

Lecture Notes in Computer Science 5048
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kenji Suzuki Teruo Higashino
Keiichi Yasumoto Khaled El-Fakih (Eds.)

Formal Techniques
for Networked and
Distributed Systems –
FORTE 2008

28th IFIP WG 6.1 International Conference
Tokyo, Japan, June 10-13, 2008
Proceedings

13

Volume Editors

Kenji Suzuki
The University of Electro-Communications
Department of Computer Science
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
E-mail: suzuki@cs.uec.ac.jp

Teruo Higashino
Osaka University
Graduate School of Information Science and Technology
Department of Information Networking
Suita, Osaka 565-0871, Japan
E-mail: higashino@ist.osaka-u.ac.jp

Keiichi Yasumoto
Nara Institute of Science and Technology
Graduate School of Information Science
Ikoma, Nara 630-0192, Japan
E-mail: yasumoto@is.naist.jp

Khaled El-Fakih
Verimag – Université Joseph Fourier
Centre Equation, 2 rue de Vignate, 38610 Gières, France
E-mail: Khaled.Elfakih@imag.fr

Library of Congress Control Number: 2008927452

CR Subject Classification (1998): C.2.4, D.2.2, C.2, D.2.4-5, D.2, F.3, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-68854-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68854-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12278343 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of FORTE 2008, 28th IFIP WG6.1 In-
ternational Conference on Formal Techniques for Networked and Distributed
Systems. FORTE 2008 was held at the Campus Innovation Center in Tokyo,
Japan during June 10–13, 2008. FORTE denotes a series of international work-
ing conferences on formal description techniques applied to computer networks
and distributed systems. The conference series started in 1981 under the name
PSTV. In 1988 a second series under the name FORTE was set up. Both se-
ries were united to FORTE/PSTV in 1996. In 2001 the conference changed the
name to its current form. Recent conferences of this long series were held in
Berlin (2003), Madrid(2004), Taipei(2005), Paris(2006), and Tallinn(2007).

As in the previous year, FORTE 2008 was collocated with TESTCOM/
FATES 2008: the 20th IFIP International Conference on Testing of Commu-
nicating Systems (TESTCOM) and the 8th International Workshop on Formal
Approaches to Testing of Software (FATES). The co-location of FORTE and
TESTCOM/FATES fostered the collaboration between their communities. The
common spirit of both conferences was underpinned by joint opening and closing
sessions, invited talks, as well as joint social events.

This year we received 44 submissions. The Program Committee finally se-
lected 19 full papers and 1 short paper for presentation at the conference. The
special focus of FORTE 2008 was on formal approaches to new areas of net-
worked and distributed systems such as ubiquitous, grid, and mobile computing
systems, and also on the application of formal techniques to service-oriented ar-
chitectures as well as security issues in networked systems. Together with the
invited presentation by Wolfram Schulte from Microsoft Research, USA, the 20
accepted papers formed the very strong and high-quality program of FORTE
2008. In addition, the conference included two more invited presentations on be-
half of TESTCOM/FATES by Yutaka Yasuda from KDDI Corporation, Japan
and Paul Baker from Motorola, UK. A tutorial day preceded the conference.

It took tremendous efforts to organize this event. We would like to thank all
the contributors for the success of FORTE 2008. In particular we are grateful to
the Local Organization Chair, Tomohiko Ogishi from KDDI R&D Laboratories,
who handled issues related to the conference venue, social events, and registra-
tion, and Takaaki Umedu from Osaka University, who managed the conference
website and paper submission system. We also owe special thanks to all members
of the FORTE 2008 Steering Committee, Program Committee, and co-reviewers
for their support in selecting high-quality papers. Without these contributions,
these proceedings would not exist. We thank the International Communications
Foundation, Support Center for Advanced Telecommunications Technology Re-
search, Foundation, Microsoft Research, and KDDI Corporation for their finan-
cial support, and Springer for publishing the proceedings.

VI Preface

Last but not least, we would also like to express our sincere appreciation to
The University of Electro-Communications, Osaka University, Nara Institute of
Science and Technology, Verimag, Université Joseph Fourier, and to all members
of the Local Organization team for their continuous support of this conference.

March 2008 Kenji Suzuki
Teruo Higashino

Keiichi Yasumoto
Khaled El-Fakih

Conference Organization

General Chairs

Kenji Suzuki (The University of Electro-Communications, Japan)
Teruo Higashino (Osaka University, Japan)

Program Chairs

Keiichi Yasumoto (Nara Institute of Science and Technology,
Japan)

Khaled El-Fakih (Verimag, Université Joseph Fourier, France, and
American University of Sharjah, UAE)

FORTE Steering Committee

Gregor v. Bochmann (University of Ottawa, Canada)
John Derrick (University of Sheffield, UK)
Ken Turner (University of Stirling, UK)

Program Committee

Jiri Adamek (Charles University in Prague, Czech Republic)
Jonathan Billington (University of South Australia, Australia)
Gregor v. Bochmann (University of Ottawa, Canada)
Kirill Bogdanov (University of Sheffield, UK)
Mario Bravetti (University of Bologna, Italy)
Ana Cavalli (INT Evry, France)
Jose M. Colom (University of Zaragoza, Spain)
John Derrick (University of Sheffield, UK)
David de Frutos-Escrig (Complutense University of Madrid, Spain)
Reinhard Gotzhein (University of Kaiserslautern, Germany)
Susanne Graf (Verimag, France)
Serge Haddad (Lamsade-Paris Dauphine, France)
Teruo Higashino (Osaka University, Japan)
Dieter Hogrefe (University of Gottingen, Germany)
Gerard J. Holzmann (NASA/JPL, USA)
Claude Jard (ENS Cachan - Bretagne, France)
Ferhat Khendek (Concordia University, Canada)
Myungchul Kim (ICU, South Korea)
Hartmut Koenig (Brandenburg University of Technology, Germany)

VIII Organization

David Lee (Ohio State University, USA)
Luigi Logrippo (University of Quebec - Outaouais, Canada)
Jose C. Maldonado (University of San Carlos, Brazil)
Elie Najm (ENST, France)
Masakatsu Nishigaki (Shizuoka University, Japan)
Manuel Nunez (Complutense University of Madrid, Spain)
Kazuhito Ohmaki (AIST, Japan)
Olaf Owe (University of Oslo, Norway)
Doron A. Peled (University of Warwick, UK)
Alexandre Petrenko (CRIM Montreal, Canada)
Jean-Francois Pradat-Peyre (Cedric-Cnam, France)
Wolfgang Reisig (Humboldt University, Germany)
Ichiro Satoh (NII, Japan)
Hiroyuki Seki (NAIST, Japan)
Jean-Bernard Stefani (Inria, France)
Kenji Suzuki (The University of Electro-Communications, Japan)
Stavros Tripakis (Cadence, USA)
Ken Turner (University of Stirling, UK)
Hasan Ural (University of Ottawa, Canada)
Juri Vain (Tallinn University of Technology, Estonia)
Farn Wang (National Taiwan University, Taiwan)
Jianping Wu (Tsinghua University, China)
Nina Yevtushenko (Tomsk State University, Russia)
Xia Yin (Tsinghua University, China)

Local Organization

Tomohiko Ogishi (KDDI R&D Laboratories Inc.) (Chair)
Takaaki Umedu (Osaka University)

Additional Reviewers

Saleh Al-Shadly
Cesar Andres
Beatrice Berard
Faycal Bessayah
Sergiy Boroday
Patricia Bouyer
Marius Bozga
David Cairns
Robert G. Clark
Arnaud Dury
Lars-Ake Fredlund
Guy Gallasch

Irfan Hamid
Chuanming Jing
Einar B. Johnsen
Guy-Vincent Jourdan
Sungwon Kang
Rajesh Karunamurthy
Felix Klaedtke
Nimrod Lilith
Lin Liu
Luis Llana
Amel Mammar
Mercedes G. Merayo

Shin Nakajima
Fernando Rosa-Velardo
Alper Sen
Soonuk Seol
Andrey Shabaldin
Natalia Shabaldina
Carron Shankland
Xingang Shi
Sebastian Schmerl
Martin Steffen
Koichi Takahashi
Min Tang

Organization IX

Erik Tschinkel
Michael Vogel
Sebastian Vogel

Zhiliang Wang
Bachar Wehbi

Denis Wolf
Hirozumi Yamaguchi

Sponsoring Institutions

International Communications Foundation, Tokyo, Japan
Support Center for Advanced Telecommunications Technology Research,

Foundation, Tokyo, Japan
Microsoft Research, Redmond, USA
KDDI Corporation, Tokyo, Japan

Table of Contents

Invited Talk

Model Generation for Horn Logic with Stratified Negation 1
Ethan K. Jackson and Wolfram Schulte

Abstraction

Counterexample Guided Spotlight Abstraction Refinement 21
Tobe Toben

An Experimental Evaluation of Probabilistic Simulation 37
Jonathan Bogdoll, Holger Hermanns, and Lijun Zhang

An SMT Approach to Bounded Reachability Analysis of Model
Programs . 53

Margus Veanes, Nikolaj Bjørner, and Alexander Raschke

Verification

Parameterized Tree Systems . 69
Parosh Aziz Abdulla, Noomene Ben Henda, Giorgio Delzanno,
Frédéric Haziza, and Ahmed Rezine

Adapting Petri Nets Reductions to Promela Specifications 84
C. Pajault, J.-F. Pradat-Peyre, and P. Rousseau

Verification of a Hierarchical Generic Mutual Exclusion Algorithm 99
Souheib Baarir, Julien Sopena, and Fabrice Legond-Aubry

Specification Framework I

Distributed Semantics and Implementation for Systems with Interaction
and Priority . 116

Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis

Checking Correctness of Transactional Behaviors . 134
Vincenzo Ciancia, Gian Luigi Ferrari, Roberto Guanciale, and
Daniele Strollo

Specifying and Verifying Web Transactions . 149
Jing Li, Huibiao Zhu, and Jifeng He

XII Table of Contents

Application

Modelling and Analysing the Contract Net Protocol - Extension Using
Coloured Petri Nets . 169

Jonathan Billington, Amar Kumar Gupta, and Guy Edward Gallasch

Program Repair Suggestions from Graphical State-Transition
Specifications . 185

Farn Wang and Chih-Hong Cheng

Verifying Erlang Telecommunication Systems with the Process Algebra
µCRL . 201

Qiang Guo, John Derrick, and Csaba Hoch

Specification Framework II

NQSL - Formal Language and Tool Support for Network
Quality-of-Service Requirements . 218

Christian Webel, Reinhard Gotzhein, and Joachim Nicolay

Timed Mobile Ambients for Network Protocols . 234
Bogdan Aman and Gabriel Ciobanu

A Specification Framework for Earth-Friendly Logistics 251
Ichiro Satoh

Theory

A Hierarchy of Equivalences for Probabilistic Processes 267
Manuel Núñez and Luis Llana

Multiset Bisimulations as a Common Framework for Ordinary and
Probabilistic Bisimulations . 283

David de Frutos Escrig, Miguel Palomino, and Ignacio Fábregas

Reliability of Networked Systems

Detecting Communication Protocol Security Flaws by Formal Fuzz
Testing and Machine Learning . 299

Guoqiang Shu, Yating Hsu, and David Lee

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host
Authentication Protocol . 305

Wei Wang and Dongyao Ji

Protocol Modeling with Model Program Composition 324
Margus Veanes and Wolfram Schulte

Author Index . 341

Model Generation for Horn Logic with Stratified

Negation

Ethan K. Jackson and Wolfram Schulte

Microsoft Research,
One Microsoft Way, Redmond, WA

{ejackson,schulte}@microsoft.com

Abstract. Model generation is an important formal technique for find-
ing interesting instances of computationally hard problems. In this pa-
per we study model generation over Horn logic under the closed world
assumption extended with stratified negation. We provide a novel three-
stage algorithm that solves this problem: First, we reduce the relevant
Horn clauses to a set of non-monotonic predicates. Second, we apply a
fixed-point procedure to these predicates that reveals candidate solutions
to the model generation problem. Third, we encode these candidates into
a satisfiability problem that is evaluated with a state-of-the-art SMT
solver. Our algorithm is implemented, and has been successfully applied
to key problems arising in model-based design.

1 Introduction

Informally, model generation is a procedure that takes as input some mathe-
matical statement ψ, and produces as output some data M (a model) that,
when substituted back into ψ, makes the statement true. For example, if ψ is a
boolean satisfiability problem, then M is an assignment of boolean variables to
truth values. Similarly, if ψ is a set of linear inequalities, then M is an assign-
ment of variables to the real numbers. Note that model generation can be used
to check satisfiability, but not all techniques for checking satisfiability are able
to generate models. In this paper we study model generation for an important
type of non-classical logic called Horn logic with stratified negation.

Horn logic has important applications in computer science and new applica-
tions continue to arise. Recently, Horn logic extended with negation as failure
was used to formalize the non-context-free languages arising in modern software
engineering methodologies[1] such as Model Driven Architecture[2][3] (MDA),
Model Integrated Computing[4] (MIC), and Platform-based Design[5][6] (PBD).
This particular application adds a new and interesting twist: An effective means
of model generation is essential if the Horn paradigm is to be truly useful.

In this paper we present a novel approach to model generation for non-
recursive Horn logic extended with stratified negation. Our approach employs
a three stage process:

1. We simplify the problem by reducing the relevant Horn clauses to a set of
non-monotonic predicates that we call non-monotonic acceptors.

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 1–20, 2008.
c© IFIP International Federation for Information Processing 2008

2 E.K. Jackson and W. Schulte

2. We apply a fixed-point procedure to the non-monotonic acceptors that re-
veals the candidate solutions to the model generation problem.

3. We encode these candidates into a satisfiability problem that is evaluated
with the state-of-the-art SMT solver Z3.

We show that this procedure is sound, but incomplete.
This paper is organized into six sections. Section 2 informally describes the

class of Horn logic targeted for model generation. Section 3 provides the key
formal definitions. The first stage of the algorithm is explained in Section 4 as
a modified form of backwards chaining. Section 5 describes the elimination of
quantification over closed-worlds and the reduction to a boolean satisfiability
problem. We conclude in Section 6.

2 Background and Running Example

Model-based approaches to software engineering rely on high-levels of abstraction
to simplify the design process. The left-hand side of Figure 1 shows a metamodel
describing a simple abstraction layer. This diagram defines an abstract language
for scheduling problems without regard to the particular details of the tasks
being scheduled. This language contains objects of type Task and Processor.
Tasks can be assigned to processors by directed edges of type TaskMap. Re-
source constraints between tasks prevent two tasks from being scheduled on the
same processor. Resource constraints are modeled as undirected edges of type
Constraint connecting tasks. The right-hand side of Figure 1 shows a mem-
ber of this language. There are three tasks T1, T2, T3 and two processors P1, P2.
Tasks T1 and T2 have a resource constraint, as do tasks T2 and T3. Tasks T1, T3
are scheduled on processor P1 while T2 is scheduled on P2.

Metamodels (and other artifacts) can expressed a set of axioms using Horn
logic with stratified negation [7]. Consequently, model generation on this logic
is a key tool for reasoning about abstraction layers. For example, we might de-
mand a model generator to “Construct a model that contains three tasks and
two processors”. The procedure must find a model satisfying the rules of the
abstraction that also meets this goal. Model generation is a difficult problem, as
this example illustrates. A correct mapping from tasks to processors is precisely
a graph coloring problem[8] where the processors are the colors. This illustrates

Task

Processor

TaskMap

Constraint
T1 T2 T3

P1 P2

Fig. 1. (Left) Scheduling abstraction (Right) Example scheduling instance

Model Generation for Horn Logic with Stratified Negation 3

that any procedure capable of constructing non-trivial instances must solve dif-
ficult subproblems.

The task scheduling language is defined with the following set of non-recursive
and stratified Horn clauses:

task(x) ← taskmap(x, y) (1)

processor(y) ← taskmap(x, y) (2)

task(x) ← constraint(x, y) (3)

task(y) ← constraint(x, y) (4)

no map(task(x)) ← task(x),¬taskmap(x, y) (5)

bad map(task(x), task(y)) ← taskmap(x, z), taskmap(y, z), constraint(x, y) (6)

The first four clauses declare that the end-points of task mappings and resource
constraints always exist. Clause 5 deduces a term no map(task(x)) for any task
x that is not mapped to a processor. Clause 6 deduces bad map(task(x), task(y))
anytime two tasks x, y are improperly scheduled. We now examine the semantics
of this logic in detail.

2.1 Classical Horn Logic

Classical Horn logic restricts first-order logic by requiring each conjunct of a DNF
(disjunctive normal form) formula ψ to have at most one non-negated literal.
A collection of Horn formulas has a more natural representation in implicative
normal form, as shown below:

∀x, y, z taskmap(x, z), taskmap(y, z), constraint(x, y) ⇒ bad sched(x, y) (7)

This classical clause looks similar to Clause 6, however its meaning is quite
different. For the sake of discussion, assume that taskmap(·, ·), constraint(·, ·),
bad sched(·, ·) are predicates. From this clause we know that bad sched(x, y)
must be true for tasks x and y that have resource constraint between them
and are scheduled onto the same processor. Given two particular tasks t1,
t2 without a resource constraint between them, what can we conclude about
bad sched(t1, t2)? Rewriting Equation 7 yields:

∀z, ¬taskmap(t1, z)∨¬taskmap(t2, z)∨¬constraint(t1, t2)∨bad sched(t1, t2)
(8)

Since ¬constraint(t1, t2) is true, Equation 8 is satisfied without forcing a par-
ticular truth value to bad sched(t1, t2). In other words, there exists a model
satisfying Equation 7 for which tasks 1 and 2 are badly scheduled, but there
also exists a model where they are not badly scheduled. Both of these possibil-
ities exist because we have used classical implication. However, there exists a
commonly employed extension to Horn logic that closes this loop-hole.

2.2 Closed World Assumption

The Closed World Assumption (CWA) is applied whenever a set of Horn clauses
is intended to capture all the necessary information for a domain[9]. In order

4 E.K. Jackson and W. Schulte

for CWA to work properly there must exist some information known to be true
from the outset. These pieces of information are called facts, which are of the
form true ⇒ h where h is a non-negated literal. For example:

true ⇒ taskmap(t1, p1) (9)

Intuitively, a predicate f(x, y, z) is true for some x, y, z if f(x, y, z) is a fact or
if there is a sequence of derivations starting at facts that force f(x, y, z) to be
true. If there is no such derivation, then f(x, y, z) is false. This rule eliminates
the case where tasks t1 and t2 are badly scheduled.

This slight adjustment to classical implication profoundly effects the under-
lying formal machinery by introducing a fixed-point operator ̂Γ . This operator,
called the immediate consequence operator, deduces new facts from existing facts
using the clauses. All facts not deduced by ̂Γ are false, so any model generation
procedure must reason over this operator. If M is an initial set of facts and Λ is
a set of non-fact Horn clauses, then the set of facts deducible by Λ is the least
set X such that M ⊆ X and X = ̂Γ (X). CWA can also be understood from a
different angle under the name existential fixed-point logic [10].

The Closed World Assumption is used in most applications of Horn logic,
so it must be taken into account by any model generation procedure. However,
CWA forces a rephrasing of the model generation problem: Let Λ be a set of
non-fact Horn clauses and a goal G = {l1, l2, . . . , ln} be a set of non-negated
literals. Loosely speaking, the finite model generation problem is to find a finite
set of facts M so that (1) M ⊆ X , (2) X is a least fixed-point of ̂Γ , and (3) X
contains the goal literals (with respect to some substitution.) Thus, any model
generation procedure must reason carefully about the fixed-points of ̂Γ .

2.3 Negation-as-Failure

Classical Horn logic (without CWA) restricts the use of negation, which restricts
the expressiveness of the fragment. Negation-as-failure (NAF) attempts to rein-
troduce a form of negation that is compatible with CWA and does not recreate
full first-order logic. However, this new form of negation is very different from
its classical counterpart. Intuitively, a negated literal ¬l is true if l cannot be
proved true under Horn logic with CWA. Thus, negation is defined in terms of
a proof procedure.

In order to distinguish our Horn clauses from the classical fragment we write
a clause this way:

h ← s1, s2, . . . , sm, ¬t1, ¬t2, . . . , ¬tk (10)

The literal h is called the head of the clause and {s1, . . . , sm, t1, . . . , tk} is the tail
of the clause. Each ¬ti is a negated literal where negation refers to non-classical
NAF. Consider Clause 5 containing the negated term ¬taskmap(x, y). This nega-
tion does not directly ask if taskmap(x, y) is false for some x, y. Instead, it asks
if taskmap(x, y) /∈ ̂Γ (M) for some x, y. Unlike classical negation, NAF must be
used carefully otherwise logical inconsistencies can arise. For example, under NAF

Model Generation for Horn Logic with Stratified Negation 5

we might simultaneously conclude f ∈ ̂Γ (M) ∧ f /∈ ̂Γ (M) for some fact f . This
is a more dangerous inconsistency than b ∧ ¬b for some boolean variable b, which
has a well-defined meaning. Much work has been done on generalized forms of
NAF that do not suffer from inconsistencies [11][7][12]. We avoid these problems
by using only a restricted form of NAF called stratified negation. Our approach to
handling NAF is similar to the non-monotonic rules described in [13].

3 Definitions

We now formally describe the style of Horn logic for which we generate models;
this logic incorporates both CWA and NAF. Note that our definitions are biased
to make the presentation of model generation simpler.

3.1 Basic Concepts

Let Υ denote a finite signature, Σ an infinite alphabet of constants, and V a
infinite alphabet of variable names. We use the letters f, g, h for variables ranging
over function symbols of some signature Υ . We use typewriter script to denote
constants from Σ. Finally, we use x, y, z for variables ranging over terms. Let
arity(f) denote the arity of some function symbol f . A term is a combination
of function symbols, constants, and variables:

Definition 1. Given Υ , Σ, and V, the set of all finite terms T is defined in-
ductively

1. Each c ∈ Σ is a term
2. Each x ∈ V is a term
3. If f ∈ Υ and t1, t2, . . . , tarity(f) ∈ T then f(t1, t2, . . . , tarity(f)) is a term.

If it is unclear from context, we write T (Υ) to denote the finite terms constructed
from function symbols of signature Υ . A ground term is a term without variables;
we use TG to denote the set of all ground terms. If t is a term, then s is a subterm
of t (written s 	 t) if s = t or s is a subterm of one of the arguments of t. If t is a
term, then vars(t) is the set of subterms that are also variable names. Similarly,
consts(t) is the set of subterms that are also constants. These functions are
extended to sets of terms S ⊆ T in the natural way: vars(S) (or consts(S)) are
the variables (or constants) appearing in a set of terms.

3.2 Substitutions and Unifiers

Terms are related to one another through special homomorphisms called
substitutions.

Definition 2. A substitution ϕ : T → T is a mapping from terms to terms such
that:

1. ϕ fixes constants, i.e. ∀c ∈ Σ, ϕ(c) = c.
2. ϕ is a term homomorphism, i.e. ϕ(f(t1, t2, . . . , tn))=f(ϕ(t1),ϕ(t2),. . . ,ϕ(tn)).

6 E.K. Jackson and W. Schulte

Let Φ be the set of all substitutions for some T . Two terms s, t are said to unify if
there exists a substitution ϕ that makes them the same: ϕ(s) = ϕ(t). Essentially,
a substitution makes two terms the same by replacing variables in the terms with
new subterms. The essence of this replacement is easily characterized in terms
of the kernel of ϕ.

Definition 3. The kernel of a homomorphism ϕ (e.g. a substitution) is:

ker ϕ =
{

(s, t) ∈ T 2 | ϕ(s) = ϕ(t)
}

(11)

The kernel characterizes which subterms are equated by a substitution without
regard to the particular values assigned to variables. Some important properties
of kernels are: (1) Every kernel is an equivalence relation. (2) The intersection of
two equivalence relations is also an equivalence relation. (3) The least equivalence
relation Θ containing two equivalence relations Θ1, Θ2 is the transitive closure
of (Θ1 ∪ Θ2). This shall be written Θ = Θ1 ⊕ Θ2.

The most general unifiers (mgu) of two terms s, t is an equivalence relation
between the variables of s and t that must hold for any substitution unifying s
and t. This equivalence relation represents the weakest set of constraints over
the variables of s and t that ensures unification. The most general unifiers have
the following properties:

Lemma 1. Given two terms s, t that unify, let mgu(s, t) denote the most general
unifiers.

1. The mgu(s, t) is unique.
2. mgu(s, t) =

⋂

ϕ

{ker ϕ | ϕ(s) = ϕ(t)}

If terms s and t do not unify, then we write mgu(s, t) = ∅.

3.3 Horn Logic with CWA and NAF

Given Υ, Σ, V a Horn clause λ is a triple λ = (h, P, N) where h is a term and
P, N are sets of terms. P = {s1, . . . , sm} is the set of non-negated tail terms and
N = {t1, . . . , tk} is the set of negated tail terms. A Horn clause is written:

h ← s1, s2, . . . , sm, ¬t1, ¬t2, . . . , ¬tk (12)

Furthermore, P must be non-empty and vars(h) ⊆ vars(P). (We shall explain
these restrictions shortly.) Let Λ be a finite set of Horn clauses, then there exists
a binary relation ≺ over clauses, where (h′, P ′, N ′) ≺ (h, P, N) if there exists
some si ∈ P or tj ∈ N that unifies with h′.

Definition 4. Let Λ be a finite set of clauses, then Λ is non-recursive and strat-
ified if ≺ is a strict partial order.

Model Generation for Horn Logic with Stratified Negation 7

Restricting ≺ to a strict partial order yields a simple semantics for evaluating
the set of facts derivable by Λ. Order the clauses λ1, λ2, . . . , λk so that λi ≺ λj

implies i < j, then for each clause define an immediate consequence operator:

̂Γi(X) =
⋃

ϕ

{

ϕ(hi) | α(Pi, Ni, ϕ, X)
}

∪ X (13)

This equation states that the facts deducible by a single clause λi are calculated
by finding all the substitutions that satisfy a special predicate αi(Pi, Ni, ϕ, X);
each substitution is applied to the head hi to derive a new fact. Earlier we
restricted the variables of hi to be a subset of the variables of Pi, so each sub-
stitution maps hi to a well-defined ground term.

The predicate α(Pi, Ni, ϕ, X) captures the CWA and NAF semantics.

Definition 5. α : P(T)2 × Φ × P(T) → B is called a non-monotonic acceptor:

α(P, N, ϕ, X)
def
= (ϕ(P) ⊆ X)∧∀ϕ′

[

(

ϕ(P) = ϕ′(P)
)

⇒
(

ϕ′(N)∩X = ∅
)

]

(14)

The acceptor α(P, N, ϕ, X) is true for some substitution ϕ and some set of terms
(e.g. facts) X if the positive terms P can be found in the set of facts through
the substitution ϕ. The negative terms N must not be found in the facts X for
any extension of ϕ to ϕ′ that agrees on P .

Lemma 2. Let Λ be a finite set of non-recursive and stratified Horn clauses, and
M a finite set of ground terms. Let the clauses of Λ be ordered λ1, λ2, . . . , λk to
respect ≺ then:

1. The set of all facts deducible from M by Λ is Γ (M) where:

Γ (M) = ̂Γk(. . . ̂Γ2(̂Γ1(M)) . . .) (15)

2. It can be decided in finite time if any ground term tg ∈ Γ (M), i.e. the logic
is decidable.

3.4 The Model Generation Problem

Solving the model generation problem requires the construction of a set of facts
M that satisfies a goal. A goal G = (PG, NG) is comprised of two sets of terms: the
positive terms PG, and the negative terms NG. A goal is satisfied if there exists
some M such that all the facts deduced from M (i.e., Γ (M)) include PG and do
not include NG. More precisely, M satisfies the goal if ∃ϕ, α(PG, NG, ϕ, Γ (M))
holds.

In order to construct meaningful solutions, the model generation procedure
must know which terms are allowed to appear as facts. Consider the problem of
creating a badly scheduled set of tasks for the scheduling abstraction:

G = ({bad map(x, y)}, ∅)

8 E.K. Jackson and W. Schulte

then we expect the model generation procedure return a solution similar to this
one:

M =

�
task(t1), task(t2), processor(p1),

taskmap(t1, p1), taskmap(t2, p1), constraint(t1, t2)

�
.

Without additional information, the solution M = {bad map(c, c)} is also triv-
ially valid. This extra information is expressed by partitioning the signature Υ
into two parts: the fact signature ΥF and the derived signature ΥD. We call a
term t ∈ T (ΥF) a fact term and call all other terms derived terms. The model
generation procedure only considers solutions that are sets of fact terms. For
example, the partitioning:

ΥF = {task(·), processor(·), taskmap(·, ·), constraint(·, ·)},
ΥD = {no map(·), bad map(·, ·)}

forces all solutions to be built from tasks and processors. The goal G contains
a derived term bad map(x, y), but the solution M will never contain this term
directly. We now define the finite model generation problem.

Definition 6. The finite model generation problem - Given:

1. A finite signature Υ partitioned into ΥF �= ∅ and ΥD,
2. A finite set of clauses Λ that are non-recursive and stratified,
3. A goal G = (PG, NG) where PG, NG are finite subsets of terms.

Construct a finite set of ground terms M ⊂ TG(ΥF) so that

∃ϕ α(PG, NG, ϕ, Γ (M)) (16)

4 Utilizing Backwards Chaining

The semantics of non-recursive and stratified Horn logic has a succinct charac-
terization in terms of Γ . However, it is difficult to construct a set of constraints
from Γ that guide model generation. Fortunately, there is a well-known tech-
nique for computing the truth values of goals, called backwards chaining, which
addresses this problem. Imagine that a set of facts M is already known, and the
only task is to check if a goal G is satisfied by these facts. Backwards chaining
works backwards from the goal, through the clauses, to the facts M to check
satisfiability. If the goal is satisfied, then the procedure yields a proof tree show-
ing exactly how the facts derive the goal. Formally, this process is called SLD
resolution [14] for Horn logic and SLDNF resolution [15] for Horn logic with
NAF. These resolution procedures are sound and complete for non-recursive
and stratified Horn logic. We modify SLDNF resolution to return “possible”
proof trees, and then search for models that satisfy these proof trees. We utilize
soundness/completeness results [16] to argue soundness for model generation.

The key modification to SLDNF is a new termination condition that does not
rely on M . Typical backwards chaining terminates when it encounters a fact,
i.e. a clause of the form f ← true. This termination condition must be modified

Model Generation for Horn Logic with Stratified Negation 9

for model generation because initially no facts are known. We modify backwards
chaining so that it terminates when a fact term is encountered, even though this
fact term may not exist in the solution M . Let a clause λ ∈ Λ be partitioned as
follows:

h ← p1, . . . , pm, u1, . . . , um′ , ¬n1, . . . , ¬nk, ¬w1, . . . , ¬wk′ (17)

where (1) each pi is a positive fact term, (2) each ui is a positive derived term,
(3) each ni is a negative fact term, and (4) each wi is a negative derived term.

Associated with each clause λ is a backwards chaining predicate βλ(ϕ, M, Θ)
where M is a set of terms, ϕ is a substitution, and Θ is an equivalence relation.

Definition 7. Let λ be a clause, then associate with λ a backwards chaining
predicate1 βλ(ϕ, M, Θ):

βλ(ϕ, M, Θ)
def
=

1.
(

Θ ⊆ ker ϕ
)

∧

2. α

(

{p1, p2, . . . , pk}, {n1, n2, . . . , nm}, ϕ, M

)

∧

3.
∧

1≤i≤m′

⎛

⎝

∨

mgu(ui,hλ′) �=∅
βλ′

(

ϕ, M, Θ ⊕ mgu(ui, hλ′)
)

⎞

⎠∧

4. ∀ϕ′

⎡

⎢

⎢

⎢

⎢

⎣

(

∀v ∈ vars(Pλ) ϕ′(v) = ϕ(v)
)

⇒
⎛

⎝

∧

1≤j≤k′

∧

mgu(wj ,hλ′′) �=∅
¬βλ′′

(

ϕ′, M, Θ ⊕ mgu(wj , hλ′′)
)

⎞

⎠

⎤

⎥

⎥

⎥

⎥

⎦

The backwards chaining predicate is defined recursively and terminates on fact
terms; these parts of the tail simplify to non-monotonic acceptors (Def. 7.2). On
the other hand, derived terms must be understood through additional clauses.
The backwards chaining process recurses into derived terms by locating clauses
that unify with these terms. The equivalence relation Θ is used to collect unifi-
cation constraints during this process. For every positive derived ui there must
exist some unifying clause λ′ so that βλ′ is satisfied (Def. 7.3). Contrarily, every
negative derived term wj must have no clause λ′′ that derives wj for any ex-
tension of ϕ to ϕ′ agreeing on positive variables (Def. 7.4). It is possible that
some unification constraints cannot be satisfied by any substitution ϕ. If this
occurs then Def. 7.1 fails to hold. We assume that each time a clause λ′ (or λ′′)
is examined for unification its variables are renamed to new variables that have
not appeared before. This is called standardizing apart, and it prevents clauses
from improperly interacting through variable names.

Backwards chaining is used to reduce any goal into a set of non-monotonic ac-
ceptors. However, there is one problem with the simple definition presented here:
1 We follow the convention that the OR of the empty set is false and the AND of the

empty set is true.

10 E.K. Jackson and W. Schulte

It does not recurse through clauses with heads that are fact terms. (Consider
clause 1 from the previous example.) This definition assumes that fact terms
do not appear as heads. Fortunately, we can always rewrite the clauses of Λ to
enforce this rule; this is discussed later. For the moment, assume that facts do
not appear as heads then the following important theorem holds:

Theorem 1. Given ΥF , ΥR, Λ such that fact terms do not appear as heads, and
a goal G, then

∀M ⊂ T (ΥF), ∀ϕ α
(

PG, NG, ϕ, Γ (M)
)

⇔ βG(ϕ, M, IDT) (18)

for M finite and Λ non-recursive and stratified.

This theorem shows that evaluating the non-monotonic acceptor over all the
facts deducible from Γ gives the same result as working backwards from the goal
G through the backwards chaining predicates. We use this result to eliminate
the fixed-point operator Γ from the model generation problem. Note that the
backwards chaining process is initiated without any constraints on the variables
as described by the identity relation IDT = {(t, t)|t ∈ T }.

4.1 Simplification of Backwards Chaining

The backwards chaining formulation eliminates Γ , but generates many con-
straints across many recursions. In this section we show how to aggregate these
constraints into convenient pieces. To facilitate this discussion we give names to
particular parts of the backwards chaining predicate:

ω(ϕ, ϕ′, P)
def
=
(

∀v ∈ vars(P) ϕ′(v) = ϕ(v)
)

(19)

ψ−
λ (ϕ′, M, Θ)

def
=

∧

1≤j≤k′

∧

mgu(wj ,hλ′′) �=∅
¬βλ′′

(

ϕ′, M, Θ ⊕ mgu(wj , hλ′′)
)

(20)

Definition 7.4 becomes ∀ϕ′ ω(ϕ, ϕ′, Pλ) ⇒ ψ−
λ (ϕ′, M, Θ).

Consider the action of the goal backwards chaining predicate βG(ϕ, M, Θ),
as shown in Figure 2. The predicate βG introduces a non-monotonic acceptor
α1 and some constraints on the kernel of ϕ via Θ1. (Note that we index the
constraints 1, 2, . . . as the recursion proceeds.) Similarly, a subformula contain-
ing ψ−

1 is introduced due to negative derived terms. The positive derived terms

βG

Θ1 ⊆ ker ϕ
α1(. . . , ϕ, M)

∀ϕ′ ω1(ϕ, ϕ′, PG) ⇒
ψ−

1 (ϕ′, M, Θ1)

u1

um′

ui βλ′

Θ2 ⊆ ker ϕ
α2(. . . , ϕ, M)

∀ϕ′ ω2(ϕ, ϕ′, PG) ⇒
ψ−

2 (ϕ′, M, Θ2)

Fig. 2. A single expansion of the backwards chaining predicate for some unification
choices of positive derived terms

Model Generation for Horn Logic with Stratified Negation 11

u1, u2, . . . , um′ act as choice-points, because there may exist many clauses that
unify with each ui. Consider some choice of unifications for each ui, then the
recursion introduces more kernel constraints, non-monotonic acceptors, and neg-
ative subformulas. Let ̂β be an expansion of some β for particular unification
choices of the positive derived terms appearing through the recursion. Then this
expansion has the following form:

̂β(ϕ, M, Θ) =
(

∧

i

(Θi ⊆ ker ϕ)

)

∧
(

∧

i

α(Pi, Ni, ϕ, M)

)

∧
(

∧

i

∀ϕ′ ω(ϕ, ϕ′, V +
i) ⇒

ψ−
i (ϕ′, M, Θi)

)

(21)
The following lemmas help to simplify the expansion.

Lemma 3. Non-monotonic acceptors compose over conjunction for fixed ϕ and
X.

α(Pa, Na, ϕ, X) ∧ α(Pb, Nb, ϕ, X) = α(Pa ∪ Pb, Na ∪ Nb, ϕ, X) (22)

Lemma 4. Constraints on the kernel of ϕ compose over conjunction.

(Θa ⊆ ker ϕ) ∧ (Θb ⊆ ker ϕ) = (Θa ⊕ Θb) ⊆ ker ϕ (23)

Applying the lemmas simplifies Equation 21 to:

̂β(ϕ, M, Θ) = (Θ′ ⊆ ker ϕ)∧α(P ′, N ′, ϕ, M)∧
(

∧

i

∀ϕ′ ω(ϕ, ϕ′, V +
i) ⇒

ψ−
i (ϕ′, M, Θi)

)

(24)

where

Θ′ = Θ ⊕
(
⊕

Θi

)

(25)

P ′ =
⋃

Pi, N ′ =
⋃

Ni (26)

In summary, for a particular set of unification choices the backwards chaining
reduces to:

1. Constraints on the kernel of ϕ, which equate variables,
2. A single non-monotonic acceptor containing only fact terms,
3. A number of backwards chaining predicates for negative derived terms.

A clause λ may have an exponential number of expansions ̂β. Label these
expansions ̂β1, . . . , ̂βcλ

, then they relate to the original predicate through dis-
junction:

βλ(ϕ, M, Θ) =
∨

1≤i≤cλ

̂βi(ϕ, M, Θ) (27)

This decomposition also allows the ψ− terms to be rewritten in terms of the
expansion:

12 E.K. Jackson and W. Schulte

ψ−(ϕ, M, Θ) =
∧

mgu(wi,hλ′) �=∅

∧

1≤j≤cλ′

∀ϕ′
[

ω(ϕ, ϕ′, V +) ⇒
¬̂βj(ϕ′, M, Θ ⊕ mgu(wi, hλ′))

]

(28)

The decomposition of βλ shows that each ψ− term will expand into some
number of non-monotonic acceptors depending on the depth of the negation,
which is certainly finite. Unlike the positive derived terms, each ψ− must examine
all the relevant ̂β predicates to ensure that the negated derived term is not
satisfied. Furthermore, the simplification lemmas cannot be directly applied to
expansions of ψ− because the non-monotonic acceptors appear in negated form.
In the following sections we use these expansions to generate models from the
backwards chaining proof trees.

4.2 Restratification

The previous analysis assumed that backwards chaining terminates at fact terms.
This assumption can be violated if Λ contains clauses with fact terms as heads.
The clause task(x) ← taskmap(x, y) is an example. Fortunately, there is a simple
syntactic operation that soundly manipulates Λ so that no fact terms appear
as heads. We call this process restratification, because it changes the ordering
≺.

Definition 8. Given ΥF , ΥD, Λ, and a goal G, then the restratified system is
ΥF , Υ ∗

D, Λ∗, G∗ where:

1. Introduce a new unary derived function symbol restrat(·) to ΥR.

Υ ∗
D = ΥD ∪ {restrat(·)} (29)

2. For each clause λ ∈ Λ where the head h is a fact term, add the modified
clause λ∗ to Λ∗:

restrat(h) ← ¬h, s1, s2, . . . , sn, ¬t1, ¬t2, . . . , ¬tm (30)

3. For each clause λ ∈ Λ where the head h is derived term, add λ to Λ∗

4. Modify the goal G = (PG, NG) to include the negative derived term
¬restrat(x) where x is a variable that does not appear in G.

G∗ =
(

PG, NG ∪ {restrat(x)}
)

(31)

Lemma 5. If Λ is a set of non-recursive and stratified Horn clauses, then the
restratified clauses Λ∗ are also non-recursive and stratified where no clause has
a fact term as head.

Theorem 2. The models that satisfy G are related to the models that satisfy G∗

according to:

∀M ⊂ TG(ΥF),
(

ΓΛ(M) ∩ TG(ΥF) = M

)

⇒
(

∃ϕ α(PG, NG, ϕ, ΓΛ(M)) ⇔ ∃ϕ′ α(P ∗
G, N∗

G, ϕ′, ΓΛ∗(M))
) (32)

Model Generation for Horn Logic with Stratified Negation 13

If M is a set of ground fact terms such that ΓΛ(M) does not grow the number of
fact terms, then the restratified system will be in agreement with G. Conversely,
when models are found that satisfy the restratified system, then these models do
not grow fact terms under the original system. Of course, ground derived terms
can still grow under either system. This is not a limitation, because solutions to
G that are not solutions to G∗ will accumulate fact terms under ΓΛ until the set
of ground fact terms is exactly a solution to G∗.

4.3 Generating Schedules: Part 1

We now apply these techniques to the running example of a scheduling abstrac-
tion. Our goal is to find a model that contains three tasks T1, T2, T3 and two
processors P1, P2 so that the tasks are scheduled onto the processors. Further-
more tasks T1 and T2 cannot be on the same processor; the same constraint holds
for task T2 and T3. In order to make the example more interesting the tasks are
not introduced in the goal:

PG =
�

processor(p1), processor(p2), constraint(t1, t2), constraint(t2, t3)
�

PN = {no map(x), bad map(y, z)} (33)

for ΥR = {no map(·), bad map(·, ·)} and all other function symbols in ΥF .
Applying restratification to the original clauses yields:

restrat(task(x)) ← taskmap(x, y),¬task(x) (34)

restrat(processor(y)) ← taskmap(x, y),¬processor(y) (35)

restrat(task(x)) ← constraint(x, y),¬task(x) (36)

restrat(task(y)) ← constraint(x, y),¬task(y) (37)

no map(task(x)) ← task(x),¬taskmap(x, y) (38)

bad map(task(x), task(y)) ← taskmap(x, z), taskmap(y, z), constraint(x, y) (39)

and the restratified goal is G∗ = (PG, NG ∪ {restrat(w)}).
Next, the backwards chaining predicates are expanded until the goal is ex-

pressed by a system of non-monotonic acceptors defined with only fact terms.
In this example the ω terms are trivial and have been removed.

∃M, ∃ϕ βG∗(ϕ, M, IDT) =
∃M, ∃ϕ, ∀ϕ′ α(PG, ∅, ϕ, M) ∧

¬α

(

{task(x1)}, {taskmap(x1, y1)}, ϕ′, M

)

∧

¬α

(

{taskmap(x2, y2)}, {task(x2)}, ϕ′, M

)

∧

¬α

(

{taskmap(x3, y3)}, {processor(y3)}, ϕ′, M

)

∧

¬α

(

{constraint(x4, y4)}, {task(x4)}, ϕ′, M

)

∧

¬α

(

{constraint(x5, y5)}, {task(y5)}, ϕ′, M

)

∧

¬α

(

{taskmap(x2, z2), taskmap(y2, z2), constraint(x2, y2)}, ∅, ϕ′, M

)

(40)

14 E.K. Jackson and W. Schulte

After the goal has been reduced, the quantifiers must be eliminated from the
formula. This elimination procedure is described in the next section.

5 Eliminating the Closed World

The formula ∃M, ∃ϕ βG(ϕ, M, IDT) contains a second-order variable M ranging
over all the closed worlds, of which there are an infinite number. The next step
in model generation is the elimination of the variable M . The elimination of M
means that we construct a new formula ∃ϕ β′

G(ϕ) that does not contain M , but
the solutions to this formula can be used to construct a finite set of facts M
satisfying the original formula.

Elimination is accomplished by constructing a finite candidate set MC of non-
ground terms with the property that there exists a satisfying M if and only if
there exists a subset M ′

C ⊆ MC where ∃ϕ βG(ϕ, ϕ(M ′
C), IDT). Once M ′

C is
discovered, all that remains is to arbitrarily choose an assignment of variables
to constants to get a concrete M .

In the interest of space, we describe the solution when all backwards chaining
paths pass through at most one negated derived term. The results here are easily
generalized to arbitrary depth of negation. (The previous example fits into this
restricted case.) Consider any expansion ̂βG of the goal predicate. The results
from the previous section guarantee that it has the following simplified form:

∃M, ∃ϕ (Θ′ ⊆ ker ϕ) ∧ α(P ′, N ′, ϕ, M) ∧ ∀ϕ′
[

¬ω1(ϕ, ϕ′, V +
1) ∨ (Θ′

1 � ker ϕ′) ∨ ¬α(P ′
1, N

′
1, ϕ

′, M)
]

∧
[

¬ω2(ϕ, ϕ′, V +
2) ∨ (Θ′

2 � ker ϕ′) ∨ ¬α(P ′
2, N

′
2, ϕ

′, M)
]

∧
...

[

¬ωk(ϕ, ϕ′, V +
k) ∨ (Θ′

k � ker ϕ′) ∨ ¬α(P ′
k, N ′

k, ϕ′, M)
]

(41)

The simplification results in exactly one non-negated acceptor α(P ′, N ′, ϕ, M),
where P ′ and N ′ are the composition of many non-monotonic acceptors accord-
ing to Lemma 3. Each negated derived term also creates a backwards chaining
tree according to Equation 28 and these trees can be simplified in the same way.
After simplification, the negative derived terms yield disjunctions of negated ω
formulas, kernel constraints, and non-monotonic acceptors. These negated sub-
formulas are arbitrarily numbered 1, . . . , k and primed to remind the reader that
they result from simplification.

Recall that every clause has a least one positive term in the tail, so every P ′
i

must be non-empty. However, the goal G might not have positive terms, in which
case P ′ = ∅. If this holds, let M = ∅, then M trivially satisfies α(∅, N ′, ϕ, ∅) and
trivial satisfies ∀ϕ′, ¬α(P ′

i , N
′
i , ϕ

′, ∅). Thus, we focus on the interesting case
where the goal G contains some positive terms, i.e. P ′ �= ∅.

Assume P ′ �= ∅, then by definition of α it must be that ϕ(P ′) ⊆ M . The set P ′

must have a homomorphic image in any solution M . Therefore, let the candidate

Model Generation for Horn Logic with Stratified Negation 15

solution MC = P ′. It may be that the negative part N ′ disallows some of these
terms, but this can be discovered later. Next, consider the negated acceptors. It
could be that some acceptor α(P ′

i , N
′
i , ϕ

′, M) is satisfied by the candidate model
MC . A necessary condition for this to occur is:

∃ϕ′ ωi(ϕ, ϕ′, V +
i) ∧ (Θ′

i ⊆ ker ϕ′) ∧ (ϕ′(P ′
i) ⊆ MC) (42)

This situation is only problematic if no term from N ′
i has a homomorphic image

in MC . These problematic situations are mitigated by expanding MC with the
maximum number of negative terms: Mnew

C = Mold
C ∪ ϕ′(N ′

i). This expansion
is performed for every possible ϕ′, of which there are a finite number (if MC is
already finite). If N ′

i contains variables not found in P ′
i , then these variables are

given new names.
Expanding MC may provide new opportunities for negated acceptors to fail

(i.e. the acceptor evaluates to true, so its negation is false). These new opportu-
nities must be identified and may require further expansion of MC . The strategy
is to add the maximum number of terms to MC that allow all the negated
acceptors to succeed. For each negated acceptor assign an operator C−

i :

C−
i (ϕ, X) =

⋃

ϕ′

{

ϕ′(N ′
i)
∣

∣

∣

∣

ωi(ϕ, ϕ′, V +
i) ∧ (Θ′

i ⊆ ker ϕ′) ∧ (ϕ′(P ′
i) ⊆ X)

}

∪ X

(43)
For the single non-negated acceptor α(P ′, N ′, ϕ, M) assign the operator C+:

C+(ϕ, X) = X ∪ ϕ(P ′) (44)

The problem of finding the maximum MC can now be stated in terms of a least
fixed-point equation:

MC = C+(ϕ, MC) = C−
1 (ϕ, MC) = C−

2 (ϕ, MC) = . . . = C−
k (ϕ, MC) (45)

These operators have two important properties: (1) monotonic: X ⊆ C+/−(X)
(2) extensive: X ⊆ Y ⇒ C+/−(X) ⊆ C+/−(Y). These properties lead to the
important lemma:

Lemma 6. If the least fixed-point MC exists, then it is unique for a given ϕ.

In fact, ϕ serves as a book-keeping mechanism to remember constraints over vari-
ables, and it can be constructed while solving the fixed-point equation. However,
in the interest of space we omit the algorithm that constructs the fixed-point
MC .

Theorem 3. For some expansion ̂βG, if the fixed-point MC exists, then

∀M, ∀ϕ ̂βG(ϕ, M, ID) ⇒
(

∃M ′
C ⊆ MC , ∃ϕ′ ϕ′(M ′

C) = M

)

(46)

where ϕ′ assigns variables to constants, and M is a minimal solution.

16 E.K. Jackson and W. Schulte

Model Generation Algorithm

1: enumeration Results = { satisfiable, unsatisfiable, unknown };
2: let result := unsatisfiable;
3:

4: Restratify(ΥF ,ΥD,Λ,G);
5: let goal expansions := {�β1, �β2, . . . , �βk};
6: for each �βi ∈ goal expansions {
7: if (fixed point exists(�βi)) {
8: let MC = fixed point(�βi);
9: for each M ′

C ⊆ MC and each interesting ϕ′ {
10: if (∃ϕ �βi(ϕ, ϕ′(M ′

C), ID)) {
11: result := satisfiable;
12: return ϕ′(M ′

C);
13: }
14: }
15: else result := unknown;
16: }

Fig. 3. Eliminating the closed world using fixed-points of goal expansions �βi

This key theorem explains that if a least fixed-point MC exists for some expan-
sion of the goal ̂βG, then a definite conclusion can be drawn about the satisfiability
of this expansion: If there is a finite model that satisfies the subgoal, then there is
some minimal model M that satisfies the subgoal. The minimal model M is exactly
some subset M ′

C ⊆ MC where the variables ofM ′
C have been assigned to constants.

The least fixed-point MC is finite, so there are a finite number of subsets M ′
C . Fur-

thermore, there are only a finite number of interesting ways that variables can be
assigned constants. This result leads to an algorithm for model generation:

5.1 Generating Schedules: Part 2

We apply these results to generate non-trivial models for the scheduling lan-
guage. Recall that Equation 40 is the simplification of the goal predicate βG and
this predicate has only one expansion to ̂β. The task is the calculation of the
fixed-point MC from ̂β. Initially MC contains only the positive part of the goal:

M0
C = {processor(p1), processor(p2), constraint(t1, t2), constraint(t2, t3)} (47)

This candidate model may violate the negated acceptors:

∀ϕ′ ¬α({constraint(x4, y4)}, {task(x4)}, ϕ′, M) ∧
∀ϕ′ ¬α({constraint(x5, y5)}, {task(y5)}, ϕ′, M)

The substitution ϕ′(x4) = ϕ′(x5) �→ t1, ϕ′(y4) = ϕ′(y5) �→ t2 is a witness to this
possibility. (There exists a similar substitution for t2, t3.) These substitutions
expand the candidate set to include the three tasks:

Model Generation for Horn Logic with Stratified Negation 17

M1
C = M0

C ∪ {task(t1), task(t2), task(t3)} (48)

This candidate set does not contain taskmap terms from tasks to processors,
violating the subformula:

∀ϕ′ ¬α({task(x1)}, {taskmap(x1, y1)}, ϕ′, M)

The expansion of MC introduces the taskmap terms and also new variables:

M2
C = M1

C ∪ {taskmap(t1, x), taskmap(t2, y), taskmap(t3, z)} (49)

Finally, new processor terms are introduced for the end-points of the taskmap
terms:

M3
C = M2

C ∪ {processor(x), processor(y), processor(z)} (50)

This set is the fixed-point, i.e. MC = M3
C .

The model generation problem can be solved by examining subsets of the
fixed-point MC . Some subsets will not produce satisfying models:

Mfail =

��
�

task(t1), task(t2), task(t3),
taskmap(t1, x), taskmap(t2, y), taskmap(t3, z)

constraint(t1, t2), constraint(t2, t3), processor(p1),

	

� (51)

where x = y = z = p1. This subset will fail for any assignment of variables to
constants because there are not enough distinct processors. On the other hand,
the set

Msuccess = Mfail ∪
{

processor(p2)
}

(52)

where x = z = p1 and y = p2 and x �= y satisfies the goal. In fact, any choice of
constants that respects the equalities/disequalities satisfies the goal. In the next
section we show how these subsets can be calculated using boolean satisfiability.

5.2 A Better Algorithm Using SMT

The simple algorithm in Figure 3 is a brute force approach for finding a model
that satisfies the goal. It tries every subset of MC and every interesting assign-
ment ϕ′ of variables to constants. In general, there are an exponential number of
(M ′

C , ϕ′) pairs to test. This exponential blow-up cannot be eliminated entirely,
but it can be mitigated by translating the problem into a SAT problem. Mature
SAT algorithms can be used to suppress the exponential blow-up. The encoding
described here assumes a modern solver capable of reasoning about equalities
among a set of non-boolean variables. We use an SMT solver (Satisfiability Mod-
ulo Theories) called Z3 [17] to accomplish this task. Z3 utilizes efficient SAT
algorithms to solve problems that are not purely boolean; e.g. problems with
equalities over non-boolean variables.

18 E.K. Jackson and W. Schulte

The first step of the encoding is the translation of complex terms to boolean
variables. At this stage all the terms that need to be considered already exist
in MC , so the encoding is simple. Assign a boolean variable τi to each term
ti in the candidate set MC . If τi is true then the corresponding term ti is in
the solution, otherwise ti is not in the solution. Furthermore, introduce a set of
non-boolean variables X , which are the variables occurring as subterms in MC :
X = vars(MC). We provide these non-boolean variables so the SAT solver can
decide if some variables xi, xj in MC should take the the same values (xi = xj),
or different values (xi �= xj), or a fixed value (xi = c).

The non-negated acceptor α(P ′, N ′, ϕ, M) defines terms P ′ that must be in
any solution. Let t+1 , t+2 , . . . , t+k be the terms in MC that were added according
to P ′, then the following boolean formula must be true:

∧

1≤j≤k

τ+
j (53)

Next, consider any negated acceptor ¬α(P ′
i , N

′
i , ϕ

′, M). Let ϕ′ be such that
ωi(ϕ, ϕ′, V +

i)holds,Θ′
i ⊆ kerϕ′, andϕ′(P ′

i) ⊆ MC . Letϕ′(P ′
i) = {t−1 , t−2 , . . . , t−k }.

(Note ϕ′ may not exist.) The negated acceptor is satisfied if one of the following
holds:

1. One of the t−j terms is not in the solution.
2. There exists a pair of variables (x, y) ∈ vars(ϕ′(P ′

i)) that is also in the kernel
of ϕ′, but x �= y.

3. There exists a variable x ∈ vars(ϕ′(P ′
i)) and a constant c where (x, c) ∈

ker ϕ′, but x �= c.
4. There exists an extension of ϕ′ to ϕ′′ and some t+ ∈ MC so that t+ ∈ ϕ′′(N ′

i).

Conditions (1)-(3) yield the following encoding:

⎛

⎝

∨

1≤j≤k

¬τ−
j

⎞

⎠ ∨

⎛

⎜

⎜

⎜

⎝

∨

x, y ∈ vars(ϕ′(P ′
i)),

(x, y) ∈ ker ϕ′

x �= y

⎞

⎟

⎟

⎟

⎠

∨

⎛

⎜

⎜

⎜

⎝

∨

x ∈ vars(ϕ′(P ′
i)), c ∈ Σ,

(x, c) ∈ ker ϕ′

x �= c

⎞

⎟

⎟

⎟

⎠

(54)
Condition (4) has a more complicated encoding:

∨

t+

⎡

⎢

⎢

⎢

⎣

τ+ ∧

⎛

⎜

⎜

⎜

⎝

∧

x, y ∈ vars(ϕ′′(P ′
i) ∪ t+)),

(x, y) ∈ ker ϕ′′

x = y

⎞

⎟

⎟

⎟

⎠

∧

⎛

⎜

⎜

⎜

⎝

∧

x ∈ vars(ϕ′′(P ′
i) ∪ t+)),

c ∈ Σ, (x, c) ∈ ker ϕ′′

x = c

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

(55)
Such an encoding must be generated for all relevant ϕ′ and ϕ′′. A similar trans-
lation encodes the negative part N ′ of the non-negated acceptor α′. We omit it
this in the interest of space.

In this discussion we have ignored the relationship between variables and
terms. For example, two terms f(x), f(y) are affected by equating (or dis-
equating) the variables: If x = y (x �= y) then f(x) = f(y) (f(x) �= f(y)).

Model Generation for Horn Logic with Stratified Negation 19

In this case the relationship can be easily encoded because all the variables in
MC will only take constant values. Let ti, tj be two terms that unify by equating
variables to other variables or constants. Then the following must hold:

(τi ⇔ τj) ∨

⎛

⎝

∨

(x,y)∈mgu(ti,tj)

x �= y

⎞

⎠ ∨

⎛

⎝

∨

(x,c)∈mgu(ti,tj)

x �= c

⎞

⎠ (56)

Terms that unify by assigning some variables to complex terms are ignored.

6 Conclusion and Future Work

Model generation is an important tool for the model-based design of software
systems. It can be used to generate non-trivial solution instances from domain-
specific abstractions, perform design-space exploration, and reason about model-
transformations. We have given a sound algorithm that generates models from
non-recursive and stratified Horn logic. These algorithms have been implemented
in a tool called FORMULA (FORmal Modeling Using Logic Analysis). The SMT
(SAT Modulo Theories) solver Z3 is used to solve the SAT encodings output by
FORMULA.

Future work includes extending model generation to encompass constraint logic
programming (CLP) frameworks. CLP combines Horn logic with constraints, as
in the following clause:

bad sched(critial task(x)) ← critical task(x), task(y), priority(x) < priority(y)

Assume there is a new type of task called a critical task. This clause states
that a bad schedule assigns a high priority to a non-critical task. Priorities are
expressed by the ordering < over integers, resulting in a combination of Horn
logic with the theory of integers. We will utilize additional theories available at
the SMT level to generate models for CLP extensions.

Acknowledgments

We would like to thank Nikolaj Bjørner for his invaluable feedback and his insight
into Z3.

References

1. Jackson, E.K., Sztipanovits, J.: Towards a formal foundation for domain specific
modeling languages. In: Proceedings of the Sixth ACM International Conference
on Embedded Software (EMSOFT 2006), pp. 53–62 (2006)

2. Object Management Group: Mda guide version 1.0.1. Technical report (2003)
3. Bezivin, J., Gerbé, O.: Towards a precise definition of the omg/mda framework.

In: Proceedings of the 16th Conference on Automated Software Engineering, pp.
273–280 (2001)

20 E.K. Jackson and W. Schulte

4. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91(1), 145–164 (2003)

5. Burch, J., Passerone, R., Sangiovanni-Vincentelli, A.: Modeling techniques in
design-by-refinement methodologies. Integrated Design and Process Technology
(June 2002)

6. Lee, E.A., Neuendorffer, S.: Actor-oriented models for codesign: Balancing re-use
and performance. In: Formal Methods and Models for Systems. Kluwer, Dordrecht
(2004)

7. Przymusinski, T.C.: Every logic program has a natural stratification and an it-
erated least fixed point model. In: PODS 1989: Proceedings of the eighth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp.
11–21. ACM, New York (1989)

8. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley-Interscience, New York,
ISBN 0-471-02865-7

9. Reiter, R.: On closed world data bases, pp. 300–310 (1987)
10. Blass, A., Gurevich, Y.: Existential fixed-point logic. In: Börger, E. (ed.) Compu-

tation Theory and Logic. LNCS, vol. 270, pp. 20–36. Springer, Heidelberg (1987)
11. van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic

programs. Journal of the ACM 38, 620–650 (1991)
12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:

Kowalski, R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference
on Logic Programming, pp. 1070–1080. The MIT Press, Cambridge (1988)

13. Marek, V.W., Nerode, A., Remmel, J.B.: A context for belief revision: Forward
chaining - normal nonmonotonic rule systems. Ann. Pure Appl. Logic 67(1-3),
269–323 (1994)

14. Emden, M.H.V., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. J. ACM 23, 733–742 (1976)

15. Apt, K.R., Doets, K.: A new definition of SLDNF-resolution. The Journal of Logic
Programming 18, 177–190 (1994)

16. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

17. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of Four-
teenth International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2008). LNCS, vol. 4963, pp. 337–340. Springer,
Heidelberg (2008)

Counterexample Guided

Spotlight Abstraction Refinement�

Tobe Toben

Carl von Ossietzky Universität Oldenburg, Germany
toben@informatik.uni-oldenburg.de

Abstract. This paper addresses the formal verification of distributed
systems comprising a dynamically changing and potentially unbounded
number of processes. We employ the spotlight principle to obtain a con-
cise finitary abstraction of the system and devise an abstraction refine-
ment strategy guided by the analysis of abstract counterexamples.

