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Abstract. Reasoning about object-oriented programs is hard, due to
aliasing, dynamic binding and the need for data abstraction and framing.
Reasoning about concurrent object-oriented programs is even harder,
since in general interference by other threads has to be taken into account
at each program point.

In this paper, we propose an approach to the automatic verification
of concurrent Java-like programs. The cornerstone of the approach is
a programming model, a set of rules, which limits thread inference to
synchronization points such that one can reason sequentially about most
code. In particular, programs conforming to the programming model are
guaranteed to be data race free. Compared to previous incarnations of
the programming model, our approach is more flexible in describing the
set of memory locations protected by an object’s lock. In addition, we
combine the model with an approach for data abstraction and framing
based on dynamic frames. To the best of our knowledge, this is the first
paper combining dynamic frames and concurrency.

We implemented the approach in a tool, called VeriCool, and used it
to verify several small concurrent programs.

1 Introduction

In recent years, multi-processor and multi-core computers have become a com-
modity. To leverage the power provided by these multi-processor machines within
a single application, developers must resort to multithreading. However, writing
correct multithreaded programs is challenging. First of all, the non-determinism
caused by thread scheduling makes finding errors through testing much less
likely. Moreover, even when anomalies show up, they can be hard to reproduce.
Secondly, reasoning about concurrent programs is hard, since in general inter-
ference by concurrently executing threads has to be taken into account at each
program point. In particular, when threads concurrently access a shared data
structure, special care has to be taken to avoid data races.

A data race occurs when two threads simultaneously access a shared memory
location, and at least one of these accesses is a write access. Developers typically
consider data races to be errors, since races can lead to hard-to-find bugs, and
because they give rise to counter-intuitive, non-sequentially consistent executions
under the Java memory model [1].

A simple strategy to prevent data races is to enclose each field access o.f
within a synchronized(o) block. Although this strategy is safe and rules out
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non-sequentially consistent executions, it is rarely used in practice, since it incurs
a major performance penalty, is verbose, and only prevents low-level races. In-
stead, standard practice is to only lock objects that are effectively shared among
multiple threads. However, it is difficult to determine which objects are meant
to be shared and what locations are protected by an object’s lock based solely
on the program text. Therefore, it is hard for a compiler to determine whether
the synchronization performed by the program suffices to rule out data races.

In this paper, we propose a programming model (a set of rules) such that
programs that conform to the model contain no data races. In addition, we define
a set of annotations to make the use of the programming model explicit. For
example, a developer can annotate his code to make explicit whether an object is
meant to be shared or not. Moreover, we explain how based on these annotations
one can modularly and automatically verify whether a given program conforms
to the model.

In summary, the contributions of this paper are as follows:

– We propose an approach to the automatic verification of concurrent Java-
like programs. The cornerstone of the approach is a programming model for
preventing data races. Compared to previous incarnations of the program-
ming model [2,3,4], the approach is more flexible in describing the locations
protected by an object’s lock. The additional flexibility allows us to verify
programs which cannot be verified in [2,3,4].

– To support data abstraction and framing, the approach relies on an exist-
ing solution based on dynamic frames [5,6]. A key insight of this paper is
that dynamic frames can not only be used for abstract framing, but also
to abstract over the locations protected by an object’s lock. To the best of
our knowledge, this is the first paper that combines concurrency and the
dynamic frames approach.

– We implemented the approach in a tool, and used it to verify several con-
current programs. The verifier can be downloaded from the authors’ home-
page [7].

The remainder of this paper is structured as follows. In Section 2, we describe a
programming model that ensures data race-freedom, and a way to verify whether
a given Java program conforms to the model. In Section 3, we extend the ap-
proach of Section 2 with support for data abstraction. Finally, we compare with
related work and conclude in Sections 4 and 5.

2 Preventing Data Races

In this section, we present the programming model that rules out data races
(2.1), describe the annotations needed for modular verification (2.2), show how
to statically verify whether an annotated program conforms to the model (2.3),
and finally we explain why this verification approach works (2.4).
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2.1 Programming Model

Our programming model prevents data races by ensuring that no two threads
can ever access the same memory location concurrently. More specifically, we
conceptually associate with each thread an access set, i.e. a set of memory loca-
tions that the thread can read and write, and the model guarantees that access
sets of different threads are disjoint at all times. In our model, a location consists
of an (object reference, field name) pair, and the location corresponding to o.f
is denoted &o.f . The access set of a thread can grow and shrink over time. More
specifically, four operations can affect a thread’s access set:

– Object creation. When a thread t creates a new object o, all locations
corresponding to fields of o are added to t’s access set. For example, consider
the constructor of the class Counter of Figure 1. At the beginning of this
constructor, the field count of the newly created Counter object is made
accessible to the current thread, and therefore it is safe to assign to the field
within the body of the constructor.

