(a), for some j ≥ 3. Moreover, the
following statements hold:

(i) K can be found in time O(n2).
(ii) No vertex of K is strongly simplicial.

(iii) If G is quasi-line and bipolar-free, then G|K is not connected.
(iv) If G is quasi-line and bipolar-free and a′ is a strongly simplicial vertex not

adjacent to a (possibly, a′ ≡ a), then a′ is strongly simplicial in G|K too.

5.2 The Decomposition Algorithm

We are now ready to define our decomposition procedure (cf. Algorithm 1). The
algorithm receives a connected graph G that is quasi-line and bipolar-free, but
not distance claw-free. It returns: a graph GL (still quasi-line and bipolar-free)
such that V (GL) = V (G) ∪AL (the vertices in AL are artificial) and such that
each component is distance simplicial; a partition P of the vertices in AL. As
we show later, the components of GL and the partition P can be used to define
a strip decomposition of G.

Algorithm 1. An algorithm to decompose a bipolar-free quasi-line graph that
is not distance claw-free
Require: A quasi-line and bipolar-free connected graph G that is not distance claw-

free.
Ensure: A graph GL such that V (GL) = V (G) ∪AL; a partition P of the vertices in

AL.

1: Detect a strongly regular articulation clique K and unglue it.
2: Let G0 := G|K . Let l = 0, A0 := A(K) and P := {A(K)}.
3: while ∃a ∈ Al such that α(Nj(a)) > 1 for some j ≥ 3 do
4: Let Kl with Kl ∩Al = ∅ be a net clique.
5: Unglue Kl i.e. define Gl+1 := Gl

|Kl , P := P ∪{A(Kl)} and Al+1 := Al ∪A(Kl).

6: Let l := l + 1.
7: end while
8: Let L = l.

94 G. Oriolo, U. Pietropaoli, and G. Stauffer

In the algorithm, we start with a connected graph G that is quasi-line and
bipolar-free but not distance claw-free. Hence G has a net clique by Lemma 27,
and therefore a strongly regular articulation clique K by Lemma 22. We unglue
K and set A0 equal to the set of artificial vertices A(K). By statements (i)
and (ii) of Lemma 26, G0 := G|K is quasi-line and bipolar-free, moreover, by
statement (iii), the vertices in A0 are pairwise non-adjacent, every vertex of A0

is strongly simplicial and in every component of G0 there is a vertex from A0

and a vertex from G.
We then check whether in some component of G0 there exists a vertex a ∈ A0

such that α(Nj(a)) > 1 for some j. If not, by Lemma 29, each component of G0

is distance simplicial and the algorithm terminates; else, there exists a net clique
K0, that we unglue, setting G1 := G0

|K0 and A1 := A0 ∪ A(K0). Observe that,
by Lemma 29, no vertex of K0 is strongly simplicial, therefore K0 ∩ A0 = ∅,
G1 has at least one component more than G0 and each vertex of A0 is strongly
simplicial in G1 (we can use the fourth statement of Lemma 29, since the vertices
in A0 are pairwise non-adjacent).

By Lemma 26, G1 is quasi-line, bipolar-free, the vertices inA(K0) are pairwise
non-adjacent and every vertex of A(K0) is strongly simplicial in G1. Also in
every component of G1 there is a vertex of A1 and a vertex from G (about
this last statement, observe that each new component has a vertex from K0

and K0 ∩ A0 = ∅). Moreover the vertices in A1 are still pairwise non-adjacent:
we have already seen that vertices in A0 are pairwise non-adjacent and vertices
in A(K0) are pairwise non-adjacent. Now observe that A0 is anti-complete to
A(K0): this is because the only adjacencies defined during the reduction of K0

are adjacencies between vertices of A(K0) and vertices of K0 and no vertex of
A0 belongs to K0.

We set l = 1 and iterate. It follows, by induction, that at each step l of
the algorithm: the graph Gl is quasi-line and bipolar-free; the set Al is made of
pairwise non-adjacent strongly simplicial vertices; in each component of Gl there
is at least one vertex from Al and at least one vertex from G. Therefore, at each
step, unless each component of Gl is distance simplicial, there is a net clique
to unglue. The algorithm will terminate after L iterations when no component
of GL has a vertex a ∈ AL such that α(Nj(a)) > 1 for some j, i.e. when each
component of GL is distance simplicial. In particular, since we cannot have more
than n = |V (G)| components with at least a vertex from G, it follows that L ≤ n.
Moreover, since each iteration can be done in time O(n3), the running time of
the algorithm is O(n4).

We finally show how the components of GL and P can be used to define a
strip decomposition of G. Observe that, by construction, V (GL) = V (G)∪A(L)
and P defines a partition of the vertices in AL.

Lemma 30. Each component of GL has at most two vertices from AL.

Proof. Suppose to the contrary that there exists a connected component C in GL

with more than two vertices from AL. Let a1, a2, a3 ∈ C ∩AL. In the following,
we refer to the graph GL. Recall that each vertex in AL is strongly simplicial

A New Algorithm for the Maximum Weighted Stable Set Problem 95

and that the vertices in AL are pairwise non-adjacent. Assume a2 ∈ Nj(a1) and
a3 ∈ Nk(a1) for some k ≥ j ≥ 1. Actually, j > 1 since otherwise a1 and a2

would be adjacent. Since each component of GL is distance simplicial, it follows
that α(Nl(a1)) ≤ 1 for all l ≥ 1. Therefore, k > j and thus Nj+1(a1)
= ∅.
Each vertex v ∈ Nj+1(a1) is not adjacent to a2 (else a2, that is adjacent to
some vertex in Nj−1(a1), would not be simplicial). But then since there exists
w ∈ Nj−2(a1)∩N2(a2), it follows that {v, w} is a stable set of size two in N2(a2),
a contradiction. �
Suppose now that GL has p components H1, . . . , Hp. Each component Hi, for
i = 1..p, has either two vertices ai, bi from AL or one vertex ai from AL. W.l.o.g.
assume that each component has two artificial vertices (else we might add a
singleton to the component). Consider therefore the strips (H1, a1, b1), . . . , (Hp,
ap, bp). It is easy to see that G is the composition of the strips (Hi, ai, bi), i =
1, ..., p w.r.t. the partition P : in fact, GL, GL−1, . . . , G0 is exactly the sequence
defined in the alternative definition of strips-composed graph (see Def. 2).

We can summarize our previous results as follows:

Lemma 31. Let G be a connected and bipolar-free quasi-line graph G that is
not distance claw-free. By Algorithm 1 we can produce a strip decomposition of
G in time O(n4).

Theorem 32. Let G be a connected bipolar-free quasi-line graph.

– Either G is a distance claw-free graph without strongly simplicial vertices
and without strongly regular articulation cliques;

– or G is the composition of at most n distance simplicial strips.

We now have all the ingredients to state our main result.

Theorem 33. The mwss problem can be solved in time O(n6) for a claw-free
graph G.

Proof. We check if there exists a stable set of size 4 in G by enumeration: this
can be done in time O(n4). If not, we enumerate in time O(n3) all stable sets
of G of size 1, 2 and 3 and take the best one. Else, if the graph has stability
number greater than 3, we use Lemma 13 to reduce to the mwss problem in
a quasi-line graph G1 in time O(n4). We now use Lemma 17 to reduce to the
mwss problem in a bipolar-free quasi-line graph G2 in time O(n6). We search
for strongly regular articulation cliques in G2: this can be done in time O(n3)
from Lemma 20. If there are no strongly regular articulation cliques, then we
know from Lemma 22 that G2 has no net cliques and therefore (Lemma 27) G2 is
distance claw-free; hence we use the algorithm of Pulleyblank and Shepherd [10]
and find an mwss in time O(n3). Else, we get a strip decomposition of G2 into
distance simplicial strips from Lemma 31 in time O(n4). The crucial stable sets
can be found in each strip in time O(n2) (first recall that in a distance simplicial
graph an mwss can be found in time O(n2), then observe that each crucial stable
set is an mwss, if we give weight 0 to some suitable set of vertices). Therefore,
from Lemma 5, we can find an mwss in G2 in time O(n3). All together, we can
solve the mwss problem for G in time O(n6). �

96 G. Oriolo, U. Pietropaoli, and G. Stauffer

Acknowledgment

Defining graph reductions that can deal with the mwss problem requires a deep
understanding of the structure of claw-free graphs. Recently, Chudnovsky and
Seymour (see the survey paper [3]) tackled this problem and they provided de-
composition theorems for claw-free and quasi-line graphs. Though we started
considering graph reductions only after we heard about this tremendous piece of
work, we could finally avoid to use their whole machinery thanks to our simpler
decomposition result we could prove for bipolar-free quasi-line graphs. We believe
nevertheless that we would not have thought about our simpler decomposition
without the decomposition theorems of Chudnovsky and Seymour.

References

1. Berge, C.: Two theorems in graph theory. Proc. Nat. Acad. Sci. U.S.A. 43, 842–844
(1957)

2. Berge, C.: Graphs and hypergraphs. Dunod, Paris (1973)
3. Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. In: Surveys in

Combinatorics 2005. London Math. Soc. Lecture Note Series, vol. 327 (2005)
4. Cornuéjols, G., Cunningham, W.H.: Compositions for perfect graphs. Discrete

Mathematics 55, 245–254 (1985)
5. Fouquet, J.: A strengthening of Ben Rebea’s lemma. Journal of Combinatorial

Theory 59, 35–40 (1993)
6. Lovász, L., Plummer, M.D.: Matching theory. North Holland, Amsterdam (1986)
7. Lozin, V.V., Milanic̆, M.: A polynomial algorithm to find an independent set of

maximum weight in a fork-free graph. In: Proceedings of SODA 2006, Miami,
Florida, January 22-26 (2006)

8. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. Journal
of Combinatorial Theory 28, 284–304 (1980)

9. Nakamura, D., Tamura, A.: A revision of Minty’s algorithm for finding a maximum
weighted stable set of a claw-free graph. Journal of the Operations Research Society
of Japan 44(2), 194–204 (2001)

10. Pulleyblank, W., Shepherd, F.: Formulations for the stable set polytope. In: Ri-
naldi, G., Wolsey, L.A. (eds.) Proceedings of IPCO 1993, Erice, Italy, April 19 -
May 1 (1993)

11. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un
graphe sans étoile. Discrete Mathematics 29, 53–76 (1980)

12. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. In: Algorithms
and Combinatorics 24, 3 volumes. Springer, Berlin (2003)

A Polynomial Algorithm for Weighted Abstract Flow�

Maren Martens and S. Thomas McCormick

Sauder School of Business, University of British Columbia,
Vancouver, BC V6T 1Z2

{maren.martens,tom.mccormick}@sauder.ubc.ca

Abstract. Ford and Fulkerson’s original 1956 max flow/min cut paper formu-
lated max flow in terms of flows on paths, rather than the more familiar flows
on arcs. In 1974 Hoffman pointed out that Ford and Fulkerson’s original proof
was quite abstract, and applied to a wide range of flow problems. In this abstract
model we have capacitated elements, and linearly ordered subsets of elements
called paths. When two paths share an element (“cross”), then there must be a
path that is a subset of the first path up to the cross and the second path after
the cross. Hoffman’s generalization of Ford and Fulkerson’s proof showed that
integral optimal primal and dual solutions still exist under this weak assumption.
However, his proof is non-constructive.

Hoffman’s paper considers a sort of supermodular objective on the path flows,
which allows him to include transportation problems and thus min-cost flow in his
framework. We develop the first combinatorial polynomial algorithm that solves
this problem, thereby also give a constructive proof of Hoffman’s theorem. Our
algorithm accesses the network only through a dual feasibility oracle, and re-
sembles the successive shortest path algorithm for ordinary min-cost flow. It uses
some of the same techniques used to solve the max flow/min cut version of Hoff-
man’s model, plus a method to re-optimize when capacities change inside capac-
ity scaling.

1 Introduction

For many years researchers have investigated which classes of linear programs have
guaranteed integral optimal solutions. One such large class is the totally dual integral
(TDI) LPs (see, e.g., Schrijver [10, Chapter 22]). TDI systems often have size exponen-
tial in the natural variables of the model. It is sometimes possible to show a separation
algorithm that then implies a polynomial algorithm via the Ellipsoid Method (see, e.g.,
Grötschel, Lovász, and Schrijver [5]), but this is unsatisfactory as Ellipsoid-based algo-
rithms are reputed to be slow in practice. We would prefer to have combinatorial (i.e.,
non-Ellipsoid) algorithms for these problems. Finding such combinatorial algorithms
has been a big area of research in recent times.

There have been some notable successes recently in finding combinatorial algorithms
for TDI problems. Two such problems are Submodular Function Minimization (SFM)

� This work was partially supported by an NSERC Operating Grant, the DFG grants 444 USA
121/1/07, SK 58/4-1, and SK 58/5-3, and by the Graduate School of Production Engineering
and Logistics, North Rhine-Westphalia.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 97–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 M. Martens and S.T. McCormick

and Bisubmodular Function Minimization (BSFM), see [8,9] (and a general algorithmic
framework for TDI problems is in [1]). One of the papers originating the idea of TDI-
ness is Hoffman [6]. His paper developed an abstract generalization of the path-variable
version of Ford and Fulkerson’s celebrated Max Flow-Min Cut Theorem (MFMC The-
orem) [3]. Hoffman’s model allows supermodular weights on paths, and so we call it
Weighted Abstract Flow (WAF); it includes all versions of the MFMC Theorem, as well
as some weighted flow problems such as transportation problems and versions of min-
cost flow. Hoffman’s proof was non-constructive. McCormick [7] found a polynomial
algorithm for the unweighted “max flow” version of WAF, but left an algorithm for
general WAF as an open problem.

WAF is important as it contains many more models as special cases than the version
considered in [7]. Since there could be an exponential number of paths, algorithms for
WAF interact with the abstract network through an oracle: we want to solve the problem
despite wearing a blindfold that prevents us from “seeing” the network. Hence from
the viewpoint of its many applications, the challenge of seeing how little information
about a network is needed to solve such problems, as well as the viewpoint of wanting
to develop algorithmic techniques for solving TDI problems, getting an algorithm for
WAF is worthwhile.

The main result in the present paper is the first polynomial combinatorial algorithm
for WAF, by adapting the Successive Shortest Path algorithm for min-cost flow to WAF
to find integral solutions. This necessitates significantly revising and extending the
“max flow” algorithm of [7] to a version that can deal with elements whose flow is
restricted to be tight to their capacity.

1.1 Hoffman’s Model

We are given a finite set E of (capacitated) elements; each e ∈ E has integral capacity
ue > 0. We are also given a familyP of subsets of E, where each P ∈ P is called a path
and has a linear order <P on its elements and weight (or reward) rP ≥ 0. (If P and Q
are two paths both containing e and f , it is entirely possible that e <P f but e >Q f .)
If e, f ∈ P with e <P f then we define, e.g., (e, f]P = {g ∈ P | e <P g ≤P f}.
It is convenient to define artificial elements s, t /∈ E with us = ut = ∞, such that s
(resp. t) is the first (resp. last) element on every P ∈ P . Then we further define, e.g.,
(s, e)P = {g ∈ P | g <P e}, and [e, t)P = {g ∈ P | e ≤P g}.

If e ∈ P ∩Q (paths P and Q cross at e), define (P, e, Q) = (s, e]P ∪ [e, t)Q. Further
define P×eQ to be some member of argmax{rR | R ⊆ (P, e, Q), R ∈ P}. We then
require for all P , Q ∈ P with e ∈ P ∩Q that

rP×eQ + rQ×eP ≥ rP + rQ, (1)

a sort of supermodularity. Note that the case where rP = 1 for all P 	= ∅ satisfies
(1) precisely when P satisfies: There is a path contained in (P, e, Q) (and so also in
(Q, e, P)). See [6] for other interesting examples of this model.

The Weighted Abstract Flow (WAF) problem associated with E and P puts a flow
variable xP on each P ∈ P and a weight ye on each element e ∈ E. The dual linear
programs are:

A Polynomial Algorithm for Weighted Abstract Flow 99

(P(r)) max
∑
P

rP xP (D(r)) min
∑

e

ueye

s.t.
∑
P�e

xP ≤ ue ∀e ∈ E s.t.
∑
e∈P

ye ≥ rP ∀P ∈ P

x ≥ 0 y ≥ 0

Here (P(r)) wants to maximize the weighted sum of flows on all paths, the value of x,
denoted val(x), subject to the total flow through any element not being more than its
capacity, whereas (D(r)) wants a minimum capacity weighting of elements that covers
all paths. We globally assume that u and r are integral.

Theorem 1 (Hoffman, [6, Theorem 2.4]). When u and r are integral vectors, linear
programs (P(r)) and (D(r)) have integral optimal solutions.

Section 2 sets notation for the formal model and the oracle used to access it, and then
Section 3 develops the successive shortest paths (SSP) framework of the algorithm. This
motivates considering an Abstract Max Flow/Min Cut (AMFMC) subproblem restricted
to have some elements tight to their capacities, which is solved in Section 4. Then
Section 5 embeds this subroutine into the SSP framework to get a pseudopolynomial
WAF algorithm, and Section 6 shows how to use this algorithm plus capacity scaling
plus sensitivity analysis to get a polynomial WAF algorithm. This extended abstract
omits most proofs, figures, and formal algorithms for space reasons.

2 Preliminaries

Let 1 denote the vector of all ones. Any x ∈ IRP is a path-flow. Every path-flow induces
a flow through each element, which we denote as x(e) :=

∑
P�e xP . Thus x is feasible

iff x ≥ 0 and x(e) ≤ ue for all e ∈ E. If x(e) = ue then we say that e is saturated
(w.r.t. x), and we put S(x) := {e ∈ E | e is saturated w.r.t. x} (this is nearly always
w.r.t. the current x, and then we write just “S”). If xP > 0 then we say that P is positive.
Any y ∈ IRE is a dual vector. Each such y induces a dual weight on each path, which
we denote as y(P) :=

∑
e∈P ye. Thus y is dual feasible iff y ≥ 0 and y(P) ≥ rP for

all P ∈ P . We imagine all paths as running from s at the extreme left to t at the extreme
right. Hence the “left-most” element of P with some property means the element of P
with the property that is minimum w.r.t. <P , and similarly for “right-most”.

Suppose that x is a feasible path-flow. Then x and y ≥ 0 are jointly optimal to (P(r))
and (D(r)) iff the following conditions hold: (OPT i) y(P) ≥ rP for all P ∈ P ; (OPT
ii) xP · (y(P) − rP) = 0 for all P ∈ P ; and (OPT iii) ye · (ue − x(e)) = 0 for all
e ∈ E. Condition (OPT i) is just dual feasibility, and (OPT ii–iii) are complementary
slackness.

2.1 Accessing the Abstract Network Via an Oracle

We take the point of view that |E| is “small”, and so we explicitly store y as a vec-
tor in IRE . Denote m := |E|. Let n denote an upper bound on path length, so that
maxP∈P |P | ≤ n. We think of |P| as being “big”, possibly exponential in m, so we do
not have an explicit list of paths and their r-values. We represent WAF with an oracle

100 M. Martens and S.T. McCormick

for (D(r)) that when given a vector y, either verifies that y is feasible, or returns a con-
straint violated by y. In Ellipsoid terms, it is a separation routine (see [5]). We use this
oracle to generate interesting paths in P as needed. We keep only a list of the current
positive paths and their respective x values. We show bounds on the number of positive
paths generated by our algorithm. A “small” E and “big” P is consistent with most
applications of this model. Formally the oracle is:

O(y) when given y ∈ IRE
+, returns either a violating path P with y(P) < rP (together

with rP and <P), or the statement that every P ∈ P satisfies dual feasibility, i.e.,
(OPT i).

Let PO denote the time for one call toO(y). The results in [5] already imply thatO(y)
is strong enough to get a strongly polynomial algorithm for WAF. However, Ellipsoid
cannot produce integral optimal solutions to the dual in TDI problems, i.e., integral
optimal flows x for (P(r)).

Let U be an upper bound on the ue and set rmax = maxP∈P rP . Then the size of
the data is log U + log rmax. A pseudopolynomial bound can involve U , rmax, m, n,
and PO, a weakly polynomial bound can involve log U , log rmax, m, n, and PO, and a
strongly polynomial bound can involve only m, n, and PO.

3 The Successive Shortest Path Framework

We adapt the Successive Shortest Path (SSP) algorithm for WAF. We start by pushing
flow on paths with value rmax. Let λ be a scalar parameter whose value represents the
reward of the current set of paths we are considering. Hence we initialize λ = rmax,
and try to drive λ towards zero. A key idea is to relax dual feasibility by λ so that (OPT
i) becomes

y(P) ≥ rP − λ for all P ∈ P. (2)

Define gapλ(P) = y(P) − rP + λ; we often abbreviate this to just gap(P). Then the
relaxed optimality conditions are: (OPT(λ) i) gap(P) ≥ 0 for all P ∈ P ; (OPT(λ) ii)
xP · gap(P) = 0 for all P ∈ P ; and (OPT(λ) iii) ye · (ue − x(e)) = 0 for all e ∈ E.
Note that λ = rmax, y ≡ 0 and x ≡ 0 satisfy (OPT(λ) i–iii). At a general step of
the algorithm we have x, y, and λ such that x is primal feasible, and x and y satisfy
(OPT(λ) i–iii). Define the (abstract) λ-subnetwork as the abstract network containing
paths P(λ) := {P ∈ P | gap(P) = 0}. We need to know that the λ-subnetwork is a
valid abstract network, i.e., that it satisfies (1).

Lemma 2. Path system P(λ) satisfies (1).

Corollary 3. For P , Q ∈ P(λ) with e ∈ P ∩Q,

rP×eQ + rQ×eP = rP + rQ and (3)

y(P×eQ) + y(Q×eP) = y(P) + y(Q). (4)

Corollary 4. Suppose that P , Q ∈ P(λ) with e ∈ P ∩ Q, and e <Q f , with ye > 0.
Then e <P×eQ f .

A Polynomial Algorithm for Weighted Abstract Flow 101

We want to augment x by a max flow in P(λ). But (OPT(λ) iii) requires that when
ye > 0, then x(e) = ue. Hence we must find a max flow that preserves that x(e) = ue

for e ∈ R(y) := {e ∈ E | ye > 0}, the restricted elements; we usually suppress the
dependence on y and just write “R”. The algorithm thus keeps R ⊆ S. We call this sub-
problem Restricted Abstract Max Flow/Min Cut (RAMFMC). RAMFMC differs from
AMFMC in being given R and an initial x such that R ⊆ S(x). We solve RAMFMC
on P(λ) as implicitly represented by the oracle.

4 Solving Restricted Abstract Max Flow/Min Cut

The dual linear programs for RAMFMC are:

max val(x) := 1T x min cap(u) := uT l

s.t. x(e) ≤ ue ∀ e ∈ E s.t. l(P) ≥ 1 ∀ P ∈ P(λ) (5)

x(e) = ue ∀ e ∈ R

x ≥ 0 le ≥ 0 ∀ e ∈ E −R

We show below that there is always an optimal l that is 0, ±1. A signed subset L of
E is an ordered pair L = (L+, L−) such that L+, L− ⊆ E and L+ ∩L− = ∅. There is
a bijection between 0,±1 vectors l ∈ IRE and such L, where L+ = {e ∈ E | le = +1}
and L− = {e ∈ E | le = −1}. Note that l(P) = |P ∩ L+| − |P ∩ L−|. A restricted
abstract min cut (RAMC) is a signed subset L such that l(P) ≥ 1 for all P ∈ P(λ), and
its capacity is cap(L) = uT l. We extend the AMFMC algorithm of [7] to a RAMFMC
algorithm for computing optimal x and L with L− ⊆ R (satisfying the restriction that
l ≥ 0 on E −R) and L+ ⊆ S(x).

A feasible x and l ∈ IRE with le ≥ 0, for all e ∈ E−R, are optimal for RAMFMC iff
the following conditions hold: (OPT RAMF i) l(P) ≥ 1 for all P ∈ P(λ);
(OPT RAMF ii) xP · (l(P) − 1) = 0 for all P ∈ P(λ); and (OPT RAMF iii)
le · (ue − x(e)) = 0 for all e ∈ E. The algorithm tries to construct an L obeying
(OPT RAMF i–iii) and thus proving that x is optimal. We might find out that x is not
yet optimal by finding a carefully designed subset of paths in P(λ) by which we can
augment x.

Since RAMFMC is a subproblem of WAF, it is natural to want a representation
that uses the same O(y) as WAF to check (5). We need an oracle that when given
l ∈ {0,±1}E, returns either a violating path P ∈ P(λ) with l(P) < 1, or the statement
that l(P) ≥ 1 for every P ∈ P(λ). The next lemma shows that we can check (5)
by calling O((y + 1

n+1 l)|(λ − 1
n+1)

)
(which we call O-RAMF(l)), which stands for

extending y + 1
n+1 l by (y + 1

n+1 l)s = λ− 1
n+1 .

Lemma 5. For l ∈ {0,±1}E, and integral y, λ satisfying (OPT(λ) i–iii), it holds that

1. If y(P) + 1
n+1 l(P) ≥ rP − (λ− 1

n+1) for all P ∈ P , then l is a feasible RAMC in
P(λ).

2. If y(P) + 1
n+1 l(P) < rP − (λ − 1

n+1) for some P ∈ P , then P is in P(λ) and
violates (5), i.e., l(P) ≤ 0 and y(P) = rP − λ.

102 M. Martens and S.T. McCormick

By analogy with ordinary max flow, if we approach e via a path P with e ∈ P along
elements to the left of e on P we say that we first reach the “tail” of e, denoted tail(e);
and if we approach e via a path P with e ∈ P along elements to the right of e on P we
say that we first reach the “head” of e, denoted head(e).

We generalize reachability from s via a partial augmenting path in ordinary max flow,
to reachability from s via a partial augmenting structure (PAS) in RAMFMC. In ordi-
nary max flow, a partial augmenting path traverses some arcs forwards, and some arcs
backwards. By aggregating consecutive forwards and backwards arcs into segments, we
can consider such a path to consist of alternating positive and negative segments. Each
positive segment contains only unsaturated arcs, and each negative segment contains
only positive-flow arcs but no restricted arcs.

Thus a first guess at a proper definition of a PAS for abstract flow is that it should
be an ensemble of paths P+

1 , P−
1 , P+

2 , P−
2 , . . ., P−

k−1, P+
k together with a sequence of

elements e+
1 , e−1 , e+

2 , e−2 , . . . , e−k−1, e+
k such that (a) each e+

i ∈ P+
i ∩ P−

i ; (b) each
e−i ∈ P−

i ∩P+
i+1; (c) (e−i−1, e

+
i)P+

i
∩S = ∅; and (d) xP−

i
> 0 and (e+

i , e−i)P−
i
∩R = ∅.

The intention is that we could feasibly increase flow on each (e−i−1, e
+
i)P+

i
(“positive

segment”), and decrease flow on each (e+
i , e−i)P−

i
(“negative segment”).

However, because a cross of two paths may have a different order, we have to modify
condition (c) to: for each P+

i , i = 1, . . . , k, e+
i ∈ P−

i−1×e−
i−1

P+
i , and e+

i is the left-

most (w.r.t. <P−
i−1×e

−
i−1

P+
i

) S-element in (P−
i−1×e−

i−1
P+

i) ∩ (e−i−1, t)P+
i

(i.e., for any

P−
i containing e+

i , we can feasibly increase flow on (P−
i−1×e−

i−1
P+

i)×e+
i
P−

i if we are

also decreasing flow on P−
i−1 and P−

i). When e+
k = t, a PAS to tail(t) is called an

augmenting structure (AS). Despite our careful definition here, the paths of an AS still

R

A

L−

L+

L+

G

G
unsaturated

elements A

︸ ︷︷ ︸
S︸ ︷︷ ︸

E

T

H

Fig. 1. Venn diagram showing the relation between R = {e | ye > 0} (dashed line), T (dotted
line) and H (solid line) defined by the existence of forward and backward PAS’s, and L+, L−,
and G used to define the current guess at a RAMC

A Polynomial Algorithm for Weighted Abstract Flow 103

might intersect each other, preventing an integral feasible flow update. Later AUGMENT

in Section 4.1 shortcuts such intersections so as to produce feasible augmentations.
Define T = {e ∈ S | there exists a PAS to tail(e)} and H = {e ∈ S | there

exists a PAS to head(e)}. Arc i→ j ∈ ∂+(C∗) for a left-most min cut C∗ in ordinary
max flow if s can reach i but not j, which corresponds to L+ = T − H . Arc i →
j ∈ ∂−(C∗) ∩ R for ordinary max flow if s can reach j but not i, which corresponds
to L− = (H − T) ∩ R. If e ∈ H − R, then the PAS to head(e) can be extended
“through” e to tail(e) (including a null P+ segment from tail(e) to tail(e)) to get a
PAS to tail(e). Therefore H − R ⊆ T , so that in fact L− is just H − T . Elements
that are in H ∩ T cannot be in L+ or in L−; we call them garbage elements and set
G = H ∩ T . Define A = S − (G ∪ L+ ∪ L−) as the active elements. It always holds
that A ∪ L+ ∪ L− ∪G = S is a disjoint partition of S (see Figure 1).

4.1 The RAMFMC Algorithm

The algorithm tries to guess L satisfying (OPT RAMF ii–iii), and uses O-RAMF(l) to
find paths violating (OPT RAMF i).

We use P+(e) to denote the last path in a PAS to tail(e), and P−(e) to denote the
last path in a PAS to head(e). We start with A = S. When we first discover a new
PAS to tail(e) we move e from A to L+. If we later discover a PAS to head(e) then we
move e from L+ to G. Similarly, when we first discover a new PAS to head(e) ∈ R we
move e from A to L−. If we later discover a PAS to tail(e) then we move e from L− to
G. Between AUGMENTs, R-elements move only from A to L− to G or from A to L+

to G; elements in S −R move only from A to L+ to G, or directly from A to G.
In this manner we try to find an AS by gradually growing PAS’s, which increases

the number of elements known to be in T ∪ H . One of two things will stop us: (1) A
PAS reaches t, in which case we can augment flow; or (2)O-RAMF(l) reports no paths
violating (OPT RAMF i), and so the current L satisfies (OPT RAMF i–iii), and so it is
a RAMC proving that the current x is optimal. Subroutine IMPROVE implements this
idea of growing PAS’s. It has two subroutines itself—REDUCE and AUGMENT.

The IMPROVE Subroutine. IMPROVE takes a given feasible x and tries either to find
an AS so it can call AUGMENT to find a new flow of higher value, or to find an
L proving that x is optimal. There are two processes that affect L: IMPROVE itself
calls O-RAMF(l) to find a path P violating (OPT RAMF i), i.e., with l(P) ≤ 0, and
then it tries to find elements of A on P that it can move into L+ to ensure that l(P) ≥ 1.
IMPROVE fails at this only by finding that it can call AUGMENT, which performs short-
cuts on the AS so as to integrally augment x.

However, since S-elements appear on multiple paths, it is easy for IMPROVE to create
a positive path P with l(P) > 1, violating (OPT RAMF ii). To deal with this, every
time that IMPROVE changes L it calls REDUCE, which processes every positive path P
to ensure that l(P) ≤ 1; REDUCE processes even those positive P with l(P) already
equal to 1 in order to make the properties in Lemma 6 below true. Roughly speaking,
REDUCE does this by moving surplus L+ elements to G. At the end of the section we
embed IMPROVE into an overall algorithm for solving RAMFMC.

104 M. Martens and S.T. McCormick

If O-RAMF(l) returns violating path P , then P must contain some e ∈ ({s} ∪H).
Now e ∈ ({s} ∪ H) implies that there is at least one PAS to head(e); let Qe be the
final positive path in this PAS (if e = s, then setting Qe = ∅ works together with
Qe×eP = P). If there is no S-element in (Qe×eP) ∩ (e, t)P , then the PAS using Qe

to head(e) together with P forms an AS and IMPROVE calls AUGMENT.
Otherwise, let f be the left-most (w.r.t. <Qe×eP) S-element on (Qe×eP) ∩ (e, t)P .

Then with f = e+
i , e = e−i−1, Qe = P−

i−1, P = P+
i , and any positive path containing f

as P−
i , clearly this satisfies part 4 of the PAS definition, and so using P to extend the PAS

to head(e) up to tail(f) works. Therefore putting f into T is correct. We set P+(f) = P ,
pred(f) = e, and predpath(f) = Qe to record that the PAS reached tail(f) from the
immediate predecessor element e and path Qe for later use in AUGMENT.

The REDUCE Subroutine. Suppose that P is a positive path with f ∈ P ∩ L+, and
that e is the right-most S-element on (s, f)P . Since f ∈ L+ there is a PAS to tail(f),
and since P is positive we can extend this along P to head(e), thereby showing that
e ∈ H . If e /∈ R, then we can extend this PAS to tail(e), showing that e ∈ G; if e ∈ T ,
then (even if e ∈ R) the new PAS to head(e) shows again that e ∈ G. In either case
we have that e ∈ T , and so we can reset f = e and iterate. We set P−(e) = P and
pred(e) = f to record the PAS that put e into T for later use in AUGMENT.

This process stops only when it reaches an e ∈ R with e /∈ T . In this case, e ∈ R∩H
means that we can put e into L−, and we again set P−(e) = P and pred(e) = f . We
then re-start the process with the next L+ to the left of e on P .

Suppose that P , Q ∈ P(λ) with e ∈ P ∩Q. Because P×eQ ⊆ (P, e, Q), and P×eQ
contains all the L− elements of (P, e, Q) (by Corollary 4), we get

l(P×eQ) ≤ l((s, e)P) + le + l((e, t)Q). (6)

Lemma 6. When IMPROVE returns L, it is an optimal RAMC. Furthermore, every pos-
itive path P has the following properties:

1. The left-most L-element on P is in L+.
2. The right-most L-element on P is in L+.
3. The L+ and L− elements on P alternate.
4. If e and f are consecutive L-elements on P , then

(a) if f ∈ L+ then e ∈ L− and all g ∈ (e, f)P ∩ S are in G;
(b) if f ∈ L− then e ∈ L+ and all g ∈ (e, f)P ∩ S are in A.

Corollary 7. When IMPROVE returns L, if P is a positive path containing e, then

if e ∈ L+ then l((s, e]P) = 1 and l((e, t)P) = 0; (7)

if e ∈ L− then l((s, e]P) = 0 and l((e, t)P) = 1; (8)

if e ∈ G then l((s, e]P) = 0 and l((e, t)P) = 1; (9)

if e ∈ A then l((s, e]P) = 1 and l((e, t)P) = 0. (10)

The AUGMENT Subroutine. Since IMPROVE and REDUCE record P+(g), P−(g),
pred(g), and predpath(g) as they construct PAS’s, it is fairly easy to follow these
pointers backwards to s to reconstruct the full AS from s to t.

A Polynomial Algorithm for Weighted Abstract Flow 105

Each e+
j−1 ∈ T , and so P+

j = P+(e+
j−1) exists, and it contains the predecessor

e−j = pred(e+
j−1) ∈ H . Due to how IMPROVE constructed a PAS to tail(e+

j−1), there is
also a predecessor path P−

j = predpath(e+
j−1). This is constructed such that the path

Q+
j := (P−

j ×e−
j
P+

j)×e+
j−1

P−
j−1 is well-defined. Notice that when j = 1, then e+

0 = t

and we set P−
0 = ∅, and interpret Q+

1 = (P−
1 ×e−

1
P+

1)×tP
−
0 as just P−

1 ×e−
1
P+

1 . This

process of chasing pointers backwards ends once some e−k+1 = s. In this case we could
think of P−

k+1 = ∅, so that Q+
k+1 = (P−

k+1×sP
+
k+1)×e+

k
P−

k = P+
k+1×e+

k
P−

k .

Naively we then want to increase flow by ε on each Q+
j and decrease flow by ε on

each P−
j . This has the effect of increasing x(e) for e in Q+

j ’s positive segment (Q+
j −

P−
j − P−

j−1), and decreasing x(e) for e in P−
j ’s negative segment P−

j −Q+
j −Q+

j+1.
For the correctness theorem we need some lemmas.

Lemma 8. For any two paths P, Q ∈ P(λ) with e′ ∈ P ∩Q each e ∈ R must appear
with the same multiplicity in P×e′Q and Q×e′P as it appears with in P and Q.

Lemma 9. For each j, Q+
j ’s positive segment contains no S-elements, and P−

j ’s neg-
ative segment contains no R-elements.

Thus if we decrease flow on P−
j and P−

j−1 by ε = 1, and increase flow on Q+
j by ε,

then this cannot cause the flow through any e ∈ S to become larger than ue. Figure 2
schematically indicates this by the notation that Q+

j ⊆ P−
j on (s, e−j)P−

j
, and Q+

j ⊆

...

Q+
k+1

Q+
3 ⊆ P−3

Q+
2 ⊆ P−2

Q+
1 ⊆ P−1

P−k

P−1

P−2

+ε

+ε

+ε

+ε

−ε

−ε

−ε

−ε

Q+
1

Q+
2 ⊆ P−1

Q+
3 ⊆ P−2

Q+
k+1 ⊆ P−k

P−3

t = e+
0

s = e−k+1

e−1

e−2

e−3

e+
2

e+
1

e+
k

Fig. 2. A schematic picture of the paths built in AUGMENT before doing shortcuts. All gray paths
are Q+

j ’s, all dashed paths are P−
j ’s. The thin black line indicates where the actual flow change

happens. Segments are marked with their net flow change of +ε or−ε. All e−j ’s are in H , whereas
the e+

j ’s are in T . Note that this picture is simplified as paths may overlap arbitrarily and the order
of elements on paths sharing a common segment might differ.

106 M. Martens and S.T. McCormick

P−
j−1 on (e−j−1, t)P−

j−1
; however, in fact the order of elements on Q+

j might be different

from the orders on P−
j and P−

j−1, and so this should not be taken too literally. Similarly,
the local flow change that decreases flow on P−

j by ε = 1 and increases flow on Q+
j

and Q+
j+1 by ε does not de-saturate any e ∈ R.

Lemma 10. For j = 1, . . . , k, all e−j found in AUGMENT are pairwise distinct, and all
e+

j are pairwise distinct (however, we could have e+
j = e−i for some i and j).

The SHORTCUT Subroutine. Although Lemma 9 shows that our proposed flow change
is locally feasible, it might not be globally feasible. It could happen that the positive
segments from Q+

j and Q+
h intersect, or that P−

j = P−
h for some j 	= h. AUGMENT

calls SHORTCUT to deal with these possibilities. It uses the oracle to cross paths and
hence shortcut the PAS. Then it computes a positive, integral flow increment ε, and
augments flows by ε. Since there is exactly one more positive segment than negative
segments, 1T x increases by ε.

Lemma 11. AUGMENT runs in O(m(mn + PO)) time.

Theorem 12. For a given feasible integral restricted flow x (and integral capacities),
the flow returned by AUGMENT is a feasible integral restricted flow of strictly larger
value.

Putting the Pieces Together. We can now embed IMPROVE in the actual RAMFMC
algorithm that computes a restricted abstract max flow and a corresponding RAMC. We
then go through a series of lemmas establishing the correctness and running times of
the various pieces.

Corollary 13. REDUCE runs in O(m2nU) time.

Corollary 14. IMPROVE runs in O(m3nU + mPO) time.

Theorem 15. The RAMFMC Algorithm returns a restricted abstract max flow x and a
restricted abstract min cut L such that val(x) = cap(L) in O(mU(m3nU + mPO))
time.

5 The WAF Algorithm

Recall that our general idea for the WAF algorithm is to relax dual feasibility to (2)
and to gradually drive λ down from rmax to 0. Given the current λ-subnetwork P(λ)
along with a primal feasible flow x, the WAF Algorithm calls the RAMFMC Algorithm
to compute optimal x′ and L (and its corresponding l). It replaces x by x′, and then
updates to y′ = y + θl and λ′ = λ− θ for some step length θ.

5.1 Computing Step Length θ

Three factors constrain the choice of θ:

[1] The need to keep y′ ≥ 0. This means that θ ≤ min{ye | e ∈ L−}.
[2] The need to keep λ′ ≥ 0. This means that θ ≤ λ.

A Polynomial Algorithm for Weighted Abstract Flow 107

[3] The need to preserve (OPT(λ) i) as y and λ change. This means that (y +θl)(P) ≥
rP − (λ− θ) for each P ∈ P , or θ ≤ gap(P)/(1− l(P)) for all P with l(P) ≤ 0
(note that gap(P) is computed w.r.t. y and λ; we use gap′(P) when computed w.r.t.
y′ and λ′).

Every P with x′
P > 0 is in P(λ′). Lemma 6 ensures that x′

P > 0 implies that
l(P) = 1, and therefore y′(P) − y(P) = θ = λ − λ′, or gap′(P) = gap(P) = 0,
and so (OPT(λ) ii) is maintained. Moreover, (OPT(λ) iii) is preserved, because every
element e with ye > 0 is kept saturated.

Define θ̄ = min
(
λ, min{ye | e ∈ L−}) as the upper bound on θ coming from [1]

and [2], which is trivial to compute in O(m) time. The bound from [3] is trickier since
|P| is “large”, and so needs to rely on O(y). The next two lemmas show that in [3] it
suffices to consider only paths P with l(P) = 0.

Lemma 16. Suppose that we update y to y′ via θ where

θ = min{gap(P)/(1− l(P)) | l(P) ≤ 0} < min{ye | e ∈ L−}, (11)

i.e., that θ is determined by [3] and not by [1]. Further suppose that P̂ , Q ∈ P(λ′)
with xQ > 0. Then

l(P̂) + l(Q) = l(P̂×eQ) + l(Q×eP̂). (12)

Lemma 17. If (11) is true, then this minimum is attained at some P with l(P) = 0.

Thus [3] becomes θ ≤ gap(P) for P such that l(P) = 0, proving that θ is an integer,
and so y′ and λ′ are integral. To compute θ, we take advantage of knowing that it is an
integer. First call O(y + θ̄l|λ− θ̄

)
. If there are no violating paths, then we can just set

θ = θ̄. Otherwise, the new value of θ is the largest θ̂ ∈ (0, θ̄) such thatO(y + θ̂l|λ− θ̂
)

returns no violating path. This can be determined via binary search with O(log rmax)
calls to the oracle. Since computing y + θ̂l costs O(m) for each θ̂, the whole process of
determining the step length takes O(log rmax(m + PO)) time.

Lemma 18. These primal and dual updates preserve (OPT(λ) i–iii).

5.2 WAF Algorithm Running Time

It is easy to construct examples where x is not augmented during an iteration (but y and
λ are changed). Suppose that an iteration changes y, λ to y′, λ′, but does not change
x. Let R be defined w.r.t. y and R′ w.r.t. y′, and let T and H denote elements whose
heads and tails are reachable via PAS’s in P(λ) using x and R, and T ′ and H ′ denote
the same in P(λ′) using x and R′.

Lemma 19. If a non-terminal iteration changes y, λ to y′, λ′ but does not change x,
then

T ⊆ T ′ and H ⊆ H ′. (13)

Lemma 20. Suppose that a non-terminal iteration changes y to y′ but does not change
x. Then at least one inclusion in (13) is proper.

108 M. Martens and S.T. McCormick

Theorem 21. The WAF algorithm runs in O
(
min{rmax, m

2U} · (log rmax(m+ PO)+
mU(m3nU + mPO))

)
time, and the final x and y are integral optimal solutions.

Notice that Theorem 21 also gives a constructive proof of Theorem 1. The running time
bound of Theorem 21 is only pseudopolynomial, as it depends on rmax and U . One can
adapt a construction of Zadeh [12] to demonstrate that the dependence on rmax cannot
be removed. Zadeh constructed a family of instances of min-cost flow parametrized by
k such that instance k has O(k) nodes, O(k2) arcs, and SSP takes O(2k) iterations.

So far we have dealt with the objective to maximize the total weight of a flow, re-
gardless of its actual flow value. However, it is easy to adapt our algorithm to the case
where we want a flow that routes the maximum number of units possible and whose
weight is maximum among those flows. We call such a flow a maximum abstract flow
at maximum weight (MAFMW).

6 A Polynomial Capacity-Scaling WAF Algorithm

The seminal paper by Edmonds and Karp [2] pointed out that scaling is a useful tech-
nique for turning algorithms that augment a feasible solution into algorithms that can
find an optimal solution in weakly polynomial time. For example, [11] uses scaling
to show that augmentation in strongly polynomial time and optimization in strongly
polynomial time are equivalent for 0–1 optimization problems. When the number of
positive paths is strongly polynomial, our IMPROVE routine is strongly polynomial, but
our problem is not 0–1, so we cannot use the results in [11].

In theory we could choose to scale either the rewards rP or the capacities ue. It is
not clear how to scale the rP so that (1) is preserved. Hence we scale the capacities.
Recall that U is the largest capacity of any element, and set b = �log2 U� (one less than
the number of bits needed to represent the largest capacity). For 0 ≤ k ≤ b + 1, define
uk

e = �ue/2k�, the k-th scale of u. Thus ub+1 = 0, ub is a 0–1 vector, and u0 = u.
Since the ub instance has U = 1, Theorem 21 shows that the algorithm computes

x and y optimal for ub in O(min{rmax, m
2} · (log rmax(m + PO) + m4n + m2PO))

time. Clearly 2x and y are optimal for capacities 2ub. Note that 2ub is “close” to ub−1

in the sense that ub−1
e − 2ub

e is 0 or 1 for all e ∈ E. Define the set of elements whose
capacities need to be incremented at scale k as I(k) = {e | uk−1

e − 2uk
e = 1}, and

χ(e) ∈ IRE as the characteristic vector of e.
We would like to replace u′ := 2ub by u′ + χ(e) for each e ∈ I(b) and then modify

the optimal x, y for u′ to a new optimal x′, y′ for u′ + χ(e). The next section develops
a subroutine REOPT(e; r, u) which does this. Thus if we call REOPT for each e ∈ I(b)
in turn, we will get x and y optimal for ub−1, and we can continue like this until we get
x and y optimal for u0 = u.

6.1 Solving the Incremental Capacity Subproblem

The input to REOPT is an instance with rewards r and capacities u, x and y optimal for
r and u, and some e ∈ E. The goal is to modify x and y so they are optimal for r and
u+χ(e). Notice that if ye = 0, then x′ = x and y′ = y are again optimal for u′ +χ(e),

A Polynomial Algorithm for Weighted Abstract Flow 109

∞

λ = 7: xaecd = 3, RAMC = {b, e}, yb = 4, ye = 3

λ = 4: xafd = 4, RAMC = {d}, yd = 2

λ = 2: xag = 2, RAMC = {a}, ya = 2

λ = 0: done

c

d g

b 2

5

9 ∞

3

8
4 2

e

f

h ∞

4

0

2

3

0

00

3

a 11
2

7

λ = 8: xabcd = 2, RAMC = {b}, yb = 1

Fig. 3. An example of the WAF Algorithm in action. Reward values are in circles next to paths,
so that, e.g., raecd = 7. For each element e, the value of ue is to the right of e, and the optimal
value of ye is in a box above and to the left of e. The dashed path aeh does not belong to P(0)
since gap(aeh) = 2 > 0. If we call IMPROVE on P(0) it returns L = ({a}, ∅).

and so the algorithm first deletes all such elements from I(b). In theory we can use ye

as a guide: as the dual variable corresponding to the x(e) ≤ ue constraint, it should tell
us how the optimal objective value changes when we replace u by u+χ(e). In practice,
degeneracy often implies that the change in optimal objective value is different from
ye. REOPT changes the given dual optimal y into an alternate dual optimal solution as
necessary to be able to change x while maintaining complementary slackness.

We now change flows on two generalized PAS’s (gPAS’s). Let us first consider a
simple case. Suppose that there is a PAS C tail to tail(e) in P(λ) w.r.t. x and y, i.e., that
IMPROVE returns RAMC L with e ∈ T . Notice that it is easy to reverse everything in
IMPROVE such that it searches for PAS’s from head(f)/tail(f) to t, instead of from s;
call this REVIMPROVE; such a “reversed” PAS is one type of gPAS. Further suppose
that REVIMPROVE finds a PAS Chead from head(e) to t. Then we could glue together
C tail, e, and Chead into an AS such that we could call AUGMENT using u + χ(e) and it
would change x into x′ such that x′(e) = x(e) + 1. Then it is easy to see that x′ and y
are jointly optimal w.r.t. u + χ(e).

However, it often happens that L blocks any PAS from s from reaching tail(e). For
the example in Figure 3, L prevents a PAS from s to the tail of every element other than
a. In this example, suppose we are interested in u+χ(d). Then the correct flow change
is to push one unit of flow through the gPAS C tail that uses (a, t)ag backwards, then
uses (a, d)afd forwards to tail(d), together with the trivial reverse PAS from head(d)
to t; this is a “cycle” from t to t containing d.

Note that in general, gPAS’s to the tail of our key element such as C tail that “start
from t” follow the rules for a PAS from s. To find such gPAS’s we adapt IMPROVE to

110 M. Martens and S.T. McCormick

a Phase II version with this trick: set t ∈ L+ in the initialization, which is equivalent
to adding new path st to P ; we call ordinary IMPROVE without this initialization Phase
I IMPROVE. In Phase II IMPROVE we also skip the check for an AS (because putting
t ∈ L+ otherwise creates spurious AS’s).

Lemma 22. If ye > 0, then either Phase I or Phase II IMPROVE finds a gPAS to tail(e).

Often neither REVIMPROVE nor Phase II REVIMPROVE (which artificially puts s into
L+) can find a gPAS from head(e) to t. Let lt denote l with the extra lts = +1 compo-
nent. By (OPT RAMF i) lt(P) ≥ 1 for all P ∈ P(0), implying that l(P) ≥ 0 (since
all P contain s). In such cases we treat l as a direction vector, and consider the move
y′ = y + αl for some step length α ≥ 0. Two factors determine α: (a) To keep y′ ≥ 0
we must have that α ≤ min{yf | f ∈ L−}; since f ∈ L− implies that yf > 0, this min
is positive. (b) To keep feasible we must have that α ≤ min

{−gap0(P)
l(P) | P s.t. l(P) <

0
}

; since l(P) ≥ 0 for P ∈ P(0), all P with l(P) < 0 have gap0(P) > 0, and so this
min is also positive. A lemma similar to Lemma 17 shows that when (b) determines α,
it does so at some P with l(P) = −1, and so α is a positive integer. A binary search
similar to the computation of θ can be used to compute α in O(log rmax(m + PO))
time. Changing to y′ causes all P with l(P) > 0 to leave P(0), but this is okay since
l(P) > 0 means that xP = 0. If α is determined by (a), changing to y′ would mean that
y′

e = 0 for some e’s. If any such e’s are in I(b), we just remove them from I(b). If α is
determined by (b), changing to y′ causes some new P ’s to enter P(0).

Lemma 23. When we set y′ = y+αl as above, y′ is an alternate optimal dual solution.

Using arguments similar to Lemma 20 we can prove that after O(m) such dual changes,
either ye becomes zero (in which case no primal change is necessary), or a gPAS from
head(e) appears. Then we AUGMENT along the two gPAS’s to produce a new optimal x.

6.2 The Capacity-Scaling Algorithm

With REOPT in place, it is now easy to write the overall capacity-scaling algorithm and
derive its running time.

Theorem 24. The capacity-scaling algorithm solves WAF in O
(
log rmax(m3+m2PO)

+ m6n + m4PO
)

time.

This is a (weakly) polynomial algorithm for WAF, as compared to the original WAF
algorithm, which is only pseudopolynomial.

References

1. Applegate, D.L., Cook, W.J., McCormick, S.T.: Integral Infeasibility and Testing Total Dual
Integrality. OR Letters 10, 37–41 (1991)

2. Edmonds, J., Karp, R.M.: Theoretical Improvements in Algorithmic Efficiency for Network
Flow Problems. J. ACM 19, 248–264 (1972)

A Polynomial Algorithm for Weighted Abstract Flow 111

3. Ford Jr., L.R., Fulkerson, D.R.: Maximal Flow through a Network. Canadian J. of Mathe-
matics 8, 399–404 (1956)

4. Frank, A., Tardos, É.: An Application of Simultaneous Diophantine Approximation in Com-
binatorial Optimization. Combinatorica 7, 49–65 (1987)

5. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Opti-
mization. Springer, Heidelberg (1988)

6. Hoffman, A.J.: A Generalization of Max Flow-Min Cut. Math. Prog. 6, 352–359 (1974)
7. McCormick, S.T.: A Polynomial Algorithm for Abstract Maximum Flow. UBC Faculty of

Commerce Working Paper 95-MSC-001. In: An extended abstract appeared in Proceedings
of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 490–497 (1995)

8. McCormick, S.T.: Submodular Function Minimization. In: Aardal, K., Nemhauser, G., Weis-
mantel, R. (eds.) Handbook on Discrete Optimization Ch. 7, pp. 321–391. Elsevier, Amster-
dam (2006)

9. McCormick, S.T., Fujishige, S.: Strongly Polynomial and Fully Combinatorial Algorithms
for Bisubmodular Function Minimization. In: Mathematical Programming; an extended ab-
stract appeared in Proceedings of Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 44–53 (submitted, 2008)

10. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, New York
(1986)

11. Schulz, A.S., Weismantel, R., Ziegler, G.M.: 0/1-Integer Programming: Optimization and
Augmentation are Equivalent. Technical Report No.441/1995, Fachbereich Mathematik,
Technische Universität Berlin (1995)

12. Zadeh, N.: A bad network problem for the simplex method and other minimum cost flow
algorithms. Mathematical Programming 5, 255–266 (1973)

A Comparative Study of Linear and Semidefinite

Branch-and-Cut Methods for Solving the
Minimum Graph Bisection Problem

Michael Armbruster1, Marzena Fügenschuh2, Christoph Helmberg1,
and Alexander Martin2

1 Chemnitz University of Technology
Department of Mathematics, D-09107 Chemnitz, Germany

helmberg@mathematik.tu-chemnitz.de
2 Technische Universität Darmstadt

Department of Mathematics, D-64289 Darmstadt, Germany
martin@mathematik.tu-darmstadt.de

Abstract. Semidefinite relaxations are known to deliver good approx-
imations for combinatorial optimization problems like graph bisection.
Using the spectral bundle method it is possible to exploit structural
properties of the underlying problem and to apply, even to sparse large
scale instances, cutting plane methods, probably the most successful
technique in linear programming. We set up a common branch-and-cut
framework for linear and semidefinite relaxations of the minimum
graph bisection problem. It incorporates separation algorithms for valid
inequalities presented in the recent study [2] of the facial structure of
the associated polytope. Extensive numerical experiments show that the
semidefinite branch-and-cut approach outperforms the classical simplex
approach on a clear majority of the sparse large scale test instances. On
instances from compiler design the simplex approach is faster.

Keywords: Branch and cut algorithms, cutting plane algorithms,
polyhedral combinatorics, semidefinite programs.

1 Introduction

Let G = (V, E) be an undirected graph with V = {1, . . . , n} and E ⊆ {{i, j} :
i, j ∈ V, i < j}. For given vertex weights fv ∈ IN∪{0}, v ∈ V , and edge costs
w{i,j} ∈ IR, {i, j} ∈ E, a partition of the vertex set V into two disjoint clusters S

and V \S with sizes f(S) ≤ F and f(V \S) ≤ F , where F ∈ IN∩[1
2f(V), f(V)

]
,

is called a bisection. Finding a bisection such that the total cost of edges in the
cut δ(S) := {{i, j} ∈ E : i ∈ S ∧ j ∈ V \ S} is minimal is the minimum bisection
problem (MB). The problem is known to be NP-hard [9]. The polytope associated
with MB,

PB := conv
{

y ∈ IR|E| : y = χδ(S), S ⊆ V, f(S) ≤ F, f(V \ S) ≤ F
}

,

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 112–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods 113

where χδ(S) is the incidence vector of the cut δ(S) with respect to the edge
set E, is called the bisection cut polytope. MB as well as PB are related to other
problems and polytopes already known in the literature. Obviously, the bisection
cut polytope is contained in the cut polytope [3,6]

PC := conv
{
y ∈ IR|E| : y = χδ(S), S ⊆ V

}
.

If F = f(V) then MB is equivalent to the maximum cut problem (using the
negative cost function) and PB = PC. For F = � 12f(V)� MB is equivalent to the
equipartition problem [5] and the bisection cut polytope equals the equipartition
polytope [4,15]. Furthermore, MB is a special case of the minimum node capac-
itated graph partitioning problem (MNCGP) [8], where more than two clusters
are available for the partition of the node set and each cluster has a common
limited capacity. The objective in MNCGP is the same as in MB, i.e., to min-
imize the total cost of edges having endpoints in distinct clusters. Finally, we
mention the knapsack polytope [21]

PK := conv

{
x ∈ {0, 1}|V | :

∑
v∈V

fvxv ≤ F

}
,

which plays a fundamental role in valid inequalities for PB. Graph partitioning
problems in general have numerous applications, for instance in numerics [10],
VLSI-design [18], compiler-design [16] and frequency assignment [7]. A large va-
riety of valid inequalities for the polytope associated with MNCGP is known
[3,4,8,15] and, since MB is a special case of MNCGP, all those inequalities are
also valid for PB. A recent successful study of a combined semidefinite polyhe-
dral branch-and-cut approach for max-cut is [20], it is designed for rather dense
graphs with up to 400 nodes. In contrast, our semidefinite branch-and-cut ap-
proach is applicable to sparse graphs with up to 2000 nodes. In addition, we
present a direct comparison with an LP approach within the same branch-and-
cut environment where both approaches use the same separation routines.

In [2] we give a detailed analysis of PB including several classes of new and
facet-defining inequalities. We summarize these results and those from the litera-
ture in Sect. 2. We use these inequalities to derive and strengthen two relaxations
for MB. One is based on an integer programming, the second on a semidefinite
programming formulation. We develop in Sect. 3 both an LP-based branch-
and-cut algorithm and an SDP based branch-and-cut algorithm using the same
framework SCIP [1]. In Sect. 4 we give a comprehensive computational compari-
son of both approaches on various test instances with some surprising outcomes.

2 Valid Inequalities for PB

A large variety of valid inequalities for the cut polytope, the equipartition poly-
tope, and the polytope associated with MNCGP is known: cycle inequalities [3]
of the cut polytope; tree, star, and cycle inequalities [4] as well as suspended

114 M. Armbruster et al.

tree and path block cycle inequalities [6,15] for the equipartition polytope; tree,
star, cycle with ear, cycle with tails, and knapsack tree inequalities [8] valid for
the polytope associated with MNCGP. Since MB is a special case of MNCGP
and PB ⊆ PC the bisection cut polytope inherits most of the valid inequalities
listed above.

For convenience we cite the cycle inequalities which we will later use in both
models for MB. Let the subgraph C = (VC , EC) be a cycle in G. Let D be a
subset of EC such that |D| is odd. Then the cycle inequality∑

e∈D

ye −
∑

e∈EC\D

ye ≤ |D| − 1 (1)

is a valid inequality for the cut polytope PC.
The cut structure implies that whenever there is a walk between two nodes

of the graph with an even number of edges in the cut, the two end-nodes of the
walk have to be in the same cluster. In particular, given a special root node r,
a walk Prv in G to some node v, an edge subset Hv ⊆ Prv of even cardinality,
and an incidence vector y of a cut; if the term

1−
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1− ye) (2)

evaluates to one then r and v are on the same side of the cut; for nodes in
opposite clusters, it is at most zero. In [2] this is used to set up an inequality
linking the cut structure and the capacity constraint on the node weights.

Proposition 1 (bisection knapsack walk inequality [2]). Let
∑

v∈V avxv ≤
a0 be a valid inequality for the knapsack polytope PK with av ≥ 0 for all v ∈ V . For
a subset V ′ ⊆ V , a fixed root node r ∈ V ′, walks Prv ⊆ E, and sets Hv ⊆ Prv with
|Hv| even, the bisection knapsack walk inequality

∑
v∈V ′

av

⎛
⎝1−

∑
e∈Prv\Hv

ye −
∑

e∈Hv

(1− ye)

⎞
⎠ ≤ a0. (3)

is valid for the polytope PB.

Given a root node r and a vector y ∈ [0, 1]|E| the optimal walks Prv and subsets
Hv maximizing (2) can be found in polynomial time with an algorithm that
follows the one for separating cycle inequalities [2].

The knapsack tree inequalities of [8] form a special case, where the walks Prv

are taken from a tree (T, ET) of G rooted at r and Hv = ∅ for all v ∈ V ′,

∑
v∈T

av

(
1−

∑
e∈Prv

ye

)
≤ a0. (4)

Following [8], one may trivially strengthen the coefficients of (4) to

∑
e∈ET

min

{ ∑
v:e∈Prv

av,
∑
v∈T

av − a0

}
ye ≥

∑
v∈T

av − a0, (5)

A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods 115

we call this a truncated knapsack tree inequality. A less obvious strengthening
exploits the dependence of the coefficients in (5) on the choice of the root node,
which we express by the notation

α0 :=
∑
v∈T

av − a0, αr
e := min{

∑
v:e∈Prv

av, α0}, e ∈ ET , (6)

The strongest form is achieved if r enforces a sort of balance with respect to the
cumulated node weights on the paths to r.

Theorem 2. [2] Let (T, ET) be a tree in G. The strongest truncated knapsack
tree inequality, with respect to the knapsack inequality

∑
v∈V avxv ≤ a0, defined

on (T, ET) is obtained for a root r ∈ R := Argminv∈T

∑
e∈ET

αv
e . That is, if

r ∈ R then
∑

e∈ET
αs

eye ≥
∑

e∈ET
αr

eye ≥ α0 holds for all s ∈ T and all y ∈ PB.
In particular,

∑
e∈ET

αr
eye =

∑
e∈ET

αs
eye holds for all r, s ∈ R and all y ∈ PB.

The elements of the set R are called minimal roots of a given tree (T, ET), and
by Theorem 2 all minimal roots of (T, ET) deliver the same strongest truncated
knapsack tree inequality. Additional structural results allow to locate minimal
roots algorithmically at almost no cost. This strengthening proved highly ef-
fective in our experiments. Note, if the inequality induces a facet then r is a
minimal root by Theorem 2. In some cases the minimal root condition is also
sufficient. In order to state this result, call a path in (T, ET) branch-less, if its
inner nodes are all of degree 2 in the tree.

Theorem 3. [2] Assume that G = (T, ET) is a tree rooted at a node r ∈ T ,
fv = 1 for all v ∈ T and |T |

2 + 1 ≤ F < |T |. The truncated knapsack tree
inequality

∑
e∈E min{|{v : e ∈ Prv}|, |V |−F} ≥ |V |−F is facet-defining for PB

if and only if one of the following conditions is satisfied:

(a) r is a minimal root and (T, ET) satisfies the so-called branch-less path
condition: each branch-less path with F nodes has one end-edge that is a
leaf in (T, ET),

(b) F = |T | − 1.

To motivate a strengthening for general bisection knapsack walk inequalities
consider the case of a disconnected graph with two components, one of them
being a single edge {u, v}, the other connected one being V ′ = V \ {u, v}. If
yuv = 1 then u and v belong to different clusters and therefore the capacity
remaining for the clusters in V ′ (e.g. the right-hand side of (3)) can be reduced
to F −min {fu, fv} yuv. To generalize this idea we define for Ḡ ⊆ G with V̄ ⊆ V ,
Ē ⊆ E(V̄) and a ∈ IR|V̄ |

+ a function βḠ : {0, 1}|Ē| → IR ∪∞ with

βḠ(y) = inf
{
a(S), a(V̄ \ S) : S ⊆ V̄ , max

{
a(S), a(V̄ \ S)

} ≤ a0, y = χδḠ(S)
}

.

Now we look at the convex envelope β̌Ḡ : IR|Ē| → IR ∪∞ of βḠ(y), i.e.,

β̌Ḡ(y) = sup
{
β̆(y) : β̆ : IR|Ē| → IR, β̆ convex, β̆(z) ≤ βḠ(z) for z ∈ {0, 1}|Ē|

}
.

Note that β̌Ḡ is a piecewise linear function on its domain.

116 M. Armbruster et al.

Proposition 4 (capacity reduced bisection knapsack walk inequal-
ity [2]). Let

∑
v∈V avxv ≤ a0 with av ≥ 0 for all v ∈ V be a valid inequality

for the knapsack polytope PK. Let V0 be a non-empty subset of V and r ∈ V0.
Select subgraphs (Vl, El) = Gl ⊂ G with pairwise disjoint sets Vl, Vl∩V0 = ∅ and
El ⊆ E(Vl) for l = 1, . . . , L. Find for each l an affine minorant for the convex
envelope β̌Gl

such that
cl
0 +

∑
e∈El

ceye ≤ β̌Gl
(y) (7)

holds for all y in PB. Then the capacity reduced bisection knapsack walk in-
equality

∑
v∈V0

av

⎛
⎝1−

∑
e∈Prv\Hv

ye −
∑

e∈Prv∩Hv

(1− ye)

⎞
⎠ ≤ a0 −

L∑
l=1

(cl
0 +

∑
e∈El

ceye) (8)

is valid for PB.

In certain cases it is possible to establish a full description of β̌Ḡ via a complete
description of the cluster weight polytope defined as follows. Given a graph
G = (V, E) with non-negative node weights av ∈ IR for all v ∈ V . For a set
S ⊆ V we define h(S) := (a(S), (χδ(S))T)T ∈ IR|E|+1. With respect to a given
a0 ∈ IR we call

PCW = conv {h(S) : S ⊆ V, a(S) ≤ a0, a(V \ S) ≤ a0 }
the cluster weight polytope.

In [2], a full description of PCW

(
Ḡ
)

is given for the special case that the
subgraph Ḡ =

(
V̄ , Ē

)
is a star centered at some node r ∈ V̄ , a ≥ 0, and

a0 satisfies a(V̄) ≤ a0 . In order to state the nontrivial facets of this case,
assume a

(
V̄ \ {r}) > ar and call a triple (Vp, v̄, Vn) feasible if it fulfills V̄ =

{r, v̄} ∪̇ Vp ∪̇ Vn and a(Vp) ≤ 1
2a
(
V̄
)

< a(Vp) + av̄. For all feasible triples
(Vp, v̄, Vn) the inequalities

y0 −
∑
v∈Vp

avyrv −
(
a(V̄)− 2a(Vp)− av̄

)
yrv̄ +

∑
v∈Vn

avyrv ≥ 0 (9)

are the facet-inducing inequalities for PCW(Ḡ). Thus, inequalities (9) form the
best linear minorants (7) to be used in 8 in this case.

In our experiments this rather involved strengthening technique proved far
less effective than the simple root strengthening for knapsack tree inequalities,
but this may be due to the dominating non-negative cost structure in our ex-
periments.

3 Linear and Semidefinite Relaxations for MB

The linear relaxation for MB is derived from the following integer linear program-
ming formulation. We select a node s ∈ V and extend E so that s is adjacent to

A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods 117

all other nodes in V , setting the weights w(·) of new edges to zero. We introduce
binary variables yij for all ij ∈ E and require that yij = 1 if nodes i and j are
in different clusters and yij = 0 otherwise. The capacity constraints on the two
clusters can then be formulated as

fs +
∑

i∈V \{s}
fi(1− yis) ≤ F, (10)

∑
i∈V \{s}

fiyis ≤ F. (11)

Thus we obtain the following integer linear model for MB.

min
∑
e∈E

weye

s.t. (1), (10), (11),

y ∈ {0, 1}|E|.

(12)

The cycle inequalities (1) make sure that each solution to (12) corresponds to an
incidence vector of a cut in G. (10) and (11) require that this cut is a bisection
cut. Although the number of all valid cycle inequalities for PB is exponential in
|E|, the inequalities can be separated in polynomial time [3].

Our semidefinite relaxation for MB follows the classical approach of [19]. Given
the weighted adjacency matrix W of G, represent a bipartition by x ∈ {−1, 1}n
with xi = −1 if x ∈ S and xi = 1 if x ∈ V \ S. Then an integer quadratic model
for MB reads

min

⎧⎨
⎩
∑
i<j

wij
1− xixj

2
:
∣∣fT x

∣∣ ≤ 2F − f(V), x ∈ {−1, 1}|V |

⎫⎬
⎭ . (13)

Rewrite
∑

i<j wij
1−xixj

2 as
〈

1
4L, xxT

〉
, where L = Diag(We)−W is the weighted

Laplace matrix of G, and relax xxT for x ∈ {−1, 1}n to X � 0 with diag(X) = e
to obtain

min
〈

1
4L, X

〉
s.t.

〈
ffT , X

〉 ≤ (2F − f(V))2,

diag(X) = e ,

X � 0 .

(14)

The framework employs the same separation algorithms for (13) and (14) by
transforming a X̄ to a ȳ via ȳij = 1−X̄ij

2 for all {i, j} ∈ E. Separated in-
equalities

∑
{i,j}∈E kijyij ≤ kl are translated into constraints 〈K, X〉 ≤ ks

for the primal semidefinite relaxation by Kij = − 1
2kij for all {i, j} ∈ E and

ks = 2kl −
∑

{i,j}∈E kij .
Our branch-and-cut implementation using the linear relaxation follows basi-

cally standard techniques known in the community. Our implementation with

118 M. Armbruster et al.

the semidefinite relaxation is, however, not straightforward and involves many
details of which we sketch a few. In contrast to [20], where a standard polyhedral
bundle method is used together with a rather expensive semidefinite oracle, we
solve the semidefinite relaxation approximately by applying the spectral bun-
dle method [14,13] to the dual of (14) in its equivalent form as an eigenvalue
optimization problem,

− min
z∈IR|V |

p≥0

|V |λmax

(
−1

4
L + Diag(z)− ffT p

)
− 〈e, z〉+ (2F − f(V))2 p. (15)

In this setting, the oracle is a Lanczos method for computing extremal eigen-
values and corresponding eigenvectors of large structured matrices; we use the
eigenvectors to form a semidefinite cutting model. Any dual feasible solution
of (15) yields a valid lower bound for MB. The decisive step in the use of the
spectral bundle method in branch-and-cut is to exploit its restarting properties
and its primal approximate solution.

While solving (15) the bundle method aggregates the eigenvector information
to an approximate primal solution X̃ of (14) of the form

X̃ = PUPT + αW � 0, (16)

where P ∈ IRn×k, PT P = I, holds a basis of the aggregated eigenvectors, U ∈
Sk

+, α ≥ 0 so that tr U + α = |V |, and W ∈ Sn
+ is sparse with tr W = 1. The

software allows to choose the support of W . We start with the support of L and
extend it on the fly by further off-diagonal elements (edges) that promise to be
useful in the separation of cycle inequalities; this proved to be highly effective
already in [12]. The approximate solution X̃ will in general satisfy the constraints
approximately only. On the one hand this may result in off-diagonal elements X̃ij

outside of the interval [−1, 1], so X̃ has to be rounded or truncated before the
standard separation routines can be applied (see above for the transformation
to y). On the other hand, a separated inequality may still be violated after the
next optimization run, so precautions have to be taken against separating the
same inequality again and again. Such aspects have been addressed in [12] and
we build on this work.

For generating primal solutions we use heuristics, similar in style to Goemans-
Williamson [11], on the spectral bundle part PUPT of the approximate primal
solution X̃. One of the more successful variants pays special attention to the
sign structure of the large eigenvalues. We improve these rounded solutions by
simple local search techniques. The good quality of these solutions proved to be
one major advantage of SDP over LP in our branch-and-cut comparisons.

After the addition of newly separated cutting planes there is no difficulty
in restarting the bundle method from the old Lagrange multiplier solution by
setting the new multipliers to zero. Extending the old subgradients to the new
coordinates can be done easily, if the support of the new inequalities is restricted
to the support of W . This way the bundle model needs not be rebuilt in spite
of the changes in dimension. Fortunately, no dramatic scaling problems seem

A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods 119

to arise during the usual separation process, maybe because violation of the in-
equalities and changes in the multipliers seem to converge to zero at a common
speed. Quite often, however, we observed significant scaling problems when the
relaxation needs to be resolved after the addition of a branching constraint like
setting Xij = 1. Indeed, a few of the Lagrange multipliers – those associated
with the new constraint Xij = 1 and with the constraints containing the newly
restricted edge – will typically change a lot, but most other multipliers seem not
to move much. In this context the following idea for a scaling heuristic turned
out to be quite effective. Take the two eigenvectors v, w to the two nonzero eigen-
values of Xij and allow the more or the less change in the Lagrange multipliers
in dependence on the Ritz values vT Av and wT Aw of each constraint matrix A.

In a combined bundle and cutting plane approach a heavy tailing off effect
has to be expected and can be observed in solving the relaxation. To cope with
this, we never wait for convergence but stop solving the relaxation quite early
on several “lack of progress” criteria. Yet, the resulting rough approximations
still need quite some time. Consequently the number of branch-and-bound nodes
stays small and the common strong branching techniques of LP cannot be ap-
plied. To make up for this we developed a rather elaborate branching rule. Based
on the vector labelling corresponding to PUPT we try to cluster the nodes into
subsets having well aligned vectors and investigate the effect on the cost func-
tion if two such clusters are forced to be aligned in the same or in the opposite
direction. Given the two clusters where this shows the strongest effect, we pick
a representative of each cluster, say nodes ı̂ and ĵ, and set Xı̂ĵ to +1 in one
subproblem and to −1 in the other.

4 Computational Results

For our empirical investigations we used sparse graph instances from the samples
presented in [17] varying in the number of edges between 1 500 and 500000. We
generally set F = 0.525f(V). As a branch-and-cut framework we use SCIP [1]
with ILOG CPLEX 9.130 as LP-solver and the spectral bundle method devel-
oped by [13] as the SDP-solver. The computations were executed on a 3.2 GHz
Pentium IV processor with 1 GB RAM.

In Table 1 we present a comparison of the performance of the cutting plane
algorithms based on the knapsack tree inequalities with minimal roots (kt), ca-
pacity improved bisection knapsack walk inequalities (bkw) and cycle inequalities
(cy) in combination with the linear and the semidefinite relaxation. Note that the
cycle inequalities are part of the integer linear model (12), so they are separated
in each setting of the LP relaxation. In the tests of Table 1 we only computed
the root node of the branch-and-cut tree. We added inequalities of each class
separately as long as violated cuts were found, the time limit of 4 hours was not
exceeded and a heuristically computed upper bound was not yet proven to be
optimal. Along with the lower bounds we report the best upper bounds known
to us but not necessarily achieved in the same computations.

120 M. Armbruster et al.

T
a
b
le

1
.

L
ow

er
b
o
u
n
d
s

co
m

p
u
te

d
b
y

th
e

li
n
ea

r
a
n
d

th
e

se
m

id
efi

n
it
e

re
la

x
a
ti
o
n

in
th

e
ro

o
t

o
f

th
e

b
&

b
tr

ee
.

R
es

u
lt
s

o
n

V
L
S
I

d
es

ig
n

g
ra

p
h
s

[1
7
].

li
n
ea

r
re

la
x
a
ti
o
n

se
m

id
efi

n
it
e

re
la

x
a
ti
o
n

g
ra

p
h

n
.m

cy
cy

+
bk

w
cy

+
kt

a
ll

n
o
n
e

bk
w

kt
cy

a
ll

u
b

d
iw

6
8
1
.1

4
9
4

1
8
.4

1
3
4
.9

1
3
6
.3

1
3
5
.9

7
7
.3

1
3
5
.1

1
3
4
.7

1
4
0
.6

1
3
7
.9

1
4
2

ta
q
1
0
2
1
.2

2
5
3

2
3
.1

7
4
.1

1
1
3
.2

1
1
3
.9

6
0
.1

1
1
2
.9

1
1
2
.4

1
1
6
.8

1
1
5
.0

1
1
8

d
m

x
a
1
7
5
5
.3

6
8
6

0
.0

4
2
.6

8
7
.1

9
1
.1

3
7
.5

8
9
.3

8
9
.0

9
2
.9

9
0
.3

9
4

d
iw

6
8
1
.3

1
0
4

3
4
.8

2
3
8
.4

7
4
4
.4

8
2
9
.2

6
3
0
.7

9
5
4
.6

9
3
5
.0

9
8
8
.8

9
6
9
.4

1
0
1
1

ta
q
3
3
4
.3

7
6
3

7
5
.5

1
1
1
.8

3
2
4
.8

3
2
4
.9

2
3
4
.0

3
2
4
.8

3
2
0
.5

3
1
7
.9

3
2
4
.7

3
4
2

d
iw

6
8
1
.6

4
0
2

4
6
.8

1
3
6
.2

3
0
4
.6

3
0
6
.3

2
8
0
.8

3
2
0
.7

3
1
0
.4

3
1
9
.7

3
2
2
.7

3
3
1

g
a
p
2
6
6
9
.6

1
8
2

8
.6

2
8
.3

7
1
.1

7
3
.7

3
5
.8

7
2
.7

7
4
.0

7
4
.0

7
3
.0

7
4

a
lu

t2
2
9
2
.6

3
2
9

3
.8

1
7
.1

5
5
.3

5
9
.8

3
9
.7

7
4
.0

7
4
.6

7
6
.2

7
4
.9

7
7

ta
q
1
0
2
1
.5

4
8
0

7
4
.1

1
5
4
.4

6
3
9
.8

6
8
9
.9

1
1
2
2
.0

1
5
1
0
.8

1
4
6
9
.9

1
5
4
0
.6

1
5
3
8
.9

1
6
5
0

d
m

x
a
1
7
5
5
.1

0
8
6
7

2
0
.4

3
1
.7

1
3
7
.1

1
3
8
.6

9
4
.6

1
4
3
.0

1
4
2
.0

1
4
3
.5

1
4
3
.7

1
5
0

a
lu

e6
1
1
2
.1

6
8
9
6

0
.0

8
.2

7
.8

3
1
.0

5
2
.9

1
1
7
.6

9
9
.9

1
3
5
.1

9
8
.0

1
3
6

g
a
p
2
6
6
9
.2

4
8
5
9

5
5
.0

5
5
.0

5
5
.0

5
5
.0

4
6
.0

5
5
.0

5
5
.0

5
5
.0

5
5
.0

5
5

ta
q
1
0
2
1
.3

1
6
4
1

1
5
1
.8

2
1
5
.1

3
7
2
.5

3
7
4
.6

3
5
9
.4

3
8
6
.6

3
0
1
.8

3
9
8
.6

3
9
6
.7

4
0
4

a
lu

t2
2
9
2
.4

9
4
5
0
0

5
5
9
.0

7
4
0
.3

1
5
7
1
.3

1
9
6
6
.2

5
3
9
5
0

5
3
3
7
4

4
6
4
0
5

5
1
0
7
1

4
7
0
0
7

6
7
8
1
5

m
ea

n
lo

w
er

b
d

2
3

7
7

1
6
2

1
8
6

1
8
4

2
8
2

2
7
0

2
8
9

2
7
9

m
ea

n
ti
m

e
4
0

8
3
8
9

1
1
6
4
6

1
0
2
6
7

1
2
0

5
6
8
4

3
3
8
6

1
4
7
6

5
6
8
4

n
n
u
m

b
er

o
f
n
o
d
es

,
m

n
u
m

b
er

o
f
ed

g
es

,
u
b

u
p
p
er

b
o
u
n
d

A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods 121

T
a
b
le

2
.
P
er

fo
rm

a
n
ce

o
f
th

e
li
n
ea

r
a
n
d

th
e

se
m

id
efi

n
it

e
b
ra

n
ch

-a
n
d
-c

u
t

a
lg

o
ri
th

m
s.

R
es

u
lt
s

o
n

V
L
S
I

d
es

ig
n

g
ra

p
h
s

[1
7
].

li
n
ea

r
re

la
x
a
ti
o
n

se
m

id
efi

n
it
e

re
la

x
a
ti
o
n

#
b&

b
u
p
pe

r
lo

w
er

ga
p

#
b&

b
u
p
pe

r
lo

w
er

ga
p

g
ra

p
h

n
.m

n
od

es
ti
m

e
bo

u
n
d

bo
u
n
d

(%
)

n
od

es
ti
m

e
bo

u
n
d

bo
u
n
d

(%
)

d
iw

6
8
1
.1

4
9
4

1
6
8
6

1
0

h
1
4
4

1
4
0
.8

2
2
3
7

1
0

h
1
4
2

1
4
0
.5

1

ta
q
1
0
2
1
.2

2
5
3

9
5

1
0

h
1
1
8

1
1
8
.0

0
1

3
2
2
s

1
1
8

1
1
8
.0

0

d
m

x
a
1
7
5
5
.3

6
8
6

3
5

9
h

9
4

9
4

0
6
8

1
0

h
9
4

9
2
.8

1

d
iw

6
8
1
.3

1
0
4

1
1
0

h
1
0
6
4

8
3
5
.7

2
7

1
2
4

1
0

h
1
0
1
1

1
0
0
7
.1

0
.1

ta
q
3
3
4
.3

7
6
3

3
5
1

4
h

3
4
2

3
4
2
.0

0
2
3
1
8

1
0

h
3
4
2

3
4
0
.1

0
.4

d
iw

6
8
1
.6

4
0
2

3
1
0

h
3
5
7

3
1
5
.2

1
3

1
5
9

1
0

h
3
3
1

3
2
9
.2

0
.1

g
a
p
2
6
6
9
.6

1
8
2

1
4

h
7
4

7
4

0
1

6
5
1

s
7
4

7
4

0

a
lu

t2
2
9
2
.6

3
2
9

1
1
0

h
7
7

6
9
.5

1
0

9
6

1
0

h
7
7

7
6
.1

1

ta
q
1
0
2
1
.5

4
8
0

1
1
0

h
2
0
1
9

7
0
1
.2

1
8
7

8
4

1
0

h
1
6
5
0

1
5
8
6
.9

3

d
m

x
a
1
7
5
5
.1

0
8
6
7

6
2

1
0

h
1
5
7

1
4
4
.1

8
7
9

1
0

h
1
5
0

1
4
5
.9

2

a
lu

e6
1
1
2
.1

6
8
9
6

1
1
0

h
1
4
6

2
1
.5

5
7
8

1
1

1
0

h
1
3
6

1
3
5
.6

0

g
a
p
2
6
6
9
.2

4
8
5
9

1
2
5
2
5

s
5
5

5
5
.0

0
.0

1
4
9
1

s
5
5

5
5
.0

0

ta
q
1
0
2
1
.3

1
6
4
1

1
1
0

h
4
2
6

3
7
5
.3

1
3

9
1
0

h
4
0
4

3
9
9
.0

1

a
lu

t2
2
9
2
.4

9
4
5
0
0

1
∗ 5

h
6
7
8
1
5

1
8
1
3
.5

3
6
3
9

1
5

h
6
7
8
1
5

5
1
8
8
0
.0

3
0

g
eo

m
.
m

ea
n
∗∗

1
2

2
7
1
4
4

s
2
0
8

1
5
6

8
4
2

1
7
2
7
8

s
1
9
9

1
9
7

1

∗
E

a
rl

y
te

rm
in

a
ti
o
n

d
u
e

to
a

m
em

o
ry

sh
o
rt

a
g
e,

∗∗
a
lu

t2
2
9
2
.4

9
4
5
0
0

ex
cl

u
d
ed

.

122 M. Armbruster et al.

Within the linear relaxation, the knapsack tree inequalities have the biggest
impact on the improvement of the lower bound. This may seem surprising in
view of the fact that the knapsack walk inequalities subsume the knapsack tree
inequalities; the reason is that, for speed, both separators start from a few seed
nodes and then the minimal root strengthening of Theorem 2 boosts the per-
formance of knapsack trees. Column all shows that it is worth to apply all
separators in the linear case. The cycle separator alone achieves very poor lower
bounds, so studying the bisection cut polytope PB pays off when considering the
linear relaxation of MB. The situation is stunningly different in the semidefinite
case. Here, the pure semidefinite relaxation (none) yields already good lower
bounds. For very large instances like alut2292.494500 the separation routines
only slow down the solution process and thus lead to worse bounds when the
computing time is a major limiting factor. The best results are achieved when
the separator for cycle inequalities is used exclusively. The bisection specific in-
equalities, i.e., the knapsack tree and bisection knapsack walk inequalities, yield
roughly the same performance. These also improve the bound significantly but
in comparison to cycle inequalities computation times are higher.

Table 3. Performance of the linear and the semidefinite branch-and-cut algorithms.
Results on compiler design graphs [16].

linear relaxation semidefinite relaxation

b&b time upper lower gap # b&b time upper lower gap
graph n.m

nodes (sec.) bound bound (%) nodes (sec.) bound bound (%)

cb.30.47 354 1 266 266 0 25166 540 266 266 0

cb.30.56 326 2 379 379 0 10276 256 379 379 0

cb.45.98 49 5 989 989 0 2995 438 989 989 0

cb.47.101 100 3 527 527 0 4403 433 527 527 0

cb.47.99 12 5 765 765 0 963 113 765 765 0

cb.61.187 785 81 2826 2826 0 10333 ∗5907 2826 2647 7

∗ Early termination due to a memory shortage.

Based on the results of Table 1 the parameters of our branch-and-cut codes
were set as follows. For the LP-relaxation the knapsack tree separator is given the
highest priority and separation frequency, followed by the cycle and the bisection
knapsack walk separators. For the semidefinite relaxation the cycle separator is
the only separator. We limited computation time to 10 hours for each instance.
The computations are presented in Tables 2 and 3. By solving big instances
(Table 2) the SDP-relaxation outperforms the LP-relaxation with respect to both
quality of dual bounds and computation time. In most cases we also observed
that after a few seconds the value of the current SDP-bound exceeds the value
of the current LP-bound and stays ahead throughout. However, the situation

A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods 123

looks quite different when solving graph instances coming from compiler design
as in [16]. For these instances the linear solver is far ahead of the semidefinite
one with respect to computation time.

5 Conclusion

In this paper we considered the minimum graph bisection problem, a combina-
torial problem for which linear and semidefinite relaxations are easy to derive.
Using previous polyhedral studies presented in [2] we developed separation rou-
tines for valid inequalities to the bisection cut polytope PB and incorporated
them into a common branch-and-cut framework for linear and semidefinite re-
laxations. On the basis of large sparse instances coming from VLSI design we
showed the good performance of the semidefinite approach versus the main-
stream linear one.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) under grants HE 3524/2-1/2 and MA 1324/2-1/2.

References

1. Achterberg, T.: Constraint integer programming. PhD-Thesis, PhD-Thesis, Tech-
nische Universität Berlin, Berlin (2007)

2. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: On the bisection cut
polytope. Technical Report, Chemnitz/Darmstadt University of Technology (2007)

3. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Prog. 36, 157–173 (1986)
4. Conforti, M., Rao, M.R., Sassano, A.: The equipartition polytope I, II. Math.

Prog. 49, 49–70 (1990)
5. de Souza, C.C.: The graph equipartition problem: Optimal solutions, extensions

and applications. PhD-Thesis, Université Catholique de Louvain, Belgium (1993)
6. Deza, M., Laurent, M.: Geometry of Cuts and Metrics Algorithms and Combina-

torics, vol. 15. Springer, Heidelberg (1997)
7. Eisenblätter, A.: Frequency Assignment in GSM Networks. PhD-Thesis, Technische

Universität Berlin, Berlin (2001)
8. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: Formu-

lations and valid inequalities for the node capacitated graph partitioning problem.
Math. Prog. 74, 247–266 (1996)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and
Company, New York (1979)

10. Gilbert, J.R., Tarjan, R.E.: The analysis of a nested dissection algorithm. Numer.
Math. 50, 377–404 (1979)

11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. J. ACM 42,
1115–1145 (1995)

12. Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations.
In: Grötschel, M. (ed.) The Sharpest Cut. MPS-SIAM Series on Optimization, pp.
233–256 (2004)

13. Helmberg, C., Kiwiel, K.C.: A Spectral Bundle Method with Bounds. Math.
Prog. 93, 173–194 (2002)

124 M. Armbruster et al.

14. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming.
SIAM J. Optim. 10(3), 673–696 (2000)

15. Laurent, M., de Souza, C.C.: Some new classes of facets for the equicut polytope.
Discr. App. Math. 62, 167–191 (1995)

16. Johnson, E., Mehrotra, A., Nemhauser, G.: Min-cut clustering. Math. Prog. 62,
133–152 (1993)

17. Jünger, M., Martin, A., Reinelt, G., Weismantel, R.: Quadratic 0/1 optimization
and a decomposition approach for the placement of electronic circuits. Math. Prog.
B 63(3), 257–279 (1994)

18. Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley
and Sons Ltd., Chichester (1990)

19. Poljak, S., Rendl, F.: Nonpolyhedral relaxations of graph-bisection problems. SIAM
J. Optim. 5(3), 467–487 (1995)

20. Rendl, F., Rinaldi, G., Wiegele, A.: A branch and bound algorithm for Max-
Cut based on combining semidefinite and polyhedral relaxations. In: Fischetti,
M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 295–309. Springer,
Heidelberg (2007)

21. Weismantel, R.: On the 0/1 Knapsack polytope. Math. Prog. 77, 49–68 (1997)

Binary Positive Semidefinite Matrices

and Associated Integer Polytopes

Adam N. Letchford1,� and Michael M. Sørensen2

1 Department of Management Science, Lancaster University,
Lancaster LA1 4YW, United Kingdom

A.N.Letchford@lancaster.ac.uk
2 CORAL & Department of Business Studies, Aarhus School of Business,

University of Aarhus, Denmark
mim@asb.dk

Abstract. We consider the positive semidefinite (psd) matrices with bi-
nary entries. We give a characterisation of such matrices, along with a
graphical representation. We then move on to consider the associated
integer polytopes. Several important and well-known integer polytopes
— the cut, boolean quadric, multicut and clique partitioning polytopes
— are shown to arise as projections of binary psd polytopes. Finally, we
present various valid inequalities for binary psd polytopes, and show how
they relate to inequalities known for the simpler polytopes mentioned.
Along the way, we answer an open question in the literature on the max-
cut problem, by showing that the so-called k-gonal inequalities define a
polytope.

Keywords: Polyhedral combinatorics, semidefinite programming.

1 Introduction

A real square symmetric matrix M ∈ R
n×n is said to be positive semidefinite

(psd) if and only if any of the following (equivalent) conditions hold:

– aT Ma ≥ 0 for all a ∈ R
n,

– all principal submatrices of M have non-negative determinants,
– there exists a real matrix A such that M = AAT .

The set of psd matrices of order n forms a convex cone in R
n×n (e.g., Hill &

Waters [14]), and is often denoted by Sn
+.

In this paper, we consider the binary psd matrices, i.e., psd matrices be-
longing to {0, 1}n×n, and the associated family of integer polytopes, which we
call binary psd polytopes. Although psd matrices and semidefinite programming
have received much interest from the integer programming and combinatorial
optimisation community (see the surveys Goemans [11] and Laurent & Rendl

� The research of the first author was supported by the Engineering and Physical
Sciences Research Council under grant EP/D072662/1.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 125–139, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 A.N. Letchford and M.M. Sørensen

[17]), these specific matrices and polytopes appear to have received no atten-
tion. This is remarkable, because, as we will see, the binary psd matrices can be
easily characterised, and they have a natural graphical interpretation. Moreover,
several important and well-known integer polytopes — such as the cut, boolean
quadric, multicut and clique partitioning polytopes — can in fact be viewed as
nothing but faces of binary psd polytopes. In that sense, the binary psd poly-
topes form an important, and hitherto overlooked, family of ‘master’ polytopes
for combinatorial optimisation.

The paper is structured as follows. In Sect. 2 we characterise the binary psd
matrices and show how this leads to the graphical representation. In Sect. 3 we
formally define the binary psd polytopes and show how they are related to the
other polytopes mentioned. Finally, in Sect. 4 we present several classes of valid
and facet-inducing linear inequalities for binary psd polytopes, and show how
they imply many of the known inequalities for the simpler polytopes mentioned
above. As a by-product of our analysis, we obtain (in Subsect. 4.2) a remarkably
simple proof that the so-called k-gonal inequalities define a polytope — thus
settling an open question in the literature on the max-cut problem (see Avis &
Umemoto [2]).

2 Characterisation

We now give our first characterisation of the binary psd matrices. Note that the
symmetric rank one binary matrices are those that can be written in the form
vvT for some binary vector v ∈ {0, 1}n.

Proposition 1. A symmetric binary matrix is psd if and only if it is the sum
of one or more symmetric rank one binary matrices.

Proof. The ‘if’ part follows trivially from the fact that Sn
+ is a cone. We prove

the ‘only if’ part. Suppose that M is a binary psd matrix. Since all 2×2 principal
submatrices of M must have non-negative determinant, we have that, if Mii = 0
for some i ∈ {1, . . . , n}, then Mij = Mji = 0 for j = 1, . . . , n. Thus, if we let
R = {i ∈ {1, . . . , n} : Mii = 1}, we have that M has zero entries outside the
principal submatrix defined by the row/column indices in R. This submatrix,
which must also be psd, has 1s on the main diagonal. The fact that a symmetric
binary matrix with 1s on the main diagonal is psd if and only if it is the sum of
symmetric rank one binary matrices is well-known and easy to prove: see, e.g.,
Lemma 1 of Dukanovic & Rendl [10]. ��

We note in passing the following corollary:

Corollary 1. A symmetric binary matrix is psd if and only if it is completely
positive (i.e., if and only if it can be written as AAT for some non-negative A).

Proof. The ‘if’ part follows immediately from the definitions. We show the ‘only
if’ part. Let M ∈ {0, 1}n×n be a binary psd matrix. If M is the zero matrix, the

Binary Positive Semidefinite Matrices and Associated Integer Polytopes 127

result is trivial. Otherwise, from Proposition 1, there exists a positive integer p
and vectors v1, . . . , vp ∈ {0, 1}n such that:

M =
p∑

k=1

vk(vk)T .

If we let A be the n× p matrix whose kth column is the vector vk, we have that
M = AAT . Thus, M is completely positive. ��
The following proposition gives an alternative characterisation of the binary psd
matrices, in terms of linear inequalities:

Proposition 2. A symmetric binary matrix M ∈ {0, 1}n×n, with n ≥ 3, is psd
if and only if it satisfies the following inequalities:

Mij ≤Mii (1 ≤ i < j ≤ n) (1)
Mik + Mjk ≤Mkk + Mij (1 ≤ i < j ≤ n; k �= i, j). (2)

Proof. It is easy to check that the inequalities (1) and (2) are satisfied by sym-
metric rank one binary matrices. Proposition 1 then implies that they are sat-
isfied by binary psd matrices (since both sets of inequalities are homogeneous).
Now, suppose that a symmetric binary matrix M satisfies the inequalities (1)
and (2). If Mii = 0 for a given i, the inequalities (1) imply that Mij = Mji = 0
for all j �= i. Thus, just as in the proof of Proposition 1, we can assume that M
has 1s on the main diagonal. Now note that, if Mik = Mjk = 1 for some indices
i, j, k, then the inequalities (2) ensure that Mij = 1. By transitivity, this implies
that {1, . . . , n} can be partitioned into subsets in such a way that, for all pairs
i, j, Mij = 1 if and only if i and j belong to the same subset. That is to say, M
is the sum of one or more symmetric rank one binary matrices. By Proposition
1, M is psd. ��
We will also find the following simple result useful later on (see Proposition 6 in
Subsect. 3.1):

Proposition 3. If M ∈ {0, 1}n×n is a binary psd matrix, and Mrr = 0 for
some 1 ≤ r ≤ n, then the matrix obtained from M by changing Mrr to 1 is also
a binary psd matrix.

Proof. If M satisfies the inequalities (1) and (2), then the modified matrix will
also satisfy them. ��
Finally, we point out that the binary psd matrices have a natural graphical
representation. Given an n× n binary psd matrix M , we construct a subgraph
of the complete graph Kn as follows. The vertex i is included in the subgraph
if and only if Mii = 1, and the edge {i, j} is included if and only if Mij = 1.
The symmetric rank one binary matrices then correspond to cliques in Kn, if
we define cliques in a slightly non-conventional way, so that they consist, not
only of vertices, but also of the edges between them. The binary psd matrices
correspond to clique packings, i.e., to unions of node-disjoint cliques.

128 A.N. Letchford and M.M. Sørensen

3 Polytopes

In this section, we formally define the binary psd polytope and show how it is
related to certain other polytopes in combinatorial optimisation.

3.1 The Binary Psd Polytope

Note that any binary psd matrix M , being symmetric, satisfies the
(
n
2

)
equations

Mij = Mji for all 1 ≤ i < j ≤ n. Therefore, if we defined the binary psd
polytope in R

n×n, it would not be full-dimensional. Therefore, we decided to
work in R

(n+1
2) instead.

We will need the following notation. We let Vn = {1, . . . , n} and En = {S ⊂
Vn : |S| = 2}. We then define, for all i ∈ Vn, the binary variable xi, which takes
the value 1 if and only if Mii = 1; and we define, for all {i, j} ∈ En, the binary
variable yij , which takes the value 1 if and only if Mij = Mji = 1. We denote by
M(x, y) the linear operator that maps a given pair (x, y) ∈ {0, 1}Vn∪En onto the
corresponding n × n symmetric matrix. Then, the binary psd polytope of order
n is defined as:

Pn = conv
{
(x, y) ∈ {0, 1}Vn∪En :M(x, y) ∈ Sn

+

}
.

Example 1. For n = 2, there are 5 binary psd matrices:(
0 0
0 0

) (
1 0
0 0

) (
0 0
0 1

) (
1 0
0 1

) (
1 1
1 1

)
.

The corresponding vectors (x1, x2, y12) are (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)
and (1, 1, 1), respectively. The polytope P2 is described by the linear inequalities
x1 ≤ 1, x2 ≤ 1, y12 ≥ 0, y12 ≤ x1 and y12 ≤ x2.

Proposition 2 enables us to define Pn more explicitly.

Proposition 4. For n ≥ 3, Pn is the convex hull of pairs (x, y) ∈ {0, 1}Vn∪En

satisfying the following inequalities:

yij ≤ xi (i ∈ Vn, j ∈ Vn \ {i}) (3)
yik + yjk ≤ xk + yij ({i, j} ∈ En, k ∈ Vn \ {i, j}). (4)

The following result is also easy to prove:

Proposition 5. For all positive integers n, Pn is full-dimensional, i.e., has di-
mension

(
n+1

2

)
. For n ≥ 3, the following inequalities induce facets:

– The upper bounds xi ≤ 1 for all i ∈ Vn.
– The non-negativity inequalities ye ≥ 0 for all e ∈ En.
– The inequalities (3) and (4).

Binary Positive Semidefinite Matrices and Associated Integer Polytopes 129

Finally, Proposition 3 can be used to show the following result:

Proposition 6. Every inequality defining a facet of Pn, apart from the upper
bounds xi ≤ 1 for all i ∈ Vn, can be written in the form bT y ≤ aT x + c, with
a ≥ 0 and c ≥ 0.

3.2 The Boolean Quadric Polytope

The boolean quadric polytope (Padberg [21]) of order n is defined as:

BQPn = conv
{
(x, y) ∈ {0, 1}Vn∪En : yij = xixj ({i, j} ∈ En)

}
.

The boolean quadric polytope, sometimes called the correlation polytope, arises
naturally in quadratic 0-1 programming, and also has many applications in statis-
tics, probability and theoretical physics (see Deza & Laurent [9]). Moreover, the
stable set polytope of a graph G = (Vn, E) is a projection of a face of BQPn (e.g.,
Padberg [21]).

Note that a pair (x, y) is an extreme point of BQPn if and only ifM(x, y) is
a symmetric rank one binary matrix. Therefore, the boolean quadric polytope is
contained in the binary psd polytope. Moreover, the fact that binary psd matrices
can be decomposed into the sum of symmetric rank one binary matrices can be
used to show the following result:

Proposition 7. The boolean quadric polytope BQPn and the binary psd polytope
Pn have the same homogeneous facets; i.e., an inequality aT x+bT y ≤ 0 is facet-
defining for BQPn if and only if it is facet-defining for Pn.

The homogeneous facets of a polyhedron are the facets that contain the origin,
so that they are also facets of the cone that is generated by the incidence vectors
of all feasible solutions. In the case of BQPn and Pn, this cone is sometimes
called the correlation cone (see again Deza & Laurent [9]).

In fact, the relationship between the boolean quadric and binary psd polytopes
goes deeper than this.

Proposition 8. The boolean quadric polytope BQPn is a face of the binary psd
polytope Pn+1.

Proof (sketch). From Proposition 5, the following n+1 linear inequalities induce
facets of Pn+1:

xn+1 ≤ 1
yi,n+1 ≤ xi (i ∈ Vn).

So consider the face of Pn+1 satisfying these inequalities at equality, and let
(x∗, y∗) ∈ {0, 1}Vn+1∪En+1 be a vertex of it. A consideration of the 3×3 principal
submatrices involving the last row/column shows that y∗

ij = x∗
i x

∗
j for all {i, j} ∈

En. Thus, the matrixM(x∗, y∗) is of the form(
x̃
1

) (
x̃T 1

)
=

(
x̃x̃T x̃
x̃T 1

)
,

130 A.N. Letchford and M.M. Sørensen

where x̃ ∈ {0, 1}n is the vector obtained from x∗ by dropping the last component.
So, M(x∗, y∗) is of rank one and there is a one-to-one correspondence between
the symmetric rank one binary matrices and the vertices of the face. Thus, BQPn

is nothing but the projection of the face onto R
Vn∪En . ��

The idea underlying the construction of the matrix M(x∗, y∗) in the proof of
Proposition 8 is due to Lovász & Schrijver [19] (see also Shor [22]), but the above
polyhedral interpretation is new to our knowledge.

An immediate consequence of Proposition 8 is that valid or facet-inducing
inequalities for BQPn can be lifted to yield valid or facet-inducing inequalities
for Pn+1:

Proposition 9. Suppose the inequality∑
i∈Vn

aixi +
∑

e∈En

beye ≤ c

defines a facet of BQPn. Then there exists at least one facet-defining inequality
for Pn+1 of the form∑

i∈Vn

(ai + βi)xi − αxn+1 +
∑

e∈En

beye −
∑
i∈Vn

βiyi,n+1 ≤ c− α,

with α ∈ R and β ∈ R
n.

3.3 The Clique Partitioning Polytope

The clique partitioning polytope (Grötschel & Wakabayashi [13]) of order n is
defined as:

PARn = conv
{
y ∈ {0, 1}En : yik+yjk ≤ yij +1 (∀{i, j} ∈ En, k ∈ Vn \ {i, j})

}
.

When a vector y ∈ {0, 1}En belongs to PARn, it means that there exists a
partition of Vn into sets such that, for all e ∈ En, ye = 1 if and only if both end-
vertices of e are in the same set. The clique partitioning polytope has applications
in statistical clustering.

It is not hard to see that a vector y ∈ {0, 1}En is a vertex of PARn if and only
if there exists a vector x ∈ {0, 1}Vn such that M(x, y) is a binary psd matrix.
Thus:

Proposition 10. The clique partitioning polytope PARn is the projection of the
binary psd polytope Pn onto R

En.

In fact, we can say something stronger.

Proposition 11. The clique partitioning polytope PARn is a face of the binary
psd polytope Pn.

Proof (sketch). Let 1n denote the vector of n ones. Using Proposition 3, we
have that a vector y ∈ {0, 1}En is a vertex of PARn if and only ifM(1n, y) is a

Binary Positive Semidefinite Matrices and Associated Integer Polytopes 131

binary psd matrix. Now, from Proposition 5, the following n linear inequalities
induce facets of Pn:

xi ≤ 1 (i ∈ Vn).

Thus, the face of Pn satisfying these n inequalities at equality, projected onto
R

En , is PARn. ��
As in the previous subsection, this implies a lifting result:

Proposition 12. Let bT y ≤ c be a facet-defining inequality for PARn. Then
there exists at least one facet-defining inequality for Pn of the form∑

i∈Vn

αixi + bT y ≤ c +
∑
i∈Vn

αi,

where αi ≤ 0 for all i ∈ Vn.

3.4 The Cut and Multicut Polytopes

Finally, we mention connections between the above polytopes and the cut and
multicut polytopes.

Given any S ⊆ Vn, the set of edges

δn(S) = {{i, j} ∈ En : i ∈ S, j ∈ Vn \ S}
is called an edge cutset or simply cut. The cut polytope CUTn is the convex hull
of the incidence vectors of all cuts in Kn (Barahona & Mahjoub [3]), i.e.,

CUTn = conv
{
y ∈ {0, 1}En : ∃S ⊂ Vn : ye = 1 ⇐⇒ e ∈ δn(S) (∀{i, j} ∈ En)

}
.

The cut polytope and the boolean quadric polytope are related via the so-called
covariance mapping [9] which maps the boolean quadric polytope in R

En∪Vn to
the cut polytope in R

En+1. This means that there is a one-to-one correspon-
dence between the facets of the respective polytopes. This correspondence is the
following [9, Proposition 5.2.7]:

Proposition 13. Let a ∈ R
Vn , b ∈ R

En, c ∈ R
En+1 be linked by{

ci,n+1 = ai + 1
2

∑
j∈Vn\{i} bij for i ∈ Vn,

ce = − 1
2be for e ∈ En.

Given a0 ∈ R, the inequality cT y ≤ a0 is valid (resp. facet-defining) for the cut
polytope CUTn+1 if and only if the inequality aT x + bT y ≤ a0 is valid (resp.
facet-defining) for the boolean quadric polytope BQPn.

We remark that the cut polytope is also equivalent (under a simple linear map-
ping) to the convex hull of the psd matrices with ±1 entries (see Goemans &
Williamson [12], Laurent & Poljak [15]).

132 A.N. Letchford and M.M. Sørensen

Now, given any partition of Vn into sets S1, . . . , Sr, the set of edges

δn(S1, . . . , Sr) = {{i, j} ∈ En : i ∈ Sp, j ∈ Sq for some p �= q}

is called a multicut. The multicut polytope MCUTn is defined accordingly (e.g.,
Deza et al. [7]). It is not hard to see that the multicut polytope is nothing but
the complement of the clique partitioning polytope: MCUTn = {1En − y | y ∈
PARn}. As the incidence vectors in MCUTn are just affine transformations of
the incidence vectors in PARn, and vice versa, facets of one polytope are easily
transformed to facets of the other. Suppose that the inequality bT y ≤ b0 defines
a facet of PARn (respectively MCUTn). Substituting 1− ye for ye for all e ∈ En

yields the inequality −bT y ≤ b0 −
∑

e∈En
be, which defines a facet of MCUTn

(respectively PARn). We refer to the mapping y �→ 1En − y between PARn and
MCUTn as complementing.

Finally, we ‘complete the circle’ of results by establishing a link between the
cut and clique partitioning polytopes:

Proposition 14. The cut polytope CUTn and the multicut polytope MCUTn

have the same homogeneous facets.

This fact was pointed out in Deza et al. [7].
In Fig. 1, we summarize the relationships between the five polytopes as es-

tablished by Propositions 8 to 14. (Note that Proposition 7 is not displayed.) As
we remarked in the introduction, the binary psd polytope is the most complex
of the five polytopes under discussion. We point out however that the multicut
and clique partitioning polytopes are themselves more complex than the cut and

Pn

PARn BQPn−1

MCUTn CUTn

projection
and face

face

cov. map.compl.

homogen.
facets

�
�

�
�

���

�
�

�
�

���

�
�
�
�
�
�
����
�

�
�
�

�
��� 	

	
	
	

	
	
		
	
	
	
	
	
	
		�

�

Fig. 1. A pentagon of polyhedral relations

Binary Positive Semidefinite Matrices and Associated Integer Polytopes 133

boolean quadric polytopes: the latter polytopes exhibit a high degree of symme-
try, via the so-called switching operation, which enables one to derive all facets
of CUTn or BQPn given a list of only the homogeneous facets (see Barahona
& Mahjoub [3] and Deza & Laurent [9]). Thus, a complete description of CUTn

and BQPn−1 can be obtained from a complete description of MCUTn or PARn,
which in turn can be obtained from a complete description of the binary psd
polytope Pn.

4 Valid Inequalities

We now move on to consider some specific classes of valid inequalities for the
binary psd polytope, and show how they imply existing known results for the
other polytopes mentioned above.

4.1 Some Simple Results

In Proposition 5 we pointed out that the upper bounds xi ≤ 1, the non-negativity
inequalities ye ≥ 0 for all e ∈ En, and the inequalities (3) and (4) induce facets of
the binary psd polytope Pn. All of these inequalities were shown by Padberg to
induce facets of the boolean quadric polytope BQPn. Moreover, the inequalities
(4) imply, via Proposition 8, the validity of the following inequalities for BQPn:

xi + xj ≤ 1 + yij ({i, j} ∈ En).

These inequalities too were proved to induce facets of BQPn by Padberg.
In a similar way, Propositions 5 and 11 show that the inequalities ye ≥ 0 for

all e ∈ En, and the inequalities

yik + yjk ≤ 1 + yij ({i, j} ∈ En, k ∈ Vn \ {i, j}),
are valid for the clique partitioning polytope PARn. These inequalities were
proved to induce facets of PARn by Grötschel and Wakabayashi [13].

4.2 Hypermetric Correlation Inequalities

If we apply the first definition of psd-ness given in the introduction to the matrix
M(x, y), we see that the following inequalities are valid for Pn:∑

i∈Vn

a2
i xi + 2

∑
{i,j}∈En

aiajyij ≥ 0 (∀a ∈ R
n). (5)

It follows from known results on the cut and correlation cones, however, that
these inequalities do not define facets of Pn. Indeed, the following hypermetric
inequalities are well-known to be valid for the cut cone (see Deza & Laurent [9]):

∑
{i,j}∈En

aiajyij ≤ 0 (∀a ∈ Z
n :

n∑
i=1

ai = 1). (6)

134 A.N. Letchford and M.M. Sørensen

Under the covariance mapping, they correspond to the following inequalities,
which are valid for the correlation cone:∑

i∈Vn

ai(ai − 1)xi + 2
∑

{i,j}∈En

aiajyij ≥ 0 (∀a ∈ Z
n). (7)

We will follow Deza & Grishukhin [5] in calling them hypermetric correlation
inequalities. Note that the hypermetric correlation inequalities, being homoge-
neous, are valid for BQPn. Then, by Proposition 7, they are valid for Pn as well.
They are easily shown to dominate the inequalities (5).

The hypermetric and hypermetric correlation inequalities have been studied
in depth by Deza and colleagues (e.g., [4,5,6,8,9]). Conditions under which the
hypermetric inequalities induce facets of the cut cone are surveyed in [9]. Via
the covariance mapping, one can derive analogous conditions under which the
hypermetric correlation inequalities induce facets of the correlation cone, and
therefore of BQPn. By Proposition 7, they induce facets of Pn under the same
conditions.

Note that the non-negativity inequalities ye ≥ 0 for all e ∈ En, and the
inequalities (3) and (4), are hypermetric correlation inequalities.

An important result, which will be of relevance in what follows, is that the
hypermetric inequalities define a polyhedral cone [6]. That is, although the in-
equalities (6) are infinite in number, there exists a finite subset of them that
dominates all the others. Via the covariance mapping, the hypermetric correla-
tion inequalities also define a polyhedral cone.

Now, we consider the implications of moving ‘clockwise’ in Fig. 1. The hyper-
metric correlation inequalities (7) imply, via Proposition 8, the validity of the
following inequalities for BQPn:∑

i∈Vn

ai(2b + ai − 1)xi + 2
∑

{i,j}∈En

aiajyij ≥ b(1− b) (∀a ∈ Z
n
, b ∈ Z). (8)

These inequalities, which include the hypermetric correlation inequalities as a
special case, are also well-known in the literature [9]. Most of the inequalities
shown by Padberg [21] to induce facets of BQPn — such as the clique and cut
inequalities — are in fact special cases of the inequalities (8).

Under the covariance mapping, the inequalities (8) correspond to the following
inequalities for CUTn:∑

{i,j}∈En

aiajyij ≤ �σ(a)2/4� (∀a ∈ Z
n : σ(a) odd), (9)

where σ(a) =
∑

i∈Vn
ai. These inequalities, which include the hypermetric in-

equalities as a special case, are sometimes called k-gonal inequalities (see Deza &
Laurent [9], Avis & Umemoto [2]). They induce facets of CUTn if and only if they
can be obtained from facet-inducing hypermetric inequalities via the switching
operation.

We now present several new results. (Detailed proofs will be given in the full
version of the paper.) The first two results show that the separation problems

Binary Positive Semidefinite Matrices and Associated Integer Polytopes 135

for the inequalities (8) and (9) can be reduced to the separation problems for
the inequalities (7) and (6), respectively. They can be proved either directly or
by using Proposition 8 and the covariance mapping.

Proposition 15. Given a vector (x∗, y∗)∈[0, 1]Vn∪En, let (x′, y′)∈[0, 1]Vn+1∪En+1

be defined as follows. Let x′
i = x∗

i for i ∈ Vn, but let x′
n+1 = 1. Let y′

e = y∗
e for

e ∈ En, but let y′
i,n+1 = x∗

i for i ∈ Vn. Then (x∗, y∗) satisfies all inequalities (8)
if and only if (x′, y′) satisfies all hypermetric correlation inequalities (7).

Proposition 16. Given a vector y∗ ∈ [0, 1]En, let y′ ∈ [0, 1]En+1 be defined as
follows. Let y′

e = y∗
e for e ∈ En, but let y′

i,n+1 = 1 − y∗
i,n for i ∈ Vn−1, and let

y′
n,n+1 = 1. Then y∗ satisfies all k-gonal inequalities (9) if and only if y′ satisfies

all hypermetric inequalities (6).

Unfortunately, the complexity of separation for the hypermetric inequalities is
unknown (see Avis [1]). Nevertheless, the above two results have interesting
polyhedral implications:

Proposition 17. Consider the intersection of the hypermetric correlation cone
in R

Vn+1∪En+1 with the affine space defined by the equations yi,n+1 = xi for all
i ∈ Vn and the equation xn+1 = 1. If we project it onto R

Vn∪En, we obtain the
convex set defined by the inequalities (8).

Proposition 18. Consider the intersection of the hypermetric cone in R
En+1

with the affine space defined by the equations yi,n + yi,n+1 = 1 for i ∈ Vn−1 and
the equation yn,n+1 = 1. If we project it onto R

En , we obtain the convex set
defined by the k-gonal inequalities (9).

Proposition 18 implies the following result, which answers in the affirmative a
question raised by Avis & Umemoto [2]:

Proposition 19. The k-gonal inequalities (9) define a polytope.

Proof. The hypermetric cone is polyhedral. The intersection of a polyhedral
cone with an affine subspace is also polyhedral, and so is its projection onto any
subspace. The result then follows from Proposition 18. ��

For similar reasons, the inequalities (8) also define a polytope.
To close this subsection, we consider moving ‘anticlockwise’ in Fig. 1. The

inequalities (7) imply, via Proposition 11, the validity of the following inequalities
for PARn: ∑

{i,j}∈En

aiajyij ≥ 1
2

∑
i∈Vn

ai(1− ai) (∀a ∈ Z
n), (10)

and the following inequalities for MCUTn:∑
{i,j}∈En

aiajyij ≤ σ(a)(σ(a) − 1)/2 (∀a ∈ Z
n).

136 A.N. Letchford and M.M. Sørensen

The validity of these inequalities for MCUTn, and the fact that they induce facets
under certain conditions, was also observed by Deza & Laurent [9] (p. 465). We
remark that, when ai is binary for all vertices apart from one, the inequalities
(10) reduce to the so-called weighted (s, T)-inequalities of Oosten et al. [20],
shown to induce facets under certain conditions.

4.3 Gap Inequalities

We now present a class of valid inequalities that dominate the hypermetric cor-
relation inequalities (7).

Proposition 20. The following inequalities are valid for Pn:
∑
i∈Vn

ai(ai − amin)xi + 2
∑

{i,j}∈En

aiajyij ≥ 0 (∀a ∈ Z
n), (11)

where
amin = min

{
aT x : aT x > 0, x ∈ {0, 1}n}

.

Proof. From the definition of amin, we have that, for any x ∈ {0, 1}n, either
aT x ≤ 0 or aT x ≥ amin. In either case, we have aT x(aT x − amin) ≥ 0. Thus,
when M(x, y) is a symmetric rank one binary matrix, we have aTM(x, y)a −
amina

T x ≥ 0. This establishes the validity of the inequalities (11) for BQPn. By
Proposition 7, they are also valid for Pn. ��

These strengthened inequalities can be shown to imply (via Proposition 8 and
the covariance mapping) the validity of the so-called gap inequalities for CUTn

(Laurent & Poljak [16]). They also imply some new inequalities for BQPn, PARn

and MCUTn. Details will be given in the full version of the paper.

4.4 Inequalities Related to Cycles and Paths

We have discovered several classes of facet-inducing inequalities of Pn that are
related to cycles and paths in Kn. We mention two such classes here. The first
class we consider is of interest because the inequalities are inhomogeneous and
involve only the y variables. Let C ⊂ En be the edge set of a simple cycle of odd
length at least 5, and let C̄ be the set of 2-chords of C. The 2-chorded odd cycle
inequality ∑

e∈C

ye −
∑
e∈C̄

ye ≤ (|C| − 1)/2 (12)

is shown in Grötschel & Wakabayashi [13] to be facet-inducing for the clique par-
titioning polytope PARn. This inequality can be lifted, according to Proposition
12, so that we can establish the following.

Proposition 21. The 2-chorded odd cycle inequalities (12) induce facets of Pn.

Binary Positive Semidefinite Matrices and Associated Integer Polytopes 137

The existence of such inhomogeneous facet-inducing inequalities for Pn implies
that Pn is strictly contained in the intersection of the correlation cone and the
unit hypercube. We have found some other interesting inhomogeneous facet-
inducing inequalities for Pn, which will be mentioned in the full version of the
paper.

Next, however, we consider the class of 2-chorded path inequalities. Let P =
{e = {i, i + 1} : i = 1, . . . , k − 1} be the edge set of a path of length k − 1 ≥ 2
and let P̄ = {e = {i, i+2} : i = 1, . . . , k−2} be the set of 2-chords of P . Denote
by I− = {i ∈ Vn(P) : (i mod 2) = 1} and I+ = {i ∈ Vn(P) : (i mod 2) = 0} the
odd and even endnodes of the edges in P , respectively. Let Z ⊆ Vn \ Vn(P) be
nonempty and define R = δn(I+, Z) and R̄ = δn(I−, Z). The following 2-chorded
path inequality

∑
e∈P∪R

ye −
∑

e∈P̄∪R̄

ye −
⌊

k + 2
4

⌋ ∑
{i,j}⊆Z

yij ≤ |I+|

is shown in [23] to define a facet of PARn under mild conditions. The fact that
we allow for |Z| ≥ 1 provides a generalization of the 2-chorded path inequality
that was originally introduced in [13]. In the original inequality it is assumed
that |Z| = 1, and that inequality only induces a facet of PARn when the path
has even length k − 1. We note that a similar generalization of the inequality is
considered in [20], where the variables yij with {i, j} ⊆ Z have −1 coefficients.
That inequality is mistakenly claimed to be valid for PARn.

When the above inequality is lifted according to Proposition 12 we obtain

−
∑
i∈I+

xi +
∑

e∈P∪R

ye −
∑

e∈P̄∪R̄

ye −
⌊

k + 2
4

⌋ ∑
{i,j}⊆Z

yij ≤ 0. (13)

We have the following result.

Proposition 22. The inequality (13) induces a facet of Pn if either i) |Z| ≥ 2
or ii) |Z| = 1 and (|P | mod 2) = 0.

Note that these inequalities are homogeneous, and therefore induce facets of the
correlation cone as well.

4.5 Lifting Facets of the Clique Partitioning Polytope

Finally, we would like to mention that sometimes we are able to obtain new facets
of the clique partitioning polytope PARn+1 of order n + 1 from known facets of
PARn via the other polytopes considered here. This involves the following steps.

Suppose that bT y ≤ b0 is an inequality that induces a facet of PARn. This
inequality can be lifted (Proposition 12) to a facet-inducing inequality −αT x +
bT y ≤ b0 − αT1n for Pn, where α ∈ R

n
+. Whenever this lifted inequality for

the binary psd polytope Pn is homogeneous, i.e., αT 1n = b0, it also induces

138 A.N. Letchford and M.M. Sørensen

a facet of the boolean quadric polytope BQPn (Proposition 7). The inequality
cT y ≤ 0 obtained via the covariance mapping (Proposition 13) defines a facet of
the cut and multicut polytopes CUTn+1 and MCUTn+1 (Proposition 14). Then,
by complementing this latter inequality, we obtain a facet-inducing inequality
cT y ≥∑

e∈En+1
ce for PARn+1.

Examples of new facets of PARn+1 obtained in this manner will be given in
the full version of the paper.

References

1. Avis, D.: On the complexity of testing hypermetric, negative type, k-gonal and
gap inequalities. In: Akiyama, J., Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866.
Springer, Heidelberg (2003)

2. Avis, D., Umemoto, J.: Stronger linear programming relaxations for max-cut.
Math. Program. 97, 451–469 (2003)

3. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. 36, 151–173
(1986)

4. Deza, M., Dutour, M.: The hypermetric cone on seven vertices. Experimental
Math. 12, 433–440 (2003)

5. Deza, M., Grishukhin, V.P.: Voronoi L-decomposition of PSDn and the hypermet-
ric correlation cone. In: Engel, P., Syta, H. (eds.) Voronoi’s Impact on Modern Sci-
ence, Kiev, Institute of Mathematics of the National Academy of Science, Ukraine
(1998)

6. Deza, M., Grishukhin, V.P., Laurent, M.: The hypermetric cone is polyhedral.
Combinatorica 13, 397–411 (1993)

7. Deza, M., Grötschel, M., Laurent, M.: Clique-web facets for multicut polytopes.
Math. Oper. Res. 17, 981–1000 (1992)

8. Deza, M.M., Laurent, M.: Facets for the cut cone I. Math. Program. 56, 121–160
(1992)

9. Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)
10. Dukanovic, I., Rendl, F.: Semidefinite programming relaxations for graph coloring

and maximal clique problems. Math. Program. 109, 345–365 (2007)
11. Goemans, M.X.: Semidefinite programming in combinatorial optimization. Math.

Program. 79, 143–161 (1997)
12. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. J. of the
ACM 42, 1115–1145 (1995)

13. Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math.
Program. 47, 367–387 (1990)

14. Hill, R.D., Waters, S.R.: On the cone of positive semidefinite matrices. Lin. Alg.
Appl. 90, 81–88 (1987)

15. Laurent, M., Poljak, S.: On a positive semidefinite relaxation of the cut polytope.
Lin. Alg. Appl. 223/224, 439–461 (1995)

16. Laurent, M., Poljak, S.: Gap inequalities for the cut polytope. SIAM J. Matrix
Anal. 17, 530–547 (1996)

17. Laurent, M., Rendl, F.: Semidefinite programming and integer programming. In:
Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Handbook on Discrete Opti-
mization, pp. 393–514. Elsevier, Amsterdam (2005)

Binary Positive Semidefinite Matrices and Associated Integer Polytopes 139

18. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Th. 25, 1–7
(1979)

19. Lovász, L., Schrijver, A.J.: Cones of matrices and set-functions and 0-1 optimiza-
tion. SIAM J. Opt. 1, 166–190 (1991)

20. Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: The clique partitioning problem:
facets and patching facets. Networks 38, 209–226 (2001)

21. Padberg, M.W.: The boolean quadric polytope: some characteristics, facets and
relatives. Math. Program. 45, 139–172 (1989)

22. Shor, N.Z.: Quadratic optimization problems. Tekhnicheskaya Kibernetika 1, 128–
139 (1987)

23. Sørensen, M.M.: A polyhedral approach to graph partitioning. PhD thesis, Aarhus
School of Business (1995), available at http://www.hha.dk/∼mim/

http://www.hha.dk/~mim/

Vertex Cover Resists SDPs Tightened by

Local Hypermetric Inequalities�

Konstantinos Georgiou, Avner Magen, and Iannis Tourlakis

Department of Computer Science, University of Toronto
{cgeorg,avner,iannis}@cs.toronto.edu

Abstract. We consider the standard semidefinite programming (SDP)
relaxation for vertex cover to which all hypermetric inequalities sup-
ported on at most k vertices have been added. We show that the integral-
ity gap for such SDPs remains 2−o(1) as long as k=O(

�
log n/ log log n).

This extends successive results by Kleinberg-Goemans, Charikar and
Hatami et al. which analyzed integrality gaps of the standard vertex
cover SDP relaxation as well as for SDPs tightened using triangle and
pentagonal inequalities.

Our result is complementary but incomparable to a recent result by
Georgiou et al. proving integrality gaps for vertex cover SDPs in the
Lovász-Schrijver hierarchy. One of our contributions is making explicit
the difference between the SDPs considered by Georgiou et al. and those
analyzed in the current paper. We do this by showing that vertex cover
SDPs in the Lovász-Schrijver hierarchy fail to satisfy any hypermetric
constraints supported on independent sets of the input graph.

1 Introduction

A vertex cover for a graph is a subset of vertices that touches all edges in
the graph. Determining the approximability of the minimum vertex cover
problem on graphs is one of the outstanding problems in theoretical computer
science. While there exists a trivial 2-approximation algorithm, considerable ef-
forts have failed to obtain an approximation ratio better than 2− o(1). On the
other hand, the strongest PCP-based hardness result known [8] only shows that
1.36-approximation of vertex cover is NP-hard. Only by assuming Khot’s
Unique Game Conjecture [15] can it be shown that 2 − o(1)-approximation is
NP-hard [16].

Several recent papers [17,12,4,14,13,10] examine whether semidefinite program-
ming (SDP) relaxations of vertex cover might yield better approximations.
Goemans and Williamson [11] introduced semidefinite programming relaxations
as an algorithmic technique using it to obtain a 0.878-approximationformax-cut.
Since then semidefinite programming has arguably become our most powerful tool
for designing approximation algorithms. Indeed, for many NP-hard optimization
problems the best approximation ratios are achieved using SDP-based algorithms.

� Funded in part by NSERC.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 140–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities 141

Given a graph G = (V, E), the standard SDP relaxation for vertex cover is

min
∑

i∈V (1 + v0 · vi)/2
s.t. (v0 − vi) · (v0 − vj) = 0 ∀ij ∈ E
‖vi‖ = 1 ∀i ∈ {0} ∪ V

(1)

Halperin [12] employed this relaxation together with an appropriate rounding
technique to obtain a (2−Ω(log log Δ/ log Δ))-approximation for vertex cover
for graphs with maximal degree Δ. Unfortunately, Kleinberg and Goemans [17]
showed that in general this relaxation has an integrality gap of 2− o(1).

One possible avenue for decreasing this integrality gap comes from the follow-
ing simple observation: for any integral (or rather, one-dimensional) solution,
‖vi − vj‖2 is an �1 metric. Therefore the addition of inequalities on the dis-
tances ‖vi−vj‖2 that are valid for �1 metrics may yield a possible tightening of
the SDP (note that the constraint (v0−vi)·(v0−vj) = 0 in SDP (1) is in fact the
following distance constraint “in disguise”: ‖vi−v0‖2+‖vj−v0‖2 = ‖vi−vj‖2).

For example, since �1 metrics satisfy the triangle inequality, we could add the
following constraint to SDP (1):

‖vi − vj‖2 + ‖vj − vk‖2 ≥ ‖vi − vk‖2 ∀i, j, k ∈ {0} ∪ V. (2)

This �2
2 triangle inequality plays a crucial role in the breakthrough Arora-Rao-

Vazirani sparsest cut algorithm [2]. This suggests that the addition of inequal-
ities satisfied by �1 metrics may be exactly what is needed to get a 2 − Ω(1)
approximation for vertex cover.

Indeed, Hatami et al. [13] prove that if SDP (1) is strengthened by requir-
ing that the distances ‖vi − vj‖2 satisfy all �1 inequalities (i.e., the vectors vi

equipped with the �2
2 norm ‖ · ‖2 are �1-embeddable), then the resulting relax-

ation has no integrality gap. Of course, the caveat here is that the resulting
relaxation has exponentially many constraints and is hence intractable. To ob-
tain a tractable relaxation (or at least one computable in subexponential time),
our relaxation must use only a limited subset of �1 inequalities.

One canonical subclass of �1 inequalities is the discrete and easily-described
class of hypermetric inequalities (see the Preliminaries for definitions). These in-
clude the triangle inequalities as well as the so-called pentagonal, heptagonal, etc.,
inequalities. That such inequalities might be useful for designing improved approx-
imation algorithms is illustrated, for example, in a work by Avis and Umemoto [3].
Avis and Umemoto show that for dense graphs, linear programming relaxations
of max cut based on the k-gonal inequalities have integrality gap at most
1 + 1/k. This, in a sense, gives rise to an LP-based PTAS for max cut.

Unfortunately, for vertex cover Charikar [4] showed that even with the
addition of the triangle inequality (2) the integrality gap of SDP (1) remains
2− o(1). However, Karakostas [14] did show that adding the triangle inequality
(as well as the “antipodal” triangle inequalities (±vi −±vj) · (±vi −±vk) ≥ 0)
yields a (2−Ω(1/

√
log n))-approximation for vertex cover, currently the best

ratio achievable by any algorithm. Hatami et al. [13] subsequently showed that
Karakostas’s SDP even with the addition of the pentagonal inequalities has
integrality gap 2− o(

√
log log n/ logn).

142 K. Georgiou, A. Magen, and I. Tourlakis

In this work we rule out the possibility that adding local hypermetric con-
straints improves the integrality gap of vertex cover SDPs:

Theorem 1. The tightening of the standard SDP for vertex cover with all
hypermetrics that are supported on O(

√
log n/ log log n) points has integrality

gap 2− o(1).

As mentioned above, Hatami et al. [13] show that adding the constraint that
solutions to SDP (1) be �1-embeddable results in an SDP with no integrality
gap. Theorem 1 then immediately gives the following corollary about �2

2 metrics:

Corollary 1. There exist �2
2 metrics that are not isometrically embeddable into �1,

yet satisfy all hypermetric inequalities supported on O(
√

log n/ log log n) points.

It is interesting to compare Corollary 1 with recent results contrasting local and
global phenomena in metric spaces. In [1,5] the authors describe metric spaces
that cannot be well-embedded into �1 but locally every small subset embeds
isometrically into �1. In contrast, our corollary shows the existence of a metric
that locally resembles �1 (although not provably �1) but globally does not embed
isometrically into �1. From this standpoint, this is far weaker than [1,5]. However,
the metric we supply is also an �2

2 metric. Finding �2
2 metrics that are far from

being �1 proved to be a very challenging task (see Khot and Vishnoi’s work [6]
motivated by integrality gap instances for sparsest cut). To the best of our
knowledge, there are no known results that point to such metrics which further
satisfy any local conditions beyond the obvious triangle inequality.