It turns out that the key problem for spotlight refinement is the iden-
tification of spurious counterexamples. We observe that the problem is
in general undecidable, and provide a sound but incomplete method that
is able to solve the problem for many practically relevant systems. Our
method is driven by a three-valued satisfaction relation for temporal spec-
ifications that accounts for the fact that concrete counterexamples can
be identified in the abstracted system if they occur within the spotlight.

1 Introduction

Distributed systems comprising a dynamically changing and potentially un-
bounded number of processes naturally occur in various areas of ubiquitous
computing, ad-hoc networking and traffic management systems. For example,
processes may represent mobile devices entering a wireless network, or trains
approaching a railway controller that is responsible for granting movement au-
thorisations (as proposed e.g. in the ETCS Level 3 standard [1]). The correct
treatment of at run-time appearing and disappearing processes adds a new level
of complexity when designing safety-critical distributed systems.

The use of formal methods can help to avoid errors early in the system devel-
opment phase. Formal verification of dynamic behaviour however imposes two
challenges. Firstly, it requires an appropriate formal description of the system
behaviour. This formalism has to go beyond standard notations for reactive sys-
tems like Kripke structures [2,3], because the local states of arbitrary many alive
processes have to be representable. Secondly, automatic verification techniques
like model-checking [3] are a priori only applicable to (small) finite-state systems.
One approach to deal with this problem is to use finitary abstraction [4], that
is, to devise a finite abstraction of the system and to show that the analysis of
the abstract system is sufficient to ensure the correctness of the original system.
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Centre “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS).

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 21–36, 2008.
c© IFIP International Federation for Information Processing 2008

22 T. Toben

This paper proposes a solution for both of these problems. Inspired by early
work in the area of first-order modal logic [5], we use first-order logical structures
as a formal representation of a global system state. These structures comprise
a set of process identities and an interpretation of predicates for these process
identities. With this, the behaviour of a dynamic system can be represented as
an infinite-state transition system over logical structures. Consequently, we use
a first-order variant of linear temporal logic for the formal requirement specifi-
cation, that is, we allow to quantify over variables denoting process identities.

By a finitary abstraction of the considered systems, we are able to use any
of the highly optimised verification engines (like VIS [6] or SPIN [7]) that are
available for finite-state systems. The employed abstraction follows the spotlight
principle [8] by representing only a finite number of processes exact and col-
lapsing the rest into one dedicated summary process. The number of concrete
processes can easily be determined by the number of variables in the requirement
specification. Formally, the abstraction yields three-valued logical structures, be-
cause the predicate interpretation for the summary process may neither become
true nor false but “maybe” in order to remain sound. The abstract system yields
a sound but incomplete overapproximation of the original system, i.e. the satis-
faction of properties transfers from the abstract to the original system, but in
general not vice versa: Not every property that is valid for the original system
can be proven in the abstraction. This entails the existence of spurious coun-
terexamples which demonstrate the violation of a property in the abstraction,
although the property actually holds for the original system. Thus, an abstract
counterexample can not be “trusted” unless it has been validated. However, due
to the heterogeneous nature of the underlying abstraction, we are also able to
obtain concrete counterexamples directly in the abstracted system, namely if
they occur within the spotlight part of the abstraction. We will formalise this
intuition in the course of this paper, again by the usage of three-valued logic.

Running Example. We use the car platooning scenario to illustrate our approach.
In this case study, cars driving on a highway are supposed to autonomously
form car platoons, i.e. series of interlinked cars driving with only little distance.
To do so, a car can merge with a car driving in front (cf. Fig. 1), and a car
being the head of a platoon can split from its followers. As cars can freely
enter and leave a highway, no finite upper bound on the number of cars can be
made.

u1

ld

u2

fl

u3

ld
fc

bc

(a) Car u1 approaching the platoon.

merge(u1,u2)−→
u1

fl

u2

fl

u3

ld
fc

bc

fc

bc

(b) Car u1 has merged with u2.

Fig. 1. Car platooning. A car at the head of a platoon is called a leader (ld), where
a single car is represented as a platoon of size one. A car driving within a platoon is
called a follower (fl). The platoon itself is organised as a doubly-linked list, where each
car has a (communication) link to its front car (fc) and a link to its back car (bc).

Counterexample Guided Spotlight Abstraction Refinement 23

u1

ld
u2

fl
u3

ldfc
bc

(a) Logical Structure M

⊥
ld, fl

u2

flfc
bc, fc

(b) Spotlight Abstraction α{u2}(M)

⊥
ld, fl

u2

fl
u3

ldfc, bc

fc, bc

fc
bc

(c) Spotlight Extension α{u2,u3}(M)

⊥
ld, fl

u2

flfc
bc, fc

(d) Shadow Refinementα+
{u2}(M)

Fig. 2. Spotlight abstraction (cf. Def. 2) and possible refinements

Spotlight Abstraction and Refinement. Figure 2(a) graphically represents the
logical structure according to the global state of the car platooning system in
Fig. 1(a). It comprises three process identities, u1, u2 and u3, and provides the
predicate interpretation by labelling the nodes and arcs by those predicates that
are true for these nodes. For example, the unary predicate ld is true for u1 and
u3 and false for u2, and the binary predicate fc is true only for (u2, u3).

Figure 2(b) shows the abstraction of this structure with only u2 in the spot-
light. The truth values of the predicates are kept only among the processes in the
spotlight, i.e. the abstraction preserves that there exists a follower car with a fc
link to (at least) one abstract car. Any information about the processes in the
shadows however is neglected, i.e. any predicate yields maybe for the summary
process ⊥, as indicated by dashed lines. Hence the summary process in general
considerably overapproximates the original structure, as indicated by the gray
area exceeding the box. This coarse representation is special to spotlight ab-
straction and is the key for easily obtaining the abstract transition system. It
provides a sound abstraction, thus every temporal specification that holds for
the spotlight abstracted transition system also holds for the original transition
system. Besides overapproximating the shadows, the spotlight abstraction also
maintains an underapproximation of the original system regarding the finite set
of spotlight processes. Thus, a natural refinement of the abstraction consists of
enlarging the spotlight. In Fig. 2(c), the spotlight comprises u2 and u3, and the
abstraction now preserves the existence of a valid platoon of size two. But note
that we can only ensure the validity of this spotlight configuration if the system
run leading to Fig. 2(c) is not illegally influenced by the summary process.

In general, the overapproximative behaviour of ⊥ may result in spotlight
configurations that are not reachable in the original system. Another important
refinement is thus to eliminate spurious behaviour of the summary process, as
graphically indicated by a reduced gray area in Fig. 2(d). We will use temporal
assumptions for refining the behaviour of ⊥, stating that certain interactions of
⊥ are not possible in certain spotlight configurations. These assumptions will be
derived from the validation of abstract counterexamples that have been obtained

24 T. Toben

for the verification of a given requirement specification. Following the discussion
above, we propose to regard the satisfaction of a temporal specification in a
three-valued fashion, namely as true if it is satisfied in all system runs, false if it
is violated in some run independent of ⊥, and unknown else. In the latter case,
we aim at concretising the abstract counterexample via spotlight extension, that
is, we try to reproduce the behaviour of ⊥ by concrete processes. For this, we
add additional spotlight processes. If the behaviour is not possible with concrete
processes, an assumption for shadow refinement has been obtained and a new
verification task is started under the refined abstraction. If the behaviour can be
validated with concrete processes, we may obtain a concrete counterexample and
are done. But it is also possible that the behaviour of the new spotlight processes
is again influenced by the abstract process, hence we may obtain another abstract
counterexample that itself has to be validated. Therefore, we successively add
concrete processes until a definite answer has been obtained.

The major contribution of this paper is an instantiation of the framework of
counterexample guided abstraction refinement [9] for spotlight abstraction, that
is, we automate the refinement of spotlight abstraction. We observe that, due
to the coarse abstraction, the validation of abstract counterexamples becomes
difficult (and undecidable in general) while the shadow refinement can be shown
to be very effective. We devise a translation from counterexamples to temporal
specifications that on the one hand allows us to validate the counterexample,
and on the other hand is a source for a refinement assumption. The translation
and refinement loop has been evaluated on the basis of a verification toolset [10]
for dynamic systems, and first experimental results are given in Sect. 5.

Related Work. In [11], spotlight abstraction is applied for the verification of
UML models, and the abstraction is manually refined by separately established
assumptions. Our approach allows us to compute such kind of assumptions au-
tomatically. [12] uses a variant of spotlight abstraction for the verification of
parameterised communication models, but they leave out abstraction refinement
as future work. [13] proposes a general strategy for spotlight abstraction refine-
ment by inferring and integrating so-called non-interference lemmata. This idea
is realised in [14] resp. [15], where two particular kinds of invariants, namely non-
interference properties resp. topology invariants, are automatically computed
and integrated into a refinement procedure. These approaches however have no
immediate potential for iteration, i.e. if the refinement by the inferred invariants
is not accurate enough to prove the specification, one remains inconclusive.

Other approaches for analysis of dynamic systems work on graph transfor-
mation systems and define tailored abstraction techniques like Partner Abstrac-
tion [16] or approximation in terms of Petri nets [17]. The latter approach also
applies a CEGAR loop to reduce spurious behaviour stemming from the merge of
graph nodes during the abstraction. However, the unique nature of the spotlight
abstraction principle requires new validation and refinement strategies.

Abstracting a set of concrete nodes to summary nodes is also the underlying
principle of parametric shape analysis [18]. Their abstraction mechanism is more
precise (and therefore more expensive) by creating multiple summary nodes for

Counterexample Guided Spotlight Abstraction Refinement 25

different equivalence classes of concrete nodes. However, concrete nodes may
migrate from one summary process to another, thereby losing their identity
(cf. [8]). In contrast, spotlight abstraction allows us to trace process identities
over the time, which enables the analysis of full temporal properties. On the
other hand, our logic is not expressive enough to reason about the shape of the
overall heap structure, because the transitive closure operator does not fit well
with spotlight abstraction.

2 Preliminaries

In general, abstraction comes hand in hand with a loss of information. To for-
mally characterise partial impreciseness, we use the framework of three-valued
logic according to Kleene [19]. Here, the boolean domain comprises three values,
namely B3 := {0, 1/2, 1}. Besides the value order ≤ on B3 × B3, we consider the
information order � on B3 × B3 defined as b1 � b2 iff b1 = 1/2 or b1 = b2.

As we do not impose an upper bound on the number of currently alive
processes, we assume an infinite set Id = {u1, u2, . . .} of process identities. By
⊥ �∈ Id we denote the summary process, and we set I⊥ := I∪̇{⊥} for any I ⊆ Id.
The actual configuration and evolution of the system will be characterised by a
number of predicates, i.e. we define a signature S = (X , PS, PL, PE) as a collec-
tion of a finite set of logical variables X , a finite set of unary state predicates PS,
a finite set of binary link predicates PL, and a finite set of evolution predicates
PE. For convenience, we set PSL := PS ∪ PL, and P := PS ∪ PL ∪ PE, and denote
the arity of a predicate p ∈ P by kp. With this, a configuration of the system
can be faithfully represented as a first-order logical structure, i.e. a tuple (U , ι)
comprising a set of currently alive processes U ⊆ Id⊥ and an interpretation of the
state and link predicates, i.e. ι yields for each p ∈ PSL a function ι(p) : Ukp ⇀ B3.
For a subset of identities I ⊆ Id⊥, we use MS(I) := {(U , ι) | U ⊆ I} to denote
the set of logical structures where at most the identities from I are present. In
the following, we will represent an interpretation ι by the tuple (ι1, ι1/2) with

ι1 := {p(u1, . . . , ukp) | ι(p)(u1, . . . , ukp) = 1}
ι1/2 := {p(u1, . . . , ukp) | ι(p)(u1, . . . , ukp) = 1/2}.

3 Dynamic Systems

The behaviour of a dynamic system can be formally characterised by a (infinitely
large) labelled transition system where the states are logical structures and the
transitions are labelled by evolution predicates. To actually model such systems,
we introduce a symbolic description of a dynamic system as a set of evolution
rules D, each of them comprising a label, a guard and a sequence of actions. The
label is a term over evolution predicates PE, i.e. it is of the form p(x1, . . . , xkp)
with xi ∈ X . The guard is a formula over state and link predicates, generated by
the grammar ψ ::= t | x1 =x2 | ¬ψ | ψ1 ∧ ψ2 where t is a term over PSL. Finally,

26 T. Toben

an action sequence is generated by the grammar a ::= a1; a2 | t | ¬t | �x | �x.
Here, a positive term t over PSL turns the corresponding predicate to true, and a
negative term ¬t sets it to false. The action �x will create a new process denoted
by x ∈ X , and �x will kill the corresponding process. We require that each label
comprises exactly those variables that are used in its guard and in its actions.

Before defining the formal semantics, let us formalise the car platooning ex-
ample as a dynamic system Car over signature (X , PS, PL, PE) with PS = {ld, fl},
PL = {bc, fc} and PE = {new/1, merge/2, split/2}. The evolution rules are

new(x) • ¬alive(x) � �x; ld(x)
merge(x1, x2) • ld(x1) ∧ alive(x2) ∧ x1 �=x2 � ¬ld(x1); fl(x1); fc(x1, x2); bc(x2, x1)

split(x1, x2) • ld(x1) ∧ bc(x1, x2) � ld(x2); ¬fl(x2); ¬fc(x2, x1); ¬bc(x1, x2)

written in the form label • guard � actions. The first rule allows to freely create
cars as leaders, that is, any structure where some process identity u is currently
not alive (see below for the definition of alive) may evolve into a structure where
u exists and ld(u) holds. The second rule allows to merge a leader car with some
other alive car, that is, the leader becomes a follower and communication links
are established. The third rule allows a leader car to split from its back car.

Now to formally characterise when two logical structures are in transition
relation according to a dynamic system, we need to define the satisfaction of a
guard and the effect of applying actions to a logical structure. Let M = (U , ι) ∈
MS(I) be a logical structure and V ∈ ValsI(X) a valuation, i.e. a function X → I
of variables X ⊆ X to identities I ⊆ Id⊥. Then

M�p(x1, . . . , xkp)�(V) := V(x1), . . . , V(xkp) ∈ U ∧ ι(p)(V(x1), . . . , V(xkp))
M�x1 = x2�(V) := V(x1), V(x2) ∈ U ∧ V(x1) = V(x2)

M�¬ψ�(V) := ¬M�ψ�(V)
M�ψ1 ∧ ψ2�(V) := M�ψ1�(V) ∧ M�ψ2�(V)

inductively defines the (possibly three-valued) satisfaction of a guard. We de-
cided that a term can only be satisfied if all its arguments are currently alive,
that is, in U . In particular, this allows for the abbreviation alive(x) := x=x.
The action update of M = (U , ι) under valuation V is inductively defined as

M〈a1; a2; . . . ; an〉(V) := M〈a1〉(V)〈a2; . . . ; an〉(V)
M〈p(x1, . . . , xkp)〉(V) := (U , ι[p → ι(p)[(V(x1), . . . , V(xkp)) → 1]])

M〈¬p(x1, . . . , xkp)〉(V) := (U , ι[p → ι(p)[(V(x1), . . . , V(xkp)) → 0]])
M〈�x〉(V) := (U ∪ {V(x)}, ι)
M〈�x〉(V) := (U \ {V(x)}, ι)

where f [x → y] denotes substitution for some function f : X → Y , i.e. it alters
the function f to yield y ∈ Y for argument x ∈ X , and f(x′) for all x′ ∈ X \{x}.

Starting at the empty structure (∅, (∅, ∅)), the semantics of a dynamic system
is computed by iteratively applying evolution rules that are enabled, i.e. there is

Counterexample Guided Spotlight Abstraction Refinement 27

a valuation V into the infinite domain of identities Id s.t. the guard is satisfied.
Note that the evolution steps are labelled by the applied rule and the subset
of involved identities. This information will be exploited later when evaluating
temporal specifications and for performing spotlight extension as refinement.

Definition 1 (Concrete Semantics). The concrete semantics of a dynamic
system D over S, denoted [D], is the labelled transition system (S,S0,L,R) with

– states S := MS(Id) with initial state S0 := (∅, (∅, ∅)),
– labels L and transitions R := {(M, label[V], M〈actions〉(V)) ∈ S × L × S |

∃ (label • guard � actions) ∈ D, V ∈ ValsId(X) : M�guard�(V)}.

where p(x1, . . . , xkp)[V] := p(V(x1), . . . , V(xkp)) for p ∈ PE. ♦

The concrete semantics induces a set of runs of a dynamic system D as follows.
A run of T = (S,S0,L,R) is an infinite sequence ((Li, Si))i∈N0 of labels Li ∈ L
and states Si = (Ui, ιi) ∈ S such that S0 = S0 and (Si, Li+1, Si+1) ∈ R for all
i ≥ 0. The runs of T are denoted by Runs(T). An example run of [Car] is

((∅, (∅, ∅))),
(new(u1), ({u1}, ({ld(u1)}, ∅))),
(new(u2), ({u1, u2}, ({ld(u1), ld(u2)}, ∅))),

(merge(u1, u2), ({u1, u2}, ({fl(u1), ld(u2), fc(u1, u2), bc(u2, u1)}, ∅))),
(split(u2, u1), ({u1, u2}, ({ld(u1), ld(u2)}, ∅))), . . .

where two cars u1, u2 appear, merge to a platoon of size two and split again.
Note that the unbounded number of processes in a dynamic system renders the

verification problem undecidable. In [20] we show how to encode the transitions
of a two-counter-machine by a set of evolution rules as introduced above. The
basic idea is to simulate an unbounded counter as a linked list of processes.

3.1 Spotlight Abstraction of Dynamic Systems

To obtain a finite representation of the infinite-state transition system, we apply
spotlight abstraction [8]. It takes a finite set of “spotlight identities” I ⊆ Id
and collapses all identities from Id \ I into the abstract identity ⊥, for which all
predicates then evaluate to 1/2 in order to obtain a sound abstraction.

Definition 2 (Spotlight Abstraction). The spotlight abstraction of a logical
structure is the function α·(·) : 2Id × MS(Id⊥) → MS(Id⊥) with αI((U , ι)) :=
(αI(U), αI(ι)) where αI(U) := (U ∩ I) ∪ {⊥} and

αI(ι)(pl)(⊥, u1) := 1/2 αI(ι)(ps)(u1) := ι(ps)(u1)
αI(ι)(pl)(u1, u2) := ι(pl)(u1, u2) αI(ι)(ps)(⊥) := 1/2

αI(ι)(pl)(u1, ⊥) := 1/2 if ∃ u′ ∈ U \ I : ι(pl)(u1, u
′), and 0 else

for ps ∈ PS, pl ∈ PL, and u1, u2 ∈ U ∩ I. ♦

28 T. Toben

Note that a binary predicate pl for some concrete process u1 and the summary
process ⊥ becomes 1/2 if there was at least one collapsed process u′ where the
predicate was true. By this we actually lose the number of links to abstracted
processes (cf. Fig. 2(b)). The fact that the abstraction neglects all information
about the processes outside of the spotlight allows the abstract transition relation
to be easily computed. We simply restrict the set of states to finite three-valued
structures MS(I⊥), apply the action update as in the concrete semantics, and
then blur the resulting structure via the abstraction function αI from Def. 2.

Definition 3 (Abstract Semantics). The abstract semantics of a dynamic
system D ∈ DS and a set of identities I ⊆ Id, denoted [D]�I , is the labelled
transition system (S,S0,L,R) with

– states S := MS(I⊥) with initial state S0 := αI((∅, (∅, ∅)),
– and transitions R := {(M, label[V], αI(M〈actions〉(V))) ∈ S × L × S |

∃ (label • guard � actions) ∈ D, V ∈ ValsI⊥(X) : M�guard�(V) ≥ 1/2}. ♦

Remark 1. Let D be a dynamic system and I ⊂ Id a finite set of identities, i.e. a
finite spotlight. Then [D]�I is finite, i.e. it comprises only finitely many states. ♦

We proceed by introducing the syntax and semantics of a specification logic
for dynamic systems, and provide a generalised soundness theorem for spotlight
abstraction in terms of the information order of three-valued logic.

3.2 Specification Logic for Dynamic Systems

Temporal logic [21] has become a standard formalism to reason about system
behaviour. In this paper, we use a variant of first-order linear time logic with
implicit universal quantification. The specification language over signature S =
(X , PS, PL, PE), denoted SpecsS , is defined by the grammar

φ ::= tt | t | ¬φ | φ1 ∧ φ2 | φ ≥ 1/2 | Gφ | Fφ

where t is a term over P . For example, the following specification for the Car
system states that for all cars x1, whenever x1 is in its ld (“leader”) state it has
no fc (“front car”) connection to any car x2:

φld := G (ld(x1) → ¬fc(x1, x2))

In the case of overapproximative abstraction, the satisfaction of a temporal
specification transfers from the abstract to the concrete system, i.e. D� |= φ →
D |= φ. In the case of spotlight abstraction, we observe special cases where also
the converse holds, i.e. where D� �|= φ → D �|= φ. We can easily identify these
cases by exploiting the fact that the transitions are annotated by the set of
involved identities: Any violation where ⊥ is not involved is by construction a
concrete violation in the original system. This finding leads to a new three-valued
definition of a run satisfying a temporal specification as follows, and is the basis
for identifying non-spurious abstract counterexamples.

Counterexample Guided Spotlight Abstraction Refinement 29

Definition 4 (Satisfaction Relation). Let T be a labelled transition system
over signature S. The satisfaction of φ ∈ SpecsS in a run π = ((Li, Si))i∈N0 ∈
Runs(T) under valuation V ∈ ValsId⊥(vars(φ)) is defined inductively as follows,
where ps ∈ PS, pl ∈ PL and pe ∈ PE.

π�ps(x)�i(V) := Si�ps(x)�(V) π�φ ≥ 1/2�i(V) := π�φ�i(V) ≥ 1/2

π�pl(x1, x2)�i(V) := Si�pl(x1, x2)�(V) π�¬φ�i(V) := ¬π�φ�i(V)

π�pe(x1, . . . , xkpe
)�i(V) := Li = pe(V(x1), . . . , V(ukpe

)) π�tt�i(V) := 1

π�φ1 ∧ φ2�
i(V) := π�φ1�

i(V) ∧ π�φ2�
i(V)

π�G φ�i(V) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if ∀ k ≥ i :
(

π�φ�k(V) = 1
)

0 if ∃ k ≥ i :
(

π�φ�k(V) = 0 ∧
∀ j ∈ {i . . . k} : ⊥ �∈ Lj

)

1/2 else

π�F φ�i(V) := ¬π�G ¬φ�i(V)

The satisfaction of φ in T under V is defined as the minimum over all runs:

T�φ�(V) := min{π�φ�0(V) ∈ B3 | π ∈ Runs(T)}. ♦

By this, we obtain an embedding (with respect to the information order) of
the three-valued satisfaction for the abstracted semantics into the satisfaction
for the concrete semantics. That is, whenever [D]�I�φ�(V) evaluates to a definite
value, then [D]�φ�(V) evaluates to the same value. If [D]�I�φ�(V) = 1/2, we remain
inconclusive. The following theorem formally states this property.

Theorem 1 (Embedding). Let D be a dynamic system over S and φ ∈ SpecsS .
Then

[D]�I�φ�(V) � [D]�φ�(V)

for any spotlight I ⊆ Id and valuation V ∈ ValsI(vars(φ)). ♦

Based on the satisfaction relation from Def. 4, we define the satisfaction of the
quantified specification for a dynamic system in two variants, namely for the
concrete and the abstract semantics of a dynamic system. For the latter, we
allow to fix a subset of the variables that will bind to the ⊥ identity, and we set
the range of the actual valuation function as the content of the spotlight.

Definition 5 (Quantified Satisfaction). For a dynamic system D over sig-
nature S, a specification φ ∈ SpecsS and variables X ⊆ vars(φ) we define

D�φ� := min{ [D]�φ�(V) ∈ B3 | V ∈ ValsId(vars(φ))}
D�

X�φ� := min{ [D]�ran(V)\{⊥}�φ�(V) ∈ B3 | V ∈ ValsId⊥(vars(φ)) with
V(x) = ⊥ ⇐⇒ x ∈ X}. ♦

30 T. Toben

Note that D�φ� ∈ {0, 1}. For the abstract semantics, we compute the minimal
value according to ≤, i.e. if there is an abstract run and a valuation that yields
a definite violation, we obtain a definite violation of the quantified specification,
and if all runs under all valuations yield a definite satisfaction, we obtain a
definite satisfaction. In all other cases, we obtain the indefinite value 1/2.

The above definition requires to analyse the system under infinitely many val-
uation functions. However, we observe that dynamic systems induce transition
systems that are symmetric in identities [22], i.e. whenever a set of processes I
satisfies (violates) a specification, then any permutation on process identities σ(I)
satisfies (violates) the specification. This is because the behaviour of a process does
not depend on its actual identity. Given a specification comprising N variables, we
may reduce the number of valuations to a finite number N ′ of representative cases,
where N ′ lies in O(N !) [22]. These cases now only distinguish between the pairwise
(in-)equality of process identities. For example, for the verification of φld it is suffi-
cient to consider two valuations, e.g. [x1 → u1, x2 → u1] and [x1 → u1, x2 → u2],
because all other cases are symmetric. Note that in [23] the term Query Reduction
was coined for such kind of exact reductions.

Theorem 1 directly transfers to the quantified case when no variable in vars(φ)
evaluates to the ⊥ identity, that is, D�

∅�φ� � D�φ�. In practice, this relation is
only of interest when obtaining a definite value for the abstract system. However,
the coarse representation of the spotlight environment allows for many (spurious)
interferences with the spotlight (see an example below), hence we expect to often
obtain the inconclusive result 1/2. In the next section, we devise an iterative
algorithm to suppress these interferences.

4 Spotlight Abstraction Refinement

In the following, let D be a dynamic system over signature S and φ ∈ SpecsS .
Whenever D�

X�φ� ≤ 1/2, we can present a counterexample δ to demonstrate
the (abstract) violation. By remark 1 such a counterexample can be finitely
represented by a finite prefix of a run (possibly with a looping part as suffix, i.e.
lasso-shaped [24]). We define the set of counterexamples

δ = 〈π̄, V〉 ∈ Cex(D�
X�φ�)

where π̄ = ((Li, Si))0≤i≤n is a finite prefix of a run π ∈ Runs([D]�I) and V ∈
ValsI⊥(vars(φ)) is a valuation such that π�φ�0(V) ≤ 1/2.

A counterexample in Cex(Car�∅�G(ld(x1) → ¬fc(x1, x2))�) is δld =

〈 α{u1,u2}({⊥}, (∅, ∅)),
(new(u1), α{u1,u2}({u1, ⊥}, ({ld(u1)}, ∅))),
(new(u2), α{u1,u2}({u1, u2, ⊥}, ({ld(u1), ld(u2)}, ∅))),

(merge(u1, u2), α{u1,u2}({u1, u2, ⊥}, {fl(u1), ld(u2), fc(u1, u2), bc(u2, u1)}, ∅)),
(split(⊥, u1), α{u1,u2}({u1, u2, ⊥}, {ld(u1), ld(u2), fc(u1, u2), bc(u2, u1)}, ∅)),

[x1 → u1, x2 → u2] 〉

Counterexample Guided Spotlight Abstraction Refinement 31

This run yields a possible violation of the specification because the last evolu-
tion split(⊥, u1) yields a structure where ld(u1) ∧ fc(u1, u2), i.e. there is a leader
car with a link to a front car. The question is whether those evolution transitions
that affect the ⊥ identity correspond to real behaviour of an (abstracted) process
in the spotlight environment, or whether it is spurious behaviour stemming from
the abstraction. In this example, we can manually argue that the split(⊥, u1) is
spurious because the prefix up to this transition indicates that no car in the
spotlight environment is in a platoon with car u1. In general, we consider a
counterexample spurious if it has no concretisation, where a concretisation is
possible if we can reproduce the behaviour of ⊥ by concrete processes as follows.

Definition 6 (Concretisation). Let D be a dynamic system over signature S.
A run π = ((L′

i, S
′
i))i∈N0 ∈ Runs([D]) is a concretisation of a counterexample

δ = 〈((Li, Si))0≤i≤n, V〉 ∈ Cex(D�
X�φ�),

written π � δ, if π�φ�0(V)=0 and a monotone function f : ⊥(δ) → N exists s.t.

∀ i ∈ dom(f) : Li = L′
f(i)[Id \ ran(V) → ⊥] ∧ Si = αran(V)(S′

f(i))

where ⊥(δ) denotes the interferences of the abstract process in δ, i.e. ⊥(δ) :=
{i ∈ {1, . . . , n} | ⊥ ∈ Li}. The set of concretisations of δ is defined as γ(δ) :=
{π ∈ Runs([D]) | π � δ}, and δ is called spurious, written �(δ), if γ(δ) = ∅. ♦

The function f in Def. 6 ensures that each interference of the ⊥ process is
reproduced in the concretisation run in the same order. For example, Fig. 3 shows
an abstract counterexample δfl for the specification φfl := G¬fl(x) where the only
spotlight process u merges with the abstract process ⊥. This counterexample is
concretised by the run πfl where the interference with the abstract process is
replaced by interaction with a concrete process u′.

The identification of counterexample as being spurious requires to show that
no concretisation exists, which reduces to an (in general undecidable) verification
problem of the original system (see Lemma 1 below). However, the information
contained in the counterexample allow a more specific verification task to be
constructed where all evolution steps of the abstract process are now required to
be performed by concrete processes. This provides a natural source for spotlight
extension by introducing new variables in the specification as follows.

⊥S0

new(u)−−−−−→ ⊥
ld(u)

S1

merge(⊥,u)−−−−−−−→ ⊥
fl(u)

S2

fc

α{u}(·)
·[u′ �→ ⊥]

S′
0

new(u)−−−−−→
ld(u)

S′
1

new(u′)−−−−−→
ld(u)

ld(u′)S′
2

merge(u′,u)−−−−−−−→
fl(u)

ld(u′)S′
3

fc, bc

δfl =

πfl =

�

Fig. 3. Concretisation of an abstract counterexample for φfl with f(2) = 3

32 T. Toben

Definition 7 (Counterexample Formula). Let D be a dynamic system over
S and δ = 〈((Li, Si))0≤i≤n, V〉 ∈ Cex(D�

X�φ�) a counterexample. We define the
counterexample formula of δ recursively as ϕ(δ) := ϕ(δ)1 where

ϕ(δ)i :=

⎧

⎪

⎨

⎪

⎩

F
(

label(Li, V , i) ∧ state(Si, V) ∧ (ϕ(δ)i+1)
)

if i ∈ ⊥(δ)
ϕ(δ)i+1 if i �∈ ⊥(δ) ∧ i ≤ n

tt else

where

label(pe(u1, . . . , ukp), V , i) := p(V−1
+ (u1, i, 1), . . . , V−1

+ (ukp , i, kp)), with

V−1
+ (u, i, j) :=

{

V−1(u) if u �= ⊥
xi,j ∈ X \ dom(V) else

and

state(S, V) :=
∧

x1∈dom(V),ps∈PS

(

val(ps(x1), S, V) ∧
∧

x2∈dom(V),pl∈PL

val(pl(x1, x2), S, V)
)

with val(t, S, V) = t if S�t�(V) = 1 and val(t, S, V) = ¬t else for any term t. By
fresh(ϕ(δ)) := vars(ϕ(δ)) \ dom(V) we denote the new variables in ϕ(δ). ♦

As an example, the counterexample δld translates to ϕ(δld) =

F
(

split(x4,1, x1) ∧ ld(x1) ∧ ¬fl(x1) ∧ fc(x1, x2)) ∧ ¬bc(x1, x2))∧
ld(x2) ∧ ¬fl(x2) ∧ ¬fc(x2, x1)) ∧ bc(x2, x1) ∧ (tt)

)

with fresh(ϕ(δld)) = {x4,1}. The translation introduces nested F (“finally”) ex-
pressions for each interference of the abstract ⊥ process. In the label translation
phase, each occurrence of ⊥ in a transition label is substituted by a fresh process
variable. The translation of the state part ensures that the configuration of the
spotlight processes is preserved in the concretisation run. We have the follow-
ing correspondence between the translation from Def. 7 and the definition of
counterexample concretisation according to Def. 6.

Lemma 1 (Counterexample Validation). Let D be a dynamic system over
signature S, φ ∈ SpecsS and δ ∈ Cex(D�

X�φ�) a counterexample. Then

�(δ) ⇐⇒ D�¬ϕ(δ) ∨ φ�. ♦

In other words, if and only if no concrete run exists that both satisfies the
counterexample formula and violates the specification, then the counterexample
is spurious. For the car platooning case study, we can verify (cf. Sect. 5) that

Car�∅�¬ϕ(δld) ∨ φld� = 1

because the counterexample formula ϕ(δld) is unsatisfiable under abstraction
with three concrete processes in the spotlight. This entails Car�¬ϕ(δld) ∨ φld� = 1
by the embedding theorem 1 and thus �(δld) by Lemma 1, i.e. δld is spurious.

Counterexample Guided Spotlight Abstraction Refinement 33

We can not yet conclude that Car�φld� holds, obviously because there may be
other counterexamples besides δld. However, the fact that a counterexample is
spurious allows us to reduce the satisfaction analysis to those runs where the
counterexample formula is definitely violated. Thus by Lemma 1, we can use the
counterexample formula as a source for shadow refinement simply by binding
the fresh variables of the counterexample formula to ⊥. By this, we eliminate
behaviour of ⊥ that was shown to be not possible with any concrete processes.
Lemma 2 (Shadow Refinement). Let D be a dynamic system over signature
S, φ ∈ SpecsS and δ ∈ Cex(D�

X�φ�) a counterexample with �(δ). Then

D�
F �ϕ(δ) ≥ 1/2 ∨ φ� � D�φ�

for F := fresh(ϕ(δ)). ♦

Applied to the case study, we check

Car�{x4,1}�ϕ(δld) ≥ 1/2 ∨ φld�

for which we obtain the result 1, intuitively because φld holds on all runs where
ϕ(δld) is definitely violated. From Lemma 2, we conclude that Car�φld� = 1.

This procedure of validation and refinement can be iterated in a standard re-
finement loop, where the iteration runs as long as we obtain an indefinite result.
We must however be prepared that a counterexample may not be (in-)validated
via a single verification run, because checking the counterexample formula ac-
cording to Lemma 1 under spotlight abstraction may not yield a definite answer.
In this case we can use the same validation and refinement procedure for the
counterexample of the counterexample formula. Algorithm 1 called check(D, φ)
implements our idea of counterexample guided spotlight abstraction refinement
by recursively calling itself for iterative counterexample validation. By the above
lemmata 1 and 2, we have that D�φ� ⇐⇒ check(D, φ).

Algorithm 1. check(D, φ) returns B

1: let F := ∅
2: let b := D�

F �φ�
3: while b = 1/2 do
4: let δ ∈ Cex(D�

F �φ�)
5: if check(D, ¬ϕ(δ) ∨ φ) then
6: let F := F ∪ fresh(ϕ(δ))
7: let φ := ϕ(δ) ≥ 1/2 ∨ φ
8: let b := D�

F �φ�
9: else

10: b := 0
11: end if
12: end while
13: return b

As a consequence of the undecidability of the verification problem, algorithm 1
does not terminate in general. However, in each recursion depth the spotlight is

34 T. Toben

enlarged and each iteration eliminates a new source for spurious interference. In
fact it can be shown [20] that the only source for divergence of the algorithm
is the recursive counterexample validation, whereas the iterative refinement is
guaranteed to finally terminate. We thus anticipate that the overall algorithm
terminates for a relevant class of dynamic systems, namely for those where coun-
terexamples can be (in-)validated via a finite number of concrete processes. First
promising experiments are given in the next Section.

5 Evaluation

We use an existing verification environment for dynamic systems, which has
been developed in the course of [10], for a first experimental evaluation of our
approach. The toolset comprises a compiler from XML descriptions of dynamic
systems to input languages of finite-state model-checkers, and integrates the
spotlight abstraction implementation of [25]. The experiments were performed
by the VIS 2.1 model-checker [6] on a Linux host with 3 GHz and 2 GB of RAM.
In Table 1 below, ‘rec’ denotes the actual recursion depth of algorithm 1, ‘iter’
the iteration counter in this depth, and ‘spot’ the maximal size of the spotlight,
that is, the number of concrete processes.

The upper part of Table 1 shows the verification tasks that are necessary to
verify the running example property φld for the car platooning system. As a sec-
ond experiment, we demonstrate that we are able to obtain concrete counterex-
amples under spotlight abstraction. This is of special importance as a typical
debugging application of model-checking is to check whether a certain desired
configuration is reachable. Therefore, one claims that the negation of the config-
uration is globally true and expects a counterexample. The lower part of Table 1
shows the verification tasks necessary to disprove the property φfl := G¬fl(x),
that is, to find a concrete witness for a car becoming a follower car (cf. Fig. 3).

We furthermore evaluated our approach on a case study concerning a scatter-
net formation [26] roughly following the bluetooth connection scenario. In this
protocol, mobile devices are grouped into piconets comprising one master device
and a finite set of slave devices connected in a star topology. Piconets may then
merge into scatternets where one slave device serves as a bridge, that is, it is

Table 1. Task flow of check(Car, φld) and check(Car, φfl)

rec iter task spot result time memory

0 0 Car�∅�φld� 2 1/2 (δld) 6 s 2 MB

1 0 Car�∅�¬ϕ(δld) ∨ φld� 3 1 42 s 3 MB

1 0 return 1

0 1 Car�{x4,1}�ϕ(δld) ≥ 1/2 ∨ φld� 2 1 8 s 2 MB

0 1 return 1

0 0 Car�∅�φfl� 1 1/2 (δfl) 3 s 2 MB

1 0 Car�∅�¬ϕ(δ) ∨ φfl� 2 0 (πfl) 7 s 2 MB

1 0 return 0

0 0 return 0

Counterexample Guided Spotlight Abstraction Refinement 35

a slave in two different piconets at the same time and is routing information
from one piconet to the other. The case study consists of seven evolution rules,
and the running times of the verification tasks are below two minutes each. We
needed a recursion depth of two with a maximal spotlight size of three to prove
that a device is able become a bridge device. Two iterations and a recursion
depth of one allows us to verify the safety property that a pure slave device has
a connection to exactly one master device.

6 Conclusion

We have presented an iterative refinement scheme for spotlight abstractions that
allows us to formally verify dynamic systems against first-order temporal spec-
ifications. To the best of our knowledge, this is the first iterative refinement
approach in this research direction. Although spotlight abstraction can be for-
mulated [8] as an instance of the canonical abstraction framework [18], our results
reveal a quite different nature for refinement: While predicate abstraction allows
us to identify spurious counterexamples by simulation but may diverge during
the refinement steps, spotlight abstraction shifts the problem into the validation
of counterexamples while the refinement itself can be done very effectively.

A strong point of our approach is that we may start with a minimal number of
concrete processes, and enlarge the spotlight only gradually driven by abstract
counterexamples. In doing so we keep the number of concurrent processes as
small as possible in order to avoid combinatorial explosion of the model-checking
tasks. The running times of the experiments confirm the importance of this issue.

For future work, we aim at a more in-depth investigation of termination prop-
erties of our algorithm. It will be worthwhile to integrate existing techniques for
shadow refinement [14,15] in order to reduce the number of iterations. Also, the
application of spotlight abstraction refinement in the area of heap manipulating
programs [18] is of interest (see the discussion on related work on page 24).

References

1. UNISIG: Subset 026-ch. 3; vers. 2.2.2 (srs) (March 2002), http://www.aeif.
org/ccm/default.asp

2. Kripke, S.: Semantical Considerations on Modal Logic. Acta Phil. Fennica 16, 83–
94 (1963)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

4. Kesten, Y., Pnueli, A.: Control and Data Abstraction: The Cornerstones of Prac-
tical Formal Verification. International Journal on Software Tools for Technology
Transfer 2(4), 328–342 (2000)

5. Fitting, M., Mendelsohn, R.L.: First Order Modal Logic. Kluwer, Dordrecht (1998)
6. Brayton, R.K., Hachtel, G.D., Sangiovanni - Vincentelli, A.L., Somenzi, F., Aziz,

A., Cheng, S.T., Edwards, S.A., Khatri, S.P., Kukimoto, Y., Pardo, A., Qadeer, S.,
Ranjan, R.K., Sarwary, S., Shiple, T.R., Swamy, G., Villa, T.: VIS: a System for
Verification and Synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS,
vol. 1102, pp. 428–432. Springer, Heidelberg (1996)

http://www.aeif.
org/ccm/default.asp

36 T. Toben

7. Holzmann, G.J.: The SPIN model checker: Primer and reference manual. Addison-
Wesley, Reading (2004)

8. Wachter, B., Westphal, B.: The Spotlight Principle. On Combining Process-
Summarising State Abstractions. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 182–198. Springer, Heidelberg (2007)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

10. Rakow, J.: Verification of Dynamic Communication Systems. Master’s thesis, Carl
von Ossietzky Universität Oldenburg (April 2006)

11. Westphal, B.: LSC Verification for UML Models with Unbounded Creation and
Destruction. Electr. Notes Theor. Comput. Sci. 144(3), 133–145 (2006)

12. Miller, A., Calder, M.: An automatic abstraction technique for verifying featured,
parameterised systems. Theor. Comput. Sci. (to appear, 2007)

13. Damm, W., Westphal, B.: Live and let die: LSC-based verification of UML-models.
Science of Computer Programming 55(1–3), 117–159 (2005)

14. Toben, T.: Non-Interference Properties for Data-Type Reduction of Communicat-
ing Systems. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
619–638. Springer, Heidelberg (2007)

15. Bauer, J., Toben, T., Westphal, B.: Mind the Shapes: Abstraction Refinement via
Topology Invariants. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y.
(eds.) ATVA 2007. LNCS, vol. 4762, pp. 35–50. Springer, Heidelberg (2007)

16. Bauer, J., Wilhelm, R.: Static Analysis of Dynamic Communication Systems by
Partner Abstraction. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634,
pp. 249–264. Springer, Heidelberg (2007)

17. König, B., Kozioura, V.: Counterexample-Guided Abstraction Refinement for the
Analysis of Graph Transformation Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 197–211. Springer, Heidelberg
(2006)

18. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

19. Kleene, S.C.: Introduction to metamathematics. Bibl. Matematica. North-Holland,
Amsterdam (1952)

20. Toben, T.: Spotlight Abstraction Refinement by Evolution Constraints. PhD thesis,
Carl von Ossietzky Universität Oldenburg (to appear, 2008)

21. Pnueli, A.: The temporal logic of programs. In: Proc. FOCS, pp. 46–57. IEEE, Los
Alamitos (1977)

22. Westphal, B.: Specification and Verification of Dynamic Topology Systems. PhD
thesis, Carl von Ossietzky Universität Oldenburg (2008)

23. Xie, F., Browne, J.C.: Integrated State Space Reduction for Model Checking Ex-
ecutable Object-oriented Software System Designs. In: Kutsche, R.-D., Weber, H.
(eds.) ETAPS 2002 and FASE 2002. LNCS, vol. 2306, pp. 64–79. Springer, Heidel-
berg (2002)

24. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Pro-
gram Verification. In: Proc. LICS 1986, pp. 332–344. IEEE Computer Society, Los
Alamitos (1986)

25. Westphal, B., Cook, B.S.: LSC Verification for UML Models with Unbounded Cre-
ation and Destruction. In: B. Cook, S., Stoller, W.V. (eds.) Proc. SoftMC 2005.
ENTCS, vol. 144(3), pp. 133–145. Elsevier B.V, Amsterdam (2005)

26. Haartsen, J.: Bluetooth – the universal radio interface for adhoc, wireless connec-
tivity. Ericsson Review 3 (1998)

An Experimental Evaluation of Probabilistic

Simulation�

Jonathan Bogdoll, Holger Hermanns, and Lijun Zhang

Department of Computer Science, Saarland University, Saarbrücken, Germany
{bogdoll,hermanns,zhang}@cs.uni-sb.de

Abstract. Probabilistic model checking has emerged as a versatile sys-
tem verification approach, but is frequently facing state-space explosion
problems. One promising attack to this is to construct an abstract model
which simulates the original model, and to perform model checking on
that abstract model. Recently, efficient algorithms for deciding simula-
tion of probabilistic models have been proposed. They reduce the theo-
retical complexity bounds drastically by exploiting parametric maximum
flow algorithms. In this paper, we report on experimental comparisons
of these algorithms, together with various interesting optimizations. The
evaluation is carried out on both standard PRISM example cases as well
as randomly generated models. The results show interesting time-space
tradeoffs, with the parametric maximum flow algorithms being superior
for large, dense models.

1 Introduction

System performance and dependability becomes more and more important with
the ubiquity of computing systems. Discrete-time and continuous-time Markov
chains (DTMCs and CTMCs) [18] are widely used to model and analyze perfor-
mance and dependability of such systems. A related model, which in addition
supports nondeterminism, is the model of probabilistic automata (PAs) [17].
For all these three models, tool support is available, in the form of probabilistic
model checkers such as Prism [12] or Mrmc [15]. They enable the automatic
verification of performance and dependability models for specifications expressed
by PCTL [11,6] or CSL [1,3] formulas. PCTL is a discrete probabilistic variant
of the temporal logic CTL interpreted over DTMCs and PAs, and CSL is its
continuous stochastic extension, tailored to CTMCs.

Despite the remarkable versatility of this approach, its power is limited by the
infamous state space explosion problem. Several approaches are being pursued
to alleviate that problem. Notably, minimizing the system to the bisimulation
quotient is a favorable approach [14]. As a more aggressive attack to the prob-
lem, simulation relations [13,4,5] have been proposed for these models, which,
in correspondence to the non-probabilistic setting, preserve relevant fragments
� This work is supported by the NWO-DFG bilateral project VOSS and by the DFG

as part of the Transregional Collaborative Research Center SFB/TR 14 AVACS.

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 37–52, 2008.
c© IFIP International Federation for Information Processing 2008

38 J. Bogdoll, H. Hermanns, and L. Zhang

of the logics PCTL and CSL, respectively. In particular, they provide the prin-
cipal ingredients to perform abstractions of the models, while preserving safe
fragments of the respective logics [5,17].

The kernel of simulation, simulation equivalence, preserves both safe and live
fragments of PCTL. Since simulation equivalence is coarser than bisimulation,
the induced quotient is thus smaller. This means that as long as one is interested
in safety or liveness properties, it is favorable to perform model checking on
the simulation equivalence quotient. To strive for the quotient, an algorithm
for deciding simulation preorder is needed. Since the bisimulation algorithm
is generally faster than the simulation algorithm, one can combine them by
constructing the simulation quotient based on the bisimulation quotient.

In many applications the specification can not be easily expressed by the logic
PCTL or CSL: it is rather a probabilistic model itself. Examples of this kind
include various recent wireless network protocols, such as ZigBee [10], Firewire
Zeroconf [7], or the novel IEEE 802.11e, where the central mechanism is selecting
among different-sided dies, readily expressible as a probabilistic automaton [16].
For such cases, a decision algorithm for simulation preorder can be applied as
a specification checker: The model satisfies the specification if the automaton
for the specification simulates the automaton for the model. We believe that
such specification checking is the only formal validation technique that is in
reach for verifying implementations of the above protocols. Given the emergence
of ever more wireless standards of that sort, there is an obvious motivation to
study the principal technological basis: the decision algorithm for probabilistic
simulation. This paper attacks the very problem of efficient decision algorithms
for probabilistic simulation.

Let n denote the number of states, and m denote the number of transitions.
Baier et al. [2] introduced a polynomial decision algorithm for simulation with
time complexity O(n7/ logn) and space complexity O(n2), by tailoring a net-
work flow algorithm to the problem, embedded into an iterative refinement loop.
This complexity can be improved to time complexity O(m2n) by exploiting the
parametric maximum flow algorithm [8] to solve the maximum flows for the aris-
ing sequences of similar networks [21]. This improvement however comes with
a penalty in space complexity O(m2), since one has to store networks across
iterations. Lately, the algorithm developed in [21] has been extended to handle
probabilistic automata and their continuous-time extension [20].

The purpose of this paper is to complement the theoretical complexity results
with practical evidence concerning which algorithmic approach has the most
potential in practical applications. We provide, for the first time, systematic ex-
perimental results of the space and time requirements of the available algorithms,
also comparing several optimizations and heuristics to accelerate the algorithm.
As a base algorithm we use an implementation of decision algorithm [2] without
any optimizations. The parametric maximum flow variation is treated as one par-
ticular optimization. We also consider the effect of the following optimizations
which can be applied selectively:

An Experimental Evaluation of Probabilistic Simulation 39

– Partitioning: By grouping states with identical probabilistic structure into
equivalence classes, computations can be performed on representative ele-
ments for each class.

– Invariant checking: Some pairs can be removed from the simulation by as-
serting an invariant on the arc capacities in the corresponding maximum flow
network, which is computationally less complex than the maximum flow al-
gorithm. This invariant is referred to as the P-Invariant in the remainder of
this paper.

– Significant arcs: As the algorithm progresses, arcs will be deleted from max-
imum flow networks as a result of pairs being removed from the simulation
relation. If deleting such an arc will cause the network’s flow to be less than
1, it is called significant. By deciding which arcs are significant in advance,
some networks will be discarded as part of the update process and do not
have to be considered in the following iteration.

We apply our approach to a variety of case studies taken from the Prism web-
page http://www.prismmodelchecker.org. In order to avoid a bias in the selec-
tion of models, we also evaluate the algorithms on randomly generated Markov
models. This is inspired by [19] where the authors experimentally evaluated al-
gorithms for classical automata constructions on random generated automata.
Our experimental approach follows the same strategy. On randomly generated
Markov chains, we have two interesting parameters to adjust in our studies: the
density of transitions and the density of labels. We study the performance curve
for various density combinations.

In a nutshell, we observe that state partitioning performs best on models with
low to medium transition densities while P-Invariant checking, significant arc
detection and parametric maximum flow perform better on models with medium
to high transition densities. We also observe that significant arc detection and
parametric maximum flow is not commendable in cases where memory usage is
a concern.

Organization of the paper. Section 2 recalls the decision algorithm. We discuss
various optimization strategies in Section 3. In Section 4 different combinations
of the optimizations are compared on regular models, uniform random models
and non-uniform random models. Section 5 concludes the paper.

2 Preliminaries

Let AP be a fixed, finite set of atomic propositions. For a finite set S, a distribu-
tion μ on S is a function μ : S → [0, 1] satisfying the condition μ(S) ≤ 1. We let
Dist(S) denote the set of distributions over the set S. The support of μ is defined
by Supp(μ) = {s | μ(s) > 0}, and the size of μ is defined by |μ| = |Supp(μ)|.
The distribution μ is called stochastic if μ(S) :=

∑

s∈S μ(s) = 1, absorbing if
μ(S) = 0, and sub-stochastic otherwise. We use an auxiliary state (not a real
state) ⊥ �∈ S and set μ(⊥) = 1 − μ(S). Further, let S⊥ denote the set S ∪ {⊥},
and let Supp⊥(μ) = Supp(μ) ∪ {⊥} if μ(⊥) > 0.

http://www.prismmodelchecker.org

40 J. Bogdoll, H. Hermanns, and L. Zhang

Probabilistic Automata [17]. A probabilistic automaton (PA) is a tuple M =
(S, Act,P, L) where S is a finite set of states, Act is a finite set of actions,
P ⊆ S × Act × Dist(S) is a finite set, called the probabilistic transition matrix,
and L : S → 2AP is a labeling function.

For (s, α, μ) ∈ P, we use s
α−→ μ as a shorthand notation, and call μ an α-

successor distribution of s. The PA M is a fully probabilistic system (FPS) if
Act = {α} is a singleton and for s ∈ S, there is at most one transition s

α−→ μ.
A discrete-time Markov chain (DTMC) is an FPS where all distributions are
either stochastic or absorbing. For ease of notation, we give a simpler definition
for FPSs by dropping the single action: An FPS is a tuple M = (S,P, L) where
S, L as defined for PAs, and P : S × S → [0, 1] is the probabilistic transition
matrix such that P(s, ·) ∈ Dist(S) for all s ∈ S. The fanout of the FPS M is
defined by maxs∈S |P(s, ·)|.

Simulation requires that every α-successor distribution of one state have a
corresponding α-successor distribution of the other state. The correspondence of
distributions is naturally defined with the concept of weight functions [13]. For
μ, μ′ ∈ Dist(S) and R ⊆ S × S, a weight function for (μ, μ′) with respect to R,
denoted by μ 	R μ′, is a function Δ : S⊥ × S⊥ → [0, 1] such that

1. Δ(s, s′) > 0 implies (s, s′) ∈ R or s = ⊥,
2. μ(s) = Δ(s, S⊥) for s ∈ S⊥,
3. μ′(s′) = Δ(S⊥, s′) for s′ ∈ S⊥.

The relation R ⊆ S × S is a simulation [17] on M iff for all s1, s2 with
(s1, s2) ∈ R: L(s1) = L(s2) and if s1

α−→ μ1 then there exists a transition
s2

α−→ μ2 with μ1 	R μ2. We say that s2 simulates s1, denoted by s1 �M s2, iff
there exists a simulation R on M such that (s1, s2) ∈ R. Obviously �M is the
coarsest simulation relation for M.

For (s1, s2) ∈ R, we say that s2 simulates s1 up to R, denoted s1 �R s2,
if L(s1) = L(s2) and if s1

α−→ μ1 then there exists a transition s2
α−→ μ2 with

μ1 	R μ2. Otherwise we write s1 ��R s2. Note that s1 �R s2 does not imply
s1 �M s2 unless R is a simulation, since only the first step is considered for �R.

Algorithm for deciding simulation. The algorithm [2] takes as a parameter a
model, which, for now, is an FPS M. To calculate the simulation relation for
M, the algorithm starts with the trivial relation Rinit = {(s1, s2) ∈ S × S |
L(s1) = L(s2)} and removes each pair (s1, s2) if s2 cannot simulate s1 up to
the current relation R, i. e., s1 ��R s2. This proceeds until there is no such pair
left, i. e., Rnew = R. Invariantly throughout the loop it holds that R is at least
as coarse as �M. Hence, we obtain the simulation preorder �M = R, once the
algorithm terminates.

The decisive part of the algorithm is the check whether s1 �R s2. As the con-
dition L(s1) = L(s2) is easy to check, it remains to check whether P(s1, ·) 	R

P(s2, ·) holds. This is reduced to a maximum flow computation on the network
N (s1, s2, R) constructed out of P(s1, ·), P(s2, ·) and R. This network is con-
structed via a graph containing a copy t ∈ S⊥ of each state t ∈ S⊥ where
S⊥ = {t | t ∈ S⊥} defined as follows: Let � (the source) and � (the sink) be two

An Experimental Evaluation of Probabilistic Simulation 41

additional vertices not contained in S⊥ ∪ S⊥. For μ, μ′ ∈ Dist(S) and a relation
R ⊆ S × S we define the network N (μ, μ′, R) = (V, E, u) with the set of vertices

V = {�, �} ∪ Supp⊥(μ) ∪ Supp⊥(μ′)

and the set of edges (or arcs) E defined by

E = {(s, t) | (s, t) ∈ R ∨ s = ⊥} ∪ {(�, s), (t, �)}

where s ∈ Supp⊥(μ) and t ∈ Supp⊥(μ′). The capacity function u is defined as
follows: u(�, s) = μ(s) for all s ∈ S⊥, u(t, �) = μ′(t) for all t ∈ S⊥, u(s, t) =
∞ for all (s, t) ∈ E and u(v, w) = 0 otherwise. Obviously, N (s1, s2, R) is a
bipartite network. For two states s1, s2, we let N (s1, s2, R) denote the network
N (P(s1, ·),P(s2, ·), R).

The crucial relationship exploited in [2] is that P(s1, ·) 	R P(s2, ·) iff the
maximum flow in N (s1, s2, R) is 1. Thus we can decide s1 �R s2 by comput-
ing the maximum flow in N (s1, s2, R). A key observation we made in [21] is
that the networks N (s1, s2, ·) constructed later in successive iterations are very
similar: They differ from iteration to iteration only by deletion of some edges
induced by the successive clean up of R. The algorithm, hence, exploits this fact
by leveraging maximum flow already computed in the last iteration rather than
re-starting maximum flow computation from scratch each time. In more detail,
we consider the initial network N (s1, s2, Rinit) for an arbitrary pair s1, s2 ∈ S.
Recall Rinit denotes the initial relation {(s1, s2) ∈ S × S | L(s1) = L(s2)}.
Let D1, . . . , Dk be pairwise disjoint subsets of Rinit , which correspond to the
pairs deleted from Rinit in iteration i. Let N (s1, s2, Ri) denote N (s1, s2, Rinit)
if i = 1, and N (s1, s2, Ri−1 \ Di−1) if 1 < i ≤ k + 1. Let fi denote the maximum
flow of the network N (s1, s2, Ri) for i = 1, . . . , k + 1. The problem of checking
|fi| = 1 for all i = 1, . . . , k+1 can be checked efficiently by exploiting a variation
of the parametric maximum flow algorithm [8] (called algorithm for a sequence
of maximum flows in [21]). Based on this, an algorithm with time complexity
O(m2n) is introduced for FPSs, CTMCs in [21], and for PAs in [20]. This im-
provement however comes with a penalty in space complexity: it is increased
from O(n2) to O(m2), due to the need to store of the maximum flow values of
the corresponding networks across iterations.

3 Optimization Options

Our implementation of the principal algorithm uses the following optimizations
and heuristics to eliminate redundant or trivial computations. All of the opti-
mizations and heuristics presented apply to DTMCs, CTMCs and PAs directly.
Throughout this section, we fix an FPS M and a pair of states s1, s2. The same
considerations can also be directly applied to CTMCs and PAs. Let n denote the
number of states and m denote the number of transitions of M. Let N (s1, s2, R)
denote the network as defined earlier. Furthermore, let V denote the set of the
vertices, and E denote the set of the edges of N (s1, s2, R).

42 J. Bogdoll, H. Hermanns, and L. Zhang

Compact Maximum Flow. The algorithm used to compute the maximum flow
is based on the existing push-relabel based preflow algorithm [9] and tailored
specially to the needs of the decision algorithm in order to save memory and
to omit computations for cases that never arise in the scenario considered. In
a complete maximum flow implementation, the value of the flow is computed.
However, for the purpose at hand, it is sufficient to determine whether or not the
flow equals 1. To decide the simulation preorder, we consider bipartite networks
in which source and sink and all arcs connected with them are not relevant to
the computation and can be omitted. Furthermore, the fact that all remaining
(not connected to source or sink) arcs have infinite capacity allows us to ignore
the concept of arc capacity altogether.

The use of this tailored algorithm greatly reduces the memory usage (by a
factor of approximately 4 to 6) in comparison to a more generic implementation
while its runtime stays almost unchanged in most cases. It should be noted that
this implementation does not use certain known optimizations for the push-
relabel based method and is inferior in speed to implementations which use
these optimizations.

Parametric Maximum Flow. Premise: By saving the result of previous maximum
flow computations and keeping the network consistent with the constraints of a
valid flow when deleting arcs as described in [8], the time required to recompute
the maximum flow repeatedly on the same network can be reduced.

This adds a O(|E|) time overhead for updating each network. Additional space
in the order of O(m2) is needed to store all the networks (O(|E|) per network)
such that they can be passed to the next iteration. Depending on the structure
of a maximum flow network, the time needed to compute the flow varies greatly.

State Partitioning. Premise: In large models, many states will be structurally
identical. This can be exploited by grouping states with identical probabilistic
structure together into an equivalence class. This forms a partition of the state
space. The equivalence classes are also referred to as blocks. Given two blocks
B1 and B2 of the partition, simulation algorithm will yield the same result for
any pair (s1, s2) with s1 ∈ B1 and s2 ∈ B2. Thus, it suffices to decide simulation
once for an arbitrary pair of states picked from B1 and B2.

Two states s1 and s2 have an identical probabilistic structure if their succes-
sors have pairwise the same labels and the same respective transition probabil-
ities. It is important to note that state partitioning is only correct in the first
iteration of the simulation algorithm when the initial relation is defined solely on
the basis the labels, thus is an equivalence relation. As soon as the relation is not
an equivalence relation any more, state partitioning can no longer be applied.

State partitioning adds an overhead of O(n log n) for sorting states and suc-
cessor sets. This is necessary for being able to compute the partition and to be
able to test whether two states should belong to the same block in linear time
with respect to the number of transitions in the model. State partitioning uses
an extra O(n + h2) space, where h is the number of blocks in the partition. In
order to store which block a state belongs to we need O(n), and in order to store
the result of whether one block simulates another block we need O(h2).

An Experimental Evaluation of Probabilistic Simulation 43

P-Invariant Checking. Premise: For a relation R ⊆ S × S, we define R(s) :=
{s′ ∈ S | (s, s′) ∈ R} and R−1(s) := {s′ ∈ S | (s′, s) ∈ S}. The maximum flow
of a network can only be 1 if the following two constraints are met:

1. μ(s) ≤ μ′(R(s)) for all s ∈ S,
2. μ′(s′) ≤ μ(R−1(s′)) for all s′ ∈ S.