– Object sharing. In addition to the accessibility of each location, the pro-
gramming model also tracks each object’s sharedness. That is, the model

final class Counter {
int count ;

monitorfootprint
{ &count };

monitorinvariant
acc(count) ∧ 0 ≤ count ;

Counter()
ensures acc(count);
ensures ¬this.shared ;
ensures this.count = 0;

{
count = 0;

}
}

class Session implements Runnable {
shared Counter counter ;

Session(Counter c)
requires c.shared ;
ensures acc(counter);
ensures ¬this.shared ;

{ counter = c; }

void run()
requires acc(this.∗);
requires ∀{Object o • ¬o.locked};

{
synchronized(counter ){

counter .count + +;
}

}
}

Counter c = new Counter ();
share c;
new Thread(new Session(c)).start ();
new Thread(new Session(c)).start ();

Fig. 1. A small concurrent program. The main program creates a new Counter object
c, shares it, and then creates two threads. Each of these threads increments the counter
within a synchronized block.
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distinguishes unshared from shared objects. An unshared object is not meant
to be locked, and a program violates the model if it attempts to do so. Con-
ceptually, an unshared object has no corresponding lock. A shared object on
the other hand can be locked by any thread.

The set of locations protected by a shared object’s lock is called that ob-
ject’s monitor footprint. Our approach does not force the lock of an object o
to protect all of o’s fields, and therefore o’s monitor footprint does not nec-
essarily contain all fields of o. An object’s monitor invariant is a predicate
over its monitor footprint. Immediately after acquiring an object’s lock, one
may assume that the monitor invariant holds, and vice versa when releasing
the lock one must establish the monitor invariant. For example, the monitor
invariant of a Counter object o (Figure 1) states that the location corre-
sponding to the field o.count is accessible, and that the field holds a positive
value.

Initially, new objects are unshared. When the execution of a thread t
encounters a share o; statement1, o transitions from the unshared to the
shared state, provided o is not shared yet, o’s monitor footprint is accessible
to t, and o’s monitor invariant holds. In addition, the sharing thread t loses
access to all locations in o’s monitor footprint. This is the only way an
unshared object can become shared. After sharing, a thread must lock o
to gain access to the locations in o’s monitor footprint. Once an object is
shared, it can never revert to the unshared state.

– Acquiring and releasing locks. After sharing an object o, threads can
attempt to acquire o’s lock. Whenever a thread t acquires this lock (e.g. in
Java when t enters a synchronized(o) block), o’s monitor footprint becomes
accessible to t. Moreover, t may assume that o’s monitor invariant holds over
the locations in o’s monitor footprint immediately after the acquisition of
o’s lock. When t decides to release o’s lock, the thread again loses access
to all locations in o’s monitor footprint. Moreover, the programming model
enforces that t can only release the lock when the monitor invariant holds.

Note that an object’s monitor footprint can grow and shrink over time.
In particular, the monitor footprint at the time of locking does not have to
equal the footprint at the time of release. This way accessibility of locations
can be transferred from one thread to another.

– Thread creation. Starting a new thread transfers the accessibility of the
locations corresponding to fields of the receiver object of the thread’s main
method (i.e. the Runnable object in Java or the ThreadStart delegate in-
stance’s target object in .NET) from the starting thread to the started
thread. For example, starting a new thread with the Session object of
Figure 1 transfers accessibility of the object’s counter field from the starting
thread to the started thread.

The programming model described above is similar to the techniques used in
various extensions of separation logic [8,9,10,11]. We discuss them in Section 4.
1 The share statement is a special annotation which can appear in the body of a

program. It is discussed in more detail in Section 2.2.
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2.2 Annotations

Executions of programs that conform to the programming model contain no data
races. However, without annotations it is difficult to verify whether a program
conforms to the model. For example, in general it is undecidable to determine
based on the program text whether an object is always shared or unshared at
a given program point. In addition, we want to perform modular verification.
That is, the correctness of a method implementation must not depend on im-
plementation details of other methods and modules. Therefore, we propose a set
of annotations that make the use of the programming model explicit and enable
modular verification. We explain each annotation by means of the example of
Figure 1.

Method Contracts. Each method has a corresponding method contract, con-
sisting of a precondition and a postcondition. Both the precondition and the
postcondition are boolean side-effect free expressions. The former define valid
method pre-states, while the latter define valid method post-states. An expres-
sion is side-effect free if it contains no object or array creations, simple or com-
pound assignments, and contains no method invocations2. Only parameters and
the variable this may occur free in preconditions. Postconditions may addi-
tionally mention the variable result, denoting the return value of the method.
Furthermore, postconditions may contain old expressions old(e), denoting the
value of the expression e in the method’s pre-state.

Class Contracts. Each class has a corresponding class contract, consisting of a
monitor footprint and a monitor invariant. The monitor footprint of a class C is a
side-effect free expression of type set which defines the set of locations protected
by objects with dynamic type C. An expression of type set represent a set of
memory locations. Each memory location is a (object reference, field name) pair,
and the location corresponding to o.f is denoted &o.f . For example, the lock of
a Counter object c protects the singleton { &c.count }. The monitor invariant
of a class C is a boolean, side-effect free expression, and the programming model
ensures that it can be assumed to hold on entry of a synchronized(o) block
(where o has dynamic type C), provided the invariant is established again at the
end of each synchronized block. For example, the monitor invariant of Counter
states that the count field is accessible and that it holds a positive value. Only
the variable this may occur free in class contracts. An omitted monitor footprint
defaults to the empty set, while an omitted monitor invariant defaults to true.