A result related to Theorem 1 was proved by Georgiou et al. in [10]. The main
result of that paper showed that SDP relaxations obtained by tightening the stan-
dard linear programming relaxation forvertexcover using O(

√
log n/ log log n)

rounds of the LS+ “lift-and-project” method of Lovász and Schrijver [18] have inte-
grality gap 2− o(1). The SDPs considered in [10] seem intimately related to those
obtained by adding local �1 or hypermetric constraints. Indeed, it is well known
that relaxations from the LP Lovász-Schrijver hierarchy satisfy all valid local LP
constraints. However, it is also known [10] that relaxations from the SDP Lovász-
Schrijver hierarchy do not necessarily satisfy all valid local SDP constraints. In
particular, the vertex cover SDP relaxation obtained after k rounds of the LS+

method is not obviously comparable to the relaxation obtained by adding all order-
k hypermetric inequalities to SDP (1). In section 4 we show in a strong sense the
incomparability of these relaxations: Fix any subset S of vertices that is an inde-
pendent set in the underlying graph. We then find a hypermetric inequality sup-
ported on all points of S that is nevertheless not valid for any vertex cover SDP
in the Lovász Schrijver hierarchy. In particular, this shows that the integrality gaps
proved in [10] do not preclude the possibility that adding such concrete constraints
as, say, the “heptagonal” inequalities, may result in an improved SDP relaxation.

We briefly describe how we prove Theorem 1. We use the same graph fam-
ily as in [17,4,13,10]. The SDP solution can be thought of as an �1 metric to
which a small perturbation is applied. This perturbation is characterized by two
“infinitesimal” parameters, γ and ε, relating to the graph and the integrality

Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities 143

gap, respectively. We show that hypermetric inequalities that are supported on
k ≥ 4 points, one of which is v0, must have a slack component that depends
on k and on ε and γ, that will be maintained as long as kγ = O(ε). The case
when k = 3 (i.e., the triangle inequality) is covered by [4] and [13], and the case
where v0 does not participate in the inequality is handled by the fact that the
metric formed by the remaining vectors is an �1 metric. Setting ε to an arbitrary
small constant, and setting γ to Θ(

√
log log n/ logn) provides the bound in our

theorem.

2 Preliminaries

Given two vectors x,y ∈ {−1, 1}n their Hamming distance dH(x,y) is |{i ∈
[n] : xi �= yi}|. For two vectors u ∈ R

n and v ∈ R
m denote by (u,v) ∈ R

n+m

the vector whose projection on the first n coordinates is u and on the last m
coordinates is v.

The tensor product u ⊗ v of vectors u ∈ R
n and v ∈ R

m is the vector in
R

nm indexed by ordered pairs from n × m and that assumes the value uivj

at coordinate (i, j). Define u⊗d to be the vector in R
nd

obtained by tensoring
u with itself d times. Let P (x) = c1x

t1 + . . . + cqx
tq be a polynomial with

nonnegative coefficients. Then TP is the function that maps a vector u to the
vector TP (u) = (

√
c1u

⊗t1 , . . . ,
√

cqu
⊗tq).

Fact: For all vectors u,v ∈ R
d, TP (u) · TP (v) = P (u · v).

Metrics and �1 Inequalities: We quickly review the facts we need about �1 in-
equalities. Deza and Laurent [7] is a good source for more information.

A finite metric space is an �1 metric if it can be embedded in �1-normed space
so that all distances remain unchanged. It is easy to see that the set C of all �1

metrics on a fixed number of points is a convex cone. Let X be a set of size n.
A subset S of X is associated with a metric δS(x, y) that is called a cut metric
and is defined as |χS(x) − χS(y)|, where χS(·) is the characteristic function of
S. These metrics are the extreme rays of C; namely, every �1 metric is a positive
linear combination of cut metrics. This fact leads to a simple characterization of
all inequalities that are valid for �1 metrics as follows. Consider the polar cone
of C,

C∗ = {B ∈ IRn×n|B ·D ≤ 0 for all D ∈ C},
where by B ·D we denote the matrix inner product of B and D, that is B ·D =
trace(BDt) =

∑
i,j BijDij . Notice that for B to be in C∗ it is enough to require

that B · δS ≤ 0 for all cuts S. By definition it is clear that any B ∈ C∗ defines a
valid inequality such that

∑
i,j Bijdij ≤ 0 whenever d is an �1 metric. Conversely,

(strong) duality implies that if d satisfies all inequalities of this type for every
B ∈ C∗ then d is an �1 metric.

A special canonical class of �1 inequalities is the class of hypermetric inequal-
ities. Let b ∈ Z

k, with
∑k

i=1 bi = 1. It can be easily verified that B = bbt

is in C∗. The inequality
∑

i,j bibjdij ≤ 0 is called a hypermetric. If we further

144 K. Georgiou, A. Magen, and I. Tourlakis

require b ∈ {−1, 1}k, in which case the hypermetric is called pure, we obtain the
k-gonal inequalities, e.g., the triangle inequality for k = 3, pentagonal inequality
for k = 5, etc.

3 Construction and Proof

Fix arbitrarily small constants γ, ε > 0 such that ε > 3γ, and let m be a suf-
ficiently large integer. The Frankl-Rödl graph Gγ

m is the graph with vertices
{−1, 1}m and where two vertices i, j ∈ {−1, 1}m are adjacent if dH(i, j) =
(1 − γ)m. A classical result of Frankl and Rödl [9] implies that the size of a
minimal vertex cover in Gγ

m is 2m(1 − o(1)) whenever γ = Ω(
√

log m/m). We
denote the vertices V of G as vectors wi ∈ {−1, 1}m (the association of index i
with a vector in the cube is arbitrary) and normalize these to get unit vectors
ui = 1√

m
wi.

Consider the polynomial

P (x) = βx(x + 1)
2m
γ + αx

1
γ + (1− α− 2β)x,

where the constants α, β > 0 will be defined below. Let z0 = (1, 0 . . . , 0),
zi = (2ε,

√
1− 4ε2TP (ui)), where TP (v) is the tensoring of v induced by the

polynomial P . We fix the values of α and β defining P (and hence, defining the
vectors zi) according to the following lemma implicit in [10]:

Lemma 1 ([10]). Suppose 2m
γ and 1

γ are even and that m is significantly larger
than 1/γ. Suppose further that ε > 3γ. Then there exist constants α, β > 0
satisfying

α < 7.5γ,

2β + α >
4ε

1 + 2ε
− 4γ,

such that the vectors z0, z1, . . . , zn satisfy both the standard vertex cover
SDP (1) and the triangle inequality 2.

A translated version of the vector set {z0, z1, . . . , zn} lay at root of the LS+

lower bounds proved in [10]. Specifically, the Gram matrix of the vectors vi =
z0+zi

2 was shown to be a solution for the vertex cover SDP resulting from
O(
√

log n/ log log n) rounds of LS+ lift-and-project.
The remainder of this section is devoted to proving the following theorem.

Theorem 2. The vectors z0, z1, . . . , zn satisfy all hypermetric inequalities on r
points, r ≤ 2

45
ε
γ .

We claim that Theorem 1 follows immediately from Theorem 2. Indeed, note
first that the value of SDP (1) on the vectors z0, z1, . . . , zn is (1 + ε)2m−1. On
the other hand, recall that the underlying graph Gγ

m has minimal vertex cover
size (1 − o(1))2m whenever γ = Ω(

√
log m/m). Hence, Theorem 1 follows by

taking ε > 0 to be any arbitrarily small constant and γ = Ω(
√

log m/m).

Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities 145

As an aside, we note that our vectors {zi} also satisfy the “antipodal” triangle
inequalities (±zi − ±zj) · (±zi − ±zk) ≥ 0 for all i, j, k ∈ {0} ∪ V . Recall that
these inequalities define the SDP at root of Karakostas’s [14] vertex cover
algorithm. That our vectors satisfy these inequalities can be seen as follows.
Consider the subset {zi}i≥1. For each coordinate, the vectors in this subset take
on at most 2 different values, and hence this subset is �1-embeddable. Moreover,
this remains true even if we replace some (or all) of the zi by −zi. Hence, it
suffices to consider only the “antipodal” triangle inequalities involving z0. The
validity of these inequalities then follows easily from the fact that the zi satisfy
the standard triangle inequalities (by Lemma 1) and the fact that the value of
zi · z0 does not depend on i.

Before giving the proof of Theorem 2 we give some intuition. Note that the
vector set {zi} is the result of a perturbation applied to the following simple-
minded �1 metric: Let D = {v0,v1, . . . ,vn} be the metric obtained by taking vi

to be the (normalized version of) the vectors of the m-dimensional cube, and let
v0 be a unit vector perpendicular to all vi. Notice that these vectors are precisely
the vectors we would have obtained if we had used the polynomial P (x) = x to
define the tensored vectors zi (corresponding to taking ε = γ = 0). The metric
D is easily seen to be an �1 metric: take the Hamming cube and place the zeroth
point at the origin to get an �1 embedding that is an isometry. Since D is �1, every
hypermetric inequality is valid for it. On the other hand, D does not satisfy even
the basic conditions of SDP (1) (e.g., the edge constraints) with respect to our
graph of interest (i.e., Gγ

m with γ > 0) and any basic attempts to remedy that
will violate even the triangle inequality: A subtle way of perturbing D via the
tensoring polynomial P will be required. By focusing on the pure hypermetrics,
we can give some intuition about why our construction works and why the critical
value of k is O(ε/γ) (for non-pure hypermetrics, this intuition is less accurate).
Given any choice of α, β > 0 we get a set of tensored vectors zi whose distances
are a perturbation of D by an additive factor DΔ. As mentioned in the proof
outline in the introduction and in light of Lemma 1, it suffices to restrict our
attention only to inequalities supported on more than three points. Since any
given pure hypermetric inequality defined by the bi’s must be satisfied by D,
it is sufficient to prove that it is satisfied for the perturbed component of the
metric, i.e., DΔ. Analyzing this inequality on DΔ then shows that

∑
i,j bibjdij ≤

−2ε+Cγk, where C is a universal constant and the dij are the distances defined
by DΔ. Consequently, as long as k = O(ε/γ), the inequality holds for DΔ. Hence
it holds for D + DΔ, the metric resulting from the zi’s as well.

Proof (of Theorem 2). By Lemma 1 we already know that the vectors satisfy all
hypermetric inequalities on three points, namely, the triangle inequalities.

So we only need to show that the solution satisfies hypermetric inequalities
on 4 or more points. This is an important point since the arguments we will use
to handle hypermetric inequalities on at least 4 points cannot be applied to the
triangle inequalities.

Consider the set of vectors {zi}, i ≥ 1. For each coordinate, the vectors in this
subset take on at most 2 different values, and hence this subset is �1-embeddable.

146 K. Georgiou, A. Magen, and I. Tourlakis

Therefore, any �1 inequality (and in particular any hypermetric inequality) not
involving z0 must be satisfied.

Now let B = bbt ∈ C∗, where b ∈ Z
k+1 and

∑k
i=0 bi = 1, be any hypermetric

inequality supported on r = k + 1 points. By the above discussion, it suffices
to consider the case where z0 is one of the points, and we can assume that the
points are 0, 1, . . . , k. Our goal is to show that

∑
i<j≤k Bij‖zi − zj‖2 ≤ 0. By

definition, for i, j ≥ 1,

‖zi − zj‖2 = 2− 2(4ε2 + (1− 4ε2)P (ui · uj)) = 2(1− 4ε2)(1− P (ui · uj)),

and ‖zi − z0‖2 = 2− 4ε. Hence,

∑
0≤i<j≤k

Bij‖zi−zj‖2 = 2(1− 2ε)
k∑

i=1

B0i+2(1−4ε2)
∑

0<i<j≤k

Bij(1−P (ui · uj)).

Therefore, we need to show

k∑
i=1

B0i + (1 + 2ε)
∑

0<i<j≤k

Bij(1 − P (ui · uj)) ≤ 0 . (3)

We will require the technical lemma below, but first some definitions. By homo-
geneity we may assume b0 < 0 (and hence that b0 ≤ −1 since b0 ∈ Z). Let

S = {i ∈ [k] : bi > 0} ,

T = {i ∈ [k] : bi < 0}.

Next let Hij = (ui · uj + 1)(ui · uj)
2m
γ and Mij = (ui · uj)

1
γ , and let Δij be the

Hamming distance between ui and uj . With these definitions we can then write
P (ui · uj) = βHij + αMij + (1− α− 2β)(1− 2

mΔij).

Lemma 2. Assume that γ, ε and m satisfy the conditions in Lemma 1. Then,

1.
∑

0<i<j≤k Bij = 1
2 ((1− b0)2 −

∑k
i=1 b2

i)
2.
∑

0<i<j≤k Bij(−βHij − αMij) ≤ 15γ
∑

i∈S,j∈T bi(−bj)
3.
∑

0<i<j≤k BijΔij ≤ 1
4m(1− b0)2

Proof. The first equality is an immediate consequence of the fact that
∑k

i=1 bi =
1− b0 and that (

∑k
i=1 bi)2 =

∑k
i=1 b2

i + 2
∑

0<i<j≤k bibj .
For the second inequality, note first that ui · uj ≤ 1 − 1/m. Hence, Hij is

negligible for all i �= j. Moreover, since the ui are unit vectors and 1/γ is even, it
follows that 0 ≤Mij ≤ 1. Hence, by the bounds for α and β given by Lemma 1
it follows that βHij + αMij ≤ 15γ and the second inequality follows.

For the last inequality notice that since Δij is the sum of m cut metrics
(defined by the m coordinates), it is enough to show that for every subset I ⊂
{0, 1, . . . , k}, ∑

0<i<j≤k

BijδI(i, j) ≤ 1
4
(1− b0)2.

Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities 147

Indeed, using the fact that B is a hypermetric we have,

∑
0<i<j≤k

BijδI(i, j) =
∑

i∈I,j /∈I

bibj =

(∑
i∈I

bi

)
·
(

1− b0 −
∑
i∈I

bi

)
≤
(

1− b0

2

)2

.

�
We can now bound the left-hand-side of (3). To begin with, we have,

k∑
i=1

B0i + (1 + 2ε)
∑

0<i<j≤k

Bij(1− P (ui · uj))

=
k∑

i=1

B0i + (1 + 2ε)
∑

0<i<j≤k

Bij(1− βHij − αMij − (1− α− 2β)(1− 2
m

Δij))

=
k∑

i=1

B0i+(1+2ε)
∑

0<i<j≤k

Bij(−βHij−αMij + α + 2β + (1 − α− 2β)
2
m

Δij).

Applying the inequalities from Lemma 2 it then follows that the above is upper-
bounded by

b0(1 − b0) + (1 + 2ε)

⎛
⎝15γ

∑
i∈S,j∈T

bi(−bj) +
1
2
(α + 2β)

[
(1 − b0)2 −

k∑
i=1

b2
i

]
+

1
2
(1 − α − 2β)(1 − b0)2

⎞
⎠

=
1
2
(1 − b2

0) + 2ε
1
2
(1 − b0)2 + (1 + 2ε)

⎛
⎝15γ

∑
i∈S,j∈T

bi(−bj) − 1
2
(α + 2β)

k∑
i=1

b2
i

⎞
⎠

<
1
2
(1 − b2

0) + 2ε
1
2
(1 − b0)2 + (1 + 2ε)

⎛
⎝15γ

∑
i∈S,j∈T

bi(−bj) −
[

2ε

1 + 2ε
− 2γ

] k∑
i=1

b2
i

⎞
⎠

=
1
2
(1 − b2

0) + 2ε
1
2
(1 − b0)2 − 2ε

k∑
i=1

b2
i + (1 + 2ε)

⎛
⎝15γ

∑
i∈S,j∈T

bi(−bj) + 2γ

k∑
i=1

b2
i

⎞
⎠

<
1
2
(1 − b2

0) − ε(2
k∑

i=1

b2
i − (1 − b0)2) + 15γ(1 + 2ε)

⎛
⎝ ∑

i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i

⎞
⎠

<
1
2
(1 − b2

0) − ε(2
k∑

i=1

b2
i − (1 − b0)2) + 30γ

⎛
⎝ ∑

i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i

⎞
⎠ .

Note that since the hypermetric inequality we are considering is not a triangle
inequality, it follows that we must have

∑
i>0 b2

i ≥ 3. But then, the following
technical lemma can be used to show that the above is bounded by 0, completing
the proof of the theorem.

Lemma 3. Let k ≤ 2
45

ε
γ − 1 and let 0 < ε < 1

6 and γ > 0. Assume b0 ≤ −1,∑
b2
i ≥ 3 and that bi �= 0 for all i. Then

1
2
(1− b2

0)− 2ε

(
k∑

i=1

b2
i −

1
2
(1− b0)2

)
+ 30γ

⎛
⎝ ∑

i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i

⎞
⎠ < 0.

148 K. Georgiou, A. Magen, and I. Tourlakis

Proof. It is not hard to to check that since ε < 1
6 and b0 is a (strictly) negative

integer, we have

1
2
(1 − b2

0)− 2ε

(
k∑

i=1

b2
i −

1
2
(1− b0)2

)
≤ −2ε

(
k∑

i=1

b2
i − 2

)
≤ −2ε

3

k∑
i=1

b2
i .

Note that it was critical to have
∑

i>0 b2
i ≥ 3 here, as only then can we claim

that
∑k

i=1 b2
i − 2 is a positive constant. Indeed, for the triangle inequality (b0 =

−1, b1 = b2 = 1), i.e., the only hypermetric inequality for which this doesn’t
hold, we cannot expect any method bounding the slack of the inequality to
work: the vertex cover edge constraints force the triangle inequality to be
tight for edges!

It now suffices to prove that

−2ε

3

k∑
i=1

b2
i + 30γ

⎛
⎝ ∑

i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i

⎞
⎠ < 0. (4)

Let s, t be the cardinalities of S, T , respectively, and let x =
∑

i∈S bi and y =∑
i∈T (−bi). Now, using the Cauchy-Schwartz inequality and the fact that s, t ≤

k, we get∑
i∈S,j∈T bi(−bj) +

∑k
i=1 b2

i∑k
i=1 b2

i

≤ 1 +
xy

s(x/s)2 + t(y/t)2
≤ 1 + k

xy

x2 + y2
≤ 1 + k/2.

(Note that if y = t = 0 the bound is trivial and we therefore ignored this case
above.) Hence,

−2ε

3

k∑
i=1

b2
i + 30γ

⎛
⎝ ∑

i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i

⎞
⎠ <

(
−2ε

3
+ 30γ(1 + k/2)

) k∑
i=1

b2
i ,

and so (4) holds as long as k ≤ 2
45

ε
γ − 1. �

Theorem 2 now follows. �

4 Hypermetric Inequalities vs. Lovász-Schrijver SDP
Lift-and-Project

In this section we show that hypermetric inequalities need not be derived by
Lovász and Schrijver’s LS+ lift-and-project system. Our plan of attack is as
follows. After stating all necessary definitions, we will first show that no pure
hypermetric inequalities are derived by LS+ for the convex cone defined by the
inequalities 0 ≤ xi ≤ x0, i = 1, . . . , n. We will then use this result to show the
following for vertex cover: Fix a graph G and an independent set S in G, and
consider a vertex cover SDP for G derived using LS+ lift-and-project. Then

Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities 149

the constraints defining this SDP do not imply any of the pure hypermetric
constraints supported on S.

We begin by defining the Lovász-Schrijver LS+ lift-and-project system [18].
In what follows all vectors will be indexed starting at 0. Recall that a set C ⊂ R

n

is a convex cone if for every y, z ∈ C and for every α, β ≥ 0, αy+βz ∈ C. Given
a convex cone C ⊂ R

n+1 we denote its projection onto the hyperplane x0 = 1 by
C|x0=1. Let ei denote the vector with 1 in coordinate i and 0 everywhere else.
Let Qn ⊂ R

n+1 be the convex cone defined by the constraints 0 ≤ xi ≤ x0 and
fix a convex cone C ⊂ Qn. The lifted cone M+(C) ⊆ R

(n+1)×(n+1) consists of
all positive semidefinite matrices (n + 1)× (n + 1) matrices Y such that,

Property I. For all i = 0, 1, . . . , n, Y0i = Yii.
Property II. For all i = 0, 1, . . . , n, Y ei, Y e0 − Y ei ∈ C.

The cone M+(C) is the LS+ positive semidefinite tightening for C. This pro-
cedure can be iterated by projecting M+(C) back to R

n+1 and then re-
applying the M+ operator to the projection. In particular, let N+(C) =
{Y e0 : Y ∈M+(C)} ⊆ R

n+1. Define Nk
+(C) inductively by setting N0

+(C) = C

and Nk
+(C) = N+(Nk−1

+ (C)), and define Mk
+(C) to be M+(Nk−1

+ (C)). Lovász
and Schrijver show that Nk+1

+ (C) ⊆ Nk
+(C) and Mk+1

+ (C) ⊆ Mk
+(C) and that

moreover these containment are proper if and only if Nk
+(C)|x0=1 is not the

integral hull of C|x0=1. Moreover, they show that Nn
+(C)|x0=1 is equal to the

integral hull of C|x0=1. It is useful to note, that Y ∈ Mk
+(C) ⊆ R

(n+1)×(n+1) if
and only if Y is PSD and satisfies both Property I and the following property:

Property II′. For all i = 0, 1, . . . , n, Y ei, Y e0 − Y ei ∈ Nk−1
+ (C).

With these definitions in hand, we can now begin by showing that M+(Qn)
does not satisfy any pure hypermetric constraint (recall that Qn is the cone
satisfying 0 ≤ xi ≤ x0 for all i = 1, . . . , n). As a warm up we examine the
triangle inequality of SDP (1) for a three vertex graph with no edges. Note
that this SDP has no edge constraints. Moreover, any vector solution vi can be
mapped using the affine transformation vi → (vi + v0)/2 to a set of vectors
whose Gram matrix is in M+(Q3), and vice versa. Now consider three vectors
v1,v2,v3 that correspond to the three vertices of the graph. Geometrically it
is possible to place these vectors such that the Gram matrix of v0,v1,v2,v3

satisfies Properties I and II above for an LS+ tightening, yet v1,v2,v3 violate
triangle inequality. We can accomplish this by making v1 and v2 almost coincide
and placing v3 between them.

Our counterexample for hypermetrics will be a generalization of the following
more subtle matrix in M+(Q3) violating triangle inequality:

Y =

⎛
⎜⎜⎝

1 ε ε ε
ε ε 0 βε
ε 0 ε βε
ε βε βε ε

⎞
⎟⎟⎠ .

By having ε ∈ (0, 1/2) and β ∈ [0, 1] we ensure Y satisfies Properties I and II.
One can show that by setting ε arbitrarily close to 0 and β close to but bigger

150 K. Georgiou, A. Magen, and I. Tourlakis

than 1/2, we ensure that Y is PSD, while ensuring that its Cholesky decompo-
sition violates the triangle inequality. This matrix sacrifices some of the above
geometric intuition to make our calculations easier.

This construction can be extended to show that M+(Qn) does not satisfy any
inequality

∑
bibjdij ≤ 0 where b is a vector of length n = 2k + 1,

∑
bi = 1,

and for all i, |bi| = 1. Indeed, consider an inequality on 2k + 1 points defined
by the vector (0, b1, b2, . . . , b2k+1) ∈ Z

2k+2
+ (note that b0 = 0) where bi = 1 for

i = 1, . . . , k + 1 and bi = −1 for i = k + 2, . . . , 2k + 2. In this way we naturally
split the points into two clusters of size k + 1 and k points. The associated
inequality requires that the sum of distances across the clusters dominates the
sum of distances within the clusters. Define the distance within the clusters as
2ε, and the distance across the clusters as 2ε(1−β). We have k(k+1) cross pairs
and

(
k
2

)
+
(
k+1
2

)
= k2 inner pairs. Therefore in order to violate the inequality,

we should have 2ε(1− β)k(k + 1) < 2εk2. In other words it suffices for β to be
slightly bigger than 1

k+1 (this will be crucial later).
Define the matrix

Y (s,t) =

⎛
⎝ 1 εJ1,s εJ1,t

εJs,1 εIs εβJs,t

εJt,1 εβJt,s εIt

⎞
⎠ ,

where Jm,n is the m× n all-1 matrix, and In is the n× n identity matrix (note
that s = 2, t = 1 gives Y above). The configuration described above can be
realized by the matrix Y (k+1,k) of order (2k + 2). Similarly as in the case of the
triangle inequality, Y (s,t) satisfies Properties I and II as long as ε ∈ (0, 1/2) and
b ∈ [0, 1].

Hence, Y (k+1,k) is in M+(Qn) provided we can show that it is PSD. This is
implied by the following technical lemma.

Lemma 4. For all s, t, such that s + t = 2k + 1 there exist ε ∈ (0, 1/2) and
β > 1

k+1 such that the matrix Y (s,t) ∈ IR(2k+2)×(2k+2) is PSD.

Proof. To simplify notation, we will denote 1
ε Y (s,t,ε,β) by Y (s,t).

We begin by computing all principal minors of Y (s,t). Subtracting the third
row from the second in Y (s,t), we get det(Y (s,t)) = det(Y (s−1,t)) + det(L(s−1,t)),
where L(s,t) is the same matrix as Y (s,t) except that L

(s,t)
22 = 0 (instead of 1).

The same operation on rows shows that det(L(s,t)) = det(L(1,t)). Next de-
note by K(1,t) the same matrix as L(1,t) except that K

(1,t)
33 = 0 (instead of

1). Subtracting the fourth row from the third in L(1,t) we get det(L(1,t)) =
det(L(1,t−1)) + det(K(1,t−1)) where again det(K(1,t)) = det(K(1,1)). Finally let
M (1,t) be the same matrix as Y (1,t) except that M

(1,t)
33 = 0 (instead of 1). Again,

the same row operation in Y (1,t) gives det(Y (1,t)) = det(Y (1,t−1))+det(M (1,t−1))
with det(M (1,t)) = det(M (1,1)).

For simplicity denote Y (1,1), L(1,1), M (1,1), K(1,1) by Y, L, M, K respectively.
Then for these base matrices

Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities 151

Y =

⎛
⎝1/ε 1 1

1 1 β
1 β 1

⎞
⎠ L =

⎛
⎝1/ε 1 1

1 0 β
1 β 1

⎞
⎠ M =

⎛
⎝1/ε 1 1

1 1 β
1 β 0

⎞
⎠ K =

⎛
⎝1/ε 1 1

1 0 β
1 β 0

⎞
⎠

we have

det(Y) =
1
ε
(1− β2 + 2βε− 2ε)

det(L) = det(M) =
1
ε
(−β2 + 2βε− ε)

det(K) =
β

ε
(−β2 + 2ε).

Using these values, we have

det(Y (s,t)) = det(Y (1,t)) + (s− 1) (det(L) + (t− 1) det(K))
= det(Y) + (t− 1) det(M) + (s− 1) (det(L) + (t− 1) det(K))

=
1
ε
(1− stβ2 + ε(−t− s + 2stβ)).

Recall that we required β > 1
k+1 and so we can take β arbitrarily close to that

bound. But then

stβ2 ≤
(

2k + 1
2

)2 1
(k + 1)2

=
(

2k + 1
2k + 2

)2

< 1

making det(Y (s,t)) strictly positive for sufficient small ε. �
We are ready now to show that vertex cover SDPs in the LS+ hierarchy
violate pure hypermetrics on any independent set. Fix an n-vertex graph G =
(V, E) and consider the convex cone C ⊂ Qn consisting of all vectors x ∈ R

n+1

such that xi + xj ≥ x0. Then LS+ lifting yields the following sequence of SDPs
for G: M+(C), M2

+(C), We will show that for all k, every independent set
S in G, and all pure hypermetrics B supported on S, there exists Y ∈ Mk

+(C)
such that Y does not satisfy B.

To that end, fix k and S, and let s = |S| be odd. Without loss of general-
ity, assume that S = {1, 2, . . . , s}. Fix a pure hypermetric B defined on the set
S. By the discussion above we know that there exists Y ′ ∈ M+(Qs) that vio-
lates the pure hypermetric B. Let v0,v1, . . . ,vs be the Cholesky decomposition
for Y ′. Now let Y ∈ R

(n+1)×(n+1) be the matrix with Cholesky decomposition
v0,v1, . . . ,vs,v′

s+1, . . . ,v
′
n where v′

j = v0 for all j ≥ s + 1. By construction
Y is PSD, satisfies Property I, and does not satisfy B on S. So it suffices to
verify Property II′ in order to show that Y ∈Mk

+(C). Note that Y ei is the all-1
vector for all i ≥ s + 1 and hence Property II′ holds for all i ≥ s + 1 since the
all-1 vector is in the integral hull and hence in Nk

+(C) for all k. Now consider
a vector Y ei where 1 ≤ i ≤ s. Note that Y00 = Y0j for all j ≥ s + 1. But then,
since S is independent, it follows that the projection of Y ei onto the hyperplane
x0 = 1 is also in the integral hull and hence in Nk

+(C). Similarly, it follows that

152 K. Georgiou, A. Magen, and I. Tourlakis

Y (e0 − ei) is also in Nk
+(C) whenever 1 ≤ i ≤ s. So Property II’ holds for all i,

and Y ∈Mk
+(C).

We end this section by remarking that the above arguments can be com-
bined with those from [10] to show that there is a graph G for which
O(
√

log n/ log log n) rounds of LS+ produce an SDP which (a) does not sat-
isfy the triangle inequality and (b) has integrality gap 2− o(1). The argument,
which we do not have room to go into here, considers the Frankl-Rödl graph Gγ

m

to which we append three isolated vertices. The idea is to not satisfy the triangle
inequality on the isolated vertices while the remaining vertices will essentially
employ the SDP solutions from [10].

Acknowledgements

We thank Toniann Pitassi for many helpful discussions. The first author would
also like to thank Periklis Papakonstantinou for his help on some technical as-
pects of this work.

References

1. Arora, S., Lovász, L., Newman, I., Rabani, Y., Rabinovich, Y., Vempala, S.: Local
versus global properties of metric spaces. In: SODA, pp. 41–50. ACM Press, New
York (2006)

2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. In: Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (electronic), pp. 222–231. ACM, New York (2004)

3. Avis, D., Umemoto, J.: Stronger linear programming relaxations of max-cut. Math-
ematical Programming 97(3), 451–469 (2003)

4. Charikar, M.: On semidefinite programming relaxations for graph coloring and
vertex cover. In: SODA 2002. Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 616–620 (2002);
Society for Industrial and Applied Mathematics

5. Charikar, M., Makarychev, K., Makarychev, Y.: Local global tradeoffs in metric
embeddings. In: Proceedings of the Forty-Eighth Annual IEEE Symposium on
Foundations of Computer Science, pp. 713–723. IEEE, Los Alamitos (2007)

6. Devanur, N.R., Khot, S.A., Saket, R., Vishnoi, N.K.: Integrality gaps for sparsest
cut and minimum linear arrangement problems. In: STOC 2006. Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, pp. 537–546. ACM,
New York (2006)

7. Deza, M., Laurent, M.: Geometry of cuts and metrics. Algorithms and Combina-
torics, vol. 15. Springer, Berlin, Heidelberg, New York, Barcelona, Budapest, Hong
Kong, London, Mailand, Paris, Santa Clara, Singapur, Tokyo (1997)

8. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex-cover. An-
nals of Mathematics 162(1), 439–486 (2005)

9. Frankl, P., Rödl, V.: Forbidden intersections. Trans. Amer. Math. Soc. 300(1),
259–286 (1987)

Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities 153

10. Georgiou, K., Magen, A., Pitassi, T., Tourlakis, I.: Integrality gaps of 2 − o(1)
for vertex cover SDPs in the Lovász-Schrijver hierarchy. In: Proceedings of the
Forty-Eighth Annual IEEE Symposium on Foundations of Computer Science, pp.
702–712. IEEE, Los Alamitos (2007)

11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. Assoc.
Comput. Mach. 42(6), 1115–1145 (1995)

12. Halperin, E.: Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. SIAM J. Comput(electronic) 31(5), 1608–1623 (2002)

13. Hatami, H., Magen, A., Markakis, E.: Integrality gaps of semidefinite programs
for vertex cover and relations to 1 embeddability of negative type metrics. In:
APPROX-RANDOM, pp. 164–179 (2007)

14. Karakostas, G.: A better approximation ratio for the vertex cover problem. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1043–1050. Springer, Heidelberg (2005)

15. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 767–775.
ACM, New York (2002)

16. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
In: Proceedings of the 18th IEEE Conference on Computational Complexity, pp.
379–386 (2003)

17. Kleinberg, J., Goemans, M.X.: The Lovász theta function and a semidefinite pro-
gramming relaxation of vertex cover. SIAM J. Discrete Math. 11(2), 196–204 (1998)

18. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization 1(2), 166–190 (1991)

Tight Bounds for Permutation Flow Shop

Scheduling

Viswanath Nagarajan1,� and Maxim Sviridenko2

1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213
viswa@cmu.edu

2 IBM T.J. Watson Research center, Yorktown Heights, NY 10598
sviri@us.ibm.com

Abstract. In flow shop scheduling there are m machines and n jobs,
such that every job has to be processed on the machines in the fixed
order 1, . . . , m. In the permutation flow shop problem, it is also required
that each machine processes the set of all jobs in the same order. For-
mally, given n jobs along with their processing times on each machine,
the goal is to compute a single permutation of the jobs σ : [n]→ [n], that
minimizes the maximum job completion time (makespan) of the sched-
ule resulting from σ. The previously best known approximation guar-
antee for this problem was O(

√
m log m) [29]. In this paper, we obtain

an improved O(min{√m,
√

n}) approximation algorithm for the permu-
tation flow shop scheduling problem, by finding a connection between
the scheduling problem and the longest increasing subsequence problem.
Our approximation ratio is relative to the lower bounds of maximum job
length and maximum machine load, and is the best possible such result.
This also resolves an open question from [21], by algorithmically match-
ing the gap between permutation and non-permutation schedules. We
also consider the weighted completion time objective for the permuta-
tion flow shop scheduling problem. Using a natural linear programming
relaxation, and our algorithm for the makespan objective, we obtain
an O(min{√m,

√
n}) approximation algorithm for minimizing the total

weighted completion time, improving upon the previously best known
guarantee of εm for any constant ε > 0 [30]. We give a matching lower
bound on the integrality gap of our linear programming relaxation.

1 Introduction

In the flow shop problem, there are m machines located in a fixed order (say, 1
through m), and n jobs each of which consists of a sequence of operations on
machines (in the order 1 through m). For any job j ∈ {1, . . . , n} and machine
i ∈ {1, . . . , m} the length of the operation of job j on machine i is called its
processing time pij . A schedule for the jobs is feasible if (i) each machine processes
at most one job at any time; (ii) for each job, its operations on the machines are

� Supported in part by NSF grant CCF-0728841. Work done while visiting IBM T.J.
Watson Research center.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 154–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tight Bounds for Permutation Flow Shop Scheduling 155

processed in the fixed order 1 through m; and (iii) each operation (of a job on a
machine) is processed without interruption. The flow shop problem is a special
case of acyclic job shop scheduling [5,6], which in turn is a special case of the
general job shop scheduling [3,15].

We study the permutation flow shop problem, which is the flow shop problem
with the additional constraint that each machine processes all the jobs in the
same order. So any feasible schedule to the permutation flow shop problem cor-
responds to a permutation of the n jobs. It is well-known [4] that there exists an
optimal schedule for the ordinary flow shop problem having the same processing
order (of jobs) on the first two machines and the same processing order on the
last two machines. So the permutation flow shop problem is equivalent to the
ordinary flow shop problem for m ≤ 3 machines. However, it is easy to construct
an instance with m = 4 machines where no permutation schedule is optimal for
the ordinary flow shop problem.

Two natural objective functions that are typically considered for scheduling
problems are makespan and weighted completion time. The makespan of a sched-
ule is the completion time of its last job, i.e. maximum completion time among
all jobs. For the weighted completion time objective, each job j comes with a
weight wj ≥ 0, and the weighted completion time of a schedule is the weighted
sum of completion times over all jobs.

1.1 Related Work

When the number of machines m is a fixed constant, a PTAS is known for the
job-shop scheduling problem with the makespan objective due to Jansen et al.
[12] and the total weighted completion time objective due to Fishkin et al. [7].
It seems quite likely, that similar techniques yield PTASes for the permutation
flow shop scheduling problems with corresponding objective functions, although
such results did not appear in the literature. For the ordinary flow shop prob-
lem with the makespan objective, the best known approximation guarantee is
O(log m(log log m)1+ε), where ε > 0 is any constant, due to Czumaj and
Scheideler [5]; in fact this result holds for the more general class of acyclic-shop
scheduling. Using the general result from [23] one can derive an approximation
algorithm with the analogous performance guarantee for the flow shop schedul-
ing problem with the total weighted completion time objective.

The following are two obvious lower bounds for the permutation flow shop
scheduling problem with the makespan objective: maximum job length l =
maxn

j=1{
∑m

i=1 pi,j}, and maximum machine load L = maxm
i=1{

∑n
j=1 pi,j}. Potts

et al. [21] have shown a family of instances where the optimal makespan is
Ω(
√

min{m, n}) times the trivial lower bound (max{L, l}). It was an open ques-
tion in [21] to determine whether this bound is tight. The previously best known
approximation guarantee for the makespan problem is O(

√
m log m) due to Sviri-

denko [29]; this guarantee is relative to the trivial lower bound. Prior to this, a
number of algorithms [25,19,18] were shown to have a (tight) worst case guar-
antee of �m

2 �. There are also some papers dealing with additive guarantees for
this problem [26,29]. Sevastianov [26] gave an algorithm that always produces

156 V. Nagarajan and M. Sviridenko

a schedule of length at most L + O(m2)maxi,j pi,j . Sviridenko [29] obtained
a similar guarantee of (1 + δ)L + Kδ(m log m)maxi,j pi,j for any δ > 0 (here
Kδ is a function depending on δ alone). The best multiplicative approximation
guarantee obtainable from these results is the O(

√
m log m) [29].

Smutnicki [30] gave a worst case analysis of several algorithms for the permu-
tation flow shop problem with the weighted completion time objective. Assum-
ing a ρk approximation guarantee for the problem on k machines, [30] gave an
m
k ρk approximation algorithm for the problem on m machines. Assuming that
there exists a PTAS for the permutation flow shop scheduling problem with the
weighted completion time objective and fixed number of machines, one could
obtain an εm guarantee for minimizing weighted completion time (for any con-
stant ε > 0). Alternatively, we could use the (2 + ε)-approximation algorithm
from [28] that works basically for any shop scheduling problem with makespan
criteria on constant number of machines. Otherwise, the best known guarantee
is m. To the best of our knowledge this is the previously best known result for
this problem.

The permutation flow shop scheduling problem has been very popular in the
Operations Research community in the last 40 years and there is a significant
body of work devoted to the design of heuristics for this problem. The survey
paper [8] establishes a common framework for these heuristics, and describes
main classes of algorithms and research directions.

1.2 Our Results and Paper Outline

We give a simple randomized algorithm (Section 2) for minimizing makespan
that achieves an approximation guarantee of 2

√
min{m, n}. This guarantee is

relative to the trivial lower bounds. The analysis is based on the connection be-
tween the permutation flow shop scheduling problem and the longest increasing
subsequence problem. This connection is new and might be interesting in its own
right. It also allows us to apply non-trivial probabilistic results on the expected
value and concentration of the longest increasing subsequence in a random se-
quence [16,31,9].

Hence we answer the open question in Potts et al. [21], by matching algo-
rithmically the Ω(

√
min{m, n}) gap shown in [21]. We also show how this algo-

rithm can be derandomized to obtain a deterministic approximation guarantee of
3
√

min{m, n}. This algorithm uses the derandomization technique of pessimistic
estimators due to Raghavan [24] and certain ideas from the proof of concentra-
tion bound from [9]; the details are non-trivial and appear in Section 3. We note
that among algorithms that are based on the trivial lower bounds, our algorithm
is the best possible (up to a 2

√
2 factor).

On the first sight our improvement of O(
√

log m) upon the previously best
known bound from [29] looks insignificant, but the proof in [29] is based on Cher-
noff Bounds and it is quite well-known that improving upon Chernoff Bounds
based proofs requires substantially new insights on the problem structure. For
example, for the famous combinatorial discrepancy problem the straightfor-
ward randomized algorithm yields the bound of O(

√
n log n); but using more

Tight Bounds for Permutation Flow Shop Scheduling 157

sophisticated techniques based on entropy and using a pigeon-hole principle,
Spencer proved a better non-constructive bound of O(

√
n) [2]. It is one of

the well-known open questions to obtain a constructive (algorithmic) proof of
Spencer’s result; it is also unknown if Spencer’s guarantee holds in the case when
the matrix entries are arbitrary real numbers in the interval [0, 1] while Chernoff
bounds can be easily applied even in this more general case. The key to our
result is a decomposition of the matrix of processing times into a sum of permu-
tation matrices and noticing that the “intersection” of each such matrix with any
critical path corresponds to an increasing subsequence in a certain permutation.

Our second contribution is a partial explanation of great practical perfor-
mance of the simple greedy algorithm for the permutation flow shop problem
with the makespan objective. This algorithm was first suggested by Nawaz, En-
score and Ham [17] and is also known under the name of “insertion heuristic”.
This algorithm initially orders jobs in the decreasing order of the job lengths
and inserts them one by one into the current schedule, always choosing the best
position for a job in the current permutation. Although this algorithm is very
simple and has superb practical performance [8], there is no analytical expla-
nation of this phenomenon. Many practical algorithms either directly use the
insertion heuristic or generalize it in some way. The natural way of analyzing
such a heuristic would be to define a potential function which is improved on
every step of the greedy procedure and prove some bound relating this func-
tion with the makespan. Although we were not able to apply this method to
the insertion heuristic, our derandomization algorithm follows this framework.
Moreover, our final derandomized algorithm resembles the greedy algorithm of
Nawaz, Enscore and Ham [17]. The difference is that our algorithm greedily
fixes the first few positions in the current permutation with respect to a cer-
tain potential function (derived from the concentration bound on length of the
longest increasing subsequence [9]), while the greedy algorithm [17] just fixes a
relative ordering of the first few jobs allowing unscheduled jobs to be scheduled
in between later on.

We then consider the weighted completion time objective (Section 4) and use
our algorithm for minimizing makespan to obtain an O(

√
min{m, n}) approxi-

mation algorithm for this problem. This algorithm uses the linear relaxation of
a natural integer programming formulation for the problem. Our rounding algo-
rithm is similar to the approach used in Queranne and Sviridenko [23] (and
many other papers on scheduling with the weighted completion time objec-
tive [11,1,10]); the difference is that we need to ensure that when we apply
the approach of geometric partitioning of the time interval, the schedule for
each such interval satisfies the permutation constraint. We also show a matching
Ω(
√

min{m, n}) lower bound on the integrality gap of our LP relaxation.

1.3 Preliminaries

An instance of the permutation flow shop problem with m machines and n jobs
is given by an m×n matrix P = {pi,j | i = 1, · · · , m, j = 1, · · · , n} of processing
times, where pi,j is the processing time of job j on machine i. We often denote

158 V. Nagarajan and M. Sviridenko

the set {1, · · · , n} of all jobs by [n], and the set {1, · · · , m} of all machines by [m].
Any feasible schedule for permutation flow shop corresponds to a permutation
of the n jobs. Given a permutation π : [n]→ [n] of jobs, the complete schedule of
job-operations on machines can be obtained by running jobs on machines in the
order π while maintaining the minimum possible wait-time between operations.
It is convenient to think of π as a mapping from the set of n possible positions
to the set of n jobs. Therefore, π(p) denotes the job located at position p. For
any permutation π of the n jobs and a job j ∈ [n], we use Cπ

j to denote the
completion time of job j under the schedule π; we also denote the makespan of
schedule π by Cπ

max = maxn
j=1 Cπ

j . Given non-negative weights {wj}nj=1 for the
jobs, the weighted completion time objective of the schedule corresponding to
permutation π is

∑n
j=1 wjC

π
j .

A monotone path (or critical path) in an m × n matrix is defined to be a
sequence 〈(x1, y1), · · · , (xt, yt)〉 of matrix positions such that (x1, y1) = (1, 1),
(xt, yt) = (m, n), and for each 1 ≤ i < t either xi+1 = xi + 1 & yi+1 = yi

or xi+1 = xi & yi+1 = yi + 1. In particular, this definition implies that each
monotone path in an m× n matrix consists of exactly t = m + n− 1 positions.
We denote the set of all monotone paths in an m× n matrix by Mm,n.

A map τ : [n] → X ∪ {φ} where X ⊆ [m] is called a partial permutation
if there is a subset Y ⊆ [n] with |Y | = |X | such that (i) τ(Y) = X (τ is a
one-to-one map from Y to X); and (ii) τ(z) = φ for all z ∈ [n] \ Y . For such a
partial permutation τ , we refer to the set X as its image, denoted Image(τ). A
0-1 m× n matrix Π is called a permutation matrix if every row and column has
at most one entry that is 1 (all other entries are 0s). Note that there is an obvious
correspondence between partial permutations and permutation matrices. In the
rest of the paper we will use partial permutations that map a subset of jobs into
a set of machines.

2 Randomized Algorithm for Minimizing Makespan

In this section, we give a randomized Θ(
√

min{m, n}) approximation guarantee
for minimizing makespan in the permutation flow shop problem. From the results
of Potts et al. [21], it follows that this result is the best possible using the
known lower bounds for this problem (namely, machine load & job length). Our
algorithm is extremely simple: always output a permutation chosen uniformly at
random. The rest of this section proves that this algorithm achieves a guarantee
of 2

√
min{m, n}.

Given any instance of permutation flow shop, consider the m×n matrix P of
processing times. We first show how P can be decomposed into a collection of
smaller matrices having certain properties.

Lemma 1. Given any matrix P ∈ Nm×n, there exist h = max{l, L} permuta-
tion matrices {Πk}hk=1 such that P =

∑h
k=1 Πk, where l = maxn

j=1{
∑m

i=1 pi,j}
and L = maxm

i=1{
∑n

j=1 pi,j}.
Proof: Define a bipartite multi-graph graph G corresponding to P as follows.
G has vertex bipartition [m] and [n]. For every i ∈ [m] & j ∈ [n], G contains

Tight Bounds for Permutation Flow Shop Scheduling 159

pi,j parallel edges between i & j. Note that the maximum degree of G is exactly
h = max{l, L}. By the König edge-coloring theorem for bipartite graphs there
is a valid coloring of the edges of G (no two adjacent edges receive the same
color) with h colors. Let E1, · · · , Eh denote the edges in each color class of such
a valid coloring. For each 1 ≤ k ≤ h, let Πk denote the m × n 0-1 matrix that
contains 1s in the positions corresponding to edges of Ek, and 0s everywhere
else. Since we have a valid coloring, each Ek is a matching in G; in other words,
the matrices {Πk}hk=1 are all permutation matrices. Further, since each edge of
G is assigned some color, we have P =

∑h
k=1 Πk. �

Recall that Mm,n denotes the set of all monotone paths in an m × n matrix.
In this section, m and n are fixed; so we abbreviate M = Mm,n. For any
permutation σ of the n jobs, monotone paths can be used to characterize the
makespan of the schedule resulting from σ as follows:

Cσ
max = max

α∈M

∑
(i,q)∈α

pi,σ(q)

Consider any permutation matrix Πk (k = 1, · · · , h) in the decomposition
of Lemma 1. Let the 1-entries of Πk be in positions {(xk

1 , yk
1), · · · , (xk

r , yk
r)},

where 1 ≤ xk
1 < · · · < xk

r ≤ m and yk
1 , · · · , yk

r ∈ [n] are distinct elements. Denote
Xk = {xk

1 , · · · , xk
r} and Yk = {yk

1 , · · · , yk
r}; clearly, |Xk| = |Yk| = r ≤ min{m, n}.

Define the map τk : [n] → Xk ∪ {φ} where τk(yk
g) = xk

g (for all 1 ≤ g ≤ r) and
τk(z) = φ for z /∈ Yk. Since each Πk is a permutation matrix, it follows that the
τk is a partial permutation for k = 1, . . . , h.

Finally, for any sequence S of elements from [m] ∪ φ, define I(S) to be the
length of the longest increasing subsequence of numbers in S (ignoring all oc-
currences of the null element φ).

Lemma 2. For any permutation σ on jobs and any monotone path α ∈M,

∑
(i,q)∈α

pi,σ(q) ≤
h∑

k=1

I(τk ◦ σ[n])

Proof: Clearly we have:

∑
(i,q)∈α

pi,σ(q) =
∑

(i,q)∈α

[
h∑

k=1

Πk(i, σ(q))] =
h∑

k=1

∑
(i,q)∈α

Πk(i, σ(q))

Now consider a particular permutation matrix Πk (for k = 1, · · · , h) and the
sum

∑
(i,q)∈α Πk(i, σ(q)).

Let Sk = {(i, q) ∈ α | Πk(i, σ(q)) = 1}; then the sum
∑

(i,q)∈α Πk(i, σ(q)) =
|Sk|. Since Πk has at most one non-zero entry in each row and column (given
by the partial permutation τk) and α is a monotone path, we obtain that Sk =
{(i1, q1), · · · , (it, qt)} (where t = |Sk|), with the following properties:

160 V. Nagarajan and M. Sviridenko

1. 1 ≤ i1 < · · · < it ≤ m and {i1, · · · , it} ⊆ Xk.
2. 1 ≤ q1 < · · · < qt ≤ n.
3. τk(σ(qg)) = ig for all 1 ≤ g ≤ t.

From the above, we have that i1 < i2 < · · · < it is an increasing subsequence of
length t in the sequence τk ◦σ[n] = 〈τk ◦σ(1), · · · , τk ◦σ(n)〉; namely given by the
positions q1 < q2 < · · · < qt. Thus the longest increasing subsequence in τk ◦σ[n]
has length at least |Sk|. In other words,

∑
(i,q)∈α Πk(i, σ(q)) ≤ I(τk ◦ σ[n]).

Summing this expression over all permutation matrices Πk for k = 1, · · · , h, we
obtain the statement of the Lemma. �

Note that the right hand side in the inequality in Lemma 2 does not depend on
the monotone path α; hence we obtain that Cσ

max = maxα∈M
∑

(i,q)∈α pi,σ(q) ≤
maxα∈M

∑h
k=1 I(τk ◦σ[n]) =

∑h
k=1 I(τk ◦σ[n]). We will also need the following:

Lemma 3 (Logan & Shepp [16]; Vershik & Kerov [31]). The expected
length of the longest increasing subsequence of a uniformly random permutation
on r elements is (2 + o(1))

√
r.

We are now ready for the main theorem of this section.

Theorem 1. Eσ[Cσ
max] ≤ (2+o(1))h·√min{m, n}. Hence there is a randomized

polynomial time (2
√

min{m, n})-approximation algorithm for the permutation
flow shop problem.

Proof: From the linearity of expectation, Lemma 2 and the comment following
it, it suffices to bound Eσ[I(τk ◦σ[n])] for each 1 ≤ k ≤ h. Fix a 1 ≤ k ≤ h: since
σ is chosen uniformly at random over all permutations, the jobs from Yk are
ordered uniformly at random. Thus τk ◦ σ[n] is a uniformly random ordering of
the elements Xk (ignoring occurrences of φ). Applying Lemma 3, we immediately
obtain the following which proves the theorem.

Eσ[I(τk ◦ σ[n])] ≤ (2 + o(1))
√
|Xk| ≤ (2 + o(1))

√
min{m, n}.

Thus we have a very simple randomized Θ(
√

min{m, n})-approximation algo-
rithm for the permutation flow shop problem, based on the trivial lower bound.
Potts et al. [21] gave a family of examples where the optimal permutation sched-
ule has length at least 1√

2

√
min{m, n} times the lower bound. Hence our result

is the best possible guarantee (within a factor of 2
√

2) using these lower bound.
We note that Theorem 1 also implies that for any instance of flow shop schedul-
ing, there is a permutation schedule of length at most 2

√
min{m, n} times the

length of an optimal non-permutation schedule; hence this resolves positively
the open question in Potts et al. [21] regarding the gap between permutation &
non-permutation schedules.

Tight Example. The following simple example shows that the performance
guarantee of this randomized algorithm is tight. There are n jobs and m = 2n

Tight Bounds for Permutation Flow Shop Scheduling 161

machines. Each job j (for 1 ≤ j ≤ n) has processing time 1 on machines j and
n + j, and 0 elsewhere. The optimal permutation of jobs is n, n− 1, · · · , 1 which
results in a makespan of 2. However, it follows from Lemma 3 that a random
permutation has expected makespan at least 2

√
n.

3 A Deterministic Algorithm

We apply the technique of pessimistic estimators due to Raghavan [24] to de-
randomize the algorithm of the previous section, and obtain a deterministic
Θ(
√

min{m, n})-approximation guarantee. We first apply the decomposition of
Lemma 1 to obtain h permutation-matrices Π1, · · · , Πh corresponding to P . By
assigning weights w1, · · · , wh ∈ N to each of these permutations, we can ensure
that P =

∑h
k=1 wk ·Πk and h ≤ mn; here

∑h
k=1 wk is the trivial lower-bound for

the flowhop instance. This computation can be done easily in polynomial time by
iteratively using any bipartite matching algorithm. There are many more efficient
algorithms for computing an edge-coloring in bipartite multigraphs (See the table
in Section 20.9b [27] for running times and references for various edge-coloring
algorithms). Further Lemma 2 implies that for any permutation σ : [n]→ [n] of
the jobs, the resulting makespan Cσ

max ≤ C∗(σ) .=
∑h

k=1 wk ·I(τk ◦σ), where τks
are the partial permutations corresponding to the permutation-matrices Πks.
From the previous section, we have that Eσ[C∗(σ)] ≤ 2

√
min{m, n} ·∑h

k=1 wk.
In this section, we give a deterministic algorithm that obtains a permutation σ
satisfying C∗(σ) ≤ 3

√
min{m, n} ·∑h

k=1 wk.
In particular, we show that given any collection of h partial permutations

τ1, · · · , τh : [n] → [m] ∪ {φ}, each having a non-empty value on at most r
elements, and associated weights {wk}hk=1, there is a polynomial time deter-
ministic algorithm that computes a single permutation σ : [n] → [n] satisfying
C∗(σ) =

∑h
k=1 wk ·I(τk◦σ[n]) ≤ 3

√
r·∑h

k=1 wk. This immediately implies the de-
sired deterministic approximation guarantee for the permutation flow shop prob-
lem since each partial permutation has an image of size at most r ≤ min{m, n}.
In the following, we refer to a permutation that is chosen uniformly at random
as u.a.r. permutation.

The algorithm first computes the partial permutations τk and weights wk

for k = 1, . . . , h, and then builds the solution σ incrementally. In each step i =
1, . . . , n we suitably fix the value of σ(i) that results in a prefix of the permutation
〈σ(1), . . . , σ(i)〉, i.e. we fix jobs located in the first i positions. The choices for
σ(i) in each step i are made in such a way that finally, C∗(σ) ≤ 3

√
r ·∑h

k=1 wk.
Define the following quantities for any partial permutation τk (1 ≤ k ≤ h), step
0 ≤ i ≤ n, and elements a1, · · · , ai ∈ Image(τk) ∪ {φ}:

Ek
i (a1, · · · , ai)

.=
expected value of the longest increasing subsequence
in 〈a1, · · · , ai, τ〉, where τ is a permutation
on Image(τk) \ {a1, · · · , ai} picked u.a.r.

Uk
i (a1, · · · , ai)

.= an efficiently computable upper bound on Ek
i (a1, · · · , ai)

(exact definition later).

162 V. Nagarajan and M. Sviridenko

In the above definitions, the elements a1, · · · , ai represent the values τk ◦
σ(1), · · · , τk ◦σ(i) respectively, obtained from the first i positions of permutation
σ, that have been fixed thus far. We also define the expected value of function
C∗(σ) in step i as functions of the first i positions of permutation σ (that have
been fixed):

Ei(σ(1), · · · , σ(i)) : expected value Eσ(i+1)···σ(n)[C∗(σ)], with 〈σ(i + 1) · · ·σ(n)〉
being a u.a.r. permutation on [n] \ {σ(1), · · · , σ(i)}

Note that for any 1 ≤ k ≤ h, since 〈σ(i + 1), · · · , σ(n)〉 is u.a.r. permutation
on [n] \ {σ(1), · · · , σ(i)}, we obtain that 〈τk ◦ σ(i + 1), · · · , τk ◦ σ(n)〉 is u.a.r.
permutation on Image(τk) \ {τk ◦ σ(j) : 1 ≤ j ≤ i}. Thus we can rewrite Ei as:

Ei(σ(1), · · · , σ(i)) .=
h∑

k=1

wk ·Ek
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

We also define the efficiently computable upper bound on Ei as:

Ui(σ(1), · · · , σ(i)) .=
h∑

k=1

wk · Uk
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

The precise definition of the upper bound functions Uk
i for k = 1, . . . , h and

i = 0, . . . , n appears in the next subsection. In Lemmas 4 and 5, we prove some
important properties of the functions Ui, which allow us to derandomize the
algorithm of the previous section to obtain Theorem 2.

3.1 Properties of the Pessimistic Estimator

Recall the definition of Ek
i (a1, · · · , ai); we now construct an upper bound

Uk
i (a1, · · · , ai) for this expected value. Fix a parameter t = 3

√
r, where r =

maxh
k=1 |Image(τk)| is an upper bound on the length of each partial permu-

tation. Define Sk
i (a1, · · · , ai) to be the expected number of t-length increasing

subsequences in 〈a1, · · · , ai, τ〉, when τ is u.a.r. permutation on Image(τk) \
{a1, · · · , ai}. We can now upper bound Ek

i (a1, · · · , ai), the expected length of
the longest increasing subsequence in 〈a1, · · · , ai, τ〉, as follows:

Ek
i (a1, · · · , ai)≤ t · Prτ [〈a1,· · ·, ai, τ〉 has no t-length increasing subsequence]

+ r · Prτ [〈a1,· · ·, ai, τ〉 contains a t-length increasing subsequence]
≤ t+r · Prτ [〈a1,· · ·, ai, τ〉 contains a t-length increasing subsequence]
≤ t+r · Sk

i (a1, · · · , ai)

Define the upper bound Uk
i on the expected value Ek

i as:

Uk
i (a1, · · · , ai)

.= t + r · Sk
i (a1, · · · , ai) ∀1 ≤ k ≤ h

Let Nk
i = Image(τk) \ {a1, · · · , ai} ⊆ [m]; and for any set T , let P(T) denote the

set of all permutations of the elements of T . We first show that each Uk
i can be

efficiently computed, which implies the same for the functions {Ui}ni=0.

Tight Bounds for Permutation Flow Shop Scheduling 163

Lemma 4. For any 1 ≤ k ≤ h, i ∈ {0, · · · , n} and a1, · · · , ai ∈ Image(τk)∪{φ},
the value Uk

i (a1, · · · , ai) can be computed exactly in polynomial time.

Proof: Fix any values of 1 ≤ k ≤ h, 0 ≤ i ≤ n and a1, · · · , ai ∈ Image(τk)∪{φ}.
Clearly it suffices to show that Sk

i (a1, · · · , ai) can be computed in polynomial
time. We say that a t-length increasing subsequence s is feasible if there is some
permutation τ ∈ P(Nk

i) such that s is a subsequence in 〈a1, · · · , ai, τ〉. Let I
denote the set of all such feasible t-length increasing subsequences. Then we can
partition I as

(� {Ij,q | 1 ≤ j ≤ i & 1 ≤ q ≤ t}) � I0,0 where:

I0,0 = {τ0 | τ0 is a t-length increasing sequence of numbers from Nk
i }

Ij,q =
{
〈τ ′, τ ′′〉

∣∣∣∣
τ ′ is a q length increasing subsequence in 〈a1, · · · , aj〉
ending at aj �= φ, and τ ′′ is a t− q length increasing
sequence of numbers from {e ∈ Nk

i : e > aj}

}

Note that given any j ∈ {1, · · · , i} and q ∈ {1, · · · , t}, one can compute in
polynomial time, the number of q-length increasing subsequences in 〈a1, · · · , aj〉
that end at aj ; we denote this quantity by #I(j, q). The computation of #I(j, q)
is based on a dynamic program using the following recurrence:

#I(j, q) =

⎧⎨
⎩
∑{#I(j′, q − 1) | 1 ≤ j′ < j, aj′ < aj} aj �= φ, q ≥ 2
1 aj �= φ, q = 1
0 aj = φ

For ease of notation in the following, let #I(0, 0) = 1. For every 1 ≤ j ≤ i,
denote the set {e ∈ Nk

i : e > aj} by Lj , and also let L0 = Nk
i . Note that,

for each part Ij,q (in the partition of I), its size |Ij,q| = #I(j, q) · (|Lj|
t−q

)
(the

first term corresponds to a q length increasing subsequence of 〈a1, · · · , aj〉, and
the second term corresponds to a t − q length increasing sequence from Lj).
When τ ∈ P(Nk

i) is picked u.a.r., the induced permutation on each set Lj (for
0 ≤ j ≤ i) is also u.a.r. Hence for each part Ij,q, the probability that any
particular subsequence s ∈ Ij,q appears in 〈a1, · · · , ai, τ〉 is exactly 1/(t − q)!.
(the last t− q entries of s come from the random permutation τ). So we have:

Eτ

[|{s ∈ Ij,q : s is subsequence of 〈a1, · · · , ai, τ〉}|
]

=
∑

s∈Ij,q
Prτ

[
s is subsequence of 〈a1, · · · , ai, τ〉

]
= |Ij,q| · 1

(t−q)!

= #I(j, q) · (|Lj|
t−q

) · 1
(t−q)!

Thus, we can write Sk
i (a1, · · · , ai) as

Eτ∈P(Nk
i)

[|{s ∈ I : s is subsequence of 〈a1, · · · , ai, τ〉}|
]

=
∑

j,q Eτ∈P(Nk
i)

[|{s ∈ Ij,q : s is subsequence of 〈a1, · · · , ai, τ〉}|
]

=
∑

j,q #I(q, j) · (|Lj|
t−q

) · 1
(t−q)!

The lemma follows. �

164 V. Nagarajan and M. Sviridenko

Lemma 5. For any 0 ≤ i ≤ n and any prefix (possibly empty) σ(1), · · · , σ(i) ∈
[n] of a permutation σ,

min
σ(i+1)∈[n]\{σ(1),··· ,σ(i)}

Ui+1(σ(1), · · · , σ(i), σ(i + 1)) ≤ Ui(σ(1), · · · , σ(i))

Proof: Fix any i and a prefix σ(1), · · · , σ(i) of a permutation σ, and let M =
[n] \ {σ(1), · · · , σ(i)}. We first prove the following for an arbitrary 1 ≤ k ≤ h:

Sk
i (τk ◦ σ(1), · · · , τk ◦ σ(i)) =

1
n− i

∑
x∈M

Sk
i+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x)) (1)

For ease of notation, let ak
j = τk ◦ σ(j) for all 1 ≤ j ≤ i. Let Nk

i = Image(τk) \
{ak

1 , · · · , ak
i } ⊆ [m] denote the remaining elements of Image(τk), and nk

i = |Nk
i |.

Recall that,

Sk
i (ak

1 ,· · ·, ak
i)=Eτ [number of t-length increasing subsequences in 〈ak

1 · · · ak
i , τ〉]

where τ ∈ P(Nk
i) is picked u.a.r. So multiplying both sides of (1) by nk

i ! =
|P(Nk

i)|, we can rewrite its left hand side as:

LHS′ = nk
i ! × Sk

i (ak
1 , · · · , ak

i) =
∑

τ∈P(Nk
i)

#It(ak
1 , · · · , ak

i , τ) (2)

Above, for any sequence s, #It(s) denotes the number of t-length increasing
subsequences in s. To compute the right hand side of (1), we split the summation
into M (k) = {x ∈ M | τk(x) �= φ} and M \M (k) = {x ∈ M | τk(x) = φ}. Note
that |M | = n− i and |M (k)| = nk

i . For any x ∈ M \M (k), it is easy to see that
Sk

i+1(a
k
1 , · · · , ak

i , τk(x)) = Sk
i (ak

1 , · · · , ak
i). Now the right hand side of (1) (scaled

by nk
i !) can be written as:

nk
i ! × n− i− nk

i

n− i
Sk

i (ak
1 , · · · , ak

i) + nk
i ! × 1

n− i

∑
x∈M(k)

Sk
i+1(a

k
1 , · · · , ak

i , τk(x))

= (1− nk
i

n− i
)LHS′ + nk

i ! × 1
n− i

∑
x∈M(k)

Sk
i+1(a

k
1 , · · · , ak

i , τk(x))

Thus in order to prove (1), it suffices to show:

LHS′ = (nk
i − 1)! ×

∑
x∈M(k)

Sk
i+1(a

k
1 , · · · , ak

i , τk(x)) (3)

Note that τk induces a bijection between M (k) and Nk
i : |M (k)| = |Nk

i | and
τk(M (k)) = Nk

i . Thus we can rewrite the right hand side in (3) as:

(nk
i − 1)!

∑
y∈Nk

i

Sk
i+1(a

k
1 , · · · , ak

i , y) =
∑

y∈Nk
i

∑
τ ′∈P(Nk

i \y)

#It(ak
1 , · · · , ak

i , y, τ ′)

Tight Bounds for Permutation Flow Shop Scheduling 165

To prove (3), using the expression for LHS′ from (2), it suffices to show that:∑
τ∈P(Nk

i)

#It(ak
1 , · · · , ak

i , τ) =
∑

y∈Nk
i

∑
τ ′∈P(Nk

i \y)

#It(ak
1 , · · · , ak

i , y, τ ′)

Now observe that P(Nk
i) = �y∈Nk

i
{〈y, τ ′〉 | τ ′ ∈ P(Nk

i \ y)}. Thus the summa-
tions in the two expressions above run over exactly the same set of sequences,
and this implies equality (3) which in turn gives equation (1). We are now ready
to complete the proof of the lemma.

min
σ(i+1)∈M

Ui+1(σ(1), · · · , σ(i), σ(i + 1)) ≤ 1

n− i

�

x∈M

Ui+1(σ(1), · · · , σ(i), x)

=
1

n− i

�

x∈M

h�

k=1

wk

�
t + r · Sk

i+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x))
�

=
|M |
n− i

· t
h�

k=1

wk +
1

n− i

�

x∈M

r ·
h�

k=1

wk · Sk
i+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x))

= t

h�

k=1

wk + r ·
h�

k=1

wk · 1

n− i

�

x∈M

Sk
i+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x))

= t

h�

k=1

wk + r ·
h�

k=1

wk · Sk
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

�
Using equation (1)

�

=
h�

k=1

wk · Uk
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

= Ui(σ(1), · · · , σ(i))

Thus we have the lemma. �

3.2 Applying the Pessimistic Estimators

We now use the upper-bound functions Ui for i = 1, . . . , n described in the
previous subsection to obtain a deterministic approximation algorithm for the
permutation flow shop problem. This algorithm follows the general framework
of the method of pessimistic estimators.

Theorem 2. There is a deterministic polynomial time 3
√

min{m, n} approxima-
tion algorithm for the permutation flow shop scheduling problem with makespan
objective.

Proof: We now describe our final deterministic algorithm:

1. Decompose the matrix P of processing times according to Lemma 1, to ob-
tain h ≤ mn permutation-matrices with corresponding weights {Πk, wk}hk=1,
such that P =

∑h
k=1 wk · Πk and

∑h
k=1 wk equals the trivial lower-bound

for the permutation flow shop instance.

166 V. Nagarajan and M. Sviridenko

2. For each 1 ≤ k ≤ h, τk denotes the partial permutation corresponding to
permutation-matrix Πk.

3. For each i = 1, · · · , n: set σ(i)← x for the value x ∈ [n]\{σ(1), · · · , σ(i−1)}
that minimizes the function value Ui(σ(1), · · · , σ(i− 1), x).

As mentioned earlier, the decomposition in step 1 can be carried out in poly-
nomial time using an edge-coloring algorithm. In step 3, the algorithm uses the
efficiently computable functions {Ui}ni=0 (see Lemma 4) to fix the solution σ step
by step. Hence the above algorithm runs in polynomial time. The rest of this
proof shows that it achieves the desired approximation guarantee.

We claim that for each i ∈ {0, · · · , n}, Ui(σ(1), · · · , σ(i)) ≤W · (t + 2) where
W =

∑h
k=1 wk is the trivial lower-bound (recall that t = 3

√
r ≤ 3

√
min{m, n}).

Assuming that the base case (i.e. i = 0) for this claim holds, using Lemma 5 and
induction, we obtain that the claim is true for all values of i ≥ 1. It remains to
prove the claim for i = 0: here U0 takes no arguments and is a fixed value U0 =
tW + r

∑h
k=1 wk ·Sk

0 . From the definition of the Sk
i s, we have that each Sk

0 is the
expected number of t-length increasing subsequences in a u.a.r. permutation of
Image(τk). Since Image(τk) has at most r elements, using linearity of expectation,
it follows that Sk

0 ≤
(
r
t

) · 1
t! for every k = 1, · · · , h. We have,

U0 ≤ tW + rW

(
r

t

)
1
t!

= tW + rW
r!

(r − t)!t!
1
t!
≤ tW + rW

rt

(t!)2

≤ tW + rW

(
re2

t2

)t

= tW + rW

(
e2

9

)t

= tW + rW
(e

3

)6
√

r

≤W · (t + 2)

Now observe that after the last step, En(σ(1), · · · , σ(n)) is exactly the value
C∗(σ) (at this point all positions have been fixed, so there is no randomness
left in the expected value En). Since the function Un upper bounds En, we
have C∗(σ) = En(σ(1), · · · , σ(n)) ≤ Un(σ(1), · · · , σ(n)) ≤ W · (t + 2). Now the
theorem follows from the fact that W equals the trivial lower-bound for the
permutation flow shop instance and r ≤ min{m, n}. �

4 Weighted Sum of Completion Times

In this section, we consider the permutation flow shop problem with the ob-
jective being the weighted sum of completion times. We show that our algo-
rithm for the makespan objective can be used within an LP-based approach
to obtain an O(

√
min{m, n}) approximation algorithm for weighted completion

time. This approach is similar to that used in Queyranne and Sviridenko [23]
(and many other papers on scheduling with the weighted completion time objec-
tive [11,1,10]), where the authors considered a class of job shop problems (these
do not have the permutation constraint). We consider the following linear relax-
ation for the permutation flow shop problem with weighted completion time as
objective. In fact this LP is a relaxation for even the usual flow shop problem
(without the permutation constraint), and is a special case of the LP studied
in [23].

Tight Bounds for Permutation Flow Shop Scheduling 167

min
n∑

j=1

wj · Cj , (4)

z1,j ≥ p1,j, ∀1 ≤ j ≤ n (5)
zi,j ≥ zi−1,j + pi,j , ∀2 ≤ i ≤ m, 1 ≤ j ≤ n (6)∑

j∈A

pi,j · zi,j ≥ 1
2
(
∑
j∈A

pi,j)2 +
1
2

∑
j∈A

p2
i,j , ∀A ⊆ [n], 1 ≤ i ≤ m, (7)

Cj = zm,j, ∀1 ≤ j ≤ n (8)
zi,j ≥ 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n (9)

Using this LP, the standard geometric partitioning technique and our algorithm
for the problem with the makespan objective we were able to prove.

Theorem 3. There is a polynomial time O(
√

min{m, n}) approximation algo-
rithm for minimizing weighted completion time in the permutation flow shop
problem.

References

1. Chakrabarti, S., Phillips, C., Schulz, A., Shmoys, D., Stein, C., Wein, J.: Improved
Scheduling Algorithms for Minsum Criteria. In: Meyer auf der Heide, F., Monien,
B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 646–657. Springer, Heidelberg (1996)

2. Chazelle, B.: The discrepancy method. Randomness and complexity. Cambridge
University Press, Cambridge (2000)

3. Chen, B., Potts, C., Woeginger, G.: A review of machine scheduling: complexity,
algorithms and approximability. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook
of combinatorial optimization, vol. 3, pp. 21–169. Kluwer Academic Publishers,
Boston (1998)

4. Conway, R., Maxwell, W., Miller, L.: Theory of scheduling. Addison-Wesley Pub-
lishing Co., Reading, Mass, London, Don Mills, Ont. (1967)

5. Czumaj, A., Scheideler, C.: A New Algorithmic Approach to the General Lovasz
Local Lemma with Applications to Schedulung and Satisfiability Problems. In:
Proc. 32 ACM Symposium on Theory of Computing (STOC) (2000)

6. Feige, U., Scheideler, C.: Improved bounds for acyclic job shop scheduling. In:
STOC 1998. Proceedings of the 30th Annual ACM Symposium on Theory of Com-
puting, pp. 624–633. ACM Press, New York (1998)

7. Fishkin, A., Jansen, K., Mastrolilli, M.: On minimizing average weighted comple-
tion time: a PTAS for the job shop problem with release dates. In: Ibaraki, T.,
Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 319–328. Springer,
Heidelberg (2003)

8. Framinan, J., Gupta, J., Leisten, R.: A review and classification of heuristics for
permutation flow-shop scheduling with makespan objective. Journal of the Opera-
tional Research Society 55, 1243–1255 (2004)

9. Frieze, A.: On the length of the longest monotone subsequence of a random per-
mutation. The Annals of Applied Probability 1(2), 301–305 (1991)

10. Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to Minimize Average Completion
Time: Off–line and On–line Algorithms. In: Proceedings of the 7th Symposium on
Discrete Algorithms, pp. 142–151 (1996)

168 V. Nagarajan and M. Sviridenko

11. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to Minimize Average
Completion Time: Off–Line and On–Line Approximation Algorithms. Mathematics
of Operations Research 22, 513–544 (1997)

12. Jansen, K., Solis-Oba, R., Sviridenko, M.: Makespan Minimization in Job Shops:
a Linear Time Approximation Scheme. SIAM Journal of Discrete Mathematics 16,
288–300 (2003)

13. Johnson, S.: Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quartely 1, 61–68 (1954)

14. Hofri, M.: Probabilistic Analisys of Algorithms: On Computing Metodologies for
Computing Algorithms Performance Evaluation. Springer, Heidelberg (1987)

15. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and
scheduling: Algorithms and complexity. In: Handbook in Operations Research and
Management Science, vol. 4, pp. 445–522. North-Holland, Amsterdam (1993)

16. Logan, B.F., Shepp, L.A.: A Variational Problem for Random Young Tableaux.
Advances in Mathematics 26, 206–222 (1977)

17. Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine n-
job flow-shop sequencing problem. OMEGA International J. Management Sci. 11,
91–95 (1983)

18. Nowicki, E., Smutnicki, C.: New results in the worst-case analysis for flow-shop
scheduling. Discrete Appl. Math. 46, 21–41 (1993)

19. Nowicki, E., Smutnicki, C.: Worst-case analysis of an approximation algorithm for
flow-shop scheduling. Oper. Res. Lett. 8, 171–177 (1989)

20. Nowicki, E., Smutnicki, C.: Worst-case analysis of Dannenbring’s algorithm for
flow-shop scheduling. Oper. Res. Lett. 10, 473–480 (1991)

21. Potts, C., Shmoys, D., Williamson, D.: Permutation vs. nonpermutation flow shop
schedules. Operations Research Letters 10, 281–284 (1991)

22. Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Programming
Ser. A 58(2), 263–285 (1993)

23. Queyranne, M., Sviridenko, M.: Approximation Algorithms for Shop Scheduling
Problems with Minsum Objective. Journal of Scheduling 5, 287–305 (2002)

24. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximat-
ing packing integer programs. J. Comput. System Sci. 37, 130–143 (1988)

25. Röck, H., Schmidt, G.: Machine aggregation heuristics in shop-scheduling. Methods
of Operations Research 45, 303–314 (1983)

26. Sevast’janov, S.: On some geometric methods in scheduling theory: a survey. Dis-
crete Applied Mathematics 55, 59–82 (1994)

27. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. In: Algorithms
and Combinatorics, vol. B 24. Springer, Berlin (2003)

28. Shmoys, D., Stein, C., Wein, J.: Improved Approximation Algorithms for Shop
Scheduling Problems. SIAM Journal on Computing 23(3), 617–632 (1994)

29. Sviridenko, M.: A Note on Permutation Flow Shop Problem. Annals of Operations
Research 129, 247–252 (2004)

30. Smutnicki, C.: Some results of the worst-case analysis for flow shop scheduling.
European Journal of Operational Research 109, 66–87 (1998)

31. Vershik, A.M., Kerov, S.V.: Asymptotics of the Plancherel measure of the sym-
metric group and the limit form of Young tableaux. Dokl. Akad. Nauk SSSR 233,
1024–1027 (1977)

The Stochastic Machine Replenishment Problem

Kamesh Munagala� and Peng Shi��

Department of Computer Science, Duke University, Durham NC 27708-0129
kamesh@cs.duke.edu, peng.shi@duke.edu

Abstract. We study the stochastic machine replenishment problem,
which is a canonical special case of closed multiclass queuing systems
in Markov decision theory. The problem models the scheduling of pro-
cessor repairs in a multiprocessor system in which one repair can be made
at a time and the goal is to maximize system utilization. We analyze the
performance of a natural greedy index policy for this problem. We first
show that this policy is a 2 approximation by exploring linear queuing
structure in the index policy. We then try to exploit more complex queu-
ing structures, but this necessitates solving an infinite-size, non-linear,
non-convex, and non-separable function-maximization program. We de-
velop a general technique to solve such programs to arbitrary degree of
accuracy, which involves solving a discretized program on the computer
and rigorously bounding the error. This proves that the index policy is
in fact a 1.51 approximation.

The main non-trivial ingredients of the proof are two folds: finding a
way to analyze the complex queuing structure of the index policy, and
bounding the error in discretization when numerically solving the non-
linear function-maximization. We believe that this framework is general
enough to be useful in the analysis of index policies in related problems.
As far as we are aware, this is one of the first non-trivial approximation
analysis of an index policy a multi-class queuing problem, as well as
one of the first non-trivial example of an approximation ratio that is
rigorously proven by numerical optimization via a computer.

1 Introduction

We study the performance of greedy priority schemes (or index policies) for
the stochastic machine replenishment problem, which is a canonical special case
of the well-studied but notoriously intractable closed multi-class queuing sys-
tems [3,11,17] in decision theory. This problem models how to maximize output
in a multi-machine system in which machines can break down and there’s a
maintenance constraint. The problem is formally stated below.

Problem 1. There are n machines, labelled 1, 2, . . . , n. Each machine can be ei-
ther “active” or “broken”, and all machines are active at the start of the process.
When machine i is active, it yields reward at rate ri; when it’s broken, it yields
� Supported by NSF grant CNS-0540347.

�� This research was supported by the Duke University Work-Study Program.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 169–183, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

170 K. Munagala and P. Shi

nothing. If machine i is currently active, it transitions to the broken state ac-
cording to a memoryless random process, independent from the other machines,
at rate pi. (The time it takes for machine i to break down is an independent
random variable distributed as Exponential(pi)).

There is a preemptive Markovian repair process which can work on one broken
machine at a time. This process is guided by a repair policy, which decides
which of the currently broken machine to repair. If the policy chooses to service
machine i, it incurs a cost of ci, and machine i transitions back to the active
state according to a memoryless random process with rate 1. (The time it takes
to repair any machine is a random variable distributed as Exponential(1)). The
policy can interrupt a maintenance and begin working on another machine at
any time. The goal is to design the repair policy that maximizes the infinite
horizon time-average reward minus cost, which is the “value” of the policy.

For simplicity, we assume that time is continuous in the proceeding analysis. The
memoryless and preemptive properties in our model imply that repair policies are
Markovian, meaning that only information about the current state (i.e. the set
of broken machines) matters, and not information such as residual service times.
Such Markovian models are widely used for studying processor performance in
multiprocessor systems [10].

Our problem can be viewed as a Markov Decision Process (MDP). In such
problems, a policy chooses an action for every state, and this defines a Markov
chain with specific values related to each node. The problem reduces to maxi-
mizing the total value of the Markov chain by optimizing over the policies. While
dynamic programming algorithms find the optimal policy [2], the computation
could take exponential time, and the policy could take exponential space to store
since the number of states is 2n.

This leads to the question: Is there a simpler description of the optimal policy?
In particular, is the optimal policy an “index” or priority policy of the following
nature: compute an “index” for each machine based on its parameters and state,
and repair the machine with the “index.” In our problem, since only broken
machines need to be maintained, this corresponds to maintaining based on a
fixed priority ordering. For a related and well-studied problem–the stochastic
multi-armed bandits problem [2,8,18]–there is a simple and elegant optimal index
policy termed the Gittins index policy [8]. The following example illustrates that
no index policy can be optimal.

Example 1. The following 3 machine example shows that no index policy is
optimal; All ci = 0, and (r1, p1) = (1, 1/4), (r2, p2) = (4, 1/4) and (r3, p3) =
(7, 2/3). The optimal policy, when some two machines are broken, gives machine
3 the highest priority, and machine 2 the next highest. But when all 3 machines
are broken, the policy maintains machine 2. Since the relative order between
machine 2 and 3 depends on the status of machine 1, this is not an index policy.
This policy has value 7.4266, while the value of the best index policy (which has
the priority order 2 > 3 > 1) is 7.4243.

The Stochastic Machine Replenishment Problem 171

This result is not surprising – a very similar problem (with rewards replaced by
costs) is mentioned in [2] (vol. 2, ch. 1) as the simplest variant of the multi-armed
bandits problem for which no index policy is optimal.

Though index policies are sub-optimal, they are desirable for their simplicity
and ease of implementation. They are widely used as heuristics for the multi-
class queuing and restless bandit problems [19,16,4]. For our problem, the next
natural question is whether there is an index policy that is nearly optimal?

The simplest and most natural priority scheme is the following: Repair the
machine that maximizes the ratio between the expected gain and the expected
repair time. The expected gain from machine i until it next breaks down is
ri

pi
− ci and the expected repair time is 1. Therefore, this scheme corresponds to

priority-ordering the machines in decreasing order of Ri = ri

pi
− ci. We term this

the Greedy policy. In addition to being intuitive, this policy naturally falls out
of a LP relaxation for the problem (Section 2).

One immediate question is whether Greedy is the optimal priority scheme.
Unfortunately, the Greedy policy is not optimal even for two machines, where
any policy is a priority scheme.

Example 2. Consider two machines with c1 = c2 = 0, (r1, p1) = (0.282+ε, 0.282)
and (r2, p2) = (2.704, 2.704) (ε � 1). The Greedy policy gives priority to
machine 1 and has value 0.8, whereas prioritizing machine 2 yields value 0.856.

In the same vein, for the following three machine example, the optimal policy
is not an index policy, and the optimal index policy is not the Greedy policy:
all ci = 1, (r1, p1) = (r2, p2) = (1, 1/4), and (r3, p3) = (4, 3/2).

Nevertheless, we show that the value of Greedy is always within a factor of 1.51
of the optimal value. At the end of the paper, we use insights from our analysis
to construct a bad example (Example 3), in which the optimal policy is more
than 1.3 times better Greedy. This shows that our 1.51 bound is reasonably
sharp. The main contribution of this paper is in analyzing Greedy through a
numerical-based technique, which can exploit queuing structure more effectively
than can conventional techniques.

Technical Contributions: In Section 2, we get a handle of the optimal policy
by upper-bounding it using a simple linear program, which turns out to be the
same as the LP that describes fractional knapsack. We reduce the problem to a
program which has already been solved in a paper on stochastic knapsack [5,6],
and this shows that Greedy is a 2 approximation.

The resultant worst-case ratio from such conventional techniques is the same
as that of deterministic machine replenishment problem [1,13], where a similar
greedy scheme is shown to be a 2 approximation. Their analysis is based on
rounding the solution to a convex program, which ignores the stochastic queu-
ing interactions in our problem. In fact, our stochastic problem should be less
“worst-case” since the optimal policy can not predict what exactly happens in
the stochastic queuing interactions. But converting this intuition into an im-
proved approximation ratio is non-trivial, since the active and inactive periods

172 K. Munagala and P. Shi

for different machines interact via a complicated queuing process. (The Greedy
policy corresponds to a non-symmetric Markov chain with 2n nodes).

We proceed to prove a 1.51 approximation ratio using unconventional,
computer-based techniques. In section 3, we construct an improved lower-bound
for the contribution of each machine, taking into account its placement in the
priority order and information about other machines. In section 4, we use this
lower-bound show that the improved performance lower-bound for Greedy (rel-
ative to the LP value) is the solution of a non-convex, non-linear optimization
program with infinitely many variables. (In fact, it is equivalent to computing
the shortest path in an infinite graph). Finally, we approximate the program
using a computer, and rigorously prove that the error in approximation is small.
This proves the 1.51 approximation ratio. We believe that our technique provides
a general framework for optimizing lower-bounds of a type that is likely to arise
in related stochastic optimization problems.

Related Work: The stochastic machine maintenance problem is a closed multi-
class queuing problem [3,11,17]. In general, there are several queues with servers,
each of which provides service to packets in different service classes at different
rates. When a packet completes service, it can transition to a different class and
enter a different queue. The service completions are associated with costs and
rewards. A policy in multi-class queuing specifies for each server which packet to
receive service at each time instant. The machine replenishment problem can be
modeled as a multi-class queuing problem as follows: Each machine is a “packet”
and is associated with an “active” queue, where it receives service at rate pi and
reward at rate ri. There is a common “broken” queue to which the packet tran-
sitions upon finishing service in its active queue. The server for the broken queue
operates at rate 1 and a packet pays ci upon finishing service. Since the multi-
class queuing problems are in general PSPACE-hard to approximate [17], little
is known in terms of analytic guarantees of natural policies for these problems.
As far as we are aware, our results provide the first analysis of a natural greedy
policy for such a problem.

The idea to derive a program whose solution is the approximation ratio is not
new: “Factor-revealing Linear Programs” have been used for analyzing greedy
algorithms for facility location [12], min-sum set cover [15], and online match-
ing [14]. Since our program is non-linear and non-convex, we need our numerical
machinery to solve for the approximation ratio.

The first part of our work is similar to the adaptivity gap proofs for greedy
placement policies for stochastic knapsack by Dean, Goemans, and Vondrák [5,6].
Their analysis of the greedy algorithm uses a nice analytic/geometric argument
to bound the worst case ratio of two functions. In fact, our 2 approximation anal-
ysis reduces to using exactly the same functions. But to yield a tighter bound,
one needs to better exploit the queuing theoretic component of the problem and
construct more complex bounding expressions. The second part of our work is
similar to Goemans and Kleinberg’s approxmation analysis [9] for the minimum
latency problem. They also use a shortest path to compute their approximation

The Stochastic Machine Replenishment Problem 173

ratio, but since their expression for edge lengths is simple, they can compute
their shortest path analytically. In contrast, the complexity of our bounding
expressions necessitates our computational approach.

2 LP Bound and the 2 Approximation

Definition 1. In addition to n, ri, pi, ci defined in Problem 1, define

– ti = pi

1+pi
(maximum rate of maintenance for machine i, corresponding to

repairing it as soon as it’s broken),
– Ri =

(
ri

pi
− ci

)
(expected net gain per maintenance for machine i).

As described in Section 1, the natural Greedy policy prioritizes the machines in
decreasing order of Ri and repairs the broken machine with the highest priority
(provided the corresponding Ri > 0). For simplicity of analysis, add a dummy
machine with p =∞, r = c = R = 0. Moreover, renumber the machines so that
R1 ≥ R2 ≥ · · · ≥ Rn. We upper-bound the value of the optimal policy by a
linear program.

Theorem 1. The following is an LP relaxation for Problem 1:

max

{
n∑

i=1

RiAi|
n∑

i=1

Ai ≤ 1, Ai ∈ [0, ti]

}

The optimal value is:

LP =
u∑

i=1

tiRi + (1−
u∑

i=1

ti)Rv

where u = argmaxi{
∑i

j=1 tj < 1}, and v = u+1. (The dummy machine ensures
that Rv ≥ 0, so the above expression always holds).

Proof. Since our problem is a continuous time MDP, the optimal policy chooses a
machine to maintain for each state, and this results in an ergodic Markov system.
Consider any policy P . Let Ai denote the long term average rate at which the
policy maintains machine i. Since the policy can maintain one machine at a time,∑

i Ai ≤ 1.
If machine i is the only machine in the system, its repair completions define

a renewal process with rate exactly 1
1+1/pi

= ti (refer to [7] for renewal theory).
(The denominator comes from the fact that the expected service time and the
expected active time are 1 and 1

pi
respectively). The presence of other machines

can only impede the maintenance process for machine i, so Ai ≤ ti. Therefore,
the Ai’s in any policy P satisfy the LP constraints.

Let Ui denote the probability (at a random time) that machine i is “active”.
Since the machine transitions from “active” to “broken” in a memoryless fashion

174 K. Munagala and P. Shi

and since the rate of transition to the broken state is the same as the rate of
repair completions, we have Ai × 1 = Uipi. Therefore, the reward of the policy
per unit of time obtained from machine i is riUi = Ai(ri/pi), and the cost of
maintenance is Ai(ci). Combining these equalities, the value of the policy is∑n

i=1 RiAi, which is precisely the LP objective. Since we’ve shown that any
policy P is feasible for the LP, the solution to the LP upper-bounds the value
of the optimal policy.

The LP encodes a fractional knapsack instance in which the knapsack capacity
is 1, the profit per unit size of item i is Ri, and the size of item i is ti. This
implies that the LP solution is LP =

∑u
i=1 tiRi + (1−∑u

i=1 ti)Rv.

Essentially, the LP relaxes the constraint that at most one machine is repaired
at a time to requiring the average rate of repair to be at most 1, while allowing
multiple repairs at once. The LP solution prioritizes maintenance for machines
with the highest R’s, and this naturally leads to our Greedy policy of prioritiz-
ing based on Ri’s. We now show that the Greedy policy has an approximation
ratio of at most 2 against the LP bound.

In the proof of Theorem 1, we defined Ai for every policy. From now on, we
keep the notation but restrict the definition to the Greedy policy. Moreover,
we define some other key probabilities.

Definition 2. At a random time instant during the Greedy policy, define

– Ai as the probability that machine i is being maintained,
– gi as the probability that the first i machines are active,
– Ui as the probability that machine i is active.

Lemma 1. Define Qi =
∑i−1

j=1 tj, with Q1 = 0. Then gi ≥ 1 −Qi+1 and Ai ≥
ti(1 −Qi).

Proof. In the proof of Theorem 1, we showed that Ai ≤ ti. Thus, the total
probability with which some machine from {1, 2, . . . , i} is being repaired, 1−gi ≤∑i

j=1 Aj ≤
∑i

j=1 tj = Qi+1. Rearranging, gi ≥ 1−Qi+1.
We now prove the second part. As we showed in the proof of Theorem 1,

Ai = piUi, which implies that Ui = 1
pi

Ai. From part (1), we have gi−1 ≥ 1−Qi.
The Greedy policy maintains machine i whenever machines 1, 2, · · · , i − 1 are
broken and machine i is active, so Ai = gi−1 − gi. Using these expressions and
the obvious fact that gi

Ui
≤ 1, we have,

Ai

(
1 +

1
pi

)
≥ Ai

(
1 +

gi

Ui

1
pi

)
= Ai + gi = gi−1 ≥ 1−Qi (1)

Since ti = pi/(pi + 1), the above inequality is equivalent to Ai ≥ ti(1 − Qi),
which completes the proof.

Therefore, the value of the Greedy policy, GREEDY =
∑n

i=1 AiRi ≥
∑v

i=1

ti(1−Qi)Ri. Recall from Theorem 1 that the value of the optimal policy, OPT ≤
LP =

∑v
i=1 tiRi. Our goal is to lower-bound the ratio GREEDY/LP . Note that

The Stochastic Machine Replenishment Problem 175

the presence of the dummy machine ensures that
∑v

i=1 ti ≥ 1, and if
∑v

i=1 ti > 1,
we can decrease GREEDY/LP by setting tv = 1 −∑u

i=1 ti, because doing so
decreases GREEDY while preserving LP . Thus, we can restrict ourselves to∑v

i=1 ti = 1. To prove the GREEDY/LP ≥ 1, we just need:

∑v
i=1 ti(1−Qi)Ri∑v

i=1 tiRi
≥ γ where ti ≥ 0,

v∑
i=1

ti = 1, R1 ≥ R2 ≥ · · ·

But this is equivalent to the program obtained for the start deadline model
of stochastic knapsack [5], where it is shown via an elegant geometric argument
that the maximum γ = 1/2. The proof also follows from applying the machinery
in Section 4 to the function A(t, Q) = t(1−Q).

Theorem 2. Greedy is at least a 2-approximation algorithm.

3 Exploiting Queuing Structure in GREEDY

In the following sections, we sharpen our analysis and prove a better approx-
imation ratio. We first use queuing theoretic arguments to construct a more
intricate bound for the contribution of each machine (Theorem 3). The resulting
expressions are too complex to be effectively analyzed through analytic tech-
niques. In the section 4.2, we develop a numerical technique which computes the
tightest possible overall bound given the per-machine bound that we prove here.
We finally bound the error of this technique and show an approximation ratio
of 1.51.

We begin by rearranging Inequality (1) from the proof of Lemma 1:

Ai ≥ pi

(
1−Qi

pi + gi/Ui

)
(2)

In our approximation in Lemma 1, we used the weak bound gi/Ui ≤ 1. (Recall
that gi is the probability that the first i machines are active and Ui is the
probability that machine i is active). We now show a tighter bound for the gap
between gi and Ui, and we exploit this to improve the approximation ratio.

Lemma 2. The probability that machines 1, 2, . . . , i are all active, given that
machine i is active,

gi

Ui
≤ 1 + pi

1 + pi +
∑i−1

j=1 tj
(3)

Proof. Let Ti be the probability that that exactly one of the machines 1, 2, . . . , i−
1 is broken and machine i is active. Call the state in which machines 1, 2, · · · , i
are all good Gi. The steady-state rate at which the Markov system defined by
Greedy transitions out of Gi is exactly gi ×

∑i
j=1 pj , and the rate at which

the system transitions into Gi is (Ti + Ai) × 1. Thus, by flow conservation,
gi

∑i
j=1 pj = Ti + Ai.

176 K. Munagala and P. Shi

Also, observe that Ti + gi = Ui, and ti = pi

1+pi
≤ pi. From the proof of

Theorem 1, Ai = piUi. Therefore,

gi(pi +
i−1∑
j=1

tj) ≤ gi

i∑
j=1

pj = Ti + Ai ≤ Ui − gi + piUi

Separating out terms involving gi and terms involving Ui, we obtain the desired
inequality.

Plugging Equation (3) into Equation (2) and substituting ti = pi

1+pi
, we get

Theorem 3. Ai ≥ ti(1−Qi)
1+Qi(1−ti)

1+tiQi(1−ti)
. For simplicity, define A(t, Q) = t(1−

Q) 1+Q(1−t)
1+tQ(1−t) . We thus have Ai ≥ A(ti, Qi).

Unlike the previous bound Ai ≥ ti(1 − Qi), the above expression is non-linear
and non-convex, so we need a new technique to effectively exploit this bound.

4 Numerically Computing the Approximation Ratio

We now show a general technique for numerically computing (and rigorously
proving) the best possible approximation ratio that can be obtained from the
bounding expressions shown in Theorem 3. In fact, our machinery will work with
any expression A(t, Q) that satisfies the conditions stated below.

Lemma 3. (Proof is straightforward and is therefore omitted) The function
A(t, Q) defined in Theorem 3 satisfies the following for t, Q ∈ [0, 1]:

1. A(t, Q) ∈ [0, t], with A(0, Q) = 0 for all Q ∈ [0, 1].
2. ∂A

∂t ≥ 0 and ∂A
∂Q ≤ 0.

3. The function F (t, Q) = A(t,Q)
t satisfies ∂F

∂t ≤ 0 and ∂F
∂Q ≤ 0.

4. The second partial derivatives of A(t, Q) are bounded in absolute value by a
constant C.

Observation 1. In particular,
∣∣∣∂2A
∂Q2

∣∣∣ ≤ 5
8 ,

∣∣∣∂2A
∂tQ

∣∣∣ ≤ 15
4 ,

∣∣∣∂2A
∂t2

∣∣∣ ≤ 6.

The above conditions are fairly intuitive and reasonable. Since ti = pi

1+pi
, condi-

tion 1 simply states that machines with 0 breakdown rates have 0 maintenance
rates. Condition 2 states that everything else being equal, the higher the break-
down rate, the higher the maintenance rates. Moreover, for a particular machine,
the “greater amount” of machines with higher priority, the more that machine
has to wait for other maintenances, and the lower the maintenance rate. In con-
dition 3, F measures how well the real maintenance rate A keeps up with the
maintenance rate of the LP, in which more than one machine can be maintained
simultaneously. It’s reasonable to expect that the larger the breakdown rate of
the machine or the “greater amount” of machines with higher priority, the more

The Stochastic Machine Replenishment Problem 177

“handicapped” is GREEDY because of the one-repair-at-a-time constraint, and
F decreases.

Observation 2. Since A(t, Q) is increasing in t, in the case that
∑v

i=1 ti > 1,
replacing tv by 1−∑v−1

i=1 ti decreases GREEDY while preserving LP . Therefore,
to bound GREEDY/LP , we can assume w.l.o.g. that

∑v
i=1 ti ≤ 1.

4.1 Reduction to a Shortest Path Problem

Using the LP-bound proved in Theorem 1 and Observation 2, we see that the
inverse of the best approximation ratio that can be proven from Theorem 3,
denote by γ, is the solution of the following optimization problem.

Problem 2 (Approximation Ratio). Compute γ = infv∈N H(v), where the infi-
mum is taken over all positive integer v, and H(v) is the solution of the following
non-linear program:

Minimize
(∑v

i=1 A(ti, Qi)Ri∑v
i=1 tiRi

)
s.t.

∑v
i=1 ti ≤ 1, ti ∈ (0, 1] ∀i

Ri ≥ Ri+1 ∀i = 1, . . . , v − 1
Qi+1 = Qi + ti ∀i = 1, . . . , v

Q1 = 0, Rv > 0

We insist that Rv > 0 because it is not worth repairing machines with R ≤ 0.
We now show how to compute γ to any degree of accuracy. First, we show that
the solution of Problem 2 is the same as the solution to the following shortest
path problem:

Problem 3 (Equivalent Shortest Path). For every x, y ∈ [0, 1] with x ≤ y, define
a directed edge from x to y with length L(x, y) = A(y − x, x) ≥ 0. Note that
L(x, x) = 0 for all x. These edges define a graph on the number line [0, 1]. For
positive integer v, define Dv(x, y) as the length of the shortest path from x to y
using v edges. Define D(x, y) = infv Dv(x, y). Compute D(0, 1).

Note that Dv(0, 1) is the same as the following program, which is obtained by
setting all Ri = 1 and

∑v
i=1 ti = 1 in Problem 2:

Minimize
v∑

i=1

A(ti, Qi) s.t.

∑v
i=1 ti = 1, ti ∈ [0, 1] ∀i

Qi+1 = Qi + ti ∀i = 1, 2, 3, . . . , v
Q1 = 0, Qi ∈ [0, 1] ∀i

The next lemma is crucial for showing the equivalence of Problems 2 and 3.

Lemma 4. For L ∈ (0, 1], D(0,L)
L ≥ D(0, 1).

Proof. We will show that Dk(0,L)
L ≥ Dk(0, 1) for all k ≥ 1. The lemma will follow

by taking the infimum. For fixed L, k, suppose the shortest path from 0 to L is
0 = Q1 ≤ Q2 ≤ · · · ≤ Qk+1 = L. Recall F (t, Q) = A(t, Q)/t from Lemma 3.
Since tj = Qj+1 −Qj . Dk(0, L) =

∑k
j=1 A(Qj+1 −Qj , Qj) =

∑k
j=1 A(tj , Qj) =∑k

j=1 tjF (tj , Qj).

178 K. Munagala and P. Shi

By Lemma 3, F (t, Q) is non-increasing in t, Q, so

Dk(0, L)
L

=
k∑

j=1

tj
L

F (tj , Qj) ≥
k∑

j=1

tj
L

F

(
tj
L

,
Qj

L

)
=

k∑
j=1

A

(
Qj+1

L
− Qj

L
,
Qj

L

)

Since
∑k

j=1 tj = Qk+1 = L, the RHS of the above inequality is the length of a
path with k edges from 0 to 1 passing through the points 0 = Q1

L ≤ Q2
L ≤ · · · ≤

Qk+1
L = 1. Therefore, the RHS is at least Dk(0, 1).

Theorem 4. Problems 2 and 3 are equivalent. i.e. γ = D(0, 1).

Proof. In the optimal solution for H(v) in Problem 2, make the substitution
Ri =

∑v
j=i xj where xj ≥ 0. We can do this because the Ri’s are non-increasing.

H(v) =

∑v
i=1

((∑v
j=i xj

)
A(ti, Qi)

)
∑v

i=1 ti

(∑v
j=i xj

) =

∑v
j=1 xj

(∑j
i=1 A(Qi+1 −Qi, Qi)

)
∑v

j=1 xj

(∑j
i=1 ti

)

≥
∑v

j=1 xjD(0, Qj+1)∑v
j=1 xjQj+1

≥ v
min
j=1

D(0, Qj+1)
Qj+1

≥ D(0, 1)

The last inequality, which is the crux of the proof, follows from Lemma 4. All
quantities are well-defined since Qj+1 > 0 for j ≥ 1, and xv > 0. Therefore, γ ≥
D(0, 1). Now, setting all Ri = 1 and Qv+1 = 1, we obtain from the minimality
condition on H(v) that H(v) ≤ Dv(0, 1). This implies that γ ≤ infv Dv(0, 1) =
D(0, 1). These two inequalities imply that γ = D(0, 1).

4.2 Solving Problem 3: A Computer-Based Technique and Its
Analysis

Theorem 4 implies that the inverse of the desired approximation ratio is the
solution to Problem 3. But this is still not easy to find since Problem 3 is still a
huge non-linear, non-convex optimization problem with non-separable objective.
As a natural first step, we consider a discrete version of the problem.

Problem 4 (Discrete Shortest Path). For any positive integer parameter N , call
x ∈ [0, 1] a “lattice point” if x = i/N for some integer i. For every pair of lattice
points x, y ∈ [0, 1] with x < y, define a directed edge from x to y with length
L(x, y) = A(y − x, x + 1

N) ≥ 0. (The new lengths are smaller by Lemma 3 and
this change is crucial for the proof to work). These edges define a graph over
the set of lattice points in [0, 1]. Compute γ∗

N , the length of the shortest path
from 0 to 1 in this graph. The key difference from Problem 3 is the restriction of
the path to lattice points, and the change of the length of the (x, y) edge from
A(y − x, x) to A(y − x, x + 1

N)

Since the corresponding graph is directed and acyclic, Problem 4 can be solved
in O(N2) time on a computer. Figure 2(a) plots γ∗

N versus log N for N ≤ 105.
The computation shows γ∗

N ≥ 0.6626 for N = 105. Since 64-bit precision was

The Stochastic Machine Replenishment Problem 179

used in the computer program, and the number of edges lengths summed up
in getting the final result is at most N , the error introduced due to the finite
precision of the computer is negligible.

The question now is: Does the computed value of γ∗
N imply a lower bound on

γ, the optimal value to Problem 3? Using the conditions stated in Lemma 3, it
is easy to show γ ≤ γ∗

N + 1
N . However, we need a bound in the other direction.

The key contribution in this section is the next theorem, showing that even for
small N , the computed value γ∗

N indeed implies a good lower bound on γ:

Theorem 5. For any function A(t, Q) satisfying the conditions of Lemma 3
(with second derivatives at most C in absolute value), and γ,D, and γ∗

N as
defined in Problems 2, 3, and 4 respectively, we have:

γ = D(0, 1) ≥ γ∗
N −

5C

2N

In particular, for A(t, Q) = t(1 − Q) 1+Q(1−t)
1+tQ(1−t) , recall from Observation 1 in

Section 4 that C = 6. Using N = 105, we compute γ∗
N ≥ 0.6626, and the above

theorem shows that γ ≥ 0.6626− 0.0002 = 0.6624, which shows an upper-bound
of 1.51 on the approximation ratio. The rest of this section is devoted to proving
Theorem 5.

Roadmap of Proof: The overall proof idea is to construct a feasible solution for
Problem 4 from the optimal solution to Dv(0, 1). We show that this feasible
solution has a value at most 2.5C/N larger than Dv(0, 1), which implies γ∗

N ≤
Dv(0, 1) + 2.5C/N . Taking the infimum on v proves Theorem 5.

There are two main ideas in the construction: The first is to move certain
points on the shortest path Dv(0, 1) to the closest lattice point, while preserving
what we call the “local-minimum” invariant: each non-lattice point lies on a
shortest path containing its immediate neighbors. This invariant allows us to
bound the increase in path length, caused by moving points, in terms of the
square of the distance moved, instead of the distance moved, which is crucial
to our proof that the overall path-length increase is inversely related to N . The
second idea is that moving every node to a lattice location increases the path
length too much if v � N . To overcome this problem, we only move a few chosen
points, and then use the slack from the new edge lengths defined in Problem 4
to delete the remaining points, without increasing the total path length. We
present these two ideas in reverse order. In theproofs, assume fixed v, N .

Step 1: Semi-Discrete Paths. We first define an intermediate path type which
has more structure than a general path (Problem 3), but is not as constrained
as a lattice path (Problem 4). This path can use non-lattice points, but for each
non-lattice point, the path contains the lattice points to the immediate left and
right.

Definition 1. The path P through 0 = Q1 ≤ Q2 ≤ · · · ≤ Qv+1 = 1 is termed
semi-discrete if ∀Q ∈ P , Q ∈ (

i
N , i+1

N

)⇒ i
N ∈ P and i+1

N ∈ P . For semi-discrete

180 K. Munagala and P. Shi

paths, we use the edge lengths defined in Problem 3 rather than in Problem 4, so
the length of the path is

∑v
j=1 A(Qj+1 −Qj , Qj).

Lemma 5. The length of any semi-discrete path is at least γ∗
N .

Proof. Let semi-discrete path Psd correspond to points 0 = Q1 ≤ Q2 ≤ · · · ≤
Qv+1 = 1. The length of this path is W =

∑v
j=1 A(Qj+1 − Qj, Qj). Removing

the non-lattice points, we form a discrete lattice path Pdl, which passes through
lattice-points 0 = Qi1 < Qi2 < · · · < Qik+1 = 1. This new path is a feasible for
Problem 4 and has length Z =

∑k
j=1 A(Qij+1 −Qij , Qij + 1

N). It suffices to show
that Z ≤ W . Consider two consecutive points Qa < Qb on Pdl. These are also
points (not necessarily consecutive) in Psd.

Case 1. Suppose Qb > Qa + 1/N . Then, Qa < Qb are not consecutive lattice
points, which implies that they are consecutive points on Psd. Now, A(Qb −
Qa, Qa) ≥ A(Qb−Qa, Qa+ 1

N) by Lemma 3. The former term is the contribution
of (Qa, Qb) to W and the latter (which is smaller) is the contribution to Z.

Case 2. Suppose Qb = Qa + 1/N , then there could be intermediate non-lattice
points in Psd. Suppose Qa = i/N and Qb = (i + 1)/N for integer i. Let the
path segment in Psd contain points i

N = Qa ≤ Qa+1 ≤ . . . ≤ Qb = i+1
N . The

contribution of this path segment to W is (letting Δj = Qj+1 −Qj):

b−1∑
j=a

ΔjF (Δj , Qj) ≥
b−1∑
j=a

ΔjF

(
1
N

, Qa +
1
N

)
=

1
N

F

(
1
N

, Qa +
1
N

)

where the inequality comes from the fact that F (t, Q) is decreasing in both
variables (Lemma 3). The contribution of (Qa, Qb) to Z is (set Δ = Qb −Qa):

A(Δ, Qa +
1
N

) = A(Δ, Qb) = Δ · F (Δ, Qb) =
1
N

F

(
1
N

, Qa +
1
N

)

Summing the bounds for every segment (Qa, Qb), we get Z ≤ W , which proves
the lemma.

Step 2: From Continuous to Semi-Discrete. We now describe an algorithm that
converts the absolute shortest path (i.e., the solution to Problem 3) to a semi-
discrete path whose length is at most 2.5C/N larger. (The algorithm is only a
theoretical argument and is not intended to be run). Combined with Lemma 5,
this proves Theorem 5. Suppose that the optimal path that yields Dv(0, 1) is P ,
with points 0 = Q1 ≤ Q2 ≤ · · · ≤ Qv+1 = 1. The lengths of edges are the original
lengths defined in Problem 3. We run the algorithm presented in Figure 1, which
transforms the optimal path P into a semi-discrete path P ′.

We now bound the increase in path lengths from transforming P to P ′. Note
that step (c) cannot increase the path length, since it replaces a path segment by
the corresponding shortest path. The only step that can increase the path length
is Step (b), which is executed at most N times. We can bound the increase in

The Stochastic Machine Replenishment Problem 181

Converting optimal path P of Problem 3 to a semi-discrete path P ′.

For i = 1 to N :
1. If i−1

N
/∈ P and ∃Qj ∈ P s.t. Qj ∈

�
i−1
N

, i
N

�
then:

(a) Let j∗ = argmin
�
Qj ∈ P, Qj ∈

�
i−1
N

, i
N

��
.

(b) Qj∗ ← i−1
N

.
(c) Replace segment {Qj∗ , Qj∗+1, . . . , Qv+1} in P with Dv−j∗+1(Qj∗ , Qv+1)

2. If i
N

/∈ P and ∃Qj ∈ P s.t. Qj ∈
�

i−1
N

, i
N

�
then:

(a) j∗ = argmax
�
Qj ∈ P, Qj ∈

�
i−1
N

, i
N

��
.

(b) Qj∗ ← i
N

.
(c) Replace segment {Qj∗ , Qj∗+1, . . . , Qv+1} in P with Dv−j∗+1(Qj∗ , Qv+1)

Fig. 1. Algorithm for making the optimal path Dv(0, 1) semi-discrete

each execution by exploiting the local-minimum invariant that is enforced by
Step (c). This invariant states that just before executing Step (b), Qj∗ lies on
the shortest path between the two adjacent points in P .

Lemma 6. Suppose all second partial derivatives of A are bounded in absolute
value by C. Then any execution of Step (b) of Figure 1 increases the length of
P by at most 5

2
C

N2 .

Proof. Suppose the point being moved in Step (b) is Qj . Let the adjacent points
to Qj in P just before the step be Qj−1, Qj+1. Assume w.l.o.g, Qj−1 < Qj <
Qj+1. Since Qj−1, Qj, Qj+1 are consecutive nodes on the shortest path segment
to Qv+1, Qj must equal to the x ∈ (Qj−1, Qj+1) that minimizes the sum of
lengths of edges (Qj−1, x) and (x, Qj+1). i.e., x = Qj minimizes f(x) = A(x −
Qj−1, Qj−1) + A(Qj+1 − x, x). This means that f ′(Qj) = 0. Now,

f ′′(x) = ∂2

∂t2 A(x−Qj−1, Qj−1) + ∂2

∂t2 A(Qj+1 − x, x)
−2 ∂2

∂t∂QA(Qj+1 − x, x) + ∂2

∂Q2 A(Qj+1 − x, x)

Since the second partials of A(t, Q) are bounded in absolute value by C, |f ′′(x)| ≤
5C. By Taylor’s expansion, |f(Qj ± d)− f(Qj)| ≤ 5Cd2/2. Finally note that the
change in the length of P in Step (b) is |f(Qj ± d)− f(Qj)|, where d ≤ 1

N . The
desired result follows.

Proof. (of Theorem 5) Start with the path corresponding to Dv(0, 1). Hypo-
thetically apply the algorithm in Figure 1 to make the path semi-discrete. By
applying Lemma 6 at most N times, we see that the algorithm increases the path
length by at most 2.5C/N . By Lemma 5, the length of this new semi-discrete
path is at least γ∗

N . Therefore, γ∗
N ≤ Dv(0, 1) + 2.5C/N . Taking the infimum on

v proves the theorem.

Applying Theorem 5 computationally with N = 105 shows the following:

Theorem 6. The approximation ratio of Greedy is at most 1.51.

182 K. Munagala and P. Shi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
at

h
Le

ng
th

Q

"shortest.txt"

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5

ga
m

m
a(

N
)

log(N)

"GAMMA"
0.6626

(a) (b)

Fig. 2. (a) The optimal path D(0, 1) for si = 1. The horizontal distance between
consecutive points represents ti, and the vertical distance the edge length. (b) Plot of
γ∗

N as a function of log10 N .

Remark: The shortest path found using the computer has an interesting struc-
ture: As plotted in Figure 2(b), the values of ti initial scale geometrically. We
imitate this scaling and construct the following worst-case example, which shows
a lower bound of 1.3 on the approximation ratio of Greedy against the LP. This
makes our 1.51 approximation fairly sharp.

Example 3. Consider 6 machines with t1 = t2 = 1/32, t3 = 1/16, t4 = 1/8, t5 =
1/4, and t6 = 1/2. Set pi = ti

1−ti
. The ri are set so that R1 = R2 + ε, and so on.

The ratio between the LP bound and the Greedy policy is approximately 1.3.

The technique for described in this section applies to any problem that requires
bounding the sum of some function A(yi, zi), where zj =

∑j−1
i=1 yi and A(y, z)

satisfies the reasonable conditions described in Lemma 3. We think that this
kind of a setup is general enough to appear in related queuing problems, so our
technique might help sharpen other approximation analyses.

Acknowledgment. We thank Shivnath Babu, Jen Burge, and Sudipto Guha
for their helpful suggestions.

References

1. Bar-Noy, A., Bhatia, R., Naor, J., Schieber, B.: Minimizing service and operation
costs of periodic scheduling. In: Proc. ACM-SIAM Symp. on Discrete Algorithms,
pp. 11–20 (1998)

2. Bertsekas, D.: Dynamic Programming and Optimal Control. 2nd edn. Athena Sci-
entific (2001)

The Stochastic Machine Replenishment Problem 183

3. Bertsimas, D., Gamarnik, D., Tsitsiklis, J.: Performance of multiclass markovian
queueing networks via piecewise linear Lyapunov functions. Annals of Applied
Probability 11(4), 1384–1428 (2002)

4. Bertsimas, D., Niño-Mora, J.: Restless bandits, linear programming relaxations,
and a primal-dual index heuristic. Oper. Res. 48(1), 80–90 (2000)

5. Dean, B., Goemans, M., Vondrák, J.: Approximating the stochastic knapsack prob-
lem: The benefit of adaptivity. In: Proc. of the 2004 Annual Symp. on Foundations
of Computer Science (2004)

6. Dean, B., Goemans, M., Vondrák, J.: Adaptivity and approximation for stochastic
packing problems. In: Proc. of the 2005 Annual ACM-SIAM Symp. on Discrete
Algorithms (2005)

7. Durrett, R.: Probability: Theory and Examples, 3rd edn. Duxbury Press (2004)
8. Gittins, J.C., Jones, D.M.: A dynamic allocation index for the sequential design of

experiments. Progress in statistics (European Meeting of Statisticians) (1972)
9. Goemans, M.X., Kleinberg, J.M.: An improved approximation ratio for the mini-

mum latency problem. In: SODA, pp. 152–158 (1996)
10. Goseva-Popstojanova, K., Trivedi, K.S.: Stochastic modeling formalisms for de-

pendability, performance and performability. In: Performance Evaluation: Origins
and Directions, pp. 403–422 (2000)

11. Harrison, J.M.: Dynamic scheduling of a multiclass queue: Discount optimality.
Operations Research 23(2), 370–382 (1975)

12. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location
problems. In: Proc. of the 2002 Annual ACM Symp. on Theory of Computing
(May 2002)

13. Kenyon, C., Schabanel, N.: The data broadcast problem with non-uniform trans-
mission times. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (1999)

14. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized on-line
matching. In: FOCS 2005. Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pp. 264–273 (2005)

15. Munagala, K., Babu, S., Motwani, R., Widom, J.: The pipelined set cover problem.
In: Proc. Intl. Conf. Database Theory (2005)

16. Niño Mora, J.: Restless bandits, partial conservation laws and indexability. Adv.
in Appl. Probab. 33(1), 76–98 (2001)

17. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of optimal queuing network
control. Math. Oper. Res. 24(2), 293–305 (1999)

18. Tsitsiklis, J.N.: A short proof of the Gittins index theorem. Annals of Applied
Probability 4(1), 194–199 (1994)

19. Whittle, P.: Restless bandits: Activity allocation in a changing world. Appl.
Prob. 25(A), 287–298 (1988)

A Polynomial Time Approximation Scheme for

the Square Packing Problem

Klaus Jansen1,� and Roberto Solis-Oba2,��

1 Institut für Informatik
Universität zu Kiel, Kiel, Germany

kj@informatik.uni-kiel.de
2 Department of Computer Science

The University of Western Ontario, London, Canada
solis@csd.uwo.ca

Abstract. Given a set Q of squares with positive profits, the square
packing problem is to select and pack a subset of squares of maximum
profit into a rectangular bin R. We present a polynomial time approxi-
mation scheme for this problem, that for any value ε > 0 finds and packs
a subset Q′ ⊆ Q of profit at least (1− ε)OPT , where OPT is the profit
of an optimum solution. This settles the approximability of the prob-
lem and improves on the previously best approximation ratio of 5/4 + ε
achieved by Harren’s algorithm.

1 Introduction

Let Q = {Q1, Q2, . . . , Qn} be a set of squares with positive profits. For a square
Qi, its size si is the length of one of its sides, and its profit is denoted as pi.
The square packing problem is to select and pack a maximum profit subset of
squares into a given rectangular bin R. We consider only orthogonal packings,
i.e. packings in which the sides of the squares are parallel to the sides of the
bin. Geometric packing problems, like this one, have received a lot of attention
recently from the algorithms community [1,6,8], as these problems have numer-
ous applications in stock cutting, VLSI design, advertisement placement, image
processing, and scheduling [5,6,8]. Furthermore, some of these problems are fun-
damental geometric problems that have been extensively studied by the Discrete
Geometry community [7,11].

The square packing problem is known to be strongly NP-hard even for the
restricted case of packing squares with unit profits [10]. For the version of the
problem with unit profits, Jansen and Zhang [6] designed a polynomial time
approximation scheme (PTAS). Fishkin et al. [4] studied the so-called square
packing problem with resource augmentation and designed an algorithm that

� Research supported in part by the EU project AEOLUS contract number 015964
and by the DAAD German Academic Exchange Service.

�� Research supported in part by the Natural Science and Engineering Research Council
of Canada grant R3050A01.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 184–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Polynomial Time Approximation Scheme for the Square Packing Problem 185

packs a subset of squares of profit at least (1− ε)OPT into an augmented square
bin [0, 1+ε]×[0, 1+ε], where OPT is the maximum profit of any subset of squares
that can be packed into a unit size square bin. They also gave a PTAS for the
problem without resource augmentation for the case when pi = s2

i for every
Qi ∈ Q. For the square packing problem with arbitrary profits, the previously
best algorithm, by Harren, [5] has performance ratio 5

4 + ε, for any ε > 0.
We improve upon Harren’s algorithm by presenting a PTAS for the square

packing problem that selects and packs inR squares of profit at least (1−ε)OPT ,
where OPT is the optimum profit and ε > 0 is any given positive constant. This
is the best possible algorithm for the problem in the sense that the square packing
problem is strongly NP-hard [10] and, so, it does not admit a fully polynomial
time approximation scheme (FPTAS) unless P = NP.

For presentation simplicity, we only describe our algorithm for the case when
R is a unit size square bin. In the full version of the paper we will show how
to deal with the case of a rectangular bin. The description is divided in two
parts. First, we show a series of transformations that simplify the structure of an
optimum solution P ∗ while only slightly decreasing the total profit of the squares
packed in the bin. The transformations are based on the intuitive observation
that large and high profit squares must be accurately positioned in the bin so
they all fit; however, small, low profit squares might be positioned less carefully,
as small mistakes in their positioning only causes a small loss in profit due to
some of them not fitting in the bin. This observation has been used in the past
for solving other packing and scheduling problems. One crucial point of our work
that is different from past research is that we cannot round up the dimensions of
large squares, as then we might need to increase the size of the bin to be able to
pack the enlarged squares. This makes our problem a lot harder than problems
that allow resource augmentation.

We define a class of canonical packings for the relatively small set of high profit
squares in a feasible solution; these packings leave free space in the bin that can
be split into a small set of rectilinear polygonal regions. We consider three types
of these regions: large, elongated, and small. A large region is rectangular and
its two dimensions are much larger than the sizes of the squares packed in it,
so a simple shelf-packing algorithm, like NFDS [2], can pack squares of nearly
optimum profit there. An elongated region is also rectangular, but it has one
dimension much larger than the other, so, a strip packing algorithm can be used
to pack squares there to near optimality.

Packing squares in a small region is considerably more difficult though, as
there might not be enough room to pack any squares crossing the borders of
a small region. We handle this situation by allowing some of the regions to be
merged together. The drawback of doing this is that these regions get more
complex shapes, and squares of lage size relative to the dimensions of these
regions must be packed very carefully. We deal with these regions by applying
our transformations recursively on them. This creates a hierarchical organization
for the regions, and we show that regions belonging to a constant number of levels

186 K. Jansen and R. Solis-Oba

at the top of this hierarchy store squares of nearly optimum profit. This allows us
to bound the number of required recursive applications of the transformations.

The result of the transformations is a near optimum solution P+ with a very
regular structure: The packing P+ can be divided into a constant number of
rectangular regions; in each region squares are packed either using the greedy
NFDS algorithm, or groups of squares of similar sizes are packed in strips of the
same width. Showing that a near-optimum packing with this particular structure
exists is the core of our work as it allows a simple enumeration-based algorithm
to compute a solution of profit close to that of P+. The transformations are
rather complex and they are described in Sections 2-5.

The second part of our algorithm is described in Section 7 and it shows how
to build a very large, but polynomial in n, number of possible solutions with the
same structure as P+. We show that one of these solutions has profit very close
to the profit of P+, thus proving the existence of a PTAS for the square packing
problem. The main contribution of this work is to settle the approximability of
the square packing problem.

2 Big and Small Squares

Let ε > 0 be the required precision and, without loss of generality, let 1/ε be
integer and ε ≤ 1/3. Fix an instance Q of the square packing problem and an op-
timum solution P ∗ for it. Let Q∗ be the set of squares selected by P ∗ and let OPT
be the profit of P ∗. We can assume that Q∗ has more than 1/ε squares, as other-
wise we could find Q∗ in O(1) time by simply enumerating all subsets of at most
1/ε squares from Q and then selecting the subset Q′ of largest profit that can be
packed in the bin using the upper-left justified packing algorithm of Section 7.

As mentioned above, our algorithm deals differently with small and large
squares. Thus, we first need to define the notion of “small” and “large”. Define
ρ0 = 1, and ρk = ρ4

k−1(ε/4)5+2η+1
for all integers k ≥ 1, where η = log1−ε ε.

Then, it is not hard to see that ρk = (ε/4)(5+2η+1)(4k−1)/3 for all k ≥ 0.
For each integer k ≥ 1 we define Qk = {Qi ∈ Q | si ∈ (ρk, ρk−1]}. Let τ be

the smallest index such that the total profit of the squares in Q∗
τ = Qτ ∩Q∗ is

at most εOPT . Observe that τ ≤ 1/ε.
Partition Q into three groups: the big squares B = {Qi ∈ Q | si > ρτ−1},

the medium squares M = {Qi ∈ Q | ρτ < si ≤ ρτ−1}, and the small squares
S = {Qi ∈ Q | si ≤ ρτ}. Similarly, define B∗ = B ∩ Q∗, M∗ = M∩ Q∗, and
S∗ = S ∩ Q∗. Note that M∗ = Q∗

τ , so the total profit of the medium squares
in M∗ is at most εOPT . In the next sections we show how to modify P ∗ to
produce a near-optimum solution P+ with a regular structure.

To construct P+ we need to consider three cases: (i) when B∗ = ∅, (ii) when
every big square has profit larger than εOPT , and (iii) when at least one big
square has profit no larger than εOPT . Case (ii) is the most complex since, as we
will show, it requires us to recursively partition the bin into successively smaller
blocks where squares are re-classified as big, medium, and small depending on
their relative sizes with respect to the dimensions of the blocks.

A Polynomial Time Approximation Scheme for the Square Packing Problem 187

3 Instances without Big Squares

If B∗ = ∅, then we just removeM∗ from P ∗ to get a solution P+ of profit at least
(1− ε)OPT . Note that all remaining squares have size at most ρτ ≤ (ε/4)5+2η+1

,
as τ ≥ 1. Furthermore, since ε ≤ 1/3, then η ≥ log2/3(1/3) > 2.7, and so

ρτ = ρ4
τ−1(ε/4)5+2η+1 ≤ ρ4

τ−1(ε/4)5+23.7
< ε/1010, (1)

which is very small compared to the bin. Hence, we can use NFDS [2] to re-pack
small squares of profit at least (1− 2ε)OPT in the bin.

4 Instances with High Profit Big Squares

We now consider the case when every big square has profit larger than εOPT .
Note that in this case, |B∗| < 1/ε.

4.1 Blocks

We temporarily remove from P ∗ all medium and small squares. The empty
space created is partitioned by the big squares into a set of disconnected regions
r1, r2, . . . , rκ. Each ri is a polygonal region that might contain holes and it is
delimited by a set pi of polygonal boundaries. Let Ni be the number of vertices
of pi.

We divide each ri into rectangular sub-regions by tracing a horizontal cutting
line passing through each horizontal side of pi and a vertical cutting line through
each vertical side of pi. These cutting lines define a grid of size at most Ni/2×
Ni/2 that splits ri into O(N2

i) rectangular regions called blocks (see Fig. 1).
Now we add back the medium and small squares in the same positions where

they appear in the optimum solution P ∗. Note that some of these squares might
cross the block boundaries; we wish to simplify the packing so no square crosses

length

w
id

th

ri

Fig. 1. Grid splitting region ri into blocks

188 K. Jansen and R. Solis-Oba

any block boundaries. To achieve this, some squares might need to be re-arranged
and/or discarded. The exact procedure for eliminating intersections between
squares and block boundaries depends on the dimensions and shape of each
block. Accordingly, we partition the blocks in three classes as follows. For each
block bj let Q̂j be the largest square whose interior intersects bj and let ŝj be
the size of Q̂j. Note that Q̂j ∈ M∗ ∪ S∗. Let

α = 10/ε and β = 24/ε3. (2)

Definition 1
– A block bj is large if it has length and width at least αŝj .
– A block bj is elongated if either its length is at least βŝj and its width is

smaller than αŝj (horizontal elongated block), or its length is smaller
than αŝj and its width is at least βŝj (vertical elongated block).

– A block bj is small if it is neither long nor elongated.

To modify P ∗ so that no square crosses any block boundaries, first we need to
eliminate all bad block boundaries (see Fig. 2). The common boundary I between
two blocks bi and bj is bad if there is some square Qr crossing I and either

1. I is common to the long sides of two elongated blocks, or
2. I is common to a small block and to a long side of an elongated block, or
3. I is common to two small blocks.

Intuitively, bad block boundaries might be problematic because if a square
Qr crosses the long side of a small or elongated block bj , Qr cannot be packed
in bj if it is larger than the smaller dimension of bj.

We eliminate bad block boundaries by merging some of the blocks as follows.
Consider one by one the columns of the grid splitting ri (see Fig. 1). If some
column has two adjacent horizontal elongated blocks sharing a bad boundary,
these blocks are merged (see Fig. 2(a)). The resulting block is either horizontal
elongated or large. This process eliminates all bad boundaries between horizontal

(c) Small composite blocks(b) Vertical elongated blocks(a) Horizontal elongated blocks

bad block boundary

Fig. 2. Merging blocks

A Polynomial Time Approximation Scheme for the Square Packing Problem 189

elongated blocks. Next, we consider one by one the rows of the grid. If in some row
two adjacent vertical elongated blocks share a bad boundary, they are merged
(see Fig. 2(b)). The resulting block is either vertical elongated or large.

After merging blocks as described, the only bad boundaries remaining might
be between two small blocks, or between a small and an elongated block. If a
group of blocks share bad boundaries, they are all merged into a composite small
block (see Fig. 2(c)). For convenience, a small block is also composite small.

Lemma 1. A region ri can be split into at most N2
i /4 blocks avoiding bad block

boundaries. Each composite small block bj has area at most αβ(ŝjNi/2)2, where
ŝj is the size of the largest square completely packed inside bj; furthermore, the
set pj of polygonal boundaries delimiting bj has at most N2

i /4 vertices.

4.2 Assigning Squares to Blocks

Consider a region ri and let Ci be the set of squares that cross the boundaries
of ri’s blocks. Each square completely contained in a block is assigned to that
block. As for the squares in Ci, we assign them to blocks as follows.

1. A square in Ci intersecting a large block bj is assigned to bj; if a square
intersects several large blocks, it is assigned to any one of them.

2. For the remaining squares in Ci, if a square Qr intersects several elongated
blocks, it is assigned to a block that intersects Qr with its short side only;
we can guarantee that this block exists because of the way in which blocks
have been merged.

Note that every square in Ci is allocated to a large or elongated block, as no
square crosses the common boundary of two small blocks (otherwise they would
have been merged). We now modify P ∗ so that no square crosses any block
boundaries.

4.3 Large Blocks

Consider a large block bj . We only consider the case when the width wj of bj

is smaller than its length lj . Let Sj be the set of squares assigned to bj and
let Q̂j be the largest square in Sj . The following shifting technique allows us to
(i) round the dimensions of bj down to the nearest multiple of ŝj (the size of
Q̂j) and (ii) also allows us to remove the squares crossing the boundaries of bj ,
while losing only a very small fraction of the total profit of the squares originally
packed by P ∗ in bj .

Let Dj be the set of squares crossing any of the boundaries of block bj , plus
the squares whose top or right sides are at distance smaller than ŝj from the top
or the right side of bj (see Fig. 3). Dj is momentarily removed from the packing.
This creates an empty region of width at least ŝj at the top of bj and an empty
region of length at least ŝj at the right side of bj . These empty regions allow us
to round the width and length of bj down to the nearest multiple of ŝj without
having to remove any more squares from the packing.