The complexity of verifying these constraints is in the order of O(|E|) per net-
work and O(m2) overall. This operation needs an additional O(|V |) space while
performing the checks. Additionally, if the condition P(s1, S) > P(s2, S) holds,
(s1, s2) /∈ R is implied. The test of this constraint can be performed in O(n)
time once before the simulation algorithm and it requires O(n) space during the
operation.

Significant Arc Detection. Premise: The P-Invariant constraints are only checked
when a network is created. However, it would be desirable to check whether or
not the constraints are still fulfilled after a certain arc has been deleted as a
result of its corresponding pair having been removed from the relation. This can
be done as follows: For a network which satisfies the P-Invariant constraints, an
arc is called significant iff its removal would cause the network to violate the
constraints. The detection of these arcs takes O(|V |2) time in addition to that of
P-Invariant checking and O(|E|) space per network for storing the flag for every
arc. Removing an arc takes constant time if the arc is significant, otherwise
O(|E|) time to recompute the significance of the remaining arcs.

Significant arc detection is an extension of parametric maximum flow. It re-
quires that networks be stored rather than recomputed from scratch, otherwise
it is equivalent to P-Invariant checking.

4 Case Studies

The following section examines the performance of the algorithm with the various
optimizations turned on and off in respect to different models.

In the case studies, we refer to the different configurations of optimizations
considered in this paper by binary numbers constituting combinations of the fol-
lowing strategies: State Partitioning (0001), P-Invariant Checking (0010), Sig-
nificant Arcs (0100), Parametric Maximum Flow (1000). Reported run-times
measure the amount of CPU time (user mode only) spent computing the sim-
ulation. Time used on parsing the model prior to simulation and cleaning up
memory after simulation is not accounted for. By omitting time spent in system
mode, the result is not affected by virtual memory operations. The code was
compiled with compiler optimizations turned off to demonstrate the advantage
achieved by the heuristics alone. With compiler optimizations turned on, an
additional speed-up of up to three times is achieved in some cases. The lowest
amount of time/memory is marked in bold print in the tables.

44 J. Bogdoll, H. Hermanns, and L. Zhang

Table 1. Time and memory used for Leader Election models under various optimiza-
tions. Memory statistics represent peak values throughout the process of deciding sim-
ulation preorder, excluding memory used by the relation map which is present in all
configurations (Map size).

States 439 1031 2007 3463 439 1031 2007 3463
Trans. 654 1542 3006 5190 654 1542 3006 5190

Unit Time (sec) Time (min) Space (kB)

Map size 47.158 259.763 983.900 2928.669

0000 6.62001 196.25106 47.409 421.233 754.500 4156.195 15742.382 46858.687
0001 0.22081 2.07773 0.234 1.181 754.515 4156.210 15742.398 46858.703
0010 0.14801 0.69684 0.049 0.209 754.500 4156.195 15742.382 46858.687
0011 0.09101 0.39202 0.026 0.113 754.516 4156.211 15742.398 46858.703
1000 6.59761 196.70669 47.632 422.430 3910.007 20711.601 81310.734 266355.210
1001 0.19201 2.04513 0.235 1.180 2589.883 13113.180 53140.984 182841.039
1110 0.10681 0.59084 0.043 0.170 4015.472 21263.984 83497.390 273674.011
1111 0.06600 0.32102 0.022 0.084 2651.290 13412.281 54388.648 187375.586

4.1 Regular Case Studies

Leader Election Models. The leader election family of models have a very simple
structure, namely that of one state in each model with a large number, denoted by
k, of successors while the remaining states have only one successor. As such, these
models are a prime example for a successful application of partitioning. Due to the
structural similarity of the models, the number of blocks of the state partition is
4 for all leader election models and the number of times that the maximum flow
algorithm is actually invoked is drastically decreased. For the simulation of three
leaders and k = 8 (1031 states, 1542 transitions)with uniform distribution of three
different labels, the maximum flow algorithm is invoked 369859 times without any
optimization, and 228109 times with state partitioning.

The time advantage achieved by this becomes apparent in Table 1 (0000 vs.
0001). Due to the simplistic structure of the models, parametric maximum flow
yields only a small advantage on the leader election models as recomputing from
scratch is not very complex. In general, using the parametric maximum flow
algorithm by itself is not desirable for sparse models because the advantage is
negligible in comparison to the time and memory overhead. Table 1 illustrates
the additional amount of time and memory required for parametric maximum
flow (1000) versus the approach without any optimizations (0000).

Additionally, maximum flow usage statistic shows that the maximum flow
algorithm is invoked more often (although by a relatively small margin) with
parametric maximum flow enabled than not. This is due to the fact that certain
trivial networks are discarded during construction without ever computing their
maximum flow. However if a network was not initially trivial but becomes trivial
after an arc is deleted, this is only detected upon reconstruction of the same
network, but not upon updating and recomputing the network if it was saved.
Significant arc detection works against this by effectively performing P-Invariant
checking every time an arc is removed from a network.

An Experimental Evaluation of Probabilistic Simulation 45

P-Invariant checking and significant arc detection have little effect in reducing
the number of times that the maximum flow algorithm is used on models similar
to leader election when used alone. This is due to the fact that almost all states
(all except for the first) have exactly one successor and consequently almost
all networks have either one arc or none at all. Those with no edges at all are
filtered out in advance and those with one edge have

∑

s′∈S P (s, s′) = 1 for both
s1 and s2 so that P-Invariant checking cannot achieve any additional filtering.
The small reduction in maximum flow usage is due to the first state which has
more than one successor but is unfortunately negligible.

We also note that the time advantage achieved by P-Invariant checking and
significant arc detection is exceptionally large compared to the reduction in
maximum flow usage. This is because a small number of networks which appear
in the leader election models and are filtered out by these optimizations, are
inefficient to compute under the maximum flow implementation used in this
study. Therefore, the time spent computing maximum flow decreases significantly
even though the algorithm is still used almost as much.

Overall, it is notable that the minimum time for simulating leader election is
consistently achieved by the configuration 1111. It can be said that in general,
the combination of all presented optimizations is beneficial for extremely sparse
models such as leader election. If memory usage is a concern, 0011 should be
preferred over 1111 as it works without ever storing more than one maximum
flow problem in memory at a time (cf. Table 1) while only slightly inferior to
1111 in speed.

Molecular Reactions. For CTMCs we consider the Molecular Reactions as a case
study. In particular, we focus on the reaction Mg + 2Cl ←→ Mg+2 + 2Cl−.
Models for other reactions found on the PRISM web-site are very similar in
structure and do not offer any additional insight.

While the structure of this family of models is relatively simple, few opti-
mizations show any notable effect. All states have between 1 and 4 successors
with the average being around 3.8 for all models, but the transition rates are
different between almost all states. As a consequence, state partitioning fails
entirely. With a few minor exceptions, all blocks of the partition contain exactly
one state, which means that no speed-up can be achieved at all. In particular,
the reduction in maximum flow usage is always below 1%.

Although the optimizations are not very effective, you will note that in com-
parison to the leader election models, the algorithm terminates very quickly on
this family of models (See also Table 1 and Table 2): 7 hours for Leader Elec-
tion with 3463 States and 5190 Transitions (cf. 0000), 9 seconds for Molecular
Reaction with 4032 States and 15750 Transitions (cf. 0000). This is because the
simulation relation is empty except for the identity relation for all these models
which is known after just two iterations of the algorithm. The leader election
family on the other hand needs four iterations and does not have a trivial sim-
ulation relation, which makes the process of deciding simulation preorder more
complex. (Additionally, the leader election family also has some networks for
which the maximum flow is hard to compute.) This is also why the memory

46 J. Bogdoll, H. Hermanns, and L. Zhang

Table 2. Time and memory used for Molecular Reaction models under various opti-
mizations. Memory statistics represent peak values throughout the process of deciding
simulation preorder, excluding memory used by the relation map which is present in
all configurations (Map size).

States 676 1482 2601 4032 5776 676 1482 2601 4032 5776
Trans. 2550 5700 10100 15750 22650 2550 5700 10100 15750 22650

Unit Time (ms) Time (sec) Memory (MB)

Map size 0.11 0.52 1.61 3.88 7.95

0000 226.0 1158.9 3.622 9.261 19.840 0.88 4.28 13.19 31.72 65.12
0001 234.8 1169.3 3.751 9.487 20.650 1.33 6.42 19.79 47.60 97.70
0010 204.0 976.1 3.059 7.660 16.960 0.88 4.28 13.19 31.72 65.12
0011 212.0 1039.3 3.375 8.321 18.552 1.33 6.42 19.79 47.60 97.70
1000 227.2 1139.3 3.610 9.039 19.458 1.09 5.50 17.16 40.99 85.49
1001 232.8 1181.7 3.788 9.571 20.386 1.52 7.44 23.08 55.73 114.53
1110 194.8 954.1 3.027 7.761 16.754 0.90 4.37 13.53 32.54 66.88
1111 215.2 1077.7 3.349 8.744 19.107 1.46 7.21 22.29 53.92 110.80

values are all relatively close to each other (see Table 2), specifically the con-
figurations which use parametric maximum flow (1***). Intuitively this is true
because almost every pair is immediately discarded and does not have to be
saved for later iterations. This implies that parametric maximum flow does not
hold any benefit for this type of model.

The only optimization which shows some promise for this type of model is P-
Invariant checking (0010). Only surpassed by configuration 1110 in a few cases,
it has the greatest performance boost of all, although it is relatively small when
compared to the approach without any optimizations (0000). While P-Invariant
checking consistently reduces maximum flow computation by about 99.2%, the
largest part of the run-time is taken up by the remaining set of pairs which are
not discarded until the second iteration. Significant arc detection, which builds
upon P-Invariant checking and parametric maximum flow computation, does not
hold any benefit for this model due to the failure of parametric maximum flow.
While faster than pure P-Invariant checking in some cases as a result of the
left-over pairs not discarded in the first iteration, the speed-up is not consistent
and only in the range of about 1.5% to 5.25%.

Dining Cryptographers. We use the Dining Cryptographers model from the
PRISM web-site to study the performance of our algorithm on PAs. In this
study, we reduce the set of configurations to 0000, 0001, 0010 and 0011, ex-
cluding significant arcs and parametric maximum flow which have not yet been
implemented.

Table 3 shows that state partitioning (0001) is clearly the best choice for this
model. While the average size of the partition is relatively small, a speedup of
about 50% is achieved on average.

It is notable that P-Invariant checking is actually slower on this model than
approach 0000. This is because of the structure of the models. Since every action

An Experimental Evaluation of Probabilistic Simulation 47

Table 3. Time and memory used on Dining Cryptographers models

Cryptographers 3 4 5 3 4 5

States 381 2166 11851 381 2166 11851
Trans. 780 5725 38778 780 5725 38778

Actions 624 4545 30708 624 4545 30708

Time Space (MB)

Map size 0.03488 1.11959 33.49911

0000 71.00 ms 2.037 s 86.788 s 0.36649 11.91495 357.08298
0001 40.00 ms 0.977 s 39.839 s 0.36916 11.95903 357.72893
0010 79.01 ms 2.248 s 89.793 s 0.36649 11.91495 357.08298
0011 42.00 ms 1.068 s 42.056 s 0.36916 11.95903 357.72893

has either one or two equally likely successors, a pair will almost never be dis-
carded due to violating the P-Invariant constraint which can be seen as follows.
All networks have at most two vertices on the left and two on the right. Consider
a network and assume first that there is at least a vertex which has no arcs con-
nected to it. In this case the network is discarded as trivial since the maximum
flow must be below 1. Now assume that each vertex in the network has at least
an arc connected to it. In this case it is easy to see that the maximum flow of
the network is 1. Consequentially, the benefit of P-Invariant checking is very low
in the first iteration, which accounts for the bulk of the total runtime and the
computational overhead prevails.

For the same reason as described above, the combination of state partitioning
and P-Invariant checking does not outperform state partitioning on its own.

4.2 Randomly Generated Models

Uniform models. In addition to regular case studies, we consider randomly
generated DTMCs with uniform distributions, that is, all transitions from a
state s have equal probabilities. If not stated explicitly, we also use three dif-
ferent labels which are uniform distributed. Furthermore, these random mod-
els can be described by three parameters n, a and b such that |S| = n and
a ≤ |post(s)| ≤ b ∀s ∈ S. We will reference random uniform model by the
parameters n, a, b. Table 4 illustrates required time, memory and number of in-
vocations of the maximum flow algorithm with respect to different model sizes
for random uniform models.

This study is particularly remarkable because it demonstrates the strength of
parametric maximum flow. In comparison to other cases studied above, leading
configurations in the study at hand use parametric maximum flow. This is due to
the density of themodel, i.e. the larger number of successors per state in comparison
to the other case studies in this paper. It is also remarkable that, in contrast to other
case studies above, all optimizations hold some (even though limited) benefit.

State partitioning performs well on the lower end of the range, yielding a
speed-up of about 80% at best and about 20% at worst. While a larger speed-up

48 J. Bogdoll, H. Hermanns, and L. Zhang

Table 4. Comparison of all optimizations on uniform random models 400, 1, B with
varying numbers of B. Values are in milliseconds

B 10 20 30 40 50 60 70 80

0000 7.93 36.60 83.81 140.34 224.68 372.66 650.67 718.48
0001 3.13 28.04 66.64 117.97 185.61 303.72 521.30 573.94
0010 6.90 34.37 81.47 151.68 229.28 395.62 649.67 671.28
0011 2.77 26.43 60.64 97.14 196.08 276.15 473.63 520.97
1000 8.00 34.80 78.97 126.47 195.01 319.29 543.03 612.57
1001 3.17 27.37 64.54 109.37 166.64 272.08 449.16 510.20
1010 7.10 34.54 80.57 138.21 211.98 349.39 573.07 637.74
1011 2.77 26.50 61.24 96.44 183.28 268.75 455.56 493.56
1100 9.47 40.30 89.01 137.24 214.05 356.22 601.07 685.98
1101 3.90 31.04 72.24 117.64 181.38 296.05 490.80 555.77
1110 7.37 36.87 84.64 132.37 207.65 344.99 583.04 660.61
1111 2.90 27.47 63.24 99.57 174.71 278.78 469.56 509.00

may be desirable, this is a very good result since it means that state partitioning
will never slow down the process on this kind of model.

P-Invariant checking is beneficial in most cases, particularly towards the upper
end of the range, but in a few cases (40 ≤ B ≤ 65) it is actually slower
than approach 0000 and it is also slower than state partitioning in general.
Consequentially, P-Invariant checking should not be applied on its own. Coupled
with state partitioning however (see configuration 0011), P-Invariant checking
performs better and is in fact one of the best configurations in the study at hand.

While faster in a few cases, significant arc detection does not yield a consis-
tent performance boost in any configuration. Significant arc detection is most
powerful in gradual simulation decision processes where few arcs are deleted in
one iteration. The simulation relations in this study however are decided in only
three to four iterations, indicating that most pairs of states are deleted from
the relation in the first iteration already, but significant arc detection can only
speed up the decision on pairs which are not deleted immediately. It stands
to reason that significant arc detection would perform better in models with a
larger minimum number of successors per state.

Parametricmaximum flow shows good results in this study. Clocking in at speeds
faster than P-Invariant checking in many cases, this is the kind of model for which
parametric maximum flow is beneficial. At its worst, parametric maximum flow
is about 4% slower than approach 0000. At its best, it is faster by 18%.

The best configuration for this model is a tie between 1001 and 1011. While
1111 sometimes achieves times better than 1001 or 1011, it also requires more
memory and has about the same average performance as either 1001 or 1011.

Consider also Figure 1 which compares the performances of all configurations1

on uniform random models with different numbers of labels. All optimizations ex-
cept state partitioning (0001) and configurations making use of it have monotone

1 To get a readable picture, we plot only the representative configurations, i.e., con-
figurations showing extreme performances. This holds also for Figure 2.

An Experimental Evaluation of Probabilistic Simulation 49

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of Labels

0010

0011

1110

1111

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of Labels

0010

0011

1110

1111

Fig. 1. Comparison of configurations on random uniform models 200, 1, 25 (left)and
200, 1, 50 (right) with respect to varying numbers of labels. Values are averaged over 4
independently generated models of the same class.

falling curves because more labels means that the initial relation will be smaller.
Configurations using state partitioning however are affected in a different man-
ner, displaying a very low value at one label, a maximum at two labels and a
monotone curve after that. The reason for this behavior is that having only one
label works in favor of the partitioning algorithm, enabling it to partition the
state space into fewer blocks.

Non-uniform models. In addition to random uniform models, we also briefly
consider randomly generated DTMCs with varying degrees of structure. For
this purpose, we define several structural features called biases which loosely
represent the probability that a certain feature is present or not. We define the
following biases:

– Probability Bias, pb ∈ [0; 1], defines whether or not the transition probabili-
ties are distributed uniformly (pb = 0) or randomly (pb = 1)

– Fanout Bias, fb ∈ [−1; 1], defines if a state is more likely to have the mini-
mum (fb < 0) or maximum (fb > 0) number of successors

It must be noted that, in case of pb > 0, the generated probabilities are not
random values. Rather, the partition of the successor set into subsets of succes-
sors, each of which have different transition probabilities, is random. This means
that the distribution for state s is equal to the distribution for state s′ w.r.t. tran-
sition probabilities iff |post(s)| = |post(s′)| and the successor sets are partitioned
into subsets of equal sizes. As a consequence, the state partitioning optimization
is still likely to find useful partitions, even though the same optimization would
be useless for models with truly randomized transition probabilities.

Consider Figure 2 (first row) which plots the time needed for simulation for
200, 10, 20 models with different values of probability bias. On the left, we have
all configurations which use state partitioning (***1). On the right, we have all
remaining configurations. We observe that state partitioning (left) performs best
with uniform distributions and gets progressively slower for higher values of the
bias. Intuitively this is because the partitioning algorithm is able to create fewer
blocks when more distributions are uniform. All other configurations are only

50 J. Bogdoll, H. Hermanns, and L. Zhang

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

T
im

e
(m

s)

Probability Distribution Bias

Configurations on 200,10,20 with State Partitioning (***1)

0001

0011

1011

1101

 500

 550

 600

 650

 700

 750

 800

 850

 0 0.2 0.4 0.6 0.8 1

T
im

e
(m

s)

Probability Distribution Bias

Configurations on 200,10,20 without State Partitioning (***0)

0000

0010

1010

1100

 0

 1

 2

 3

 4

 5

 6

-1 -0.5 0 0.5 1

T
im

e
(s

)

Fanout Bias

Fanout Bias on 100,1,50

0000

0001

1110

1111

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

-1 -0.5 0 0.5 1

N
um

be
r

of
 M

ax
im

um
 F

lo
w

 In
vo

ca
tio

ns

Fanout Bias

Fanout Bias on 100,1,50

0000

0001

1110

1111

Fig. 2. Comparison on random nonuniform models with probability bias and fanout
bias

insignificantly affected by the bias (right). In these cases, only the complexity
of computing the maximum flow depends on the distributions, which accounts
for a comparatively small portion of the run-time in models with a low number
of successors per state. In both subsets, the configurations using P-Invariant
checking (**1*) perform better compared to the remaining configurations for
higher values of the bias, because nonuniform distributions are more likely to
violate the P-Invariant constraints.

In Figure 2 we also compare the impact of different fanout biases on the set
of representative configurations. We observe, as one might expect, that a higher
fanout bias increases the run-time of the algorithm. An exception to this are
configurations which use state partitioning (***1), which are only insignificantly
affected by the bias, except for the special case of fb = 1. For this value, all
states are in the same block and thus state partitioning cannot improve the run-
time. The right plot shows that the increase in run-time is not directly linked to
the number of times the maximum flow algorithm is invoked. In particular, the
maximum (disregarding corners) for configurations which use state partitioning
(***1) is at fb = 0, the value which represents the highest entropy and the high-
est number of blocks. For other configurations (***0), the maximum is reached
by fb > 0, in which case only a statistically insignificant number of maximum
flow computations is trivial. However, the run-time of the algorithm still rises
because the complexity of the individual maximum flow computations increases.
We conclude that this result depends to a high degree on the complexity of

An Experimental Evaluation of Probabilistic Simulation 51

maximum flow computation more than the number of such computations, which
means that it will vary greatly for different ranges of numbers of successors.

5 Conclusions

This paper has investigated an experimental approach to algorithm design, espe-
cially for Markov models. Starting off with a published simulation algorithm, we
experimented with different models to determine ways of further improving upon
this algorithm. At the end of this empirical process we have several promising
concepts, implemented as optimizations to the fundamental algorithm. Using a
collection of well-chosen case studies as well as randomly generated models we
studied the practical performance of the concepts.

One of the most interesting observations of our experimental studies is the not
uncommon imbalance between theoretical complexity and runtime in practice.
While the parametric maximum flow based method [21,20] offered a tremendous
drop in theoretical complexity, its practical implementation comes with an over-
head that makes it considerably weaker in many practical applications than more
straightforward approaches. Its strength are large, dense models which require
several iterations to terminate. These cases seem seldom in models commonly
used for case studies. The gap between theoretical and practical efficiency is not
caused by ”the constant factors” but by the fact that the corner cases that blow
up the worst case complexity are rare in practice.

We were surprised to find that simpler and more intuitive approaches like
state partitioning and P-Invariant checking actually produced promising results
in general in our practical studies, in comparison to our theoretically proven
algorithm. In particular, state partitioning works very well on models with low
to medium transition densities and near-uniform or uniform probability distrib-
utions. On the other hand, P-Invariant checking performs very well on models
with non-uniform probability distributions.

As future work we plan to make the tool available such that the optimiza-
tions and achievements are at hand for deciding simulation preorders for Markov
chains and probabilistic automata. We also plan to extend the implementation
to compute weak simulation for Markov chains. Additionally, we plan to develop
heuristics to determine internally where to selectively apply optimizations to
achieve an even better performance. Another direction is to compute the pre-
orders symbolically, i. e., using MTBDDs (multi-terminal BDDs) to fight state
space explosion problems.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996)

2. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and simi-
larity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

52 J. Bogdoll, H. Hermanns, and L. Zhang

3. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–
541 (2003)

4. Baier, C., Katoen, J.-P., Hermanns, H., Haverkort, B.: Simulation for continuous-
time Markov chains. In: Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 338–354. Springer, Heidelberg (2002)

5. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)

6. Bianco, A., de Alfaro, L.: Model Checking of Probabilistic and Nondeterministic
Systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, Springer,
Heidelberg (1995)

7. Bohnenkamp, H.C., van der Stok, P., Hermanns, H., Vaandrager, F.W.: Cost-
optimization of the ipv4 zeroconf protocol. In: DSN, pp. 531–540 (2003)

8. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

9. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35(4), 921–940 (1988)

10. Groß, C., Hermanns, H., Pulungan, R.: Does clock precision influence ZigBee’s
energy consumptions? In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007.
LNCS, vol. 4878, pp. 174–188. Springer, Heidelberg (2007)

11. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994)

12. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for Au-
tomatic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

13. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277 (1991)

14. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)

15. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In:
QEST, pp. 243–244 (2005)

16. Mangold, S., Zhong, Z., Hiertz, G.R., Walke, B.: Ieee 802.11e/802.11k wireless lan:
spectrum awareness for distributed resource sharing. Wireless Communications and
Mobile Computing 4(8), 881–902 (2004)

17. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2(2), 250–273 (1995)

18. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, Princeton (1994)

19. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005)

20. Zhang, L., Hermanns, H.: Deciding simulations on probabilistic automata. In:
Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS,
vol. 4762, pp. 207–222. Springer, Heidelberg (2007)

21. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient de-
cision algorithms for probabilistic simulations. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 155–169. Springer, Heidelberg (2007)

An SMT Approach to Bounded Reachability

Analysis of Model Programs

Margus Veanes1, Nikolaj Bjørner1, and Alexander Raschke2,�

1 Microsoft Research, Redmond, WA, USA
{margus,nbjorner}@microsoft.com
2 University of Ulm, Ulm, Germany
alexander.raschke@uni-ulm.de

Abstract. Model programs represent transition systems that are used
to specify expected behavior of systems at a high level of abstraction. The
main application area is application-level network protocols or protocol-
like aspects of software systems. Model programs typically use abstract
data types such as sets and maps, and comprehensions to express com-
plex state updates. Such models are mainly used in model-based testing
as inputs for test case generation and as oracles during conformance
testing. Correctness assumptions about the model itself are usually ex-
pressed through state invariants. An important problem is to validate
the model prior to its use in the above-mentioned contexts. We intro-
duce a technique of using Satisfiability Modulo Theories or SMT to per-
form bounded reachability analysis of a fragment of model programs. We
use the Z3 solver for our implementation and benchmarks, and we use
AsmL as the modeling language. The translation from a model program
into a verification condition of Z3 is incremental and involves selective
quantifier instantiation of quantifiers that result from the comprehension
expressions.

1 Introduction

Model programs [20] are used to describe protocol-like behavior of systems at a
high level of abstraction, the main application area being application-level net-
work protocols. Model programs typically use abstract data types such as sets
and maps, and comprehensions to express complex state updates. Protocols are
abundant; we rely on the reliable sending and receiving of email, multimedia, and
business data. But protocols, such as the Windows network file protocol SMB
(Server Message Block), can be very complex and hard to get right. They require
careful design to guarantee reliability and failure resilience; they require careful
and efficient implementations; and they require careful documentation and inter-
operability testing, so that different vendors understand the same protocol. The
use of model programs to model such complex protocols is an emerging practice
in the software industry [14].

� Part of this work was done during the authors visit at Microsoft Research.

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 53–68, 2008.
c© IFIP International Federation for Information Processing 2008

54 M. Veanes, N. Bjørner, and A. Raschke

Correctness assumptions about the model itself are usually expressed through
state invariants. An important problem is to validate the model prior to its use
in the above-mentioned contexts. We introduce a technique of using incremental
SMT solving to perform bounded reachability analysis of a fragment of model
programs. We define the formal framework and describe the implementation to
Z3 [28,11]. The translation from a model program into a verification condition
of Z3 is and involves lazy elimination of quantifiers that result from the compre-
hension expressions.

The use of SMT solvers for automatic software analysis has recently been
introduced [2] as an extension of SAT-based bounded model checking [5]. The
SMT based approach makes it possible to deal with more complex background
theories. Instead of encoding the verification task of a sequential program as
a propositional formula the task is encoded as a quantifier free formula. The
decision procedure for checking the satisfiability of the formula may use combi-
nations of background theories [22]. The formula is generated after preprocessing
of the program. The preprocessing yields a normalized program where all loops
have been eliminated by unwinding the loops up to a fixed bound.

Unlike traditional sequential programs, model programs typically operate on
a more abstract level and in particular make use of (set and bag) comprehensions
as expressions that are computed in a single step, rather than computed, one
element at a time, in a loop. In this paper we consider an extension of the SMT
approach to reachability analysis of model programs where set comprehensions
are supported at the given level of abstraction and not unwound as loops. Al-
lowing arbitrary comprehensions quickly leads to undecidability. We identify a
fragment of model programs using the array property fragment [7] that remains
decidable for bounded reachability analysis.

The construction of the formula for bounded reachability of sequential pro-
grams is based on the semantics of the behavior of the program as a transition
system. The resulting formula encodes reachability of some condition within a
given bound in that transition system. If the formula is satisfiable, a model of
the formula typically is a witness of some bad behavior. The semantics of a
model program on the other hand, is given by a labeled transition system, where
the labels record the actions that caused the transitions. Using the action la-
bel is conceptually important for separating the (external) trace semantics of
the model program from its (internal) state variables. The trace semantics of
model programs is used for example for conformance testing. When composing
model programs, shared actions are used to synchronize steps. We illustrate how
composition of model programs [26] can be used for scenario oriented or user
directed analysis.

2 Model Programs

The semantics of model programs in their full generality builds on the abstract
state machine (ASM) theory [15]. Model programs are primarily used in model-
based testing tools like Spec Explorer [1,25] where one of the supported input

An SMT Approach to Bounded Reachability Analysis 55

languages is the abstract state machine language AsmL [4,16]. The NModel tool
[23,20] and Spec Explorer 2007 [14] use plain C# for describing model programs.
Spec Explorer 2007 uses, in addition, a coordination language Cord for scenario
control [13] and model composition. Typically, a model program makes use of a
rich background theory [6] T , that contains integer arithmetic, finite collections
(sets, maps, sequences, bags), and tuples, as well as user defined data types.

2.1 Background Theory

Let the signature of T be Σ. For each sort S (representing a type) the theory for
S and its signature are denoted by TS and ΣS , respectively. All function symbols
and constants in Σ, and all variables are typed, and when referring to terms over
Σ we assume that the terms are well-typed. For a term t, the set of symbols that
occur in it is called the signature of t and is denoted by Σ(t). Boolean sort B

is explicit, and formulas are represented by Boolean terms. We use the notation
t[x] to indicate that the free logical variable x may occur in t. Given term s we
also use the notation t[s] to indicate the substitution of s for x in t. The integer
sort is Z. Given sorts D and R, {D �→ R} is the map sort with domain sort D
and range sort R. The map sort {D �→ B} is also denoted by {D} and called
a set sort with domain sort D. For each sort S there is a designated constant
defaultS denoting a special value in (the type represented by) S. For Booleans,
that value is false. The use of defaultS is to represent partial maps, with range
sort S, as total maps that map all but finitely many elements to defaultS . In
particular, sets are represented by their characteristic functions as maps.

Maps. For each map sort S = {D �→ R}, the signature ΣS contains the binary
function symbol readS , the ternary function symbol writeS and the constant
emptyS . The function readS : S × D −→ R retrieves the element for the given
key of the map. The function writeS : S × D × R −→ S creates a new map
where the key has been updated to the new value. The constant emptyS denotes
the empty map. The theory TS contains the classical map axioms (see e.g. [7]),
which we repeat here for clarity and to introduce some notation:

∀m xv y(read(write(m, x, v), y) = Ite(x = y, v, read(m, y))), (1)
∀m1 m2(∀x(read(m1, x) = read(m2, x)) → m1 = m2). (2)

All symbols are typed, i.e. have the expected sort, but we often omit the sort
annotations as they are clear from the context. The value of an if-then-else term
Ite(ϕ, t1, t2) (in a given structure) is: the value of t1, if ϕ holds; the value of t2,
otherwise. The second axiom above is extensionality. TS also contains the axiom
for the empty map:

∀x(read(empty, x) = defaultR). (3)

Sets. For each set sort S = {D}, the signature ΣS contains additionally the
binary set operations for union ∪S , intersection ∩S , set difference \S , and sub-
set ⊆S . The theory TS contains the appropriate axiomatization for the set

56 M. Veanes, N. Bjørner, and A. Raschke

operations. We write x ∈ s and x /∈ s as abbreviations for read(s, x) and
¬read(s, x), respectively. A set comprehension term s of sort S has the form
Compr(t[x], x, r, ϕ[x]) or

{t[x] : x ∈ r, ϕ[x]}, (4)

where t[x] is a term of sort D called the element term of s, x is a logical variable
of some sort E called the variable of s, r is a term of sort {E} called the range of
x, and ϕ[x] is a formula called the restriction condition of s. When the restriction
condition is true, we write the set comprehension as {t[x] : x ∈ r}. Given a closed
set comprehension term s as (4), the constant s defines s by (5).

∀y(y ∈ s ↔ ∃x(y = t[x] ∧ x ∈ r ∧ ϕ[x])). (5)

The element term t[x] of s is invertible for x, if 1) the function f = λx.t[x] is
injective, 2) there exists a formula ψt[y] that is true iff y is in the range of f , and
3) there exists a term t−1[y] such that t−1[y] = f−1(y) for all y such that ψt[y]
holds. If t[x] is invertible, then the existential quantifier in (5) can be eliminated
and (5) can be simplified to (6). (Just extend the body of the existential formula
with the conjunct t−1[y] = x ∧ ψt[y] and substitute t−1[y] for x.)

∀y(y ∈ s ↔ t−1[y] ∈ r ∧ ϕ[t−1[y]] ∧ ψt[y]) (6)

We say that a set comprehension term s is normalizable if the element term
of s is invertible for the variable of s. The form (6) is called the normal form
definition for s.

Range expressions. For the sort S = {Z} of integer sets, ΣS contains the
binary function symbol Range : Z × Z −→ S. A term Range(l, u) is called a
range expression with l as its lower bound and u as its upper bound. We also
use the notation {l..u} for Range(l, u). The interpretation of a range expression
is the set of integers from its lower bound to its upper bound. TS contains the
axiom (7) for range expressions, where it is assumed that TZ includes Pressburger
arithmetic.

∀x l u(x ∈ {l..u} ↔ l ≤ x ∧ x ≤ u) (7)

Note that a formula t ∈ {l..u} simplifies to l ≤ t∧ t ≤ u, and a formula t /∈ {l..u}
simplifies to l > t ∨ t > u. More generally, any formula that is a Boolean combi-
nation of range expressions and set operations can be simplified to linear equa-
tions. Similarly, range expressions that are used as sets and that do not depend
on bound variables (inside nested comprehesion terms) can also be eliminated
by introducing fresh constants and adding constraints corresponding to (7).

The theories for sets are assumed to contain definitions for all closed set
comprehension terms. When considering particular model programs below, the
signature Σ is expanded with new application specific constants. However, for
technical reasons it is convenient to assume that all those constants are available
in Σ a priori, so that the extension with set comprehension definitions is already
built into the theories.

An SMT Approach to Bounded Reachability Analysis 57

Example 1. Let s be {m+x : x ∈ {1..c}} where m and c are application specific
integer constants. The term m + x is invertible for x; let ψm+x be true and let
(m + x)−1 be y − m. The normal form definition for s is ∀y(y ∈ s ↔ y − m ∈
{1..c}), which reduces to ∀y(y ∈ s ↔ 1 ≤ y − m ∧ y − m ≤ c).

Example 2. Let s be {x + x : x ∈ {1..c}} where c is an application specific
constant. The term x + x is invertible provided that TZ supports divisibility by
a constant; let (x + x)−1 be y/2 and let ψx+x be Divisible(y, 2). The normal
form definition for s is ∀y(y ∈ s ↔ y/2 ∈ {1..c}∧Divisible(y, 2)), or equivalently
∀y(y ∈ s ↔ 2 ≤ y ∧ y ≤ 2 · c ∧ Divisible(y, 2)).

Arrays. A class of model programs, e.g. those used typically in protocol speci-
fications, do not depend on the full background theory but only on a fragment
of it. The particular fragment of interest is when all map sorts have domain sort
Z and TZ is Pressburger arithmetic, with ΣZ including {+, −, <, =} and integer
numerals. In particular, multiplication is omitted. Multiplication by a numeral
is used as a convenient shorthand for repeated addition. In this case, the set
comprehension term in Example 1 is normalizable. This fragment is called array
theory [7] and has useful properties that are exploited below.

Note that it is possible to express divisibility constraints by for example intro-
ducing auxiliary variables and eliminating positive occurrences of Divisible(t, k)
by k · z = t, and negative occurrences by k · z +u = t∧ 1 ≤ u < k for fresh z and
u. One can even consider extending the array fragment to Büchi arithmetic [18].

2.2 Variables and Values

We refer to the part of the global signature Σ that only includes symbols
whose interpretation is fixed by the background theory T as Σstatic; includ-
ing for example arithmetic operations and numerals and set operations. We let
Σvar = Σ \ Σstatic denote the uninterpreted symbols. We let Σvar

S and Σstatic
S

indicate the corresponding signatures restricted to the sort S. Note that Σvar

includes an unlimited supply of variables for all sorts, treated as uninterpreted
constants.

A ground term over Σstatic is called a value term. The interpretation of a value
term t is uniform in all models of T and is denoted by [[t]], i.e., [[t]] = {s : s =T t}.
As the universe of values we consider the set of all [[t]] for value terms t.

2.3 Actions

There is an action sort A. The theory TA axiomatizes a collection ΣA of action
symbols as free constructors. For each action symbol f of arity n, the sort of f is
A if n = 0 and the sort of f is S1 × · · · × Sn −→ A otherwise, where each Si is a
sort distinct from A. In other words, actions cannot take actions as parameters.
A term t = f(x1, . . . , xn) where xi ∈ Σvar

Si
, for 1 ≤ i ≤ n, is called a signature

term for f .
An action is value term f(t1, . . . , tn) where f is an action symbol. We also

say action for [[f(t1, . . . , tn)]] = f([[t1]], . . . , [[tn]])

58 M. Veanes, N. Bjørner, and A. Raschke

2.4 Update Rules

As update rules we consider basic ASMs [15] enriched with T . Thus, update
rules are built using: the empty update rule or skip; simple assignment of a
term to a state variable; conditional update rule; parallel update rule; update
rule with a local let-binding. As the concrete language in this paper we use the
corresponding fragment of AsmL [16].

2.5 Model Program Definition

Intuitively, a model program describes a transition system with a set of states
and transitions labeled by actions where the transition relation is induced by
the action rules of the model program.

Definition 1. A model program P is a tuple (VP , AP , IP , RP), where

– VP is a finite subset of Σvar, called the state variables of P ;
– AP is a finite subset of ΣA, called the action symbols of P ;
– IP is a formula over Σstatic ∪ VP , called the initial state condition of P ;
– RP is a family {Rf

P }f∈AP of action rules Rf
P = (F f

P , Gf
P , Uf

P), where
• F f

P is a signature term for f called the action signature term of Rf
P .

• Gf
P is a formula called the guard or enabling condition of Rf

P ;
• Uf

P is an update rule called the update rule of Rf
P .

It is required that all symbols that occur in Rf
P are in Σstatic ∪ VP ∪ Σ(F f

P).

Let P be a fixed model program. Let Σ(P) stand for Σstatic ∪ VP . A P -state is
a first-order Σ(P)-structure that models T . Given a P -state S, an extension of
S with parameters {xi �→ vi}1≤i≤n is denoted by (S; {xi �→ vi}1≤i≤n). Given a
first-order structure S, the reduction of S to a sub-signature X is denoted by
S � X .

Definition 2. Let f ∈ AP , let S be a P -state and let f(x1, . . . , xn) = F f
P . An

action f(t1, . . . , tn) is enabled in S if (S; {xi �→ [[ti]]}1≤i≤n) |= Gf
P .

We use the notion of firing of an update rule U in a state S [15], denoted here
by Fire(S, U), that yields the updated state.

Definition 3. Let S1 be a P -state and let a = f(t1, . . . , tn) be an action that
is enabled in S1. Let f(x1, . . . , xn) = F f

P and let

S2 = Fire((S; {xi �→ [[ti]]}1≤i≤n), Uf
P) � Σ(P).

Then a causes a transition from S1 to S2, or S2 is the result of executing a from
state S1.

A labeled transition system or LTS is a tuple (S, S0, L, T), where S is a set of
states, S0 ⊆ S is a set of initial states, L is a set of labels and T ⊆ S × L × S is
a transition relation.

An SMT Approach to Bounded Reachability Analysis 59

Definition 4. Let P be a model program. The LTS of P , denoted by [[P]] is the
LTS (S, S0, L, T), where S0 is the set of all P -states s such that s |= IP ; L is the
set of all actions over AP ; T and S are the least sets such that: S0 ⊆ S, and if
s ∈ S and a ∈ L causes a transition from s to s′ then s′ ∈ S and (s, a, s′) ∈ T .

A run of P is a sequence of transitions (si, ai, si+1)i<k in [[P]] where s0 is an
initial state of [[P]]. A run may be empty.

2.6 Composition of Model Programs

Under composition, model programs synchronize their steps for the same action
symbols. The guards of the actions in the composition are the conjunctions of
the guards of the component model programs. The update rules are the parallel
compositions [15], denoted by ‘‖’, of the update rules of the component model
programs. The formal definition is a simplification of the parallel composition of
model programs from [26].

In order to avoid parameter renaming, it is convenient to assume that action
rules that are composed, use fixed formal parameter names, i.e. the signature
term for each action symbol is fixed and can be omitted from the definition of
an action rule.

Definition 5. Let P and Q be model programs such that A = AP = AQ. The
composition P ⊕ Q is (VP ∪ VQ, A, IP ∧ IQ, (Gf

P ∧ Gf
Q, Uf

P ‖ Uf
Q)f∈A).

Composition can be used to do scenario oriented modeling [26]. In Section 5 we
illustrate how composition can also be used to do scenario oriented analysis, or
assist the theorem prover with lemmas.

3 Bounded Reachability of Model Programs

Let P be a model program and let ϕ be a Σ(P)-formula. The main problem we
are addressing is whether ϕ is reachable in P within a given bound.

Definition 6. Given ϕ and k ≥ 0, ϕ is reachable in P within k steps, if there
exists an initial state s0 and a (possibly empty) run (si, ai, si+1)i<l in P , for
some l ≤ k, such that sl |= ϕ. If so, the action sequence α = (ai)i<l is called a
reachability trace for ϕ and s0 is called an initial state for α.

Note that, given a trace α and an initial state s0 for it, the state where the
condition is reached is reproducible by simply executing α starting from s0. This
provides a cheap mechanism to check if a trace produced by a solver is indeed
a witness. In a typical model program, the initial state is uniquely determined
by an initial assignment to state variables, so the initial state witness is not
relevant.

Note also that an important use of action parameters is to make all non-
determinism explicit, by providing a parameter and making a choice based on
that parameter using a conditional update rule. Therefore update rules consid-
ered here do not have the nondeterministic choose construct of nondeterministic
ASMs [15].

60 M. Veanes, N. Bjørner, and A. Raschke

3.1 Step Formula Creation

The basic idea of generating a reachability formula for bounded model checking
and to use SAT to check this formula was introduced in [5]. Here we use a similar
translation scheme and apply it to model programs. Given a state variable or
action parameter x we use x[i] to denote a new variable or parameter for step
number i. For step 0, we assume that x[0] is x, i.e. the original variable is used.

For a term t, t[i] produces a term by induction over the structure of terms
where all state variables and action parameters are given step number i. During
the translation all set comprehension terms are replaced by constants that define
them as described above. If a comprehension term is normalizable, the generated
definition has the form as shown in (6).

A translation from an update rule U to a step formula for step nr i, denoted by
U [i], is defined by induction over the structure of update rules. For an assignment
update rule ‘x := t’, (x := t)[i] is the equality x[i+1] = t[i]. If U is a conditional
update rule ‘if ϕ then U1 else U2’ let Xj ⊆ VP be the state variables assigned
in Uk but not in Uj, for {j, k} = {1, 2}. The translation of U [i] is

(ϕ[i] ∧ U1[i] ∧x∈X1 x[i + 1] = x[i]) ∨ (¬ϕ[i] ∧ U2[i] ∧x∈X2 x[i + 1] = x[i])

For a parallel update rule, (U1 ‖ U2)[i] is U1[i] ∧ U2[i].
Consider an action symbol f ∈ AP . Let X ⊆ VP be the state variables not

assigned in f . The step formula for step i generated for the action rule Rf
P is:

Rf
P [i] def= Gf

P [i] ∧ Uf
P [i] ∧

∧

x∈X

x[i + 1] = x[i]

Intuitively this means that the updates can take place provided that the action
is enabled and all state variables not assigned by the action rule preserve their
old values.

There is a variable action[i] of sort A for each step nr i. Let skip = defaultA
be the action that “skips” a step. Let Skip[i] be the formula:

Skip[i] def=
∧

x∈VP

x[i + 1] = x[i]

Finally, the step formula P [i] for P is:

P [i] def= (action[i] = skip ∧ Skip[i]) ∨
∨

f∈AP

(action[i] = F f
P [i] ∧ Rf

P [i])

The translation assumes that the signatures of all signature terms of all actions
are pairwise disjoint. In other words, each action uses unique parameter names
for its parameters.

3.2 Reachability

The bounded reachability formula for a given model program P , step bound k
and reachability condition ϕ is:

Reach(P, ϕ, k) def= IP ∧ (
∧

0≤i<k

P [i]) ∧ (
∨

0≤i≤k

ϕ[i]) (8)

An SMT Approach to Bounded Reachability Analysis 61

Recall from above, that during the creation of P [i] comprehension terms are
given explicit definitions and replaced by corresponding Skolem constants in P [i],
thus the formula P [i] is quantifier free (provided that quantifiers are not used in
conditions of conditional update rules or in if-then-else terms). Recall also the
assumption that these definitions are part of TS for the corresponding set sort
S. Introduce the function RemoveSkips which removes all the Skip actions from
the trace. We can state the following theorem that follows from the construction
of P [i] and the definition of a model program.

Theorem 1. Let P be a model program, k ≥ 0 a step bound and ϕ a reachability
condition. Then Reach(P, ϕ, k) is satisfiable if and only if ϕ is reachable in P
within k steps. Moreover, if M satisfies Reach(P, ϕ, k), let M0 = M � Σ(P), let
ai = action[i]M for 0 ≤ i < k, and let α be the sequence RemoveSkips((ai)i<k).
Then α is a reachability trace for ϕ and M0 is an initial state for α.

3.3 Array Model Programs and Quantifier Elimination

We consider here the fragment of T when TZ is Pressburger arithmetic and all
map sorts have domain sort Z. We call model programs that only depend on
this fragment of T , array model programs. In the following lemma we refer to
the array property fragment introduced in [7]. An example of a model program
in this fragment is the Credits model program in Figure 1. The model program
is explained in detail in [27].

var window as Set of Integer = {0}
var maxId as Integer = 0
var requests as Map of Integer to Integer = {->}
[Action]
Req(m as Integer, c as Integer)

require m ∈ window and c > 0
requests := requests.Add(m, c)
window := window − {m}

[Action]
Res(m as Integer, c as Integer)

require m ∈ requests and requests(m) ≥ c and c ≥ 0
//require requests.Size > 1 or window <> {} or c > 0 <-- bug
window := window + {maxId + i | i ∈ {1..c}}
requests := requests.RemoveAt(m)
maxId := maxId + c

[Invariant]
ClientHasEnoughCredits()

require requests = {->} implies window <> {}

Fig. 1. Credits model program. Specifies how a client and a server need to use message
ids, based on a sliding window protocol.

62 M. Veanes, N. Bjørner, and A. Raschke

Lemma 1. Let P be an array model program and assume that all set compre-
hension definitions of P are normalizable and that P [i] is quantifier free. As-
sume also that IP and ϕ are in the array property fragment. Let k ≥ 0. Then
Reach(P, ϕ, k) is in the array property fragment.

The following is a corollary of Lemma 1 and [7, Theorem 1], using the fact
that the only range sort theory besides TZ is TB and thus this fragment of T is
decidable. We also refer to SATA in [7, Definition 9].

Corollary 1. Let P and ϕ be as in Lemma 1. Then SATA is a decision proce-
dure for Reach(P, ϕ, k).

The decision procedure SATA eliminates universal quantifiers by restricting the
universal quantification to a finite index set generated from the formula. In our
case the formula under consideration is ψ = Reach(P, ϕ, k). We assume here that
the set (comprehension) definitions are conjuncts of the respective step formula.

Typically, a set comprehension uses a range expression, see e.g. the Credits
example in Figure 1, and the index set for this formula yields at least four indices
(the boundary cases for the range and its negation). The size of the index set
grows at least proportionally to k, because each step formula introduces new
indices, and thus the elimination process increases the size of the final quantifier
free formula at least quadratically.

In our elimination scheme, the index set used to eliminate quantifiers of a
given step formula, only originates from that step formula. For the set of model
programs we have encountered so far, this restricted elimination preserves com-
pleteness of SATA for satisfiability of ψ. While we do not yet have identified
a general class of model programs where this restriction remains complete, we
can use Z3 to lazily augment the constraints we generate by model-checking the
model returned by Z3. Section 4 explains the way we use Z3 lazily.

4 Implementation Using Z3

Z3 [11,28] is a state of the art SMT solver. SMT generalizes Boolean satisfi-
ability (SAT) by adding equality reasoning, arithmetic, fixed-size bit-vectors,
arrays, quantifiers, and other useful first-order theories. Of particular relevance
to model-programs, Z3 exposes a theory of extensional arrays, which has a built-
in decision procedure. Thus, terms built up using the array constructs read and
write are automatically subjected to the axioms (1) and (2). Constant arrays
are also supported natively, such that axiom (3) can be obtained as a side-effect
of declaring a constant array const(default). Enumerations are translated into
integers, and for maps whose range consists of non-negative integers we assign
default to a negative number.

Boolean algebras, also known as sets, are implemented natively in Z3 as a layer
on top of the extensional array theory. Thus, adding and removing elements from
a set is obtained by using write, set membership uses read, and the empty sets
are the constant sets:

An SMT Approach to Bounded Reachability Analysis 63

s′ = s ∪ {x} ↔ s′ = write(s, x, true)
s′ = s \ {x} ↔ s′ = write(s, x, false)

x ∈ s ↔ read(s, x)
∅ ↔ const(false)

The set operations ∪, ∩, \ are encoded using a generalized write, which we will
call write-set. It has the semantics:

∀m m′ m′′ x (read(write-set(m, m′, m′′), x) =
Ite(read(m, x) = read(m′, x), read(m′′, x), read(m′, x)),

such that the set operations can be encoded using:

s ∪ s′ ↔ write-set(const(false), s, s′)
s ∩ s′ ↔ write-set(const(true), s, s′)
s \ s′ ↔ write-set(s′, const(false), s)

Z3 hides these encodings, such that expressions involving sets can be formulated
directly using the usual set operations.

Map comprehensions, on the other hand, are not supported over Z3’s API. As
explained before, we are therefore using a reduction in the style of [7] in order to
handle comprehensions. Our reduction, however, remains hybrid in two respects.
First, our reduction does not require eliminating write, which would be necessary
to follow the approach in [7] literally, instead we use the built-in support for
extensional array constructs, together with write-set. Second, we are using the
API of Z3 to supply an incremental decision procedure for comprehensions. We
will explain how this is achieved in the following.

Z3’s API exposes the method AssertCnstr - to assert a logical formula, and
the method CheckAndGetModel - to check for satisfiability of the asserted con-
straints and return a model if the constraints are satisfiable, Push, Pop - to
create logical contexts using a stack discipline. The life-time of an asserted for-
mula follows the scoping indicated by Push/Pop. We use these facilities to im-
plement theory specific extensions on top of Z3. Our implementation introduces
axioms based on a potential partial index set explained in Section 3.3. These
axioms are asserted to Z3 together with the input path constraint. Models re-
turned by CheckAndGetModel are checked according to the semantics of the
set comprehensions. If the current model can be extended to a model satisfy-
ing the comprehensions we are done, if not, additional assertions are added to
the current scope, and the updated logical context is re-checked. The model-
checking loop furthermore ensures that our reduction that retains write and
write-set constructors in the input does not miss checking array indices that
are introduced during Z3’s search. For example, Z3 internally introduces Skolem
constants for array disequalities. These constants should for completeness be
counted into the index set in the SATA reduction, these indices are extracted
lazily during model checking. Figure 2 illustrates a model refinement loop around

64 M. Veanes, N. Bjørner, and A. Raschke

Z3 (using the .NET managed API calls with F#). The model refinement loop
is iterated with additional assertions as long as Z3 returns a satisfying model
which does not satisfy the model check (not shown here) test on the set of ex-
tracted indices. The function model check uses another API exposed by Z3
to evaluate terms in the context of a model M. To describe the function-
ality of model check by example, when encountering a subterm of the form
Range(l, u) of a formula ϕ, we call the evaluation function with the two for-
mulas i ∈ Range(l, u) and l ≤ i ∧ i ≤ u for every i in the supplied index set.
If their evaluations disagree on a given index i (one version evaluates to true,
the other to false), we add the axiom i ∈ Range(l, u) ↔ (l ≤ i ∧ i ≤ u).
Note that Z3 supports quantifiers and therefore allows to add axioms such as
∀i, l, u{i ∈ Range(l, u)} i ∈ Range(l, u) ↔ (l ≤ i∧i ≤ u), where {i ∈ Range(l, u)}
is a pattern. However, relying on such axioms is incomplete as they are only ex-
panded if search explicitly builds a subterm that matches the pattern.

In the context of checking model-based programs we have an alternative way
of checking and refining models produced by the SMT solver, Z3. We simply run
the model program on the trace returned by the SMT solver. If the run deviates
from the model by violating comprehensions on certain indices, we may augment
the path constraint by the corresponding index constraints.

5 Experiments

As the concrete input language of model programs we use a subset of AsmL [4]
that captures the fragment of ASMs described in Section 2. Model programs

let check formula =
z3.Push();
z3.AssertCnstr formula;
let indices = get indices formula in
let m = ref (null : Model) in
let rec refine model() =

if !m <> null then
((!m).Dispose(); m := null);

if LBool.True = z3.CheckAndGetModel(m) then
match model check (!m) indices formula with

| None -> ()
| Some violated comprehension ->
z3.AssertCnstr violated comprehension;
refine model()

in
refine model();
z3.Pop();
if !m <> null then Some (!m) else None

Fig. 2. Model refinement loop with Z3

An SMT Approach to Bounded Reachability Analysis 65

var counter as Map of Integer to Integer = {0->n, 1->n}
[Action]
Execute(bar as Integer)

require bar ∈ counter
if counter(bar) = 1

counter := RemoveAt(counter, bar)
else

counter(bar) := counter(bar) − 1

Fig. 3. Count(n) model program

have the same meaning as in the Spec Explorer tool [25] or in NModel [23]. The
difference is that here the analysis is done symbolically using a theorem prover,
rather than using explicit state exploration through execution. An action rule
is given by a method definition annotated with the [Action] attribute, with
the method name being the action symbol and the method signature providing
the signature term for the action. The conjunction of all the require-statements
defines the precondition. The main body of the method defines the update rule,
where parallel update is the default in AsmL.

The Credits model program in Figure 1 illustrates a typical usage of model-
programs as protocol-specifications. The actions use parameters, maps and sets
are used as state variables and a comprehension expression is used to compute a
set. Here the reachability condition is the negated invariant. One of the precondi-
tions is missing (indicated by bug). There is a two-action trace leading to a state
where the invariant is violated due to this. Asking Z3 with a bound of 2 or more
steps (in an incremental mode) produces that trace Req(0,1),Res(0,0) in 21ms.

We are also investigating this analysis technique in the context of some em-
bedded real time scheduling problems [19]. In some cases, in particular if the
formula is not satisfiable, the solver may stall while trying to exhaust the search
space. In this case it may be useful to apply composition to constrain the search
space. This is reminiscent to adding user defined lemmas to the theorem prover.
A typical example would be the use of a model program that fixes the order
of some actions relative to some other actions, tantamount to user controlled
partial order reduction. The Count example in Figure 3 is a distilled version
of the counting aspect of the partiture model from [19]. There are a number of
indexed counters that can be decremented. Each index corresponds to an atomic
part of a schedule (called a bar) and the count for that bar specifies the total
number of times that this bar can be executed. Suppose that there are two
bars, 0 and 1, the initial count for both bars is some value n, and that we are
interested in finding a sequence of actions that exhausts all the counters, i.e.
the reachability condition ϕ is ‘counter is the empty map’. If the step bound k
is smaller than 2n then Reach(Count(n), ϕ, k) is clearly unsatisfiable. The size
of the search space of the theorem prover grows exponentially in k in this case
(see Table 1). In this simplified example we can use the knowledge that the order
of decrementing the different counters is irrelevant and fix such an order using
another model program Order shown in Figure 4.

66 M. Veanes, N. Bjørner, and A. Raschke

var current as Integer
[Action]
Execute(bar as Integer)

require current ≤ bar
current := bar

Fig. 4. Model program Order. It imposes a linear order on the execution of bars where
execution of bar i has to precede execution of bar j if i < j. For example, if the bars
are a, b and c, where a < b < c, this model program essentially defines the regular
expression Execute(a)∗Execute(b)∗Execute(c)∗.

Table 1. Running times of the bounded reachability checking of the Count example
in Z3 for different values of the counting limit n and step bound k

Model program Step bound Verdict Time (in seconds)
Count(5) 10 Sat 0.14

Count(5) ⊕ Order 10 Sat 0.14

Count(5) 9 Unsat 1.5

Count(5) ⊕ Order 9 Unsat 0.16

Count(8) 16 Sat 2.2

Count(8) ⊕ Order 16 Sat 1.4

Count(8) 15 Unsat 152

Count(8) ⊕ Order 15 Unsat 1

6 Related and Future Work

The unrolling of transition systems into SAT was introduced in [5] and the
extension to SMT was introduced in [2] that also compares the SMT approach
to other related program verification work. SMT solvers that support arrays are
described in [3,24].

Our formula encoding into SMT [28,11,9,10] follows the same scheme but does
not unwind comprehensions and makes the action label explicit. The explicit use
of the action label is needed to compose model programs [26]. The composition
by using actions and identifying an action signature is somewhat different from
composition of modules through shared state variables as in SAL 2 [12], although
it can be encoded by introducing a special shared action variable. However, in
this case special projection functions need to be used in the semantics to elimi-
nate the action, because in a labeled transition system the action label is not part
of the state, i.e. the same target state can be reached through distinct actions.
Compositional modeling and verification of physical layer protocols involving
real time is done in [8] using SAL 2.

Our quantifier elimination scheme builds on [7], but refines it by using model-
checking to implement an efficient incremental saturation procedure on top of
the SMT solver of our choice. A recent application of the quantifier elimination
scheme has been pursued by [21] in the context of railway control systems. Several

An SMT Approach to Bounded Reachability Analysis 67

areas have been left for future work. In particular model-programs use data
structures that we are not yet handling with the SMT solver. For instance, a
proper encoding of bags (multi-sets) has been left to future work. The class of
array model programs is too restrictive for analysis of more general algorithms,
see e.g. [17].

References

1. Spec Explorer, http://research.microsoft.com/specexplorer
2. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software

using SMT solvers instead of SAT solvers. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 146–162. Springer, Heidelberg (2006)

3. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Inf. Comput. 183(2), 140–164 (2003)

4. AsmL, http://research.microsoft.com/fse/AsmL/
5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.

In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, pp.
193–207. Springer, Heidelberg (1999)

6. Blass, A., Gurevich, Y.: Background, reserve, and Gandy machines. In: Clote,
P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 1–17. Springer,
Heidelberg (2000)

7. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005)

8. Brown, G.M., Pike, L.: Easy parameterized verification of biphase mark and 8N1
protocols. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006.
LNCS, vol. 3920, pp. 58–72. Springer, Heidelberg (2006)

9. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

10. de Moura, L., Bjørner, N.: Model-based theory combination. In: 5th International
Workshop on Satisfiability Modulo Theories (SMT 2007), Berlin, Germany, July
2007, pp. 46–57 (2007)

11. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2008). LNCS, vol. 4963,
Springer, Heidelberg (2008)

12. de Moura, L.M., Owre, S., Rueß, H., Rushby, J.M., Shankar, N., Sorea, M., Tiwari,
A.: Sal 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

13. Grieskamp, W., Kicillof, N.: A schema language for coordinating construction and
composition of partial behavior descriptions. In: 5th International Workshop on
Scenarios and State Machines: Models, Algorithms and Tools (SCESM) (2006)

14. Grieskamp, W., MacDonald, D., Kicillof, N., Nandan, A., Stobie, K., Wurden,
F.: Model-based quality assurance of windows protocol documentation. In: First
International Conference on Software Testing, Verification and Validation, ICST,
Lillehammer, Norway (April 2008)

15. Gurevich, Y.: Specification and Validation Methods. In: Evolving Algebras 1993:
Lipari Guide, pp. 9–36. Oxford University Press, Oxford (1995)

http://research.microsoft.com/specexplorer
http://research.microsoft.com/fse/AsmL/

68 M. Veanes, N. Bjørner, and A. Raschke

16. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Theor. Com-
put. Sci. 343(3), 370–412 (2005)

17. Gurevich, Y., Veanes, M., Wallace, C.: Can abstract state machines be useful in
language theory? Theor. Comput. Sci. 376(1), 17–29 (2007)

18. Habermehl, P., Iosif, R., Vojnar, T.: What Else Is Decidable about Integer Arrays?
In: Amadio, R. (ed.) Proc. of the 11th Int. Conf. on Foundations of Software
Science and Computation Structures (FoSSaCS 2008). LNCS, vol. 4962, Springer,
Heidelberg (2008)

19. Helander, J., Serg, R., Veanes, M., Roy, P.: Adapting futures: Scalability for real-
world computing. In: Proceedings Real-Time Systems Symposium (RTSS 2007),
pp. 105–116. IEEE, Los Alamitos (2007)

20. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing
and Analysis with C#. Cambridge University Press, Cambridge (2008)

21. Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchical reasoning in the
verification of complex systems. Electr. Notes Theor. Comput. Sci. 174(8), 39–54
(2007)

22. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

23. NModel (released, May 2007), http://www.codeplex.com/NModel
24. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an

extensional theory of arrays. In: LICS 2001, pp. 29–37. IEEE, Los Alamitos (2001)
25. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,

L.: Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer.
In: Hierons, R., Bowen, J., Harman, M. (eds.) Formal Methods and Testing. LNCS,
vol. 4949, pp. 39–76. Springer, Heidelberg (2008)

26. Veanes, M., Campbell, C., Schulte, W.: Composition of model programs. In: Der-
rick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 128–142. Springer,
Heidelberg (2007)

27. Veanes, M., Schulte, W.: Protocol modeling with model program composition. In:
FORTE 2008. LNCS, Springer, Heidelberg (2008); In this volume

28. Z3 (released September 2007), http://research.microsoft.com/projects/z3

http://www.codeplex.com/NModel
http://research.microsoft.com/projects/z3

Parameterized Tree Systems

Parosh Aziz Abdulla1

parosh@it.uu.se

, Noomene Ben Henda1

Noomene.BenHenda@it.uu.se

,

Giorgio Delzanno2

giorgio@disi.unige.it

, Frédéric Haziza1

aziza@it.uu.se

, and Ahmed Rezine1

Rezine.Ahmed@it.uu.se

1 Uppsala University, Sweden
2 Università di Genova, Italy

Abstract. Several recent works have considered parameterized verifica-
tion, i.e. automatic verification of systems consisting of an arbitrary num-
ber of finite-state processes organized in a linear array. The aim of this
paper is to extend these works by giving a simple and efficient method to
prove safety properties for systems with tree-like architectures. A process
in the system is a finite-state automaton and a transition is performed
jointly by a process and its parent and children processes. The method
derives an over-approximation of the induced transition system, which
allows the use of finite trees as symbolic representations of infinite sets
of configurations. Compared to traditional methods for parameterized
verification of systems with tree topologies, our method does not require
the manipulation of tree transducers, hence its simplicity and efficiency.
We have implemented a prototype which works well on several nontrivial
tree-based protocols.