Ghost State. The programming model tracks for each object whether it is shared
or unshared, locked or unlocked, and for each location which thread is allowed
to access the location. To express these properties, we introduce three special
expressions. o.shared indicates whether o is shared. Similarly, o.locked indicates
whether o is locked by the current thread. Hence, the second precondition of the
2 In Section 3, we relax the definition of side-effect free expression by allowing invo-

cations of pure methods.
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method run, which is the first method executed by a new thread, states that the
thread holds no locks. Finally, the boolean expression acc(o.f) denotes whether
the location &o.f is accessible to the current thread. All three expressions can
only be used within monitor invariants, preconditions and postconditions. In
particular, they cannot appear within method implementations. This restriction
ensures that annotations are erasable, i.e. that they can be omitted without
affecting the execution of the annotated program. The expression acc(o.∗) is
syntactic sugar for stating that all locations corresponding to fields of o are
accessible.

Share Statement. A developer can indicate that an unshared object o should
transition to the shared state via the share o; statement. For example, the code
snippet at the bottom of Figure 1 creates a new Counter object c and shares
it. share is a ghost statement which only affects ghost state. As such, it can be
erased without affecting the original program.

Shared Modifier. A field can be annotated with a shared modifier, indicating
that it can only hold null or a reference to a shared object. The field counter
of the class Session is an example of such a field. In the next section, we store
information about the sharedness of fields in invariants, and we no longer need
this modifier.

The program of Figure 1 is correctly synchronized, and the annotations enable
the static verifier to prove this. In the next subsection, we explain how verification
works.

2.3 Verification

Our verifier takes an annotated program as input and generates, via a translation
into an intermediate verification language called BoogiePL [12], a set of verifica-
tion conditions. The verification conditions are first-order logical formulas whose
validity implies the correctness of the program. The formulas are analyzed auto-
matically by satisfiability-modulo-theory (SMT) solvers. Our approach is based
on a general approach described in [13]. In this subsection, we focus on novel
aspects of our approach: namely the modeling of accessibility, lockedness and
sharedness, the tracking of monitor footprints and monitor invariants, and the
translation of statements and expressions to BoogiePL in a way that guarantees
compliance with the programming model.

Notation. Heaps are modeled in the verification logic as maps from object ref-
erences and field names to values. For example, the expression h[o, f ] denotes
the value of the field f of object o in heap h. The function wf returns whether a
given heap is well-formed, i.e. whether the fields of allocated objects point to al-
located objects. H denotes the current value of the global heap. Allocatedness of
objects is tracked by means of a special boolean field named alloc. The function
typeof returns the dynamic type of a given object reference.

TrEh1,h2
�e� denotes the translation of the side-effect free expression e to an

equivalent first-order, BoogiePL expression, in a context where h1 denotes the



226 J. Smans, B. Jacobs, and F. Piessens

current value of the heap and h2 denotes the value of the old heap. Similarly,
DfE

h1,h2
�e� denotes the definedness of the side-effect free expression e, in a con-

text where h1 denotes the current value of the heap and h2 denotes the value
of the old heap. For example, the definedness of the expression x/y is given by
y �= 0. We will omit the value of the old heap when translating single-state ex-
pressions. Finally, TrS�s� denotes the translation of the statement s to a number
of BoogiePL statements.

Ghost State. The programming model tracks for each location whether it is
accessible or not. In the verification logic, the accessibility of the location &o.f
in a heap h is denoted h[o, accessible ][f ]. That is, h[o, accessible ] is a map from
field names to booleans where each entry indicates whether the corresponding
location is accessible. In addition, the programming model divides the set of
object references into shared and unshared objects, and it further subdivides
the set of shared objects into locked and unlocked objects. In the verification
logic, an object is shared if h[o, shared ] is true. Similarly, an object is locked by
the current thread if h[o, locked ] is true.

Monitor Footprints and Invariants. The programming model associates with
each object a monitor footprint and a monitor invariant. To model this associa-
tion, the verification logic contains two function symbols: monitorfootprint and
monitorinvariant . For instance, monitorfootprint(o) returns the set of locations
protected by o’s lock. To connect these function symbols to the class contracts,
we introduce an axiom per class. More specifically, for each class C with monitor
footprint F and monitor invariant I, the verification logic contains the following
axiom:

axiom (∀h, this • wf (h) ∧ h[this , alloc] ∧ this �= null ∧ typeof (this) = C ⇒
monitorfootprint(h, this) = Treh�F � ∧ monitorinvariant(h, this) = Treh�I�);

The class contract of a class C with monitor footprint F and monitor invariant
I is well-formed only if the following conditions hold: (1) I is well-defined (i.e.
∀h, this • wf (h) ⇒ DfE

h �I�), (2) F is well-defined provided I holds, (3) F only
contains accessible locations assuming I holds, (4) I only requires accessibility
of locations in F assuming that I holds, and (5) both I and F are framed by F
provided I holds, that is any heap modification outside of F does not affect the
values of I and F .