190 K. Jansen and R. Solis-Oba

}}

}
3ŝj

ŝj

3ŝj

3ŝj

lj

wj

lj

ŝj

ŝj

Fig. 3. The shifting technique. Set Dj appears in dark shade.

Split bj into α/10 horizontal strips of the same width, as shown in Fig. 3.
Each square Qk packed inside bj is assigned to one of the strips as follows: If Qk

intersects only one strip t, then Qk is assigned to t; if Qk intersects two strips t
and t′, then Qk is assigned to the strip on the top. Since every strip has width
at least wj/(α/10) ≥ 10ŝj, by Def. 1, then, no square intersects three strips.

Let tj be the strip for which the total profit, profit(tj), of the squares assigned
to it is minimum. Clearly, profit(tj) ≤ 10

α profit(Sj) ≤ ε × profit(Sj), by (2).
Hence, if we remove from P ∗ all squares assigned to tj the profit loss will be
very small. Furthermore, this creates inside tj an empty region of width at least
9ŝj. We use this empty space to reintroduce the previously removed squares Dj :

– All squares in Dj that were taken off the top of bj can be packed in a strip of
length lj + 2ŝj and width 3ŝj (see Fig. 3). These squares can be re-arranged
so they fit in two strips: one of length lj and width 3ŝj and the other of
length 6ŝj and width ŝj (see right hand side of Fig. 3).

– All remaining squares in Dj that were removed from the right side of bj can
be packed in a strip of length 3ŝj and width wj < lj (see Fig. 3).

– The other squares that crossed the bottom of bj can be packed in a strip of
length lj and width ŝj , while the squares that crossed the left side of bj can
be packed in a strip of length wj < lj and width ŝj .

The total profit of the squares that remain in bj is at least (1 − ε)profit(Sj).
Since every square packed in bj has size at most ŝj (which is very small com-
pared to the dimensions of bj), we can use the NFDS algorithm to produce a
simple-structured packing for bj . The total profit of the squares that the NFDS
algorithm can pack in bj is at least (1− 2ε)profit(Sj).

4.4 Elongated Blocks

To understand how we will modify the structure of the packing for elongated
blocks, we first give a brief review of the strip packing algorithm of Kenyon and
Rémila [8], which we will refer to as the KR algorithm.

A Polynomial Time Approximation Scheme for the Square Packing Problem 191

frames

large blocks

�j

Xjwj

l̄j

ŵj

Fig. 4. Packing produced by the KR algorithm. Set Sεj appears in light shading.

4.4.1 The KR Algorithm
The KR algorithm uses a two-stage process to pack a set Sj of squares in an
elongated block bj . For convenience, we assume that the length lj of bj is larger
than its width wj . Let Q̂j be the largest square packed in bj and let ŝj be its
size. In the first stage, the KR algorithm packs in bj the set Sεj ⊆ Sj of squares
of size at least ε×wj/(2+ ε) using a linear programming approach. To do this, a
(multi)subset Tj ⊆ Sεj of h =

(
2+ε

ε

)2 squares is selected; the width of each square
in Sεj is rounded up to the width of the nearest square from Tj . Rounded squares
are grouped into h clusters, C1, C2, . . . , Ch, called configurations. Configuration Ci
has width Wi ≤ wj . The solution for the linear program determines the length
Li of each Ci.

Each configuration Ci is allocated a rectangular region Ri of width Wi and
length Li. The rectangular regions R1, R2, . . . , Rh are called frames. If config-
uration Ci is composed of squares of widths wi1, wi2, . . . , wir , then frame Ri is
divided into r rows of widths wi1, wi2, . . . , wir . Rectangles from Sεj of width wij

are packed in the row of width wij as long as their total length does not exceed
Li + ŝj (see Fig. 4).

In the second stage the space remaining in bj is divided into h+1 rectangular
blocks, R′

1, R
′
2, . . . , R

′
h, R′

h+1, that for convenience we call large blocks; R′
i, 1 ≤

i ≤ h, has width wj −Wi and length Li. Block R′
h+1 has width wj and length

Lj −
∑h

i=1 Li. Squares in Sj \ Sεj are packed in these blocks with the NFDS
algorithm. The packing produced has width no larger than wj and length [8]

�j ≤ lj(1 + ε) + (4(2 + ε)2/ε2 + 1)ŝj < lj(1 + ε) + 22ŝj/ε2, as ε ≤ 1/3. (3)

4.4.2 Modifying the Packing in an Elongated Block
Consider an elongated block bj . We only look at the case when the length lj of
bj is larger than its width wj . Let Sj be the set of squares assigned to bj and let

192 K. Jansen and R. Solis-Oba

{

{

{{

{
w̄j

2εlj

εwj

Uj

Dj

lj 6ŝj2εlj + ŝj

wj w̄j

Fig. 5. Re-packing the squares Dj ∪ Uj

ŝj be the size of the largest square in Sj. All squares in Sj have size at most wj

as they are either completely contained inside bj or they intersect the short side
of bj .

Let Dj be the set of squares crossing the short sides of bj . These squares are,
for the time being, removed from bj . Let S′

j be the squares remaining in bj . We
re-pack S′

j by using the KR algorithm. In this new packing, let ŵj be the width
of the widest configuration used (see Fig. 4). Let i be the largest integer such
that ŵj + iεŝj ≤ wj . We round the width of bj down to w̄j = max{ŝj , ŵj + iεŝj}.
By doing this, some subset Uj ⊆ S′

j of squares of size smaller than εwj/(2 + ε)
might not fit at the top of bj (see Fig. 4; the dark shaded squares have size
smaller than εwj/(2 + ε)). The total area of the squares in Uj is smaller than
2εwjlj/(2 + ε). The squares Uj are removed from bj; they will be re-introduced
to the packing later.

Now, we round the length of bj down to the nearest multiple l̄j of ŝj (see
Fig. 4). The KR algorithm might produce a packing for S′

j of length larger than
lj , but we can reduce the length to at most l̄j by using the shifting technique
described in Section 4.3: Let Xj be the set of squares that are not completely
packed by the KR algorithm inside the rounded block bj (see Fig. 4). We divide bj

into 1/(4ε) strips of the same length and width w̄j . For at least one of these strips
tj , the total profit of the squares completely packed in it is at most 4ε×profit(S′

j).
Remove these squares from tj creating an empty region of width w̄j and length
at least 4εlj − 2ŝj ≥ 3εlj + εβŝj − 2ŝj, since by Def. 1, lj ≥ βŝj .

By (3), Xj can be packed in a rectangle of width w̄j and length εlj +22ŝj/ε2+
ŝj . We can pack Xj in tj and still have an empty region of width w̄j and length

� ≥ 3εlj+εβŝj−2ŝj−(εlj+22ŝj/ε2+ŝj) = 2εlj+ŝj(
2
ε2
−3), by (2), ≥ 2εlj+15ŝj.

The squares in Dj ∪Uj can be added back and packed inside tj in a region of
width w̄j and length 2εlj + 5ŝj < �. To see this, observe that the squares from
Dj can be packed in two strips of width wj + 2ŝj and length ŝj (see Fig. 5).
Since w̄j ≥ wj − εŝj and w̄j ≥ ŝj , then Dj can also be packed in six strips of
width w̄j and length ŝj . The squares in Uj can be packed in a horizontal strip

A Polynomial Time Approximation Scheme for the Square Packing Problem 193

of length lj and width 2εwj/(2 + ε) < εwj . These squares can be re-arranged
so they fit in at most 1/(2ε) strips of length 2εlj + ŝj and width εwj . The total
width of these strips is at most εwj/(2ε) = wj/2 < wj − ŝj/2 < wj − εŝj ≤ w̄j ,
as ŝj ≤ wj and ε ≤ 1/3.

The above process packs in the rounded block bj all the squares of Sj , except
those originally placed in strip tj . The total profit of the packed squares is at
least (1 − 4ε)profit(Sj), but now no square crosses the boundaries of bj and,
furthermore, the squares are packed in a very regular manner.

4.5 Composite Small Blocks

Let B1 be the set of composite small blocks and let S1 be the set of squares
packed in the blocks of B1. Recall that we are considering the case when every
big square has profit larger than εOPT . Since S1 contains only medium and
small squares, then, profit(S1) ≤ (1− ε)OPT .

Let bj1 ∈ B1 be a composite small block and let Sj1 ⊆ S1 be the set of
squares packed in bj1. We will modify the way in which Sj1 is packed inside
bj1 by recursively applying to bj1 the transformations described in Sections 2,
4, 5, i.e., we will consider that now bj1 is the bin R where the squares need
to be packed (however, now the bin might not be rectangular). Accordingly,
we define ρ′0 = 1, ρ′k = (ρ′k−1)

4(ε/4)5+2η+1
, and ρk = ρ′k × ŝj1, for all integers

k ≥ 1, where ŝj1 is the size of the largest square in Sj1. Then, we define the
sets Q∗

kj = {Qi ∈ Sj1 | si ∈ (ρk, ρk−1]}, k ≥ 1. Let τ ≥ 2 be the smallest index
for which profit(Q∗

τj) ≤ ε× profit(Sj1). The set Sj1 is then partitioned into big
B∗

j1 = {Qi ∈ Sj1 | si > ρτ−1}, mediumM∗
j1 = {Qi ∈ Sj1 | ρτ < si ≤ ρτ−1}, and

small S∗j1 = {Qi ∈ Sj1 | si ≤ ρτ} squares as we did in Section 2. For simplicity,
we required τ ≥ 2 to ensure that the set B∗

j1 is not empty. We now need to
consider two cases:

(i) The set B∗
j1 contains a square Q� of profit no larger than ε × profit(Sj1).

In this case we modify the packing for Sj1 as indicated in Section 5.
(ii) Every square in B∗

j1 has profit larger than profit(Sj1). We recursively par-
tition bj1 into smaller blocks using the procedure described in Section 4.

With each recursive partitioning, the composite small blocks might get more
complex shapes, since composite small blocks are constructed by merging several
rectangular regions together. Fortunately, we only need to recursively partition
these blocks a constant number of times, as we show below.

Let B2 be the set of composite small blocks created after recursively par-
titioning all the blocks in B1. Since in each block bj1 ∈ B1 that needs to be
partitioned there must be at least one square Q ∈ B∗

j1 of profit larger than
ε× profit(Sj1), then the total profit of the squares packed in the smaller blocks
created after partitioning bj1 is at most (1 − ε)profit(Sj1). Therefore, the total
profit of the set S2 of squares packed in all the blocks of B2 is profit(S2) ≤
(1− ε)

∑
bj1∈B1

profit(Sj1) = (1 − ε)profit(S1) ≤ (1− ε)2OPT .
Let Bi be the set of composite small blocks after i recursive applications of

the partitioning procedure and let Si be the set of squares packed in Bi. By the

194 K. Jansen and R. Solis-Oba

above discussion, by recursively partitioning the blocks in Bi we create a new
set of composite small blocks Bi+1 such that the total profit of the set Si+1 of
squares packed in Bi+1 is profit(Si+1) ≤ (1− ε)profit(Si) ≤ (1− ε)iOPT .

If we perform this recursive partitioning η = log1−ε(ε) times, the total profit
of the squares packed inside the blocks Bη is at most (1− ε)ηOPT = ε×OPT .
Thus, we simply discard all squares packed by the optimum solution P ∗ in the
blocks Bη, losing only profit at most ε×OPT . We can show that

|Bη| <
(

4
ε

)2η+2

and nη <

(
4
ε

)2η+1

, (4)

where nη is the maximum number of vertices in any polygonal region delimiting
a composite small block (we omit the proofs, due to space limitations).

This recursive partitioning creates a packing with a hierarchical structure for
the composite small blocks. Large squares relative to the size of a composite
small block split it into large, elongated, and small sub-blocks where squares are
packed as indicated in this section. As we show below, the number and shape of
the composite small blocks affects the time complexity of our algorithm.

5 Instances with a Low Profit Big Square

Let bj be either the unit size square bin, or one of the composite small blocks
created during the recursive partitioning procedure described above. Let Sj be
the set of squares packed in bj by the optimum solution P ∗. We partition Sj

into 3 sets: B∗
j ,M∗

j , and S∗j , of big, medium, and small squares as described in
Section 4.5. If bj is a composite small block then, bj was obtained by merging at
most nη rectangular blocks, each of width and length smaller than αŝj , where
ŝj is the size of the largest square in Sj . So, the total area of bj is smaller than
nη(αŝj)2 and the (constant) number n∗

j of big squares in B∗
j is

n∗
j < nη(αŝj)2/ρ2

τ−1 < nηα2/ρ2
τ−1 = nηα2(4/ε)2(5+2η+1)(41/ε−1)/3. (5)

Let us remove the medium squaresM∗
j from bj ; causing a profit loss of value

at most ε×profit(Sj). This creates a size gap between the big and small squares.
We also remove the small squares from bj, but we will add them back later.

Let Qmin ∈ B∗
j be a big square of profit at most ε× profit(Sj) and pj be the

polygon delimiting bj. The empty space in bj left by the n∗
j big squares can be

split with horizontal cutting lines starting at the vertices of pj and at the vertices
of the squares in B∗

j into m rectangles Rj = {R1, R2, . . . , Rm}. For convenience,
we call these rectangles, large blocks. By (4), pj has at most nη vertices and
since the total number of vertices of the big squares in B∗

j is 4n∗
j , then,

m < nη + 4n∗
j . (6)

Now, add back the small squares and, then, round the width and length of
each large block Ri down to the nearest value of the form kŝ, where k is an

A Polynomial Time Approximation Scheme for the Square Packing Problem 195

integer value and ŝ ≤ ρτ is the size of the largest small square in S∗j . After doing
this, a set S′

j of small squares might not completely fit in the blocks Rj . Let li
be the length of block Ri and wi be its width. We can show that the total area
of the squares in S′

j is

A′
j <

1
5
ρ2

τ−1 (7)

Let us remove Qmin from bj , losing additional profit of value at most εOPT .
This creates an empty square region E in bj of area at least ρτ−1×ρτ−1 where we
can pack the small squares S′

j by using the NFDS algorithm. Let s′ be the size of
the largest square in S′

j and let sE be the size of any side of E. Round sE down to
the nearest multiple of s′. Note that after rounding, sE > ρτ−1− s′ ≥ ρτ−1−ρτ .

Lemma 2. [2] Let S be a set of squares, each of size at most δ. NFDS can pack
S in a rectangular bin of length � > δ and width w ≤ (AREA(S)+δ�−δ2)/(�−δ),
where AREA(S) is the total area of the rectangles in S.

By Lemma 2 and (7), S′
j can be packed in a bin of length sE and width w′

j ≤
(ρ2

τ−1/5 + ρτsE − ρ2
τ)/(sE − ρτ) <

(
ρ2

τ−1/5 + ρτ

)
/(ρτ−1 − 2ρτ). Since ρτ =

ρ4
τ−1

(
ε
4

)5+2η+1

< 10−10ερ4
τ−1, by (1), < 10−10ρτ−1, then

w′
j < (ρ2

τ−1/5 + ρ4
τ−1

(ε

4

)5+2η+1

)/(ρτ−1 − 2× 10−10ρτ−1) < ρτ−1/4. (8)

Therefore, all the squares in S′
j fit in the empty space left by Qmin. Further-

more, after doing this we still have left an empty region of length at least sE

and width at least sE − ρτ−1/4 ≥ 3
4ρτ−1− ρτ . We now use NFDS to repack the

squares contained in each block Ri ∈ R∗
j . Some of the small squares might not

fit in the blocks Ri after being re-arranged by NFDS, but their total area [2] is
at most

∑
Ri∈R∗

j
(2ρτwi + ρτ li) < A′

j < ρ2
τ−1/5, where wi is the width of Ri and

li is its length. By Lemma 2 and (8), these squares can be packed in a bin of
length sE and width at most ρτ−1/4. Hence, they fit in the empty space that
remains in the area vacated by Qmin.

6 Structure of a Near Optimum Solution

As shown in Section 4.5, the total number of composite small blocks that our
recursive splitting procedure creates is at most |Bη| < (4/ε)2

η+2
. Since each

composite small block that needs to be recursively split must have at most 1/ε
big squares packed in it, the number of big squares involved in these η recursive
splittings is at most |Bη|/ε. In the final set S̃ of blocks produced by the recursive
partitioning algorithm, each one of these blocks could contain a large square of
low profit, and therefore, these blocks might need to be further split as described
in Section 5: By (5) each block bj ∈ S̃ could store n∗

j big squares, which by (6),
divide bj into no more than nη + 4n∗

j blocks. Therefore, S̃ could be further split
into NB ≤ |Bη|(nη +4n∗

j) blocks. The total number of big squares packed in the
bin is NS ≤ |Bη|(1

ε + n∗
j).

196 K. Jansen and R. Solis-Oba

The transformations described in Sections 2-5 prove that for any instance Q
of the square packing problem there is a near optimum solution P+ that selects
a subset Q+ of squares of total profit (1−O(ε))OPT and packs them in the unit
size square bin in a very regular manner:

– The packing P+ labels a constant number NS ≤ |Bη|(n∗
j + 1/ε) of squares

as big squares.
– The space not occupied by the big squares can be partitioned into a constant

number NB ≤ |Bη|(nη + 4n∗
j) of large and elongated rectangular blocks.

– The remaining, unlabelled, squares are packed in the blocks so that none
crosses any block boundaries.

– A large block bi has length li and width wi that are multiples of the size ŝi of
the largest square packed in bi. Squares of total area at most (li−2ŝi)(wi−ŝi)
are packed in bi using the NFDS algorithm.

– An elongated block bj has one of its dimensions much larger (by at least
a factor β/α) than the other one. The larger dimension of bj is a multiple
of the size ŝj of the largest square packed in bj; the smaller dimension is a
multiple of ε× ŝj . Squares are packed in bj using the KR algorithm.

7 The Algorithm

Our approximation algorithm for the square packing problem is relatively sim-
ple, as it just enumerates a polynomial number of packings with the structure
described above and then it selects a packing with the highest profit. Some care
is needed when selecting the squares to pack in each block to ensure that the
solution produced has profit close to that of P ∗.

Let nL and nE be the number of large and elongated blocks in P+, respec-
tively. The algorithm tries all non-negative values for nL and nE such that
nL + nE ≤ NB. For every choice of nL and nE the algorithm must select the
dimensions of each long and elongated block. To determine the dimensions of a
block bi, we first choose a square Q̂i ∈ Q to be the largest square packed in that
block. If bi is a large block, then its width wi and length li are multiples of the
size ŝi of Q̂i. Note that wi and li are at most nŝi, so there are O(n2) choices for
the dimensions of bi. If bi is an elongated block, then its smaller dimension is a
multiple of εŝi and its larger dimension is a multiple of ŝi. Hence, there are up
to n2/ε possible choices for the dimensions of bi in this case.

For each choice of the number of blocks and the dimensions of each block, we
need to select the set G of big squares to be packed in the bin. Since |G| ≤ NS ,
the algorithm tries for G all subsets of Q of up to NS squares. The number of
possible subsets is O(nNS), which is polynomial in n as NS is constant.

Let L be the set of blocks selected by the algorithm. The algorithm takes this
set L∪G of rectangles and tries to pack them in the unit size bin R. Since |L∪G|
is constant, we can in O(1) time either find a packing for L ∪ G or decide that
no packing for them exists. To do this, let us first define an upper-left justified
packing for a set S of rectangles as a packing in which no rectangle can be shifted

A Polynomial Time Approximation Scheme for the Square Packing Problem 197

up or to the left without overlapping other rectangles or crossing the boundaries
of the bin. Clearly, any packing for S can be transformed into an upper-left
justified packing by repeatedly shifting the rectangles up and/or to the left until
no rectangle can be further moved. In an upper-left justified packing for S, every
square Qj ∈ S has its upper left corner at a distance xj (which is the sum of
lengths of at most |S| rectangles) from the left side of the bin and at a distance
yj (which is the sum of widths of at most |S| rectangles) from the top of the bin.
Therefore, for each square Qj there are at most 2|S| possible values for xj and
2|S| possible values for yj .

To pack L ∪ G, we can simply compute for each rectangle r ∈ L ∪ G the at
most 2|L∪G| × 2|L∪G| possible coordinates for its upper-left corner. If for one of
these positionings all the rectangles fit in the bin without overlapping, then we
have found a valid packing for them, otherwise no packing exists.

For each set L of blocks and G of big squares that can be packed in the bin,
we consider the set E ⊆ L of elongated blocks. Each elongated block bj ∈ E
needs to be split into frames and large blocks as described in Section 4.4. To
show how this splitting is done, let us consider a block bi ∈ E . For simplicity we
assume that wi < li. First, we select a (multi)subset Ti of h =

(
2+ε

ε

)2 squares
that will be used to split bi into h frames and h + 1 large blocks as explained in
Section 4.4.1. The length of each frame is a multiple of ŝj and its width is the
sum of widths of a subset of squares from Tj; therefore, for each frame there are
at most n2h possible values for its dimensions. Since there are h frames and nh

possible choices for Tj , there are (n2h)hnh ways of selecting frames for block bj .
For each choice of frames there is only one way of splitting the remaining space
of bj into large blocks.

The above process eliminates the elongated blocks from L, but adds a new
set of large blocks. Let L be the resulting set of large blocks and F be the set of
frames created by splitting the elongated blocks. The final number NL of large
blocks is then NL = NB + |E|(h+1) and the number NF of frames is NF = |E|h.

7.1 Selecting the Squares

The final step is to allocate a set of squares to each block and frame, and to
pack them there. For each block bj ∈ L, of length lj and width wj , we select a
square Q̂j ∈ Q, of size ŝj , to be the largest square packed in it. We pack in bj

only squares of size at most ŝj , and total area at most (lj − 2ŝj)(wj − ŝj). For
each frame fj ∈ F we choose two squares Q̌j and Q̂j of sizes šj and ŝj , šj ≤ ŝj .
We can pack in fj only squares of size at least šj and at most ŝj . If the total
length lj of fj is smaller than its width, then the length of each square allocated
to fj is rounded up to ŝj , otherwise, the width of each square to be packed in
fj is rounded up to ŝj . The total area of the squares assigned to fj must be at
most wj lj.

Now, we must allocate to the blocks and frames L ∪ F a maximum profit
subset of squares that satisfy the above conditions. This allocation problem is a
special instance of the generalized assignment problem [3]. However, since |L∪F|

198 K. Jansen and R. Solis-Oba

is constant, a straightforward extension of the O(n2/ε) FPTAS of Lawler [9] for
the knapsack problem can be used to make the allocation. The only change
that we need to make to the algorithm in [9] is that instead of computing single
pairs (profit(S), area(S)) for candidate subsets S of squares, we need to compute
NL + NB pairs (profit(S1), area(S1)), . . . , (profit(SNL+NB), area(SNL+NB)) for
those candidate sets indicating how the squares are allocated to the blocks and
frames. This change increases the time complexity of the algorithm to O(n2(NL+
NB)/ε).

The total profit of the squares allocated by this algorithm is at least (1−ε)p+,
where p+ is the total profit of the squares allocated by P+ to the large blocks
and frames. As discussed above, all squares allocated to a large block bj are
packed using the NFDS algorithm. Furthermore, all squares assigned to a frame
fj are packed by simply placing the squares side by side in the frame.

Theorem 1. There is a PTAS for the square packing problem.

References

1. Bansal, N., Sviridenko, M.: Two-dimensional bin packing with one dimensional
resource augmentation. Discrete Optimization (to appear)

2. Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for
level-oriented two-dimensional packing algorithms. SIAM Journal on Computing 9,
808–826 (1980)

3. Cohen, R., Katzir, L., Raz, D.: An Efficient Approximation for the Generalized
Assignment Problem. Information Processing Letters 100(4), 162–166

4. Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: Packing weighted rectangles
into a square. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS,
vol. 3618, pp. 352–363. Springer, Heidelberg (2005)

5. Harren, R.: Approximating the orthogonal knapsack problem for hypercubes. In:
International Colloquium on Automata Languages and Programming (ICALP
2006), pp. 238–249 (2006)

6. Jansen, K., Zhang, G.: Maximizing the total profit of rectangles packed into a
rectangle. Algorithmica 47, 323–342 (2007)

7. Kleitman, D.J., Krieger, M.M.: An optimal bound for two dimensional bin packing.
In: Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 1975), pp. 163–168 (1975)

8. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research 25, 645–656 (2000)

9. Lawler, E.: Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research 4, 339–356 (1979)

10. Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing
squares into a square. Journal of Parallel and Distributed Computing 10, 271–275
(1990)

11. Novotny, P.: On packing of squares into a rectangle. Archivum Mathematicum 32,
75–83 (1996)

Modeling Disjunctive Constraints with a

Logarithmic Number of Binary Variables and
Constraints�,��

Juan Pablo Vielma and George L. Nemhauser

H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA, USA

{jvielma,gnemhaus}@isye.gatech.edu

Abstract. Many combinatorial constraints over continuous variables
such as SOS1 and SOS2 constraints can be interpreted as disjunctive
constraints that restrict the variables to lie in the union of m specially
structured polyhedra. Known mixed integer binary formulations for these
constraints have a number of binary variables and extra constraints that
is linear in m. We give sufficient conditions for constructing formulations
for these constraints with a number of binary variables and extra con-
straints that is logarithmic in m. Using these conditions we introduce the
first mixed integer binary formulations for SOS1 and SOS2 constraints
that use a number of binary variables and extra constraints that is loga-
rithmic in the number of continuous variables. We also introduce the first
mixed integer binary formulations for piecewise linear functions of one
and two variables that use a number of binary variables and extra con-
straints that is logarithmic in the number of linear pieces of the functions.
We prove that the new formulations for piecewise linear functions have
favorable tightness properties and present computational results show-
ing that they can significantly outperform other mixed integer binary
formulations.

1 Introduction

An important question in the area of mixed integer programming (MIP) is char-
acterizing when a disjunctive constraint of the form

z ∈
⋃
i∈I

Pi ⊂ IRn, (1)

where Pi = {z ∈ IRn : Aiz ≤ bi}, can be modeled as a binary integer program.
Jeroslow and Lowe ([1,2,3]) showed that a necessary and sufficient condition is
for {Pi}i∈I to be a finite family of polyhedra with a common recession cone.
� This research has been supported by NSF grant CMMI-0522485, AFOSR grant

FA9550-07-1-0177 and Exxon Mobil Upstream Research Company.
�� The authors would like to thank Daniel Espinoza for pointing out the relation be-

tween SOS2 compatible functions and Gray codes.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 199–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

200 J.P. Vielma and G.L. Nemhauser

Using results from disjunctive programming ([4,5,6,7,8,9]) they showed that, in
this case, constraint (1) can be simply modeled as

Aizi ≤ xib
i ∀i ∈ I, z =

∑
i∈I

zi,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (2)

The possibility of reducing the number of continuous variables in these models
has been studied in [10,11,12], but the number of binary variables and extra
constraints needed to model (1) has received little attention. However, it has
been observed that a careful construction can yield a much smaller model than
a naive approach. Perhaps the simplest example comes from the equivalence
between general integer and binary integer programming (see for example page
12 of [13]). The requirement x ∈ [0, u] ∩ ZZ can be written in the form (1)
by letting Pi := {i} for all i in I := [0, u] ∩ ZZ which, after some algebraic
simplifications, yields a representation of the form (2) given by

z =
∑
i∈I

i xi,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (3)

This formulation has a number of binary variables that is linear in |I| and can
be replaced by

z =
�log2 u�∑

i=0

2i xi, z ≤ u, xi ∈ {0, 1} ∀i ∈ {0, . . . , �log2 u�}. (4)

In contrast to (3), (4) has a number of binary variables that is logarithmic in
|I|. Although (4) appears in the mathematical programming literature as early
as [14], and the possibility of modeling with a logarithmic number of binary
variables and a linear number of constraints is studied in the theory of disjunctive
programming (see for example [5]) and in [15], we are not aware of any other
non-trivial formulations with a logarithmic number of binary variables and extra
constraints.

The main objective of this work is to show that some well known classes of
constraints of the form (1) can be modeled with a logarithmic number of binary
variables and extra constraints. Although modeling with fewer binary variables
and constraints might seem advantageous, a smaller formulation is not necessar-
ily a better formulation (see for example section I.1.5 of [16]). More constraints
might provide a tighter LP relaxation and more variables might do the same by
exploiting the favorable properties of projection (see for example [17]). For this
reason, we will also show that under some conditions our new formulations are
as tight as any other mixed integer formulation, and we empirically show that
they can provide a significant computational advantage.

The paper is organized as follows. In Section 2 we study the modeling of a
class of hard combinatorial constraints. In particular we introduce the first for-
mulations for SOS1 and SOS2 constraints that use only a logarithmic number of
binary variables and extra constraints. In Section 3 we relate the modeling with

Modeling Disjunctive Constraints 201

a logarithmic number of binary variables to branching and we introduce suffi-
cient conditions for these models to exist. We then show that for a broad class of
problems the new formulations are as tight as any other mixed integer program-
ming formulation. In Section 4 we use the sufficient conditions to present a new
formulation for non-separable piecewise linear functions of one and two variables
that uses only a logarithmic number of binary variables and extra constraints. In
Section 5 we show that the new models for piecewise linear functions of one and
two variables can perform significantly better than the standard binary models.
Section 6 gives some conclusions.

2 Modeling a Class of Hard Combinatorial Constraints

In this section we study a class of constraints of the form (1) in which the
polyhedra Pi have the simple structure of only allowing some subsets of variables
to be non-zero. Specifically, we study constraints over a vector of continuous
variables λ indexed by a finite set J that are of the form

λ ∈
⋃
i∈I

Q(Si) ⊂ ΔJ , (5)

where I is a finite set, ΔJ := {λ ∈ IRJ
+ :

∑
j∈J λj ≤ 1} is the |J |-dimensional

simplex in IRJ , Si ⊂ J for each i ∈ I and

Q(Si) =
{
λ ∈ ΔJ : λj ≤ 0 ∀ j /∈ Si

}
. (6)

Furthermore, without loss of generality we assume that
⋃

i∈I Si = J . Except
for Theorem 3, our results easily extend to the case in which the simplex ΔJ

is replaced by a box in IRJ
+, but the restriction to ΔJ greatly simplifies the

presentation.
Disjunctive constraint (5) includes SOS1 and SOS2 constraints [18] over con-

tinuous variables in ΔJ . SOS1 constraints on λ ∈ IRn
+ allow at most one of the

λ variables to be non-zero which can be modeled by letting I = J = {1, . . . , n}
and Si = {i} for each i ∈ I. SOS2 constraints on (λj)n

j=0 ∈ IRn+1
+ allow at

most two λ variables to be non-zero and have the extra requirement that if two
variables are non-zero their indices must be adjacent. This can be modeled by
letting I = {1, . . . , n}, J = {0, . . . , n} and Si = {i− 1, i} for each i ∈ I.

Mixed integer binary models for SOS1 and SOS2 constraints have been known
for many years (see for example [19,20]), and some recent research has focused
on branch-and-cut algorithms that do not use binary variables [21,22,23,24].
However, the incentive of being able to use state of the art MIP solvers (see
for example the discussion in section 5 of [25]) makes binary models for these
constraints very attractive (see for example [26,27,28,29]).

We first review a formulation for (5) with a linear number of binary variables
and then we give a formulation with a logarithmic number of binary variables
and a linear number of extra constraints. We then study how to obtain a formu-
lation with a logarithmic number of variables and a logarithmic number of extra
constraints and show that this can be achieved for SOS1 and SOS2 constraints.

202 J.P. Vielma and G.L. Nemhauser

The most direct way of formulating (5) as an integer programming problem
is by assigning a binary variable for each set Q(Si) and using formulation (2).
After some algebraic simplifications this yields the formulation of (5) given by

λ ∈ ΔJ , λj ≤
∑

i∈I(j)

xi ∀j ∈ J,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I

where I(j) = {i ∈ I : j ∈ Si}. This gives a formulation with |I| binary variables
and |J |+1 extra constraints and yields the standard formulations for SOS1 and
SOS2 constraints. (We consider ΔJ as the original constraints and disregard the
bounds on x).

The following proposition shows that by using techniques from [15] we can
obtain a formulation with 	log2 |I|
 binary variables and |I| extra constraints.

Proposition 1. Let B : I → {0, 1}�log2 |I|� be any injective function. Then

λ ∈ ΔJ ,
∑
j /∈Si

λj ≤
∑

l/∈σ(B(i))

xl +
∑

l∈σ(B(i))

(1− xl) ∀i ∈ I,

xl ∈ {0, 1} ∀l ∈ L(|I|) (7)

where σ(B) is the support of vector B and L(r) := {1, . . . , 	log2 r
}, is a valid
formulation for (5).

For SOS1 constraints, for which |I(j)| = 1 for all j ∈ J , we can obtain the
following alternative formulation of (5) which has 	log2 |I|
 binary variables and
2	log2 |I|
 extra constraints.

Proposition 2. Let B : I → {0, 1}�log2 |I|� be any injective function. Then

λ ∈ ΔJ ,
∑

j∈J+(l,B)

λj ≤ xl,
∑

j∈J0(l,B)

λj ≤ (1− xl), xl ∈ {0, 1} ∀l ∈ L(|I|), (8)

where J+(l, B) = {j ∈ J : ∀i ∈ I(j) l ∈ σ(B(i))} and J0(l, B) = {j ∈ J :
∀i ∈ I(j) l /∈ σ(B(i))}, is a valid formulation for SOS1 constraints.

The following example illustrates formulation (8) for SOS1 constraints.

Example 1. Let J = {1, . . . , 4} and (λj)4j=1 ∈ ΔJ be constrained to be SOS1
and let B∗(1) = (1, 1)T , B∗(2) = (1, 0)T , B∗(3) = (0, 1)T and B∗(4) = (0, 0)T .
Formulation (8) for this case with B = B∗ is

λ ∈ ΔJ , x1, x2 ∈ {0, 1}, λ1+λ2 ≤ x1, λ3+λ4 ≤ 1−x1, λ1+λ3 ≤ x2,

λ2 + λ4 ≤ 1− x2.

Formulation (8) is valid for SOS1 constraints independent of the choice of B. In
contrast, for SOS2 constraints, where |I(j)| = 2 for some j ∈ J , formulation (8)
can be invalid for some choices of B. This is illustrated by the following example.

Modeling Disjunctive Constraints 203

Example 2
Let J = {0, . . . , 4} and (λj)4j=0 ∈ ΔJ be constrained to be SOS2. Formulation
(8) for this case with B = B∗ is

λ ∈ ΔJ , x1, x2 ∈ {0, 1}, λ0 + λ1 ≤ x1, λ3 + λ4 ≤ 1− x1, λ0 ≤ x2,

λ4 ≤ 1− x2

which has λ0 = 1/2, λ2 = 1/2, λ1 = λ3 = λ4 = 0, x1 = x2 = 1 as a feasible
solution that does not comply with SOS2 constraints. However, the formulation
can be made valid by adding constraints

λ2 ≤ x1 + x2, λ2 ≤ 2− x1 − x2. (9)

For any B we can always correct formulation (8) for SOS2 constraints by adding
a number of extra linear inequalities, but with a careful selection of B the validity
of the model can be preserved without the need for additional constraints.

Definition 1 (SOS2 Compatible Function). We say that an injective func-
tion B : {1, . . . , n} → {0, 1}�log2(n)� is compatible with an SOS2 constraint on
(λj)n

j=0 ∈ IRn+1
+ if for all i ∈ {1, . . . , n− 1} the vectors B(i) and B(i + 1) differ

in at most one component.

Theorem 1. If B is an SOS2 compatible function then (8) is valid for SOS2
constraints.

The following example illustrates how an SOS2 compatible function yields a
valid formulation.

Example 2 (continued)
Let B0(1) = (1, 0)T , B0(2) = (1, 1)T , B0(3) = (0, 1)T and B0(4) = (0, 0)T .
Formulation (8) with B = B0 for the same SOS2 constraints is

λ ∈ ΔJ , x1, x2 ∈ {0, 1}
λ0 + λ1 ≤ x1, λ3 + λ4 ≤ (1− x1) (10)
λ2 ≤ x2, λ0 + λ4 ≤ (1 − x2). (11)

An SOS2 compatible function can always be constructed and for each n ∈ ZZ+

there are several SOS2 compatible functions. In fact, definition 1 is equivalent to
requiring (B(i))n

i=1 to be a reflected binary or Gray code (see for example [30]).

3 Branching and Modeling with a Logarithmic Number
of Binary Variables and Constraints

The way in which formulation (8) is constructed does not provide a clear inter-
pretation of the binary variables used, which makes it hard to extend to other
combinatorial constraints. In this section we develop a more general scheme
which is related to specialized branching schemes.

204 J.P. Vielma and G.L. Nemhauser

We can identify each vector in {0, 1}�log2 |I|� with a leaf in a binary tree with
	log2 |I|
 levels in a way such that each component corresponds to a level and
the value of that component indicates the selected branch in that level. Then,
using function B we can identify each set Q(Si) with a leaf in the binary tree and
we can interpret each of the 	log2 |I|
 variables as the execution of a branching
scheme on sets Q(Si). The formulations in Example 2 illustrates this idea.

In formulation (8) with B = B0 the branching scheme associated with x1 sets
λ0 = λ1 = 0 when x1 = 0 and λ3 = λ4 = 0 when x1 = 1, which is equivalent to
the traditional SOS2 constraint branching of [18] whose dichotomy is fixing to
zero variables to the “left of” (smaller than) a certain index in one branch and
to the “right” (greater) in the other. In contrast, the scheme associated with x2

sets λ2 = 0 when x2 = 0 and λ0 = λ4 = 0 when x2 = 1, which is different from
the traditional branching as its dichotomy can be interpreted as fixing variables
in the “center” and on the “sides” respectively. If we use function B∗ instead
we recover the traditional branching. The drawback of the B∗ scheme is that
the second level branching cannot be implemented independently of the first
one using linear inequalities. For B0 the branch alternatives associated with x2

are implemented by (11), which only include binary variable x2. In contrast, for
B∗ one of the branching alternatives requires additional constraints (9) which
involve both x1 and x2.

This example illustrates that a sufficient condition for modeling (5) with a
logarithmic number of binary variables and extra constraints is to have a binary
branching scheme for λ ∈ ⋃

i∈I Q(Si) with a logarithmic number of dichotomies
and for which each dichotomy can be implemented independently. This condition
is formalized in the following definition.

Definition 2. (Independent Branching Scheme) {Lk, Rk}dk=1 with Lk, Rk ⊂ J
is an independent branching scheme of depth d for disjunctive constraint (5) if⋃

i∈I Q(Si) =
⋂d

k=1 (Q(Lk) ∪Q(Rk)).

This definition can then be used in the following theorem and immediately gives
a sufficient condition for modeling with a logarithmic number of variables and
constraints.

Theorem 2. Let {Q(Si)}i∈I be a finite family of polyhedra of the form (6) and
let {Lk, Rk}�log2(|I|)�

k=1 be an independent branching scheme for λ ∈ ⋃
i∈I Q(Si).

Then

λ ∈ ΔJ ,
∑
j /∈Lk

λj ≤ xk,
∑

j /∈Rk

λj ≤ (1 − xk),

xk ∈ {0, 1} ∀k ∈ {1, . . . , 	log2(|I|)
} (12)

is a valid formulation for (5) with 	log2(|I|)
 binary variables and 2	log2(|I|)

extra constraints.

Formulation (8) with B = B0 in Example 2 illustrates how an SOS2 compati-
ble function induces an independent branching scheme for SOS2 constraints. In

Modeling Disjunctive Constraints 205

general, given an SOS2 compatible function B : {1, . . . , n} → {0, 1}�log2(n)� the
induced independent branching is given by Lk = J \J+(k, B), Rk = J \J0(l, B)
for all k ∈ {1, . . . , n}.

Formulation (12) in Proposition 2 can be interpreted as a way of implement-
ing a specialized branching scheme using binary variables. Similar techniques for
implementing specialized branching schemes have been previously introduced for
example, in [31] and [32], but the resulting models require at least a linear number
of binary variables. To the best of our knowledge the first non-trivial indepen-
dent branching schemes of logarithmic depth are the ones for SOS1 constraints
from Proposition 2 and for SOS2 constraints induced by an SOS2 compatible
function.

Formulation (12) can be obtained by algebraic simplifications from formula-
tion (2) of (5) rewritten as the conjunction of two-term polyhedral disjunctions.
Both the simplifications and the rewrite can result in a significant reduction
in the tightness of the linear programming relaxation of (12) (see for example
[5,10,11,12]). Fortunately, as the following propositions shows, the restriction to
ΔJ makes (12) as tight as any other mixed integer formulation for (5).

Theorem 3. Let Pλ and Qλ be the projection onto the λ variables of the LP
relaxation of formulation (12) and of any other mixed integer programming for-
mulation of (5) respectively. Then Pλ = conv

(⋃
i∈I Q(Si)

)
and hence Pλ ⊆ Qλ.

Theorem 3 might no longer be true if we do not restrict to ΔJ , but this restric-
tion is not too severe as it includes a popular way of modeling piecewise linear
functions. We explore this further in the following section.

4 Modeling Nonseparable Piecewise Linear Functions of
Two Variables

In this section we use Theorem 2 to construct a model for non-separable piece-
wise linear functions of two variables that use a number of binary variables and
extra constraints that is logarithmic in the number of linear pieces of the func-
tions. Although some non-separable functions can be separated there are many
practical reasons to avoid this separation (see for example the discussion on page
569 of [24]).

Imposing SOS2 constraints on (λj)n
j=0 ∈ ΔJ with J = {0, . . . , n} is a popular

way of modeling a one variable piecewise-linear function which is linear in n
different intervals (see for example [22,23]). This approach has been extended
to non-separable piecewise linear functions in [33,24,34,35]. For functions of two
variables this approach can be described as follows.

We assume that for an even integer w we have a continuous function f :
[0, w]2 → IR which we want to approximate by a piecewise linear function. A
common approach is to partition [0, w]2 into a number of triangles and approx-
imate f with a piecewise linear function that is linear in each triangle. One
possible triangulation of [0, w]2 is the J1 or “Union Jack” triangulation (see for
example [36]) which is depicted in Figure 1(a) for w = 4. The J1 triangulation

206 J.P. Vielma and G.L. Nemhauser

of [0, w]2 for any even integer w is simply obtained by adding copies of the 8
triangles shaded gray in Figure 1(a). This yields a triangulation with a total
of 2w2 triangles. We use this triangulation to approximate f with a piecewise

0 1 2 3 4
0

1

2

3

4

T

(a) Example of “Union Jack” Trian-
gulation

0 1 2 3 4
0

1

2

3

4

(b) Triangle selecting branching

Fig. 1. Triangulations

linear function that we denote by g. Let I be the set of all the triangles of the J1

triangulation of [0, w]2 and let Si be the vertices of triangle i. For example, in
Figure 1(a), the vertices of the triangle labeled T are ST := {(0, 0), (1, 0), (1, 1)}.
A valid model for g(y) (see for example [33,24,34]) is∑

j∈J

λj = 1, y =
∑
j∈J

vjλj , g(y) =
∑
j∈J

f(vj)λj (13a)

λ ∈
⋃
i∈I

Q(Si) ⊂ ΔJ , (13b)

where J := {0, . . . , w}2, vj = j for j ∈ J . This model becomes a traditional
model for one variable piecewise linear functions (see for example [22,23]) when
we restrict it to one coordinate of [0, w]2.

To obtain a mixed integer formulation of (13) with a logarithmic number of
binary variables and extra constraints it suffices to construct an independent bi-
nary branching scheme of logarithmic depth for (13b) and use formulation (12).
Binary branching schemes for (13b) with a similar triangulation have been de-
veloped in [34] and [24], but they are either not independent or have too many
dichotomies. We adapt some of the ideas of these branching schemes to develop
an independent branching scheme for the two-dimensional J1 triangulation. Our
independent branching scheme will basically select a triangle by forbidding the
use of vertices in J . We divide this selection into two phases. We first select the
square in the grid induced by the triangulation and we then select one of the two
triangles inside this square.

To implement the first branching phase we use the observation made in [24,34]
that selecting a square can be achieved by applying SOS2 branching to each

Modeling Disjunctive Constraints 207

component. To make this type of branching independent it then suffices to use
the independent SOS2 branching induced by an SOS2 compatible function. This
results in the set of constraints

w∑
s=0

∑
r∈J+

2 (l,B,w)

λ(r,s) ≤ x(1,l),

w∑
s=0

∑
r∈J0

2 (l,B,w)

λ(r,s) ≤ 1− x(1,l),

x(1,l) ∈ {0, 1} ∀l ∈ L(w), (14a)
w∑

r=0

∑
s∈J+

2 (l,B,w)

λ(r,s) ≤ x(2,l),

w∑
r=0

∑
s∈J0

2 (l,B,w)

λ(r,s) ≤ 1− x(2,l),

x(2,l) ∈ {0, 1} ∀l ∈ L(w), (14b)

where B is an SOS2 compatible function and J+
2 (l, B, w), J0

2 (l, B, w) are the
specializations of J+(l, B), J0(l, B) for SOS2 constraints on (λj)w

j=0. Constraints
(14a) implement the independent SOS2 branching for the first coordinate and
(14b) do the same for the second one.

To implement the second phase we use the branching scheme depicted in
Figure 1(b) for the case w = 4. The dichotomy of this scheme is to select the
triangles colored white in one branch and the ones colored gray in the other.
For general w, this translates to forbidding the vertices (r, s) with r even and
s odd in one branch (square vertices in the figure) and forbidding the vertices
(r, s) with r odd and s even in the other (diamond vertices in the figure). This
branching scheme selects exactly one triangle of every square in each branch and
induces the set of constraints∑

(r,s)∈L

λ(r,s) ≤ x0,
∑

(r,s)∈R

λ(r,s) ≤ 1− x0, x0 ∈ {0, 1}, (15)

where L = {(r, s) ∈ J : r is even and s is odd} and R = {(r, s) ∈ J :
r is odd and s is even}. This formulation is illustrated by the following example.

Example 3. Constraints (14)–(15) for w = 2 are

λ(0,0) + λ(0,1) + λ(0,2) ≤ x(1,1), λ(2,0) + λ(2,1) + λ(2,2) ≤ 1− x(1,1)

λ(0,0) + λ(1,0) + λ(2,0) ≤ x(2,1), λ(0,2) + λ(1,2) + λ(2,2) ≤ 1− x(2,1)

λ(0,1) + λ(2,1) ≤ x0, λ(1,0) + λ(1,2) ≤ 1− x0.

A portion of the associated branching scheme is shown in Figure 2. The shaded
triangles inside the nodes indicates the triangles forbidden by the correspond-
ing assignment of the binary variables. The restriction to the first coordinate
of [0, w]2 yields a logarithmic formulation for piecewise linear functions of one
variable that only uses one of the SOS2 branchings and does not use the trian-
gle selecting branching. Furthermore, under some mild assumptions, the model
can be extended to non-uniform grids by selecting different values of vj and to
functions of 3 variables as well.

208 J.P. Vielma and G.L. Nemhauser

x(1,1) = 0 x(1,1) = 1

x(2,1) = 1x(2,1) = 0

x0 = 0 x0 = 1

Fig. 2. Partial B&B tree from Example 3

5 Computational Results

In this section we computationally test the logarithmic models for piecewise lin-
ear functions of one and two variables against some other existing models. For
a set of transportation problems with piecewise linear cost functions, the loga-
rithmic models provide a significant advantage in almost all of our experiments.

We denote the model for piecewise linear functions of one and two variables
from section 4 by (Log). From the traditional models we selected the one usu-
ally denoted as the incremental model. This model for one variable functions
appears as early as [19,37,20] and it has been recently shown to have favorable
integrality and tightness properties [26,28,29]. The incremental model was ex-
tended to functions of several variables in [35]. We denote this model by (Inc).
We also include two models that are based on independent branching schemes
of linear depth. The first model is based on the independent branching scheme
for SOS2 constraints on (λj)n

j=0 given by Lk = {k, . . . , n}, Rk = {0, . . . , k} for
every k ∈ {1, . . . , n− 1}. This formulation has been independently developed in
[32] and is currently defined only for functions of one variable. We denote this
model by (LB1). The second model is based on an independent branching de-
fined in [24, p. 573]. This branching scheme is defined for any triangulation and
it has one branch for every vertex in the triangulation. In particular for piece-
wise linear functions of one variable with k intervals or segments the scheme has
k + 1 branches and for piecewise linear functions on a k × k grid it has (k + 1)2

Modeling Disjunctive Constraints 209

branches. We denote the model by (LB2). We also tested some other piecewise
linear models, but do not report results for them since they did not significantly
improve the worst results reported here. All models were generated using Ilog
Concert Technology and solved using CPLEX 9 on a dual 2.4GHz Linux work-
station with 2GB of RAM. Furthermore, all tests were run with a time limit of
10000 seconds.

The first set of experiments correspond to piecewise linear functions of one
variable for which we used the transportation models from [25]. We selected
the instances with 10 supply and 10 demand nodes and for each of the 5 avail-
able instances we generated several randomly generated objective functions. We
generated a separable piecewise linear objective function given by the sum of
concave non-decreasing piecewise linear functions of the flow in each arc. For
each instance and number of segments we generated 20 objective functions to
obtain a total of 100 instances for each number of segments. Tables 1(a), 1(b)
and 1(c) show the minimum, average, maximum and standard deviation of the
solve times in seconds for 4, 8 and 16 segments. The tables also shows the num-
ber of times the solves failed because the time limit was reached and the number
of times each formulation had the fastest solve time. As a final test for the one
variable functions we tested the 3 best models on 100 instances with functions
with 32 segments. Table 1(d) presents the statistics for these instances. For 16
and 32 segments we excluded the “wins” row as (Log) had the fastest solve times
for every instance. The next set of experiments correspond to piecewise linear

Table 1. Solve times for one variable functions [s]

stat (Log) (LB1) (LB2) (Inc)

min 0 0 1 1
avg 2 2 4 3
max 9 9 27 16
std 1 1 3 2
fails 0 0 0 0
wins 72 27 0 1

(a) 4 segments.

stat (Log) (LB1) (LB2) (Inc)

min 1 0 1 0
avg 8 19 88 44
max 44 162 1171 245
std 8 19 147 36
fails 0 0 0 0
wins 98 1 1 0

(b) 8 segments.

stat (Log) (LB1) (LB2) (Inc)

min 1 13 15 46
avg 19 127 3561 374
max 83 652 10000 1859
std 17 105 3912 338
fails 0 0 21 0

(c) 16 segments.

stat (Log) (LB1) (Inc)

min 3 113 182
avg 33 880 1445
max 174 10000 8580
std 33 1289 1327
fails 0 1 0

(d) 32 segments.

functions of two variables and we again used the 10× 10 transportation models
from [25]. In this case we took two copies of the same transportation model for
each instance. We used an objective function which is the sum over all the arcs
in the original transportation problem of non-separable two variable piecewise

210 J.P. Vielma and G.L. Nemhauser

linear functions of the flows in the two copies of the arc. For each arc we gener-
ated the corresponding two variable piecewise linear function by triangulating a
domain of the form [0, w]2 as described in section 4 with a 8 × 8 segment grid
to obtain a total of 128 triangles with 81 vertices. We then interpolated on this
grid the functions of the two flows xe, xe′ given by

√
(a1xe + b1)(a2xe′ + b2) for

a1, b1, a2, b2 ∈ IR+ randomly generated independently for each arc. In addition,
we eliminated the supply constraints from the two copies of the transportation
problem to make the instances easier to solve. These problems were not created
with a realistic application in mind and are just a simple extension of the prob-
lems in the previous set designed to include two variable non-separable functions.
We again generated 20 objective functions for each of the original instances for a
total of 100 instances. We excluded formulation (LB1) in this second set of tests
as it is only valid for functions of one variable. Table 2(a)shows the statistics for
this set of instances. As a final experiment we generated a new set of problems
using a 16× 16 grid for the interpolation obtaining a total of 512 triangles and
289 vertices. For these instances we only used formulations (Log) and (LB2).
Table 2(b) shows the statistics for this last set of instances. It is clear that one

Table 2. Solve times for two variable functions on a 8 × 8 and 16 × 16 grids [s]

stat (Log) (LB2) (Inc)

min 1 3 95
avg 11 78 3521
max 102 967 10000
std 15 140 3648
fails 0 0 19
wins 99 1 0

(a) 8 × 8 grid.

stat (Log) (LB2)

min 5 22
avg 374 2910
max 10000 10000
std 1057 3444
fails 1 11
wins 98 2
(b) 16 × 16 grid.

of the advantages of the (Log) formulation is that it is smaller than the other
formulations while retaining favorable tightness properties. In addition, formu-
lation (Log) effectively transforms CPLEX’s binary variable branching into a
specialized branching scheme for piecewise linear functions. This allows formula-
tion (Log) to combine the favorable properties of specialized branching schemes
and the technology in CPLEX’s variable branching. This last property is what
probably allows (LB1) and (LB2) to outperform (Inc) too. In this regard we
would like to emphasise the fact that all models tested are pure mixed integer
programming problems (i.e. they do not include high level SOS2 constraints).
Although CPLEX allows SOS2 high level descriptions and can use specialized
SOS2 branching schemes that do not use binary variables the performance of
these features for CPLEX 9 was inferior to most binary models we tested (in-
cluding all for which results are presented here). Preliminary tests with CPLEX
11 show that these features have been considerably improved, which could make
them competitive with the binary models. It is clear that formulation (Log) is
superior to all of the others and that its advantage increases as the number of
segments grows.

Modeling Disjunctive Constraints 211

6 Conclusions

We have introduced a technique for modeling hard combinatorial problems with
a mixed 0-1 integer programing formulation that uses a logarithmic number of
binary variable and extra constraints. It is based on the concept of independent
branching which is closely related to specialized branching schemes for combi-
natorial optimization. Using this technique we have introduced the first binary
formulations for SOS1 and SOS2 constraints and for one and two variable piece-
wise linear functions that use a logarithmic number of binary variables and extra
constraints. Finally, we have illustrated the usefulness of these new formulations
by showing that for one and two variable piecewise linear functions they provide
a significant computational advantage.

There are still a number of unanswered questions concerning necessary and
sufficient conditions for the existence of formulations with a logarithmic number
of binary variables and extra constraints. Simple examples show that it may not
always be possible to obtain such a model. Moreover, if we allow the formulation
to have a number of binary variables and extra constraints whose asymptotic
growth is logarithmic our sufficient conditions do not seem to be necessary.
Consider cardinality constraints that restrict at most K components of λ ∈
[0, 1]n to be non-zero. This constraint does not satisfy the sufficient conditions
but it does have a formulation with a number of variables and constraints of
logarithmic order. We can write cardinality constraints in the form (5) by letting
J = {1, . . . , n}, I = {1, . . . , m} for m =

(
n
K

)
and {Sj}mj=1 be the family of all

subsets of J such that |Si| = K. The traditional formulation for cardinality
constraints is [19,20]

n∑
j=1

xj ≤ K; λj ∈ [0, 1], λj ≤ xj , xj ∈ {0, 1} ∀j ∈ J. (16)

Let n be an even number. By choosing K = n/2, which is the non-trivial car-
dinality constraint with the largest number of sets Si, we can use the fact that
for K = n/2 we have n ≤ 2 log2

((
n
K

))
to conclude that (16) has O(log2(|I|))

binary variables and extra constraints.

References

1. Jeroslow, R.G.: Representability in mixed integer programming 1: characterization
results. Discrete Applied Mathematics 17, 223–243 (1987)

2. Jeroslow, R.G., Lowe, J.K.: Modeling with integer variables. Mathematical Pro-
gramming Study 22, 167–184 (1984)

3. Lowe, J.K.: Modelling with Integer Variables. PhD thesis, Georgia Institute of
Technology (1984)

4. Balas, E.: Disjunctive programming. Annals of Discrete Mathematics 5, 3–51 (1979)
5. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete

optimization problems. SIAM Journal on Algebraic and Discrete Methods 6, 466–
486 (1985)

212 J.P. Vielma and G.L. Nemhauser

6. Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points.
Discrete Applied Mathematics 89, 3–44 (1998)

7. Blair, C.: 2 rules for deducing valid inequalities for 0-1 problems. SIAM Journal
on Applied Mathematics 31, 614–617 (1976)

8. Jeroslow, R.G.: Cutting plane theory: disjunctive methods. Annals of Discrete
Mathematics 1, 293–330 (1977)

9. Sherali, H.D., Shetty, C.M.: Optimization with Disjunctive Constraints. Lecture
Notes in Economics and Mathematical Systems, vol. 181. Springer, Heidelberg
(1980)

10. Balas, E.: On the convex-hull of the union of certain polyhedra. Operations Re-
search Letters 7, 279–283 (1988)

11. Blair, C.: Representation for multiple right-hand sides. Mathematical Program-
ming 49, 1–5 (1990)

12. Jeroslow, R.G.: A simplification for some disjunctive formulations. European Jour-
nal of Operational Research 36, 116–121 (1988)

13. Garfinkel, R.S., Nemhauser, G.L.: Integer Programming. John Wiley & Sons, Inc.,
Chichester (1972)

14. Watters, L.J.: Reduction of integer polynomial programming problems to zero-one
linear programming problems. Operations Research 15, 1171–1174 (1967)

15. Ibaraki, T.: Integer programming formulation of combinatorial optimization prob-
lems. Discrete Mathematics 16, 39–52 (1976)

16. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-
Interscience, Chichester (1988)

17. Balas, E.: Projection, lifting and extended formulation in integer and combinatorial
optimization. Annals of Operations Research 140, 125–161 (2005)

18. Beale, E.M.L., Tomlin, J.A.: Special facilities in a general mathematical program-
ming system for non-convex problems using ordered sets of variables. In: Lawrence,
J. (ed.) OR 69. Proceedings of the fifth international conference on operational re-
search, pp. 447–454. Tavistock Publications (1970)

19. Dantzig, G.B.: On the significance of solving linear-programming problems with
some integer variables. Econometrica 28, 30–44 (1960)

20. Markowitz, H.M., Manne, A.S.: On the solution of discrete programming-problems.
Econometrica 25, 84–110 (1957)

21. de Farias Jr., I.R., Johnson, E.L., Nemhauser, G.L.: Branch-and-cut for combina-
torial optimization problems without auxiliary binary variables. The Knowledge
Engineering Review 16, 25–39 (2001)

22. Keha, A.B., de Farias, I.R., Nemhauser, G.L.: Models for representing piecewise
linear cost functions. Operations Research Letters 32, 44–48 (2004)

23. Keha, A.B., de Farias, I.R., Nemhauser, G.L.: A branch-and-cut algorithm with-
out binary variables for nonconvex piecewise linear optimization. Operations Re-
search 54, 847–858 (2006)

24. Martin, A., Moller, M., Moritz, S.: Mixed integer models for the stationary case of
gas network optimization. Mathematical Programming 105, 563–582 (2006)

25. Vielma, J.P., Keha, A.B., Nemhauser, G.L.: Nonconvex, lower semicontinuous
piecewise linear optimization. Discrete Optimization 5, 467–488 (2008)

26. Croxton, K.L., Gendron, B., Magnanti, T.L.: A comparison of mixed-integer pro-
gramming models for nonconvex piecewise linear cost minimization problems. Man-
agement Science 49, 1268–1273 (2003)

Modeling Disjunctive Constraints 213

27. Magnanti, T.L., Stratila, D.: Separable concave optimization approximately equals
piecewise linear optimization. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO
2004. LNCS, vol. 3064, pp. 234–243. Springer, Heidelberg (2004)

28. Padberg, M.: Approximating separable nonlinear functions via mixed zero-one pro-
grams. Operations Research Letters 27, 1–5 (2000)

29. Sherali, H.D.: On mixed-integer zero-one representations for separable lower-
semicontinuous piecewise-linear functions. Operations Research Letters 28, 155–
160 (2001)

30. Wilf, H.S.: Combinatorial algorithms–an update. In: CBMS-NSF regional confer-
ence series in applied mathematics. Society for Industrial and Applied Mathemat-
ics, vol. 55 (1989)

31. Appleget, J.A., Wood, R.K.: Explicit-constraint branching for solving mixed-
integer programs. In: Laguna, M., González Velarde, J.L. (eds.) Computing tools
for modeling, optimization, and simulation: interfaces in computer science and op-
erations research. Operations research / computer science interfaces series, vol. 12,
pp. 245–261. Kluwer Academic, Dordrecht (2000)

32. Shields, R.: Personal communication (2007)
33. Lee, J., Wilson, D.: Polyhedral methods for piecewise-linear functions I: the lambda

method. Discrete Applied Mathematics 108, 269–285 (2001)
34. Tomlin, J.: A suggested extension of special ordered sets to non-separable non-

convex programming problems. In: Hansen, P. (ed.) Studies on Graphs and Dis-
crete Programming. Annals of Discrete Mathematics, vol. 11, pp. 359–370. North
Holland, Amsterdam (1981)

35. Wilson, D.: Polyhedral methods for piecewise-linear functions. PhD thesis, Univer-
sity of Kentucky (1998)

36. Todd, M.J.: Union jack triangulations. In: Karamardian, S. (ed.) Fixed Points:
algorithms and applications, pp. 315–336. Academic Press, London (1977)

37. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

Computing with Multi-row Gomory Cuts

Daniel G. Espinoza�

Universidad de Chile, Department of Industrial Engineering,
Santiago RM, 837-0439, Chile
daespino@dii.uchile.cl

Abstract. Cutting planes for mixed integer problems (MIP) are nowa-
days an integral part of all general purpose software to solve MIP. The
most prominent,and computationally significant, class of general cutting
planes are Gomory mixed integer cuts (GMI). However finding other
classes of general cuts for MIP that work well in practice has been elu-
sive. Recent advances on the understanding of valid inequalities derived
from the infinite relaxation introduced by Gomory and Johnson for mixed
integer problems, has opened a new possibility of finding such an exten-
sion. In this paper, we investigate the computational impact of using a
subclass of minimal valid inequalities from the infinite relaxation, using
different number of tableau rows simultaneously, based on a simple sepa-
ration procedure. We test these ideas on a set of MIPs, including MIPLIB
3.0 and MIPLIB 2003, and show that they can improve MIP performance
even when compared against commercial software performance.

1 Introduction

The most successful approach to solve general MIP today is branch and cut,
where general cutting planes are a crucial factor for the overall performance.
After the great success in the 90’s of using general purposes cutting planes such
as GMI cuts [9,5], a great deal of research was devoted to extend those ideas
to find other families of general cuts that consistently outperform GMI cuts.
However, results have been mixed, and although there are several extensions that
in theory are at least as good as GMI cuts, in practice they do not seem to offer
much advantage. Most of the extensions have focused on deriving inequalities
from the master cyclic group problem introduced by Gomory and Johnson [11],
which look at a single constrained problem.

The theoretical importance of looking at multi-row relaxations has been
proved in a number of works. For instance, Cook et al. [6], show an example
with infinite Chvátal-Gomory rank (i.e. obtaining the convex hull of the integer
points by adding inequalities derived from one row relaxations is impossible).
Andersen et al. [3], prove that by looking at inequalities generated from two
row relaxations, the convex hull of the Cook-Kannan-Schrijver example, can be

� This research was partially funded by FONDECYT grant 1070749 and by ICM grant
P05-004F.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 214–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing with Multi-row Gomory Cuts 215

obtained by adding a single cut. This situation is extended to higher dimensions
in the work of Yanjun Li and Jean-Philippe P. Richard.

An interesting recent development has been the work of Andersen et al. [3],
Cornuéjols and Borozan [7] and Gomory [10]; who have proposed to look at
the so-called infinite relaxation problem, which was also introduced by Gomory
and Johnson [11], and where several constraint are considered at the same time.
The novelty of this relaxation is that it works on a continuous relaxation, and
looks at an arbitrary number of tableau rows at the same time. Cornuéjols and
Borozan [7] show that any minimal valid inequality for the relaxation can be
related to maximal, convex, lattice-free polyhedrons; thus identifying relevant
inequalities with simple geometrical entities.

To the best of our knowledge, no computational test of the impact of using
cuts derived from this relaxation have been published. The main contribution
of this paper is to show that they are also very valuable in practice, not only
improving the root LP integrality GAP (GAPLP) closed at the root node, but
also in speeding-up the overall branch and cut performance when compared with
CPLEX [12] defaults.

The rest of the paper is organized as follows. Section 2 presents the defini-
tion and basic results related to the infinite relaxation. Section 3 presents the
basic computational problems, tradeoffs, and main ideas that guided the imple-
mentation, and also some further ideas to speed-up cut-generation and possible
alternative choices. Section 4 explain our experiments, settings, and results.

2 The Infinite Relaxation

Consider a general mixed integer program (MIP)

min cx
s.t. Ax = b

xi ∈ Z ∀i ∈ I
xi ≥ 0 ∀i = 1, . . . , n,

(1)

where I ⊆ {1, . . . , n}, A ∈ Q
m×n is of full row rank, c ∈ Q

n, b ∈ Q
m, and

x ∈ Q
n. Branch and cut algorithms start by solving

min cx
s.t. Ax = b

xi ≥ 0 ∀i = 1, . . . , n,
(2)

the LP relaxation of (1), and obtain an optimal basic solution of the form

xB = f +
∑
j∈N

rjxj , (3)

where B is the set of basic variables satisfying B ⊆ {1, . . . , n}, |B| = m, N is the
set of non-basic variables defined as N = {1, . . . , n}\B, and f, rj ∈ Q

m, ∀j ∈ N ,

216 D.G. Espinoza

f ≥ 0. The basic solution is x∗ = (xB , xN) = (f, 0), and is an optimal solution
to (1) if and only if x∗

i ∈ Z, ∀i ∈ I ′ = I ∩B. If not, then one might try to find a
valid inequality cutting off x∗ from the feasible region of (2).

One possibility is to consider the following relaxation of (1):

z = f +
∑

i∈N∩I

(ri − ai)si +
∑

i∈N\I

risi,

z ∈ Q
I′

,
s ≥ 0,

(4)

where we drop all basic continuous variables, drop the non-negativity constraints
on the basic integer variables, and where ai ∈ Z

I′
, ∀i ∈ I∩N , z = xI′− ∑

i∈I∩N

aisi,

and then relax si to be continuous. This relaxation was considered in [3,10] for
the case |I ′| = 2.

Gomory and Johnson [11] suggested relaxing (4) to an infinite-dimensional
space; following the notation in [7]; it can be described as:

x = f +
∑

finite rsr

x ∈ Z
q

s ≥ 0
(5)

where sr is defined for every r ∈ Q
q, and

∑
finite means that |r : sr > 0| ∈ N,

i.e. s has finite support. This is called the infinite relaxation and is denoted
by Rf ,where the feasible solutions of Rf are vectors (x, s) with finite support
satisfying (5). Note that any valid inequality for (5) yields a valid inequality
for (1).

Borozan and Cornuéjols [7] studied minimal valid inequalities for (5), proving
the following theorem:

Theorem 1 (Minimal Valid Inequalities for Rf [7]). If f /∈ Z
q, then any

minimal valid inequality that cuts off (f, 0):

i. Is of the form
∑

finite ψ(r)sr ≥ 1.
ii. ψ is positive, subadditive, homogeneous, convex and piecewise linear.
iii. If Bψ = {x ∈ Q

p : ψ(x − f) ≤ 1}, then Bψ is convex, with no integral point
in its interior. Furthermore f ∈ Bψ.

iv. If ψ is finite, then ψ is a continuous nonegative homogeneous convex piece-
wise linear function with at most 2q pieces.

v. If ψ is finite, then f is in the interior of Bψ and Bψ is a polyhedron of at
most 2q facets, and each of its facets contains an integral point in its relative
interior.

One of the consequences of Theorem 1 is that it allow us to identify minimal valid
inequalities ψ with the set Bψ, providing a simple geometrical interpretation
for them. We use this interpretation to chose a sub-family of minimally valid
inequalities for (5). It is worth mentioning that the results of Theorem 1 where
simultaneously conjectured (and partially proved) by Gomory in [10].

Computing with Multi-row Gomory Cuts 217

3 Selecting a Subclass of Valid Inequalities, and
Separating Them

Thanks to the results in [7], the problem of finding minimal valid inequalities
for (5), can be reduced to the problem of looking at maximal lattice-free poly-
hedra in Q

q, where the lattice is just Z
q. Although the characterization of all

maximal lattice-free convex sets in the plane is known [15], such a characteriza-
tion is unknown for arbitrary dimensions.

For general dimension q, we can define the following full-dimensional maximal
lattice-free bounded convex sets:

1. The simplex defined by the points {0,±kei : i = 1, . . . , q}.
2. The set Ba = 1

2 + {x : aδx ≤ aδδ, ∀δ ∈ Δ} where Δ = {{− 1
2 , 1

2}q}, 0 < aδ ∈
Q

q and aδ
i �= 0, ∀i = 1, . . . , q, δ ∈ Δ.

These two classes of sets represent the two extremes in terms of number of facets;
in the first family, each set has q + 1 facets, while in the second family, each set
has 2q facets. Note also that each of their facets contains an integer point in
their relative interior, thus they define minimal valid inequalities for (5).

For the case q = 2, Cornuéjols and Margot [8] proved that all simplex-related
sets (called triangle inequalities in [3]) are facet defining for Rf , but that not all
Ba sets define facets of Rf . However, is easy to see that there exist an arbitrarily
small perturbation ε of a, such that Ba+ε defines a facet of Rf . This observation,
and the limited numerical precision of floating point representation, justify, from
a practical point of view, overlooking the fact that some Ba do not define a facet
of Rf for q = 2. Although a similar result for arbitrary q is unknown, it seems
reasonable to conjecture that related arguments should show the importance of
the sets Ba in general.

This gives us a wide range of possible sets B to choose from. However, if we
restrict ourselves to sets that are symmetric with respect to each coordinate axis,
then, the only possible choice for B is the family Ba, where all aδ ≡ a for some
a ∈ Q

q
+ (we assume that 0 /∈ Q+). This restriction implies that the resulting cut

should be invariant under multiplication of -1 to any constraint in (5).
From this point on, we focus on this kind of lattice-free sets. We assume that

f ∈ (0, 1), and define f ′ = f − 1
2e, where e is the vector of all ones. With this,

ψa (the function related to Ba) can be defined as follows:

ψa(r) =

{
0 if r = 0
2 max

δ∈Δ

{
φδ(a,r)

ao−φδ(a,f ′) : φδ(a, r) > 0
}

if r �= 0 , (6)

where φδ(a, b) =
∑

(aiδibi : i = 1, . . . , q) and ao = 1
2a · e.

Note that the amount of work to compute ψa(r) is exponential in q, however,
one can speed up the process by using gray-code enumeration of Δ. In our code we
use Knuth’s loopless gray binary generation (LGBG) algorithm [13] to speed-up
the computation of ψa(r), moreover, we compute ψa(r) for all required r at the
same time. Additional speed gains can be achieved by noting that in LGBG, index
i changes its value exactly 2q−i times during the algorithm, thus sorting each row in

218 D.G. Espinoza

decreasing order by number of non-zeros should decrease the amount of total work.
Finally, another factor of two can be gainedby maintaining a list of r : φδ(a, r) > 0.

Another problem is to choose appropriate vectors a. One possibility is to use
branching pseudo-cost values (see [1,14] for details on pseudo-cost branching)
to define the ai. Instead, we use ai = 1, ∀i = 1, . . . , q, but select the fractional
variables to consider using branching pseudo-cost information.

For integer non-basic variables we select ai in (4), such that ri′ = ri − ai ∈
[− 1

2 , 1
2]q, in the hope of obtaining small coefficients for ψa(ri′). Note, that such

a choice may not be the best possible.
To improve numerical stability of the cuts, we choose from fractional variables

that are away from the nearest integer by at least 2−12; also, the ratio between
the smallest and largest absolute value in the cut should not exceed 215; if the
minimum non-zero absolute coefficient in the cut (|c|min) is above one, we divide
the resulting cut by |c|min; we discard cuts whose violation is below 2−10; finally,
we add cuts only at the root node of the branch and cut run. The code is available
at http://dii.uchile.cl/~daespino.

4 Computational Results

Our computing environment is a Linux 2.6.22 machine with 1Gb. of RAM, with
a 3GHz. Intel Pentium 4 CPU with 1Mb of cache; all the code is written in C,
and was compiled with GCC 4.2.0 with optimization flags -O3.

Our cutting scheme was embedded as a cut-callback in CPLEX 10.2, and
is called after CPLEX has added its own cuts. In every call we add at most
one cut, but the procedure may be called many times during the optimization
process. Our procedure adds cuts only at the root node. We compare our results
against CPLEX defaults, with pre-processing turned on; this include automatic
generation of clique cuts, lifted cover cuts, implied bound cuts, lifted flow cover
cuts, flow path cuts and Gomory fractional cuts.

Our test set of MIP instances contains all MIPLIB 3.0 [4], MIPLIB 2003 [2],
and other problems from the literature. The full test set contained 173 problems,
from where we discard all problems (29) where the GAPLP after solving with
CPLEX 10.2 defaults was below 0.1%; then we discard all problems (34) CPLEX
could solve to optimality within five seconds of CPU time; then we discarded all
problems (15) where neither CPLEX nor our cutting procedure could improve
the root LP bound1; finally, we discarded all problems (8) where our cutting
procedure could not add any cut2. This reduced our test-set to 87 problems.

We tested six configurations, CPLEX defaults (C0), and the configurations
T2N5, T5N5, T10N5, T10N1k and T15N1k3, where TxxNyy signifies the adding
of up to yy cuts generated using up to xx tableau rows. The first four configura-
tions where run with a time limit of one hour, while the last two configurations
where run with a time limit of 20 minutes.
1 Table 1 contain the list of all such problems.
2 Table 2 contain the list of all such problems.
3 1k stand for 1000, i.e. a thousand.

Computing with Multi-row Gomory Cuts 219

Table 1. Problems where neither CPLEX nor our procedure could improve the root
LP value

berlin 5 8 0 CMS750 4 glass4 marketshare1 marketshare2
neos19 neos818918 neos823206 net12 noswot
p2m2p1m1p0n100 railway 8 1 0 rd-rplusc-21 usAbbrv.8.25 70 van

Table 2. Problems where our procedure could not add any cut to the problem

bg512142 dano3mip dano3mip.pre dg012142
harp2 mod011 momentum3 neos4

0.5

1

2

4

8

16

0 20 40 60 80 100

S
p
ee

d
-u

p
F
a
ct

o
r

% Instances

Speed-up

Fig. 1. Overall speed-up

1

2

4

8

16

32

64

0 20 40 60 80 100

|c
g
a
p
|
+

1

% Instances

(negative part)

Best closed root GAP 1
Best closed root GAP 2

+

+

++

+++
+++++++++++++++++

++++++++++

+
+
++

+
+

+
+

+

+

Fig. 2. Best closed GAPLP

1.0

1.9

3.7

7.1

13.6

26.1

50.0

96.0

184.2

0 20 40 60 80 100

#
cu

ts
a
d
d
ed

% Instances

T2N5
T5N5

+++++++++++

+++++++

++++++

+++
++

+

T10N5
T10N1k

++++ +++++++ ++++++ +++

++++ +++++

+ ++

+++
++ ++

+
+
+ +

++
++

++ +++
+++ ++

+++++ ++++++ +++++
++

+++++

+ +

++

+

T15N1k

Fig. 3. Cuts added by configuration

1

2

4

8

16

32

64

0 20 40 60 80 100

|c
g
a
p
|
+

1

% Instances

(negative part)

T2N5
T5N5

+

+
+

+
+++++

++
+++++++++++

++++
+++++++

+

++

+
+

+

+

T10N5
T10N1k

+

+

+ + +
+

+ + + +

+ + + + + ++ + + + + ++ + + + + ++ + + + + ++ + + +
++ + + + + ++ + + + + +

+ + +
+ + ++ + + +

++ + + + + ++ +
+

+
+ ++ + +

+ +
+
+

+

+
+ +

+

+

+

T15N1k

Fig. 4. Closed GAPLP by configuration

Tables 3, 4, 5 present our computational results over the reduced test-set. The
first column indicates the problem name; the following six columns, give the root
LP bound and the running time for the corresponding configuration; finally, the
last column, has the optimal/best known solution for instance, and then the
maximum of the closed GAPLP, defined as (ZLP −ZCPX)/(ZIP −ZCPX)4 over

4 where ZLP is the root LP value for the configuration, ZIP is the value of the op-
timal/best solution known for the problem, and ZCPX is the value of the root LP
obtained with CPLEX defaults.

220 D.G. Espinoza

Table 3. Results over reduced test set, part I

Configuration C0 T2N5 T5N5 T10N5 T10N1k T15N1k Results

Problem
Root LP Root LP Root LP Root LP Root LP Root LP Best Sol.

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) CGap1/CGap2

a1c1s1
9770.47 9797.84 9854.74 9799.46 9799.46 9823.78 11503.4

3592.91 3593.45 3592.71 3594.60 1193.85 1194.55 4.86%/4.86%

A1C1S1
9804.58 9862.15 9869.86 9838.56 9838.56 9829.37 11503.4

3587.77 3600.33 3594.44 3584.48 1195.51 1196.85 3.84%/3.84%

A2C1S1
9468.86 9394.16 9394.16 9320.6 9320.6 9385.61 10938.8

3590.22 3598.84 3598.90 3591.90 1195.77 1194.16 -5.08%/-5.08%

aflow30a
1075.14 1081.59 1074.58 1074.58 1074.58 1075.27 1158

66.62 55.56 45.79 50.67 48.33 50.86 7.79%/7.79%

aflow40b
1059.61 1058.88 1059.61 1062.55 1062.55 1062.94 1168

3585.42 3563.11 3597.93 3596.80 1193.03 1194.28 3.07%/2.71%

air04
55645.7 55664.6 55660.4 55663.3 55667 55664.9 56137

42.33 75.30 48.47 64.48 154.15 405.37 4.33%/3.86%

air05
25957.8 25972 25970.5 25973.7 25978.6 25973.7 26374

31.48 83.59 79.81 66.11 500.72 295.92 5.00%/3.83%

B1C1S1
15496.3 15471.8 15463.4 15529 15529 15451.8 24881.7

3577.55 3586.90 3586.32 3579.90 1191.87 1192.43 0.35%/0.35%

B2C1S1
16012.5 16112.2 16165.8 15969.5 15969.5 16213 26282.5

3587.55 3590.03 3588.81 3589.90 1190.73 1192.06 1.95%/1.49%

bc1
2.47 2.47 2.47 2.47 2.48 2.47 3.34

274.66 493.91 436.80 880.40 923.93 585.60 0.47%/0.26%

bell3a
873792 873792 873792 873792 873792 873792 878430

7.09 7.17 7.53 7.22 7.54 7.28 0.00%/0.00%

biella1
3.0605e+06 3.0605e+06 3.0605e+06 3.0605e+06 3.0605e+06 3.0605e+06 3.0678e+06

3590.18 3591.99 3532.93 3593.41 1191.94 1195.15 -0.27%/-0.29%

bienst1
15.11 15.49 14.98 14.99 14.99 15.25 46.75

431.12 850.79 331.77 475.22 463.64 503.64 1.20%/1.20%

bienst2
15.28 15.35 15.35 15.28 15.28 15.27 54.6

3586.40 3599.01 3566.95 3591.94 1194.88 1195.43 0.18%/0.18%

blp-ar98
6086.37 6086.76 6087.58 6087.57 6088.08 6088.14 6217.86

3563.80 3559.50 3563.07 3566.11 1165.68 1179.48 1.35%/0.92%

blp-ic97
3928.3 3928.38 3928.83 3928.46 3928.64 3928.81 4057.94

3569.97 3377.47 3586.15 3400.25 1181.92 1176.14 0.41%/0.41%

blp-ic98
4376.19 4376.8 4378.04 4378.59 4381.97 4379.05 4531.39

3560.93 3540.84 3595.65 3541.67 1142.70 1158.75 3.72%/1.55%

blp-ir98
2283.19 2283.67 2283.51 2284.5 2286.22 2287.46 2342.32

541.68 606.95 725.03 467.55 922.14 973.49 7.22%/2.20%

core2586-950
935.94 935.95 935.95 935.95 935.95 935.95 974

3423.24 3502.65 3587.97 3598.87 1411.34 1205.72 0.01%/0.01%

core4284-1064
1054.08 1054.08 1054.08 1054.08 1054.08 1054.08 1086

3598.72 3599.71 3599.47 3545.67 1196.53 1209.14 0.01%/0.00%

core4872-1529
1510.91 1510.91 1510.91 1510.91 1510.91 1510.91 1568

3305.73 3598.09 3545.04 3599.30 1196.74 1196.19 0.00%/0.00%

danoint
62.73 62.73 62.73 62.73 62.73 62.73 65.67

3589.38 3599.02 3598.22 3594.90 1198.09 1197.23 0.02%/0.02%

dc1c
1.7582e+06 1.7575e+06 1.7575e+06 1.7575e+06 1.7575e+06 1.7575e+06 1.8478e+06

3591.28 3591.33 3591.63 3432.11 1192.99 1181.32 -0.84%/-0.84%

dc1l
1.7445e+06 1.7445e+06 1.7445e+06 1.7446e+06 1.7446e+06 1.7445e+06 1.8517e+06

3588.70 3588.79 3588.84 3587.28 1194.80 1195.38 0.02%/0.02%

dolom1
6.5563e+06 6.5563e+06 6.5563e+06 6.5563e+06 6.5563e+06 6.5563e+06 1.49e+08

3588.23 3586.81 3587.44 3585.06 1189.61 1190.51 0.00%/0.00%

ds
59.54 59.56 59.49 59.59 59.59 59.35 447.01

3584.19 3582.82 3585.46 3584.17 1194.23 1212.81 0.01%/0.01%

fast0507
172.15 172.17 172.18 172.18 172.18 172.18 174

2340.49 2862.75 1119.82 2467.56 1170.02 1250.19 1.95%/1.87%

gesa2-o
2.5731e+07 2.5729e+07 2.5733e+07 2.5731e+07 2.5731e+07 2.5731e+07 2.5779e+07

8.79 6.39 5.62 6.37 6.22 15.37 4.50%/4.50%

liu
560 560 560 560 560 560 1174

3476.32 3467.47 3463.13 3452.70 1152.16 1153.31 0.00%/0.00%

Computing with Multi-row Gomory Cuts 221

Table 4. Results over reduced test set, part II

Configuration C0 T2N5 T5N5 T10N5 T10N1k T15N1k Results

Problem
Root LP Root LP Root LP Root LP Root LP Root LP Best Sol.

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) CGap1/CGap2

manna81
-13229.5 -13227.5 -13226.8 -13226.1 -13221.9 -13220.8 -13164

3540.39 3548.56 3548.17 3524.98 1181.63 1180.20 13.22%/5.21%

mas74
10506.2 10555.8 10558.9 10535.5 10535.5 10538.2 11801.2

2548.22 3203.12 2437.62 2299.57 1185.31 1180.43 4.07%/4.07%

mas76
38908 38925.2 38934.3 38911.1 38911.1 38911.8 40005.1

241.62 189.35 175.21 325.39 319.60 210.48 2.40%/2.40%

misc07
1425 1425 1425 1425 1425 1425 2810

23.53 38.43 28.10 44.54 61.50 21.00 0.00%/0.00%

mkc1
-611.85 -611.85 -611.85 -611.85 -611.85 -611.85 -607.21

19.25 20.48 39.64 99.49 89.70 58.91 0.00%/0.00%

mkc
-582.39 -582.39 -582.39 -582.39 -579.15 -581.79 -563.23

3547.53 3550.57 3562.28 3567.50 1172.77 1181.56 16.91%/0.00%

momentum1
96250.1 96250.1 96250.1 96250.1 96250.1 96250.1 109143

3592.25 3590.55 3594.12 3593.23 1193.81 1182.12 0.00%/0.00%

momentum2
10702.1 10702.1 10705.4 10702.6 10702.6 10705.2 12314.2

3591.55 738.17 3288.60 3593.40 1196.20 749.59 0.20%/0.20%

msc98-ip
1.9702e+07 1.9702e+07 1.9702e+07 1.9702e+07 1.9702e+07 1.9702e+07 1.98e+07

3583.89 3549.60 3593.76 3586.20 1196.60 1195.54 0.00%/0.00%

mzzv11
-22066.1 -22067.3 -22066.2 -22063.3 -22061.5 -22067 -21718

548.37 471.03 819.70 541.25 491.16 551.90 1.32%/0.81%

mzzv42z
-20830.7 -20826.7 -20789 -20787.2 -20787.2 -20822.6 -20540

130.53 140.58 155.44 157.69 161.51 226.87 14.96%/14.96%

neos10
-1187.33 -1185.79 -1185.77 -1185.12 -1184.66 -1185.34 -1135

23.15 22.85 21.30 29.77 26.81 61.57 5.10%/4.23%

neos11
6 6 6 6 6 6 9

446.38 405.21 192.80 216.16 231.75 203.14 0.00%/0.00%

neos12
9.51 9.51 9.51 9.51 9.51 9.51 13

644.55 971.43 1111.82 883.34 1099.59 656.93 -0.01%/-0.01%

neos13
-112.97 -112.75 -107.98 -109.42 -112.4 -112.63 -95.47

3596.18 3596.89 3696.19 3596.15 1190.17 1197.57 28.51%/28.51%

neos14
66464.1 66387.1 66381.6 66439.7 66439.7 66536.2 74333.3

1555.23 1181.56 1426.66 1037.64 1007.33 1193.10 0.92%/-0.31%

neos15
70411.4 70172.5 70409 70418.4 70418.4 70415.8 80835

3591.99 3597.23 3595.22 3588.92 1197.49 1198.19 0.07%/0.07%

neos17
0.03 0.03 0.03 0.02 0.02 0.02 0.15

3057.75 315.74 776.98 514.16 517.12 1192.86 0.13%/0.13%

neos18
13 13 13 13 13 13 16

325.23 3575.88 2547.07 3572.41 1183.89 1051.34 0.00%/0.00%

neos20
-470.8 -470.8 -470.8 -470.8 -470.8 -470.8 -434

186.19 61.84 84.35 134.95 124.60 124.43 0.00%/0.00%

neos21
2.72 2.74 2.73 2.73 2.74 2.75 7

91.88 107.15 89.11 108.62 107.98 114.33 0.71%/0.45%

neos22
777536 777786 777676 777702 777702 777821 779715

66.65 52.88 49.44 36.72 38.65 62.01 13.09%/11.51%

neos23
63.81 63.81 63.81 63.82 64.16 63.82 137

653.86 1958.24 2709.85 813.83 1195.49 525.27 0.48%/0.02%

neos2
-4069.79 -4056.09 -4039.14 -4070.69 -4028.29 -3927.78 454.86

14.81 15.08 13.36 16.30 19.03 52.29 3.14%/0.68%

neos3
-5664.36 -5630.32 -5655.1 -5643.04 -5643.04 -5731.26 368.84

54.28 53.25 54.06 69.07 63.54 80.71 0.56%/0.56%

neos5
13.33 13.32 13.33 13.33 13.33 13.33 15

3197.48 3579.64 3580.21 3367.37 1193.82 1194.55 0.00%/0.00%

neos7
692631 693168 693268 692631 692631 692532 721934

137.84 59.85 59.72 51.88 51.01 1091.68 2.17%/2.17%

neos9
793.25 792.25 793.5 791.75 793.14 791.75 798

3587.56 3586.40 3585.06 3586.00 1191.12 1190.05 5.26%/5.26%

nsrand-ipx
50181.8 50183.1 50184.8 50184.2 50187.8 50186.2 51200

3588.37 3575.79 3583.57 3609.45 1185.31 1198.76 0.58%/0.30%

222 D.G. Espinoza

Table 5. Results over reduced test set, part III

Configuration C0 T2N5 T5N5 T10N5 T10N1k T15N1k Results

Problem
Root LP Root LP Root LP Root LP Root LP Root LP Best Sol.

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) CGap1/CGap2

nsrand ipx
50181.8 50183.1 50184.8 50184.2 50187.8 50186.2 51200

3579.66 3583.67 3579.68 3571.66 1193.02 1203.12 0.58%/0.30%

nug08
204.28 204.31 204.33 204.33 204.37 204.37 214

47.44 63.14 73.89 90.37 126.99 185.04 0.92%/0.54%

nw04
16380.3 16771.3 16779.9 16781.3 16792.6 16787.9 16862

58.00 46.19 51.81 52.10 112.66 907.47 85.59%/83.25%

opt1217
-20 -19 -19 -19 -19 -19 -16

3553.84 3542.62 3544.18 3530.90 1193.49 1190.35 25.00%/25.00%

pk1
0 0 0 0 0 0 11

153.16 143.84 112.56 162.38 168.46 195.87 0.00%/0.00%

protfold
-41.09 -39.92 -41.09 -41.09 -39.42 -39.78 -31

3599.38 3599.40 3599.40 3598.46 1199.45 1199.71 16.53%/11.63%

qap10
333.5 333.5 333.48 333.51 333.52 333.51 340

395.29 951.54 399.66 450.92 486.25 507.83 0.34%/0.23%

qiu
-923.04 -926.83 -926.83 -923.04 -923.04 -923.04 -132.87

77.25 92.21 95.20 77.66 74.46 68.85 0.00%/0.00%

rail507
172.15 172.17 172.17 172.17 172.18 172.18 174

3570.21 3320.39 3564.49 3559.79 1160.16 1255.95 1.82%/1.46%

ran14x18 1
3362.27 3363.59 3363.68 3363.22 3363.22 3361.99 3735

3588.84 3587.58 3587.68 3589.10 1195.36 1195.84 0.38%/0.38%

roll3000
12243.9 12257.5 12257.8 12259.4 12259.4 12260.1 12890

3592.85 3596.57 3595.23 3592.53 1194.49 1197.01 2.52%/2.41%

rout
985.46 985.53 985.53 985.46 985.46 985.56 1077.56

219.81 292.25 195.17 126.08 122.64 81.27 0.11%/0.09%

seymour1
405.86 405.9 405.92 405.93 405.97 405.93 410.76

2186.19 2455.05 2762.13 2433.69 1200.26 1203.71 2.22%/1.33%

seymour
407.17 407.2 407.63 407.63 408.2 408.17 423

3582.73 3590.80 3590.46 3590.24 1195.45 1191.93 6.50%/2.95%

siena1
1.0163e+07 1.0163e+07 1.0163e+07 1.0163e+07 1.0163e+07 1.0163e+07 1.58e+08

3592.54 3593.03 3592.21 3593.56 1197.19 1199.08 0.00%/0.00%

sp97ar
6.5388e+08 6.5391e+08 6.5391e+08 6.5391e+08 6.5391e+08 6.5391e+08 6.64e+08

3591.66 3568.81 3588.03 3568.96 1170.85 1267.79 0.36%/0.32%

sp97ic
4.2211e+08 4.2217e+08 4.2217e+08 4.2218e+08 4.2223e+08 4.2219e+08 4.3e+08

3553.65 3554.51 3551.67 3542.83 1136.89 1190.07 1.48%/0.79%

sp98ar
5.2499e+08 5.2504e+08 5.2508e+08 5.2509e+08 5.2511e+08 5.2509e+08 5.3e+08

3549.89 3556.06 3562.27 3558.49 1184.27 1175.80 2.57%/2.16%

sp98ic
4.4430e+08 4.4445e+08 4.4443e+08 4.4445e+08 4.4448e+08 4.4444e+08 4.5141e+08

3550.63 3552.86 3563.69 3580.06 1190.08 1174.74 2.53%/2.16%

stein45
22 22 22 22 22 22 30

24.73 26.15 26.43 30.23 35.56 36.11 0.00%/0.00%

swath1
338.68 339.99 339.36 340.32 340.54 340.64 379.07

41.33 37.34 86.34 124.20 309.76 1195.45 4.85%/4.07%

swath2
343.09 343.89 344.07 344.13 344.27 344.91 385.2

195.24 104.00 527.60 40.76 195.96 458.98 4.32%/2.47%

swath3
343.09 344.09 344.16 344.13 344.29 345.07 397.76

783.86 535.92 789.25 186.25 393.72 866.58 3.62%/1.96%

swath
373.88 374.41 375.53 375.21 379.4 376.08 467.41

3494.23 3533.15 3513.14 3535.65 1141.32 1199.99 5.90%/1.77%

timtab1
443780 438838 485907 446072 446072 462240 764772

3567.05 3587.46 3589.34 3570.40 1196.11 1193.77 13.12%/13.12%

timtab2
563628 560505 566589 558124 558124 575232 1.1111e+06

3583.77 3593.85 3592.81 3583.98 1194.40 1194.57 2.12%/0.54%

tr12-30
129675 129675 129728 129762 129762 129894 130596

3593.70 3596.10 3586.60 3544.45 1198.44 1197.57 23.72%/9.38%

trento1
5.1830e+06 5.1830e+06 5.1830e+06 5.1830e+06 5.1830e+06 5.1830e+06 5.2874e+06

3582.16 3590.92 3590.58 3581.38 1194.41 1195.11 0.02%/0.00%

UMTS
2.9137e+07 2.9137e+07 2.9140e+07 2.9142e+07 2.9142e+07 2.9141e+07 3.01e+07

3554.64 3581.09 3588.94 3576.85 1194.68 1193.78 0.47%/0.47%

Computing with Multi-row Gomory Cuts 223

all configurations, and then the maximum of the same quantity over the T*N5
configurations.

Figure 1 summarizes the best speed-up factor over CPLEX defaults obtained
over all instances (31) that finished to optimality on all six configurations, the
geometric average speed-up was 31%. Also, looking at problems where at least
one configuration had finished to optimality, CPLEX was faster by at least 5%
in 10 cases, while in 16, 16, 14, 11, 9 cases configurations T2N5, T5N5, T10N5,
T10N1k, T15N1k, where faster by at least 5% respectivelly. Figure 2 summarizes
the best closed GAPLP over CPLEX default (1) and the best closed GAPLP over
CPLEX when we limit the code to add up-to five cuts at the root node (2). The
number of cases where each configuration had the best root LP value where 18,
19, 27, 22, 43, 38, for C0, T2N5, T5N5, T10N5, T10N1k and T15N1k respectively.

Figure 3 shows the number of cuts added for each configuration. Note that for
the T*N1k configurations, more than 80% of the instances required less than 40
cuts. On the other hand, it seems that the more tableau rows we use to generate
cuts, the less number of total cuts our procedure needs. Figure 4 shows the
closed GAPLP for each configuration; where negative values (i.e. the procedure
performs worse than CPLEX) are displayed in the left part of the graph. Again
from this figure it seems clear that there are advantages to considering more
than one tableau row at the same time; in fact, the results for two tableau rows
are consistently poorer than configurations that use more tableau rows in the
cutting procedure.

5 Final Remarks and Conclusions

We have shown that even simple subclasses of inequalities derived from the
infinite relaxation can have an important impact both on overall branch and cut
performance, and on the GAPLP closed at the root node. These results point
towards both trying to identify important classes of inequalities for Rf for higher
dimensions, and to find good computational implementation choices for them.

Although the implementation is numerically conservative, still, there are some
numerical issues when cuts are used within the branch and bound tree. There
are also instances where the cuts generated tend to be parallel to previous ones,
causing again numerical issues.

There are many possibilities to explore, like adding more than one cut in every
iteration, choosing different sets of tableau to work on, choosing different ground
sets Ba, and testing the impact of inequalities derived form simplex-like ground
sets.

References

1. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Op. Res.
Letters 33, 42–54 (2005)

2. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Let-
ters 34(4), 361–372 (2006)

224 D.G. Espinoza

3. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two
rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007.
LNCS, vol. 4513, pp. 1–15. Springer, Heidelberg (2007)

4. Bixby, R.E., Boyd, E.A., Indovina, R.R.: MIPLIB: A test set of mixed integer
programming problems. SIAM News 25(16) (1992)

5. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: Theory
and practice - closing the gap. In: Proceedings of the 19th IFIP TC7 Conference
on System Modelling and Optimization, Deventer, The Netherlands, pp. 19–50.
Kluwer, B.V., Dordrecht (2000)

6. Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer program-
ming problems. Math. Prog. 47, 155–174 (1990)

7. Cornuéjols, G., Borozan, V.: Minimal valid inequalities for integer constraints. In:
George Nemhauser Symposium, Atlanta (July 2007)

8. Cornuéjols, G., Margot, F.: On the facets of mixed integer programs with two
integer variables and two constraints. Tepper Working Paper 2007 E-35 (2007)

9. Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-
2597, RAND Corporation (1960)

10. Gomory, R.E.: Corner polyhedra and two-equation cutting planes. In: George
Nemhauser Symposium, Atlanta (July 2007)

11. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhe-
dra, part I. Math. Prog. 3, 23–85 (1972)

12. ILOG CPLEX Division, Incline Village, Nevada, 89451, USA. CPLEX 10.2 Refer-
ence Manual (2007)

13. Knuth, D.E.: The Art of Computer Programming. Ch. 7.2.1.1, 1st edn., vol. 4.
Addison-Wesley, Reading (2005)

14. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies
for mixed integer programming. INFORMS J. on Computing 11, 173–187 (1999)

15. Lovász, L.: Geometry of numbers and integer programming. In: Iri, M., Tanabe,
K. (eds.) Mathematical Programming: Recent Developments and Applications, pp.
177–210. Springer, Heidelberg (1989)

Constraint Orbital Branching

James Ostrowski1, Jeff Linderoth2, Fabrizio Rossi3, and Stefano Smriglio3

1 Department of Industrial and Systems Engineering, Lehigh University,
200 W. Packer Ave., Bethlehem, PA 18015, USA

jao204@lehigh.edu
2 Department of Industrial and Systems Engineering, University of Wisconsin-Madison,

1513 University Avenue, Madison, WI 53706, USA
linderoth@wisc.edu

3 Dipartimento di Informatica, Università di L’Aquila,
Via Vetoio I-67010 Coppito (AQ), Italy
{rossi,smriglio}@di.univaq.it

Abstract. Orbital branching is a method for branching on variables in integer
programming that reduces the likelihood of evaluating redundant, isomorphic
nodes in the branch-and-bound procedure. In this work, the orbital branching
methodology is extended so that the branching disjunction can be based on an
arbitrary constraint. Many important families of integer programs are structured
such that small instances from the family are embedded in larger instances. This
structural information can be exploited to define a group of strong constraints
on which to base the orbital branching disjunction. The symmetric nature of the
problems is further exploited by enumerating non-isomorphic solutions to in-
stances of the small family and using these solutions to create a collection of
typically easy-to-solve integer programs. The solution of each integer program in
the collection is equivalent to solving the original large instance. The effective-
ness of this methodology is demonstrated by computing the optimal incidence
width of Steiner Triple Systems and minimum cardinality covering designs.

1 Introduction

Symmetry has long been considered an obstacle to solving integer programs. Recently,
there has been significant work on combating symmetry in integer programs. A tech-
nique used by a variety of authors is to add inequalities that exclude symmetric fea-
sible solutions [1,2,3]. Kaibel and Pfetsch [4] formalize many of these arguments by
defining and studying the properties of a polyhedron known as an orbitope, the convex
hull of lexicographically maximal solutions with respect to a symmetry group. Kaibel,
Peinhardt, and Pfetsch [5] then use the properties of orbitopes to remove symmetry
in partitioning problems. Another technique for combating symmetry is to recognize
pairs of nodes of the enumeration tree that will result in symmetric feasible solutions.
One of the two nodes may safely be pruned without excluding all optimal solutions
from the search. This isomorphism-free backtracking procedure has long been used
in the combinatorics community [6,7,8], and was introduced in the integer program-
ming community with the name isomorphism pruning by Margot [9]. Ostrowski et al.
[10] introduce a technique related to isomorphism pruning, called orbital branching.
The fundamental idea behind orbital branching is to select a branching variable that is

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 225–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

226 J. Ostrowski et al.

equivalent to other variables with respect to the symmetry remaining in the problem. In
this work, we extend the work [10] to the case of branching on disjunctions formed by
inequalities—constraint orbital branching.

Exploiting the symmetry in the problem when branching on more general disjunc-
tions of this form can often be significantly strengthened by exploiting certain types of
embedded subproblem structure. Specifically, if the disjunction on which the branching
is based is such that relatively few non-isomorphic feasible solutions may satisfy one
side of the disjunction, then portions of potential feasible solutions may be enumerated.
The original problem instance is then partitioned into smaller, more tractable problem
instances. As an added benefit, the smaller instances can then easily be solved in paral-
lel. A similar technique has been recently employed in an ad-hoc fashion by Linderoth,
Margot, and Thain [11] in a continuing effort to solve an integer programming formu-
lation for the football pool problem. This work poses a general framework for solving
difficult, symmetric integer programs in this fashion.

The power of the constraint orbital branching is demonstrated by solving to opti-
mality for the first time a well-known integer program to compute the incidence width
of a Steiner Triple System with 135 elements. Previously, the largest instance in this
family that was solved contained 81 elements [12]. The generality of the constraint or-
bital branching procedure is further illustrated by an application to the construction of
minimum cardinality covering designs. In this case, the previously best known bounds
from the literature are easily reproduced.

The remainder of this section contains some mathematical preliminaries, and the sub-
sequent paper is divided into four sections. In Section 2, the constraint orbital branch-
ing method is presented and proved to be a valid branching methodology. Section 3
discusses properties of good disjunctions for the constraint orbital branching method.
Section 4 describes our computational experience with the constraint orbital branching
method, and conclusions are given in Section 5.

1.1 Preliminaries

The primary focus of this work is on set covering problems of the form

min
x∈F
{eT x}, with F def= {x ∈ {0, 1}n | Ax ≥ e}, (1)

where A ∈ {0, 1}m×n and e is a vector of ones of conformal size. The restriction of
our work to set covering problems is mainly for notation convenience, but also of prac-
tical significance, since many important set covering problems contain a great deal of
symmetry.

Before describing constraint orbital branching, we first define some notation. Let
Πn be the set of all permutations of In = {1, . . . , n}, so that Πn is the symmetric
group of In. For a vector λ ∈ R

n, the permutation π ∈ Πn acts on λ by permuting its
coordinates, a transformation that we denote as

π(λ) = (λπ1 , λπ2 , . . . λπn).

Throughout this paper we display permutations in cycle notation. The expression (a1,
a2, . . . , ak) denotes a cycle which sends ai to ai+1 for i = 1, . . . , k − 1 and sends

Constraint Orbital Branching 227

ak to a1. Some permutations can be written as a product of cycles. For example, the
expression (a1, a2)(a3) denotes a permutation which sends a1 to a2, a2 to a1, and a3

to itself. We will omit 1-element cycles from our display.
Since all objective function coefficients in (1) are identical, permuting the coordi-

nates of a solution does not change its objective value, i.e. eT x = eT (π(x))∀x ∈ F .
The symmetry group G of (1) is the set of permutations of the variables that maps each
feasible solution onto a feasible solution of the same value. In this case,

G def= {π ∈ Πn | π(x) ∈ F ∀x ∈ F}.
Typically, the symmetry groupG of feasible solutions is not known. However, by closely
examining the structure of the problem, many of the permutations making up the group
can be found, and this subgroup of the original group G can be employed in its place.
Specifically, given a permutation π ∈ Πn and a permutation σ ∈ Πm, let A(π, σ) be
the matrix obtained by permuting the columns of A by π and the rows of A by σ, i.e.
A(π, σ) = PσAPπ , where Pσ and Pπ are permutation matrices. Consider the set of
permutations

G(A) def= {π ∈ Πn | ∃σ ∈ Πm such that A(π, σ) = A}.

For any π ∈ G(A), if x̂ ∈ F , then π(x̂) ∈ F , so G(A) forms a subgroup of G, and
the group G(A) is the group used in our computations. The group G(A) can act on an
arbitrary set of points Z , but in our work, it acts on either R

n or {0, 1}n.
For a point z ∈ Z , the orbit of z under the action of the group Γ is the set of all

elements of Z to which z can be sent by permutations in Γ , i.e.,

orb(Γ, z) def= {z′ ∈ Z | ∃π ∈ Γ such that z′ = π(z)} = {π(z) | π ∈ Γ}.

The stabilizer of a set S ⊆ In in Γ is the set of permutations in Γ that send S to itself.

stab(S, Γ) = {π ∈ Γ | π(S) = S}.

The stabilizer of S is a subgroup of Γ .
At node a, the set of feasible solutions to (1) is denoted by F(a), and the value of an

optimal solution for the subtree rooted at node a is denoted by z∗(a). Two subproblems
a and b are isomorphic if x ∈ F(a)⇒ ∃π ∈ G with π(x) ∈ F(b).

2 Constraint Orbital Branching

Constraint orbital branching is based on the following simple observations. If λT x ≤ λ0

is a valid inequality for (1) and π ∈ G, then π(λ)T x ≤ λ0 is also a valid inequality for
(1). In constraint orbital branching, given an integer vector (λ, λ0) ∈ Z

n+1, we will
branch on a base disjunction of the form

(λT x ≤ λ0) ∨ (λT x ≥ λ0 + 1),

simultaneously considering all symmetrically equivalent forms of λx ≤ λ0. Specifi-
cally, the branching disjunction is

228 J. Ostrowski et al.

⎛
⎝ ∨

μ∈orb(G,λ)

μT x ≤ λ0

⎞
⎠ ∨

⎛
⎝ ∧

μ∈orb(G,λ)

μT x ≥ λ0 + 1

⎞
⎠ .

Further, by exploiting the symmetry in the problem, one need only consider one represen-
tative problem for the left portion of this disjunction. That is, either the “equivalent” form
of λx ≤ λ0 holds for one of the members of orb(G, λ), or the inequality λx ≥ λ0 + 1
holds for all of them. This is obviously a feasible division of the search space. Theorem 1
demonstrates that for any vectors μi, μj ∈ orb(G, λ), the subproblem formed by adding
the inequality μT

i x ≤ μ0 is equivalent to the subproblem formed by adding the inequal-
ity μT

j x ≤ μ0. Therefore, we need to keep only one of these representative subproblems,
pruning the | orb(G, λ)|−1 equivalent subproblems.The orbital branching (on variables)
method of [10] is a special case of constraint orbital branching for (λ, λ0) = (ek, 0).

Theorem 1. Let a be a generic subproblem and μi, μj ∈ orb(G, λ). Denote by b the
subproblem formed by adding the inequality μT

i x ≤ μ0 to a and by c the subproblem
formed by adding the inequality μT

j x ≤ μ0 to a. Then, z∗(b) = z∗(c).

Proof. Let x∗ be an optimal solution of b. WLOG, we can assume that z∗(b) ≤ z∗(c).
Since μi and μj are in the same orbit, there exists a permutation σ ∈ G such that
σ(μi) = μj . By definition of G, σ(x∗) is a feasible solution to the subproblem with
objective value z∗(b). For any permutation matrix P we have that PT P = I . Since x∗

is in b, μT
i x∗ ≤ μ0. We can rewrite this as μT

i PT
σ Pσx∗ ≤ μ0, or (Pσμi)T Pσx∗ ≤ μ0.

This implies that μjPσx∗ ≤ μ0, so σ(x∗) is in c. This implies that z∗(c) ≤ z∗(b). By
our assumption, z∗(c) = z∗(b).
�
The basic constraint orbital branching is formalized in Algorithm 1.

Algorithm 1. Constraint Orbital Branching

Input: Subproblem a.
Output: Two child subproblems b and c.

Step 1. Choose a vector of integers λ of size n and an integer λ0

Step 2. Compute the orbit of λ, O = {μ1, . . . , μp}.
Step 3. Choose arbitrary μk ∈ O. Return subproblems b withF(b) = F(a)∩{x ∈ {0, 1}n :

μT
k x ≤ λ0} and c withF(c) = F(a)∩{x ∈ {0, 1}n : μT

i x ≥ λ0 +1, i = 1, . . . , p}

As for standard branching on constraints, the critical choice in Algorithm 1 is in choos-
ing the inequality (λ, λ0) [13]. When dealing with symmetric problems, the embed-
ded subproblem structure can be exploited to find strong branching disjunctions, as
described in the next section.

3 Strong Branching Disjunctions, Subproblem Structure, and
Enumeration

Many important families of symmetric integer programs are structured such that small
instances from the family are embedded in larger instances. In this case the problem

Constraint Orbital Branching 229

often shows a block-diagonal structure with identical blocks and some linking con-
straints, like expressed in Figure 1.

min eT x1 + eT x2 + . . . + eT xr

s.t.⎛
⎜⎜⎜⎜⎜⎝

A
A

. . .
A

D1 D2 . . . Dr

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...

xr

⎞
⎟⎟⎟⎟⎟⎠ ≥ e

xi ∈ {0, 1}n, i = 1, . . . , r

Fig. 1. Block Diagonal IP

The subproblem

z = min
x∈{0,1}n

{eT x| Ax ≥ e},

denoted by P , is often computationally
manageable and can be solved to opti-
mality in reasonable time. Constraint or-
bital branching allows us to exploit its
optimal value z. The first step consists in
choosing an index i ∈ {1, . . . , r} and en-
forcing the constraint eT xi ≥ z, which,
obviously, does not cut off any optimal
solution of the whole problem. Then, the
new constraint is used as branching disjunction by letting λ = [0n, . . . , λi, . . . 0n],
λi = en and λ0 = z. The resulting child subproblems have interesting properties.

Left Subproblem. In the left child, the constraint eT
nxi ≤ z is added. Since also eT

nxi ≥
z holds, this is equivalent to eT

nxi = z. Therefore, the feasible sub-vectors xi for the
left subproblem coincides with the set of the solutions of P with objective value equal
to z. Denoting by {x∗

1, x
∗
2, . . . , x

∗
l } the set of such (optimal) solutions, one can solve

the left subproblem by dividing it into l subproblems, each associated with a solution
x∗

j , for j = 1, . . . , l. Precisely, each child j is generated by fixing xi = x∗
j . This

yields two relevant benefits. First, the resulting integer programs are easier than the
original. Second, these are completely independent and can be solved in parallel. Of
course, this option is viable only if the number of optimal solutions of P is reasonably
small. Otherwise, one can select an index k �= i and choose eT

nxk ≥ z as a branching
disjunction. In §4.1 we show how to address this “branching or enumerating” decision
for well-known difficult set covering problems.

However, a more insightful observation can lessen the number of subproblems to
be evaluated as children of the left subproblem. Suppose to know a symmetry group
G(P) ⊆ Πn with the property that any two solutions in P which are isomorphic with
respect to G(P) generate subproblems in the original problem which are isomorphic.
If such a group exists, then one can limit the search in the left subproblem only to the
children corresponding to solutions x∗

j non-isomorphic with respect to G(P).
The group G(P) is created as follows. Let I ={i ·n+1, . . . , (i+1)n} be the column

indices representing the elements of xi. First, compute the group stab(I,G). Note that
this group is in Πr×n, but we are only interested in how each π∈ stab(I,G) permutes
the n elements in I . For this reason, we project stab(I,G) onto I . Every permutation
π ∈ 1 stab(I,G) can be expressed as a product of two smaller permutations, φ ∈ΠI

and γ∈Πn−I , where φ permutes the elements in I and γ permutes the elements not in
I . We can write this as π =(φ, γ). The projection of stab(I,G) onto I , G ↓I , contains
all φ such that there exists a γ with (φ, γ) ∈ stab(I,G). Note that permutations not
in stab(I,G) cannot be projected in this way, so it is unambiguous to describe this set
as G ↓I .

230 J. Ostrowski et al.

Theorem 2. The projection of G onto I , G ↓I , is a subset of G(P).

Proof. Let φ ∈ G ↓I . Let x be any optimal solution of P . By definition, x and φ(x) are
isomorphic with respect to G ↓I . Consider the subproblems formed by setting xi = x
(subproblem a) and xi = φ(x) (subproblem b). By definition, there is a γ ∈ Πn−I with
π = (φ, γ) ∈ G.

Let x∗ be any integer feasible solution in a. By definition of permutation, we know
that π(x∗) is feasible at the root node. Also π sends xi to φ(xi). Since b differs from the
root node only by the constraint xi = φ(xi), we have that π(x∗) is in b. To conclude,
any solutions to P which are isomorphic with respect to G ↓I will generate subproblems
which are isomorphic.
�
Corollary 1. The left subproblem can be decomposed into a set of restricted subprob-
lems associated with the optimal solutions to P which are non-isomorphic with respect
to G ↓I .

In practice, non-isomorphic optimal solutions of symmetric problems often repre-
sent a small portion of all the optimal solutions. In this cases, enumerating the left
subproblem becomes computationally very efficient, as shown in the case studies of
Section 4.1.

Right Subproblem. In the right branch, the constraints μT x ≥ λ0 + 1, for all μ ∈
orb(G, λ), are added. If | orb(G, λ)| is fairly large, then the LP bound is considerably
increased.

The whole branching process can be iterated at the right child. In fact, the constraint
eT

nxi ≥ z + 1 can be exploited as branching disjunction. In this case all the solution to
P with value z + 1 should be enumerated to solve the new left branch.

Example: Consider the graph G = (V, E) of Figure 2 and the associated vertex cover
problem

min
x∈{0,1}|V |

{
eT x | xi + xj ≥ 1 ∀(i, j) ∈ E

}
.

Its optimal solution has value 10 and it is supposed to be known. The coefficient matrix
A shows a block diagonal structure with three blocks, corresponding to the incidence
matrices of the 5-holes induced by vertices {1, . . . , 5}, {6, . . . , 10} and {11, . . . , 15}
respectively. Therefore, the i-th subproblem, i ∈ {0, 1, 2}, has the form

P : min x5i+1 + x5i+2 + x5i+3 + x5i+4 + x5i+5

s.t.⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x5i+1

x5i+2

x5i+3

x5i+4

x5i+5

⎞
⎟⎟⎟⎟⎠ ≥ e

x ∈ {0, 1}5

Constraint Orbital Branching 231

5

1

2

4 3

10

6

7

9 8

15

11

12

14 13

Fig. 2. Example Graph

The group G(A) contains 60 permutations in Π15 and is generated by the following
permutations:

π1 = (2, 5)(3, 4)(7, 10)(8, 9)(12, 15)(13, 14)
π2 = (6, 11)(7, 12)(8, 13)(9, 14)(10, 15)
π3 = (1, 2)(3, 5)(6, 7)(8, 10)(11, 12)(13, 15)
π4 = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10).

G(P) can be created by projecting G(A) on the variables of the first block (i.e., x1,
. . ., x5). It consists of 10 permutations in Π5 which are generated by (2, 5)(3, 4),
and (1, 2)(3, 5). The optimal solution to P has value 3 and there is only one non-
isomorphic cover of size 3 (for instance, x1 = 1, x2 = 1 and x4 = 1). At the root
node we branch on the disjunction λ = (1, 1, 1, 1, 1, 0, . . . , 0), λ0 = 3. Then, in the left
subproblem the constraint x1 + x2 + x3 + x4 + x5 ≤ 3 is added, while in the right
subproblem the constraints x1 + x2 + x3 +x4 + x5 ≥ 4, x6 + x7 + x8 + x9 + x10 ≥ 4
and x11 + x12 + x13 + x14 + x15 ≥ 4 are enforced.

Since P has a unique non-isomorphic optimal solution, searching the left child
amounts to solve only one subproblem with x1 = 1, x2 = 1, x3 = 0, x4 = 1 and
x5 = 0. Its optimal value is 10 and the subproblem can be fathomed. On the right
branch, the lower bound increases to 12 and also that subproblem can be fathomed.

If a classical variable-branching dichotomy is applied, it results in a much larger
enumeration tree (15 subproblems vs. 3).

In the general case of unstructured problems, finding effective branching disjunctions
may be difficult. Nevertheless, branching on a constraint (λ, λ0) such that the number
of non-isomorphic optimal solutions to the left subproblem is fairly small still gives
good results, as shown in Section 4.3.

232 J. Ostrowski et al.

4 Case Studies

4.1 Steiner Triple Systems

A Steiner Triple System of order v, denoted by STS(v), consists of a set S with v
elements, and a collection B of triples of S with the property that every pair of elements
in S appears together in a unique triple of B. Kirkman [14] showed that STS(v) exists
if and only if v ≡ 1 or 3 mod 6. A covering of a STS is a subset C of the elements
of S such that C ∩ T �= ∅ for each triple T ∈ B. The incidence width of a STS is its
smallest-size covering. Fulkerson, Nemhauser, and Trotter [15] suggested the following
integer program to compute the incidence width of a STS(v):

min
x∈{0,1}v

{eT x | Avx ≥ 1},

where Av ∈ {0, 1}|B|×v is the incidence matrix of the STS(v). The authors created
instances based on STS of orders v ∈ {9, 15, 27, 45}, and posed these instances as a
challenge to the integer programming community. The instance STS(45) was not solved
until five years later by H. Ratliff, as reported in [16].

The instance of STS(27) was created from STS(9) and STS(45) was created from
STS(15) using a “tripling” procedure described by Hall [17]. We present the construc-
tion here, since the symmetry induced by the construction is exploited by our method in
order to solve larger instances in this family. For ease of notation, let the elements
in STS(v) be {1, 2, . . . v}, with triples Bv. The elements of STS(3v) are the pairs
{(i, j) | i ∈ {1, 2, . . . , v}, j ∈ {1, 2, 3}}, and its collection of triples is denoted as
B3v. Given STS(v), the Hall construction creates the blocks of STS(3v) in the follow-
ing manner:

{(a, k), (b, k), (c, k)} ∈ B3v ∀{a, b, c} ∈ Bv, ∀k ∈ {1, 2, 3},
{((i, 1), (i, 2), (i, 3)} ∈ B3v ∀i ∈ {1, . . . , v},
{(a, π1), (b, π2), (c, π3)} ∈ B3v ∀{a, b, c} ∈ Bv, ∀π ∈ Π3.

Feo and Resende [18] introduced two new instances STS(81) and STS(243) cre-
ated using this construction. STS(81) was first solved by Mannino and Sassano [12]
12 years ago, and it remains the largest problem instance in this family to be solved.
STS(81) is also easily solved by the isomorphism pruning method of [9] and the orbital
branching method of [10], but neither of these methods seem capable of solving larger
STS(v) instances. Karmarkar, Ramakrishnan, and Resende [19] introduced the instance
STS(135) which is built by applying the tripling procedure to the STS(45) instance of
[15]. Odijk and Maaren [20] have reported the best known solutions to both STS(135)
and STS(243), having values 103 and 198 respectively. Using the constraint orbital
branching method, we have been able to solve STS(135) to optimality, establishing that
103 is indeed the incidence width.

The incidence matrix, A3v , for an instance of STS(3v) generated by the Hall con-
struction has the form shown in Figure 3, where Av is the incidence matrix of STS(v)
and the matrices Di have exactly one “1” in every row. Note that A3v has the block-
diagonal structure discussed in Section 3, so it is a natural candidate on which to apply
the constraint orbital branching methodology.

Constraint Orbital Branching 233

A3v =

⎡
⎢⎢⎢⎢⎣

Av 0 0
0 Av 0
0 0 Av

I I I
D1 D2 D3

⎤
⎥⎥⎥⎥⎦ ,

Fig. 3. Incidence Matrix of A3v

Furthermore, the symmetry group Γ of the instance
STS(3v) created in this manner has a structure that can
be exploited. Specifically for STS(135), let λ ∈ R

135

be the vector λ = (e45, 090)T in which the first 45
components of the vector are 1, and the last 90 com-
ponents are 0. It is not difficult to see that the following
12 vectors μ1, . . . μ12 all share an orbit with the point
λ. (This fact can also be verified using a computational algebra package such as GAP
[21]).

μ1

μ2

μ3

μ4

μ5

μ6

μ7

μ8

μ9

μ10

μ11

μ12

=

1− 15 16− 30 31− 45 46− 60 61− 75 76− 90 91− 105 106− 120 121 − 135

e e e 0 0 0 0 0 0
0 0 0 e e e 0 0 0
0 0 0 0 0 0 e e e
e 0 0 e 0 0 e 0 0
e 0 0 0 e 0 0 0 e
e 0 0 0 0 e 0 e 0
0 e 0 e 0 0 0 e 0
0 e 0 0 e 0 0 e 0
0 e 0 0 0 e e 0 0
0 0 e e 0 0 0 e 0
0 0 e 0 e 0 e 0 0
0 0 e 0 0 e 0 0 e

As described for the general case in Section 3, to create an effective constraint orbital
branching dichotomy, we will use this orbit and also the fact that branching on the
disjunction

(λx ≤ K) ∨ (μT x ≥ K + 1) ∀μ ∈ orb(G, λ)

allows us to enumerate coverings for STS(v/3) in order to solve the left-branch of the
dichotomy.

4.2 Computational Results

In this section, results of the computation proving the optimality of the cardinality 103
covering of STS(135) are presented. The optimal solution to STS(45) has value 30.
Figure 4 shows the branching tree used by the constraint orbital branching method for
solving STS(135). The node E in Figure 4 is pruned by bound, as the solution of the
linear programming relaxation at this node is 103. A variant of the (variable) orbital
branching algorithm of [10] can be used to obtain a superset of all non-isomorphic so-
lutions to an integer program whose objective value is better than a prescribed value K .
The method works in a fashion similar to that proposed in [22]. Specifically, branch-
ing and pruning operations are performed until all variables are fixed (nodes may not
be pruned by integrality). All leaf nodes of the resulting tree are feasible solutions to
the integer program whose objective value is ≤ K . Using this algorithm, a superset
of all non-isomorphic solutions to STS(45) of value 33 or less was enumerated. The

234 J. Ostrowski et al.

A

B

C

D E

λx
≤ 30

μx ≥ 31 ∀μ ∈ orb(Γ, λ)

λx
≤ 31

μx ≥ 32 ∀μ ∈ orb(Γ, λ)

λx
≤ 32

μx ≥ 33 ∀μ ∈ orb(Γ, λ)

λx
≤ 33

μx ≥ 34 ∀μ ∈ orb(Γ, λ)

Fig. 4. Branching Tree for Solution of STS(135)

Table 1. Computational Statistics for Solution of STS(135)

(a) Solutions
of value K
for STS(45)

(K) # Sol
30 2
31 246
32 9497
33 61539

71,284

(b) Statistics for STS(135) IP Computations

Total CPU Simplex
K Time (sec) Iterations Nodes
30 538.01 2,501,377 164,720
31 90790.94 255,251,657 13,560,519
32 2918630.95 8,375,501,861 306,945,725
33 6243966.98 25,321,634,244 718,899,460

9.16 × 106 3.36 × 1010 1.04 × 109

enumeration required 10 CPU hours on a 1.8GHz AMD Opteron Processor and resulted
in 71,284 solutions. The number of solutions for each value of K is shown in Table 1(a).

For each of the 71,284 enumerated solutions to STS(45), the first 45 variables of
the STS(135) integer programming instance for that particular node were fixed. For
example, the node B contains the inequalities μx ≥ 31 ∀μ ∈ orb(Γ, λ), and the
bound of the linear programming relaxation is 93. In order to establish the optimal-
ity of the covering of cardinality 103 for STS(135), each of these 71,284 90-variable
integer programs must be solved to establish that no solution of value smaller than 103
exists. The integer programs are completely independent, so it is natural to consider
solving them on a distributed computing platform. The instances were solved on a col-
lection of over 800 computers running the Windows operating system at Lehigh Univer-
sity. The computational grid was created using the Condor high-throughput computing

Constraint Orbital Branching 235

software [23], so the computations were run on processors that would have otherwise
been idle. The commercial package CPLEX (v10.2) was used to solve all the instances,
and an initial upper bound of value 103.1 was provided to CPLEX as part of the input to
all instances. Table 1(b) shows the aggregated statistics for the computation. The total
CPU time required to solve all 71,284 instances was roughly 106 CPU days, and the
wall clock time required was less than two days. The best solution found during the
search had value 1031, thus establishing that the incidence-width of STS(135) is 103.

4.3 Covering Designs

A (v, k, t)-covering design is a family of subsets of size k, chosen from a ground set V
of cardinality |V | = v, such that every subset of size t chosen from V is contained in
one of the members of the family of subsets of size k. The number of members in the
family of k-subsets is the covering design’s size. The covering number C(v, k, t) is the
minimum size of such a covering. Let K be the collection of all k-sets of V , and let T
be the collection of all t-sets of V . An integer program to compute a (v, k, t)-covering
design can be written as

min
x∈{0,1}|K|

{eT x | Bx ≥ e}, (2)

where B ∈ {0, 1}|T |×|K| has element bij = 1 if and only if t-set i is contained in k-set
j, and the decision variable xj = 1 if and only if the jth k-set is chosen in the covering
design.

Numerous theorem exist that give bounds on the size of the covering number C(v,
k, t). An important theorem that we need to generate a useful branching disjunction for
the constraint orbital branching method is due to Schönheim [24]. For some subset of
the ground set elements U ⊆ V , let K(U) be the collection of all the k-sets of V that
contain U . Margot [25] shows that the following inequality, which he calls a Schönheim
inequality, is valid, provided that |U | = u is such that 1 ≤ u ≤ t− 1:∑

i∈K(U)

xi ≥ C(v − u, k − u, t− u).
(3)

The Schönheim inequalities substantially increase the value of the linear programming
relaxation of (2).

A second important observation is that the symmetry group G for (2) is such the char-
acteristic vectors of all u-sets belong to the same orbit: if |U ′| = |U |, then χK(U ′) ∈
orb(G, χK(U)). These two observations taken together indicate that the Schönheim in-
equalities (3) may be a good candidate for constraint orbital branching. On the left
branch, the constraint ∑

i∈K(U)

xi ≤ C(v − u, k − u, t− u)

is enforced. To solve this node, all non-isomorphic solutions to the (v−u, k−u, t−u)-
covering design problem may be enumerated. For each of these solutions, an integer

1 In fact, two solutions of value 103 were found, but they were isomorphic.

236 J. Ostrowski et al.

A

B

C

P
i∈K(v0) xi ≤ 51

P
i∈K(v) xi ≥ 52 ∀v ∈ V

P
i∈K(Û2) xi ≤ 26

P
i∈K(U) xi ≥ 27 ∀U ⊂ V, |U | = 2

P
i∈K(Û3) xi ≤ 11

P
i∈K(U) xi ≥ 12 ∀U ⊂ V, |U | = 3

Fig. 5. Branching Tree for C(11, 6, 5)

program in which the corresponding variables in the (v, k, t)-covering design problem
are fixed may be solved. On the right branch of the constraint-orbital branching method,
the constraints∑

i∈K(U ′)

xi ≥ C(v − u, k − u, t− u) + 1 ∀U ′ ∈ orb(G, χK(U))

may be imposed. These inequalities can significantly improve the linear programming
relaxation.

4.4 Computational Results

We will demonstrate the applicability of constraint orbital branching using the Schön-
heim inequalities by an application to the (11, 6, 5)-covering design problem. Nurmela
and Östergård [26] report an upper bound of C(11, 6, 5) ≤ 100, and Applegate, Rains,
and Aloane [27] were able to show that C(11, 6, 5) ≥ 96. Using the constraint orbital
branching technique, we are also easily able to obtain the bound C(11, 6, 5) ≥ 96, and
ongoing computations are aimed at further sharpening the bound. The covering design
numbers C(10, 5, 4) = 51, C(9, 4, 3) = 25, and C(8, 3, 2) = 11 are all known [28],
and this knowledge is used in the branching scheme.

The branching tree used for the (11, 6, 5)-covering design computations is shown
in Figure 5. In the figure, node D is pruned by bound, as the value of its linear pro-
gramming relaxation is > 100. The nodes A, B, and C will be solved by enumerat-
ing solutions to a (v, k, t)-covering design problem of appropriate size. For node A,
(10, 5, 4)-covering designs of size 51 are enumerated; for node B, (9, 4, 3)-covering
designs of size ≤ 26 are enumerated; and for node C, (8, 3, 2)-covering designs of size
≤ 11 are enumerated. Table 2 shows the number of solutions at each node, as well
as the value of the linear programming relaxation z(ρ) of the parent node. The size
51 (10, 5, 4)-covering designs are taken from the paper [29], and the other covering
designs are enumerated using the variant of the orbital branching method outlined in
Section 4.2.

Constraint Orbital Branching 237

Since the value of the linear programming relaxation of the parent of node B is 95.33,
if none of the 40 integer programs created by fixing the size 51 (10, 5, 4)-covering
design solutions at node A of Figure 5 has a solution of value 95, then immediately,
a lower bound of C(11, 6, 5) ≥ 96 is proved. The computation to improve the lower
bound for each of the 40 IPs to 95.1 required only 8789 nodes and 10757.5 CPU seconds
on a single 2.60GHz Intel Pentium 4 CPU. More extensive computations are currently
underway on a Condor-provided computational grid to further improve this bound.

Table 2. Node Characteristics

Node # Sol z(ρ)
A 40 93.5
B 782,238 95.33
C 11 99

It is interesting to note that an attempt to improve
the lower bound of C(11, 6, 5) by a straightforward
application of the variable orbital branching method
of [10] was unable to improve the bound higher than
94, even after running several days and eventually ex-
hausting a 2GB memory limit. An exhaustive compar-
ison with variable orbital branching will be reported
in a journal version of the paper. However, the results
on specific classes of problems show that the general-
ity of constraint orbital branching does appear to be useful to solve larger symmetric
problems.

5 Conclusions

In this work, we generalized a previous work for branching on orbits of variables (or-
bital branching) to branching on orbits of constraints (constraint orbital branching).
Constraint orbital branching can be especially powerful if the problem structure is ex-
ploited to identify a strong constraint on which to base the disjunction and by enumer-
ating all partial solutions that might satisfy the constraint. Using this methodology, we
are for the first time able to establish the optimality of the cardinality 103 covering for
STS(135).

Acknowledgment

The authors would like to thank François Margot for his insightful comments about
this work and Helen Linderoth for hand-keying all 40 non-isomorphic solutions to
C(10, 5, 4) into text files. Author Linderoth would like to acknowledge support from
the US National Science Foundation (NSF) under grant DMI-0522796, by the US De-
partment of Energy under grant DE-FG02-05ER25694, and by IBM, through the fac-
ulty partnership program. The solution of the STS135 instance could not have been
achieved were it not or the generous donation of “unlimited” CPLEX licenses by Rose-
mary Berger and Lloyd Clarke of ILOG. The authors dedicate this paper to the memory
of their good friend Lloyd.