1 Introduction

In recent years, there has been an extensive amount of work on the verifica-
tion of parameterized systems, e.g. [11, 18, 5, 9, 10]. Typically, a parameterized
system consists of an arbitrary number of finite-state processes organized in
a linear array. The task is to perform parameterized verification, i.e. to verify
correctness of the system regardless of the number of processes inside the sys-
tem. Examples of parameterized systems include mutual exclusion algorithms,
bus protocols, telecommunication protocols, multi-threaded programs, and cache
coherence protocols. This work aims at extending the paradigm of parameterized
verification in order to verify systems which operate on tree-like architectures.
More precisely, we consider analysis of safety properties for parameterized tree
systems. Such a system consists of an arbitrary number of finite-state processes
which operate on a tree-like architecture. Examples of parameterized tree sys-
tems include several interesting protocols such as the percolate protocol [18],the
Tree-arbiter protocol [8], and the IEEE 1394 Tree identity protocol [17].

One of the most prominent techniques which have been used for verification
of parameterized tree systems is that of tree regular model checking [14, 4,18,12, 7].

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 69–83, 2008.
c© IFIP International Federation for Information Processing 2008

,
,

,
,Hrederic.

F FFFFF

F

In tree regular model checking , configurations (states) of the system are
represented by trees, sets of configurations by tree automata, and transitions
by tree automata operating on pairs of trees, i.e. tree transducers. Safety prop-
erties can be checked through performing reachability analysis, which amounts
to applying the tree transducer relation iteratively to the set of initial configu-
rations. The main problem with transducer-based techniques, such as the ones
mentioned above, is that they are very heavy and usually rely on several layers
of computationally expensive automata-theoretic constructions; in many cases
severely limiting their applicability.

In this paper, we propose a light-weight approach to parameterized tree ver-
ification which, in addition to its simplicity, also yields a much more efficient
implementation than tree regular model checking. In our method, a configura-
tion of the system is represented by a tree over a finite alphabet, where elements
of the alphabet represent the local states of the individual processes. The be-
haviour of the system is induced by a set of rewriting rules which describe how
the processes perform transitions. A transition performed by a process is con-
ditioned by the current local state of the process and possibly the local states
of neighboring processes, i.e. the parent and children processes. The transition
may change the states of all involved processes. (see Figure 1).

q1 / q′1

q2 / q′2 q3 / q′3

Fig. 1. A typical transition rule where a process and its two children change state from
q1, q2, q3 to q′1, q

′

2, q
′

3, respectively

Observe that the set of configurations is infinite since we are dealing with
trees of an arbitrary size. In fact, parameterized verification amounts to analyzing
an infinite family of systems; namely one for each size of the system and one for
each tree of that particular size.

The main idea of our method is to consider a transition relation which is
an over-approximation of the one induced by the tree parameterized system. To
do so, we modify the semantics of the transition rules, such that a rule is ap-
plied to a node and two nodes in its left and right subtrees (rather than its left
and right children). The approximate transition system obtained in this man-
ner is monotonic with respect to the tree embedding relation on configurations
(larger configurations are able to simulate smaller ones). Since the approximate
transition relation is monotonic, it can be analyzed using symbolic backward
reachability algorithm based on a generic method introduced in [2]. An attrac-
tive feature of this algorithm is that it operates on sets of configurations which
are upward closed with respect to the tree embedding relation. This allows an

70 P.A. Abdulla et al.

efficient symbolic representation of upward sets of configurations, since such a
set can be represented by (the finite set of) its minimal elements. Since the min-
imal elements are trees, reachability analysis can be performed by computing
predecessors of trees, which is much simpler and more efficient than applying
transducer relations on general tree regular languages. Also, as a side effect,
the analysis of the approximate model is guaranteed to terminate. This follows
from the fact that the embedding relation on configurations (trees) is a well
quasi-ordering by Kruskal’s theorem [19]. The whole verification process is fully
automatic since both the approximation and the reachability analysis are carried
out without user intervention. Observe that if the approximate transition system
satisfies a safety property then we can safely conclude that the original system
satisfies the property too.

Based on the method, we have implemented a prototype which works well on
several tree-based protocols such as the percolate, leader election, Tree-arbiter,
and the IEEE 1394 Tree identity protocols.

Outline In the next section,we give some preliminaries on trees. In Section 3,we
define the basic model of parameterized tree systems. In Section 4, we describe
the induced transition system and in Section 5, we define the over-approximated
transition system on which we run our algorithm. We present a generic scheme
for deciding reachability of upward closed sets in Section 6, and we show how to
instantiate it on our model in Section 7. In Section 9, we report our experimen-
tal results on several tree protocols. Section 10 concludes the paper and gives
direction for future works. Some proofs as well as the details of the case studies
can be found in [1].

2 Preliminaries

In this section, we give some basic definitions and notations needed in the rest
of the paper. To simplify the presentation, we will only consider binary trees
in this paper. However, all the concepts and algorithms can be extended in a
straightforward manner in order to deal with trees of higher ranks.

For a set X , we use X∗ to denote the set of words over X . We let ε denote the
empty word and use x • x′ to denote the concatenation of two words x, x′ ∈ X∗.
We extend the concatenation operation to sets of words D ⊆ X∗ by x • D :=
{x • x′| x′ ∈ D}. Given two words x, x′ ∈ X∗, we use x ≤ x′ to denote that x is
a prefix of x′; and use x < x′ to denote that x ≤ x′ and x 6= x′. In case x ≤ x′,
we use x′ − x to denote the word x′′ where x • x′′ = x′.

Binary Trees A (binary) tree structure N is a finite set of words over {0, 1}
which is closed under the prefix relation, i.e. n ∈ N and n′ ≤ n imply n′ ∈ N . In
the rest of the paper, we fix a finite set of symbols Σ and we use b as a variable
ranging over {0, 1}.

A binary tree (tree for short) T over the alphabet Σ is a tuple (N, λ) where N

is a tree structure and λ is a mapping from N to Σ. Each element of N is called

.

.

Parameterized Tree Systems 71

a node of T . We say that a node n′ is the parent of the node n iff n′ • b = n for
some b. In such a case, n is said to be a child of n′. A leaf in T is a node which
does not have any children; and the root of T is the node ε. Given a node n, we
define the descendants of n by Desc(n) := {n′ ∈ N | n < n′}. We use Trees(Σ)
to denote the set of all trees over Σ.

Inclusions and Embeddings Consider two trees T = (N, λ) and T ′ = (N ′, λ′)
in Trees(Σ).

An inclusion of T in T ′ is an injection f : N → N ′ such that for any n ∈ N :

– n • b ∈ N =⇒ f(n) • b = f(n • b), and
– λ(n) = λ′(f(n)).

We write T ⊆f T ′ to denote that f is an inclusion of T in T ′, and write T ⊆ T ′

if T ⊆f T ′ for some inclusion f . Informally, if T ⊆ T ′ then T ′ contains a copy
of T .

An embedding of T in T ′ is an injection f : N → N ′ such that for any n ∈ N :

– n • b ∈ N =⇒ f(n) • b ≤ f(n • b), and
– λ(n) = λ′(f(n)).

We use T �f T ′ to denote that f is an embedding of T in T ′, and write T � T ′

if T �f T ′ for some embedding f . Observe that � is a weaker relation than
⊆. The difference between the two relations is that an inclusion preserves the
parent/child relation between nodes, while an embedding preserves a weaker
relation, namely that of ascendant/descendant.

Operations on Trees In this paragraph, we fix a tree T = (N, λ) ∈ Trees(Σ).

For a node n ∈ N , we use T (n) to
denote the subtree of T rooted at n.
Formally, we let T (n) = (N ′, λ′) where
N ′ := {n′′ − n| n′′ ∈ N ∧ n ≤ n′′}; and for
any n′ ∈ N ′, λ′(n′) := λ(n • n′).

T
0 1

T (1)

T
0 1

T ′

T ⊗ (0, T ′)

Now we fix a tree T ′ = (N ′, λ′) ∈
Trees(Σ) and define the the following op-
eration: Given a node n ∈ N , we denote by
T ⊗ (n, T ′) the tree T ′′ = (N ′′, λ′′) where
N ′′ := (N −Desc(n))

⋃

(n •N ′) and for any
n′′ ∈ N ′′, λ′′(n′′) := λ(n′′) if n 6≤ n′′, and
λ′′(n′′) := λ′(n′′ − n) otherwise. Intuitively,
we obtain T ′′ by replacing in T the subtree
rooted at n by T ′.

Consider a (partial) function f : N ⇀ N ′. We define the renaming of T ′ with
respect to f and T , denoted by T ′ ⊙f T , to be the tree T ′′ = (N ′, λ′′) where for
any n′ ∈ N ′, λ′′(n′) = λ′(n′) if n′ 6∈ Img(f), and λ′′(n′) = λ(f−1(n′)) otherwise.

.

.

72 P.A. Abdulla et al.

T ′ T
f

f

T ′ ⊙f T

3 Parameterized Tree Systems

A parameterized tree system consists of an arbitrary (but finite) number of iden-
tical processes, arranged in a (binary) tree topology. Each process is a finite-state
automaton. The transitions of the automaton are conditioned by the current lo-
cal state and possibly the local states of other processes (parent, children, etc).
A transition may change the states of all processes involved in the condition.
A parameterized tree system induces an infinite family of finite-state systems,
namely one for each size and each structure of the tree. The aim is to verify cor-
rectness of the systems for the whole family regardless of the number of processes
in the system or the particular form of the tree.

Formally, a parameterized tree system P is a tuple (Q, R) where Q is a finite
set of local states, and R ⊆ Trees(Q × Q) is a finite set of trees called rewrite
rules. For each rule r = (N, λ) ∈ R, we associate two special trees in Trees(Q)
called left and right trees of r, and denoted respectively by lhs(r) and rhs(r). We
define lhs(r) := (N, lhs(λ)) and rhs(r) := (N, rhs(λ)), where lhs(λ) and rhs(λ)
are obtained from λ by projecting on the first and the second component of
Q ×Q. More precisely, for any node n ∈ N , if λ(n) = (q, q′) then lhs(λ)(n) := q

and rhs(λ)(n) := q′.

Example 1. We consider the percolate protocol where the set of states Q is
defined by {q0, q1, qu} and the transition rules R = {r1, r2, r3, r4} are as depicted
in Figure 2. The protocol evaluates the disjunction of the values in the leaves up
to the root.

r1 qu/q0

q0/q0 q0/q0

r2 qu/q1

q1/q1 q0/q0

r3 qu/q1

q0/q0 q1/q1

r4 qu/q1

q1/q1 q1/q1

Fig. 2. The transition rules of the percolate protocol

Parameterized Tree Systems 73

4 Operational Semantics

The operational semantics of a parameterized tree system can be captured by a
transition system. In this section, we first describe the induced transition system.
Then we introduce the coverability problem.

Transition System A transition system T is a pair (C, =⇒), where C is an

(infinite) set of configurations and =⇒ is a binary relation on C. We use
∗

=⇒
to denote the reflexive transitive closure of =⇒. Given an ordering � on C,
we say that T is monotonic with respect to � if the following holds: For any
configurations c1, c2, c3 ∈ C with c1 =⇒ c3 and c1 � c2, there is a configuration
c4 ∈ C such that c2 =⇒ c4 and c3 � c4. We will consider several transition
systems in this paper.

First, a parameterized system P = (Q, R) induces a transition system T(P) =
(C,−→) where C = Trees(Q). Intuitively, a configuration c = (N, λ) ∈ C repre-
sents an instance of the system with |N | processes. These processes are arranged
according to the tree structure N and their current local states are given by λ.
More precisely, each node n ∈ N represents a process in the state λ(n).

Next, we define the transition relation −→ on the set of configurations as
follows. Let r ∈ R be a rewrite rule. Consider two configurations c1 and c2. We
write c1

r
−→ c2 to denote that there is an f such that the following conditions

hold: (i) lhs(r) ⊆f c1, and (ii) c2 = c1 ⊙f rhs(r). Intuitively, c2 can be derived
from c1 by changing the labels of all the nodes in Img(f) according to the labeling
function of rhs(r). Below, we give informal explanations of the conditions. First,
in condition (i), we identify the “active processes” (those which participate in
the transition) by the inclusion f (Img(f)). Implicitly, we interpret lhs(r) as
a guard and therefore require, through condition (i), that the configuration c1
contains a tree which is a copy of the left hand side of the rule. Then, in condition
(ii), we interpret rhs(r) as an operation and require that, in c2, the processes
in Img(f) (the active ones) should all change state according to rhs(r). Observe
that the local states of the “passive processes”, i.e. those not participating in
the transition, should remain unchanged through the transition, and also that
the transition does not change the structure of the tree (see Figure 3).

We use c −→ c′ to denote that c
r

−→ c′ for some rule r ∈ R.

Safety Properties In order to analyze safety properties, we study the cov-
erability problem defined below. For a parameterized tree system P = (Q, R),
we assume that we are given a set of initial configurations Init , each of which
characterizes a possible state of the system prior to starting the execution.

We recall the definition of the relation � defined in Section 2. A set of
configurations D ⊆ C is said to be upward closed (with respect to �) if c ∈ D

and c � c′ implies c′ ∈ D. For sets of configurations D, D′ ⊆ C we use D −→ D′

In fact, our method can also cope with non-structure preserving rules, such dynamic
creation and deletion of processes. However, for simplicity of presentation, we choose
not to do so.

.

1

.

1

74 P.A. Abdulla et al.

qu

qu

q0 q0

qu

q1 q1

r1
−→

qu

q0

q0 q0

qu

q1 q1

r4
−→

qu

q0

q0 q0

q1

q1 q1

r3
−→

q1

q0

q0 q0

q1

q1 q1

Fig. 3. A possible run of the percolate protocol. We highlight in white the zone where
the rule applies (see Example 1).

to denote that there are c ∈ D and c′ ∈ D′ with c −→ c′. The coverability
problem for parameterized tree systems is defined as follows:

PAR-TREE-COV

Instance

– A parameterized tree system P = (Q, R).
– An upward closed set F of configurations.

Question Init
∗

−→ F ?

It can be shown, using standard techniques (see [20, 15]), that checking safety
properties (expressed as regular languages) can be translated into instances of the
coverability problem. Therefore, checking safety properties amounts to solving
PAR-TREE-COV (i.e. to the reachability of upward closed sets).

5 Approximation

In this section, we introduce an over-approximation of the transition relation of
a parameterized tree system.

In Section 4, we mentioned that each parameterized tree system P = (Q, R)
induces a transition system T(P) = (C,−→). A parameterized tree system P

also induces an approximate transition system A(P) = (C, ;), where the set C

of configurations is identical to the one in T(P) and the transition relation ; is
defined below.

First, we define a special operation on trees needed in order to describe the
semantics of ;.

Tree Subtraction In this paragraph,we fix two trees T =(N, λ), T ′ = (N ′, λ′) ∈
Trees(Σ) such that T ′ �f T for some embedding f . We define T ⊖f T ′ to be
the tree T ′′ obtained from T by performing a sequence of operations described
below. First, we enumerate the nodes of T ′ in a bottom-up fashion. Formally,
let {ni}1≤i≤|N ′| be an enumeration of the set N ′ of nodes in T ′ such that for
any i, j : 1 ≤ i 6= j ≤ |N ′|, ni < nj implies that j < i. In other words, if nj is a
descendant of ni in T ′, then nj occurs earlier than ni in the enumeration. Based
on the enumeration, we define a sequence of trees {Ti}1≤i≤|N ′|−1 as follows. We
let T1 := T . For any i : 1 ≤ i ≤ |N ′| − 2, we denote by n

p
i the parent of ni, i.e.

.

n
p
i • b = ni for some b; and we define

Parameterized Tree Systems 75

Ti+1 := Ti ⊗ (f(np
i) • b, T (f(ni))) .

Finally, we let T ′′ := T|N ′|−1. In other words, we go through the nodes of T ′

one by one in a bottom-up manner. For each node ni and its parent n
p
i in T ′

(say n
p
i • b = ni for some b), we consider their images f(np

i) and f(ni) in T . We
replace the subtree rooted in the child of the image f(np

i) • b by the one rooted
in the image f(ni) (see Figure 4). Notice that the resulting tree T ′′ and the trees

T ′, T are related by T ′ ⊆ T ′′ � T . In the sequel, we denote by ̂f the inclusion
of T ′ in T ′′ such that ̂f(ε) = f(ε) (such a function exists and is unique by the
definition above).

T ′

�f

T

. .

.

T1

. .

.

T2

.

.

T3

.

T4

Fig. 4. In the first row, we give an example of two trees T, T ′ satisfying T ′
�f T

for some embedding f . In the second row, we give the sequence of trees used in the
definition of T ⊖f T ′. In each of the trees, the arrow shows where subtrees are re-rooted,
while the nodes surrounded by a dashed line are those which are removed.

The Approximate Transition Relation Consider two configurations c1, c2
and a rule r ∈ R. We write c1

r
; c2 to denote that there is an f such that (i)

lhs(r) �f c1, and (ii) c2 = (c1 ⊖f lhs(r)) ⊙ bf
rhs(r). Intuitively, starting from

c1 and an embedding f of lhs(r) in c1, we first remove all nodes in c1 such
that lhs(r) is included in the resulting configuration. This is done by taking

lhs(r) ⊖f c1 and the inclusion ̂f . Then we apply the rule r and obtain c2 from
lhs(r)⊖f c1 in a similar manner to how it is described in the previous section, i.e.

by renaming the labels of the nodes in Img(̂f) according to rhs(r) (see Figure 5).

We use c1 ;1 c2 if c1
r
; c2 for some r ∈ R.

Observe that the relation ; is an over-approximation of the transition re-
lation defined in the previous section (i.e. ;⊇−→) by the following argument.

.

76 P.A. Abdulla et al.

T1 qu

qu

qu

q1 qu

q1

qu

q0

r4
;

T2 qu

q1

q1 q1

qu

q0

r2
;

T3 q1

q1

q1 q1

q0

Fig. 5. A possible run of the approximate transition system induced by the percolate
protocol (see Example 1). The nodes with a white background represent those where
the rule will apply while the dashed lines surround the nodes which are removed.

Consider two configurations c1, c2 ∈ C with c1 −→ c2. By definition, this im-
plies the existence of a rule r ∈ R and an inclusion f of lhs(r) in c1 such that
c2 = c1 ⊙f rhs(r). Observe that, by definition of the ⊖ operation, since f is

an inclusion it follows that c1 ⊖f lhs(r) = c1 and ̂f = f . Therefore, we obtain

c2 = c1 ⊙f rhs(r) = (c1 ⊖f lhs(r)) ⊙ bf
rhs(r), and as a consequence, c1

r
; c2.

We are now ready to state a key property of the approximated transition
system.

Lemma 1. The approximate transition system (C, ;) is monotonic with respect
to �.

We define the coverability problem for the approximate system as follows.

APRX-PAR-TREE-COV

Instance

– A parameterized tree system P = (Q, R)
– An upward closed set F of configurations.

Question Init
∗
; F ?

Since −→⊆;, a negative answer to APRX-PAR-TREE-COV implies a
negative answer to PAR-TREE-COV.

6 Scheme

In this section, we recall a generic scheme from [2] for performing symbolic
backward reachability analysis. The scheme in question is based on symbolic
representations of infinite sets of configurations called constraints. Throughout
this section, we fix a transition system T = (C, =⇒) and a set Init ⊆ C of initial
configurations.

Constraint Systems A constraint system Ψ relative to the transition system
T is a set whose elements are called constraints and can be finitely encoded, such
that there is a function [[·]] : Ψ → 2C . For a finite set Φ of constraints, we let
[[Φ]] =

⋃

φ∈Φ[[φ]]. We say that a set D ⊆ C is computable or representable (in the

.

Parameterized Tree Systems 77

constraint system Ψ) if it is possible to compute a finite set of constraints Φ ⊆ Ψ

such that D = [[Φ]].
We define an entailment relation ⊑ on constraints, where φ1 ⊑ φ2 iff [[φ2]] ⊆

[[φ1]]. For sets Φ1, Φ2 of constraints, abusing notation, we let Φ1 ⊑ Φ2 denote
that for each φ2 ∈ Φ2 there is a φ1 ∈ Φ1 with φ1 ⊑ φ2. Notice that Φ1 ⊑ Φ2
implies that [[Φ2]] ⊆ [[Φ1]].

For a constraint φ, we let Pre(φ) be the set of constraints, such that [[Pre(φ)]] =
{c| ∃c′ ∈ [[φ]]. c =⇒ c′}. In other words, Pre(φ) characterizes the set of configu-
rations from which we can reach a configuration in φ through the application
of a single rewrite rule. Such a set does not necessarily exist, nevertheless, for
our class of systems, we will show that such a set always exists and is in fact
computable. For a set Φ of constraints, we let Pre(Φ) =

⋃

φ∈Φ Pre(φ).

Symbolic Backward Reachability We present a scheme for a symbolic algo-
rithm which, given a finite set ΦF of constraints, checks whether Init

∗
=⇒ [[ΦF]].

In the scheme, we perform a backward reachability analysis, generating a
sequence {Φi}i∈N

: Φ0 ⊒ Φ1 ⊒ Φ2 ⊒ · · · of finite sets of constraints such that
Φ0 = ΦF , and Φi+1 = Φi ∪ Pre(Φi). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the
procedure terminates when we reach a point j where Φj ⊑ Φj+1. Consequently,

Φj characterizes the set of all predecessors of [[ΦF]]. This means that Init
∗

=⇒
[[ΦF]] iff Init ∩ [[Φj]] 6= ∅.

Observe that, in order to implement the scheme (i.e. transform it into an
algorithm), we need to be able to (i) compute Pre; (ii) check for entailment
between constraints; and (iii) check for emptiness of Init ∩ [[φ]] for any constraint
φ. A constraint system satisfying these three conditions is said to be effective.
Moreover, in [2], it is shown that termination is guaranteed in case the constraint
system is well quasi-ordered (WQO) with respect to ⊑, i.e. for each infinite
sequence φ0, φ1, φ2, . . . of constraints, there are i < j with φi ⊑ φj .

7 Algorithm

In this section, we instantiate the scheme of Section 6 to derive an algorithm for
solving APRX-PAR-TREE-COV. We do that by introducing an effective and
well quasi-ordered constraint system.

Throughout this section, we assume a parameterized tree system P = (Q, R)
and the induced approximate transition system A(P) = (C, ;). We define a
constraint to be a tree in Trees(Q). Although we use the same syntax as for
configurations, constraints are interpreted differently. More precisely, given a
constraint φ, we let [[φ]] = {c ∈ C| φ � c}.

An aspect of our constraint system is that each constraint characterizes
a set of configurations which is upward closed with respect to �. Conversely
(by Higman’s Lemma [16]), any upward closed set F of configurations can be
characterized as [[ΦF]] where ΦF is a finite set of constraints. In this manner,
APRX-PAR-TREE-COV is reduced to checking the reachability of a finite set
of constraints.

.

78 P.A. Abdulla et al.

Below we show effectiveness and well quasi-ordering of our constraint system,
meaning that we obtain an algorithm for solving APRX-PAR-TREE-COV.
First, observe that the entailment relation can be computed in a straightforward
manner since for any constraints φ, φ′, we have φ ⊑ φ′ iff φ � φ′.

In order to check the initial condition, we rely on previous works on regular
tree languages [13] and provide a sufficient condition on Init which guarantees
effectiveness of Init ∩ [[φ]] = ∅ for any constraint φ. More precisely, we require
that the set Init can be characterized by a regular tree language.

For the computation of Pre we rely on the following result.

Lemma 2. For any constraint φ, the set of constraints Pre(φ) is computable
and finite.

It was shown in [19] that the embedding relation on trees � is a well quasi-
order (Kruskal’s theorem). This combined with results in [2] guarantee termina-
tion of our scheme when instantiated on the constraints we have defined above.

8 Case Studies

In this section, we provide descriptions of two tree protocols we have analyzed
using our method. For each protocol, we define the corresponding parameter-
ized tree system model and we give the sets of unsafe (F) and initial (Init)
configurations.

8.1

The protocol supervises the access to a shared resource of a set of processes
arranged in a tree topology. The processes competing for the resource reside in
the leaves.

A process in the protocol can be in state idle (i), requesting (r), token (t) or
below (b). All the processes are initially in state i. A node is in state b whenever
it has a descendant in state t. When a leaf is in state r, the request is propagated
upwards until it encounters a node which is aware of the presence of the token
(i.e. a node in state t or b). A node that has the token (in state t) can choose to
pass it upwards or pass it downwards to a requesting child (node in state r).

We model the tree-arbiter protocol with a parameterized tree system P =
(Q, R) where Q = {qn

s | s ∈ {i, r, t, b} ∧ n ∈ {leaf, inner, root}} and R is as de-
picted in the figure below (figure 6). Observe that in the definition of Q, we use
the scripts s and n to model respectively the state and the nature (leaf, inner
or root) of the nodes. In the definition of the rules, we will drop the script(s)
whenever we mean that it is arbitrary (it can take any value).

The rules to model this protocol are as follows: 2 rules to propagate the
request upwards, 2 rules to propagate the token downwards, 2 rules to propagate
the token upwards and one rule to initiate a request from a leaf.

The set of bad constraints F is represented by trees where at least two pro-
cesses (i.e. two leaves) obtain the token (i.e. in state q

leaf
t).

The Tree- rbiter PA rotocol

Parameterized Tree Systems 79

qi/qr

qr

qi/qr

qr

qt/qb

qr/qt

qt/qb

qr/qt

qb/qt

qt/qi

qb/qt

qt/qi

qleaf
i /qr

Fig. 6. The rewrite rules for the tree-arbiter protocol. We mention here that there are
more rules in the model we have verified. For example, the rule in the top-left corner is
represented in the concrete model by 2 rules, each of which corresponds to a particular
combination of the natures of the parent and child nodes: For the parent there are 2
possibilities (qinner

i /qinner
r and qroot

i /qroot
r) while for the child, there are 2 (qinner

r and
qleaf

r).

The set of initial configurations Init contains all trees
where the leaf nodes are either idle or requesting, inner
nodes are idle, and the root has the token.

q

q
leaf
t q

leaf
t

8.2 The IEEE 1394 Tree Identification Protocol

The 1394 High Performance serial bus [17] is used to transport digitized video
and audio signals within a network of multimedia systems and devices.

The tree identification protocol is used in one of the phases implementing
the IEEE 1394 protocol. More precisely, it is run after a bus reset in the network
and leads to the election of a unique leader node.

In this section, we consider a version working on tree topologies. Furthermore,
we assume that (i) each inner node is connected to 3 neighbors, (ii) the root is
connected to 2 neighbors, and (ii) communication is atomic.

Initially, all nodes are in state undefined (u). We identify two steps in the
protocol depending on the number n of neighbors which are still in state u. If
n > 1, the node waits for (“be my parent”) requests from its neighbors. If n = 1,
the node sends a request to the remaining neighbor in state u. Observe that we
implicitly assume that the leaf nodes are the first to communicate with their
neighbors.

Formally, we derive a parameterized tree system model P = (Q, R) as follows.
We define the set of states by Q = {qn

s | s ∈ {u, c, l} ∧ n ∈ {leaf, inner, root}}
where the scripts s and n describe respectively the state and the nature of the
node. In the definition of the state (s), the letters u, c and l stand respectively
for undefined, child and leader. In a similar manner to the previous section, we

80 P.A. Abdulla et al.

drop the script(s) whenever we mean that it can take any value (see caption of
Figure 6).

The rewrite rules R are described below.

– The leaves initiate the communications:

qu

qleaf
u /qc

qu

qleaf
u /qc

– The inner nodes become children or wait for requests:

qu/qc

qu

qc

qc

qu/qc

qc

qu

qc

qu/qc

qc

qc

qu

– The leader is chosen:

qu/ql

qc

qc

qc

qc

qleaf
u /ql

qc

qleaf
u /ql

The set of initial configurations Init is represented by trees where all nodes
are in state undefined, and the set of bad constraints F is represented by trees
where at least 2 leaders are elected.

ql

ql

ql

ql

q

ql ql

9 Experiments

We have implemented a prototype tool in C++ and run it on several models of
protocol with tree-like topologies. The experiments have been performed on a
dual Opteron 2.8 GHz, with 8 GB of RAM memory and the results are reported
in Table 1.

For each example, we give the number of iterations performed by the reacha-
bility algorithm, the largest number of constraints maintained at the end of the
execution, the time and total memory consumption. Full details of the examples
can be found in [1].

Parameterized Tree Systems 81

Table 1. Experimental Results

Protocol Time # iterations # constraints Memory

Token 1s 1 3 <1 MB
Two way token 1s 1 3 <1 MB
Percolate 1s 1 2 <1 MB
Leader 1s 4 41 63 MB
Tree Arbiter 37s 12 1173 70 MB
IEEE 1394 1h15m25s 17 4145 137 MB

10 Conclusions and Future Work

We have presented a method for verification of tree parameterized systems where
the components are organized in a tree. We derive an over-approximation of
the transition relation which allows the use of symbolic reachability analysis
defined on upward closed sets of trees (configurations). This technique has been
implemented and successfully tested on a number of tree-based protocols.

It would be interesting to see if one can extend our method to other classes of
architectures such as unordered trees, DAGs, and more general classes of graphs.
In a similar manner to the case of words [3] we intend to consider tree systems
where the individual processes may contain unbounded variables. This would
allow to analyze algorithms for manipulation of heaps, (balanced) binary trees,
etc. Finally, we intend to extend our framework to check for liveness properties
on tree-like architecture systems (as done for words in [6]).

References

82 P.A. Abdulla et al.

1. Abdulla, P., Henda, N.B., Delzanno, G., Haziza, F., Rezine, A.: Parameterized tree
systems. Technical Report 2008-010, Dept. of Information Technology, Uppsala
University, Sweden (March 2008)

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proc. LICS 1996, 11th IEEE Int. Symp. on Logic in
Computer Science, pp. 313–321 (1996)

3. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

4. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg
(2002)

5. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made
simple and efficient. In: Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 116–130. Springer, Heidelberg (2002)

6. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: Regular model
checking for s1s + ltl. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 348–360. Springer, Heidelberg (2004)

Parameterized Tree Systems 83

7. Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Tree regular model checking: A
simulation-based approach. The Journal of Logic and Algebraic Programming 69(1-
2), 93–121 (2006)

8. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
order reduction in symbolic state space exploration. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997)

9. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer,
Heidelberg (2003)

10. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004)

11. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000)

12. Bouajjani, A., Touili, T.: Extrapolating Tree Transformations. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

13. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree Automata Techniques and Applications (October 1999)

14. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: Berry, G., Comon,
H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)

15. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of dead-
lock freedom and safety properties. Formal Methods in System Design 2(2), 149–
164 (1993)

16. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc
(3) 2(7), 326–336 (1952)

17. IEEE Computer Society. IEEE standard for a high performance serial bus. Std
1394-1995 (August 1996)

18. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. Theoretical Computer Science 256, 93–112 (2001)

19. Kruskal, J.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society 95, 210–225 (1960)

20. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. LICS 1986, 1st IEEE Int. Symp. on Logic in Computer
Science, June 1986, pp. 332–344 (1986)

Adapting Petri Nets Reductions to Promela

Specifications

C. Pajault1, J.-F. Pradat-Peyre1, and P. Rousseau2

1 LIP6, Université Pierre et Marie Curie, Paris,
{Christophe.Pajault,Jean-Francois.Pradat-Peyre}@lip6.fr

2 Cedric-CNAM
rousseau@cnam.fr

Abstract. The interleaving of concurrent processes actions leads to the
well-known combinatorial explosion problem. Petri nets theory provides
some structural reductions to tackle this phenomenon by agglomerating
sequences of transitions into a single atomic transition. These reductions
are easily checkable and preserve deadlocks, Petri nets liveness and any
LTL formula that does not observe the modified transitions. Furthermore,
they can be combined with other kinds of reductions such as partial-order
techniques to improve the efficiency of state space reduction. We present in
this paper an adaptation of these reductions for Promela specifications and
propose simple rules to automatically infer atomic steps in the Promela
model while preserving the checked property. We demonstrate on typical
examples the efficiency of this approach and propose some perspectives of
this work in the scope of software model checking.

1 Introduction

The interleaving of concurrent processes actions leads to a combinatory explo-
sion. In order to give a simple insight of this problem, let us consider a simple
example: let {pi}i=1...n be a set of stateless servers which infinitely execute a loop
consisting in a sequence of two actions accepti and executei. The interleaving
of these actions leads to a state space whose size is 2n. Partial order methods
(e.g. persistent sets [1], sleep sets [2], stubborn sets [3], ...), or symmetry based
reductions [4,5] may reduce the size of the state space to a size of n. However, the
simple fact of considering the sequence as atomic leads to a state space reduced
to a singleton! Obviously, as for partial order techniques, such a reduction may
be faulty since for instance, it could hide occurrence of deadlocks. The goal of a
reduction theory is to (syntactically) characterize situations where a reduction
is sound and how to perform it.

Based on this principle, we proposed in [6] some new Petri nets reductions that
cover a large range of synchronization patterns. We extended these reductions to
colored Petri nets (which are an abbreviation of Petri nets) in [7,8] and use them in
the Quasar [9] platform that performs verification of concurrent Ada programs
by analyzing an intermediate colored Petri net generated from a given program.

These reductions yield very interesting results and we present in this paper
how these reductions can be adapted to simplify program analysis without need-
ing a translation step into a more formal model (such as Petri nets). We illustrate

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 84–98, 2008.
c© IFIP International Federation for Information Processing 2008

Adapting Petri Nets Reductions to Promela Specifications 85

our approach with the Promela language since it’s a simple and clear language
associated to the very efficient model checker Spin [10].

More precisely, we define some syntactical rules based on Petri nets agglomer-
ations which allow the automatic detection of sequences of statements that can
be marked as “atomic” (using the atomic construction of Promela) while pre-
serving analyzed properties. The interest of this transformation is to significantly
reduce interleaving and thus the size of the state space.

2 Petri Nets Transitions Agglomerations

A Petri net reduction is characterized by some application conditions, a net trans-
formation and a set of preserved properties (i.e. which properties are simultane-
ously true or false in the original net and in the reduced one). Before presenting
the pre- and the post-agglomerations, we briefly recall some Petri nets definitions.

2.1 Brief Petri Nets Definitions and Notations

Definition 1 (Petri net model). A marked net (N, m0) is defined by a tuple
(P, T, W−, W+, m0) where: P is the finite set of places, T is the finite set of
transitions disjoint from P , W− (resp. W+) an integer matrix indexed by P ×T
is the backward (resp. forward) incidence matrix, m0 a integer vector indexed
by P is the initial marking. The transitions linked to a place p are defined by
•p = {t|W+(p, t) > 0} and p• = {t|W−(p, t) > 0}.

Definition 2 (Firing rule). Let (N, m0) be a marked net then a transition
t ∈ T is firable from a marking m (denoted by m[t〉) iff ∀p ∈ P m(p) ≥ W−(p, t).
The firing of t ∈ T firable from m leads to the marking m′(denoted by m[t〉m′)
defined by ∀p ∈ P m′(p) = m(p) + W (p, t) where W the incidence matrix is
defined by W = W+ −W−. A marking m such that ∀t ∈ T , NOT(m[t〉) is called
a dead marking.

We use the following notations.

– T ∗ is the set of finite sequences of transitions and T ω is the set of infinite
sequences of transitions; λ defines the empty sequence of transitions;

– ΠT ′(s) denotes the projection of the sequence s on a subset of transitions
T ′ and is recursively defined by ΠT ′(λ) = λ, ∀t ∈ T ′ , ΠT ′(s.t) = ΠT ′(s).t
and ∀t /∈ T ′ , ΠT ′(s.t) = ΠT ′(s);

– |s|T ′ = |ΠT ′(s)| denotes the number of occurrences of transitions of T ′ in s;
– Pref(s) = {s′ | ∃s′′ s.t. s = s′.s′′} denotes the set of prefixes of s.

Definition 3 (Firing rule extension). Let (N, m0) be a marked net. A finite
sequence s ∈ T ∗ is firable from m, a marking and leads to m′ (also denoted by
m[s〉 and m[s〉m′) iff either s = λ and m′ = m or s = s1.t with t ∈ T and
∃m1 m[s1〉m1 and m1[t〉m′ We note Reach(N, m0) = {m|∃s ∈ T ∗ m0[s〉m}
the set of reachable markings. An infinite sequence s ∈ T ω is firable from m a
marking (also denoted m[s〉) iff for every finite prefix s1 of s, m[s1〉.

86 C. Pajault, J.-F. Pradat-Peyre, and P. Rousseau

Definition 4 (Generated language). Let (N, m0) be a marked net then

– L(N, m0) = {s ∈ T ∗|m0[s〉} is the language of finite sequences,
– LMax(N, m0) = {s ∈ T ∗|∃m dead marking m0[s〉m} is the language of finite

maximal sequences,
– Lω(N, m0) = {s ∈ T ω|m0[s〉} is the language of infinite sequences.

2.2 Petri Nets Agglomerations

We note (N, m0) a Petri net and we suppose in the following definitions that
the set of transitions of the net is partitioned as : T = T0

⊎

i∈I Hi

⊎

i∈I Fi where
I denotes a non empty set of indices. The underlying idea of this decomposition
is that a couple (Hi, Fi) defines transitions sets that are causally dependent :
an occurrence of f ∈ Fi in a firing sequence may always be related to a pre-
vious occurrence of some h ∈ Hi in this sequence. Starting from this property,
we developed conditions on the behavior of the net which ensure that we can
restrict the dynamics of the model to sequences where each occurrence h ∈ Hi

is immediately followed by an occurrence of some f ∈ Fi without changing its
behavior w.r.t. to a set of properties. This restricted behavior is the behavior of
a reduced net, denoted (Nr, m0), defined in Appendix.

From now, we note H = ∪i∈IHi and F = ∪i∈IFi. The firing rule in the
reduced net is noted 〉r (i.e. m[s〉rm

′ denotes a firing sequence in the reduced
net). We note also φ the homomorphism from the monoid T ∗

r to the monoid
T ∗ defined by: ∀t ∈ T0, φ(t) = t and ∀i ∈ I, ∀h ∈ Hi, ∀f ∈ Fi, φ(hf) = h.f
This homomorphism is extended to an homomorphism from P(T ∗

r) to P(T ∗)
and from P(T∞

r) to P(T∞).
In order to obtain the preservation properties (such like deadlock occurrences)

we have to introduce behavioral hypotheseses. The basic one, named Potential
agglomerability ensures that an occurrence of a transition of F is always pre-
ceeded by an occurrence of a transition of H . For doing that we define a set of
counting functions, denoted Γi, by ∀s ∈ T ∗, Γi(s) = |s|Hi − |s|Fi .

Definition 5 (P-agglomerability). A marked net (N, m0) is potentially ag-
glomerable (p-agglomerable for short) iff ∀s ∈ L(N, m0), ∀i ∈ I, Γi(s) ≥ 0.

We define now the behavioral conditions that ensure that the agglomerations pre-
serve properties of the net. Note that these behavioral conditions can be checked
with efficient structural and algebraical sufficient conditions (not presented here)
directly on the Petri net.

Pre-Agglomeration. The following definition states four conditions ensuring
that delaying the firing of a transition h ∈ Hi until some f ∈ Fi fires does not
modify the behavior of the net w.r.t. the set of properties we want to preserve.

Definition 6. Let (N, m0) be a p-agglomerable net. (N, m0) is

1. H-independent iff ∀i ∈ I, ∀h ∈ Hi, ∀m ∈ Reach(N, m0), ∀s such that
∀s′ ∈ Pref(s), Γi(s′) ≥ 0, m[h.s〉=⇒m[s.h〉

2. divergent-free iff ∀s ∈ L∞(N, m0), |s|T0∪F = ∞

Adapting Petri Nets Reductions to Promela Specifications 87

3. quasi-persistent iff ∀i ∈ I, ∀m ∈ Reach(N, m0), ∀h ∈ Hi,
∀s ∈ (T0 ∪ F)∗, such that m[h〉 and m[s〉 ∃s′ ∈ (T0 ∪ F)∗ fulfilling: m[h.s′〉,
ΠF (s′) = ΠF (s) and W (s′) ≥ W (s).
Furthermore, if s
= λ=⇒s′
= λ then the net is strongly quasi-persistent.

4. H-similar iff |I| = 1 or ∀i, j ∈ I, ∀m ∈ Reach(N, m0), ∀s ∈ T ∗
0 ,

∀hi ∈ Hi, ∀hj ∈ Hj , ∀fj ∈ Fj m[hi〉 and m[s.hj .fj〉 =⇒ ∃s′ ∈ (T0)∗, ∃fi ∈ Fi

such that m[s′.hi.fi〉 and such that s = λ=⇒s′ = λ.

The H-independence roughly means that once a transition h ∈ Hi is firable it
can be delayed as long as one does not need its occurrence to fire a transition of
Fi. When a net is divergent-free it does not generate infinite sequences with some
suffix included in H . In the pre-agglomeration scheme, we transform original se-
quences by permutation and deletion of transitions to simulateable sequences.
Such an infinite sequence cannot be transformed by this way into an infinite sim-
ulateable sequence. Therefore this condition is mandatory. The quasi-persistence
ensures that in the original net a “quick” firing of a transition of H does not
lead to some deadlock which could have been avoided by delaying this firing. At
last, the H-similarity forbids situations where the firing of transitions of F is
prevented due to a “bad” choice of a subset Hi.

Under previous conditions (or a subset of), fundamental properties of a net
are preserved by the pre-agglomeration reduction. This result is stated in the
following theorem whose demonstration is provided in [6].

Theorem 1. If a p-agglomerable Petri net (N, m0) is also

1. H-independent and divergent-free then

ΠT0∪F (Lmax(N, m0)) ⊇ ΠT0∪F (Φ(Lmax(Nr, m0r)))

2. H-independent, strongly quasi-persistent and H-similar then

ΠT0∪F (Lmax(N, m0)) ⊆ ΠT0∪F (Φ(Lmax(Nr, m0r)))

3. H-independent then

ΠT0∪F (φ(L∞(Nr, m0))) = ΠT0∪F (L∞(N, m0))

The first point defines which conditions ensure that the reduction does not intro-
duce maximal blocking sequences (e.g. characterizing a deadlock) in the reduced
net. The second one fixes when the reduction does not hide some maximal block-
ing sequences. At last, the third point focuses on the preservation of properties
expressed with infinite sequences (e.g. fairness properties).

Post-Agglomeration. The main behavioral property that the conditions of
the post-agglomeration implies is the following one : in every firing sequence
with an occurrence of a transition h of H followed later by an occurrence of a
transition f of F , one can immediately fire f after h. From a modeling point of
view, the set F represents local actions while the set H corresponds to global
actions possibly involving synchronization.

88 C. Pajault, J.-F. Pradat-Peyre, and P. Rousseau

Definition 7. Let (N, m0) be a p-agglomerable marked net. (N, m0) is

1. F -independent iff ∀i ∈ I, ∀h ∈ Hi, ∀f ∈ Fi, ∀s ∈ (T0 ∪ H)∗, ∀m ∈
Reach(N, m0), m[h.s.f〉 =⇒ m[h.f.s〉
(N, m0) is strongly F -independent iff ∀i ∈ I, ∀h ∈ Hi, ∀f ∈ Fi, ∀s ∈ T ∗

s.t. ∀s′ ∈ Pref(s), Γ (s′) ≥ 0 ∀m ∈ Reach(N, m0), m[h.s.f〉 =⇒ m[h.f.s〉
2. F -continuable iff ∀i ∈ I, ∀h ∈ Hi, ∀s ∈ T ∗, s.t. ∀s′ ∈ Pref(s), Γ (s′) ≥ 0

∀m ∈ Reach(N, m0) m[h.s〉 =⇒ ∃f ∈ Fi such that m[h.s.f〉

We express the strong dependence of the set F on the set H with these two
hypotheses. The F -independence means that any firing of f ∈ F may be antic-
ipated just after the occurrence of a transition h ∈ H which “makes possible”
this firing. The F -continuation means that an excess of occurrences of h ∈ H
can always be reduced by subsequent firings of transitions of F .

As for the pre-agglomeration, these conditions (or a subset of) ensure that
fundamental properties of a net are preserved by the post-agglomeration reduc-
tion (the demonstration is provided in [6]).

Theorem 2. If a p-agglomerable Petri net (N, m0) is also

1. F -continuable and F -independent then

ΠT0∪H(Lmax(N, m0)) = ΠT0∪H(Φ(Lmax(Nr, m0r)))

2. F -continuable and strongly F -independent then

ΠT0∪H(φ(L∞(Nr, m0))) = ΠT0∪H(L∞(N, m0))

3 Simplifying Promela Model Analysis

3.1 The Promela Language

Promela is a verificationmodeling language associatedwith the Spin tool. Promela
specifications consist of processes, message channels and variables. Processes are
global objects. Message channels and variables can be declared either globally
or locally within a process. Processes specify behavior while channels and global
variables define the processes environment.

The execution of every statement is conditional on its executability. State-
ments are either executable or blocked. For instance, an assignment j=1 is al-
ways executable while a boolean condition j==1 is executable only when j is
equal to 1.

An important feature of Promela is the ability given to processes to synchro-
nize themselves through message channels which are used to model the transfer
of data from one process to another. They are declared either locally or globally.

Figure 1 depicts an example of Promela specification. This simple producer/-
consumer example spawns two processes: one of type writer and one of type
reader. The writer sends N messages to the reader via a channel.

Adapting Petri Nets Reductions to Promela Specifications 89

1 #define SIZE 255
2
3 int N = 100;
4 chan root = [SIZE] of { int } ;
5
6 proctype reader ()
7 {
8 int i ;
9 int j = 1;

10 do

11 : : (j<= N) −> root ? i ; j++
12 : : (j > N) −> break

13 od

14 }
15 proctype wr i t e r ()
16 {
17 int j = 1;
18 do

19 : : (j<= N) −> root ! j ; j++
20 : : (j > N) −> break

21 od

22 }
23 in i t

24 {
25 atomic{
26 run wr i t e r () ;
27 run reader ()
28 }
29 }

Fig. 1. A simple producer/consumer Promela model

On line 4, chan root = [SIZE] of { int }; declares a channel that can
store up to SIZE messages of type int. The statement root!j (line 19) is a
transmission of the value of j on the channel root (i.e. it appends the value
to the tail of the channel). And root?i (line 11) models the reception on that
channel (i.e. it retrieves it from the head of the channel, and stores it in the
variable i). The send operation is executable only when the channel addressed
is not full. The receive operation, similarly, is only executable when the channel
is non empty. The channels pass messages in a first-in-first-out order.

The control flow in Promela can be defined with the selection, the repetition,
and the unconditional jumps. For instance, The lines 18-21 in Figure 1 contains
a repetition statement (do ... od). This repetition statement contains two se-
quences of statements, each preceded by a double colon. The first statements
of these execution sequences are called guards. This repetition sequence will ei-
ther execute the sequence starting with :: (j <= N) or the sequence starting
with :: (j > N) regarding which guard is executable. If several guards are
executables, one is randomly chosen. Once the sequence is executed, the repe-
tition statement will be repeated. The normal way to terminate the repetition
structure is the use of the break statement. The selection statement is similar
to the repetition statement, but occurs only once.

3.2 Syntactical Promela Agglomerations

We define now some conditions under which it is possible to automatically infer
agglomerations in a Promela specification. These agglomerations group sequen-
tial statements into an atomic block in order to reduce the combinatory. In other
term we will fix simple conditions that allow us to transform a sequence 1

1 The case k = 0 is obvious and not studied.

90 C. Pajault, J.-F. Pradat-Peyre, and P. Rousseau

i0; atomic { i1; i2; . . .; ik }

into the atomic sequence

atomic { i0; i1; i2; . . .; ik }

We study different cases for which this transformation preserves deadlock,
non progress cycles or any LTL formula that does not observe the action i0
(when we perform a pre-agglomeration) or any actions of ij (when performing a
post-agglomeration).

Methodology used The main principle is to explicitly use the behavioral con-
ditions of Petri nets agglomerations for characterizing different cases in which the
transformation is correct w.r.t. the analyzed property. Indeed, for any Promela
specification, a corresponding Petri net with the same behavior can be gener-
ated (as in the Quasar project for analyzing concurrent dynamic Ada programs)
and adapted to Promela specification in [11]. Then, agglomeration conditions on
Petri nets can be translated into syntactical and semantical conditions in the
Promela program.

Inorder to interpretPetri netbehavior intoPromelabehaviorwe classifyPromela
statements following three criteria (in the following examples we suppose that a
statement i0 is followed by a sequence of statement sf = {i1 . . .; ik}) :
1. is the statement blocking or not? For instance, an assignment is a non block-

ing statement, because it is always executable while a boolean expression or
a receive operation on a channel are blocking statements; this characteristic
is related to the F -continuation hypothesis ;

Indeed, if the statement i0 is followed by a sequence of non blocking
statements sf , we know that the sequence will always be executed if i0 is
executed and so the F -continuation hypothesis is fulfilled (in the Petri net
model, all the transitions modeling the sequence execution will be executable
after firing i0).

2. does the statement refers local or global variables? When the statement refers
only local variables, the value for which the statement is executed by a
process cannot change by the execution of other processes ; this characteristic
is related to the H- and the F -independence ;

For sf referring only local variables or constants, the way the sequence sf

is executable cannot change after the execution of i0. More precisely, suppose
that i2 refers a variable x and that sf is executable after i0 for a value x0 of
x ; as x is local, the value of x cannot change after i0 is executed and before
sf execution, and then the way that sf is executed does not change. So
the F -Independence condition is fulfilled. As statements are executed by a
process, i0 cannot be re-executed before sf has been executed. The strongly
F -Independence condition is then also fulfilled (in the Petri net model, it
would mean that the transitions of the sequence do not access places also
accessed by a transition modeling another process execution).

The same reasoning can be performed for i0, but in this case would
fulfill the H-independent and the strongly quasi-persistence conditions. As

Adapting Petri Nets Reductions to Promela Specifications 91

i0 accesses only variables that cannot change when the process is not active,
the statement i0 can be delayed and then the H-independent and the strongly
quasi-persistence conditions are fulfilled.

3. is the statement a guard (a first statement of a sequence in a branch of a
selection)? in that case, the statement is potentially in competition with
other statements in other branches of the selection structure (the process
may have a choice); this characteristic is related to the quasi-persistent and
the H-similar hypothesizes.

If there is no competition (the statement is not a guard) the H-similarity
condition is fulfilled (|I| = 1). Others cases have to be discussed for each
kind of statement.

The statement i0 is followed by non blocking statements. The first
case is when the sequence sf = atomic{ i1;. . .; ik} is a non blocking sequence
and i1; . . .; ik only refers local variables or constants (i.e. variables that are
declared within the corresponding process or that are never assigned except at
their declaration). In that case, a post-agglomeration of i0 with the rest of the
sequence can be performed. Indeed, as sf is non blocking, it can be executed as
soon as i0 has been executed and then the F -continuation condition is fulfilled.
Now, as i1 . . .; ik refers only local variables or constants the way the sequences
sf is executable cannot change after the execution of i0. More precisely, suppose
that i2 refers a variable x and that sf is executable after i0 for a value x0 of
x; as x is local, the value of x cannot change before sf is executed, and then
the way that sf is executed does not change when i0 has been executed and sf

not. So the F -Independence condition is fulfilled. As statements are executed by
a process, i0 cannot be re-executed before sf has been executed. The strongly
F -Independence condition is then also fulfilled.

The statement i0 is not a guard. We suppose here that i0 is not a guard and
we examine three kinds of statements for i0 : the blocking conditional statement
(x == y) the assignment (x = y) and the receive operation on a channel (q?x)

1. Suppose first that i0 is an assignment that does not refer to global variables
(except constants). As i0 accesses only variables that cannot change when
the process is not active, the statement i0 can be delayed and then the H-
independent and the strongly quasi-persistence conditions are fulfilled. As
the statement i0 is not a loop, the divergence freeness is ensured. Moreover, as
we agglomerate a single statement (i0) with a sequence (sf), the H-similarity
condition is fulfilled (|I| = 1). Now, if i1 is a blocking statement and if i1 does
not use variables modified by i0 and does not modify variables accessed by i0,
we can safely replace the statement atomic{ i0; i1; . . .; ik} by the statement
atomic{ i1; i0; . . .; ik}. By this way we put the “blocking” statement at
the beginning of the sequence which disables a possible interruption in the
atomic statement execution.

2. Now, suppose that i0 is a boolean expression and suppose that this expression
does not refer to global variables (except constants). Then using the same
reasoning, a pre-agglomeration can be performed on i0 and sf .

92 C. Pajault, J.-F. Pradat-Peyre, and P. Rousseau

3. When i0 is a blocking reception on a channel we have to be careful. First,
suppose that the channel is marked as “exclusive reader”. This disables the
possibility that a process takes a message that another process was wait-
ing for (which will contradict the quasi-persistence condition). Then the
H-independence condition implies that the reception of a message on the
channel does not enable any action of an other process. In the general case
this is not possible (a “reader” can unblock a “writer”). However, suppose
that the user can mark a channel as “sufficient capacity” meaning that a
writing statement on this channel will never be blocked; then, reading a
message on such a channel cannot unblock a process waiting for writing. In
such a case, a pre-agglomeration can be safely performed.

The statement i0 is a guard. Now suppose that i0 is the first statement of
a selection structure (this applies also to a repetition statement)
if

:: i0; atomic{ i1; . . .; ik}
:: s1

:: . . .
:: sn

:: else se

fi

where s1, . . ., sn and se are sequences of actions (atomic or not).

1. First, suppose that i0 is an assignment or a boolean expression that uses
only local variables or constants. Suppose also that atomic{ i1; . . .; ik}
is a non blocking sequence, that each statement sj can be written ij0.s

′
j

with s′j a non blocking sequence and that ij0 is an assignment or a boolean
expression that uses only local variables or constants; then we can perform a
pre-agglomeration of i0 with the sequence atomic{ i1; . . .; ik} simultaneously
with a pre-agglomeration of each ij0 with the first statement of s′j . Indeed,
the H-independence and the quasi-persistence are ensured due to the locality
of variables used in statements. The H-similarity is obtained by the non
blocking character of each sequence s′j which ensures that if a given sequence
s′j is executable, then all other sequences s′j′ are also executable.

2. Next, suppose that i0 is a boolean expression using only local variables and
constants. If all statements si also begin with a boolean expression using only
local variables and constants and if at most one of this boolean expression
is true at a time, then i0 can be pre-agglomerated with atomic{ i1; . . .; ik}.
This is so because there is no really choice on the selection structure : at
most one sequence is executable and the one which is executable does not
change until it is executed.

3. The same reasoning can be applied when i0 is a statement q?v0(x0) such that
q is a channel marked as an exclusive reader which does not block writers
under the conditions that:
(a) each si is also a statement q?vi(xi), where v0 . . . vn denotes different

constant values,

Adapting Petri Nets Reductions to Promela Specifications 93

(b) x0,. . ., xi design local variables and
(c) there is no else part in the selection structure.
Indeed, in that case, there is no real choice (due to the different value ofmessage
type) and as there is no else part, the message reception can be delayed.

4. At last, suppose that all alternatives of a selection statement are atomic se-
quences; then, without modifying its behavior we can rewrite it into an atomic
sequence that contains the selection statement as the unique statement.

The following algorithm (Algorithm 1) formalizes these Promela sources trans-
formation rules.

4 Experimentations

We implemented these agglomerations in a tool (atomicSpin [12]). We applied
our transformations on different models. Using the Spin tool (v. 4.3.0), we com-
pute the total number of generated states when looking for all invalid end-states
in the original and in the reduced model.

Consider the producer/consumer specification depicted on Figure 1. The re-
sulting specification after agglomerations is depicted on Figure 2.

Consider process of type Reader: the sequence root?i; j++ can be trans-
formed into atomic {root?i; j++} using the first rule (3.1.2) which corre-
sponds to a post-agglomeration. Indeed, j++ is a non blocking statement using
only local variable. Then, we can operate the transformation of the sequence
(j <= N); atomic {root?i; j++} into the sequence
atomic{ (j <= N); root?i; j++} using the second rules of subsection 3.1.4.
Symmetric transformations can be applied in the code of the Writer process.

In the Table 1, we trace the number of reachable states for the original and
the transformed model using the Spin partial order reduction in both cases (SPO

1 #define SIZE 255
2
3 int N = 100;
4 chan root = [SIZE] of { int } ;
5
6 proctype reader ()
7 {
8 int i ;
9 int j = 1;

10 do

11 : : atomic { (j<= N) −> root ? i ; j++ }
12 : : atomic { (j > N) −> } break

13 od

14 }
15 proctype wr i t e r ()
16 {
17 int j = 1;
18 do

19 : : atomic { (j<= N) −> root ! j ; j++ }
20 : : atomic { (j > N) −> } break

21 od

22 }
23 in i t

24 {
25 atomic{
26 run wr i t e r () ;
27 run reader ()
28 }
29 }

Fig. 2. The simple producer/consumer with automatically inferred atomic blocks

94 C. Pajault, J.-F. Pradat-Peyre, and P. Rousseau

Algorithm 1. Atomicspin algorithm
Require: i0, i1, s

if atomic sequence s doesn’t use global variables then
if atomic sequence s doesn’t contain any blocking statement then

if i0 is not a guard then
add i0 to the atomic sequence s

else if i0 is an assignment, printf, or general statement then
add i0 to the atomic sequence s

else if i0 is a boolean expression and
all other choices are boolean expression and
at most one choice is true at a time

then
add i0 to the atomic sequence s

else if i0 is a channel reception and
channel is exclusive reader and
all choices are receptions on the same channel and
there is no else part in the selection statement and
there is only one reception computable at a time

then
add i0 to the atomic sequence s

else
close the atomic sequence s

end if
else

if i0 is a guard then
close the atomic sequence s

else if i0 is an assignment or a boolean expression and
i0 doesn’t modify i1 variables and
i0 access only local variables

then
add i0 to the atomic sequence s
swap i0 and i1

else if i0 is a reception on a channel and
the channel is exclusive reader and
the channel is sufficient capacity

then
add i0 to the built atomic sequence
swap i0 and i1

else
close the atomic sequence s

end if
end if

else
close the atomic sequence s

end if

Adapting Petri Nets Reductions to Promela Specifications 95

Table 1. Benchmarks

name process states memory (Mo)
SPO APO SPO APO

allocator 1 44 23 0 0
2 1 818 646 0 0
3 42 419 11 876 6 2
4 637 398 160 242 107 26
5 7.77e+06 1.89e+06 1 555 378

leader 20 367 267 0 0
40 727 527 1 1
60 1 087 787 2 2
80 1 447 1 047 4 3
100 1 807 1 307 7 5

leader2 2 84 60 0 0
3 356 254 0 0
4 2 074 1 482 0 0
5 14 122 10 082 3 2
6 106 514 75 986 29 21

petersonN 3 2 999 2 374 0 0
4 533 083 383 478 21 21
5 - - - -

philo1 2 42 20 0 0
4 1 525 236 0 0
6 64 944 3 745 6 0
8 2.91e+06 62 712 373 8
10 - 1.02e+06 - 155

philo2 10 189 445 86 407 20 9
11 706 565 292 125 84 35
12 2.61e+06 955 822 334 122
13 9.50e+06 3.14e+06 1 293 427
14 - 1.02e+07 - 1 478

prod cons 200 161 609 41 009 172 44
400 558 529 214 789 596 229
600 967 329 419 589 1 033 448
800 1.37e+06 624 389 1 469 666
1000 1.78e+06 829 189 1 906 885

sort 50 5 252 2 705 7 3
100 20 502 10 404 51 26
150 45 752 23 104 172 87
200 81 002 40 804 406 204
250 126 252 63 304 791 398

96 C. Pajault, J.-F. Pradat-Peyre, and P. Rousseau

means Spin with partial order reductions, and APO means atomicSpin with the
same partial order reductions). Agglomerations leads to a significant reduction
of the state space size, with a quasi null cost in time (checking our conditions
on Promela programs is a very simple task).