Translation of Statements and Expressions. The programming model consists of
a set of rules that together guarantee the absence of data races. To verify whether
a program complies with the model, we have to update the ghost state tracked
by the model after each statement, and check that statements do not violate
the model. Figures 3, 5 and 6 of Appendices A and C contain the translation
to BoogiePL for key statements and expressions. In this section, we shortly
highlight two important aspects of the translation.

A central rule in the programming model is that threads can only access
locations in their corresponding access set. To enforce this restriction, each field
access (both read and write) is preceded by a proof obligation requiring &o.f to
be accessible the current thread.
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In general, interference by concurrently executing threads has to be taken into
account at each program point. However, our programming model enforces that
threads can only read and write accessible locations. Moreover, the accessibil-
ity of a location with respect to a certain thread t can only be changed by t
itself. Therefore, we only need to take into account the effect of other threads at
synchronization points. More specifically, in the translation to BoogiePL, the ef-
fect of other threads is modeled by havocing (i.e. assigning non-deterministically
chosen values to) locations that are added or removed from a thread’s access set
at share and lock statements.

Method Contract Validity. Programming errors can not only show up in method
implementations, but also in method contracts. To ensure that contracts are
meaningful, we check that they are well-defined. For a method m with precon-
dition P , postcondition Q and parameters x1, . . . xn in a class C, the following
proof obligation is generated:

assert (∀hold , h, this , x1, . . . xn • wf (hold ) ∧ wf (h) ∧ h[this , alloc] ∧ hold[this , alloc]∧
this �= null ∧ typeof (this) <: C ⇒ DfE

hold
�P � ∧ (TrEhold

�P � ⇒ DfE
h,hold

�Q�));

2.4 Soundness

In order to prevent data races, (1) threads should only be able to access locations
in their access set, and (2) thread access sets and the monitor footprints of
shared, non-locked objects must partition the set of allocated locations.

Since each field access is guarded by an accessibility check (see Figures 3
and 5), property (1) follows immediately. We outline a proof by induction on
the length of the execution trace for property (2). In the initial state, the set
of allocated locations is empty, the main thread’s access set is empty, and no
objects are shared yet. Therefore, property (2) holds in the initial state. Now
assume that property (2) holds in a state σ. We have to demonstrate that each
statement s leading from σ to a state σ′ preserves (2). We consider two cases.
The other cases are similar.

– Assume that s is a share o; statement. Successful verification ensures that
o is non-null, unshared and that its monitor invariant holds in state σ. The
well-formedness of the class contract implies that o’s monitor footprint con-
tains only locations that are accessible to the current thread. Immediately
after the share statement, o is shared and the current thread can no longer
access the locations in o monitor footprint. Property (2) is preserved, since
the access sets of other threads are not affected, the footprints of shared, non-
locked objects are not affected, and the old access set of the current thread
is split in the new access set and the locations in o’s monitor footprint.

– Assume that s is a lock acquisition (synchronized(o)). The program verified
successfully, and hence we may assume that o was shared but not locked
by the current thread before entering the synchronized block. Moreover,
the Java semantics guarantee that upon entering the synchronized block no
other thread was holding o’s lock. As a consequence, we may assume that
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o’s monitor footprint is disjoint from any thread’s access set in state σ.
By adding the monitor footprint to the current thread’s access set, and by
making o locked, we preserve property (2) in σ′.

By induction, we may conclude that programs that verify only give rise to
states where (2) holds.

3 Data Abstraction

Data abstraction is crucial in the construction of modular programs, since it en-
sures that internal changes in one module do not propagate to other modules. In
object-oriented programs, classes typically enforce data abstraction by providing
access to their internal state only through methods.

The class Counter in Figure 1 however was not written with data abstraction
in mind, since it directly exposes its internal count field to client code. As a
consequence, any change in Counter ’s implementation forces us to rewrite or at
least reconsider the correctness of client code. For example, renaming the count
field breaks the implementation of Session ’s run method.

Recently, we proposed an approach to the automatic verification of sequen-
tial, object-oriented programs that use method calls in specifications for data
abstraction [5]. In this approach, methods used for this purpose have to be side-
effect free, and are called pure methods. To solve the framing problem, that is to
determine the effect of field assignments and executions of non-pure methods on
the return values of pure methods, the approach relies on method footprint an-
notations, which specify an upper bound on the memory locations read (in case
of pure methods) or written (in case of non-pure methods) by the correspond-
ing method. More specifically, to prove that a state change (i.e. field update or
non-pure method invocation) does not affect the return value of a pure method,
one has to show that the footprint of the state change is disjoint from the pure
method’s footprint. Thanks to the use of dynamic frames [6], special pure meth-
ods that return a set of memory locations, method footprints can be specified
without breaking data abstraction.