References

1. Macambira, E.M., Maculan, N., de Souza, C.C.: Reducing symmetry of the SONET ring
assignment problem using hierarchical inequalities. Technical Report ES-636/04, Programa
de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro (2004)

238 J. Ostrowski et al.

2. Rothberg, E.: Using cuts to remove symmetry. In: 17th International Symposium on Mathe-
matical Programming (2000)

3. Sherali, H.D., Smith, J.C.: Improving zero-one model representations via symmetry consid-
erations. Management Science 47(10), 1396–1407 (2001)

4. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Mathematical Programming (to
appear, 2007)

5. Kaibel, V., Peinhardt, M., Pfetsch, M.: Orbitopal fixing. In: Fischetti, M., Williamson, D.P.
(eds.) IPCO 2007. LNCS, vol. 4513, pp. 74–88. Springer, Heidelberg (2007)

6. Read, R.C.: Every one a winner or how to avoid isomorphism search when cataloguing com-
binatorial configurations. Annals of Discrete Mathematics 2, 107–120 (1998)

7. Butler, G., Lam, W.H.: A general backtrack algorithm for the isomorphism problem of com-
binatorial objects. Journal of Symbolic Computation 1, 363–381 (1985)

8. McKay, D.: Isomorph-free exhaustive generation. Journal of Algorithms 26, 306–324 (1998)
9. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Programming 94, 71–

90 (2002)
10. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. In: Fischetti, M.,

Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 104–118. Springer, Heidelberg
(2007)

11. Linderoth, J., Margot, F., Thain, G.: Improving bounds on the football pool problem via
symmetry reduction and high-throughput computing (submitted, 2007)

12. Mannino, C., Sassano, A.: Solving hard set covering problems. Operations Research Let-
ters 18, 1–5 (1995)

13. Karamanov, M., Cornuéjols, G.: Branching on general disjunctions (submitted, 2005)
14. Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematics Journal 2,

191–204 (1847)
15. Fulkerson, D.R., Nemhauser, G.L., Trotter, L.E.: Two computationally difficult set cover-

ing problems that arise in computing the 1-width of incidence matrices of Steiner triples.
Mathematical Programming Study 2, 72–81 (1974)

16. Avis, D.: A note on some computationally difficult set covering problems. Mathematical
Programming 8, 138–145 (1980)

17. Hall, M.: Combinatorial Theory. Blaisdell Company (1967)
18. Feo, T.A., Resende, G.C.: A probabilistic heuristic for a computationally difficult set cover-

ing problem. Operations Research Letters 8, 67–71 (1989)
19. Karmarkar, N., Ramakrishnan, K., Resende, M.: An interior point algorithm to solve compu-

tationally difficult set covering problems. Mathematical Programming, Series B 52, 597–618
(1991)

20. Odijk, M.A., van Maaren, H.: Improved solutions to the Steiner triple covering problem.
Information Processing Letters 65(2), 67–69 (1998)

21. The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.4 (2004),
http://www.gap-system.org

22. Danna, E., Fenelon, M., Gu, Z., Wunderling, R.: Generating multiple solutions for mixed
integer programming problems. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS,
vol. 4513, pp. 280–294. Springer, Heidelberg (2007)

23. Livny, M., Basney, J., Raman, R., Tannenbaum, T.: Mechanisms for high throughput com-
puting. SPEEDUP 11 (1997)

24. Schönheim, J.: On coverings. Pacific Journal of Mathematics 14, 1405–1411 (1964)
25. Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming, Series B 98,

3–21 (2003)

http://www.gap-system.org

Constraint Orbital Branching 239

26. Nurmela, K.J., Östergård, P.: Upper bounds for covering designs by simulated annealing.
Congressus Numerantium 96, 93–111 (1993)

27. Applegate, D., Rains, E., Sloane, N.: On asymmetric coverings and covering numbers. Jour-
nal of Combinatorial Designs 11, 218–228 (2003)

28. Gordon, D., Kuperberg, G., Patashnik, O.: New constructions for covering designs. Journal
of Combinatorial Designs 3, 269–284 (1995)

29. Margot, F.: Small covering designs by branch-and-cut. Mathematical Programming 94, 207–
220 (2003)

A Fast, Simpler Algorithm

for the Matroid Parity Problem

James B. Orlin

MIT Sloan School of Management
Cambridge, MA 02139

jorlin@mit.edu

Abstract. Consider a matrix with m rows and n pairs of columns. The
linear matroid parity problem (LMPP) is to determine a maximum num-
ber of pairs of columns that are linearly independent. We show how to
solve the linear matroid parity problem as a sequence of matroid in-
tersection problems. The algorithm runs in O(m3n). Our algorithm is
comparable to the best running time for the LMPP, and is far simpler
and faster than the algorithm of Orlin and Vande Vate [10], who also
solved the LMPP as a sequence of matroid intersection problems. In ad-
dition, the algorithm may be viewed naturally as an extension of the
blossom algorithm for nonbipartite matchings.

Keywords: Matroid parity, matroid matching, matroid intersection,
nonbipartite matching.

1 Introduction

Let E∗ = {e1, e2, . . . , en} be a set of lines, where line ek = (ek1, ek2) is a pair
of points in R

m, where R is the set of real numbers. The linear matroid parity
problem (LMPP) is to find a maximum collection M of lines so that all points
of M are linear independent. The non-bipartite matching problem is the special
case of the LMPP in which ekj is a unit vector for all k = 1 to n and j = 1, 2.
The LMPP also generalizes the matroid intersection problem in the case that
the matroids are linear.

The matroid parity problem is the generalization of the LMPP in which each
line consists of two elements of a matroid, and M is required to consist of ele-
ments that are independent with respect to the matroid. Lovász [8] and Jensen
and Korte [4] independently showed that the matroid parity problem requires
exponential time in the case that independence with respect to the matroid is
evaluated by an oracle function.

In this paper, we give an algorithm that runs in O(n3m) time that solves
the LMPP as a sequence of matroid intersection problems. Our approach sub-
stantially simplifies and speeds up the approach of Orlin and Vande Vate [10],
who solved the linear matroid parity problem as a sequence of matroid intersec-
tion problems in O(n4m) time. The approach presented here may be viewed as

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 240–258, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Fast, Simpler Algorithm for the Matroid Parity Problem 241

a generalization of Edmonds’ blossom algorithm [1]. We compare the blossom
algorithm to our algorithm at several different points in our paper.

Lovász [8] developed the first polynomial time algorithm for the linear ma-
troid parity problem. Lovász and Plummer [9] reported that its running time if
implemented in a straightforward manner is O(n17), and it can be implemented
to run in O(n10) time.

Stallmann and Gabow [12] and Gabow and Stallmann [3] solved the matroid
parity problem in O(n3m) time using some ideas from the blossom algorithm of
Edmonds [1]. (Their algorithm is quite different from ours). The latter algorithm
can be made faster by using fast matrix multiplication. For applications and al-
gorithms on closely related problems see Lovász [7], Lovász and Plummer [9] and
Schrijver [11]. Our algorithm achieves the same running time as that of Gabow
and Stallmann [3], assuming that fast matrix multiplication is not used. (This
author does not know whether fast matrix multiplication leads to a comparable
speed up of the algorithm presented here).

The outline of this paper is as follows. In Section 2, we present background on
the LMPP. Section 3 presents Lovász’s duality theorem for the LMPP and some
elementary consequences. Section 4 provides a high level view of the algorithm.
Sections 5 to 10 fill in details on the algorithm. Section 11 discusses computa-
tional issues. Section 12 provides a brief summary. Proofs of some of the main
theorems are included in an appendix.

2 Linear Matroids, Matchings, and Pseudomatchings

For a subset S ⊆ R
m, let r(S) denote the linear rank of S. We say that S is

independent if r(S) = |S|. A basis of a set S is a maximally independent subset
of S. A circuit of S is a minimally dependent subset of S. We sometimes let I
denote the collection of independent sets. We use the notation S+s as shorthand
for S ∪ {s}.

The linear subspace spanned by S is S = {s ∈ R
m : r(S + s) = r(S)}. We say

that two subsets S and T of R
m are orthogonal if r(S ∪T) = r(S) + r(T). (This

is not a standard use of the term “orthogonal” in linear algebra since we are
not really requiring the linear spaces induced by S and T to be perpendicular
to each other. We hope that it will not lead to any confusion).

For given subsets S, Q ⊆ R
m, we let rQ(S) = r(S ∪Q)− r(Q). We say that

rQ() is obtained from r() by contracting Q.
Given a linear matroid parity problem defined on E∗, a matching M is a set

of lines whose points are independent. We let |M | denote the number of points
(not lines) in M . So, M is a matching if r(M) = |M |. (We will explain later
why we keep track of the number of points rather than the number of lines).

Partitions play an important role in the linear matroid parity algorithm. Sup-
pose that E ⊆ E∗, and P = (E1, . . . , EK) is a partition of the lines of E. We
refer to each part Ej as a component of P.

A P-matching is a subset M of points of E such that |M ∩ Ej | is even for
j = 1 to K. The P-matching problem is to find a P-matching of maximum

242 J.B. Orlin

cardinality. The P-matching problem is both a generalization of the matroid
parity problem and a relaxation of the matroid parity problem. If the partition
P is not specified, we will typically refer to M as a pseudomatching. A matching
is a special case of a pseudomatching.

Definition 1. For each set E ⊆ E∗ of lines, we let ω(E) denote the largest size
of a matching in E, that is, the number of points in the largest matching of E.
For each partition P , we let ω(P) be the largest size of P-matching of E.

Earlier we defined the size of matchings in terms of points because it is a more
natural way of measuring the size of pseudomatchings. We also note that the
P-matching problem is polynomially transformable to the LMPP. All one needs

to do is replace each component Ej with k points by
(

k
2

)
lines consisting of

the pairs of points of Ej . Then any matching for the transformed problem is a
P-matching for the original problem.

3 Duality for the LMPP

In this section, we describe Lovász’s duality theorem [11] for the linear matroid
parity problem as well as some lemmas that are needed for our algorithm.

Definition 2. Suppose that P = (E1, . . . , EK) is a partition of the lines of E,
and suppose that Q ⊆ E. We refer to the pair (P, Q) as a dual solution of the
LMPP. The capacity of the dual solution is:

μ(P, Q) = 2r(Q) + 2
K∑

i=1

�rQ(Ej)/2� .

The reader should note that the sizes of a matchings and the capacity of dual so-
lutions in this paper are twice the values of corresponding terms in other papers.

Lemma 1 (Lovász [8] weak duality). Suppose that P = (E1, . . . , EK) is a
partition of the lines of E for the LMPP, and Q is a subset of points of E, and
let (P, Q) be a dual solution. Then

ω(E) ≤ ω(P) = μ(P, Q). �

Theorem 1 (Lovász [8] strong duality). Let E∗ be the set of lines for a
LMPP. Then the maximum size of a matching is the minimum capacity of a
dual solution. 	

Actually, Lovász did not consider pseudomatchings and thus did not consider
ω(P). Our algorithm can be used to give an alternative proof of Lovász’s strong
duality theorem. However, we will accept the Lovász’s theorem as true for our
paper. The Lovász strong duality theorem immediately implies certain structural
properties of the maximum cardinality matchings of any subset E ⊆ E∗ as well
as of the P-relaxation. We state them next.

A Fast, Simpler Algorithm for the Matroid Parity Problem 243

Corollary 1. Let P = (E1, . . . , EK) be a partition of E, and suppose that
(P, Q) is a minimum capacity dual solution of E. Suppose further that M is a
maximum cardinality P-matching of E. (Note that any max cardinality match-
ing is also a max cardinality P-matching by Theorem 1). Let Mi = M ∩ Ei for
i = 1 to K. Then the following are true:

1. Q ⊆M .
2. If rQ(Ej) is even, then Ej ⊆M , and |Mj| = rQ(Ej).
3. If rQ(Ej) is odd, then |Mj| = [rQ(Ej)± 1].

(a) If |Mj | = rQ(Ej)− 1, then rQ(Mj) = 2|Mj|.
(b) If |Mj | = rQ(Ej) + 1, then rQ(Mj) = 2|Mj| − 1. 	

Definition 3. We refer to Ej as an even component or an odd component of
(P, Q) according as rQ(Ej) is even or odd. In case 3a, we refer to Mj as a
(P, Q)-hypomatching of Ej. In case 3b, we refer to Mj as a (P, Q)-hyper-
matching of Ej . We sometimes refer to them as hypomatchings and hyper-
matchings in the case that (P, Q) is obvious from context.

4 An Overview of the Matroid Parity Algorithm

In Figure 1, we give a flowchart of the augmentation phase of the matroid parity
algorithm. This phase starts with a matching and looks for a larger cardinality
matching. We describe the augmentation phase in more detail in this section.

The algorithm maintains a 6-tuple (E, S, P, Q, M , H).

• E ⊆ E∗ is a set of “scanned lines”.
• The set S is a set of pseudopoints, which are points in R

m that may include
points that are not in E. These serve a similar purpose to pseudonodes in
the blossom algorithm for nonbipartite matching (see Edmonds [11]).
• (P, Q) is a minimum capacity dual solution of E at the beginning of the

main loop of the diagram.
• M is a collection of maximum cardinality pseudomatchings of E at the

beginning of the main loop. It contains at least one matching.
• H is a collection of hypermatchings. They are needed in order to convert

a pseudomatching to a matching of the same cardinality, in the Procedure
Transform-Pseudomatching, as described in Section 9.

Initialization. The 6-tuple at the beginning of each augmentation phase (after
a larger matching is obtained) consists of a single matching M . In this case, M
= {M}, and E = M . Each component of P is a line of M . The sets S, Q, and
H are all empty at the beginning of an augmentation phase. Initially, M = ∅.
Selecting an Eligible Line. In Step 2, the algorithm seeks out an eligible line
e in E∗ \E. We define “eligible” in Section 6 in such a way that if there are no el-
igible lines (see Step 3), then any matching in M is a maximum pseudomatching
for the LMPP defined on E∗, and the algorithm terminates. Otherwise, the al-
gorithm continues by adding e to E and appending the singleton component {e}
to P. After this step, if M is a pseudomatching of M , then |M | = μ(P, Q)−2.

244 J.B. Orlin

1. Initialize with an

empty matching.

2. Is there an

eligible element of

E
∗ \ E?

Yes

No 3. Quit with an

optimal matching

and duality set.

4. Choose an eligible

line e of E
∗ \ E; let

L = L(M) be the set

of lines of E that

are in all matchings

in M. Add e to E.

5. Is L orthogonal

to (E ∪ S) \ L?

Yes

No

6. Run Procedure

Repair-

Orthogonality.

7. Is the

current 6-tuple

optimal for E?

No

Yes

8. Did Procedure

Repair-

Orthogonality

create a larger

pseudomatching?

Yes

No9. Run Procedure

Matroid-

Intersection.

10. Is a larger

pseudomatching

obtained?

No Yes

11. Run Procedure

Transform

Pseudomatching,

and obtain a larger

matching M .

Reinitialize the

6-tuple with E = M ,

and with M = {M}.

12. Run Procedure

Merge-

Components.

Fig. 1. A flow chart of the linear matroid parity algorithm

A Fast, Simpler Algorithm for the Matroid Parity Problem 245

Orthogonality Requirements. The algorithm then (Step 4) determines the
set L = L(M), which is the collection of lines that are in every pseudomatching
of M . In Step 9, the algorithm needs L to be orthogonal to E \ L. If the two
sets are not orthogonal, then Procedure Repair-Orthogonality (Step 6, and
described in Section 7) selects a pseudomatching M ∈M such that r(M + e) =
r(M) + 1. The procedure then adds to M several new pseudomatchings of the
form M + e − e′ for some lines e′ ∈ M . It also modifies Q, M , and L(M) so
that the orthogonality conditions are once again satisfied.

Matroid Intersection. The algorithm then solves a matroid intersection prob-
lem (Step 9, as described in Section 8). Procedure Matroid-Intersection ac-
complishes one of the following: (1) it finds a larger pseudomatching, or (2) it
creates a dual solution (P ′, Q′) for E such that for M ∈M , |M | = μ(P ′, Q′). In
case (2), the algorithm uses matroid intersection dual solutions (see, for example,
Lawler [6]) in order to determine which components of P to merge, thus creating
a modified partition P ′. The algorithmic counterpart of Procedure Matroid-
Intersection within the blossom algorithm is the identification and shrinking
of blossoms.

Transforming Pseudomatchings. If a larger pseudomatching M ′ is found,
the algorithm then runs Transform Pseudomatching (Step 11), which it-
eratively expands the merged components one at a time, and simultaneously
obtains a maximum cardinality pseudomatching at each expansion. At the end
of this procedure, the algorithm obtains a maximum cardinality matching M ′

for E. The augmentation phase then ends. A new augmentation phase begins
with the matching M ′. The subroutine Transform Pseudomatching has an
algorithmic counterpart of expanding pseudonodes in the blossom algorithm.

Obtaining Hypermatchings and Pseudopoints. If the algorithm merges
two or more components, it then determines (P ′, Q′)-hypermatchings for the
new component and adds them to H . The algorithm also adds new P-matchings
to M , and it adds pseudopoints to S, which are needed for subsequent ma-
troid intersection problems. The P-matchings and hypermatchings are both
needed in order carry out any subsequent Transform Pseudomatching. The
P-matchings are determined directly from the matroid intersection problem.
The (P ′, Q′)-hypermatchings are determined directly from a slightly modified
matroid intersection problem, as described in the appendix. After the merging
of components, the algorithm returns to Step 1 and begins the main loop again.
Within the non-bipartite matching algorithm, the hypermatchings correspond
to edges in the shrunk graph that are incident to a pseudonode.

On Linearity. There are two locations where the algorithm explicitly uses
the fact that the points are all vectors in R

m as opposed to being in a ma-
troid. The locations are in Repair Orthogonality and procedure for creating
pseudopoints. We will identify where linearity is assumed when we discuss the
procedures in the subsequent sections.

246 J.B. Orlin

5 Algorithm Invariants

We describe the algorithm in further detail in this and subsequent sections.
In this section, we describe invariants that are satisfied by the algorithm at
intermediate steps. We will use the notation of 6-tuples (E, S, P, Q, M , H)
given in the previous section.

Invariant 1 (Independence and Orthogonality of the Even Compo-
nents). Let L = L(M). For each line e ∈ L, {e} is a component of P. In addi-
tion, L is a matching, and L is orthogonal to E\L; that is r(E\L)+r(L) = r(E).
Invariant 1 is satisfied at Steps 1, 2, 3, 7, 8, and at the end of Steps 11, and 12.

Invariant 2 (Primal-Dual Optimality). For all M ∈ M , |M | = μ(P, Q).
Moreover, there is at least one matching of E in M . (All elements of M are
pseudomatchings). Invariant 2 is satisfied at Steps 1, 2, 3, and at the end of
Steps 11 and 12.

Invariant 3 (Criticality of Q).
⋂

M∈M M\L = Q. Invariant 3 is satisfied at
Steps 1, 2, 4, 5, 7, 8, 9, and at the end of Steps 11 and 12.

Invariant 4 (Critical Points and Hypermatchings). For each nontrivial
odd component (that is, one that consists of a single line) Ei of P, there is a
(possibly empty) collection Si ⊆ R

m of pseudopoints such that Si is a basis of
the (possibly empty) linear subspace Ei ∩ Q. Moreover, each pseudopoint p has
an associated hypermatching H(p) ⊆ Ei with p ∈ H(p) ∩ Q. (More precisely,
p ∈ H(p)∩Q(p) where Q(p) is the set of critical points at the iteration at which
pseudopoint p was created). Invariant 4 is satisfied at all times except at the end
of Step 10. It is reestablished in Step 11.

To a great extent, the various procedures are designed to reestablish
invariants. For example, Invariants 1 and 2 are both potentially unsatisfied after
an eligible line is added to E. Procedure Repair-Orthogonality reestablishes
Invariant 1. Procedures Matroid-Intersection followed by either Merge-
Components or Transform Pseudomatching reestablishes Invariant 2.

6 Eligible Lines and Optimality Conditions

In this brief section, we discuss when lines are eligible, and why the lack of eligible
lines means that there is a matching in M that is optimum for the SMPP. We
say that a line e ∈ E∗ \ E is ineligible with respect to (E, S, P, Q, M , H) if
r(e + Q) ≤ r(Q) + 1 or if rQ(e + Ej) = rQ(Ej) for any odd component of P, or
if rQ(e + L) = rQ(L), where L = L(M). Otherwise, we say that e is eligible.

The algorithm will terminate when there are no eligible lines. We see this in
the following theorem.

Theorem 2. Suppose that (E, S, P, Q, M , H) satisfies Invariants 1 to 4 and
there is no eligible line in e ∈ E∗\E. Then any matching M of M is a maximum

A Fast, Simpler Algorithm for the Matroid Parity Problem 247

cardinality matching of E∗. Moreover, we can create a minimum capacity duality
set for E∗ as follows:

1. Merge all even components into a single component, creating a modified par-
tition P ′.

2. For all e ∈ E∗ \ E, if r(e + Q) ≤ r(Q) + 1, then create a new component
containing only e.

3. For the remaining lines e ∈ E∗\E, if r(e+Q) = r(Q)+2 and if rQ(e+Ej) =
rQ(Ej) for some component Ej of P ′, then add line e to component Ej. 	

7 Restoring Orthogonality

This section presents Procedure Repair-Orthogonality. Suppose that (E, S,
P, Q, M , H) satisfies Invariants 1 to 4, and suppose that e is an eligible element
of E∗ \ E. Let P + {e} be shorthand for the partition obtained from P by
appending a singleton component {e}. Let L = L(M). Since e is eligible, it
follows that r(e + Q) = r(Q) + 2 and rQ(e + L) > rQ(L).

If L is orthogonal to (E + e) \ L, then Invariant 1 is satisfied by the 6-tuple
(E + e, S, P + {e}, Q, M , H), in which case we would skip Procedure Repair-
Orthogonality. Suppose instead that L is not orthogonal to (E + e) \ L. We
will show how to modify Q and M and possibly the partition P + {e} so that
Invariant 1 becomes satisfied.

Procedure Repair-Orthogonality

INPUT: (E + e, S, P + {e}, Q, M , H).
begin
select a pseudomatching M∗ ∈M so that e �⊂M∗;
(this exists by Invariant 3 and the fact that e �⊂ L ∪Q);

if M∗ + e is a pseudomatching, then go to Procedure Transform-
Pseudomatching;

else, continue;
replace e by an equivalent line e′ = (e′1, e

′
2), where e′2 ∈M∗;

(linearity is assumed in this step;)
for each line ej ∈ L such that M∗ + e′ − ej is a pseudomatching do
begin
replace ej by an equivalent line

e′j = (e′j1, e
′
j2), where e′j2 ∈M∗ + e′ − ej;

add e′j2 to Q and also to S; (thus we view e′j2 as a
pseudopoint, even though it is also a point);

add M∗ + e′ − ej to M ;
end

end

Theorem 3. Suppose that (E, S, P, Q, M , H) satisfies Invariants 1 to 4, and
let (E + e, S, P ′, Q′, M ′, H) be the 6-tuple obtained at the end of Procedure

248 J.B. Orlin

Repair-Orthogonality. Suppose that no larger pseudomatching was found dur-
ing the procedure. Then (E+e, P ′, Q′, M ′, H) satisfies Invariants 1, 3 and 4. If
r(e+Q′) = r(Q′)+1, then Invariant 2 is also satisfied. If r(e+Q′) = r(Q′)+2,
then μ(P ′, Q′) = μ(P, Q) + 1, in which case Invariant 2 is not satisfied.

Proof. In appendix. 	

When a line e is transformed in the above algorithm, it is always replaced by an
equivalent line with exactly one point in Q.

8 The (P, Q)-Matroid Intersection Problem

In this section, we describe Procedure Matroid-Intesersection. The input
for this procedure is the output (E, S, P, Q, M , H) from Procedure Repair-
Orthogonality, assuming that the procedure was called. We assume that (E, S,
P, Q, M , H) does not satisfy Invariant 2. For each pseudomatching M ∈ M ,
|M | = μ(P, Q) − 2. We assume that P = (E1, . . . , EK), and we again let
L = L(M).

We next create a linear matroid intersection problem whose elements are a
combination of “simple elements” and “compound elements.” We refer to this
problem as the (P, Q)-matroid intersection problem, and often refer to it more
briefly as the intersection problem. The output from the intersection problem
induces a P-matching M with |M | = μ(P, Q) or else it induces a modified dual
solution (P ′, Q′) such that μ(P ′, Q′) = μ(P, Q)−2. In the latter case, (P ′, Q′)
is a minimum capacity dual solution for E.

The (P, Q)-Matroid Intersection Problem
The intersection problem is defined on a set W = WS ∪WC , where WS is a set
of “simple elements”, and WC is a set of “compound elements”. For each point
p ∈ E, there is a simple element p ∈ WS . For each odd component Ei, there
is an associated point bi, which is the first non-critical point of Ei; i.e., bi /∈ Q.
Let B = {bi : Ei is an odd component}. For each pseudopoint p of Si, there is
a compound element bi−p ∈ WC . The compound element will be treated as if it
were bi with respect to the first matroid (defined below), and it will be treated
as if it were p with respect to the second matroid (defined below).

For each set J ⊆ W , we define three subsets of points of E ∪ S induced by
the set J :

1. JS = {p ∈ E : p is a simple element of J};
2. JB = {bi ∈ E : bi − p is a compound element of J for some pseudopoint

p ∈ S};
3. JQ = {p ∈ S : bi − p is a compound element of J}.

We next define the two matroids (W, I1) and (W, I2) for the matroid inter-
section problem, with collections I1 and I2 of independent sets, and with rank
functions r1(), and r2(). Suppose J ⊆W .

A Fast, Simpler Algorithm for the Matroid Parity Problem 249

1. J ∈ I1 if JS ∪JB is independent with respect to rQ(); equivalently, r1(J) =
rQ(JS ∪ JB).

2. J ∈ I2 if r(JQ) = |JQ| and if |JS ∩ Ei| ≤ 2 �rQ(Ei)/2� for all components
Ei; equivalently,

r2(J) = r(JQ) +
K∑

i=1

min {|JS ∩ Ei| , 2 �rQ(Ei)/2�} .

We note that r2(W) = μ(P, Q)− r(Q).
The intuition behind this matroid intersection problem is based on the fol-

lowing theorem.

Theorem 4. The following are true.

1. The maximum cardinality of an intersection is either r2(W) or r2(W)− 1.
2. If J is any feasible intersection of W , then JS ∪ JB ∪ JQ is an independent

set of points of E ∪ S with respect to r().
3. Suppose there is intersection J with |J | = r2(W), and let M = JS ∪ JB ∪

JQ. Then M is a maximum cardinality pseudomatching of E, and |M | =
μ(P, Q).

Proof. In appendix. 	

If the matroid intersection algorithm does not lead to a larger cardinality in-
tersection, then by Theorem 4, the largest intersection is of size r2(W) − 1. By
matroid intersection duality (see, for example, Lawler [5]), the algorithm pro-
vides a partition of the elements W into two subsets W1 and W2 such that
r1(W1) + r2(W2) = r2(W)− 1.

Lemma 2. Suppose that the largest intersection is of size r2(W) − 1. Let
(W1, W2) be the partition of W provided by the matroid intersection algorithm
so that r1(W1)+r2(W2) = r2(W)−1. Then for each component Ej of P, either
every simple point of Ej is in W1 or no simple point of Ej is in W1.

Proof. In appendix. 	

Theorem 5. Suppose that the max cardinality intersection is of size r2(W)−1.
Let P ′ be obtained by merging all components of P that are in W1. Let Q′ be the
union of the pseudopoints in W2. Then μ(P ′, Q′) = μ(P, Q)− 2, and (P ′, Q′)
is a minimum capacity dual solution of E ∪ S.

Proof. In appendix. 	

In the case that largest intersection is of size r2(W)− 1, the algorithm produces
additional matchings of size μ(P, Q)− 2 so that Invariant 2 is satisfied when Q
is replaced by Q′.

250 J.B. Orlin

9 Transforming the Pseudomatchings

In this section, we explain how to transform a maximum cardinality pseudo-
matching of E∪S into a maximum cardinality matching of E. This is the case in
which the matroid intersection algorithm outputs an intersection of size r2(W),
which in turn induces a pseudomatching M of size μ(P, Q), which is larger than
any pseudomatching of M . Since each matching of M is maximum in E \ e, it
follows that e ∈M , and that M \ e is a maximum matching in E \ e.

Let L = L(M). By Corollary 1, L + e ⊆M . For every odd component Ej of
P, let Mj = M∩(Ej∪Sj). By Corollary 1, Mj is either a (P, Q)-hypomatching
or a (P, Q)-hypermatching.

We will next show how to transform M into a matching by expanding one
component at a time in a LIFO order. Consider component Ej and suppose that
it was created by merging components Ei for i ∈ I.

Transforming Hypomatchings. Suppose that Mj is a hypomatching. First
choose point p ∈ Ej such that rQ(Mj + p) = |Mj | + 1. Actually, we choose
p ∈M ′ \ Ej ∩Ej \Q. Now choose a pseudomatching M ′ ∈M such that p /∈M ′.
(It exists because Invariant 3 is satisfied). Now replace Mj in M by M ′ ∩ Ej ,
obtaining a pseudomatching M ′′. M ′ was determined by the algorithm prior to
component Ej being formed, except in the case that Ej is a single line. So M ′′

is also a pseudomatching if we expand component Ej . (Proof in appendix).

Transforming Hypermatchings. Suppose that Mj is a hypermatching that
contains q ∈ Sj , and that Ej is not a singleton line. Then replace Mj by the
hypermatching H(q), which was created at the time that Ej was merged into a
component.

10 Creating Pseudopoints and Hypermatchings

If the matroid intersection algorithm does not lead to a larger pseudomatching,
then it leads to merger of several components, creating a new component Ej . At
the same time, the set Q is replaced by a possibly smaller set Q′. If Ej ∩Q′ �= ∅,
then the algorithm runs a modified matroid intersection algorithm in order to
obtain pseudopoints q1, . . . , qk ∈ Q′ that forms a basis of Ej ∩ Q′, and hyper-
matchings H(q1), . . . , H(qk) such that qi ∈ H(qi) for i = 1 to k. This step also
requires the linearity of the representation. (More details appear in the appendix).

11 Analysis of Running Time

We claim that the LMPP algorithm runs in O(m3n) time. This is the same
running time for running the matroid intersection algorithm for linearly repre-
sentable matrices. We now give a brief overview of the run time analysis. Since
there are O(m) augmentation phases, it suffices to show that each augmentation
phase runs in O(m2n) time.

A Fast, Simpler Algorithm for the Matroid Parity Problem 251

Whenever a new pseudomatching M is added to M , we extend M to a ba-
sis B(M), and then pivot (using Guassian elimination) so that the basis is
transformed to the identify matrix. Normally, one would expect this to take
O(m2n) time for each pseudomatching. However, the pseudomatchings in M
are close to one another in that they differ by a very small number of points.
Suppose that the pseudomatchings are M1, . . . , Mk. Let pj be the number of
pivots needed to transform B(Mj) to the identity matrix, assuming that one
can start with one of the j − 1 previously transformed matrices. One can show
that p1 + . . . + pk = O(m). That is, it requires a linear number of pivots to
transform the O(m) different bases into canonical form.

The run time analysis for the pivoting shows that the time for Repair-Orthogo-
nality and Matroid Intersection both take O(m2n) time per pivoting phase. We
now consider some of the other steps. The time to determine eligible lines can
be reduced to O(mn) time per eligible line. It requires scanning the elements of
a matrix at each step. The time for creating pseudopoints and pseudomatchings
is O(m2) time for every new component. It turns out that one can then directly
find pseudopoints and hypermatchings efficiently once the matroid intersection
problem is set up.

Finally, there is the time for transforming pseudomatchings. It turns out that
the major technical difficulty arises in transforming hypomatchings, but it can
be done in O(m2n) time. This is discussed in the appendix.

12 Summary and Conclusions

We have presented an O(m3n) algorithm for the linear matroid parity problem.
Although the algorithm is complex, it is far simpler than the algorithm of Orlin
and Vande Vate [10], on which this algorithm is based. We also believe that it is
simpler than other algorithms for the LMPP. Moreover, the algorithm presented
here achieves the same running time as that of Gabow and Stallman [3], which
is the fastest time for the LMPP.

Perhaps surprisingly, this LMPP algorithm also provides a new algorithm for
the matroid intersection problem, even if the two matroids are not representable.
If one runs the LMPP algorithm starting with a matroid intersection problem,
then there is no need for representability. One place in which the LMPP al-
gorithm relies on linear representability is when components are merged, but
this merger never occurs in a matroid intersection problem. The other place in
LMPP where linearity is required is during Repair-Orthogonality. But lin-
earity is not required when the algorithm is specialized to matroid intersection,
and there is no need to “transform lines.” When LMPP is applied to the matroid
intersection problem, it results in a different algorithm than those developed by
Lawler [5] because it is incremental, adding one element at a time, rather than
creating a single auxiliary graph for each augmentation phase. As such, it has a
slightly different run time analysis. For linear matroids, it has the same running
time as the previous algorithms.

252 J.B. Orlin

References

1. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17,
449–467 (1965)

2. Edmonds, J.: Submodular functions, matroids, and certain polyhedral. In: Guy,
R., Hanani, H., Sauer, N., Schónheim, J. (eds.) Combinatorial Structures and
Their Applications (proceedings Calgary International Conference on Combinato-
rial Structures and Their Applications, Calgary, Alberta, 1969), pp. 69–87. Gordon
and Breach, New York (1970)

3. Gabow, H.N., Stallmann, M.: An augmenting path algorithm for linear matroid
parity. Combinatorica 6, 123–150 (1986)

4. Jensen, P.M., Korte, B.: Complexity of matroid property algorithms. SIAM Journal
on Computing 11, 184–190 (1982)

5. Lawler, E.L.: Optimal matroid intersections. In: Guy, R., Hanani, H., Sauer, N.,
Schónheim, J. (eds.) Combinatorial Structures and Their Applications (proceed-
ings Calgary International Conference on Combinatorial Structures and Their Ap-
plications, Calgary, Alberta, 1969), pp. 233–234. Gordon and Breach, New York
(1970)

6. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Hold, Rinehart
and Winston, New York (1976)

7. Lovász, L.: Matroid matching and some applications. Journal of Combinatorial
Theory Series B 28, 208–236 (1980)

8. Lovász, L.: The matroid matching problem. In: Lovász, L., Sós, V.T. (eds.) Al-
gebraic Methods in Graph Theory, Vol. II (Colloquium Szeged, 1978). Colloquia,
Mathematica Societatis János Bolyai, vol. 25, pp. 495–517. North-Holland, Ams-
terdam (1981)

9. Lovász, L., Plummer, M.D.: Matching Theory. Akadémiai Kiadó, Budapest (1986)
(also North-Holland Mathematics Studies vol. 121. North-Holland, Amsterdam)

10. Orlin, J.B., Vande Vate, J.H.: Solving the matroid parity problem as a sequence
of matroid intersection problems. Mathematical Programming 47, 81–106 (1990)

11. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 2.
Springer, New York (2003)

12. Stallmann, M., Gabow, H.N.: An augmenting path algorithm for the parity prob-
lem on linear matroids. In: 25th Annual Symposium on Foundations of Computer
Science, New York, pp. 217–227. IEEE, Los Alamitos (1984)

Appendix

Theorem 3. Suppose that (E, S, P, Q, M , H) satisfies Invariants 1 to 4, and
let (E + e, S, P ′, Q′, M ′, H) be the 6-tuple obtained at the end of Procedure
Repair-Orthogonality. Suppose that no larger pseudomatching was found dur-
ing the procedure. Then (E+e, P ′, Q′, M ′, H) satisfies Invariants 1, 3 and 4. If
r(e+Q′) = r(Q′)+1, then Invariant 2 is also satisfied. If r(e+Q′) = r(Q′)+2,
then μ(P ′, Q′) = μ(P, Q) + 1, in which case Invariant 2 is not satisfied.

Proof. Let L′ = L(M ′). We first consider property Invariant 4, which concerns
hypermatchings. Let Ej be a non-trivial odd component of P ′. Since no non-
trivial components were formed during Repair-Orthogonality, Ej is also a

A Fast, Simpler Algorithm for the Matroid Parity Problem 253

non-trivial component of P. By Invariant 1, L is orthogonal to E \L, and thus
is orthogonal to Ej . Therefore, Ej ∩ Q′ = Ej ∩ Q, and so Invariant 4 remains
satisfied.

We next consider Invariant 3, which concerns the intersection of matchings in
M ′. For convenience, let us reorder the elements of E (and thus E∗) so that the
matchings added to M are M∗

i = (M∗ + e) \ ei for i = 1 to t. For convenience,
we are also assuming that the lines do not need to be transformed. Then M ′ =
M ∪ {M∗

1 , . . . , M∗
t }, Q′ = Q ∪ {e12, . . . , et2}, and L′ = L \ {e1, . . . , et}. To see

that Q′ ⊆ ⋂
M∈M ′ M \ L′, note first that Q′ ⊆ L ∪Q because Q′ is obtained

by taking points from L and adding them to Q. Therefore, for all M ∈ M ,
Q′ ⊆M . The remaining matchings of M ′ are of the form (M∗ + e) \ ej. In this
case, Q ⊆ (M∗ + e) \ ej because ej was a line of L, which is orthogonal to Q;
and Q′ \ Q ⊆ (M∗ + e) \ ej, because every point added to Q′ was a point of
M∗ + e− ej for some j = 1 to t. Thus, Q′ ⊆ ⋂

M∈M ′ M\L′.
To complete the proof that Invariant 3 is satisfied by (E′, S, P ′, Q′, M ′, H),

we need to show that if p /∈ L′ ∪Q′, then there is some matching M ∈ M ′ so
that p /∈ M\L′. If p /∈ L ∪Q, then by assumption, there is a matching M ∈M
so that p /∈ M\L ⊇ M\L′. The remaining case is p ∈ L ∪Q and p /∈ L′ ∪Q′.
Without loss of generality, we may assume that p ∈ L. (Otherwise, since L and
Q are orthogonal, we can express p as p1 + p2, where p1 ∈ L and p2 ∈ Q. Since
p2 ∈ Q ⊆ Q′ and p1 + p2 /∈ Q′, it follows that p1 /∈ Q′. And if p /∈ M\L′ then
p1 /∈ M\L′). Adding p to L creates a circuit containing some point ej1 /∈ Q′

for some j = 1 to t because p /∈ L′. Then p /∈ Mj , completing the proof that
Invariant 3 remains satisfied.

We next consider Invariant 1. Since L′ is obtained from L by deleting elements,
clearly L′ is a matching. We next prove orthogonality of L′ to (E + e) \ L′,
assuming that M∗ + e is not a larger matching than M∗.

Let B be of minimal set of points of (E + e) \ L so that B ∪M∗ ∪ e =
E + e. Then (i) B is orthogonal to M∗, (ii) r(B ∪M∗) = r(E′) − 1, and (iii)
r(B ∪M∗ ∪ {e}) = r(E′). Thus the unique circuit in B ∪M∗ ∪ {e} is C, and
C ⊆ (B∪{e}∪M∗)\L′. Thus, r(L′)+r(B∪{e}∪M∗\L′) = r(L′)+r((E+e)\L′) =
r(E+e), and L′ is orthogonal to (E+e)\L′, completing the proof that Invariant 1
is satisfied.

Finally we consider Invariant 2. Every point ej2 added to Q′ has no effect on
the capacity of the dual solution because it subtracts 1 from rQ(ej)/2, and adds
1 to r(Q). The possible increase in the capacity of the dual solution is due to the
singleton component containing e. If rQ′(e) = 2, then μ(P ′, Q′) = μ(P, Q) + 2
and Invariant 2 is not satisfied. If rQ′(e) = 1, then μ(P ′, Q′) = μ(P, Q), and
Invariant 2 is satisfied. 	

Theorem 4. The following are true.

1. The maximum cardinality of an intersection is either r2(W) or r2(W)− 1.
2. If J is any feasible intersection of W , then JS ∪ JB ∪ JQ is an independent

set of points of E ∪ S with respect to r().

254 J.B. Orlin

3. Suppose there is intersection J with |J | = r2(W), and let M = JS ∪ JB ∪
JQ. Then M is a maximum cardinality pseudomatching of E, and |M | =
μ(P, Q).

Proof. We first prove (1). Let M∗ ∈M be chosen so that r(M∗+e) = r(M∗)+1.
Such a matching exists because e is eligible. By Invariant 2, |M∗| = μ(P, Q).
Let q be a point of e so that M∗ + q is independent. We next transform M∗ + q
into a feasible intersection as follows:

begin
M ′ := M∗ + q;
I := {q};
for each line ej of L, I := I + ej1 + ej2;
for each odd component such that Ej ∩M∗ is a hypomatching,

I := I ∪ (Ej ∩M∗);
for each odd component Ei for which Mi = Ej ∩M∗ is a
hypermatching, replace one of the points of Mi by the point p

in Mi ∩Q, and replace one of the points in Mi by bi so as to
maintain independence; then add bi − p to I and add the
remaining points of Mi;

end

Then |I| = r(M∗)+1−r(Q). The term “r(Q)” is due to the fact that each point
in Q is transformed into a compound point in I. It follows that |I| = r2(W)− 1.
(The “−1” term comes from the fact that a basis with respect to r2() contains
both points of e, and I contains just one point of e). Thus (1) is true.

We next show that JS ∪ JB ∪ JQ is an independent set of points. If J is any
feasible intersection of W , then r1(J) = rQ(JS∪JB) = |JS∪JB |. Because r2(J) =
|J |, it follows that r(JQ) = |JQ|. Therefore, JS ∪ JB ∪ JQ is an independent set
of points of E ∪Q with respect to r().

We now show that if |J | = r2(W), then M = JS ∪ JB ∪ JQ is a maximum
cardinality P-matching of E. By (2), M is independent. Also, M = JS ∪ JB ∪
JQ = r2(W) + r(Q) = μ(P, Q). It follows that M is a maximum cardinality
matching. 	

Lemma 2. Suppose that the largest intersection is of size r2(W) − 1. Let
(W1, W2) be the partition of W provided by the matroid intersection algorithm
so that r1(W1)+r2(W2) = r2(W)−1. Then for each component Ej of P, either
every simple point of Ej is in W1 or no simple point of Ej is in W1.

Proof. Suppose conversely that point p1 ∈ Ej ∩W1 and p2 ∈ Ej ∩W2. In this
case, transferring p2 from W2 to W1 cannot increase the sum r1(W1) + r2(W2)
because the transfer must decrease r2(W2). In this way, we can transfer all the
remaining simple elements of Ej ∩W2 from W2 to W1, while maintaining the
matroid intersection optimality conditions. 	

Theorem 5. Suppose that the max cardinality intersection is of size r2(W)−1.
Let P ′ be obtained by merging all components of P that are in W1. Let Q′ be the

A Fast, Simpler Algorithm for the Matroid Parity Problem 255

union of the pseudopoints in W2. Then μ(P ′, Q′) = μ(P, Q)− 2, and (P ′, Q′)
is a minimum capacity dual solution of E ∪ S.

Proof. Let J be a maximum cardinality intersection. By matroid intersection du-
ality, |J | = r1(W1)+r2(W2) = r2(W)−1 = μ(P, Q)−r(Q)−1. (An intersection
of size r2(W) would have led to an augmentation).

We next derive a formula for rQ′
(⋃

Ei∈W1
Ei

)
. First note that

|J | = r1(W1) + r2(W2) = rQ

(⋃
Ei∈W1

Ei

)
+ r(Q′) + 2

∑
Ei∈W2

�rQ(Ei)/2� . (1)

Also,

|J | = r2(W)− 1 = r(Q) − 1 + 2
K∑

i=1

�rQ(Ei)/2� . (2)

Combining (1) and (2) yields:

rQ

(⋃
Ei∈W1

Ei

)
= r(Q) − r(Q′)− 1 + 2

∑
Ei∈W1

�rQ(Ei)/2� . (3)

Moreover, rQ(Ej) = rQ′(Ej) for Ej ∈ W2, and for any set A ⊆ Rm, rQ′ (A) =
rQ(A) + r(Q)− r(Q′). Substituting into (3) we get

rQ′

(⋃
Ei∈W1

Ei

)
≤ 2r(Q)− 2r(Q′)− 1 + 2

∑
Ei∈W1

�rQ(Ei)/2� ,

and ⌊
rQ′

(⋃
Ei∈W1

Ei

)
/2

⌋
=

(
r(Q)− r(Q′) +

∑
Ei∈W1

�rQ(Ei)/2�
)
− 1.

Therefore,

μ(P ′, Q′) = 2r(Q′) + 2

⌊
rQ′

(⋃
Ei∈W1

Ei

)
/2

⌋
+ 2

∑
Ei∈W2

�rQ′(Ei)/2�

≤
(

2r(Q) + 2
∑

Ei∈W

�rQ(Ei)/2�
)
− 2 = μ(P, Q)− 2. �

Solving the Matroid Intersection Problem
Here we describe the auxiliary graph that is used in the matroid intersection
algorithm. The results are used in the next section to describe how to obtain
additional pseudomatchings for M as well as creating the hypermatchings for H .

We solve the matroid intersection problem using the augmenting path theorem
of Edmonds [2] and Lawler [5]. Let ⊕ denote the symmetric difference operator.
That is, X ⊕ Y = (X \ Y) ∪ (Y \X).

256 J.B. Orlin

Let J be an initial feasible intersection. We say that J ⊕ I is obtained via an
I1-I2 alternating path if the following is true:

• for each odd q, J + i1 − i2 + . . .− iq−1 + iq ∈ I1,
• for each even q, J + i1 − i2 + . . . + iq−1 − iq ∈ I2.

Suppose that J ∈ I1 ∩ I2, and let I = i1, i2, i3, . . . , ik be elements of W ,
where iq ∈ E \ J for q odd, and iq ∈ J for q even. If in addition, k is odd and
J + i1 − i2 + . . . − ik−1 + ik ∈ I2, then we refer to the alternating path as an
I1-I2 augmenting path. Usually, we refer to them more briefly as alternating
paths and augment-ing paths. If J ⊕ I is an augmenting path, then the subset
J ⊕ I is a feasible intersection that is larger than J . If J is a feasible intersection
that is not of maximum cardinality, then there is an I1-I2 augmenting path
with respect to J .

The Matroid Intersection Algorithm finds an I1-I2 augmenting path by find-
ing a path in a graph called the Auxiliary Graph G = (E, A) defined as follows:

1. The graph is bipartite; the two nodes sets are E \ J and J .
2. The node i ∈ E \ J is a source node if r2(J + i) = |J |+ 1. Node i ∈ E \ J is

a destination node if r1(J + i) = |J |+ 1.
3. If i ∈ E \J is not a destination node, then for j ∈ J , there is an arc (i, j) ∈ A

if r1(J + i− j) = |J |.
4. If i ∈ E \ J is not a source node, then for j ∈ J , there is an arc (j, i) ∈ A if

r2(J + i− j) = |J |.
The following theorem is well known; see for example, Lawler [6].

Theorem 6 (Auxiliary Graph Theorem). Let P = i1, i2, . . . , ik be a shortest
path (that is, one with the fewest arcs) in the auxiliary network from a source
node to a destination node, assuming such a path exists. Then it is an augmenting
path, and |J⊕P | = |J |+1. If no path exists from an origin node to a destination
node, let I = {i ∈ E : there is a path in G from a source node to i}. Then
|J | = r1(I) + r2(E \ I), and J is a maximum feasible intersection. 	

The following theorem is also an immediate consequence of the standard proof
given for Theorem 6.

Theorem 7 (Alternative Maximum Matchings). Suppose that there is no
path from a source node to a destination node in the auxiliary network G. Let
I = {i ∈ E : there is a path in G from a source node to i}. For each node
k ∈ I ∩ J , let P (k) be a shortest path from a source node to node k. Then P (k)
is an even alternating path. Moreover, J(k) = J ⊕ P (k)is a feasible intersection
of cardinality |J |. 	

Creating New Hypermatchings and Pseudomatchings
Let J be the intersection at the beginning of the matroid intersection algorithm,
and let bi − q ∈ J ∩W1. Let P be the shortest alternating path in G from a
source node to bi − q. Then J ⊕ P is also a max cardinality intersection, and

A Fast, Simpler Algorithm for the Matroid Parity Problem 257

it induces a matching M ’ that is added to M . Previously, q was in the span of
every matching in M . But q /∈ M ′. Similarly, for all pseudopoints q′ ∈ S ∩W1,
there is a matching M ′′ added to M so that q′ /∈M ′′.

We now consider the component EK+1 induced by W1. We next point out
how the algorithm determines hypermatchings for the newly formed component.
Let Q′′ = S ∩W1. Now consider the matroid intersection problem obtained by
restricting attention to the components in W1, and then looking for a maximum
cardinality intersection defined with rank functions r′1 and r′2, where

1. r′1(J) = rQ′′ (JS ∪ JB).
2. r′2(J) = r(JQ′′) +

∑
Ei∈W1

min {|JS ∩Ei| , 2 �rQ(Ei)/2�}.
The maximum intersections all induce hypermatchings of EK+1. For each

hypermatching M ′ formed in this manner, we select q ∈ M ′ ∩ Q′, we add the
pseudopoint q to SK+1, and we let H(q) = M ′.

Analysis of the Running Time
We discuss two aspects of the running time. The first aspect concerns the time
it takes to carry out all of the pivoting so that each pseudomatching in M is in
canonical form. The second concerns the time it takes to treat hypomatchings
when transforming a pseudomatching into a matching.

Consider when pseudomatchings are added to M . We need to bring all of
these pseudomatchings into canonical form. We claim we can do so with O(m)
pivots.

In Repair-Orthogonality, we create pseudomatchings of the form M∗+e−
ej , where M∗ ∈ M . Canonical form for each of these pseudomatchings can be
created from canonical form from M∗ with two additional pivots. Thus, each
pseudomatching of this type leads to O(1) additional pivots.

We next consider pseudomatchings added to M during Matroid-Intersec-
tion. Let T be the shortest path tree from the unique source node of the auxiliary
graph, and let |T | be the number of nodes of T . Then |T | is at most twice the
number of components that were merged to create EK+1. The number of pivots
needed to bring all of the newly created matchings is at most 2|T | . Since the total
merging of components over all iterations is O(m), it follows that the number of
pivots needed to bring all matchings of M into canonical form is O(m), which
is what we wanted to show.

We now consider the time it takes to identify hypomatchings within Trans-
form Pseudomatching. Suppose that M ′ a current pseudomatching, and we
want to expand component Ej . We expand components in a LIFO ordering.
That is, the last component formed is the first one expanded.

Suppose that |M ′ ∩ Ej | = rQ(Ej) − 1. Possibly M ′ is not a feasible pseu-
domatching after we expand Ej . We now consider two subcases. In the first
subcase, there is a point p ∈ Ej such that r(M ′ + p) = r(M ′)+1. Then M ′ ∩Ej

can be replaced by any hypomatching of Ej . In particular, it can be replaced
by a hypomatching in M ∩Ej , where M is a matching in M . Moreover, in this

258 J.B. Orlin

case, we can expand the component Ej into a collection of components, each
consisting of a single line.

In the second subcase, Ej ⊆ M ′. In this case, we select p ∈ M ′\Ej ∩ Ej\Q.
Such a point exists and can be found in O(m2) time. We then let M be a
matching in M that does not contain p. We then replace M ′ by M ′′ = (M ′\Ej)∪
(M ∩ Ej). This can be accomplished in O(m2) time. We now claim that M ′′is a
pseudomatching. We note that p ∈M ′\Ej ⊆M ′′, and so

r(M ′′) = r(M ′′ + p) = r ((M ′\Ej) ∪ ((M + p) ∩ Ej))
= r ((M ′\Ej) ∪ Ej) = r(M ′).

Moreover, if we let M be the first pseudomatching in M not containing p,
then M was created prior to merging Ej , and so M ′′ is a pseudomatching after
expanding Ej . And the time it takes to find the first pseudomatching in M not
containing p is O(m2).

We conclude that each hypomatching can be expanded in O(m2) time, with a
total time of O(m3) per augmentation phase, which is what we wanted to show.

Degree Bounded Matroids and Submodular Flows

Tamás Király1,�, Lap Chi Lau2, and Mohit Singh3,��

1 MTA-ELTE Egerváry Research Group, Dept. of Operations Research,
Eötvös Loránd University, Budapest

tkiraly@cs.elte.hu
2 Dept. of Computer Science and Engineering, The Chinese University of Hong Kong

chi@cse.cuhk.edu.hk
3 Tepper School of Business, Carnegie Mellon University

mohits@andrew.cmu.edu

Abstract. We consider two related problems, the Minimum Bounded

Degree Matroid Basis problem and the Minimum Bounded De-

gree Submodular Flow problem. The first problem is a generaliza-
tion of the Minimum Bounded Degree Spanning Tree problem: we
are given a matroid and a hypergraph on its ground set with lower and
upper bounds f(e) ≤ g(e) for each hyperedge e. The task is to find
a minimum cost basis which contains at least f(e) and at most g(e)
elements from each hyperedge e. In the second problem we have a sub-
modular flow problem, a lower bound f(v) and an upper bound g(v) for
each node v, and the task is to find a minimum cost 0-1 submodular
flow with the additional constraint that the sum of the incoming and
outgoing flow at each node v is between f(v) and g(v). Both of these
problems are NP-hard (even the feasibility problems are NP-complete),
but we show that they can be approximated in the following sense. Let
opt be the value of the optimal solution. For the first problem we give
an algorithm that finds a basis B of cost no more than opt such that
f(e) − 2Δ + 1 ≤ |B ∩ e| ≤ g(e) + 2Δ − 1 for every hyperedge e, where
Δ is the maximum degree of the hypergraph. If there are only upper
bounds (or only lower bounds), then the violation can be decreased to
Δ − 1. For the second problem we can find a 0-1 submodular flow of
cost at most opt where the sum of the incoming and outgoing flow at
each node v is between f(v) − 1 and g(v) + 1. These results can be
applied to obtain approximation algorithms for different combinatorial
optimization problems with degree constraints, including the Minimum

Crossing Spanning Tree problem, the Minimum Bounded Degree

Spanning Tree Union problem, the Minimum Bounded Degree Di-

rected Cut Cover problem, and the Minimum Bounded Degree

Graph Orientation problem.

1 Introduction

In this paper we consider combinatorial optimization problems with degree con-
straints, for which the corresponding feasibility problem is already NP-complete.

� Research supported by OTKA K60802 and OMFB-01608/2006.
�� Research supported by NSF grant CCF-0728841.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 259–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

260 T. Király, L.C. Lau, and M. Singh

One approach to deal with these problems is to allow a slight violation of the
degree constraints, and find a solution of this relaxation that has small cost. A
prime example of this approach is the Minimum Bounded Degree Spanning

Tree problem, where we have upper (and possibly lower) bounds on the degree
of the spanning tree at each node. The corresponding feasibility problem is
NP-complete since it includes the Hamiltonian path problem. Goemans [8]
showed that if the value of the optimal solution is opt, then one can find in
polynomial time a spanning tree of cost at most opt that violates the degree
bounds by at most 2. Using the iterative relaxation method, which is also the
main technique in the present paper, Singh and Lau [12] gave an algorithm that
finds a spanning tree of cost at most opt that violates the bounds by at most 1.
The aim of this paper is to obtain similar results for more general combinatorial
optimization problems.

1.1 Minimum Bounded Degree Matroid Basis

The first problem considered is the Minimum Bounded Degree Matroid

Basis problem, which is a generalization of the Minimum Bounded Degree

Spanning Tree problem. We are given a matroid M = (V, I), a cost function
c : V → R, a hypergraph H = (V, E), and lower and upper bounds f(e) and g(e)
for each hyperedge e ∈ E(H). The task is to find a basis B of minimum cost
such that f(e) ≤ |B ∩ e| ≤ g(e) for each hyperedge e ∈ E(H). One motivation
for considering the matroid generalization was the following problem posed by
Frieze [7]: “Given a binary matroid MA over the columns of a 0, 1-matrix A and
bounds gi for each row i of A, find a basis B of matroid MA such that there are
at most gi ones in any row among columns in B”.

A problem similar to ours has been considered recently by Chaudhuri et al.
[3]. The results we give in this paper improve considerably their approximation
guarantees. Our first main result is the following:

Theorem 1. There exists a polynomial time algorithm for the Minimum

Bounded Degree Matroid Basis problem which returns a basis B of cost
at most opt such that f(e) − 2Δ + 1 ≤ |B ∩ e| ≤ g(e) + 2Δ − 1 for each
e ∈ E(H). Here Δ = maxv∈V |{e ∈ E(H) : v ∈ e}| is the maximum degree of
the hypergraph H and opt is the cost of an optimal solution which satisfies all
the degree constraints.

This theorem can be improved if only upper bounds (or only lower bounds) are
present. The proof of the improvement uses the proof technique of Bansal et
al. [1], who worked independently on the Minimum Crossing Spanning Tree

problem and obtained the following result for that special case.

Theorem 2. There exists a polynomial time algorithm for the Minimum

Bounded Degree Matroid Basis problem with only upper bounds which re-
turns a basis B of cost at most opt such that |B ∩ e| ≤ g(e) + Δ − 1 for each
e ∈ E(H). An analogous result holds when only lower bounds are present.

It should be noted that this does not match the result of Singh and Lau [12] on
minimum bounded degree spanning trees, since that result violates the degree

Degree Bounded Matroids and Submodular Flows 261

bounds by at most 1 even when both upper and lower bounds are present. Some-
what surprisingly, we show an example at the end of Section 3 indicating that
obtaining a result for general matroids which satisfies both upper and lower de-
gree bounds within additive error of one does not follow from current techniques.

1.2 Minimum Bounded Degree Submodular Flow

The second problem considered in this paper is the Minimum Bounded

Degree Submodular Flow problem. Here we are given a digraph D = (V, E),
a crossing submodular set function b : 2V → Z ∪ {+∞}, node sets Vf ⊆ V and
Vg ⊆ V , and functions f : Vf → Z+ and g : Vg → Z+. Let us introduce the
following notation for the set of edges entering or leaving a node set:

δin(X) = {uv ∈ E : u /∈ X, v ∈ X},
δout(X) = {uv ∈ E : u ∈ X, v /∈ X},

δ(X) = δin(X) ∪ δout(X).

If F ⊆ E is an edge set and x : E → R is a function on the edges, then we use
the notation x(F) =

∑
e∈F x(e). A degree-constrained 0-1 submodular flow is a

vector x ∈ E → {0, 1} with the following properties:

x(δin(X))− x(δout(X)) ≤ b(X) for every X ⊆ V , (1)
x(δ(v)) ≥ f(v) for every v ∈ Vf , (2)
x(δ(v)) ≤ g(v) for every v ∈ Vg. (3)

If Vf = Vg = ∅, then this is the well-studied submodular flow problem, introduced
by Edmonds and Giles [5]. There are several efficient algorithms for finding a
feasible submodular flow, or even a minimum cost submodular flow for a linear
cost function. However, the addition of the degree constraints (2) and (3) makes
the feasibility problem NP-complete, as we show in subsection 4.1. Our second
main result is the following:

Theorem 3. There exists a polynomial time algorithm for the Minimum

Bounded Degree Submodular Flow problem which returns a 0-1 submodular
flow of cost at most opt that violates each degree constraint by at most one, where
opt is the cost of an optimal solution which satisfies all the degree constraints.

In Section 2, we show some applications of the main results. Then we present the
proofs of the main results and some corresponding hardness results in Section 3
for the matroid problem and in Section 4 for the submodular flow problem.

2 Applications

In this section we highlight some applications of the main results.

2.1 Minimum Crossing Spanning Tree

In the Minimum Crossing Spanning Tree problem, we are given a graph
G = (V, E) with edge cost function c, a collection of cuts (edge subsets)

262 T. Király, L.C. Lau, and M. Singh

C = {C1, . . . , Cm} and bound gi for each cut Ci. The task is to find a tree T
of minimum cost such that T contains at most gi edges from cut Ci. See [2] for
various applications of this problem. The Minimum Bounded Degree Span-

ning Tree problem is the special case where C = {δ(v) : v ∈ V }. The following
result1 (see also [1]) can be obtained as a corollary of Theorem 2. Note that
d = 2 for the Minimum Bounded Degree Spanning Tree problem.

Corollary 1. [1] There exists a polynomial time algorithm for the Minimum

Crossing Spanning Tree problem that returns a tree T with cost at most opt

and such that T contains at most gi + d− 1 edges from cut Ci for each i where
d = maxe∈E |{Ci : e ∈ Ci}|. Here opt is the cost of an optimal solution which
satisfies all the cut constraints.

Proof. Let M = (E, I) denote the graphic matroid over the graph G. The hy-
pergraph H is defined with V (H) = E(G) and E(H) = {Ci : 1 ≤ i ≤ m}. Note
that Δ = maxv∈V (H) |{e ∈ E(H) : v ∈ e}| = maxe∈E(G) |{Ci : e ∈ Ci}| = d. So,
using Theorem 2, we obtain a basis T of matroid M (which is a spanning tree),
such that |T ∩ Ci| ≤ gi + d− 1. ��

2.2 Minimum Bounded-Ones Binary Matroid Basis

For the Minimum Bounded-Ones Binary Matroid Basis problem posted by
Frieze [7], we are given a binary matroid MA over the columns of a 0, 1-matrix
A and bounds gi for each row i of A. The task is to find a minimum cost basis B
of matroid MA such that there are at most gi ones in any row among columns
in B. The following result is obtained as a corollary of Theorem 2.

Corollary 2. There exists a polynomial time algorithm for the Minimum

Bounded-Ones Binary Matroid Basis problem which returns a basis B of
cost at most opt such that there are at most gi +d−1 ones in any row restricted
to columns of B. Here d is the maximum number of ones in any column of A
and opt is the cost of an optimal solution satisfying all the row constraints.

Proof. Let M = MA and define a hypergraph H where the vertex set is the
columns of A. The hyperedges correspond to rows of A where ei = {Aj : Aij = 1}
where Aj is the jth column of A. Note that Δ = maxv∈V (H) |{e ∈ E(H) : v ∈
e}| = maxj |{i : aij = 1}| = d, which is the maximum number of ones in any
column of A. So, using Theorem 2, we obtain a basis of M = MA such that
number of ones in any row is at most gi + d− 1. ��

2.3 Minimum Bounded Degree Spanning Tree Union

In the Minimum Bounded Degree Spanning Tree Union problem, we are
given a graph G = (V, E) with edge cost function c, a positive integer k, and
lower and upper degree bounds f(v) and g(v) for each vertex v. The task is to
1 Independent of the work in [1], we obtained Corollary 1 with a weaker bound using

Theorem 1.

Degree Bounded Matroids and Submodular Flows 263

find a subgraph H which is the union of k edge-disjoint spanning trees and the
degree of v in H is between f(v) and g(v). The Minimum Bounded Degree

Spanning Tree problem is a special case when k = 1. Theorem 2 implies the
following result, which is optimal in terms of the degree upper bounds.

Corollary 3. There exists a polynomial time algorithm for the Minimum

Bounded Degree Spanning Tree Union problem which returns a subgraph
G of cost at most opt which is the union of k edge-disjoint spanning trees and
the degree of v in H is at most g(v) + 1. Here opt is the cost of an optimal
solution which satisfies all the degree upper bounds.

Proof. Let M = (E, I) denote the union of k graphic matroids over the graph
G, which is a matroid by the matroid union theorem. The hypergraph H is
defined with V (H) = E(G) and E(H) = {δ(v) : v ∈ V (G)}. Note that Δ =
maxv∈V (H) |{e ∈ E(H) : v ∈ e}| = maxe∈E(G) |{δ(v) : v ∈ V (G)∧e ∈ δ(v)}| = 2.
So, using Theorem 2, we obtain a basis T of matroid M (which is the union of
k edge-disjoint spanning trees), such that |T ∩ Ci| ≤ gi + 1. ��

2.4 Minimum Bounded Degree Directed Cut Cover

Let D = (V, E) be a digraph. A set of vertices X is called a directed cut if
δout(X) = ∅. A subset of edges F is called a directed cut cover if |F ∩ δ(X)| �= ∅
for every directed cut X . In the Minimum Bounded Degree Directed Cut

Cover problem, we are given a digraph D = (V, E), a cost function c : E → Z,
and degree constraints f(v) and g(v) for each v ∈ V . The task is to find a
directed cut cover F ⊆ E of minimum cost such that f(v) ≤ |F ∩ δ(v)| ≤ g(v)
for every v ∈ V . Theorem 3 implies the following result, which is optimal in
terms of the degree bounds.

Corollary 4. There exists a polynomial time algorithm for the Minimum

Bounded Degree Directed Cut Cover problem which returns a directed
cut cover F of cost at most opt and f(v) − 1 ≤ |F ∩ δ(v)| ≤ g(v) + 1 for each
vertex v ∈ V . Here opt is the cost of an optimal solution which satisfies all the
degree constraints.

Proof. Let b(X) = −1 if V \X is a directed cut, and let b(X) = ∞ otherwise.
Then b is a crossing submodular set function. In this setting, a 0-1 submodular
flow corresponds to a directed cut cover. So, by Theorem 3, we obtain a directed
cut cover F such that f(v)− 1 ≤ |F ∩ δ(v)| ≤ g(v) + 1 for every v ∈ V . ��

2.5 Minimum Bounded Degree Graph Orientation

In the Minimum Bounded Degree Graph Orientation problem, we are
given a digraph D = (V, E), a cost function c : E → Z, and bounds f(v) ≤ g(v)
for every v ∈ V . The task is to find an edge set of minimum cost whose reversal
makes the digraph k-edge-connected, so that the number of edges reversed at
each node v is between f(v) and g(v). Theorem 3 implies the following result,
which is optimal in terms of the degree bounds.

264 T. Király, L.C. Lau, and M. Singh

Corollary 5. There exists a polynomial time algorithm for the Minimum

Bounded Degree Graph Orientation problem which finds an edge set of cost
at most opt whose reversal makes the digraph k-edge-connected and such that the
number of edges reversed at each node v is between f(v) − 1 and g(v) + 1. Here
opt is the cost of an optimal solution which satisfies all the degree constraints.

Proof. This can be done by considering the submodular flow problem defined
by the set function b(X) = |δin(X)| − k (∅ �= X � V) (see [6]), which is a
submodular set function. In this setting, a 0-1 submodular flow corresponds to
an edge set whose reversal makes the digraph strongly k-edge-connected. So this
result follows from Theorem 3. ��
It is shown in subsection 4.1 that the corresponding feasibility problem is
NP-complete, and thus the feasibility problem for bounded degree submodular
flow is also NP-complete.

3 Minimum Bounded Degree Matroid Basis

Proof of Theorem 1: The main technique used to prove Theorem 1 is the iter-
ative relaxation method used in [10,12], which is based on the iterative rounding
method introduced by Jain [9]. We first formulate a linear programming re-
laxation for the Minimum Degree Bounded Matroid Basis problem. Let
r : 2V → Z+ denote the rank function of matroid M .

minimize c(x) =
∑
v∈V

cv xv (4)

subject to x(V) = r(V) (5)
x(S) ≤ r(S) ∀S ⊆ V (6)

f(e) ≤ x(e) ≤ g(e) ∀ e ∈ E(H) (7)
0 ≤ xv ≤ 1 ∀ v ∈ V (8)

This linear program is exponential in size but can be separated over in polyno-
mial time if given an access to the independent set oracle [4]. Given a matroid
M = (V, I) and an element v ∈ V , we denote by M \ v the matroid obtained by
deleting v, i.e., M \v = (V ′, I ′) where V ′ = V \{v} and I ′ = {S ∈ I : v /∈ S}. We
also denote by M/v the matroid obtained by contracting v, i.e., M/v = (V ′, I ′)
where V ′ = V \ {v} and I ′ = {S \ {v} : S ∈ I, v ∈ S}.

The algorithm is given in Figure 1. Suppose that the algorithm terminates
successfully. Then Theorem 1 follows from a similar argument as in [12], which
is sketched as follows. Firstly, observe that the matroid M is updated to M \ v
whenever we remove v such that xv = 0 and updated to M/v whenever we pick
v such that xv = 1. A simple verification shows that the residual linear pro-
gramming solution (current LP solution restricted to V \ {v}) remains a feasible
solution for the modified linear program in the the next iteration. In Step2c we
remove a degree constraint, and hence the current linear programming solution

Degree Bounded Matroids and Submodular Flows 265

1. Initialization B ← ∅,
2. While B is not a basis do

(a) Find a basic optimal solution x. Delete v such that xv = 0. Update each
edge e ∈ E(H) let e← e \ {v}. Update matroid M ←M \ v.

(b) For each element v with xv = 1, include v in B and decrease f(e) and g(e)
by 1 for each e � v. Update matroid M ←M/v.

(c) For every e ∈ E(H) such that |e| ≤ 2Δ, remove e from E(H).
3. Return B.

Fig. 1. The algorithm for the Minimum Bounded Degree Matroid Basis problem

remains a feasible solution. So, a simple inductive argument shows that by only
picking elements with xv = 1, the cost of the returned basis is no more than the
cost of the original basic optimal solution. Also, since we only remove a degree
constraint of a hyperedge when it contains at most 2Δ elements, the degree
constraints are violated by at most 2Δ−1. Therefore, it remains to show that the
algorithm always terminates successfully. That is, it can always find an element
v with xv = 1 in Step 2b or it finds a hyperedge e with |e| ≤ 2Δ in Step 2c.

Suppose for contradiction neither of the above conditions hold. Hence, 0 <
xv < 1 for each v ∈ V and |e| > 2Δ for each e ∈ E(H). Let T = {S ⊆ V :
x(S) = r(S)} be the collection of all tight sets at solution x. Let χS denote the
characteristic vector of S, i.e, χS(v) = 1 if v ∈ S else χS(v) = 0. A family of sets
L ⊆ 2V is called a chain if the following condition holds: for every A, B ∈ L we
have either A ⊂ B or B ⊂ A. The following claim can be obtained by standard
uncrossing argument (see Schrijver [11] Chapter 41).

Claim. For any basic solution x, there exists a chain L ⊆ T such that the
following holds.

1. {χS : S ∈ L} are linearly independent vectors.
2. span({χS : S ∈ L}) = span({χS : S ∈ T }).

As x is a basic solution, there is a set E′ ⊆ E of tight hyperedges (a hyperedge e
is tight if x(e) = g(e) or x(e) = f(e)) such that {χS : S ∈ L}∪ {χe : e ∈ E′} are
linearly independent vectors and |V | = |E′|+ |L|. We now derive a contradiction
to this by a counting argument. We assign 2Δ tokens to each vertex v ∈ V for a
total of 2Δ|V | tokens. We then redistribute the tokens so that each hyperedge in
E′ collects at least 2Δ tokens, each member of L collects at least 2Δ tokens, and
there are still at least one extra token. This implies that 2Δ|V | > 2Δ|E′|+2Δ|L|,
which gives us the desired contradiction.

The reassignment is as follows. Each element v gives Δ tokens to the smallest
member in L it is contained in and one token to each hyperedge e ∈ E′ it is
present in. As any element is contained in at most Δ edges, thus the redistribu-
tion is valid as we distribute at most 2Δ tokens per element. Now, consider any
set S ∈ L and let R be the largest set in L contained in S. We have x(S) = r(S)

266 T. Király, L.C. Lau, and M. Singh

and x(R) = r(R). Thus, we have x(S \ R) = r(S) − r(R). As constraints for
R and S are linearly independent and xv > 0 for each v ∈ V , this implies
r(S) �= r(R). Since r is a matroid rank function, r(S) − r(R) ≥ 1 as they are
both integers. Since 0 < xv < 1, this implies |S \R| ≥ 2. Thus, S can collect at
least 2Δ tokens, Δ tokens from each element in S \R, as required. Consider any
hyperedge e ∈ E′. As |e| ≥ 2Δ and it can collect one token from each element
in e, there are at least 2Δ tokens for each edge e, as required.

Now, it remains to argue that there is an extra token left. If any of the ele-
ments is in strictly less than Δ hyperedges of E′ then we have one extra token.
Else,

∑
e∈E′ χe = Δ · χV which gives dependence among the constraints as

V ∈ L. Hence, we have the desired contradiction, and the proof of Theorem 1
follows. ��

Now we show how to use the proof technique of Bansal et al. [1] to obtain
Theorem 2.

Proof of Theorem 2: The proof for upper bounds is similar to the proof of
Theorem 1 except for the counting argument. The only important difference is
that we remove a hyperedge e if g(e) + Δ− 1 ≥ |e|; this is possible since in that
case the degree upper bound on e can be violated by at most Δ − 1. It follows
that we may assume that |e| − g(e) ≥ Δ for all hyperedges.

The proof that |V | > |E′| + |L| if 0 < x < 1 goes as follows. Let L =
{S1, . . . , Sk}, where S1 � S2 � · · · � Sk, and let S0 := ∅. Then |e| − x(e) ≥ Δ
for every e ∈ E′, and x(Si \ Si−1) = r(Si) − r(Si−1) ≥ 1 for i = 1, . . . , k. Using
these inequalities, we obtain that

|E′|+ |L′| ≤
∑
e∈E′

|e| − x(e)
Δ

+
k∑

i=1

x(Si \ Si−1)

=
∑
v∈V

1− x(v)
Δ

|{e ∈ E′ : v ∈ e}|+ x(Sk) ≤ |V |,

and if equality holds, then |{e ∈ E′ : v ∈ e}| = Δ for every v ∈ V and Sk = V .
But then Δ · χSk

=
∑

e∈E′ χe, which contradicts the linear independence.
If only lower bounds are present, then we can delete a hyperedge e if f(e) ≤

Δ − 1, so we may assume that f(e) ≥ Δ for all hyperedges. To show |V | >
|E′|+ |L| we use that x(e) ≥ Δ for every e ∈ E′ and |Si \Si−1|−x(Si \Si−1) ≥ 1
for i = 1, . . . , k, where the latter holds because x(Si \ Si−1) < |Si \ Si−1| and
both are integer. Thus

|E′|+ |L′| ≤
∑
e∈E′

x(e)
Δ

+
k∑

i=1

(|Si \ Si−1| − x(Si \ Si−1))

=
∑
v∈V

x(v)
Δ
|{e ∈ E′ : v ∈ e}|+ |Sk| − x(Sk) ≤ |V |,

and the claim follows similarly as for upper bounds. ��

Degree Bounded Matroids and Submodular Flows 267

Remark 1. It is shown in [12] that for the Minimum Bounded Degree Span-

ning Tree problem the violation of the degree bounds can be bounded by Δ−1
(which is equal to 1 since Δ = 2 in that problem) even in the presence of both
lower and upper bounds on the degrees. In the generalization for matroids, it
seems that our method cannot guarantee a solution that violates the bounds by
at most Δ− 1 if both lower and upper degree bounds are present. The reason is
that there may be a basic solution with non-integer values, but Step 2c can not
be applied, as the following example shows.

Let V = {u1, u2, . . . , u6, v1, v2 . . . , v6} be a ground set of 12 elements, and
let M = (V, I) be the partition matroid where each basis contains 1 element
from each of {u1, v1}, {u3, v3}, {u4, v2}, and {u6, v5}, and 2 elements from
{u2, u5, v4, v6}. Let H = (V, E) be the hypergraph containing the hyperedges
{u1, u2, u3}, {u3, u4, u5}, {u5, u6, u1}, {u2, u4, u6}, and {v1, v2, v3}, {v3, v4, v5},
{v5, v6, v1}, {v2, v4, v6}. For the first four hyperedges, let the lower bound f(e)
be 2, and for the last four hyperedges, let the upper bound g(e) be 1. Then the
following is a basic solution: ui = 2/3 (i = 1, . . . , 6), vi = 1/3 (i = 1, . . . , 6). It is
not possible to delete any hyperedges since f(e) ≥ Δ or |e| − g(e) ≥ Δ for each
hyperedge e ∈ E.

4 Minimum Bounded Degree Submodular Flow

Proof of Theorem 3: The proof of this theorem is also based on the iterative
relaxation method used in [10,12]. Let us define the linear relaxation of the
problem by

minimize c(x) =
∑
e∈E

c(e)x(e) (9)

x(δin(X))− x(δout(X)) ≤ b(X) for every X ⊆ V , (10)
x(δ(v)) ≥ f(v) for every v ∈ Vf , (11)
x(δ(v)) ≤ g(v) for every v ∈ Vg, (12)

0 ≤ x(e) ≤ 1 for every e ∈ E. (13)

Let x∗ be an optimal basic solution of the linear programming relaxation. This
can be obtained in polynomial time by the ellipsoid method. Obviously c(x∗) ≤
opt. We will find a 0-1 submodular flow of cost at most c(x∗) that violates the
degree bounds by at most one.

The problem can be reduced to an instance containing fewer edges in two
cases:

– If x∗(e) = 0 for some e ∈ E, then we delete the edge e from the digraph. A
solution of the resulting problem solves the original problem.

– If x∗(e) = 1 for some e = uv ∈ E, then we delete the edge e from the digraph,
decrease f(u), f(v), g(u), g(v) by 1, and change b as follows:

268 T. Király, L.C. Lau, and M. Singh

b′(X) =

⎧⎪⎨
⎪⎩

b(X)− 1 if u /∈ X and v ∈ X ,
b(X) + 1 if u ∈ X and v /∈ X ,
b(X) otherwise.

The set function b′ is also crossing submodular. If we have a solution x′ for
this modified problem, then we can obtain a solution for the original problem
by setting x′(e) = 1.

This way we can reduce the problem to an instance where 0 < x∗(e) < 1 for
every e ∈ E. We may also delete isolated nodes by changing b appropriately. Now
we try to remove degree bounds so that the solutions of the resulting problem
are feasible for the original problem. One difference from the proof of Theorem
1 is that in some iterations we increase the number of vertices in the graph.
However, in each step we decrease |E|+ |Vf |+ |Vg| by at least one and thus the
number of steps is polynomial.

First let us observe that g(v) > 0 for every v ∈ Vg and f(v) < |δ(v)| for every
v ∈ Vf , since otherwise there would be some edge e with x∗(e) = 0 or x∗(e) = 1.
Removal of an upper degree bound at a node v is possible in the following two
cases:

– If |δ(v)| ≤ g(v) + 1, then we can remove the upper bound at v, since a
solution of the resulting problem cannot violate the original degree bound
by more than 1.

– If g(v) = 1, then we replace v by two nodes v1 and v2. An edge uv ∈ E is
replaced by uv1, while an edge vu ∈ E is replaced by v2u. The set function
b is modified as follows:

b′(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if X = v1 or X = V − v2,
b(X) if X ∩ {v1, v2} = ∅,
b(X − {v1, v2}+ v) if {v1, v2} ⊆ X ,
∞ otherwise.

The set function b′ is crossing submodular. No degree upper bound and lower
bound are given for v1 and v2, i.e. V ′

g = Vg − v, V ′
f = Vf − v. Note that the

current solution corresponds to a feasible solution of this relaxation. The
definition of b′ implies that x(δ(v1)) ≤ 1 and x(δ(v2)) ≤ 1 for any solution x.
This means that the corresponding solution on the original digraph violates
the degree bounds at v by at most 1.

After the above modifications, we may assume that g(v) ≥ 2 and |δ(v)| ≥ g(v)+2
for every v ∈ Vg. Removal of a lower degree bound at a node v is possible in the
following two cases:

– If f(v) ≤ 1, then we can remove the lower bound at v, since a solution of
the resulting problem cannot violate the original bound by more than 1.

– If f(v) = 2 and |δ(v)| = 3, then we replace v by two nodes v1 and v2. An
edge uv ∈ E is replaced by uv1, while an edge vu ∈ E is replaced by v2u. For

Degree Bounded Matroids and Submodular Flows 269

the modification of b there are two cases. If |δout(v)| ≤ 1, then it is modified
as follows:

b′(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 if X = V − v1,
b(X) if X ∩ {v1, v2} = ∅,
b(X − {v1, v2}+ v) if {v1, v2} ⊆ X ,
∞ otherwise.

If |δin(v)| ≤ 1, then the modified set function is

b′(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 if X = v2,
b(X) if X ∩ {v1, v2} = ∅,
b(X − {v1, v2}+ v) if {v1, v2} ⊆ X ,
∞ otherwise.

The set function b′ is crossing submodular. No lower bound is given for v1

and v2, i.e. V ′
f = Vf − v. Note that there is no degree upper bound on

v by the previous rule (since g(v) ≥ f(v) ≥ |δ(v)| − 1), and the current
solution corresponds to a feasible solution in this relaxation. The definition
of b′ implies that x(δ({v1, v2})) ≥ 1 for any solution x. This means that the
corresponding solution on the original digraph violates the lower bound at
v by at most 1.

After the above modifications, we may assume that |δ(v)| ≥ 4 for every v ∈
Vf ∪ Vg. The solution corresponding to x∗ is still a feasible solution, but it is
not necessarily a basic solution, so we have to resolve the LP and continue this
process until a basic solution is obtained where there are no 0-1 edges and no
degree bounds can be deleted. (Actually, it is not necessary to solve the LP to
optimality, it is enough to perform the easier task of finding a basic solution that
is not worse than the current solution).

At the end of the process either all edges are fixed to 0 or 1 and we are done,
or 0 < x∗(e) < 1 for every e ∈ E, there are no isolated nodes, and |δ(v)| ≥ 4
for every v ∈ Vf ∪ Vg. We show that the latter case is impossible. Since x∗ is a
basic solution, there is a system of linearly independent constraints which are
tight at x∗ for which x∗ is the unique solution of the equation system given
by these tight constraints. Let F∗ be the family of sets corresponding to the
submodular flow constraints in this system, and let V ∗ denote the set of nodes
with degree constraints that are in the system. A family of sets F ⊂ 2V is called
cross-free if for every sets A, B ∈ F we have either A ⊆ B, B ⊆ A, A ∩ B = ∅
or A ∪ B = V . The following claim can be obtained by standard uncrossing
argument (see Schrijver [11] Chapter 60).

Claim. We may assume that the family F∗ is cross-free.

Since x∗ is the unique solution of the equation system defined by F∗ and V ∗, we
have |E| ≤ |F∗| + |V ∗|. We show, using a simple counting argument, that this
is impossible.

270 T. Király, L.C. Lau, and M. Singh

We assign 2|E| tokens to the nodes by assigning 2 tokens for every edge in
E to the two endpoints of the edge. The idea of the proof is to reassign these
tokens to the members of F∗ and V ∗ so that every member gets at least 2 tokens
and at least one token is not assigned to any member. This would contradict
|E| ≤ |F∗|+ |V ∗|.

Let r ∈ V be an arbitrary node. We define the family

H∗ := {X ⊆ V − r : X ∈ F∗} ∪ {X ⊆ V − r : V −X ∈ F∗}.
Notice that H∗ is laminar. For a set X ∈ H∗, we define X ′ ∈ F∗ to be either X
or V − X (depending on which one is in F∗). We will assign 2 tokens to each
member of H∗ so that every member gets tokens from its nodes, thus the tokens
of r are not used.

A node v ∈ V ∗ has at least 4 tokens since |δ(v)| ≥ 4. We assign 2 of its tokens
to v (as degree constraint) and 2 tokens to the smallest member of H∗ containing
v. If no member of H∗ contains v, we have 2 unused tokens.

To assign tokens to the remaining members of H∗, we proceed in an order
compatible with the partial order of inclusion. Let X ∈ H∗ be a set that has
no tokens yet, and let {X1, . . . , Xk} be the maximal members of H∗ inside X ,
which all have at least two tokens assigned to them. There must be an edge
with an endpoint in X − ∪k

i=1Xi, otherwise the constraints corresponding to
X ′, X ′

1, . . . , X
′
k would be linearly dependent: the constraint for X ′ would be

a ±1 combination of the constraints for X ′
1, . . . , X

′
k, where the i-th coefficient

depends on whether X ′
i = Xi or X ′

i = V −Xi. Moreover, if only one such edge
e existed, then x∗(e) would be integer because it would be determined by an
integer combination b(X ′), b(X ′

1), . . . , b(X
′
k). Since 0 < x∗(e) < 1 for every edge,

it follows that there are at least two edges with an endpoint in X − ∪k
i=1Xi,

hence there are at least two tokens inside X that are not yet assigned to other
sets. We assign these tokens to X .

At the end of this procedure, every member ofH∗ and V ∗ is assigned 2 tokens,
and there is an unused token at r since it is not an isolated node. This contradicts
the assumption that |E| ≤ |F∗|+ |V ∗|, so we proved the theorem. ��
4.1 Hardness of the Feasibility Problem

In this section we prove that a special case of the degree-constrained 0-1 sub-
modular flow problem is NP-complete. The construction also shows that the fea-
sibility problems for Bounded Degree Graph Orientation and Bounded

Degree Directed Cut Cover are NP-complete. A subset of edges in a di-
graph is called independent if no two edges have a common node. In the following
E[W] denotes the set of induced edges in W , i.e. edges with both endpoints in W .

Theorem 4. Given a digraph D = (V, E) and a subset W ⊆ V of nodes, it is
NP-complete to decide if it is possible to change the orientation of an independent
subset of edges in E[W] so that the resulting digraph is strongly connected.

Proof. We reduce SAT to this problem. Let us consider a SAT instance with
variables x1, . . . , xn and clauses c1, . . . , cm. We associate a digraph D = (V, E)
and a node set W ⊆ V to this instance using the following construction.

Degree Bounded Matroids and Submodular Flows 271

For the variable xj , let mj be the number of clauses that contain xj or ¬xj .
We construct a cycle of length 4mj : the nodes are uj

i , v
j
i , w

j
i , z

j
i (i = 1, . . . , mj),

the oriented edges are uj
iv

j
i , w

j
i v

j
i , z

j
i w

j
i , z

j
i u

j
i+1 (i = 1, . . . , mj). The node set W

consists of all these nodes.
In addition, we add a node t and nodes si (i = 1, . . . , m), and add edges sit

(i = 1, . . . , m). For a given variable xj , suppose that ci is the l-th clause that
contains xj or ¬xj . If it contains xj , then we add the edges siu

j
l , u

j
l si, w

j
l t, tw

j
l .

If it contains ¬xj , then we add the edges siw
j
l , w

j
l si, u

j
l t, tu

j
l . This finishes the

construction of the digraph D.
Consider the cycle of length 4mj associated to the variable xj . The nodes

vj
i have out-degree 0, while the nodes zj

i have in-degree 0 (i = 1, . . . , mj). This
means that we have to change the orientation of 2mj independent edges in the
cycle in order to get a strong orientation. Thus we have two possibilities: either
we change the orientation of the edges uj

iv
j
i , z

j
i w

j
i (i = 1, . . . , mj), or of the edges

wj
i v

j
i , z

j
i u

j
i+1 (i = 1, . . . , mj). We say that the former corresponds to the ‘true’

value of xj , while the later corresponds to the ‘false’ value.
In this way, there is a one-to-one correspondence between orientations of the

above structure and possible evaluations of the variables. We claim that the
orientation is strongly connected if and only if the corresponding evaluation
satisfies the SAT formula. Suppose that the formula is not satisfied, i.e. there is
a clause ci containing only false literals. Consider the node set consisting of si

and its neighbors of type u and w. By the construction, this set has in-degree
0 in the orientation corresponding to the evaluation. Therefore the orientation
cannot be strongly connected.

Now suppose that an evaluation satisfies the formula. Then each node si

(i = 1, . . . , m) can be reached from t by a path of length 4 (which corresponds
to the “true” literal in ci). Since there is an edge from si to t for each si, and
all other nodes obviously have paths to and from t or some si, the orientation is
strongly connected. ��

Corollary 6. The feasibility problem for degree-constrained 0-1 submodular
flows is NP-complete.

References

1. Bansal, N., Khandekar, R., Nagarajan, V.: Additive Guarantees for Degree
Bounded Directed Network Design, IBM Research Report RC24347 (September
2007)

2. Bilo, V., Goyal, V., Ravi, R., Singh, M.: On the Crossing Spanning Tree Problem.
In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and
APPROX 2004. LNCS, vol. 3122, pp. 51–60. Springer, Heidelberg (2004)

3. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: A Push-Relabel Algorithm
for Approximating the Minimum-Degree MST Problem and its Generalization to
Matroids, Invited submission to Theoretical Computer Science (Special Issue for
ICALP 2006) (2006)

272 T. Király, L.C. Lau, and M. Singh

4. Cunningham, W.H.: Testing membership in matroid polyhedra. Journal of Com-
binatorial Theory, Series B 36(2), 161–188 (1984)

5. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs.
Ann. Discrete Math. 1, 185–204 (1977)

6. Frank, A.: An algorithm for submodular functions on graphs. Ann. Discrete
Math. 16, 97–120 (1982)

7. Frieze, A.: Personal Communication (March 2007)
8. Goemans, M.X.: Minimum bounded-degree spanning trees. In: Proceedings of 47th

IEEE FOCS, pp. 273–282 (2006)
9. Jain, K.: A factor 2 approxiamtion algorithm for the generalized Steiner network

problem. Combinatorica 21, 39–60 (2001)
10. Lau, L.C., Naor, J., Salavatipour, M., Singh, M.: Survivable network design with

degree or order constraints. In: Proceedings of 39th ACM STOC, pp. 651–660
(2007)

11. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

12. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: Proceedings of the 39th ACM STOC, pp. 661–670 (2007)

Budgeted Matching and Budgeted Matroid

Intersection Via the Gasoline Puzzle�

André Berger1, Vincenzo Bonifaci2,3,��,
Fabrizio Grandoni4,���, and Guido Schäfer5

1 Department of Quantitative Economics, University of Maastricht, The Netherlands
a.berger@ke.unimaas.nl

2 Department of Electrical Engineering, University of L’Aquila, Italy
3 Department of Computer and Systems Science, Sapienza University of Rome, Italy

bonifaci@dis.uniroma1.it
4 Department of Computer Science, Systems and Production,

University of Rome Tor Vergata, Italy
grandoni@disp.uniroma2.it

5 Institute for Mathematics, Technical University Berlin, Germany
schaefer@math.tu-berlin.de

Abstract. Many polynomial-time solvable combinatorial optimization
problems become NP-hard if an additional complicating constraint is
added to restrict the set of feasible solutions. In this paper, we consider
two such problems, namely maximum-weight matching and maximum-
weight matroid intersection with one additional budget constraint. We
present the first polynomial-time approximation schemes for these prob-
lems. Similarly to other approaches for related problems, our schemes
compute two solutions to the Lagrangian relaxation of the problem and
patch them together to obtain a near-optimal solution. However, due to
the richer combinatorial structure of the problems considered here, stan-
dard patching techniques do not apply. To circumvent this problem, we
crucially exploit the adjacency relations on the solution polytope and,
surprisingly, the solution to an old combinatorial puzzle.

1 Introduction

Many combinatorial optimization problems can be formulated as follows. We are
given a (finite) set F of feasible solutions and a weight function w : F → Q that
assigns a weight w(S) to every feasible solution S ∈ F . An optimization problem
Π asks for the computation of a feasible solution S∗ ∈ F of maximum weight
optΠ , i.e.,

optΠ := maximize w(S) subject to S ∈ F . (Π)

� This work was done while the first three authors were postdoctoral fellows at TU
Berlin. Research supported by the European Regional Development Fund (ERDF).

�� This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

��� Research supported by MIUR under project MAINSTREAM.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 273–287, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

274 A. Berger et al.

In this paper, we are interested in solving such optimization problems if the
set of feasible solutions is further constrained by a single budget constraint. More
precisely, we are additionally given a non-negative cost function c : F → Q

+ that
specifies a cost c(S) for every feasible solution S ∈ F and a non-negative budget
B ∈ Q

+. The budgeted optimization problem Π̄ of the above problem Π can
then be formulated as follows:

opt := maximize w(S) subject to S ∈ F , c(S) ≤ B. (Π̄)

Even if the original optimization problem Π is polynomial-time solvable,
adding a budget constraint typically renders the budgeted optimization problem
Π̄ NP-hard. Problems that fall into this class are, for example, the constrained
shortest path problem [2], the constrained minimum spanning tree problem [1],
and the constrained minimum arborescence problem [6].

We study the budgeted version of two fundamental optimization problems,
namely the maximum-weight matching problem and the maximum-weight ma-
troid intersection problem:

In the budgeted matching problem, we are given an undirected graph G =
(V, E) with edge weights w : E → Q and edge costs c : E → Q

+, and a budget
B ∈ Q

+. The set F of feasible solutions corresponds to the set of all matchings in
G. Define the weight of a matching M as the total weight of all edges in M , i.e.,
w(M) :=

∑
e∈M w(e). Similarly, the cost of M is defined as c(M) :=

∑
e∈M c(e).

The goal is to compute a matching M∗ ∈ F of maximum weight w(M∗) among
all matchings M in F whose cost c(M) is at most B.

In the budgeted matroid intersection problem, we are given two matroidsM1 =
(E,F1) and M2 = (E,F2) on a common ground set of elements E (formal
definitions will be given in Section 2). Moreover, we are given element weights
w : E → Q, element costs c : E → Q

+, and a budget B ∈ Q
+. The set of all

feasible solutions F := F1 ∩ F2 is defined by the intersection of M1 and M2.
The weight of an independent set X ∈ F is defined as w(X) :=

∑
e∈X w(e)

and the cost of X is c(X) :=
∑

e∈X c(e). The goal is to compute a common
independent set X∗ ∈ F of maximum weight w(X∗) among all feasible solutions
X ∈ F satisfying c(X) ≤ B. Problems that can be formulated as the intersection
of two matroids are, for example, matchings in bipartite graphs, arborescences
in directed graphs, spanning forests in undirected graphs, etc.

A special case of both budgeted matching and budgeted matroid intersection
is the budgeted matching problem on bipartite graphs. This problem is NP-
hard by a simple reduction from the knapsack problem. We remark that the
unbudgeted versions of the two problems can be solved in polynomial-time (see,
e.g., [20]).

Our Contribution. We give the first polynomial-time approximation schemes
(PTAS) for the budgeted matching problem and the budgeted matroid inter-
section problem. For a given input parameter ε > 0, our algorithms compute
a (1 − ε)-approximate solution in time O(mO(1/ε)), where m is the number of
edges in the graph or the number of elements in the ground set, respectively.

Budgeted Matching and Budgeted Matroid Intersection 275

The basic structure of our polynomial-time approximation schemes resembles
similar approaches for related budgeted optimization problems [18]. By dualizing
the budget constraint of Π̄ and lifting it into the objective function, we obtain
for any λ ≥ 0 the Lagrangian relaxation LR(λ).

z(λ) := maximize
(
w(S) + λ(B − c(S))

)
subject to S ∈ F . (LR(λ))

Note that the relaxed problem LR(λ) is equivalent to the optimization problem
Π with modified Lagrangian weights wλ(e) := w(e) − λc(e) for all e ∈ E. Since
the unbudgeted problem Π is polynomial-time solvable, we can compute the
optimal Lagrangian multiplier λ∗ := argminλ≥0 z(λ) and two optimal solutions
S1 and S2 to LR(λ∗) such that c(S1) ≤ B ≤ c(S2). (Details will be given in
Section 2.) The idea now is to patch S1 and S2 together to obtain a feasible
solution S for Π̄ whose weight w(S) is at least (1− ε)opt. Our patching consists
of two phases: an exchange phase and an augmentation phase.

Exchange Phase: Consider the polytope induced by the feasible solutions F
to the unbudgeted problem Π and let F be the face given by the solutions
of maximum Lagrangian weight. This face contains both S1 and S2. In the first
phase, we iteratively replace either S1 or S2 with another vertex on F , preserving
the invariant c(S1) ≤ B ≤ c(S2), until we end up with two adjacent solutions.
Note that both solutions have objective value z(λ∗) ≥ opt. However, with respect
to their original weights, we can only infer that w(Si) = z(λ∗)− λ∗(B − c(Si)).
That is, we cannot hope to use these solutions directly: S1 is a feasible solution
for Π̄ but its weight w(S1) might be arbitrarily far from opt. In contrast, S2 has
weight w(S2) ≥ opt, but is infeasible.

Augmentation Phase: In this phase, we exploit the properties of adjacent so-
lutions in the solution polytope. For matchings it is known that two solutions
are adjacent in the matching polytope if and only if their symmetric difference
is an alternating cycle or path X . Analogously, two adjacent extreme points in
the common basis polytope of two matroids can be characterized by a proper
alternating cycle X in the corresponding exchangeability graph [4,9]. The idea is
to patch S1 according to a proper subpath X ′ of X . This subpath X ′ guarantees
that the Lagrangian weight of S1 does not decrease too much, while at the same
time the gap between the budget and the cost of S1 (and hence also the gap
between w(S1) and z(λ∗)) is reduced. This way we obtain a feasible solution S
whose weight differs from opt by at most the weight of two edges (elements).

Of course, constructing such a solution S alone is not sufficient to obtain a
PTAS. (The maximum weight of an edge (element) might be comparable to the
weight of an optimum solution). However, this problem can be easily overcome
by guessing the edges (elements) of largest weight in the optimum solution in a
preliminary step.

Surprisingly, the key ingredient that enables us to prove that there always
exists a good patching subpath stems from an old combinatorial puzzle which
we quote from the book by Lovász [10, Problem 3.21]. We leave the proof as an
exercise to the reader.

276 A. Berger et al.

“Along a speed track there are some gas-stations. The total amount of
gasoline available in them is equal to what our car (which has a very
large tank) needs for going around the track. Prove that there is a gas-
station such that if we start there with an empty tank, we shall be able
to go around the track without running out of gasoline.”

Related Work. For the budgeted matching problem there is an optimal algorithm
if the costs are uniform. This problem is equivalent to finding a maximum-weight
matching that consists of at most B edges, which can be solved by a reduction to
perfect matching. Not much is known for the budgeted matching problem with
general edge costs, besides that it is NP-hard. Naor et al. [15] proposed a fully
polynomial-time approximation scheme (FPTAS) for an even more general class
of problems, which contains the budgeted matching problem considered here as
special case. However, personal communication [14] revealed that unfortunately
the stated result [15, Theorem 2.2] is incorrect. To the best of our knowledge,
the budgeted version of the maximum-weight matroid intersection problem has
not been considered before.

Budgeted versions of polynomial-time solvable optimization problems have
been studied extensively. The best known ones are probably the constrained
shortest path problem and the constrained minimum spanning tree problem.
Finding a shortest s, t-path P (with respect to weight) between two vertices s
and t in a directed graph with edge weights and edge costs such that the total
cost of P is at most B appears as an NP-hard problem already in the book
by Garey and Johnson [5]. Similarly, finding a minimum weight spanning tree
whose total cost is at most some specified value is NP-hard as well [1].

Goemans and Ravi [18] obtain a PTAS for the constrained minimum spanning
tree problem by using an approach which resembles our exchange phase. Starting
from two spanning trees obtained from the Lagrangian relaxation, they walk
along the optimal face (with respect to the Lagrangian weights) of the spanning
tree polytope until they end up with two adjacent solutions S1 and S2 with
c(S1) ≤ B ≤ c(S2). In this polytope, two spanning trees are adjacent if and
only if their symmetric difference consists of just two edges. Therefore, the final
solution S1 is a feasible spanning tree whose weight is away from the optimum
by the weight of only one edge. In particular, once two such adjacent solutions
have been found there is no need for an additional augmentation phase, which is
instead crucial for matchings and matroid intersections. The PTAS by Goemans
and Ravi [18] also extends to the problem of finding a minimum-weight basis in
a matroid subject to a budget constraint.

Hassin and Levin [7] later improved the result of Goemans and Ravi and
obtained an EPTAS for the constrained minimum spanning tree problem. A fully
polynomial bicriteria approximation scheme for the problem has been found by
Hong et al. [8]. However, the question whether there exists a fully polynomial-
time approximation scheme to the constrained minimum spanning tree problem
is open.

Budgeted Matching and Budgeted Matroid Intersection 277

Finding constrained minimum arborescences in directed graphs is NP-hard as
well. Guignard and Rosenwein [6] apply Lagrangian relaxation to solve it to opti-
mality (though not in polynomial time). Previous work on budgeted optimization
problems also includes results on budgeted scheduling [21] and bicriteria results
for several budgeted network design problems [11].

All problems mentioned above can be interpreted as bicriteria optimization
problems with a min-min objective, i.e., where the goal is to compute a solution
that minimizes the objective value and whose cost stays below a given budget.
In contrast, in our work we consider max-min bicriteria problems.

Organization of the Paper. The paper is structured as follows. In Section 2, we
give some prerequisites on matroids and Lagrangian relaxation. We then present
the PTAS for the budgeted matching problem in Section 3. The PTAS for the
budgeted matroid intersection problem is the subject of Section 4. In Section 5
we discuss some open problems.

2 Preliminaries

2.1 Matroids

Let E be a set of elements and F ⊆ 2E be a non-empty set of subsets of E.
Then M = (E,F) is a matroid if the following holds:

(a) If I ∈ F and J ⊆ I, then J ∈ F .
(b) For every I, J ∈ F , |I| = |J |, for every x ∈ I there is a y ∈ J such that

I \ {x} ∪ {y} ∈ F .

The elements of F are called independent sets. An independent set X is a basis
of M if for every x ∈ E \ X , X ∪ {x} /∈ F . We assume that F is represented
implicitly by an oracle: for any given I ⊆ E, this oracle determines whether
I ∈ F or not. In the running time analysis, each query to the oracle is assumed
to take constant time. It is not hard to show that matroids have the following
properties (see e.g. [20] and references therein).

Lemma 1. For any given matroid M = (E,F):

1. (Deletion) For every E0 ⊆ E, M − E0 := (E′,F ′) is a matroid, where
E′ := E \ E0 and F ′ := {X ∈ F : X ∩ E0 = ∅}.

2. (Contraction) For every E0 ∈ F , M/E0 := (E′,F ′) is a matroid, where
E′ := E \ E0 and F ′ := {X ⊆ E \ E0 : X ∪ E0 ∈ F}.

3. (Truncation) For every q ∈ N, Mq := (E,Fq) is a matroid, where Fq :=
{X ∈ F : |X | ≤ q}.

4. (Extension) For every set D, D ∩ E = ∅, M+ D := (E′,F ′) is a matroid,
where E′ := E ∪D and F ′ := {X ⊆ E ∪D : X ∩E ∈ F}.

Observe that an oracle for the original matroid implicitly defines an oracle for all
the derived matroids above. Given X ∈ F and Y ⊆ E, the exchangeability graph
ofM with respect to X and Y is the bipartite graph exM(X, Y) := (X \ Y, Y \
X ; H) with edge set H = {(x, y) : x ∈ X \ Y, y ∈ Y \X, X \ {x} ∪ {y} ∈ F}.

278 A. Berger et al.

Lemma 2 ([9]). (Exchangeability Lemma) Given X ∈ F and Y ⊆ E, if exM
(X, Y) has a unique perfect matching, then Y ∈ F .

The intersection of two matroidsM1 = (E,F1) andM2 = (E,F2) over the same
ground set E is the pairM = (E,F1 ∩ F2). We remark that the intersection of
two matroids might not be a matroid, while every matroid M = (E,F) is the
intersection of itself with the trivial matroid (E, 2E). Lemma 1 can be naturally
extended to matroid intersections. For example, for a given matroid intersection
(E,F1∩F2), by Lemma 1.3 (E,Fq

1 ∩Fq
2) is still the intersection of two matroids,

for any q ∈ N.
Given two matroids M1 = (E,F1) and M2 = (E,F2), the common basis

polytope of M1 and M2 is the convex hull of the characteristic vectors of the
common bases. We say that two common bases X, Y ∈ F1 ∩ F2 are adjacent
if their characteristic vectors are adjacent extreme points in the common basis
polytope ofM1 andM2.

2.2 Lagrangian Relaxation

We briefly review the Lagrangian relaxation approach; for a more detailed expo-
sition, the reader is referred to [16]. The Lagrangian relaxation of the budgeted
optimization problem Π̄ is given by:

z(λ) := maximize
(
w(S) + λ(B − c(S))

)
subject to S ∈ F . (LR(λ))

For any value of λ ≥ 0, the optimal solution to LR(λ) gives an upper bound
on the optimal solution of the original budgeted problem, because any feasible
solution satisfies

∑
e∈S c(e) ≤ B. The Lagrangian relaxation problem is to find

the best such upper bound, i.e. to determine λ∗ such that z(λ∗) = minλ≥0 z(λ).
This can be done in polynomial time whenever LR(λ) is solvable in polynomial
time [19, Theorem 24.3]. In our case, since there are combinatorial algorithms for
weighted matching and weighted matroid intersection [20], we can even obtain λ∗

in strongly polynomial time by using Megiddo’s parametric search technique [12].
Indeed, for any fixed feasible solution, the value of the Lagrangian relaxation is
a linear function of λ, so that LR(λ) is the maximum of a set of linear functions,
i.e. a piecewise-linear convex function. Finding the minimum of such a piecewise-
linear convex function is precisely what is achieved by parametric search.

The idea behind Megiddo’s technique is that, even though we do not know
λ∗, we can simulate the algorithm solving LR(λ∗) and at the same time dis-
cover λ∗. Towards this end, for each e ∈ E the value wλ∗(e) := w(e) − λ∗c(e)
will be manipulated symbolically as a linear function of the form a + λ∗b. In
the simulated algorithm, which is combinatorial, these linear functions might be
added together to create more linear functions, but at most a polynomial num-
ber of such functions will be used overall. Whenever the simulated algorithm
asks for a comparison between some a + λ∗b and some a′ + λ∗b′, we compute
the critical λ for which a+λb = a′+λb′. To correctly perform the comparison and

Budgeted Matching and Budgeted Matroid Intersection 279

resume the simulation of the algorithm, it is enough to know whether λ is smaller
or larger than λ∗. But this can be discovered by solving one more Lagrangian
subproblem, this time with weight function w−λc: if the corresponding solution
costs more than B, then λ < λ∗, and vice versa if the cost is larger than B. At
the end of the simulation, the output of the algorithm can be used to determine
λ∗ explicitly. Finally, λ∗ can be used to compute two solutions S1, S2 such that:

1. Both S1 and S2 are optimal with respect to the weight function wλ∗(e) :=
w(e)− λ∗c(e), e ∈ E;

2. c(S1) ≤ B ≤ c(S2).

These two solutions can be obtained by solving the relaxed problems LR(λ∗ + ε)
and LR(λ∗ − ε), respectively, for a sufficiently small ε > 0. Indeed, even without
knowing how small ε has to be, they can be obtained by simulating again the
algorithm and resolving the comparisons accordingly.

2.3 The Gasoline Puzzle

One crucial ingredient in our patching procedure is the solution to the puzzle
cited in the introduction. We state it more formally in the following lemma.

Lemma 3. (Gasoline Lemma) Given a sequence of k real values a0, a1, . . . ak−1

of total value
∑k−1

j=0 aj = 0, there is an index i ∈ {0, 1, . . . , k − 1} such that, for

any 0 ≤ h ≤ k − 1,
∑i+h

j=i aj (mod k) ≥ 0.

3 A PTAS for the Budgeted Matching Problem

In this section, we present our PTAS for the budgeted matching problem. Sup-
pose we are given a budgeted matching instance I := (G, w, c, B). Let n and m
refer to the number of nodes and edges in G, respectively. Moreover, we define
wmax := maxe∈E w(e) as the largest edge weight in I. Throughout this section,
opt refers to the weight of an optimal solution M∗ for I. In order to prove that
there exists a PTAS, we proceed in two steps: First we prove that there is an
algorithm to compute a feasible solution of weight at least opt − 2wmax. The
Gasoline Lemma will play a crucial role in this proof. The claimed PTAS is then
obtained by guessing the edges of largest weight in M∗ in a preliminary phase
and applying the algorithm above.

Lemma 4. There is a polynomial-time algorithm to compute a solution M to
the budgeted matching problem of weight w(M) ≥ opt− 2 wmax.

Proof. As described in Section 2, we first compute the optimal Lagrangian mul-
tiplier λ > 0 and two matchings M1 and M2 of maximum Lagrangian weight
wλ(M1) = wλ(M2) and satisfying c(M1) ≤ B ≤ c(M2). Observe that for
i ∈ {1, 2} we have that

wλ(Mi) + λB ≥ wλ(M∗) + λB ≥ wλ(M∗) + λ c(M∗) = opt. (1)

280 A. Berger et al.

M1

M2

M
�

X ′
+3

−2

+4−3

0

−1

+1

−2

+3 −2

+3

−4

Fig. 1. The construction used in Lemma 4. Each edge xi is labeled with the value ai.

We next show how to extract from M1 ∪M2 a matching M with the desired
properties in polynomial-time. Consider the symmetric difference M ′ = M1⊕M2.
Recall that M ′ ⊆M1∪M2 consists of a disjoint union of paths P and cycles C. We
apply the following procedure until eventually |P ∪C| ≤ 1: Take some X ∈ P ∪C
and let A := M1 ⊕X . If c(A) ≤ B replace M1 by A. Otherwise replace M2 by
A. Observe that in each step, the cardinality of M1 ∩M2 increases by at least
one; hence this procedure terminates after at most O(n) steps. Moreover, by the
optimality of M1 and M2, the Lagrangian weight of the two matchings does not
change during the process.

If at the end of this procedure c(Mi) = B for some i ∈ {1, 2}, we are done:
Mi is a feasible solution to the budgeted matching problem and

w(Mi) = wλ(Mi) + λc(Mi) = wλ(Mi) + λB ≥ opt.

Otherwise, M1 ⊕M2 consists of a unique path or cycle X = (x0, x1, . . . , xk−1)
such that c(M1 ⊕X) = c(M2) > B > c(M1). Consider the sequence

a0 = δ(x0)wλ(x0), a1 = δ(x1)wλ(x1), . . . , ak−1 = δ(xk−1)wλ(xk−1),

where δ(xi) = 1 if xi ∈ M2 and δ(xi) = −1 otherwise. This sequence has total
value zero, because of the optimality of M1 and M2. By the Gasoline Lemma,
there must exist an edge xi, i ∈ {0, 1, . . . , k − 1}, of X such that for any cyclic
subsequence X ′ = (xi, x(i+1) (mod k), . . . , x(i+h) (mod k)),

0 ≤
i+h∑
j=i

aj (mod k) =
∑

e∈X′∩M2

wλ(e)−
∑

e∈X′∩M1

wλ(e). (2)

Consider the longest such subsequence X ′ satisfying c(M1 ⊕ X ′) ≤ B. Let
e1 = xi and e2 = x(i+h) (mod k) be the endpoints of X ′ (see Figure 1). Note
that by the maximality of X ′ and by the non-negativity of the edge costs, either
e2 ∈M1 or X is a path and e2 its last edge. In both cases, M := (M1⊕X ′)\{e1}
is a matching (while M1 ⊕X ′ might not be a matching if e1 ∈ M2). Moreover,
c(M) = c(M1⊕X ′)− c(e1) ≤ c(M1⊕X ′) ≤ B. That is, M is a feasible solution
to the budgeted matching problem.

Budgeted Matching and Budgeted Matroid Intersection 281

It remains to lower bound the weight of M . We have

w(M1 ⊕X ′) = wλ(M1 ⊕X ′) + λ c(M1 ⊕X ′)
= wλ(M1 ⊕X ′) + λB − λ (B − c(M1 ⊕X ′))
≥ wλ(M1) + λB − λ (B − c(M1 ⊕X ′))
≥ opt− λ (B − c(M1 ⊕X ′)),

where the first inequality follows from (2) and the second inequality follows
from (1).

Let e3 = x(i+h+1) (mod k). The maximality of X ′ implies that c(e3) > B −
c(M1 ⊕ X ′) ≥ 0. Moreover, by the optimality of M1 and M2, 0 ≤ wλ(e3) =
w(e3) − λ c(e3). Altogether λ (B − c(M1 ⊕ X ′)) ≤ λ c(e3) ≤ w(e3) and hence
w(M1 ⊕X ′) ≥ opt− w(e3). We can thus conclude that

w(M) = w(M1 ⊕X ′)− w(e1) ≥ opt− w(e3)− w(e1) ≥ opt− 2 wmax. �

Theorem 1. There is a PTAS for the budgeted matching problem.

Proof. Let ε ∈ (0, 1) be a given constant. Assume that the optimum matching
M∗ contains at least p := �2/ε� edges. (Otherwise the problem can be solved
optimally by brute force.) Consider the following algorithm. Initially, we guess
the p heaviest (with respect to weights) edges M∗

H of M∗. Then we remove
from the graph G the edges in M∗

H , all edges incident to M∗
H , and all edges

of weight larger than the smallest weight in M∗
H . We also decrease the budget

by c(M∗
H). Let I ′ be the resulting budgeted matching instance. Note that the

maximum weight of an edge in I ′ is w′
max ≤ w(M∗

H)/p ≤ εM∗
H/2. Moreover,

M∗
L := M∗ \M∗

H is an optimum solution for I ′. We compute a matching M ′ for
I ′ using the algorithm described in the proof of Lemma 4. Eventually, we output
the feasible solution M := M∗

H ∪M ′.
The algorithm above has running time O(mp+O(1)) = O(mO(1/ε)), where the

mp factor comes from the guessing of M∗
H . By Lemma 4, w(M ′) ≥ w(M∗

L) −
2 w′

max. It follows that

w(M) = w(M∗
H) + w(M ′) ≥ w(M∗

H) + w(M∗
L)− 2 w′

max

≥ w(M∗)− ε w(M∗
H) ≥ (1 − ε)w(M∗). �

4 A PTAS for the Budgeted Matroid Intersection
Problem

In this section we will develop a PTAS for the budgeted matroid intersection
problem. As in the PTAS for the budgeted matching problem, we will first show
how to find a feasible common independent set of two matroids M1 = (E,F1)
and M2 = (E,F2) of weight at least opt − 2wmax, where wmax is the weight
of the heaviest element. The PTAS will then follow similarly as in the previous
section.

282 A. Berger et al.

Like in the matching case, we initially use Megiddo’s parametric search tech-
nique to obtain the optimal Lagrangian multiplier λ ≥ 0 and two solutions
X, Y ∈ F1 ∩ F2, c(X) ≤ B ≤ c(Y), that are optimal with respect to the La-
grangian weights wλ(e) = w(e) − λ c(e), e ∈ E. Notice that neither X nor Y
will contain any element e such that wλ(e) < 0. Furthermore, both solutions can
be used to derive upper bounds on the optimum solution. In fact, let I∗ be the
optimum solution, of weight opt = w(I∗). For Z ∈ {X, Y },

wλ(Z) + λB ≥ wλ(I∗) + λB ≥ wλ(I∗) + λ c(I∗) = opt. (3)

If X and Y have different cardinalities, say |X | < |Y |, we extend M1 and M2

according to Lemma 1.4 by adding |Y | − |X | dummy elements D of weight and
cost zero, and then we replace X by X ∪D. (Dummy elements will be discarded
when the final solution is returned.) Of course, this does not modify the weight
of the optimum solution nor the weight and cost of X . Finally, using Lemma 1.3
we truncate the two matroids to q := |X | = |Y |. The solutions X and Y will now
be maximum-weight common bases of each one of the two truncated matroids.

In the following, we will show how to derive from X and Y a feasible solution
of weight at least opt − 2wmax. This is done in two steps. First (Section 4.1),
we extract from X ∪ Y two adjacent common bases, one below and the other
over the budget, with the same (optimal) Lagrangian weight of X and Y . Then
(Section 4.2) we apply the Gasoline Lemma to a proper auxiliary graph to com-
pute the desired approximate solution.

4.1 Finding Adjacent Common Bases

The following lemma characterizes two adjacent common bases in the common
basis polytope of two matroids.

Lemma 5 ([4,9]). Assume we have two matroidsM1 = (E,F1),M2 = (E,F2)
and two common bases X, Y ∈ F1 ∩ F2. Then X and Y are adjacent extreme
points in the common basis polytope if and only if the following conditions hold:

1. The exchangeability graph exM1(X, Y) has a unique perfect matching M1.
2. The exchangeability graph exM2(X, Y) has a unique perfect matching M2.
3. The union M1 ∪M2 forms a cycle.

The following corollary of Lemma 5 will help us to deal with contracted
matroids.

Corollary 1. LetM1 = (E,F1) andM2 = (E,F2) be two matroids. Moreover,
let Z ∈ F1 ∩ F2 and Z ⊆ X ∩ Y . Then X and Y are adjacent extreme points in
the common basis polytope of M1 and M2 if and only if X \ Z and Y \ Z are
adjacent extreme points in the common basis polytope of M1/Z and M2/Z.

Proof. First note, that X is a basis ofMi if and only if X \Z is a basis ofMi/Z
(i = 1, 2) by Lemma 1.2. The same holds for Y . Moreover, as Z ⊆ X ∩ Y , the
exchangeability graphs exMi(X, Y) and exMi/Z(X \ Z, Y \ Z) (i = 1, 2) are the
same, since they are defined on the symmetric difference of X and Y . The claim
then follows immediately from Lemma 5. �

Budgeted Matching and Budgeted Matroid Intersection 283

Remember that X and Y , are maximum-weight common bases of M1 and M2

with respect to the Lagrangian weights wλ, and that c(X) ≤ B ≤ c(Y). Since
our solution will be a subset of X∪Y , let us delete the elements E′ = E\(X∪Y)
according to Lemma 1.1. In order to do a similar patching procedure as for the
matching problem, we would like X and Y to be adjacent extreme points in the
common basis polytope of M1 and M2. The following lemma will help us to
find such two adjacent common bases which are also of maximum weight with
respect to wλ.

Lemma 6. There is a polynomial-time algorithm that finds a third maximum-
weight common basis A with respect to wλ, such that X �= A �= Y and X ∩ Y ⊆
A ⊆ X ∪ Y , or determines that no such basis exists.

Proof. Let Z = X ∩ Y . Without loss of generality, let X \ Y = {x1, . . . , xr}
and Y \X = {y1, . . . , yr}. For 1 ≤ i, j ≤ r denote by Mij

1 = M1/Z − {xi, yj}
and Mij

2 = M2/Z − {xi, yj} the matroids resulting from the contraction of Z
(Lemma 1.2) and the deletion of xi and yj (Lemma 1.1).

Consider the following (polynomial-time) algorithm. For every 1 ≤ i, j ≤ r
compute Aij , a maximum-weight common basis of Mij

1 and Mij
2 . If there is

an Aij satisfying |Aij | = r and wλ(Aij) = wλ(X \ Z), then A = Aij ∪ Z is
the desired third basis. In fact, Aij is a common basis of Mij

1 and Mij
2 , and

since |A| = |Aij | + |Z| = |X |, it is also a common basis of M1 and M2. Also,
X �= A �= Y since xi and yj are not present in Mij

1 andMij
2 .

If none of the Aij ’s satisfies |Aij | = r and wλ(Aij) = wλ(X \ Z), then no
common basis A of M1 and M2 with the desired properties exists. In fact,
assume by contradiction that there is such a third maximum-weight basis A.
Choose i and j such that xi, yj /∈ A. Note that such indices must exist since
X �= A �= Y . Then A \ Z is a common basis ofMij

1 andMij
2 . Hence wλ(Aij) ≥

wλ(A\Z), since Aij is a maximum-weight such common basis. Moreover |Aij | =
|A \ Z| = r, and thus Aij ∪ Z is a common basis of M1 and M2, implying
wλ(Aij ∪ Z) ≤ wλ(A). Hence wλ(Aij) ≤ wλ(A \ Z). We can conclude that
wλ(Aij) = wλ(A \ Z) = wλ(X \ Z), which is a contradiction. �

We can now apply Lemma 6 as follows. Until we find a third basis A, we replace
X by A if c(A) ≤ B, and Y by A otherwise. In either case, the cardinality of
the intersection of the new X and Y has increased. Hence this process ends in
at most O(m) rounds.

At the end of the process, X and Y must be adjacent in the common basis
polytope ofM1 andM2. In fact, X \Y and Y \X are maximum-weight common
bases ofM1/(X ∩ Y) andM2/(X ∩ Y) and there is no other maximum-weight
common basis A′ ofM1/(X∩Y) andM2/(X∩Y), as otherwise A = A′∪(X∩Y)
would have been found by the algorithm from Lemma 6. Now as X \Y and Y \X
are the only two maximum-weight common bases, they must also be adjacent on
the optimal face of the common basis polytope ofM1/(X∩Y) andM2/(X∩Y).
Therefore, by Corollary 1, X and Y are adjacent in the common basis polytope
ofM1 andM2.

284 A. Berger et al.

4.2 Merging Adjacent Common Bases

Let X and Y be the two adjacent solutions obtained at the end of the process
described in the previous section. Notice that, if either c(X) = B or c(Y) = B,
we obtain a feasible solution that is optimal also with respect to the original
weights, in which case we can already stop. For this reason in the following we
will assume that c(S1) < B < c(S2). Without loss of generality, we also assume
that X \ Y = {x1, x2, . . . , xr} an Y \X = {y1, y2, . . . , yr}.
Lemma 7. Given X and Y with the properties above, there is a polynomial-time
algorithm which computes a common independent set X ′ ∈ F1 ∩ F2 such that
c(X ′) ≤ B and w(X ′) ≥ opt− 2wmax.

Proof. We exploit again Lemma 5 to obtain two unique perfect matchings:
M1 = {x1y1, . . . , xryr} in exM1(X, Y) and M2 = {y1x2, y2x3, . . . , yrx1} in
exM2(X, Y). Let (x1, y1, x2, y2, . . . , xr, yr) be the corresponding connected cy-
cle. Assign to the each edge xjyj a weight δj := wλ(yj) − wλ(xj), and weight
zero to the remaining edges. Clearly

∑r
j=1 δj = 0, since X and Y have the same

maximum Lagrangian weight. Hence, by the Gasoline Lemma, there must exist
an edge of the cycle such that the partial sum of the δ-weights of each subpath
starting at that edge is non-negative. Without loss of generality, assume x1y1 is
such an edge. Thus for all i ≤ r,

∑i
j=1 δj ≥ 0. Find the largest k ≤ r such that

c(X) +
k∑

j=1

(
c(yj)− c(xj)

) ≤ B.

Since c(Y) > B, we have k < r and by construction

c(X) +
k∑

j=1

(
c(yj)− c(xj)

)
> B − c(yk+1) + c(xk+1).

We now show that X ′ := X \ {x1, . . . , xk+1}∪{y1, . . . , yk} satisfies the claim.
By the choice of k, B − cmax ≤ B − c(yk+1) < c(X ′) ≤ B, where cmax =
maxe∈E c(e). Also, since

∑k
j=1 δj ≥ 0, we have

wλ(X ′) ≥ wλ(X)− wλ(xk+1) ≥ wλ(X)− wmax.

We next prove that X ′ ∈ F1∩F2. Consider the set X ′∪{xk+1}: its symmetric
difference with X is the set {x1, . . . , xk} ∪ {y1, . . . , yk}. Recall that xiyi is an
edge of M1. Thus, for i ≤ k, it is also an edge of exM1(X, X ′ ∪ {xk+1}) so
that this graph has a perfect matching. On the other hand this perfect matching
must be unique, otherwise M1 would not be unique in exM1(X, Y). Thus by the
Exchangeability Lemma X ′ ∪ {xk+1} ∈ F1.

Similarly, consider the set X ′ ∪ {x1}: its symmetric difference with X is the
set {x2, . . . , xk+1} ∪ {y1, . . . , yk}. For i ≤ k, yixi+1 is an edge of M2. Thus
exM2(X, X ′ ∪ {x1}) has a perfect matching, and it has to be unique, otherwise

Budgeted Matching and Budgeted Matroid Intersection 285

M2 would not be unique in exM2(X, Y). Thus by the Exchangeability Lemma
X ′∪{x1} ∈ F2. We have thus shown that X ′∪{xk+1} ∈ F1 and X ′∪{x1} ∈ F2.
As a consequence, X ′ ∈ F1 ∩ F2.

It remains to bound the weight of X ′:

w(X ′) = wλ(X ′) + λc(X ′) = wλ(X ′) + λB − λ(B − c(X ′))
≥ wλ(X) + λB − wmax − λc(yk+1) ≥ wλ(X) + λB − 2wmax

≥ opt− 2wmax.

Above we used the fact that wλ(e) ≥ 0 for all e ∈ Y , so in particular wλ(yk+1) =
w(yk+1)−λc(yk+1) ≥ 0, implying wmax ≥ w(yk+1) ≥ λc(yk+1). The last inequal-
ity follows from (3). �
Theorem 2. The budgeted matroid intersection problem admits a PTAS.

Proof. Let ε ∈ (0, 1) be a given constant. Assume that the optimum solution
contains at least p := �2/ε� elements (otherwise the problem can be solved
optimally by brute force). We first guess the p elements of largest weight in the
optimal solution. Using contraction (Lemma 1.2) we remove these elements from
both matroids, and using deletion (Lemma 1.1) we as well remove all elements
that have a larger weight than any of the contracted elements. We decrease
the budget by an amount equal to the cost of the guessed elements. Finally
we apply the above algorithm and we add back the guessed elements to the
solution. The final solution will have weight at least opt− 2w′

max, where w′
max is

the largest weight of the elements that remained after the guessing step. Since
opt ≥ (2/ε)w′

max, we obtain a solution of weight at least (1− ε)opt. The running
time of the algorithm above is O(mO(1/ε)). �

5 Concluding Remarks and Open Problems

There are several problems that we left open. One natural question is whether
we can apply our patching technique to other budgeted problems. Apparently,
the main property that we need is that the difference between two solutions that
are adjacent in the solution polytope of the corresponding unbudgeted problem
can be characterized by a proper alternating path or cycle. This deserves further
investigation.

Another natural question is whether there are fully polynomial-time approxi-
mation schemes for the problems considered here. We conjecture that budgeted
matching is not strongly NP-hard. However, finding an FPTAS for that problem
might be a very difficult task. In fact, for polynomial weights and costs, the
budgeted matching problem is equivalent to the exact perfect matching prob-
lem (proof is given in the appendix): Given an undirected graph G = (V, E),
edge weights w : E → Q, and a parameter W ∈ Q, find a perfect matching
of weight exactly W , if any. This problem was first posed by Papadimitriou
and Yannakakis [17]. For polynomial weights, the problem admits a polynomial-
time Monte Carlo algorithm [13,3]. Hence, it is very unlikely that exact perfect

286 A. Berger et al.

matching with polynomial weights is NP-hard (since this would imply RP=NP).
However, after 25 years, the problem of finding a deterministic algorithm to solve
this problem is still open.

Finally, an interesting open problem is whether our approach can be extended
to the case of multiple budget constraints. The difficulty here is that the Gasoline
Lemma alone seems not able to fill in the cost-budget-gap for several budget
constraints at the same time.

Acknowledgements. The authors would like to thank Jochen Könemann, Rajiv
Raman, and Martin Skutella for helpful discussions.

References

1. Aggarwal, V., Aneja, Y.P., Nair, K.P.K.: Minimal spanning tree subject to a side
constraint. Computers & Operations Research 9(4), 287–296 (1982)

2. Beasley, J., Christofides, N.: An algorithm for the resource constrained shortest
path problem. Networks 19, 379–394 (1989)

3. Camerini, P., Galbiati, G., Maffioli, F.: Random pseudo-polynomial algorithms for
exact matroid problems. Journal of Algorithms 13, 258–273 (1992)

4. Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Mathe-
matical Programming 42, 489–563 (1988)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

6. Guignard, M., Rosenwein, M.B.: An application of Lagrangean decomposi-
tion to the resource-constrained minimum weighted arborescence problem. Net-
works 20(3), 345–359 (1990)

7. Hassin, R., Levin, A.: An efficient polynomial time approximation scheme for the
constrained minimum spanning tree problem using matroid intersection. SIAM
Journal on Computing 33(2), 261–268 (2004)

8. Hong, S.-P., Chung, S.-J., Park, B.H.: A fully polynomial bicriteria approxima-
tion scheme for the constrained spanning tree problem. Operations Research Let-
ters 32(3), 233–239 (2004)

9. Iwata, S.: On matroid intersection adjacency. Discrete Mathematics 242, 277–281
(2002)

10. Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam
(1979)

11. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria network design problems. In: Proc. 22nd Int. Colloquium on Au-
tomata, Languages and Programming, pp. 487–498 (1995)

12. Megiddo, N.: Combinatorial optimization with rational objective functions. Math-
ematics of Operations Research 4(4), 414–424 (1979)

13. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-
sion. Combinatorica 7(1), 105–113 (1987)

14. Naor, J., Shachnai, H., Tamir, T.: Personal communication (2007)
15. Naor, J., Shachnai, H., Tamir, T.: Real-time scheduling with a budget. Algorith-

mica 47(3), 343–364 (2007)
16. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John

Wiley, Chichester (1988)

Budgeted Matching and Budgeted Matroid Intersection 287

17. Papadimitriou, C., Yannakakis, M.: The complexity of restricted spanning tree
problems. Journal of the ACM 29(2), 285–309 (1982)

18. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem (ex-
tended abstract). In: Proc. 5th Scandinavian Workshop on Algorithms and Theory,
pp. 66–75 (1996)

19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
20. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Hei-

delberg (2003)
21. Shmoys, D.B., Tardos, É.: Scheduling unrelated machines with costs. In: Proc. 4th

Symposium on Discrete Algorithms, pp. 448–454 (1993)

A Exact Perfect Matching and Budgeted Matching

We prove that the budgeted matching problem and the exact perfect matching
problem are equivalent for polynomial weights and costs. We call the variant of
the budgeted matching problem, where we additionally require that the com-
puted matching is perfect, the budgeted perfect matching problem.

Lemma 8. For polynomial weights and costs, the following problems are poly-
nomially reducible: (a) exact perfect matching; (b) budgeted perfect matching; (c)
budgeted matching.

Proof. Without loss of generality, we assume that all weights and costs are non-
negative integers. Let wmax and cmax be the largest weight and cost, respectively.

(a)⇒ (b): Let (G, w, W) be an exact perfect matching instance. Solve the bud-
geted perfect matching instance (G, w, c, B), where B = W and c(e) = w(e) for
every edge e. If the solution returned has weight smaller than B = W , the origi-
nal problem is infeasible. Otherwise, the solution computed is a perfect matching
of G of weight W .

(c) ⇒ (a): Let (G, w, c, B) be a budgeted matching instance. For two given
W ∗ and B∗, consider the exact perfect matching instance (G, w′, W ′), where
W ′ = (n/2 + 1)cmaxW

∗ + B∗ and w′(e) = (n/2 + 1)cmaxw(e) + c(e) for every
edge e. The problem (G, w′, W ′) is feasible if and only if there is a matching of
weight W ∗ and cost B∗ in the original problem. By trying all the (polynomially
many) possible values for W ∗ and B∗, we obtain the desired solution to the
original problem.