We also carried out experiments on classical examples of Promela models
included in the standard distribution of Spin (the leader election, the distributed
sort, the two versions of a cell-phone handoff strategy in a mobile network, the
Peterson for N, the snooping cache) and some examples of our own (two version
of the well known dining philosophers and a task allocator modeling a client-
server application).

Agglomerations improve the state space reduction in all cases. Except for
the leader election, the reduction factor is at least 2 even when partial-order
reductions are enabled and agglomerations performed on the dining philosophers
model achieved reductions of the state space by a factor 20.

5 Related Works on Syntactical Model Reductions

First works concerning reduction of sequences into atomic actions for simplifica-
tion purpose was performed by Lipton in [13]. Lipton focused only on deadlock
property preservation. Using parallel program notations of Dijkstra he defined
“left” and “right” movers. Roughly speaking, a “left” (resp. “right”) mover is a
local process statement that can be moved forward (resp. delayed) w.r.t. state-
ments of others processes without modifying the halting property. Lipton then
demonstrated that, in principle, the statement P(S), where S is a semaphore,
is a “left” mover and V(s) is a “right” mover. Then Lipton proved that some
parallel program are deadlock free by moving P(S) and V(S) statements and
by suppressing atomic statements that have no effect on variables. However,
two difficulties arise: the reduction preserves only deadlocks and the application
conditions are difficult to be checked.

Cohen and Lamport propose in [14] assumptions on TLA specifications under
which they define a reduction theorem preserving liveness and safety properties.
This work fixes the reduction theorem in a “high” level formalism which can
be a clear advantage for defining specific utilization. However, it’s also its main
drawback since it is based on the hypothesis that some actions commute, but no
effective way is proposed to check whether this assumption holds.

More recently, Cohen, Stoller, Qadeer, and Flanagan [15], [16], [17] leveraged
Lipton’s theory of reduction to detect transactions in multi-threaded programs
(and consider these transactions as atomic actions in the model checking step).
Stoller and Cohen propose in [15] a reduction theorem based on omega algebra
that can be applied to models of concurrent systems using mutual exclusion for
access to selected variables. However, they use a restricted notion of “left” mover
and a better reduction ratio can be obtained by applying more accurate reductions
(as demonstrated in [18]). Moreover, their reductions are justified by the correct
use of “exclusive access predicates” and by the respect of a specific synchronization
discipline. These predicates may be difficult to compute and no effective algorithm
is given to test that the synchronization discipline is respected.

Adapting Petri Nets Reductions to Promela Specifications 97

Flanagan and Qadeer noted in [17] that the previous authors use only the
notion of “left” mover and proposed an algorithm that uses both “left” and
“right” mover notions to infer transactions. However, this algorithm is based on
access predicates that can be automatically inferred only for specific programs
using lock-based synchronization. Moreover, as they use both “left” and “right”
movers to obtain a better reduction ratio and as they do not fix sufficient restric-
tive application conditions, their reduction theorem do not preserve deadlock.

In Petri nets formalism, the first works concerning reductions have been per-
formed by Berthelot [19]. The link between transition agglomerations (the most
effective structural reductions proposed by Berthelot) and general properties,
expressed in LTL formalism, is done in [20].

We proposed in [6] new Petri nets reductions that cover a large range of patterns
by introducing algebraic conditions whereas the previously defined ones rely solely
on structural conditions. We adapted them in [7] to colored Petri nets which are
an abbreviation of Petri nets and define a concise formalism for the modeling of
concurrent software. We showed here that these reductions can also be adapted to
Promela specifications leading to simple syntactical ruleswhichpermit a significant
reduction of the combinatory while preserving properties of the model.

6 Conclusion

We demonstrate in this paper that efficient Petri nets reductions can be used to sig-
nificantly reduce the state space size of a Promela specification. We propose simple
syntactical rules allowing the automatic building of atomic sequences. Our experi-
ments highlight the efficiency of these approaches. A first implementation of these
rules has already been developed [12]. Our experience with Petri nets allows us to
expect even better reductions for more complex models. Based on these experimen-
tations we plan to adapt these transformation rules to automatically infer transac-
tions in concurrent software written in Ada or Java in the near future.

References

1. Wolper, P., Godefroid, P.: Partial-order methods for temporal verification. In: Best,
E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 233–246. Springer, Heidelberg (1993)

2. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of dead-
lock freedom and safety properties. Form. Methods Syst. Des. 2(2), 149–164 (1993)

3. Valmari, A.: On-the-fly verification with stubborn sets. In: Courcoubetis, C. (ed.)
CAV 1993. LNCS, vol. 697, pp. 397–408. Springer, Heidelberg (1993)

4. Emerson, A., Prasad Sistl, A.: Symmetry and model checking. In: Courcoubetis,
C. (ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)

5. Sistla, A.P.: Symmetry reductions in model-checking. In: Zuck, L.D., Attie, P.C.,
Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575. Springer,
Heidelberg (2002)

6. Haddad, S., Pradat-Peyre, J.: Efficient reductions for LTL formulae verification.
Technical report, CEDRIC, CNAM, Paris (2004)

98 C. Pajault, J.-F. Pradat-Peyre, and P. Rousseau

7. Evangelista, S., Haddad, S., Pradat-Peyre, J.F.: New coloured reductions for soft-
ware validation. In: Workshop on Discrete Event Systems (2004)

8. Haddad, S., Pradat-Peyre, J.-F.: New efficient petri nets reductions for parallel
programs verification. Parallel Processing Letters 16(1), 101–116 (2006)

9. Evangelista, S., Kaiser, C., Pradat-Peyre, J.F., Rousseau, P.: Quasar: a new tool for
analysing concurrent programs. In: Rosen, J.-P., Strohmeier, A. (eds.) Ada-Europe
2003. LNCS, vol. 2655. Springer, Heidelberg (2003)

10. Holzmann, G.J.: The model checker SPIN. Software Engineering 23(5), 279–295
(1997)

11. Pajault, C., Pradat-Peyre, J.: Static reductions for promela specifications. Techni-
cal Report 1005, Conservatoire National des Arts et Métiers, laboratoire Cedric,
Paris, France (2006)

12. http://quasar.cnam.fr/atomicSpin/
13. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-

mun. ACM 18(12), 717–721 (1975)
14. Cohen, E., Lamport, L.: Reduction in TLA. In: International Conference on Con-

currency Theory, pp. 317–331 (1998)
15. Stoller, S.D., Cohen, E.: Optimistic synchronization-based state-space reduction.

In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619.
Springer, Heidelberg (2003)

16. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: Proceedings
of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, pp. 338–349. ACM Press, New York (2003)

17. Flanagan, C., Qadeer, S.: Transactions for software model checking. In: Cook, B.,
Stoller, S., Visser, W. (eds.) Electronic Notes in Theoretical Computer Science,
vol. 89. Elsevier, Amsterdam (2003)

18. Evangelista, S., Haddad, S., Pradat-Peyre, J.: Coloured Petri nets reductions for
concurrent software validation. Technical report, CEDRIC, CNAM, Paris (2004)

19. Berthelot, G.: Checking properties of nets using transformations. In: Rozenberg,
G. (ed.) Advances in Petri nets. LNCS, vol. 222. Springer, Heidelberg (1985)

20. Poitrenaud, D., Pradat-Peyre, J.: Pre and post-agglomerations for LTL model
checking. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825.
Springer, Heidelberg (2000)

A Agglomerated Petri Net Definition

Proposition 1. The incidence matrices W , W− and W+ can be extended to
matrices indexed by P × T ∗ by the following recursive definition:

– W (p, λ) = W−(p, λ) = W+(p, λ) = 0 and W (p, s1.t) = W (p, s1) + W (p, t)
– W−(p, s1.t) = Max(W−(p, s1), W−(p, t) − W (p, s1))
– W+(p, s1.t) = W (p, s) + W−(p, s)

such that this extension is compatible with the firing rule, i.e.
∀s ∈ T ∗, m[s〉m′ ⇐⇒ ∀p ∈ P , m(p) ≥ W−(p, s) and m′(p) = m(p) + W (p, s)

Definition 8 (Reduced net). The reduced Petri net (Nr, m0) is defined by:

– Pr = P , Tr = T0∪i∈I (Hi×Fi) (we note hf the transition (h, f) of Hi×Fi);
– ∀tr ∈ T0, ∀p ∈ Pr, W−

r (p, t) = W−(p, t) and W+
r (p, t) = W+(p, t)

– ∀i ∈ I, ∀hf ∈ Hi × Fi, ∀p ∈ Pr W−
r (p, hf) = W−(p, h.f) and W+

r (p, hf) =
W+(p, h.f)

http://quasar.cnam.fr/atomicSpin/

Verification of a Hierarchical Generic Mutual

Exclusion Algorithm

Souheib Baarir1, Julien Sopena2, and Fabrice Legond-Aubry2

1 Univ. degli Studi del Piemonte Orientale. Department of Computer Science.
Via Bellini 25G, 15100 Alessandria, Italy

2 LIP6 - Université de Paris 6
104, Avenue du President Kennedy, 75016 Paris, France

souheib.baarir@mfn.unipmn.it,
{julien.sopena,fabrice.legond-aubry}@lip6.fr

Abstract. In distributed environments, the shared resources access con-
trol by mutual exclusion paradigm is a recurrent key problem. To cope
with the new constraints implied by recently developed large scale dis-
tributed systems like grids, mutual exclusion algorithms become more
and more complex and thus much harder to prove and/or verify. In this
article, we propose the formal modeling and the verification of a new
generic hierarchical approach. This approach is based on the composi-
tion of classical already proof checked distributed algorithms. It over-
comes some limitations of these classical algorithms by taking into ac-
count the network topology latencies and have a high scalability where
centralized ones don’t. We also have formalized the properties of the
mutual exclusion paradigm in order to verify them against our solution.
We prove that our compositional approach preserves theses properties
under the assumption that all used plain algorithms assert them. This
verification by formal method checkers was eased by the efficient use of
already proved mutual exclusion algorithms and the reduction of state
spaces by exploiting the symmetries.

Keywords: distributed algorithm, composition, mutual exclusion, grid
computing, colored Petri nets, model checking.

1 Introduction

By gathering geographically distributed resources, a Grid offers a single large-
scale environment suitable for the execution of computational intensive applica-
tions. A Grid usually comprises of a large number of nodes grouped into clusters.
Nodes within a cluster are often linked by local networks (LAN) while clusters
are linked by a wide area network (WAN). Therefore, Grids present a hierarchy
of communication delays: the cost of sending a message between nodes of dif-
ferent clusters is much higher than that of sending the same message between
nodes within the same cluster.

Distributed or parallel applications that run on top of a Grid usually require
that their processes get exclusive access to some shared resources (critical sec-
tion). Thus, the performance of mutual exclusion algorithms is critical to Grid

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 99–115, 2008.
c© IFIP International Federation for Information Processing 2008

applications and it is the focus of this paper. A mutual exclusion algorithm en-
sures that exactly one process can execute the critical section at any given time
(safety property) and that all critical section (CS) requests will eventually be
satisfied (liveness property). We choose not to discuss the necessity, advantages
or drawbacks of distributed versions of such algorithms. Readers can learn more
informations about them in [7].

The contribution of this paper is two fold : the design of a generic hierarchical
mutual exclusion composition approach which easily allows the combination of
different inter-cluster and intra-cluster algorithms on the contrary to the previ-
ous approach and the verification of its correctness.

The remainder of this paper is organized as follows. Section 3 presents our com-
position approach and shows its advantages comparatively to existing works. In
section 4, we describe the Petri net (P.N.) modelization of our approach followed
by the expression of the properties we verify in section 5. Afterward, we present
results of these properties verification on our proposed approach in section 7. The
last section concludes our work and proposes interesting perspectives of research.

2 Related Work

Several studies have proposed to adapt existing mutual exclusion algorithms
to a hierarchical scheme. In Mueller [15], the author presents an extension to
Naimi-Tréhel’s algorithm, introducing the concept of priority. A token request
is associated with a priority and the algorithm first satisfies the requests with
higher priority. Bertier et al. [2] adopt a similar strategy based on the Naimi-
Tréhel’s algorithm which treats intra-cluster requests before inter-cluster ones.

Finally, several authors have proposed hierarchical approaches for combining
different mutual exclusion algorithms. Housni et al. [8] and Chang et al. [3]’s
mutual exclusion algorithms gather nodes into groups. Both articles basically
consider hybrid approaches where the algorithm for intra-group requests is dif-
ferent from the inter-group one. In Housni et al. [8], sites with the same priority
are gathered at the same group. Raymond’s tree-based token algorithm [18] is
used inside a group, while Ricart-Agrawala [19] diffusion-based algorithm is used
between groups. Chang et al.’s [3] hybrid algorithm applies diffusion-based algo-
rithms at both levels: Singhal’s algorithm [20] locally, and Maekawa’s algorithm
[13] between groups. The former uses a dynamic information structure while the
latter is based on a voting approach. Similarly, Omara et al. [17]’s solution is a
hybrid of Maekawa’s algorithm and Singhal’s modified algorithm which provides
fairness. In Madhuram et al. [12], the authors also present a two level algorithm
where the centralized approach is used at lower level and Ricard-Agrawala at
the higher level. Erciyes [6] proposes an approach close to ours based on a ring
of clusters. Each node in the ring represents a cluster of nodes. The author then
adapts Ricart-Agrawal to this architecture.

Our approach is close to these proposed solutions. However, we have found
a more generic approach to achieve the scalability we need for large scale grid
by finding a way to aggregate pre-existing algorithms and considering network

100 S. Baarir, J. Sopena, and F. Legond-Aubry

latencies heterogeneity. It enables us to fit better the grid architecture and the
application behavior. To do this, we have created glue code which coordinates
two instance levels of plain mutual exclusion algorithms by just inserting well
placed call traps in their inner code but without modifying their behavior. Prac-
tical results show significantly better performances [21] over classical distributed
algorithms but no proof has been made to verify the correctness of the solution.

3 Our Composition Algorithm - An Informal Approach

Our approach consists in having a hierarchy of token-based mutual exclusion
algorithms: a per cluster mutual exclusion algorithm that controls critical sec-
tion requests from processes within the same cluster and a second algorithm
that controls inter-cluster requests for the token. The former is called the intra
algorithm while the latter is called the inter algorithm. An intra algorithm of a
cluster runs independently from the other intra algorithms.

The application is composed of a set of processes which run on the nodes of
the Grid. We consider one process per node and call it an application process.
When an application process wants to access the shared resource, it calls the
function intra.CS Request(). It then executes its critical section. After executing
it, the process calls the function intra.CS Release() to release it. Both functions
are provided by the intra token algorithm.

Within each cluster there is a special node, the coordinator. The inter al-
gorithm runs on top of the coordinators allowing them to request the right of
accessing the shared resource on behalf of application nodes of their respective
cluster. Coordinators are in fact hybrid processes which participate in both the
inter algorithm with the other coordinators and the intra algorithm with their
cluster’s application processes. However, even if the intra algorithm sees a co-
ordinator as an application process, the coordinator does not take part in the
application’s execution i.e., it never requests access to the CS for itself in the
intra and inter layers but act as a mandatory proxy for each layer. As ex-
plained in the next sections, it forwards incoming inter requests and outgoing
intra requests.

3.1 Coordinator Algorithm

The key feature of our approach is that the two hierarchical algorithms are
clearly separated since an application process gets access to the shared resource
just by executing the intra algorithm of its cluster. Another important advantage
is that the behavior of the chosen algorithms of both layers do not need to be
modified. Hence, it is very simple to have different compositions of algorithms.

An intra algorithm controls an intra token while the inter algorithm controls
an inter token. Thus, there is one intra token per cluster but a single inter to-
ken of which only the coordinators are aware. Holding the intra token must
be sufficient and necessary for an application process to enter the CS
since the local intra algorithm ensures that no other local application node of

Verification of a Hierarchical Generic Mutual Exclusion Algorithm 101

the cluster has the intra token. But, considering the hierarchical compo-
sition of algorithms, our solution must then guarantee that no other
application process of the other clusters is also in critical section when
holding an intra token (per cluster safety property). In other words, the
safety property of the inter algorithm must ensure that at any time only one
cluster has the right of allowing its application processes to execute the CS. This
property can be asserted by the possession of the inter token by a coordinator.

Similarly to a classical mutual exclusion algorithm, the coordinator calls the
inter.CS Request() and the inter.CS Release() functions for respectively asking
or releasing the inter token. However, when a coordinator is in critical section,
it means that application processes of its cluster have the right of accessing the
resource. The inter token is held by the coordinator of this cluster which is then
considered to be in critical section by the other coordinators.

Coordinator Algorithm ()1

intra.CS Request()2

/* Holds intra-token CS */3

while TRUE do4

if ¬ intra.PendingRequest() then5

state ← OUT6

Wait for intra.PendingRequest()7

state ← WAIT FOR IN8

inter.CS Request()9

/* Holds inter-token. CS */10

intra.CS Release()11

if ¬ inter.PendingRequest() then12

state ← IN13

Wait for inter.PendingRequest()14

state ← WAIT FOR OUT15

intra.CS Request()16

/* Holds intra-token CS */17

inter.CS Release()18

CS Request ()19

...20

mutexState ← REQ21

Wait for Token22

mutexState ← CS23

CS Release ()24

...25

mutexState ← NO REQ26

pendingRequest ()27

return

�
TRUE if ∃ pending request

FALSE otherwise28

Fig. 1. Coordinator Algorithm

Our composition solution does not require any change in the mutual exclusion
algorithm. Providing such “plug in” feature is done by just inserting callbacks
in the mutual exclusion implantation code. The algorithm themselves are not
modified.

Only two trap callbacks are necessary: a new request trap and a no more
request trap. The former, as its named suggest, must be invoked at each new
token request processing while the latter must be invoked when there are no
more pending request in the algorithm. These callbacks need no parameters and
must be inserted in strategic code locations.

102 S. Baarir, J. Sopena, and F. Legond-Aubry

The guiding principle of our approach is described in the pseudo code of fig-
ure 1. Initially, every coordinator holds the intra token of its cluster and one
cluster hold the inter token. When an application process wants to enter the
critical section, it sends a request to its local intra algorithm by calling the in-
tra.CS Request() function. The coordinator of the cluster, which is the current
holder of the intra token, will also receive such a request. However, before grant-
ing the intra token to the requesting application process, the coordinator must
first acquire the inter token by calling the inter.CS Request() function [line]
of the inter algorithm. Therefore, upon receiving the inter token, the coordi-
nator gives the intra token to the requesting application process by calling the
intraCS Release() function [line 11].

A coordinator which holds the inter token must also treat the inter token
requests received from the inter algorithm. However, it can only grant the inter
token to another coordinator if it holds its local intra token too. Having the latter
ensures it that no application processes within its cluster is in the critical section.
Thus, if the coordinator does not hold the intra token, it sends a request to its
intra algorithm asking for it by calling the intra.CS Request() function [line 16].
Upon obtaining the intra token, the coordinator can give the inter token to the
requesting coordinator by calling the inter.CS Release() function[line 18].

3.2 Coordinator Automaton

In a classical mutual exclusion algorithm, a process can be in one of the three fol-
lowing states : requesting the critical section (REQ), not requesting it (NO REQ),
or in the critical section(CS), as shown in figure 2(a).

The behavior of a coordinator process can be summarized by a state automa-
ton. A coordinator process is in one of the above three states in regards to both
layer algorithms. Therefore, in the automaton of figure 2(b), Intra and
Inter refer to the coordinator state related to the intra algorithm and
inter algorithm instance respectively. Thus, a coordinator has new states
in respect with the global state of the composition, which can be one of the
following: OUT , IN , WAIT FOR OUT , WAIT FOR IN . These new states
are a tuple composed of the states of each layer state.

NO_REQ REQ

C.S.

(a) Classical mutual exclusion
client automaton

IN

Inter :
NO_REQ

Intra :
CS

OUT

Inter :
REQ

Intra :
CS

WAIT_FOR_IN

Inter :
CS

Intra :
NO_REQ

IN

Inter :
CS

Intra :
REQ

WAIT_FOR_OUT

(b) Coordinator automaton

Fig. 2. Coordinator and mutual exclusion client Automata

9

Verification of a Hierarchical Generic Mutual Exclusion Algorithm 103

To ease the reader comprehension, we have had line references to the ”Co-
ordinator algorithm” pseudo-code in brackets and inter or intra layers state
references of the automaton figure 2(b) in parenthesis. If the coordinator is in
the state OUT , no local application processes of its cluster has requested the
CS. Thus, it holds the intra token (Intra = CS)[line 2 or line 16] and does not
hold the inter token (Inter = NO REQ).

When the coordinator is in the state WAIT FOR IN , it means that there
are one or more pending intra requests [line 1]. It still holds the local intra token
(Intra = CS) but is waiting for the inter token (Inter = REQ

)[line 9].In the IN state, the coordinator holds the inter token (Inter = CS
but has granted the intra algorithm token (Intra = NO REQ)[line] to one of
its application processes.

Finally, when the coordinator is in the state WAIT FOR OUT , it still holds
the inter token (Inter= CS)[line 9] but it is requesting the intra token to the
intra algorithm (Intra = REQ)[line 16] in order to be able to satisfy an inter
algorithm pending request [line 14].

It is worth remarking that only one coordinator can be either in IN or in
WAIT FOR OUT state at any given time. All the other coordinators are either
in state OUT or in state WAIT FOR IN .

4 Our Composition Algorithm - A Formal Model

High Level Petri Nets (H.L.P.N.) [9] formalism is an expressive model extending
the representation of concurrency by Petri nets with a data management via the
coloured domains and functions. It is well fitted for the representation of large
distributed system like ours. Moreover, by use of Stochastic Well-Formed Petri
nets (S.W.N.) [4], a particular category of H.L.P.N., we can check efficiently
behavioral properties on the built representation. Thus, we have naturally choose
this formalism over proof based methods.1

To obtain a good modelling, we have adopted an incremental and compo-
sitional methodology. We have isolated fundamental parts of our solution and
defined Petri nets interfaces to bind them together. During the whole process,
we have kept in mind the necessity to maintain the inherent symmetries of our
approach. The preservation of behavioral symmetries is the key point to achieve
our verification goals.

4.1 A Basic Mutual Exclusion Aware Application Modelization

Distributed applications which use mutual exclusion can be summarized by a
potentially infinite ordered succession of three specific states like those exposed
in the section 3.2 and on the automaton of figure 2(a): NO REQ, REQ and

1 It is worth noting that our models are described in the general framework of H.L.P.N.,
without taking into consideration the particular syntax of SWN. Actually, this sim-
plifies considerably the modelling process without loss of generality.

)[line]9

11

104 S. Baarir, J. Sopena, and F. Legond-Aubry

mutexmutex

grantReq

grant

NO_REQ

REQ

CS

requestCS()

accessCS()

releaseCS()

x

x

x

x

x

x

x

x

x

Fig. 3. Basic Mutual Exclusion modelling in H.L.P.N.

CS. These three states are represented by the three places at the right of the
figure 3.

Initially, the place NO REQ contains a colored token per application process.
A process do some local work during an undefined time and does not require an
access to the exclusive resources. The need for a process to get the exclusive ac-
cess is expressed by the firing of transition requestCS(). The processes identified
by the colored token must then wait for the critical section (CS) granting autho-
rization by the mutual exclusion algorithm. Upon clearance, the process token
is then able to fire the transition AccessCS() and will mark the place CS. The
process can now execute its “critical section”. As soon as it has finished (after
an undefined time), it can get back to its local tasks by releasing the exclusive
lock - i.e., by firing the transition releaseCS(). Therefore the subnet composed
of the places NO REQ, REQ, CS and their adjacent transitions abstracts the
behavior of our application processes.

The exclusive access to the place CS and the management of the request
queue are ensured by a distributed mechanism: the mutual exclusion algorithm.
This mechanism interacts with the application on every transitions. For now,
we have no need to have a concret modelling of such an algorithm, hence we
abstract it by the use a clouded Petri net named “mutex” (see figure 3). At the
border-side of the cloud, two places can be seen. The place grantRequest, when
marked by a token x asserts the fact that the request for CS has been sent by the
process x. The second is the place grant which represents the mutual exclusion
grant allowance for the process identified by the color of the token.

Verification of a Hierarchical Generic Mutual Exclusion Algorithm 105

This model is in accordance with the classical A.P.I. of the mutual exclusion
algorithms described in the pseudo-code of the figure 1: CS Request() [line 19]
and CS Release() [line 24]. An application process use these two functions af-
ter a random elapsed time. This explains the temporisation of the correspond-
ing transitions (white filled). On the contrary, the firing of the transition
AccessCS() depends on the return of the ”wait for token” synchronized block-
ing instruction call of the figure 1 pseudo-code [line 2]. So, the sojourn time in
the place REQ is, deterministically, dependent of the availability of the grant
token. This explains the immediate character of transition AccessCS() (black
filled). As soon as the authorization is granted (the place grant is marked
by token x), the requesting process x enters the CS.

4.2 Our Composition Algorithm Petri Net

Using the previous section, the modelling of our composition algorithm is much
more simple. It can be seen as a synchronized use of two distinct instances of a
mutual exclusion service: one at the inter level and one at the intra level.The subnet
of the figure 4 models our composition approach. Since section 3 postulates the use
of the same intra algorithm for each cluster, we have chosen to fold all the intra
algorithm instances (i.e., of every cluster) in one unique clouded subnet named
“intra” at the right of the figure 4. To do so, the color token 〈i, c〉 identifies the
process i of the cluster c. Note that the process color 〈0, c〉 identify the coordinator.
The c color permits the isolation of each local instances.

Fig. 4. H.L.P.N. of the composition algorithm

2

106 S. Baarir, J. Sopena, and F. Legond-Aubry

The subnet of the figure 4, composed of places NO REQ, REQ and CS and
its adjacent transitions abstracts the behavior of all the application processes
inside each cluster. These are all the process 〈i, c〉 of each cluster c with (i �= 0)
as explained later. From now on, we call it the “application subnet”. Its places
and transitions are not prefixed. Thus this subnet is nearly identical to the subnet
of the figure 3 which illustrate the fact that the composition is nearly transparent
from the application process point of view like described in the section 3.

However, inside each cluster, the coordinator processes which are identified by
the color 〈0, c〉 behave differently. In order to ease the interpretation of the global
net, we unfold the application places of figure 3 for them. The places names will
be prefixed by the “intra” mention. From now on, we call the subnet the “in-
tra subnet”. This subnet differs from figure 3 by its transitions. As explained
in section 3, the coordinator does not act on its own initiative but just ensures
the correctness of the solution (like uniqueness of the mutual exclusion grant
token, . . .). The three transitions between the three places ”intra.NO REQ”,
”intra.REQ” and ”intra.CS” are not temporized and controlled by our compo-
sition mechanism. That is why we need them all immediate transitions.

Finally, we set the “inter subnet” as the net composed of the prefixed in-
ter places and its adjacent transitions. It defines the coordinator behavior with
respect to the inter algorithm. There are only one coordinator by cluster on
the whole grid so they only are identified by the color c in the inter subnet.
And like the intra subnet, and for same reasons the three transitions between
the three places ”inter.NO REQ”, ”inter.REQ” and ”inter.CS” are immediate
transitions.

Each coordinator has an intra behavior, based on the marking sequences of
token 〈0, c〉 the intra subnet and an inter behavior, based the marking sequences
of token 〈c〉 the inter subnet. This abstraction enlighten the main idea of our
solution, exposed via the automaton of figure 2(b): each state of the coordinator
is a combination of an inter and intra local states.

To synchronize this dual behavior, we first split the inter and intra subnets into
two main parts. The first concerns the inter.requestCS() and intra.requestCS()
immediate transitions which trigger the sending of a request in its counter-
part level. The second concerns the two immediate transitions called inter.
releaseCS() / intra.accessCS() and intra.releaseCS() / inter.accessCS()
which enforce the coordinated release of the CS and the grant allowance of each
level. These two transitions have been split to ease the reading of the
model but they are filled with the same patterns to clearly identify
them.

A coordinator request sending can be viewed as a forward from one
level to the other. So the transition firing is enforced by the reception of an inter or intra
request. We need to materialize this information inside the inter and intra algo-
rithms for the coordinators to exploit them. Thus, in the figure 1 pseudo-code,
we need to add a pendingRequest() function [line 27] to the standard A.P.I..
To ab- stract this reification we have added a new state called pendingReq at the inter
and intra clouded P.N. border-side. The marking of the place inter.pendingReq

Verification of a Hierarchical Generic Mutual Exclusion Algorithm 107

(resp. intra.pendingReq) represents the registration of a request coming from
the inter (resp. intra) layer.

The inter (resp. intra) critical section coordinated release is enforced by the
real access (and thus the grant authorization) to the intra (resp. inter) section.
Abstracting this behavior must be done by a cross-synchronization between the
accessCS() action of one layer with the releaseCS() on the other - like on the
figure 2(b). On figure 4, the inter.accessCS() / intra.releaseCS() [lines and
11] and intra.releaseCS() / inter.accessCS() are the same immediate transition
() and represents this desired synchronization. So does the split transition
intra.accessCS() / inter.releaseCS() () [lines 16 and 18].

To finalize our model, we specify the initial global marking of the system. To
achieve this, we define the following sets:

C : the finite set of all clusters
Cc′ = {c ∈ C|c �= c′}: the finite set of all clusters minus the cluster element c′.
Ac : the finite set of all processes of a single cluster c.
A∗

c = {i ∈ Ac|i �= 0} : the finite set of all application processes of a single clus-
ter c. The application processes are the set of all processes i of the cluster c
minus the coordinator process (with index i = 0).

Under the hypothesis where M(p) represents the marking of the place p, the
initialisation is performed by the following markings:

– all the application nodes are not requesting the CS, thus are in the NO REQ
state.

M(NO REQ) =
∑

c∈C

∑

i∈A∗
c

〈i, c〉

– the coordinator c′ is in the CS state) w.r.t. the inter algorithm but in the
NO REQ state w.r.t. the intra algorithm.
M(intra.NO REQ) = 〈0, c′〉 and M(inter.CS) = M(inter.grant) = 〈c′〉

– all other coordinators are in CS state w.r.t. the intra algorithm and are in
the NO REQ state w.r.t. the inter algorithm.

M(inter.NO REQ) =
∑

c∈Cc′

〈c〉 and M(intra.CS) = M(intra.grant) =
∑

c∈Cc′

〈0, c′〉

5 Fundamental Properties

The mutual exclusion paradigm was first introduced and informally defined by
Dijkstra in 1965 [5]. This article has defined the bases of the mutual exclusion
problem and was successively refined into more formal definitions [11]. Defining
mutual exclusion is to define a set of properties that must be asserted by all
algorithms of this paradigm. These properties are:

Well-formedness: all the processes must respect the classical automaton of
mutual exclusion, as described in figure 2(a).

9

108 S. Baarir, J. Sopena, and F. Legond-Aubry

Mutual Exclusion: at any time, there is at most one process in the CS state
(figure 2(a))

Progress: if there is at least one process in the REQ state and there is no
process in the CS state, then eventually one process will enter in the REQ
state.

Following the Lamport [10] taxonomy, the first two properties can be classified
in the safety class properties. The last one can be put in the liveness class
properties. However, the Progress liveness property does not guarantee for a
process to access the CS. Rather, it is a global notion of liveness. So to avoid
any starvation for a particular process, a mutual exclusion algorithm must verify
a complementary property:

Weak fairness: if one process is in the REQ state and if the mutual exclusion
section execution time is finite, then the process will eventually access to the
CS state.

This weak fairness property implies the progress property because the individ-
ual liveness implies the system wide liveness. But as many applications can not
afford to rely on the progress alone, many articles do not even consider progress
and instead use the weak fairness property. In the remaining of this paper, we
consider these two properties distinctively and we explicit which one is used.

5.1 Formal Expression of Properties

The aforementioned properties can all be expressed using the Linear Temporal
Logic (LTL). We begin by defining some atomic propositions that will help us
to translate mutual exclusion properties into LTL.

– P1 : the process i of the cluster c does not require the CS nor is in CS
(M(NO REQ) � 〈i, c〉).

– P2 : the process i of cluster c requests an access to the CS (M(REQ) � 〈i, c〉).
– P3 : the process i of the cluster c is in CS (M(CS) � 〈i, c〉).
– P4 : the process i of the cluster c is NOT in CS (M(CS) < 〈i, c〉).
– P5 : the number of application processes in CS is less or equal than 1

(#(CS) � 1).
– P6 : there is no application process in CS (no one is in place CS). (#(CS) = 0).
– P7 : there is a exactly one application process in CS (#(CS) = 1).
– P8 : there is at least one application process which request an access to the

CS (#(REQ) � 1).

Then the properties can be written down as follows:

Well-formedness: if a process marks the place NO REQ (resp. REQ, CS),
it will not be able to mark the place CS (resp. NO REQ, REQ) without
having previously marked the place REQ (resp. CS, NO REQ).
F1 : G(P1 ⇒ F (!P3 U P2))∧G(P2 ⇒ F (!P1 U P3))∧G(P3 ⇒ F (!P2 U P1))

Verification of a Hierarchical Generic Mutual Exclusion Algorithm 109

Mutual Exclusion: there is always at most one application process in the CS
state.

F2 : G(P5)

Progression: always, if there is at least one application process requesting the
CS (i.e., a token 〈i, c〉 marks the place REQ) and if there is no process in
CS, then an application process will be able to access the CS (i.e., it will
mark the place CS).

F3 : G((P8 ∧ P6) ⇒ F (P7))
Weak fairness: one application node will always be able to access the CS after

having requesting it.
F4 : G(P2 ⇒ F (P3))

6 Simplified Models for Mutual Exclusion Algorithms

To check the previously defined properties on our composed mutual exclusion
algorithm we need to instantiate the inter and intra clouded nets. Two methods
would have been possible. The first one consists in replacing each clouded net by
a H.L.P.N. reflecting the exact behavior of some well known mutual exclusion
algorithms like [22], [16] or [14]. However, this level of details is only useful for
quantitative studies and to evaluate the effect of each algorithm on our composi-
tion for, for instance, the “mean delay transmission time” or “the mean number
of exchanged requests”, etc. The second method consists in simply modelling
the properties they assert. The aim is then to check if our composition approach
upholds the properties of the algorithms it uses.

In this paper, we have chosen the second approach which enables us a pre-
liminary qualitative study of our solution. It is a necessary step prior any real
quantitative study. Thus, we propose two H.L.P.N. models which verify the prop-
erties described in section 5. The figure 5(a) H.L.P.N. abstracts the validity,
mutual exclusion and progress properties whereas figure 5(b) H.L.P.N. abstracts
the validity, mutual exclusion, progress and weak fairness.

Consider figure 5(a), we observe the presence of the places grantRequest,
pendingReq and grant at the border-side of figure 4. We also have a place
algo which materializes the request treatment. The transition latency stands for
the request reception event. Trivially, everyone can check we do not consider
the request transmission method: it can be a simple message emission like in
Suzuki-Kasami [22] or a sequence of them like in Martin algorithm [14]. As the
network travelling time and the registering treatment time are undetermined,
the transition is temporized (white filled). The CS access is modeled by
the getGrant transition. The exclusive access is ensured by the inhibitor arc on
the place grant. The progress property on the registered requests (place algo) is
provided by the immediate transition getGrant (black filled () .

To continue the description of the figure 5(a), lets notice that places algo and
pendingRequest do not have the same color domains. This is due to the fact
that our composition algorithm only need to know if there is any request that

110 S. Baarir, J. Sopena, and F. Legond-Aubry

grantRequest

grant

pending
request

x

"r"

S

"r"

x

algo

x

x

latency

getGrant

(a) Abstraction not asserting
Weak Fairness

grantRequest

grant

pending
request

x

"r"

S

"r"

x

FIFO

next

free

n

x,n
x,k k

x,k-1 k-1
x,1

1

(b) Abstraction asserting Weak Fairness

Fig. 5. Mutual Exclusion algorithm abstraction nets

must be treated but do not need to know which is the requesting process. So,
when the transition latency is fired by a token 〈x〉, the pendingReq place is, at
the same time, marked by a constant “r”(to notice the reception of the request
by the algorithm). So, the requesting process identity remains unknown to the
coordinator. To conclude, this H.L.P.N. does not guarantee weak fairness: some
tokens in place algo can potentially never pass through the transition getGrant.
They can be perpetually overtaken by new incoming requests.

Now, the figure 5(b) enhances the previous H.L.P.N. by substituting to the
place algo a model of a fair request queue (in fact, it is a simple FIFO queue of
size n). The queue is modelled by two places. The first one is the place FIFO
marked with colored token 〈x, k〉 . When a request of process x, comes in, it is
associated to a position k starting with the last position (index n). The second
one is the place free which is initially marked by all available positions - i.e., all
the k colors. When a request marks the place FIFO, its position will progress by
firing the immediate transition next. But a request x with position k can only fire
the transition free if the k − 1 position is available (i.e., only if its predecessor
was able to progress). Thus all request are treated in their arrival order and the
weak fairness property is asserted for all the registered requests - i.e., all requests
that have fired the transition latency. However, asserting this property for all sent
requests (i.e., for every token marking the grantRequest) is another problem. It
requires the modelling of an additional hypothesis. Actually, all mutual exclusion
algorithms make this following minimum hypothesis about their communication
channels: we never lost the same message twice. So to say, a message sent an infin-
ity number of times will be received an infinity number of times. This property is
called the ”fair lossy channel” property. The integration of this hypothesis can be
done in two ways: the first one is to make the transition latency firing “fair”. This
materializes the fact that each request will be registered by the mutual exclusion

Verification of a Hierarchical Generic Mutual Exclusion Algorithm 111

algorithm. For each -infinite- execution of our model, if the transition latency is
firable then it will eventually be fired. The second way is to take this constraint
directly in the properties. We modify the properties in order to exclude all the sce-
narios where at least one specific x marking the place grantRequest do not fire
the latency transition on the whole execution.

The second solution has been chosen because H.L.P.N in their classical defin-
ition do not enable us to set a transition as “fair‘”. Thus, we have rewritten the
property F4 and we use the following atomic propositions to do it:

– P9 : an intra request of the process i′ of the cluster c′ has not been treated
- i.e., it was sent but not registered by the used mutual exclusion algorithm
(M(intra.grantRequest) � 〈i′, c′〉).

– P10 : an inter request of the cluster c′′ coordinator has not been treated -
i.e., it was sent but not registered by the used mutual exclusion algorithm
(M(inter.grantRequest) � 〈c′′〉).

Hence, the weak fairness property must be modified as follows:

weak fairness: always, if a process i of the cluster c request for the CS then,
either in the future, it will have the CS, or at least one message for the
process i′ of the cluster c′ will be treated, or at least one message of the
coordinator of the cluster c′′ will be treated.

F4 = G(P2 ⇒ (F (P3) ∨ FG(P9) ∨ FG(P10))

7 Model Checking

The classical method to verify a model (i.e., model-checking [23]) against LTL
properties relies on automata theory. Within this approach, all possible execu-
tions of the studied application are produced and synchronized with the au-
tomaton representing the executions invalidating the desired property. If the
resulting automaton is “not empty” then the property is not satisfied by the
model. Here “not empty” means that the language recognized by the automaton
is not reduced to the empty word.

The main problem of this approach is the excessive size of the generated
automata. Actually, This size can be exponentially greater than the syntactic
description of the model and the property (the well-known state space explo-
sion problem). The explosion is essentially due to the concurrency of the system
actions and thus the synchronisation of its elements. Many approaches were de-
veloped to overcome this problem. Their aims either are to drastically reduce
the representation of the generated automata or to substitute context-equivalent
smaller automata. One of these last such solutions is based on the observation
that concurrent systems are composed of identical behaviors (up to a permu-
tation). The factorisation of the representation of such similar behaviors leads
to the construction of smaller automata which can be efficiently used for model
checking [1].

112 S. Baarir, J. Sopena, and F. Legond-Aubry

Our composition approach is highly symmetric. In fact, we have identified
and used symmetries at all levels: the application process of the same cluster
behave the same and so do the coordinators process. Hence, we have kept and
used them in all our modeling process. Moreover, by use of the rigorous syntax of
SWN these symmetries are efficiently represented and exploited for an automatic
construction of a reduced automaton representing the system executions [4,1].
These ends up by the verification of our properties.

The tool we used to generate the reduced automaton of our model is the well
know and widely used GreatSPN2. It was connected to the Spot3 model-checker
tool. The verification is done in two steps. Firstly, we verified the mutual exclu-
sion algorithm models (figure 5) by plugging them into the (abstract) model of
the application process (figure 3). Secondly we have plugged the model of mutual
exclusion algorithm (figure 5) in the abstract model of figure 4. Trivially, the first
part was checked and the properties F1 to F3 were verified on the model of figure
5(a) and the properties F1 to F4 were verified on the model of figure 5(b).

For the second part, and the most important, the results show that all proper-
ties are preserved: when the used algorithm verify validity, mutual exclusion and
progress for the intra and inter levels our solution validate the same properties.
When the used intra and inter algorithms verify the validity, mutual exclusion,
progress and weak fairness properties (F1 to F4) our algorithm does the same
way whichever the topology we choose.

To give an idea on the complexity of the model-checking accordingly to a
chosen deployment topology, we highlight in table 1 some of the obtained results.
Here we represent the number of visited states for the verification of each of the
described properties, when using the model of 5(b) to instantiate the composition
approach model.

Table 1. Model-checking over different topologies

��������Propr.
Topo. 6 process 8 process

6 a. 2 c. 3 a. 3 c. 2 a. 8 a. 2 c. 4 a. 4 c. 2 a.
F1 1438 70823 145455 2888 619362 1793654
F2 218 9988 20205 391 74817 212666
F3 318 14548 30662 569 108295 320577
F4 785 36844 76018 1716 345375 708019

Six topologies noted ”xc./ya.” are reported into it. In our notation, x is the
number of clusters (that is why it is postfixed by c) and y is the number of appli-
cation processes by cluster (that is why it is postfixed by a). So, we have checked
six topologies: three with 6 application processes gathered into 1, 2 and 3 clus-
ters and three with 8 application processes gathered into 1, 2 and 4 clusters. The
topology noted “ya.” is the plain algorithm used as complexity reference which

2 http://www.di.unito.it/ greatspn/
3 http://spot.lip6.fr/

Verification of a Hierarchical Generic Mutual Exclusion Algorithm 113

is low comparing to our composition. Increasing the number of clusters generate
more states because of the synchronizations implied by our composition.

8 Conclusion

This paper exposes a new algorithm to easily compose existing mutual exclusion
algorithms in order to achieve better scalability on grids. This solution enable
us to optimize the grant authorization time without a lost of the basic mutual
exclusion properties. It is also totally transparent for applications.

To check the consistency of our solution, we have isolated mutual exclusion
algorithm common A.P.I. We have modelled this generic A.P.I. into H.L.P.N. We
take good advantages of this defined interface to compositionally put together
our modelling. Based on these A.P.I., we were able to plug in mutual exclu-
sion algorithm abstractions that assert the classical mutual exclusion paradigm
properties. This simplification, sufficient for this first qualitative study, make
possible to model-check our composition algorithm against the same properties.
Concerning these properties, we have done their LTL conversion and integrated
an underlying crucial hypothesis called ”fair lossy channel” required by almost
all mutual exclusion algorithms.

During the whole modelling process and verification, we always kept in mind
the inner symmetries of our solution. After exhibiting them in our algorithm, we
has exploited them to best model our solution and maximize the simplification
the LTL properties. At last, the conservation of these symmetries was exploited
in the model-checking by using specific algorithms.

This study has numerous research perspectives. The fine P.N. modelling of
existing -classical- mutual exclusion algorithms like Suzuki and Kasami [22],
Naimi-Tréhel [16] or Martin[14] could lead to numerical quantitative study of the
influence of our solution with respect to the application processes. We will be able
to calculate performance indices accordingly to the composed plain algorithms.

References

1. Baarir, S., Haddad, S., Ilié, J.-M.: Exploiting Partial Symmetries in Well-formed
nets for the Reachability and the Linear Time Model Checking Problems. In: Pro-
ceeding of IFAC Workshop on Discrete Event Systems, part of 7th CAAP, Reims
- France. Springer, Heidelberg (2004)

2. Bertier, M., Arantes, L., Sens, P.: Distributed mutual exclusion algorithms for
grid applications: A hierarchical approach. Journal of Parallel and Distributed
Computing 66, 128–144 (2006)

3. Chang, I., Singhal, M., Liu, M.: A hybrid approach to mutual exclusion for distrib-
uted system. In: IEEE International Computer Software and Applications Confer-
ence, pp. 289–294 (1990)

4. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Transactions on Com-
puters 42(11), 1343–1360 (1993)

5. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Comm.
ACM 8(9), 569 (1965)

114 S. Baarir, J. Sopena, and F. Legond-Aubry

6. Erciyes, K.: Distributed mutual exclusion algorithms on a ring of clusters. In:
Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.)
ICCSA 2004. LNCS, vol. 3045, pp. 518–527. Springer, Heidelberg (2004)

7. Fu, S., Tzeng, N., Li, Z.: Empirical evaluation of distributed mutual exclusion
algorithms. pp. 255–259

8. Housni, A., Trhel, M.: Distributed mutual exclusion by groups based on token
and permission. In: International Conference on Computational Science and Its
Applications, June 2001, pp. 26–29 (2001)

10. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng. 3(2), 125–143 (1977)

11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

13. Maekawa, M.: A
√

N algorithm for mutual exclusion in decentralized systems.
ACM-Transactions on Computer Systems 3(2), 145–159 (1985)

14. Martin, A.J.: Distributed mutual exclusion on a ring of processes. Sci. Comput.
Program. 5(3), 265–276 (1985)

15. Mueller, F.: Prioritized token-based mutual exclusion for distributed systems. In:
International Parallel Processing Symposium, March 1998, pp. 791–795 (1998)

16. Naimi, M., Trehel, M.: An improvement of the log(n) distributed algorithm for
mutual exclusion. In: IEEE Intern. Conf. on Distributed Computing Systems, pp.
371–377 (1987)

17. Omara, F., Nabil, M.: A new hybrid algorithm for the mutual exclusion problem
in the distributed systems. International Journal of Intelligent Computing and
Information Sciences 2(2), 94–105 (2002)

18. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems 7(1), 61–77 (1989)

19. Ricart, G., Agrawala, A.: An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM 24 (1981)

20. Singhal, M.: A dynamic information structure for mutual exclusion algorithm for
distributed systems. IEEE Trans. on Parallel and Distributed Systems 3(1), 121–
125 (1992)

21. Sopena, J., Legond-Aubry, F., Arantes, L., Sens, P.: A composition approach to
mutual exclusion algorithms for grid applications. In: Proc. of the International
Conference on Parallel Processing, p. 65 (2007)

22. Suzuki, I., Kasami, T.: A distributed mutual exclusion algorithm. ACM Transac-
tions on Computer Systems 3(4), 344–349 (1985)

23. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

Verification of a Hierarchical Generic Mutual Exclusion Algorithm 115

9. Jensen, K.: High-level petri nets. In: Pagnoni, A., Rozenberg, G. (eds.) Proceedings
of the 3rd European Workshop on Application and Theory of Petri Nets, Varenna,
Italy. Informatik - Fachberichte, vol. 66, pp. 166–180. Springer, Heidelberg (1983)

12. Madhuram, K.: A hybrid approach for mutual exclusion in distributed computing
systems. In: IEEE Symposium on Parallel and Distributed Processing (1994)

Distributed Semantics and Implementation for

Systems with Interaction and Priority

Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis

Université Grenoble 1 - CNRS - VERIMAG
Centre Équation, 2 av de Vignate, 38610 Gières, France

Abstract. The paper studies a distributed implementation method for
the BIP (Behavior, Interaction, Priority) component framework for mod-
eling heterogeneous systems.

BIP offers two powerful mechanisms for describing composition of
components by combining interactions and priorities. A system model
is layered. The lowest layer contains atomic components; the second
layer, describes possible interactions between atomic components; the
third layer includes priorities between the interactions. The current im-
plementation of BIP is based on global state operational semantics. An
Engine directly interprets the operational semantics rules and computes
the possible interactions between atomic components from global states.

The implementation method is a translation from BIP models into dis-
tributed models involving two steps. The first translates BIP models into
partial state models where are known only the states of the components
which are ready to communicate. The second implements interactions in
the partial state model by using message passing primitives.

The main results of the paper are conditions for which the three mod-
els are observationally equivalent. We show that in general, the transla-
tion from global state to partial state models does not preserve obser-
vational equivalence. Preservation can be achieved by strengthening the
premises of the operational semantics rules by an oracle. This is a pred-
icate depending on the priorities of the BIP model. We show that there
are many possible choices for oracles. Maximal parallelism is achieved
for dynamic oracles allowing interaction as soon as possible. Nonethe-
less, these oracles may entail considerable computational overhead. We
study performance trade-offs for different types of oracles. Finally, we
provide experimental results illustrating the application of the theory on
a prototype implementation.

1 Introduction

A distributed system is a collection of loosely coupled independent components,
communicating by explicit message passing. The components are intrinsically
concurrent and their states may be known only through communication. We
cannot determine the exact global state of a distributed system, we can only
approximate it [4].

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 116–133, 2008.
c© IFIP International Federation for Information Processing 2008

Distributed Semantics and Implementation for Systems 117

The paper studies a distributed implementation method for the BIP (Be-
havior, Interaction, Priority) component framework for modeling heterogeneous
systems [2]. The method consists of three steps:

• It starts from a global state model of the system to be implemented de-
scribed in BIP. The model represents the system behavior as a transition system
where transitions are atomic. The BIP execution platform uses an Engine which
coordinates the execution of the components. Atomicity of transitions implies
a strict alternation between the execution of components and the Engine: no
interaction is possible when some component is performing a computation.

• From the global state model, a partial state model is derived where we
distinguish between states from which components are ready for interaction and
states where components are busy by executing some internal computation. For
this model partial state knowledge may suffice for executing interactions. We
study conditions for the partial state model to be equivalent to the global state
model. The conditions are in the form of an oracle used by the BIP Engine to
safely execute interactions in the presence of uncertainty about the global state.

• From the partial state model, a distributed model is obtained where atomic
multiparty interactions of the partial state models are replaced by communica-
tion protocols. In this model, components exchange messages to communicate
with the Engine represented by an additional component.

The main results of the paper are conditions for which the three models are
observationally equivalent by considering as silent the actions corresponding to
internal computations of the initial global state model. They are described in
more details below.

BIP combines two powerful mechanisms for describing multiparty interactions
between components: interactions and priorities. A system model is layered. The
lowest layer contains atomic components whose behavior is described by state
machines with data and functions described in C. As in process algebras, atomic
components can communicate by using ports. The second layer contains inter-
actions which are relations between communication ports of individual compo-
nents. Priorities are used to express scheduling policies by selecting amongst the
enabled interactions of the layer underneath.

The current implementation of BIP is based on global state semantics. From
a BIP model, a compiler is used to generate C++ code for a dedicated platform.
The platform uses an Engine that directly interprets the operational semantics
rules. For a given global state, the Engine computes from the set of the com-
munication ports offered by individual components and the set of interactions,
the set of the enabled interactions. Amongst these, the Engine chooses a maxi-
mal one, according to the priorities of the third layer, and notifies the involved
components which can continue their computation.

We define partial state semantics for BIP where the assumption of atomic
execution of transitions does not hold. This is a straightforward generalization
of global state semantics where interactions are separated from internal com-
putation in the components. A component may be either in a busy state or
in a ready state. A busy state corresponds to the execution of some internal

118 A. Basu et al.

computation. When the computation terminates, some ready state is reached.
From this state the component can participate in interactions and move again
to some busy state.

The implementation problem for a partial state model is to find an Engine
that may execute interactions even for partially known states, while preserv-
ing (observational) equivalence with the corresponding global state model. The
following example shows that in general, the two models are not equivalent.

�� �� �� ��
a, fa

a

b, fb

b

c, fc

c

d, fd

d

Interactions: γ

Priorities: π

(a) Global State Model

�

�

� � �

�

� � �

�

� � �

�

� �
a

a

fa b

b

fb c

c

fc d

d

fd

Interactions: γ

Priorities: π

(b) Partial State Model

Fig. 1. A System with Four Components

Example 1. Consider a BIP model consisting of four components A, B, C, D each
one offering cyclically an interaction through ports a, b, c, d followed respectively
by the execution of functions fa, fb, fc, fd (Figure 1(a)). We assume that A is a
sender and B, C, D are receivers. A can broadcast a message through a and the
set of the possible interactions is γ = {a, ab, ac, ad, abc, abd, acd, abcd}. Priority
rules are used to ensure that amongst all the possible interactions from a state
only a maximal one is possible. This is expressed by using a priority order on
interactions π and rules of the form xπxy where x and xy are interactions. These
rules say that whenever both interactions x and xy are enabled, only interaction
xy can be executed. That is, maximal progress is enforced. For this example, the
only possible interaction is abcd and thus the functions fa, fb, fc, fd are executed
synchronously.

The partial state model for this system is shown in Figure 1(b). It is possible,
due to the separation between interaction and internal computation, to reach
a configuration where the receivers are in a busy state. In that case, only the
ready components will be synchronized. Thus an arbitrary desynchronization of
the receivers with respect to the sender is possible.

Example 2. Consider again the previous example where broadcast is replaced by
three rendezvous: γ = {ab, bc, cd} and π is such that abπbc, cdπbc in the global
state system. This system executes forever the interaction bc. Consider the cor-
responding partial state system where interactions are separated from functions.
For this system, it is possible to execute the sequence ab.(fa.cd.fc.fb.ab.fd)ω

which goes through states never enabling the interaction bc.

The above examples motivate the definition of partial state semantics where
the premises of the operational semantics rules include an oracle, a predicate

Distributed Semantics and Implementation for Systems 119

parameterized by a dependency relation between interactions. The dependency
relation is an abstraction of the priorities of the initial BIP model. The oracle
characterizes the partial states from which an interaction can be safely executed:
if an interaction a1 depends on an interaction a2, then a1 cannot be executed if
the system has some internal evolution leading to a state enabling a2. We show
that there are many possible choices for oracles. If the time for computing them is
negligible, best performance is achieved for oracles allowing interaction as soon
as possible in order to reduce waiting times of ready components. The worst
performing oracle is the one allowing interaction only when all the components
are at ready states. For this oracle partial and global state semantics coincide.

We study a transformation from the partial state model to a distributed one.
This consists in replacing atomic interactions by protocols using message pass-
ing. For distributed semantics, the Engine becomes an additional component.
The results are applied to obtain a multi-threaded implementation for BIP. We
analyze performance of this implementation for different types of oracles as well
as with respect to the global state semantics model.

The presented method is not specific to BIP and can be applied for the im-
plementation of systems in particular in two cases. First, for concurrent systems
with fairness constraints which at implementation level, become scheduling poli-
cies expressed by dynamic priorities. Second, for systems involving communica-
tion by broadcast. This requires mechanisms for identifying the maximal set of
interacting components that can be specified by using priorities. Consequently,
the proposed method can be used for correct implementation.

The paper is organized as follows. In section 2, we present global state seman-
tics and the associated partial state semantics for BIP. In section 3, we study
oracles and their properties. We show correctness of partial state semantics en-
forced by an oracle with respect to global state semantics. In section 4, we study
the transformation from partial state to distributed semantics. We also discuss
experimental results for a multi-threaded implementation, in particular for dif-
ferent choices of oracles. The last section includes conclusions and description of
future work. Proofs are omitted due to space limitation but appear in [1].

2 BIP – Basic Semantic Models

2.1 Global State Semantics

BIP is a component framework for constructing systems by superposing three
layers of modeling: Behavior, Interaction, and Priority.
Atomic Components. We define atomic components as transition systems
with a set of ports labeling individual transitions. These ports are used for
communication between different components.

Definition 1 (Atomic Component). An atomic component B is a labeled
transition system represented by a triple (Q, P, →) where Q is a set of states, P
is a set of communication ports, → ⊆ Q×P ×Q is a set of possible transitions,
each labeled by some port.

120 A. Basu et al.

For any pair of states q, q′ ∈ Q and a port p ∈ P , we write q
p→ q′, iff

(q, p, q′) ∈→. When the communication port is irrelevant, we simply write q →
q′. Similarly, q

p→ means that there exists q′ ∈ Q such that q
p→ q′.

Interaction For a given system built from a set of n atomic components {Bi =
(Qi, Pi, →i)}n

i=1, we assume that their respective sets of ports are pairwise dis-
joint, i.e. for any two i �= j from {1..n} we have Pi ∩ Pj = ∅. We can therefore
define the set P =

⋃n
i=1 Pi of all ports in the system. An interaction is a set

a ⊆ P of ports. When we write a = {pi}i∈I , we suppose that for i ∈ I, pi ∈ Pi.

Definition 2 (Composite Component). A composite component (or simply
component) is defined by a composition operator parameterized by a set of in-

teractions γ ⊆ 2P . B
def
= γ(B1, . . . , Bn), is a transition system (Q, γ, →), where

Q =
⊗n

i=1 Qi and → is the least set of transitions satisfying the rule

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi→i q′i ∀i �∈ I. qi = q′i

(q1, . . . , qn) a→ (q′1, . . . , q
′
n)

The inference rule says that a composite component B = γ(B1, . . . , Bn) can
execute an interaction a ∈ γ, iff for each port pi ∈ a, the corresponding atomic
component Bi can execute the transition labeled with pi; the states of compo-
nents that do not participate in the interaction stay unchanged.

Observe that, it is possible for a composite component to further communicate
on the ports initially provided by its atomic components
Priorities In composite components, many interactions can be enabled at the
same time, introducing a degree of non-determinism in the product behavior.
Non-determinism can be restricted by means of priorities, specifying which of
the interactions should be preferred among the enabled ones.

Definition 3 (Priority Model). A priority on B = γ(B1, . . . , Bn) is a rela-
tion π ⊆ γ ×Q×γ. We write a1πqa2 for (a1, q, a2) ∈ π. Furthermore, we require
that for all q ∈ Q, πq is a strict partial order on γ. a1πqa2 means that interaction
a1 has less priority than a2 at state q.

Given a behavior B = (Q, P, →) defined as above, we construct a new behavior
πB = (Q, P, →π) as follows:

q
a→ q′ ∀a′ ∈ γ. aπqa

′ =⇒ q � a
′

→
q

a→π q′

Example 3. The examples 1 and 2 are straightforward to define in BIP. The
system Figure 1(a) is defined as πγ(A, B, C, D) where A, B, C and D are atomic
components with one state and one transition defined as X = ({qX}, {x}, (qX ,
x, qX)) for (X, x) ∈ {(A, a), (B, b), (C, c), (D, d)}.

We have γ = {a, ab, ac, ad, abc, abd, abcd}. The system γ(A, B, C, D) has only
one state q = (qA, qB, qC , qD) for which πq = {(x, xy) | (x, xy) ∈ γ2}. Example
2 is defined similarly for γ = {ab, bc, cd} and πq = {(ab, bc), (cd, bc)}.

Distributed Semantics and Implementation for Systems 121

Implementation The operational semantics rules are interpreted by the BIP
Engine. At a given global state, each atomic component publishes the ports of
the enabled transitions. From this information, the Engine computes the set of
the possible interactions, that is the interactions of γ such that each one of their
ports is published by some component. Amongst these interactions, the Engine
chooses non-deterministically one that satisfies the priority rules π and notifies
the involved components by communicating the corresponding port names.

2.2 Partial State Semantics

The model with global state semantics is based on the fact that transitions are
atomic and a global state is always defined. To obtain the partial state model
corresponding to a global state model, we 1) replace atomic components by their
partial state models; 2) extend the operational semantics rules for interactions
and priorities.
Atomic Components To model concurrent behavior, we associate with each
atomic component, its corresponding partial state model. Atomic components
with partial states behave as atomic components with the difference that each
transition is decomposed into a sequence of two transitions: an interaction (vis-
ible transition) followed by an internal computation or busy transition. Between
these two transitions, a new busy state is added. Busy states are transient states
considered by the Engine as undefined states of the component.

Definition 4 (Atomic Component with Partial States). Given an atomic
component B = (Q, P, →), we define the associated partial state model as the
transition system B⊥ = (Q ∪ Q⊥, P ∪ {β}, �) where

– Q⊥ = {qt | t ∈→} such that Q⊥ ∩ Q = ∅. Q⊥ is a set of busy states in
bijection with the set of transitions →.

– β is a port name not in P
– �⊆ (Q∪Q⊥)×P ∪{β}× (Q∪Q⊥) where if t = (q1, p, q2) ∈→, then q1

p� qt

and qt
β� q2.

Interaction We define below interactions for partial state models.

Definition 5. Given a BIP model built from a set of atomic components {Bi =
(Qi, Pi, →i)}n

i=1, of the form γ(B1, . . . , Bn), we define the corresponding partial
state model γ⊥(B⊥

1 , . . . , B⊥
n) such that

– B⊥
i is the partial state model B⊥

i = (Qi ∪ Q⊥
i , Pi ∪ {βi}, �i)

– γ⊥ = γ ∪ {βi}n
i=1

Notice that γ⊥(B⊥
1 , . . . , B⊥

n) = (
⊗n

i=1(Qi ∪ Q⊥
i), γ⊥, �). The transition re-

lation � can be equivalently defined by the rules:

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi�i q′i ∀i �∈ I. qi = q′i

(q1, . . . , qn) a� (q′1, . . . , q
′
n)

qi
βi� q′i

(q1, . . . , qi, . . . , qn)
βi� (q1, . . . , q

′
i, . . . , qn)

122 A. Basu et al.

The first rule is the same as the composition rule for the global state semantics.
The second rule defines the busy transitions of the composite system.