As an example, consider the class Counter of Figure 2. Contrary to the older
version of the class of Figure 1, client code can only access the internal field count
through the setter increment and the getter getCount . Furthermore, Counter ’s
method contracts do not mention the field count , and instead rely on public,
pure methods to specify the behavior. In particular, both pure and non-pure
methods define the locations they read or write in terms of the pure method rep,
a dynamic frame. Since client code only depends on Counter ’s public interface,
changing the class’s internal representation does not affect them. For example,
renaming the field count would not endanger the correctness of the class Session .

In the approach described in the previous section, the monitor footprint of a
class C specifies the set of locations protected by locks of objects with dynamic
type C. For example, the class contract of Counter (Figure 1) specifies that the
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lock of a Counter object o protects the singleton { &o.count }. However, this
class contract exposes the internal field count . A key insight of this paper is that
dynamic frames can not only be used to abstractly specify the locations read
or written by a method, but also to abstract over the locations protected by an
object’s lock. Indeed, the dynamic frame rep can be used to specify Counter ’s
monitor footprint without revealing any internal fields, as shown in Figure 2.
Similarly, the pure method inv can be used to abstractly specify the monitor
invariant.

In summary, by combining the approach for verifying concurrent programs of
the previous section with the solution for data abstraction and framing of [5],
we can construct a verifier for concurrent programs that supports both data
abstraction and framing. In the remainder of this section, we describe the extra
annotations needed for dynamic frames, we highlight the most important changes
in verification with respect to [5], and finally we sketch how our approach can
be extended to deal with read-write locks.

3.1 Annotations

We extend the set of annotations with pure and predicate method modifiers and
with method footprints.

Pure Methods and Predicates. A method can be annotated with a pure modifier,
indicating that it can be used in specifications. The body of a pure method must
consist of a single return statement returning a side-effect free expression. From
now on, side-effect free expressions may contain method invocations but only
to pure methods. Non-pure methods are called mutators. Pure methods with
return type set are called dynamic frames. Purity is inherited by overriding
methods.

Predicates are special pure methods marked with predicate. More specif-
ically, a predicate is a boolean, pure method that can only be called from
other predicates and within class and method contracts. Contrary to other
method implementations, predicates are allowed to mention acc(o.f), o.shared ,
and o.locked .

Method Footprints. In addition to pre and postconditions, each method contract
contains a method footprint. A method footprint is a side-effect free expression
of type set. The footprint of a pure method (reads annotation) specifies the
locations that can potentially be be read by the method, while a mutator’s
footprint (writes annotation) specifies the locations that can be modified by
the method. More specifically, a mutator can only modify o.f if &o.f is in the
method’s footprint or if o was unallocated at the start of the method. Only
parameters and the variable this may occur free in method footprints.

To prove that a state change (i.e. field update or non-pure method invocation)
does not affect the return value of a pure method, one has to show that the
footprint of the state change is disjoint from the pure method’s footprint. To
preserve disjointness of footprints, constructors and mutators should specify how
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final class Counter {
private int count ;

monitorfootprint rep();
monitorinvariant inv();

Counter()
writes ∅;
ensures inv();
ensures getCount() = 0;
ensures elemsFresh(rep());
ensures ¬this.shared ;

{ }

void increment()
requires inv();
writes rep();
ensures inv();
ensures getCount() = old(getCount()) + 1;
ensures newElemsFresh(rep());

{ count + +; }

pure int getCount()
requires inv();
reads rep();

{ return count ; }

predicate bool inv()
reads inv()?rep() : universe;

{ return acc(count) ∧ 0 ≤ count ; }

pure set rep()
requires inv();
reads rep();

{ return { &count }; }
}

class Session implements Runnable {
private Counter counter ;

Session(Counter c)
requires c.shared ;
writes ∅;
ensures inv();
ensures elemsFresh(rep());
ensures ¬this.shared ;

{ counter = c; }

void run()
{

synchronized(counter){
counter .increment();

}
}

predicate bool inv()
{ return acc(counter) ∧ counter �= null∧

counter .shared ; }

pure set rep()
{ return { &counter }; }

}

Counter c = new Counter();
share c;
new Thread(new Session(c)).start();
new Thread(new Session(c)).start();

Fig. 2. A revision of the program of Figure 1. The classes Counter and Session now
both hide their internal fields, and instead provide methods to query and update their
state.

they affect footprints. To this end, we introduce two new boolean expressions:
elemsFresh(e) and newElemsFresh(e). Both expressions can only be used
in postconditions. elemsFresh(e) states that the locations in e are fresh with
respect to the method pre-state, while newElemsFresh(e) states that each
location in e is either an element of old(e) or is fresh with respect to the method
pre-state.