(b)⇒ (c): Let (G, w, c, B) be a budgeted perfect matching instance. Consider the
budgeted matching instance (G, w′, c, B), where w′(e) = w(e)+(n/2+1)wmax for
every edge e. The original problem is feasible if and only the maximum matching
M∗ of the new problem contains n/2 edges, i.e., M∗ is a perfect matching. �

Primal-Dual Schema for Capacitated Covering

Problems�

Tim Carnes and David Shmoys

Cornell University, Ithaca NY 14853, USA
tcarnes@orie.cornell.edu, shmoys@cs.cornell.edu

Abstract. Primal-dual algorithms have played an integral role in recent
developments in approximation algorithms, and yet there has been little
work on these algorithms in the context of LP relaxations that have been
strengthened by the addition of more sophisticated valid inequalities. We
introduce primal-dual schema based on the LP relaxations devised by
Carr, Fleischer, Leung & Phillips for the minimum knapsack problem
as well as for the single-demand capacitated facility location problem.
Our primal-dual algorithms achieve the same performance guarantees
as the LP-rounding algorithms of Carr et al., which rely on applying
the ellipsoid algorithm to an exponentially-sized LP. Furthermore, we
introduce new flow-cover inequalities to strengthen the LP relaxation of
the more general capacitated single-item lot-sizing problem; using just
these inequalities as the LP relaxation, we obtain a primal-dual algorithm
that achieves a performance guarantee of 2.

1 Introduction

Primal-dual algorithms have played an integral role in recent developments in
approximation algorithms, and yet there has been little work on these algorithms
in the context of LP relaxations that have been strengthened by the addition
of more sophisticated valid inequalities. We introduce primal-dual schema based
on the LP relaxations devised by Carr, Fleischer, Leung & Phillips [5] for the
minimum knapsack problem as well as for the single-demand capacitated facility
location problem. Our primal-dual algorithms achieve the same performance
guarantees as the LP-rounding algorithms of Carr et al., which rely on applying
the ellipsoid algorithm to an exponentially-sized LP. Furthermore, we introduce
new flow-cover inequalities to strengthen the LP relaxation of the more general
capacitated single-item lot-sizing problem; using just these inequalities as the
LP relaxation, we obtain a primal-dual algorithm that achieves a performance
guarantee of 2.

We say an algorithm is an approximation algorithm with a performance guar-
antee of α when the algorithm runs in polynomial time and always produces a
solution with cost within a factor of α of optimal. Primal-dual algorithms are able

� Research supported partially by NSF grants CCR-0635121, CCR-0430682 & DMI-
0500263.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 288–302, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Primal-Dual Schema for Capacitated Covering Problems 289

to gain the benefits of LP-based techniques, such as automatically generating a
new lower bound for each problem instance, but without having to solve an LP.
Primal-dual approximation algorithms were developed by Bar-Yehuda & Even
and Chvátal for the weighted vertex cover and set cover problems, respectively
[3,7]. Subsequently, this approach has been applied to many other combinatorial
problems, such as results of Agrawal, Klein & Ravi [2], Goemans & Williamson
[10], Bertsimas & Teo [4] and Levi, Roundy & Shmoys [12] for other related
covering problems. Other recent work has been done on covering problems with
capacity constraints by Even, Levi, Rawitz, Schieber, Shahar & Sviridenko [8],
Chuzhoy & Naor [6] and Gandhi, Halperin, Khuller, Kortsarz & Srinivasan [9].

In developing primal-dual (or any LP-based) approximation algorithms, it
is important to have a strong LP formulation for the problem. However, there
are cases when the LP relaxation of the natural IP formulation for a problem
has a large integrality gap. When this happens, one can mend the situation by
introducing extra valid inequalities that hold for any solution to the problem,
but restrict the feasible region of the LP. One class of valid inequalities that has
proved useful for a variety of problem are called flow-cover inequalities. A large
class of flow-cover inequalities was developed by Aardal, Pochet & Wolsey [1]
for the capacitated facility location problem. Carr et al. [5] developed a different
style of flow-cover inequalities for simpler capacitated covering problems which
we use in developing our primal-dual algorithms. Levi, Lodi & Sviridenko [11]
used a subset of the flow-cover inequalities of Aardal et al. [1] to develop a
LP-rounding algorithm for the multiple-item lot-sizing problem with monotone
holding costs. Our model is not a special case of theirs, however, since our result
allows time-dependent order capacitites whereas their result assumes constant
order capacities across all periods. Following this work and the development of
our own flow-cover inequalities for lot-sizing problems, Sharma & Williamson [13]
demonstrated that the result of Levi et al. [11] has an analogue based on our
flow-cover inequalities as well. Finally, it is worth noting that Van Hoesel &
Wagelmans [14] have a FPTAS for the single-item lot-sizing problem that makes
use of dynamic programming and input data rounding. The disadvantage of this
result is that the running time of the algorithm can be quite slow for particular
performance guarantees. Although the primal-dual algorithm we develop is a
2-approximation algorithm, this is a worst-case bound and we would expect it
to perform much better on average in practice. Also this is the first LP-based
result for the case of time-dependent capacities.

The three models studied in this paper are generalizations of one another.
That is to say, the minimum knapsack problem is a special case of the single-
demand capacitated facility location problem, which is a special case of the
single-item lot-sizing problem. We present the result in order of generality with
the aim of explaining our approach in the simplest setting first. The minimum
knapsack problem gives a set of items, each with a weight and a value. The ob-
jective is to find a minimum-weight subset of items such that the total value
of the items in the subset meets some specified demand. In the single-demand

290 T. Carnes and D. Shmoys

facility location problem there is a set of facilities, each with an opening cost
and a capacity, as well as a per-unit serving cost that must be paid for each unit
of demand a facility serves. The goal is to open facilities to completely serve
a specified amount of demand, while minimizing the total service and facility
opening costs. Finally the single-item lot-sizing problem considers a finite plan-
ning period of consecutive time periods. In each time period there is a specified
level of demand, as well as a potential order with a given capacity and order
opening cost. A feasible solution must open enough orders and order enough
inventory so that in each time period there is enough inventory to satisfy the
demand of that period. The inventory is simply the inventory of the previous
time period plus however much is ordered in the current time period, if any.
However, a per-unit holding cost is incurred for each unit of inventory held over
a given time period.

The straightforward LP relaxations for these problems have a bad integrality
gap, but can be strengthened by introducing valid flow-cover inequalities. The
inequalities Carr et al. [5] developed for the minimum knapsack problem are as
follows ∑

i∈F\A

ui(A)yi ≥ D − u(A) ∀A ⊆ F,

where the yi are the binary decision variables indicating if item i is chosen,
u(A) is the total value of the subset of items A, and the ui(A) can be thought
of as the effective value of item i with respect to A, which is the minimum of
the actual value and the right-hand-side of the inequality. These inequalities
arise by considering that if we did choose all items in the set A, then we still
have an induced subproblem on all of the remaining items, and the values can
be truncated since we are only concerned with integer solutions. Our primal-
dual algorithm works essentially as a modified greedy algorithm, where at each
stage the item is selected that has the largest value per cost. Instead of the
actual values and costs, however, we use the effective values and the slacks of
the dual constraints as costs. Similar to the greedy algorithm for the traditional
maximum-value knapsack problem, the last item selected and everything se-
lected beforehand, can each be bounded in cost by the dual LP value, yielding a
2-approximation.

The remainder of this paper is organized as follows. In Section 2 we go over the
minimum knapsack result in more detail. In Section 3 we generalize this result
to apply to the single-demand capacitated facility location problem. Finally in
Section 4 we generalize the flow-cover inequalities to handle the lot-sizing prob-
lem, and then present and analyze a primal-dual algorithm for the single-item
lot-sizing problem.

2 Minimum Knapsack

In the minimum knapsack problem one is given a set of items F , and each item
i ∈ F has a value ui and a weight fi. The goal is to select a minimum weight

Primal-Dual Schema for Capacitated Covering Problems 291

subset of items, S ⊆ F , such that the value of S, u(S), is at least as big as a
specified demand, D. The natural IP formulation for this problem is

optMK := min
∑
i∈F

fiyi (MK-IP)

s.t.
∑
i∈F

uiyi ≥ D (1)

yi ∈ {0, 1} ∀i ∈ F,

where the yi variables indicate if item i is chosen. The following example from
[5] demonstrates that the integrality gap between this IP and the LP relaxation
is at least as bad as D. Consider just 2 items where u1 = D− 1, f1 = 0, u2 = D
and f2 = 1. The only feasible integer solution chooses both items and has a cost
of 1, whereas the LP solution can set y1 = 1 and y2 = 1/D and incurs a cost of
only 1/D. To remedy this situation we consider using the flow-cover inequalities
introduced in [5].

The idea is to consider a subset of items A ⊆ F such that u(A) < D, and
let D(A) = D − u(A). This means that even if all of the items in the set A
are chosen, we must choose enough items in F \A such that the demand D(A)
is met. This is just another minimum knapsack problem where the items are
restricted to F \A and the demand is now D(A). The value of every item can be
restricted to be no greater than the demand without changing the set of feasible
integer solutions, so let ui(A) = min{ui, D(A)}. This motivates the following LP

optMKP := min
∑
i∈F

fiyi (MK-P)

s.t.
∑

i∈F\A

ui(A)yi ≥ D(A) ∀A ⊆ F (2)

yi ≥ 0 ∀i ∈ F,

and by the validity of the flow-cover inequalities argued above we have that every
feasible integer solution to (MK-IP) is a feasible solution to (MK-P). The dual
of this LP is

optMKD := max
∑
A⊆F

D(A)v(A) (MK-D)

s.t.
∑

A⊆F :i�∈A

ui(A)v(A) ≤ fi ∀i ∈ F (3)

v(A) ≥ 0 ∀A ⊆ F.

Our primal-dual algorithm begins by initializing all of the primal and dual
variables to zero, which produces a feasible dual solution and an infeasible pri-
mal integer solution. Taking our initial subset of items, A, to be the empty set, we

292 T. Carnes and D. Shmoys

increase the dual variable v(A). Once a dual constraint becomes tight, the item
corresponding to that constraint is added to the set A, and we now increase the
new variable v(A). Note that increasing v(A) does not increase the left-hand-
sides of dual constraints corresponding to items in A, so dual feasibility will not
be violated. This process is repeated as long as D(A) > 0, and once we finish
we call our final set of items S, which is our integer solution. This is a feasible
solution to (MK-IP) since D(S) ≤ 0, which implies u(S) ≥ D.

Algorithm 1: Primal-Dual for Minimum Knapsack
y, v ← 0
A← ∅
while D(A) > 0 do

Increase v(A) until a dual constraint becomes tight for item i
yi ← 1
A← A ∪ {i}

S ← A

Theorem 1. Algorithm 1 terminates with a solution of cost no greater than
2 · optMK .

Proof. Let � denote the final item selected by Algorithm 1. Then because the
algorithm only continues running as long as D(A) > 0 we have that

D(S \ {�}) > 0⇒ D − u(S \ {�}) > 0⇒ u(S \ {�}) < D.

Also, the variable v(A) is positive only if A ⊆ S \ {�}. Thus, since the algorithm
only selects items for which the constraint (3) has become tight, we have that
the cost of the solution produced is∑

i∈F

fiyi =
∑
i∈S

fi =
∑
i∈S

∑
A⊆F :i�∈A

ui(A)v(A).

The expression on the right-hand side is summing over all items, i, in the final
solution S, and all subsets of items, A, that do not contain item i. This is the
same as summing over all subsets of items, A, and all items in the final solu-
tion that are not in A. Thus we can reverse the order of the summations to
obtain ∑

i∈F

fiyi =
∑
A⊆F

v(A)
∑

i∈S\A

ui(A)

=
∑
A⊆F

v(A)(u(S \ {�})− u(A) + u�(A))

<
∑
A⊆F

v(A)(D − u(A) + u�(A)),

Primal-Dual Schema for Capacitated Covering Problems 293

where the inequality follows by making use of our observation above that u(S \
{�}) < D. But we also have u�(A) ≤ D(A) by definition, hence∑

i∈F

fiyi ≤
∑
A⊆F

2D(A)v(A) ≤ 2 · optMKD. �	

3 Single-Demand Facility Location

In the single-demand facility location problem, one is given a set of facilities F ,
where each facility i ∈ F has capacity ui, opening cost fi, and there is a per-unit
cost ci to serve the demand, which requires D units of the commodity. The goal
is to select a subset of facilities to open, S ⊆ F , such that the combined cost
of opening the facilities and serving the demand is minimized. The natural IP
formulation for this problem is

optFL := min
∑
i∈F

(fiyi + Dcixi) (FL-IP)

s.t.
∑
i∈F

xi = 1 (4)

uiyi ≥ Dxi (5)
yi ≥ xi ∀i ∈ F (6)
yi ∈ {0, 1} ∀i ∈ F

xi ≥ 0 ∀i ∈ F,

where each yi indicates if facility i ∈ F is open and each xi indicates the fraction
of D being served by facility i ∈ F . The same example from the minimum
knapsack problem also demonstrates the large integrality gap of this IP. We
once again turn to the flow-cover inequalities introduced by Carr et al. [5].

For these inequalities, we once again consider a subset of facilities A ⊆ F such
that u(A) < D, and let D(A) = D − u(A). This means that even if all of the
facilities in the set A are opened, we must open enough facilities in F \ A such
that we will be able to assign the remaining demand D(A). But certainly for
any feasible integer solution, a facility i ∈ F \ A cannot contribute more than
min{Dxi, ui(A)yi} towards the demand D(A). So if we partition the remaining
orders of F \ A into two sets F1 and F2, then for each i ∈ F1 we will consider
its contribution as Dxi, and for each i ∈ F2 we will consider its contribution as
ui(A)yi. The total contribution of these facilities must be at least D(A), so if
we let F be the set of all 3-tuples that partition F into three sets, we obtain the
following LP

optFLP := min
∑
i∈F

(fiyi + Dcixi) (FL-P)

s.t.
∑
i∈F1

Dxi +
∑
i∈F2

ui(A)yi ≥ D(A) ∀(F1, F2, A) ∈ F (7)

xi, yi ≥ 0 ∀i ∈ F,

294 T. Carnes and D. Shmoys

and by the validity of the flow-cover inequalities argued above we have that every
feasible integer solution to (FL-IP) is a feasible solution to (FL-P). The dual of
this LP is

optFLD := max
∑

(F1,F2,A)∈F
D(A)v(F1, F2, A) (FL-D)

s.t.
∑

(F1,F2,A)∈F :i∈F1

Dv(F1, F2, A) ≤ Dci ∀i ∈ F (8)

∑
(F1,F2,A)∈F :i∈F2

ui(A)v(F1, F2, A) ≤ fi ∀i ∈ F (9)

v(F1, F2, A) ≥ 0 ∀(F1, F2, A) ∈ F .

As in Section 2 the primal-dual algorithm begins with all variables at zero
and an empty subset of facilities, A. Before a facility is added to A, we will
require that it become tight on both types of dual constraints. To achieve this
we will leave each facility in F1 until it becomes tight on constraint (8), move it
into F2 until it is also tight on constraint (9), and only then move it into A. As
before the algorithm terminates once the set A has enough capacity to satisfy
the demand, at which point we label our final solution S.

Algorithm 2: Primal-Dual for Single-Demand Facility Location
x, y, v ← 0
F1 ← F
F2, A← ∅
while D(A) > 0 do

Increase v(F1, F2, A) until a dual constraint becomes tight for facility i
if i ∈ F1 then /* i tight on (8) but not on (9) */

Move i from F1 into F2

else /* else i tight on (8) and (9) */
xi ← ui(A)/D
yi ← 1
Move i from F2 into A

S ← A

Clearly Algorithm 2 terminates with a feasible solution to (FL-IP) since all
of the demand is assigned to facilities that are fully opened.

Theorem 2. Algorithm 2 terminates with a solution of cost no greater than
2 · optFL.

Proof. Let � denote the final facility selected by Algorithm 2. By the same rea-
soning as in Section 2 we have

D(S \ {�}) > 0⇒ D − u(S \ {�}) > 0⇒ u(S \ {�}) < D.

Primal-Dual Schema for Capacitated Covering Problems 295

The variable v(F1, A) is positive only if A ⊆ S \ {�}. If a facility is in S then it
must be tight on both constraints (8) and (9) so

∑
i∈F

(fiyi + Dcixi) =
∑
i∈S

(fi + Dcixi)

=
∑
i∈S

⎡
⎣ ∑

(F1,F2,A)∈F :i∈F2

ui(A)v(F1, F2, A) + xi

∑
(F1,F2,A)∈F :i∈F1

Dv(F1, F2, A)

⎤
⎦ ,

as in Section 2 we can simply reverse the order of summation to get

∑
i∈F

(fiyi + Dcixi) =
∑

(F1,F2,A)∈F
v(F1, F2, A)

[∑
i∈S∩F2

ui(A) +
∑

i∈S∩F1

Dxi

]
.

Recall that at the last step of Algorithm 2, facility � was assigned D(S \ {�})
amount of demand. Since D(A) only gets smaller as the algorithm progresses, we
have that regardless of what summation above the facility � is in, it contributes
no more than D(A). All of the other terms can be upper bounded by the actual
capacities and hence

∑
i∈F

(fiyi + Dcixi) =
∑

(F1,F2,A)∈F
v(F1, F2, A) [u(S \ {�})− u(A) + D(A)]

<
∑

(F1,F2,A)∈F
2D(A)v(F1, F2, A) ≤ 2 · optFLD,

where the strict inequality above follows from the observation made earlier. �	

4 Single-Item Lot-Sizing with Linear Holding Costs

In the single-item lot-sizing problem, one is given a planning period consisting of
time periods F := {1, . . . , T}. For each time period t ∈ F , there is a demand, dt,
and a potential order with capacity ut, which costs ft to place, regardless of the
amount of product ordered. At each period, the total amount of product left over
from the previous period plus the amount of product ordered during this period
must be enough to satisfy the demand of this period. Any remaining product is
held over to the next period, but incurs a cost of ht per unit of product stored.
If we let

hst =
t−1∑
r=s

hr

and set htt = 0 for all t ∈ F , then we obtain a standard IP formulation for this
problem as follows

296 T. Carnes and D. Shmoys

optLS := min
T∑

s=1

fsys +
T∑

s=1

T∑
t=s

hstdtxst (LS-IP)

s.t.
t∑

s=1

xst = 1 ∀t (10)

T∑
t=s

dtxst ≤ usys ∀s (11)

xst ≤ ys ∀s ≤ t (12)
ys ∈ {0, 1} ∀s
xst ≥ 0 ∀s ≤ t.

where the ys variables indicate if an order has been placed at time period s, and
the xst variables indicate what fraction of the demand dt is being satisfied from
product ordered during time period s. This formulation once again suffers from
a bad integrality gap, which can be demonstrated by the same example as in the
previous two sections. We introduce new flow-cover inequalities to strengthen
this formulation.

The basic idea is similar to the inequalities used in sections 2 and 3. We would
like to consider a subset of orders, A, where even if we place all the orders in
A and use these orders to their full potential, there is still unmet demand. In
the previous cases, the amount of unmet demand was D(A) = D − u(A). Now,
however, that is not quite true, since each order s is capable of serving only the
demand points t where t ≥ s. Instead, we now also consider a subset of demand
points B, and define d(A, B) to be the total unmet demand in B, when the
orders in A serve as much of the demand in B as possible. More formally

d(A, B) := min d(B) −
∑
s∈A

∑
t≥s:t∈B

dtxst (RHS-LP)

s.t.
t∑

s=1

xst ≤ 1 ∀t (13)

T∑
t=s

dtxst ≤ us ∀s (14)

xst ≥ 0 ∀s ≤ t.

As before, we would also like to restrict the capacities of the orders not in A.
To do this, we define

us(A, B) := d(A, B) − d(A ∪ {s}, B), (15)

which is the decrease in remaining demand that would result if order s were
added to A. (This reduces to the same us(A) as defined in the previous sections
when considered in the framework of the earlier problems.) We once again par-
tition the remaining orders in F \ A into two sets, F1 and F2, and count the

Primal-Dual Schema for Capacitated Covering Problems 297

contribution of orders in F1 as
∑

t dtxst and orders in F2 as us(A, B)ys. This
leads to the following LP, where once again F is the set of all 3-tuples that
partition F into three sets.

optLSP := min
T∑

s=1

fsys +
T∑

s=1

T∑
t=s

hstdtxst (LS-P)

s.t.
∑

s∈F1,
t∈B

dtxst +
∑
s∈F2

us(A, B)ys≥ d(A, B) (16)
∀(F1, F2, A) ∈ F , B ⊆ F

xst, ys ≥ 0 ∀s, t.

Lemma 1. Any feasible solution to (LS-IP) is a feasible solution to (LS-P).

Proof. Consider a feasible integer solution (x, y) to (LS-IP) and let S := {s :
ys = 1}. Now for any (F1, F2, A) ∈ F and B ⊆ F we know

∑
s∈F1,
t∈B

dtxst ≥ d((F2 ∩ S) ∪A, B),

since there is no way to assign demand from B to orders in (F2 ∩S)∪A without
leaving at least d((F2 ∩ S) ∪ A, B) amount of demand unfulfilled. Thus at least
that amount of demand must be served by the other orders in S, namely those
in F1. Let k := |F2∩S| and let s1, . . . , sk denote the elements of that set in some
order. Furthermore let Si := {s1, . . . , si} for each 1 ≤ i ≤ k, so Sk = F2 ∩ S.
Then by repeated use of (15) we have

∑
s∈F1,
t∈B

dtxst ≥ d((F2 ∩ S) ∪A, B)

= d(((F2 ∩ S) ∪A) \ S1, B)− us1(((F2 ∩ S) ∪A) \ S1, B)

= d(((F2 ∩ S) ∪A) \ Sk, B)−
k∑

i=1

usi(((F2 ∩ S) ∪A) \ Si, B)

= d(A, B) −
k∑

i=1

usi(((F2 ∩ S) ∪A) \ Si, B)

≥ d(A, B) −
∑

s∈F2∩S

us(A, B)

≥ d(A, B) −
∑
s∈F2

us(A, B)ys,

where the inequalities follow since us(A, B) is increasing as elements are removed
from A. Thus (x, y) satisfies all of the flow-cover inequalities (16). �	

298 T. Carnes and D. Shmoys

The dual of (LS-P) is

optLSD := max
∑

(F1,F2,A)∈F
d(A, B)v(F1 , F2, A, B) (LS-D)

s.t.
∑

(F1,F2,A)∈F ,B⊆F :
s∈F1,t∈B

v(F1, F2, A, B) ≤ hst ∀s ≤ t (17)

∑
(F1,F2,A)∈F ,B⊆F :

s∈F2

us(A, B)v(F1, F2, A, B) ≤ fs ∀s (18)

v(F1, F2, A, B) ≥ 0 ∀(F1, F2, A) ∈ F , B ⊆ F,

where we simply divided constraint (17) by dt.
Before we get to a primal-dual algorithm, we must first introduce some nota-

tion and associated machinery.

et := dt

[
1−

t∑
r=1

xrt

]
- amount of demand currently unsatisfied in period t

We define Fill(A, B) to be the following procedure that describes how to assign
demand from B to orders in A. We consider the orders in A in arbitrary order,
and for each order we serve as much demand as possible, processing demands
from earliest to latest.

In the previous two sections, there was effectively only one demand, and so we
never had to be concerned about how demand is assigned once an item or facility
is chosen. Now there are many demand points, and so we must be careful that
as we maintain our solution set A, we are serving as much demand as possible
from the orders in A. The way the primal-dual algorithm will assign demand
will correspond with how the Fill procedure works, and we show that this is a
maximal assignment.

Lemma 2. If we start from an empty demand assignment and run Fill(A, B),
then we obtain a demand assignment such that e(B) = d(A, B). Thus, Fill

produces an assignment that is optimal for (RHS-LP).

Proof. Consider the latest time period t ∈ B where e(t) > 0. All orders at time
periods at or before t must be serving up to capacity, since otherwise they could
have served more of demand dt. All orders after time period t could not have
served any more demand in B since all demand points in B after t are fully
served. �	
Just as in the previous two sections, the primal-dual algorithm initializes the
variables to zero and the set A to the empty set. As in Section 3, we initialize F1

to be the set of all orders, and an order will become tight first on constraint (17),
when it will be moved to F2, and then tight on (18), when it will be moved to A.
Unlike in Section 3, however, constraint (17) consists of many different inequal-
ities for the same order. This difficulty is averted since all the constraints (17)

Primal-Dual Schema for Capacitated Covering Problems 299

for a particular order will become tight at the same time, as is proved below in
Lemma 3. This is achieved by slowly introducing demand points into the set B.
Initially, B will consist only of the last demand point, T . Every time an order
becomes tight on all constraints (17), it is moved from F1 into F2, and the de-
mand point of that time period is added to B. In this way we always maintain
that F1 is a prefix of F , and B is the complementary suffix. When an order s
becomes tight on constraint (18), we move it to A and assign demand to it by
running the procedure Fill(s, B). Additionally we create a reserve set of orders,
Rs, for order s, that consists of all orders earlier than s that are not in F1 at
the time s was added to A. Finally, once all of the demand has been assigned to
orders, we label the set of orders in A as our current solution, S∗, and now enter
a clean-up phase. We consider the orders in the reverse order in which they were
added to A, and for each order, s, we check to see if there is enough remaining
capacity of the orders that are in both the reserve set and our current solution,
S∗ ∩Rs, to take on the demand being served by s. If there is, then we reassign
that demand to the orders in S∗∩Rs arbitrarily and remove s from our solution
S∗. When the clean-up phase is finished we label the nodes in S∗ as our final
solution, S.

Algorithm 3: Primal-Dual for Single-Item Lot-Sizing
xst, ys ← 0
F1 ← F
F2, A← ∅
B ← {T}
while d(A,F) > 0 do

Increase v(F1, F2, A,B) until dual constraint becomes tight for order s
if s ∈ F1 then /* s tight on (17) but not on (18) */

Move s from F1 into F2

B ← F \ F1

else /* else s tight on (17) and (18) */
ys ← 1
Fill(s, B)
Move s from F2 into A
Rs ← {r ∈ F \ F1 : r < s}

S∗ ← A /* start clean-up phase */

for s← last order added to A to first order added to A do
if remaining capacity of orders in S∗ ∩ Rs is enough to serve demand of s
then

Remove s from solution S∗

ys, xst ← 0 /* unassign demand of s */

Fill(S∗ ∩Rs, F) /* reassign to reserve orders */

S ← S∗

Lemma 3. All of the constraints (17) for a particular order become tight at the
same time, during the execution of Algorithm 3.

300 T. Carnes and D. Shmoys

Proof. We instead prove an equivalent statement: when demand t is added to B,
then for any order s ≤ t the slack of the constraint (17) corresponding to s and
demand t′ is hst for any t′ ≥ t. This statement implies the lemma by considering
s = t, which implies all constraints (17) for s become tight at the same time.
We prove the above statement by (backwards) induction on the demand points.
The case where t = T clearly holds, since this demand point is in B before any
dual variable is increased, and hence the slack of constraint (17) for order s and
demand T is hsT . Now assume the statement holds for some t ≤ T . If we consider
order s = t− 1 then by the inductive hypothesis the slack of all constraints (17)
for s and demand t′ ≥ t is hst. Hence the slack of all constraints (17) for orders
s′ ≤ s decreases by hst between the time t is added to B and when t−1 is added
to B. Then by the inductive hypothesis again, we have that for any order s′ ≤ s
and any demand t′ ≥ t, when t− 1 is added to B the slack of the corresponding
constraint (17) is

hs′t − hst =
t−1∑
r=s′

hr −
t−1∑
r=s

hr =
t−1∑
r=s′

hr − ht−1 =
t−2∑
r=s′

= hs′,t−1.

Hence the statement also holds for t− 1. �	
Define � to be

� = �(F1, F2, A) := max{s : s ∈ S ∩ F2} ∪ {0},

so � is the latest order in the final solution that is also in F2, for a given partition,
or if there is no such order then � is 0, which is a dummy order with no capacity.

Lemma 4. Upon completion of Algorithm 3, for any F1, F2, A, B such that
v(F1, F2, A, B) > 0, we have∑

s∈S∩F2

us(A, B) +
∑

s∈S∩F1

∑
t∈B:t≥s

dtxst < d(A, B) + u�(A, B).

Proof. First we consider the case when S ∩ F2 �= ∅. Here the first summation
is empty, so we just need to show the bound holds for the second summation.
We know that any order s ∈ S ∩ F1 is not in the reserve set for any order in
A. This follows since F1 decreases throughout the course of the algorithm, so
since s is in F1 at this point, then clearly s was in F1 at any point previously,
in particular when any order in A was originally added to A. Hence no demand
that was originally assigned to an order in A was ever reassigned to an order
in F1. But from Lemma 2 we know that only an amount d(A, B) of demand from
demand points in B is not assigned to orders in A, thus orders in F1 can serve
at most this amount of demand from demand points in B and we are done.

Otherwise it must be the case that S ∩ F2 �= ∅, hence � corresponds to a real
order that was not deleted in the clean-up phase. By the way � was chosen we
know that any other order in S ∩ F2 is in an earlier time period than �, and
since these orders were moved out of F1 before � was added to A, they must

Primal-Dual Schema for Capacitated Covering Problems 301

be in the reserve set R�. However, since � is in the final solution, it must be
the case that when � was being considered for deletion the orders in the reserve
set that were still in the solution did not have sufficient capacity to take on the
demand assigned to �. Thus if we let x′ denote the demand assignment during
the clean-up phase when � was being considered, then∑

s∈(S∩F2)\{�}
us(A, B) ≤ u((S ∩ F2) \ {�}) <

∑
s∈S∩F2
t∈B:t≥s

dtx
′
st.

None of the orders in A had been deleted when � was being considered for dele-
tion, so only an amount d(A, B) of the demand in B was being served by orders
outside of A. As argued previously, none of the orders in F1 took on demand
being served by orders in A, but they also did not take on demand being served
by orders in S ∩ F2, since these orders were never deleted. Thus we can upper
bound the amount of demand that orders from S ∩ F2 could have been serving
at the time order � was being considered for deletion as follows∑

s∈S∩F2
t∈B:t≥s

dtx
′
st ≤ d(A, B)−

∑
s∈S∩F1
t∈B:t≥s

dtxst.

The desired inequality is obtained by rearranging terms and adding u�(A, B) to
both sides. �	
We are now ready to analyze the cost of the solution.

Theorem 3. Algorithm 3 terminates with a solution of cost no greater than
2 · optLS.

Proof. As in the previous two sections, we can use the fact that all of the orders
in the solution are tight on all constraints (17) and (18).

∑
s∈S

[
fs +

T∑
t=s

dthstxst

]

=
∑
s∈S

⎡
⎢⎢⎣ ∑

(F1,F2,A)∈F ,B⊆F :
s∈F2

us(A, B)v(F1, F2, A, B)

+
T∑

t=s

dtxst

∑
(F1,F2,A)∈F ,B⊆F :

s∈F1,t∈B

v(F1, F2, A, B)

⎤
⎥⎥⎦

=
∑

(F1,F2,A)∈F ,B⊆F

v(F1, F2, A, B)

⎡
⎣ ∑

s∈S∩F2

us(A, B) +
∑

s∈S∩F1

∑
t∈B:t≥s

dtxst

⎤
⎦.

302 T. Carnes and D. Shmoys

Now we can apply Lemma 4 and achieve the desired result:

∑
s∈S

[
fs +

T∑
t=s

dthstxst

]
<

∑
(F1,F2,A)∈F ,B⊆F

v(F1, F2, A, B) [d(A, B) + u�(A, B)]

≤
∑

(F1,F2,A)∈F ,B⊆F

2d(A, B)v(F1, F2, A, B)

≤ 2 · optLSD. �	
Acknowledgement. We would like to thank Retsef Levi for many helpful dis-
cussions.

References

1. Aardal, K., Pochet, Y., Wolsey, L.A.: Capacitated facility location: valid inequali-
ties and facets. Math. Oper. Res. 20(3), 562–582 (1995)

2. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm
for the generalized Steiner problem on networks. SIAM J. Comput. 24(3), 440–456
(1995)

3. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2(2), 198–203 (1981)

4. Bertsimas, D., Teo, C.P.: From valid inequalities to heuristics: a unified view
of primal-dual approximation algorithms in covering problems. Operations Re-
search 46(4), 503–514 (2003)

5. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: Proceedings of the
11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 106–115 (2000)

6. Chuzhoy, J., Naor, J.: Covering problems with hard capacities. SIAM J. Com-
put. 36(2), 498–515 (2006)

7. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3),
233–235 (1979)

8. Even, G., Levi, R., Rawitz, D., Schieber, B., Shahar, S., Sviridenko, M.: Algorithms
for capacitated rectangle stabbing and lot sizing with joint set-up costs. ACM
Trans. on Algorithms (submitted, 2007)

9. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved
approximation algorithm for vertex cover with hard capacities. Journal of Com-
puter and System Sciences 72(1), 16–33 (2006)

10. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

11. Levi, R., Lodi, A., Sviridenko, M.: Approximation algorithms for the multi-
item capacitated lot-sizing problem via flow-cover inequalities. In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 454–468. Springer, Hei-
delberg (2007)

12. Levi, R., Roundy, R., Shmoys, D.B.: Primal-dual algorithms for deterministic in-
ventory problems. Math. Oper. Res. 31(2), 267–284 (2006)

13. Sharma, Y., Williamson, D.: Personal communication (2007)
14. van Hoesel, C.P.M., Wagelmans, A.P.M.: Fully polynomial approximation schemes

for single-item capacitated economic lot-sizing problems. Math. Oper. Res. 26(2),
339–357 (2001)

Offline and Online Facility Leasing�

Chandrashekhar Nagarajan and David P. Williamson

School of Operations Research and Information Engineering, Cornell University,
Ithaca, NY 14853, USA

chandra@orie.cornell.edu, dpw@cs.cornell.edu

Abstract. We study the problem of leasing facilities over time, follow-
ing the general infrastructure leasing problem framework introduced by
Anthony and Gupta [1]. If there are K different lease types, Anthony
and Gupta give an O(K)-approximation algorithm for the problem. We
are able to improve this to a 3-approximation algorithm by using a vari-
ant of the primal-dual facility location algorithm of Jain and Vazirani
[5]. We also consider the online version of the facility leasing problem,
in which the clients to be served arrive over time and are not known
in advance. This problem generalizes both the online facility location
problem (introduced by Meyerson [6]) and the parking permit problem
(also introduced by Meyerson [7]). We give a deterministic algorithm for
the problem that is O(K log n)-competitive. To achieve our result, we
modify an O(log n)-competitive algorithm of Fotakis [2] for the online
facility location problem.

1 Introduction

A current trend in business and logistics is that of a non-asset owning company:
for example, a trucking company that owns no trucks, but instead subcontracts
the work out to other trucking companies, and makes its profits by efficiently
combining the various trucking jobs that it receives [8]. Such organizations rely
heavily on optimization to find the efficiencies that make their companies prof-
itable. Some of the optimization problems that arise in such settings have been
well-studied in the literature, but some lead to previously unconsidered varia-
tions. For instance, in the location theory literature, it is usually assumed that
the facilities opened are available to serve customer demand from the moment
of opening onwards. However, a non-asset owning company may instead prefer
to serve customers by subcontracting or leasing the facilities needed to serve
demands at some point in time, then allowing the lease to elapse as demand
subsides.

In this paper, we will consider a formalization of this problem known as the
facility leasing problem, a variant of the well-studied uncapacitated facility lo-
cation problem; this variant was introduced by Anthony and Gupta [1]. In this
problem, we are given a set F of potential facilities we may lease, and a set D
of potential clients. For each potential client j ∈ D and potential facility i ∈ F ,
� Both authors supported in part by NSF CCF-0514628.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 303–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

304 C. Nagarajan and D.P. Williamson

there is a cost cij associated with serving client j from facility i. We assume
these costs obey the triangle inequality, which is a reasonable assumption if the
clients and facilities are in a metric space, and the service cost is dependent on
the distance between the client and facility. There are distinct time periods, and
in each time period t, a set Dt ⊆ D of clients arrives and must be served from
some facility open during time period t. There are K different possible lease
lengths, l1, . . . , lK , and we can lease a facility i ∈ F starting at any time period
t for lease length lk at a cost fk

i ; that is, the facility i is then open during time
units in [t, t + lk) and can serve any client j arriving during this time interval
at cost cij . Furthermore, the cost of the lease is allowed to depend both on the
facility and the lease type. The goal is to minimize the cost of the leases plus the
total cost of serving each client in each set Dt from some facility open during
time t.

In the offline version of the problem, we are given the number of time periods
T as input, as well as the set of clients Dt for each time period. In the online
version of the problem, we do not know the number of time periods, nor do we
know the client sets. In each new time period t, we see the client set Dt, and
we can sign new leases starting at time t or some time prior (e.g. we can sign a
lease for the month of November in mid-November). We then must assign each
client in Dt to some facility open at time t.

Since the offline version of the problem contains the uncapacitated facility
location problem as a special case, the problem is NP-hard. We therefore study
approximation algorithms for the problem. An α-approxi-mation algorithm runs
in polynomial time and finds a solution of cost at most α times the value of
an optimal solution. For the online version of the problem, we use the notion
of competitive ratio to evaluate our algorithms. We say that an algorithm is
α-competitive if its cost after T time steps is no more than α times the value of
an optimal solution to the offline problem.

The offline facility leasing problem was introduced by Anthony and Gupta [1]
in the context of more general infrastructure leasing problems. They show an
interesting and surprising connection of infrastructure leasing problems with K
lease types to K-stage stochastic optimization problems. In particular, given an
α-approximation algorithm for the K-stage stochastic problem, they derive an
O(α)-approximation algorithm for the related leasing problem. For the facility
leasing problem, therefore, they obtain an O(K)-approximation algorithm from
an O(K)-approximation algorithm for the K-stage stochastic facility location
problem due to Swamy and Shmoys [9].

Our first result is a 3-approximation algorithm for the offline facility leasing
problem. To achieve this, we use a modification of the primal-dual algorithm for
the uncapacitated facility location problem due to Jain and Vazirani [5]. It is
relatively straightforward to give a linear programming relaxation of the facility
leasing problem; for the dual of this LP, we increase dual variables uniformly for
each client/time pair (j, t) for j ∈ Dt until a dual constraint associated with a
facility lease becomes tight. As with Jain and Vazirani, the trick to obtaining
a good approximation algorithm is to open a subset of the tight leases. In our

Offline and Online Facility Leasing 305

case, however, the aspect of time makes this step of the algorithm slightly more
complicated. We resolve this by signing longer leases than the LP indicates; we
are then able to obtain the same guarantee as Jain and Vazirani.

We then turn to the online version of the problem. The online facility leasing
problem generalizes two problems introduced by Meyerson, the online facility
location problem [6] and the parking permit problem [7]. In the online facility
location problem, once a facility is opened, it is open for the rest of time; we can
consider this as a facility leasing problem with a single lease type, where the
lease length is indefinite. Meyerson [6] gives an O(log n)-competitive algorithm
for the problem, where n is the number of clients that appear. This is improved
by Fotakis [3] to an O(log n

log log n)-competitive algorithm; furthermore, the author
shows that no better competitive ratio is possible for the problem. Another pa-
per of Fotakis [2] gives a simple O(log n)-competitive algorithm for the problem
whose choices are guided by solutions to dual of a linear programming relaxation
of the problem. Curiously, the competitive ratio of the algorithm is not analyzed
in terms of this dual. In the parking permit problem, a professor walks to work
on days when it is sunny, and drives when it rains. If she drives, then she must
have a parking permit valid for that day. Parking permits can be purchased for
various lengths of time, and given that the weather is unknown, the question is
which permits to buy and when. This problem corresponds to the online facil-
ity leasing with a single facility i, a single client j, and a service cost cij = 0;
buying a parking permit corresponds to leasing the facility i for the correspond-
ing length of time and a rainy day corresponds to a demand of client j in that
time period. Meyerson gives a deterministic O(K)-competitive algorithm for the
parking permit problem, and a randomized O(log K)-competitive algorithm. He
also shows that any deterministic algorithm has competitive ratio Ω(K), and
any randomized algorithm has competitive ratio Ω(log K).

Our second main result is an O(K log n)-competitive algorithm for the online
facility leasing problem. No previous algorithm is known for this problem. We
first reanalyze the simple O(log n)-competitive algorithm of Fotakis by using a
dual fitting argument. We show that his algorithm can be viewed as constructing
an infeasible solution to the dual of a linear relaxation of the facility leasing
problem, such that the cost of the primal solution given by the online algorithm
is at most a constant factor times the value of the dual. We then show that
scaling the dual variables down by O(log n) causes it to become feasible, so that
the primal cost is at most O(log n) times the value of a feasible dual, giving
the result. We then give a modification of Fotakis’ algorithm to the case of
facility leasing. Our algorithm is a generalization of both Fotakis’ and Meyerson’s
algorithms in the sense that for the online facility location problem it reduces to
Fotakis’ algorithm and for the parking permit problem it reduces to Meyerson’s
algorithm.

Our paper is structured as follows. In Section 2, we introduce the linear pro-
gramming relaxation we will use throughout the paper, as well as some basic
definitions and terminology. In Section 3, we give our offline 3-approximation al-
gorithm for the problem. Section 4 gives Fotakis’ O(log n)-competitive algorithm

306 C. Nagarajan and D.P. Williamson

for the online facility location algorithm and our analysis of it. Section 5 gives
our extension of Fotakis’ algorithm to the online facility leasing problem. We give
some open problems in Section 6. Some proofs are omitted for space reasons.

2 Definitions and Terminology

We have a set of potential facilities locations F which can be opened to serve
any subset of clients D which arrive over a period of time from 1 to T . In the
offline problem T is part of the input, while for the online problem T is unknown.
For every time period t ∈ [T] every client in the set Dt wants to be served by a
facility that is open at time t. A facility can be leased for an interval [t, t + lk)
at a cost of fk

i for k ∈ L where L is the different set of leases available and
any client can be served by the facility leased during this particular interval.
For simplicity of notation, we let Ik

t denote the time interval [t, t + lk). We let
K = |L|. We abuse the definition of a facility and say that triple (i, k, t) is a
facility at location i ∈ F leased for a duration of lk starting at time t. Similarly,
a client (j, t) represents j ∈ Dt seeking a facility from which to be served at time
t. For simplicity, we’ll denote the set of facility triples (i, k, t) as F , and the set
of client demand pairs (j, t) as D. We introduce here some notation we will use
throughout the paper. We use (a)+ ≡ max(0, a). For a set X ⊆ F and client
j ∈ D, we define c(X, j) = mini∈X cij . For a set X ⊆ F and client (j, t) ∈ D, we
define c(X, (j, t)) = min(i,k,t′)∈X,t∈Ik

t′
cij .

In the offline version of the problem, we seek to find a set of facilities (the
facility locations and their leasing intervals) so as to minimize the sum of opening
costs of the facilities and the cost of connecting the clients to the nearest facility
open at that time. So we seek to find a set T ⊆ F of facilities so as to minimize∑

(i,k,t)∈T fk
i +

∑
(j,t)∈D min(i,k,t′)∈T ,t∈Ik

t′
cij .

In the online version of the problem, we must irrevocably assign each client in
Dt to some facility open at time t before we see the clients in Dt+1. If we later
open another, closer facility to (j, t) than the one it was originally assigned to,
we are not allowed to change its assignment.

In both cases, the following linear program is a relaxation of the problem. The
variable yikt indicates whether we open the facility i with lease type k at time t.
The variable xikt′,jt indicates whether client (j, t) is assigned to facility (i, k, t′)
to be served.

Min
∑

(i,k,t)∈F
fk

i yikt +
∑

(j,t)∈D

∑
(i,k,t′)∈F :t∈Ik

t′

cijxikt′,jt

subject to:
xikt′,jt ≤ yikt′ ∀(i, k, t′) ∈ F , (j, t) ∈ D∑
(i,k,t′)∈F :t∈Ik

t′

xikt′,jt ≥ 1 ∀(j, t) ∈ D

xikt′,jt, yikt ≥ 0 ∀(j, t) ∈ D, (i, k, t), (i, k, t′) ∈ F .

Offline and Online Facility Leasing 307

Taking the dual, we have

Max
∑

(j,t)∈D
vjt

subject to: ∑
(j,t)∈D

wikt′,jt ≤ fk
i ∀(i, k, t′) ∈ F (1)

vjt − wikt′,jt ≤ cij ∀(j, t) ∈ D, (i, k, t′) ∈ F , t ∈ Ik
t′

vjt, wikt′,jt ≥ 0 ∀(j, t) ∈ D, (i, k, t′) ∈ F .

Our algorithms will work by using the dual to construct an integer solution
to the primal problem. In the offline case, we construct a feasible dual such that
the primal costs no more than 3 times the value of the dual. In the online case,
we will construct an infeasible dual solution such that the primal costs no more
than K + 1 times the value of the dual, and scaling the dual variables vjt down
by a factor of O(log n) makes the dual solution feasible. This gives us our two
central results.

3 An Algorithm for Offline Facility Leasing

In this section, we give a 3-approximation algorithm for the offline facility leasing
problem. The approach we follow is similar to the primal-dual facility location
algorithm by Jain and Vazirani [5]. The dual LP used is given in Section 2.

3.1 The Algorithm

As in [5], the algorithm proceeds in two phases. In Phase 1, the algorithm op-
erates in a primal-dual fashion determining a set of temporarily open facilities
(triplets) and assigns each client (j, t) to a temporarily open facility. In Phase 2
the algorithm chooses a subset of these facilities to open permanently and reas-
signs the clients to the permanently open facilities. Phase 1 of our algorithm is
simply the extension of [5] to our setting; the main difference of our algorithm
is the set of (facility, lease type, time) triplets chosen to open in Phase 2.

Following [5], in the first phase we uniformly increase the dual variables vjt

associated with the clients (j, t) ∈ D. We implicitly maintain the dual variables
wikt′,jt = (vjt − cij)+. At some point, we will no longer be able to increase
the dual variables and maintain dual feasibility, for one of two reasons. First,
some constraint (1) will become tight for some facility (i, k, t) ∈ F ; that is, the
dual constraint is met with equality. In this case we declare the triple (i, k, t)
to be temporarily open. Let T be the set of temporarily open facilities. Sec-
ond, we might have vjt = cij for some temporarily open facility (i, k, t′) with
t ∈ Ik

t′ ; we can’t increase vjt further since this would force wikt′,jt > 0 and vi-
olate the corresponding constraint (1). We say that a client (j, t) contributes to
facility (i, k, t′) if t ∈ Ik

t′ and vjt > cij ; it is connected to the facility if t ∈ Ik
t′

308 C. Nagarajan and D.P. Williamson

and vjt ≥ cij . After either event happens, we continue increasing the duals of all
clients not connected to a temporarily open facility. Eventually, all clients are
connected to a temporarily open facility, and Phase 1 ends.

In Phase 1, a client might have contributed towards opening multiple facilities.
However we want to ensure that a client contributes only to a single facility lease.
Phase 2 ensures this by opening only a subset of these temporarily open facilities.
To run Phase 2, we construct a graph G(V, E) with vertex set V as the set of
temporarily opened facilities in T in Phase 1. We add an edge between two
facilities in G if there is a client that contributes to both the facilities. As in [5],
we now find a maximal independent set in G; here, however, we give priority for
facilities with longer lease length to be in the independent set. In other words,
we order the temporarily open facilities according to non-increasing lease lengths
then greedily add facilities to the independent set following this order. This gives
an independent set I ⊆ T with the following properties:

1. The independent set is maximal.
2. For every temporarily opened facility not in the independent set there is a

facility in the independent set with same or longer lease length adjacent to
it in the graph G.

Given the set I, for each triple (i, k, t) ∈ I, we sign three leases, the one corre-
sponding to (i, k, t), then the two leases at facility i of type k that start at time
t+ lk and end at time t; that is, we open (i, k, t), (i, k, t+ lk), and (i, k, (t− lk)+).
Let the set of facilities opened be I′. Note that |I′| = 3 · |I|.

3.2 The Analysis

Consider any client (j, t). If it is connected to a facility (i, k, t′) ∈ I then we assign
(j, t) to that facility and say that (j, t) is directly connected to (i, k, t′). If it is
not connected to a facility in I, then since (j, t) connected to some temporarily
open facility (̂i, k̂, t̂), and I is a maximal independent set in G, this temporarily
open facility must be adjacent to some (i, k, t′) ∈ I via an edge of G. We will
indirectly connect client (j, t) to one of the three facilities opened corresponding
to (i, k, t′). We claim that t ∈ [(t′ − lk)+, t′ + lk), so that one of these facilities
can serve (j, t). See Fig. 1 for an illustration. To prove the claim, observe that

(i,k,t’)

Time
t’

~

kt’+lt’−l

(i,k,t’−l) (i,k,t’+l)k

(i, k, t)^ ^ ^
~

(j,t)

k kt’+2l

k

(j, t)

Fig. 1. Illustration: (j, t) indirectly connected to (i, k, t′), t ∈ [(t′ − lk)+, t′ + 2lk)

Offline and Online Facility Leasing 309

since there is an edge between (̂i, k̂, t̂) and (i, k, t′) in G, there is some client (j̃, t̃)
that contributes to both facilities. This implies that t̃ ∈ I k̂

t̂
∩ Ik

t′ . Furthermore,
by property (2) of I, the length of the lease lk̂ of the temporarily opened facility
(̂i, k̂, t̂) is no longer than the lease lk. Thus the interval I k̂

t̂
⊆ [(t′ − lk)+, t′ + lk).

Since (j, t) connects to (̂i, k̂, t̂), then t ∈ I k̂
t̂
⊆ [(t′ − lk)+, t′ + lk), and our claim

is proven.
We show that three times the sum of dual variables of the clients pays for the

facility leasing costs and the cost of serving clients from the nearest open facility.
For each client (j, t) directly connected to a facility (i, k, t′), let vf

jt = vjt − cij

and let vs
jt = cij . For each client (j, t) indirectly connected to a facility (i, k, t′),

let vf
jt = 0 and vs

jt = vjt. Note that vjt = vf
jt + vs

jt for all clients (j, t).

Lemma 1. For each facility (i, k, t′) in I,∑
(j,t) directly connected to (i,k,t′)

vf
jt = fk

i .

Lemma 2 ∑
(i,k,t)∈I′

fk
i = 3 ·

∑
(j,t)∈D

vf
jt.

Lemma 3. For every client (j, t) indirectly connected to a facility (i, k, t′), the
connection cost cij ≤ 3 · vs

jt.

Let yikt = 1 for each (i, k, t) ∈ I′ and yikt = 0 otherwise. For each client (j, t)
let (i, k, t′) be the facility in I ′ which it is connected to, directly or indirectly.
Set xikt′,jt = 1 for all such client-facility pair. Note that (x,y) is primal feasible.
The theorem below follows directly from the preceding discussion.

Theorem 1. The primal feasible solution (x, y) and the dual feasible solution
(v, w) satisfy∑

(i,k,t)∈F
fk

i yikt +
∑

(j,t)∈D

∑
(i,k,t)∈F :t∈Ik

t′

cijxikt′,jt ≤ 3 ·
∑

(j,t)∈D
vjt ≤ 3 ·OPT.

Thus the algorithm is a 3-approximation algorithm for the offline facility leasing
problem.

4 Fotakis’ Online Facility Location Algorithm

In this section, we give Fotakis’ algorithm for the online facility location problem,
and restate the analysis of it as a dual-fitting argument. The algorithm will
construct an infeasible dual solution to the dual of Section 2 such that the cost
of the primal solution constructed is at most twice the dual objective. We’ll
then show that scaling the dual variables down by a factor of O(log n) will
give a feasible dual solution, yielding the competitive ratio of the algorithm. In
the next section, we’ll show how a modification of Fotakis’ algorithm and this
analysis gives our result for the online facility leasing problem.

310 C. Nagarajan and D.P. Williamson

4.1 The Algorithm

Note that in the case of the online facility location problem, we have a single
facility lease type and its duration is infinite; once a facility is opened it continues
to remain open. We denote the cost of the facility at i by fi.

The algorithm works as follows. We maintain an (infeasible) set of dual vari-
ables vjt, one for each client j ∈ Dt for all time periods thus far. We also maintain
a set X of facilities that have been opened so far, which is initially empty. Each
client (j, t) that has arrived at some prior point in time and been connected to
some facility in X bids (c(X, j)−cij)+ towards the facility cost of each unopened
facility i. When a set of clients Dt arrives, we sequence through the clients j ∈ Dt

in index order. We increase the dual variable vjt; client (j, t) bids (vjt − cij)+
towards the cost of each unopened facility i. We continue increasing vjt until
either vjt = ci′j for some previously opened facility i′ ∈ X , or the sum of the
bids on some unopened facility i is equal to its facility cost fi. In the former
case, we assign client (j, t) to the facility i′; in the latter case, we open facility
i, add i to X , and assign (j, t) to i. We then continue to the next facility in Dt.
Note that client (j, t) immediately reduces its bids on other unopened facilities
î from (vjt − cîj)+ to (c(X, j) − cîj)+ = (cij − cîj)+. The algorithm is summa-
rized in Algorithm 1. The algorithm is very similar to an algorithm of Jain et al.
[4] for the (offline) uncapacitated facility location problem, except that in that
algorithm all clients increase their dual variables simultaneously (since all are
known in advance), and clients whose bids are used to open an unopened facility
are then reassigned to that facility.

Algorithm 1. Fotakis’ algorithm for online facility location
X ← ∅; D ← ∅; t← 0
While true

For each j ∈ Dt

Increase vjt until vjt = cij for i ∈ X or (vjt − cij)+ +
�

(j′,t′)∈D(c(X, j′)−
cij′)+ = fi for i /∈ X

Assign (j, t) to i; X ← X ∪ {i}; D ← D ∪ {(j, t)}
t← t + 1

4.2 The Analysis

We first analyze the cost of the primal solution.

Lemma 4. The cost of the solution produced by the algorithm is at most
2

∑
(j,t)∈D vjt.

Proof. We show that both the service costs and the facility costs of the solution
are each bounded above by

∑
(j,t)∈D vjt, which will give the lemma. Note that

when a client (j, t) is assigned to a facility i, either it had made a bid on that fa-
cility and caused it to open, in which case (vjt−cij)+ > 0, implying vjt > cij , or
i was already open and vjt = cij . In either case, vjt is at least the service cost cij .

Offline and Online Facility Leasing 311

To bound the facility costs
∑

i∈X fi, we note that when we opened a facility
i, its cost was equal to the sum of the bids on that facility. We show that for
a given client (j, t), the sum of its accepted bids is at most vjt, which implies
that

∑
i∈X fi ≤

∑
(j,t)∈D vjt. In particular, we show that once the bid of client

(j, t) is used to open some facility i, all its other outstanding bids are reduced by
the amount bid towards i; since it bids at most vjt towards any facility at any
point in time, this is sufficient to prove the claim. Consider two facilities, i and
i′. Before (j, t) is connected to any facility, it bids (vjt − cij)+ towards the first
and (vjt − ci′j)+ towards the latter. If facility i is opened and (j, t) is assigned
to i, then (j, t) reduces its bid for i′ to (c(X, j)− ci′j)+ = (cij − ci′j)+; that is, it
reduced its bid for i′ by vjt − cij , exactly the bid accepted for opening facility i.
Similarly, if (j, t) is assigned to some facility, it bids towards unopened facilities i
and i′ (c(X, j)−cij)+ and (c(X, j)−ci′j)+ respectively. If its bid towards i is ac-
cepted, and i is opened, then it must have been the case that (c(X, j)−cij)+ > 0,
so that i is closer to j than any other facility in X . Once i is opened, it is added
to X so that the bid to i′ becomes (c(X ∪ i, j)− ci′j)+ = (cij − ci′j)+. The bid
towards i′ is reduced by c(X, j)− cij , exactly the bid accepted towards i.
�
The following lemma will be useful in bounding bids towards facilities in the
remainder of the proof.

Lemma 5. Consider clients (j, t) and (l, t′), such that j is considered before l,
so that we increase the dual of (j, t) before that of (l, t′). Then for X open when
we increase vlt′ , for any facility i, c(X, j)− cij ≥ vlt′ − cil − 2cij.

Let Hn be the nth harmonic number 1 + 1
2 + · · ·+ 1

n . Our goal is to show that
for α = 1/2Hn, and for any facility i,

∑
(j,t)∈D(αvjt − cij)+ ≤ fi. Thus scaling

down the dual solution v by 2Hn gives a feasible solution to the dual program
in Section 2. To prove this, we show the following lemma.

Lemma 6. For any S ⊆ D and any facility i,
∑

(j,t)∈S(αvjt − cij) ≤ fi.

Proof. For ease of exposition, we let S = {1, 2, . . . , p}, dropping the pair notation
for clients, with the understanding that we increase the dual variables for the
clients in the order of the indices. Consider any l ∈ S. At the point in time at
which we increase the dual for l, the total bids for facility i are (vl − cil)+ +∑

j<l(c(X, l)− cij)+ ≤ fi.
So we have

fi ≥ (vl − cil)+ +
∑

j<l(c(X, j)− cij)+ ≥ (vl − cil) +
∑

j<l(c(X, j)− cij)
≥ (vl − cil) +

∑
j<l(vl − cil − 2cij) ≥ l(vl − cil)− 2

∑
j<l cij ,

where the penultimate inequality follows from Lemma 5. Dividing both sides by
l we get 1

l fi ≥ (vl − cil) − 2
l

∑
j<l cij . Adding the inequality for all l in S and

observing that
∑p

l=1
2
l

∑
j<l cij =

∑p
l=1 2cil(Hp −Hl), gives

312 C. Nagarajan and D.P. Williamson

Hpfi ≥
p∑

l=1

(vl − cil)−
p∑

l=1

2cil(Hp −Hl)

=
p∑

l=1

(vl − 2cilHp) +
p∑

l=1

2cil

(
Hl − 1

2

)
≥

p∑
l=1

(vl − 2cilHp).

Dividing by 2Hp we get
∑p

l=1

(
vl

2Hp
− cil

)
≤ fi

2 ≤ fi. Since Hp ≤ Hn, then the
lemma statement holds.
�
Corollary 1. αv is a dual feasible solution.

The theorem below follows from the previous discussion.

Theorem 2. Fotakis’ algorithm gives a 4Hn-competitive algorithm for the on-
line facility location problem.

5 An Algorithm for Online Facility Leasing

Here, we modify Fotakis’ algorithm to give a O(K log n)-competitive algorithm
for online facility leasing problem. Our algorithm constructs a dual infeasible
solution and a primal feasible integral solution that costs no more than (K + 1)
times the dual objective function. Then we show that by scaling down the duals
by a factor of O(log n) we get a dual feasible solution yielding the required
competitive ratio. The main difference of our algorithm is that clients use their
dual variables to bid on the K different lease types at the same time, and bids
are reduced on leases of length k only as a lease of type k is opened. At a very
high level, the factor of O(K) comes from clients contributing to each lease type
simultaneously, and the O(log n) from the underlying online facility location
problem.

5.1 The Algorithm

First, following Meyerson [7] and Anthony and Gupta [1], it will be useful to
change the leases available to be somewhat more structured.

Lemma 7 (Lemma 2 [1]). Given an instance I of the facility leasing problem,
it can be converted into another instance I ′ of the facility leasing problem such
that leases of type k are only available at times t divisible by lk such that any
solution to I can be converted into a solution to I ′ that costs no more than twice
as much.

In particular, this implies an O(α)-competitive algorithm for the instances with
leases of this structure is O(α)-competitive for the general problem. From here
on, we assume that leases are structured in this way.

Following the ideas of the previous section, we maintain a set of dual variables
vjt for each j ∈ Dt. We also maintain a set of facilities X opened so far and set of

Offline and Online Facility Leasing 313

facilities Xk of lease length k opened so far. Every client (j, t) that has arrived at
some prior time bids (min[vjt, c(Xk, j)]−cij) towards a facility (i, k, t′) if t ∈ Ik

t′ .
We maintain the invariant that the sum of the bids of all the clients seen so far
to a facility is no more than the facility’s opening cost.

When a new client arrives, we increase the dual of that client until either
an the total bids towards some unopened facility is equal to its facility cost,
or the client’s dual is equal to its cost to receive service from an already open
facility, whichever occurs earlier. In first case, we open the facility, connect the
client to it, and reduce the bids of all clients contributing to this facility to other
unopened facilities of the same lease type k by the bid value of the client. In the
second case, the client is connected to the open facility. We then repeat these
steps for each of the arriving clients.

Algorithm 2. Online Leasing Algorithm
X ← ∅; Xk ← ∅; D ← ∅; t← 0
While true

For each j ∈ Dt

Increase vjt until vjt = cij for (i, k, t̂) ∈ X and t ∈ Ik
t̂

or (vjt − cij)+ +
�

(j′,t′)∈D,t′∈Ik
t̂

(min[vj′t′ , c(X
k, j′)]− cij′)+ = fk

i

for (i, k, t̂) /∈ X and t ∈ Ik
t̂

Assign (j, t) to (i, k, t̂); X ← X ∪ {(i, k, t̂)};
Xk ← Xk ∪ {(i, k, t̂)}; D ← D ∪ {(j, t)};

t← t + 1

5.2 The Analysis

Here we show that for α = 1
2(Hn+1) ,

∑
(j,t)∈D,t∈Ik

t′
(αvjt − cij)+ ≤ fk

i for any
facility (i, k, t′).

Lemma 8. For any S ⊆ D and any facility (i, k, t′),
∑

(j,t)∈S,t∈Ik
t′
(αvjt − cij)

≤fk
i .

Proof. Without loss of generality we assume that S consists only of clients (j, t)
such that t ∈ Ik

t′ as any other client (j, t) ∈ S such that t /∈ Ik
t′ will not contribute

to the summation. We say a client (j, t) is connected to an open facility (̂i, k, t̂)
if vjt ≥ cîj and t ∈ Ik

t̂
. Let S = {1, 2, . . . , p} where we index the clients in S

according to the order in which they became connected to a open facility of lease
length k in the algorithm. If there are clients which are connected to a facility of
lease type k in the same iteration of the algorithm, then we order them according
to non-increasing order of their vjt − cij . Note that we have dropped the pair
notation for the clients for ease of exposition.

Consider any client l ∈ S which was connected to a open facility of lease level
k at some point in time. Let Xk be the set of facilities of kth lease level that are
open at the start of the iteration in which l is first connected to an open facility

314 C. Nagarajan and D.P. Williamson

of kth level lease. Let h ≤ l be the first client in the ordering that was connected
to a kth level lease in the same iteration as the client l. Consider the invariant
for the facility (i, k, t′) at the time the client l became connected to a kth lease
type.

fk
i ≥

∑
h≤j≤l

(vj − cij)+ +
∑
j<h

(c(Xk, j)− cij)+

≥
∑

h≤j≤l

(vj − cij) +
∑
j<h

(c(Xk, j)− cij)

≥ (l − h + 1)(vl − cil) +
∑
j<h

(vl − cil − 2cij) (2)

≥ l(vl − cil)− 2
∑
j<l

cij (3)

Inequality (2) follows from the following claim and our ordering of the set S; we
know for all j with h ≤ j ≤ l, vj − cij ≥ vl − cil.

Claim. For any client j ∈ S which is connected to a kth level facility in an earlier
iteration than when l ∈ S is connected to a kth level facility, c(Xk, j) − cij ≥
vl − cil − 2cij .

Dividing Inequality (3) by l we get 1
l f

k
i ≥ (vl − cil) − 2

l

∑
j<l cij Let q be the

least index in S such that for all j > q, client j does not connect to any kth level
lease while the lease for (i, k, t′) is available. Then we know that the invariant at
the end of the lease gives

∑
j∈S:j>q(vj − cij) ≤ fk

i . Adding the inequality above
and the prior inequality for all l ∈ {1, . . . , q}, we get

(Hq + 1)fi ≥
p∑

l=1

(vl − cil)−
q∑

l=1

2
l

∑
j<l

cij

=
p∑

l=1

(vl − cil)−
q∑

l=1

2cil(Hq −Hl)

≥
p∑

l=1

(vl − 2cilHq) +
q∑

l=1

2cil

(
Hl − 1

2

)

≥
p∑

l=1

(vl − 2cilHq) ≥
p∑

l=1

(vl − 2cil(Hq + 1)).

Dividing by 2(Hq + 1) we get
∑p

l=1

(
vl

2(Hq+1) − cil

)
≤ fk

i

2 ≤ fk
i which proves

dual feasibility for vl

2(Hn+1) since Hq ≤ Hn.
�
Lemma 9. The cost of opening facilities in X is no more than K times the sum
of the duals of the clients.

Lemma 10. The sum of the connection costs of the clients to its assigned fa-
cilities is no more than the sum of the duals.

Offline and Online Facility Leasing 315

Corollary 2. αv is a dual feasible solution for α = 1/(2Hn + 1).

Theorem 3. The online facility leasing algorithm is a O(K log n)-com-petitive
algorithm.

6 Conclusion

The most interesting open question arising from this work is whether the
O(K log n) factor is nearly tight for a deterministic algorithm. It is possible that
the Ω(K) deterministic bound of Meyerson [7] for the parking permit problem
and the Ω(log n

log log n) bound of Fotakis [3] for the online facility location problem
can be combined to give a deterministic Ω(K log n

log log n) lower bound on the com-
petitive ratio of the facility leasing problem. Potentially, however, much better
bounds are possible. In particular, it would be interesting to consider randomized
online algorithms for the problem.

References

1. Anthony, B.M., Gupta, A.: Infrastructure leasing problems. In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 424–438. Springer, Hei-
delberg (2007)

2. Fotakis, D.: A primal-dual algorithm for online non-uniform facility location. Journal
of Discrete Algorithms 5, 141–148 (2007)

3. Fotakis, D.: On the competitive ratio for online facility location. Algorithmica
(2007); Published online October 24, 2007. Previous version in ICALP 2003

4. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: Greedy facility loca-
tion algorithms analyzed using dual fitting with factor-revealing LP. Journal of the
ACM 50, 795–824 (2003)

5. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and Lagrangian relaxation. Journal
of the ACM 48, 274–296 (2001)

6. Meyerson, A.: Online facility location. In: Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science, pp. 426–431 (2001)

7. Meyerson, A.: The parking permit problem. In: Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science, pp. 274–282 (2005)

8. Odyssey Logistics, http://www.odysseylogistics.com
9. Swamy, C., Shmoys, D.B.: Sampling-based approximation algorithms for multi-stage

stochastic optimization. In: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pp. 357–366 (2005)

http://www.odysseylogistics.com

Importance Sampling via
Load-Balanced Facility Location

Aaron Archer and Shankar Krishnan

AT&T Labs—Research, 180 Park Avenue, Florham Park, NJ 07932
{aarcher,krishnas}@research.att.com

Abstract. In this paper, we consider the problem of “importance sampling” from
a high dynamic range image, motivated by a computer graphics problem called
image-based lighting. Image-based lighting is a method to light a scene by using
real-world images as part of a 3D environment. Intuitively, the sampling problem
reduces to finding representative points from the image such that they have higher
density in regions of high intensity (or energy) and low density in regions of low
intensity (or energy).

We formulate this task as a facility location problem where the facility costs
are a function of the demand served. In particular, we aim to encourage load
balance amongst the facilities by using V-shaped facility costs that achieve a
minimum at the “ideal” level of demand. We call this the load-balanced fa-
cility location problem, and it is a generalization of the uncapacitated facility
location problem with uniform facility costs. We develop a primal-dual approxi-
mation algorithm for this problem, and analyze its approximation ratio using dual
fitting and factor-revealing linear programs. We also give some experimental re-
sults from applying our algorithm to instances derived from real high dynamic
range images.

1 Introduction

This paper introduces a discrete optimization model to address a problem arising in
computer graphics. The clustering problem we propose, a variant of facility location, is
NP-hard, so we design an approximation algorithm to attack it. This approach is unusual
for computer graphics, where most methods that are proposed are heuristics that do not
come with any sort of provable guarantees on the quality of the solutions they produce.

Suppose that we wish to synthetically render a scene that is being illuminated by
multiple directional light sources. The challenge here is to accurately represent the re-
flections of light off of the surfaces in the scene. The way that light scatters off of a
surface depends on physical properties of the surface material and on the directions
from which incident light rays are striking the surface. By knowing these two things,
we can compute how much light would be scattered in the direction of the viewer’s eye,
and hence how we should render the surface.

One typically assumes that all of the light sources are infinitely far away, so that the
incident illumination is identical at every point in space throughout the scene, modulo
occlusions and reflections from objects inside the scene. Therefore, to capture all rel-
evant information about the lighting, it is enough to obtain a single light probe image,

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 316–330, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Importance Sampling via Load-Balanced Facility Location 317

a spherical map of the intensity of light coming from each direction. From this spher-
ical map, we can then compute the light incident on any given point via ray tracing,
accounting for other elements of the scene that might occlude the direct lighting from
certain directions, and also for single or multiple reflections from surfaces in the scene.
This lighting method is called image-based lighting in computer graphics—that is, a
method to light a scene by using real-world imagery as part of a 3D environment. The
resolution of the light probe image is much greater than the number of rays we can
typically afford to trace, and therefore we desire to sample a much smaller number of
rays and trace only those. It is this sampling problem that we address in this paper.

Intuitively, we would expect to obtain the most faithful rendering if we sample many
rays in regions of high intensity (or energy), and allocate relatively few in regions of
low intensity (or energy). In other words, the quality of approximating an image-based
lighting environment as a finite number of point lights is increased if the light positions
are chosen to follow the distribution of the incident illumination. This is called the
importance sampling problem. Debevec [4] suggests the following guideline. Suppose
that the total intensity summed over all pixels in the light probe image is I , and we have
a budget of B light rays (i.e., pixels from the light probe image) to sample. According to
Debevec, subdividing the image into B regions of equal intensity and choosing a single
light source in each region (center or centroid) should be sufficient. While he suggests
a particular heuristic for defining the regions and placing a light source in each, we
can interpret his strategy as follows: we should try to sample our B light rays such that
when we compute the Voronoi diagram of our chosen rays and sum the intensities of the
pixels in each Voronoi region, the total intensity is split as evenly as possible amongst
the regions, i.e., each sum is as close as possible to I/B.

We cast this ray sampling task as a type of facility location problem. Every pixel is a
client with demand equal to its intensity, and every pixel is also a potential facility. We
wish to open a set of facilities and assign each unit of demand to some open facility so
as to minimize the sum of two types of costs.1 The first is a connection cost for each
unit of demand, proportional to the distance between that demand and the facility that
serves it. We assume that these distances form a metric. The second cost is incurred by
each open facility, and is a function of the amount of demand served by that facility.
The facility cost will be a “V” shape, described by three parameters. The first is a target
capacity U , which denotes the ideal amount of demand that the facility should serve.
Second, there is a fixed cost F0 to open the facility. Third, there is a penalty Λ for each
unit by which the total demand served by the facility deviates from the ideal capacity U .
Thus, if the facility serves D units of demand, the facility cost would be F0+Λ|D−U |.
If D > U we say that the facility is overfull; if D < U we say that it is underfull. We
denote by dij the connection cost of routing one unit of demand at client j to facility
i. We call this the load-balanced facility location problem (LBFL). Notice that when
Λ = 0, our problem reduces to the uncapacitated facility location problem with uniform
facility costs, which is NP-hard.

Let us examine how we could apply this model to obtain a good solution for our ray
sampling problem. Here, the connection costs are given by the great circle distance on
the sphere. These costs encourage each demand to be routed to its Voronoi center, while

1 Note that we allow a single client to split its demand amongst multiple facilities.

318 A. Archer and S. Krishnan

the facility costs encourage the facilities to be placed such that each serves roughly U
units of demand. Clearly, we should set U = I/B. This leaves us two knobs to turn, F0

and Λ, in order to achieve our twin goals of opening roughly B facilities and splitting
demand evenly amongst them. Consider a demand point j, whose nearest open facility
(i.e., Voronoi center) is i. This demand can be routed to some other facility i′ only if
i is overfull, i′ is underfull, and di′j < dij + 2Λ, because in this case the increased
connection cost is overwhelmed by saving a penalty of Λ on each of the two facility
costs. Thus, small values of Λ force the clusters to look more like Voronoi cells, while
large values of Λ push the cluster sizes towards U . Setting F0 to be sufficiently high
will cause only one facility to be opened, which will result in high connection costs
and a highly overfull facility. As we decrease F0 while keeping Λ fixed, the number of
facilities will increase, in order to decrease both the connection cost and the penalty for
overfullness. Thus, our choice of Λ expresses a tradeoff between how well our clusters
should resemble Voronoi cells and how much the demand should be balanced among
them. Fixing a value for Λ, we can adjust F0 so as to open roughly B facilities.

There are other ways that we could have modeled ray sampling as a discrete opti-
mization problem in order to satisfy Debevec’s criterion of roughly balanced Voronoi
cells. The most obvious would be to explicitly request B samples such that the vector
of demands contained in the B Voronoi regions they induce is as close as possible to
the vector (I/B, . . . , I/B) under some norm. Another option would be to formulate
it as a facility location problem with a hard constraint that the total demand served by
each facility must fall inside some window surrounding I/B. We chose our formulation
because it seemed to be the most tractable.

Related Work. Facility location problems have been a major focus of study in oper-
ations research since the 1960s, and in theoretical computer science since the 1990s.
Many variants of this problem have been studied. The most popular one is the uncapac-
itated version (UFL), where each facility i pays a fixed cost for being opened, and can
then serve an unlimited amount of demand for no extra cost. See [14, pp. 22-25] for an
excellent summary of much of this work and a long list of references.

Since most variants of the problem are NP-hard, they have inspired a large body of
work developing approximation algorithms for them, particularly for the uncapacitated
version. An r-approximation algorithm is an algorithm that runs in polynomial time,
and is guaranteed to return a solution of value at most r times the optimum; r is called
the approximation ratio. The uncapacitated facility location problem has provided fer-
tile ground for developing a large range of approximation techniques, including LP
rounding, randomized rounding, pipage rounding, cost-scaling, greedy augmentation,
local search, and primal-dual methods, including dual fitting and factor-revealing lin-
ear programs (FRLPs). Again, see [14] for references. The current best approxima-
tion factor, due to Mahdian, Ye and Zhang [16], is 1.52 and uses a combination
of cost-scaling and dual fitting, analyzed using FRLPs. Regarding hardness, Guha
and Khuller [7] proved that no 1.463-approximation algorithm exists unless NP ⊆
DTIME[nO(log log n)].

Several papers [9,15,5] have given approximation algorithms for facility location
problems with facility costs that vary with the demand served, but all of these assume
that these costs are increasing with the demand. In contrast, our costs are V-shaped, so

Importance Sampling via Load-Balanced Facility Location 319

they first decrease then increase. This turns out to drastically change the structure of
the problem. It also causes standard local search techniques such as those in [15,5] to
break. These algorithms bound the connection cost by considering a sequence of moves
that add all the optimal facilities to the current solution and re-route all demand to them.
In our problem, shedding demand from a facility can actually increase its cost, so this
bounding technique breaks.

Svitkina [17] recently gave a (558 + ε)-approximation algorithm for the lower-
bounded facility location problem, which is identical to UFL, except that each facility
has a hard lower bound on the amount of demand it must serve. This model was previ-
ously introduced by [8,13]. It is not appropriate for our desired application, because it
does not give the opportunity to penalize for overloading a facility, so the solutions are
not load-balanced. For our graphics application, it might be reasonable to use a model
that imposes both upper and lower bounds on the demands served. However, an optimal
solution for this model would tend to push the demands toward the bounds, so we prefer
our formulation since it encourages true even splitting.

We use the technique of dual fitting, which involves constructing a dual solution to an
LP relaxation of our problem along with an integer primal solution in such a way that the
dual exactly pays for the primal, but is infeasible and hence does not give a valid lower
bound. However, it can be scaled down by some factor γ to give a valid lower bound,
resulting in an approximation guarantee of γ. One uses an FRLP to find a value of γ
that will work for all instances. This technique goes back to Chvatal’s analysis of the
greedy algorithm for set cover [3], and was formalized by Jain et al. [11], who applied
it to UFL. Mahdian, Ye and Zhang then used it to obtain the current best approximation
factor for that problem [16], and it has been successfully applied to other combinatorial
optimization problems as well [2,10,12]. FRLPs were first used explicitly by Goemans
and Kleinberg [6] (although not in the dual fitting framework) to analyze their algorithm
for the minimum latency problem. Our work extends the techniques and applicability
of dual fitting and FRLPs.

Our Results. We develop an approximation algorithm for the LBFL problem where
the approximation factor depends on a parameter λ = ΛU/F0, but is a constant with
respect to the size of the input. We analyze the approximation ratio using the technique
of dual fitting and FRLPs. This means that the analysis of our approximation algorithm
boils down to analyzing the optimal solutions of an infinite family of linear programs
(LPs). This involves identifying patterns in the optimal dual solutions to these LPs, so
that we can establish a valid upper bound on the optimal value of each LP in the infinite
family.

Like the FRLPs previously used for UFL [11,16], our FRLP has quadratically many
“triangle inequality” constraints. Using a clever trick based on the max flow / min cut
theorem, we reduce this to a linear number (Theorem 1). This is important for three
reasons. First, the new, smaller LP and its dual are much simpler and help highlight the
structure of their solutions. Second, the smaller size allows us to solve larger FRLPs
faster, which is useful when exploring the solution structure. Both of these features
are important because a detailed understanding of the structure of optimal solutions to
the FRLP is needed to prove upper bounds on the approximation ratio of our algorithm.

320 A. Archer and S. Krishnan

Third, Theorem 1 can be applied to [11,16] as well, allowing a simpler derivation of
their results and possibly aiding any future work that uses their framework.

In Jain et al.’s analysis for UFL, the collection of FRLPs that requires analysis is
only a single-parameter family, corresponding to the possible values of the total demand
served by a single facility. Our collection is indexed also by U , λ and another parameter
k∗, so it is a 4-parameter family. This is a significantly more complex beast, but we are
able to tame it. The approximation guarantee that we derive depends on λ, which is
inherent in our approach because the LP we use to get lower bounds on OPT has an
integrality gap of Ω(λ).

Finally, we applied our algorithm to instances arising from real images, and report
the results.

2 The Model

The input to our problem is a set of facilities F , a set of clients (or demand points) D,
a metric d on F ∪ D where dij denotes the distance from facility i to demand point
j, a fixed facility cost F0, an ideal capacity U and a penalty parameter Λ. These last
three parametrize a facility cost function FF0,U,Λ(D) = F0 + Λ|D − U | for D ≥ 0.
We assume for simplicity of exposition that U is an integer and every client has unit
demand, but everything can still be made to work without this assumption. While F0,
U and Λ are the most natural parameters from a modeling perspective, for our analysis
it will be more convenient to rescale the facility costs. Let λ = ΛU/F0, p = F0/U , and
fU,λ(D) = U + λ|D−U |. Then FF0,U,Λ(D) = pfU,λ(D). We will ordinarily omit the
subscripts U and λ, and write the facility cost as pf(D).

The goal is to open a subset of facilitiesO ⊆ F and select an assignment φ : D → O
of demands to open facilities so as to minimize the quantity∑

j∈D
dφ(j)j +

∑
i∈O

pf(|j : φ(j) = i|),

which is the sum of the connection costs of each client to the facility that serves it, plus
the sum of the facility costs for each facility to serve the amount of demand routed to
it. Notice that for any fixed set of facilities, the optimal assignment of demands can be
computed using min-cost flow, so (by integrality of flows) if we were to allow ourselves
to split a client’s unit demand over multiple facilities, it would not lower the cost.

In much of our analysis, we will have to distinguish between the two cases λ < 1
and λ > 1, owing to a qualitative difference between the two. For a facility serving
exactly the ideal demand U , the facility cost per unit demand is p, while the over- or
underfullness penalty is pλ. Thus, for λ > 1, the cost per unit demand achieves a
minimum when the facility is exactly full, whereas for λ < 1, the cost per unit demand
continues to decrease even once the facility is overfull.

3 Our Algorithm and Analytic Framework

Let us define a star (i, S) to be a facility i ∈ F , along with a collection of demand
points S ⊆ D that it might serve. Every solution to our facility location problem can be

Importance Sampling via Load-Balanced Facility Location 321

viewed as a partition of the demand points by stars, where the center of the star is an
open facility and the facility serves exactly the demand points in S. This problem can
be modeled by an integer program whose linear relaxation is shown below, along with
its LP dual. We use c(i,S) =

∑
j∈S dij + pf(|S|) to denote the cost of the star (i, S).

min
∑
(i,S)

c(i,S)x(i,S)

s.t.
∑
i∈F ,
S�j

x(i,S) = 1, ∀j ∈ D

∑
S

x(i,S) ≤ 1, ∀i ∈ F

0 ≤ x(i,S) ≤ 1, ∀(i, S)

max
∑
j∈D

αj −
∑
i∈F

μi

s.t.
∑
j∈S

αj − μi ≤ c(i,S), ∀(i, S)

μi ≥ 0, ∀i ∈ F .

(1)

We use a dual-fitting algorithm to construct a feasible primal solution along with
an infeasible solution to the dual. Our algorithm will fix all μi variables to zero and
never change them. Our primal and dual solutions will have the same objective function
value, and we will exhibit some γ such that multiplying our dual solution by 1

γ , makes
it feasible and hence provides a lower bound on OPT . Thus, our primal solution is a
γ-approximation. The main thrust of our work will be to prove an upper bound on the
maximum γ that could ever be necessary to make the scaled dual solution feasible.

Conceptually, our algorithm starts all clients j with αj = 0, and raises these dual
variables uniformly until some star (i, S) becomes tight. At this point, we open i, con-
nect all clients in S to it, and freeze their dual variables. We then proceed as before, ex-
cept that we consider only unfrozen clients when computing the next star to open. For an
already-open facility i that is currently underfull, if any client j achieves αj = dij−pλ,
then we connect j to i and freeze it. If i is already full or overfull, then j must achieve
αj = dij + pλ to connect this way. We always raise the unfrozen dual variables uni-
formly until we first hit one of these new star or direct connection events, at which point
we process the event, then continue until all demands are frozen.

This is the most natural algorithm to consider, given that we are using LP (1) and
aim to use dual fitting for the analysis; it is very similar to one in [11] for UFL. It can
be implemented to run in O(m log m) time, where m = |F||D|. The implementation is
similar to that in [11], so we omit the details.

Deriving the Factor-Revealing LP. By construction, the
∑

j αj resulting from the
algorithm exactly pays for the primal. Since the smallest acceptable value of the scale
factor γ is

max
(i,S)

∑
j∈S αj

c(i,S)
, (2)

we need to find an upper bound on this quantity. Notice that the max is taken over all
possible stars, not just the ones that the algorithm actually opens. Consider the star
(i, S) that maximizes (2), and let k = |S|. We rename the clients in S as 1, . . . , k such
that α1 ≤ . . . ≤ αk, and abbreviate dij as dj . Then c(i,S) =

∑
j∈S dj + pf(k). Since

scaling down p and all dij uniformly causes the algorithm to behave the same but with

322 A. Archer and S. Krishnan

the α scaled, we can assume WLOG that c(i,S) = 1. Thus, our goal reduces to finding
the largest possible value that

∑
j∈S αj can be, given that the algorithm imposes the

following constraints.
Facility i was opened during the time interval [αk∗ , αk∗+1), for some index k∗

(where k∗ = 0 if i was opened before time α1, and k∗ = k if i was opened after
αk or never). We claim that the following linear program, denoted P(k, U, λ, k∗), pro-
vides an upper bound on the approximation ratio for this instance. The constraints are
labeled by the names we will give to their corresponding variables in the dual of this LP.

maximize
k∑

j=1

αj

subject to
k∑

j=1

dj + pf(k) = 1, (ν)

αj ≤ αl + dl + dj + 2λp, ∀1 ≤ l < j ≤ k (Trilj)

|S|αj ≤
∑
g∈S

dg + pf(|S|), ∀j ≤ k∗, S ⊆ [k]
s.t. min S = j

(StarS)

αj ≤ dj + λp ∀j > k∗ (DCj)

αj ≤ αj+1 ∀1 ≤ j < k (σj)

α, d, p ≥ 0

We need to justify constraints (Trilj), (DCj), and (StarS). For (DCj), recall that
facility i is already open before time αj , so once j pays for its connection cost modulo
the ±λp penalty/discount, it will connect to i as a singleton.

For (Trilj), consider the situation faced by client j just before it connects to some
facility at time αj . Demand l < j connected to some facility i′ at time αl. Since l
received a discount of at most λp, we know αl ≥ di′l − λp. To connect to i′ later as a
singleton, j would be charged at most a λp penalty. Thus, we have

αj ≤ di′j + λp ≤ di′l + dil + dij + λp ≤ (αl + λp) + dl + dj + λp,

from the triangle inequality and the previous lower bound on αl. Thus, (Trilj) is valid.
For (StarS), consider the point in time just before demand j connects to some facil-

ity. Each demand g ≥ j is still active at this point, and at this time all active demands
have dual variable equal to αj . Since i is not yet open at this point, one possible star
is the one centered at i and serving exactly these demands. Thus, the sum of their dual
variables cannot exceed the cost of opening this star, since then the star would have
been opened strictly before time αj . Constraint (StarS) expresses this.

Let us denote the optimal value of P(k, U, λ, k∗) by ρ(k, U, λ, k∗). Then our goal
is to compute the quantity ρ(λ) = supk,U,k∗ ρ(k, U, λ, k∗), because this is an upper
bound on the violation factor of any possible star in the dual solution generated by
our algorithm, and is hence a valid approximation guarantee. Our approximation bound
must depend on λ since a simple example shows that the integrality gap of (1) is Ω(λ).

Importance Sampling via Load-Balanced Facility Location 323

4 Analysis of the Factor-Revealing LP

In this section, we study the structure of P(k, U, λ, k∗) in depth, so we can understand
what optimal solutions to this LP look like. In particular, we would like to construct a
near-optimal solution to its dual, which will give a good upper bound on ρ(λ). We start
by simplifying the LP itself. We then show that the worst case LP is when U = k∗ = k
and k → ∞. Finally, we construct a dual solution for this worst case to establish an
upper bound on ρ(λ).

Simplifying P(k, U, λ, k∗). P(k, U, λ, k∗) has
(
k
2

)
(Trilj) constraints, and it turns

out that many of these are redundant. By considering the feasibility system consisting
of only these constraints, taking its dual, performing a transformation based on the max
flow-min cut theorem and taking the dual again we can derive the following theorem
(whose proof we defer to the full paper because of space limitations):

Theorem 1. The non-negative variables α, d, p satisfy all the (Trilj) constraints iff
there exist ω1, . . . , ωk ≥ 0, t ∈ R s.t.

αj ≥ t− dj − λp +
∑

g:g>j

ωg, ∀1 ≤ j < k (TGj)

αj ≤ t + dj + λp +
∑

g:g≥j

ωg, ∀1 < j ≤ k. (TLj)

Therefore, if we add the ω variables to P(k, U, λ, k∗) and replace the (Trilj) constraints
with the (TGj) and (TLj) constraints, we end up with an equivalent LP, which we
denote P̄(k, U, λ, k∗). The dual of this LP is D̄(k, U, λ, k∗):

minimize ν

subject to

TLj − TGj + DCj + σj − σj−1

+
∑

S:min S=j

|S|StarS

⎫⎪⎬
⎪⎭ ≥ 1 ∀1 ≤ j ≤ k (αj)

ν ≥ TLj + TGj +
∑

S:j∈S

StarS + DCj ∀1 ≤ j ≤ k (dj)

f(k)ν ≥
∑
S

f(|S|)StarS + λ

k∑
j=1

(TLj + TGj + DCj) (p)

k∑
j=1

TGj −
k∑

j=1

TLj = 0 (t)

∑
l:l<j

TGl ≥
∑
l:l≤j

TLl ∀1 ≤ j ≤ k (ωj)

DCj = 0 (j ≤ k∗), StarS = 0 (S s.t. min S > k∗)

σ0 = TL1 = TGk = 0, TL, TG, Star, σ ≥ 0

324 A. Archer and S. Krishnan

Reducing to ρ(k, k, λ, k), k → ∞. We next proceed to show that U = k∗ = k, with
k → ∞ is the worst case for this LP (i.e., the value of the optimal solution is highest
for this case).

Theorem 2. For all k, U, λ, k∗, we have ρ(k, U, λ, k∗) ≤ ρ(k, k, λ, k∗).

Proof: Fix any solution to D̄(k, k, λ, k∗). We show that this solution is also feasible for
D̄(k, U, λ, k∗) for all U , and the result follows. The only constraint in D̄(k, U, λ, k∗)
that depends on U is (p), since the functions f(·) depend implicitly on U . Thus, we
only need to show that these constraints are still satisfied when we change U .

Let sl =
∑

S:|S|=l StarS , and g(U) = fU (k)ν−∑l fU (l)sl−λ
∑

j(TLj +TGj +
DCj) (i.e., g(U) is the slack in the (p) constraint). We know g(k) ≥ 0 and wish to show
that g(U) ≥ 0 for all U . Recall that

fU (l) = U + λ|l − U | =
{

(1− λ)U + λl, if U ≤ l

(1 + λ)U − λl, if U ≥ l
(3)

Thus, ∂
∂U fU (l) = 1+λ for all l ≤ k ≤ U . Moreover, for each fixed l, fU (l) is a convex

function of U , so g(U) is concave on [0, k].
First consider the case U ≥ k. Differentiating gives g′(U) = (1 + λ)(ν −∑l sl).

But since fk(k)ν ≥∑l fk(l)sl +λ
∑

j(TLj +TGj +DCj) and fk(l) achieves its min
at l = k, we have ν ≥∑l sl. Thus, g′(U) ≥ 0 for all U ≥ k, so g(U) ≥ 0 as well.

Now consider the case U ≤ k. Since g is concave on [0, k] and g(k) ≥ 0, it is enough
to show that g(0) ≥ 0, which simplifies to kν ≥ ∑l lsl +

∑
j(TLj + TGj + DCj).

Summing all the (dj) constraints gives precisely this.

Theorem 3. For all k, λ, k∗, and every M ∈ N, ρ(k, k, λ, k∗) ≤ ρ(Mk, Mk, λ, Mk∗).

Proof: For simplicity, we prove the theorem for M = 2. The proof for general M is
analogous. Given any feasible solution to P̄(k, k, λ, k∗), we will “double” it to obtain a
feasible solution to P̄(2k, 2k, λ, 2k∗) of equal value, and the result follows.

Let (α, d, p, t, ω) be our solution to P̄(k, k, λ, k∗). We propose a solution (ᾱ, d̄, p̄,
t̄, ω̄) to P̄(2k, 2k, λ, k∗). Let p̄ = p/2 and, for each j ∈ [k], let ᾱ2j−1 = ᾱ2j =
αj/2, d̄2j−1 = d̄2j = dj/2. By construction, the objective value is still the same,
and constraints (ν), (DCj), (σj), are still satisfied. By Theorem 1, (α, d, p) satisfies the
(Trilj) constraints, so (ᾱ, d̄, p̄) does too. By Theorem 1, there exist ω̄ and t̄ such that the
new solution satisfies (TGj) and (TLj). The (StarS̄) constraints are a bit more subtle.

Given any S̄ ⊆ [2k], there exist sets O, E ⊆ [k] s.t. S̄ = {2j − 1 : j ∈ O} ∪ {2j :
j ∈ E}. Summing constraints (StarO) and (StarE) for the original solution gives

|O|αmin O + |E|αminE ≤
∑
g∈O

dg +
∑
g∈E

dg + pfk(|O|) + pfk(|E|)

(|O| + |E|)αmin(O∪E) ≤ 2
∑
g∈S̄

d̄g + 2p̄(k + λ(k − |O|) + k + λ(k − |E|)) (4)

2|S̄|αmin S̄ ≤ 2
∑
g∈S̄

d̄g + 2p̄f2k(|S̄|),

where (4) follows from (σj). This last inequality is simply twice (StarS̄).

Importance Sampling via Load-Balanced Facility Location 325

Theorem 4. For all k, λ, k∗, we have ρ(k, k, λ, k∗) ≤ ρ(k, k, λ, k).

Proof sketch: In D̄(k, k, λ, k∗), when we change k∗ from k to something smaller, we
lose some (StarS) constraints but gain some (DCj) constraints. Our goal is to show
that this makes the LP tighter. Combining the (DCj) and (σj) constraints yields αj ≤
ming≥j dg + pλ, for j > k∗. This constraint implies most of the (StarS) constraints.
Fixing S ⊆ {k∗ + 1, . . . , k}, with j = min S, we have

|S|αj ≤ |S|min
g≥j

dg + |S|pλ ≤
∑
g∈S

dg + |S|pλ

This implies the (StarS) constraint as long as |S|λ ≤ f(|S|) = k + λ(k − |S|), that is,
|S| ≤ (1+λ)k

2λ . This is always the case as long as either λ ≤ 1, or λ ≥ 1 and k∗ ≥ λ−1
2λ k.

The proof of the remaining case (i.e., λ ≥ 1, k∗ < λ−1
2λ k) is much more involved, so

we defer it to the full version of paper.

Putting Theorems 2, 3 and 4 together yields:

Corollary 5. ρ(λ) = limk→∞ ρ(k, k, λ, k).

Bounding ρ(k, k, λ, k) with a Canonical Dual. Now that we have reduced our prob-
lem to analyzing limk→∞ ρ(k, k, λ, k), we can use an LP solver to help us further ex-
plore the structure of the optimal solutions to D̄(k, k, λ, k) and P̄(k, k, λ, k). Theorem 3
suggests the optimal solutions will be roughly scale-invariant, meaning that if we ex-
press all the indices as fractions of k and scale down the primal variables and the dual
StarS variables by a factor of k, the solutions for large k should look very similar as k
varies. We solved a bunch of these LPs with CPLEX, which confirmed this intuition.

Table 1. ρ(k, k, λ, k) for different values of k and λ (generated by CPLEX), along with the best
upper bound on ρ(λ) that we can prove analytically

k λ = 0.0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1.0 λ = 1.5 λ = 2.0

50 1.7979 1.9499 2.0948 2.2310 2.4684 3.0212 3.5694
100 1.8064 1.9588 2.1039 2.2400 2.4844 3.0427 3.5967
200 1.8107 1.9632 2.1084 2.2445 2.4925 3.0535 3.6106
400 1.8128 1.9655 2.1107 2.2467 2.4966 3.0590 3.6175

proof 1.8608 2.0396 2.1719 2.2500 2.5007 3.0645 3.62438

Table 1 shows the computed value of ρ(k, k, λ, k) for a range of λ and k values, along
with the best upper bound we can prove for ρ(λ) using the method outlined below. For
fixed λ, we see that the approximation bound ρ(k, k, λ, k) appears to be converging
fairly rapidly. Since the full details of proving the bounds are quite hairy, we defer them
to the full version of the paper, but here we sketch the steps involved.

Our overall goal is to create a “canonical” solution to D̄(k, k, λ, k) which can be
“projected” onto a feasible dual solution for any given value of k, thereby yielding an

326 A. Archer and S. Krishnan

upper bound on ρ(k, k, λ, k). Because of Corollary 5, we care about the quality of this
bound only for large k.

We first establish which variables in P̄(k, k, λ, k) and D̄(k, k, λ, k) are non-zero. We
can readily deduce some of the patterns just by looking at the LPs. For instance, since
we expect p to be non-zero in an optimal solution, there is no way for both (TGj) and
(TLj) to be tight for the same j. Thus, by complementary slackness, TGj and TLj

should never both be non-zero. Inspection of the optimal solutions output by CPLEX
reveals further structure. For instance, when λ ≥ 0.8022, the solutions adhere to the
following pattern. All αj are positive, and all σj and ωj are zero. The only StarS vari-
ables that are non-zero are for tail stars, i.e., ones of the form Sj = {j, . . . , k}. There
exists a partition of the indices {1, . . . , k} into three intervals, I1 = {1, . . . , b1k}, I2 =
{b1k + 1, . . . , b2k}, I3 = {b2k + 1, . . . , k}, where 0 ≤ b1 ≤ b2 ≤ 1 are roughly con-
stant with respect to k, but depend on λ. These intervals determine the non-zero pattern
of the remaining variables, as follows. For j ∈ I1, dj , TGj , and StarSj are non-zero,
while StarSj is also non-zero on I2, and TLj is non-zero on I3. All other primal and
dual variables are zero.

Once we have identified the pattern of non-zeros in the primal and dual, we use
the complementary slackness conditions to determine which dual constraints should
be tight. We then solve this system of linear equations to determine the non-zeros in
the dual solution, up to a dependence on a small handful of parameters. Doing this
for the pattern described above yields the following solution in terms of the parameters
b1, b2, c: StarSj = c

k on I1 and 1
|Sj| on I2; TGj = |Sj | ck−1 on I1; TLj = 1 on I3. Any

choice of these parameters defines a canonical dual solution (TG, TL, StarS , σj , ν).
Since the (dj) and (p) constraints are just lower bounds on ν, as long as (αj), (t), (ωj)
and the non-negativity constraints are satisfied, we can just set ν to be the max of these
lower bounds. Thus, any choice of the parameters that causes the dual to satisfy these
constraints is valid. Treating the parameters as variables, we can solve a non-linear
program to optimize them such that ν is as small as possible. This whole process re-
sults in a proof of our upper bound on ρ(λ), for any particular λ. When λ = 1 for
example, we get (b1, b2, c) = (0.2068, 0.5577, 3.5007), yielding ν = 2.5007. Fortu-
nately, the behavior of D̄(k, k, λ, k) is qualitatively the same over intervals of λ (e.g.,
λ ≥ 0.8022), so we have to derive only a few of these “parameter-revealing” non-linear
programs. However, to obtain the actual bound on ρ(λ), we need to solve one of these
non-linear programs for that particular λ. This is why we do not give an explicit formula
for our approximation bound as a function of λ, although we can say that it is asymp-
totic to λ. Since a trivial example gives an integrality gap of λ/3 for LP (1), our algo-
rithm is within a constant of the best one can do if one uses LP (1) as the lower bound
on OPT .

Notes on Solving D̄(k, U, λ, k∗). As we have shown, actually solving P̄(k, U, λ, k∗)
and D̄(k, U, λ, k∗) computationally and inspecting the results was invaluable in deriving
our approximation guarantees. It was also quite useful in guiding us to discover the
theorems leading to Corollary 5. Thus, it is worth noting the multiple ways in which
Theorem 1 helps us to solve these LPs efficiently and analyze them effectively, even
though doing so is necessary only for the analysis of our algorithm, not for running the
algorithm itself.

Importance Sampling via Load-Balanced Facility Location 327

The transformation from P(k, U, λ, k∗) and D(k, U, λ, k∗) to P̄(k, U, λ, k∗) and its
dual D̄(k, U, λ, k∗) allowed by Theorem 1 helps enormously in deciphering the form of
the canonical dual solution. D(k, U, λ, k∗) has

(
k
2

)
Tri variables, which are highly re-

dundant and thus cause a lot of degeneracy in the optimal solution of D(k, U, λ, k∗),
which makes it very difficult to pick out the relevant patterns in the Tri variables.
Switching to D̄(k, U, λ, k∗) greatly simplifies our task by getting rid of the degener-
acy, and also by giving us many fewer variables to understand (just 2k− 2 TL and TG
variables).

Since there are exponentially many StarS variables, we solve P̄(k, U, λ, k∗) using
cutting planes (or equivalently, solve D̄(k, U, λ, k∗) using column generation). It is easy
to find the most violated StarS constraint amongst all S s.t. min S = j. We just sort
clients g = j + 1, . . . , k by increasing dg , and take all g for which αj − dg + λp > 0,
provided there are at most U − 1 of them. If there are more, we take the first U − 1, and
in addition we take any g such that αj − dg − λp > 0. The most violated S consists of
the clients we just identified, plus j.

We initialize the cutting plane method with the k tail stars (i.e., S1, . . . , Sk). In our
experience, the number of additional cuts generated was always less than 3k. Thus,
in practice, the LPs actually considered by the solver always have Θ(k) variables and
constraints. This highlights the next reason that Theorem 1 is so helpful: it reduces the
size of our LPs from quadratic to linear in k. When trying to divine the asymptotic
behavior of ρ(k, k, λ, k), we want to push k as high as we can while still being able to
solve D̄(k, k, λ, k) reasonably quickly. Thus, the size and solution time of the LP really
becomes an issue, even though we are using the LPs only to help us prove theorems.

Note that when U ≥ k, we do not have to worry about stars of size larger than
U . Thus, the separation oracle becomes easier since we need not sort the dg. This also
means that we could get rid of the (StarS) constraints entirely by defining new variables
Cjt ≥ 0 and adding the constraints Cjt ≥ αt − dj + λp (∀j ≥ t) and

∑
j:j≥t Cjt ≤

pU(1 + λ) (∀t). However, this is a bad idea because it again blows up the size of the
LP from linear to quadratic in k.

5 Experimental Results

In this section, we describe some experimental results obtained from applying our al-
gorithm to sample High Dynamic Range (HDR) images used in computer graphics for
lighting scenes. We implemented our algorithm in C++. Its theoretical worst-case run-
ning time is O(m log m) where m is the product of the number of demand points and
the number of potential facilities. In this setting, the demand and facility sets are both
identified with the pixels in the image. Hence m = (# pixels)2, which is prohibitively
high even for moderate-sized images. However, in practice our implementation man-
ages to avoid explicitly considering most (client,facility) pairs and hence runs much
faster than O(m log m).

In order to further speed up the running time for our experiments, we need to reduce
the cardinality of the facility set. We do so by generating some set of K
 B pixels
that we would expect to be good candidates for our final samples, and use these as
F . We then run our load-balanced facility location algorithm on this input to identify

328 A. Archer and S. Krishnan

roughly B of these K pixels as our final solution. Since we want our initial facility set
F to lie in regions of high intensity, a good solution to the K-median problem seems
to be a natural attractive choice for F .2 We generate such an F using an algorithm
proposed by Arthur and Vassilvitskii [1]. Their algorithm chooses K random facilities
in succession, according to a distribution that depends on the facilities already chosen. It
gives an O(log K)-approximate solution for K-median (in expectation). The algorithm,
in addition to its theoretical guarantees, is very fast and simple to implement. For a
budget of B samples, we set K to be either 16B or 32B.

Our algorithm has two parameters F0 (the facility cost at U) and Λ (the penalty per
unit demand for deviating from ideal capacity U). Λ allows us to trade off Voronoi-
ness against load balance. If Λ = 0, we get Voronoi cells. If Λ = ∞, we get perfect
load balance. Given a fixed Λ, F0 allows us to control how many facilities are opened.
If F0 = ∞, only one facility will be opened. When F0 = 0, more will be opened.
Adjusting these values gives us a way to control the number of open facilities as well as
the load balance. We use the following strategy to set F0 and Λ so that we get roughly
B approximately load-balanced facilities. We start with F0 = 0 and Λ = 0. This setting
opens all facilities. We increase Λ until we open about 2B facilities. We then increase
F0 until the number of open facilities is close to B.

Data Sets. We use 5 high dynamic range images of various sizes to test our algorithm.
They are named Memorial, Rosette, Nave, Lamps and Tree. Table 2 shows the statistics
for the different input images.

Table 2. Statistics about the input images

Name Image Size # Fac. |F| Budget B Tot. Intensity I U
Memorial 512 × 512 2048 128 50889.8 397.6

Rosette 256 × 256 4096 256 98443.0 384.5
Nave 256 × 256 2048 64 191955.2 2999.3

Lamps 256 × 256 1024 64 3104.0 48.5
Tree 256 × 256 1024 64 11033.6 172.4

Table 3 shows the results of our algorithm on the input images. The first three
columns indicate our settings for F0, Λ and λ = ΛU/F0. The next four columns show
the number of facilities opened by our algorithm, the total facility cost, the total con-
nection cost and an upper bound on the approximation ratio for this particular instance.
We derived our upper bound on the approximation ratio by computing (2), i.e., iden-
tifying the most violated star in the dual solution α generated by our algorithm. The
actual approximation ratio of this instance could be substantially better, since the lower
bound generated by scaling down α uniformly is likely to be fairly weak, compared to
the bound one would obtain by actually solving LP (1). It may be feasible to solve this
LP via column generation; we leave this to future work.

2 The K-median problem is the same as UFL, except that there are no facility costs (only con-
nection costs), and the number of open facilities is restricted to be K.

Importance Sampling via Load-Balanced Facility Location 329

Table 3. Results from our algorithm

Name F0 Λ λ # Open Fac. Total Fac. Cost Total Conn. Cost Approx. Ratio
Memorial 45.0 1.3 11.4 134 6030.0 81529.9 5.15

Rosette 35.0 0.9 9.88 252 8820.0 116180.0 2.15
Nave 60.0 0.54 27.0 66 3960.0 197038.0 6.23

Lamps 90.0 0.3 0.16 72 6480.0 14471.8 1.32
Tree 122.5 0.37 0.52 88 10780.0 53787.2 1.38

Table 4. Evaluating our algorithm’s output for load balance and Voronoiness

Name # Fac. Conn. Cost Ratio Our Under/Over- Voronoi Under/Over-
Open (ours/Voronoi) full Demand (% of I) full Demand (% of I)

Memorial 134 1.0503 10.2655 / 5.5779 27.1197 / 22.4322
Rosette 252 1.0705 6.0096 / 7.5720 11.6977 / 13.2601

Nave 66 1.0547 11.8984 / 8.7734 17.9927 / 14.8676
Lamps 72 1.0626 41.3946 / 28.8821 39.1269 / 26.6140

Tree 88 1.0093 38.7969 / 1.2788 38.5549 / 1.0368

Fig. 1. Results of our algorithm on the Tree data set. On the left is the original image; on the right,
we have superimposed our samples and their Voronoi cells.

Finally, to test the results with our original objective of sampling such that each open
facility roughly serves equal demand and that most clients connect to their closest open
facility, we compare the total connection cost of our output with that of the Voronoi cells
for the for each facility. If these costs are close, that implies that most of the demand is
met by the closest facility. We also list the total demand served by overfull and underfull
facilities. If there is perfect load balance and we open exactly B (the budget) facilities,
then they would be zero. Table 4 shows the details for each of the data sets. Figure 1
depicts the sampling produced by our algorithm on the Tree instance, along with the
corresponding Voronoi cells.

Acknowledgments

We thank David Applegate for sharing his expertise with AMPL.

330 A. Archer and S. Krishnan

References

1. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: SODA, pp.
1027–1035 (2007)

2. Bansal, N., Fleischer, L., Kimbrel, T., Mahdian, M., Schieber, B., Sviridenko, M.: Further im-
provements in competitive guarantees for QoS buffering. In: Dı́az, J., Karhumäki, J., Lepistö,
A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 196–207. Springer, Heidelberg
(2004)

3. Chvatal, V.: A greedy heuristic for the set covering problem. Math. Oper. Res. 4, 233–235
(1979)

4. Debevec, P.: Image-based lighting. IEEE Comput. Graph. 22(2), 26–34 (2002)
5. Garg, N., Khandekar, R., Pandit, V.: Improved approximation for universal facility location.

In: SODA, pp. 959–960 (2005)
6. Goemans, M.X., Kleinberg, J.M.: An improved approximation ratio for the minimum latency

problem. Math. Program. 82, 111–124 (1998)
7. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. J. Algo-

rithm 31(1), 228–248 (1999)
8. Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement and network design prob-

lems. In: FOCS, pp. 603–612 (2000)
9. Hajiaghayi, M.T., Mahdian, M., Mirrokni, V.S.: The facility location problem with general

cost functions. Networks 42(6), 42–47 (2003)
10. Immorlica, N., Mahdian, M., Mirrokni, V.S.: Cycle cover with short cycles. In: Diekert, V.,

Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 641–653. Springer, Heidelberg (2005)
11. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algo-

rithms analyzed using dual fitting with factor-revealing LP. J. ACM 50(6), 795–824 (2003)
12. Jain, M.R.S.K., Mahdian, M.: Packing Steiner trees. In: SODA, pp. 266–274 (2003)
13. Karger, D.R., Minkoff, M.: Building Steiner trees with incomplete global knowledge. In:

FOCS, pp. 613–623 (2000)
14. Mahdian, M.: Facility Location and the Analysis of Algorithms through Factor-Revealing

Programs. PhD thesis, MIT, Cambridge, MA (June 2004)
15. Mahdian, M., Pál, M.: Universal facility location. In: Di Battista, G., Zwick, U. (eds.) ESA

2003. LNCS, vol. 2832, pp. 409–421. Springer, Heidelberg (2003)
16. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility lo-

cation problems. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS,
vol. 2462, pp. 229–242. Springer, Heidelberg (2002)

17. Svitkina, Z.: Lower-bounded facility location. In: SODA, pp. 1154–1163 (2008)

A Constant Approximation Algorithm for

the a priori Traveling Salesman Problem

David Shmoys1,� and Kunal Talwar2

1 Cornell University, Ithaca NY 14853
shmoys@cs.cornell.edu

2 Microsoft Research,
Silicon Valley Campus,

1065 L’Avenida,
Mountain View, CA 94043
kunal@microsoft.com

Abstract. One of the interesting recent developments in the design and
analysis of approximation algorithms has been in the area of algorithms
for discrete stochastic optimization problems. In this domain, one is given
not just one input, but rather a probability distribution over inputs, and
yet the aim is to design an algorithm that has provably good worst-case
performance, that is, for any probability distribution over inputs, the
objective function value of the solution found by the algorithm must be
within a specified factor of the optimal value.

The a priori traveling salesman problem is a prime example of such a
stochastic optimization problem. One starts with the standard traveling
salesman problem (in which one wishes to find the shortest tour through
a given set of points N), and then considers the possibility that only a
subset A of the entire set of points is active. The active set is given prob-
abilistically; that is, there is a probability distribution over the subsets
of N , which is given as part of the input. The aim is still to compute a
tour through all points in N , but in order to evaluate its cost, we instead
compute the expectation of the length of this tour after shortcutting it
to include only those points in the active set A (where the expectation is
computed with respect to the given probability distribution). The goal
is to compute a “master tour” for which this expectation is minimized.
This problem was introduced in the doctoral theses of Jaillet and Bert-
simas, who gave asymptotic analyses when the distances between points
in the input set are also given probabilistically.

In this paper, we restrict attention to the so-called “independent ac-
tivation” model in which we assume that each point j is active with
a given probability pj , and that these independent random events. For
this setting, we give a 8-approximation algorithm, a polynomial-time al-
gorithm that computes a tour whose a priori TSP objective function
value is guaranteed to be within a factor of 8 of optimal (and a random-
ized 4-approximation algorithm, which produces a tour of expected cost
within a factor of 4 of optimal). This is the first constant approximation
algorithm for this model.

� Research supported partially by NSF grants CCR-0635121 & DMI-0500263.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 331–343, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

332 D. Shmoys and K. Talwar

1 Introduction

One of the interesting recent developments in the design and analysis of approx-
imation algorithms has been in the area of algorithms for discrete stochastic
optimization problems. In this domain, one is not given just one input, but
rather a probability distribution over inputs, and yet the aim is to design an
algorithm that has provably good worst-case performance, that is, for any prob-
ability distribution over inputs, the objective function value of the solution found
by the algorithm is within a specified factor of optimal value.

The a priori traveling salesman problem is a prime example of such a stochas-
tic optimization problem. This is a stochastic generalization of the (standard)
traveling salesman problem (TSP). In the traditional deterministic problem, one
is given a set N of n points in a metric space; that is, for each pair of points one
is given the distance between them, with the assumption that these distances
satisfy the triangle inequality (i.e., for each triple of points, i, j, and k, the dis-
tance between i and k, is at most the sum of the distances between i and j,
and between j and k). The aim is to find the tour (or cyclic permutation) that
contains all of these points exactly once, such that the total distance traversed
is minimized. In the a priori TSP, one is also given a probability distribution Π
over subsets A ⊆ N ; this models the fact that, in advance, one is not certain of
the “currently active” points A that need to be included in the tour, and only
has probabilistic information about this. However, given only this probabilistic
information, one computes a “master tour” τ , whose objective function value is
the expected value (with respect to Π) of the length of τ after shortcutting it to
include only those active points in A. If the distribution Π makes the full set N
active with probability 1, then this is just the usual (deterministic) TSP (and
hence we expect results no stronger than is known for that problem).

The a priori TSP was first studied in the doctoral theses of Jaillet [1,2] and
Bertsimas [3], and their early work, which mostly focuses on asymptotic analysis
when the points themselves are randomly selected (e.g., uniformly in the unit
square), is nicely surveyed by Bertsimas, Jaillet, and Odoni [4]. If one is inter-
ested in polynomial-time algorithms, then one must be careful in the way that
the distribution Π is given as part of the input. It would take an exponential
amount of information to list the probability that each set A is active as part
of the input; one simple workaround is to insist that only a polynomial (in n)
number of sets can be active with a positive probability, and this is called the
polynomial scenario model. Alternatively, we can present the probability distri-
bution by means of an oracle, a “black box” from which we can draw independent
samples according the distribution Π ; the restriction that we are interested in
polynomial-time algorithms implies that we are limited to a polynomial number
of samples in this black box model.

In this paper, we restrict attention to the so-called independent activation
model for Π ; for each j ∈ N , consider the random indicator variable, 11(j ∈ A),
which is 1 exactly when j ∈ A, and then we shall assume that these are

A Constant Approximation Algorithm for the a priori TSP 333

independent random variables, and that we are given, as part of the input, the
probability pj = Pr[11(j ∈ A) = 1], for each j ∈ N . For this setting, we first give
a randomized polynomial-time algorithm to compute a tour for the a priori TSP
whose expected objective function value (with respect to the random choices
of the algorithm) is guaranteed to be within a factor of 4 of optimal. We then
derandomize the procedure to give a deterministic algorithm that is guaranteed
to find a tour of cost within a factor of 8 of optimal. This is the first constant
approximation algorithm for this model.

The strongest previous result was a randomized O(log n)-approximation al-
gorithm due to Schalekamp and Shmoys [5]. That result is significantly more
general, since not only does it hold in the black box model, but in fact, it does
not require any knowledge of the distribution Π .

This stochastic notion of the TSP is closely related to the notion of the uni-
versal TSP. In the universal TSP, there is also a notion of a “master tour” which
is shortcut according to the current active set A. However, for this problem, we
say that a tour τ for N has a performance guarantee of ρ if, for every subset
A ⊆ N , the tour τ shortcut to A has length at most ρ times the optimal cost
of a tour for the subset A. Clearly, a ρ-approximation algorithm for the univer-
sal TSP is a ρ-approximation algorithm for the a priori TSP with respect to
any distribution. The universal TSP was introduced by Bartholdi and Platzman
[6] in the context of an application for “meals on wheels”, and they gave an
O(log n) performance guarantee for points in the Euclidean plane. In contrast,
Hajiaghayi, Kleinberg, and Leighton [7] proved that no tour can achieve a bound
better than c(log n/ log log n)1/6 for some constant c > 0, even for points in the
Euclidean plane. Thus, it is particularly natural to consider weaker models, such
as the a priori TSP.

Our algorithm is extremely simple; in essence, we take one sample S from the
active set distribution Π , build a minimum spanning tree on that subset, and
then add each unselected point as a leaf in this tree by connecting it to its nearest
neighbor in S. Then this spanning tree on N is converted to a tour through all
points in N , by taking the standard “double tree” walk around the “outside” of
the tree. In fact, one must be a bit more careful in handling the case in which the
sample S is empty, and this will introduce a number of minor complications. This
algorithm is a slight variant on an algorithm that was developed first by Gupta,
Kumar, Pál, and Roughgarden [8] in a rather different context, that of the rent-
or-buy problem, which is a deterministic network design problem in which one
can either rent an edge e at a cost of ce per use, or buy it for unlimited use at a
cost of Mce (where M > 0 is an input to the problem); this algorithm was later
also the basis for an algorithm of Gupta, Pál, Ravi and Sinha [9] for the 2-stage
(with recourse) stochastic Steiner tree problem. Williamson and van Zuylen [10]
have derandomized the rent-or-buy algorithm, and their technique translates
almost directly to our setting. Finally, we note that Garg, Gupta, Leonardi, and
Sankowski [11,12], as a corollary of their work on the on-line stochastic Steiner
tree, have independently obtained a similar constant approximation algorithm
for the a priori TSP.

334 D. Shmoys and K. Talwar

2 The Approximation Algorithm

2.1 Preliminaries

We start by introducing some notation needed to present our results. For the
traveling salesman problem, the input consists of a finite set of points N =
{1, 2, . . . , n} as well as the distance c(i, j) between each pair of distinct points
i, j ∈ N ; we wish to find a tour τ , given by a cyclic permutation of N , such that
the length of the tour, c(τ) =

∑
i∈N c(i, τ(i)) is minimized. We shall assume

that the distances are symmetric (i.e., c(j, k) = c(k, j) for each pair of points
j, k ∈ N) and satisfy the triangle inequality (i.e., c(j, k) + c(k, �) ≥ c(j, �) for
each triple of points j, k, � ∈ N).

For the a priori TSP, only a subset A ⊆ N will be “active”. For a tour τ of
N , we define τA to be the tour “short-cut” to traverse only A; more formally, if
we let τ � be the �th power of τ , (i.e., τ1 = τ and for each � > 1, τ � = τ(τ �−1)),
then for each j ∈ A, τA(j) = τ �(j), where � is the smallest positive integer such
that τ �(j) ∈ A (unless A = {j}, in which case τ �(j) equals j).

For the a priori TSP, the input consists of a set of points N , a distance function
d, and a probability distribution Π specified over the subsets of N . Since we are
working in the independent activation model, we can compute the probability
Π(A) for each subset A ⊆ N ; that is,

Π(A) =

⎛
⎝∏

j∈A

pj

⎞
⎠
⎛
⎝∏

j �∈A

(1− pj)

⎞
⎠ , (1)

where pj is the probability that point j is in the active set A. The goal now
is to find a tour τ that minimizes the expected length with respect to Π of the
tour induced by τ ; i.e., to minimize EA[c(τA)]. We shall let τ∗ denote an optimal
solution, and let OPT denote the corresponding optimal value. It is important
to note that τ∗

A denotes the optimal tour shortcut to the subset of nodes A,
which is not necessarily the optimal tour for this specific subset.

We will give an 8-approximation algorithm for this problem; that is, we
will show how to compute a tour τ such that EA[c(τA)] ≤ 8 · OPT . We first
give a randomized algorithm that computes a tour τ with the property that
E[EA[c(τ)]] ≤ 4 · OPT , where the outer expectation in this expression is with
respect to the random coin tosses used by the algorithm, but we will subsequently
show how to derandomize this algorithm, while losing an additional factor of 2.

2.2 Special Case: p1 = 1

As a warm-up, we will first consider a more structured case, where p1 = 1.
The randomized algorithm is extremely simple. We first draw a sample S with

respect to the underlying distribution Π . In other words, we choose a subset S
by independently including every node j in S with probability pj . We compute a
minimum spanning tree on the subset S. Then, we extend this to be a spanning
tree T on N , by adding, for each node j �∈ S, the edge from j to its nearest

A Constant Approximation Algorithm for the a priori TSP 335

neighbor in S. (Note that this is well-defined, since we have ensured that S �= ∅
by setting p1 = 1.) Let MST (S) denote the cost of the minimum spanning
tree (MST) on S and for each j �= 1, let Dj(S) denote the length of this edge
between j and its nearest neighbor in S − {j}. (For notational convenience, let
D1(S) = 0).

From this spanning tree T , it is well known (see, e.g., [13]) that we can con-
struct a tour τ of total length c(τ) at most twice the total length of edges in
the tree T ; we simply “walk around the outside of the tree,” or more formally,
we construct an Eulerian multigraph by taking each edge twice, and then τ is
obtained from an Eulerian tour by shortcutting any node that is visited more
than once.

To upper bound the objective function value of this tour τ , we will focus on
its tree representation; that is, for any subset A ⊆ N , the induced tour τA can
also be obtained by first considering the tree induced from T by the node set A,
and then taking the analogous traversal of its doubled Eulerian tour.

In order to analyze the quality of this solution, we next present two obvious
lower bounds on the length of an optimal solution.

Fact 1. For each subset A ⊆ N , τ∗
A ≥MST (A).

Fact 2. For each subset A ⊆ N , τ∗
A ≥

∑
j∈A Dj(A).

If we take expectations of both sides of these inequalities, we can thereby obtain
lower bounds on the optimal value as well.

Fact 3. OPT ≥ EA[MST (A)].

Fact 4. OPT ≥ EA[
∑

j∈A Dj(A)].

Now let us analyze the cost of the (random) tree T generated by our algorithm.
Focus on a particular active set A, and its contribution to the expected cost
(with respect to Π) of this solution. Recall that T consists of a spanning tree
TS on our sample S, plus additional edges that connect nodes j �∈ S to this
spanning tree. For a given set A, the induced tree TA need not include all of the
spanning tree TS ; however, for computing an upper bound on the cost of TA, we
shall always include all of the edges of TS in the induced solution. Given this, it
is straightforward to see that we can upper bound the cost of T by

MST (S) +
∑
j �=1

11(j ∈ A)11(j �∈ S)Dj(S), (2)

which is bounded above by

MST (S) +
∑
j �=1

11(j ∈ A)Dj(S). (3)

Hence the expected cost (with respect to the random choices of our algorithm)
of the tour τ that we compute,

ES [EA[c(τA)]] ≤ 2

⎛
⎝ES [MST (S)] + ES [EA[

∑
j �=1

11(j ∈ A)Dj(S)]]

⎞
⎠.

336 D. Shmoys and K. Talwar

Since S is a random subset selected according to Π , the first term can be replaced
by EA[MST (A)], which is, by Fact 3, at most OPT . For the second term, we
apply linearity of expectation, and the fact that A and S are independent samples
drawn according to Π , and hence

ES [EA[
∑
j �=1

11(j ∈ A)Dj(S)]] =
∑
j �=1

EA[11(j ∈ A)]ES [Dj(S)] (4)

=
∑
j �=1

EA[11(j ∈ A)]EA[Dj(A)],

where again we have relied on the fact that the subsets S and A are both
(independently) drawn according the distribution Π .

For each j �= 1, the random variable Dj(A) denoting the distance from j to
its nearest neighbor in A \ {j} is independent of 11(j ∈ A). Thus we conclude
that ∑

j �=1

EA[11(j ∈ A)]EA[Dj(A)] =
∑
j �=1

EA[11(j ∈ A)Dj(A)]. (5)

On the other hand, recall that by Fact 4,

OPT ≥ EA[
∑

j

11(j ∈ A)Dj(A)] =
∑

j

EA[11(j ∈ A)Dj(A)].

Thus we can also bound the second term relative to OPT . Combining all of
these pieces, we have shown that

ES [EA[c(τA)]] ≤ 2(OPT + OPT) = 4OPT.

2.3 General Case

Now we will relax the condition that there must exist one of the points with
activation probability equal to 1. One might question where we take advantage
of this restriction within the analysis given above. The way in which this gets
used is most importantly in the description of the algorithm, in which there
always is a set of non-empty points on which to build a spanning tree. Stated
another way, for each point j, there is always a point in the sample of the
algorithm in S − {j}. let Π ′ denote the probability distribution where Π ′(A)
is the probability that A is the active set (as drawn from Π), conditioned on
the event that |A| ≥ 2. For a set A drawn according to Π , let α denote the
probability that |A| ≥ 2. The following lemma implies that we can focus on Π ′

instead of Π .

Lemma 5. For any tour τ , its a priori TSP objective function value with respect
to Π is exactly equal to α times its objective function with respect to Π ′.

Proof. For each set A with |A| < 2, the cost of the short-cut of the tour τ to the
subset A, c(τA), is equal to 0. For each subset A with |A| ≥ 2, the probability
that A is active with respect to Π is exactly equal to α times the probability

A Constant Approximation Algorithm for the a priori TSP 337

that is active with respect to Π ′. Now consider the objective function value of
τ with respect to Π , which is an expectation computed over the random choice
of A. The subsets of size less than two contribute nothing (literally), and the
rest contribute in total exactly α times what they contribute to the analogous
expected value for Π ′. Hence, the claim is proved.

This lemma shows that our objective functions with respect to Π and Π ′ differ
only by the same multiplicative factor (for all feasible solutions), and hence we
get the following corollary.

Corollary 6. Any (randomized) ρ-approximation algorithm for the a priori TSP
with respect Π ′ is a (randomized) ρ-approximation algorithm with respect to Π.

Now let us consider the extension of our algorithm and its analysis to Π ′. If the
algorithms draws a sample S according to Π ′, we now have the property that
for each j ∈ N , there must exist some element in S − {j}, and hence Dj(S)
is well-defined. It is straightforward to see that much of the analysis of the our
algorithm is unaffected by this change (though of course, the summation in the
bound should now by done over all j ∈ N , not just those nodes j �= 1). The
only significant change is that the random variables 11(j �∈ S) and Dj(S) are
no longer independent so that (5) no longer holds. Note that it would suffice to
replace (5) by the inequality∑

j

EA[11(j ∈ A)]EA[Dj(A)] ≤
∑

j

EA[11(j ∈ A)Dj(A)], (6)

which, using basic properties of conditional expectation is equivalent to∑
j

EA[11(j ∈ A)]EA[Dj(A)] ≤
∑

j

EA[11(j ∈ A)]EA[Dj(A)|j ∈ A]. (7)

If we prove that for every j ∈ N , EA[Dj(A)] ≤ EA[Dj(A)|j ∈ A], then the re-
mainder of the analysis carries over from the more specialized setting and the de-
sired result follows. The modified algorithm yields a randomized 4-approximation
algorithm.

Lemma 7. For a random set A drawn according to the distribution Π ′,

EA[Dj(A)] ≤ EA[Dj(A)|j ∈ A].

Proof. The proof is based on the following two propositions:

Proposition 8. For a random set A drawn according to the distribution Π ′,

EA[Dj(A)|j �∈ A] = EA[Dj(A)|(j ∈ A) ∧ (|A| ≥ 3)].

Proof. Let S be the family of sets of cardinality at least 2 that contain j, and
let S̄ be those that do not contain j. Finally, let S2 denote the 2-element sets
of S.

338 D. Shmoys and K. Talwar

As above, we know that there is a constant 0 < α ≤ 1, such that for any
subset A of cardinality at least 2, Π(A) = αΠ ′(A). Furthermore, we know
how to compute Π (and α) from (1). There is a natural 1-1 correspondence f
between the sets in S −S2 and S̄, by simply deleting j; that is, f(S) maps S to
S−{j}. But then, Π(S) = 1−pj

pj
Π(f(S)), and hence the same relation holds for

Π ′ (provided |S| ≥ 3). Further, Dj(S) = Dj(f(S)), since each is the distance
from j to S −{j}. In other words, the conditional expectation of Dj(S) for sets
of size at least 3 containing j is exactly equal to the conditional expectation of
Dj(S) for sets not containing j (where both expectations are with respect to the
distribution Π ′).

Proposition 9. For a random set A drawn according to the distribution Π ′,

EA[Dj(A)|(j ∈ A) ∧ (|A| ≥ 3)] ≤ EA[Dj(A)|(j ∈ A)].

Proof. We prove instead that

EA[Dj(A)|(j ∈ A)] ≤ EA[Dj(A)|(j ∈ A) ∧ (|A| = 2)],

which implies the lemma by the basic properties of conditional expectations.
By definition, Dj({j, k}) = c(j, k). Let σ be a permutation on N such that

0 = c(j, j) = c(j, σ(1)) ≤ c(j, σ(2)) ≤ · · · ≤ c(j, σ(n)).

To compute either of these expectations, we need only consider the probability
that each conditional distribution takes on each of these n−1 non-trivial values.
We know that Dj(A) = c(j, σ(k)) exactly when σ(�) �∈ A, � = 2, . . . , k − 1, and
σ(k) ∈ A. Furthermore, for each distribution, the probability that any set is
selected is proportional to the probability that it was selected in the original
distribution Π , for which we know how to compute these probabilities exactly.
Thus, for the first expectation, the probability that Dj(A) = c(j, σ(k)) is propor-
tional to pσ(k) ·

∏
�=2,...,k−1(1− pσ(�)), whereas for the second, it is proportional

to pσ(k) ·
∏

� �=1,k(1−pσ(�)) (with the same constant of proportionality). It is clear
from these two expressions that the first probability dominates the second, so
that for any k, it is more likely in the second case that Dj(S) ≥ c(j, σ(k)). Con-
sequently, the second expectation is at least the first, and the lemma is proved.

It follows that
EA[Dj(A)|j �∈ A] ≤ EA[Dj(A)|j ∈ A].

The lemma follows immediately since the unconditioned expectation is sand-
wiched in between these two values.

There is one final detail that should be mentioned. When we wish to select a
sample from Π ′, the most natural way is to repeatedly choose a sample from
Π , until the resulting set has cardinality at least 2. If, for example, each of the
values pi = 2−n, then this could take exponential time. However, one can easily
compute the conditional probability that the two smallest indexed elements in

A Constant Approximation Algorithm for the a priori TSP 339

S are i < j (for any such pair), and then the remaining elements can be selected
by the independent selection rule from among {j +1, . . . , n}. In this way, we can
generate a sample according to Π ′ in polynomial time. Thus we have derived
the following theorem.

Theorem 10. There is a randomized algorithm that computes a solution τ for
the a priori TSP in polynomial time and has expected value (with respect to the
random choices of the algorithm) no more than four times the optimal value.

2.4 Derandomization

A stronger result would be to give a deterministic algorithm with the same
performance guarantee. In fact, our algorithm in the simpler case with p1 = 1
is essentially identical to an earlier algorithm for the rent-or-buy problem, and
we will exploit this connection in devising a deterministic analogue of Theorem
10. In this problem, one is given an undirected graph with edge costs ce and an
inflation factor M . One can rent edge e at a cost of ce per transmission, or buy
the edge e (and have unlimited capacity) for a total cost of Mce. A given subset
of nodes are demand points that need to communicate with the root node 1.
The aim is to decide which edges to buy and which to rent so that the total cost
is minimized.