The state space can be split into two disjoint sets
⊗n

i=1(Qi ∪Q⊥
i) = Qg ∪Qp.

The set of global states Qg =
⊗n

i=1 Qi which is the set of states of γ(B1, . . . , Bn).
The set of partial states Qp where at least one component is busy.

Definition 6. For q, q′ ∈ Qp ∪ Qg, we write q
β� q′ if q

βi� q′ for some i.

Property 1. The relation
β� is terminating and confluent. Thus, from any partial

state, a unique global state is eventually reached by executing β-transitions.

Priority The above property is used to define priorities for partial state models.
The priority relation at some partial state should agree with the priority relation
at the global state reached by executing β-transitions.

Definition 7. Given a BIP model πγ(B1, . . . , Bn), the corresponding partial
state model is π⊥γ⊥(B⊥

1 , . . . , B⊥
n) where π⊥ ⊆ γ × (Qg ∪ Qp) × γ such that

a1π
⊥
q a2 if ∃q′ ∈ Qg. q

β∗

� q′ ∧ a1πq′a2.

Note that π⊥ is a priority and it coincides with π on Qg.

Example 4. The partial state model for Example 3 has the atomic components
A⊥, B⊥, C⊥ and D⊥ with two states and two transitions defined by

X⊥ = ({qX , q⊥X}, {x, βX}, {(qX , x, q⊥X), (q⊥X , βX , qX)})

where (X, x) ∈ {(A, a), (B, b), (C, c), (D, d)}. For the first system, γ⊥ =
{a, ab, ac, ad, abc, abd, abcd}∪{βA, βB, βC , βD} and π⊥ is such that for all states
q in γ⊥(A⊥, B⊥, C⊥, D⊥), we have π⊥

q = {(x, xy) | (x, xy) ∈ γ2}. For the second
system, we have γ⊥ = {ab, bc, cd}∪ {βA, βB, βC , βD} and π⊥ is such that for all
states q in γ⊥(A⊥, B⊥, C⊥, D⊥), we have π⊥

q = {(ab, bc), (cd, bc)}.

2.3 Comparing Global and Partial State Semantics

We study sufficient conditions for partial state models to be behaviorally equiva-
lent to global state models. We use observational equivalence [8] for this compar-
ison by considering that β-transitions are not observable. As noticed in the in-
troduction (Example 1), observational equivalence is not preserved. The systems
πγ(A, B, C, D) and π⊥γ⊥(A⊥, B⊥, C⊥, D⊥) are not observationally equivalent.
The global state model can perform only the maximal interaction abcd while in
the partial state model, non maximal synchronization is possible. For instance,
we have the transitions:

(qA, qB, qC , qD) abcd� (q⊥A , q⊥B , q⊥C , q⊥D)
β� (qA, q⊥B , q⊥C , q⊥D) a� (q⊥A , q⊥B , q⊥C , q⊥D)

Thus, in general, a BIP model is not observationally equivalent to its par-
tial state model. Nonetheless, the following theorem shows that if π = ∅,
γ(B1, . . . , Bn) and γ⊥(B⊥

1 , . . . , B⊥
n) are observationally equivalent.

Distributed Semantics and Implementation for Systems 123

We define observational equivalence of two transition systems A = (QA, L ∪
{β}, →A) and B = (QB, L∪{β}, →B). It is based on the usual definition of weak
bisimilarity where β-transitions are considered unobservable.

Definition 8 (Weak Simulation). A weak simulation over A and B is a re-
lation R ⊆ QA × QB such that we have ∀(q, r) ∈ R, a ∈ L. q

a→A q′ =⇒
∃r′. (q′, r′) ∈ R ∧ r

β∗aβ∗

→ B r′ and ∀(q, r) ∈ R. q
β→A q′ =⇒ ∃r′. (q′, r′) ∈

R ∧ r
β∗

→B r′

A weak bisimulation over A and B is a relation R such that R and R−1 are
simulations. We say that A and B are observationally equivalent and we write
A ∼ B if for each state of A there is a weakly bisimilar state of B and conversely.

We use this definition to compare partial state and complete state semantics.

Theorem 1. γ(B1, . . . , Bn) ∼ γ⊥(B⊥
1 , . . . , B⊥

n)

3 Partial State Semantics with Oracles

Let γ(B1, . . . , Bn) be a system obtained as the composition of atomic compo-
nents Bi = (Qi, Pi, →i) by using a set of interactions γ ⊆ 2P where P =

⋃n
i=1 Pi.

The corresponding partial state system γ⊥(B⊥
1 , . . . , B⊥

n) consists of the compo-
nents B⊥

i = (Qi ∪ Q⊥
i , Pi ∪ {βi}, �i) composed by using interactions in γ⊥. As

above, we take
⊗n

i=1(Qi ∪ Q⊥
i) = Qg ∪ Qp. We also suppose that π is a priority

for γ(B1, . . . , Bn), and π⊥ is its extension to partial states.

3.1 Basic Definitions and Properties

For a system γ⊥(B⊥
1 , . . . , B⊥

n), a state q ∈ Qg ∪ Qp and an interaction a ∈ γ,
we say that a is enabled at state q and we write enabled(q, a), if the transition
a is possible from state q. That is, q

a� q′ for some state q′. We say that a is
disabled at state q and we write disabled(q, a), if there is an atomic component
in a ready state that prevents synchronization on a. That is, if a = {pi}i∈I there
is i ∈ I, qi ∈ Qi such that qi � pi�.

For global states, disabled(q, a) is equivalent to q � a� and in particular we
always have either disabled(q, a) or enabled(q, a). However, for partial states
the status (disabled or enabled) of an interaction a at a given state may be
unknown if some components involved in a are in busy states.

To compare partialness of states, we define a partial order relation over the
states of composite components.

Definition 9 (State Ordering). For q, r ∈ Qg ∪ Qp, q ≤ r ⇐⇒ ∀i ∈
{1..n}. (ri = qi ∨ qi ∈ Q⊥

i).

For a given relation π⊥, an oracle is a predicate O on (Qp ∪ Qg) × γ used to
strengthen the premises of the semantic rule for γ⊥(B⊥

1 , . . . , B⊥
n). Oracles are de-

fined so that π⊥γ⊥
O(B⊥

1 , . . . , B⊥
n) is observationally equivalent to πγ(B1, . . . , Bn)

124 A. Basu et al.

where γ⊥
O(B⊥

1 , . . . , B⊥
n) is the behavior restricted by the oracle. We introduce

first a notion of composition with an oracle and in Subsection 3.2, we introduce
oracles.

Definition 10 (Composite Components with Oracle). Given an oracle O
on (Qp ∪ Qg) × γ, we define B

def
= γ⊥

O(B⊥
1 , . . . , B⊥

n) as the transition system
(Qp ∪ Qg, γ⊥, �) where � is the least set of transitions satisfying the rules

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi�i q′i ∀i �∈ I. qi = q′i O(q1, . . . , qn, a)

(q1, . . . , qn) a� (q′1, . . . , q
′
n)

qi
βi�i q′i

(q1, . . . , qi, . . . , qn)
βi� (q1, . . . , q

′
i, . . . , qn)

The following proposition says that a system with an oracle O strongly simulates
([8]) a system with oracle O′ such that O =⇒ O′.

Proposition 1. Let O and O′ be two oracles for the system γ⊥(B⊥
1 , . . . , B⊥

n),
such that O =⇒ O′. They define two systems B = γ⊥

O(B⊥
1 , . . . , B⊥

n) = (Qg ∪
Qp, γ⊥, →O) and B′ = γ⊥

O′(B⊥
1 , . . . , B⊥

n) = (Qg ∪ Qp, γ⊥, →O′). Every state of
B is strongly similar to some state of B′.

3.2 Oracles

We defines oracles parameterized by a dependency relation � on interactions.
This relation contains π⊥ but it need not be an order as shown below.

Definition 11 (Oracle). A �-oracle for a system γ⊥(B⊥
1 , . . . , B⊥

n) and a de-
pendency relation �⊆ γ × (Qg ∪Qp)×γ, is a predicate O on (Qg ∪Qp)×γ such
that:
•(Dependency Enforcement)

O(q, a) =⇒
(

∀a′. a �q a′ =⇒ disabled(q, a′) ∨ enabled(q, a′)
)

•(Soundness) q ∈ Qg =⇒ ∀a ∈ γ. O(q, a)

The dependency enforcement condition means that the oracle allows execution
of a from state q if the status (enabled or disabled) of the interactions a′ that
dominate a (i.e. a �q a′) is known.

Property 2. If �1⊆�2 and if O is a �2-oracle, then it is a �1-oracle.

We will now define several π⊥-oracles for the system γ⊥(B⊥
1 , . . . , B⊥

n) pro-
viding various degrees of parallelism and cost of implementation. There is a
compromise to make between the degree of parallelism allowed by an oracle, and
the cost for its implementation.

Ideal Oracle. The best possible oracle is defined by

Oideal(q, a) ⇐⇒
(

∀a′. aπ⊥
q a′ =⇒ disabled(q, a′) ∨ enabled(q, a′)

)

Distributed Semantics and Implementation for Systems 125

However, such an oracle is difficult to implement. It requires that at a given
partial state q, the Engine is able to compute the relation π⊥

q which according
to the definition of π⊥ (Definition 7) boils down to computing the global state
q′ reachable from q. For this, in the general case, the Engine has to know the
transition relation of the global state system.
Dynamic Oracle. We use now a dynamic approximation �dyn of π⊥. The reach-

ability condition q
β∗

� q′ in the definition of π⊥ is replaced by a comparison q ≤ q′,
i.e. a �dyn

q a′ ⇐⇒ ∃q′ ∈ Qg. q ≤ q′ ∧ aπq′a′. The dynamic oracle is defined by:

Odyn(q, a) ⇐⇒ (∀a′. a �dyn
q a′ =⇒ enabled(q, a′) ∨ disabled(q, a′))

For the dynamic oracle, the Engine does not need a complete knowledge of the
state of the system in order to compute �dyn

q for a given partial state q.

Static Oracle. The static oracle Ostatic is defined via a static approximation
�st of π⊥: a �st

q a′ ⇐⇒ ∃q′ ∈ Qg. aπq′a′. We write �st instead of �st
q as the

relation does not depend on q. The static oracle is defined by:

Ostatic(q, a) ⇐⇒ (∀a′. a �st a′ =⇒ enabled(q, a′) ∨ disabled(q, a′))

Lazy Oracle. The lazy oracle forbids all interactions from partial states. It
waits for all the atomic components to finish their computation in order to know
all the possible interactions. It is defined by Olazy(q, a) ⇐⇒ q ∈ Qg.

Proposition 2. Oideal, Odyn, Ostatic and Olazy are π⊥-oracles and we have,
Olazy =⇒ Ostatic =⇒ Odyn =⇒ Oideal.

The above result with Proposition 1 shows that these oracles provide an increas-
ing degree of parallelism.

3.3 Correctness with Respect to Global State Semantics

The systems πγ(B1, . . . , Bn) and π⊥γ⊥
O(B⊥

1 , . . . , B⊥
n) are observationally equiv-

alent when O is a π⊥-oracle.

Theorem 2. Let π be a priority relation for the system γ(B1, . . . , Bn) and O
a π⊥-oracle for the system γ⊥(B⊥

1 , . . . , B⊥
n). The systems πγ(B1, . . . , Bn) and

π⊥γ⊥
O(B⊥

1 , . . . , B⊥
n) are observationally equivalent.

4 Distributed Semantics

4.1 Implementation

The model of BIP components with partial states is a first step towards a dis-
tributed implementation of BIP by separating internal computations from inter-
actions. However, this model uses strong synchronization and therefore is still
not directly implementable on arbitrary platforms where rendezvous is usually
not available as a communication primitive.

126 A. Basu et al.

e?p3p1

ββ

p2

p3

β β

e?...e?...

e!{p1, p2, p3} e!{p1, p2, p3}

e?p2

e?p1

e!... e!... e!...β

p2

p3p1

Fig. 2. Transformation from atomic BIP components (left) towards atomic compo-
nents with partial states (middle) and io-machines (right)

We propose a second step towards a concrete distributed implementation
of BIP components with partial states where multiparty interactions are re-
placed by asynchronous communication protocols (see Figure 2). The target
model is input-output systems (io-systems) that are collections of parallel input-
output machines (io-machines) communicating asynchronously by message pass-
ing through FIFO channels. This model is conceptually simple and directly
encompasses primitives offered by languages used for modeling of distributed
systems (such as SDL[7] or IO-automata[5]) or primitives usually available
on distributed execution platforms (e.g. asynchronous execution of threads or
processes, inter-process and inter-thread communication through FIFO queues,
network protocols).

The principle of implementation is sketched in figure 3. Given
π⊥γ⊥(B⊥

1 , B⊥
2 , ..., B⊥

n) and a π⊥-oracle O, the implementation is an io-system
consisting of io-machines Bio

i emulating the behavior of B⊥
i and an additional

io-machine, the Engine E(γ⊥, π⊥, O) realizing the coordination between them.
Communication takes place only between the atomic components and the En-
gine, and never directly between different atomic components – this leads to an
io-system with a centralized architecture.

B⊥
1 B⊥

2 B⊥
n

interactions : γ⊥

priorities : ≺⊥

Bio
1 Bio

2 Bio
n

E(γ⊥, ≺⊥, O)

Fig. 3. Implementation: The Overall Structure

Formally, an io-system is a tuple S = (M, Act, {Ai = (Qi, ↪→i)}i∈I) where

– M is a set of messages,
– Act is a set of actions α including outputs j!m – output of the message

m ∈ M to machine j ∈ I, inputs j?m – input of message m ∈ M sent by
machine j ∈ I or uninterpreted actions a,

Distributed Semantics and Implementation for Systems 127

– {Ai = (Qi, ↪→i)}i∈I is a finite set of io-machines, where
• Qi is a finite set of states,
• ↪→i⊆ Qi × Act × Qi is a finite set of transitions labeled with actions.

States of io-systems are represented by configurations {(qi, wi)}i∈I where
qi ∈ Qi is a local state and wi ∈ (I × M)∗ is the FIFO-queue content of io-
machine i. The semantics of io-systems is given as a labeled transition system
on configurations. For each transition qi

α
↪→i q′i of the io-machine i, we consider

the following transitions on configurations corresponding respectively to input,
output and uninterpreted actions:

– {..., (qi, (j, m) • w′
i), ...}

τ
↪→ {..., (q′i, w

′
i), ...} when α = j?m,

– {..., (qi, wi), (qj , wj), ...}
τ

↪→ {..., (q′i, wi), (qj , wj • (i, m)), ...} when α = j!m
– {..., (qi, wi), ...}

a
↪→ {..., (q′i, wi), ...} when α = a,

The implementations of atomic components are io-machines obtained as fol-
lows. Whenever a ready state is reached, they output a message to the Engine
containing (1) the sets of ports on which they are willing to interact and (2) their
local ready state. Then, they wait for a notification from the Engine indicating
the port selected for interaction. Depending on this port, they continue their
execution. Formally, given B⊥

i = (Qi ∪ Q⊥
i , Pi ∪ {βi}, �i), its corresponding io-

machine Bio
i = (Qi ∪ Q⊥

i , ↪→i) has the same set of states as B⊥
i and transitions

defined by the following rules (see Figure 2):

– qi

e!(X,q′
i)

↪→i q′i interaction request whenever qi

βi

�i q′i and X = {p | q′i
p

�i}
– qi

e?p
↪→i q′i interaction notification whenever qi

p

�i q′i

qi

e!(X, q′i)

q′i

e?p

q′′i

(a)

i?(Xi, qi)

i!pi

(b)

a

τ

a, ...

⊥, ...

request
interaction

interaction
notification

interaction
notification

resume
interaction
selection

interaction
request

Fig. 4. Principle of Implementation: (a) io-machines for atomic components and (b)
io-machine for the Engine

128 A. Basu et al.

The Engine E(γ⊥, π⊥, O) is an io-machine (see Figure 4) realizing the coordi-
nation between atomic io-machines for a given set of interactions γ⊥, priorities
π⊥ and a π⊥-oracle O. Iteratively, the Engine receives and stores the sets of
ports and the local states of components ready to interact. Depending on this
information, it seeks a feasible interaction, which is maximal with respect to
priorities and allowed by the oracle O. If such an interaction exists, the Engine
executes it by notifying sequentially, in some arbitrary order, all the involved
components. Formally, given π⊥γ⊥(B⊥

1 , B⊥
2 , ..., B⊥

n) and an oracle O, the En-
gine is the io-machine (Qe, ↪→e) where

• Qe = (γ ∪ {⊥}) ×
⊗n

i=1 2Pi ×
⊗n

i=1(Qi ∪ {⊥}) is the set of states of the
form (a⊥,X,q⊥) with X = (X1, ..., Xn) and q⊥ = (q⊥1 , ..., q⊥n) where

– a⊥ ∈ γ ∪ {⊥} is the interaction being currently executed, ⊥ if none;
– Xi ∈ 2Pi , is the set of ports on which component i is able to interact, empty

if still busy;
– q⊥i ∈ Qi ∪ {⊥} is the state qi if component i is ready to interact, ⊥ if still

busy.

• ↪→e contains the following transitions

– (⊥,X,q⊥)
i?Xi,qi
↪→e (⊥,X[Xi/i],q⊥[qi/i]) interaction request, stores informa-

tion received from component i ready to interact.
– (⊥,X,q⊥)

a
↪→e (a,X,q⊥) interaction selection, whenever an interaction a

exists such that a ⊆ ∪n
i=1Xi, a is maximal with respect to priorities π⊥

and a is allowed by the oracle O at state q⊥. It consists in executing the
interaction and moving to a state from which all the components involved
will be notified.

– (a,X,q⊥)
i!pi
↪→e (a,X[∅/i],q⊥[⊥/i]) interaction notification and cleanup of the

i component involved in the interaction a, that is when a ∩ Xi = {pi} �= ∅,
– (a,X,q⊥)

τ
↪→e (⊥,X,q⊥) resume, when all atomic components have been

notified, that is a ∩ ∪n
i=1Xi = ∅. It consists in moving back to a state where

requests are handled.

The correctness of the implementation is formally established by the following
theorem.

Theorem 3. Composite components with partial states π⊥γ⊥
O(B1, B2, ..., Bn)

are weakly bisimilar to (M, Act, {Bio
1 , ..., Bio

n , E(γ⊥, π⊥, O)}), i.e. their io-
system implementation where τ is a silent action.

4.2 Experimental Results

Distributed Execution Platform. We have implemented the distributed se-
mantics of BIP programs and included it into the BIP toolset[2]. This toolset is a
collection of tools dedicated to execution and analysis of BIP programs currently
providing:

Distributed Semantics and Implementation for Systems 129

• A compilation chain that transforms BIP programs into C/C++ code. Com-
pilation relies on model-based technologies available for Java under the Eclipse
platform. Starting from BIP programs, the compiler generates BIP models con-
forming to a full-fledged BIP meta-model developed using EMF1. On the models,
we can apply source-to-source transformations as well as static analysis tech-
niques. Finally, models are used to generate C/C++ code to be executed on a
dedicated platform, as follows.

• A platform for execution and analysis of the generated C/C++ code. The
execution platform includes an Engine and the associated software infrastructure
for multithreaded execution of the C/C++ code. Each atomic component is as-
signed to a thread, the Engine being a thread itself. The Engine implements the
distributed semantics and is parameterized by a dynamic or lazy oracle. Itera-
tively, the Engine computes feasible interactions available on ready components.
Then, if such interactions exist and the oracle allows them, the Engine selects
one for execution and notifies the involved components.
Benchmarks. We present two examples illustrating the application of the re-
sults on a prototype implementation. We evaluate for two different types of
oracles, the degree of parallelism over time, measured as the number of simul-
taneously executing atomic components. Before providing experimental results,
we analyze the relationship between degree of parallelism and parameters of the
system.

To simplify the analysis, consider a system consisting of n atomic components
always able to interact through their ports. We distinguish the following cases,
illustrated in Figure 5:

b

d
eg

re
e

of
p
ar

al
le

li
sm

b�

d

time

dynamic oracle

lazy oracle

no oracle
n

Fig. 5. Performance analysis

• For an implementation without oracle, the degree of parallelism is related
to the minimal cardinality b of blocking subsets of atomic components. A subset
of atomic components is blocking iff every interaction in the system requires at
least one component of the subset to participate. Now, the degree of parallelism

1 Eclipse Meta-modeling Framework.

130 A. Basu et al.

l is such that b ≤ l ≤ n. In fact, whenever less than b components are running
some interaction is possible and the Engine can eventually launch it;

• For an implementation with the lazy oracle, the maximal degree of par-
allelism is related to the maximal degree of interaction d, that is the maximal
number d of components involved in a single interaction. In this case, the degree
of parallelism l is such that 0 ≤ l ≤ d. Interactions can be executed only from
global states so there is no possibility of concurrency between interactions - the
Engine is not able to keep running more than d atomic components at time;

• Finally, for dynamic oracles, the degree of parallelism is related again to the
minimal cardinality b� of some particular blocking sets of atomic components,
the ones which block all the maximal interactions. We have b� ≤ b and the degree
of parallelism l achieved in this case is such that b� ≤ l ≤ n. Using a similar
reasoning as in the case without oracle, whenever less than b� components are
running, there should exist a maximal interaction ready and the Engine can
eventually lauch it.

As a first benchmark, we consider a linear chain consisting of a set of identical
components connected serially as shown in Figure 6. A component Ci has two
ports, li and ri. It has a single control state Si, and two transitions labeled by
li and ri. The transition ri is always enabled, its guard being true, whereas the
transition li has a non-trivial guard gi. We model broadcast from each compo-
nent to its right neighbor by considering two types of interactions, 1) a set of
singleton interactions consisting of the ports ri; 2) a set of binary interactions
rili+1 between the neighboring components, and 3) the priority riπrili+1 for the
above interaction pair.

ri-1
true

li-1 ri-1

li-1
gi-1

Si-1 ri
true

li ri

li
gi

Si ri+1
true

li+1 ri+1

li+1
gi+1

Si+1

Interactions: {ri , ri li+1}i I

Priorities: {ri ri li+1 }i I

Ci-1 Ci Ci+1

Fig. 6. The Linear Chain

0 2

31

5

4 6

7

8 10

119

13

12 14

15

(a) (b)

in

out
ph:=ph+1

in

out

Priorities: {outiinj outkini, if(phi=phk)}

Interactions: {outjini if(phj=phi); i [0,N], j {i+2k}k [i, ln(N)-1]}

0 2

31

5

4 6

7

8 10

119

13

12 14

15

(a) (b)

in

out
ph:=ph+1

in

out

in

out
ph:=ph+1

in

out

Priorities: {outiinj outkini, if(phi=phk)}

Interactions: {outjini if(phj=phi); i [0,N], j {i+2k}k [i, ln(N)-1]}

Fig. 7. The Parallel Adder

Our experiment considers a system with 25 such components. Each component
executes 100 steps (transitions), getting busy for 50-60 milliseconds on an l
transition and 5-6 milliseconds on an r transition respectively. We performed
the experiment on a single-processor PC running linux. The busy times of the
atomic components were simulated by sleep system calls. We measured the degree
of parallelism in the system with respect to the execution time. Figure 8 shows
the results obtained for dynamic and lazy oracles.

Distributed Semantics and Implementation for Systems 131

Without oracle, the degree of parallelism is 25 continuously. In fact, whenever a
component is ready, it can continue alone on the r interaction and the Engine no-
tifies it immediately. For the lazy oracle, the maximal degree of parallelism equals
the maximal degree of an interaction, which is 2. Whenever an interaction takes
place, the two participating atomic components are active simultaneously for the
first 5-6 ms, after which only the atomic component performing the l transition
remains busy for 50-60 ms. Therefore, the degree of parallelism stays at an average
close to 1. Finally, for dynamic oracle, the minimal blocking set has cardinality 12
(as for a linear chain with n atoms, the minimal cardinality is n/2, when every
alternate atoms are busy blocking all the maximal interactions). Hence, we have
at least 12 atomic components executing at any time. The measured degree of
parallelism in this case, remains in average higher than 15.

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2

D
eg

re
e

of
 p

ar
al

le
lis

m

Execution time (seconds)

Dynamic Oracle
Lazy Oracle

Fig. 8. Degree of Parallelism for Linear Chain

The second benchmark treats a parallel adder originally presented in [9], which
adds 2m values in a hypercube multi-processor machine. When the algorithm
begins, the nodes hold the values to be added. On termination, the node labeled
0 contains their sum. Figure 7 presents the BIP model of a pipelined parallel-
adder in a 4-dimensional hypercube with 24 nodes. Each node is modeled as a
BIP component with ports in and out, labeling two transitions from a single
control state, as shown in Figure 7(b). It also contains an array of values to be
added (not shown on the figure) and the variable ph which records the index of
current running addition on that node.

For each addition, every node receives partial addition results from its pre-
decessors, adds them to its own value, sends the resulting sum to its unique
successor and increments its ph variable. Communications between nodes are

132 A. Basu et al.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
eg

re
e

of
 p

ar
al

le
lis

m

Execution time (seconds)

No Oracle
Dynamic Oracle
Lazy Oracle

Fig. 9. Degree of Parallelism for Parallel Adder

modeled as interactions between the out port of a node and the in port of its
successor, with a transfer of value from the node to the successor. Priorities are
used to enforce correct order of the computation, i.e. a node cannot perform an
out unless it has synchronized through its in port with all its predecessors. The
final result of every addition is generated by the root node labeled 0.

The degrees of parallelism achieved, respectively without oracle and with lazy
and dynamic oracles, are shown in Figure 9. Without oracle, the degree of paral-
lelism is in average equal to 10. Let us notice that, without oracle, the functional
behavior is completely wrong as priorities are used to enforce the right order of
computation between nodes. With the lazy oracle, the maximal degree of par-
allelism equals the maximal degree of interaction which is 2. However, due to
specific timing constraints on the execution of in and out transitions, the degree
of parallelism stays in average close to 1. Finally, the dynamic oracle achieves a
much better performance with an average degree of parallelism equal to 7.

5 Conclusion

We study a distributed implementation method for BIP, a framework for the
description of component-based heterogeneous systems. BIP offers two powerful
mechanisms for composing components by using interactions and priorities. The
combination of interactions and priorities is expressive enough to express usual
composition operators of other languages as shown in [3]. In particular to model
broadcast, interactions do not suffice and other operators such as restrictions or
priorities are needed. Furthermore, priorities are essential for describing schedul-
ing policies, run-to-completion execution, urgency in real-time systems [6]. The
proposed implementation method is quite general and can be easily adapted to
other languages.

Distributed Semantics and Implementation for Systems 133

A key innovative idea is the translation of languages based on global state
semantics to observationally equivalent distributed models from which imple-
mentation is straightforward. The decomposition of the translation in two steps
allows separation of concerns in solving two main problems: the definition of
partial state semantics and the expression of composition in terms of message
passing primitives. Operational semantics provide an adequate framework for
formalizing the translation. The models are obtained by successive refinements
that preserve observational equivalence.

The main results show that whenever priorities are needed to express coordi-
nation between components, the operational semantics rules should be strength-
ened to take into account dependency between interactions. Oracles are very
simple controllers enforcing preservation of semantics. Maximal parallelism is
achieved for dynamic oracles allowing interaction as soon as possible. Nonethe-
less, these oracles may entail considerable computational overhead. As illustrated
by experimental results the degree of parallelism depends on the type of the or-
acle and topology of the interactions.

There are many open problems to be investigated in the proposed framework
for distributed implementation. These include the preservation of specific classes
of properties, and less centralized implementations for the Engine.

References

1. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed semantics and implemen-
tation for systems with interaction and priority. Technical report, Verimag, Centre
Équation, 38610 Gières (March 2008)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM, pp. 3–12 (2006)

3. Bliudze, S., Sifakis, J.: The algebra of connectors – structuring interaction in BIP.
In: EmSoft, pp. 11–20 (2007)

4. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

5. Garland, S.J., Lynch, N.A.: The ioa language and toolset: Support for designing,
analyzing, and building distributed systems. Technical Report MIT/LCS/TR-762,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA (August 1998)

6. Gößler, G., Sifakis, J.: Priority systems. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 314–329. Springer,
Heidelberg (2004)

7. ITU-T. Recommendation Z.100. Specification and Description Language (SDL).
Technical Report Z-100, International Telecommunication Union – Standardization
Sector, Genève (November 1999)

8. Milner, R.: Communication and concurrency. Prentice Hall International (UK) Ltd.,
Hertfordshire (1995)

9. Quinn, M.J.: Designing efficient algorithms for parallel computers. McGraw-Hill,
Inc., New York (1986)

Checking Correctness of Transactional

Behaviors�

Vincenzo Ciancia1, Gian Luigi Ferrari1, Roberto Guanciale2,
and Daniele Strollo1,2

1 Università degli Studi di Pisa, Dipartimento di Informatica
Largo B. Pontecorvo 3 I-56127, Pisa, Italy
{ciancia,giangi,strollo}@di.unipi.it

2 Institute for Advanced Studies IMT Lucca
Piazza S. Ponziano 6, 55100, Lucca, Italy

{roberto.guanciale,daniele.strollo}@imtlucca.it

Abstract. The Signal Calculus is an asynchronous process calculus fea-
turing multicast communication. It relies on explicit modeling of the
communication structure of the network (communication flows), and on
handling sessions, even multi-party. The calculus is strongly motivated
by the practical needs of Service-Oriented Computing, and there exists a
Java implementation, called JSCL, with a graphical modeling framework.
To the aim of adding to SC (and JSCL) a verification environment, in this
work we introduce the abstract semantics of SC, based on bisimulation.
We show an example exploiting bisimilarity to prove the correctness of
an SC model with respects to a transactional isolation requirement.

Keywords: Service Oriented Architectures, Event Notification, Coordi-
nation, Observational Equivalence.

1 Introduction

The Service Oriented Architecture (SOA) [1] main challenge consists in the de-
finition of an architectural style where applications are built by composition of
distributed functionalities, called services, that can be accessed in a uniform and
platform independent manner, and communicate with each other by exchanging
messages. The Web Service (WS) platform has become the universally accepted
mechanism for implementing SOAs. The main contribution of this technology
relies on the adoption of XML (eXtensible Markup Language) that has opened a
new perspective for developers and service providers enabling language and plat-
form independence (a.k.a. interoperability). The Web Service core specifications
provide mechanisms for describing, publishing, retrieving and accessing services.

An open issue, in WS world, is the definition of a language for describing how
these services interact and to check if the related implementations adhere to the

� Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project Sen-

soria and by the Italian FIRB Project Tocai.it.

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 134–148, 2008.
c© IFIP International Federation for Information Processing 2008

Checking Correctness of Transactional Behaviors 135

specifications. In our previous works, we provided and implemented a middle-
ware, Java Signal Core Layer (JSCL), paired with a formal specification of the
programming facilities that it offers. At the abstract level, the middleware takes
the form of the Signal Calculus (SC) [10,12,8], an high level language inspired by
the asynchronous π-calculus [15] enriched with the concepts of component local-
ity and the needed primitives for dealing with Event Notification (EN) paradigm
[18] (namely, multicast channels, that also give rise to multi-party sessions).

The adoption of EN yields to model services in terms of reactive entities
that, autonomously, declare the set of events they are interested in and the
behavior that they perform upon their occurrence. The main advantages of EN

adoption rely on loosely coupling of services and on its flexibility. Specifically, EN
features high level coordination mechanisms that allow programmers/designers
to decouple components and rely entirely on event handling.

In this work we focus our attention on the verification of SC protocols. For this
purpose, we introduce an abstract semantics of SC networks, based on the notion
of bisimulation, which not only represents the behavior of sets of components
interacting with each other, but also that of isolated subsystems. Behavioral se-
mantics is important because it allows to distinguish isolated components that
behave differently when “plugged” into a network. Our semantics is inspired by
the π-calculus “direct HT bisimulation” [15]. Exploiting the notion of bisimula-
tion, SC systems can be verified against abstracted versions of their design.

In this paper, we outline the main features of our approach by considering
a simple, but illustrative case study, described in [24]. The case study is mod-
eled by taking into account the transactional requirements given at specification
level, proving that constraints on transactional isolation are maintained in the
involved components. The verification of the scenario is done by checking that
it is bisimilar to a “magic” property, i.e. an abstracted design that models prop-
erties of interest.

The paper is organized as follows. In Section 2 we review the main features
and the operational semantics of the SC process calculus. Section 3 presents
the abstract semantics of SCbased on a labeled transition system. Section 4
presents the case study, its abstract modeling and highlights how to exploit
the bisimulation relation to prove transactional isolation of networks. Section 5
yields some concluding remarks.

2 Background: The Signal Calculus

In this section, we introduce the signal calculus. This is a process calculus suit-
able to describe service coordination, adopting the event notification paradigm.
The communication mechanism is inspired by the asynchronous π-calculus. The
calculus is centered around the notion of component, written as a[B]RF and rep-
resenting a service uniquely identified by a name a, the public address of the
service, having internal behavior B, interfaces R, called reactions, and outgoing
connections F , called flows.

136 V. Ciancia et al.

We assume a countable set T of topic names (ranged over by τ), representing
the available signal types, and a countable set of component names, ranged over
by a, b, c, The notation a indicates a set of component names.

Components exchange messages, called signals, in the form of pairs of topics
τ c©τ ′, where the first part is the signal type (which is, an unique name identifying
an event kind), and the second one is a session identifier. Session identifiers and
event kinds are freely interchangeable, and can be either freshly generated or
received as input by reactions. When an event is raised by a component, it
is notified to the components interested in handling it. Components are thus
modeled in terms of reactive agents which declare, and can dynamically alter,
the kind of events they are capable to handle.

Reactions describe available methods of a service in a given state. Their syntax
is given by the following grammar:

R ::= 0 | 〈α〉 → B | R|R

The input prefix 〈α〉 is either τ c©λτ ′ or τ c©τ ′, where τ ′ is bound in τ c©λτ ′. The
lambda reaction τ c©λτ ′ → B is triggered by signals having topic τ independently
from their session, and binds τ ′ to the received session identifier. Conversely,
the check reaction τ c©τ ′ → B reacts only to signals having topic τ issued for
the specific session τ ′. Once a signal reaction takes place, the behavior B will
be executed in the component in parallel with the current internal behavior.
Reaction composition R|R allows a component to react to different kinds of
signal in different ways. The empty reaction 0 cannot respond to any signal.

Each component has a flow describing the choreography, from the point of
view of the component. Flows describe addressees of messages, for each topic τ .
Flow syntax is defined as follows:

F ::= 0 | τ � a | F |F

where the empty flow 0 does not deliver any kind of signal, the single flow
τ � a delivers signals having topic τ to the components specified in the set a.
Finally, new flows can be appended to component interfaces by using the parallel
composition construct F |F .

Now, we introduce the syntax of behaviors, the basic programs that each
service executes when a reaction is triggered by signals. Behaviors are described
by the following grammar:

B ::= out〈τ c©τ ′〉.B (Signal emission)
| (ντ)B (Topic restriction)
| rupd (R) .B (Reaction update)
| fupd(F).B (Flow update)
| B | B′ (Parallel)
| 0 (Empty behavior)

The out〈τ c©τ ′〉.B primitive spawns a signal of topic τ having session τ ′, and
then continues as B. A number of copies of the same message are created inside

Checking Correctness of Transactional Behaviors 137

the network, one for each component listed in the flow of the component, for
the topic τ . Topics can be freshly generated using topic restriction, a binder
that declares local topics; namely, the occurrences of τ in (ντ)B are bound. The
calculus provides two primitives to allow a component to dynamically change
its interface: the reaction update rupd (R) .B′ and the flow update fupd(F).B′.
The former installs a new reaction R in the interface part of components and
the latter appends F to its flows. The empty and parallel constructs have the
obvious meaning.

Networks describe the component distribution and carry signals exchanged
among components. Network syntax is defined as follows:

N ::= ∅ | a[B]RF | N ‖ N | 〈τ c©τ ′〉@a | (ντ)N

A network can be empty ∅, a single component a[B]RF , the parallel composition
of networks N ‖ N ′, or the restriction of a topic in a (sub)network. Networks
carry signals exchanged among components. The signal emission spawns into
the network, for each target component, an “envelope” 〈τ c©τ ′〉@a containing
the signal and the target component name a. Finally, the last production allows
to extend the scope of freshly generated topics over networks.

We assume that each service is identified by an unique name, and each name
identifies at most one service, as it is usual in service-oriented computing.

We define a network context as a network having an “hole” where another
network can be “plugged in”. Formally, contexts are the terms generated by the
grammar below, having only one occurrence of the symbol −:

C ::= ∅ | a[B]RF | C ‖ C | 〈τ c©τ ′〉@a | (ντ)C | −

The well formedness condition is also extended to contexts, so that a context
is considered valid for a network when their component names are disjoint. This
is formalized in the following definition.

Definition 1. A network is well formed if the names of the components it con-
tains are all different. We say that a context C[−] is a well formed context of a
network N if C[N] is well formed.

Free and bound names for networks, reactions, behaviors and flows are defined
by structural induction in the usual way. We summarize the main rules in the
following:

fn(τ c©τ ′ → B) = fn(B) ∪ {τ, τ ′} bn(τ c©τ ′ → B) = bn(B) \ {τ, τ ′}
fn(τ c©λτ ′ → B) = fn(B) \ {τ ′} ∪ {τ ′} bn(τ c©λτ ′ → B) = bn(B) ∪ {τ ′} \ {τ ′}
fn((ντ)B) = fn(B) \ {τ} bn((ντ)B) = bn(B) ∪ {τ}
fn((ντ)N) = fn(B) \ {τ} bn((ντ)N) = bn(B) ∪ {τ}

We define structural congruence over the syntax of the calculus as the smallest
congruence that satisfies the commutative monoidal laws for (R, |, 0), (F, |, 0),
(B, | , 0) and (N, ‖, ∅), α-conversion of bound names, and the rule s below. In
particular, notice that τ is not in the scope of τ ′ in τ c©λτ ′ → B.

138 V. Ciancia et al.

N → N ′

(npar)
N ‖ M → N ′ ‖ M

a[B]RF −→ a[B′]R
′

F ′
(par)

a[B | B1]
R
F −→ a[B′ | B1]

R′
F ′

N → N1
(new)

(ντ)N → (ντ)N1

a[rupd (R′) .B]RF → a[B]
R|R′

F (rupd) a[fupd(F ′).B]RF → a[B]RF |F ′ (fupd)

(F)↓τ= {b1, . . . , bn}
(emit)

a[out〈τ c©τ ′〉.B]RF → a[B]RF ‖ 〈τ c©τ ′〉@b1 ‖ . . . ‖ 〈τ c©τ ′〉@bn

〈τ c©τ ′〉@a ‖ a[0]
τ c©τ ′→B|R
F → a[B]RF (check)

〈τ c©τ ′〉@a ‖ a[0]
τ c©λτ1→B′|R
F → a[{τ ′/τ1}B]

τ c©λτ1→B′|R
F (lam)

Fig. 1. Operational semantics

(ντ)0 ≡ 0 ((ντ)B) | B′ ≡ (ντ)(B | B′), if τ /∈ fn(B′)

(ντ)(ντ ′)B ≡ (ντ ′)(ντ)B (ντ)(ντ ′)N ≡ (ντ ′)(ντ)N

(ντ)∅ ≡ a[0]0F ≡ ∅ ((ντ)N) ‖ N ′ ≡ (ντ)(N ‖ N ′), if τ /∈ fn(N ′)

F1 ≡ F2 B1 ≡ B2 R1 ≡ R2

a[B1]
R1
F1

≡ a[B2]
R2
F2

τ /∈ fn(R) ∪ fn(F) ∪ {a}

a[(ντ)B]RF ≡ (ντ)a[B]RF
.

2.1 Reaction Rules

We briefly recall the reduction semantics of SC [12]. This is defined using the
previously introduced structural congruence and the flow projection function
((F)↓τ), defined as

(τ � a)↓τ= a (τ � a)↓τ ′= (0)↓τ ′= ∅ (F1|F2)↓τ= (F1)↓τ ∪(F2)↓τ

This function takes a flow and a topic and yields the set of target component
names to which signals having topic τ have to be delivered.

The reduction semantics of SC explains how components, at each step, com-
municate and update their interface. The reduction relation → is depicted in
Figure 1. We assume the set of rules to be augmented with structural congru-
ence, i.e., the following additional rule is used:

N ≡ N ′ N ′ → M ′ M ′ ≡ M
(struct)

N → M

Checking Correctness of Transactional Behaviors 139

Rules labeled rupd and fupd update, respectively, reactions and flows of a
process. Rule emit introduces in the network a new envelope for the event kind
τ targeted to each subscribed component ((F)↓τ= {b1, . . . , bn}). Rules labeled
check and lam model activation of check reactions, that exactly match the ses-
sion identifier, and of lambda reactions, that receive a session identifier as argu-
ment. Rules npar, struct and new are usual in process calculi, while par allows
behaviors to be added in parallel into a component, preserving reactions. This
rule allows us to define the semantics only on components whose internal behav-
ior has no parallel operation, avoiding the need for separate rules. This happens
because synchronization of two internal behaviors of the same component is not
possible in our framework.

3 LTS Semantics

Here we present the behavioral semantics of networks, in terms of a labeled
transition system that represents not only the behavior of sets of components
that interact with each other, but also of isolated subsystems. Having an LTS
semantics is important because it allows to distinguish isolated components that
behaves differently when inserted into a network (e.g. a component with an
installed reaction, and the empty component).

The transition system is similar in spirit to work on the asynchronous π-
calculus by Honda and Tokoro [15], and Amadio, Castellani and Sangiorgi [2].
The set of observable actions α is specified as follows:

α ::= ∅ | 〈τ c©τ ′〉@a | 〈τ c©(τ ′)〉@a | τ c©τ ′@a | τ c©τ ′@(a)

In our syntax, ∅ models unobservable actions. 〈τ c©τ ′〉@a is free (asynchronous)
output with event kind τ , session type τ ′ and addressee a. 〈τ c©(τ ′)〉@a is bound
output, and τ c©τ ′@a is free input. τ c©τ ′@(a) represents the action of receiving
a message and storing it in parallel with the current process. This action is
observable in any system, thus including the empty network. This behavior is
the essence of asynchronous communication, and is similar to the transition rule
named in0 in [2], which is used to define the so-called “directed HT bisimulation”,
derived, on its turn, from the rules given in [15]. All names in the actions are
free, with the exception of τ ′ in bound output action. Finally we use n(α) to
denote the set of names occurred in the action α.

The labeled transition relation over networks is defined by the rules depicted
in Figure 2. We briefly comment on the semantics. The async rule allows any
system to perform an input, simply storing the received message for subsequent
usage. The out rule makes observable the output capability of a system with
pending messages. Rules struct, par, rupd, fupd, new and npar are very similar
to their counterparts in the unlabeled semantics. Rules check and lam model
the capability of a system to consume messages present on the network, the for-
mer strictly matching on the session identifier, and the latter receiving sessions
as input. In a similar fashion to the π-calculus, ext and bsync model sending

140 V. Ciancia et al.

N ≡ N ′ N ′ α−→ M ′ M ′ ≡ M
(struct)

N
α−→ M

(rupd)
a[rupd

�
R′� .B]RF

∅−→ a[B]
R|R′

F

(fupd)
a[fupd(F ′).B]RF

∅−→ a[B]RF |F ′

(F)↓τ= {b1, . . . , bn}
(emit)

a[out〈τ c©τ ′〉.B′]RF
∅−→ a[B′]RF ‖ 〈τ c©τ ′〉@b1 ‖ . . . ‖ 〈τ c©τ ′〉@bn

(out)

〈τ c©τ ′〉@a
〈τ c©τ ′〉@a−−−−−−−→ ∅

(async)

N
τ c©τ ′@(a)−−−−−−→ N ‖ 〈τ c©τ ′〉@a

R′ = τ c©τ ′ → B
(check)

a[0]
R|R′

F

τ c©τ ′@a−−−−−→ a[B]RF

R′ = τ c©λτ ′ → B
(lam)

a[0]
R|R′

F

τ c©τ ′′@a−−−−−−→ a[{τ ′′/τ ′}B]
R|R′

F

N
α−→ N1 τ /∈ n(α)

(new)
(ντ)N

α−→ (ντ)N1

N
〈τ c©τ ′〉@a−−−−−−−→ N ′ τ �= τ ′

(ext)

(ντ ′)N
〈τ c©(τ ′)〉@a−−−−−−−−→ N ′

N
〈τ c©(τ ′)〉@a−−−−−−−−→ N ′ M

τ c©τ ′@a−−−−−→ M ′ τ ′ /∈ fn(M)
(bsync)

N ‖ M
∅−→ (ντ ′)N ′ ‖ M ′

N
〈τ c©τ ′〉@a−−−−−−−→ N ′ M

τ c©τ ′@a−−−−−→ M ′
(sync)

N ‖ M
∅−→ N ′ ‖ M ′

a[B]RF
α−→ a[B′]R

′
F ′

(par)
a[B | B1]

R
F

α−→ a[B′ | B1]
R′
F ′

N
α−→ N ′ bn(α) ∩ fn(M) = ∅

(npar)
N ‖ M

α−→ N ′ ‖ M

Fig. 2. Behavioral semantics

a restricted name as an output message, and receiving it as a fresh name. Fi-
nally, rule sync allows communication by linking input reactions and output
capabilities of pending messages.

Rule labeled with (async), first given by Amadio, Castellani and Sangiorgi in
[2], is the essence of asynchronous communication. This rule allows any process
(even those that do not perform input) to store a message without consuming
it, so that one cannot directly observe when input actions actually happen. In
the definition of bisimulation below, only asynchronous input transitions (that
is, transitions obtained from the async rule) are kept in account, while “normal”
input is not considered. This allows two processes that only differ in the way
they interleave input with other actions to be considered bisimilar.

Even though they are similar, the semantics of the asynchronous π-calculus
and that of SC differ in some key aspects. Namely, SC features dynamic multicast

Checking Correctness of Transactional Behaviors 141

channels due to the dynamic nature of flows. Hence, the addressee of a message
is not statically known. This is the reason why our calculus features the output
primitive, that using rule (out) spawns a certain number of messages in parallel,
while in the asynchronous π-calculus there is no such construct.

The notion of weak transition system is defined in the standard way:

N
∅=⇒ N ′ iff N(∅−→)∗N ′

N
α=⇒ N ′ iff N

∅=⇒ .
α−→ .

∅=⇒ N ′ for all α �= ∅

The following theorem establishes a link between the reduction relation and
the observational semantics.

Theorem 1. N → N ′ if and only if N
∅−→ N ′.

Finally we provide the definition of SC-bisimulation (∼SC). This relation allows to
distinguish isolated subsystems (e.g. a component, or a partition of a network)
that behave differently when inserted into a network, even though, in isolation,
they cannot react.

Definition 2. ∼SC is the largest symmetric relation on SC-terms such that if
N ∼SC M , N

α−→ N ′, α �= τ c©τ ′@a, bn(α) ∩ fn(M) = ∅ implies that M
α−→ M ′

and N ′ ∼SC M ′.

The notion of weak SC bisimulation (≈SC) is obtained substituting in the above
definition the transition relation with the weak one.

Bisimulation allows one to check for properties that have to be satisfied by the
implementation of a system against its design expressed in a high-level language.
Sometimes the implementation is slightly modified in order to verify a subset
of the system requirements, e.g. by inserting the implementation in a suitable
controlled context or environment, where it can be formally shown that, by
construction, only properties of interest can lead to violation of the design. We
show an example of this technique in section 4, as an application of the behavioral
modeling framework we are developing.

Theorem 2. If N ∼SC N ′ then

N ‖ 〈τ1 c©τ ′
1〉@a1. . . ‖ 〈τk c©τ ′

k〉@ak ∼ SCN
′ ‖ 〈τ1 c©τ ′

1〉@a1. . . ‖ 〈τk c©τ ′
k〉@ak

Proof. (outline) Since the rule async can be applied to any network and envelope,
the network N can perform a transition step labeled α = τ c©τ ′@(a), going to
N ‖ 〈τ c©τ ′〉@a. The same rule can be applied to the network N ′, that goes
to N ′ ‖ 〈τ c©τ ′〉@a. Since N and N ′ are bisimilar, when they perform the same
transition α, they must go in bisimilar state: N ‖ 〈τ c©τ ′〉@a ∼SC N ′ ‖ 〈τ c©τ ′〉@a.
This proves that two bisimilar network remain bisimilar if composed with the
same envelope. This proof can be applied with any number of envelopes, proving
the theorem. �
Theorem 3. For any context C, and any two networks N and N ′, such that
N ∼SC N ′, with C a well formed context of both networks (see Definition 1), it
holds that C(N) ∼SC C(N ′).

142 V. Ciancia et al.

Charge
Credit Card

Revoke
Charge

Cancel Garage
Appointment

Order Garage
Appointment

Order
Tow Truck

Cancel
Tow Truck

Order
Rental Car

Redirect
Rental Car

Fig. 3. Car repair scenario: the BPMN model

4 The Car Repair Scenario

In this section we adopt the SC calculus to model the service coordination issues
of the SENSORIA car repair scenario [24], consisting of a car manufacturer
service offering assistance support to their customers.

4.1 The Sensoria Scenario

A car manufacturer offers an assistance service to the customer once his/her car
breaks down. Once contacted, such system attempts to locate a garage, a tow
truck and a rental car service so that the car is towed to the garage and repaired
meanwhile the customer may continue his travel. Several services are involved
into the system and interact to reach a common goal. Their inter-dependencies
are summarized as follows:

– before any service lookup is made, the credit card is charged with a security
amount;

– before looking for a tow truck, a garage must be found as it poses additional
constraints to the candidate tow trucks;

– if finding a tow truck fails, the garage appointment must be revoked;
– if renting a car succeeds and finding either a tow truck or a garage appoint-

ment fails, the car rental must be redirected to the broken down car’s actual
location;

– if the car rental fails, it should not affect the tow truck and garage appoint-
ment.

This scenario can be described through a business process language. We use
the industry standard Business Process Modeling Language (BPMN [13]) to
graphically describe the scenario and the inter-dependencies among services. The

Checking Correctness of Transactional Behaviors 143

BPMN model of this scenario is presented in Figure 3. Notice that the model
exploits the transactional and compensation facilities of BPMN and that the car
rental service is a sub-transaction, since it does not affect other activities. We
briefly recall the graphical notation adopted in BPMN. A double-lined boundary
indicates that the sub-process is a transaction. The single-lined boxes represent
activities executed inside transactions and the activities linked through backward
arrows represent the related compensation activities that must be executed when
the process is rolling back. The blank circles represent the entry and exit points
of a transaction. Finally, the diamond containing the plus symbol represents the
joining of two activities. The full BMPN specification can be found in [13].

4.2 Modeling the Car Repair Scenario

Services involved into the Car Repair Scenario (CRS) scenario are described by
SC components. To specify the interactions among participants, we introduce the
following signal topics:

– τf is used to propagate forward signals to inform components about the
completion of previous activities;

– τr is used to propagate rollback signals to components. Such signals are
treated by executing the compensation activity and subsequently by propa-
gating, backwards, the signal to the other participants;

– τn is used to implement the join mechanism among parallel activities exe-
cuted inside the same workflow session.

– τok is used internally by components to represent the successful termination
of an activity.

– τexc is used internally by components to represent an internal failure, for
example the throwing of an exception.

In SC, transactional components can be described as services reacting to both
τf and τr notifications. At the reception of a τf signal, the component executes
its main activity and installs the corresponding compensation reaction. At the
reception of a τr signal, the previously installed compensation is executed. We
suppose that each invocation of the transactional workflow has a unique session
(in the following referred as τ). The consumer has to generate the session, that
will be delivered with each signal to identify the workflow instance. Notice that,
for a workflow session, the compensation activity must be executed only after
the successful execution of the main activity. A transactional component having
address a, a main activity A and a compensation C is translated to an SC model
by the function TC. The connections to other components are described by the
sets next and prev containing the target components to which, respectively, τf

and τr signals must be forwarded. The TC function is defined as follows:

TC(a, A, C, prev, next) � (ντok)(ντexc)a[0]RTC(A,C)
FTC(a,next,prev)

144 V. Ciancia et al.

where:

FTC(a, next, prev) � τf � next|τr � prev|τexc � a|τok � a

RTC(A, C) � τf c©λτ → rupd (Rres(C)) | A

Rres(C) � τok c©τ → Bok(C)|τexc c©τ → Bexc

Bok(C) � rupd (Rrb1(C)) .out〈τf c©τ〉.0
Rrb1(C) � τr c©τ → C

Bexc �
{

rupd (Rrb2) .out〈τf c©τ〉.0 subtransaction
out〈τr c©τ〉.0 otherwise

Rrb2 � τr c©τ → out〈τr c©τ〉.0

Initially, the component has an installed reaction (RTC) for handling the for-
ward flow (τf notifications). Once the reaction is activated, it retrieves the signal
session, that identifies the workflow instance, and executes the main activity A.
The formalization of the activity A and of the compensation C are out of our
scope; hereafter, we assume that:

1. if the main activity A successfully terminates, a signal τok is internally raised,
to inform the component that the flow can continue

2. if the main activity A fails, a signal τexc is internally raised, informing the
component to start the backward flow

3. the last operation of the compensation C is the rising of a rollback signal
(out〈τr c©τ〉.0).

Notice that the topics τok and τexc are restricted to the local scope of component.
Concurrently with the activity A, the component installs the reactions, defined
by Rres, to check the termination state of A (τok or τexc).

If the activity A successes, it internally delivers a τok signal and the behavior
Bok is executed. It installs a check reaction (Rrb1), that is used to wait for a
rollback notification from a successor component, and propagates the τf signal to
the next components in the workflow (using out〈τf c©τ〉.0). If, later, a τr signal
for the session τ is received, the compensation C is executed and the rollback
signal is propagated to previous stages (since we suppose that the last operation
of the compensation is out〈τr c©τ〉.0).

If the activity A fails, it internally delivers a τexc signal and the behavior
Bexc is executed. Notice that two implementation of the behavior are provided:
the first one is used if the component acts as an isolated sub-transaction (e.g.
car rental service), while the second one is used if the components acts as a
standard transactional activity. In the first case, the behavior propagates the τf

signal, since an error of the sub-transaction should not affect the computation
of the other components. Moreover the behavior installs a reaction for τr that
just propagate the backward flow. In the second case, the behavior simply starts
the backward flow, raising a rollback signal.

A sequential work-flow can simply be specified as a chain of transactional
components by properly setting their next and prev sets. To model the parallel

Checking Correctness of Transactional Behaviors 145

branch, we define the collector and emitter components as follows:

Emitter(a, prev, next, collector) �
a[0]τf c©λτ→rupd(τr c©τ→rupd(τr c©τ→out〈τr c©τ〉.0).out〈τn c©τ〉.out〈τf c©τ〉.0)

τf �next|τr�prev|τn�{collector}

Collector(a, prev, next) �
a[0]τn c©λτ→rupd(τf c©τ→rupd(τf c©τ→rupd(τr c©τ→out〈τr c©τ〉.0.out〈τf c©τ〉.0)))

τf �next|τr�prev

The emitter represents the entry point of the parallel branch. Essentially it
activates the forward flow of next components, representing the parallel activi-
ties, and synchronizes their backward flows. The synchronization mechanism is
implemented by sequentially installing two reactions for the topic τr and the
session τ (through rupd (τr c©τ → rupd (τr c©τ → ...))). After that the synchro-
nization mechanism has been installed, the emitter activates the forward flow
(out〈τn c©τ〉.out〈τf c©τ〉.0). Notice that the component emits two signals: one
having topic τf and the other one having topic τn. The first signal is delivered
to the components representing the parallel activities. The other one is delivered
to the collector, informing it of the received session that will be later used by
it to implement its synchronization. When the synchronization of the backward
flow takes place, the emitter forwards the rollback signal (out〈τr c©τ〉.0) to the
prev components.

Similarly, the collector component is responsible to implement the synchro-
nization mechanism for the forward flows and to activate the backward flows of
the parallel components when a τr signal is received. Notice that the collector
needs to be notified about the session τ via a τn signal. This is necessary since
there is not mutual exclusion among executed behaviors.

The car repair scenario can be modeled by the following SC network:

TC(card, ChargeCredit, RevokeCredit, {}, {garage}) ‖
TC(garage, OrderGarage, CancelGarage, {card}, {e}) ‖
Emitter(e, {garage}, {truck, car}, {c}) ‖
TC(truck, OrderTowTruck, CancelT owTruck, {e, car}, {c}) ‖
TC(car, OrderCar, RedirectCar, {e}, {c}) ‖
Collector(c, {truck, car}, {})

Notice that τr events raised by the truck component are notified to the car
service, since an error occurred in the execution of a main activity must activate
the compensations of all other concurrent components. Instead the τr events
raised by the car component are notified only to the emitter, since car is a sub
transaction.

4.3 Checking Sub-transaction Isolation

As discussed above, the rental car service is an isolated sub-transaction, namely,
if the car rental fails, it should not affect the execution of the other components
in the network. Regardless of the implementation details of the main activity

146 V. Ciancia et al.

and of the compensation, we model only the signal emissions that represent
their termination. Hence, the car service that fails (Carexc) and the other one
that successes (Carok) are modeled as:

Carexc � TC(car,out〈τexc c©τs〉.0,out〈τr c©τs〉.0, {e}, {c})
Carok � TC(car,out〈τok c©τs〉.0,out〈τr c©τs〉.0, {e}, {c})

Now we prove the transaction isolation property of the car service by comparing
its model with a magic car service. This is a transactional component that per-
forms the ideal behavior: when it receives a τf signal, it propagates the signal
to next components, while, when it receives a τr signal, it propagates the signal
to prev components. Then, we check that, independently from the behavior ex-
ecuted internally by the car service, the whole transactional workflow performs
the same action of the one containing the magic service. Formally the workflow
containing the Carexc (or Carok) must be bisimilar to the one containing the
magic car service. This service can be model as:

Carmagic � car[0]τf c©λτ→skip.(...).skip.out〈τf c©τ〉.rupd(τr c©τ→out〈τr c©τ〉.0)
τf �next|τr�prev

skip.B � fupd(0)

In the above process, the skip action is used for internal computation steps.
However, this is not a primitive of the calculus, but rather it is a derived oper-
ation, modeled by installation of an empty flow (hence, not altering the flow of
the component).

The process describes a set of possible magic properties, parametrized by the
number of skip actions. For the system to satisfy the required property, it is
sufficient that there exists a number of skip actions that lets the bisimulation
check succeed. We use the compositionality property of the bisimilarity (The-
orem 3) as a “substitution principle”: the statement Carok ∼SC Carmagic (and
Carexc ∼SC Carmagic) ensures that the bisimulation result propagates to the
whole workflows.

5 Future Work

We have presented an LTS semantics for the SC process calculus. The obtained
abstract semantics, based on bisimulation, allows one to reason about behav-
ioral properties of SC networks. The SC-JSCL framework has been designed
to support the specification, the implementation and verification of coordination
policies for services oriented applications. Our main goal is to provide general fa-
cilities to implement high-level languages for service oriented architectures (e.g.
BPEL4WS [16], BPML [22],WS-CDL [23]). The strict interplay between SC
and JSCL permits to drive and verify the implementation of such languages.
A number of approaches have been introduced to provide the formal founda-
tions of standards for service orchestrations and service choreographies. The
SC-JSCL framework differs from these approaches (COWS [17], Global Calcu-
lus [5], λreq [3] ORC [19], SCC [4], SOCK [14] to cite a few), since it focuses

Checking Correctness of Transactional Behaviors 147

on a lower level of abstraction, merging the theoretical formalization with the
implementation requirements. Indeed, the emphasis in SC-JSCL relies on the
notion of event notification that strictly fits to the loosely coupling nature of
services.

We foresee two development lines. In this work, bisimulation proofs have been
done by hand, while one would expect automated checkers to be used. The fresh
name generation construct of SC, even though giving it great expressive power (in
particular, for the possibility to handle new sessions), makes it difficult to define
and implement finite state algorithms for bisimulation checking and (in per-
spective) model checking. History-Dependent automata [20] are an operational
model where garbage-collection of unused names can be exploited to obtain finite
state models of systems featuring generation of fresh resources [7]. As a possible
future development, thus, it would be interesting to express the semantics of
SC using HD-automata, in order to be able to reuse work on minimization and
bisimulation checking algorithms for nominal calculi [9].

In [12], we introduced an algebraic structure over topics. This allows us to
implement more complex coordination logics directly encoded inside the signal
type. The definition of bisimulation in this case should make use of the algebraic
structure to obtain a suitable quantitative notion of bisimulation, allowing to
express properties of a system with respects to e.g. a range of security policies.
On the logical side, there is a close connection, which should be studied in detail,
with the quantitative/spatial logic over c-semirings defined in [6].

The SC/JSCL framework is equipped with a programming environment, called
JSCL4Eclipse [11], that allows one to graphically model JSCL networks and to
automatically generate the stub implementation. As a long term research goal,
we aim to integrate verification tools based on bisimulation and model checking
techniques within our development framework.