VeriCool: An Automatic Verifier for a Concurrent Object-Oriented Language 231

The program of Figure 2 successfully verifies. The contracts for the classes
Runnable and Thread which are needed for verification are shown in Figure 4 of
appendix B. Note that the methods run, inv and rep in class Session override
the corresponding methods in Runnable, and therefore they inherit the contracts
of their overridden methods.

3.2 Verification

We shortly highlight the most important changes in the verification approach
with respect to [5]. For details on the encoding of pure methods and method
footprints, we refer the reader to [5].

In [5], a (postcondition) axiom is generated for each dynamic frame, stating
that the set returned by the method only contains allocated locations. In this
paper, we generate an additional axiom stating that dynamic frames only re-
turn sets containing accessible locations. This axiom is used to deduce that the
monitor footprint of a newly acquired object does not overlap with any locations
accessible to the thread before entering the synchronized block.

Furthermore, whenever a predicate method requires an object to be accessible,
that is, whenever it contains a subexpression acc(o.f), we require &o.f to be
an element of the method’s reads clause. This allows predicates to be used in
monitor invariants.

3.3 Read-Write Locks

A read-write lock is a variant of a traditional lock, which may be concurrently
held by multiple reader threads, as long as there are no writers. For writer
threads, the read-write lock is exclusive. For example, in the program of ap-
pendix D a shared arraylist object is protected by a read-write lock. Multiple
threads can concurrently iterate over the elements in the list by acquiring the
read lock (synchronizedR). In previous incarnations of the programming model,
it is impossible to verify this program.

Supporting read-write locks requires only minor extensions to the program-
ming model and the annotations. More specifically, instead of associating an
access set with each thread, we associate with each thread a read and a write
set, the set of locations that can respectively be read or written by the corre-
sponding thread. acc(o.f) now means that &o.f is in both sets, while read(o.f)
signifies that &o.f is at least in the current thread’s read set. Moreover, each
class contract is extended with a read monitor footprint and a read monitor
invariant. The regular monitor invariant must imply the read monitor invariant,
and similarly the regular monitor footprint must be a superset of the read mon-
itor footprint. When acquiring the read lock of an object o, the locations in o’s
read monitor footprint are added to the thread’s read set, and one may assume
o’s read monitor invariant holds. And vice versa, when releasing a read lock, one
must establish the read monitor invariant, and the thread loses read permission
for the locations in the read monitor footprint.
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4 Related Work

The Extended Static Checker for Java [14] (ESC/Java) is a compile-time program
checker that attempts to find common errors, such as null dereferences and data
races, in Java programs. Similarly to VeriCool, ESC/Java relies on verification
condition generation and theorem proving. However, the tool trades soundness
for ease of use. For example, it assumes that the value of a shared location stays
unchanged if a method releases and then reacquires the lock that protects it,
ignoring the possibility that some other thread might have acquired the lock
and modified the location in the interim [15, page 91].

In his thesis, Kassios [6] describes a flexible approach to data abstraction and
framing based on dynamic frames. More specifically, Kassios uses specification
variables, similar to our pure methods, to achieve data abstraction. To solve the
framing problem, he proposes using dynamic frames to abstractly specify the
footprint of specification variables and the effect of mutator methods. Recently,
we showed how Kassios’ ideas can be incorporated in a program verifier for
a Java-like language based on first-order logic [5]. However, both [6] and [5]
consider only sequential object-oriented programs. In this paper, we extend the
solution described in [5] in order to handle concurrent programs. To the best of
our knowledge, this is the first paper combining dynamic frames and concurrency.

Various extensions of separation logic to concurrent programs have been pro-
posed [9,10,16,8,11]. In particular, Gotsman et al. [10] propose a variant of concur-
rent separation logic that supports an unbounded number of dynamically allocated
locks and threads, which is similar to our approach in many respects. For exam-
ple, the boolean expression acc(o.f) can be considered to be the counterpart of the
separation logic predicate o.f �→ in the sense that they both represent a permis-
sion to access the location &o.f . One difference between their approach and ours
is that they allow lock finalization, while we never allow a shared object to become
unshared. To achieve the same effect in our approach though, one could temporar-
ily wrap the unshared object in a shared object. Another difference is that we make
footprints explicit (typically via dynamic frames), while footprints are implicit in
separation logic. Gotsman et al. developed a detailed formalization and soundness
proof, but their approach has not been implemented in an automatic verifier.

Smallfoot [16,17] is an automatic verifier for concurrent separation logic geared
toward verification of concurrent programs that manipulate recursive data struc-
tures. Smallfoot can verify many highly concurrent programs that our tool can-
not. However, the tool relies on various built-in rules about list and trees. Our
tool has no built-in rules to reason about particular data structures, but instead
each class can define its own abstractions via pure methods.

Ábrahám-Mumm et al. [18] propose an assertional proof method for Java’s
reentrant monitors. Their approach supports class invariants, but these invari-
ants can only mention fields of this. Our approach has no such restriction.