Gupta, Kumar, Pál, and Roughgarden [8] gave a very elegant approximation
algorithm for this problem, which works as follows: choose a subset S by includ-
ing node 1, and including each demand node i, independently, with probability
1/M ; build a minimum spanning tree (or a near-optimal Steiner tree) on S, and
these are the edges to buy; for each demand node i �∈ S, rent the shortest edge
from i to a node in S to serve that demand. Other than the fact that the inclusion
probability for node i is 1/M , rather than a specified parameter pi, this is exactly
the same algorithm as our approximation algorithm. Furthermore, Williamson
and van Zuylen [10] have shown how to deterministically choose a tree for which
the cost is at most the expected value of this randomized procedure. In fact,
they gave a derandomization procedure for a slight restatement of this problem,
called the connected facility location problem. In this problem, one selects some
facilities to open, and then must connect them by a Steiner tree; for each node j
not in the Steiner tree, one connects j to a node in i in the tree, by selecting the
shortest such path (though of course, in a setting like ours in which the distances
satisfy the triangle inequality, that path would be nothing more than a single
edge).

It is quite straightforward to show that the natural generalization of the de-
randomization approach of Williamson and van Zuylen applies to our setting as
well. Consider the bound that we used to analyze the performance of our algo-
rithm, equation (2). This is the upper bound used in the expectation calculation
for each active A, and so, for a particular choice of S, the overall bound that we
obtain in this way is equal to twice

MST (S) +
∑
j �=1

EA[11(j ∈ A)]11(j �∈ S)Dj(S) = MST (S) +
∑
j �∈S

pjDj(S). (8)

340 D. Shmoys and K. Talwar

The essence of our proof is that if we select S at random, then this bound
is good relative to the optimal cost. Thus, if we deterministically select a set S
for which the actual cost (resulting from this upper bound on the expectation
calculation) is no more than this expectation, then we have a deterministic ap-
proximation algorithm. It is not difficult to see that the problem of choosing a
set S minimizing the expression (8) is an instance of the connected facility loca-
tion problem, and hence using a (deterministic) 3.28-approximation (from [10])
to the problem gives a deterministic 13.12-approximation to the a priori TSP.

We next show how to use ideas from [10] directly to get a deterministic
8-approximation. The standard approach to derandomizing such an algorithm
is the so-called method of conditional expectations; in this approach, one consid-
ers one random choice at a time, such as whether node j is in the set S, and
computes the two conditional expectations, with this condition, and with its
negation. While the conditional expectation of the second term in (8) is easy to
compute, handling the first term seems rather difficult. Instead, Williamson &
van Zuylen relied on a linear programming relaxation that captures enough of
the structure of the tree optimization problem for which the method of condi-
tional expectations can be applied. Thus, instead of computing the conditional
expectation, we compute an upper bound (i.e., a pessimistic estimator) on this
conditional expectation.

We first write the standard LP relaxation for the Steiner tree problem on a
point set S, where δ(U) denotes the set of edges ij such that i ∈ U , j �∈ U :

min
∑

ij c(i, j)yij

(Steiner(S)) s.t.
∑

ij∈δ(U) yij ≥ 1 ∀U ⊆ N : S ∩ U �= ∅, 1 �∈ U

yij ≥ 0

We next write a connected facility location type linear program:

min B + C
s.t.

∑
j xij = 1 ∀i ∈ N

(CFL)
∑

ij∈δ(U) zij ≥
∑

j∈U xij ∀i ∈ N, ∀U ⊆ N : 1 �∈ U

B =
∑

ij c(i, j)zij

C =
∑

i∈N pi

∑
j∈N c(i, j)xij

zij , xij ≥ 0 ∀i, j ∈ N

Let (x∗, z∗, B∗, C∗) be an optimal solution to (CFL). We prove a sequence of
lemmas:

Lemma 11
B∗ + C∗ ≤ 3

2
OPT

Proof. Let OPTA denote an optimal tour for instance A. For a sample A, let zA

be half the incidence vector of the optimal tour on A and for any i, let xA
ij = 1

if j is the nearest neighbor of i in A \ {i}. Clearly BA = 1
2OPTA and CA =∑

i piDj(A). Note that the tour OPTA crosses each set U ⊆ N : U∩A �= 0, 1 �∈ U

A Constant Approximation Algorithm for the a priori TSP 341

at least twice so that the fractional value
∑

ij∈δ(U) zA
ij is at least one. It is then

easy to check that (xA, zA, BA, CA) is a feasible solution for the linear program
with objective function value 1

2OPTA +
∑

j pjDj(A).
The vector EA[(xA, zA, BA, CA)] is a convex combination of feasible points

and hence is feasible itself. The objective function value for this solution, using
Fact 4 and equation (5) is easily bounded by 3

2OPT . Thus the optimal solution
is no worse.

Given a set S ⊆ N , we now define a solution to Steiner(S) as follows:

ȳS
ij = zij + 11(i ∈ S)xij .

Lemma 12. ȳS is a feasible solution to Steiner(S).

Proof. For any U ⊆ N : S ∩ U �= ∅, 1 �∈ U , let i′ ∈ S ∩ U . Then:∑
kl∈δ(U)

ȳS
kl =

∑
kl∈δ(U)

zkl+11(k ∈ S)xkl≥
∑

kl∈δ(U)

zkl+
∑
l �∈U

xi′l≥
∑
l∈U

xi′l+
∑
l �∈U

xi′l = 1.

The claim follows.

With the above lemma in mind, we define c̄ST (S) to be the objective function
value of this solution ȳS for Steiner(S). One can check that the conditional
expectation of c̄ST (S) can be directly evaluated. Moreover, since ȳS is a feasible
solution to Steiner(S), one can find a Steiner tree on S with cost at most 2c̄ST (S).
Further, let cR(S) denote

∑
j pjDj(S).

The method of conditional expectation iterates through the points one by one
and decides for each point whether or not to add it to S. We let P ⊆ N denote
the points we decide to add to S and let P̄ ⊆ N denote the set of points we
decide not to add. We define our estimator

Est(P, P̄) = 2E[c̄ST (S)|P ⊆ S, P̄ ∩ S = ∅] + E[cR(S)|P ⊆ S, P̄ ∩ S = ∅].
We start with P, P̄ empty, and maintain the invariant:

Est(P, P̄) ≤ 4OPT.

This holds in the beginning since 2E[c̄ST (S)] is exactly 2(B∗ + C∗) ≤ 3OPT
by Lemma 11, and the second term is at most OPT , by Fact 4. Moreover, one
can verify (see [10]) that for i �∈ P, P̄ ,

Est(P, P̄) = piEst(P ∪ {i}, P̄) + (1− pi)Est(P, P̄ ∪ {i}).
Thus the smaller of Est(P ∪ {i}, P̄) and Est(P, P̄ ∪ {i}) is no larger than

Est(P, P̄). We can therefore add i to one of P or P̄ without violating the
invariant.

At the end of the process, P ∪ P̄ = N and we have a deterministic set S for
which 2c̄ST (S) + cR(S) ≤ 4OPT . Doubling the tree costs us another factor of
two, and so we get an 8-approximation algorithm.

342 D. Shmoys and K. Talwar

We have explained the derandomization in the context of the rooted variant.
However, for the deterministic algorithm the distinction between these two cases
essentially disappears. The probabilistic argument used to analyze the theorem
proves that the expected cost over sets of size at least two is good (and can be
bounded in the same way as previously). However, we can simply try all possible
choices for the lexicographically smallest pair of nodes in S, choose the first as
the root, and then continue the derandomization procedure for the remaining
nodes. For each of the resulting at most n2 choices of S, we can evaluate the
upper bound (8), and choose the best. The previous theorem ensures that the
resulting solution will have the desired guarantee.

Theorem 13. There is a deterministic algorithm that computes a solution τ for
the a priori TSP in polynomial time and has objective function value no more
than eight times the optimal value.

3 Conclusions

The constant 4 (or 8 for the deterministic case) can probably be optimized.
There are at least two immediate possible sources of improvement. First, we are
using the “double-tree” heuristic to compute the tour, rather than Christofides’s
algorithm. This requires a slightly different analysis (since one must also bound
the cost of the matching in terms of the a priori TSP). Furthermore, unlike in
the result of Williamson & van Zuylen for rent-or-buy, we lose an extra factor of
two relative to an LP relaxation. It seems likely that by adapting this technique
to a stronger LP relaxation one can avoid this loss. On the other hand, our
algorithm is competitive with respect to the expected value of the ex post OPT ,
which is a lower bound on the optimal cost for the problem. It is conceivable that
one can get a better approximation guarantee if one uses a better lower bound
on OPT . Finally, it is important to note that this algorithm is not a constant
approximation algorithm in the black box model (or even the polynomial scenario
model) for representing the probability distribution Π . It remains an interesting
open question to provide a constant approximation algorithm in either of those
two settings.

Acknowledgments. The authors would like to thank Alan Frieze, Shane Hen-
derson, Frans Schalekamp, Anke van Zuylen, and David Williamson for helpful
discussions.

References

1. Jaillet, P.: Probabilistic traveling salesman problems. Technical Report 185, Oper-
ations Research Center, MIT (1985)

2. Jaillet, P.: A priori solution of a traveling salesman problem in which a random
subset of the customers are visited. Operations Research 36, 929–936 (1988)

A Constant Approximation Algorithm for the a priori TSP 343

3. Bertsimas, D.: Probabilistic Combinatorial Optimization Problems. PhD thesis,
MIT, Cambridge, Mass (1988)

4. Bertsimas, D.J., Jaillet, P., Odoni, A.R.: A priori optimization. Operations Re-
search 38(6), 1019–1033 (1990)

5. Schalekamp, F., Shmoys, D.B.: Algorithms for the universal and a priori TSP.
Operations Research Letters (in press, 2007)

6. Bartholdi III, J.J., Platzman, L.K.: An O(N log N) planar travelling salesman
heuristic based on spacefilling curves. Operations Research Letters 1(4), 121–125
(1981/82)

7. Hajiaghayi, M.T., Kleinberg, R., Leighton, T.: Improved lower and upper bounds
for universal tsp in planar metrics. In: Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 649–658. ACM Press, New York (2006)

8. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost-sharing:
a simple approximation algorithm for the multicommodity rent-or-buy problem. In:
Proceedings of the 44th Anuual IEEE Symposium on Foundations of Computer
Science, Silver Spring, MD, pp. 606–615. IEEE Computer Society, Los Alamitos
(2003)

9. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation al-
gorithms for stochastic optimization. In: Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, pp. 265–274 (2004)

10. Williamson, D.P., van Zuylen, A.: A simpler and better derandomization of an
approximation algorithm for single source rent-or-buy. Operations Research Let-
ters 35, 707–712 (2007)

11. Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Private communication (2007)
12. Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online

combinatorial optimization problems. In: Proceedings of the 19th Anuual ACM-
SIAM Symposium on Discrete Algorithms, pp. 942–951. ACM and SIAM, New
York and Philadelphia (2008)

13. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Trav-
eling Salesman Problem. Wiley, Chichester (1985)

New Geometry-Inspired Relaxations and

Algorithms for the Metric Steiner Tree Problem�

Deeparnab Chakrabarty1, Nikhil R. Devanur2, and Vijay V. Vazirani1

1 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332–0280
{deepc,vazirani}@cc.gatech.edu

2 Toyota Technological Institute
nikhil@tti-c.org

Abstract. Determining the integrality gap of the bidirected cut relax-
ation for the metric Steiner tree problem, and exploiting it algorithmi-
cally, is a long-standing open problem. We use geometry to define an LP
whose dual is equivalent to this relaxation. This opens up the possibility
of using the primal-dual schema in a geometric setting for designing an
algorithm for this problem.

Using this approach, we obtain a 4/3 factor algorithm and integrality
gap bound for the case of quasi-bipartite graphs; the previous best being
3/2 [RV99]. We also obtain a factor

√
2 strongly polynomial algorithm

for this class of graphs.
A key difficulty experienced by researchers in working with the bidi-

rected cut relaxation was that any reasonable dual growth procedure pro-
duces extremely unwieldy dual solutions. A new algorithmic idea helps
finesse this difficulty – that of reducing the cost of certain edges and
constructing the dual in this altered instance – and this idea can be ex-
tracted into a new technique for running the primal-dual schema in the
setting of approximation algorithms.

1 Introduction

Some of the major open problems left in approximation algorithms are centered
around LP-relaxations which researchers believe have not been fully exploited
algorithmically, i.e., the best known algorithmic result does not match the best
known lower bound on their integrality gaps. One of them is the bidirected cut
relaxation for the metric Steiner tree problem [Edm67] and this is the main focus
of our paper.

The integrality gap of the bidirected cut relaxation is believed to be very close
to 1; the best lower bound known on the gap is 8/7, due to Goemans [Goe96]
and Skutella[KPT]. On the other hand, the known upper bound is the same
as the weaker undirected cut relaxation which is 2 by a straightforward 2-factor
algorithm for it. The only algorithmic results using the bidirected relaxation that
we are aware of are: a 6/5 factor algorithm for the class of graphs containing
at most 3 required vertices [Goe96] and a factor 3/2 algorithm for the class of
� Work supported by NSF Grant CCF-0728640.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 344–358, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

New Geometry-Inspired Relaxations and Algorithms 345

quasi-bipartite graphs, i.e., graphs that do not have edges connecting pairs of
Steiner vertices [RV99].

In this paper, we use geometry to develop a new way of lower bounding the
cost of the optimal Steiner tree. The best such lower bound can be captured via
an LP, which we call the simplex-embedding LP. A short description of this LP is
that it is an l1-embedding of the given metric on a simplex, maximizing a linear
objective function. Interestingly enough, the dual of the simplex-embedding LP
is a relaxation of the metric Steiner tree problem having the same integrality
gap as the bidirected cut relaxation!

A key difficulty faced by researchers in working with the bidirected cut re-
laxation is the lack of structure in the dual solutions arising mainly due to the
asymmetric nature of the primal. We believe our geometric approach would open
up new ways to use the primal-dual schema for the bidirected cut relaxation.
In particular, we exhibit one dual growing procedure (the Embed algorithm in
Section 2.1) which helps us prove the following property about the bidirected
cut relaxation in quasi-bipartite graphs: If the minimum spanning tree is the
optimum Steiner tree, then the LP relaxation is exact (Theorem 5).

A second key feature of our paper is a new algorithmic idea of reduced costs.
We show that modifying the problem instance by reducing costs of certain edges
and then running the primal-dual schema allows us to obtain provably better
results. We use this idea first to get a simple and fast algorithm which proves
an upper bound of

√
2 on the integrality gap for quasi-bipartite graphs, already

improving the previous best of 3/2 [RV99]. Using another way of reducing costs,
we improve the upper bound to 4/3. This algorithm (similar to the algorithm in
[RV99]) doesn’t run in strongly polynomial time, unlike the

√
2 algorithm.

We also give a second geometric LP in which Steiner vertices are not con-
strained to be on the simplex but are allowed to be embedded “above” the
simplex. Again, the dual of this LP is a relaxation of the metric Steiner tree
problem. We show that on any instance, the integrality gap of this latter LP is
at most that of the bidirected relaxation. It turns out that this LP is in fact
exact for Goemans’ 8/7 example. However, there are examples for which the gap
is 8/7 even for this relaxation. Could it be that this relaxation has a strictly
smaller integrality gap than the bidirected cut relaxation?

1.1 Related Work

Historically, the idea of using an extra vertex to get a shorter tree connect-
ing three points on the plane goes back to Torricelli and Fermat in the seven-
teenth century. The Euclidean Steiner tree problem, in its full generality, was
first defined by Gauss in a letter to his student, Schumacher. This problem was
made popular by the book of Courant and Robbins [CRS96], who mistakenly
attributed it to the nineteenth century geometer, Steiner. The rich combinatorial
structure of this problem was explored by many researchers; e.g., see the books
by Hwang, Richards and Winter [HRW92] and Ivanov and Tuzhilin [IT94].

The use of the bidirected cut relaxation for the Steiner tree problem goes
back to Edmonds[Edm67] who showed the relaxation is exact for the the case of

346 D. Chakrabarty, N.R. Devanur, and V.V. Vazirani

spanning trees. Wong [Won84] gave a dual ascent algorithm for this relaxation,
and Chopra and Rao[CR94a, CR94b] studied the properties of facets of the
polytope defined by the relaxation. Goemans and Myung[GM93] study various
undirected equivalent relaxations to the bidirected cut relaxation.

The bidirected cut relaxation has interesting structural properties which have
been exploited in diverse settings. Let α denote the integrality gap of this relax-
ation. [JV02] use this LP for giving a factor 2 budget-balanced group-strategy-
proof cost-sharing method for the Steiner tree game; Agarwal and Charikar
[AC04] prove that for the problem of multi-casting in undirected networks, the
coding gain achievable using network coding is precisely equal to α. The latter
result holds when restricted to quasi-bipartite networks as well. Consequently,
for these networks, the previous best bound was 3/2 [RV99], and our result
improves it to 4/3.

The class of quasi-bipartite graphs is a non-trivial class for the bidirected
cut relaxation. In fact, recently Skutella (as reported by Konemann et.al.[KPT])
exhibited a quasi-bipartite graph on 15 vertices for which the integrality gap of
the bidirected cut relaxation is 8/7. This ratio matches the erstwhile best known
example on general graphs of Goemans[Goe96] where the ratio was met as a
limit. Moreover, the best known hardness results for the Steiner tree problem in
this class of graphs is quite close to that known in general graphs (128

127 versus
96
95)[CC02].

The best approximation algorithms for the Steiner tree problem is due to
Robbins and Zelikovsky [RZ05]. The authors prove a guarantee of 1.55 for gen-
eral graphs and also show that when restricted to the quasi-bipartite case, the
ratio is 1.28. However, it is not clear if these results would imply an upper bound
on the integrality gap of the bidirected cut relaxation. Very recently, Konemann
et.al.[KPT] introduced another LP relaxation for the minimum Steiner tree prob-
lem which is as strong as the bidirected cut relaxation, and showed that the algo-
rithm of Robbins and Zelikovsky can be interpreted as a primal-dual algorithm
on their LP! However, even their interpretation does not prove any upper bound
on the integrality gap of their relaxation as they also compare with the optimum
Steiner tree and not the optimum LP solution. Nevertheless, they show upper
bounds for their relaxation for a larger class of graphs called b-quasi-bipartite
graphs.1

1.2 Preliminaries

Let G = (V, E) be an undirected graph with edge costs c : E → R. R ⊂ V
denotes the set of required vertices. The vertices in S = V \R are called Steiner
vertices. The Steiner tree problem is to find the minimum cost tree connecting
all the required vertices and some subset of Steiner vertices. We abuse notation
and denote both the optimum tree and its solution as OPT . Also, given a set of
vertices X , we denote the minimum spanning tree on X and its cost as MST (X).

1 A graph is b-quasi-bipartite if on deleting all required vertices, the largest size of any
component is at most b.

New Geometry-Inspired Relaxations and Algorithms 347

The edge costs can be extended to all pairs of vertices such that they satisfy
triangle inequality (simply define the cost of (uv) to be the cost of the shortest
path from u to v). This version is called the metric Steiner tree problem. The
two versions are equivalent.

Let U := {U � V : U ∩ R �= ∅ and U c ∩ R �= ∅} denote the subsets of V
which contain at least one required vertex but not all. Let δ(U) denote the edges
with exactly one end point in U . The undirected cut relaxation of the Steiner
tree problem is:

min

{∑
e∈E

c(e)xe : x(δ(U)) ≥ 1, ∀U ∈ U ; x ≥ 0

}

The MST on R is guaranteed to be within factor 2 of the fractional optimum
of this LP, so this relaxation has an integrality gap of at most 2. The gap can
be arbitrarily close to 2, even for instances of the MST problem.

Now replace each undirected edge (uv) with two directed arcs (uv) and (vu),
each of cost c(uv). Call the set of arcs E. Fix an arbitrary required vertex r as
root. The set of valid sets U are now those which contain the root but not all
the required vertices. If the edges of a Steiner tree are directed to point away
from the root, then at least one edge is in the cut set δ+(U) of arcs going out of
U . This gives the bidirected cut relaxation.

min

{∑
e∈E

c(e)xe : x(δ+(U)) ≥ 1, ∀U ∈ U ; x ≥ 0

}
(1)

We denote the optimum of the above LP on a graph G as BCR(G). A graph
is called quasi-bipartite if there are no edges between two Steiner vertices. The
Steiner tree problem is NP-Hard even when restricted to the class of quasi-
bipartite graphs [BP89, CC02].

Organization: In Section 2 we show the geometric theorem giving the lower
bound, and other results relevant to it. In Sections 3 and 4 we give our

√
2 and

4
3 factor approximation algorithms respectively.

2 A Geometric Lower Bound and Its Consequences

We first present a special case of the geometric theorem, for the sake of ease
of presentation. Let Δk be the unit simplex in R

k, that is, Δk := {x ∈ R
k :∑

i∈[k] x(i) = 1}, where x(i) is the ith coordinate of x. The corners of Δk are
the unit vectors in R

k. Let T be any Steiner tree in Δk connecting the corners,
that is, T is a tree whose vertices are the corners and any number of points in Δk.
Define the distance between two points to be half the l1-distance, also called the
variational distance; for any two points x, y ∈ Δk, d(x, y) := 1

2

∑k
i=1 |x(i)−y(i)|.

(The half is so that two corners are at a distance of 1). Let d(T) :=
∑

e∈T d(e).
Then

348 D. Chakrabarty, N.R. Devanur, and V.V. Vazirani

Theorem 1. d(T) ≥ k − 1.

Note that if T was a spanning tree, then the relation holds with equality since
any two corners are at a distance of 1. The theorem says that Steiner points don’t
improve upon the MST, w.r.t d(). This is somewhat counter-intuitive, since in
most geometric spaces, the Steiner points do improve upon the MST. What is
special here is the l1-distance, and the location of the points on the simplex.

Proof. Let R = {e1, e2, . . . , ek} be the unit vectors in R
k. The proof follows by

a careful2 counting argument. First of all, we get rid of the absolute values that
occur in the l1 distance. For every edge (x, y) in T , and i ∈ [k], if x is on the
T -path from y to ei, then we lower bound |x(i) − y(i)| by x(i) − y(i) (and vice
versa). This way the sum

∑
e∈T d(e) is lower bounded by a linear combination

of the x(i)’s, in which the coefficient of x(i) is 1
2 (degT (x)− 2). This is because

x(i) occurs with a positive sign for each edge incident at x except one, the first
edge on the T -path from x to ei. The exception is ei(i) which always occurs with
a positive sign, and hence has a coefficient of 1

2degT (ei). Therefore,

∑
e∈T

d(e) ≥ 1
2

∑
x∈T,i∈[k]

(degT (x)− 2)x(i) +
1
2

∑
i∈[k]

2ei(i)

=
1
2

∑
x∈T

(degT (x) − 2) +
∑
i∈[k]

1

= k − 1.

where the equality in the second line holds because
∑

i∈[k] x(i) = 1 and the last
equality follows from the fact that in a tree

∑
x∈T deg(x) = 2|T | − 2. �

The general theorem allows two concessions on the location of the points: first,
the points need not be on the unit simplex, all point are in the λ-simplex Δ

(λ)
k ,

defined as {x ∈ R
k :

∑
i∈[k] x(i) = λ}, for some parameter λ > 0. The second is

that the required points need not be at the corners of the simplex. In particular,
we consider any embedding z that maps every vertex u ∈ V = R ∪ S to a point
zu ∈ Δ

(λ)
k , where k = |R|. Identify the required vertices with the dimensions,

and define γ(z) :=
∑

i∈[k] zi(i)− λ. Note that when the required vertices are at
the corners of a unit simplex, γ(z) = k − 1. As before, let T be any Steiner tree
connecting all points in R, d(u, v) = 1

2

∑k
i=1 |zu(i)−zv(i)| and d(T) =

∑
e∈T d(e).

The above proof can be easily be modified to give:

Theorem 2. d(T) ≥ γ(z).

This theorem can be used to get a lower bound on the minimum Steiner tree as
follows: Given a graph, a valid embedding of the vertices onto any λ-simplex is
such that for all edges e, c(e) ≥ d(e). Now given any valid embedding z, for any
tree T , c(T) ≥ d(T) ≥ γ(z). In particular, we have

2 An easy counting argument shows that d(T) ≥ 1
2
(k − 1).

New Geometry-Inspired Relaxations and Algorithms 349

Theorem 3. If z is a valid embedding then

OPT ≥ γ(z).

Since the above holds for any embedding, the best lower bound is given by
max {γ(z) : z is valid}. Quite interestingly, this maximum value for any graph is
equal to BCR(G).

Theorem 4. Given any graph G,

max {γ(z) : z valid embedding of G} = BCR(G).

It is not too hard to see that the maximum in the above theorem can be obtained
via a polynomial sized linear program, which we call the simplex-embedding LP.
In fact, the dual to this program turns out to be a relaxation for the Steiner tree
problem and the proof of the above theorem follows by showing its equivalence
with the bidirected cut relaxation. In [GM93], Goemans and Myung provide two
vertex weighted relaxations which are equivalent to the bidirected cut relaxation.
Although our relaxation is different, our proof of equivalence follows on similar
lines.

Proof. The simplex-embedding LP is as follows:

maximize γ(z) =
∑
i∈[k]

zi(i)− λ (2)

subject to
∑
i∈k

zv(i) = λ, ∀v ∈ V

zv(i)− zu(i) ≤ di(uv), ∀i ∈ [k], (uv) ∈ E

zu(i)− zv(i) ≤ di(uv), ∀i ∈ [k], (uv) ∈ E

1
2

∑
i∈[k]

di(uv) ≤ c(uv), ∀(uv) ∈ E

zv(i), di(uv) ≥ 0, ∀v ∈ V, i ∈ [k], (uv) ∈ E

Taking duals, we get the following LP (after a scaling step)

minimize
∑
e∈E

c(e)xe (3)

subject to xuv ≥ fi(uv) + fi(vu), ∀i ∈ [k], (uv) ∈ E∑
v:(uv) ∈E

(fi(uv)− fi(vu)) ≥ α(v), ∀i ∈ [k], v ∈ V − i

∑
v:(iv) ∈E

(fi(iv)− fi(vi)) ≥ α(i) + 2, ∀i ∈ [k]

∑
v

α(v) = −2

fi(uv), fi(vu), xuv ≥ 0, ∀(uv) ∈ E, i ∈ [k]

350 D. Chakrabarty, N.R. Devanur, and V.V. Vazirani

To interpret LP3, one can think of xe as capacity of edge e. There are k
flows - fi for every required vertex i each satisfying the capacity constraint and
moreover, the supplies (excess flows) for fi at every vertex v is α(v) (it could be
negative) except at the vertex i, where it is α(i)+2. The last equality constraint
implies the total supplies sum up to zero.

Theorem 4 follows by showing there exists a feasible solution to LP 1 of value
Γ if and only if there exists a feasible solution to LP 3 of value Γ . We only give
a sketch for brevity and defer the details to a full version[CDV07].

LP 1 → LP 3: Let {y(uv)}(uv)∈E be a feasible solution of LP 1 of cost Γ with
root r. The corresponding solution to LP 3 is as follows: xuv := y(uv)+y(vu) and
α(v) is the supply at vertex v which is the difference of the outgoing y(vu)’s and
the incoming y(uv)’s, except at r where α(r) is the supply −2. What remains is
to describe the flows. The flow corresponding to r just mimics the y(uv)’s. It is
easy to see every constraint is till now satisfied. To get the flows corresponding
to another required vertex j, we use the fact that the minimum r − j cut in
the digraph with arc set E and capacities y(uv)’s is at least 1 since the solution
is feasible for LP 1. This implies there is a standard flow grj from r to j in
this di-graph. The flow fj is found by subtracting 2grj from fr. Note that this
changes the supplies of no vertex other than r and j, and for these, it changes
as it should change. Thus the solution is feasible for LP3 and is of value Γ .

LP 3 → LP 1: Let ({x}, {fi}, {α}) (respectively over edges, arcs and vertices)
be a solution to LP 3. WLOG by adding circulations if necessary, we can assume
for all edges (uv), and i we have xuv = fi((uv)) + fi((vu)). For LP 1, let r be
the chosen root. Then the solution is: y(uv) := fr((uv)). To see feasibility for
LP 1, we must show across any cut S separating r and a required vertex j, we
have

∑
(uv)∈δ+(S) fr((uv)) ≥ 1. To see this, consider the flow grj: the difference

between fr and fj . To be precise:

grj((uv)) = max[0, fr((uv))− fj((uv))] + max[0, fj((vu))− fr((vu))]

It is not hard to see for any arc (uv), grj(uv) ≤ 2fr((uv)). The proof sketch
ends by noting grj is a standard flow from r to j of value 2, implying across
any cut S as above, 2 units (and hence at least 1 unit of fr) of grj would go
across. �
Interestingly, the above theorems hold even when the Steiner vertices are em-
bedded “above” the simplex. That is, if we have for all Steiner vertices v,∑

i∈[k] zv(k) ≥ λ rather than equality. Maximizing over these embeddings give
us a better lower bound on OPT and in fact, as we see in Figure 1, sometimes
it is strictly better. Thus, we obtain an LP relaxation which could be tighter
than the bidirected cut relaxation. Although the remainder of the paper does
not concern this relaxation, it is an intriguing question if the integrality gap of
this revised LP is strictly smaller than that of the bidirected cut relaxation.

Remark: We should remark that the idea of embedding vertices of a graph
onto a simplex is not new. Calinescu et.al.[CKR98] use a similar LP to obtain

New Geometry-Inspired Relaxations and Algorithms 351

4

44

88

8 8

888

8 8

8

888 8

4

4

Above the Simplex EmbeddingOn the Simplex Embedding

(8,8,0)

(0,8,8)

(8,8,8)

(8,0,8)

(0,0,16)(0,16,0)

(16,0,0)

(5,5,5)

(1,7,7)

)7,1,7()1,7,7(

(0,0,15)(0,15,0)

(15,0,0)

444
8

4

88

8

Fig. 1. Integrality gap of the bidirected cut relaxation for the graph is known to be
16/15 (due to Goemans). The middle figure shows an embedding on the simplex at-
taining a value of 15. The figure to the right shows how we can get a higher value if
we allow Steiner vertices to move above the simplex. Note that the Steiner vertex at
the center is not on the 16-simplex.

approximation algorithms for the multi-way cut problem. However, a key differ-
ence is that theirs is a primal relaxation while ours is dual. It is not clear if a
certain duality between the two LP’s can be established.

2.1 An Embedding Algorithm

In this section, we describe a dual growing procedure Embed which given a
quasi-bipartite graph G and a cost function c does the following.

Case 1: If MST (R) is the optimal Steiner tree, then it returns a feasible em-
bedding z such that γ(z) = MST (R). Note, in this case, MST (R) = OPT =
BCR, since MST (R) ≥ OPT ≥ BCR ≥ γ(z).

Case 2: Or, returns a Steiner vertex v whose addition strictly helps the MST
on R, that is, MST (R ∪ v) < MST (R). We say that Embed crystallizes v.

The following theorem is immediate.

Theorem 5. Given a quasi-bipartite instance G, if the addition of no Steiner
vertex reduces the cost of MST (R), then MST (R) = BCR. In particular the
integrality gap for the instance is 1.

Note that the theorem implies the following important property about the bidi-
rected cut relaxation for quasi-bipartite graphs: If the minimum spanning tree
is optimal, then the relaxation is exact. Only the above property of Embed is
used beyond this section. The rest of the section describes Embed.

Notation: Given an embedding z : V → Δ
(λ)
k and the distance d(·, ·) induced by

it, call an edge (u, v) tight if d(u, v) = c(uv). Call (u, v) under-tight or over-tight
if the distance is strictly smaller or larger, respectively.

The following is a continuous description of the algorithm, which can be easily
discretized. The algorithm has a notion of time. It starts at time t = 0 and time
increases at unit rate. At any time t, all required vertices are on the t-simplex, all
Steiner vertices are below the t-simplex, and no edge is over-tight. The algorithm

352 D. Chakrabarty, N.R. Devanur, and V.V. Vazirani

maintains a set of tight terminal-terminal edges T , which form a forest at any time
t. Let K denote a connected component of required vertices formed with the edges
of T . At time t = 0, the algorithm starts with T = ∅ and the components are
singleton required vertices. All vertices start at the origin at t = 0.

Required vertices: For each component K and required vertex i ∈ K, the
algorithm increases the jth coordinate of i at rate 1/|K|, for each j ∈ K.
Clearly, this will keep required vertex i on the t-simplex. When an edge (ij)
goes tight, the algorithm merges the components containing i and j and
adds (ij) to T . It is instructive to note that when restricted to only required
vertices, this actually mimics Kruskal’s MST algorithm.

Steiner vertices: A Steiner vertex v remains at the origin until it links to a
required vertex. It links to required vertex i at time t = c(iv), if it is not
already linked to another required vertex in the same component as i. The
edge (iv) is called a link. We say that v is linked to a component K if it is
linked to any required vertex in K. For each component K that v is linked
to, the coordinates of v corresponding to K increase at rate 1/|K|.

The algorithm terminates if the number of components becomes 1 (Case 1) or a
Steiner vertex v hits the simplex (Case 2). The example in Figure 2 illustrates
the algorithm on a graph with three required vertices.

We now show the above procedure satisfies the conditions. In Case 1, the
algorithm returns the embedding obtained after running the following projection

(1,1,0) (0.5,3.5,0)

(3.5,0.5,0)

(0,0,4)

(3,0,0)

(0,3,0)

(0,0,3)

(0,0,2)

(0,2,0)
(2,0,0)

(0,0,5)

Dual = 8
t = 5

Dual = 7
t = 4

Dual = 6
t = 3

Dual = 4
 t = 2

v

yx

z

66
4

22
3

(1.5,1.5,0)

(2,2,1)

(1,4,0)

(4,1,0)

Fig. 2. Snapshots of the running of Embed on the graph above at times t = 2, 3, 4, 5.
At time t = 2, the Steiner vertex v links to the required vertices x and y, and increases
its x and y coordinates at rate 1. At time t = 3, x, y merge. The edge (x, y) goes into
Remove(v). At time t = 4, v links to z, and moves in the zth coordinate as well. At
t = 5, it hits the 5-simplex, terminating the algorithm. The tree shown with dotted
lines pays exactly for the dual and is cheaper than the MST.

New Geometry-Inspired Relaxations and Algorithms 353

step. If Case 1 happens at time t = λ, then the algorithm projects each Steiner
vertex onto the λ-simplex. For every Steiner vertex v and coordinate j, zv(j)←
zv(j) λ

||zv||1 . The coordinates of the required vertices are kept the same. It is easy
to show that z is feasible, that is, no edge is over-tight. We need to show that
tree T has cost γ(z). In fact we prove something stronger. Given any connected
component K, denote the restriction of T to K as T [K].

Lemma 1. At any instant of time t, for any connected component K,

c(T [K]) =
∑
i∈K

zi(i)− t.

Proof. At time t = 0, the lemma holds vacuously. Since the quantity
∑

i∈K zi(i)
increases at the same rate as time, we need to prove the lemma only in the time
instants when two components merge. Suppose K, K ′ merge at time instant t due
to edge (ij) which comes in the tree, with i ∈ K, j ∈ K ′. Note d(i, j) = c(ij) = t.
So for the new connected component K ∪K ′,

∑
i∈K∪K′ zi(i)− t =

∑
i∈K zi(i)−

t +
∑

i∈K′ zi(i)− t + t = c(T [K]) + c(T [K ′]) + c(ij) = c(T [K ∪K ′]). �
In Case 2, when v hits the simplex, the algorithm returns v as the Steiner ver-
tex helping the minimum spanning tree. In fact, we show that if v is linked to
K1, · · · , Kr when it hits the simplex, then v helps the MST of the required ver-
tices in P =

⋃
l Kl. This suffices since

⋃
l T [Kl] can be extended to an MST of R.

With each Steiner vertex v, we associate a subset of edges Remove(v) of T .
Suppose v is linked to K and K ′ and these merge at time t, due to edge (ij),
i ∈ K and j ∈ K ′. At this point, (ij) is added to the set Remove(v). Thus, a
Steiner vertex may have more than one link into the same component, but for
each extra link, there is an edge in Remove(v). Let Tv be the tree formed by
adding all the links incident at v to

⋃
l T [Kl] and deleting Remove(v). The proof

of the following lemma is very similar to that of Lemma 1.

Lemma 2. At any instant of time, c(Tv) =
∑

i∈P zi(i)−
∑

i∈P zv(i).

Hence when v hits the simplex,
∑

i∈P zv(i) = t, and so c(Tv) =
∑

i∈P zi(i)− t <
MST (P).

Remark: Note that the above algorithm and analysis do not use the fact the
cost satisfies triangle inequality. We would need this for our algorithms to work.

3 The
√

2 Factor Approximation Algorithm

Notation 1. MST (U ; c) denotes the minimum cost spanning tree on vertices
U given the costs c. Based on the context, it also denotes the cost of this tree.

We start by giving a high level idea of our algorithm. The algorithm will return
a cost c2 and a subset of Steiner vertices X ⊆ S such that

1. The optimal Steiner tree w.r.t. c2 is the MST. Equivalently, Embed when run
on G, c2 terminates with a feasible embedding z with γ(z) = MST (R; c2).

2. MST (X ∪R; c) ≤ √2 ·MST (R; c2)

354 D. Chakrabarty, N.R. Devanur, and V.V. Vazirani

The costs c2 will be only smaller than c; therefore, z is also feasible for c.
Hence, the two conditions imply that we get a factor

√
2 approximation.

Initially, X = ∅ and we obtain c2 by reducing the costs of the required-required
edges by a factor of

√
2 and leaving the costs of required-Steiner edges unchanged.

We denote the reduced cost at this point as c1 which we use later. Clearly
Condition 2 is satisfied now, and will remain an invariant of the algorithm.

Suppose that condition 1 is not satisfied, that is, when Embed is run on
G, c2, a Steiner vertex v ∈ S is crystallized. At this point, the algorithm adds v
to X , and will modify c2 by reducing the costs of certain required-required edges
further, as detailed below. This has the effect that if Embed is run with these
new costs, v does not crystallize, while still maintaining the invariant. Hence in
each iteration, a new Steiner vertex is added to X , implying termination in at
most |S| rounds.

We now give the intuition behind modifying the costs so that the invariant
is maintained. The first step of scaling all the required-required edges acts as a
“global filter” which filters out Steiner vertices that only help a little. If a Steiner
vertex v does crystallize, then adding it to X reduces the cost of MST (R∪X ; c)
so much that decreasing the cost of required-required edges “local” to it to
1
2 of the original costs still maintains the invariant. This requires an involved
argument (Theorem 6) that amortizes the improvements due to all the vertices
previously added to X . This has the additional required effect that v itself is
filtered out.

Now the formal description of the algorithm follows.

Definition 1. Applying the global filter with parameter ρ > 1 gives a cost c1

defined as c1(ij)=1 c(ij)
ρ for all i, j∈R, and c1(iv)=c(iv) for all i∈R and v∈S.

Definition 2. Applying a local filter w.r.t X ⊆ S gives a cost c2. Let T1 =
MST (R ∪ X ; c1), and for each u ∈ X, Clos(u) denote the closest required
vertex to u. The cost c2 after applying the local filter w.r.t X is defined as
c2(Clos(u), j) = 1

2c(Clos(u), j) (half the original cost), for every u ∈ X and
j ∈ R (j �= Clos(u)) that is adjacent to u in T1. c2(e) = c1(e) (the global filter
is retained) otherwise.

Algorithm Primal-Dual

1. Apply global filter with parameter ρ =
√

2 to get c1.
Initialize X ← ∅; c2 ← c1.

2. Repeat till Embed returns z
Run Embed on G, c2.
If Embed returns v then

X = X ∪ v; Apply local filter w.r.t X to get c2.
3. Return T1 = MST (R ∪X ; c1), z.

New Geometry-Inspired Relaxations and Algorithms 355

Theorem 6. The algorithm Primal-Dual terminates in at most |S| rounds,
returning a Steiner tree T1 and a feasible embedding z of G, c such that
c(T1) ≤

√
2 · γ(z) ≤ √2 ·OPT .

Proof (Sketch). Let T1 = E0 ∪E1, where E0 denotes the required-Steiner edges
and E1 denotes the required-required edges of T1. We bound the costs of these
two sets separately. Let E2 be the set of edges modified by the local filter, that
is, e such that c2(e) = 1

2c(e). Define T2 to be E2∪E1. It can be shown that T2 is
an MST with costs c2, and hence c2(T2) = γ(z). We have c(T1) = c(E0)+c(E1),
c2(T2) = c2(E2) + c2(E1) and it is enough to prove that

– c(E0) ≤
√

2c2(E2).
This is essentially a consequence of the observation that c1(T1) ≤ MST
(R; c1). Since T2 = E1 ∪ E2 is also a spanning tree of R, we get c1(T1) ≤
c1(T2). Expanding the costs, we get

c1(E0) + c1(E1) ≤ c1(E2) + c1(E1).

Since E0 are required vertex-Steiner edges, c1(E0) = c(E0). c1(E2) = c(E2)/√
2 =
√

2c2(E2) by definition, giving us c(E0) ≤
√

2c2(E2).
– c(E1) ≤

√
2c2(E1).

Since E1 costs are not modified by the local filter, c2(E1) = c1(E1) and in
fact the relation holds with equality. �

In fact, the above algorithm has a faster implementation. Although the algorithm
constructs the set X in a certain order, it turns out that the order does not
matter. Hence it is enough to simply apply the global filter and go through the
Steiner vertices (in any order) once, picking the ones that help.

Algorithm Reduced One-Pass Heuristic

1. Apply global filter with parameter ρ =
√

2 to get c1.
Initialize X ← ∅;

2. For all v ∈ S,
If MST (R ∪X ∪ v; c1) < MST (R ∪X ; c1), then

X = X ∪ v ;
3. Return T1 = MST (R ∪X ; c1).

Theorem 7. There exists a feasible embedding z of G, c such that for T1 re-
turned by Algorithm Reduced One-Pass Heuristic, c(T1) ≤

√
2 · γ(z).

The proof of Theorem 7 is similar to Theorem 6. Note that the above algorithm
makes at most |S| minimum spanning tree computations and is hence is very
efficient. In particular, it runs in strongly polynomial time.

356 D. Chakrabarty, N.R. Devanur, and V.V. Vazirani

4 The 4
3

Factor Approximation Algorithm

The primal-dual 4
3 approximation algorithm is along the lines of the one in the

previous section, with the major difference being that it drops Steiner vertices
from X when beneficial. The other differences are that it applies the global filter
with ρ = 4/3, and the definition of a local filter is somewhat different. And like
the earlier algorithm, the order of vertices picked/dropped does not matter. As
a result it can be implemented as a local search algorithm with an extra global
filtering step, which is what we present here.

Algorithm Reduced-Local-Search

1. Apply global filter with parameter ρ = 4/3 to get c1.
Initialize X ← ∅, T1 = MST (R; c1);

2. Repeat
If ∃v such that MST (R ∪X ∪ v; c1) < c1(T1), X = X ∪ v.
If ∃v such that MST (R ∪X \ v; c1) < c1(T1), X = X \ v.
T1 = MST (R ∪X ; c1).

Until No such v exists.
3. Return T1.

The plain local search algorithm (without the global filtering step) was studied
[RV99] who showed that this algorithm gives a 3/2 factor approximation for
quasi-bipartite graphs. This factor is tight. So the simple modification of applying
a global filter provably improves the performance of this algorithm. It was shown
in [Riz03] that this algorithm can be implemented efficiently.

We show that T1 returned by the algorithm is within 4/3 of the optimal by
exhibiting an embedding z of value greater than 3/4 times the cost of T1. As
in Section 3, the analysis proceeds by defining cost c2 and constructing tree T2.
The factor 4/3 comes from the parameter ρ used in the global filter and the
following property of T1.

Lemma 3. The degree of every Steiner vertex in T1 is at least 4.

Proof. It is easy to see that T1 doesn’t have vertices of degree 1 or 2. Suppose
there existed a Steiner vertex v ∈ T1 with deg(v) = 3. Let a, b, c be the re-
quired vertices connected to v and assume c1(va) ≤ c1(vb) ≤ c1(vc) without
loss of generality. Now by triangle inequality property of c, we know c(va) +
c(vb) ≥ c(ab). Since c(va) = c1(va) and c(vb) = c1(vb), we get 3

4 (c1(va) +
c1(vb)) ≥ 3

4c(ab) = c1(ab). Similarly 3
4 (c1(va)+c1(vc)) ≥ c1(ac). Thus c1(ab)+

c1(ac) ≤ 3
4 (2c1(va)+c1(vb)+c1(vc)) ≤ c1(va)+c1(vb)+c1(vc). Thus MST (R∪

X) would choose (ab) and (ac), rather than choosing (va), (vb), (vc). �

Theorem 8. For the tree T1 returned by Reduced-Local-Search, there ex-
ists a feasible embedding z such that c(T1) ≤ 4

3 · γ(z).

New Geometry-Inspired Relaxations and Algorithms 357

Proof (Sketch). As in the proof of Theorem 6, denote the edges of T1 as E1∪E0.
Define c2 as: For every Steiner vertex v ∈ T1 and for every j �= Clos(v) connected
to v in T1, let c2(Clos(v), j) = c1(vj). Note that c1(vj) ≤ c1(Clos(v), j), for
otherwise T1 would have picked (Clos(v), j) instead of (vj). Call these required
vertex-required vertex edges diminished. For every other edge, c2(e) := c1(e).
Let E2 be the set of diminished edges and let T2 := E1∪E2, be a required vertex
spanning tree. By the conditions of the algorithm, since T1 is an MST of R ∪X
with costs c1 and no Steiner vertices help X , T2 is an MST of R with costs c2

and no Steiner vertex helps T2. Thus, by Theorem 5 running Embed on G, c2

returns a feasible embedding z of value c2(T2). We now bound the cost of T1.
We have c(T1) = c(E1)+c(E0) = c(E1)+c1(E0). Note that c2(T2) = c1(E1)+

c2(E2) since E1 is not diminished. As in the proof of Theorem 6, we argue term
by term. By definition we have c(E1) = 3

4c1(E1).
Every Steiner vertex v ∈ T1 contributes deg(v) − 1 edges to E2 and deg(v)

edges in E0, where deg(v) is the degree of v in T1. By definition the deg(v)− 1
edges have cost exactly the cost of the largest deg(v)−1 edges of the deg(v) edges
it contributes to E0. By lemma 3, deg(v) ≥ 4 and thus we get c1(E0) ≤ 3

4c2(E2).
Adding, we get c(T1) ≤ 4

3c2(T2) = 4
3γ(z). �

5 Discussion

Clearly the most important question to address is whether the geometric ap-
proached to the bidirected cut relaxation describe here can be extended to gen-
eral graphs. In fact, there is a natural generalization of the Embed procedure
described above to the case where there are Steiner-Steiner edges; however, it
has not yielded any results for the general case. As noted above, one crucial
property possessed by quasi-bipartite graphs is Theorem 5: if the spanning tree
is optimal, then the relaxation is exact. However, this property is not satisfied
by general graphs. An interesting question would be upper bounding the gap in
such instances, and then perhaps our techniques of reducing costs may be useful.

References

[AC04] Agarwal, A., Charikar, M.: On the advantage of network coding for improv-
ing network throughput. In: Proceedings of the IEEE Information Theory
Workshop (2004)

[BP89] Bern, M., Plassman, P.: The Steiner problem with edge lengths 1 and 2.
Inform. Process. Lett. 32, 171–176 (1989)

[CC02] Chlebik, M., Chlebikova, J.: Approximation hardness of the steiner tree
problem on graphs. In: Proceedings of Scandinavian Workshop on Algorithm
Theory (2002)

[CDV07] Chakrabarty, D., Devanur, N.R., Vazirani, V.V.: New geometry-inspired
relaxations and algorithms for the Metric Steiner Tree Problem (2007),
http://www.cc.gatech.edu/∼deepc

[CKR98] Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algo-
rithm for multiway cut. In: STOC (1998)

http://www.cc.gatech.edu/~deepc

358 D. Chakrabarty, N.R. Devanur, and V.V. Vazirani

[CR94a] Chopra, S., Rao, M.R.: The Steiner tree problem I: Formulations, composi-
tions and extension of facets. Math. Programming 64, 209–229 (1994)

[CR94b] Chopra, S., Rao, M.R.: The Steiner tree problem II: Properties and classes
of facets. Math. Programming 64, 231–246 (1994)

[CRS96] Courant, R., Robbins, H., Stewart, I.: What Is Mathematics?: An Elemen-
tary Approach to Ideas and Methods. Oxford Papebacks (1996)

[Edm67] Edmonds, J.: Optimum branchings. Journal of Research of the National
Bureau of Standards. Section B 71, 233–240 (1967)

[GM93] Goemans, M., Myung, Y.: A catalog of Steiner tree formulations. NET-
WORKS 23, 19–23 (1993)

[Goe96] Goemans, M.: Personal communication (1996)
[HRW92] Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals

of Discrete Mathematics, vol. 53. North-Holland, Amsterdam, Netherlands
(1992)

[IT94] Ivanov, A.O., Tuzhilin, A.A.: The Steiner problem and its generalizations.
CRC Press, BocaRaton, Ann Arbor, London, Tokyo (1994)

[JV02] Jain, K., Vazirani, V.V.: Equitable cost allocations via primal-dual-type
algorithms. In: Proceedings of 33rd ACM Symposium on Theory of Com-
puting (2002)

[KPT] Konemann, J., Pritchard, D., Tan, K.: A partition based relaxation for
Steiner trees (manuscript)

[Riz03] Rizzi, R.: On Rajagopalan and Vazirani’s 3/2-approximation bound for
the iterated 1-Steiner heuristic. Information Processing Letters 86, 335–338
(2003)

[RV99] Rajagopalan, S., Vazirani, V.: On the bidirected cut relaxation for the met-
ric Steiner tree problem. In: Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms (1999)

[RZ05] Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approxi-
mation. SIAM Journal of Discrete Mathematics 19, 122–134 (2005)

[Won84] Wong, R.T.: A dual ascent approach for Steiner trees on a directed graph.
Mathematical Programming 28, 271–287 (1984)

Min Sum Edge Coloring in Multigraphs Via

Configuration LP

Magnús M. Halldórsson1, Guy Kortsarz2, and Maxim Sviridenko3

1 School of Computer Science, Reykjavik University, 103 Reykjavik, Iceland
mmh@ru.is

2 Department of Computer Science, Rutgers University, Camden, NJ 08102,
Currently visiting IBM T. J. Watson Research Center

guyk@camden.rutgers.edu
3 IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

sviri@us.ibm.com

Abstract. We consider the scheduling of biprocessor jobs under sum ob-
jective (BPSMS). Given a collection of unit-length jobs where each job
requires the use of two processors, find a schedule such that no two jobs
involving the same processor run concurrently. The objective is to mini-
mize the sum of the completion times of the jobs. Equivalently, we would
like to find a sum edge coloring of the given multigraphs, i.e. a partition
of its edge set into matchings M1, . . . , Mt minimizing

�t
i=1 i|Mi|.

This problem is APX-hard even in the case of bipartite graphs [M04].
This special case is closely related to the classic open shop scheduling
problem. We give a 1.829-approximation algorithm for BPSMS that com-
bines a configuration LP with greedy methods improving the previously
best known ratio of 2 [BBH+98]. The algorithm uses the fractions derived
from the configuration LP and a non-standard randomized rounding. We
also give a purely combinatorial and practical algorithm for the case of
simple graphs, with a 1.8861-approximation ratio.

Keywords: Edge Scheduling, Configuration LP, Approximation Algo-
rithms.

1 Introduction

We consider the biprocessor scheduling of unit jobs under sum of completion
times measure (BPSMS) problem. Given a collection of unit-length jobs where
each job requires the use of two processors, find a schedule such that no jobs
using the same processors run concurrently. The objective is to minimize the
sum of the completion times of the jobs.

The problem can be formalized as an edge coloring problem on multigraphs,
where the nodes correspond to processors and edges correspond to the jobs.
In each round we schedule a matching from the graph, and the objective is to
schedule the edges early on average. This is also known as sum edge coloring.
Formally, the BPSMS problem is: given a multigraphs G, find an edge coloring,
or a partition into a matchings M1, M2, . . . minimizing

∑
i i · |Mi|.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 359–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

360 M.M. Halldórsson, G. Kortsarz, and M. Sviridenko

Biprocessor scheduling problems have been studied extensively [AB+00, KK85]
[GKMP02, CG+85, Y05, GSS87, DK89, K96, FJP01]. Natural application of
biprocessor scheduling includes for example file transfer problem in which we
have a sender and a receiver (see for example [GKMP02, CG+85, Y05]), running
two (or more) programs on the same job in order to assure that the result is
reliable (see [GSS87]), mutual testing of processors in biprocessor diagnostic
links (see [KK85]) and batch manufacturing where jobs simultaneously require
two resources for processing (see [DK89]).

We survey some additional previous work on biprocessor scheduling.
Kubale [K96] studied the complexity of scheduling biprocessor tasks. He also
investigated special classes of graphs, and showed that if jobs have varying
length then even non-preemptive biprocessor scheduling of trees is NP-hard.
Marx [M04] showed that BPSMS (unit jobs) is NP-hard even in the case of pla-
nar bipartite graphs of maximum degree 3 and APX-hard in general bipartite
graphs. When the number of processors is constant, Afrati et al. [AB+00] gave
a polynomial time approximation scheme for minimizing the sum of completion
times of biprocessor scheduling. Later, their results were generalized in [FJP01]
to handle weighted completion times and release times.

The only general approximation result for BPSMS is a 2-approximation algo-
rithm in [BBH+98]. Improved bounds of 1.796 [GHKS04] and

√
2 [GM06] have

been given for the special case of bipartite graphs. The bipartite case lends ad-
ditional importance to BPSMS as it captures a version of the classic open shop
scheduling problem and can be denoted as O|pij = 1|∑Cij using the standard
scheduling notation [LLRS].

Our main tool in the design of the 1.829 approximation is the solution of a
configuration LP. A configuration LP is a linear program with a large (usually
exponential) number of variables. Usually, it contains a variable corresponding
to each “restricted” feasible solution, which in our case corresponds to a fea-
sible assignment of edges to a particular color. See also configuration LP’s for
assignment problems [FGMS06, NBY06, BS06, COR01].

1.1 Our Results

Theorem 1. The BPSMS problem admits an LP based approximation algorithm
with ratio at most 1.829.

This results holds even if the graph has parallel edges.
This LP-based approach has high polynomial time complexity. Hence, it is of

practical interest to study purely combinatorial algorithms.

Theorem 2. The BPSMS problem on graphs with no parallel edges admits a
purely combinatorial algorithm whose approximation ratio is at most 1.8861.

Some of the proofs of propositions are omitted due to lack of space.

2 An Overview of the Main Algorithm

We formulate a configuration LP that contains variables xMt that indicate
whether a matching M is selected to be scheduled at time t. We then perform

Min Sum Edge Coloring in Multigraphs Via Configuration LP 361

a randomized rounding, but with a twist. Each of the xMt values is chopped up
into many tiny fractions that are rounded independently. This ensures a much
stronger concentration of the combined rounding. It is possible that an easier
rounding scheme (for example choosing each matching (M, t) independently with
probability 1 − e−αxMt or min{1, αxMt}) would lead to the same result with a
slight complication in the analysis. Also, the probability by which a chopped
fraction is rounded is multiplied by a universal carefully chosen constant α. The
main reason for using this “chopping” operation is purely technical: we want the
expected number of edges incident to a node v of degree dv that are not covered
during the first phase to be roughly e−αdv even for vertices of small degree. On
the other hand we would like to choose an edge on the first rounding phase by
exactly α matchings in expectation.

As a result of the rounding, many matchings “compete” over the same time
slot, namely provisionally request to occupy this slot. A careful (and again,
randomized) strategy is applied to spread the matchings so that afterwards each
round contains at most one matching. The remaining edges are scheduled one
by one by a simple greedy algorithm that iteratively schedules the edges in the
earliest possible time slot. Even though the greedy algorithm by itself leads to a
ratio of 2 (see [BBH+98]), we prove that the interaction between the randomized
first and greedy second steps gives a 1.829 ratio.

3 An Approximation Algorithm Using Configuration LP

Let M denote the collection of all (possibly non-maximal) matchings in the
graph, including the empty matching. For an edge h, let Mh denote the set of
matchings that contain h. We form an LP with a variable xMt for each matching
M and each time slot t.

Minimize opt∗ =
∑
t,M

t|M |xMt

subject to:
∑

M∈M
xMt = 1 for each t (1)

∑
M∈Mh

∑
t

xMt = 1 for each edge h (2)

xMt ≥ 0 for each t and M

Equality (1) ensures that in an integral solution each round contains exactly
one matching (if a round is not used by the optimum then it is assigned an
empty matching). Equality (2) indicates that each edge belongs to exactly one
scheduled matching. Since every valid solution must obey these constraints, the
linear programming relaxation is indeed a relaxation of our problem.

Proposition 1. The LP can be solved exactly in polynomial time and we may
assume the solution vector is a basic feasible solution.

362 M.M. Halldórsson, G. Kortsarz, and M. Sviridenko

3.1 The Randomized Rounding Algorithm

Observe that the number of rounds in any reasonable schedule is at most Ψ =
2Δ− 1, since each edge has at most 2Δ− 2 adjacent edges. Let {xMt} be the
optimum fractional solution for the instance at hand. We assume that {xMt} is
a basic feasible solution.

Let 1/2 ≤ α ≤ 1 be a universal constant whose value will be optimized later.
For technical reasons (to be clarified later) we need to do a chopping opera-
tion described as follows. Each xMt is replaced by a set of n4 smaller fractions
y1

Mt, . . . , y
n4

Mt, each with a value of xMt/n4. We think of yj
Mt as associated with

a matching Mj,t = M and “responsible” for an xMt/n4 fraction of xMt.
The algorithm has a randomized phase followed by a deterministic phase.

The random phase first assigns to each time slot t a bucket Bt of matchings, all
provisionally requesting to occupy that slot. Since bucket Bt may contain more
than one matching, a procedure is needed to decide which unique matching
to use in each round t′. In this spreading procedure, the matchings are evenly
distributed so that each actual round t receives at most one matching, thus
forming a proper schedule. Because of the spreading, the actual unique matching
assigned to round t may not even belong to Bt.

Remark: For simplicity of the presentation we present the algorithm on simple
graphs (no parallel edges). If there are parallel edges it is possible to get the same
ratio by a larger chopping. Details are omitted from this preliminary report.

Formally, the algorithm is defined as follows:

(i) The initial ordering step:
We choose an arbitrary initial order on all the chopped Mj,t matchings. The
order is deterministic and obeys time slots in that if t < t′ then any Mj,t

must come in the initial order before M ′
j′,t′ regardless of j′, j, M ′, M .

(ii) The randomized rounding step: For each M ′
j,t, 1 ≤ t ≤ Ψ and 1 ≤

j ≤ n4, place M ′ independently at random in bucket Bt′ with probabil-
ity α · yj

t′,M ′ . Several matchings may be selected into the same bucket Bt′ ,
indicating their provisional wish to be scheduled at time t′.

(iii) The random reordering step: Randomly reorder all matchings that
reached bucket Bt.
Remark: The random ordering step is completely independent of the ran-
domized rounding step.

(iv) The spreading step: Spread the resulting matchings, in order of bucket
number and the chosen order within each bucket. Thus, all matchings of
bucket Bt will be scheduled before all matchings of bucket Bt+1, etc. For
each i, let mi denote the number of matchings in Bi. By increasing bucket
numbers i, the matchings in Bi are assigned to rounds

∑i−1
j=1 mj +1 through∑i−1

j=1 mj + mi, with the ordering of the mi matchings that belong to Bi

following the random order of the previous step.
(v) The assignment step: We assign each edge h to the first matching M that

contains h (in the order of spreading). If M is the i-th matching in the order

Min Sum Edge Coloring in Multigraphs Via Configuration LP 363

then the finish time of h is f(h) = i. We then remove copies of h from all
other matchings.

Denote byM1,M2, . . .Mγ the matchings chosen in this first phase. Let Ec =⋃γ
i=1Mi be the set of edges covered in this first phase, and Eu = E−Ec be the

set of uncovered edges.
In the second phase, the edges of Eu are now scheduled in an arbitrary se-

quence by a straightforward greedy procedure. Namely, add edges one by one to
the current schedule (collection of matchings) as early as possible, i.e. if an edge
(z, v) ∈ Eu is scheduled at time t then for every time step t′ < t either edge
incident to node z or an edge incident to node v is scheduled at time t′. Let the
final schedule be {M1,M2, . . . ,MΦ} where Φ ≥ γ.

3.2 Analysis

Recall that for each matching M and each bucket t, there are n4 tries of adding M
into t. Let Aj

Mt be the event the j-th try succeeds and Y j
Mt the indicator random

variable of Aj
Mt. Let XMt =

∑
j Y j

Mt. Since Pr[Aj
Mt] = αyj

Mt, by linearity of
expectation, E[XMt] = α · xMt.

Let Ah = {Aj
Mt|j = 1, . . . , n4, M ∈ Mh, t = 1, . . . , Ψ} be the set of events

involving edge h. We order these events for h according to the initial order (see
the first step of the algorithm), and denote Ah = {Ah

1 , Ah
2 , . . . , Ah

kh
} according

to this order. The i-th event Ah
i in this order corresponds to some Aj

M ′,t′ that
is the jth trial of some pair t′, M ′. Correspondingly, let yh

i denote the chopped
value yj

M ′,t′ , namely, yh
i = Pr[Aj

t′M ′]/α. Note that the order above depends for
now only on the initial order and does not depend on the later random ordering
in buckets. Let kh be the total number of events related to h.

Let deg(v) be the degree of vertex v, and dc(v) be the number of edges incident
on v in Ec (as a random variable).

Let the finish time of an edge h, denoted f(h), be the round i in which
h was scheduled, i.e., if the unique matching containing h was Mi. We split
this quantity into two parts: its covering contribution fc(h) and its uncovered
contribution fu(h). If h ∈ Ec, then fc(h) = f(h) and fu(h) = 0, while if h ∈ Eu,
then fc(h) = 0 and fu(h) = f(h). Clearly, fc(h) + fu(h) = f(h). Thus, fc(h)
(fu(h)) correspond to the amount contributed by h to the objective function
from the first (second) phase, respectively.

Remark: Throughout, we assume, without mentioning it explicitly, that n is
large enough (thus larger than any universal constant required in the analysis).

Proof outline: We analyze the performance of the algorithm by bounding indi-
vidually the expected covering and uncovered contribution of each edge. For the
former, we use the initial ordering defined on the events involving the edge h and
first evaluate the expected covering contribution conditioned on the edge being
selected due to the first event and more generally i-th event in the ordering,
respectively (Proposition 2). The unconditional covering contribution is given
in Lemma 1. We first argue tight bounds on the probability of an edge being

364 M.M. Halldórsson, G. Kortsarz, and M. Sviridenko

uncovered (Proposition 5) and on the expected number of covered edges incident
on a vertex (Proposition 8). We then argue the uncovered contribution of each
edge (Lemma 2). Finally, summing over all the edges of the graph, we combine
the two contributions to derive the approximation in Theorem 4, noting that
the part of the ratio corresponding to the covering contributions is in terms of
the LP objective, while the uncovered contributions will be in terms of another
previously studied lower bound on the optimal value (Definition 2) that is in
fact is weaker than LP lower bound.

Proof details: We first bound fc(h), conditioned on h ∈ Ec. Recall that Ah =
{Ah

1 , Ah
2 , . . . Ah

kh
} is the initial ordering of matchings containing h. At least one

of the events in this list has succeeded.
We compute the finish time of h under the assumption that events Ah

1 , . . . , Ah
p

failed and the first to succeed was Ah
p+1, for some p ≥ 0.

Proposition 2. The expected covering contribution of edge h, given that the
first event in Ah that occurred is Ah

p+1, is bounded by

E

⎡
⎣fc(h)

∣∣∣∣ ⋂
i≤p

Ah
i ∩Ah

p+1

⎤
⎦ ≤ α ·

(
thp+1 −

1
2

p+1∑
i=1

yh
i +

1
α
− 1

2

)
.

Proof. We bound the expected waiting time of an edge, or the expected number
of matchings that precede its round. We first bound the number of those coming
from earlier buckets, and then those coming from the same bucket as h.

The expected sum of fractions chosen per bucket is α ·∑M∈M xMt = α. Thus
the unconditional expected waiting time of h due to the tp+1 − 1 first rounds
is α(thp+1 − 1). However, we are given that previous events involving h did not
occur. Let B = {Ah

i , i ≤ p | thi < thp+1} be the set of events concerning h that
belong to earlier buckets. Then, h waits

α

⎛
⎝thp+1 − 1−

∑
Ah

i ∈B

yh
i

⎞
⎠ (3)

in expectation for previous buckets.
We now consider the matchings belonging to the current bucket thp+1. Let

W = {Ah
i | i ≤ p, thi = thp+1} be the set of events involving h that precede

it in the initial order but also concern the same bucket. The expected number
of matchings in bucket thp+1, conditioned on ∩A∈W A (i.e. none of its preceding
events involving h occurring), equals

α

⎛
⎝1−

∑
Ah

i ∈W

yh
i

⎞
⎠ .

This amount is independent of the random ordering step, but the matchings will
be spread within the bucket randomly. Hence, taking the expectation also over
the random orderings, the waiting time of h for this bucket is at most

Min Sum Edge Coloring in Multigraphs Via Configuration LP 365

α

⎛
⎝1/2−

∑
Ah

i ∈W

yh
i /2− yh

p+1/2

⎞
⎠ . (4)

We now add the waiting times of (3) and (4), observing that worst case occurs
when B = ∅. In that case the expected waiting time is bounded by

α

(
thp+1 −

1
2
−

p+1∑
i=1

yi
h/2

)
.

Adding the round of Mh
p+1 itself yields the claim.

Remark: The above number can indeed be strictly larger then the round of
h. The round of h can be smaller if the following events happen. There is a
matching containing h located after Mh

p+1 in the initial ordering, this matching
reaches slot thp+1 and is located before Mh

p+1 by the random ordering. However,
it seems hard to use this fact to improve the ratio.

Proposition 3. For any non-negative numbers y1, y2 . . . , yk satisfying
∑k

i=1

yi = 1, it holds that

y2
1

2
+ y2 ·

(
y1 +

y2

2

)
+ y3

(
y1 + y2 +

y3

2

)
+ . . . + yk ·

k−1∑
i=1

yi +
y2

k

2
=

1
2

. (5)

Proof. Denote the left hand side by S and rearrange its terms to obtain

S = y1

(y1

2
+ y2 + · · ·+ yk

)
+ y2

(y2

2
+ y3 + · · ·+ yk

)
+ · · ·+ yk

(yk

2

)
.

Applying the equality
∑k

i=1 yi = 1 to each of the parenthesized sums, we have
that

S = y1

(
1− y1

2

)
+ y2

(
1− y1 − y2

2

)
+ · · ·+ yk

(
1− y1 − y2 − · · · − yk−1 − yk

2

)

=
k∑

i=1

yi − S = 1− S.

Hence, S is 1/2, as claimed.

The next claim appeared many times in the approximation algorithms literature.
Chudak and Shmoys [CS03] were the first ones to use it, see also [FGMS06] for
a simpler proof.

Proposition 4. Let t1, . . . , tk be positive numbers so that t1 ≤ t2 ≤ · · · ≤ tk,
and x1, . . . , xk be positive numbers such that

∑k
i=1 xi ≤ 1. Then:

t1 ·x1+t2 ·(1−x1)·x2+· · ·+
k−1∏
i=1

(1−xi)·xktk ≤
(
1−∏k

i=1(1− xi)
)
·∑k

i=1 tixi∑k
i=1 xi

.

366 M.M. Halldórsson, G. Kortsarz, and M. Sviridenko

Proposition 5. The probability that an edge h is not covered is bounded by

1
eα

(
1− 3

n2

)
≤ Pr[h ∈ Eu] =

kh∏
i=1

(
1− αyh

i

) ≤ 1
eα

.

Remark: The r.h.s inequality follows easily by convexity. But the l.h.s is com-
plex to prove. The proof of the l.h.s. inequality strongly uses the chopping,
and also uses that xMt is a basic feasible solution hence contains at most
|E| + 2Δ − 1 < 2n2 non-zero entries. For lack of space this proof is left to
the full version.

Notation 3. Let bh
i = α ·

⎛
⎝thj −

⎛
⎝ i∑

j=1

yh
j

⎞
⎠ /2 + 1/α− 1/2

⎞
⎠ .

Lemma 1. The expected covering contribution of an edge h is bounded by

E [fc(h)] ≤
(

1 +
1
n

)
·
(

1− 1
eα

)
·
⎛
⎝(1− 3α

4

)
+ α

∑
t,M∈Mh

xMt · t
⎞
⎠ .

Proof. By Proposition 2, E
[
fc(h) | ⋃i−1

j=1 Ah
i ∪Ah

i

]
≤ bh

i . Thus,

E [fc(h)] = E
�
fc(h) | Ah

1

�
· Pr(Ah

1) + E
�
fc(h) | Ah

1 ∩Ah
2

�
· Pr(Ah

1 ∩Ah
2) + . . .

+E
�
fc(h) | ∩i<kh

Ah
i ∩ Ah

kh

�
· Pr(∩i<kh

Ah
i ∩Ah

kh
) + 0 · Pr(∩i≤kh

Ah
i)

≤ α · yh
1 · bh

1 +
�
1− α · yh

1

�
· α · yh

2 · bh
2 +

�
1− α · yh

1

�
· (1− α · yh

2) · αyh
3 · bh

3

+ . . . +

k−1�
i=1

�
1− α · yh

i

�
α · yh

k · bh
k

≤
�

1−
�

k�
i=1

�
1− α · yh

i

���
·

k	
i=1

yh
i bh

i . (By Proposition 4)

The α term that multiplied every term before the last inequality was canceled
because

∑k
i=1 αyh

i = α.
The lemma now follows from the combination of the following two proposi-

tions.

Proposition 6.
k∑

i=1

yh
i bh

i ≤ α
∑

t,M∈M
xMt · t + (1 − 3α/4).

Proof. Recall that

yh
i bh

i = αyh
i thi + α ·

⎛
⎝yh

i ·
⎛
⎝−1

2

i∑
j=1

yh
j +

1
α
− 1

2

⎞
⎠
⎞
⎠ .

Min Sum Edge Coloring in Multigraphs Via Configuration LP 367

We break the sum into three parts, and first analyze the total contribution of
the two last terms, −α · yh

i

(∑i
j=1 yh

j

)
/2, and α · yh

i (1/α− 1/2) when summing
over all i. By Proposition 3,

−α

kh∑
i=1

yh
i ·
⎛
⎝1

2

i∑
j=1

yh
j

⎞
⎠ ≤ −α

2

kh∑
i=1

yh
i ·
⎛
⎝i−1∑

j=1

yh
j +

yh
i

2

⎞
⎠ = −α/4, (6)

Since
∑kh

i= yh
i = 1 we have that

α

(
1
α
− 1

2

)
·

kh∑
i=1

yh
i =

(
1− α

2

)
. (7)

Finally, consider the sum of the terms αyh
i thi . By re-indexing, we have that

kh∑
i=1

αyh
i · thi = α

∑
t,M∈Mh

n4∑
i=1

yi
Mt · t = α

∑
t,M∈Mh

xMt · t . (8)

Adding (6), (7) and (8) now yields the claim.

Proposition 7.

(
1−

(
kh∏
i=1

(
1− α · yh

i

))) ≤ (1 +
1
n

)
·
(

1− 1
eα

)
.

Proof. The term is maximized when
∏kh

i=1

(
1− α · yh

i

)
is minimized. Using

1
eα

(
1− 3

n2

)
≤

kh∏
i=1

(
1− αyh

i

)

(Proposition 5), we get

(
1−

(
kh∏
i=1

(
1− α · yh

i

))) ≤ (1− 1
eα
·
(

1− 3
n2

))
≤
(

1 +
1
n

)
·
(

1− 1
eα

)

The last inequality uses our assumption that α ≥ 1/2.

We now deal with the possibility that h ∈ Eu and bound its expected contribu-
tion.

Proposition 8. The expected number of covered edges incident on a vertex v is
bounded by

E [dc(v)] ≤
(

1 +
1
n

)(
1− 1

eα

)
deg(v) .

368 M.M. Halldórsson, G. Kortsarz, and M. Sviridenko

Proof. By Proposition 5, we have for every h ∈ E(v) that

Pr[h ∈ Ec] = 1− Pr[h ∈ Eu] ≤ 1− 1
eα

(
1− 3

n2

)
=
(

1− 1
eα

)
+

3
n2 · eα

.

Using α ≥ 1/2, we have that, for large enough n,

Pr[h ∈ Ec] ≤
(

1 +
1
n

)(
1− 1

eα

)
.

By linearity of expectation,

E [dc(v)] ≤
(

1 +
1
n

)(
1− 1

eα

)
deg(v) .

Remark: Without the chopping operation it seems difficult to bound the ex-
pectation of dc(v) as above, especially considering that some of the degrees may
be small. In fact if there are many parallel edges that chopping has to be into
smaller pieces.

We are ready to bound from above the expectation of the sum of finish times
in the greedy phase. Consider an uncovered edge (u, v) ∈ Eu. This edge would
have to first wait a total of at most dc(v) + dc(u) rounds until all covered edges
incident on v and u are scheduled. After that, each time the edge (u, v) is not
selected, one of u or v or both are matched. Thus, each time the edge waits can
be charged to either an edge of u or an edge of v that belongs to Eu. Thus, the
contribution of the greedy step to the sum of finish times is at most:

∑
v∈V

deg(v)∑
i=dc(v)+1

i =

⎛
⎝deg(v)∑

i=1

i−
dc(v)∑
i=1

i

⎞
⎠ =

∑
v∈V

((
deg(v) + 1

2

)
−
(

dc(v) + 1
2

))
.

(9)
Now, divide equally the term

(
deg(v)+1

2

)−(dc(v)+1
2

)
, charging an equal amount

to each edge in Eu(v). Then, the edge h = (z, v) is charged

deg(z)(deg(z) + 1)− dc(z)(dc(z) + 1)
2(deg(z)− dc(z))

+
deg(v)(deg(v) + 1)− dc(v)(dc(v) + 1)

2(deg(v)− dc(v))

=
deg(z) + dc(z)

2
+

deg(v) + dc(v)
2

+ 1 .

Definition 1. Define

f ′
u(h) =

deg(z) + dc(z)
2

+
deg(v) + dc(v)

2
+ 1

if h ∈ Eu and 0 otherwise.

Observe that
∑

h∈E f ′
u(h) ≥ ∑

h∈E fu(h). Hence, it is enough to bound the
expectation of f ′

u(h), for the purpose of evaluating the sum of the expected
values.

Min Sum Edge Coloring in Multigraphs Via Configuration LP 369

Lemma 2. The contribution of an uncovered edge h is given by

E [f ′
u(h)] ≤

(
1 +

1
n

)
· 1
eα

[(
2− 1

eα

)
·
(

deg(z) + deg(v)
2

+ 1
)
−
(

1− 1
eα

)]

Proof. The probability that h is uncovered is at most 1/eα (see Proposition 5).
Thus,

E [f ′
u(h)] ≤ 1

eα
· E
[
deg(z) + dc(z)

2
+

deg(v) + dc(v)
2

+ 1
]

≤ 1
eα

(
1 +

1
n

)(
2− 1

eα

)(
deg(z) + deg(v)

2
+ 1
)

− 1
eα

(
1 +

1
n

)(
1− 1

eα

)
. (By Proposition 8)

Each edge h′ contributes two terms that depend only on n and α. There is
the positive contribution (see Proposition 1)(

1 +
1
n

)
·
(

1− 1
eα

)
·
(

1− 3α

4

)
(10)

and the negative term from Lemma 2:

− 1
eα
·
(

1 +
1
n

)
·
(

1− 1
eα

)
. (11)

This amounts to (
1 +

1
n

)
·
(

1− 1
eα

)
·
(

1− 3α

4
− 1

eα

)
. (12)

For α ≥ 0.606, the above term is negative and only makes the upper bound
smaller. We shall henceforth assume that α satisfies this property and will ignore
these two terms in the analysis.

The following measure has been useful for lower bounding the cost of the
optimal solution.

Definition 2. q(G) =
∑
v∈V

(
deg(v) + 1

2

)
.

Let opt(G) denote the cost of the optimal sum edge coloring of G, and recall
that opt∗ denotes the value of the linear program. It was shown in [BBH+98]
that opt(G) ≥ q(G)/2.

Proposition 9. opt(G) ≥ q(G)/2 =
∑

(z′,v′)∈E

(
deg(z′) + deg(v′)

4
+

1
2

)

Theorem 4. The expected approximation ratio of the algorithm is at most
1.829.

370 M.M. Halldórsson, G. Kortsarz, and M. Sviridenko

Proof. Ignoring the terms (10) and (11) we get:

E

[∑
h

f(h)

]

=
∑

h

(E [fc(h)] + E [fu(h)]) =
∑

h

(E [fc(h)] + E [f ′
u(h)])

≤
∑

h

⎛
⎝(1 +

1
n

)
α ·
(

1− 1
eα

) ∑
t,M∈Mh

xtM · t
⎞
⎠ (By Lemma 1)

+
∑

h=(z,v)

((
1 +

1
n

)
2
eα

(
2− 1

eα

)
·
(

deg(z) + deg(v)
4

+
1
2

))
(By Lemma 2)

=
(

1 +
1
n

)
α

(
1− 1

eα

)
opt∗ +

(
1 +

1
n

)
2
eα

(
2− 1

eα

)
· q(G)

2

≤
(

1 +
1
n

)
·
(

α ·
(

1− 1
eα

)
+

2
eα

(
2− 1

eα

))
opt(G) (By Proposition 9)

For α = 0.895, this gives a ratio of at most 1.828. Thus, the Proposition
follows for large enough n.

4 Combinatorial Approach

We use the algorithm ACS of [HKS03]. This algorithm does not seem to be
suited for graphs with parallel edges as we do not have a strong enough version
of Vizing’s theorem for such graphs. This algorithm is designed to operate in
rounds, where in each round it finds a collection of matchings. A k-matched
set is a collection of edges partitioned into k matchings. Let βk(G) denote the
maximum total weight of a k-matched set in G.

In each round i, the algorithm seeks a maximum ki-matched set, Mat(G,ki),
where k1, k2, . . . forms a geometric sequence. The base q of the sequence is given
as parameter, while the offset α is selected uniformly at random from the range
[0, 1).

ACS(G,q)
α = U[0, 1); i← �0 ← 0
while (G
= ∅) do

ki = �qi+α�
(M�+1, M�+2, . . . , M�i+ki)← Mat(G, ki)
G← G− ∪i Mi

i← i + 1; �i ← �i−1 + ki−1

end

This algorithm attains a performance ratio of 1.796 when supplied with an
exact algorithm Mat(G,k) for finding k-matched sets [HKS03]. This led to a

Min Sum Edge Coloring in Multigraphs Via Configuration LP 371

1.796-approximation of BPSMS in bipartite graphs [GHKS04]. In general line
graphs, it is not possible to find an optimal set of matchings. Instead, we look
for a dual approximation, consisting of a bi-matched set of weight at least βki ,
where bi is not much larger than ki. If bi/ki < c, for some constant c, this leads
to a 1.796 · c-approximation.

If the graph has no parallel edges, we can obtain a dual approximation of the
k-matched set problem with a unit additive error. Recall that a b-matching is
a subgraph where each nodes has at most b incident edges. It can be found in
polynomial time by a reduction to matching (cf. [CCPS98]). Our algorithm first
finds a maximum ki-matching, and then uses Vizing’s algorithm to partition it
into ki +1 matchings. Only when ki = 1, we already have a single matching and
need not pay the additional unit term.

First, we give a tighter bound of the additive term in the cost analysis of
each vertex. We obtain the following refinement of Lemma 2.4 of [HKS03] (i.e.
an improvement in the additive factor). Let ψ1(v) denote the color of vertex v
assigned by ACS, when using an optimal oracle for k-matched set, and assuming
that with probability 1/2 the matchings for each block are reordered. Clearly,
the final output that does not reorder the blocks will be of no larger total cost.

Lemma 3. For q ≈ 3.591, the solution to ln x = (x + 1)/x, we have that

E [ψ1(v)] ≤ 1.796 ψOPT(v) − 0.710.

The other issue in the analysis is to limit the cost incurred by the additional
matchings introduced by the Vizing colorings. The number of new matchings
that delay a vertex v is equal to the number of non-unit sized blocks preceding
v’s block, plus a half for the increase in v’s own block.

Lemma 4. Let v be a vertex of optimal color ψOPT(v) = x, x > 1. Then, the
expected extra cost to v due to the Vizing coloring is at most logq(x/2) + 1/2.

Proof. The number hv of the block in which v is colored is given by

hv = 1 + �logq x�+ tv,

where tv is a Bernoulli variable with probability logq x−�logq x�. Thus, E[hv] =
1 + logq x.

The first block may or may not be of unit size, and in the latter case no
additional matching is needed. The probability that the first block is of unit size
is the probability that qα < 2, or the probability that α < logq 2, which is logq 2.
Finally, the last block contributes only one a cost of 1/2. Hence, the additional
cost for v is bounded by 1 + logq x− logq 2− 1/2 = logq(x/2) + 1/2.

We now combine these observations to bound the performance of our algorithm.

Theorem 5. The performance ratio of our algorithm is at most 1.8861. This is
on a per vertex basis, and thus applies, e.g., also to the weighted case.

372 M.M. Halldórsson, G. Kortsarz, and M. Sviridenko

Proof. Keeping in mind that the cost of the algorithm is at most
∑

v E[ψ1(v)],
we shall be bounding the amortized expected cost of ψ1(v) to the optimal cost
x = ψOPT(v) of each vertex v. If x = 1, the extra cost is (1− logq 2) ·1/2 = 0.2289.
Then, the expected cost a(1) is at most 1.796x−0.710+0.23 ≤ 1.316. For x > 1,
the expected cost of coloring v is given by

a(x) = E [ψ1(v)] + logq(x/2) + 1/2 ≤ 1.796x + logq(x/2)− 0.210.

The function a(x)/x is maximized when x = 7, yielding a performance ratio of
at most 1.90599.

We can improve this bound as follows. Divide the optimal coloring into a set
of slabs. Let topt be the number of matchings in the optimal solutions, and let
w(Mi) be the weight of the i-th matching, i = 1, . . . , topt. Define stopt+1 = 0 and
si = w(Mi)− w(Mi+1), for i = 1, . . . , topt. We have that

OPT =
topt∑
i=1

i∑
j=1

j · si.

Thus, we can view the instance as a union of topt subgraphs, or slabs, where the i-
th subgraph consists of i matchings each of weight si. We bound the performance
ratio of each slab separately, and use the largest to obtain a bound on the overall
performance.

The cost of our algorithm on slab i equals si

∑i
j=1 a(j), while the optimal

cost is
∑i

j=1 j · si. Evaluating these bounds computationally shows that their
ratio increases until i = 15 after which it decreases. The maximum ratio is then
bounded by 1.8861.

References

[AB+00] Afrati, F., Bampis, E., Fishkin, A., Jansen, K., Kenyon, C.: Scheduling to
minimize the average completion time of dedicated tasks. In: Kapoor, S.,
Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 454–464. Springer,
Heidelberg (2000)

[BBH+98] Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On
chromatic sums and distributed resource allocation. Inf. Comp. 140, 183–
202 (1998)

[BS06] Bansal, N., Sviridenko, M.: The Santa Claus problem. In: STOC, pp. 31–40
(2006)

[CCPS98] Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Com-
binatorial Optimization. John Wiley and Sons, Chichester (1998)

[CG+85] Coffman Jr., E.G., Garey, M.R., Johnson, D.S., LaPaugh, A.S.: Scheduling
file transfers. SIAM J. Comput. 14, 744–780 (1985)

[COR01] Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation Algorithms for
the Job Interval Selection Problem and Related Scheduling Problems. In:
FOCS, pp. 348–356 (2001)

[CS03] Chudak, F., Shmoys, D.: Improved approximation algorithms for the un-
capacitated facility location problem. SIAM J. Comput. 33(1), 1–25 (2003)

Min Sum Edge Coloring in Multigraphs Via Configuration LP 373

[DK89] Dobson, G., Karmarkar, U.: Simultaneous resource scheduling to minimize
weighted flow times. Oper. Res. 37, 592–600 (1989)

[FJP01] Fishkin, A.V., Jansen, K., Porkolab, L.: On minimizing average weighted
completion time of multiprocessor tasks with release dates. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp.
875–886. Springer, Heidelberg (2001)

[FGMS06] Fleischer, L., Goemans, M., Mirrokni, V., Sviridenko, M.: Tight approxi-
mation algorithms for maximum general assignment problems. In: SODA,
pp. 611–620 (2006)

[GHKS04] Gandhi, R., Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Approximating
non-preemptive open-shop scheduling and related problems. In: ICALP,
pp. 658–669 (2004)

[GM06] Gandhi, R., Mestre, J.: Combinatorial algorithms for data migration. In:
Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and
RANDOM 2006. LNCS, vol. 4110. Springer, Heidelberg (2006)

[GKMP02] Giaro, K., Kubale, M., Malafiejski, M., Piwakowski, K.: Dedicated schedul-
ing of biprocessor tasks to minimize mean flow time. In: Wyrzykowski, R.,
Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS,
vol. 2328, pp. 87–96. Springer, Heidelberg (2002)

[GSS87] Gehringer, E.F., Siewiorek, D.P., Segall, Z.: Parallel Processing: The Cm*
Experience. Digital Press, Bedford (1987)

[HKS03] Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Sum coloring interval and
k-claw free graphs with application to scheduling dependent jobs. Algo-
rithmica 37, 187–209 (2003)

[J2001] Jain, K.: A factor 2 approximation algorithm for the generalized Steiner
network problem. Combinatorica 21, 39–60 (2001)

[K96] Kubale, M.: Preemptive versus non-preemptive scheduling of biprocessor
tasks on dedicated processors. European J. Operational Research 94, 242–
251 (1996)

[Kh80] Khachiyan, L.: Polynomial-time algorithm for linear programming. USSR
Comput. Math. and Math. Physics 20(1), 53–72 (1980)

[KK85] Krawczyk, H., Kubale, M.: An approximation algorithm for diagnostic test
scheduling in multicomputer systems. IEEE Trans. Comput. 34, 869–872
(1985)

[LLRS] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Se-
quencing and scheduling: Algorithms and complexity. In: Handbook in
Operations Research and Management Science, vol. 4, pp. 445–522. North-
Holland, Amsterdam (1993)

[M04] Marx, D.: Complexity results for minimum sum edge coloring (manuscript)
(2004)

[NBY06] Nutov, Z., Beniaminy, I., Yuster, R.: A (1-1/e)-approximation algorithm
for the generalized assignment problem. Oper. Res. Lett. 34(3), 283–288
(2006)

[V64] Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskrete
Analiz 3, 23–30 (1964)

[Y05] Kim, Y.-A.: Data migration to minimize the total completion time. J. of
Algorithms 55, 42–57 (2005)

An Improved Algorithm for Finding Cycles

Through Elements

Ken-ichi Kawarabayashi�

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

k keniti@nii.ac.jp

Abstract. We consider the following problem: Given k independent
edges in G. Is there a polynomial time algorithm to decide whether or
not G has a cycle through all of these edges ? If the answer is yes, detect
such a cycle in polynomial time.

This problem can be viewed as an algorithmic aspect of the conjecture
of Lovász [22] and Woodall [34]. For fixed k, it follows from the seminal
result of Robertson and Seymour [29] that there is a polynomial time al-
gorithm to decide this problem. But, the proof of its correctness requires
the full power of machinery from the graph minor series of papers, which
consist of more than 20 papers and > 500 pages. In addition, the hidden
constant is an extremely rapidly growing function of k. Even k = 3, the
algorithm is not practical at all.

Our main result is to give a better algorithm for the problem in the
following sense.

1. Even when k is a non-trivially super-constant number (up to
O((log log n)1/10)), there is a polynomial time algorithm for the
above problem (So the hidden constant is not too large).

2. The time complexity is O(n2), which improves Robertson and Sey-
mour’s algorithm whose time complexity is O(n3).

Our algorithm has several appealing features. Although our approach
makes use of several ideas underlying the Robertson and Seymour’s algo-
rithm, our new algorithmic components allow us to give a self-contained
proof within 10 pages, which is much shorter and simpler than Robertson
and Seymour’s. In addition, if an input is a planar graph or a bounded
genus graph, we can get a better bound for the hidden constant. More
precisely, for the planar case, when k is a non-trivially super-constant
number up to k ≤ O((log n/(log log n))1/4), there is a polynomial time
algorithm, and for the bounded genus case, when k is a non-trivially
super-constant number up to k ≤ O((log (n/g)/(log log (n/g)))1/4), there
is a polynomial time algorithm, where g is the Euler genus.

1 Introduction

Dirac [7] proved the well-known theorem, which says that, given k vertices in
a k-connected graph G, G has a cycle through all of them. Starting with this
� Research partly supported by JSPS Postdoctoral Fellowship for Research Abroad.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 374–384, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Improved Algorithm for Finding Cycles Through Elements 375

result, many papers have appeared in this context, c.f, Bondy and Lovász [4],
Holton et al. [11], and Kawarabayashi [18], etc. Since 1960’s, cycles through a
vertex set or an edge set are one of central topics in all of graph theory.

If L is a set of k independent edges in a k-connected graph G with k being
odd, such that L is a cut in G, then clearly G has no cycles through all the edges
of L. Lovász [22] and Woodall [34], independently, conjectured that this is the
only obstruction for k-connected graphs to have a cycle through k independent
edges.

This conjecture, which is called Lovász-Woodall conjecture, had been known
to be true for k ≤ 5. For k ≤ 2, it is easy. Lovász [23] proved the case of
k = 3. Erdős and Győri [8] and Lomonosov [21], independently, proved the case
of k = 4. Sanders [32] proved the case of k = 5.

Partial general results were due to Woodall [34] and Thomassen [33].
Häggkvist and Thomassen [10] proved the following general result toward the
conjecture:

If L is a set of k independent edges in a (k+1)-connected graph G, then there
is a cycle through all the edges in L.

This implies a conjecture by Berge [2].
Recently, the current author has already settled the conjecture, and the paper

[14] is the first step. The proof is lengthly and complicated. There will be another
three papers for the proof, see the references [15,16,17].

One natural question arising from Lovász-Woodall conjecture in terms of an
algorithmic view is the following:

Is there a polynomial time algorithm to decide whether or not G has such a
cycle ? If the answer is yes, find one in polynomial time.

Actually, if k is fixed, it follows from the seminal result of Robertson and
Seymour on the disjoint paths problem [29] that there is a polynomial time al-
gorithm to decide this problem. Let us remind that the disjoint paths problem
is that we are given a graph G, and a set of k pairs of vertices in G (the termi-
nals), then we have to decide whether or not there are mutually disjoint paths
connecting given pairs of terminals.

However, there are two drawbacks concerning this algorithm:
First, the proof of the correctness of Robertson-Seymour’s algorithm requires

a decomposition theorem capturing the structure of all graphs excluding a fixed
minor. This is actually the heart of the Graph Minor Theory. It needs the full
power of machinery from the graph minor series of papers, and thus runs to
several hundred pages [29].

Secondly, the hidden constant is an extremely rapidly growing function of k.
Even k = 3, the algorithm is not practical at all. It is believed to have very
large bounds. (To quote David Johnson [13], “for any instance G = (V, E) that
one could fit into the known universe, one would easily prefer |V |70 to even
constant time, if that constant had to be one of Robertson and Seymour’s.” He
estimates one constant in an algorithm for testing for a fixed minor H to be

roughly 2 ↑ 2222↑(2↑Θ(|V (H)|))
, where 2 ↑ n denotes a tower 222 ..

.

involving n 2’s).

376 K. Kawarabayashi

So one natural question is: Is there a better algorithm for the problem in terms
of the above two issues ? Toward this question, LaPaugh and Rivest [20] gave a
linear time algorithm for the question when k = 3, which involves no large hidden
constants. Gabow [9] has used this result to find a long cycle in polynomial time.
But as far as we are aware, no simple polynomial time algorithms for the above
question has been known until now.

Our main theorem is to give an answer for this question. Specifically, here is
our main result.

Theorem 1. There is a polynomial time algorithm to decide whether or not
there is a cycle through k independent edges on an arbitrary n-vertex graph with
k ≤ O((log log n)1/10). In addition, if k is fixed, then the running time is O(n2).
Furthermore, there is a polynomial time algorithm to find such a cycle if one
exists.

This algorithm has several appealing features in the context of the above dis-
cussions. First, its description and proof of correctness are much simpler and
shorter than those of Robertson and Seymour’s. Specifically, we can provide
all the details in full in this paper. We assume that there is a function f(k)
such that any graph with tree-width at least f(k) has a (k× k)-grid minor (or a
k-wall. For the definition of a (k×k)-grid minor and a k-wall, we refer the reader
to the next section.). This follows from [6,25,28,31]. The proof in [6] takes 7-8
pages. So the correctness of our proof requires at most 10 pages in total, which
is much shorter than Robertson and Seymour’s. Second, our running time is ac-
tually O(n2) (for fixed k). It is better than Robertson and Seymour’s algorithm
whose time complexity is O(n3). Third, and most importantly, our algorithm
can handle even if k is a part of input, when k ≤ O((log log n)1/10). Therefore,
the hidden constant is not huge.

The value “O((log log n)1/10)” depends on the bound of the tree-width f(k)
that forces a (k × k)-grid minor. Currently, the best known bound is 202k5

by
Robertson, Seymour and Thomas [31]. But when a given graph is planar, then
the situation is different. Robertson, Seymour and Thomas [31] proved that any
planar graph with tree-width at least 6k has a (k× k)-gird minor. This together
with our method implies the following much better result.

Theorem 2. There is a polynomial time algorithm to decide whether or not
there is a cycle through k independent edges on an arbitrary n-vertex planar graph
with k ≤ O((log n/(log log n))1/4). In addition, if k is fixed, then the running
time is O(n2). Furthermore, there is a polynomial time algorithm to find such a
cycle if one exists.

Let us observe that even for planar graphs, the disjoint paths problem is NP-
complete when k is as a part of input. It is likely that our problem for planar
graphs is NP-complete too when k is as a part of input. Let us now give some
evidence. It is well-known that a hamiltonian cycle problem in planar graphs
is NP-complete. Hence, if k is as a part of input, and we are given k vertices,
then it is NP-complete to decide whether or not there is a cycle through all the
vertices, even for planar graphs.

An Improved Algorithm for Finding Cycles Through Elements 377

We can also give a similar result for graphs on a fixed surface, i.e, bounded
genus graphs. Let g be the Euler genus of the surface, and suppose G is embedded
on this surface. Demaine et al. [5] proved that such a graph with tree-width at
least 6kg has a (k×k)-grid minor. Using this result, we can obtain the following
theorem.

Theorem 3. There is a polynomial time algorithm to decide whether or not
there is a cycle through k independent edges on an arbitrary n-vertex graph
that is embedded on a fixed surface with the Euler genus g and with k ≤
O((log (n/g)/(log log (n/g)))1/4). In addition, if k is fixed, then the running time
is O(n2). Furthermore, there is a polynomial time algorithm to find such a cycle
if one exists.

Actually, we can get a better running time for Theorems 2 and 3 for fixed k,
respectively. Reed et al. [27] proved that for planar graphs, there is a linear
time algorithm for the disjoint paths problem for fixed k. Reed [26] extended
this result to graphs on a fixed surface. Combining the technique and result
in [26,27], we can actually give a linear time algorithm for Theorems 2 and 3,
respectively.

So far, we are just interested in cycles through k independent edges. But our
proof does imply that Theorems 1, 2 and 3 hold even if we replace k independent
edges by k1 vertices and k2 independent edges, where k1 + k2 = k.

2 Overview of Our Algorithm

Our approach makes use of the ideas in Robertson-Seymour’s algorithm [29],
together with some apparently new algorithmic techniques. So, let us first sketch
the Robertson-Seymour’s algorithm on the disjoint paths problem.

At a high level, it is based on the following two cases: either a given graph G
has bounded tree-width or else it has a large tree-width. In the first case, one
can apply dynamic programming to a tree-decomposition of bounded tree-width,
see [1,3,29]. The second case again breaks into two cases. If G has a large clique
minor, then one can use this clique minor to link up a subset of the terminals
in any desired way. So, suppose G does not have a huge clique minor. Then
one can prove that, after deleting bounded number of vertices, there is a huge
wall which is essentially planar. This makes it possible to prove that the middle
vertex v of this wall is irrelevant, i.e., the disjoint paths problem is feasible in G
if and only if it is in G− v. This requires the whole graph minor papers, and the
structure theorem of graph minors [30]. Therefore, this part is the most difficult
and complicated.

Our algorithm is based on following the same line of Robertson and Seymour’s.
The first step is to examine whether or not the tree-width is bounded. Again,
if the tree-width is bounded, we are done. Actually, as Reed [25] pointed out,
the disjoint paths problem is solvable even if k is as a part of input when the
tree-width of a given graph is bounded. This is still true for our problem by
using the same line of the proof given by Reed [25].

378 K. Kawarabayashi

What if the tree-width is large ? It is well-known that a given graph G has
a huge wall. It turns out to be possible to use a wall directly, and find an
irrelevant vertex located in the huge wall. In addition, our proof just needs a
8k2-wall. There are some difficulties, since the wall is not as easy to use for our
purpose as a huge clique minor. We shall show how the wall can be used to find
a desired cycle through all specified independent edges. Then this idea is used
to find an irrelevant vertex in the wall. The idea is inspired by Kleinberg [19].
The proof takes only a few pages. Therefore, our proof saves huge amount of
spaces. In addition, our idea on looking at a wall directly improves the overall
huge hidden constant, too.

Let us see our algorithm more closely. The algorithm runs as follows. First,
we check whether the tree-width is small or not. If the tree-width is small, we
can test (even detect it if one exists.) in linear time by the standard dynamic
programming [1]. But since we also consider the case when k is as a part of
input, we will use the following recent result by Perković and Reed [24]

Theorem 4. The followings hold:

1. There exists an algorithm that, given a graph G and an integer m, finds
either a subgraph of G isomorphic to an m-wall or a tree-decomposition of
G of width w ≤ 202m5

. The running time is n(m2 + w)O(m2+w).
2. There exists an algorithm that, given a planar graph G and an integer m,

finds either a subgraph of G isomorphic to an m-wall or a tree-decomposition
of G of width w ≤ 6m. The running time is n(m2 + w)O(m2+w).

3. There exists an algorithm that, given a graph G on a fixed surface with the
Euler genus g and an integer m, finds either a subgraph of G isomorphic to
an m-wall or a tree-decomposition of G of width w ≤ 6m/g. The running
time is n(m2 + w)O(m2+w).

Note that the tree-width bounds in the second theorem and third theorem follow
from [31] and [5], respectively.

If the tree-width is small, say at most w for some constant, then as suggested
by Reed [25], there is an O(n)kO(w)-time algorithm to decide the k disjoint
paths problem, even if k is as a part of the input. Reed’s proof [25] implies the
following.

Theorem 5. Suppose G has tree-width at most w. Then there is an O(n)kO(w)-
time algorithm to decide our problem for a cycle through specified k independent
edges.

For the tree-width large case, we only need a 8k2-wall. Hence when 8k2 ≥ m in
Theorem 4, then Theorems 1, 2 and 3 hold.

In the remainder of the paper, we shall discuss the large tree-width case.
Suppose a 4k2-wall is given by Theorem 4. Our algorithm will find an irrelevant
vertex in this wall. Then we run this algorithm recursively until the tree-width
is at most w ≤ 202m5

(w ≤ 6m when a given graph is planar, and w ≤ 6m/g
when a given graph is embedded on a fixed surface with the Euler genus g.).
Finally we just apply Theorem 4 for the current graph.

An Improved Algorithm for Finding Cycles Through Elements 379

3 Definitions and Preliminaries

We will need some notation from graph minor series.

Tree-Decomposition and Tree-width: A tree decomposition of a graph G is a pair
(T, Y), where T is a tree and Y is a family {Yt | t ∈ V (T)} of vertex sets
Yt ⊆ V (G), such that the following two properties hold:

(W1)
⋃

t∈V (T) Yt = V (G), and every edge of G has both ends in some Yt.
(W2) If t, t′, t′′ ∈ V (T) and t′ lies on the path in T between t and t′′, then

Yt ∩ Yt′′ ⊆ Yt′ .

The pair (T, Y) is a path decomposition if T is a path. The width of a tree
decomposition (T, Y) is maxt∈V (T)(|Yt| − 1). Let (T, Y) be a tree decomposition
of a graph G. For an edge tt′ ∈ E(T), let Ztt′ = Yt ∩ Yt′ . Let us recall that
the adhesion of a tree decomposition (T, Y) is max |Ztt′ | taken over all edges
tt′ ∈ E(T).

Grid minor and Wall: One of the most important result concerning the tree-
width is existence of grid-minor or a wall.

Let us recall that an r-wall is a graph which is isomorphic to a subdivision of
the graph Wr with vertex set V (Wr) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r} in which
two vertices (i, j) and (i′, j′) are adjacent if and only if one of the following
possibilities holds:

(1) i′ = i and j′ ∈ {j − 1, j + 1}.
(2) j′ = j and i′ = i + (−1)i+j .

We can also define an (a × b)-wall in a natural way. It is easy to see that if
G has an (a × b)-wall, then it has an (a × b)-grid minor, and conversely, if G
has an (a × b)-grid minor, then it has an (a/2 × b)-wall. Let us recall that the
(a× b)-grid is the Cartesian product of paths Pa × Pb. The (4× 5)-grid and the
(8× 5)-wall are shown in Figure 1.

Fig. 1. The (4× 5)-grid and the (8× 5)-wall

Finally, let us define canonical cycles C1, . . . , Ck in a 2k-wall W . We now
delete vertices of degree 1 in W . Then Ck is an outer face boundary. Inductively,
we can define Ci, which is the outer face boundary obtained by W by deleting
all the cycles Ck, . . . , Ci+1.

380 K. Kawarabayashi

4 Main Proof

As pointed out before, we are left with the tree-width large case. In fact, right
now, a 8k2-wall is given by Theorem 4. We are trying to find an irrelevant vertex
in this wall.

The following is the key lemma for our main result.

Lemma 1. Let e1, e2, . . . , ek be k independent edges. Let S =
V (e1)∪, . . . ,∪V (ek). Suppose G has a (2k + 4)-wall W and let Q be the
vertices of degree 3 (in W) in the outer face boundary of W . Suppose further-
more that there are 2k disjoint paths P1, . . . , P2k from S to Q such that each of
these paths does not intersect any vertex in W except for the vertices in Ck+2,
and for any three endpoints in Q, there is no 3-separations in W . Then there is
a cycle C that passes through all edges e1, e2, . . . , ek.

Proof. We prove the statement by induction on k. When k = 1, then it is clear.
Suppose k ≥ 2. Take the vertex vj in Q such that vj is the endpoint of the path
Pj . Then we assume that the other endpoint of Pj is on ej . Let Pj′ 	= Pj be
the other path between ej and Q. Let vj′ be the endpoint of Pj′ on Q. Take
the vertex in the endpoints of P1, . . . , P2k in Q, which is closest to vj on Ck+2,
but not vj′ . Call it vl. We assume that vl is the endpoint of the path Pl, and
the other endpoint of Pl is on el (we also assume that l > j.). Let Pl′ 	= Pl be
the other path between el and Q, and vl′ be the endpoint of Pl′ on Q. Let R
be the path along Ck+2 between vj and vl. Clearly, by our choice, R does not
contain any vertex of the endpoints of P1, . . . , P2k except for vj , vl.

Let P be the path from ej to el through Pj , vj , R, vl, Pl. We contract this
path P , ej and el to the edge, and let ejl be the resulting edge. Let Q′ be the
set of vertices of degree 3 (in W − Ck+2) in Ck+1. Then by our assumption
of Lemma 1, it is easy to see that there are 2k − 2 vertex disjoint paths from
(S − V (ej) − V (el)) ∪ V (ejl) to Q′ by following paths between Ck+2 and Ck+1

in W , together with 2k− 2 disjoint paths between (S − V (ej)− V (el)) ∪ V (ejl)
and Q.

Now we have k−1 independent edges e1, . . . , ej−1, ej+1, . . . , el−1, el+1, . . . , ek,
ejl and there are 2k−2 disjoint paths from (S−V (ej)−V (el))∪V (ejl) to Q′. Fur-
thermore, these paths do not intersect any vertices in W ′ except for the vertices
on Ck+1. Here, W ′ is the (2k + 2)-wall obtained from W by deleting the outer
cycle Ck+2. Hence the induction hypothesis is satisfied with the (2k+2)-wall W ′

and k−1 independent edges e1, . . . , ej−1, ej+1, . . . , el−1, el+1, . . . , ek, ejl. So by in-
duction, there is a cycle C through all the edges e1, . . . , ej−1, ej+1, . . . , el−1, el+1,
. . . , ek, ejl, and clearly, this cycle can be extended to a desired cycle that passes
through all edges e1, e2, . . . , ek. This completes the proof.
�
We are ready to prove our most important result. The proof is inspired by
Kleinberg [19].

Theorem 6. Let e1, e2, . . . , ek be k independent edges. Let S = V (e1)∪, . . . ,
∪V (ek). Suppose G has a 8k2-wall. If there is no separation (A, B) of order at

An Improved Algorithm for Finding Cycles Through Elements 381

most 2k− 1 such that A contains all the vertices in S and B contains all but at
most k− 1 vertices of degree 3 in W , then there is a cycle C that passes through
all edges e1, e2, . . . , ek.

Proof. By Menger’s theorem, there are 2k disjoint paths from S to W . Let Q
be the endvertices of these 2k disjoint paths in W . There are at least (2k − 3)2

disjoint (2k + 3)-walls in W such that any of these walls does not contain any
vertex in Q. We would like to apply Lemma 1. So we shall find one of (2k + 3)-
subwalls, say W ′, such that there are 2k disjoint paths from S to Q′, any of
which does not intersect any vertices in W1 except for its outer face boundary,
where Q′ is a vertex set of degree 3 (in W ′) in the outer cycle of W ′. Then
this would clearly imply the assumption of Lemma 1 by taking the (2k +2)-wall
obtained from W ′ by removing the outer face boundary.

We now find such a wall, using an augmenting path argument. We first con-
sider 2k disjoint paths in W , from Q to any of (2k + 3)-subwalls that does not
contain any vertex of Q. If there are no such 2k disjoint paths for any of them,
this means that there is a separation (A, B) of order at most 2k − 1 in W such
that A contains all the vertices in Q and B contains all but at most k−1 vertices
of degree 3 in W . So, for any choice of Q, we may assume that such a separation
exists. We take Q such that the order of such a separation in W is as large as
possible. Subject to that, we take such a separation such that the order of |B| is
as small as possible. Minimality of |B| then implies that all the vertices of B−A
adjacent to A in W have degree exactly two in B, otherwise, there would be
another such a separation (A′, B′) with |B′| < |B|. Note that we can link A∩B
to the endpoints Q in the wall to get a linkage from S to A∩B of order |A∩B|.
By the assumptions on G, there exists an augmenting path to this linkage to get
|A ∩ B| + 1 disjoint paths from S to the set B with endpoints (A ∩ B) ∪ x for
some x in B −A. Let us keep this in mind.

Since there are no such separations in G, there must be a path P1 between
A−B and B−A in G (We call it augmenting path). Let x1 be the endvertex of
P1 in B−A. By the minimality of B and the above remark, there are |A∩B|+1
disjoint paths from Q to (A ∩ B) ∪ {x1} in W ∪ P1. We call this procedure
augmenting process . Let W1 = W ∪ P1. If there is a separation (A′, B′) of order
at most 2k− 1 in W1 such that A′ contains all the vertices in Q and B′ contains
all but at most k − 1 vertices of degree 3 in W , then, again, we take such a
separation (A′, B′) such that the order of |B′| is as small as possible. Clearly
|A′ ∩ B′| > |A ∩ B|. Since there are no such separations in G, there must be
a path P2 between A′ − B′ and B′ − A′. Let x2 be the endvertex of P2 in
B′ − A′. We take such a path P2 so that there are |A′ ∩ B′| + 1 disjoint paths
from Q to (A′ ∩ B′) ∪ {x2} in W1 ∪ P2 (by rechoosing the path P1 (but the
same endpoints), if necessary, such a path exists because of our assumption of
connectivity in Theorem 6). Let W2 = W1 ∪ P2. We now repeat this process
until there are no such separations of order at most 2k − 1. Since, in each step,
the order of the separation |A′ ∩ B′| increases by at least 1, hence this implies
that this augmenting process stops when we perform at most 2k − 1 times. Let
us observe that even if we add at most 2k − 1 disjoint paths to W , there are

382 K. Kawarabayashi

at least 2k2 disjoint (2k + 6)-subwalls, any of which contains neither a vertex in
Q nor a vertex in the endpoints of these paths. Therefore, if there are no such
separations of order at most 2k − 1, clearly there are 2k disjoint paths from Q
to the vertex set Q′ of a (2k + 6)-subwall W ′ such that any of these 2k disjoint
paths does not intersect any vertex in W ′, except for its outer face boundary,
where Q′ is a vertex set of degree 3 (in W ′) in the outer face boundary of W ′. We
now claim that there are 2k disjoint paths from S to Q′ such that any of these
2k disjoint paths does not intersect any vertex in W ′, except for its outer face
boundary. Our choice of Q (maximality of the order of the separation) implies
that for each iteration of the augmenting step with a separation (A′, B′), there
are |A′ ∩B′| disjoint paths from S to A′ ∩B′ such that any of these paths does
not use any vertex in B′−A′. It follows that there are 2k disjoint desired paths
from S to Q′ such that none of them uses a vertex in W ′, except for the vertices
on the outer face boundary of W ′. Let W ′′ be the (2k + 4)-wall obtained from
W ′ by removing the outer cycle of W ′. By applying Lemma 1 to S and W ′′,
there is a desired cycle. This completes the proof.
�
Having proved Theorem 6, our algorithm is easy. We can prove the following.

Theorem 7. Suppose G has a (8k + 3)2-wall W . Then there is an O(n) algo-
rithm to find an irrelevant vertex v in W , i.e., there is a desired cycle through
all the edges e1, e2, . . . , ek in G, if and only if G− v has.

Proof. Let S = V (e1)∪, . . . ,∪V (ek). Since we only need a 8k2-wall in the proof
of Theorem 6 and G− v has a 8k2-wall W ′ for any vertex v of degree 3 in W , so
this result would follow if there would be a vertex v of degree 3 in W such that
there would be no separation (A, B) of order less than 2k − 1 in G − v so that
A contains all the vertices in S and B contains all but at most k − 1 vertices of
degree 3 in W . In fact, such a vertex v would be irrelevant by using Theorem 6.
So suppose such a separation of order at most 2k − 1 exists for each vertex v of
degree 3 in W .

In order to find an irrelevant vertex in W , we first detect a minimum separa-
tion (A, B) such that A contains all the vertices in S, and B contains all but at
most k − 1 vertices of degree 3 in the wall W . Subject to this, we take such a
separation such that |B| is as small as possible. Such a separation can be found
by the result in [12]. The running time is O(f(k)n), where f(k) depends on the
number of vertices of degree 3 in the wall W , which is at most (8k + 3)2. Note
that B has a (8k2 +1)-wall W ′. We claim that any vertex v of degree 3 in W ′ in
B − A is irrelevant. Clearly, we can reduce the problem in G to that in B with
at most 2k− 1 terminals in A∩B. Since the minimality of |B| implies that any
vertex of v in B −A does not create any separation of smaller order, and G− v
has a 4k2-wall W ′′ , therefore, by Theorem 6, this problem is feasible in B with
respect to the terminals in A ∩B if and only if it is in B − v. So, v is irrelevant
in B, and hence in G. This completes the proof.
�
Theorem 7 implies our algorithm. When the tree-width is small, we can decide
the problem, and actually, detect a desired cycle if one exists, as discussed before.
If the tree-width is large, then we first apply Theorem 4 to get a (8k + 3)2-wall.

An Improved Algorithm for Finding Cycles Through Elements 383

Then we apply Theorem 7 to find an irrelevant vertex v. Then we run our
algorithm to G− v recursively until the current graph has bounded tree-width.
Hence the running time is O(n2).

Acknowledgement

We would like to thank the referee for suggesting a fix of a hole in the original
version.

References

1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Appl. Math. 23, 11–24 (1989)

2. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)
3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decomposition of small

treewidth. SIAM J. Comput. 25, 1305–1317 (1996)
4. Bondy, J.A., Lovász, L.: Cycles thourhg specified vertices of a graph. Combinator-

ica 1, 117–140 (1981)
5. Demaine, E.D., Fomin, F., Hajiaghayi, M., Thilikos, D.: Subexponential parame-

terized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52,
1–29 (2005)

6. Diestel, R., Gorbunov, K.Y., Jensen, T.R., Thomassen, C.: Highly connected sets
and the excluded grid theorem. J. Combin. Theory Ser. B 75, 61–73 (1999)

7. Dirac, G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre
unterteilungen. Math. Nachr. 22, 61–85 (1960)

8. Erdős, P.L., Győri, E.: Any four independent edges of a 4-connected graph are
contained in a circuit. Acta Math. Hungar. 46, 311–313 (1985)

9. Gabow, H.: Finding paths and cycles of superpolylogarithmic lentgh. In: STOC
2004, Chicago, Illinois, USA, pp. 407–416 (2004)

10. Häggkvist, R., Thomassen, C.: Circuits through specified edges. Discrete Math. 41,
29–34 (1982)

11. Holton, D.A., McKay, B.D., Plummer, M.D., Thomassen, C.: A nine point theorem
for 3-connected graphs. Combinatorica 2, 53–62 (1982)

12. Ibaraki, T., Nagamichi, H.: A linear time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica 7, 583–596 (1992)

13. Johnson, D.: The Many Faces of Polynomial Time. J. Algorithms 8, 285–303 (1987)
14. Kawarabayashi, K.: One or two disjoint ciruits cover independent edges, Loväsz-

Woodall Conjecture. J. Combin. Theory Ser. B. 84, 1–44 (2002)
15. Kawarabayashi, K.: Two circuits through independent edges (manuscript, 1999)
16. Kawarabayashi, K.: An extremal problem for two circuits through independent

edges (manuscript, 1999)

17. Kawarabayashi, K.: Proof of Lovász-Woodall Conjecture (in preparation)
18. Kawarabayashi, K.: Cycles through prescribed vertex set in N-connected graphs.

J. Combin. Theory Ser. B 90, 315–323 (2004)
19. Kleinberg, J.: Decision algorithms for unsplittable flows and the half-disjoint paths

problem. In: Proc. 30th ACM Symposium on Theory of Computing, pp. 530–539
(1998)

384 K. Kawarabayashi

20. LaPaugh, A.S., Rivest, R.L.: The subgraph homomorphism problem. J. Comput.
Sys. Sci. 20, 133–149 (1980)

21. Lomonosov, M.V.: Cycles through prescribed elements in a graph. In: Korte,
Lovász, Prőmel, Schrijver (eds.) Paths, Flows, and VLSI Layout, pp. 215–234.
Springer, Berlin (1990)

22. Lovász, L.: Problem 5. Period. Math. Hungar, 82 (1974)
23. Lovász, L.: Exercise 6.67. In: Combinatorial Problems and Exercises. North-

Holland, Amsterdam (1979)
24. Perkovic, L., Reed, B.: An improved algorithm for finding tree decompositions of

small width. International Journal on the Foundations of Computing Science 11,
81–85 (2000)

25. Reed, B.: Tree width and tangles: a new connectivity measure and some appli-
cations. In: Surveys in Combinatorics, London. London Math. Soc. Lecture Note
Ser., vol. 241, pp. 87–162. Cambridge Univ.Press, Cambridge (1997)

26. Reed, B.: Rooted Routing in the Plane. Discrete Applied Mathematics 57, 213–227
(1995)

27. Reed, B., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in pla-
nar graphs in linear time. In: Graph structure theory (Seattle, WA, 1991) Contemp.
Math., pp. 295–301. Amer. Math. Soc., Providence (1993)

28. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Com-
bin. Theory Ser. B 41, 92–114 (1986)

29. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.
J. Combin. Theory Ser. B 63, 65–110 (1995)

30. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph.
J. Combin. Theory Ser. B 89, 43–76 (2003)

31. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.
Combin. Theory Ser. B 62, 323–348 (1994)

32. Sanders, D.P.: On circuits through five edges. Discrete Math. 159, 199–215 (1996)
33. Thomassen, C.: Note on circuits containing specified edges. J. Combin. Theory Ser.

B. 22, 279–280 (1977)
34. Woodall, D.R.: Circuits containing specified edges. J. Combin. Theory Ser. B. 22,

274–278 (1977)

The Stable Roommates Problem with Choice

Functions

Tamás Fleiner�

Budapest University of Technology and Economics,
Department of Computer Science and Information Theory,

Magyar tudósok körútja 2. H-1117, Budapest, Hungary
fleiner@cs.bme.hu

Abstract. The stable marriage theorem of Gale and Shapley states that
for n men and n women there always exists a stable marriage scheme,
that is, a set of marriages such that no man and woman exists that mu-
tually prefer one another to their partners. The stable marriage theorem
was generalized in two directions: the stable roommates problem is the
“one-sided” version, where any two agents on the market can form a part-
nership. The generalization by Kelso and Crawford is in the “two-sided”
model, but on one side of the market agents have a so-called substi-
tutable choice function, and stability is interpreted in a natural way. It
turned out that even if both sides of the market have these substitutable
choice functions, there still exists a stable assignment. This latter ver-
sion contains the “many-to-many” model where up to a personal quota,
polygamy is allowed for both men and women in the two-sided market.

The goal of this work is to solve the stable partnership problem, a
generalization of the one-sided model with substitutable choice func-
tions. We do not quite reach that: besides substitutability, we also need
the increasing property for the result. Luckily, choice functions in well-
known stable matching theorems comply with this property. The main
result is a generalization of Irving’s algorithm, that is the first efficient
method to solve the stable roommates problem. This general algorithm
allows us to deduce a generalization of Tan’s result on characterizing
the existence of a stable matching and to prove a generalization of the
so-called splitting property of many-to-many stable matchings. We show
that our algorithm is linear-time in some sense and indicate that for
general (i.e. not necessary increasing) substitutable choice functions the
stable partnership problem is NP-complete.

1 Introduction

Gale and Shapley [9] introduced their famous marriage model almost a half cen-
tury ago. The model consists of n men and n women such that each person has

� Research is supported by OTKA grants K69027 and K60802, the MTA-ELTE
Egerváry Research Group (EGRES) and the János Bolyai research fellowship of
the Hungarian Academy of Sciences.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 385–400, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

386 T. Fleiner

a linear preference order on the members of the opposite gender. The marriage
theorem states, that for each such model there exists a stable marriage scheme,
that is, a set of disjoint couples in such a way that no man and woman mutually
prefer one another to their partners. It turned out that variants of the model are
useful in Game Theory, Economics, Graph Theory, Complexity Theory, Com-
binatorial Optimization and the Theory of Algorithms. Also, stable matchings
have a rich structure, and this also led to further generalizations. There are two
natural directions of these generalizations. For the first one, we drop the two-
sided property of the market. This way we get the stable roommates problem:
any two agents may have a relationship, the solution of the problem is more
difficult, and a stable matching does not always exist. Irving [11] was the first
who gave an efficient algorithm that finds a stable matching in a given model if
it exists. Since then, many different approaches are known for the same problem.
(Cf. Tan [17], Tan and Hsueh [18], Subramanian [16], Feder [5] and others. See
also the book of Roth and Sotomayor [13] and of Gusfield and Irving [10] for
further details).

The other direction for a possible generalization is that we allow that an agent
may participate in several relationships, so instead of a matching, we look for a
certain subgraph of the underlying graph with degree prescriptions. This is done
by keeping linear preference orders, but introducing quotas for the agents (this
model is present already in the original paper of Gale and Shapley), or in a much
more general way, by choice functions. This is what was initiated by Crawford
and Knoer [4], and continued by Kelso and Crawford [12]. This choice function
model is closely related to the lattice theoretical fixed point theorem of Knaster
and Tarski [19] as it was pointed out by Fleiner [6]. It is worth mentioning that
the nonbipartite stable roommates problem has to do with an other fixed point
theorem: as Aharoni and Fleiner [1] observed, it is a special case of the well
known game theoretical Scarf’s lemma [14]. (Scarf’s lemma can be regarded as
a discrete version of Kakutani’s fixed point theorem, which is a generalization
of the topological fixed point theorem of Brouwer).

In the present work, we move into both directions. In Section 2, we describe
our one-sided (nonbipartite) model and define the stability concept by choice
functions. By a generalization of Irving’s algorithm, we solve the defined stable
partnership problem in Section 3 for so called increasing choice functions. Fur-
thermore, the same way as Tan [17] did, we show that a certain half-integral
solution always exists, and such a solution is either a generalized stable match-
ing or it is an immediate proof for the nonexistence of it. The reader who finds
it difficult to follow all the details may focus only on the solution of the sta-
ble partnership problem and ignore the existence of half-integral solutions. It is
fairly easy to reduce the algorithm to the integral stable partnership problem,
and proofs become much easier. If the choice functions of the model are given
by an oracle then the algorithm works in polynomial time, and Section 4 gives a
detailed analysis. We also show there that for general choice functions the stable
partnership problem is NP-complete. Section 5 contains a structural result on
stable partnerships: we generalize a result of Fleiner [8] (that was independently

The Stable Roommates Problem with Choice Functions 387

found by Teo et al. [15]) on the splitting property of stable matchings. We con-
clude in Section 6 with raising the question of a possible generalization of the
well-known Scarf’s lemma. Some proofs are missing from this present work due
to space limits. The interested reader can find them in [7].

2 Preliminaries

Let G = (V, E) be a finite graph. For a subset E′ of E and vertex v of G let us
denote by E′(v) the set of edges of E′ that are incident with v. Let Cv denote
the choice function of vertex v, i.e. function Cv : 2E(v) → 2E(v) maps any set
X of edges incident with v to a subset of X that v chooses from X . We shall
assume that choice functions we handle are substitutable, that is, if x �= y and
x ∈ Cv(X), then x ∈ Cv(X \ {y}) holds. This roughly means that if agent v
would select some option x from set X of available options, then v would still
select option x even if some other options are not available any more. For choice
function Cv, let us define function Cv of ignored options by Cv(X) := X\Cv(X).
It is useful to see a connection between the above two notions.

Theorem 1. A choice function C on a finite groundset is substitutable if and
only if C is monotone, that is, if Y ⊆ X implies that C(Y) ⊆ C(X).

Choice functions C with the property that C is monotone are called comonotone
in [6]. So by theorem 1, a choice function on a finite ground set is comonotone if
and only if it is substitutable. Note that on infinite ground sets, comonotonicity
of a choice function is a stronger property than substitutability.

Proof. For finite groundsets, substitutability is equivalent with the property that
for any Y ⊆ X we have Y ∩C(X) ⊆ C(Y). Monotonicity of C is equivalent with
the property that for any Y ⊆ X , C(X) is disjoint from C(Y), which is clearly
equivalent with the first property. ��
We say that a subset S of E is a stable partnership if for any vertex v we have
Cv(S(v)) = S(v) (this property is often called individual rationality: no agent
v will participate in a partnership vx if vx is an ignored option for v when all
actual partnerships of v are offered) and no blocking edge e = uv �∈ S exists such
that both e ∈ Cu(S(u)∪{e}) and e ∈ Cv(S(v)∪{e}) holds. This corresponds to
the situation that besides their actual partnerships, both u and v are interested
in forming partnership uv. The stable partnership problem is given by a graph
G = (V, E) and choice functions Cv for each vertex. Our task is to decide whether
a stable partnership exists, and if yes, we have to find one.

An example of a substitutable choice function Cv on ground-set E(v) is a
linear choice function: we have a linear order on E(v) and Cv(X) is the minimal
element of X according to this linear order. If for all vertices v of G, choice
function Cv is linear then a stable partnership is simply a stable matching.
Another possible choice function is when each vertex v has a “quota” b(v), and
Cv(X) is the b(v) smallest elements of X according to the linear order. For these

388 T. Fleiner

linear choice functions with quotas, a stable partnership is nothing but the well-
studied “many-to-many” stable matching (or stable b-matching). An even more
general substitutable choice function can be defined with matroids: let M be a
matroid on E(v) and fix a linear order on E(v) as well. Let Cv(F) be the output
of the greedy algorithm on F , that is, we scan the elements of F in the given
linear order, and scanned element e is selected into Cv(F), if e together with the
previously selected elements is independent in M.

Fleiner [6] generalized a result of Kelso and Crawford [12] by showing the
following theorem.

Theorem 2 (Fleiner [6]). If G = (V, E) is a finite bipartite graph and for each
vertex v, choice function Cv on E(v) is substitutable, then there always exists a
stable partnership. ��
Choice functions in the above examples satisfy the following additional property.
Choice function Cv is increasing if Y ⊆ X implies that |Cv(Y)| ≤ |Cv(X)|. This
roughly means that if extra choices are added, then v selects at least as many
options as v would have picked without the extra ones. For a choice function Cv,
we say that subset X of E v-dominates element x of E(v) if x ∈ Cv(X(v)∪{x}).
Less formally, x is dominated, if v is not interested in x even if beside the set X
of possible options we make option x available for v. If it causes no ambiguity,
then instead of v-domination we may speak about domination. For a choice
function Cv, let Dv(X) denote the set of elements (v-)dominated by X . Clearly,
Cv(X) ⊆ Dv(X) and Cv(X) = X(v) \Dv(X) holds for any subset X of E(v).

Lemma 1. If choice function Cv is substitutable then dominance function Dv is
monotone. If choice function Cv is substitutable and increasing and Y ⊆ Dv(X)
then Cv(X ∪ Y) = Cv(X), thus Dv(X ∪ Y) = Dv(X).

Proof. Assume first that A ⊆ B and a ∈ Dv(A). Monotonicity of Cv implies that
a ∈ Cv(A∪{a}) ⊆ Cv(B∪{a}), so a ∈ Dv(B), hence Dv is monotone. (Actually,
the implication is true in the other direction, as well. If Dv is monotone then
X �→ X ∩Dv(X) = Cv(X) is also also monotone, hence Cv is substitutable by
Lemma 1).

For the second part, let y ∈ Y ∪ Cv(X) be an arbitrary element dominated
by X . So y ∈ Cv(X ∪{y}) ⊆ Cv(X ∪Y), where the second relation follows from
the monotonicity of Cv. Hence Y ∪ Cv(X) ⊆ Cv(X ∪ Y), that is, Cv(X ∪ Y) =
(X ∪ Y) \ Cv(X ∪ Y) ⊆ (X ∪ Y) \ (Cv(X) ∪ Y) ⊆ X \ Cv(X) = Cv(X). As
X ⊆ X ∪ Y , the increasing property of Cv implies that |Cv(X)| ≤ |Cv(X ∪ Y)|,
so Cv(X) = Cv(X ∪ Y) follows. ��
The notion of dominance allows us to reformulate the notion of a stable part-
nership.

Theorem 3. If G = (V, E) is a finite graph and for each vertex v, choice func-
tion Cv on E(v) is substitutable then S is a stable partnership if and only if
E \ S =

⋃
v∈V Dv(S(v)), that is, if S dominates exactly E \ S.

The Stable Roommates Problem with Choice Functions 389

Proof. If S is a stable partnership then by individual rationality, no edge of S is
dominated by S. As no blocking edge exists, each edge outside S is dominated
by S. On the other hand, if E \ S =

⋃
v∈V Dv(S ∩ E(v)) then no edge of S

is dominated by S, thus S is individually rational. As each edge outside S is
dominated, no blocking edge exists. ��

Let Cv be a choice function and let X ⊆ E(v). For an edge x in Cv(X) the X-
replacement of x according to Cv is the set R = Cv(X \ {x}) \ Cv(X). Roughly
speaking, if option x is not available for v any more, then v selects from X
options of R instead of x.

Lemma 2. If Cv is an increasing and substitutable choice function on E(v),
X ⊆ E(v) and x ∈ Cv(X), then the X-replacement R of x contains at most one
element.

Proof. We have Cv(X)\{x} ⊆ Cv(X \{x}) by substitutability, so Cv(X \{x}) =
Cv(X)∪R \ {x}. From the increasing property of Cv, we get |Cv(X)| ≥ |Cv(X \
{x})| = |Cv(X) ∪R \ {x}| = |Cv(X)|+ |R| − 1, and the lemma follows. ��

Let G = (V, E) be a graph and for each vertex v, let Cv be a choice function on
E(v). Let S be a subset of E and fix disjoint subsets S1, S2, . . . , Sl of S such that
each Si is an odd cycle (i.e. a closed walk in G) with a fixed orientation. (Note
that cycle Si is not necessarily a circuit, as Si can traverse the same vertex
several times.) Let S+

i (v) and S−
i (v) denote the set of edges of Si that leave

and enter vertex v, respectively. Define edge set S+(v) := S(v) \ ⋃l
i=1 S−

i (v)
as the unoriented edges of S(v) together with the arcs of the Si’s that leave v.
Similarly let S−(v) := S(v) \ ⋃l

i=1 S+
i (v), denote the set unoriented edges of

S(v) and all arcs of the Si’s that enter v. We say that (S, S1, . . . , Sl) is a stable
half-partnership if

1. for each v ∈ V , Cv(S(v)) = S+(v). Moreover,
2. If arcs e ∈ S−

i (v) and f ∈ S+
i (v) are consecutive on Si then {e} is the

S(v)-replacement of f according to Cv.
3. E \ S =

⋃
v∈V Dv(S−(v)).

A consequence of the definition is that if (S, S1, . . . , Sl) is a stable half-
partnership and e = uv is an edge then exactly one of the following three
possibilities holds. Either e is an unoriented edge of S (that does not belong
to any of the Si’s), or e is an edge of some Si, and hence if e = S−

i (v) then e
is dominated by S+

i (v), or e �∈ S and hence e is dominated by S−(u) at some
vertex u of e. If (S, S1, . . . , Sl) has properties 1. and 2. and edge e = uv �∈ S is
not dominated (i.e. e = uv and e �∈ Du(S−(u))∪Dv(S−(v))) then we say that e
is blocking (S, S1, . . . , Sl). Observe that if (S) is a stable half-partnership (that
is, no oriented odd cycles are present) if and only if S is a stable partnership.
Now we can state our main result.