References

1. Aiello, M., Aoyama, M., Curbera, F., Papazoglou, M.P. (eds.): Service-Oriented
Computing - ICSOC 2004, Second International Conference, Proceedings, Novem-
ber 15-19, 2004. ACM, New York (2004)

2. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
pi-calculus. Theor. Comput. Sci. 195(2), 291–324 (1998)

3. Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Secure service orchestration.
In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667.
Springer, Heidelberg (2007)

4. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins,
F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T., Zavattaro, G.:
Scc: A service centered calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.)
WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

6. Ciancia, V., Ferrari, G.L.: Co-Algebraic Models for Quantitative Spatial Logics.
In: Quantitative Aspects of Programming Languages (QAPL 2007) (2007)

148 V. Ciancia et al.

7. Ciancia, V., Montanari, U.: A name abstraction functor for named sets. Coalgebraic
Methods in Computer Science (to appear, 2008)

8. Ferrari, G.L., Guanciale, R., Strollo, D.: Event based service coordination over
dynamic and heterogeneous networks. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 453–458. Springer, Heidelberg (2006)

9. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of hd-automata
for the pi-calculus using polymorphic types. Theor. Comput. Sci. 331(2-3), 325–365
(2005)

10. Ferrari, G., Guanciale, R., Strollo, D.: Jscl: A middleware for service coordination.
In: Najm, et al. [21], pp. 46–60.

11. Ferrari, G., Guanciale, R., Strollo, D.: An Eclipse plugin for designing and devel-
oping Web Service orchestrations in JSCL. Technical report (2007)

12. Ferrari, G., Guanciale, R., Strollo, D., Tuosto, E.: Coordination via types in
an event-based framework. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS,
vol. 4574, pp. 66–80. Springer, Heidelberg (2007)

13. Object Management Group. Business process modelling notation. Technical report,
http://www.bpmn.org

14. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: A calculus for ser-
vice oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

15. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

16. IBM. Business Process Execution Language (BPEL). Technical report (2005)
17. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-

vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

18. Liu, Y., Plale, B.: Survey of publish subscribe event systems. Technical Report
574, Department of Computer Science, Indiana University

19. Misra, J.: A programming model for the orchestration of web services. In: SEFM,
pp. 2–11. IEEE Computer Society, Los Alamitos (2004)

20. Montanari, U., Pistore, M.: History Dependent Automata. Technical report, Di-
partimento di Informatica, Università di Pisa, TR-11-98 (1998)

21. Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.): FORTE 2006. LNCS,
vol. 4229. Springer, Heidelberg (2006)

22. OMG. Business Process Modeling Language (2002), http://www.bpmi.org
23. W3C. Web Services Choreography Description Language (v.1.0). Technical report
24. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M.M., Knapp, A., Koch, N., Schroeder,

A.: Semantic-based development of service-oriented systems. In Najm, et al [21],
pp. 24–45

http://www.bpmn.org
http://www.bpmi.org

Specifying and Verifying Web Transactions�

Jing Li, Huibiao Zhu, and Jifeng He

Shanghai Key Laboratory of Trustworthy Computing
East China Normal University

Shanghai, China, 200062
{jli, hbzhu, jifeng}@sei.ecnu.edu.cn

Abstract. New evolving internet technologies are extending the role of
the World Wide Web from a platform of information exhibition to a new
environment for service interactions. While new business opportunities
are brought in under this new era of internet, novel challenges are coming
out at the same time. Current technologies have been found lacking effi-
cient support for web transactions. Because transactions in the context of
web services have distinct features, such as autonomous and interactive,
the traditional automatic mechanisms of resource locking and rollback
are proved to be inappropriate. For this reason, we suggest that web
transactions are constructed through a series of compensable transac-
tions, using the concept of compensation to ensure a relatively relaxed
atomicity. This paper formally expresses the composition structures and
behavioral dependencies of compensable transactions. Based on the for-
mal description for a transaction model, we are able to further verify
its transactional behavior according to the specified requirement of re-
laxed atomicity and more precise behavioral properties with temporal
constraints.

1 Introduction

Web Services are becoming the current most promising paradigm for enabling
business interactions through the Internet. They have greatly influenced the way
for application development. Web services can be regarded as computational en-
tities, generally independent and autonomous. They are driven by XML related
technologies which make services able to be described, discovered and invoked
across the internet. Based on more and more accessible services over the Web,
there is an opportunity to provide new value-added services to customers by
combining individual services. Therefore, extensions of web service technologies
have been considered. Several proposals for describing web service composition
(XLANG, WSFL, BPEL and WSCDL) have been already put forward.

When a composite web service combines several existing services to complete
a given task, a web transaction is required to orchestrate the loosely coupled ser-
vices into a unit of work so as to guarantee a reliable execution. However, setting
� Supported by National Basic Research Program of China (No.2005CB321904), Na-

tional High Technology Research and Development Program of China (No.2007AA
010302), National Natural Science Foundation of China (No.90718004).

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 149–168, 2008.
c© IFIP International Federation for Information Processing 2008

150 J. Li, H. Zhu, and J. He

up an efficient web transaction is not a trivial task. First of all, web transactions
usually require a long time to complete, due mainly to lengthy computation
and pause for input from users, which may cause severe performance problems.
Such long lived transactions greatly increase the contention for resources and
finally lead to more deadlocks. Secondly, for a web transaction, its participat-
ing services may belong to different and even competing companies such that
services are generally independent and autonomous. In such systems, there is
no chance to intentionally block the resources residing in other services. Lastly,
web transactions usually involve communications between companies and human
beings, where the outcome of interactions cannot be physically undone. Thus,
the pure rollback mechanism is not applicable at all. Therefore, the key features
of traditional transactions become impracticable for web transactions. To solve
this problem, the degree of atomicity needs to be relaxed. A weaker notion of
atomicity based on compensation has been proposed to recover from failure.

The notion of compensation has its root to the seminal work of Sagas [8]
which is one of the first proposals for extended transactional models. A saga is a
long lived transaction which is partitioned into a set of sub-transactions. When a
sub-transaction completes, it commits prior to the completion of the whole saga.
This enables resources to be released earlier and thus reduces the possibilities of
deadlock. However, partial effects have been exposed to the outside. In this case,
each sub-transaction is associated with a compensation whose responsibility is
to semantically undo the effect of its sub-transaction. Thus, whenever a sub-
transaction aborts in the middle, the partial results made by the committed
sub-transactions will be removed by executing their compensations.

This paper suggests to construct a web transaction in terms of compensable
transactions. A compensable transaction is a new type of transaction whose
effect can be semantically undone even after it has committed. Basically, a com-
pensable transaction consists of two parts: forward flow and compensation flow.
The forward flow describes the required normal logic according to system re-
quirements, while the compensation flow is properly defined so as to undo the
effect of its forward flow semantically. Unlike the traditional ACID transactions,
a compensable transaction has distinct features. Its features allow web trans-
actions to incorporate different transactional semantics as well as different be-
havioral dependency patterns. This provides a manner to enhance the flexibility
and reliability of web transactions. In order to provide a precise description, we
adopt the novel transactional language t-calculus [14] to model the composition
structure of compensable transactions. Moreover, the behavioral semantics is
precisely defined for different transactional constructs.

Compensation is a kind of backward recovery in the presence of failure. In
order to promote the possibility of successful completion, our transaction model
also supports forward recovery so as to survive the failure caused by a certain
sub-transaction. In this case, there is no need to obey the strict requirement of
all-or-compensated. The notion of acceptable termination states (ATS) is used
to express the relaxed atomicity requirement. Given a web transaction, we are
able to verify its behavior according to the specified ATS. Further, we can also

Specifying and Verifying Web Transactions 151

successful undoing

failed half-compensatedaborted compensated

idle active

Fig. 1. The state transition diagram of compensable transactions

help to find inconsistencies if its behavior is proved to be invalid. In addition,
depending on particular applications for which web transactions are designed, ad-
ditional properties capable of expressing temporal constraints would be required.
Here, we propose a specification language to specify this kind of transactional
properties. The corresponding process for verifying whether these properties are
satisfied is formally presented subsequently.

This paper is organized as follows. Section 2 gives a detailed description about
compensable transactions whose execution structure is clearly depicted by a state
transition diagram. The transactional model with the corresponding language is
presented in Section 3, where related behavioral dependencies are formally spec-
ified. Section 4 presents strict solutions to the verification of web transactions
according to the specified requirements. We discuss some related work in Sec-
tion 5 and conclude this paper at last.

2 Compensable Transaction

Compensable transactions are the basic constituents for building web transac-
tions in our approach. A compensable transaction aims to do a specific task as
part of a business goal. Different from traditional transactions, a compensable
transaction can withdraw its result after its commitment in case of error. On the
transaction level, we do not model its internal operations but only deal with its
external visible aspects. We adopt the state transition diagram to describe its
behavior structure by providing a set of execution states and a set of transitions
between these states. The Figure 1 shows the state transition diagram for an
arbitrary compensable transaction.

A compensable transaction has eight states and five of them are terminal
states shown by bold ellipses in Figure 1. Initially, its state is marked as idle
and it becomes active when it is arranged for execution. Once it is active, it can
be either aborted or failed due to the presence of failure, or it finally achieves its
objective and leads to the successful state. Whenever some wrong has happened
during its execution or within other concurrent transactions, it tries to erase its
partial outcome as soon as possible. If all the partial effects have been erased, it
becomes aborted as if nothing has ever been done. Otherwise, it turns into failed
since some partial effect still exists. This case possibly results in data inconsis-
tency. Especially, the effect after completion for compensable transactions does
not remain for ever. When it has succeeded, its effect can be semantically undone
by properly defined compensation. Once the system decides to undo a successful

152 J. Li, H. Zhu, and J. He

compensable transaction, this transaction enters into the undoing state. During
this period, its associated compensation is executing. The final state is totally
dependent on the execution result of its compensation. When the compensation
fails in the middle, it is marked as half-compensated, otherwise as compensated.

Let T be a finite set of compensable transactions, and Σ be a finite set of
transactional states. Here, Σ is defined as:

Σ = {idl, act, suc, abt, fal, und, cmp, hap}

where they stand for the fore-mentioned eight states (idle, active, successful,
aborted, failed, undoing, compensated and half-compensated). Moreover, we let
Δ be the set of terminal states, that is:

Δ = {suc, abt, fal, cmp, hap}

An action a on T and Σ is a pair (T, σ) ∈ T × Σ, saying the transaction T
enters into the state σ. Especially, a terminal action is a special kind of action,
which is a pair satisfying (T, σ) ∈ T × Δ. Actions may follow a specified order
or conform to some other policies. Here, we propose five relations to enforce
different constraints on the occurrence of actions:

1. a < b : only a can fire b.
2. a ≺ b : b can be fired by a.
3. a � b : a is the precondition of b.
4. a ↔ b : a and b both occur or both not.
5. a � b : the occurrence of one action inhibits the other.

The first three relations specify a kind of order, whereas the last two do not.
a < b indicates a must precede b when two actions both occur. In addition, the
two actions must both appear or not, same as a ↔ b in this sense. However,
a ↔ b does not enforce any temporal constraint on actions. a ≺ b tells that
b can also be fired by other event except for a. In other words, b is able to
occur without the previous occurrence of a. a � b tells that a must occur earlier
whenever b occurs. However, the occurrence of a does not guarantee a following
occurrence of b. Finally, a � b denotes that the two actions must be mutually
exclusive. These relations have some useful and interesting properties. <, ≺ and
� are anti-symmetric and transitive. ↔ is reflexive, symmetric and transitive,
while � is irreflexive, symmetric and intransitive. Besides, there are more useful
properties when these relations are combined.

Law 1. If a < b and a ↔ c then b ↔ c

Law 2. If a < b and b ↔ c then a ↔ c

Law 3. If a < b and b ◦ c (◦ ∈ {≺, � }) then a ◦ c

Law 4. If a ◦ b (◦ ∈ {≺, � }) and b < c then a ◦ c

Law 5. If a ◦ b (◦ ∈ {<, ≺, ↔}) and b � c then a � c

Law 6. If a ◦ b (◦ ∈ {<, �, ↔}) and a � c then b � c

Specifying and Verifying Web Transactions 153

Table 1. Intra-constraints of a compensable transaction

(T, idl) � (T, act) (T, act) � (T, suc) (T, act) � (T, abt) (T, act) � (T, fal)

(T, suc) � (T, abt) (T, suc) � (T, fal) (T, abt) � (T, fal) (T, cmp) � (T, hap)

(T, suc) � (T, und) (T, und) � (T, cmp) (T, und) � (T, hap)

As for an arbitrary compensable transaction T , all the actions occurring dur-
ing its execution must satisfy some constraints which are clearly shown in Ta-
ble 1. For instance, the compensation can only be activated when the transaction
T has succeeded, expressed as (T, suc) � (T, und). Besides, terminal states must
be exclusive, e.g., (T, suc) � (T, abt), (T, cmp) � (T, hap).

3 The Transactional Model

Though the structure of a compensable transaction is relatively complex, its
distinct properties provide the opportunity for engineers to resolve the perfor-
mance problem caused by web transactions. In this section, we explain how
to build reliable web transactions on the basis of compensable transactions. A
novel transactional language t-calculus is adopted to describe the composition
structure of compensable transactions. Its syntax is shown below:

S, T ::= BT | S; T | S ‖ T | S � T | S ⊗ T |
S � T | S � T | S � T | S � T

P ::= {T }

The basic transaction BT is the primary block to form a compensable transaction.
Generally, BT is composed of two activities, one denotes the forward flow while
the other one represents its compensation. More details of basic transactions can
be found in [14] but not relevant in this paper. The key point is that compensable
transactions support composition, that is, it can be constructed out of simpler ones
and still preserves the features of compensable transactions. To deal with specific
requirements of web transactions, we incorporate some distinct composition con-
structs in this transactionalmodel. These new constructs help to build a web trans-
action with a higher quality which mainly comes from three directions:

– Flexibility is enforced by allowing users to provide functionally equivalent
sub-transactions for a given objective. These equivalent transactions may
have different or even priorities. Transactions with even priorities can be
arranged to run in parallel, expressed as S ⊗ T . Otherwise, the transaction
with higher priority must be executed first, expressed as S � T . Note that
if one of these transactions completes successfully, the objective is achieved.

– Reliability is enhanced by properly dealing with partial compensations. We
have shown in Figure 1 that partial compensation will make a compensable
transaction into the half-compensated state in which data consistency does
not hold at all. In order to keep the whole system consistent, partial compen-
sation needs further treatment which is referred as exception handling. S �T
and S � T are two kinds of proposed mechanisms for exception handling.

154 J. Li, H. Zhu, and J. He

– Specialization is added by offering specialized compensations for specific ap-
plications. Basically, the compensation of a composite transaction is con-
structed by the accumulation of those of its sub-transactions. Concerning
the requirement of a concrete application, it is more satisfactory for devel-
opers to directly define an appropriate compensation, expressed as S � T .

Finally, we use {T } to stand for a complete web transaction. Once a web trans-
action completes, its effect holds for ever. An aborted web transaction looks like
doing nothing from the view of an external observer. A failed web transaction
causes some loss due to its inconsistent status. Our transactional model can not
avoid inconsistency, but it helps to reduce the possibilities of such failure.

3.1 Behavioral Dependencies

In t-calculus, each composite construct stipulates distinct behavioral dependen-
cies between compensable transactions. It specifies how simpler compensable
transactions are coupled and how the behavior of a certain compensable trans-
action influences the behavior of the other. Further, it specifies how the behav-
iors of sub-transactions determine the behavior of their composite transaction.
In the following, we formally describe the behavioral dependencies for all the
transactional constructs.
Sequential composition: S; T arranges the first transaction S to be executed
first. Only when S finishes its task, the following transaction T will be activated
to run. However, whenever T is aborted or compensated, the completed transac-
tion S would be compensated so as to remove all the partial effects. The above
description reflects the following behavioral dependencies:

(S, suc) < (T, act) (; 1)
(T, abt) ≺ (S, und) (; 2)
(T, cmp) ≺ (S, und) (; 3)

Recall that any compensable transaction satisfies some internal constraints (Ta-
ble 1), e.g., (S, suc) � (S, abt) and (T, act) � (T, suc). By using (; 1) and Law 6,
we have that (T, act) � (S, abt). Then using Law 6 and the symmetry property
of �, we get that (S, abt) � (T, suc) which says the abortion of S would never
lead to the success of T . Similarly, we can deduce more dependencies as follows:

(S, suc) � (T, α) α ∈ Δ (; 4)
(S, α) � (T, β) α ∈ {abt, fal}, β
= idl (; 5)
(S, α) � (T, β) α ∈ {cmp, hap}, β ∈ {fal, hap} (; 6)

The last item (; 6) tells that if T is failed or half-compensated, the compensation
of the former transaction S will never be enabled. Now we are going to investigate
the relationship between the composite transaction and its sub-transactions. A
composite transaction is also a compensable transaction and its terminal state is
totally dependent on the terminal states of its sub-transactions. Here, we focus
our attention on terminal actions which are associated with terminal states. The
behavior of a composite transaction is recorded by sequences of terminal actions

Specifying and Verifying Web Transactions 155

which are referred as transactional traces. For any composite transaction T , the
symbol [(T, σ)] denotes all these transactional traces which finally cause T to
end in the terminal state σ (σ ∈ Δ). Especially, if T is a basic transaction, then
it just has one single transactional trace, that is:

[(T, σ)] = {〈(T, σ)〉}

Next we define the behavior of T as the union of transactional traces for all
terminal states, denoted as �T �:

�T � =
⋃

σ∈Δ

[(T, σ)]

In the following, we will define the behavior of sequential composition in terms
of transactional traces. We write st for the concatenation of two traces s and t.
The successful completion of S; T requires both S and T to succeed.

[(S; T, suc)] = {st | s ∈ [(S, suc)] ∧ t ∈ [(T, suc)]}

Abortion of S; T is caused by either an abortion or a full compensation of S.

[(S; T, abt)] = [(S, abt)] ∪ {sts′ | s ∈ [(S, suc)] ∧ t ∈ [(T, abt)] ∧ s′ ∈ [(S, cmp)]}

The failure of S or T directly leads to the failure of S; T . Besides, the half-
compensation of S results in the same outcome too.

[(S; T, fal)] = [(S, fal)] ∪ {st | s ∈ [(S, suc)] ∧ t ∈ [(T, fal)]} ∪
{sts′ | s ∈ [(S, suc)] ∧ t ∈ [(T, abt)] ∧ s′ ∈ [(S, hap)]}

A full compensation of S; T means both sub-transactions have been compensated
utterly. Note that sub-transactions are compensated in a reverse order to their
original sequence.

[(S; T, cmp)] = {ts | t ∈ [(T, cmp)] ∧ s ∈ [(S, cmp)]}

A partial compensation of S; T is rendered by a failed compensating execution
of either sub-transaction.

[(S; T, hap)] = [(T, hap)] ∪ {ts | t ∈ [(T, cmp)] ∧ s ∈ [(S, hap)]}

Note that the occurrences of (S; T, cmp) and (S; T, hap) require a precondition
implicitly, that is, the whole transaction S; T has already completed successfully.

Parallel composition: For S ‖ T , both branches S and T are executed in
parallel. Likewise, their compensations are also activated concurrently when se-
mantic rollback is needed. If one branch aborts or fails, the other branch is willing
to disrupt its flow and yield to this failure. In other words, two branches must
both succeed or both not. The related behavioral dependencies are formalized
as follows:

(S, act) ↔ (T, act) (‖ 1)
(S, und) ↔ (T, und) (‖ 2)
(S, suc) ↔ (T, suc) (‖ 3)

156 J. Li, H. Zhu, and J. He

More dependencies can be deduced:

(S, α) � (T, β) α ∈ {abt, fal}, β ∈ {suc, cmp, hap} (‖ 4)
(T, α) � (S, β) α ∈ {abt, fal}, β ∈ {suc, cmp, hap} (‖ 5)

The behavior of parallel composition needs to take interleaving into considera-
tion. In the following, the symbol s � t denotes the set of transactional traces
which are combinations of s and t.
The successful completion of S ‖T achieves only when both branches succeed.

[(S ‖ T, suc)] = {r | r ∈ s � t ∧ s ∈ [(S, suc)] ∧ t ∈ [(T, suc)]}

The abortion of S ‖ T is caused by the abortion of both branches.

[(S ‖ T, abt)] = {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, abt)]}

The failure of either branch causes the failure of S ‖ T .
[(S ‖ T, fal)] = {r | r ∈ s � t ∧ s ∈ [(S, fal)] ∧ t ∈ [(T, abt)]}

∪ {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, fal)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, fal)] ∧ t ∈ [(T, fal)]}

A full compensation of S ‖ T means that both branches have been compensated
successfully. Note that both branches are compensated in parallel too.

[(S ‖ T, cmp)] = {r | r ∈s � t ∧ s ∈ [(S, cmp)] ∧ t ∈ [(T, cmp)]}

A partial compensation of S ‖ T arises from a failed compensation of either
branch.

[(S ‖ T, hap)] = {r | r ∈ s � t ∧ s ∈ [(S, hap)] ∧ t ∈ [(T, cmp)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, cmp)] ∧ t ∈ [(T, hap)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, hap)] ∧ t ∈ [(T, hap)]}

Internal choice: In some cases, only one branch is selected in accordance with
internal decisions. In the construct of S � T , only S or T will be activated:

(S, act) � (T, act) (� 1)

Further, we get that only one branch will terminate:

(S, α) � (T, β) {α, β} ⊆ Δ (� 2)

The behavior of S � T is directly defined as follows:

�S � T � = �S� ∪ �T �

Speculative choice: This construct provides a way for developers to design
two or more threads to finish one task. If one thread is aborted, the other thread
is still active trying to achieve the same target. In this construct of S ⊗T , S and
T are two sub-transactions with equivalent functions. The two sub-transactions
have even priorities and they are arranged to be executed concurrently. The

Specifying and Verifying Web Transactions 157

choice is delayed when one sub-transaction has succeeded. That is, only one
sub-transaction will be finally selected to achieve its business goal. When one
sub-transaction terminates successfully, the other one cannot succeed but aborts
either internally or forcibly. Especially, if one sub-transaction fails halfway, the
other one should yield to this failure. The related behavioral dependencies are
formalized below:

(S, act) ↔ (T, act) (⊗ 1)
(S, suc) � (T, suc) (⊗ 2)
(S, suc) � (T, fal) (⊗ 3)
(T, suc) � (S, fal) (⊗ 4)

The above dependencies imply that only one sub-transaction can be compen-
sated if compensation is needed.

(S, α) � (T, β) {α, β} ⊆ {cmp, hap} (⊗ 5)

Speculative choice is a construct which behaves partially like parallel composition
by allowing concurrent executions and partially like internal choice by choosing
one sub-transaction to fulfil the objective.

The successful completion of S ⊗ T realizes when one branch succeeds and
another one aborts.

[(S ⊗ T, suc)] = {r | r ∈ s � t ∧ s ∈ [(S, suc)] ∧ t ∈ [(T, abt)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, suc)]}

The abortion of S ⊗ T is due to the abortion of both branches.

[(S ⊗ T, abt)] = {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, abt)]}

Likewise, the failure of either branch will finally lead to the failure of the whole
composition S ⊗ T .

[(S ⊗ T, fal)] = {r | r ∈ s � t ∧ s ∈ [(S, fal)] ∧ t ∈ [(T, abt)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, fal)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, fal)] ∧ t ∈ [(T, fal)]}

Since only one branch can succeed, then just the successful one will be com-
pensated. A full compensation or a partial compensation is determined by the
successful branch.

[(S ⊗ T, α)] =
{

[(S, α)] if S has succeeded
[(T, α)] if T has succeeded α ∈ {cmp, hap}

Alternative forwarding: Similar to speculative choice, this construct also pro-
vides two functionally equivalent sub-transactions to achieve one business goal.
The difference is that these two sub-transactions have distinct priorities. In addi-
tion, the one with the higher priority is executed first and the other is activated
only when the first one has been aborted. In S � T , S is planed to run first and
T is the backup of S. The related dependency is given below:

(S, abt) < (T, act) (� 1)

158 J. Li, H. Zhu, and J. He

Then we get the following dependencies:

(S, abt) � (T, α) α ∈ Δ (� 2)
(S, α) � (T, β) α ∈ Δ − {abt}, β ∈ Δ (� 3)

The behavior of alternative forwarding corresponds to a sequential execution.
Different from sequential composition, the right branch is enabled on abortion
instead of on success of the left branch.

The successful completion of S � T achieves when there is one branch which
succeeds eventually.

[(S � T, suc)] = [(S, suc)] ∪ {st | s ∈ [(S, abt)] ∧ t ∈ [(T, suc)]}

The abortion of S � T is caused by the abortion of its alternative T .

[(S � T, abt)] = {st | s ∈ [(S, abt)] ∧ t ∈ [(T, abt)]}

The failure of S � T is due to the failure of either branch.

[(S � T, fal)] = [(S, fal)] ∪ {st | s ∈ [(S, abt)] ∧ t ∈ [(T, fal)]}

In this construct, only one branch can succeed in the end. Thus, the definitions
of [(S � T, cmp)] and [(S � T, hap)] are as same as those for speculative choice.

Backward handling: Partial compensation leads to inconsistency which is
unwelcome by the users. The failure of a composite transaction is ultimately
caused by the half-compensated state of one of its sub-transactions provided
that basic transactions cannot fail. Backward handling S �T is such a construct
that provides a backward handler T to remedy the failure thrown by S. This
handler tries to undo all the remaining effects which are not covered by partial
compensation. The handler T is triggered on the failure of S, that is:

(S, fal) < (T, act) (� 1)

Consequently, we get that:

(S, fal) � (T, α) α ∈ Δ (� 2)
(S, α) � (T, β) α ∈ Δ − {fal}, β ∈ Δ (� 3)

Note that this construct offers a kind of backward recovery mechanism, for the
backward handler is devised to undo the remaining partial effects.
The successful completion of S � T realizes when the left branch S succeeds.

[(S � T, suc)] = [(S, suc)]

The abortion of S � T is caused by the abortion of the left branch S or the
successful completion of the handler T .

[(S � T, abt)] = [(S, abt)] ∪ {st | s ∈ [(S, fal)] ∧ t ∈ [(T, suc)]}

Specifying and Verifying Web Transactions 159

The failure of S fires the activation of T and the thrown failure can be thoroughly
cleared only when the handler T succeeds. Hence, either failure or abortion of T
will cause the final failure of the whole composition S � T .

[(S � T, fal)] = {st | s ∈ [(S, fal)] ∧ t ∈ [(T, abt)] ∪ [(T, fal)]}

Since only the success of the left branch S leads to the successful composition of
S � T , the compensation result is totally dependent on the compensation of S.

[(S � T, cmp)] = [(S, cmp)] [(S � T, hap)] = [(S, hap)]

Forward handling: This is another manner to deal with partial compensation
apart from backward handling. In S � T , T is the forward handler to fix the
failure thrown by S. Different from backward handling, this construct adopts the
forward recovery mechanism trying to fulfill the business goal in the presence of
failure. In other words, if the forward handler completes, the whole composition
is regarded as success though some error has occurred previously. Likewise, this
handler T can only be activated by the failure of S:

(S, fal) < (T, act) (� 1)

Consequently, we get that:

(S, fal) � (T, α) α ∈ Δ (� 2)
(S, α) � (T, β) α ∈ Δ − {fal}, β ∈ Δ (� 3)

The successful completion of S � T realizes when either branch succeeds.

[(S � T, suc)] = [(S, suc)] ∪ {st | s ∈ [(S, fal)] ∧ t ∈ [(T, suc)]}

The abortion of S � T is caused by the abortion of S.

[(S � T, abt)] = [(S, abt)]

The abortion of T means the handler does nothing essential and thus the previous
failure has not been resolved at all. Then either failure or abortion of T will make
the whole composition S � T into the failed state.

[(S � T, fal)] = {st | s ∈ [(S, fal)] ∧ t ∈ [(T, abt)] ∪ [(T, fal)]}

Since both branches can lead to the success of S �T , we should first judge which
branch has succeeded and then be sure whose compensation is activated while
undoing. Hence, the definitions of [(S � T, cmp)] and [(S � T, hap)] are as same
as those for speculative choice.
Programmable compensation: Primarily, the compensation is attached
through the transactional pair which is a central construct to compose activities
[14]. As for a composite transaction, the developers sometimes need to program
a new compensation so as to satisfy a specific application requirement. Thus, the
construct of S �T is added to meet this demand. Formerly, the compensation of

160 J. Li, H. Zhu, and J. He

S is constructed by the accumulation of those of its sub-transactions. Here, T is
the newly programmed compensation for S, while the original accumulated one
is simply discarded. When S has completed, its new compensation T is waiting
to be enabled so that the effect of S can be semantically removed in case some
error occurs later:

(S, suc) � (T, act) (� 1)

By using the transitive property of � and dependencies listed in Table 1, we
have that:

(S, suc) � (T, α) α ∈ Δ (� 2)

In our model, compensation is also a compensable transaction. Thus we allow
this kind of composition, such as S � (T1 � T2) in which S has two alternative
compensations. Moreover, the actions (T, cmp) and (T, hap) have no chance to
take place since compensation for compensation will never be used.

The behavior of S�T is quite simple, S decides whether the whole composition
is successful, aborted or failed. Whereas the new compensation T determines
whether the whole composition is compensated completely or partially.

[(S � T, α)] = [(S, α)] α ∈ {suc, abt, fal}
[(S � T, cmp)] = [(T, suc)]
[(S � T, hap)] = [(T, α)] α ∈ {abt, fal}

3.2 A Case Study

Now let us presents a real web transaction dedicated to the processing of cus-
tomer orders. This description is carried out by compensable transactions il-
lustrated in Figure 2. Firstly, an order request from a customer is accepted and
this step is compensated by notifying the customer this request is canceled. Then
money will be deducted from the credit card providing that the credit check-
ing has passed. Afterwards, all the ordered items are packed for shipment and
this step is compensated by unpacking. Simultaneously with packing items, the
seller books shippers for delivery. In this example, we make an assumption that
this seller has only two shippers (shipper A and shipper B) to contact with.
Shipper A is cheaper but hard to book whereas shipper B is more expensive
but always available. For the sake of saving money, shipper A is preferred and
shipper B is booked only when shipper A is unavailable. At last, the selected
shipper is responsible for delivering these items. Note that if the customer can-
cels the order during processing, the compensation for completed parts will be
activated. When the compensation cannot properly undo the partial effects, the
seller would ask for extra indemnities from the customer which is transacted by
backward handling.

The transactional flow described above is not always satisfactory. Sometimes,
the customer needs the goods urgently because of his timing requirement. How-
ever, the process of credit checking may cost so much time that transportation

Specifying and Verifying Web Transactions 161

OrderTrans = {(ProcessRequest;OrderProcess) � GetIndemnity}
OrderProcess = PayByCard; (PrepareOrder‖ContactShipper);DeliverOrder

ProcessRequest = AcceptOrder � CancelOrder

PayByCard = (CheckCredit; DeductMoney) � RefundMoney

PrepareOrder = PackItems � UnpackItems

ContactShipper = BookShipperA � BookShipperB

Fig. 2. Transaction for order fulfillment

will be delayed. In this case, the seller would like to deal with payment in parallel
with packing items. On the other hand, in order to be more reliable, sometimes
transporting items by more than one shipper would be a better solution. Over-
all, the transactional flow designed in hand should satisfy specific application
requirements. In the following section, we will introduce two kinds of repre-
sentations to express application requirements. Further we will propose strict
solutions to the verification of web transactions.

4 Verification

In this section, we mention two notions for specifying application requirements.
One is referred as acceptable termination states (ATS) as a correctness criteria to
specify relaxed atomicity requirements. Another one is a specification language
used for expressing temporal constraints with regard to transactional properties.

4.1 Acceptable Termination States

Let T.σ (σ ∈ Δ∪{idl}) represent the final state σ of the compensable transaction
T . Especially, T.idl denotes that T terminates without activation. As for a web
transaction {T }, a termination state of {T } is described by a set of final states
of its sub-transactions {T1.σ1, T2.σ2, . . . , Tn.σn}, where Ti is a sub-transaction of
T . For example, given a transaction T = {(T1 � T2); T3}, one of its termination
states is {T1.fal, T2.suc, T3.idl}. It says that T terminates when T1 fails and T2
succeeds without activating T3.

Let Ω be the set of transactions in which the designer is interested when in-
vestigating the termination states. Each transaction in Ω can be a composite
transaction. Further, we require that for two arbitrary transactions S, T ∈ Ω,
T cannot be the sub-transaction of S and vice versa. An acceptable termination
state of a web transaction {T } is a termination state limited to Ω in which the de-
signer expect to see {T } ends without raising any inconsistency. In other words,
an acceptable termination state is a termination state in which this transaction
finally succeeds or aborts but not fails. The set of all acceptable termination
states specified by the designer is denoted as ATS.

Let �T.σ� be the set of termination states in which T ends in σ. A web
transaction {T } is invalid if there is a termination state belonging to ATS which
cannot make {T } successful or aborted.

162 J. Li, H. Zhu, and J. He

Definition 4.1. A web transaction {T } is said to be valid according to its ac-
ceptable termination states ATS if and only if ATS ⊆ �T.suc� ∪ �T.abt�
It is worth noting that it is much better if there are more termination states in
which {T } cannot fail except for those in ATS. In order to verify a valid web
transaction, we should know the values of �T.suc� and �T.abt�. As mentioned
before, the transactional behavior is recorded by transactional traces. Now we
transform transactional traces to termination states such that �T.σ� can be
derived from [(T, σ)]. Five steps need to be done in sequence:

1. While computing transactional traces, every interested transaction does not
expand. That is, [(T, σ)](T ∈ Ω) is defined as {〈(T, σ)〉} without considering
its sub-transactions.

2. If there are two actions related to one transaction in a transactional trace,
the first one is removed while the latter one is preserved.

3. For any transactional trace t, its element (S, σ) is removed if S is not in Ω.
New element (S, idl) is inserted if S is in Ω but not mentioned in t.

4. Elements of a transactional trace are actions with the form of (T, σ), while
elements of a terminate state are states with the form of T.σ. Thus the form
of elements should be changed from (T, σ) into T.σ.

5. Elements in a transactional trace are ordered but elements in a termination
state are not. Finally, we extract the order information from traces by turning
sequences into sets.

When a transaction T is compensated, some transactional traces contain two
actions about T . The first action is (T, suc) and the following action is either
(T, cmp) or (T, hap). The second step above is intended to remove the first action
which is actually an interim state.

So far, we are able to compute �T.σ� (σ ∈ Δ) for any T . Further, we need one
more definition to help compute �T.idl�:

�T.idl� = {{T.idl}} T ∈ Ω
�T.idl� = {s ∪ t | s ∈ �T1.idl� ∧ t ∈ �T2.idl�} T /∈ Ω ∧ T = T1�T2

The operator � here and below denotes an arbitrary operator in t-calculus.
Restricted by behavioral dependencies, not all pairs of final states can exist
simultaneously. For instance, T1 � T2 does not have such a termination state
{T1.suc, T2.abt}, since (T1, suc) and (T2, abt) are exclusive derived from (� 3).

Definition 4.2. Suppose T = T1 � T2 and T1, T2 are not expanded 1, T1.σ1 and
T2.σ2 are said compatible with regard to � if and only if ∃σ • {T1.σ1, T2.σ2} ∈ �T.σ�
When a web transaction is proved to be invalid, we further provide a solution to
help designers to find the possible reason for this problem. Let A represent the
set of termination states in ATS but not in �T.suc� ∪ �T.abt�. Apparently, A is
not empty when the web transaction {T } is invalid. We try the two steps below
to locate the error.
1 While computing �T.σ� for a composite transaction T with its sub-transactions T1, T2

not expanded, we temporarily set Ω to be {T1, T2}. Thus, �T.σ� just includes the sets
with two elements denoting the final states of T1, T2 respectively.

Specifying and Verifying Web Transactions 163

||

GetIndemnity

ProcessRequest

PayByCard

ContactShipper

DeliverOrder

n2 n3

n4 n5

n6 n7

n8 n9

n11

n1

PrepareOrdern10

Fig. 3. The syntax tree of order transaction

1. Firstly, construct a syntax tree according to the structure of {T }. This is a
binary tree and the contents of its nodes are either operators in t-calculus
or transactions in Ω. All these transactions in Ω lie in the leaves of this
tree.2 Every node n relates to a compensable transaction denoted by T(n).
For a leaf node n, T(n) is equal to its content. For a non-leaf node m with
an operator �, T(m) is equal to T(m1) � T(m2), in which m1, m2 are its
children nodes.

2. Secondly, try to traverse this tree in post-order. Given a termination state θ,
for any tree node n, its related transaction T(n) has a final state denoted by
	(n, θ). While visiting a leaf node n, for each θ in A, 	(n, θ) is computed and
it is equal to T(n).σ which is an element of θ. While visiting a non-leaf node
m with an operator � and two children nodes m1, m2, for each θ in A, we
need to check whether the two states 	(m1, θ) and 	(m2, θ) are compatible
with regard to �. If something incompatible is found, it means this operator
is wrongly written and the process of traverse is stopped. Otherwise, let
	(m, θ) equal to T(m).σ where {	(m1, θ), 	(m2, θ)} ∈ �T(m).σ� for each θ
in A. After that the next node in post-order is visited until there is a node
associated with an improper operator.

Next, we take the example in Figure 2 to explain our method for locating the
problem. Suppose the designer is interested in these sub-transactions below:

Ω = {ProcessRequest, PayByCard, PrepareOrder}
∪ {ContactShipper, DeliverOrder, GetIndemnity}

The syntax tree for OrderT rans is given in Figure 3. It has eleven nodes marked
by n1, n2, . . . , n11. All the leaves denote the interested sub-transactions. While
traversing the tree in post-order, the nodes are visited in the following order:

n4, n8, n10, n11, n9, n6, n7, n5, n2, n3, n1

2 If the transactions in Ω cannot cover all the leaves, the designer should provide more
information by enlarging the elements of Ω until all the leaves can be covered.

164 J. Li, H. Zhu, and J. He

For simplicity, we assume A just includes one termination state:

θ = {ProcessRequest.cmp, PayByCard.abt, PrepareOrder.abt}
∪ {ContactShipper.abt, DeliverOrder.idl, GetIndemnity.idl}

When visiting the first four nodes in post-order, we get their related transactions
and states as follow:

T(n4) = ProcessRequest 	(n4, θ) = ProcessRequest.cmp
T(n8) = PayByCard 	(n8, θ) = PayByCard.abt
T(n10) = PrepareOrder 	(n10, θ) = PrepareOrder.abt
T(n11) = ContactShipper 	(n11, θ) = ContactShipper.abt

Node n9 is equipped with a parallel operator. The transaction related to n9 is:

T(n9) = T(n10) ‖ T(n11) = PrepareOrder ‖ ContactShipper

It is not difficult to prove that 	(n10, θ) and 	(n11, θ) are compatible with regard
to this parallel operator by figuring out �T(n9).abt�:

�T(n9).abt� = {{PrepareOrder.abt, ContactShipper.abt}}

Thus, we get that: 	(n9, θ) = T(n9).abt. The next node n6 is associated with a
sequential operator and the transaction related to n6 is: T(n6) = T(n8); T(n9).

In the case, the states T(n8).abt (i.e., 	(n8, θ)) and T(n9).abt (i.e., 	(n9, θ))
are proved to be incompatible with regard to the sequential operator. It is easy
to predict this result because in the sequential composition S; T , T does not
have the chance to be activated without mentioning the possibility of abortion
when S is aborted. Thus, we find that this sequential operator attached to n6
is wrongly written. In fact, the designer here expects the credit check to be
performed in parallel not in sequence with preparing order because such check
normally succeeds. Moreover, the seller in this case has more time to process
order so as not to delay the transportation unnecessarily.

4.2 Verifying Temporal Constraints

In order to express more specific transactional properties with temporal con-
straints, we devise a specification language whose syntax is given below:

ψ ::= � a | a ≺ b | a � b | a < b | a ↔ b | a � b
¬ψ | ψ ∧ ψ | ψ ∨ ψ

where a, b are terminal actions. Except for these five relations (<, ≺, �, ↔, �),
one more unitary relation � is introduced. � a says that a will definitely occur
in the future.

Let M be the set of all terminal actions, and M∗ be the set of all finite
sequences (including 〈〉) which are formed from elements of M . For a trace s,
s[i] denotes the ith element. From another view, a formula ψ can be regarded

Specifying and Verifying Web Transactions 165

�� a� = {s : M∗ | ∃i • s[i] = a}
�a ≺ b� = {s : M∗ | ∀i • (s[i] = a ⇒ ∃j • (j > i ∧ s[j] = b))}
�a � b� = {s : M∗ | ∀i • (s[i] = b ⇒ ∃j • (j < i ∧ s[j] = a))}
�a < b� = {s : M∗ | ∃i, j • (i < j ∧ s[i] = a ∧ s[j] = b) ∨ ∀i • (s[i] = a ∧ s[i] = b)}
�a ↔ b� = {s : M∗ | ∃i, j • (s[i] = a ∧ s[j] = b) ∨ ∀i • (s[i] = a ∧ s[i] = b)}
�a � b� = {s : M∗ | ∃i • s[i] = a ⇒ ∀j • s[j] = b}
�¬ψ� = M∗ − �ψ�
�ψ1 ∧ ψ2� = �ψ1� ∩ �ψ2�
�ψ1 ∨ ψ2� = �ψ1� ∪ �ψ2�

Fig. 4. Interpretations over traces for formulae

as a set of transactional traces defined by the function �·�, whose definition is
inductively given in Figure 4. Given a transaction T and a property ψ, the
designer expects to verify whether ψ is satisfied by a specific behavior [(T, σ)]
for a concrete state σ (σ ∈ Δ).

Definition 4.3. ψ holds for [(T, σ)] (written as [(T, σ)] |= ψ) if and only if
[(T, σ)] ⊆ �ψ�.

The problem is that the number of traces in �ψ� is too large due to a large amount
of elements in M . To improve this, we reset M for each formula ψ and make it
be the set of actions only mentioned by ψ. In addition, we need to restrict the
traces of [(T, σ)] to the actions in M . For a trace s, we use the expression s � M
to denote a new trace formed from s simply by omitting all actions outside M .
Thus, the traces from [(T, σ)] restricted to M is defined as follows:

[(T, σ)]↓M= {t | ∃s • (t = s � M ∧ s ∈ [(T, σ)])}

Then the verification process can be improved by getting rid of actions indepen-
dent of properties.

Theorem 4.1. Let M be the set of actions occurring in ψ. [(T, σ)] |= ψ holds if
and only if [(T, σ)]↓M⊆ �ψ�.

Example: Given a simple transaction T = (T1; T2) � T3 and a specified property
ψ = (T1, hap) ≺ (T3, suc), we require to check whether [(T, abt)] |= ψ holds.

First, we compute the behavior of T provided it is aborted.

[(T, abt)] = {〈(T1, abt)〉, 〈(T1, suc), (T2, abt), (T1, cmp)〉}
∪ {〈(T1, suc), (T2, abt), (T1, hap), (T3, suc)〉}
∪ {〈(T1, fal), (T3, suc)〉, 〈(T1, suc), (T2, fal), (T3, suc)〉}

This property only refers to two actions and we get that:

M = {(T1, hap), (T3, suc)}

166 J. Li, H. Zhu, and J. He

Then we limit the traces of [(T, abt)] to the set of M :

〈(T1,abt)〉�M = 〈〉
〈(T1,fal),(T3,suc)〉�M = 〈(T3, suc)〉
〈(T1,suc),(T2,abt),(T1,cmp)〉�M = 〈〉
〈(T1,suc),(T2,fal),(T3,suc)〉�M = 〈(T3, suc)〉
〈(T1,suc),(T2,abt),(T1,hap),(T3,suc)〉�M = 〈(T1,hap),(T3,suc)〉

Consequently, we have that

[(T, abt)]↓M= {〈〉, 〈(T3, suc)〉, 〈(T1, hap), (T3, suc)〉}

At last, we convert the property to a set of traces:

�ψ� = {s : M∗ | ∀i • (s[i] = (T1, hap) ⇒ ∃j • (j > i ∧ s[j] = (T3, suc)))}
= {〈〉, 〈(T3, suc)〉, 〈(T1, hap), (T3, suc)〉}

Obviously, [(T, abt)]↓M⊆ �ψ� holds for this example.
A complex formula ψ possibly makes �ψ� much bigger, which increases the

difficulty of verification. A practical solution is that we change the formula into
the disjunctive normal form as follows:

ψ = ψ1 ∨ ψ2 ∨ · · · ∨ ψn

Apparently, �ψi� (1 ≤ i ≤ n) is smaller than �ψ�. If we can verify that one
sub-formula is satisfied, the whole formula holds obviously.

Theorem 4.2. Suppose ψ = ψ1 ∨ ψ2 ∨ · · · ∨ ψn. [(T, σ)] |= ψ if [(T, σ)] |=ψ1 ∨
[(T, σ)] |=ψ2 ∨ · · · ∨ [(T, σ)] |= ψn.

5 Related Work

Due to limitations of classical transactions, some models have adopted the con-
cept of compensation to satisfy the autonomy requirement in distributed environ-
ment. Elmagarmid et al. [5] supported mixed transactions allowing compensable
and noncompensable sub-transactions to coexist. Levy et al. [11] proposed a for-
mal model to unify the two dual methods of compensation and retry. In their
work, a whole transaction was modeled as a static partial order of steps. A new
approach called XIP [17] was proposed to present an optimistic commit protocol
to enable the Internet transaction semantics. In contrast with these works, we
develop a formal language to explicitly model the logical precedence, causality
and synchronization constraints among compensable transactions.

In recent literatures, process calculus is adopted extensively to formalize long-
lived transactions. Several proposals [1,10,15] took the well-known π-calculus as
a starting point and extended it with some transactional features. Another lan-
guage cCSP [3] as an extension of CSP supports automatic compensation on
transactional failure. It is equipped with a simple operational semantics [4] and
this semantics is made executable by encoding the rules in Prolog. Bruni et al. [2]

Specifying and Verifying Web Transactions 167

have developed a sagas calculus with similar operators to cCSP. The difference is
mainly that while considering parallel execution, cCSP encourages synchronized
compensation whereas sagas calculus supports distributed compensation. None
of these transactional languages treats compensations as compensable transac-
tions like t-calculus [14] we proposed earlier does. The operational and algebraic
semantics of t-calculus was studied and a kind of linking theory has been estab-
lished [13,12]. Unlike our previous works, this paper specifies web transactions
by investigating compensable transactions in a higher level of granularity. In
addition, the semantics of each transactional construct is explored in a differ-
ent way by formally describing its behavioral dependencies. Moreover, this work
proposes strict solutions to verify transactional behavior.

With regard to verification, there are already a series of work focusing on
analyzing and verifying web service properties. Foster et al. [6] discussed a model-
based approach to verify web service compositions, in which implementations
were mechanically translated to FSP to perform an equivalence trace verification
process. Temporal logics for compositional reasoning about web service interfaces
have been proposed in [18]. Nakajima used model checking to analyze web service
flow by translating BPEL descriptions into Promela [16]. The interactions of
composite web services were analyzed by modeling them as conversations [7].
Service processes were first translated into guarded automata and then verified
using SPIN. Pu et al. [9] adopted a similar approach to use the model checker
UPPAAL to verify BPEL programs including timed properties. However, we find
no relevant work on verifying web transactions with the feature of compensation.
This paper is the first attempt in this area to the best of our knowledge.

6 Conclusion

Web transactions in this paper are built upon a set of compensable transactions
which help to ensure a relatively relaxed atomicity. Compensable transactions
support composition in different manners, aiming to enhance the reliability and
flexibility of web transactions. Distinct transactional constructs correspond to
different behavioral dependencies which have been explored from two aspects.
On the one hand, the dependency between two sub-transactions on the same
syntactic level is described by a series of relations between actions. On the other
hand, the dependency among a composite transaction and its sub-transactions
is defined in terms of transactional traces. Transactional traces are more precise
than relations of actions, since they can assist designers to track the behavior of
a whole web transaction.

The formal description of web transactions helps to clarify ambiguous concepts
and it provides the basis for the following process of verification. At first, this paper
has provided a method to verify web transactions according to the relaxed atom-
icity requirement. Besides, the problem can be located if inconsistency exists. Af-
terwards, a specification language has been proposed for specifying temporal con-
straints about compensable transactions. The verification process is further opti-
mized by restricting actions of interest and partitioning property formulae.

168 J. Li, H. Zhu, and J. He

References

1. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In:
Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp.
124–138. Springer, Heidelberg (2003)

2. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: POPL 2005, pp. 209–220. ACM Press, New York
(2005)

3. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transaction.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

4. Butler, M., Ripon, S.: Executable semantics for compensating CSP. In: Fitzger-
ald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 243–256.
Springer, Heidelberg (2005)

5. Elmagarmid, A.K., Leu, Y., Litwin, W., Rusinkiewicz, M.: A multidatabase trans-
action model for interbase. In: VLDB 1990, pp. 507–518 (1990)

6. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of Web
service compositions. In: ASE 2003, pp. 152–161. IEEE Computer Society, Los
Alamitos (2003)

7. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proc. of
WWW 2004, pp. 621–630. ACM Press, New York (2004)

8. Garcia-Molina, H., Salem, K.: Sagas. In: Proc. of ACM SIGMOD 1987, pp. 249–
259. ACM Press, New York (1987)

9. Geguang, P., Xiangpeng, Z., Shuling, W., Zongyan, Q.: Towards the Semantics and
Verification of BPEL4WS. In: WLFM 2005. ENTCS, vol. 151, pp. 33–52. Elsevier,
Amsterdam (2006)

10. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

11. Levy, E., Korth, H.F., Silberschatz, A.: A theory of relaxed atomicity. In: PODC
1991, pp. 95–110. ACM Press, New York (1991)

12. Li, J., Zhu, H., He, J.: Algebraic Semantics for Compensable Transactions. In:
Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 306–
321. Springer, Heidelberg (2007)

13. Li, J., Zhu, H., Pu, G., He, J.: A Formal Model for Compensable Transactions. In:
Proc. of ICECCS 2007, pp. 64–73. IEEE Computer Society, Los Alamitos (2007)

14. Li, J., Zhu, H., Pu, G., He, J.: Looking into compensable transactions. In: Proc. of
SEW-31, pp. 154–166. IEEE Computer Society, Los Alamitos (2007)

15. Mazzara, M., Lucchi, R.: A framework for generic error handling in business
processes. In: WS-FM 2004. ENTCS, vol. 105, pp. 133–145. Elsevier, Amsterdam
(2004)

16. Nakajima, S.: Model-checking of safety and security aspects in web service flows.
In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp.
488–501. Springer, Heidelberg (2004)

17. Ouyang, J., Sahai, A., Machiraju, V.: An approach to optimistic commit and trans-
parent compensation for e-service transactions. HP Laboratories Palo Alto (Feb-
ruary 2001)

18. Solanki, M., Cau, A., Zedan, H.: Augmenting semantic web service descriptions
with compositional specification. In: WWW 2004, pp. 544–552. ACM Press, New
York (2004)

Modelling and Analysing the Contract Net

Protocol - Extension Using Coloured Petri Nets

Jonathan Billington, Amar Kumar Gupta, and Guy Edward Gallasch

Computer Systems Engineering Centre
University of South Australia

Mawson Lakes Campus, SA, 5095, Australia
{jonathan.billington, amar.gupta, guy.gallasch}@unisa.edu.au

Abstract. The Contract Net Protocol is a task allocation protocol that
facilitates negotiation between bidders and an auctioneer in a Multi-
Agent System to form a contract. The extension allows the bidders to
interact with more than one auctioneer concurrently, and to update their
bids until a bid is granted. This introduces flexibility and ensures better
selection of a bid. In this paper, we model the Contract Net Protocol -
extension with Coloured Petri Nets and show that it terminates correctly.
We analyse the terminal states and prove that the agents have consistent
beliefs at the end of the negotiations, and that there is no “dead code”
in the procedures. Lastly, we show how the number of terminal states
and channel bounds are related to the number of bidders.

Keywords: Contract Net Protocol - extension, Coloured Petri Nets,
Verification.

1 Introduction

A Multi-Agent System [4] comprises a set of agents that interact with each
other to achieve a goal. Typical agents constitute a service requesting agent,
which requests a certain task to be performed, and a service providing agent,
which performs the task. These agents undertake negotiations to form contracts.
The Contract Net Protocol [7,19] is an elementary protocol that facilitates task
allocation between an auctioneer (service requesting agent) and many bidders
(service providing agents). This is extended to the Contract Net Protocol - ex-
tension [1] that allows the bidders to negotiate with multiple auctioneers simul-
taneously. This prevents the bidders from losing potential contracts with other
auctioneers. Also, the protocol has two different phases of decision making; a
provisional and a confirmed decision making phase. This feature allows bidders
to submit updated bids and helps ensure that the auctioneers select the best
bids. This work is motivated by researchers working on transport logistics [13].

In [3] we modelled the Contract Net Protocol [7,19] using Coloured Petri nets
(CPNs) [9,10] and proved a number of properties. In doing so, we demonstrated
the effectiveness of CPNs for this task, contrary to the claims made in the litera-
ture regarding the inadequacy of CPNs for modelling interaction protocols [11,12].

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 169–184, 2008.
c© IFIP International Federation for Information Processing 2008

170 J. Billington, A.K. Gupta, and G.E. Gallasch

In this paper, we extend our work to the Contract Net Protocol - extension (CNP-
ext), represented using Protocol Flow Diagrams in [13]. The protocol has iterative
processes and the work presented in [1] proves that the protocol converges. The
importance of the verification of properties of a protocol before implementation [2]
has further stimulated this work. To the best of our knowledge, no work has been
undertaken on the verification of the properties of this protocol.

This paper has a threefold contribution. Firstly, we present for the first time
a model of CNP-ext. We analyse this model using state space techniques for
any number of bidders up to 5. Secondly, we show that the protocol terminates
correctly and the agents have consistent beliefs regarding the contract at the
end of negotiations. Finally, we conjecture relationships between the number of
bidders and the number of terminal states and bounds on the underlying channel.

This paper is organised as follows. Section 2 provides an overview of the
protocol and its operation. The CPN model of CNP-ext and its operation are
presented in Section 3. Section 4 analyses the model and finally Section 5 presents
conclusions and avenues for further work.

2 Contract Net Protocol - Extension

In contrast to the Contract Net Protocol that consists of a single auctioneer and
multiple bidders, the Contract Net Protocol - extension (CNP-ext) [1] consists of
multiple auctioneers negotiating with multiple bidders to form a contract. The
auctioneers may negotiate with a number of bidders simultaneously. However,
the auctioneers do not interact with each other and their negotiation processes
are independent of each other. Similarly, the bidders may interact with multiple
auctioneers at the same time, but not with each other. For simplicity, we describe
below the CNP-ext in the context of a single auctioneer and multiple bidders.

The auctioneer initiates negotiation by sending a Task Announcement to the
bidders, who respond with a Pre Bid (a temporary bid) for the task. When
all the Pre Bids have been received the auctioneer selects the one it believes
most suitable. This bid is provisionally granted and all others are provisionally
rejected. The provisionally granted bidder then prepares and sends a Definitive
Bid (a final bid) that may or may not be the same as the Pre Bid. All other
bidders have the opportunity to update and re-submit a Pre Bid at this time.

When the auctioneer receives the Definitive Bid and all the updated Pre Bids
from the provisionally rejected bidders, it compares the Definitive Bid to the rest
of the updated Pre Bids. Two things could then happen. In the first scenario, if
the Definitive Bid is still considered superior to all the updated Pre Bids, then
the auctioneer sends a Confirm Grant to the corresponding bidder and a Confirm
Reject to all other bidders. Negotiation would now be complete. In the second
scenario, if an updated Pre Bid exists that is better than the Definitive Bid, then
the auctioneer rejects (either Provisional Reject or Confirm Reject) the Definitive
Bid. It then provisionally grants the new best Pre Bid and provisionally rejects the
rest of the Pre Bids. The provisionally granted bidder then sends a Definitive Bid
and the remaining bidders can again submit updated Pre Bids, and the process re-

Modelling and Analysing the Contract Net Protocol - Extension 171

BidderMessages

W_TA

States States

Auctioneer

READY [Task Announcement]

W_PreBid
PreBidPrep

[Pre Bid]

PreBid_RCVD
[Provisional Grant]

W_DefBid

W_DcnPreBid

[Definitive Bid]

DefBid_RCVD
W_DcnDefBid

DefBidPrep

[Confirm Grant]

EXIT_C
exit_c

Fig. 1. Confirm Grant of a Definitive Bid

BidderMessages

W_TA

States States

Auctioneer

READY [Task Announcement]

W_PreBid
PreBidPrep

[Pre Bid]

PreBid_RCVD

W_PreBid

W_DcnPreBid

PreBid_RCVD
W_DcnPreBid

PreBidPrep

[Confirm Reject]

EXIT_NC
exit_nc

[Provisional Reject]

[Updated PreBid]

Fig. 2. Rejecting an Updated PreBid

peats iteratively. Negotiations will come to an end in one of two ways, either when
the auctioneer confirms the grant of a Definitive Bid (and hence firmly rejects the
remaining Pre Bids), or when there are no more updated Pre Bids to consider.
The latter may arise if the auctioneer progressively terminates negotiations with
each bidder that submits a Definitive Bid by sending a Confirm Reject in response,
hence terminating negotiations with that bidder.

Multiple auctioneers may interact with the bidders simultaneously. When a
Task Announcement is received from more than one auctioneer, a bidder will
prioritise the tasks and send Pre Bids to any number of auctioneers. On receipt
of a Provisional Grant in return, it prepares and sends a Definitive Bid, while a
Provisional Reject causes the bidder to reprioritise its tasks and send updated
Pre Bids. A Confirm Grant message commits the bidder to the task, while a Con-
firm Reject frees the bidder from any further negotiation with that auctioneer.
The bidder could however continue negotiating with the other auctioneers.

Examples of interaction between an auctioneer and a single bidder are illus-
trated in the Time Sequence Diagrams (TSD) in Figs. 1 and 2. In each TSD the
auctioneer is represented on the left and the bidder on the right. The changes in
state for each are shown down each side. The states of the auctioneers and bid-
ders are defined in Table 1. There are seven possible states for each. READY and
W TA correspond to the initial states of the auctioneers and bidders respectively.
The terminal states are EXIT NC and EXIT C (uppercase) for the auctioneers
and exit nc and exit c (lowercase) for the bidders, following the convention of [13].

In Fig. 1, the auctioneer sends a Task Announcement to a bidder, which
responds with a Pre Bid. On receipt of the Pre Bid, the auctioneer sends a Pro-
visional Grant, which results in the bidder sending a Definitive Bid for the task.
The auctioneer finally confirms this Definitive Bid to end the negotiation with
a contract (auctioneer and bidder terminate in the EXIT C and exit c states
respectively). Figure 2 shows a similar scenario, but this time the auctioneer
provisionally rejects the Pre Bid. The bidder sends an Updated Pre Bid in re-

172 J. Billington, A.K. Gupta, and G.E. Gallasch

Table 1. Representation of States

Auctioneers Bidders
READY (READY to send a Task Announcement) W TA (Waiting for a Task Announcement)

W PreBid (Waiting for Pre Bids) PreBidPrep (Pre Bid Preparation)
PreBid RCVD (Pre Bid ReCeiVeD) W DcnPreBid (Waiting for Decision on Pre Bid)

W DefBid (Waiting for Definitive Bid) DefBidPrep (Definitive Bid Preparation)
DefBid RCVD (Definitive Bid ReCeiVeD) W DcnDefBid (Waiting for Decision on Definitive Bid)

EXIT NC (EXIT with No Contract) exit nc (exit with no contract)
EXIT C (EXIT with Contract) exit c (exit with contract)

sponse to the Provisional Reject, which the auctioneer finally rejects. Negotiation
ends without a contract.

3 CPN Model of the Contract Net Protocol - Extension

Coloured Petri Nets are a form of High-level Petri net [8] in which tokens are ar-
bitrarily complex data values and places are marked by multisets of such tokens.
Each place is typed by a set of values, called a colour set, that specifies allowable
values of tokens that can mark that place. In this section we firstly list the as-
sumptions made when creating the model, define the data structures, variables
and constants used to annotate the model, and finally describe the structure and
operation of the model. We use the software tool, CPN Tools [10], to create and
analyse the model. We assume basic familiarity with Petri net concepts, however
for a detailed introduction to CPNs the reader is referred to [9,10].

3.1 Assumptions

When creating our CNP-ext model, we made the following assumptions:

1. All bidders are known to the auctioneers before the negotiations take place.
2. All messages (Task Announcement, Pre Bid, Definitive Bid, Provisional

Grant, Provisional Reject, Confirm Grant and Confirm Reject) are repre-
sented by their name only, as other information contained in these messages
does not affect the protocol’s procedures.

3. All bidders have enough resources to bid, and will always bid, in response
to all Task Announcements.

4. All the bids are received before the process of making a decision takes place,
which means that we do not have to model a deadline.

5. The communication channel is lossless but reordering.

3.2 Declarations

Listing 1 shows the declarations for the CNP-ext CPN model. We describe the
more significant declarations below. The identity of the auctioneers and bidders
are represented by the colour sets AUC (line 3) and BDR (line 8) respectively.
The identity of the auctioneers (AUC) and bidders (BDR) ranges from 1 to
themaximum number of auctioneers (MaxAucs) and maximum number of bid-
ders (MaxBdrs), respectively. Hence, there are two parameters in the model:
MaxAucs (line 2) and MaxBdrs (line 7).