A number of type systems have been proposed to prevent data races in object-
oriented programs. For example, Boyapati et al. [19] parametrize classes by the
protection mechanism that will protect their objects against data races. The type
system supports thread-local objects, objects protected by a lock, read-only object
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and unique pointers. Our approach not only rules out data races, but also supports
reasoning about richer properties such as object invariants.

The rules in our programming model that a lock’s monitor invariant must
hold whenever it is released and that it can be assumed to hold whenever it is
acquired, are taken from Hoare’s work on monitors [20].

This paper improves upon previous incarnations of the programming model
[2,3,4]. First of all, the present approach is more flexible in specifying the lo-
cations protected by an object’s lock. More specifically, [2,3,4] determine the
contents of the monitor footprint by means of rep annotations on fields, i.e. all
fields of all objects transitively reachable from an object o through rep fields
are protected by o’s lock. However, rep fields rule out sharing of memory lo-
cations (among different footprints). As a consequence, the concurrent iterator
program of Figure 7 of appendix D, where different iterators share the locations
in an array list’s footprint, cannot be verified by [2,3,4]. Secondly, the present
approach is more fine-grained in the sense that accessibility is tracked per loca-
tion instead of per object. This implies that different fields of an object can be
protected by different locks, which is not possible in previous versions. Finally,
we demonstrate how to combine the programming model with an approach to
data abstraction and framing based on dynamic frames. Data abstraction was
not considered in [2,3,4].

5 Conclusion

We propose an approach to the automatic verification of concurrent Java-like
programs. The cornerstone of the approach is a programming model for prevent-
ing both low-level and high-level races. Compared to previous incarnations of the
model, we are more flexible in specifying the locations protected by an object’s
lock. In addition, we combine the model with an approach for data abstraction
and framing based on dynamic frames [6,5]. To the best of our knowledge, this
is the first paper that combines dynamic frames and concurrency. We imple-
mented our approach in a tool, and used it to automatically verify several small
concurrent programs.

In the future, we plan to apply our approach in a larger case study.
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Appendix

A Translation of Expressions

TrEh �e.f� ≡ h[TrE
h �e�, f ]

TrEh �acc(e.f)� ≡ h[TrE
h �e�,accessible ][f ]

TrEh �{ &e.f }� ≡ { (TrE
h �e�, f) }

TrEh �e.shared� ≡ h[TrE
h �e�, shared ]

TrEh �e.locked� ≡ h[TrE
h �e�, locked ]

TrEh �e.m(e1, . . . , en)� ≡ #C.m(h, TrEh �e�, TrEh �e1�, . . . , TrE
h �en�)

DfE
h �e.f� ≡ DfE

h �e� ∧ TrEh �e� �= null ∧ h[TrE
h �e�, accessible ][f ]

DfE
h �acc(e.f)� ≡ DfE

h �e� ∧ TrEh �e� �= null
DfE

h �{ &e.f }� ≡ DfE
h �e� ∧ TrE

h �e� �= null ∧ h[TrE
h �e�, accessible ][f ]

DfE
h �e.shared� ≡ DfE

h �e� ∧ TrEh �e� �= null
DfE

h �e.locked� ≡ DfE
h �e� ∧ TrEh �e� �= null

DfE
h �e.m(e1, . . . , en)� ≡ DfE

h �e� ∧ DfE
h �e1� ∧ . . . DfE

h �en�∧
TrEh �e� �= null ∧ TrEh �Prem [e/this, e1/x1, . . . , en/xn]�

Fig. 3. Translation and definedness of expressions

B Contracts for Runnable and Thread

class Thread {
Thread(Runnable target)

requires target �= null ∧ target .inv();
writes target .rep();
ensures inv();
ensures elemsFresh(rep());
ensures ¬this.shared ;

void start()
requires inv();
writes rep();

predicate bool inv()
reads inv()?rep() : universe;

pure set rep()
requires inv();
reads rep();

}

interface Runnable {
void run()

requires inv();
requires ∀{Object o • ¬o.locked};

predicate bool inv()
reads inv()?rep() : universe;

pure set rep()
requires inv();
reads rep();

}

Fig. 4. The contracts for the interface Runnable and the class Thread
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C Translation of Statements

We assume expressions nested within statements are side-effect free.

TrS�x = new C(e1, . . . , en); � ≡
assert DfE

h �e1� ∧ . . . DfE
h �en�;

havoc newObject ;
assume newObject �= null ∧ ¬H[newObject , alloc] ∧ typeof (newObject) = C;
assume (∀q, f • (q, f) ∈ locationsOf (newObject) ⇒ ¬H[q, accessible][f ]);
oldH := H; havoc H; assume successor(oldH ,H );
assume (∀q, f • oldH [q, accessible][f ] ∨ (q, f) ∈ locationsOf (newObject) ⇔

H[q, accessible][f ]);
assume (∀q, f • oldH [q, accessible][f ] ⇒ oldH[q, f ] = H[q, f ]);
assume (∀q • H[q, locked ] ⇔ oldH[q, locked ]);
assume H[newObject , alloc];
call C.ctr(newObject , TrE

h �e1�, . . . , TrE
h �en�);

x := newObject ;