390 T. Fleiner

Theorem 4. If G = (V, E) is a finite graph and for each vertex v, choice
function Cv on E(v) is increasing and substitutable then there exists a sta-
ble half-partnership. Moreover, if (S, S1, . . . , Sl) and (S′, S′

1, . . . , S
′
m) are sta-

ble half-partnerships, then l = m and sets of oriented cycles {S1, . . . , Sl} and
{S′

1, . . . , S
′
m} are identical.

Corollary 1. If (S, S1, . . . , Sl) is a stable half-partnership then either l = 0 and
S is a stable partnership, or no stable partnership exists whatsoever. ��
Corollary 1 shows that to solve the stable partnership problem in case of increas-
ing substitutable choice functions, it is enough to find a stable half-partnership.
Note that Theorem 4 is a generalization of Tan’s result [17] on stable half-
matchings (or on “stable partitions” in Tan’s terminology).

3 Proof of the Main Result

To prove our main result, we follow Tan’s method. Tan extended Irving’s al-
gorithm such that it finds a stable half-matching, and, with the help of the
algorithm, he proved the unicity of the oriented odd cycles. Here, instead of
linear orders, we work with increasing substitutable choice functions. To handle
this situation, we shall generalize Irving’s algorithm to our setting. Irving’s algo-
rithm works in such a way that it keeps on deleting edges such that no new stable
matching is created after a deletion, and, if there was a stable matching before
a deletion, there should be one after it, as well. Irving’s algorithm terminates if
the actual graph is a matching, which, by the deletion rules is a stable matching
for the original problem. Similarly, our algorithm will delete edges in such a way
that after a deletion no new stable half-partnership can be created. Moreover, if
there was a stable half-partnership (S, S1, . . . , Sl) before some deletion, then we
cannot delete an edge of any of the Si’s and at least one stable half-partnership
has to survive the deletion. If our algorithm terminates then we are left with a
graph G′ such that edge set E(G′) of G′ is a stable half partnership of G′, hence
it is a stable half partnership of G, as well. Our algorithm has different deletion
rules, and there is a priority of them. The algorithm always takes a highest prior-
ity step that can be made. In this section we describe and justify our algorithm.
Note that our definitions and theorems always refer to the “actual” graph, so
if one checks how the algorithm works on a given instance then the problem is
changing after each step. In particular, the set E of edges is changing, as it is
the edge set of the actual graph.

To start the algorithm we need some definitions. We say that the first choices
of v are the edges of Cv(E(v)). These are the best possible options for agent v.
If edge e = vw is a first choice of v then we call arc e = vw a 1-arc. Note that if
vw is a 1-arc then it is possible that wv is also a 1-arc. Let A denote the set of
1-arcs. For a vertex v let A+(v) and A−(v) stand for the set of 1-arcs that are
oriented away from v and towards v, respectively.

The Stable Roommates Problem with Choice Functions 391

The 1st priority (proposal) step is that we find and orient all 1-arcs.
As the problem did not change (we did not delete anything), the set of stable

half-partnerships is the same as it was before the orientation. After we found all
1-arcs, we execute the

2nd priority (rejection) step: If Dv(A−(v)) �= ∅ for some vertex v then we
delete Dv(A−(v)).

Lemma 3. The set of stable half-partnerships does not change by a 2nd priority
step.

Proof. Assume that (S, S1, . . . , Sl) is a stable half-partnership after the deletion.
This means that for each 1-arc f = uv of A−(v) either f belongs to S−(v), or,
as f cannot be dominated by S−(u) at u, f is dominated by S−(v) at v. Lemma
1 implies that Dv(A−(v)) = Dv(Cv(A−(v))) ⊆ Dv(S−(v) ∪ Cv(A−(v))) =
Dv(S−(v)), hence no deleted edge can block (S, S1, . . . , Sl). This means that
no new stable half-partnership can emerge after a 2nd priority deletion.

Assume now that (S, S1, . . . , Sl) is a stable half-partnership before the deletion
and some edge e ∈ Dv(A−(v)) belongs to S. Similarly to the previous argument,
this means that for each 1-arc f = uv of Cv(A−(v)) either f belongs to S−(v), or
(as f cannot be dominated by S−(u) at u) f is dominated by S−(v) at v. Lemma
1 implies that e ∈ Dv(A−(v)) = Cv(Dv(A−(v))) ⊆ Dv((S−(v)) ∪ Cv(A−(v)) =
Dv(S−(v)), so e cannot belong to S(v), a contradiction. ��
Later we need the following lemma.

Lemma 4. If no 1st and 2nd priority steps can be made then |A+(v)| = |A−(v)|
for each vertex v.

Proof. By the increasing property of Cv, we have |A−(v)| = |Cv(A−(v))| ≤
|Cv(E(v))| = |A+(v)|. So each vertex v has at least as many outgoing 1-arcs as
the number of 1-arcs entering v. As both the total number of outgoing 1-arcs
and the total number of ingoing 1-arcs is exactly |A|, the previous inequality
must be an equality for each vertex v. ��
If no more 1st and 2nd priority steps can be made, we check for replacements.
For a 1-arc e = uv, let er = uw denote the E(u)-replacement of e according to
Cu. (It might happen that er does not exist).

3rd priority (replacement) step: For each 1-arc e = uv, find E(u)-replace-
ment er.

As we do not delete anything in a 3rd priority step, the set of stable partner-
ships does not change by this step. Next we study replacements of 1-arcs.

Lemma 5. Assume that no 1st and 2nd priority steps can be made and that
1-arc e = uv is not bidirected, that is, vu is not a 1-arc. Then the E(u)-
replacement er of e is a unique edge of E(u).

Proof. By Lemma 4 and the increasing property of Cu, we have |A+(u)| =
|A−(u)| = |Cu(A−(u))| ≤ |Cu(E(u) \ {e})| ≤ |Cu(E(u))| = |A+(u)|, hence there

392 T. Fleiner

is equality throughout. In particular, we see that |Cu(E(u)\{e})| = |A+(u)|. By
substitutability of Cu, we have A+(u) \ {e} = Cu(E(u)) \ {e} ⊆ Cu(E(u) \ {e}).
This means that the E(u)-replacement of e (that is, Cu(E(u) \ {e}) \A+(u)) is
a unique edge of E(u). ��
Lemma 6. Assume that no 1st and 2nd priority step can be executed and e = uv
is a 1-arc such that vu is not a 1-arc. If er = uw is the E(u)-replacement of
e, then Dw({er} ∪A−(w)) contains exactly one 1-arc er

r = xw. Moreover, 1-arc
er

r = xw has the property that its inverse wx is not a 1-arc.

Proof. By the 2nd priority step er �∈ Dw(A−(w)), hence er ∈ Cw({er}∪A−(w)).
The increasing property of Cw gives that |A−(w)| = |Cw(A−(w))| ≤ |Cw({er}∪
A−(w))| ≤ |Cw(E(w))| = |A+(w)| = |A−(w)|, where the last equality is due to
Lemma 4. So we have equality throughout, i.e. |A−(w)| = |Cw({er

r} ∪ A−(w))|,
so er has a unique {er}∪A−(w)-replacement er

r = xw. Clearly, if wx was a 1-arc
then er

r ∈ Cw({er
r} ∪A−(w)) holds, a contradiction. ��

Assume now that no 1st, 2nd and 3rd priority steps are possible and consider
the following two cases.

Case 1. All 1-arcs are bidirected, that is, if e = uv is a 1-arc, then its opposite
vu is also a 1-arc. In other words, A+(v) = A−(v) = A(v) = E(v) for each
vertex v. This means that the edge set of our graph is a stable partnership, the
algorithm terminates and outputs (S).

Case 2. There exists a 1-arc e = uv that is not bidirected. So there is an E(u)-
replacement er of e. Edge er

r in Lemma 6 is another 1-arc that is not bidirected.
Following the alternating sequence of nonbidirected 1-arcs and their replace-
ments, we shall find a sequence (e1, (e1)r, e2, (e2)r, . . . , em, (em)r , em+1 = e1) in
such a way that (ei)r

r = ei+1 for i = 1, 2, . . . , m and edges e1, e2, . . . , em are dif-
ferent 1-arcs, none of them is bidirected. After Irving, we call such an alternating
sequence (e1, (e1)r, e2, (e2)r, . . . , em, (em)r) of 1-arcs and edges a rotation.

Lemma 7. Assume that (S, S1, . . . , Sl) is a stable half-partnership in graph G
and no 1st, 2nd and 3rd priority step is possible. If (e1, (e1)r , e2, (e2)r, . . . , em,
(em)r) is a rotation and ei = xv ∈ S(v) then ei−1 = uw ∈ S+(u) follows, where
addition is meant modulo m. In particular, if ei ∈ S then {e1, e2, . . . , em} ⊆ S.

Proof. First we show that er
i−1 = uv �∈ S−(v) ∪ Dv(S−(v)). Indirectly, assume

er
i−1 = uv ∈ S−(v) ∪Dv(S−(v)). If f = zv ∈ A−(v) is a 1-arc then f (being a

first choice) cannot be dominated at z, so f ∈ S−(v) ∪Dv(S−(v)) follows, that
is,

A−(v) ⊆ S−(v) ∪Dv(S−(v)) . (1)

By Lemma 1,

ei = (ei−1)r
r ∈ Dv(A−(v) ∪ {(ei−1)r})

⊆ Dv(S−(v) ∪Dv(S−(v)) ∪ {(ei−1)r}) = Dv(S−(v))

The Stable Roommates Problem with Choice Functions 393

so ei �∈ S(v), a contradiction. Thus er
i−1 = uv �∈ S−(v), hence er

i−1 = uv �∈
S+(u) and er

i−1 �∈ Dv(S−(v)), hence er
i−1 ∈ Du(S+(u)). As er

i−1 is the E(u)-
replacement of first choice ei−1, it follows that ei−1 ∈ S+(u), as Lemma 7
claims. ��
Lemma 8. Assume that no 1st, 2nd and 3rd priority step is possible for the
actual graph and that (S, S1, . . . , Sl) is a stable half-partnership. If (e1, (e1)r, e2,
(e2)r, . . . , em, (em)r) is a rotation then sets {e1, e2, . . . , em} and {er

1, e
r
2, . . . , e

r
m}

are either disjoint or identical.
If {e1, e2, . . . , em} = {er

1, e
r
2, . . . , e

r
m} then m is odd and {e1, e2, . . . , em} is one

of the Sj’s.
If sets {e1, e2, . . . , em} and {er

1, e
r
2, . . . , e

r
m} are disjoint and ei ∈ S then

{e1, . . . , em} ⊆ S \ (S1 ∪ . . . ∪ Sl). Moreover, (S′, S1, . . . , Sl) is a stable half-
partnership for S′ = S \ {e1, e2, . . . , em} ∪ {er

1, e
r
2, . . . , e

r
m}.

We omit the proof due to lack of space.

4th priority (rotation elimination) step: Find a rotation (e1, (e1)r, e2, (e2)r,
. . . , em, (em)r) with disjoint sets {e1, e2, . . . , em} and {er

1, e
r
2, . . . , e

r
m} and delete

{e1, e2, . . . , em}.
To justify the rotation elimination step, we only have to check that it does

not create a new stable half-partnership.

Lemma 9. Any stable half-partnership after a 4th priority step is also a stable
half-partnership before this step.

Proof. Observe that after the elimination, each edge (ei)r becomes a 1-arc. As-
sume that (S, S1, . . . , Sl) is a stable half-partnership after the step. As in the
proof of Lemma 8, let R− denote the set of deleted 1-arcs of our rotation that
enter a fixed vertex v, let T− := {(ei−1)r : (ei−1)r

r = ei ∈ R−} be the new 1-arcs
entering v and let A− be the set of those 1-arcs that enter v and have not been
deleted during the step.

By the definition of the rotation, from property (1) and the monotonicity of
Dv we get R− ⊆ Dv(A−∪R−∪T−) = Dv(A−∪T−) ⊆ Dv(S−(v)∪Dv(S−(v))) =
Dv(S−(v)), and this is exactly what we wanted to prove. ��
The following theorem finishes the proof of Theorem 4.

Theorem 5. If no 1st, 2nd, 3rd and 4th priority step can be made on graph G
then (E(G), S1, S2, . . . , Sl) is a stable half-partnership, where cycles Si are given
by the rotations.

Proof. We have already seen that if all 1-arcs are bidirected then we have a stable
partnership, which is a special case of a stable half-partnership. So assume that
no further step can be executed but we still have a 1-arc e that is not bidirected.
We have also seen that if we follow the alternating sequence of non bidirected
1-arcs and their replacements e, er, er

r, (e
r
r)

r, (er
r)

r
r, . . . then we find a rotation

(e1, (e1)r, e2, (e2)r, . . . , em, (em)r), that must be an odd cycle Si that cannot
be eliminated. This means that m = 2k + 1, and ei = (ei+k)r = (ei−1)r

r for

394 T. Fleiner

1 ≤ i ≤ m, where addition is modulo m. We shall prove that our starting point,
1-arc e is an edge of this rotation. Hence, if our algorithm cannot make a step
then all 1-arcs are either bidirected or belong to a unique odd rotation.

To this end, we may assume that er
r is an edge of the rotation, namely er

r =
uv = ei = (ei+k)r. That is, ei is the E(v)-replacement of first choice ei+k, that
is Cv(E(v) \ {ei+k}) ∪ Dv(E(v) \ {ei+k}) = E(v) \ {ei+k}, in other words, if
ei ∈ Dv(X) for some subset X of E(v) then ei+k ∈ X must hold. But the
definition of er

r gives that ei ∈ Dv(A−(v) ∪ {er}), so ei+k ∈ A−(v) ∪ {er}. 1-arc
ei+k ∈ A+(v) is not bidirected, hence ei+k �∈ A−(v), thus ei+k = er is an edge
of the rotation, as well.

Similarly as above, ei+k = vw is the E(w)-replacement of first choice ei−1 of
w, hence Cw(E(w) \ {ei−1}) ∪Dw(E(w) \ {ei−1}) = E(w) \ {ei−1}. This means
that if ei+k is the E(w)-replacement of edge e then e = ei−1 must hold. So e is an
edge of our rotation, and all non bidirected 1-arcs of G belong to odd rotations.

Next we prove that all edges of G are 1-arcs. If, indirectly, e = uv is not
a 1-arc, then e ∈ Du(A+(u)) by the 1st priority step and e �∈ Du(A−(u)) by
the 2nd priority step. So u is incident with certain nonbidirected 1-arcs such
that these 1-arcs all belong to odd rotations, and each 1-arc of A−(u) is the
E(u)-replacement of different 1-arcs of A+(u). As e �∈ Du(A−(u)), we have
e ∈ Cu(A−(u) ∪ {e}), and |Cu(A−(u) ∪ {e})| ≤ |Cu(E(u))| = |Cu(A+(u))| =
|Cu(A−(u))| implies that there is a unique 1-arc f ∈ A−(u) that is dominated:
f ∈ Du(A−(u) ∪ {e}). But f is the E(u)-replacement of some other arc g ∈
A+(u), and we have already seen twice in this proof that this means that g is a
member of each edge set that Cv-dominates f : g ∈ A−(u) ∪ {e}. But this is a
contradiction as 1-arc g is not bidirected and leaves u and e is not a 1-arc.

So if the algorithm cannot make any further step then our graph consists of
bidirected 1-arcs and odd rotations S1, S2, . . . , Sk. It is trivial from the definition
that (E(G), S1, . . . , Sk) is a stable half-partnership. ��

4 Complexity Issues

Irving’s original algorithm [11] is very efficient: it runs in linear time. However,
this algorithm is different from the one that we get if we apply our algorithm to
an ordinary stable roommates problem. The difference is that Irving’s algorithm
has two phases: in the first phase it makes only 1st and 2nd priority steps, and
after the 1st phase is over, it keeps on eliminating rotations, and never gets
back to the 1st phase. The explanation is that our rotation elimination is more
restricted than Irving’s that does not only delete just first choices, but also
removes some other edges.

Actually, it is rather straightforward to modify our algorithm to work simi-
larly, and this improves even its time-complexity. The reason that we did not do
this in the previous section is that the proof is more transparent this way. So
what do we have to do to speed up the algorithm?

Observe that after a rotation elimination (4th priority) step, if 1-arc ei = uv
is deleted, then ei ceases to be a first choice of u. The new first choice instead of

The Stable Roommates Problem with Choice Functions 395

ei will be its replacement (ei)r. So we can include (with no extra cost) that we
orient each replacement edges. Of course, refusal (2nd priority) steps may still
be possible, but only at those vertices that the newly created 1-arcs enter. The
definition of a rotation implies that if we apply a refusal step at such a vertex
then no 1-arc gets deleted, but we might delete some unoriented arcs. So if we
modify the rotation elimination step in such a way that we also include these
extra 1st and 2nd priority steps within the rotation elimination step, then once
we start to eliminate rotations, we never go back to the first phase. That is, we
shall never have to make a proposal or a rejection step again.

To analyse the above (modified) algorithm, we have to say something about
the calculation of the choice function and the dominance function. Assume that
functions Cv and Dv are given by an oracle for all vertices v of G, such that for
an arbitrary subset X of E(v) these oracles output Cv(X) and Dv(X) in unit
time. Note that if we have only the oracle for Dv then we can easily construct
one for Cv from the identity Cv(X) = X \Dv(X). Similarly, if we have an oracle
for Cv then Dv(X) can be calculated by O(n) calls of the Cv-oracle, according
to the definition of Dv. (As usual, n and m denotes the number of vertices and
edges of G, respectively).

The algorithm starts with n C-calls, and continues with n D-calls. After this,
each deletion in a 2nd priority step involves one C-call at vertex u where we
deleted, and, if this C-call generates a new 1-arc e = uv, then we also have to
make one D-call at the other end v of e. So the first phase (the 1st and 2nd
priority steps) uses at most O(n + m) C-calls and O(n + m) D-calls.

In the second phase, the algorithm makes 3rd priority steps and modified rota-
tion elimination steps. We do it in such a way that we start from a nonbidirected
1-arc e and follow the sequence e, er, er

r, (e
r
r)

r, . . ., until we find a rotation. The
rotation will be a suffix of this sequence, and after eliminating this rotation, we
reuse the prefix of this sequence, and continue the rotation search from there.
This means that for the 3rd type steps we need altogether O(m) C-calls. The
modified rotation elimination steps consist of deleting each 1-arc ei = uv of the
rotation, orienting edges (ei)r = uw and applying refusal steps at vertices w.
As we delete at most m edges in all rotation eliminations, this will add at most
O(m) D-calls. All additional work of the algorithm can be allocated to the oracle
calls, so we got the following.

Theorem 6. If we modify the rotation elimination step as described above, then
our algorithm uses O(n+m) C-calls and D-calls to find a stable half-partnership
and runs in linear time.

In the introduction, we indicated that in case of bipartite graphs there always
exists a stable partnership for so called path independent substitutable choice
functions (see [6]). That is, we do not have to require the increasing property of
functions Cv if we want to solve the stable partnership problem on a bipartite
graph. A natural question is if it is possible to generalize our result on stable
partnerships to substitutable, but not necessarily increasing choice functions. In
our proof, we heavily used the fact that if no proposal and rejection steps can be
made then each 1-arc has a replacement and these replacements improve some

396 T. Fleiner

other 1-arc at their other vertices. This property is not valid in the more general
setting. Below we show that the stable partnership problem for substitutable
choice functions is NP-complete by reducing the 3-SAT problem to it.

Theorem 7. For any 3-CNF expression φ, we can construct a graph Gφ and
substitutable choice functions Cv on the stars of Gφ in polynomial time in such
a way that φ is satisfyable if and only if there exists a stable partnership in Gφ

for the choice functions Cv.

Proof. Define directed graph Dφ such that Dφ has three vertices aC , bC and vC

for each clause C of φ and two vertices tx and fx for each variable x of φ. The arc
set of Dφ consists of arcs txfx and fxtx for each variable x of φ, arcs of type vCtx
(and vCfx) if literal x (literal x̄) is present in clause C of φ. Moreover, we have
arcs aCbC , bCvC and vCaC for each clause C of φ. If A is a set of arcs incident
with some vertex v of Dφ then C′

v(A) = A if no arc of A leaves v, otherwise
C′

v(A) is the set of arc of A that leave v. It is easy to check that choice function
C′

v is substitutable. Let Gφ be the undirected graph that corresponds to Dφ and
let Cv denote the choice function induced by C′(v) on the undirected edges of
Gφ. We shall show that φ is satisfiable if and only if there is a stable partnership
of Gφ for choice functions Cv, that is, if and only if there is a subset S of arcs of
Dφ such that S does not contain two consecutive arcs and for any arc uv outside
S there is an arc vw of S.

Assume now that φ is satisfiable, and consider an assignment of logical values
to the variables of φ that determine a truth evaluation of φ. If the value of
variable x is true then add arc fxtx, if it is false, then add arc txfx to S. Do this
for all variables of φ. Furthermore, add all arcs aCbC to S. If variable x is true
then add all arcs vctx to S for all clauses that contain variable x. If variable y is
false then add all arcs vcfx to S for all clauses that contain negated variable ȳ.
Clearly, the hence defined S does not contain two consecutive arcs. If some arc
of type txfx or fxtx is not in S then it is dominated by the other, which is in S.
Each arc of type vCaC is dominated by arc aCbC of S and each arc of type bCvC

is dominated by some arc of type xtx or yfy as C has a variable that makes C
true.

To finish the proof, assume that S is a stable partnership of Dφ. Observe that
for each variable x either txfx or fxtx belongs to S, as no other arc dominates
these arcs. If txfx ∈ S then set varible x to be false, else assign logical value true
to x. We have to show that for this asssigment the evaluation of each clause C
is true, that is, there is an arc of S from vC to some tx or fx. Indirectly, if there
is no such arc then the corresponding edges of S form a stable partnership on
directed circuit vCaCbC , which is impossible.

So the decision problem of the existence of a stable partnership is NP-
complete. ��
Note that though Theorem 7 shows that the stable partnership problem is diffi-
cult for non-increasing choice functions, it does not imply that Theorem 4 fails
for general substitutable choice functions. Actually, the increasing property is
encoded into the definition of a stable half-partnership, as replacements of a

The Stable Roommates Problem with Choice Functions 397

single element cannot contain more than one element. So, in this sense Theorem
4 is not true for a directed cycle of length three if we add a parallel copy to
each edge and use choice functions from the proof of Theorem 7. However, there
is a natural way to extend the definition of a stable half-partnership such that
the generalizability of Theorem 4 makes more sense. As we cannot state here
anything nontrivial, we do not go into the details.

5 A Coloring Property of Stable Partnerships

We prove a generalization of a result by Cechlárová and Fleiner [3].

Theorem 8. Let S be a stable partnership for graph G = (V, E) and increasing
substitutable choice functions Cv. For each vertex v it is possible to partition E(v)
into (possibly empty) parts E0(v), E1(v), E2(v), . . . , E|S(v)|(v) in such a way that
for any stable partnership S′ we have S′ ∩ E0(v) = ∅ and |S′ ∩ Ei(v)| = 1 holds
for i = 1, 2, . . . , |S(v)|.
Proof. Let us find some stable partnership S by the algorithm in the previous
section. Fix a vertex v and determine the partition of E(v) in the following
manner. Each element of S(v) will belong to a different part. Follow the algorithm
backwards, that is, we start from S and we build up the original G by adding
edges according to the deletions of the algorithm. If we add an edge that is not
incident with v, then we do not do anything. If we add an edge e of E(v) that
was deleted by a 2nd priority step, then we put e into part E0(v). This is a good
choice, since e is contained in no stable partnership. If e was deleted in a 4th
priority step along a rotation then this rotation contains another (replacement)
edge f incident with v. Lemma 8 shows that if we assign e to that part Ei(v)
that contains f , then still no stable partnership can contain two edges of the
same part Ei(v). Let us buid up the graph by backtracking the algorithm. This
way, we find a part for each edge of E(v), and this partition clearly has the
property we need. ��
The following corollary describes the phenomenon that is called the “rural hos-
pital theorem” in the stable matching literature. This states that if a hospital
cannot fill up its quota with residents in some stable outcome, then no matter
which stable outcome is selected, it always receives the same applicants.

Corollary 2. If S and S′ are stable partnerships then |S(v)| = |S′(v)| for any
vertex v of the underlying graph.

There is an aesthetic problem with Theorem 8, namely, that part E0(v) of the
star of v is redundant in the following sense. If we remove all edges from E0(v)
and independently from one another we assign each of them to an arbitrary
part Ei(v) (for 1 ≤ i ≤ |S(v)|) then the resulted partition also satisfies the
requirements of Theorem 8 and E0(v) = ∅ for all vertices v. In what follows,
by proving a strengthening of Theorem 8, we exhibit an interesting connection
between the stable partnership problem and the stable roommates problem.

398 T. Fleiner

If G = (V, E) is a graph and v is a vertex of it then detaching v into k parts
is the inverse operation of merging k vertices into one vertex. That is, we delete
vertex v, introduce new vertices v1, v2, . . . , vk and each edge that was originally
incident with v will be incident with one of v1, v2, . . . , vk. If k : V → {1, 2, 3, . . .}
is a function then a k-detachment of G is a graph Gk that we get by detaching
each vertex v of G into k(v) parts. Clearly, there is a natural correspondance
between the edges of G and that of Gk. With this notation, there is an equivalent
formulation of Theorem 8: if G is a graph, and increasing substitutable choice
function Cv is given for each vertex v of G and S is a stable partnership then
there exists a k-detachment Gk of G in such a way that any stable partnership
of G corresponds to a matching of Gk, where k(v) := |S(v)| for each vertex v
of G.

Theorem 9. Let S be a stable partnership for graph G = (V, E) and increasing
substitutable choice functions Cv. Let k(v) := max{|S(v)|, 1}. There is a k-
detachment Gk of G and there are linear orders <vi on the stars of Gk such that
any stable partnership of G corresponds to a stable matching of Gk.

We omit the proof. Note that Theorem 9 is not an equivalence: it is not true that
for any stable partnership problem there exists a detachment with appropriate
linear orders in such a way that stable partnerships correspond bijectively to
stable matchings. A counterexample is a graph on two vertices, four parallel
edges with opposite linear orders on the vertices. The choice function of both
vertices is the best two edges of the offered set, that is the stable partnership
problem is a stable 2-matching problem. It is easy to see that there are exatly 3
different stable partnerships, but any 2-detachment has 1, 2 or 4 stable matching.

6 Conclusion, Open Questions

In this work, we extended Tan’s result [17] from stable matchings to a much
more general framework. An interesting, and perhaps not well enough under-
stood feature of Tan’s characterization is that it follows from Scarf’s lemma
[14] just like its generalization to stable b-matchings [2]. Our present extension
is a characterization of a very similar kind. A most natural question to ask is
whether our result can also be deduced from an appropriate generalization of
Scarf’s lemma.

Note that Scarf’s proof of his well known lemma is algorithmic. However,
Scarf’s algorithm is not known to be polynomial. For special applications, like
Tan’s characterization there are known polynomial algorithms, like the one of
Tan and Hsueh [18]. Another natural question is whether the Tan-Hsueh al-
gorithm can be extended to an efficient algorithm that finds a stable half-
partnership. In fact, the Tan-Hsueh algorithm can be generalized to the stable
b-matching problem (that is, to the many-to-many stable roommates problem)
the following way. We assign quota b(v) = 0 to each agent v, such that ∅ is a

The Stable Roommates Problem with Choice Functions 399

stable b-matching. Then, in each phase of the algorithm, we rise one quota by
one and find a new stable half-b-matching. The work we do during such a phase
is essentially the same that the Tan-Hsueh algorithm does in one phase. We do
this until we reach the real quota for each agent. Note that this generalized Tan-
Hsueh algorithm can be extended to our stable partnership setting. We sketch
it below.

For a linear order ≺v on E(v), define truncated choice function Ci
v on subset

X of E(v) as the ≺v-smallest i elements of Cv(X). If Cv is increasing and
substitutable then it is not difficult to choose ≺v in such a way that Ci

v is
also an increasing substitutable choice function for any i. So ∅ is a stable half-
partnership for choice functions C0

v . In the beginning of a phase, we start with a
stable half-partnership for truncated choice functions Ci1

v1
, Ci2

v2
, . . . , Cin

vn
. We pick

a vertex vj such that ij < n, and find a stable half-partnership for the same
truncated choice functions, except that we use C

ij+1
vj instead of C

ij
vj . To do this,

we use a straightforward generalization of the Tan-Hsueh algorithm. After ij = n
for all vertices vi, we have a stable half-partnership for the original problem.

References

1. Aharoni, R., Fleiner, T.: On a lemma of Scarf. J. Combin. Theory Ser. B 87(1),
72–80 (2003)

2. Biró, P.: Stable b-matchings on graphs, Master’s thesis, Budapest university of
Technology and Economics (2003)

3. Cechlárová, K., Fleiner, T.: On a generalization of the stable roommates problem.
ACM Trans. Algorithms 1(1), 143–156 (2005)

4. Crawford, V.P., Knoer, E.M.: Job matching with heterogeneous firms and workers.
Econometrica 49, 437–450 (1981)

5. Feder, T.: A new fixed point approach for stable networks and stable marriages.
J. Comput. System Sci. 45(2), 233–284 (1992); Twenty-first Symposium on the
Theory of Computing (Seattle, WA, 1989)

6. Fleiner, T.: A fixed-point approach to stable matchings and some applications.
Math. Oper. Res. 28(1), 103–126 (2003)

7. Fleiner, T.: The stable roommates problem with choice functions, EGRES Techni-
cal Report TR-2007-11 (November 2007), http://www.cs.elte.hu/egres

8. Fleiner, T.: On the stable b-matching polytope. Math. Social Sci. 46(2), 149–158
(2003)

9. Gale, D., Shapley, L.S.: College admissions and stability of marriage. Amer. Math.
Monthly 69(1), 9–15 (1962)

10. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms.
MIT Press, Cambridge (1989)

11. Irving, R.W.: An efficient algorithm for the “stable roommates” problem. J. Algo-
rithms 6(4), 577–595 (1985)

12. Kelso Jr., A.S., Crawford, V.P.: Job matching, coalition formation, and gross sub-
stitutes. Econometrica 50, 1483–1504 (1982)

13. Roth, A.E., Oliveira Sotomayor, M.A.: Two-sided matching. Cambridge University
Press, Cambridge (1990)

14. Scarf, H.E.: The core of an N person game. Econometrica 35, 50–69 (1967)

http://www.cs.elte.hu/egres

400 T. Fleiner

15. Sethuraman, J., Teo, C.-P., Qian, L.: Many-to-one stable matching: geometry and
fairness. Math. Oper. Res. 31(3), 581–596 (2006)

16. Subramanian, A.: A new approach to stable matching problems. SIAM J. Com-
put. 23(4), 671–700 (1994)

17. Tan, J.J.M.: A necessary and sufficient condition for the existence of a complete
stable matching. J. Algorithms 12(1), 154–178 (1991)

18. Tan, J.J.M., Hsueh, Y.C.: A generalization of the stable matching problem. Discrete
Appl. Math. 59(1), 87–102 (1995)

19. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. of
Math. 5, 285–310 (1955)

A New Approach to Splitting-Off

Attila Bernáth1,� and Tamás Király2,��

1 Dept. of Operations Research, Eötvös University, Pázmány P. s. 1/C, Budapest,
Hungary H-1117. The author is a member of the Egerváry Research Group (EGRES)

bernath@cs.elte.hu
2 MTA-ELTE Egerváry Research Group, Department of Operations Research,

Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117
tkiraly@cs.elte.hu

Abstract. A new approach to undirected splitting-off is presented in
this paper. We study the behaviour of splitting-off algorithms when ap-
plied to the problem of covering a symmetric skew-supermodular set
function by a graph. This hard problem is a natural generalization of
many solved connectivity augmentation problems, such as local edge-
connectivity augmentation of graphs, global arc-connectivity augmen-
tation of mixed graphs with undirected edges, or the node-to-area
connectivity augmentation problem in graphs. Using a simple lemma
we characterize the situation when a splitting-off algorithm can be stuck.
This characterization enables us to give very simple proofs for the
classical results mentioned above. Finally we apply our observations
in generalizations of the above problems: we consider two connectiv-
ity augmentation problems in hypergraphs. The first is the local edge-
connectivity augmentation of undirected hypergraphs by hyperedges of
minimum total size without increasing the rank. The second is global
arc-connectivity augmentation of mixed hypergraphs by adding hyper-
edges of minimum total size without increasing the rank. We show that
a greedy approach works in (almost) all of these cases.

1 Introduction

Let us be given a finite ground set V . A set function p : 2V → Z ∪ {−∞} is
called skew-supermodular if at least one of the following two inequalities holds
for every X, Y ⊆ V :

p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y), (∩∪)
p(X) + p(Y) ≤ p(X − Y) + p(Y −X). (−)

In this paper we consider the problem of covering a symmetric skew-
supermodular set function p : 2V → Z ∪ {−∞} by a graph, or in some cases
by a hypergraph of restricted type. We distinguish two versions of this problem.
In the degree specified version we are also given a degree specification
m : V → Z+ and the question is whether a graph (or hypergraph) G covering p

� Supported by OTKA grants K60802 and TS 049788.
�� Supported by grants OTKA K60802 and OMFB-01608/2006.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 401–415, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

402 A. Bernáth and T. Király

exists with dG(v) = m(v) for every v ∈ V . In the minimum version we simply
want to find a graph covering p that has a minimum number of edges (for hy-
pergraphs we want to minimize the sum of the sizes of the hyperedges). Possibly
the latter problem seems more interesting and natural, however a solution for
the first always gives a solution to the second by the skew-supermodularity of p,
therefore we will mainly speak about the degree specified problem.

This problem is a natural generalization of many connectivity augmentation
problems. Examples include the local edge-connectivity augmentation problem in
graphs solved by Frank [5], the global edge-connectivity augmentation problem in
mixed graphs solved by Bang-Jensen, Frank and Jackson [1], and the node-to-
area connectivity augmentation problem solved by Ishii and Hagiwara [7].
The general problem of covering a symmetric skew-supermodular set function
p : 2V → Z ∪ {−∞} with a minimum number of graph edges is known to be
NP-complete (see e.g. [4], where the NP-completeness of the degree specified
version is also shown implicitly). However, as seen above, many special cases
have been shown to be polynomially solvable. The key approach in solving this
kind of questions is the technique called “splitting-off”: we first find a smallest
number of graph edges covering p that are incident to a new node s, and then
we try to get rid of s by splitting off pairs of edges incident to it (which means
that we substitute this path of length 2 with the shortcut). We have found a
new approach to this second step that simplifies proofs for known results and
enables us to prove new results, too. The key lemma (Lemma 2) of our results
states that if there is a set X ⊆ V with p(X) ≥ 2 then there always exists
an admissible splitting (the splitting is admissible if the resulting graph still
covers p). Consider a greedy algorithm that starts with a graph containing edges
incident to s and in each step performs an (arbitrary) admissible splitting as long
as it is possible. Then Lemma 2 enables us to prove some interesting properties
of the situation when this algorithm gets stuck.

We analyze these properties in Section 3. We consider two special symmet-
ric skew-supermodular functions in Subsections 3.3 and 3.4. The first case is
when p(X) = max{q(X), q(X)} with a crossing supermodular function q (which
includes the global edge-connectivity augmentation of a mixed graph or hyper-
graph). Here we obtain a very good characterization of the stuck situation. It
turns out that if we contract tight sets then q(X) = 1 or q(X) = 1 for any
nonempty X � V . Introducing the notation F = {X ⊆ V : q(X) = 1} and
co(F) = {X ⊆ V : X ∈ F} this leads to the following question: how does a
crossing family F ⊆ 2V −{∅, V } look like that satisfies F∪co(F) = 2V −{∅, V }?
We give a complete characterization of such families in Theorem 9. This theorem
enables us to show a result on global arc-connectivity augmentation of mixed
hypergraphs in Section 4.3, but we find it interesting for its own sake, too.

A set function p : 2V → Z ∪ {−∞} is called crossing negamodular if (−)
holds whenever X and Y are crossing. The second special symmetric skew-
supermodular function is defined by p(X) = max{q(X), q(X)} with a crossing
negamodular function q (which is a generalization of the function arising in the
node-to-area connectivity augmentation problem). Covering such a function with

A New Approach to Splitting-Off 403

a minimum number of graph edges already includes NP-complete problems, as
was observed by Miwa and Ito [9]. So we make a similar assumption to that of
Ishii and Hagiwara and assume that q = R−dG where R is a crossing negamod-
ular function that does not take 1 as value and G is an arbitrary graph. We show
that for such a function q the greedy approach will always produce a graph that
has at most one more edge than the optimum.

In Section 4 we give applications. First, we demonstrate the strength of our
approach by giving simple proofs for the classical splitting theorem of Mader
[8] (used by Frank in [5]) and the undirected splitting theorem in mixed graphs
used by Bang-Jensen, Frank and Jackson in [1].

In Section 4.2 we prove the following result (Theorem 14): the local edge-
connectivity augmentation problem of hypergraphs with hyperedges of minimum
total size can be solved by adding only graph edges and one hyperedge whose size
is at most the rank of the original hypergraph. There is only one exceptional case
when this is impossible: when the minimum total size is odd and we augment a
graph. This theorem can be regarded as a common generalization of the theorem
of Frank [5] on local edge-connectivity augmentation of graphs and the theorem
of Szigeti [10] on local edge-connectivity augmentation of hypergraphs.

Finally in Section 4.3 we consider global arc-connectivity augmentation
of a mixed hypergraph without increasing the rank by undirected hyper-
edges. We show that the greedy approach can fail for this problem, but only
slightly. To be more precise, we prove that a mixed hypergraph of rank at most
γ can always be augmented greedily to become (k, l)-arc-connected from a spec-
ified root node r if k, l ≥ 2 by graph edges and a hyperedge of size at most γ +1.

2 Preliminaries

Let us be given a finite ground set V . For subsets X, Y of V let X be V −X
(the ground set will be clear from the context). If X has only one element x
then we will call it a singleton and we will not distinguish between X and its
only element x. Sets X, Y ⊆ V are intersecting if X ∩Y, X −Y and Y −X are
all nonempty. If furthermore X ∪ Y �= V then we say that they are crossing.
For a family F ⊆ 2V let co(F) = {X ⊆ V : X ∈ F}. We say that F is a ring
family (crossing family) if X, Y ∈ F implies X∩Y, X∪Y ∈ F for an arbitrary
(crossing, resp.) pair X, Y .

Let q : 2V → Z∪{−∞} be a set function: we will require all the set functions
in this paper to satisfy q(∅) ≤ 0 and q(V) ≤ 0. Define the complement of q
as q(X) = q(X) and the symmetrized of q by qs(X) = max{q(X), q(X)} for
any X ⊆ V . Observe that the symmetrized of a skew-supermodular function is
skew-supermodular.

A set function is symmetric if p(X) = p(V −X) for every X ⊆ V . Any function
m : V → R also induces a set function (that will also be denoted by m) with the
definition m(X) =

∑
v∈X m(v) for any X ⊆ V .

For a hypergraph H = (V, E) and a set X ⊆ V we define dH(X) = |{e ∈ E :
e enters X}| (the degree of X in H). This is a symmetric submodular function.
For two set functions d, p we say that d covers p if d(X) ≥ p(X) for any X ⊆ V

404 A. Bernáth and T. Király

(d ≥ p for short). We say that the hypergraph H covers p if dH covers p. Observe
that H covers p if and only if H covers ps. The total size of the hypergraph
is the sum of the cardinalities of the hyperedges: if our hypergraph is a graph
then this is two times the number of the edges of this graph. The rank of a
hypergraph is the size of the largest hyperedge in it. For S, T ⊆ V let λH(S, T)
denote the maximum number of edge-disjoint paths starting at a vertex of S and
ending at a vertex of T (we say that λH(S, T) =∞ if S ∩ T �= ∅). By Menger’s
theorem

λH(S, T) = min{dH(X) : T ⊆ X ⊆ V − S}.
A mixed graph may have directed and undirected edges, too. For a mixed
graph G and sets X, Y ⊆ V let dG(X, Y) denote the number of (undirected or
directed) edges of G with one endpoint in X − Y and the other in Y −X .

For a set function p : 2V → Z ∪ {−∞} we introduce the polyhedron

C(p) = {x ∈ R
V : x(Z) ≥ p(Z)∀Z ⊆ V, x ≥ 0}.

It is known that for a skew-supermodular function p this is an (integer) con-
trapolymatroid (for details see [1]). We assume in the whole article that we can
test membership in polynomial time in C(p − dG) for any graph G: this will
be sufficient to turn our results into polynomial algorithms and this will always
hold in the applications given below.

In what follows let p : 2V → Z ∪ {−∞} a symmetric, skew-supermodular
function that satisfies p(∅) ≤ 0 and m : V → Z a nonnegative function satisfying
m(X) ≥ p(X) for any X ⊆ V (i.e. an integer element of C(p)). We would like
to decide whether there is a graph (or possibly hypergraph) G covering p that
satisfies dG(v) = m(v) for every v ∈ V . We note that, by the properties of
a contrapolymatroid, a polynomial algorithm to the degree specified covering
problem will give rise to a solution to the minimum version of the problem,
and to more general versions such as the minimum node-cost problem. For more
details we refer to [1]. We say that m ∈ C(p)∩Z

V is minimal if m′ ∈ C(p)∩Z
V ,

m′ ≤ m implies that m′ = m.
For a node v ∈ V we say that v is positive if m(v) > 0, and neutral

otherwise. The set of positive nodes will be denoted by V +. Assume u, v ∈ V +

are two positive nodes (possibly u = v, but then m(u) ≥ 2 is assumed). The
operation splitting-off (at u and v) is the following: let

m′ = m− χ{u} − χ{v} and p′ = p− d(V,{(uv)}). (1)

One can observe that this is indeed the usual notion of splitting-off: if we
introduce a graph G = (V + s, E) with every edge of E incident to s and
dG(s, v) = m(v) for any v ∈ V then we are back at the well known splitting-off
operation. However we found this way of presenting our results more convenient.
If m′(X) ≥ p′(X) for any X ⊆ V then we say that the splitting off is admissible.
Clearly, splitting off at u and v is admissible if and only if there is no dangerous
set X containing both u and v (a set X is dangerous if m(X)− p(X) ≤ 1 and
it is called tight if m(X) − p(X) = 0). We will also say that such a dangerous

A New Approach to Splitting-Off 405

set X blocks the splitting at u and v, or simply that X blocks u and v.
The presentation is simpler if we don’t allow creating loops, i.e. we only split
off at distinct nodes. This is always possible except for some trivial cases (e.g.
when m is positive on only one node). In particular, if m is minimal, then an
admissible splitting can not create a loop.

We consider the following class of algorithms to find a graph G covering p
with degree function m. The algorithm does successive admissible splitting steps
(with possibly taking care of other things, too, but we assume that it only stops
when no admissible splitting is possible), until it terminates with m′(V) = 0 or
gets stuck with m′(V) > 0. Obviously it can not get stuck with m′(V) = 2 and
if m(V) was odd then it cannot find a degree-specified graph, though we don’t
want to exclude this case since we sometimes allow hyperedges, too, instead of
graph edges.

Let Mp = max{p(X) : X ⊆ V }. A set X with p(X) = Mp will be called
p-maximal. Clearly, if Mp ≤ 0 then any splitting-off is admissible. Note that
for two p-maximal sets X and Y either both of X ∩ Y and X ∪ Y or both of
X − Y and Y −X are also p-maximal.

If T ⊆ V then contracting T roughly means that from now on we consider it
to be a singleton. Formally this means that we define V/T = V − T + vT where
vT was not in V . For any set function p : 2V → Z ∪ {−∞} we define p/T :
2V/T → Z∪{−∞} by p/T (X) = p(X) if vT �∈ X and p/T (X) = p(X−vT +T) if
vT ∈ X . In this contracted problem a splitting-off is admissible if it is admissible
with respect to p/T . Note that p/T will inherit the interesting properties of
p investigated in this paper (e.g. symmetry, crossing supermodularity, skew-
supermodularity etc.). A useful observation is the following.

Lemma 1. Let u, v ∈ V with m(u), m(v) > 0. If we contract a tight set T then
the splitting at u′ and v′ is admissible if and only if the splitting at u and v is
admissible (where u′ (v′) is the contracted image of u (v, respectively)).

Proof. By the definition of p/T if the splitting-off at u and v was admissible then
it clearly stays admissible. Let us prove the other direction. Assume that u′, v′

becomes admissible while u, v was not admissible, i.e. there was a set X ⊆ V
with p(X) ≥ m(X)−1 with u, v ∈ X . Clearly, neither T ⊆ X nor X ∩T = ∅ can
hold. If (∩∪) holds for X and T then X ∪ T is also dangerous, a contradiction.
So (−) must hold for them, meaning X −T is also dangerous and u, v ∈ X −T ,
a contradiction again. �
This allows us to simplify some of the proofs by assuming that every tight set is
a singleton.

3 Characterization of the Stuck Case

The starting point of our results is the following lemma.

Lemma 2. Let p : 2V → Z∪{−∞} be a symmetric, skew-supermodular function
and m ∈ C(p) ∩ Z

V . If Mp > 1 then there is an admissible splitting.

406 A. Bernáth and T. Király

Proof. Let Y be a minimal set satisfying p(Y) = Mp. By symmetry, p(V −Y) =
Mp, too, so we can choose a minimal set Z ⊆ V − Y satisfying p(Z) = Mp.
Since Mp ≥ 1 we can choose y ∈ Y, z ∈ Z with m(y), m(z) > 0. We claim that
the splitting at y and z is admissible. Assume not and consider a dangerous
set X containing y and z. Since m(X − Y) < m(X), X and Y cannot satisfy
(−) , since this would imply p(Y − X) = Mp, contradicting the minimality of
Y . So X and Y must satisfy (∩∪) , which implies (using m(X ∩ Y) < m(X))
that p(X ∪ Y) = Mp and m(X − Y) = 1. Now X ∪ Y and Z cannot satisfy (−)
since this would give p(Z − (X ∪ Y)) = Mp, contradicting the minimality of Z.
Therefore X ∪Y and Z satisfy (∩∪) implying that p(Z ∩ (X ∪Y)) = Mp, which
is only possible if Z ⊆ X ∪ Y . But 2 ≤ Mp = p(Z) ≤ m(Z) ≤ m(X − Y) = 1
gives a contradiction. �
Let us mention some important consequences of this lemma. Firstly, if there is
no admissible splitting-off, then p ≤ 1 and every pair u, v ∈ V + is in a dangerous
set X : this means that p(X) = 1 and m(X) = 2, hence m ≤ 1. Furthermore, we
are only forced to create a loop in an admissible splitting-off if |V +| = 1 (so by
the symmetry of p this implies Mp ≤ 0): we assume in the rest of the paper that
this is not the situation.

Corollary 3. If p is a symmetric, skew-supermodular function and m ∈ C(p)∩
Z

V then there is a hypergraph H covering p with degree function m that contains
at most one hyperedge of size at least 3.

Consider the following greedy algorithm.

Algorithm GREEDYCOVER
begin

INPUT A symmetric skew-supermodular function p : 2V → Z ∪ {−∞}
(given with an oracle) and m ∈ C(p) ∩ Z

V .
OUTPUT A graph G = (V, E) and a hyperedge e such that the hypergraph
G + e covers p and dG+e(v) = m(v) for every v ∈ V .

1.1. Initialize G = (V, ∅).
1.2. While there exists an admissible pair u, v do
1.3. Let m = m− χ(u)− χ(v) and p = p− d(V,{(u,v)}) and G = G + (uv).
1.4. Output G and e where χe = m.
end

Clearly, if one can test membership in C(p−dG) for any graph G in polynomial
time then this algorithm terminates in polynomial time. In the following sections
we will consider this algorithm for special symmetric skew-supermodular set
functions and we will say something about the size of the hyperedge in its output.
We say that the algorithm got stuck if the hyperedge in the output is of size
greater than 0.

3.1 Greedy Problems

The preceding observations led us to the following definition. Consider either
the minimum or the degree specified version of covering a symmetric skew-
supermodular function p : 2V → Z ∪ {−∞} with some hypergraph of restricted

A New Approach to Splitting-Off 407

type (e.g. a graph). Define the greedy bound by gb(p) = max{∑t
i=1 p(Xi) : X

is a subpartition of V } = min{1 · x : x ∈ C(p)}: this is obviously a lower bound
for the minimum total size of any hypergraph covering p. We call such a covering
problem greedily solvable for m if the algorithm GREEDYCOVER necessar-
ily finds the desired hypergraph (where m ∈ C(p) ∩ Z

V is assumed). We call
it greedily solvable if GREEDYCOVER outputs a suitable hypergraph for any
m ∈ C(p)∩Z

V (if we only allow graphs then we make the additional assumption
that m(V) is even).

Let us give an example. It has been proved by Benczúr and Frank [2] that
the problem of covering a symmetric, crossing supermodular set function by a
minimum number of graph edges can be solved in polynomial time. In a special
case this problem can be solved greedily: the proof will be given later. We note
that this theorem includes the global edge-connectivity augmentation problem
of graphs solved by Watanabe and Nakamura [11].

Theorem 4. If p : 2V → Z ∪ {−∞} is symmetric, crossing supermodular, does
not take 1 as value, and G = (V, E) is an arbitrary graph, then the problem of
covering p′ = p− dG by a graph is greedily solvable.

Many proofs below consider the situation when the greedy algorithm gets stuck.
In most of the cases we can assume that this is already the case in the beginning,
since after some steps we are again at an instance of our starting problem: an
example of this is Theorem 4.

3.2 General Observations on the Stuck Case

We can read out many things about the situation when the algorithm GREEDY-
COVER gets stuck from Lemma 2. Assume that the procedure started with the
function p0 and m0 ∈ C(p0) ∩ Z

V , performed some admissible splittings and
got stuck at some point: let the graph of the edges split so far be G and let
p = p0 − dG and m(v) = m0(v)− dG(v) for any v ∈ V . If there is no admissible
splitting, then every pair u, v ∈ V + is in a dangerous set X : since p ≤ 1 this
means that p(X) = 1 and m(X) = 2, hence m ≤ 1. In the rest of this section
we assume that we are at this stuck situation. The interesting case for us will be
the case when the splitting procedure gets stuck with m(V) ≥ 4: we will assume
this in the rest of this section. In some cases it is also useful to assume that tight
sets are singletons: we will always state this explicitly.

We can notice that with m(V) − 1 edges we can cover the function p: any
spanning tree on V + will cover p. We could possibly cover p with less edges,
however we can give a lower bound: one needs at least �2(m(V) − 1)/3� edges
to finish the procedure. For a proof see [3].

Let us give a lemma that will be useful later. Assume x0, x1, x2 ∈ V are three
different positive nodes and X0, X1, X2 are the three dangerous sets blocking
them with xi ∈ Xj ∩ Xk for any {i, j, k} = {0, 1, 2}. (Since we assume that
m(V) ≥ 4 the three sets X0, X1, X2 are pairwise crossing here.) We will say that
X0, X1 and X2 form a blocking-triangle. X2 will be called slim if X0 ∩X1 ∩
X2 = ∅ and X2 − (X0 ∪X1) = ∅.

408 A. Bernáth and T. Király

Lemma 5 (Slimming Lemma). Assume that X0 and X1 satisfy (∩∪) . Then
(X2 − (X0 ∩X1)) ∩ (X0 ∪X1) is also dangerous and blocks x0, x1.

Proof. Since X0 and X1 satisfy (∩∪) , p(X0∩X1) = p(X0∪X1) = 1. Now X0∩X1

and X2 cannot satisfy (∩∪) , since that would imply that p(X0 ∩X1 ∩X2) = 1,
but m(X0 ∩ X1 ∩ X2) = 0. This implies that p(X ′

2) = 1 where X ′
2 = X2 −

(X0 ∩ X1)). Now X ′
2 and X0 ∪ X1 cannot satisfy (−) , since that would give

p(X ′
2− (X0 ∪X1)) = 1 contradicting m(X ′

2− (X0∪X1)) = 0. So we obtain from
(∩∪) that p(X ′

2 ∩ (X0 ∪X1)) = 1 and clearly x0, x1 ∈ X ′
2 ∩ (X0 ∪X1). �

For the subsequent two subsections let us introduce some notations. If p is
the symmetrized of a function q then for any set X either p(X) = q(X) or
p(X) = q(X) (possibly both). In the former case we say that X is of q-type, in
the latter we say that X is of q-type (so X can be of both types). Assume that
for any pair x, y of positive nodes we fix a dangerous set X(x, y) blocking them.
We introduce two (undirected, simple) graphs on the set of positive nodes: the
edge set of the q-graph (q-graph) consists of the pairs u, v of positive nodes
having q(X(u, v)) = 1 (q(X(u, v)) = 1, respectively). Since there is no admis-
sible splitting, the union of these two graphs is the complete graph (on the set
of positive nodes), and an edge may belong to both graphs. We will call this
2-edge-coloured complete graph the qq-graph.

3.3 Crossing Supermodular Functions

In this subsection we assume that p is the symmetrized of a crossing supermodu-
lar function q. A set function q : 2V → Z∪{−∞} is called crossing supermodular
if it satisfies (∩∪) whenever X and Y are crossing: note that a symmetric cross-
ing supermodular function is also skew-supermodular (which is not necessarily
the case without the symmetry). Furthermore, a symmetric crossing supermod-
ular function satisfies both (∩∪) and (−) if X and Y are crossing. One can
check that the complement of a crossing supermodular function is also cross-
ing supermodular, and the symmetrized of a crossing supermodular function is
skew-supermodular.

If two crossing sets X and Y are of the same type then they will satisfy (∩∪) .
If furthermore p(X) = p(Y) = 1 then their intersection and union is also of the
same type as X and Y (here we use that p ≤ 1). On the other hand if X and Y
are of different types then p(X − Y) = p(Y −X) = 1. Also note that from any
three sets there are two of the same type.

In this subsection we will also assume that tight sets are singletons. If p is
symmetric and crossing supermodular, then it is easy to check that every node
is positive (one can find examples showing that this does not hold in general, if
only the skew-supermodularity of p is assumed). However we will prove this in a
more general case, namely when p is the symmetrized of a crossing supermodular
function q. First it is useful to prove the following lemma.

Lemma 6. If p is the symmetrized of a crossing supermodular function q then
any set blocking two positive nodes contains only these two nodes.

A New Approach to Splitting-Off 409

Proof. Assume that there is a set X with 2 = m(X) = p(X) + 1 that also
contains neutral nodes. By possibly complementing q we can assume that X is
of q-type. Let x, z ∈ X be the positive nodes and let y ∈ V − X be another
positive node. Let Y be a set blocking x and y. We claim that Y must be of
q-type, too. If not, then X − Y = z, Y −X = y, since they are tight. But then
consider any set Z blocking y and z. Z cannot be of q-type (since this would
imply Z∩X = z and Y −Z = y, a contradiction), neither of q-type (for a similar
reason). So we proved that for any positive y ∈ V −X the set Y (y) blocking x
and y is of q-type. So the union of these sets Y ′ = ∪y∈V −X,m(y)>0Y (y) is also of
q-type, and has p(Y ′) = q(Y ′) = 1. However this implies that 1 = p(V − Y ′) =
m(z) = m(V −Y ′), so it is tight, but this is a contradiction together with |X | > 2
(note that Y ′ ∩X = x). �

The lemma implies that the edge set of the q-graph (q-graph) consists of the
pairs u, v of positive nodes having q({u, v}) = 1 (q({u, v}) = 1, respectively).
Observe that a non-singleton connected component X �= V of the q-graph is also
of q-type and has q(X) = 1 (and similarly for the q-graph). This immediately
implies the result promised before.

Lemma 7. If p is the symmetrized of a crossing supermodular function q then
every node is positive.

Proof. Suppose not, then the set of positive nodes V + �= V must be connected
in at least one of the two graphs (since the union of two disconnected graphs
cannot be the complete graph), so p(V +) = 1. But then p(V − V +) = 1 by the
symmetry, contradicting m(V − V +) = 0. �

What is more, this implies the following surprising observation.

Lemma 8. If p is the symmetrized of a supermodular function q, then p(X) = 1
for any X with ∅ �= X �= V (i.e. q(X) = 1 or q(V −X) = 1 for every such set).

Proof. By the preceding argument, any non-singleton X � V must be connected
in at least one of the two graphs, so has p(X) = 1 (it is also easy to see for
singletons, using m(V) ≥ 4). �

Consequently we have a crossing family F containing all sets with q value 1,
and the family of the complements of this family co(F) (these are the sets with
q value 1), and the union of these two families is 2V − {∅, V }. In the following
theorem we will characterize such families (for sake of brevity we will also add
∅ and V in the family: we can always add to or remove from a crossing family
these sets). It turns out that the graphs introduced above contain almost all
information about the family in question.

Let x ∈ V and let X1, . . . , Xt be t ≥ 1 pairwise disjoint subsets of V − x
(possibly t = 1 and X1 = ∅). We introduce the following family:

Fx,X1,...,Xt = {X ⊆ V : x ∈ X or X ⊆ Xi for some i ∈ 1, . . . , t}.

410 A. Bernáth and T. Király

Theorem 9. Let F ⊆ 2V be a crossing family with ∅, V ∈ F that satisfies
F ∪ co(F) = 2V . Then either V has exactly four elements and F = 2V \ {{y, z}}
for some y �= z, y, z ∈ V or there exists a node x ∈ V and X1, . . . , Xt pairwise
disjoint subsets of V − x for some t ≥ 1 such that either F or co(F) is equal to
Fx,X1,...Xt or Fx,X1,...Xt ∪ {V − x}.
Due to space limitations, we omit the proof of this theorem, it can be found in
[3]. A simple corollary that is worth mentioning is the following.

Theorem 10. Let F ⊆ 2V be a ring family with ∅, V ∈ F that satisfies F ∪
co(F) = 2V . Then there exists a node x ∈ V and a (possibly empty) set X1 ⊆
V − x such that either F or co(F) is equal to Fx,X1 .

We finish this subsection by proving Theorem 4.

Proof (Proof of Theorem 4). Assume that the greedy algorithm gets stuck (at
start). Let p′ = p − dG. We can assume that tight sets are singletons and that
m(V) ≥ 4. G cannot be empty, since p does not take 1 as value. Let (x, y) be an
arbitrary edge of G and z ∈ V − x − y. Consider the crossing sets X = {x, z}
and Y = {y, z}. By (∩∪) , we have the contradiction:

2 = p′(X) + p′(Y) ≤ p′(X ∩ Y) + p′(X ∪ Y)− 2 ≤ 0. �

3.4 Crossing Negamodular Functions

A set function p : 2V → Z ∪ {−∞} is called crossing negamodular if (−) holds
whenever X and Y are crossing. Note that the symmetrized of a crossing neg-
amodular function is skew-supermodular, but the complement of a crossing neg-
amodular function is not crossing negamodular. An important special case is a
monotone decreasing function: by that we mean a function p that satisfies
p(∅) ≤ 0 but p(X) ≥ p(Y) for any ∅ � X ⊆ Y ⊆ V .

An important observation is the following: if q : 2V → Z ∪ {−∞} is crossing
negamodular and X, Y ⊆ V are crossing sets with q(X) = q(Y) = Mq, then
q(X ∩ Y) = Mq and q(X ∪ Y) = Mq.

Theorem 11. Let R : 2V → Z∪{−∞} be a crossing negamodular function that
does not take 1 as value, and G = (V, E) an arbitrary graph. Let q = R − dG

and p = qs. Then p can be covered by �gb(p)/2�+ 1 edges greedily.

Proof. We will prove more: we show that there always exists an admissible
splitting-off if m(V) ≥ 5. Let m ∈ C(p) ∩ Z

V and assume that the greedy
algorithm is stuck (already at start) and tight sets are singletons. We will prove
that m(V) ≤ 4, so assume indirectly that m(V) > 4. We claim that there is
a triangle in either the q-graph or the q-graph (where we fix a dangerous set
X(u, v) blocking u and v for any u, v ∈ V +): this is clear if m(V) ≥ 6 by a
theorem of Ramsey. If m(V) = 5 then one can check that the only way to avoid
this is when the q-graph and the q-graph form two edge-disjoint cycles on 5
nodes. However, if we assume that the q-graph is the cycle on v1, v2, v3, v4, v5 in

A New Approach to Splitting-Off 411

this order, then the union of X(v1, v2) and X(v1, v4) is of q-type, so resetting
X(v3, v5) := V − (X(v1, v2) ∪ X(v1, v4)) will give a 3-cycle on v3, v4 and v5 in
the q-graph.

Consider such a triangle x0, x1, x2 of positive nodes (say a “blue triangle”,
where blue is either the colour of the q-graph or that of the q-graph): by the
assumptions made so far there is a set X ⊆ V − {x0, x1, x2} such that the set
X(xi, xj) blocking xi and xj is X + xi + xj for any distinct i, j ∈ {0, 1, 2}. Let
Y = X + {x0, x1, x2}. By the properties of q we have p(xi) = 1 for any i, and of
course p(Y − xi) = 1 for any i. This means that dG(xi) > 0 and dG(Y − xi) > 0
for any i, since R does not take 1 as value. But dG(Y) must be 0, otherwise we
could not have (−) with equality for every xi, xj . Consider any positive node u
distinct from x0, x1, x2. Suppose that the edge (u, x0) is blue again. This implies
that X(u, x0) = X + u + x0 and using that (−) must hold with equality for
X(u, x0) and X(x0, x1) gives that dG(x2, x1) = dG(x2) > 0. This immediately
implies that at most one blue edge can go from u to the set {x0, x1, x2} in the
qq-graph. So taking another positive node v distinct from u, x0, x1, x2 we see
that there is an i such that the edges u, xi and v, xi are both red in the qq-
graph. Again this means that there exists a set Z ⊆ V − Y − {u, v} such that
X(u, xi) = Z + u + xi and X(v, xi) = Z + v + xi, but then using that (−) must
hold with equality for these two sets we obtain that dG(xi) = dG(xi, Y −xi) = 0,
a contradiction. �

As an application of this theorem consider the node-to-area connectivity aug-
mentation solved by Ishii and Hagiwara [7]. The problem is the following. Given
a graph G = (V, E), a collection of subsets W of V and a function r :W → Z+,
find a minimum number of new edges F such that λG+F (x, W) ≥ r(W) for any
W ∈ W and x ∈ V . This problem is in general NP-complete, so the authors
assume that r ≥ 2 and give a polynomial time algorithm that solves this prob-
lem. Let us show why this problem is a special case of the problem addressed
in Theorem 11. Define R(X) = max{r(W) : W ∈ W , W ∩ X = ∅} for any
∅ �= X ⊆ V and R(∅) = 0. Then this is a monotone decreasing function, so it is
crossing negamodular, and it does not take 1 as value, hence it belongs to the
class of functions considered in Theorem 11. We mention that Rs is the function
that was called a symmetric semi-monotone function in [6]. Our results do
not characterize the cases when the greedy bound for covering R − dG can be
achieved, but they imply that a greedy algorithm can only fail by at most one
for this problem.

4 Applications

4.1 Simple Proofs

Theorem 12 (Mader’s lemma). Let G = (V + s, E) be a graph such that
there is no cut edge incident to s and dG(s) > 3. Then there exists a splitting-off
at s that preserves the local edge-connectivities in V .

412 A. Bernáth and T. Király

Proof. If there is no cut edge incident to s then λG(u, v) ≥ 2 for any pair of
s-neighbours u, v. Let us define R(X) = max{λG(x, y) : x ∈ X, y ∈ V −X} for
any X with ∅ �= X �= V , R(∅) = R(V) = 0, and p(X) = R(X)−dG[V](X) for any
X ⊆ V . Let m(v) = dG(s, v) for any v ∈ V . It is well known and easy to check
that (R and) p is a symmetric and skew-supermodular function. By assumption,
m covers p. Assume that there is no splitting-off and consider a blocking triangle
X, Y, Z. We can also assume that tight sets are singletons. Consider the following
two cases.

Case I: X and Y satisfy (∩∪) . By Lemma 5 we can assume that Z is slim.
Since there is no cut edge incident to s, both R(X ∩ Z) and R(Y ∩ Z) are at
least two, implying that their degree in G is at least two. Let R(Z) = λG(z, v)
with z ∈ Z and v ∈ V −Z and assume wlog. that z ∈ X ∩Z. Then dG(Z)− 1 ≤
R(Z) ≤ R(X ∩ Z) ≤ dG(X ∩ Z) = dG(Z) − dG(Y ∩ Z) + dG(X ∩ Z, Y ∩ Z) ≤
dG(Z)− 2 + dG(X ∩ Z, Y ∩ Z) implies that dG(X ∩ Z, Y ∩ Z) > 0, but then X
and Y cannot satisfy (∩∪) with equality.

Case II: X, Y and Z pairwise satisfy (−) . Since tight sets are singletons, |W −
X | = |W − Y | = |W − Z| = 1 where W = X ∪ Y ∪ Z. Using that there is
a neighbour of s not in W we can deduce that R(W) ≥ 2. However, since a
pair of these three sets must satisfy (−) with equality, there must not be an
edge of G[V] leaving W . But this would imply that p(W) ≥ 2, contradicting
Lemma 2. �

Next we will give a simple proof of a theorem of Bang-Jensen, Frank and Jackson
[1] on undirected splitting-off in mixed graphs: the k = l case is a special case of
Theorem 3.2 of [1], so we also manage to extend slightly this special case.

Theorem 13 (Bang-Jensen, Frank, Jackson). Let M = (V + s, E) be a
mixed graph and assume that s is only incident with undirected edges. Let r ∈ V
and k, l ≥ 2 integers and assume that λM (r, v) ≥ k and λM (v, r) ≥ l for any
v ∈ V . Then there exists a splitting-off at s preserving this property, provided
that dM (s) > 3.

Proof. We can assume that M−s is a digraph (by substituting undirected edges
by oppositely directed pairs of arcs): let us denote this digraph by D = (V, A)
and let m(v) = dM (s, v) for any v ∈ V . Let the function q be defined by q(∅) =
q(V) = 0, q(X) = k−�D(X) for any nonempty X ⊆ V −r and q(X) = l−�D(X)
for any X � V with r ∈ X . Then one can check that q is crossing supermodular;
let p = qs. Since M is (k, l)-arc-connected from r (apart from s), m(X) ≥ p(X)
for any X ⊆ V . Assume that there is no splitting-off and tight sets are singletons.
Then by Lemma 6 every vertex is positive. Consider a blocking triangle X, Y, Z
with r /∈ X ∪Y ∪Z. We can assume without loss of generality that X and Y are
both of the same type, implying that dD(X, Y) = 0. By Lemma 5 we can assume
that Z is slim. Then either �D(Z) = k− 1 or δD(Z) = l− 1: assume the former,
the other case being analogous. But �D(Z ∩X) ≥ k− 1 and �D(Z ∩ Y) ≥ k− 1
together with k ≥ 2 implies that dD(X, Y) > 0, a contradiction. �

A New Approach to Splitting-Off 413

4.2 Local Edge-Connectivity Augmentation of Hypergraphs

In this section we consider the local edge-connectivity augmentation of hyper-
graphs without increasing the rank. Let H = (V, E) be a hypergraph of rank at
most γ, and let r : V × V → Z+ \ {1} be a symmetric edge-connectivity re-
quirement that does not take 1 as value. Let us define the set function R(X) as
R(∅) = R(V) = 0 and

R(X) = max
u∈X,v/∈X

r(u, v) (∅ �= X � V).

Our aim is to find a hypergraph H ′ of minimum total size such that H + H ′

covers R, that is, λH+H′ (u, v) ≥ r(u, v) for every pair of nodes u, v. Since R
is a skew supermodular function, the algorithm GREEDYCOVER defined at the
beginning of Section 3 gives a solution that contains graph edges and at most one
hyperedge. The question we want to answer is whether the size of this hyperedge
is at most γ. One case when this is obviously not true is when γ = 2 and the
greedy bound is odd: then the size of the hyperedge will be 3. The following
theorem shows that this is the only exceptional case. Note that this theorem
generalizes the theorem of Frank [5] on local edge-connectivity augmentation of
graphs.

Theorem 14. Let H = (V, E) be a hypergraph of rank at most γ > 2, and let
r : V × V → Z+ \ {1} be a symmetric edge-connectivity requirement. Then the
greedy algorithm gives a solution to the minimum total size local edge-connectivity
augmentation problem that contains only graph edges and one hyperedge of size
at most γ.

Due to space limitations, we omit the proof of this theorem, it can be found
in [3].

4.3 Global Arc-Connectivity Augmentation of Mixed Hypergraphs

A mixed hypergraph M = (V,A) is a pair of a finite set V and a family
A of subsets of V (repetitions are allowed). For an a ∈ A every v ∈ a can
be either a head node, a tail node or even both (head-tail node), such
that every hyperarc contains at least one head and one tail. More formally we
could say that A contains nonempty ordered set-pairs (T, H) (T being the set of
tails, H being the heads, possibly H ∩T �= ∅). An undirected hypergraph can be
considered (for our purposes) as a special mixed hypergraph where every node in
a hyperarc is a head-tail node of this hyperarc. The set V is called the node set
of the mixed hypergraph, the family A is called the hyperarc set (or sometimes
shortly the arc set) of the mixed hypergraph. Reversing a hyperarc in A
means switching the roles of the nodes in it, i.e. head nodes become tail nodes
and vice versa (so head-tail nodes remain like that). When we say that v is a tail
node of a hyperarc a then we also allow that it is a head-tail node (and similarly
for head nodes).

In a mixed hypergraph M , a path between nodes s and t is an alternating
sequence of distinct nodes and hyperarcs s = v0, a1, v1, a2, . . . , ak, vk = t, such

414 A. Bernáth and T. Király

that vi−1 is a tail node of ai and vi is a head node of ai for all i between 1 and
k. A hyperarc a enters a set X if there is a head node of a in X and there is a
tail node of a in V −X . A hyperarc leaves a set if it enters the complement of
this set. For a set X we define �M (X) = |{a ∈ A : a enters X}| (the in-degree
of X) and δM (X) = �M (V − X) (the out-degree of X). It is easy to check
that the functions � and δ are submodular functions. Given a mixed hypergraph
M = (V,A) and sets S, T ⊆ V , let λM (S, T) denote the maximum number of
arc-disjoint paths starting at a vertex of S and ending at a vertex of T (we say
that λM (S, T) =∞ if S ∩ T �= ∅). By Menger’s theorem:

λM (S, T) = min{�M (X) : T ⊆ X ⊆ V − S}.
If M = (V,A) is a mixed hypergraph, r ∈ V is a designated root node and k, l

are nonnegative integers, then we say that M is (k, l)-arc-connected from r
if λM (r, v) ≥ k and λM (v, r) ≥ l for any v ∈ V . Let us define the set function
q = qM,r,k,l by q(∅) = q(V) = 0, q(X) = k−�M (X) for any nonempty X ⊆ V −r
and q(X) = l − �M (X) for any X � V with r ∈ X . Then one can check that
q is crossing supermodular. For a hypergraph H one can prove that M + H is
(k, l)-arc-connected from r if and only if dH covers q (or equivalently qs).

Let M = (V,A) be a mixed hypergraph and let k, l ≥ 2 be integers. We
assume that M is of rank at most γ. We want to make M (k, l)-arc-connected
by adding an undirected, degree specified hypergraph of minimum total size
that also has rank at most γ. Is it true that the greedy bound can be achieved?
Can this be done greedily? The answer is “almost yes”: an example shows that
sometimes this can only be done by adding a hyperedge of cardinality γ + 1
(even for k = l = 2). Consider the following mixed hypergraph M = (V,A): let
|V | ≥ 3 and x, y ∈ V be two nodes. There are 3 hyperarcs in A: one is a digraph
arc (x, y), the second is (y, V − x − y) and the third is (V − x − y, x). Finally
let k = l = 2 and γ = |V | − 1. It is easy to see that the greedy bound is |V | and
the only way to achieve it is to add the hyperedge V . However, we can prove the
following result.

Theorem 15. If M is of rank at most γ ≥ 2 and k, l ≥ 2 are integers, then we
can make M (k, l)-arc-connected greedily by the addition of graph edges and one
hyperedge of size at most γ + 1.

Proof. We can assume that the greedy algorithm is stuck already at start. Let
q = qM,r,k,l and p = qs and let m ∈ C(p) ∩ Z

V that satisfies the greedy bound.
We have to prove that m(V) is at most γ + 1. We can also assume that tight
sets are singletons (and delete singleton hyperedges, since they are irrelevant for
connectivity), so by the observations in Section 3.3 every node is positive. By
Theorem 9, there is an x ∈ V such that (by possibly reversing every hyperarc of
M and switching the role of k and l) every set X �= V with x ∈ X has q(X) = 1
(observe that this consequence is also true for the sporadic example on 4 nodes).
First we claim that V −x cannot contain hyperarcs. Assume that it does contain
a hyperarc a, let v be an arbitrary head node of a, and let X = a− v + x and
Y = {v, x}. These sets are crossing (since |a| < |V − x| by the assumption)

A New Approach to Splitting-Off 415

and of q-type, but (∩∪) cannot hold with equality for them, a contradiction. So
every hyperarc of M contains x. We claim that if v �= x is a tail of a hyperarc
a satisfying |a| ≥ 3, then x ∈ Ha and Ta − v − x = ∅. To see this consider the
sets X = a− v and Y = {v, x}. Then q(X) = q(Y) = 1 but one can check that
(∩∪) cannot hold with equality for X and Y , a contradiction. So the hyperedges
leaving any v ∈ V − x all enter x. If x = r then l − 1 = �(x) =

∑
v∈V −x δ(v) =

|V − x|(l − 1) contradicting that |V | > 2 and l > 1. On the other hand, if x �= r
then k−1 = �(x) =

∑
v∈V −x δ(v) = (|V |−2)(l−1)+(k−1), again contradicting

that |V | > 2 and l > 1. �

References

1. Bang-Jensen, J., Frank, A., Jackson, B.: Preserving and increasing local edge-
connectivity in mixed graphs. SIAM J. Discrete Math. 8(2), 155–178 (1995)

2. Benczúr, A.A., Frank, A.: Covering symmetric supermodular functions by graphs.
Math. Program. Ser. B 84(3), 483–503 (1999); Connectivity augmentation of net-
works: structures and algorithms (Budapest, 1994)

3. Bernáth, A., Király, T.: A new approach to splitting-off, Tech. Report TR-2008-02,
Egerváry Research Group, Budapest (2008), http://www.cs.elte.hu/egres

4. Cosh, B., Jackson, B., Király, Z.: Local connectivity augmentation in hypergraphs
is NP-complete (manuscript)

5. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J.
Discrete Math. 5(1), 25–53 (1992)

6. Grappe, R., Szigeti, Z.: Note: Covering symmetric semi-monotone functions. Dis-
crete Appl. Math. 156(1), 138–144 (2008)

7. Ishii, T., Hagiwara, M.: Minimum augmentation of local edge-connectivity between
vertices and vertex subsets in undirected graphs. Discrete Appl. Math. 154(16),
2307–2329 (2006)

8. Mader, W.: A reduction method for edge-connectivity in graphs. Ann. Discrete
Math. 3, 145–164 (1978); (Cambridge Combinatorial Conf., Trinity College, Cam-
bridge, 1977)

9. Miwa, H., Ito, H.: NA-edge-connectivity augmentation problems by adding edges.
J. Oper. Res. Soc. Japan 47(4), 224–243 (2004)

10. Szigeti, Z.: Hypergraph connectivity augmentation. Math. Program. Ser. B 84(3),
519–527 (1999); Connectivity augmentation of networks: structures and algorithms
(Budapest, 1994)

11. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Com-
put. System Sci. 35(1), 96–144 (1987)

http://www.cs.elte.hu/egres

Can Pure Cutting Plane Algorithms Work?

Arrigo Zanette1, Matteo Fischetti1,�, and Egon Balas2,��

1 DEI, University of Padova
zanettea@math.unipd.it, matteo.fischetti@unipd.it

2 Carnegie Mellon University, Pittsburgh, PA
eb17@andrew.cmu.edu

Abstract. We discuss an implementation of the lexicographic version of
Gomory’s fractional cutting plane method and of two heuristics mimick-
ing the latter. In computational testing on a battery of MIPLIB problems
we compare the performance of these variants with that of the standard
Gomory algorithm, both in the single-cut and in the multi-cut (rounds of
cuts) version, and show that they provide a radical improvement over the
standard procedure. In particular, we report the exact solution of ILP
instances from MIPLIB such as stein15, stein27, and bm23, for which
the standard Gomory cutting plane algorithm is not able to close more
than a tiny fraction of the integrality gap. We also offer an explanation
for this surprizing phenomenon.

Keywords: Cutting Plane Methods, Gomory Cuts, Degeneracy in Lin-
ear Programming, Lexicographic Dual Simplex, Computational Analysis.

1 Introduction

Modern branch-and-cut methods for (mixed or pure) Integer Linear Programs
are heavily based on general-purpose cutting planes such as Gomory cuts, that
are used to reduce the number of branching nodes needed to reach optimality.
On the other hand, pure cutting plane methods based on Gomory cuts alone are
typically not used in practice, due to their poor convergence properties.

In a sense, branching can be viewed as just a “symptomatic cure” to the
well-known drawbacks of Gomory cuts—saturation, bad numerical behavior, etc.
From the cutting plane point of view, however, the cure is even worse than the
disease, in that it hides the real source of the troubles. So, a “theoretically
convergent” method such as the Gomory one becomes ancillary to enumeration,
and no attempt is made to try to push it to its limits. In this respect, it is
instructive to observe that a main piece of information about the performance
of Gomory cuts (namely, that they perform much better if generated in rounds)
� The work of the first two authors was supported by the Future and Emerging Tech-

nologies unit of the EC (IST priority), under contract no. FP6-021235-2 (project
“ARRIVAL”) and by MiUR, Italy (PRIN 2006 project “Models and algorithms for
robust network optimization”).

�� The work of the third author was supported by National Science Foundation grant
�DMI-0352885 and Office of Naval Research contract �N00014-03-1-0133.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 416–434, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Can Pure Cutting Plane Algorithms Work? 417

was discovered only in 1996 (Balas, Ceria, Cornuéjols, and Natraj [2]), i.e., about
40 years after their introduction [7].

The purpose of our project, whose scope extends well beyond the present
paper, is to try to come up with a viable pure cutting plane method (i.e., one
that is not knocked out by numerical difficulties), even if on most problems it
will not be competitive with the branch-and-bound based methods.

As a first step, we chose to test our ideas on Gomory’s fractional cuts, for
two reasons: they are the simplest to generate, and they have the property that
when expressed in the structural variables, all their coefficients are integer (which
makes it easier to work with them and to assess how nice or weird they are). In
particular, we addressed the following questions:

i) Given an ILP, which is the most effective way to generate fractional Gomory
cuts from the optimal LP tableaux so as to push the LP bound as close as
possible to the optimal integer value?

ii) What is the role of degeneracy in Gomory’s method?
iii) How can we try to counteract the numerical instability associated with the

iterated use of Gomory cuts?
iv) Is the classical polyhedral paradigm “the stronger the cut, the better” still

applicable in the context of Gomory cuts read from the tableau? The question
is not at all naive, as one has to take into account the negative effects that
a stronger yet denser (or numerically less accurate) cut has in the next
tableaux, and hence in the next cuts.

As we were in the process of testing various ways of keeping the basis determi-
nant and/or condition number within reasonable limits, our youngest coauthor
had the idea of implementing the lexicographic dual simplex algorithm used in
one of Gomory’s two finite convergence proofs. Gomory himself never advocated
the practical use of this method; on the contrary, he stressed that its sole pur-
pose was to simplify one of the two proofs, and that in practice other choice
criteria in the pivoting sequence were likely to work better. Actually, we have no
information on anybody ever having tried extensively this method in practice.

The lexicographic method has two basic ingredients: (a) the starting tableau
is not just optimal, i.e., dual feasible, but lexicographically dual-feasible, and the
method of reoptimization after adding a cut is the lexicographic dual simplex
method; and (b) at least after every k iterations for some fixed k, the row with
the first fractional basic variable is chosen as source row for the next cut.

The implementation of this method produced a huge surprise: the lexico-
graphic method produces a dramatic improvement not only in gap closure (see
Figure 1), but also in determinant and cut coefficient size.

It is well known that cutting plane methods work better if the cuts are gener-
ated in rounds rather than individually (i.e., if cuts from all fractional variables
are added before reoptimization, rather than reoptimizing after every cut). Now
it seems that if we are generating rounds of cuts rather than individual cuts,
the use of the lexicographic rule would make much less sense, in particular be-
cause (b) is automatically satisfied—so the lexicographic rule plays a role only

418 A. Zanette, M. Fischetti, and E. Balas

0 500 1000 1500 2000
5.554

5.556

5.558

5.56

5.562

5.564
x 10

4

cuts

ob
je

ct
iv

e
bo

un
d

Air04 (single−cut)

Lex

TB

0 2000 4000 6000 8000

13

14

15

16

17

18

cuts

ob
je

ct
iv

e
bo

un
d

Stein27 (single−cut)

TB

Lex

Fig. 1. Comparison between the textbook and lexicographic implementations of single-
cut Gomory’s algorithm on air04 and stein27

in shaping the pivoting sequence in the reoptimization process. So we did not
expect it to make much of a difference. Here came our second great surprize: as
illustrated in Figure 2, even more strikingly than when using single cuts, com-
paring the standard and lexicographic methods with rounds of cuts shows a huge
difference not only in terms of gap closed (which for the lexicographic version is
100% for more than half the instances in our testbed), but also of determinant
size and coefficient size.

0 1 2 3 4

x 10
4

5.556

5.558

5.56

5.562

5.564

5.566
x 10

4

cuts

ob
je

ct
iv

e
bo

un
d

Air04 (multi−cut)

Lex

TB

0 1 2 3

x 10
4

13

14

15

16

17

18

cuts

ob
je

ct
iv

e
bo

un
d

Stein27 (multi−cut)

TB

Lex

Fig. 2. Comparison between the textbook and lexicographic implementations of multi-
cut Gomory’s algorithm on air04 and stein27

In this paper we discuss ad evaluate computationally and implementation of
the lexicographic version of Gomory’s fractional cutting plane method and of two
heuristics mimicking the latter one, and offer an interpretation of the outcome
of our experiments.

Can Pure Cutting Plane Algorithms Work? 419

2 Gomory Cuts

In this paper we focus on pure cutting plane methods applied to solving Integer
Linear Programs (ILPs) of the the form:

min cT x

Ax = b

x ≥ 0 integer

where A ∈ Z
m×n, b ∈ Z

m and c ∈ Z
n. Let P := {x ∈ �n : Ax = b, x ≥ 0} denote

the LP relaxation polyhedron, that we assume be bounded.
The structure of a pure cutting plane algorithm for the solution of the ILP

problem can be roughly outlined as follows:

1. solve the LP relaxation min{cT x : x ∈ P} and denote by x∗ an optimal
vertex

2. if x∗ is integer, then we are done
3. otherwise, search for a violated cut, i.e., a hyperplane αT x ≤ α0 separating

x∗ from the convex hull of integer feasible points, add it to the original
formulation, and repeat.

The cut generation is of course a crucial step in any cutting plane method, as
one is interested in easily-computable yet effective cuts.

In 1958, Gomory [7] (see also [9]) gave a simple and elegant way to generate
violated cuts, showing that x∗ can always be separated by means of a cut easily
derived from a row of the LP-relaxation optimal tableau. The cut derivation is
based on a rounding argument: given any equation

∑n
j=1 γjxj = γ0 valid for the

P , if x is constrained to be nonnegative and integer then
∑n

j=1�γj�xj ≤ �γ0� is
a valid cut. According to Gomory’s proposal, the equation is the one associated
with a row of the LP optimal tableau whose basic variable is fractional: we
will refer to this row as the cut generating row, and to the corresponding basic
variable as the cut generating variable.

The resulting cut, called Fractional Gomory Cut (FGC) or Chvátal-Gomory
cut, has important theoretical and practical properties. First of all, one can use
FGCs read from the LP tableau to derive a finitely-convergent cutting plane
method. Secondly, because of the integrality of all the cut coefficients, the as-
sociated slack variable can be assumed to be integer, so the addition of FGCs
does not introduce continuous variables that could make the rounding argument
inapplicable in the next iterations. Moreover, the fact that the cut coefficients
are integer ensures a certain “confidence level” about the numerical accuracy of
the generated cuts. Indeed, once a cut is generated, small fractionalities in the
computed coefficients can be removed safely so as to reduce error propagation,
whereas FGCs with significant fractionalities are likely to be invalid (because of
numerical issues) and hence can be skipped.

In 1960, Gomory [8] introduced the Gomory Mixed Integer (GMI) cuts to deal
with the mixed-integer case. In case of pure ILPs, GMI cuts are applicable as

420 A. Zanette, M. Fischetti, and E. Balas

well. Actually, GMI cuts turn out to dominate FGCs in that each variable xj

receives a coefficient increased by a fractional quantity θj ∈ [0, 1) with respect to
the FGCs (writing the GMI in its ≤ form, with the same right-hand-side value
as in its FGC counterpart). E.g, a FGC cut of the type 2x1 − x2 + 3x3 ≤ 5
may correspond to the GMI 2.27272727x1− x2 + 3.18181818x3 ≤ 5. So, from a
strict polyhedral point of view, there is no apparent reason to insist on FGCs
when a stronger replacement is readily available at no extra computational effort.
However, as shown in the example above, the coefficient integrality of GMI cuts
is no longer guaranteed, hence the nice numerical properties of FGCs are lost.
Even more importantly, as discussed in the sequel, the introduction of “weird
fractionalities” in the cut coefficients may have uncontrollable effects on the
fractionality of the next LP solution and hence of the associated LP tableau.
As a result, it is unclear whether FGC or GMI cuts are better suited for a
pure cutting plane method based on tableau cuts—a topic that we are going to
investigate in the near future.

It is important to stress that the requirement of reading (essentially for free)
the cuts directly from the optimal LP tableau makes the Gomory method intrin-
sically different from a method that works solely with the original polyhedron
where the cut separation is decoupled from the LP reoptimization, as in the
recent work of Fischetti and Lodi [6] on FGCs or Balas and Saxena [5] on GMI
(split) cuts. Actually, only the first round of cuts generated by the Gomory
method (those read from the very first optimal tableau) work on the original
polyhedron, subsequent rounds are generated from a polyhedron truncated by
previously generated cuts.

We face here a very fundamental issue in the design of pure cutting plane
methods based of (mixed-integer or fractional) Gomory cuts read from the LP
optimal tableau. Since we expect to generate a long sequence of cuts that even-
tually lead to an optimal integer solution, we have to take into account side
effects of the cuts that are typically underestimated when just a few cuts are
used (within an enumeration scheme) to improve the LP bound. In particular,
one should try to maintain a “clean” optimal tableau so as to favor the genera-
tion of “clean” cuts in the next iterations. To this end, it is important to avoid
as much as possible generating (and hence cutting) LP optimal vertices with a
“weird fractionality”—the main source of numerical inaccuracy. This is because
the corresponding optimal LP basis necessarily has a large determinant (needed
to describe the fractionality), hence the tableau contains weird entries that lead
to weaker and weaker Gomory cuts.

In this respect, dual degeneracy (that is notoriously massive in cutting plane
methods) can play an important role and actually can favor the practical con-
vergence of the method, provided that it is exploited to choose the cleanest
LP solution (and tableau) among the equivalent optimal ones—the optimized
sequence of pivots performed by a generic LP solver during the tableau reop-
timization leads invariably to an uncontrolled growth of the basis determinant,
and the method gets out of control after few iterations.

Can Pure Cutting Plane Algorithms Work? 421

3 Degeneracy and the Lexicographic Dual Simplex

As already mentioned, massive dual degeneracy occurs almost invariably when
solving ILPs by means of cutting plane algorithms. Indeed, cutting planes tend
to introduce a huge number of cuts that are almost parallel to the objective
function, whose main goal is to prove or to disprove the existence of an integer
point with a certain value of the objective function.

In his proof of convergence, Gomory used the lexicographic dual simplex to
cope with degeneracy. The lexicographic dual simplex is a generalized version
of the simplex algorithm where, instead of considering the minimization of the
objective function, viewed without loss of generality as an additional integer
variable x0 = cT x, one is interested in the minimization of the entire solution
vector (x0, x1, . . . , xn), where (x0, x1, . . . , xn) >LEX (y0, y1, . . . , yn) means that
there exists an index k such that xi = yi for all i = 1, . . . , k − 1 and xk > yk.
In the lexicographic, as opposed to the usual, dual simplex method the ratio
test does not only involve two scalars (reduced cost and pivot candidate) but
a column and a scalar. So, its implementation is straightforward, at least in
theory. In practice, however, there are a number of major concerns that limit
this approach:

1. the ratio test has a worst-case quadratic time complexity in the size of the
problem matrix;

2. the ratio test may fail in selecting the right column to preserve lex-optimality,
due to round-off errors;

3. the algorithm requires taking control of each single pivot operation, which
excludes the possibility of applying much more effective pivot-selection cri-
teria.

The last point is maybe the most important. As a clever approach should not
interfere too much with the black-box LP solver used, one could think of us-
ing a perturbed linear objective function x0 + ε1x1 + ε2x2 . . ., where x0 is the
actual objective and 1 � ε1 � ε2 � Though this approach is numerically
unacceptable, one can mimic it by using the following method which resembles
the iterative procedure used in the construction of the so-called Balinsky–Tucker
tableau [3] and is akin to the slack fixing used in sequential solution of preemptive
linear goal programming (see [1] and [10]).

Starting from the optimal solution (x�
0, x

�
1, . . . , x

�
n), we want to find another

basic solution for which x0 = x�
0 but x1 < x�

1 (if any), by exploiting dual de-
generacy. So, we fix the variables that are nonbasic (at their bound) and have
a nonzero reduced cost. This fixing implies the fixing of the objective function
value to x�

0, but has a major advantage: since we fix only variables at their
bounds, the fixed variables will remain out of the basis in all the subsequent
steps. Then we reoptimize the LP by using x1 as the objective function (to be
minimized), fix other nonbasic variables, and repeat. The method then keeps op-
timizing subsequent variables, in lexicographic order, over smaller and smaller
dual-degenerate subspaces, until either no degeneracy remains, or all variables

422 A. Zanette, M. Fischetti, and E. Balas

are fixed. At this point we can unfix all the fixed variables and restore the origi-
nal objective function, the lex-optimal basis being associated with the non-fixed
variables.

This approach proved to be quite effective (and stable) in practice: even for
large problems, where the classical algorithm is painfully slow or even fails, our
alternative method requires short computing time to convert the optimal basis
into a lexicographically-minimal one. We have to admit however that our current
implementation is not perfect, as it requires deciding whether a reduced cost is
zero or not: in some (rare) cases, numerical errors lead to a wrong decision that
does not yield a lexicographically dual-feasible final tableau. We are confident
however that a tighter integration with the underlying LP solver could solve
most of the difficulties in our present implementation.

4 Heuristics Variants

While the lexicographic simplex method gives an exact solution to the problem
of degeneracy, simple heuristics can be devised that mimic the behavior of lex-
icographic dual simplex. The scope of these heuristics is to try to highlight the
crucial properties that allow the lexicographic method to produce stable Gomory
cuts.

As already mentioned, a lex-optimal solution can in principle be reached by
using an appropriate perturbation of the objective function, namely x0 + ε1x1 +
. . . + εnxn with 1 � ε1 � . . . � εn. Although this approach is actually im-
practical, one can use a 1-level approximation where the perturbation affects a
single variable only, say xi, leading to the new objective function minx0 + εxi.
The perturbation term is intended to favor the choice of an equivalent optimal
basis closer to the lexicographically optimal one, where the chosen variable xi is
moved towards its lower bound—and hopefully becomes integer.

In our first heuristic, Heur1, when the objective function is degenerate we
swap our focus to the candidate cut generating variable, i.e., the variable xi to
be perturbed is chosen as the most lex-significant fractional variable. The idea is
that each new cut should guarantee a significant lex-decrease in the solution vec-
tor by either moving to a new vertex where the cut generating variables becomes
integer, or else some other more lex-significant variables becomes fractional and
can be cut.

A second perturbation heuristic, Heur2, can be designed along the following
lines. Consider the addition of a single FGC and the subsequent tableau reop-
timization performed by a standard dual simplex method. After the first pivot
operation, the slack variable associated with the new cut goes to zero and leaves
the basis, and it is unlikely that it will re-enter it in a subsequent step. This how-
ever turns out to be undesirable in the long run, since it increases the chances
that the FGC generated in the next iterations will involve the slack variables
of the previously-generated FGCs, and hence it favors the generation of cuts
of higher rank and the propagation of their undesirable characteristics (density,
numerical inaccuracy, etc.). By exploiting dual degeneracy, however, one could

Can Pure Cutting Plane Algorithms Work? 423

try to select an equivalent optimal basis that includes the slack variables of the
FGCs. This can be achieved by simply giving a small negative cost to the FGC
slack variables.

Both the heuristics above involve the use of a small perturbation in the ob-
jective function coefficients, that however can produce numerical troubles that
interfere with our study. So we handled perturbation in a way similar to that
used in our implementation of the lexicographic dual simplex, that requires the
solution of two LPs—one with the standard objective function, and the sec-
ond with the second-level objective function and all nonbasic variables having
nonzero reduced cost fixed at their bound.

5 Computational Results

Our set of pure ILP instances mainly comes from MIPLIB 2003 and MIPLIB 3;
see Table 1. It is worth noting that, to our knowledge, even very small instances
of these libraries (such as stein15, bm23, etc.) have never been solved by a pure
cutting plane method based on FGC or GMI cuts read from the LP tableau.

Table 1. Our test bed

Problem Cons Vars LP opt Opt Source
air04 823 8904 55535.44 56137 MIPLIB 3.0
air05 426 7195 25877.61 26374 MIPLIB 3.0
bm23 20 27 20.57 34 MIPLIB
cap6000 2176 6000 -2451537.33 -2451377 MIPLIB 3.0
hard ks100 1 100 -227303.66 -226649 Single knapsack
hard ks9 1 9 -20112.98 -19516 Single knapsack
krob200 200 19900 27347 27768 2 matching
l152lav 97 1989 4656.36 4722 MIPLIB
lin318 318 50403 38963.5 39266 2 matching
lseu 28 89 834.68 1120 MIPLIB
manna81 6480 3321 -13297 -13164 MIPLIB 3.0
mitre 2054 9958 114740.52 115155 MIPLIB 3.0
mzzv11 9499 10240 -22945.24 -21718 MIPLIB 3.0
mzzv42z 10460 11717 -21623 -20540 MIPLIB 3.0
p0033 16 33 2520.57 3089 MIPLIB
p0201 133 201 6875 7615 MIPLIB 3.0
p0548 176 548 315.29 8691 MIPLIB 3.0
p2756 755 2756 2688.75 3124 MIPLIB 3.0
pipex 2 48 773751.06 788263 MIPLIB
protfold 2112 1835 -41.96 -31 MIPLIB 3.0
sentoy 30 60 -7839.28 -7772 MIPLIB
seymour 4944 1372 403.85 423 MIPLIB 3.0
stein15 35 15 5 9 MIPLIB
stein27 118 27 13 18 MIPLIB 3.0
timtab 171 397 28694 764772 MIPLIB 3.0

Input data is assumed to be integer. All problems are preprocessed by adding
an integer variable x0 that accounts for the original objective function, from
which we can derive valid cuts, as Gomory’s proof of convergence prescribes.
Once a FGC is generated, we put it in its all-integer form in the space of the
structural variables. In order to control round-off propagation, our FGC sep-
arator uses a threshold of 0.1 to test whether a coefficient is integer or not:

424 A. Zanette, M. Fischetti, and E. Balas

a coefficient with fractional part smaller than 0.1 is rounded to its nearest inte-
ger, whereas cuts with larger fractionalities are viewed as unreliable and hence
discarded.

We carried out our experiments in a Intel Core 2 Q6600, 2.40GHz, with a
time limit of 1 hour of CPU time and a memory limit of 2GB for each instance.

Our first set of experiments addressed the single-cut version of Gomory’s
algorithm. Actually, at each iteration we decided to generate two FGCs from
the selected cut generating row—one from the tableau row itself, and one from
the same row multiplied by -1.

The choice of the cut generation row in case of the lexicographic method is
governed by the rule that prescribes the selection of the least-index variable.
As to the other methods under comparison, the cut generation row is chosen
with a random policy giving a higher probability of selecting the cut-generating
variable from those with fractional part closer to 0.5 (alternative rules produced
comparable results).

A very important implementation choice concerns the cut purging criterion.
The lexicographic algorithm ensures the lexicographic improvement of the solu-
tion vector after each reoptimization, thus allowing one to remove cuts as soon as
they become slack at the new optimum. As far as other methods are concerned,
however, we can safely remove cuts only when the objective function improves.
Indeed, if the objective function remains unchanged a removed cut can be gen-
erated again in a subsequent iteration, and the entire algorithm can loop—a
situation that we actually encountered during our experiments. We therefore
decided to remove the slack cuts only when it is mathematically correct, i.e.
after a nonzero change in the objective function value, though this policy can
lead to an out-of-memory status after a long stalling phase.

Table 2 compares results on the textbook implementation of Gomory’s algo-
rithm (TB) and the lexicographic one (Lex). Besides the percentage of closed
gap (ClGap), we report 3 tightly correlated parameters to better measure the
performance of each method. The first parameter is the cut coefficients size
(Coeff.): large coefficients, besides increasing the likelihood of numerical errors,
can be a symptom of cut ineffectiveness since they are required to represent
very small angles in the space of structural variables. The second parameter is
the determinant of the optimal basis (Det.). In a sense, the problem being all-
integer, the determinant is a measure of the distance from an integer solution:
a unit determinant implies an all-integer tableau and solution. Since any coeffi-
cient in the tableau can be expressed as a rational number whose denominator
is the determinant of the current basis B, the smallest fractional part we could
encounter in a tableau is 1/det(B)—weird tableau entries correspond to large
determinants. However, our experiments showed that there are instances with
huge determinants (e.g., mitre) but numerically quite stable. This is because
the size of the determinant is only a weak bound on the degree of fractionality
of the solution, as the large denominator can be – and fortunately often is –
compensated by a large numerator. A more reliable indicator of numerical pre-
cision loss is our third parameter, the condition number κ of the optimal basis,

Can Pure Cutting Plane Algorithms Work? 425

which gives a measure of the inaccuracy of the finite-precision representation of
a solution x to the linear system Bx = b.

In the table, only the maximum value of the three indicators above during the
run is reported. The first column reports one of the following exit-status codes:
(O) integer optimum, (tL) time limit, (cL) limit of 100,000 cuts, (M) out of
memory, (E) numerical errors (either no cuts passed the integrality check, or
the problem became infeasible), and (lE) if one of the reoptimizations required
by the lexicographic method failed for numerical reasons.

A possible failure of the lexicographic method arises when a strict lexico-
graphic improvement is not reached because of numerical issues. In these situ-
ations we are no longer protected against the TB drawbacks and we can fail.
Precisely, in sentoy (single-cut) we failed to improve lexicographically for 27
iterations, in p0548 for 2597 iterations and in timtab1-int for 3 iterations. In
multi-cut versions, we failed in sentoy for 5 iterations, p0201 for 57 iterations,
in p0548 for 173 iterations, in p2756 for 5 iterations, and in timtab1-int for 5
iterations.

Table 2 shows clearly that in most cases the TB version has huge coefficient
sizes, determinants and condition numbers, while in Lex all these values remain
relatively small along the entire run. Moreover, Lex could solve to proven op-
timality 9 of the 25 instances of our testbed—some of these instances being
notoriously hard for pure cutting plane methods.

For illustration purposes, Figure 3 gives a representation of the trajectory of
the LP optimal vertices to be cut (along with a plot of the basis determinant)
when the textbook and the lexicographic methods are used for instance stein15.
In Figures 3(a) and (b), the vertical axis represents the objective function value.
As to the XY space, it is a projection of the original 15-dimensional variable
space. The projection is obtained by using a standard procedure available e.g. in
MATLAB (namely, multidimensional scaling [4]) with the aim of preserving the
metric of the original 15-dimensional space as much as possible. In particular,
the original Euclidean distances tend to be preserved, so points that look close
one to each other in the figure are likely to be also close in the original space.

According to Figure 3(a), the textbook method concentrates on cutting points
belonging to a small region. This behavior is in a sense a consequence of the
efficiency of the underlying LP solver, that has no incentive in changing the LP
solution once it becomes optimal with respect to the original objective function—
the standard dual simplex will stop as soon as a feasible point (typically very
close to the previous optimal vertex) is reached. As new degenerate vertices are
created by the cuts themselves, the textbook method enters a feedback loop that
is responsible for the exponential growth of the determinant of the current basis,
as reported in Figure 3(d).

On the contrary, as shown in Figures 3(b), the lexicographic method prevents
this by always moving the fractional vertex to be cut as far as possible (in the
lex-sense) from the previous one. Note that, in principle, this property does not
guarantee that there will be no numerical problems, but the method seems to
be work pretty well in practice.

426 A. Zanette, M. Fischetti, and E. Balas

T
a
b
le

2
.
C

o
m

p
a
ri
so

n
b
et

w
ee

n
te

x
tb

o
o
k

a
n
d

le
x
ic

o
g
ra

p
h
ic

im
p
le

m
en

ta
ti

o
n

o
f
G

o
m

o
ry

’s
a
lg

o
ri
th

m
(s

in
g
le

-c
u
t

v
er

si
o
n
)

T
ex

tb
o
o
k

L
ex

P
ro

b
le

m
It

rs
C

u
ts

T
im

e
C

lG
a
p

C
o
eff

.
D

et
.

κ
It

rs
C

u
ts

T
im

e
C

lG
a
p

C
o
eff

.
D

et
.

κ

a
ir
0
4

tL
1
1
9
7

2
3
9
4

3
6
0
2
.8

5
4
.4

2
1
.4

e+
0
4

1
.9

e+
1
8

1
.8

e+
1
3

tL
3
7
1

7
4
2

3
6
0
4
.9

2
1
4
.5

6
1
e+

0
4

5
.2

e+
1
0

5
.2

e+
1
8

a
ir
0
5

tL
2
8
5
2

5
7
0
4

3
6
0
1
.8

3
4
.5

1
3
.8

e+
0
5

1
e+

2
7

3
e+

1
5

tL
1
0
1
2

2
0
2
4

3
6
0
4
.9

2
2
2
.4

4
4
.8

e+
0
3

1
.9

e+
1
0

3
.5

e+
1
3

b
m

2
3

M
5
3
7
0

5
6
2
8

2
7
3
3
.4

3
1
8
.0

9
1
e+

1
5

3
.6

e+
3
2

2
.7

e+
1
8

O
7
1
3

1
4
2
6

2
.4

0
1
0
0
.0

0
2
.4

e+
0
2

4
.7

e+
1
0

1
e+

1
0

ca
p
6
0
0
0

tL
1
6
6
6

3
3
2
9

3
6
0
3
.5

1
8
.4

7
1
.5

e+
1
0

1
.2

e+
2
1

9
.2

e+
2
1

tL
5
9
4

1
1
8
8

3
6
0
4
.1

7
1
4
.0

8
2
.5

e+
0
6

5
.1

e+
0
9

4
.8

e+
1
5

h
a
rd

k
s1

0
0

O
3
1
3
4

6
2
3
7

1
5
8
6
.8

2
1
0
0
.0

0
8
.7

e+
0
5

4
.1

e+
0
8

1
.4

e+
1
3

O
2
1
4

4
2
8

1
.1

0
1
0
0
.0

0
6
.7

e+
0
5

6
.3

e+
0
5

1
.5

e+
1
4

h
a
rd

k
s9

O
1
0
5
8

2
1
0
7

2
.7

4
1
0
0
.0

0
8
.3

e+
1
4

6
.4

e+
2
1

1
.8

e+
2
8

O
8
8
9

1
7
7
8

0
.7

4
1
0
0
.0

0
4
.8

e+
0
4

5
.5

e+
0
6

1
.4

e+
1
0

k
ro

b
2
0
0

O
2
8
1

5
3
2

2
0
.8

1
1
0
0
.0

0
1
.2

e+
0
2

4
.9

e+
0
7

3
.2

e+
0
8

tL
6
6
6

1
2
8
0

3
6
0
6
.8

1
8
6
.7

0
2
.3

e+
0
3

8
.6

e+
0
7

1
e+

1
7

l1
5
2
la

v
tL

3
4
1
2

6
8
2
4

3
6
0
2
.1

0
1
3
.1

6
6
.1

e+
0
3

2
.7

e+
0
9

1
.3

e+
1
2

O
1
1
5
2

2
2
7
8

2
9
7
.8

3
1
0
0
.0

0
1
.7

e+
0
4

1
.9

e+
0
6

5
.9

e+
1
1

li
n
3
1
8

0
1
6
6
7

3
2
8
9

1
1
5
5
.3

2
1
0
0
.0

0
1
.6

e+
0
3

1
.1

e+
1
2

5
.4

e+
1
1

tL
2
0
0

3
4
6

3
6
1
8
.8

0
5
7
.6

9
1
.2

e+
0
2

1
.1

e+
1
2

2
e+

1
4

ls
eu

E
4
1
1
5

8
2
0
1

6
7
1
.2

7
6
0
.7

5
5
.2

e+
1
4

7
e+

3
1

8
.5

e+
3
0

O
1
3
5
4
1

2
7
0
6
8

7
0
.7

4
1
0
0
.0

0
2
.4

e+
0
4

5
.2

e+
1
8

2
.7

e+
1
3

m
a
n
n
a
8
1

O
4
2
3

4
2
3

1
3
3
8
.2

9
1
0
0
.0

0
1

4
.9

e+
1
7
3

4
.8

e+
0
6

8
1

8
1

3
6
1
7
.7

2
9
.7

7
1

1
.6

e+
1
7
8

4
.8

e+
0
6

m
it
re

tL
6
4
4
5

1
2
8
8
2

3
6
0
1
.1

1
5
9
.9

5
1
.5

e+
0
8

In
f
4
.2

e+
1
8

tL
7
7

1
5
4

3
6
2
1
.6

8
2
.0

5
3
.2

e+
0
3

In
f
1
.9

e+
1
6

m
zz

v
1
1

tL
2
0
3

4
0
6

3
6
1
8
.5

3
8
.9

8
4
.8

e+
0
2

6
.4

e+
5
7

3
.4

e+
1
2

tL
5
2

1
0
4

3
7
4
6
.5

2
7
.6

8
6
1

4
.3

e+
4
8

8
.7

e+
1
2

m
zz

v
4
2
z

tL
1
9
5

3
9
0

3
6
1
7
.3

3
2
.7

7
8
.5

e+
0
2

8
.3

e+
5
3

9
.6

e+
1
2

tL
2
5

5
0

3
8
1
0
.1

3
5
.4

5
3
7

7
.9

e+
3
7

3
.7

e+
1
4

p
0
0
3
3

E
2
9
1
9

5
8
2
4

1
0
5
4
.5

5
7
1
.1

5
5
.8

e+
1
4

1
.8

e+
2
9

1
.1

e+
3
1

O
1
9
6
1

3
8
3
2

4
.2

2
1
0
0
.0

0
2
.3

e+
0
3

3
.5

e+
1
7

2
.9

e+
1
6

p
0
2
0
1

tL
1
4
5
2
1

2
9
0
3
6

3
6
0
1
.1

6
1
3
.9

2
2
.6

e+
1
1

7
.9

e+
3
6

7
.4

e+
2
5

lE
2
9
9
5
0

5
8
8
4
5

7
9
2
.3

5
6
7
.5

7
2
.3

e+
0
5

1
.2

e+
2
2

2
.7

e+
1
6

p
0
5
4
8
z

tL
1
9
2
7
9

3
8
4
4
6

3
6
0
1
.4

1
5
0
.1

1
2
.4

e+
1
2

In
f
3
.4

e+
2
8

tL
2
9
1
9
9

5
8
2
1
6

3
6
0
3
.3

4
0
.0

3
3
.4

e+
0
6

2
.7

e+
1
9
0

2
.4

e+
1
6

p
2
7
5
6

tL
5
8
3
4

1
1
5
6
0

3
6
0
1
.7

5
7
8
.6

3
5
.5

e+
1
2

In
f

1
e+

2
7

lE
1
7
8
7

3
5
7
4

2
9
5
7
.5

9
0
.5

2
9
.1

e+
0
2

1
.1

e+
2
7
8

5
.4

e+
1
5

p
ip

ex
E

4
7
1
9

9
4
0
8

2
4
.8

4
3
6
.2

6
7
.5

e+
1
4

8
.1

e+
2
6

3
.1

e+
2
7

cL
5
0
0
0
0

9
9
3
9
0

1
4
6
.8

6
4
2
.4

3
1
.1

e+
0
5

3
e+

1
0

3
.4

e+
2
1

p
ro

tf
o
ld

tL
6
8

1
3
6

3
8
1
1
.4

3
8
.7

6
5
.2

e+
1
0

In
f
2
.1

e+
1
7

tL
2
9
9

5
9
8

3
6
0
6
.0

9
4
5
.2

6
3
0

1
.3

e+
3
0

2
.1

e+
0
7

se
n
to

y
E

8
3
0

1
6
3
9

1
5
.2

8
3
.3

9
4
.3

e+
1
4

2
.1

e+
3
7

3
e+

2
8

O
5
7
7
1

1
1
5
4
1

4
7
.8

8
1
0
0
.0

0
6
.5

e+
0
4

4
.6

e+
3
4

1
.5

e+
1
6

se
y
m

o
u
r

tL
1
2
4

2
4
6

3
7
6
8
.7

2
6
.0

1
4
.7

e+
0
8

5
e+

5
6

9
.1

e+
2
0

tL
9
4

1
8
2

3
6
1
8
.1

5
1
1
.2

3
1
5

1
.2

e+
1
9

1
.6

e+
0
8

st
ei

n
1
5

E
1
7
3

3
1
3

2
.2

9
1
2
.3

9
2
.1

e+
1
6

In
f
2
.5

e+
2
0

O
6
5

1
2
1

0
.1

8
1
0
0
.0

0
1
7

3
.6

e+
0
2

1
.8

e+
1
1

st
ei

n
2
7

E
2
0
8

3
6
5

3
.5

9
0

1
.5

e+
1
6

In
f

7
e+

2
1

O
4
2
9
8

8
3
0
1

4
5
.2

3
1
0
0
.0

0
7
.2

e+
0
2

8
.9

e+
0
4

1
.2

e+
0
6

ti
m

ta
b
1
-i
n
t

tL
1
0
7
8
4

2
1
5
0
1

3
6
0
3
.5

8
1
1
.9

4
1
.7

e+
1
3

In
f
1
.2

e+
2
7

cL
5
0
0
0
0

9
9
8
8
7

3
1
2
4
.5

8
4
.0

0
1
.6

e+
0
7

6
e+

2
5
0

1
.5

e+
2
1

Can Pure Cutting Plane Algorithms Work? 427

5

6

7

8

9

X

(a) TB solutions trajectory

Y

ob
je

ct
iv

e

5

6

7

8

9

X

(b) Lex solutions trajectory

Y

ob
je

ct
iv

e

X

Y

(c) Part of lex sol. traj. (objective = 8)

0 20 40 60 80
10

0

10
5

10
10

10
15

10
20

itrs

(d) Determinant

TB
Lex

Fig. 3. Problem stein15 (single cut). (a)-(b) Solution trajectories for TB and Lex,
resp.; (c) Lower dimensional representation of the the Lex solution trajectory; the
filled circles are lexicographic optima used for cut separation; their immediate next
circles are optima given by the black-box dual-simplex solver, whereas the other points
correspond to the equivalent solutions visited during lexicographic reoptimization; the
double circle highlights the trajectory starting point. (d) Growth of determinants in
TB and Lex (logarithmic scale).

Finally, Figure 3(c) offers a closer look at the effect of lexicographic reop-
timization. Recall that our implementation of the lexicographic dual simplex
method involves a sequence of reoptimizations, each of which produces an al-
ternative optimal vertex possibly different from the previous one. As a result,
between two consecutive cuts our method internally traces a trajectory of equiv-
alent solutions, hence in the trajectory plotted in Figure 3(b) we can distinguish
between two contributions to the movement of x∗ after the addition of a new cut:
the one due to the black-box optimizer, an the one due to lex-reoptimization.
Figure 3(c) concentrates on the slice objective=8 of the Lex trajectory. Each
lexicographic optimal vertex used for cut separation is depicted as a filled circle.
The immediate next point in the trajectory is the optimal vertex found by the
standard black-box dual simplex, whereas the next ones are those contributed
by the lexicographic reoptimization. The figure shows that lexicographic reop-
timization has a significant effect in moving the points to be cut, that in some
cases are very far from those returned by the black-box dual simplex.

428 A. Zanette, M. Fischetti, and E. Balas

T
a
b
le

3
.
C

o
m

p
a
ri
so

n
b
et

w
ee

n
te

x
tb

o
o
k

a
n
d

le
x
ic

o
g
ra

p
h
ic

im
p
le

m
en

ta
ti
o
n

o
f
G

o
m

o
ry

’s
a
lg

o
ri
th

m
(m

u
lt
i-
cu

t
v
er

si
o
n
)

T
ex

tb
o
o
k

L
ex

P
ro

b
le

m
It

rs
C

u
ts

T
im

e
C

lG
a
p

C
o
eff

.
D

et
.

κ
It

rs
C

u
ts

T
im

e
C

lG
a
p

C
o
eff

.
D

et
.

κ

a
ir
0
4

M
3
5

1
1
9
1
2

1
2
0
9
.4

1
1
1
.2

3
2
.4

e+
0
3

6
.9

e+
1
1

9
.3

e+
0
9

tL
1
5
0

4
7
9
9
5

3
6
0
6
.6

1
1
9
.2

1
7
.3

e+
0
3

2
.2

e+
0
9

3
.9

e+
1
1

a
ir
0
5

M
3
0

9
6
4
8

9
5
5
.0

9
5
.1

1
7
.1

e+
0
2

4
.2

e+
1
1

4
.9

e+
0
9

tL
2
6
1

7
6
2
6
3

3
5
9
8
.2

0
1
4
.0

0
1
.5

e+
0
3

4
.9

e+
1
0

9
.6

e+
1
0

b
m

2
3

E
1
4
4

2
1
6
8

9
.3

3
5
.2

8
2
.3

e+
1
5

5
.5

e+
3
0

8
.7

e+
2
4

O
6
5
9

8
2
9
8

1
.6

7
1
0
0
.0

0
3
.7

e+
0
2

4
.6

e+
1
0

3
e+

1
4

ca
p
6
0
0
0

tL
9
7
9

1
1
6
9
3

3
6
1
4
.5

9
1
0
.3

4
1
.4

e+
0
9

7
e+

1
5

4
.3

e+
2
0

E
9
6
6

6
7
6
9

2
1
1
0
.1

2
2
4
.6

6
4
.5

e+
0
6

5
.1

e+
0
9

1
.6

e+
1
5

h
a
rd

k
s1

0
0

tL
1
9
5
0

1
0
7
7
0

3
6
0
3
.0

3
1
0
0
.0

0
5
e+

0
4

2
.2

e+
0
5

1
.5

e+
1
2

O
9
8

4
3
9

0
.6

3
1
0
0
.0

0
5
e+

0
5

1
.5

e+
0
4

2
.8

e+
0
9

h
a
rd

k
s9

O
2
6
9

1
6
7
8

0
.3

0
1
0
0
.0

0
7
.8

e+
0
4

1
.7

e+
0
5

6
.9

e+
0
9

O
1
3
9

6
1
4

0
.1

2
1
0
0
.0

0
3
e+

0
4

3
.6

e+
0
4

2
.9

e+
1
0

k
ro

b
2
0
0

O
4
4

2
0
1
7

1
5
3
.9

2
1
0
0
.0

0
1
.6

e+
0
2

1
e+

0
6

9
.4

e+
0
7

O
1
7

2
8
2

2
2
.1

8
1
0
0
.0

0
7
.2

1
e+

0
6

3
.7

e+
0
4

l1
5
2
la

v
M

5
2
5

3
1
1
7
7

2
7
1
5
.7

8
4
0
.5

9
5
.3

e+
0
3

8
e+

0
8

1
.6

e+
1
0

O
6
8
1

2
2
3
6
4

2
0
6
.8

2
1
0
0
.0

0
1
.8

e+
0
4

6
.7

e+
0
5

2
.4

e+
1
0

li
n
3
1
8

O
1
5

2
5
0

1
2
.8

2
1
0
0
.0

0
7

3
.4

e+
0
7

9
.7

e+
0
5

O
1
9

4
1
6

1
2
4
.2

7
1
0
0
.0

0
1
7

3
.2

e+
0
7

1
.8

e+
0
8

ls
eu

E
1
4
9

3
7
1
0

3
4
.3

5
4
4
.5

8
1
.7

e+
1
4

9
.8

e+
3
3

2
e+

1
9

O
1
3
3
0

1
8
9
2
5

6
.6

2
1
0
0
.0

0
9
.6

e+
0
3

1
.2

e+
1
4

2
.6

e+
1
4

m
a
n
n
a
8
1

O
1

2
7
0

8
.8

8
1
0
0
.0

0
1

5
.2

e+
9
2

3
.7

e+
0
6

O
2

2
8
0

2
9
.5

8
1
0
0
.0

0
1

1
.7

e+
9
7

3
.7

e+
0
6

m
it
re

M
9
4

3
0
0
1
6

1
2
6
2
.2

4
8
5
.5

2
8
.9

e+
0
8

In
f
4
.2

e+
2
0

tL
2
3
2

2
0
9
7
2

3
6
1
9
.3

0
9
7
.8

3
6
.2

e+
0
6

In
f
9
.1

e+
1
3

m
zz

v
1
1

M
3
3

1
7
9
3
6

1
7
3
5
.4

2
3
8
.5

6
4
.9

e+
0
2

In
f
2
.6

e+
1
1

tL
6
1

2
5
5
4
2

3
7
3
9
.4

1
4
0
.6

0
1
.8

e+
0
2

2
.8

e+
5
1

8
.5

e+
1
1

m
zz

v
4
2
z

M
6
2

1
4
6
6
4

1
5
1
5
.5

0
3
3
.8

0
3
e+

0
6

In
f
6
.5

e+
1
4

tL
6
1

1
4
8
3
0

3
6
1
6
.8

5
2
5
.5

0
8
.5

e+
0
2

1
e+

3
8

8
.7

e+
1
2

p
0
0
3
3

M
1
5
2
9

2
3
3
2
8

2
4
9
3
.3

5
8
1
.5

3
1
.8

e+
1
4

1
.1

e+
3
4

2
.2

e+
2
4

O
8
7

1
0
8
5

0
.1

4
1
0
0
.0

0
4
.5

e+
0
2

1
.6

e+
1
3

6
e+

1
4

p
0
2
0
1

tL
1
3
3
2

5
5
4
0
8

3
6
0
2
.2

1
1
9
.3

2
2
e+

1
2

2
e+

3
4

2
.5

e+
2
6

E
2
7
5
7
4

6
2
9
0
0
4

1
1
1
9
.7

1
7
4
.3

2
2
.3

e+
0
5

3
.6

e+
2
2

7
.4

e+
1
1

p
0
5
4
8

M
8
2
5

3
5
9
4
4

2
2
2
3
.3

5
4
8
.9

8
1
.3

e+
0
9

2
.4

e+
1
3
7

2
e+

2
4

E
4
6
1

2
7
0
6
7

1
3
1
.6

9
4
7
.5

0
4
.8

e+
0
6

7
.1

e+
1
3
5

5
.5

e+
1
4

p
2
7
5
6

M
7
4
0

1
9
9
2
5

2
4
2
3
.4

8
7
8
.8

6
4
.5

e+
1
2

In
f
1
.3

e+
2
7

E
6
4
2

1
4
6
4
5

5
0
9
.7

2
7
9
.0

9
2
.4

e+
0
5

In
f
1
.1

e+
1
3

p
ip

ex
M

2
9
2
9

4
9
3
9
1

1
9
2
1
.7

8
5
1
.2

5
1
.3

e+
1
4

3
.3

e+
2
7

4
e+

2
8

O
5
0
0
0
0

4
8
8
2
8
5

1
8
8
.1

1
7
4
.1

8
2
.8

e+
0
5

8
.5

e+
1
1

1
e+

1
4

p
ro

tf
o
ld

M
7

5
5
2
6

1
0
5
8
.8

4
8
.7

6
4
.6

e+
0
6

In
f
5
.1

e+
1
3

tL
1
5
9

3
8
7
1
4

3
6
0
7
.0

8
4
5
.2

6
3
0

1
.5

e+
3
2

1
e+

0
7

se
n
to

y
M

1
9
5
3

3
4
5
0
3

2
5
8
6
.3

8
1
8
.2

5
5
.1

e+
1
4

5
.3

e+
4
3

7
e+

3
0

O
5
3
3
1

6
8
8
2
7

2
5
.8

5
1
0
0
.0

0
7
.6

e+
0
4

3
.2

e+
3
4

3
.9

e+
1
4

se
y
m

o
u
r

tL
1
8

1
1
7
4
8

7
5
1
7
.4

0
2
1
.6

7
3
.3

e+
0
8

1
.3

e+
1
5
9

1
.4

e+
1
6

tL
8
7

4
8
3
3
9

3
6
1
0
.6

2
2
6
.8

9
7
8

1
e+

2
3

3
.6

e+
0
7

st
ei

n
1
5

E
1
1
6

3
2
6
5

9
.5

0
2
0
.9

2
2
.5

e+
1
5

2
.4

e+
2
6

3
.2

e+
2
8

O
6
4

6
7
6

0
.1

4
1
0
0
.0

0
1
5

2
e+

0
2

2
.3

e+
0
6

st
ei

n
2
7

E
5
7

2
3
9
9

2
0
.0

1
0
.0

0
1
.7

e+
1
5

2
.8

e+
3
6

8
.3

e+
1
8

O
3
1
7
5

3
7
1
8
0

1
9
.7

2
1
0
0
.0

0
7
.5

e+
0
2

1
.9

e+
0
4

1
.9

e+
0
5

ti
m

ta
b
1
-i
n
t

M
2
3
1

7
3
1
8
8

5
8
5
.7

2
2
3
.5

9
1
.6

e+
1
1

In
f
2
.1

e+
2
1

cL
3
1
6
5

1
0
0
0
1
9
1

8
4
1
.5

6
5
0
.7

6
3
.5

e+
0
6

In
f
1
.7

e+
1
6

Can Pure Cutting Plane Algorithms Work? 429

T
a
b
le

4
.
T

h
e

tw
o

h
eu

ri
st

ic
s

co
m

p
a
re

d
(s

in
g
le

-c
u
t

v
er

si
o
n
)

H
eu

r1
H

eu
r2

P
ro

b
le

m
It

rs
C

u
ts

T
im

e
C

lG
a
p

C
o
eff

.
D

et
.

κ
It

rs
C

u
ts

T
im

e
C

lG
a
p

C
o
eff

.
D

et
.

κ

a
ir
0
4

tL
1
8
8
6

3
7
7
2

3
6
0
2
.4

5
6
.2

4
7
.9

e+
0
4

6
.5

e+
2
7

1
.5

e+
1
5

tL
1
4
6
3

2
9
2
6

3
6
0
1
.5

7
1
2
.0

6
1
.3

e+
0
7

7
e+

1
5

5
.2

e+
1
8

a
ir
0
5

tL
1
3
5
5

2
7
1
0

3
6
3
0
.3

7
4
.1

1
1
.1

e+
1
0

1
.6

e+
5
1

4
.1

e+
2
1

tL
1
3
3
8

2
6
7
6

3
6
0
3
.3

4
4
.5

1
1
.1

e+
0
5

8
.6

e+
2
6

3
.5

e+
1
3

b
m

2
3

tL
5
7
6
0

6
1
1
1

3
6
0
2
.6

9
2
5
.5

4
1
.7

e+
1
5

2
.2

e+
2
9

1
.7

e+
2
0

tL
3
9
3
8

7
8
7
6

3
6
0
2
.3

2
2
5
.5

4
1
.1

e+
0
4

2
.1

e+
1
5

1
e+

1
0

ca
p
6
0
0
0

tL
2
0
2
4

4
0
4
8

3
6
0
1
.3

6
7
.8

5
2
.8

e+
0
9

6
.5

e+
2
0

9
.6

e+
2
0

tL
1
3
7
9

2
7
5
7

3
6
0
5
.4

4
8
.4

7
4
.5

e+
0
6

3
.8

e+
1
3

4
.8

e+
1
5

h
a
rd

k
s1

0
0

O
2
2
1
2

4
4
0
3

7
4
2
.5

1
1
0
0
.0

0
4
.9

e+
1
1

3
.3

e+
2
1

1
.7

e+
2
4

0
6
2
7

1
2
5
1

1
1
.1

0
1
0
0
.0

0
6
.4

e+
0
5

5
.4

e+
0
6

1
.5

e+
1
4

h
a
rd

k
s9

O
8
3
9

1
6
7
4

0
.6

7
1
0
0
.0

0
1
.6

e+
0
5

1
.6

e+
0
7

2
.5

e+
1
1

O
1
6
2

3
2
2

0
.1

0
1
0
0
.0

0
5
.4

e+
0
5

5
.1

e+
0
5

1
.4

e+
1
0

k
ro

b
2
0
0

tL
3
0
0
9

5
9
7
8

3
6
0
2
.4

0
9
2
.4

0
1
.1

e+
0
3

1
e+

1
6

8
.2

e+
1
1

M
3
0
5
1

6
0
6
6

3
5
4
4
.1

9
9
7
.1

5
7
.5

e+
0
5

1
.3

e+
1
3

1
e+

1
7

l1
5
2
la

v
tL

5
9
1
0

1
1
8
1
3

3
6
0
1
.2

2
4
6
.6

8
2
.7

e+
0
5

4
.6

e+
1
1

6
.4

e+
1
3

tL
2
0
7
1

4
1
4
0

3
6
0
4
.6

8
3
2
.9

7
2
e+

0
4

8
.2

e+
1
6

5
.9

e+
1
1

li
n
3
1
8

M
1
6
9
9

3
3
6
0

2
7
6
0
.1

1
6
6
.9

4
5
.6

e+
0
3

1
.2

e+
1
4

6
.1

e+
1
2

M
1
0
0
2

1
9
6
6

1
2
0
3
.2

8
8
8
.4

3
2
.1

e+
0
4

2
.1

e+
1
3

2
e+

1
4

ls
eu

tL
1
7
6
8
7

3
5
3
6
7

3
6
0
1
.6

7
6
9
.1

6
7
.3

e+
1
1

7
.7

e+
3
2

1
.8

e+
2
4

tL
3
8
0
5

7
6
0
8

3
6
0
1
.0

4
4
7
.7

8
2
.5

e+
0
5

1
.6

e+
2
4

2
.7

e+
1
3

m
a
n
n
a
8
1

O
4
2
5

4
2
5

1
3
2
9
.6

9
1
0
0
.0

0
1

4
.9

e+
1
7
3

4
.8

e+
0
6

O
4
2
3

4
2
3

1
3
2
8
.0

5
1
0
0
.0

0
1

4
.9

e+
1
7
3

4
.8

e+
0
6

m
it
re

tL
6
0
0
3

1
2
0
0
3

3
6
0
1
.0

2
4
7
.8

9
2
.3

e+
0
5

In
f
1
.6

e+
1
4

tL
5
9
7
3

1
1
9
3
4

3
6
0
1
.1

3
7
5
.1

5
3
e+

0
6

In
f
1
.9

e+
1
6

m
zz

v
1
1

tL
6
9

1
3
8

3
6
2
3
.0

0
4
.4

4
1
.7

e+
0
2

In
f
5
.4

e+
1
2

tL
2
6
7

5
3
2

3
6
1
2
.8

7
1
3
.4

5
8
.2

e+
0
2

2
.8

e+
5
4

8
.7

e+
1
2

m
zz

v
4
2
z

tL
1
2
5

2
5
0

3
6
6
7
.3

2
5
.7

2
3
.2

e+
0
2

1
.2

e+
6
5

2
.9

e+
1
2

tL
2
4
7

4
9
4

3
6
0
1
.6

3
8
.9

6
9
.3

e+
0
3

1
.9

e+
5
4

3
.7

e+
1
4

p
0
0
3
3

O
2
0
6
6
7

4
1
2
8
7

4
8
6
.8

5
1
0
0
.0

0
3
.3

e+
0
8

7
.6

e+
2
0

1
.8

e+
1
9

tL
1
4
1
4
3

2
8
2
6
7

3
6
0
3
.5

2
9
4
.5

5
1
.3

e+
0
8

4
e+

1
7

2
.9

e+
1
6

p
0
2
0
1

tL
1
0
7
5
6

2
1
5
1
0

3
6
0
2
.0

2
2
1
.2

2
3
.6

e+
0
9

4
e+

3
2

8
.7

e+
2
1

tL
3
6
8
9

7
3
7
8

3
6
0
1
.7

3
1
7
.1

6
7
.6

e+
0
6

3
.3

e+
2
1

2
.7

e+
1
6

p
0
5
4
8

tL
2
2
0
9
6

4
4
0
6
3

3
6
0
1
.4

4
5
0
.6

1
1
.5

e+
0
6

4
.7

e+
1
9
0

1
.4

e+
1
8

tL
9
5
2
3

1
9
0
0
7

3
6
0
3
.1

3
4
3
.1

9
5
.8

e+
0
6

1
e+

1
9
0

2
.4

e+
1
6

p
2
7
5
6

tL
4
1
4
7

8
1
9
1

3
6
0
1
.7

6
7
8
.6

3
5
.6

e+
1
0

In
f
1
.1

e+
2
1

tL
4
6
2
3

9
1
8
2

3
6
0
4
.5

2
7
7
.2

5
3
.8

e+
0
4

In
f
5
.4

e+
1
5

p
ip

ex
E

5
0
0
0
0

9
9
9
8
5

6
5
0
.6

5
4
7
.5

1
1
.4

e+
0
8

1
.8

e+
1
9

1
.2

e+
1
7

tL
2
6
6
2
0

5
3
2
3
3

3
6
0
1
.9

6
4
0
.6

8
1
.4

e+
1
1

2
e+

1
9

3
.4

e+
2
1

p
ro

tf
o
ld

tL
3
6
6

7
3
2

3
6
1
7
.6

7
1
7
.8

8
4
.6

9
.6

e+
3
7

9
.8

e+
0
9

tL
4
3
5

8
7
0

3
6
1
0
.0

8
8
.7

6
1
.5

2
.4

e+
2
8

2
.1

e+
0
7

se
n
to

y
E

1
1
8
4

2
3
5
7

1
1
6
.9

5
7
.8

5
3
.9

e+
1
4

2
.5

e+
3
8

1
e+

2
9

tL
6
9
5
1

1
3
9
0
0

3
6
0
2
.9

1
2
2
.7

1
3
.3

e+
0
6

8
.6

e+
3
0

1
.5

e+
1
6

se
y
m

o
u
r

tL
2
0
1

4
0
1

3
6
2
2
.4

1
6
.0

1
9
.1

e+
0
2

4
.6

e+
2
6

1
.8

e+
1
2

tL
2
7
5

5
4
8

3
6
1
5
.1

2
1
1
.2

3
1
7

4
.9

e+
1
7

1
.6

e+
0
8

st
ei

n
1
5

tL
5
5
9
2

1
1
1
4
5

3
6
0
1
.3

3
7
5
.0

0
1
.2

e+
0
3

1
.5

e+
1
1

1
e+

0
9

tL
4
1
4
8

8
2
9
3

3
6
0
2
.4

6
5
0
.0

0
4
.9

e+
0
4

1
.3

e+
1
5

1
.8

e+
1
1

st
ei

n
2
7

tL
3
7
9
8

7
5
9
5

3
6
0
1
.5

7
0
.0

0
1
.4

e+
0
2

1
.1

e+
1
1

1
.6

e+
0
8

tL
3
6
4
5

7
2
9
0

3
6
0
1
.9

2
0
.0

0
6

1
.9

e+
0
5

1
.2

e+
0
6

ti
m

ta
b
1
-i
n
t

cL
5
0
0
0
0

9
9
9
9
7

1
6
7
6
.4

0
1
6
.0

2
1
.3

e+
0
7

In
f
4
.3

e+
1
8

tL
2
1
4
7
4

4
2
9
4
6

3
6
0
1
.1

9
1
4
.5

0
1
.1

e+
0
9

In
f
1
.5

e+
2
1

430 A. Zanette, M. Fischetti, and E. Balas

T
a
b
le

5
.
T

h
e

tw
o

h
eu

ri
st

ic
s

co
m

p
a
re

d
(m

u
lt

i-
cu

t
v
er

si
o
n
)

H
eu

r1
H

eu
r2

P
ro

b
le

m
It

rs
C

u
ts

T
im

e
C

lG
a
p

C
o
eff

.
D

et
.