TrS�e1.f = e2; � ≡
assert DfE

H�e1� ∧ DfE
H�e2�;

assert TrE
H�e1� �= null ;

assert H[TrE
H�e1�, accessible][f ];

H[TrE
H�e1�, f ] := TrE

H�e2�;

TrS�share e; � ≡
assert DfE

H�e�;
sharedObject := TrE

H�e�;
assert sharedObject �= null ∧ ¬H[sharedObject , shared ] ∧ monitorinvariant(H, sharedObject);
oldH := H; havoc H; assume successor(oldH ,H );
assume (∀q, f • oldH [q, accessible][f ] ∧ ¬(q, f) ∈ monitorfootprint(oldH , sharedObject) ⇔

H[q, accessible][f ]);
assume (∀q, f • oldH [q, accessible][f ] ∧ ¬(q, f) ∈ monitorfootprint(oldH , sharedObject) ⇒

oldH[q, f ] = H[q, f ]);
assume (∀q • H[q, locked ] ⇔ oldH[q, locked ]);
assume H[sharedObject , shared ];

Fig. 5. Translation of statements
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Tr�synchronized(e){ s }� ≡
assert DfE

H�e�;
lockedObject := TrE

H�e�;
assert H[lockedObject , shared ] ∧ ¬H[lockedObject , locked ];
oldH := H; havoc H; assume successor(oldH ,H );
assume monitorinvariant(H, lockedObject);
assume (∀q, f • oldH [q, accessible][f ] ∨ (q, f) ∈ monitorfootprint(H, lockedObject) ⇔

H[q, accessible][f ]);
assume (∀q, f • oldH [q, accessible][f ] ⇒ oldH[q, f ] = H[q, f ]);
assume (∀q, f • (q, f) ∈ monitorfootprint(H, lockedObject) ⇒ ¬oldH [q, accessible][f ]);
assume (∀q • q �= lockedObject ⇒ H[q, locked ] ⇔ oldH[q, locked ]);
assume H[lockedObject , locked ];
Trs�s�
assert monitorinvariant(H, lockedObject);
oldH := H;
havoc H;
assume successor(oldH ,H );
assume (∀q, f • oldH [q, accessible][f ] ∧ ¬(q, f) ∈ monitorfootprint(oldH , lockedObject) ⇔

H[q, accessible][f ]);
assume (∀q, f • oldH [q, accessible][f ] ∧ ¬(q, f) ∈ monitorfootprint(oldH , lockedObject) ⇒

oldH[q, f ] = H[q, f ]);
assume (∀q • q �= lockedObject ⇒ H[q, locked ] ⇔ oldH[q, locked ]);
assume ¬H[lockedObject , locked ];

Fig. 6. Translation of statements (cont.)
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D Concurrent Iterator

final class ArrayList {
readmonitorfootprint repR();
readmonitorinvariant invR();

int count; Object [] items;
. . .
pure Object get(int i);

requires invR() ∧ 0 ≤ i < size();
reads repR();

{ return items[i]; }

pure int size();
requires invR();
reads repR();
ensures 0 ≤ result;

{ return count ; }

predicate bool invR()
reads invR()?repR() : universe;

{ return read(count) ∧ read(items)∧
items �= null ∧ read(items.elems)∧
0 ≤ count ≤ items.length; }

pure set repR()
requires invR();
reads repR();

{ return {&count , &items} ∪ elems(items); }
}

class Iterator {
ArrayList list ; int index ;
. . .
Object next()

requires inv() ∧ hasNext();
writes rep();
ensures inv() ∧ list() = old(list());
ensures newElemsFresh(rep());

{ return list .items[index + +]; }

pure bool hasNext()
requires inv();
reads rep() ∪ list().repR();

{ return index < list .count ; }

pure ArrayList list()
requires inv();
reads rep();

{ return list ; }

predicate bool inv()
reads inv()?

(rep() ∪ list().repR()) : universe;
{ return list �= null ∧ list .invR()∧

0 ≤ index ≤ list .count∧
&list �∈ list .repR()∧
&index �∈ list .repR(); }

pure set rep()
requires inv();
reads rep();

{ return {&list , &index}; } }

Fig. 7. The iterator pattern. By using read locks, multiple threads can simultaneously
iterate over a shared array list.
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class Session implements Runnable {
private ArrayList list ;

Session(ArrayList l)
requires l.shared ;
writes ∅;
ensures inv();
ensures elemsFresh(rep());
ensures ¬this.shared ;

{ list = l; }

void run()
{

synchronizedR(list){
Iterator iter = new Iterator (list);
while(iter .hasNext ())

loopinvariant iter .inv() ∧ newElemsFresh(iter .rep())∧
iter .list() = old(iter .list());

writes iter .rep();
{ iter .next(); }

}
}

predicate bool inv()
{ return acc(counter ) ∧ counter �= null ∧ counter .shared ; }

pure set rep()
{ return { &counter }; }

}

Fig. 8. The iterator pattern (cont)
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