κ
It

rs
C

u
ts

T
im

e
C

lG
a
p

C
o
eff

.
D

et
.

κ

a
ir
0
4

M
3
0

1
0
2
5
0

1
2
8
7
.1

0
1
0
.4

0
1
.4

e+
0
4

2
.1

e+
1
0

1
.8

e+
1
2

M
2
8

9
0
7
5

5
1
1
.5

0
9
.7

3
2
.6

e+
0
3

2
.1

e+
0
8

3
.9

e+
1
1

a
ir
0
5

M
4
9

1
5
8
0
5

1
3
6
5
.4

8
6
.5

3
3
.1

e+
0
4

4
.1

e+
2
4

2
.1

e+
1
1

M
2
6

8
2
8
8

6
6
7
.9

9
5
.1

1
1
.8

e+
0
3

3
.5

e+
1
0

9
.6

e+
1
0

b
m

2
3

M
1
8
1
9

8
4
0
3

3
1
1
2
.3

5
1
8
.0

9
5
e+

1
4

1
.7

e+
2
9

6
.7

e+
2
2

M
6
3
1

1
3
8
0
0

1
9
3
3
.8

0
2
5
.5

4
4
e+

0
6

3
.5

e+
2
3

3
e+

1
4

ca
p
6
0
0
0

tL
4
8
4

7
0
0
2

3
6
0
5
.8

6
7
.2

3
3
.5

e+
0
8

4
e+

1
6

3
.1

e+
1
7

M
5
5
9

7
5
1
1

2
4
9
8
.4

7
9
.7

2
1
.5

e+
0
8

8
e+

1
4

1
.6

e+
1
5

h
a
rd

k
s1

0
0

tL
1
5
0

6
7
2

1
.2

4
1
0
0
.0

0
1
.2

e+
0
4

3
.3

e+
0
4

1
.8

e+
1
0

O
8
1
0

1
6
4
2

2
8
.4

5
1
0
0
.0

0
3
.5

e+
0
3

3
e+

0
3

2
.8

e+
0
9

h
a
rd

k
s9

O
2
5
1

1
6
4
1

0
.3

3
1
0
0
.0

0
5
.5

e+
0
4

2
.6

e+
0
5

8
.3

e+
1
0

O
2
5
2

2
0
1
0

1
.1

8
1
0
0
.0

0
4
.9

e+
0
5

2
.7

e+
0
8

2
.9

e+
1
0

k
ro

b
2
0
0

O
1
2

1
0
8

3
.1

5
1
0
0
.0

0
1
.2

1
e+

0
6

1
.4

e+
0
5

O
9

8
1

2
.2

7
1
0
0
.0

0
1
.2

1
e+

0
6

3
.7

e+
0
4

l1
5
2
la

v
tL

6
2
7

3
0
0
4
7

3
6
3
9
.6

2
4
6
.6

8
1
.4

e+
0
9

2
.3

e+
2
4

5
.4

e+
1
5

M
1
0
6

9
8
8
9

1
0
3
4
.0

3
3
1
.4

4
6
.7

e+
0
3

1
.1

e+
1
0

2
.4

e+
1
0

li
n
3
1
8

O
4
2

2
4
1
5

5
6
3
.9

1
1
0
0
.0

0
1
e+

0
2

4
.7

e+
0
9

5
.6

e+
0
8

O
3
5

1
5
0
3

2
3
8
.8

4
1
0
0
.0

0
5
5

7
.6

e+
0
8

1
.8

e+
0
8

ls
eu

M
2
6
0
4

5
4
4
9
8

3
3
8
8
.0

0
7
0
.2

1
2
.9

e+
1
2

2
.1

e+
3
2

4
.8

e+
1
9

M
5
4
2

1
6
6
1
0

1
4
3
3
.1

2
4
8
.4

8
8
e+

0
6

5
.4

e+
2
3

2
.6

e+
1
4

m
a
n
n
a
8
1

O
1

2
7
0

8
.9

4
1
0
0
.0

0
1

5
.2

e+
9
2

3
.7

e+
0
6

O
1

2
7
0

8
.8

3
1
0
0
.0

0
1

5
.2

e+
9
2

3
.7

e+
0
6

m
it
re

tL
1
4
8

4
7
9
5
4

3
6
5
1
.0

5
8
8
.9

0
5
.4

e+
0
7

In
f
1
.1

e+
1
7

tL
1
9
2

2
7
7
8
6

3
6
2
4
.6

3
9
1
.5

6
3
.4

e+
0
4

In
f
9
.1

e+
1
3

m
zz

v
1
1

tL
1
4

1
0
4
5
2

5
5
4
4
.7

3
2
9
.2

7
8
.9

e+
0
3

4
.9

e+
7
3

4
.4

e+
1
5

M
4
0

1
5
7
2
7

1
6
9
9
.5

1
3
4
.1

6
3
.5

e+
0
2

2
.9

e+
4
3

8
.5

e+
1
1

m
zz

v
4
2
z

M
1
8

6
8
1
8

2
6
1
3
.8

2
1
8
.2

8
2
.6

e+
0
4

1
.2

e+
5
2

3
.4

e+
1
3

M
7
4

1
7
0
9
9

2
4
2
3
.7

7
2
8
.4

4
1
.5

e+
0
3

1
.4

e+
4
1

8
.7

e+
1
2

p
0
0
3
3

O
4
0

4
6
0

0
.0

6
1
0
0
.0

0
2
.5

e+
0
2

1
.5

e+
1
3

4
.1

e+
0
6

M
2
0
6
0

3
7
0
5
7

3
1
9
0
.2

4
9
1
.0

3
3
e+

0
7

4
.9

e+
1
6

6
e+

1
4

p
0
2
0
1

tL
2
0
8
7

9
2
0
6
6

3
6
1
2
.4

2
5
1
.2

2
1
.1

e+
0
9

1
.8

e+
2
6

8
.8

e+
2
0

M
7
5
6

2
6
1
5
9

2
4
7
6
.9

0
3
7
.5

7
6
.9

e+
0
4

1
.6

e+
1
5

7
.4

e+
1
1

p
0
5
4
8

tL
1
4
0
1

9
0
0
4
2

3
6
0
1
.7

7
5
3
.7

5
4
.7

e+
0
7

2
.4

e+
1
3
7

1
.9

e+
1
6

M
3
5
8

2
4
0
0
3

1
6
1
2
.1

1
4
6
.0

9
2
.7

e+
0
4

5
.1

e+
1
3
3

5
.5

e+
1
4

p
2
7
5
6

tL
4
2
0

1
7
1
0
8

3
6
1
3
.5

0
7
8
.8

6
8
e+

1
2

In
f
3
.1

e+
2
7

M
2
8
3

1
4
4
0
2

1
8
5
2
.0

5
7
8
.4

0
4
.8

e+
0
4

In
f
1
.1

e+
1
3

p
ip

ex
E

5
0
0
0
0

5
5
2
4
4
8

7
5
2
.6

6
5
5
.4

4
5
.3

e+
0
9

1
e+

2
0

1
.5

e+
2
0

M
1
5
3
0

3
0
9
7
2

1
6
0
8
.2

8
4
8
.9

8
2
.2

e+
0
7

1
.9

e+
1
6

1
e+

1
4

p
ro

tf
o
ld

tL
1
9

7
8
8
6

3
7
7
5
.3

0
2
7
.0

1
6
.9

6
.5

e+
2
8

1
.2

e+
0
9

tL
2
3

8
4
8
8

3
6
7
4
.4

8
8
.7

6
1
.4

2
.6

e+
2
4

1
e+

0
7

se
n
to

y
E

1
1
8

1
7
1
2

5
.0

6
4
.8

8
5
.1

e+
1
4

1
.3

e+
3
6

1
.1

e+
2
0

M
1
0
6
4

2
0
8
2
2

2
1
1
1
.5

9
2
2
.7

1
7
.9

e+
0
5

3
.2

e+
2
9

3
.9

e+
1
4

se
y
m

o
u
r

M
1
9

1
2
0
8
4

3
0
8
1
.4

8
2
1
.6

7
1
.3

e+
0
2

1
.1

e+
3
1

1
.6

e+
1
1

M
3
0

1
6
2
7
0

3
4
9
4
.9

0
2
6
.8

9
8
.8

2
.9

e+
1
7

3
.6

e+
0
7

st
ei

n
1
5

M
9
8
5

2
0
7
0
7

2
1
3
3
.9

1
7
5
.0

0
1
.9

e+
0
3

1
.1

e+
1
1

1
.5

e+
0
9

M
5
0
5

1
3
8
3
8

1
5
8
5
.7

8
5
0
.0

0
4
4

3
.7

e+
0
5

2
.3

e+
0
6

st
ei

n
2
7

M
2
8
3

1
3
5
8
7

9
3
7
.5

5
0
.0

0
3
9

9
.8

e+
0
6

4
.2

e+
0
6

M
2
7
4

1
3
5
8
6

9
3
6
.4

3
0
.0

0
4
.7

1
.8

e+
0
5

1
.9

e+
0
5

ti
m

ta
b
1
-i
n
t

M
3
8
3

1
1
9
9
4
5

2
8
8
.7

2
3
7
.1

0
6
.2

e+
0
6

3
.9

e+
2
1
6

3
.1

e+
1
3

M
6
8
8

1
9
7
5
8
1

7
3
3
.3

3
4
3
.0

8
1
.4

e+
0
7

8
.1

e+
1
9
8

1
.7

e+
1
6

Can Pure Cutting Plane Algorithms Work? 431

0 1 2 3 4 5 6

x 10
4

−7840

−7830

−7820

−7810

−7800

−7790

−7780

−7770

cuts

ob
je

ct
iv

e
bo

un
d

Bound

TB
Lex

0 0.5 1 1.5 2 2.5 3

x 10
4

10
0

10
10

10
20

10
30

10
40

10
50

de
te

rm
in

an
t

TB

0 1 2 3 4 5 6

x 10
4

10
0

10
10

10
20

10
30

10
40

Lex

0 0.5 1 1.5 2 2.5 3

x 10
4

10
0

10
10

10
20

10
30

10
40

cuts

ka
pp

a

0 1 2 3 4 5 6

x 10
4

10
2

10
4

10
6

10
8

10
10

10
12

cuts

Fig. 4. Comparison between the textbook and lexicographic implementations of multi-
cut Gomory’s algorithm on sentoy

To support the interpretation above even further, we performed the experi-
ment of just restarting the LP solver from scratch after having generated the
FGCs, so that it is more likely that a “substantially different” optimal solu-
tion is found. This small change had a significant impact on the performance of
the textbook method (though not comparable to that derived from the use of the

432 A. Zanette, M. Fischetti, and E. Balas

0 0.5 1 1.5 2 2.5 3

x 10
4

10
0

10
5

10
10

10
15

av
er

ag
e

ab
s

va
lu

e
of

 c
oe

ff

TB

0 1 2 3 4 5 6

x 10
4

10
2

10
3

10
4

10
5

Lex

0 0.5 1 1.5 2 2.5 3

x 10
4

10
−10

10
−5

10
0

av
er

ag
e

cu
t d

ep
th

0 1 2 3 4 5 6

x 10
4

10
−10

10
−5

10
0

0 0.5 1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3

op
tim

a
di

st
an

ce

0 1 2 3 4 5 6

x 10
4

0.5

1

1.5

2

2.5

3

Fig. 5. Comparison between the textbook and lexicographic implementations of multi-
cut Gomory’s algorithm on sentoy

lexicographic method), showing the importance of breaking the correlation of
the optimal LP bases.

Table 4 reports the results of our two heuristics, Heur1 and Heur2. A compar-
ison with the previous table shows that both heuristics are effective in controlling

Can Pure Cutting Plane Algorithms Work? 433

the coefficient size, determinant, and condition number. The average closed gap
is significantly better than in TB, but clearly worse than in Lex.

A second set of experiments was carried out on the multi-cut version of Go-
mory’s algorithm, where cuts are generated in rounds. To be specific, after each
LP reoptimization we consider all the tableau rows with fractional basic variable,
and generate two FGCs from each row—one from the row itself, and one from
the same row multiplied by -1.

According to Table 3, the multi-cut version of Lex performed even better
than in the single-cut mode: in 13 out of the 26 instances the method reached
the optimum. Figures 4 and 5 give some illustrative plots for instance sentoy.
The figures clearly show the typical degenerate behavior of TB, with instable
phases of rapid growth of determint/coefficients/κ exploring small space regions
with shallow cuts. It is worth observing the striking difference in the plots of
the average cut depth, computed as the geometric distance of the cut from the
separated vertex, averaged over all the cuts in a round. Even more interesting,
the TB and Lex have a completely different behavior as far as the optima distance
(computed as the Euclidean distance between two consecutive fractional vertices
to be cut) is concerned. As a matter of fact, as already shown by Figure 3,
lexicographic reoptimization is quite successful in amplifying the dynamic (and
diversity) of the fractional solutions.

6 Conclusions and Future Work

Pure cutting plane algorithms have been found not to work in practice because
of numerical problems due to the cuts becoming increasingly parallel (a phe-
nomenon accompanied by dual degeneracy), increasing determinant size and
condition number, etc. For these reasons, cutting planes are in practice used in
cut-and-branch or branch-and-cut mode.

In this paper we have discussed an implementation of the lexicographic ver-
sion of Gomory’s fractional cutting plane method and of two heuristics mimick-
ing the latter one. In computational testing on a battery of MIPLIB problems,
we compared the performance of these variants with that of the standard Go-
mory algorithm, both in the single-cut and in the multi-cut (rounds of cuts)
version, and showed that they provide a radical improvement over the standard
procedure. In particular, we reported the exact solution of ILP instances from
MIPLIB such as stein15, stein27, and bm23, for which the standard Gomory
cutting plane algorithm is not able to close more than a tiny fraction of the
integrality gap.

The significance of these result suggests that the lexicographic approach can
be applied to any cutting plane algorithm—no matter what kind of cuts you add
in the step that generates cuts, you may reoptimize using the lexicographic dual
simplex method so as to break dual degeneracy in favor of “cleaner” LP bases
associated with better primal vertices to cut. We plan to investigate this topic
in the near future.

434 A. Zanette, M. Fischetti, and E. Balas

References

1. Arthur, J.L., Ravindran, A.: PAGP, a partitioning algorithm for (linear) goal pro-
gramming problems. ACM Trans. Math. Softw. 6(3), 378–386 (1980)

2. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Operations
Research Letters 19, 1–9 (1996)

3. Balinski, M.L., Tucker, A.W.: Duality theory of linear programs: A constructive
approach with applications. SIAM Review 11(3), 347–377 (1969)

4. Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applica-
tions. Springer, Heidelberg (2005)

5. Balas, E., Saxena, A.: Optimizing over the split closure. Mathematical Program-
ming (2006)

6. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Mathematical
Programming B 110(1), 3–20 (2007)

7. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Society 64, 275–278 (1958)

8. Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-
2597, The RAND Cooperation (1960)

9. Gomory, R.E.: An algorithm for integer solutions to linear programming. In:
Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming,
pp. 269–302. McGraw-Hill, New York (1963)

10. Tamiz, M., Jones, D.F., El-Darzi, E.: A review of goal programming and its appli-
cations. Annals of Operations Research (1), 39–53 (1995)

The Mixing Set with Divisible Capacities�

Michele Conforti1, Marco Di Summa1, and Laurence A. Wolsey2

1 Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova,
Via Trieste 63, 35121 Padova, Italy
{conforti,mdsumma}@math.unipd.it

2 Center for Operations Research and Econometrics (CORE), Université catholique
de Louvain, 34, Voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium

laurence.wolsey@uclouvain.be

Abstract. Given rational numbers C0, . . . , Cm and b0, . . . , bm, the mix-
ing set with arbitrary capacities is the mixed-integer set defined by con-
ditions

s + Ctzt ≥ bt, 0 ≤ t ≤ m,

s ≥ 0,

zt integer, 0 ≤ t ≤ m.

Such a set has applications in lot-sizing problems. We study the special
case of divisible capacities, i.e. Ct/Ct−1 is a positive integer for 1 ≤
t ≤ m. Under this assumption, we give an extended formulation for the
convex hull of the above set that uses a quadratic number of variables
and constraints.

Keywords: Mixed-integer programming, compact extended formula-
tions, mixing sets.

1 Introduction

Given rational numbers C0, . . . , Cm and b0, . . . , bm, the mixing set with arbitrary
capacities is the mixed-integer set defined by conditions

s + Ctzt ≥ bt, 0 ≤ t ≤ m, (1)
s ≥ 0, (2)

zt integer, 0 ≤ t ≤ m. (3)

The above set generalizes the mixing set, which is a set of the type (1)–(3) with
Ct = 1 for all 0 ≤ t ≤ m. The mixing set, which was introduced and studied by
Günlük and Pochet [9] and further investigated by Miller and Wolsey [12], has
played an important role in studying production planning problems (in particular
lot-sizing [17]).

� This work was partly carried out within the framework of ADONET, a European
network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 435–449, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

436 M. Conforti, M. Di Summa, and L.A. Wolsey

When the values of the capacities Ct are arbitrary, (1)–(3) constitutes a re-
laxation of lot-sizing problems where different batch sizes or velocities of the
machines are allowed. Giving a linear inequality description of the convex hull
of such a set seems to be difficult and indeed it is not known whether linear
optimization over (1)–(3) can be carried out in polynomial time.

We consider here the special case of a set defined by (1)–(3) where the capac-
ities form a sequence of divisible numbers: that is, Ct/Ct−1 is a positive integer
for 1 ≤ t ≤ m. We call such a set the mixing set with divisible capacities and we
denote it by DIV . Our main result is a compact extended formulation for the
polyhedron conv(DIV), the convex hull of DIV .

Here we use the following terminology. A formulation of a polyhedron P (in
its original space) is a description of P as the intersection of a finite number of
half-spaces. So it consists of a system of linear inequalities Cx ≥ d such that
P = {x : Cx ≥ d}. A formulation of P is extended whenever it gives a polyhedral
description of the type Q = {(x, μ) : Ax+Bμ ≥ d} in a space that uses variables
(x, μ) and includes the original x-space, so that P is the projection of Q onto
the x-space.

If P is the convex hull of a mixed-integer set (such as the convex hull of the
set defined by (1)–(3)), we say that a formulation is compact if its size (i.e. the
number of inequalities and variables of the system defining P or Q as above) is
bounded by a polynomial function of the description of the mixed-integer set (in
our case the size of the system (1)–(2)).

The assumption of divisibility of the coefficients was exploited by several au-
thors to tackle integer sets that are otherwise untractable, such as integer knap-
sack problems. Under the divisibility assumption, Marcotte [11] gave a simple
formulation of the integer knapsack set without upper bounds on the variables.
Pochet and Wolsey [16] studied the same set where the knapsack inequality is of
the “≥” type. Pochet and Weismantel [13] provided a linear inequality descrip-
tion of the knapsack set where all variables are bounded. Other hard problems
studied under the assumption of divisibility of the coefficients include network
design [14], lot-sizing problems [4] and the integer Carathéodory property for
rational cones [10].

The mixing set with divisible capacities DIV was studied recently by Zhao
and de Farias [20], who gave a polynomial-time algorithm to optimize a linear
function over DIV (see also Di Summa [6]).

A formulation of the polyhedron conv(DIV) either in the original space or in
an extended space was not known for the general case and such a formulation
does not seem to be easily obtainable by applying known techniques for con-
structing compact extended formulations, such as taking unions of polyhedra
[1,4] or enumeration of fractional parts [12,3,18,19].

A formulation of conv(DIV) was only known for some special cases. For the
set DIV with Ct = 1 for 0 ≤ t ≤ m (i.e. the mixing set), a linear inequal-
ity description of the convex hull in the original space was given by Günlük
and Pochet [9] and a compact extended formulation was obtained by Miller and
Wolsey [12]. For the set DIV with only two distinct values of the capacities,

The Mixing Set with Divisible Capacities 437

Van Vyve [18] and Constantino, Miller and Van Vyve [5] gave a linear inequal-
ity description of the convex hull of the set both in the original space and in
an extended space. Zhao and de Farias [20] gave a linear inequality formula-
tion of conv(DIV) in its original space under some special assumptions on the
parameters C0, . . . , Cm and b0, . . . , bm.

Since a polynomial-time algorithm for the set DIV was already known, one
might wonder why we are interested in giving a polyhedral description of DIV .
However recall that mixed-integer sets of the type (1)–(3) appear as substruc-
tures in multi-item lot-sizing problems, thus a linear inequality description of
conv(DIV) leads to strong formulations for such problems.

In order to study the set DIV , we rewrite (1)–(3) in a slightly different form,
as we need to have Ct �= Ct′ for t �= t′. In other words, we group together the
inequalities (1) associated with the same capacity Ct and write the set DIV as
follows:

s + Ckzt ≥ bt, t ∈ Ik, 0 ≤ k ≤ n, (4)
s ≥ 0, (5)

zt integer, t ∈ I0 ∪ · · · ∪ In, (6)

where I0, . . . , In are pairwise disjoint sets of indices and Ck/Ck−1 is an integer
greater than one for 1 ≤ k ≤ n.

The main idea of our approach to construct a compact extended formula-
tion for conv(DIV) can be summarized as follows: We consider the following
expansion of s:

s = α0(s) +
n+1∑
j=1

αj(s)Cj−1,

where 0 ≤ αj(x) <
Cj

Cj−1
for 1 ≤ j ≤ n, and 0 ≤ α0(x) < C0. Furthermore αj(x)

is an integer for 1 ≤ j ≤ n + 1. We show that for fixed j, the number of possible
values that αj(s) can take over the set of vertices of conv(DIV) is bounded by a
linear function of the number of constraints (1). To each of these possible values
(say v), we associate an indicator variable that takes value 1 if αj(s) = v and
0 otherwise. These indicator variables are the important additional variables of
our compact extended formulation.

2 Expansion of a Number

Our arguments are based on the following expansion of a real number x:

x = α0(x) +
n+1∑
j=1

αj(x)Cj−1, (7)

where 0 ≤ αj(x) <
Cj

Cj−1
for 1 ≤ j ≤ n, and 0 ≤ α0(x) < C0. Furthermore αj(x)

is an integer for 1 ≤ j ≤ n + 1. Note that this expansion is unique. If we let

f0(x) = α0(x), fk(x) = f0(x) +
k∑

j=1

αj(x)Cj−1 for 1 ≤ k ≤ n,

438 M. Conforti, M. Di Summa, and L.A. Wolsey

we have that

x = fk(x) +
n+1∑

j=k+1

αj(x)Cj−1 for 0 ≤ k ≤ n. (8)

Therefore for 0 ≤ k ≤ n, fk(x) is the remainder of the division of x by Ck and
it can be checked that

αk(x) =
⌊

fk(x)
Ck−1

⌋
=

fk(x)− fk−1(x)
Ck−1

for 1 ≤ k ≤ n,

αn+1(x) =
⌊

x

Cn

⌋
=

x− fn(x)
Cn

.

We also define Δk(x) as the integer quotient of the division of x by Ck, i.e.

Δk(x) =
x− fk(x)

Ck
=

n+1∑
j=k+1

Cj−1

Ck
αj(x) for 0 ≤ k ≤ n. (9)

3 The Vertices of conv(DIV)

We consider the mixed-integer set DIV defined by (4)–(6) with the divisibility
assumption. That is, C0 > 0 and for 1 ≤ k ≤ n, Ck/Ck−1 ≥ 2 is an integer. Also
Ij ∩ Ik = ∅ for j �= k and we set bl := 0 where l /∈ I0 ∪ · · · ∪ In. For 0 ≤ k ≤ n,
define Jk = Ik ∪ Ik+1 ∪ · · · ∪ In ∪ {l}.

We give an extended formulation for conv(DIV) with O(mn) constraints and
variables, where m = |I0| + · · · + |In|. The first step is studying the vertices
of the polyhedron conv(DIV). Several properties of the vertices of conv(DIV)
were given by Zhao and de Farias [20], who also described an algorithm to list
all the vertices. We introduce here the properties that will be needed for our
formulation.

Given s and an index 1 ≤ k ≤ n, for t ∈ J0 define

bk
t =

{
bt + Ck if fk(bt) > fk(s)
bt if fk(bt) ≤ fk(s).

Lemma 1. Consider indices 0 ≤ k ≤ �. Then, for t ∈ I�, the inequality

Δk(s) +
C�

Ck
zt ≥ Δk

(
bk
t

)
(10)

is valid for conv(DIV) and implies inequality s + C�zt ≥ bt.

Proof. Expanding s and bt as in the first part of (9), inequality s + C�zt ≥ bt

can be rewritten as

Δk(s) +
C�

Ck
zt ≥ Δk(bt) +

fk(bt)− fk(s)
Ck

.

The Mixing Set with Divisible Capacities 439

Since � ≥ k, Δk(s) + C�

Ck
zt is an integer. Therefore

Δk(s) +
C�

Ck
zt ≥ Δk(bt) +

⌈
fk(bt)− fk(s)

Ck

⌉
= Δk

(
bk
t

)
.

This also shows that (10) implies the original inequality s + C�zt ≥ bt. �	
Note that (10) involves the term bk

t and thus is not a linear inequality. We will
show how to linearize this constraint, using the fact that for fixed k, the number
bk
t can take only two values.

Lemma 2. Let (s̄, z̄) be any vector in conv(DIV).

1. Given indices 1 ≤ k ≤ � and t ∈ I�, if αk(s̄) �= αk

(
bk−1
t

)
then s̄ + C�z̄t ≥

bt + Ck−1.
2. Given an index k ≥ 1, if αk(s̄) �= 0 then s̄ ≥ Ck−1.

Proof. We prove the first statement. By Lemma 1, (s̄, z̄) satisfies (10) for the
pair of indices k − 1, �, that is,

Δk−1(s) +
C�

Ck−1
zt ≥ Δk−1

(
bk−1
t

)
.

By (9), the above inequality can be rewritten as

n+1∑
j=k

Cj−1

Ck−1
αj(s) +

C�

Ck−1
zt ≥

n+1∑
j=k

Cj−1

Ck−1
αj

(
bk−1
t

)
,

or equivalently as

n+1∑
j=k+1

Cj−1

Ck−1
αj(s) +

C�

Ck−1
zt −

n+1∑
j=k+1

Cj−1

Ck−1
αj

(
bk−1
t

) ≥ αk

(
bk−1
t

)− αk(s). (11)

Since
{

Cj−1
Ck−1

, k < j ≤ n + 1
}

is a sequence of divisible integers and since � ≥ k,
the left-hand side of the above inequality is an integer multiple of Ck/Ck−1. Since
the right-hand side is an integer satisfying −Ck/Ck−1 < αk

(
bk−1
t

) − αk(s) <

Ck/Ck−1, this shows that if αk(s̄) �= αk

(
bk−1
t

)
, then (11) cannot be tight for

(s̄, z̄), thus

Δk−1(s̄) +
C�

Ck−1
z̄t ≥ Δk−1

(
bk−1
t

)
+ 1.

Since bk−1
t = bt + Ck−1 if fk−1(bt) > fk−1(s̄) and bk−1

t = bt if fk−1(bt) ≤
fk−1(s̄), this shows that in both cases

fk−1(s̄)
Ck−1

+ Δk−1(s̄) +
C�

Ck−1
z̄t ≥ Δk−1(bt) +

fk−1(bt)
Ck−1

+ 1.

Multiplying the above inequality by Ck−1 gives s̄ + C�z̄t ≥ bt + Ck−1.
The proof of the second statement is an immediate consequence of expan-

sion (7). �	

440 M. Conforti, M. Di Summa, and L.A. Wolsey

Lemma 3. If (s̄, z̄) is a vertex of conv(DIV), then the following two properties
hold:

1. α0(s̄) = α0(bt) for some t ∈ J0.
2. For 1 ≤ k ≤ n, αk(s̄) = αk

(
bk−1
t

)
for some t ∈ Jk.

Proof. Let (s̄, z̄) be a vertex of conv(DIV). Since z̄ is an integral vector, if 1. is
violated then there is ε �= 0 such that (s̄± ε, z̄) ∈ conv(DIV), a contradiction.

Assume that 2. is violated, i.e. there is an index k such that αk(s̄) �= αk

(
bk−1
t

)
for all t ∈ Jk. In particular, for t = l we have αk(s̄) �= 0. Consider the vector
vk−1 defined as follows:

s = −Ck−1, zt =
Ck−1

C�
, t ∈ I�, � ≤ k − 1, zt = 0, t ∈ I�, � > k − 1.

By Lemma 2 we have that s ≥ Ck−1 and s̄ + C�z̄t ≥ bt + Ck−1 for t ∈ I�, � ≥ k.
This shows that the vectors (s̄, z̄) ± vk−1 belong to conv(DIV). Hence (s̄, z̄) is
not a vertex of conv(DIV). �	

We now introduce extra variables to model the possible values taken by s at a
vertex of conv(DIV). The new variables are the following:

– Δ0, w0,t for t ∈ J0;
– Δk, w↓

k,t, w
↑
k,t for 1 ≤ k ≤ n and t ∈ Jk.

The role of the above variables is as follows:

– Variables Δk are the integer quotients of the division of s by Ck. That is,
Δk = Δk(s) as defined in (9).

– Variable w0,t = 1 whenever α0(s) = α0(bt) and w0,t = 0 otherwise.
– Variable w↓

k,t = 1 whenever αk(s) = αk(bt) and w↑
k,t = 1 whenever αk(s) =

αk(bt + Ck−1); w↓
k,t = w↑

k,t = 0 otherwise.

Consider the following conditions:

s = C0Δ0 +
∑
i∈J0

α0(bi)w0,i, (12)

Δk−1 =
Ck

Ck−1
Δk +

∑
i∈Jk

(
αk(bi)w

↓
k,i + αk(bi + Ck−1)w

↑
k,i

)
, 1 ≤ k ≤ n, (13)

w0,i ≥ 0, i ∈ J0;
∑
i∈J0

w0,i = 1, (14)

w↓
k,i, w

↑
k,i ≥ 0, : i ∈ Jk, 1 ≤ k ≤ n;

∑
i∈Jk

(
w↓

k,i + w↑
k,i

)
= 1, 1 ≤ k ≤ n, (15)

The Mixing Set with Divisible Capacities 441

∑
i∈J0:

α0(bi)≥α0(bt)

w0,i ≥ w↓
1,t, t ∈ J1, (16)

∑
i∈Jk:

fk(bi)≥fk(bt)

w↓
k,i +

∑
i∈Jk:

αk(bi+Ck−1)≥αk(bt)+1

w↑
k,i ≥ w↓

k+1,t, t ∈ Jk+1, 1 ≤ k ≤ n− 1,

(17)

Δk, w0,i, w
↓
k,i, w

↑
k,i integer, i ∈ Jk, 0 ≤ k ≤ n. (18)

Lemma 4. If (s̄, z̄) is a vertex of conv(DIV), then (s̄, z̄) can be completed to a
vector

(
s̄, z̄, Δ̄, w̄, w̄↓, w̄↑) satisfying (12)–(18).

Proof. Given vertex (s̄, z̄), let i0 be any index in J0 such that α0(bi0) = α0(s̄)
(i0 exists by Lemma 3). Take w̄0,i0 = 1 and w̄0,i = 0 for i �= i0.
Now fix k ≥ 1 and define

Tk(s̄) = {i ∈ Jk : αk(s̄) = αk(bi), fk−1(s̄) ≥ fk−1(bi)}.
If Tk(s̄) �= ∅, then define ik as any element in Tk(s̄) such that fk−1(bik

) is
maximum and take w̄↓

k,ik
= 1. Otherwise (Tk(s̄) = ∅) define ik as any index in

Jk such that αk(s̄) = αk(bik
+Ck−1) (ik exists by Lemma 3) and take w̄↑

k,ik
= 1.

Finally take Δ̄k = Δk(s̄) for 0 ≤ k ≤ n.
We prove that the point thus constructed satisfies (12)–(18). To see that (12)

is satisfied, note that

C0Δ̄0 +
∑
i∈J0

α0(bi)w̄0,i = C0Δ0(s̄) + α0(bi0) = C0Δ0(s̄) + f0(bi0) = s̄.

To prove (13), note that the following chain of equations holds:

Ck

Ck−1
Δ̄k +

∑
i∈Jk

(
αk(bi)w̄

↓
k,i + αk(bi + Ck−1)w̄

↑
k,i

)

=
Ck

Ck−1
Δk(s̄) + αk(s̄) = Δk−1(s̄) = Δ̄k−1.

To see that (16) is verified, suppose that w̄↓
1,t = 1 for an index t ∈ J1. Then

necessarily t = i1 ∈ T1(s̄) and thus f0(s̄) ≥ f0(bt), that is, α0(s̄) ≥ α0(bt). Then
α0(bi0) = α0(s̄) ≥ α0(bt) and (16) is satisfied.

We now consider (17) for k ≥ 1. Suppose that w↓
k+1,t = 1 for an index

t ∈ Jk+1. Then necessarily t = ik+1 ∈ Tk+1(s̄). Therefore αk+1(s̄) = αk+1(bt)
and fk(s̄) ≥ fk(bt). This implies αk(s̄) ≥ αk(bt). We distinguish two cases.

1. Assume αk(s̄) ≥ αk(bt) + 1. If Tk(s̄) �= ∅ then w̄↓
k,i = 1 for an index i ∈ Jk

such that αk(bi) = αk(s̄) ≥ αk(bt) + 1. Then fk(bi) ≥ fk(bt). If Tk(s̄) = ∅

then w̄↑
k,i = 1 for an index i ∈ Jk such that αk(bi + Ck−1) = αk(s̄) ≥

αk(bt) + 1. In both cases (17) is satisfied.

442 M. Conforti, M. Di Summa, and L.A. Wolsey

2. Now assume αk(s̄) = αk(bt). In this case inequality fk(s̄) ≥ fk(bt) implies
fk−1(s̄) ≥ fk−1(bt), thus t ∈ Tk(s̄) �= ∅. Then the choice of ik shows that
αk(bik

) = αk(s̄) = αk(bt) and fk−1(bik
) ≥ fk−1(bt), thus fk(bik

) ≥ fk(bt)
and (17) is satisfied.

Constraints (14)–(15) and (18) are clearly satisfied. �	
We say that

(
s̄, z̄, Δ̄, w̄, w̄↓, w̄↑) is a standard completion of a vertex (s̄, z̄) if

Δ̄, w̄, w̄↓, w̄↑ are chosen as in the above proof. Then the above proof shows that
every vertex of conv(DIV) has a standard completion satisfying (12)–(18).

Lemma 5. If
(
s̄, z̄, Δ̄, w̄, w̄↓, w̄↑) satisfies (12)–(18), then

f0(s) ≥ f0(bt) if
∑
i∈J0:

α0(bi)≥α0(bt)

w0,i = 1, t ∈ J0,

fk(s) ≥ fk(bt) if
∑

i∈Jk:
fk(bi)≥fk(bt)

w↓
k,i +

∑
i∈Jk:

αk(bi+Ck−1)≥αk(bt)+1

w↑
k,i = 1, t ∈ Jk, k ≥ 1.

Proof. Let t ∈ J0 and assume that∑
i∈J0:

α0(bi)≥α0(bt)

w̄0,i = 1

holds. If i ∈ J0 is the index such that w̄0,i = 1 then, by (12), f0(s̄) = α0(bi) ≥
α0(bt) = f0(bt).

We now fix 0 ≤ k < n and assume by induction that the result holds for any
index t ∈ Jk. We have to prove that if∑

i∈Jk+1:
fk+1(bi)≥fk+1(bt)

w↓
k+1,i +

∑
i∈Jk+1:

αk+1(bi+Ck)≥αk+1(bt)+1

w↑
k+1,i = 1 (19)

for some t ∈ Jk+1, then fk+1(s̄) ≥ fk+1(bt).
If w̄↑

k+1,i = 1 for some index i ∈ Jk+1, then (13) and the above equation give
αk+1(s̄) = αk+1(bi + Ck) ≥ αk+1(bt) + 1, thus fk+1(s̄) ≥ fk+1(bt).

If w̄↓
k+1,i = 1 for some index i ∈ Jk+1, then (19) implies that fk+1(bi) ≥

fk+1(bt), thus αk+1(bi) ≥ αk+1(bt). Assume first that αk+1(bi) ≥ αk+1(bt) + 1.
Then αk+1(s̄) = αk+1(bi) ≥ αk+1(bt) + 1, thus fk+1(s̄) ≥ fk+1(bt).

Finally assume that w̄↓
k+1,i = 1 for some i ∈ Jk+1 such that αk+1(bi) =

αk+1(bt). Since (19) implies fk+1(bi) ≥ fk+1(bt), we then have fk(bi) ≥ fk(bt).
Inequality (17) for the index i implies that∑

j∈Jk:
fk(bj)≥fk(bi)

w̄↓
k,j +

∑
j∈Jk:

αk(bj+Ck−1)≥αk(bi)+1

w̄↑
k,j = 1.

Then, by induction, fk(s̄) ≥ fk(bi). This, together with inequality fk(bi) ≥ fk(bt)
proven above, shows that fk(s̄) ≥ fk(bt). Using αk+1(s̄) = αk+1(bi) = αk+1(bt),
we conclude that fk+1(s̄) ≥ fk+1(bt). �	

The Mixing Set with Divisible Capacities 443

Lemma 5 and the same argument used in the final part of the proof of Lemma 4
prove the following:

Remark 6. If
(
s̄, z̄, Δ̄, w̄, w̄↓, w̄↑) is a standard completion of a vertex (s̄, z̄) of

conv(DIV), then

f0(s) ≥ f0(bt)⇐⇒
∑
i∈J0:

α0(bi)≥α0(bt)

w0,i = 1, t ∈ J0,

fk(s) ≥ fk(bt)⇐⇒
∑

i∈Jk:
fk(bi)≥fk(bt)

w↓
k,i +

∑
i∈Jk:

αk(bi+Ck−1)≥αk(bt)+1

w↑
k,i = 1, t ∈ Jk, k ≥ 1.

4 Linearizing (10)

Lemma 7. Let
(
s, z, Δ, w, w↑, w↓) be a vector satisfying (12)–(18). Then (s, z)

satisfies inequality s + Ckzt ≥ bt if and only if
(
s, z, Δ, w, w↑, w↓) satisfies the

inequality:

Δ0 +
∑
i∈J0:

α0(bi)≥α0(bt)

w0,i + zt ≥
⌊

bt

C0

⌋
+ 1 if t ∈ J0, (20)

Δk +
∑

i∈Jk:
fk(bi)≥fk(bt)

w↓
k,i +

∑
i∈Jk:

αk(bi+Ck−1)≥αk(bt)+1

w↑
k,i + zt ≥

⌊
bt

Ck

⌋
+ 1

if t ∈ Jk, k ≥ 1. (21)

Proof. We prove the following two facts: (i) if
(
s, z, Δ, w, w↑, w↓) is a standard

completion of a vertex of conv(DIV), then (20)–(21) hold; (ii) if the vector(
s, z, Δ, w, w↑, w↓) satisfies (12)–(18) along with (20) (if t ∈ J0) or (21) (if t ∈ Jk

with k ≥ 1), then it also satisfies s + Ckzt ≥ bt.
By Lemma 1, inequality s+C�zt ≥ bt is equivalent to Δk(s)+ C�

Ck
zt ≥ Δk

(
bk
t

)
for � ≥ k. In particular, for � = k the latter inequality is in turn equivalent to
the inequality Δk(s)+zt +δ ≥ Δk(bt +Ck) =

⌊
bt

Ck

⌋
+1, where δ is a 0, 1 variable

that takes value 1 whenever fk(s) ≥ fk(bt) and 0 otherwise.
If t ∈ J0, by Remark 6 a standard completion

(
s̄, z̄, Δ̄, w̄, w̄↑, w̄↓) of any vertex

(s̄, z̄) of conv(DIV) satisfies∑
i∈J0:

α0(bi)≥α0(bt)

w0,i = 1⇐⇒ f0(s) ≥ f0(bt).

Then substituting the above expression for δ shows that
(
s̄, z̄, Δ̄, w̄, w̄↑, w̄↓) sat-

isfies (20). If t ∈ Jk with k ≥ 1, the proof that
(
s̄, z̄, Δ̄, w̄, w̄↑, w̄↓) satisfies (21)

is similar. This proves (i).

444 M. Conforti, M. Di Summa, and L.A. Wolsey

By Lemma 5, with the above definition of δ, one observes that δ = 0 for
every vector

(
s, z, Δ, w, w↑, w↓) satisfying (12)–(18) such that fk(s) < fk(bt).

This implies (ii). �	
The following result is readily checked:

Remark 8. Let
(
s, z, Δ, w, w↑, w↓) be a vector satisfying (12)–(18). Then (s, z)

satisfies inequality s ≥ 0 if and only if
(
s, z, Δ, w, w↑, w↓) satisfies the inequality

Δn ≥ 0. (22)

5 Strengthening (16)–(17)

Lemma 9. The following inequalities are valid for the set defined by (12)–(18)
and dominate (16)–(17):∑

i∈J0:
α0(bi)≥α0(bt)

w0,i ≥
∑
i∈J1:

f0(bi)≥f0(bt)

w↓
1,i, t ∈ J1, (23)

∑
i∈Jk:

fk(bi)≥fk(bt)

w↓
k,i +

∑
i∈Jk:

αk(bi+Ck−1)≥αk(bt)+1

w↑
k,i ≥

∑
i∈Jk+1:

fk(bi)≥fk(bt)

w↓
k+1,i,

t ∈ Jk+1, 1 ≤ k ≤ n− 1. (24)

Proof. Fix t ∈ Jk+1 for k ≥ 1 and define L = {i ∈ Jk+1 : fk(bi) ≥ fk(bt)}.
Inequality (24) can be derived by applying the Chvátal-Gomory procedure to
the following |L|+ 1 inequalities, which are all valid for (12)–(18):∑

i∈Jk:
fk(bi)≥fk(bj)

w↓
k,i +

∑
i∈Jk:

αk(bi+Ck−1)≥αk(bj)+1

w↑
k,i ≥ w↓

k+1,j , j ∈ L, (25)

1 ≥
∑
j∈L

w↓
k+1,j , (26)

with multipliers 1/|L| for each of (25) and 1− 1/|L| for (26). The derivation of
(23) is similar. �	

6 The Main Result

Let Q be the polyhedron in the space of variables x =
(
s, z, Δ, w, w↓, w↑) defined

by (12)–(15) together with (20)–(21), (22) and (23)–(24). We denote by Ax ∼ b
the system comprising such equations and inequalities.

Lemma 10. Let M be the submatrix of A indexed by the columns corresponding
to variables w, w↓, w↑ and the rows corresponding to (14)–(15) and (23)–(24).
The matrix M is totally unimodular.

The Mixing Set with Divisible Capacities 445

Proof. We use a characterization of Ghouila-Houri [8], which states that a 0,±1
matrix B = (bij) is totally unimodular if and only if for every row submatrix
B′ of B, the set of row indices of B′ can be partitioned into two subsets R1, R2

such that
∑

i∈R1
bij −

∑
i∈R2

bij ∈ {0,±1} for all column indices j.
We partition the rows of M into the submatrices M0, . . . , Mn defined as fol-

lows:

– M0 consists of the rows corresponding to equation (14) and inequalities (23)
for t ∈ J1;

– for 1 ≤ k ≤ n − 1, Mk consists of the rows corresponding to equation (15)
and inequalities (24) for t ∈ Jk+1;

– Mn consists of the row corresponding to equation (15) for k = n.

For each odd k, we multiply by −1 the rows of M that belongs to Mk and
the columns of M corresponding to variables w↓

k,t, w
↑
k,t for all t ∈ Jk. Then M

becomes a 0-1 matrix.
For 1 ≤ k ≤ n − 1, we order the rows of Mk as follows: first the row corre-

sponding to (15), then those corresponding to (24) according to a non-decreasing
order of the values fk(bt). The order for the rows of M0 is analogous. Note that
in every matrix Mk the support of any row, say the j-th row, contains that of
the (j + 1)-th row (in other words, the rows of Mk form a laminar family).

We now define a bipartition (R1, R2) of the rows of M : for each odd k, we
include in R1 the odd row indices of Mk and in R2 the even row indices; for
each even k, we include in R1 the even row indices of Mk and in R2 the odd
row indices. One can check that the condition of the theorem of Ghouila-Houri
is thus satisfied for B′ = M . If B′ is a row submatrix of M , the bipartition is
defined similarly. �	
Theorem 11. If x̄ =

(
s̄, z̄, Δ̄, w̄, w̄↓, w̄↑) is a vertex of Q, then

(
z̄, Δ̄, w̄, w̄↓, w̄↑)

is an integral vector. It follows that the inequalities defining Q provide an ex-
tended formulation for the polyhedron conv(DIV) with O(mn) variables and
constraints, where m = |I0|+ · · ·+ |In|.
Proof. Note that the columns of A corresponding to variables s and zt for t ∈ Ik

and 0 ≤ k ≤ n are unit columns (as s only appears in (12) and each variable zt

only appears in one of (20)–(21)).
Also note that in the subsystem of Ax ∼ b comprising (13)–(15), (22) and

(23)–(24) (i.e. with (12) and (20)–(21) removed) variables Δ0, . . . , Δn appear
with nonzero coefficient only in (13) and (22). Furthermore the submatrix of
A indexed by the rows corresponding to (13) and (22) and the columns corre-
sponding to variables Δ0, . . . , Δn is an upper triangular matrix with 1 on the
diagonal.

Let Cx = d be a nonsingular subsystem of tight inequalities taken in Ax ∼ b
that defines a vertex x̄ =

(
s̄, z̄, Δ̄, w̄, w̄↓, w̄↑) of Q. The above observations

show that (12)–(13), (20)–(21) and (22) must be present in this subsystem.
Furthermore let C′ be the submatrix of C indexed by the columns correspond-
ing to variables w, w↓, w↑ and the rows that do not correspond to (12)–(13),

446 M. Conforti, M. Di Summa, and L.A. Wolsey

(20)–(21) and (22). Then the computation of a determinant with Laplace ex-
pansion shows that | det(C)| = | det(C′)| �= 0.

Since C′ is a nonsingular submatrix of the matrix M defined in Lemma 10,
by Lemma 10 | det(C)| = | det(C′)| = 1. Since all entries of A (except those
corresponding to (12)) are integer and the right-hand side vector b is integral,
by Cramer’s rule we have that (z̄, Δ̄, w̄, w̄↓, w̄↑) is an integral vector. �	

7 The Mixing Set with Divisible Capacities and
Nonnegative Integer Variables

The mixing set with divisible capacities and nonnegativity bounds on the integer
variables DIV + is the following:

s + Ckzt ≥ bt, t ∈ Ik, 0 ≤ k ≤ n,

bl ≤ s ≤ bu,

zt ≥ 0 integer, t ∈ I0 ∪ · · · ∪ In,

where the capacities Ck’s and the sets Ik’s are as in the previous sections.
Di Summa [6] gave a polynomial time algorithm to optimize a linear function

over DIV +. We discuss the problem of finding an extended formulation for the
polyhedron conv(DIV +) which is compact.

We do not know how to incorporate the bounds zt ≥ 0 in a formulation of
the type given for the polyhedron Q of Theorem 11, as the standard approach
requires that the system, purged of the equations defining s and Δk, be defined
by a totally unimodular matrix (see for instance [3,12,15,18,19]). However this
is not the case, as discussed in the next paragraph. So we use an approach based
on union of polyhedra in a manner described e.g. in [1,4].

To this purpose, let {β1, . . . , βq} be the set of distinct values in the set {bi :
i ∈ I0 ∪ · · · ∪ In, bl < bi < bu}. Assume β1 < · · · < βq and define β0 := bl and
βq+1 := bu. For each 0 ≤ � ≤ q, let DIV (�) be the following set:

s + Ckzi ≥ bi, i ∈ Ik : bi > β�, 0 ≤ k ≤ m,

β� ≤ s ≤ β�+1,

zi ≥ 0, i ∈ Ik : bi ≤ β�, 0 ≤ k ≤ m,

zi integer, i ∈ I0 ∪ · · · ∪ Im.

We will use the following fact:

conv(DIV +) = conv

(
q⋃

�=1

DIV (�)

)
. (27)

We now examine the problem of finding extended formulations which are
compact for the polyhedra conv(DIV (�)). Note that DIV (�) is the cartesian
product of the following two sets:

The Mixing Set with Divisible Capacities 447

s + Ckzi ≥ bi, i ∈ Ik : bi > β�, 0 ≤ k ≤ m,

β� ≤ s ≤ β�+1,

zi integer, i ∈ Ik : bi > β�, 0 ≤ k ≤ m,

and

zi ≥ 0, i ∈ Ik : bi ≤ β�, 0 ≤ k ≤ m,

zi integer, i ∈ Ik : bi ≤ β�, 0 ≤ k ≤ m.

If we denote by UDIV (�) the first of the above two sets, then conv(DIV (�)) =
conv(UDIV (�))× {z : zi ≥ 0}.

Remark that UDIV (�) is a mixing set with divisible capacities without non-
negativity bounds on the integer variables, except that now we have an upper
bound s ≤ β�+1. A compact extended formulation for UDIV (�) can be derived
by using the same ideas presented in this paper (but there are more technicali-
ties) and can be found in [7].

Using (27) and a classical result of Balas [2], a compact extended formulation
for conv(DIV +) can be derived from the compact extended formulations of the
q polyhedra conv(DIV (�)).

7.1 An Instance with Non-TU Matrix

We show an instance of DIV for which the formulation given by the inequalities
describing Q in Theorem 11, purged of the equations defining s and Δk, is not
defined by a totally unimodular matrix. The instance is the following:

s + z1 ≥ 0.1,

s + 10z2 ≥ 6.3,

s + 100z3 ≥ 81.4,

s + 100z4 ≥ 48.6,

s ≥ 0; z1, . . . , z4 integer.

Note that I0 = {1}, I1 = {2} and I3 = {3, 4}.
Among the constraints defining the extended formulation of the convex hull

of the above set, we consider the following four inequalities:

w↓
1,2 + w↑

1,2 + w↓
1,3 + w↑

1,3 + w↓
1,4 + w↑

1,4 ≥ w↓
2,3 + w↓

2,4,

w0,3 + w0,4 ≥ w↓
1,3 + w↓

1,4,

w↓
1,4 + w↑

1,4 ≥ w↓
2,4,

Δ1 + w↓
1,2 + w↑

1,2 + w↓
1,4 + w↑

1,4 + z2 ≥ 1,

which correspond respectively to (24) for k = 1 and t = 3, (23) for t = 3, (24)
for k = 1 and t = 4, and (21) for k = 1 and t = 2.

The constraint matrix of the above four inequalities is not totally unimod-
ular, as the determinant of the column submatrix corresponding to variables
w↓

1,4, w
↓
1,3, w

↓
2,4, w

↑
1,2 is −2.

448 M. Conforti, M. Di Summa, and L.A. Wolsey

8 Remarks and Open Questions

– The extended formulation presented here is based on the expansion x =
α0(x)+

∑n+1
j=1 αj(x)Cj−1 of a real number x and then exploits the fact that,

if x̄ is a vertex of the polyhedron to be studied, then for fixed 0 ≤ j ≤ n+1,
there are few values that αj(x̄) can take. This is essential for the extended
formulation to be compact.

This can be seen as a nontrivial extension of the technique used by Miller
and Wolsey [12] in the single capacity mixing set (i.e. n = 0) to model a
continuous variable x by taking C0 = 1 and x = α0(x)+ α1(x)C0. Indeed, If
one imposes in DIV the further restriction that s is integer (which removes
all the complexity in the single capacity mixing set), the complexity of DIV
remains essentially unchanged.

– CAP is the following mixed-integer set:

si + Ctzt ≥ bit, 1 ≤ i ≤ q, 0 ≤ t ≤ m,

si ≥ b�i, 1 ≤ i ≤ q,

zt integer, 0 ≤ t ≤ m,

where again C0, . . . , Cm is a sequence of divisible numbers. Note that the
set DIV is a special case of CAP , obtained by taking q = 1. What is the
complexity of optimizing a linear function over CAP? Does CAP admit a
formulation that is computationally useful? These questions were investi-
gated and answered by Miller and Wolsey [12] for the single capacity case.

– Our last question concerns the mixing set with arbitrary capacities, defined
by (1)–(3) in the introduction of this paper. Again, what is the complexity
of optimizing a linear function over (1)–(3)? In the case where the number of
distinct capacities is small, does there exist an extended formulation which
is compact?

References

1. Atamtürk, A.: Strong formulations of robust mixed 0-1 programming. Mathemat-
ical Programming 108, 235–250 (2006)

2. Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points.
Discrete Applied Mathematics 89, 3–44 (1998)

3. Conforti, M., Di Summa, M., Eisenbrand, F., Wolsey, L.A.: Network formulations of
mixed-integer programs. CORE Discussion Paper, 2006/117, Université catholique
de Louvain, Belgium. Mathematics of Operations Research (accepted, 2006)

4. Conforti, M., Wolsey, L.A.: Compact formulations as a union of polyhedra. Math-
ematical Programming (published online) (to appear, 2007)

5. Constantino, M., Miller, A.J., Van Vyve, M.: Mixing MIR inequalities with two
divisible coefficients (manuscript, 2007)

6. Di Summa, M.: The mixing set with divisible capacities (manuscript, 2007)
7. Di Summa, M.: Formulations of Mixed-Integer Sets Defined by Totally Unimodular

Constraint Matrices. PhD thesis, Università degli Studi di Padova, Italy (2008)

The Mixing Set with Divisible Capacities 449

8. Ghouila-Houri, A.: Caractérisations des matrices totalement unimodulaires. In:
Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris,
vol. 254, pp. 1192–1194 (1962)

9. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Mathematical Program-
ming 90, 429–457 (2001)

10. Henk, M., Weismantel, R.: Diophantine approximations and integer points of cones.
Combinatorica 22, 401–408 (2002)

11. Marcotte, O.: The cutting stock problem and integer rounding. Mathematical Pro-
gramming 33, 82–92 (1985)

12. Miller, A.J., Wolsey, L.A.: Tight formulations for some simple mixed integer pro-
grams and convex objective integer programs. Mathematical Programming 98, 73–
88 (2003)

13. Pochet, Y., Weismantel, R.: The sequential knapsack polytope. SIAM Journal on
Optimization 8, 248–264 (1998)

14. Pochet, Y., Wolsey, L.A.: Network design with divisible capacities: Aggregated flow
and knapsack subproblems. In: Balas, E., Cornuéjols, G., Kannan, R. (eds.) Inte-
ger Programming and Combinatorial Optimization, pp. 324–336. Carnegie Mellon
University (1992)

15. Pochet, Y., Wolsey, L.A.: Polyhedra for lot-sizing with Wagner-Whitin costs. Math-
ematical Programming 67, 297–323 (1994)

16. Pochet, Y., Wolsey, L.A.: Integer knapsack and flow covers with divisible coeffi-
cients: Polyhedra, optimization and separation. Discrete Applied Mathematics 59,
57–74 (1995)

17. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming.
Springer, Heidelberg (2006)

18. Van Vyve, M.: A Solution Approach of Production Planning Problems Based on
Compact Formulations for Single-Item Lot-Sizing Models. PhD thesis, Faculté des
Sciences Appliquées, Université catholique de Louvain, Belgium (2003)

19. Van Vyve, M.: Linear-programming extended formulations for the single-item lot-
sizing problem with backlogging and constant capacity. Mathematical Program-
ming 108, 53–77 (2006)

20. Zhao, M., de Farias Jr., I.R.: The mixing-MIR set with divisible capacities. Math-
ematical Programming (published online) (to appear, 2007)

A Polynomial Time Algorithm for the Stochastic

Uncapacitated Lot-Sizing Problem with
Backlogging

Yongpei Guan1,� and Andrew Miller2

1 School of Industrial Engineering, University of Oklahoma, USA
yguan@ou.edu

2 Department of Industrial and Systems Engineering, University of Wisconsin, USA
amiller@engr.wisc.edu

Abstract. Since Wagner and Whitin published a seminal paper on the
deterministic uncapacitated lot-sizing problem, many other researchers
have investigated the structure of other fundamental models on lot-sizing
that are embedded in practical production planning problems. In this
paper we consider basic versions of such models in which demand (and
other problem parameters) are stochastic rather than deterministic. It is
named stochastic uncapacitated lot-sizing problem with backlogging. We
define a production path property of optimal solutions for this model and
use this property to develop backward dynamic programming recursions.
This approach allows us to show that the value function is piecewise lin-
ear and continuous, which we can further use to define a polynomial time
algorithm for the problem in a general stochastic scenario tree setting.

1 Introduction

The deterministic uncapacitated lot-sizing problem (ULS) is the problem of
determining the amount to produce in each time period over a finite discrete
horizon so as to satisfy the demand for each period while minimizing the sum-
mation of setup, production, and inventory holding costs (e.g., see [16], [25],
and [17]). This fundamental model is easily seen to be a fixed charge network
flow problem in a network composed of a directed path and a dummy produc-
tion node, and understanding and exploiting this structure has been essential in
developing approaches to more complicated, real-world problems (see, for exam-
ple, [22], [4], [5], [20], and many others).

Polynomial time algorithms for ULS are based on the Wagner-Whitin prop-
erty: no production is undertaken if inventory is available from the previous time
period. A simple dynamic programming algorithm based on this property runs
in O(T 2) time, where T is the number of time periods; this was improved later
in, e.g., see [1, 9, 24]. Polynomial time algorithms have also been developed for
variants of ULS, including the constant capacity problem [11, 23], the unca-
pacitated problem with backlogging [10], and the uncapacitated problem with
demand time windows [14].
� Corresponding author.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 450–462, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Polynomial Time Algorithm for the Stochastic ULS Problem 451

In many situations the assumption of known, deterministic data (such as
demand) is not necessarily realistic. For instance, the demand for each time
period is unknown in advance. Significant research has been done on developing
optimal inventory policies by assuming that demands are independent and they
follow certain distributions (see, for example, [8] for the classical work of (s, S)
policies, and many others). In this paper we assume demands can be dependent
between different time periods and study extensions of deterministic lot-sizing
problems in which a stochastic programming approach [18] is adopted to address
uncertain problem parameters. It is named stochastic uncapacitated lot-sizing
problem with backlogging. Examples of applications that have submodels of
this form embedded within them include stochastic capacity expansion problems
[3], stochastic batch-sizing problems [15], and stochastic production planning
problems [6].

In [2] it is shown that the Wagner-Whitin optimality conditions do not hold
even for the version of the problem without backlogging, which makes it non-
trivial to derive polynomial time algorithms similar to the deterministic case.
Moreover, stochastic ULS with backlogging and related problems are not fixed
charge network flow problems (as are the deterministic variants), as will be
seen. There is nevertheless clearly significant combinatorial structure present in
these models, and our algorithms will take advantage of this. To the best of our
knowledge, these algorithms are the first exact polynomial time algorithms for
stochastic lot-sizing problems with backlogging.

An outline of the paper follows. We introduce the notation and a mathematical
formulation of stochastic ULS with backlogging in Section 2. In Section 3, we
first state the production path property for stochastic ULS with backlogging, a
fundamental optimality condition analogous to the Wagner-Whitin property. We
then use this property to develop a characterization of the dynamic programming
(DP) value function in terms of breakpoints, breakpoint evaluations, and slopes,
which further allows us to show that the DP approach yields a polynomial time
algorithm to fully characterize the value function. In Section 4, we discuss how
to extend our algorithm to the general tree structured stochastic ULS with
backlogging. Finally, we summarize our results in Section 5.

2 Notation and Mathematical Formulation

We assume that the uncertain problem parameters evolve as a discrete time
stochastic process with finite probability space. The resulting information struc-
ture can be interpreted as a scenario tree with T levels (stages), where node i
in stage t of the tree gives the state of the system that can be distinguished by
information available up to stage t. Each node i of the scenario tree, except the
root node (indexed as i = 1), has a unique parent a(i).

Note that the resulting problem, while having significant combinatorial struc-
ture, is not a fixed charge network flow problem, since the same inventory that
“flows” out of a given node i must flow to each of i’s children. Let V(i) represent
the set of all descendants of node i (including i itself); let V = V(1) represent

452 Y. Guan and A. Miller

Stage TStage 1 Stage 2

s1

i

L

P(i)

s2

V
j V(j)

s|L|

1

Fig. 1. Multi-stage stochastic scenario tree formulation

the set of all nodes in the tree and the total number of nodes in the tree is n
(i.e., n = |V|). The set of leaf nodes is denoted by L and the set of nodes on
the path from the root node to node i is denoted by P(i). If i ∈ L, then P(i)
corresponds to a scenario and represents a joint realization of the problem pa-
rameters over all periods 1, . . . , T . Let the probability associated with the state
represented by node i be pi, and let t(i) denote the time stage or level of node
i in the tree; i.e., t(i) = |P(i)| and t(i) = T for each i ∈ L. Let C(i) denote
the children of node i, i.e., C(i) = {j ∈ V : a(j) = i}. We will initially assume
that the scenario tree is balanced, i.e., that there is a fixed number of children
for each non-leaf node. We then extend our results to other cases. Throughout
we will let C = maxi∈V{|C(i)|} (and therefore |C(i)| = C for all i ∈ V \ L in a
balanced tree.) We can now express a multi-stage stochastic MIP formulation of
stochastic ULS with backlogging as

min
∑
i∈V

(αixi + βiyi + his
+
i + bis

−
i)

s.t. s+
a(i) + s−i + xi = di + s+

i + s−a(i) ∀ i ∈ V , (1)

xi ≤Myi ∀ i ∈ V , (2)
xi, s

+
i , s−i ≥ 0, yi ∈ {0, 1} ∀ i ∈ V . (3)

Decision variables xi, s+
i , and s−i represent the levels of production, inventory,

and backlogging at the end of period t(i) corresponding to the state defined by
node i, and yi is the setup variable for node i. Parameters αi, βi, hi, bi, and
di represent unit production, setup, holding, backlogging costs, and the demand
in node i. We assume that all of these parameters are nonnegative and may be
stochastic in nature. For each i ∈ L, we further assume that αi < bi, as otherwise
production will never occur at that node. For notational brevity, probability pi

is included in problem parameters αi, βi, hi, and bi. Constraint (1) represents
the inventory flow balance and constraint (2) indicates the relationship between
production and setup for each node i. For any node i ∈ V and any node j ∈ V(i),

A Polynomial Time Algorithm for the Stochastic ULS Problem 453

define dij =
∑

n∈P(j)\P(a(i)) dn. Note that since demand may be quite high
in some scenarios, allowing the possibility of backlogging may be necessary to
ensure that the problem has a feasible solution. Since at most one of s+

i and
s−i will be positive in an optimal solution, for all i ∈ V , it will be convenient
throughout to refer to si = s+

i − s−i . Thus, if si > 0, it represents the level of
inventory; and if si < 0, then |si| represents the quantity of backlogging.

3 A Dynamic Programming Framework

We first introduce the production path property, which defines optimality condi-
tions for stochastic ULS with backlogging. This will allow us to define a backward
recursion for which the value function of each node i is piecewise linear and con-
tinuous; these value functions can therefore be analyzed in terms of breakpoints
(i.e., points in the domain at which slope change occurs), functional evaluations
of breakpoints, and the slopes of the segments to the right of the breakpoints.
We achieve the complexity bound by analyzing the number of breakpoints whose
evaluations and right slopes must be stored and computed at each node, and by
analyzing how long these computations take. For both of these calculations the
production path property will be essential.

Due to space limitations, many of the proofs are abbreviated and/or omitted.
Some proofs for analogous results for stochastic ULS without backlogging can be
found in [13]; however, to the best of our knowledge, this document contains the
first algorithmic analysis of stochastic programming models with backlogging
(such models are not studied in [13]).

Proposition 1. (Production Path Property) For any instance of stochastic ULS
with backlogging, there exists an optimal solution (x∗, y∗, s∗) such that for each
node i ∈ V,

if x∗
i > 0, then x∗

i = dik − s∗a(i) for some k ∈ V(i). (4)

In other words, there always exists an optimal solution such that if we produce at
a node i, then we produce exactly enough to satisfy demand along the path from
node i to some descendant of node i. This can be proven by showing that any
optimal solution that contains a node that violates (4) is a convex combination of
optimal solutions, at least one of which contains one less node that violates (4).

The production path property clearly implies there are n candidates for x1

(production at the root node) in an optimal solution and therefore we have
immediately

Proposition 2. There exists an algorithm that runs in linear time for stochastic
ULS with backlogging with two periods.

For the multi-period stochastic ULS with backlogging, let H(i, s) represent the
optimal value function for node i ∈ V when the inventory left from previous
period is s (for notational brevity, we will use s rather than sa(i) for the second
argument of this function).

454 Y. Guan and A. Miller

For each node i ∈ V we have two options: production or non-production.
If production occurs, then the value function for this node contains 1) setup,
production and inventory costs corresponding to this node and 2) the cost for
later periods. (Note that we will produce no less than what is required to satisfy
demand in at least the current period, and so we will not incur backlogging
costs if we produce.) We will call this function the production value function
HP(i, s). From the production path property, the production quantity at node i
is xi = dik − s for some k ∈ V(i) such that dik > s. Therefore

HP(i, s) = βi + min
k∈V(i):dik>s

⎧⎨
⎩αi(dik − s) + hi(dik − di) +

∑
�∈C(i)

H(�, dik − di)

⎫⎬
⎭ .

(5)
Otherwise, if no production occurs, then the value function for this node contains
only 1) either inventory holding costs or backlogging costs corresponding to this
node, depending on whether s−di is positive or negative, and 2) the cost for later
periods. We will call this function the non-production value function HNP(i, s).
This function can be expressed as

HNP(i, s) = max {hi(s− di),−bi(s− di)}+
∑

�∈C(i)

H(�, s− di). (6)

Note that we can only exclude the possibility of production at i if s ≥ maxj∈V(i)

dij . The value function under this condition can be definedH(i, s) = HNP(i, s). In
all other cases (including negative values of s), we must consider both production
and non-production because of the possibility of backlogging. Therefore for any
s ≤ maxj∈V(i) dij , the backward recursion function can be described as

H(i, s) = min {HP(i, s),HNP(i, s)} . (7)

Let [1], . . . , [|V(i)|] be an ordering of the descendants of node i such that di =
di[1] ≤ di[2] ≤ . . . ≤ di[|V(i)|]. In the remaining part of this section, we study a T
period balanced scenario tree case in which each non-leaf node contains a fixed
number of children (i.e., C children for each node in the tree).

Observation 1. The summation of piecewise linear and continuous functions
is still a piecewise linear and continuous function.

Observation 2. The minimum of two piecewise linear, continuous functions is
still a piecewise linear and continuous function.

Proposition 3. The value function H(i, s) for each node i ∈ V is piecewise
linear and continuous.

Proof. By induction.

Base case: In period T , the value function for each node i is

H(i, s) =

⎧⎨
⎩

αi(di − s) + βi if s < di,
bi(di − s) if di ≤ s < di,
hi(s− di) if s ≥ di,

A Polynomial Time Algorithm for the Stochastic ULS Problem 455

where

di = di − βi

bi − αi

(Note that di is not necessarily nonnegative.) This value function is piecewise
linear and continuous as shown in Figure 2.

0

αidi + βi

hi

di

H(i, s)

s

−αi

−bi

βi + αi(di − di)

di

Fig. 2. Value function H(i, s) for node i at time period T

Inductive step: It is not difficult to show that HP(i, s) is the minimum of
linear functions (see (5)) and is therefore itself piecewise linear and discontinuous
with the same slope at each piece. Using the induction hypothesis, it is also
not difficult to show that HNP(i, s) is the sum of piecewise linear, continuous
functions (see (6)) and is therefore itself piecewise linear and continuous.

ThereforeH(i, s) is the minimum of a piecewise linear and continuous function
(see (7)) and a piecewise linear and discontinuous function. We can claim that
during each piece of the production value function, there exists a point s′ such
that HNP(i, s′) = HP(i, s′) and HNP(i, s) < HP(i, s) for each s > s′. To prove the
claim, let s∗ = dik − ε where

k = argmin

⎧⎨
⎩αidik + hi(dik − di) +

∑
�∈C(i)

H(�, dik − di)

⎫⎬
⎭ . (8)

Then, we discuss it in two cases:
(1) If k = i, then

HP(i, s∗)−HNP(i, s∗)
= βi + αiε +

∑
�∈C(i)H(�, 0)

− (biε +
∑

�∈C(i)H(�,−ε)).

Therefore, there exists an ε > 0 such that HP(i, s∗) ≥ 0 as long as βi > 0.

456 Y. Guan and A. Miller

(2) If k > i, then

HP(i, s∗)−HNP(i, s∗)
= βi + αiε + hi(dik − di) +

∑
�∈C(i)H(�, dik − di)

− (hi(dik − di − ε) +
∑

�∈C(i)H(�, dik − di − ε)).

Conclusion also holds. That is, there exists an ε > 0 such that HP(i, s∗) −
HNP(i, s∗) > 0.

Therefore, we have the following conclusion:
Corresponding to each line piece of production value function, we have

H(i, s) =
{

min{HP(i, s),HNP(i, s)} if s < s∗

HNP(i, s), if s > s∗, (9)

and HP(i, s∗) = HNP(i, s∗). Thus, the claim holds and the inductive step is also
right. ��
This result is interesting in light of the fact that the value function for the case
of stochastic ULS in which backlogging is not permitted is not continuous, only
right continuous [13].

Corollary 1. The non-production value function HNP(i, s) is piecewise linear
and continuous.

We can let breakpoints represent the s values at which the slope of the value
function changes. The value function H(i, s) can then be computed and stored
in terms of breakpoints, evaluations of breakpoints, and slopes immediately to
the right of the breakpoints. Let B(i) represent the set of breakpoints for the
value function H(i, s) at node i. The complexity of the problem depends on the
number of breakpoints.

Proposition 4. The number of breakpoints corresponding to the value function
H(i, s) for each node i ∈ V is bounded by O(|V(i)|log2(3/2)+1).

Proof. We calculate the number of breakpoints |B(i)| for each node i ∈ V back-
wards from time period T to time period 1. First, as shown in Figure 2, there
are three breakpoints for the value function corresponding to each leaf node
(i.e., including s = −∞). To calculate the number of breakpoints |B(i)| for each
node i ∈ V , we consider the number of breakpoints generated by HNP(i, s) and
HP(i, s), respectively. We can show that the number of breakpoints for HNP(i, s)
is no more than the total number of breakpoints generated by H(�, s) for each
� ∈ C(i). Thus the number of breakpoints for HNP(i, s) is

|BNP(i)| ≤
∑

�∈C(i)

|B(�)|+ 1− 1 =
∑

�∈C(i)

|B(�)|. (10)

Note here that we have one more breakpoint generated by s = di according to
the formulation of HNP(i, s) and at least one replicated breakpoint s = −∞.

A Polynomial Time Algorithm for the Stochastic ULS Problem 457

For HP(i, s), we can show from (5) that HP(i, s) is linear in the interval
di[r−1] ≤ s < di[r]. Therefore, the possible breakpoints for HP(i, s) are di[1], di[2],
. . . , di[|V(i)|], which are also breakpoints in BNP(i). Recall also that HNP(i, s) is
piecewise linear (Corollary 1) and continuous. We call the breakpoints of BNP(i)
old breakpoints for this iteration.

Then we can see from the above observations that the value function H(i, s)
between two old breakpoints in HNP(i, s) can be viewed as the minimum of two
linear functions. Since HNP(i, s) is piecewise linear and continuous, between any
two old breakpoints, there is at most one new breakpoint and there are totally
no more than |BNP(i)| new breakpoints.

We also notice that, based on (9), we have HNP(i, di[r] − ε) < HP(i, di[r] −
ε). Therefore, for the non-production value function HNP(i, s) corresponding to
each linear piece of HP(i, s) and let s1, s2, . . . , sn−1, sn be the breakpoints, we
have HNP(i, s1) ≤ HNP(i, s2) and HNP(i, sn−1) ≥ HNP(i, sn) except the first
piece. Thus, every time when we add two new breakpoints, there will be one old
breakpoint deleted. Therefore we have that

|B(i)| ≤ 3|BNP(i)|/2. (11)

Note here for the first two breakpoints for the first piece, we have at most one
new breakpoint generated between these two old breakpoints.

Combining (10) and (11), we have

|B(i)| ≤ 3/2|BNP(i)| ≤ 3/2
∑

�∈C(i)

|B(�)|. (12)

Since |B(j)| = 3 = 3|V(j)| for each leaf node j at time period T , by induction,
we have that

|B(i)| ≤ 3(3/2)T−t(i)|V(i)|. (13)

Since every non-leaf node has at least two children, we have

|V(i)| ≥ 1 + 21 + . . . + 2T−t(i) = 2T−t(i)+1 − 1. (14)

Then, combining (13) and (14), the number of breakpoints

|B(i)| = 3(2T−t(i))log2(3/2)|V(i)| ≤ 3((|V(i)|+ 1)/2)log2(3/2)|V(i)|. ��
We can also easily obtain the following corollary

Corollary 2. For a balanced tree case with C(i) = C for each i ∈ V \ L, the
number of breakpoints corresponding to the value function H(i, s) for each node
i ∈ V is bounded by O(|V(i)|logC(3/2)+1).

The DP algorithm is simply a construction of H(1, s), the value function at the
root node.

Theorem 1. The value function for stochastic ULS with backlogging can be
solved by a dynamic programming algorithm that runs in O(nlog2(3/2)+2 log C)
time.

458 Y. Guan and A. Miller

Proof. The value function H(i, s) can be stored in terms of breakpoint values,
evaluations of breakpoints, and the right slope of each breakpoint. Starting from
each leaf node as shown in Figure 2, the value function can be stored in three
parts:

(1) Three breakpoints: s = −∞, s = di = di − βi

bi−αi
, and s = di. Note that

HP(i, di) = HNP(i, di) and that

∂HP(i, di)
∂s

= −αi > −bi =
∂HNP(i, di)

∂s
.

(2) Evaluations of the breakpointsH(i,−∞) = +∞,H(i, di) = αi(di−di)+βi =
bi(di − di) and H(i, di) = 0

(3) The right slope of each breakpoint (r(i, di) = −bi, and r(i, di) = hi) and the
left slope of the first breakpoint (r(i,−∞) = −αi).

For the general case to store the value function H(i, s) for each node i ∈ V ,
we need to perform the following calculation steps (we have summarized the
bookkeeping of the work associated with each step for space reasons):

(1) Generate the list of breakpoints of
∑

�∈C(i)H(�, s) in non-decreasing order.
Since the O(|V(�)|log2(3/2)+1) breakpoints corresponding to each function
H(�, s), � ∈ C(i), have already been sorted in non-decreasing order, we obtain
the initial non-decreasing sequence κ for the C breakpoints corresponding to
the first breakpoints in each function H(�, s), � ∈ C(i), which takes O(C log C)
time. Then, to generate each subsequent breakpoint for

∑
�∈C(i)H(�, s), we

pick the smallest value breakpoint from κ and add it to the end of the non-
decreasing breakpoint list for

∑
�∈C(i)H(�, s). Correspondingly, we add this

breakpoint’s next one in this breakpoint’s original corresponding function
H(�, s) into κ. It takes O(log C) time to find the right position in κ for the
newly added breakpoint. Since O(C log C) ≤ O(|V(i)|log2(3/2)+1 log C). Thus,
this entire step can be completed in O(|V(i)|log2(3/2)+1 log C) time.

(2) Calculate and store
∑

�∈C(i)H(�, s). We can use Proposition 4 to show that
this step can be completed in O(|V(i)|log2(3/2)+1) time.

(3) Calculate and store the breakpoints, evaluations of breakpoints, and slopes
for the non-production value function HNP(i, s) This step can be completed
in O(|V(i)|log2(3/2)+1) time.

(4) Calculate ρ(k) = αidik +hi(dik − di)+
∑

�∈C(i)H(�, dik− di) and store it for
each k ∈ V(i).

We can use the production path property to show that this can be com-
pleted in O(|V(i)| log |V(i)|) time.

(5) Calculate and store the breakpoints, evaluations of breakpoints, and slopes
for the production value function HP(i, s):

This step can be completed in O(|V(i)| log |V(i)|) time.
(6) Calculate and store the breakpoints, evaluations of breakpoints, and slopes

for the value function H(i, s):
This step amounts to defining the new breakpoints for i by comparing

HP(i, s) and HNP(i, s) within the intervals defined by each consecutive pair

A Polynomial Time Algorithm for the Stochastic ULS Problem 459

of old breakpoints, and it can be completed in O(|V(i)|log2(3/2)+1) time since
the number of breakpoints is bounded by O(|V(i)|log2(3/2)+1) (from Propo-
sition 4).

The maximum complexity for each step is O(|V(i)|log2(3/2)+1 log C). Since the
above operations are required for each node i ∈ V , the optimal value func-
tion for the stochastic ULS with backlogging can be obtained and stored in
O(nlog2(3/2)+2 log C) time. ��
We can also obtain the following corollary.

Corollary 3. For a balanced tree case with C(i) = C for each i ∈ V\L, the value
function H(i, s) for each node i ∈ V can be obtained in O(nlogC(3/2)+2 log C)
time.

4 Stochastic Uncapacitated Lot-Sizing Problem with
Backlogging

In this section, we consider the general stochastic ULS with backlogging problem
(i.e., C(i) ≥ 1 for each node i ∈ V \ L). For this case, it is not known if the full
characterization of the value function H(i, s) for each i ∈ V can be obtained
in polynomial time. However, an optimal solution of the general stochastic ULS
with backlogging can be obtained in polynomial time. Without loss of generality,
we assume zero initial inventory.

With zero initial inventory, according to Proposition 1, we have x1 = d1j and
s1 = d1j − d1 for some j ∈ V in an optimal solution. Then, corresponding to the
value function H(�, s) for each � ∈ C(1), we only need to store the breakpoints
s = d1j − d1 for all j ∈ V and their evaluations. In general, based on (5), (6)
and (7), the breakpoints for the value functionH(i, s) are obtained by moving the
breakpoints for the value function H(�, s) for all � ∈ C(i) to the right by di plus
new breakpoints generated by minimizing two piecewise linear functions. Thus,
in order to store the breakpoints s = d1j − d1a(i) for all j ∈ V : d1j − d1a(i) ≥ 0
for node i, in the calculation of the value functions H(�, s) for all � ∈ C(i), we
only need to store the breakpoints s = d1j − d1i = d1j − d1a(�) for all j ∈ V :
d1j − d1a(�) ≥ 0. Therefore, in the algorithm described in Section 3 to calculate
the value functionH(i, s) for each node i ∈ V backwards starting from leaf nodes,
we store the breakpoints s = d1j − d1a(i) for all j ∈ V : d1j − d1a(i) ≥ 0 and their
evaluations. There are at most O(n) breakpoints for each value function H(i, s).

This reduction in the number of breakpoints means that, at each step cal-
culating the value function H(i, s) as described in Section 3, we can bound the
time the algorithm will take as follows:

(1) Since we have stored the same set of O(n) breakpoints s = d1j − d1a(�) =
d1j − d1i for all j ∈ V : d1j − d1a(�) ≥ 0 corresponding to each value function
H(�, s), � ∈ C(i), the list of breakpoints of

∑
�∈C(i)H(�, s) has the same set

of O(n) breakpoints. This step takes O(n) time.

460 Y. Guan and A. Miller

(2) Based on Step (1), we have the same set of O(n) breakpoints for eachH(�, s),
� ∈ C(i) as well as

∑
�∈C(i)H(�, s). Based on Step (1), we have the same set of

O(nT) breakpoints for each H(�, s), � ∈ C(i) as well as
∑

�∈C(i)H(�, s). This
step can be finished by defining a separated list of

∑
�∈C(i)H(�, s) for node i

and update the value for each breakpoint of
∑

�∈C(i)H(�, s) as a byproduct
when obtain the value function H(�, s) for each � ∈ C(i). It takes O(n) time
to update the breakpoints for the list

∑
�∈C(i)H(�, s) for each � ∈ C(i).

(3) Based on Step (2), this step can be completed in O(n) time since the number
of breakpoints is bounded by O(n).

(4) Based on Step (2), the function values
∑

�∈C(i)H(�, dij − di) for each j ∈ V
are stored in

∑
�∈C(i)H(�, s) since dij − di = d1j − d1i = d1j − d1a(�) for

each � ∈ C(i). There are |V(i)| ≤ n candidates for ρ(k) and the value of each
ρ(k) can be obtained by binary search in O(log n) time since the number of
breakpoints is bounded byO(n). Therefore, this entire step can be completed
in O(n log n) time.

(5) This step can be completed in O(n log n) time since the number of break-
points is bounded by O(n).

(6) To calculate and store the breakpoints of H(i, s) and obtain the minimum
in this expression, we compare each linear piece of the production value
function HP(i, s) with several breakpoint values of the corresponding non-
production value function. This step can be completed in O(n) time since
the number of breakpoints is bounded by O(n).

Therefore, the total amount of work required at each node is bounded by
O(n log n). Since the above operations are required for each node i ∈ V , the
following conclusion holds.

Theorem 2. The general stochastic ULS with backlogging can be solved in
O(n2 log n) time.

The general stochastic ULS with backlogging problem for which the initial in-
ventory level is unknown and is itself a decision variable can be transformed
into another general stochastic ULS with backlogging problem with zero initial
inventory by adding a dummy root node 0 as the parent node of node 1 with
zero production, setup and inventory costs as well as zero demand.

5 Conclusions

In this paper, we first studied that the value function H(i, s) for each i ∈ V
for stochastic ULS with backlogging is piecewise linear and continuous. Corre-
spondingly, for the case C(i) ≥ 2 for each i ∈ V \ L, we developed a polynomial
time algorithm that runs in O(n3 log C) time for obtaining the full character-
ization of the value function, which was further improved to be O(n3) time
for the balanced tree case (i.e., C(i) = C, ∀i ∈ V \ L). Then, we extended our
analysis to a more general tree structure. For instance, there are several nodes
i ∈ V \ L such that C(i) = 1. In this case, the number of nodes in the tree

A Polynomial Time Algorithm for the Stochastic ULS Problem 461

can be polynomial to the number of time periods. For this general tree case,
we developed a polynomial time algorithm that runs in O(n2 log n) time. Since
stochastic ULS with backlogging is a fundamental stochastic integer program-
ming structure, our studies on stochastic ULS with backlogging will help solve
many large complicated stochastic integer programming problems.

Valid inequalities for stochastic ULS and its variant with constant production
capacities have been proposed in [12] and [21]. In the future we intend to com-
bine our approaches, polynomial time algorithms and polyhedral studies, into
decomposition frameworks for large size stochastic integer programming prob-
lems, such as those studied in [7] and [19] (among others).

Acknowledgments

This research was supported in part by NSF grants CMMI-0700868 and IIP-
0725843 for the first author and by Air Force Scientific Research grant FA9550-
04-1-0192 and NSF grant DMI-0323299 for the second author. The authors also
thank the four referees for their detailed and helpful comments.

Bibliography

[1] Aggarwal, A., Park, J.K.: Improved algorithms for economic lot size problems.
Operations Research 41, 549–571 (1993)

[2] Ahmed, S., King, A.J., Parija, G.: A multi-stage stochastic integer programming
approach for capacity expansion under uncertainty. Journal of Global Optimiza-
tion 26, 3–24 (2003)

[3] Ahmed, S., Sahinidis, N.V.: An approximation scheme for stochastic integer pro-
grams arising in capacity expansion. Operations Research 51, 461–471 (2003)

[4] Belvaux, G., Wolsey, L.A.: bc − prod: a specialized branch–and–cut system for
lot-sizing problems. Management Science 46, 724–738 (2000)

[5] Belvaux, G., Wolsey, L.A.: Modelling practical lot–sizing problems as mixed inte-
ger programs. Management Science 47, 993–1007 (2001)

[6] Beraldi, P., Ruszczyński, A.: A branch and bound method for stochastic integer
problems under probabilistic constraints. Optimization Methods and Software 17,
359–382 (2002)

[7] Carøe, C.C.: Decomposition in stochastic integer programming. PhD thesis, Uni-
versity of Copenhagen (1998)

[8] Clark, A.J., Scarf, H.: Optimal policies for a multi-echelon inventory problem.
Management Science 6, 475–490 (1960)

[9] Federgruen, A., Tzur, M.: A simple forward algorithm to solve general dynamic lot
sizing models with n periods in O(n log n) or O(n) time. Management Science 37,
909–925 (1991)

[10] Federgruen, A., Tzur, M.: The dynamic lot-sizing model with backlogging-a sim-
ple O(n log n) algorithm and minimal forecast horizon procedure. Naval Research
Logistics 40, 459–478 (1993)

[11] Florian, M., Klein, M.: Deterministic production planning with concave costs and
capacity constraints. Management Science 18, 12–20 (1971)

462 Y. Guan and A. Miller

[12] Guan, Y., Ahmed, S., Nemhauser, G.L., Miller, A.J.: A branch-and-cut algo-
rithm for the stochastic uncapacitated lot-sizing problem. Mathematical Program-
ming 105, 55–84 (2006)

[13] Guan, Y., Miller, A.J.: Polynomial time algorithms for stochastic uncapacitated
lot-sizing problems. Operations Research (to appear, 2007)

[14] Lee, C.Y., Cetinkaya, S., Wagelmans, A.: A dynamic lot-sizing model with demand
time windows. Management Science 47, 1384–1395 (2001)

[15] Lulli, G., Sen, S.: A branch-and-price algorithm for multi-stage stochastic integer
programming with application to stochastic batch-sizing problems. Management
Science 50, 786–796 (2004)

[16] Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
New York (1988)

[17] Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming.
Springer, New York (2006)

[18] Ruszczyński, A., Shapiro, A. (eds.): Stochastic Programming. Handbooks in Op-
erations Research and Management Science, vol. 10. Elsevier Science B.V., Ams-
terdam (2003)

[19] Sen, S., Sherali, H.D.: Decomposition with branch-and-cut approaches for two-
stage stochastic mixed-integer programming. Mathematical Programming 106,
203–223 (2006)

[20] Stadtler, H.: Multi-level lot-sizing with setup times and multiple constrained
resources: Internally rolling schedules with lot-sizing windows. Operations Re-
search 51, 487–502 (2003)

[21] Di Summa, M., Wolsey, L.A.: Lot-sizing on a tree. Technical report, CORE, UCL,
Louvain-la-Neuve, Belgium (2006)

[22] Tempelmeier, H., Derstroff, M.: A Lagrangean–based heuristic for dynamic mul-
tilevel multiitem constrained lotsizing with setup times. Management Science 42,
738–757 (1996)

[23] van Hoesel, C.P.M., Wagelmans, A.: An O(T 3) algorithm for the economic lot-
sizing problem with constant capacities. Management Science 42, 142–150 (1996)

[24] Wagelmans, A., van Hoesel, A., Kolen, A.: Economic lot sizing: An O(n log n)
algorithm that runs in linear time in the Wagner–Whitin case. Operations Re-
search 40, 145–156 (1992)

[25] Wolsey, L.A.: Integer Programming. Wiley, New York (1998)

Lifting Integer Variables in Minimal Inequalities

Corresponding to Lattice-Free Triangles�

Santanu S. Dey1 and Laurence A. Wolsey2

1 CORE
Santanu.Dey@uclouvain.be

2 CORE and INMA,
University Catholique de Louvain,

34, Voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium
laurence.wolsey@uclouvain.be

Abstract. Recently, Andersen et al. [1] and Borozan and Cornuéjols [3]
characterized the minimal inequalities of a system of two rows with two
free integer variables and nonnegative continuous variables. These in-
equalities are either split cuts or intersection cuts derived using maximal
lattice-free convex sets. In order to use these minimal inequalities to ob-
tain cuts from two rows of a general simplex tableau, it is necessary to ex-
tend the system to include integer variables (giving the two-dimensional
mixed integer infinite group problem), and to develop lifting functions
giving the coefficients of the integer variables in the corresponding in-
equalities. In this paper, we analyze the lifting of minimal inequalities
derived from lattice-free triangles.

Maximal lattice-free triangles in R
2 can be classified into three cate-

gories: those with multiple integral points in the relative interior of one
of its sides, those with integral vertices and one integral point in the
relative interior of each side, and those with non integral vertices and
one integral point in the relative interior of each side. We prove that the
lifting functions are unique for each of the first two categories such that
the resultant inequality is minimal for the mixed integer infinite group
problem, and characterize them. We show that the lifting function is not
necessarily unique in the third category. For this category we show that a
fill-in inequality (Johnson [11]) yields minimal inequalities for mixed in-
teger infinite group problem under certain sufficiency conditions. Finally,
we present conditions for the fill-in inequality to be extreme.

1 Introduction

Recently, Andersen et al. [1], Borozan and Cornuéjols [3], and Cornuéjols and Mar-
got [5] have developedmethods to analyze a systemof two rowswith two free integer
variables and nonnegative continuous variables. They show that facets of system

f +
n∑

i=1

wiyi ∈ Z
2 yi ∈ R+, i ∈ {1, ..., n} (1)

� This text presents research results of the Belgian Program on Interuniversity Poles
of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy
Programming. The scientific responsibility is assumed by the authors.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 463–475, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

464 S.S. Dey and L.A. Wolsey

are either split cuts or intersection cuts (Balas [2]). These new families of cut-
ting planes are important since some of them cannot be obtained using a finite
number of Gomory mixed integer cuts (GMIC); see Cook et al. [4]. We state the
following theorem, modified from Borozan and Cornuéjols [3] (See also Theorem
1 in Andersen et al. [1]).

Theorem 1. For the system

f +
∑

w∈Q2

wy(w) ∈ Z
2, y(w) ≥ 0 (2)

where y has a finite support, an inequality of the form
∑

w∈Q2 π(w)y(w) ≥ 1 is
minimal if the closure of the set

P (π) = {w ∈ Q
2|π(w − f) ≤ 1} (3)

is a maximal lattice-free convex set in R
2. Moreover, given a maximal lattice-free

convex set P (π) such that f ∈ interior(P (π)), the function

π(w) =
{

0 if w ∈ recession cone of P (π)
λ if f + w

λ ∈ Boundary(P (π)) (4)

is a minimal valid inequality for (2). �
One way to obtain valid cutting planes for two rows of a simplex tableau using
the minimal inequalities for (2) is to relax the non-basic integer variables to be
continuous variables. In order to strengthen such a cutting plane we need to
derive minimal inequalities for a system like (2) which also has integer variables.
Thus, the goal of this study is to lift integer variables into the minimal inequal-
ities for (2). This requires characterizing and analyzing valid lifting functions
and obtaining the strongest possible coefficients for the integer variables. (See
Nemhauser and Wolsey [12] for an overview on lifting).

In Sect. 2, we present the relationship between this lifting problem and mini-
mal inequalities for the mixed integer infinite-group problem. In Sect. 3 we study
the fill-in procedure of Johnson [11] and create a framework for analyzing the
strength of these inequalities. In Sect(s). 4 and 5 we prove that if P (π) is a tri-
angle with multiple integral points in the relative interior of one side or if P (π)
is a triangle with integral vertices and one integral point in the relative interior
of each side, then there exists a unique lifting function φ such that (φ, π) is min-
imal for the mixed integer group problem. In Sect. 6, we prove that if P (π) is a
triangle with non-integral vertices with exactly one integral point in the relative
interior of each side then there may not exist a unique function φ such that
(φ, π) is minimal. We then present sufficient conditions for the fill-in procedure
to generate minimal functions in this case. We conclude in Sect. 7.

2 Preliminaries

Observe that the integer variables in (2) have no sign restrictions. This cor-
responds to the so-called group relaxation that was discovered and studied by

Lifting Integer Variables in Minimal Inequalities 465

Gomory [6], Gomory and Johnson [7, 8, 10, 9] and Johnson [11]. We present no-
tation and a brief overview of mixed integer infinite group problem and establish
its relationship to (2).

Let I2 denote the infinite group of real two-dimensional vectors where addition
is taken modulo 1 componentwise, i.e., I2 = {(u1, u2) | 0 ≤ ui < 1 ∀1 ≤ i ≤ m}.
Let S2 represent the set of real two-dimensional vectors w = (w1, w2) that satisfy
max1≤i≤2|wi| = 1. For an element u ∈ R

2, we use the symbol P(u) to denote the
element in I2 whose ith entry is ui(mod 1). We use the symbol 0̄ to represent
the zero vector in R

2 and I2.
The mixed integer infinite group problem is defined next.

Definition 1 (Johnson [11]). Let U be a subgroup of I2 and W be any subset
of S2. Then the mixed integer infinite group problem, denoted here as MI(U, W,
r), is defined as the set of pairs of functions x : U → Z+ and y : W → R+ that
satisfy

1.
∑

u∈U ux(u) + P(
∑

w∈W wy(w)) = r, r ∈ I2,
2. x and y have finite supports. �

If all the x(u)’s are fixed to zero in MI(I2, S2, r), the problem would reduce
to that presented in (2) where r ≡ P(−f).1 Thus, we need to lift the integer
variables into the inequality π to obtain a pair of functions (φ, π) corresponding
to valid inequalities for MI(I2, S2, r). We next define these valid inequalities for
MI(I2, S2, r) more precisely.

Definition 2 (Johnson [11]). A valid function for MI(I2, S2, r) is defined as
a pair of functions, φ : I2 → R+ and μφ : S2 → R+, such that

∑
u∈I2 φ(u)

x(u) +
∑

w∈S2 μφ(w)y(w) ≥ 1, ∀(x, y) ∈ MI(I2, S2, r), where φ(0̄) = 0 and
φ(r) = 1. �

[We will use the terms valid inequality and valid function interchangeably]. Note
here that the relationship between the functions π of Theorem 1 and μφ : S2 →
R+ in Definition 2 is straight forward. Since π is positively homogenous, we
can construct μφ in a well-defined fashion by restricting the domain of π to S2.
Conversely, given μφ, π is the gauge function which is the homogenous extension
of μφ. Because of this close relationship, we will use the same symbol for both
the functions. See Gomory and Johnson [9] for a presentation of how these
inequalities can be used to generate valid cutting planes for two rows of a simplex
tableau. Next we define the notion of minimal inequalities.

Definition 3 (Johnson [11]). A valid function (φ, π) is minimal for MI(U,
W, r) if there does not exist a valid function (φ∗, π∗) for MI(U, W, r) different
from (φ, π) such that φ∗(u) ≤ φ(u) ∀u ∈ U and π∗(w) ≤ π(w) ∀w ∈W . �
1 Note here that columns corresponding to the continuous variables are assumed to

be rational in (2). However, we will assume that W = S2. The function π can be
computed for irrational values using Theorem 1. Therefore, this assumption does
not pose any difficulties.

466 S.S. Dey and L.A. Wolsey

Therefore, given the function π : R
2 → R+, the goal of this study is to derive

a function φ : I2 → R+ so that the pair (φ, π) forms minimal inequality for
MI(I2, W, r). We next present a proposition (that uses Lemma 5 of Andersen et
al. [1] for its proof) to classify maximal lattice-free triangles in R

2. Each category
is separately analyzed in Sect. 4-6.

Proposition 1. If P is a maximal lattice-free triangle in R
2, then exactly one

of the following is true:

1. One side of P contains more than one integral point in its relative interior.
2. All the vertices are integral and each side contains one integral point in its

relative interior.
3. The vertices are non-integral and each side contains one integral point in its

relative interior. �

3 Coefficient for Integer Variables: Fill-In Procedure

We begin this Sect. with a presentation of the fill-in procedure developed by Go-
mory and Johnson [8] and Johnson [11] that is used to generate valid inequalities
for the infinite group problem. We then present some techniques to analyze the
minimality of the inequalities that are constructed using the fill-in procedure.
Finally, we present conditions under which the fill-in inequalities are extreme.

Definition 4 is adapted from the original definition of fill-in procedure.

Definition 4 (Fill-in procedure). Let P (π) be a bounded lattice-free convex
set. Let G be a subset of I2 such that the subgroup of I2 generated by G is finite.
Let V : G→ R+ be a function such that∑

u∈G

x(u)V (u) +
∑

w∈S2

y(w)π(w) ≥ 1 (5)

is satisfied for every (x, y) ∈ MI(I2, S2, r) such that x(u) = 0 ∀u /∈ G. Define
the fill-in function φG,V : I2 → R+ as follows:

φG,V (u) = minn(v)∈Z+

{∑
v∈G

n(v)V (v) + π(w) |
∑
v∈G

n(v)v + w ≡ u

}
. (6)

�

It can be verified that the construction of φG,V is equivalent to the original
fill-in procedure of Johnson [11] in which we start with the subgroup SG of
I2 generated by G and the valid function φ̃ : SG → R+ defined as φ̃(v) =
minn(u)∈Z+{

∑
u∈G n(u)V (u)|∑u∈G n(u)u = v}. It is easily verified that the pair

(φG,V , π) forms a subadditive valid inequality for MI(I2, S2, r).
The fill-in procedure may be interpreted as a two-step lifting scheme. In the

first step we obtain the inequality (5) by lifting integer variables corresponding
to columns in the set G. The lifting coefficients, (i.e., V) may depend on the

Lifting Integer Variables in Minimal Inequalities 467

order of lifting of these variables, i.e., for a given set G there may exist two
different functions V1 and V2 such that both functions eventually yield strong
cutting planes for MI(I2, S2, r). Once the integer variables corresponding to
columns in the set G are lifted, the lifting in the second step (of the rest of the
integer variables) is completely defined by the choice of G and V .

It can be verified that the function φG,V can be evaluated in finite time for
each u ∈ I2. We next study conditions under which φG,V is a minimal function.
We begin with some results regarding π and φ{0̄},{0} (We denote φ{0̄},{0} by φ0̄).

Proposition 2. If π satisfies at least one point at equality for (2), then φ0̄(r)
= 1. �
We next define a subset of I2 for which we are guaranteed ‘good’ coefficients
even if the set G only contains the element 0̄. This result helps in proving that
under certain conditions the lifting function is unique.

Definition 5. Let d1 , d2, ... be the extreme rays of P (π), i.e., di + f are the
extreme points of P (π). Let si be the line segment between vertices di + f and
di+1 + f (where d4 := d1 when P (π) is triangle). Let pi be the set of integer
points in the relative interior of si. For an integral point Xj ∈ pi, let δijdi +
(1− δij)di+1 + f = Xj where 0 < δij < 1. Define the Dij(π) = {ρdi + γdi+1|0 ≤
ρ ≤ δij , 0 ≤ γ ≤ 1− δij}. Let D(π) = ∪i,jDij(π). �
See Fig(s). 2 and 3 for illustration of D(π) (represented as the shaded region
within the triangle).

Proposition 3. Let P (π) be a bounded maximal lattice free convex set. For any
v ∈ D(π) the following are true:

1.
∑

u∈I2 ux(u)+
∑

w∈R2 wy(w)+f ∈ Z
2 has a solution (x̄, ȳ) with x̄(P(v)) > 0

which satisfies the cutting plane (φ0̄, π) at equality.
2. φ0̄(P(v)) = π(v).
3. φ0̄(P(v)) + φ0̄(P(r − v)) = 1.
4. If (φ̄, π) is any valid inequality for MI(I2, S2, r), then φ̄(P(v)) ≥ φ0̄

(P(v)). �
Corollary 1. Let P (π) be a bounded maximal lattice free convex set. Then

limh→0+
φ0̄(P(wh))

h = π(w) ∀ w ∈ R
2. �

Similar to the proof of Proposition 3 the following result can be proven.

Proposition 4. Let P (π) be a maximal lattice-free triangle. If u∗ /∈ D(π) and
φ0̄(P(u∗)) = π(u∗), then φ0̄(P(u∗)) + φ0̄(P(r − u∗)) > 1. �
Using a characterization for minimal inequalities for MI(I2, S2, r) from John-
son [11] (Theorem 6.1), Proposition 2, Corollary 1, Proposition 4, and the fact
that φG,V ≤ φ0̄ we can now verify the following result.

Corollary 2. If π is a valid and minimal function for (2) and φG,V (u) + φG,V

(r − u) = 1 ∀u ∈ I2, then (φG,V , π) is minimal for MI(I2, S2, r). Moreover,
(φ0̄, π) is minimal for MI(I2, S2, r) iff P(D(π)) = I2. �

468 S.S. Dey and L.A. Wolsey

If the function φG,V is minimal, then we show that it must be the unique minimal
function. The proof uses the fact that minimal functions must be subadditive.
This result allows us to construct extreme inequalities for the infinite group
problem using the modified fill-in procedure.

Theorem 2. Let (φG,V , π) be minimal for MI(I2, S2, r). If (φ′, π) is any valid
minimal function for MI(I2, S2, r) such that φ′(u) = V (u) ∀u ∈ G, then φ′(v) =
φG,V (v) ∀v ∈ I2. �
We say that (V, π) is an extreme inequality if (V1, π1) and (V2, π2) are valid
inequalities like (5) and V = 1

2V1 + 1
2V2, π = 1

2π1 + 1
2π2 imply that V1 = V2 = V ,

π1 = π2 = π.

Corollary 3. If (V, π) is extreme and (φG,V , π) is minimal for MI(I2, S2, r),
then (φG,V , π) is an extreme valid inequality for MI(I2, S2, r). �

4 Multiple Integral Points in the Relative Interior of One
Side

We begin with a construction that has properties similar to that of a maxi-
mal lattice-free triangle with multiple integral points in the relative interior of
one side. We denote the length of a line segment uv as |uv|. An illustration of
Construction 1 is given in Fig. 1.

Construction 1. Let abc be any nontrivial triangle, i.e., a, b, and c are distinct
points. Let d be any point in the interior of the triangle. Let ew be a line segment

b

a

c

e

w

d

g

h

r
k

n

s

i j

p

mt

q
u

l

Fig. 1. An example of Construction 1

Lifting Integer Variables in Minimal Inequalities 469

parallel to the side bc where e belongs to the relative interior of line segment ab
and w belongs to the relative interior of the line segment ac. Let ep and wm be
line segments parallel to ad, meeting bd and cd at p and m respectively. This is
a well-defined step, since bda and cda form non trivial triangles.

Let q be the point at which the line passing through ep meets bc. Let gh
be a line segment on bc such that it has the same length as that of ew. (This
is well-defined since e and w belong to the relative interior of lines ab and ac.
Therefore |gh| = |ew| < |bc|). WLOG of generality, we assume that g lies to the
left of q. (The proof will be similar for the case when g is to the right of q).

Let ei be a line segment parallel to bd meeting ad at i. Let wj be a line
segment parallel to cd meeting ad at j. Let kg be a line parallel to dc meeting
bd at k. Let gr be a line segment parallel to bd meeting dc at r. Let t be the
point at which the line passing through ep meets gr. Let hn be a line segment
parallel to bd meeting dc at n. Let hs be a line segment parallel to dc meeting
bd at s. (It can be verified that these construction steps are well-defined). Let l
be the point of intersection of gr and hs. [This is well-defined: Since d is in the
strict interior of the triangle abc, bd and cd are not parallel. Therefore the lines
passing through the segments gr and hs are not parallel and must intersect.] �
Proposition 5. For Construction 1,

1. i and j are the same point. There exists a point u such that wm extended to
wu intersects hn.

2. Triangle glh is symmetric to triangle eiw. [Two triangles are symmetric if
the length of their three sides are equal]

3. Triangle wuh is symmetric to etg. �
Using Proposition 5, we can prove the main result of this Sect., that is presented
next.

Theorem 3. If P (π) is a maximal lattice-free triangle with multiple integral
points in the relative interior of one side, then (φ, π) is minimal for MI(I2, S2, r)
iff φ = φ0̄. �
This result is similar to the result in one dimension where the unique lifting
function yields GMIC. We sketch the main steps in the proof of Theorem 3:

1. Any maximal lattice-free triangle with multiple integral points in the relative
interior of one side can be represented by the triangle abc in Construction 1,
where the point d represents f (this is the fractional vector in (2)) and the
points e, w, g, h represent the integral points in the relative interior of each
side.

2. Using (2.) and (3.) of Proposition 5, it can be verified that P(D(π)) =
P(ewgh). Finally, it can be shown that P(ewgh) = I2 since ew and gh must
be parallel and e, w, g, h represent integral points. The result now follows
from Corollary 2.

Figure 2 shows a maximal lattice-free triangle with 3 integral points in the
relative interior of one of its sides (D(π) is represented as the shaded region)
and the function φ0̄.

470 S.S. Dey and L.A. Wolsey

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1f

Fig. 2. Lattice-free Triangle with more than one integral point in the relative interior
of one side

5 Single Integral Point in the Relative Interior of Each
Side and Integral Vertices

We begin this Sect. with the observation that since (2) is a modular equation,
without loss of generality, we may replace f with f + (n1, n2), where n1, n2 ∈ Z

are such that one of the integral points in the relative interior of the side of the
triangle in (0, 0). The next proposition shows that a study of a specific subclass
of triangles allows us to generalize results to any triangle in this category.

Proposition 6. Let P (π) be a maximal lattice-free triangle with f ∈ interior
P (π). Let M be a two-by-two unimodular matrix. Let MP (π) = {(x1, x2)|M−1

(x1, x2) ∈ P (π)}. Define the functions Mφ : I2 → R+ and Mπ : R
2 → R+ as

Mφ(u) = φ(P(M−1u)) and Mπ(w) = π(M−1w). (Note that Mπ is the function
corresponding to the maximal lattice free triangle MP (π) and Mf ∈ MP (π).)
Then (φ, π) is a minimal inequality for MI(I2, S2, r) iff (Mφ, Mπ) is a minimal
inequality for MI(I2, S2, P(Mr)). �
We have assumed that one of the integral points in the relative interior of the
side of the triangle in (0, 0). Now by applying a suitable unimodular matrix
transformation, we can assume without loss of generality that the other two
integral point in the relative interior of the other two sides of the triangle are
(1, 0), and (0, 1). Now using a proof similar to that of Theorem 3 and using
Proposition 6 we can prove the following result.

Theorem 4. If P (π) is a maximal lattice-free triangle with integral vertices and
one integral point in the relative interior of each side, then (φ, π) is minimal for
MI(I2, S2, r) iff φ = φ0̄. �
Figure 3 show an example of a lattice-free triangle and φ0̄ is this case.

Lifting Integer Variables in Minimal Inequalities 471

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

f

Fig. 3. Lattice-free triangle with integral vertices and one integral point in the relative
interior of each side

6 Single Integral Point in the Relative Interior of Each
Side and Non-integral Vertices

In this Sect., we first show that in contrast to the previous cases, if P (π) is a
triangle with single integral point in the relative interior of each side and non-
integral vertices, then (φ0̄, π) is not minimal. We then present some sufficient
conditions for generating a minimal inequality using the fill-in procedure.

By Proposition 6, we need to only analyze triangles whose integral points in
the relative interior of its sides are: (0, 0), (1, 0), and (0, 1). Let s1, s2 and s3

be the sides of P (π) passing through (1, 0), (0, 1), and (0, 0) respectively. It can
be verified that either the slope of s1 is positive (and s1 is not vertical) and the
slope of s2 is negative or vice-verse. Henceforth we assume WLOG that slope of
s1 is negative and the slope of s2 is positive (and s1 is not vertical).

To prove that (φ0̄, π) is not minimal, we show that P(D(π)) is a proper subset
of I2 and then use Corollary 2. This is achieved by verifying that the area of
D(π) is less than 1 in this case.

Proposition 7. The area of D(π) is maximized if f is one of the vertices of
P (π). �
Now using Propositions 7 and 6 and checking for the maximum possible area of
D(π) we obtain the following result.

Theorem 5. If P (π) is a lattice-free triangle with single integral point in the rel-
ative interior of each side and non-integral vertices, then (φ0̄, π) is not minimal
for MI(I2, S2, r). �

Example 1. Let P (π) be the triangle with vertices (0.25, 1.25), (−0.75, 0.25),
and (1.25,−5/12) and let f = (0.5, 0.5). Then it can be verified that P (π) is a

472 S.S. Dey and L.A. Wolsey

Fig. 4. Example where the function φ0̄ is not minimal. φv0,Vv0 is minimal. There exist
distinct functions φv0 and φ2 such that (φv0 , π) and (φ2, π) are minimal.

lattice-free triangle with only one integer point in the relative interior of each of
its sides and non-integral vertices. φ0̄(0.1, 0.2) = 1.1 and φ0̄ is not minimal. Also
there are two distinct functions φv0 (see notation/result of Theorem 6) and φ2

such that both (φv0 , π) and (φ2, π) are minimal. See Fig. 4. �

Therefore, starting from different sets G and corresponding functions V , it
may be possible to construct different functions φG,V that are all minimal.
We first concentrate on the case when G is a single non-zero element set. In
this specific case, we use the notation φu to denote φ{u},V (u) where V (u) =
maxn∈Z,n≥1

{
1−π(w)

n |w ≡ r − nu
}
.

The main result on this Sect. is presented next. (This result can be used for
any lattice-free maximal triangle with non-integral vertices and only one integral
point in the relative interior of each side by using Proposition 6).

Theorem 6. Let P (π) be a triangle whose integral points in the relative
interior of its sides are: (0, 0), (1, 0), and (0, 1). Let the slope of s1 be neg-
ative (and not vertical) and the slope of s2 be positive. Define 0 < δ12, δ23,
δ31 < 1 such that δ12d1 +(1−δ12)d2 +f = (1, 0), δ23d2 +(1−δ23)d3 +f = (0, 1),
and δ31d3 + (1− δ31)d1 + f = (0, 0). Let û =

(
1−δ12+δ23

2

)
d2 + (δ12 + δ31− 1)d1.

Denote P(r − û) by v0. If V (v0) = 1 − π(û), then (φv0 , π) is minimal for
MI(I2, S2, r). �
We sketch the main steps in the proof of Theorem 6:

1. Construct a set T (π) defined as follows: (Refer to Fig. 5)
(a) Let Q1 be the quadrilateral whose vertices are: f + (1 − δ12)d2 (repre-

sented by j), f + δ23d2 (represented by i), f + δ23d2 + (δ12 − 1 + δ31)d1

(represented by o), f +(1− δ12)d2 +(δ12−1+ δ31)d1 (represented by p).

Lifting Integer Variables in Minimal Inequalities 473

(b) Let Q2 be the quadrilateral whose vertices are: f + δ31d3 (represented
by k) , f + δ31d3 +(δ23−1+ δ12)d2 (represented by q), f +(1− δ23)d3 +
(δ23 − 1 + δ12)d2 (represented by z), f + (1− δ23)d3 (represented by l).

(c) Let Q3 be the quadrilateral whose vertices are: f +δ12d1 (represented by
m), f +(1− δ31)d1 (represented by n), f +(1− δ31)d1 +(δ31−1+ δ23)d3

(represented by t), f + δ12d1 + (δ31 − 1 + δ23)d3 (represented by s).
(d) Let T (π) = (D(π)+{f})∪Q1∪Q2∪Q3. (Note D(π)+{f} is represented

by dihl, dken, and dmgj).
2. Prove that P(T (π)) = I2. This involves applying a sequence of lattice-

preserving operations to subsets of T (π) as shown in Fig. 6.
3. Refer to fig. 5. The point û + f which is represented by u0, is the center of

the line segment op. Let u10 be the center of the line segment qk. Let α be
the center of ij, i.e., α = f + 1

2 (1−δ12+δ23)d2. Let β be the center of zl, i.e.,
β = f + (1− δ23)d3 + 1

2 (1− δ12)d2. We use the symbols Q11, Q12, Q21, and
Q22 to represent the quadrilateral {α, j, p, u0}, {α, i, o, u0}, {k, l, β, u10}, and
{β, z, q, u10} respectively. Construct the function φ1 : T (π)→ R+ as follows.

φ1(u) =

�����
����

Vv0 + π(u − f − (1 − δ31)d1 + 1
2
(−1 + δ12 + δ23)d2 − (0, 1)) if u ∈ Q12

Vv0 + π(u − f − (1 − δ31)d1 + 1
2
(−1 + δ12 + δ23)d2 − (−1, 1)) if u ∈ Q22

Vv0 + π(u − f − (1 − δ31)d1 + 1
2
(−1 + δ12 + δ23)d2) if u ∈ Q3

π(u − f) otherwise

4. Construct the function φ̃(u) = min{φ1(w)|w ∈ T (π), P(w − f) = u}. Prove
that φ̃ ≥ φv0 .

5. Prove that φ̃(u) + φ̃(r − u) = 1 ∀u ∈ I2.

−0.5 0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

a

b

c

d

g

h

e

i

α

k

m

j

p
l

β

z

n

t

o

u
0

q

u1
0

s

Q11

Q12

Q21

Q22

Q3

Fig. 5. Figure illustrating u0, α, and β

474 S.S. Dey and L.A. Wolsey

Fig. 6. Sequence of operations to prove that P(T (π)) = I2

6. Now use the following theorem from Johnson [11]: If φ : I2 → R+ is a valid
function for MI(I2, ∅, r) and if φ(u) + φ(r − u) ≤ 1 ∀u ∈ I2, then φ is
subadditive. This shows that (φ̃, π) is minimal and that φ̃ = φv0 .

7 Conclusion

In this paper, we analyzed lifting functions for nonnegative integer variables
when starting from minimal valid inequalities for a system of two rows with
two free integer variables and nonnegative continuous variables. We proved that
unique lifting functions exist in the case when the original inequality for the
continuous variables corresponds to either a maximal lattice-free triangle with
multiple integral points in the relative interior of one of its sides or a maximal
lattice-free triangle with integral vertices and one integral point in the relative
interior of each side. The resulting lifted inequality is minimal for MI(I2, S2, r).
In Theorem 6, we showed that under suitable conditions, starting with a specific
cyclic subgroup of I2 and using the fill-in procedure leads to minimal inequalities
for MI(I2, S2, r) when the inequality π corresponds to a lattice-free triangle with
non-integral vertices and one integral point in the relative interior of each side.

We hope that these new families of minimal inequalities for MI(I2, S2, r)
may perform well computationally, since the coefficient for continuous variables
in these inequalities is not dominated by any other inequality for the two-
dimensional infinite group problem. These inequalities may also prove to be
a source for numerically stable high-rank cuts.

Future research directions include analysis of maximal lattice-free quadrilat-
erals and extensive computational experiments.

References

[1] Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.: Cutting planes from two
rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) Proceedings
12th Conference on Integer and Combinatorial Optimization, pp. 30–42. Springer,
Heidelberg (2007)

Lifting Integer Variables in Minimal Inequalities 475

[2] Balas, E.: Intersection cuts - a new type of cutting planes for integer programming.
Operations Research 19, 19–39 (1971)

[3] Borozan, V., Cornuéjols, G.: Minimal inequalities for integer constraints (2007),
http://integer.tepper.cmu.edu

[4] Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer pro-
gramming problems. Mathematical Programming 58, 155–174 (1990)

[5] Cornuéjols, G., Margot, F.: On the facets of mixed integer programs with two
integer variables and two constraints (2007),
http://wpweb2.tepper.cmu.edu/fmargot/rec pub.html

[6] Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra
and Applications 2, 341–375 (1969)

[7] Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra, part I. Mathematical Programming 3, 23–85 (1972)

[8] Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra, part II. Mathematical Programming 3, 359–389 (1972)

[9] Gomory, R.E., Johnson, E.L.: T-space and cutting planes. Mathematical Pro-
gramming 96, 341–375 (2003)

[10] Gomory, R.E., Johnson, E.L., Evans, L.: Corner polyhedra and their connection
with cutting planes. Mathematical Programming 96, 321–339 (2003)

[11] Johnson, E.L.: On the group problem for mixed integer programming. Mathemat-
ical Programming Study 2, 137–179 (1974)

[12] Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience, New York (1988)

http://integer.tepper.cmu.edu
http://wpweb2.tepper.cmu.edu/fmargot/rec_pub.html

Author Index

Archer, Aaron 316
Armbruster, Michael 112

Balas, Egon 416
Berger, André 273
Bernáth, Attila 401
Bertsimas, Dimitris 34
Bonami, Pierre 17
Bonifaci, Vincenzo 273

Carnes, Tim 288
Chakrabarty, Deeparnab 344
Conforti, Michele 435

Devanur, Nikhil R. 344
Dey, Santanu S. 463
Di Summa, Marco 435

Espinoza, Daniel G. 214

Fischetti, Matteo 416
Fleiner, Tamás 385
Fügenschuh, Marzena 112

Georgiou, Konstantinos 140
Grandoni, Fabrizio 273
Guan, Yongpei 450
Günlük, Oktay 1

Halldórsson, Magnús M. 359
Helmberg, Christoph 112

Jansen, Klaus 184

Kawarabayashi, Ken-ichi 47, 374
Király, Tamás 259, 401
Kobayashi, Yusuke 47
Kortsarz, Guy 359
Krishnan, Shankar 316

Lau, Lap Chi 259
Lee, Jon 17
Letchford, Adam N. 125
Linderoth, Jeff 1, 225
Lulli, Guglielmo 34

Magen, Avner 140
Martens, Maren 97
Martin, Alexander 112
McCormick, S. Thomas 97
Miller, Andrew 450
Munagala, Kamesh 169

Nagarajan, Chandrashekhar 303
Nagarajan, Viswanath 154
Nemhauser, George L. 199

Odoni, Amedeo 34
Oriolo, Gianpaolo 77
Orlin, James B. 240
Ostrowski, James 225

Pietropaoli, Ugo 77

Rossi, Fabrizio 225

Saxena, Anureet 17
Schäfer, Guido 273
Shi, Peng 169
Shmoys, David 288, 331
Singh, Mohit 259
Smriglio, Stefano 225
Solis-Oba, Roberto 184
Sørensen, Michael M. 125
Stauffer, Gautier 77
Sviridenko, Maxim 154, 359

Takazawa, Kenjiro 62
Talwar, Kunal 331
Tourlakis, Iannis 140

Vazirani, Vijay V. 344
Vielma, Juan Pablo 199

Williamson, David P. 303
Wolsey, Laurence A. 435, 463

Zanette, Arrigo 416

	Title Page
	Preface
	Organization
	Table of Contents
	Perspective Relaxation of Mixed Integer Nonlinear Programs with Indicator Variables
	Introduction
	A Quadratic Set with Variable Bounds
	A Simple Set
	An Extended Formulation
	Convex Hull Description in the Original Space
	SOCP Representation

	A Generalization and Connections to Previous Work
	Reformulation in the Original Space
	Convex Hulls of Convex Sets
	Perspective Cuts

	Applications
	Separable Quadratic UFL
	Network Design with Congestion Constraints

	Conclusions

	Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs
	Introduction
	Disjunctive Programming
	Valid Disjunctions for MIQCP
	More Disjunctions
	Computational Results

	The Air Traffic Flow Management Problem: An Integer Optimization Approach
	Introduction
	The Mathematical Model
	The Mathematical Formulation

	Computational Experience
	Regional Size Instances
	National Size Instances

	Conclusions

	The Induced Disjoint Paths Problem
	Introduction
	Disjoint Paths Problem
	Induced Disjoint Paths Problem
	Our Contribution
	Basic Notation

	Hardness Results
	Polynomial Time Algorithm for the DIDPP in Planar Graphs
	Preliminaries for the Proof
	Proof of Theorem 4

	Linear Time Algorithm for the IDPP in a Planar Graph
	Deletable Vertex
	Algorithm

	A Weighted Kt,t-Free t-Factor Algorithm for Bipartite Graphs
	Introduction
	A Maximum Square-Free 2-Matching Algorithm
	A Weighted Square-Free 2-Factor Algorithm
	Extension to Kt,t-Free t-Factors
	Concluding Remarks

	A New Algorithm for the Maximum Weighted Stable Set Problem in Claw-Free Graphs
	Introduction
	Reductions for the Maximum Weighted Stable Set Problem
	A Simple Reduction for Strips-Composed Graphs
	Semi-homogeneous Pairs of Cliques

	From Claw-Free Graphs to Quasi-Line Graphs
	From Quasi-Line Graphs to Bipolar-Free Quasi-Line Graphs
	A Decomposition Theorem for Bipolar-Free Quasi-Line Graphs
	Distance Simplicial Graphs
	The Decomposition Algorithm

	A Polynomial Algorithm forWeighted Abstract Flow
	Introduction
	Hoffman's Model

	Preliminaries
	Accessing the Abstract Network Via an Oracle

	The Successive Shortest Path Framework
	Solving Restricted Abstract Max Flow/Min Cut
	The RAMFMC Algorithm

	The WAF Algorithm
	Computing Step Length
	WAF Algorithm Running Time

	A Polynomial Capacity-Scaling WAF Algorithm
	Solving the Incremental Capacity Subproblem
	The Capacity-Scaling Algorithm

	A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods for Solving the Minimum Graph Bisection Problem
	Introduction
	Valid Inequalities for PB
	Linear and Semidefinite Relaxations for MB
	Computational Results
	Conclusion

	Binary Positive Semidefinite Matrices and Associated Integer Polytopes
	Introduction
	Characterisation
	Polytopes
	The Binary Psd Polytope
	The Boolean Quadric Polytope
	The Clique Partitioning Polytope
	The Cut and Multicut Polytopes

	Valid Inequalities
	Some Simple Results
	Hypermetric Correlation Inequalities
	Gap Inequalities
	Inequalities Related to Cycles and Paths
	Lifting Facets of the Clique Partitioning Polytope

	Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities
	Introduction
	Preliminaries
	Construction and Proof
	Hypermetric Inequalities vs. Lovász-Schrijver SDP Lift-and-Project

	Tight Bounds for Permutation Flow Shop Scheduling
	Introduction
	Related Work
	Our Results and Paper Outline
	Preliminaries

	Randomized Algorithm for Minimizing Makespan
	A Deterministic Algorithm
	Properties of the Pessimistic Estimator
	Applying the Pessimistic Estimators

	Weighted Sum of Completion Times

	The Stochastic Machine Replenishment Problem
	Introduction
	LP Bound and the 2 Approximation
	Exploiting Queuing Structure in GREEDY
	Numerically Computing the Approximation Ratio
	Reduction to a Shortest Path Problem
	Solving Problem 3: A Computer-Based Technique and Its Analysis

	A Polynomial Time Approximation Scheme for the Square Packing Problem
	Introduction
	Big and Small Squares
	Instances without Big Squares
	Instances with High Profit Big Squares
	Blocks
	Assigning Squares to Blocks
	Large Blocks
	Elongated Blocks
	Composite Small Blocks

	Instances with a Low Profit Big Square
	Structure of a Near Optimum Solution
	The Algorithm
	Selecting the Squares

	Modeling Disjunctive Constraints with aLogarithmic Number of Binary Variables and Constraints
	Introduction
	Modeling a Class of Hard Combinatorial Constraints
	Branching and Modeling with a Logarithmic Number of Binary Variables and Constraints
	Modeling Nonseparable Piecewise Linear Functions of Two Variables
	Computational Results
	Conclusions

	Computing with Multi-row Gomory Cuts
	Introduction
	The Infinite Relaxation
	Selecting a Subclass of Valid Inequalities, and Separating Them
	Computational Results
	Final Remarks and Conclusions

	Constraint Orbital Branching
	Introduction
	Preliminaries

	Constraint Orbital Branching
	Strong Branching Disjunctions, Subproblem Structure, and Enumeration
	Case Studies
	Steiner Triple Systems
	Computational Results
	Covering Designs
	Computational Results

	Conclusions

	A Fast, Simpler Algorithm for the Matroid Parity Problem
	Introduction
	Linear Matroids, Matchings, and Pseudomatchings
	Duality for the LMPP
	An Overview of the Matroid Parity Algorithm
	Algorithm Invariants
	Eligible Lines and Optimality Conditions
	Restoring Orthogonality
	The (P,Q)-Matroid Intersection Problem
	Transforming the Pseudomatchings
	Creating Pseudopoints and Hypermatchings
	Analysis of Running Time
	Summary and Conclusions

	Degree Bounded Matroids and Submodular Flows
	Introduction
	Minimum Bounded Degree Matroid Basis
	Minimum Bounded Degree Submodular Flow

	Applications
	Minimum Crossing Spanning Tree
	Minimum Bounded-Ones Binary Matroid Basis
	Minimum Bounded Degree Spanning Tree Union
	Minimum Bounded Degree Directed Cut Cover
	Minimum Bounded Degree Graph Orientation

	Minimum Bounded Degree Matroid Basis
	Minimum Bounded Degree Submodular Flow
	Hardness of the Feasibility Problem

	Budgeted Matching and Budgeted Matroid Intersection Via the Gasoline Puzzle
	Introduction
	Preliminaries
	Matroids
	Lagrangian Relaxation
	The Gasoline Puzzle

	A PTAS for the Budgeted Matching Problem
	A PTAS for the Budgeted Matroid Intersection Problem
	Finding Adjacent Common Bases
	Merging Adjacent Common Bases

	Concluding Remarks and Open Problems
	Exact Perfect Matching and Budgeted Matching

	Primal-Dual Schema for Capacitated Covering Problems
	Introduction
	Minimum Knapsack
	Single-Demand Facility Location
	Single-Item Lot-Sizing with Linear Holding Costs

	Offline and Online Facility Leasing
	Introduction
	Definitions and Terminology
	An Algorithm for Offline Facility Leasing
	The Algorithm
	The Analysis

	Fotakis' Online Facility Location Algorithm
	The Algorithm
	The Analysis

	An Algorithm for Online Facility Leasing
	The Algorithm
	The Analysis

	Conclusion

	Importance Sampling via Load-Balanced Facility Location
	Introduction
	The Model
	Our Algorithm and Analytic Framework
	Analysis of the Factor-Revealing LP
	Experimental Results

	A Constant Approximation Algorithm for the a priori Traveling Salesman Problem
	Introduction
	The Approximation Algorithm
	Preliminaries
	Special Case: p1=1
	General Case
	Derandomization

	Conclusions

	New Geometry-Inspired Relaxations and Algorithms for the Metric Steiner Tree Problem
	Introduction
	Related Work
	Preliminaries

	A Geometric Lower Bound and Its Consequences
	An Embedding Algorithm

	The 2 Factor Approximation Algorithm
	The 43 Factor Approximation Algorithm
	Discussion

	Min Sum Edge Coloring in Multigraphs Via Configuration LP
	Introduction
	Our Results

	An Overview of the Main Algorithm
	An Approximation Algorithm Using Configuration LP
	The Randomized Rounding Algorithm
	Analysis

	Combinatorial Approach

	An Improved Algorithm for Finding Cycles Through Elements
	Introduction
	Overview of Our Algorithm
	Definitions and Preliminaries
	Main Proof

	The Stable Roommates Problem with Choice Functions
	Introduction
	Preliminaries
	Proof of the Main Result
	Complexity Issues
	A Coloring Property of Stable Partnerships
	Conclusion, Open Questions

	A New Approach to Splitting-Off
	Introduction
	Preliminaries
	Characterization of the Stuck Case
	Greedy Problems
	General Observations on the Stuck Case
	Crossing Supermodular Functions
	Crossing Negamodular Functions

	Applications
	Simple Proofs
	Local Edge-Connectivity Augmentation of Hypergraphs
	Global Arc-Connectivity Augmentation of Mixed Hypergraphs

	Can Pure Cutting Plane Algorithms Work?
	Introduction
	Gomory Cuts
	Degeneracy and the Lexicographic Dual Simplex
	Heuristics Variants
	Computational Results
	Conclusions and Future Work

	The Mixing Set with Divisible Capacities
	Introduction
	Expansion of a Number
	The Vertices of conv(DIV)
	Linearizing (10)
	Strengthening (16)--(17)
	The Main Result
	The Mixing Set with Divisible Capacities and Nonnegative Integer Variables
	An Instance with Non-TU Matrix

	Remarks and Open Questions

	A Polynomial Time Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem with Backlogging
	Introduction
	Notation and Mathematical Formulation
	A Dynamic Programming Framework
	Stochastic Uncapacitated Lot-Sizing Problem with Backlogging
	Conclusions

	Lifting Integer Variables in Minimal Inequalities Corresponding to Lattice-Free Triangles
	Introduction
	Preliminaries
	Coefficient for Integer Variables: Fill-In Procedure
	Multiple Integral Points in the Relative Interior of One Side
	Single Integral Point in the Relative Interior of Each Side and Integral Vertices
	Single Integral Point in the Relative Interior of Each Side and Non-integral Vertices
	Conclusion

	Author Index