Modelling and Analysing the Contract Net Protocol - Extension 173

Listing 1. Declarations for the CNP-ext CPN model

1 (∗ −−− Auctioneers −−− ∗)
2 v a l MaxAucs = 2;
3 c o l s e t AUC = i ndex A with 1..MaxAucs ;
4 var auc:AUC;
5

6 (∗ −−− Bidders −−− ∗)
7 v a l MaxBdrs = 2;
8 c o l s e t BDR = i ndex B with 1..MaxBdrs ;
9 var bdr:BDR;

10

11 (∗ −−− States −−− ∗)
12 c o l s e t STauc = with READY | W_PreBid | PreBid_RCVD | W_DefBid
13 | DefBid_RCVD | EXIT_NC | EXIT_C;
14 c o l s e t AUC_BDR_STauc = product AUC*BDR*STauc;
15 c o l s e t STbdr = with W_TA | PreBidPrep | W_DcnPreBid | DefBidPrep
16 | W_DcnDefBid | exit_nc | exit_c;
17 c o l s e t AUC_BDR_STbdr = product AUC*BDR*STbdr;
18 var st_bdr:STbdr;
19

20 (∗ −−− Messages −−− ∗)
21 c o l s e t MESauc = with TA | PG | PR | CG | CR;
22 c o l s e t ProDcn = sub se t MESauc with [PG,PR];
23 c o l s e t DefBidDcn = sub se t MESauc with [CG,CR,PR];
24 c o l s e t AUC_BDR_MESauc = product AUC*BDR*MESauc;
25 c o l s e t MESbdr = with PreBid |DefBid;
26 c o l s e t AUC_BDR_MESbdr = product AUC*BDR*MESbdr;
27 var DBdcn:DefBidDcn;
28 var prodcn:ProDcn;
29

30 (∗ −−− Bids −−− ∗)
31 c o l s e t BIDS = i n t wi th 0..MaxBdrs ;
32 c o l s e t AUC_BIDS = product AUC*BIDS;
33 c o l s e t AUC_BOOL = product AUC*BOOL;
34 c o l s e t AUC_TB_B2Rcv_W4DefBid = product AUC*BIDS*BIDS*BOOL;
35 var TBids , Bids2Rcv , Bids2Rej :BIDS;
36 var bl:BOOL;

The states of the auctioneers and bidders are defined by the colour sets STauc
(lines 12-13) and STbdr (lines 15-16) respectively, as defined in Table 1. The
colour sets MESauc (line 21) and MESbdr (line 25) define the messages sent
from auctioneers to bidders (Task Announcement-TA, Provisional Grant-PG,
Provisional Reject-PR, Confirm Grant-CG, Confirm Reject-CR) and bidders to
auctioneers (PreBid, DefBid) respectively. In the model we encode multiple auc-
tioneers and bidders within the data structures, rather than in the net structure,
thus allowing the number of auctioneers and bidders to be changed without re-
quiring changes to the net structure. Accordingly, we associate the auctioneer’s
states and messages with the identity of an auctioneer and a bidder in the colour
sets AUC BDR STauc (line 14) and AUC BDR MESauc (line 24), respectively.
It is a similar situation for the bidders, thus the colour sets AUC BDR STbdr
(line 17) and AUC BDR MESbdr (line 26) associate the identity of an auction-
eer and bidder with the states and messages of a bidder, respectively. The colour
set AUC TB B2Rcv W4DefBid (line 34) defines a 4-tuple. It records the identity
of the auctioneer, the total number of bidders participating, the number of bids
to be received, and if the auctioneer is waiting for a Definitive Bid.

174 J. Billington, A.K. Gupta, and G.E. Gallasch

Fig. 3. Main Page of the CPN Model

3.3 Model Structure

The top-level page of the hierarchically constructed CNP-ext CPN model is shown
in Fig. 3. It contains 6 places and 4 substitution transitions (double-rectangles,
each representing another model page) and provides the main structure for the
protocol. The auctioneers are modelled on the left and the bidders on the right.
They communicate via two places shown in the middle of the figure, AUCTION-
EERS 2 BIDDERS and BIDDERS 2 AUCTIONEERS, that represent a non-lossy but
reordering channel for each direction of communication. Typed by the colour sets
AUC BDR MESauc and AUC BDR MESbdr, at any instant, these places may
contain the messages of the auctioneers and bidders, each coupled with the iden-
tity of an auctioneer and bidder. These two places are initially empty.

The place Auctioneers State is typed by the colour set AUC BDR STauc and
stores the states of all the auctioneers with respect to all the bidders. It is initially
marked by triples consisting of the cartesian product of all auctioneers with all
bidders, paired with the READY state. For example for MaxAucs=2 and MaxB-
drs=2, the initial marking would be 1‘(A(1),B(1),READY)++ 1‘(A(1),B(2),
READY)++1‘(A(2),B(1),READY)++1‘(A(2),B(2),READY), where ++ is mul-
tiset addition. The place Bidders State that models the states of the bidders can
be described in a similar way.

The place Processing, typed by the colour set AUC BOOL (see Listing. 1),
keeps track of the auctioneers that are currently processing bids. In the initial
marking, no auctioneers are processing bids.

The place Bids is typed by the colour set AUC TB B2Rcv W4DefBid. It is
initially marked with each of the auctioneers negotiating with MaxBdrs bidders,
with MaxBdrs bids to be received, with none waiting for a Definitive Bid.

Modelling and Analysing the Contract Net Protocol - Extension 175

3.4 Model of the Auctioneers

The behaviour of the auctioneers is modelled by the two substitution transitions,
Send Messages and Receive Bids, in Fig. 3.

Send Messages. This substitution transition represents the page shown in
Fig. 4, which details the procedures for the auctioneers to send messages to the
bidders. It consists of 6 executable transitions and 2 additional places. The place
Bid Selected, typed by the colour set AUC BOOL (see Listing 1), shows whether
the auctioneers have selected a Definitive Bid in the negotiation process. The
initial marking is such that none of the auctioneers have confirmed the grant of
a Definitive Bid. The place Bids2Reject, typed by the colour set AUC BIDS (see
Listing 1), records the number of updated Pre Bids to reject after a Definitive
Bid has been granted. The initial marking shows that no auctioneers have any
bids to reject.

This page operates as follows. Initially, all the auctioneers are in the state
READY with respect to all the bidders, and hence are ready to broadcast a
Task Announcement to all the bidders. The Broadcasting TAs transition models
an auctioneer initiating negotiations by sending a Task Announcement to each
of the bidders. Firing this transition causes the selected auctioneer to change
state to W PreBid with respect to all the bidders, and a Task Announcement to
be broadcast to each of the bidders. This transition is concurrently enabled for
all auctioneers.

At some point, all bidders will respond to the TA with a Pre Bid. When the
auctioneer has received all Pre Bids, it would be in the state PreBid RCVD
with respect to all the bidders, the marking of place Bids would indicate that no
more bids need to be received, and a true value with respect to this auctioneer
on place Processing indicates that the auctioneer can now process the bids. At
this instant, the transition Snd Prov Dcns (Send Provisional Decisions) would
be enabled. When it fires it sends a provisional decision to each of the bidders.
When there is only one bidder, it is sent either a Provisional Grant (PG) or a
Provisional Reject (PR), modelled as a non-deterministic choice by the variable
prodcn (see Listing 1). Accordingly, the auctioneer changes state to W DefBid
or W PreBid respectively. When there is more than one bidder (MaxBdrs > 1),
then one bidder is sent a PG (also modelled as a non-deterministic choice) and
the rest are sent a PR. As before, the auctioneer changes state to W DefBid
with respect to the bidder that it sent the PG, and W PreBid with respect
to rest of the bidders. In either case, a false is returned to the place Process-
ing with respect to this auctioneer, indicating that processing has finished for
now.

Later, when the auctioneer receives the Definitive Bid (from the provision-
ally granted bidder) and all updated Pre Bids (from the provisionally rejected
bidders), the transition Snd DefBid Dcn (Send Definitive Bid Decision) becomes
enabled. This transition models the auctioneer’s decision on the Definitive Bid,

176 J. Billington, A.K. Gupta, and G.E. Gallasch

Fig. 4. Send Messages

Modelling and Analysing the Contract Net Protocol - Extension 177

whether to send a Confirm Grant (CG), Confirm Reject (CR) or Provisional
Reject (PR) to the corresponding bidder. In the case of CG, all other bidders
are sent a CR and negotiations cease. In the case of either a CR or PR, another
Pre Bid is selected, a PG is sent to the corresponding bidder, and the remaining
bidders are sent a PR.

The outcome of the Definitive Bid decision is again non-deterministic, mod-
elled by the variable DBdcn (see Listing 1). When the transition Snd DefBid Dcn
fires, the auctioneer changes state to EXIT C, EXIT NC or W PreBid depend-
ing upon the value of the variable DBdcn (either CG, CR or PR) as can be seen
by the expression on the arc joining the transition to the place Auctioneers State.
A CG decision deposits a true on the place Bid Selected while a CR or a PR re-
tains the value to false. Also, the number of bidders to be sent a CR (recorded in
the Bids2Reject place) is updated accordingly. The expression on the arc joining
the transition to the place Bids updates the total bids and the number of bids
to be received. In case of a CG decision, both become 0 as the auctioneer would
have confirmed a Definitive Bid and hence would not be expecting any more
bids. In case of a CR decision, the total bids would be decremented by 1 as the
negotiation would with that bidder would cease, and the number of bids to be
received would remain 0. Finally, in case of a Provisional Reject (PR) decision,
the total bids would remain unchanged as the bidder would still be involved in
the negotiation, and the number of bids to be received would be 1. The condition
on the arc joining the transition to the place Processing updates the processing
status of this auctioneer accordingly.

If the auctioneer sends a CG to the bidder of the Definitive Bid, it then
needs to send a CR to the remaining bidders. For this scenario, the transition
BidChosen RejRemBids (Bid Chosen Reject Remaining Bids) is enabled, which
sends a CR to all the remaining bidders. Its occurrence also causes the auc-
tioneer to change state from PreBid RCVD to EXIT NC with respect to each
of the rejected bidders. The expression on the arc joining the transition to the
place Processing ensures that when the last bid is sent a CR (Bids2Rej=1), the
auctioneer is no longer in the processing state.

If the auctioneer sends a CR or a PR to the bidder of the Definitive Bid,
then the auctioneer needs to first reselect a Pre Bid (send a PG), and then
provisionally reject all the remaining updated Pre Bids. These activities need
to occur in sequence and are modelled by the transitions Reselect PreBid and
Prov Rej Updated PreBid, where the transition Prov Rej Updated PreBid will only
occur after the occurrence of Reselect PreBid.

The firing of Reselect PreBid causes the auctioneer to change state from Pre-
Bid RCVD to W DefBid and also sends a PG to the bidder. The boolean false
is on the place Bid Selected with respect to this auctioneer, indicating that a
Definitive Bid has not been selected. Also, the expression on the arc joining the
transition to the place Bids increments the value of the bids to be received by 1
(Bids2Rcv+1), and sets the auctioneer to be waiting for a Definitive Bid (shown
by the boolean true).

178 J. Billington, A.K. Gupta, and G.E. Gallasch

Fig. 5. Receive Bids

The transition Prov Rej Updated PreBid is used to reject the remaining updated
Pre Bids only after the process of reselecting a Pre Bid has occurred, which
is enforced by its guard. When it occurs, the auctioneer changes state from
PreBid RCVD to W PreBid with respect to one bidder, and sends a PR message
to that bidder. Each time the transition occurs, the number of bids to receive
is incremented by 1 (the arc from Prov Rej Updated PreBid to the place Bids).
When the auctioneer has finished sending a PR to all the remaining bidders, a
boolean false is deposited on the place Processing as evaluated by the expression
on the arc joining the transition to the place Processing.

Receive Bids. This substitution transition (see Fig. 5) models the reception
of bids and comprises 2 executable transitions: Rcv PreBid (Receive Pre Bid),
and Rcv DefBid (Receive Definitive Bid). The firing of Rcv PreBid removes a Pre
Bid from the BIDDERS 2 AUCTIONEERS place, causes the auctioneer to change
state to PreBid RCVD with respect to the corresponding bidder, and decrements
the number of bids to be received by one (arc from Rcv PreBid to Bids). The
Rcv DefBid transition operates in exactly the same way, except that it receives
a Definitive Bid from the channel and changes the state of the auctioneer to
DefBid RCVD with respect to the corresponding bidder. When the final bid is
received, the processing status of the auctioneer is switched to true (arcs from
the transitions to Processing) and the auctioneer can begin to process the bids
and send responses.

3.5 Model of the Bidders

The behaviour of the bidders is modelled by the two substitution transitions,
Receive Messages and Send Bids, from Fig. 3.

Receive Messages. The page corresponding to this substitution transition
is shown in Fig. 6 and comprises five transitions that model the reception of

Modelling and Analysing the Contract Net Protocol - Extension 179

(auc,bdr,exit_c)

(auc,bdr,W_DcnDefBid)

(auc,bdr,CG)

(auc,bdr,exit_nc)

(auc,bdr,PreBidPrep)

(auc,bdr,DefBidPrep)

(auc,bdr,st_bdr)

(auc,bdr,st_bdr)

(auc,bdr,W_DcnPreBid)

(auc,bdr,CR)

(auc,bdr,PR)

(auc,bdr,PG)

(auc,bdr,PreBidPrep)

(auc,bdr,W_TA)
(auc,bdr,TA)

Rcv CG

Rcv CR

[st_bdr=W_DcnPreBid
orelse
st_bdr=W_DcnDefBid]

Rcv PR

[st_bdr=W_DcnPreBid
orelse
st_bdr=W_DcnDefBid]

Rcv PG

Rcv TA

Bidders
State

I/O

AUC_BDR_STbdr

AUCTIONEERS
2 BIDDERS

In

AUC_BDR_MESauc

In
I/O

Fig. 6. Receive Messages

(auc,bdr,W_DcnDefBid)

(auc,bdr,DefBidPrep)

(auc,bdr,W_DcnPreBid)

(auc,bdr,PreBidPrep)

(auc,bdr,DefBid)

(auc,bdr,PreBid)
Snd PreBid

Snd DefBid

BIDDERS 2
AUCTIONEERS

Out

Bidders
State

I/O

AUC_BDR_MESbdr AUC_BDR_STbdr

Out I/O

Fig. 7. Send Bids

messages from auctioneers by the bidders. Transition Rcv TA (Receive Task An-
nouncement) models the reception of the Task Announcement, the firing of which
causes the TA to be removed from the channel place and the state of the bidder
to change from W TA to PreBidPrep with respect to the corresponding auction-
eer (seen in the inscriptions on the arcs between Rcv TA and the Bidders State
place). Similarly, the firing of transitions Rcv PG (Receive Provisional Grant),
Rcv CG (Receive Confirm Grant), Rcv PR (Receive Provisional Reject) and Rcv
CR (Receive Confirm Reject) removes the respective message from the channel
place and update the state of the bidder as shown in Fig. 6.

Send Bids. The page corresponding to this substitution transition is given
in Fig. 7. It models the procedures for sending a Pre Bid (Snd PreBid) and a
Definitive Bid (Snd DefBid).

180 J. Billington, A.K. Gupta, and G.E. Gallasch

4 State Space Analysis Results

As all the auctioneers are independent entities and interact with the bidders in
a similar way, we analyse the protocol properties for a single auctioneer. Table 2
shows the state space analysis results generated by CPN Tools for different values
of MaxBdrs and Fig. 8 shows the reachability graph for one auctioneer and one
bidder.

From Table 2, we see that the size of the state space increases as the num-
ber of bidders increases. Also, in each case, the number of Strongly Connected
Components (Scc’s) is less than that in the state space, signifying the presence
of cyclic behaviour in the system. This is evident in Fig. 8 and is expected.

4.1 Absence of Deadlocks and Consistency in Beliefs

We can observe from Table 2 that in each case the number of dead markings
is one more than MaxBdrs, i.e. No. of Dead Markings = MaxBdrs + 1. This
matches the results obtained in [3] for the Contract Net Protocol, which has
a single auctioneer dealing with multiple bidders simultaneously. In each case
analysed, one of the dead markings corresponds to no contract being established
at the end of the negotiations (marking 14 in Fig. 8). This is caused by the
auctioneer firmly rejecting each definitive bid, thus ending communication with
the corresponding bidder, until no bidders remain. The other MaxBdr dead
markings correspond to a contract being formed between the auctioneer and one
of the MaxBdr bidders. For MaxBdrs=1, there exists only one such dead marking
(marking 15 in Fig. 8). All these MaxBdrs+1 dead markings represent expected
termination of the protocol. This is illustrated with the help of Fig. 9, which
shows the node descriptors of the dead markings for the case of MaxBdrs=3 and
MaxAucs=1.

In each of the dead markings in Fig. 9, the place Bids contains a token,
(A(1),0,0,false). This records the auctioneer’s identity (A(1)), that no bidders
are still involved in negotiations (the first 0), that the auctioneer is not expect-
ing any more bids (the second 0), and is not waiting for a definitive bid from
a bidder (false). Additionally, all dead markings show that the Processing place

Table 2. State space analysis results as a function of the parameter MaxBdrs

Properties/MaxBdrs 1 2 3 4 5

State Space Nodes 15 115 934 7761 63542
State Space Arcs 16 187 2101 22661 228841
Time (hh:mm:ss) 00:00:00 00:00:00 00:00:01 00:00:18 00:21:15
Scc Graph Nodes 7 50 290 1546 7658
Scc Graph Arcs 6 95 853 7153 59221
Dead Markings 2 3 4 5 6

Home Space (Dead Markings) true true true true true
Dead Transition Instances 3 1 none none none

Channel Bound 1 2 3 4 5

Modelling and Analysing the Contract Net Protocol - Extension 181

Broadcasting_TAs

Rcv_TA

Snd_PreBid

Rcv_PreBid

Snd_Prov_Dcns

1
0:1

Rcv_PG

Snd_DefBid

5
1:2

Rcv_DefBid

Snd_DefBid_Dcn

Rcv_PR

Snd_Prov_Dcns

6
1:1

Rcv_CGRcv_CR

Rcv_PR

14
1:0

Snd_DefBid_Dcn

15
1:0

Snd_DefBid_Dcn

12
1:1

13
1:1

10
1:3

11
1:1

2
1:1

3
3:1

4
1:1

7
1:1

8
1:1

9
1:1

Fig. 8. Reachability Graph (MaxAucs = MaxBdrs = 1)

contains the token (A(1),false), meaning A(1) has replied to all bidders and is
no longer processing bids, the Bids2Reject place contains the token (A(1),0),
meaning there are no more bids left to be rejected, and both channel places are
empty, meaning there are no unprocessed messages or bids. This all represents
expected and desirable behaviour.

The markings differ, however, on the Auctioneers State, Bidders State and Bid
Selected places. Marking 925 corresponds to the case where no contract is formed
at the end of the negotiations. Hence, the marking of these places indicates that
the auctioneer exited without a contract with any of the bidders, all bidders exited
without a contract with the auctioneer, and no bid was selected, respectively.

The other three dead markings, 572, 547 and 522, correspond to the cases
where a contract was awarded to bidder 1, 2 and 3 respectively. The marking of
Bid Selected is true for A(1) in all three markings. The marking of Auctioneers
State shows that the auctioneer exited with a contract with respect to one of
the bidders, and no contract with respect to the other bidders. The marking of
Bidders State shows that one bidder exited with a contract while the others did
not. In all three markings, the auctioneer exited with a contract with respect
to the bidder that exited with a contract. Hence, consistency of belief holds

182 J. Billington, A.K. Gupta, and G.E. Gallasch

925: 572:
Bids: 1‘(A(1),0,0,false) Bids: 1‘(A(1),0,0,false)
Processing: 1‘(A(1),false) Processing: 1‘(A(1),false)
Auctioneers State: 1‘(A(1),B(1),EXIT NC)++ Auctioneers State: 1‘(A(1),B(1),EXIT C)++
1‘(A(1),B(2),EXIT NC)++ 1‘(A(1),B(2),EXIT NC)++
1‘(A(1),B(3),EXIT NC) 1‘(A(1),B(3),EXIT NC)
AUCTIONEERS 2 BIDDERS: empty AUCTIONEERS 2 BIDDERS: empty
Bidders State: 1‘(A(1),B(1),exit nc)++ Bidders State: 1‘(A(1),B(1),exit c)++
1‘(A(1),B(2),exit nc)++ 1‘(A(1),B(2),exit nc)++
1‘(A(1),B(3),exit nc) 1‘(A(1),B(3),exit nc)
BIDDERS 2 AUCTIONEERS: empty BIDDERS 2 AUCTIONEERS: empty
Bid Selected: 1‘(A(1),false) Bid Selected: 1‘(A(1),true)
Bids2Reject: 1‘(A(1),0) Bids2Reject: 1‘(A(1),0)
547: 522:
Bids: 1‘(A(1),0,0,false) Bids: 1‘(A(1),0,0,false)
Processing: 1‘(A(1),false) Processing: 1‘(A(1),false)
Auctioneers State: 1‘(A(1),B(1),EXIT NC)++ Auctioneers State: 1‘(A(1),B(1),EXIT NC)++
1‘(A(1),B(2),EXIT C)++ 1‘(A(1),B(2),EXIT NC)++
1‘(A(1),B(3),EXIT NC) 1‘(A(1),B(3),EXIT C)
AUCTIONEERS 2 BIDDERS: empty AUCTIONEERS 2 BIDDERS: empty
Bidders State: 1‘(A(1),B(1),exit nc)++ Bidders State: 1‘(A(1),B(1),exit nc)++
1‘(A(1),B(2),exit c)++ 1‘(A(1),B(2),exit nc)++
1‘(A(1),B(3),exit nc) 1‘(A(1),B(3),exit c)
BIDDERS 2 AUCTIONEERS: empty BIDDERS 2 AUCTIONEERS: empty
Bid Selected: 1‘(A(1),true) Bid Selected: 1‘(A(1),true)
Bids2Reject: 1‘(A(1),0) Bids2Reject: 1‘(A(1),0)

Fig. 9. Node Descriptors for the dead markings (MaxAucs =1 and MaxBdrs =3)

for these three markings, as it does for marking 925. We conjecture that this
property holds for any value of MaxBdrs.

4.2 Absence of Livelocks and Proper Termination

Although the system exhibits cyclic behaviour, it does not livelock. This is shown
in Table 2, where we record the result of a state space query that checks whether
all dead markings form a home space. A home space is a set of markings with
the property that all markings can reach at least one of its members. The results
of the query show that all markings can reach at least one dead marking, given
suitable fairness assumptions, hence there are no livelocks. We conjecture that
this property holds for any value of MaxBdrs. Because the system can always
reach at least one dead marking, and that all dead markings are desirable, we
conclude that the system terminates correctly.

4.3 Absence of Dead Code

Dead transitions equate to dead code. From Table 2, for 3 ≤ MaxBdrs ≤ 5 we see
that there are no dead transitions. We conjecture that this holds for all MaxBdrs
≥ 3. However, for MaxBdrs = 1 we see that there are three dead transitions.
These correspond to the transitions Reselect PreBid, Prov Rej Updated PreBid
and BidChosen RejRemBids. An auctioneer may reply to a Definitive Bid with
either a CG, CR or a PR. If the auctioneer replies with a CG, then there are
no other bidders to which CR’s need be sent, hence BidChosen RejRemBids is

Modelling and Analysing the Contract Net Protocol - Extension 183

dead. If the auctioneer replies with a CR or PR, there are no Pre Bids for
the auctioneer to provisionally grant, hence no other Pre Bids to provisionally
reject. Hence Reselect PreBid and Prov Rej Updated PreBid are dead. Therefore,
this result is expected. We also see from Table 2 that there is one dead transition
when MaxBdrs=2. This corresponds to the transition Prov Rej Updated PreBid.
If there are only two bidders, and the auctioneer responds with a CR or PR to
a Definitive Bid from one of them, the only Pre Bid is provisionally granted and
hence there are no other Pre Bids for the auctioneer to provisionally reject. This
is also expected behaviour.

4.4 Channel Bound

Table 2 shows that the channel places are bounded by MaxBdrs for all cases we
examined. This can be explained by noting that the single auctioneer interacting
with MaxBdrs bidders will, at any instant, send no more than a single message
to each of the MaxBdrs bidders, hence a bound of MaxBdrs messages. Similarly,
each bidder, at any instant, sends a single message to the auctioneer in reply,
hence a bound of MaxBdrs bids.

5 Conclusions and Future Work

In this paper, we have presented, for the first time, an abstract parametric model
of the CNP-ext [1] and analysed the protocol using the state space techniques.
Our model captures the multithreaded nature of the auctioneers dealing with the
bidders concurrently and provides a semantics for the Protocol Flow Diagram
representation in [13]. We have proved a number of properties for one auctioneer
and a number of bidders from 1 to 5. We have shown that the protocol will always
terminate correctly, and that there is consistent belief between the auctioneer
and bidders. We have demonstrated that there are no livelocks, and that the
only dead transitions are expected. Finally, we have also shown that both the
channel bounds are limited to MaxBdrs. We conjecture that these properties
hold for all MaxBdrs > 0.

In the future we would like to extend the verification of CNP-ext to any num-
ber of bidders, not just 1 to 5. We would then like to relax Assumptions 1 and 4,
by extending the model to open multi-agent systems and introducing deadlines,
respectively. Finally, we would like to extend this work to the Extended Con-
tract Net Protocol [5,6] and the Provisional Agreement Protocol [14,15,16,17,18]
which are more elaborate and complex than CNP-ext.

References

1. Aknine, S., Pinson, S., Shakun, M.F.: An Extended Multi-Agent Negotiation Pro-
tocol. Autonomous Agents and Multi-Agent Systems 8(1), 5–45 (2004)

2. Billington, J., Gallasch, G.E., Han, B.: A Coloured Petri Net Approach to Protocol
Verification. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency
and Petri Nets 2003. LNCS, vol. 3098, pp. 210–290. Springer, Heidelberg (2004)

184 J. Billington, A.K. Gupta, and G.E. Gallasch

3. Billington, J., Gupta, A.K.: Effectiveness of Coloured Petri nets for Modelling
and Analysing the Contract Net Protocol. In: Proceedings of 8th Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus,
Denmark, October 22-24, 2007, pp. 49–65 (2007)

4. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley Longman, Amsterdam (1999)

5. Fischer, K., Kuhn, N.: A DAI Approach to Modelling the Transportation Domain,
DFKI Research Report RR-93-25. German Research Centre for Artificial Intelli-
gence (DFKI), Saarbrücken (1993)

6. Fischer, K., Müller, J.P., Heimig, I., Scheer, A.W.: Intelligent Agents in Virtual
Enterprises. In: Proceedings of the 1st International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology, London, UK, pp.
205–223 (1996)

7. Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org/specs/
fipa00029/SC00029

8. ISO/IEC. Software and Systems Engineering – High-level Petri Nets – Part 1:
Concepts, Definitions and Graphical Notation. ISO/IEC 15909-1, 1 (December
2004)

9. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, 2nd edn. Monographs in Theoretical Computer Science, vol. 1 to 3. Springer,
Heidelberg (1997)

10. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Soft-
ware Tools for Technology Transfer 9(3-4), 213–254 (2007)

11. Paurobally, S.: Rational Agents and the Processes and States of Negotiation. PhD
thesis, Imperial College, London, UK (2002)

12. Paurobally, S., Cunningham, J., Jennings, N.R.: Verifying the Contract Net Pro-
tocol: A Case Study in Interaction Protocol and Agent Communication Language
Semantics. In: Proceedings of 2nd International Workshop on Logic and Commu-
nication in Multi-Agent Systems, Nancy, France, pp. 98–117 (2004)

13. Perugini, D.: Agents for Logistics: A Provisional Agreement Approach. PhD thesis,
The University of Melbourne, Victoria, Australia (2006)

14. Perugini, D., Lambert, D.: A Distributed Agent Approach to Global Transportation
Scheduling. In: Proceedings of IEEE/WIC International Conference on Intelligent
Agent Technology (IAT), Halifax, Canada (2003)

15. Perugini, D., Lambert, D.: Distributed Information Fusion Agents. In: Proceedings
of the 6th International Conference on Information Fusion, Cairns, Australia (2003)

16. Perugini, D., Lambert, D.: Agent-Based Transport Scheduling in Military Logistics.
In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004. LNCS (LNAI),
vol. 3394. Springer, Heidelberg (2004)

17. Perugini, D., Lambert, D.: Provisional Agreement Protocol for Global Transporta-
tion Scheduling. In: Proceedings of International Workshop Agent in Traffic and
Transportation as part of AAMAS 2004, New York, U.S (2004)

18. Perugini, D., Lambert, D.: From Single Static to Multiple Dynamic Combinatorial
Auctions. In: Proceedings of IEEE/WIC International Conference on Intelligent
Agent Technology (IAT), Compiegne University of Technology, France (2005)

19. Smith, R.G.: The Contract Net Protocol: High-Level Communication and Con-
trol in a Distributed Problem Solver. IEEE Transactions On Computers C-29(12),
1104–1113 (1980)

http://www.fipa.org/specs/
fipa00029/SC00029

Program Repair Suggestions from Graphical

State-Transition Specifications

Farn Wang1,2 and Chih-Hong Cheng1

1 Dept. of Electrical Engineering, National Taiwan University, Taiwan, ROC
2 Grad. Inst. of Electronic Engineering, National Taiwan University, Taiwan, ROC

farn@cc.ee.ntu.edu.tw

Abstract. In software engineering, graphical formalisms, like state-
transition tables and automata, are very often indispensable parts of
the specifications. Such a formalism usually leads to specification refine-
ment that maintains the simulation/bisimulation relation between an
implementation and a specification. We investigate how to use formal
techniques to generate suggestions for repairing a program that breaks
the bisimulation relation with a graphical specification. We use state
graphs as a unified representation of the program models and specifica-
tions. We propose a technique that may evaluate the cost of a repair.
We present a PTIME heuristic algorithm that suggests how to repair a
model state graph. We then explain how to derive repair suggestions for
programs from the repair for state graphs. Finally, we report our experi-
ment that checks the performance of our repair algorithms and the costs
of our repairs.

Keywords: state graph, state transition relation, repair, graph theory,
cost, evaluation, equivalence, bisimulation.

1 Introduction

The construction of large complex software with quality assurance is becoming
more important than ever. In general, quality assurance is achieved with verifica-
tion techniques, i.e., checking if the behavior of a design meets a specification. Up
to now, for program verification, various techniques have been developed, includ-
ing testing [14] and model checking [5]. Once a bug is reported in the verification
process, locating and repairing the bug still rely heavily on human intervention
which is costly, time-consuming, and error-prone. In fact, the process of program
repair remains to be the least automated in system development. When talking
about repairing, the cost is usually taken into account. Thus, without taking
repair cost into consideration, research work in program repair is not likely to
be useful in practice. This work is to develop techniques for repair suggestions of
programs with a cost concept against graphical state-transition specifications.

Graphical specification formalisms have been widely used in software engi-
neering and telecommunication industry. Examples are the state-transition dia-
grams used in the specification of many protocols, the statecharts of UML, the

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 185–200, 2008.
� IFIP International Federation for Information Processing 2008

186 F. Wang and C.-H. Cheng

abstract machines of SDL, automata, . . ., etc. In this work, we adopt such a for-
malism, called state graph, as a unified representation for both program models
and state-transition specifications. There are many algorithms and tools that
can construct the state graphs of programs automatically [1].

There are many definitions for the verification between two state graphs. For
example, we can compare sets of traces of the two state graphs. However, state
graphs are usually used as a suggestion for the behavior structures of a program
in a state-by-state and transition-by-transition way. Thus we feel that simulation
checking between state graphs is a better choice in this work. Intuitively, one
state graph Am is simulated by another As if and only if every transition that
Am can make can also be matched by As at a corresponding state. But this
framework sometimes is still not good enough for practical verification in the
industry. For one thing, a specification state graph could be vacuously satisfied
by a faulty program that yields no behavior at all. One way to cope with this
problem is to also specify some good behaviors which the program must exhibit.
Specifically, we can have a pair of state graphs, A

(l)
s and A

(u)
s respectively for the

lower-bound and the upper-bound specifications. Given the model state graph
Am of a program, we can thus verify whether A

(1)
s is simulated by Am and Am

is simulated by A
(u)
s .

However, we feel that the framework of simulation-checking with both a lower-
bound and an upper-bound specifications is a little complicated and may blur the
technical presentation in this article. Instead, we use a less involved framework
called bisimulation checking [13,15]. Intuitively, two state graphs are bisimulation
equivalent if and only if for every corresponding state pairs of the two graphs,
every transition that the one graph can make at a state can also be matched by
the other graph at a corresponding state, and vice versa. In a not very rigorous
sense, bisimulation-checking is like simulation-checking when the lower-bound
and upper-bound state-transition specifications are the same. The techniques
we present in this work for the framework of bisimulation-checking should also
be applicable to the framework of simulation-checking with lower-bound and
upper-bound specifications.

In repairing a program for a specification, engineers usually can evaluate
whether a repair is better than another. For example, a better repair might
introduce less changes to a program, might run more efficiently, might use less
memory, might be more readable, . . ., and etc. It is easy to see that there are
many dimensions in evaluating how good a repair decision is. Thus it is in general
difficult to define a formal approach to evaluate repairs in a way that matches
human engineers’ intuition. Anyway, we still feel it is important to have the
first step in formalizing the evaluation of repairs. In this work, we borrow the
graph edit-distance concept in graph theory for the evaluation of the ‘cost’ of
repairs. A repair is defined as a sequence of edit operations to Am to make Am

and As bisimulation equivalent. We consider several types of edit operations to
state graphs. The length of an edit operation sequence naturally defines the cost
of the corresponding repair. In such a context, cost of repairs can help engineers
to evaluate the degree of changes to be introduced with a repair. This can be

Program Repair Suggestions from Graphical State-Transition Specifications 187

useful in maintaining legacy software when engineers may prefer not to introduce
significant changes.

In figure 1, we present our framework of verification and program repair sug-
gestion. We construct the state graphs from a program and a graphical specifi-
cation of a state transition relation. We then check the bisimulation equivalence

graphical

state−transition

specification

model
state
graph

bisimulation

equivalent ?

program
Yes

construct

state graph

repair with

a cost concept

No
construct

program

repair with

a cost concept

state
graph

specification

Fig. 1. Framwork of verification and program repair

between the program state graph and the specification state graph. If they are
not bisimulation equivalent, then we use the techniques in this work to construct
suggestions for repairing the program with a cost concept.

In this work, we establish an upper-bound on the cost to repair a model state
graph with respect to a specification one. We also present a logic-based algo-
rithm for the calculation of an upper-bound for the minimum repair cost. We
then present a PTIME heuristic algorithm for constructing repairs. We have im-
plemented the heuristic algorithm and compared its performance with a straight-
forward exploration procedure that searches through the space of repairs. We
have experimented against several benchmarks. Our heuristic repair algorithm
can sometimes find a repair at a cost lower than the just-mentioned upper-bound.
We feel that the heuristic algorithm could be used as a foundation for further
investigation in this research direction. Finally, we explain how to convert the
repair for state graphs to the repair suggestions for programs.

The rest of the paper is presented as follows. Section 2 reviews related work.
Section 3 briefly defines state graphs and bisimulation and explains how pro-
grams can be converted to models as state graphs. Section 4 discusses the cost
evaluation of repairs. Section 5 establishes an upper-bound of the minimum-
cost repair for a given repair task and presents an algorithm for calculating the
upper-bound. Section 6 presents algorithms for the construction of repairs with
a cost concept and explains how to repair a program based on the repair of the
corresponding model state graph. Section 7 reports our experiment. Section 8 is
for the conclusion and possible future directions.

2 Related Work

Jobstmann et al. viewed the program repair problem as a game. Given a set of
suspicious statements (information from fault localization), they first relax the

188 F. Wang and C.-H. Cheng

constraints on those suspicious statements and then look for a further constraint
of the statements to make the program satisfy specifications [12]. Thus the pos-
sible program repairs are restricted to the original architectures of the models.
The work of Griesmayer et al. could be viewed as an extension in this direction
[9]. In contrast, our framework does not constrain ourselves to those repairs con-
forming to the original architectures of the model automata. We allow for any
repaired model that can be represented as a state graph. Our framework also
enables the analysis of repair costs. Moreover, our framework does not rely on
the availability of a fault localizer.

There have been discussions in the Artificial Intelligence (AI) community on
repair automation. We discuss two of them in the following. Buccafurri et al.
argued, with examples, for the connection between the system repair problem
and abductive theory revision problem [3]. They also argued that the repair cost
can be estimated with the length of the corresponding edit operation sequence
and proposed heuristics to avoid redundancy and optimize in the search of the
minimum repair.

Ding and Zhang defined the basic repair steps of Kripke model for specifica-
tions in LTL (linear-time temporal logic) [6]. To formalize the concept of repair
cost, they defined the ordering among repairs and presented theorems in charac-
terizing the minimum repairs for specifications like Fψ and ψ1 ∧ ψ2. They also
presented an algorithm to repair Kripke models for CTL specifications [7].

In this work, we also present a logic-based algorithm for the calculation of
MCS between graphs. At this moment, there are many tools that can construct
the MCS between two graphs, for instance, SimPack [16]. But, to our knowledge,
no existing tools support the construction of MCS’ of graphs with both arc and
vertex labels.

3 State Graphs

For convenience, we have the following notations. Given a set or a sequence V ,
the size (number of elements) of V is denoted |V |. Given a function f , we let
f−1 be the inverse of f . Also, ‘iff’ is a shorthand for “if and only if.”

Definition 1. (State graphs) A state graph A on a set P of atomic proposi-
tions and an alphabet Σ is a tuple (Q, P, μ, Σ, E) with the following constraints.

• Q is a finite set of states.
• P is a finite set of atomic propositions. We assume there is an atomic propo-

sition ini ∈ P that denotes whether a state is initial.
• μ : Q �→ (P �→ {false, true}) is a labeling function for the states.
• Σ is a finite set of input symbols.
• E ⊆ (Q × Σ × Q) is a finite set of transitions.

Also, we let ini(A) = {q | μ(q, ini)} be the set of initial states of A. �
There are many known techniques that allow us to abstract a program into a state
graph [1]. Thus state graph can be used as a unified representation for both our
program models and our graphical state-transition specifications. For conciseness

Program Repair Suggestions from Graphical State-Transition Specifications 189

of presentation, in thiswork,weuse the following bisimulation relation [13] to define
the verification problem between two state graphs.

Definition 2. (Bisimulation of state graphs) Given a set P of atomic propo-
sitions, a set Σ of input symbols, and two state graphs A1 = (Q1, P, μ1, Σ, E1)
and A2 = (Q2, P, μ2, Σ, E2), a bisimulation B between A1 and A2 is a relation
B ⊆ Q1 × Q2 such that for every (q1, q2) ∈ B, the following restrictions hold.

• μ1(q1) = μ2(q2).
• For every (q1, a, q′1) ∈ E1, there is a (q′1, q

′
2) ∈ B with (q2, a, q′2) ∈ E2.

• For every (q2, a, q′2) ∈ E2, there is a (q′1, q
′
2) ∈ B with (q1, a, q′1) ∈ E1.

A1 and A2 are bisimulation equivalent, in symbols A1 ≡ A2, iff there is a bisim-
ulation B between A1 and A2 with the following restrictions.

• For every q1 ∈ ini(A1), there is a q2 ∈ ini(A2) with (q1, q2) ∈ B.
• For every q2 ∈ ini(A2), there is a q1 ∈ ini(A1) with (q1, q2) ∈ B. �

Bisimulation preserves all properties expressible in the propositional μ-calculus,
which subsumes CTL* [8] in expressiveness. The maximal bisimulation between
two state graphs can be constructed in deterministic polynomial time [15].

4 Repairs and Their Cost Estimation

As we have said that, there are good repairs and bad repairs. It is in general
difficult to evaluate how good a repair is. We first formalize the concept of repairs
to state graphs. As in [3,6,7], we may define a repair of a model state graph as
a sequence of graph-edit operations that transforms the graph to one that is
bisimulation equivalent to a specification. In a repair, we allow the following
four types of basic edit operations. Suppose we are given a state graph A =
(Q, P, μ, Σ, E).

• State addition: Given a state q and a set L ⊆ P , λX.state add(X, q, L) is
an operation that adds state q to X with labels in L. Formally speaking,
state add(A, q, L) is a new state graph (Q ∪ {q}, P, μ′, Σ, E) such that μ′ is
identical to μ except that μ′(q) = L. Note that if q ∈ Q, then the addition
has no effect.

• State deletion: Given a state q, λX.state del(X, q) is an operation that
takes state q out of state graph X . Formally speaking, state del(A, q) is a
new state graph (Q−{q}, P, μ, Σ, E). Note that if q 	∈ Q, then the operation
does not have an effect. Also deleting a state with incoming or outgoing
transitions has no effect.

• Transition addition: Given two states q, q′ ∈ Q and an a ∈ Σ,
λX.xtion add(X, q, a, q′) is an operation that adds transition (q, a, q′) to
state graph X . Formally speaking, xtion add(A, q, a, q′) is a new state graph
(Q ∪ {q}, P, μ, Σ, E ∪ {(q, a, q′)}). In case q 	∈ Q, q′ 	∈ Q, or a 	∈ Σ,
xtion add(A, q, a, q′) = A.

• Transition deletion: Given two states q, q′ ∈ Q and an a ∈ Σ,
λX.xtion del(X, q, a, q′) is an operation that takes transition (q, a, q′)
out of state graph X . Formally, xtion del(A, q, a, q′) is a new state graph

190 F. Wang and C.-H. Cheng

(Q ∪ {q}, P, μ, Σ, E − {(q, a, q′)}). In case q 	∈ Q or q′ 	∈ Q, or a 	∈ Σ,
xtion del(A, q, a, q′) = A.

An edit sequence is a sequence of edit operations. Given an edit sequence e1e2 . . . en

on a state graph A, the result of the sequence on A, in symbols Ae1e2 . . . en, is de-
fined inductively as follows.

• Aε = A where ε is the null sequence.
• A (λX.state add(X, q, L)) e2 . . . en = state add(A, q, L)e2 . . . en.
• A (λX.state del(X, q)) e2 . . . en = state del(A, q)e2 . . . en.
• A (λX.xtion add(X, q, a, q′)) e2 . . . en = xtion add(A, q, a, q′)e2 . . . en.
• A (λX.xtion del(X, q, a, q′)) e2 . . . en = xtion del(A, q, a, q′)e2 . . . en.

The cost of a repair σ = e1 . . . en is defined as |σ| = n, i.e., the length of σ. For
example, in figure 2, we have (a) for a model graph and (b) for a specification
graph. The initial states are with incoming arrows without a source. (c) is the
obtained from a repair of (a) for (b) with the minimum repair cost two. A repair
is the following edit sequence.

(a) Am (c) repair

id busy id

pass
retry

(b) Aψ

idle

procprocproc

pass retryreject

retry frame reject retry frame reject retry frame reject

pass
reject reject

retry
retry

id
idle idle
q0 q0

q1 q2

q3 q4 q5

q1 q2

q3 q4 q5
proc proc proc proc proc proc

Fig. 2. An example of repair

(λX.xtion del(q0, busy, q2))(λX.xtion add(q1, retry, q5))

5 Upper-Bounds for Minimum Repair Cost

State graphs are in fact directed graphs with states and arc labels. In this section,
we base on graph theory, specifically the work of Bunke [4], to derive an upper-
bound on minimum repair cost for bisimulation equivalence.

5.1 Upper-Bounds from the Graph Theory

We can define the isomorphism between state graphs. Two state graphs A1 =
(Q1, P, μ1, Σ, E1) and A2 = (Q2, P, μ2, Σ, E2) are isomorphic if there is a bijec-
tive function β from Q1 to Q2 such that

Program Repair Suggestions from Graphical State-Transition Specifications 191

• for all q ∈ Q1, μ1(q) = μ2(β(q));
• for all (q1, a, q2) ∈ E1, (β(q1), a, β(q2)) ∈ E2;
• for all (q1, a, q2) ∈ E2, (β−1(q1), a, β−1(q2)) ∈ E1.

We have the following intuitive lemma.

Lemma 1. Given a model graph Am, a specification graph As, and an edit se-
quence σ, if Amσ is isomorphic to As, then σ is a repair.
Proof : True since isomorphic state graphs are bisimulation equivalent. �
Lemma 1 suggests that we can use the length of the shortest edit sequence that
changes Am to As as an upper-bound for the minimum repair cost. The upper-
bound can be used to bound our exploration in the search for a minimum repair
from Am to As.

In the following, since we may use graph theory to handle state graphs, some-
times we conveniently use the terms in graph theory to call the equivalent struc-
tures in our state graphs. For example, we may also call a state a vertex and
a transition an arc. The size of a graph A = (Q, P, μ, Σ, E), denoted |A|, is
defined as |Q| + |E|. Given a state q, we may write q ∈ A iff q ∈ Q. Also given
a transition (q, a, q′), we may write (q, a, q′) ∈ A iff (q, a, q′) ∈ E. A subgraph
A′ = (Q′, P, μ, Σ, E′) of a state graph A = (Q, P, μ, Σ, E) is a graph such that
Q′ ⊆ Q and E′ ⊆ E. Note that we let A and A′ share the same state-labeling
function for the simplicity of presentation.

Definition 3. (Maximum common subgraph) Let A1 and A2 be two graphs
and A′

1 and A′
2 be subgraphs of A1 and A2 respectively. We call A′

1 (or A′
2) a com-

mon subgraph of A1 and A2 if A′
1 and A′

2 are isomorphic. A graph G is a maximum
common subgraph (MCS) of A1 and A2 if G is a common subgraph of A1 and A2
and for all common subgraphs G′ of A1 and A2, |G′| ≤ |G|. �
The relation between edit sequences and MCS was first presented by Bunke in
[4]. Bunke’s work is based on the assumption that the size of a graph is only
relevant to the number of vertices. Moreover, the edit operations of arcs in his
work are all free. In contrast, we assume that the cost of an edit operation to an
arc (transition) is also one. We have adapted the following lemma from [4] for
the relation between edit sequences and MCS.

Lemma 2. Suppose we are given three state graphs A1, A2, and Ac such that
Ac is an MCS of A1 and A2. Then the shortest edit sequence that changes A1
to A2 is of length |A1| + |A2| − 2|Ac|. �
Due to page-limit, we have left the proof to a full version of the paper in our
tool website. With lemmas 1 and 2, we can establish the following lemma.

Lemma 3. Suppose we are given a model state graph Am and a specification
state graph As. If Ac is an MCS of Am and As, then the minimum repair cost
of Am for As is no greater than |Am| + |As| − 2|Ac|. �
Due to page-limit, we have left the proof of the lemma to a full version of the
paper in our tool website. We use figure 3 to explain lemma 3. The parts circled

192 F. Wang and C.-H. Cheng

wait frameq1

q3

lock

request q2run

request
ready

(b) As

wait

busy

frameq1

q3

request
run
q2

request
ready

(a) Am

Fig. 3. Two state graphes

with dashed lines are the MCS, say Ac, of the two state graphs. The minimum
repair cost is no greater than |Am| + |As| − 2|Ac| = 7 + 7 − 2 × 6 = 2.

The following lemma shows that the upper-bound established with lemma 3
is actually tight. We can establish the faimily of Ai

m’s and Ai
s’s in figure 4 that

share no MCS.

idle
q1

read q2
idle

read q3
idle

qi
idle

read
write

Ai
m

wait
q′1

write q′2
wait

write q′3
wait

q′i
wait

write
read

Ai
s

Fig. 4. A family of Ai
m and Ai

s with tight upper-bound repair cost

Lemma 4. For the family of state graphs in figure 4, for each positive integer
i, the minimum cost of repair of Ai

m for Ai
s is |Ai

m| + |Ai
s|.

Proof : As can be seen from figure 4, for each i, there is no common subgraph
between Ai

m and Ai
s. Moreover, if any state in Ai

m remains to be initial, Ai
m

cannot be repaired to be bisimulation equivalent with Ai
s. To remove states in

Ai
m, we first have to remove all transitions in Ai

m. This costs |Ai
m| edit operations.

Then we need |Ai
s| edit operations to add Ai

s to Ai
m. In this way, the repaired

model becomes isomorphic to Ai
s. According to lemma 1, the repaired model is

thus bisimulation equivalent to Ai
s. The cost is thus |Ai

m| + |Ai
s| for each i. �

5.2 A Logic-Based Algorithm for the MCS

Our algorithm is built on an MCS construction algorithm. Note that the cal-
culation of MCS is an NP-complete problem [10]. Our motivation is that with

Program Repair Suggestions from Graphical State-Transition Specifications 193

proper encoding of the logic formulas in advanced data-structures, like BDD
[2], we have a better chance to calculate MCS efficiently in the average cases.
Specifically, we want to construct a logic formula that characterizes the common
subgraphs between two state graphs. A solution (satisfying truth assignments)
to the formula can be used to help us constructing a common subgraph. An
MCS then corresponds to a maximal solution that assigns the most number of
1’s to the variables.

Given a set V of Boolean variables, a formula η of V can be inductively
constructed with rule “η ::= v | ¬η1 | η1 ∨ η2.” Standard shorthands like η1 ∧ η2,
η1 → η2, and η1 ↔ η2 are also allowed in this work. A truth value is either true
or false. An interpretation of a formula is a mapping from its set of Boolean
variables to truth values. An interpretation I satisfies a formula η, in symbols
I |= η, if the following inductive conditions are maintained.

• I |= v iff I(v) = true.
• I |= ¬η1 iff it is not the case that I |= η1.
• I |= η1 ∨ η2 iff either I |= η1 or I |= η2.

I is a solution to η iff I |= η. Given two solutions I and I ′, if for every v ∈ V , I(v)
implies I ′(v), we say I ′ is no smaller than I. A maximal solution is no smaller
than any other solutions.

In our formulas, we use the following Boolean variables for the correspondence
between states and transitions of two state graphs A1 = (Q1, P, μ1, Σ, E1) and
A2 = (Q2, P, μ2, Σ, E2).

{

cq1
q2

| q1 ∈ Q1, q2 ∈ Q2
}

∪
{

c
(q1,a,q′

1)
(q2,a,q′

2) | (q1, a, q′1) ∈ E1, (q2, a, q′2) ∈ E2

}

.

Intuitively, for each q1 ∈ Q1 and q2 ∈ Q2, cq1
q2

is true iff state q1 corresponds to

state q2 in the MCS; for each (q1, a, q′1) ∈ E1 and (q2, a, q′2) ∈ E2, c
(q1,a,q′

1)
(q2,a,q′

2)
is

true iff transition (q1, a, q′1) corresponds to transition (q2, a, q′2) in the MCS. In
the following, we list the restrictions of the correspondence and their respective
formulas.

• State equivalence mutual exclusion: A state q1 cannot correspond to
more than one state in q2; and vice versa.

VEME(Q1, Q2) ≡
∧

q1∈Q1,q2∈Q2

(

cq1
q2

→
(

∧

q̄2∈Q2−{q2} ¬cq1
q̄2

∧
∧

q̄1∈Q1−{q1} ¬cq̄1
q2

))

• State equivalence structure: Corresponding states must have the same
labels.

VES(Q1, μ1, Q2, μ2) ≡
∧

q1∈Q1,q2∈Q2,μ1(q1) �=μ2(q2) ¬cq1
q2

• Transition equivalence mutual exclusion: A transition in E1 cannot
correspond to more than one transition in E2; and vice versa.

∧

(q1, a, q′
1) ∈ E1,

(q2, a, q′
2) ∈ E2

⎛

⎝c
(q1,a,q′

1)
(q2,a,q′

2)
→

⎛

⎝

∧

(q̄2,a,q̄′
2)∈Q2−{(q2,a,q′

2)} ¬c
(q1,a,q′

1)
(q̄2,a,q̄′

2)

∧
∧

(q̄1,a,q̄′
1)∈Q1−{(q1,a,q′

1)} ¬c
(q̄1,a,q̄′

1)
(q2,a,q′

2)

⎞

⎠

⎞

⎠

• Transition equivalence structure: If two transitions correspond to each
other, then their sources must correspond to each other, their destinations
must correspond to each other, and their transition labels must be the same.

194 F. Wang and C.-H. Cheng

AES(E1, E2) ≡
∧

(q1,a,q′
1)∈E1,(q2,a,q′

2)∈E2

(

c
(q1,a,q′

1)
(q2,a,q′

2)
→

(

cq1
q2

∧ c
q′
1

q′
2

))

We then construct the following formula for common subgraph restriction:
CSR(A1, A2) as the following conjunction.

VEME(Q1, Q2) ∧ VES(Q1, μ1, Q2, μ2) ∧ AEME(E1, E2) ∧ AES(E1, E2).

Given a solution I of CSR(A1, A2), we can construct the common subgraph
CS(A1, A2, I) corresponding to I as follows.

(

{

q2 | ∃q1(I(cq1
q2

))
}

, P, μ2, Σ,
{

(q2, a, q′2)
∣

∣

∣∃q1∃a∃q′1

(

I
(

c
(q1,a,q′

1)
(q2,a,q′

2)

))})

Note that we use a subgraph in A2 to represent the common subgraph. We can
also do it the other way around. With the restrictions in the above, we can show
that each solution of CSR(A1, A2) fully describes a common subgraph.

Lemma 5. Given two state graphs A1 = (Q1, P, μ1, Σ, E1) and
A2 = (Q2, P, μ2, Σ, E2), Ac is a common subgraph of A1 and A2 iff there is
a solution I of CSR(A1, A2) such that Ac is isomorphic to CS(A1, A2, I).
Proof : The correctness of the lemma can be established by checking that
CSR(A1, A2) correctly encodes all the constraints for MCS construction. �
Also a maximal solution encodes an MCS as stated with the following lemma.

Lemma 6. Given two state graphs A1 = (Q1, P, μ1, Σ, E1) and
A2 = (Q2, P, μ2, Σ, E2), Ac is an MCS of A1 and A2 iff there is a maximal
solution I of CSR(A1, A2) such that Ac is isomorphic to CS(A1, A2, I).
Proof : The lemma follows from lemma 5 and the fact that the number of ‘1’s
in a solution actually is equal to the size of the corresponding MCS. �
With lemma 6, we have the following algorithm for MCS construction.

MCS(A1, A2) {
Find a maximal solution I for CSR(A1, A2). Return CS(A1, A2, I).

}

Note that we do not elaborate on how to find the maximal solutions. In this
work, we use JDD (Java BDD library) [11] to construct CSR(A1, A2). JDD
can list all solutions of a formula. A maximal solution has the most number of
1’s in the listing. It is also possible to take advantage of the structure-sharing
capability of BDDs [2] and design a recursive procedure to efficiently search for
the maximal solutions. But due to page-limit, we omit the discussion here.

6 Techniques for Repair Suggestions with a Cost Concept

In a real-world project, minimum cost repairs may be difficult and costly to
construct. To improve the performance of automated repair tools, sometimes we

Program Repair Suggestions from Graphical State-Transition Specifications 195

may have to settle for quick repairs that may not be of minimum cost. In the
following, we present a PTIME heuristic algorithm for constructing repairs of
model state graphs. Given a model graph Am and a specification graph As, the
algorithm consists of the following three steps.

• Identifying the common structure of Am and As. Here we use the maximal
bisimulation between Am and As instead of MCS for the common structure.

• Disabling the difference from Am to the common structure. The idea is to
make all states in the difference from Am to the common structure unreach-
able from any initial states.

• Gluing a compact version of the difference from As to the common structure
to the common structure.

According to lemma 4, these steps do not save time in the worst case. However,
according to the experiment, in many cases, they yield repairs with costs lower
than the upper-bounds predicted by lemma 3.

At the end, we also discuss how to derive repair suggestions of programs based
on the repairs of model state graphs.

6.1 Identifying the Common Structure Between Am and As

Given two state graphs A1 and A2, there are classical algorithms that construct
the maximal bisimulation, in symbols B(A1, A2), between A1 and A2. Given a
state graph A = (Q, P, μ, Σ, E), B(A, A) is the maximal bisimulation between
A and itself. Given a state q ∈ Q, the bisimulation equivalence class of q, in
symbols [q], is the set of states that are bisimulation equivalent to q in A with
respect to B(A, A). Formally speaking, [q] = {q′ | q′ ∈ Q, (q, q′) ∈ B(A, A)}.
The bisimulation quotient of a state graph A = (Q, P, μ, Σ, E), in symbols [A],
is a state graph ({[q] | q ∈ Q}, P, μ′, Σ, {([q], a, [q′]) | (q, a, q′) ∈ E}) such that
for each q ∈ Q, μ′([q]) = μ(q).

Suppose we have two state graphs A1 = (Q1, P, μ1, Σ, E1) and
A2 = (Q2, P, μ2, Σ, E2). For each i ∈ [1, 2], we use 〈Ai〉B(A1,A2) to denote the
subgraph of Ai in the maximal bisimulation B(A1, A2). That is, 〈Ai〉B(A1,A2)
is a subgraph (Q, P, μi, Σ, {(q, a, q′) | q ∈ Q, q′ ∈ Q, (q, a, q′) ∈ Ei}) of Ai such
that Q = {q | q ∈ Qi, ∃q′ ∈ Q3−i((q, q′) ∈ B(A1, A2) ∨ (q′, q) ∈ B(A1, A2))}.
Given a model state graph Am and a specification state graph As, we can view
〈Am〉B(Am,As) and 〈As〉B(Am,As) as the common structure between Am and As.

6.2 Identifying of the Difference Between Am and As

According to the definition of bisimulation, we know that 〈Am〉B(Am,As) and
〈As〉B(Am,As) are bisimulation equivalent. They can be viewed as intermediate
products in the repair process with all ‘unwanted’ components removed from
Am. Assume that Am = (Qm, P, μm, Σ, Em) and As = (Qs, P, μs, Σ, Es).

Assume that 〈Am〉B(Am,As) = (Qb, P, μm, Σ, Eb). The difference from Am to
〈Am〉B(Am,As), in symbols Am −〈Am〉B(Am,As), can be straightforwardly defined
as the following state graph.

196 F. Wang and C.-H. Cheng

(

{q | q ∈ Qm − Qb}, P, μm, Σ,

{

([q], a, [q′])

∣

∣

∣

∣

∣

(q, a, q′) ∈ Em,

q ∈ Qm − Qb, q
′ ∈ Qm − Qb

})

We need to disable the effect of Am − 〈Am〉B(Am,As) for the repair.
Assume that 〈As〉B(Am,As) = (Qb, P, μm, Σ, Eb). Similarly, we can also define

As−〈As〉B(Am,As) and use it as the difference from As to 〈As〉B(Am,As). However,
the ‘difference’ could still be too big. We propose only to glue the difference
from the bisimulation quotient of As to 〈As〉B(Am,As). Specifically, we define
this difference, in symbols [As] − 〈As〉B(Am,As), as the following state graph.

(

{[q] | q ∈ Qs − Qb}, P, μ, Σ,

{

([q], a, [q′])

∣

∣

∣

∣

∣

(q, a, q′) ∈ Es,

q ∈ Qs − Qb, q
′ ∈ Qs − Qb

})

.

We require that for each q ∈ Qs − Qb, μ([q]) = μs(q). This graph captures the
behavior of those states in Qs − Qb in the bisimulation quotient of As.

6.3 Constructing Repair Based on the Common Structure and the
Difference

With the concepts defined in the above, we are now ready to present our PTIME
algorithm for the repair of Am for As. For convenience, assume that Am =
(Qm, P, μm, Σ, Em), As = (Qs, P, μs, Σ, Es), 〈Am〉B(Am,As) =
(Qb, P, μm, Σ, Eb), and [As]−〈As〉B(Am,As) = (Qd, P, μs, Σ, Ed). Intuitively, the
algorithm consists of the following two steps.

• Disabling Am − 〈Am〉B(Am,As) in Am. We need to delete all initial states in
Am − 〈Am〉B(Am,As). In addition, we also need to delete all transitions to
and from those initial states in Am − 〈Am〉B(Am,As).

• Gluing [As]−〈As〉B(Am,As) to 〈Am〉B(Am,As). This involves the construction
of appropriate transitions between [As] − 〈As〉B(Am,As) and 〈Am〉B(Am,As).

The repair generates a graph (Qb∪Qd, P, μ, Σ, E) with the following constraints.
• E = Eb ∪ Ed

∪ {(q1, a, [q2]) | ∃(q1, q
′) ∈ B(Am, As)((q′, a, q2) ∈ Es ∧ [q2] ∈ Qd)}

∪ {([q2], a, q1) | ∃(q1, q
′) ∈ B(Am, As)((q2, a, q′) ∈ Es ∧ [q2] ∈ Qd)}

• For each q ∈ Qb, μ(q) = μm(q). For each [q] ∈ Qd, μ([q]) = μs(q).
We denote this graph as RepairedB(Am, As). Then we can establish the following
lemma.

Lemma 7. For every state graphs Am and As, RepairedB(Am, As) is bisimula-
tion equivalent to As.

Proof : Here we sketch a brief proof plan. According to the definition of bisim-
ulation equivalence, we only have to check those states that are reachable from
the initial states. This means that we do not need to consider states in Am −
〈Am〉B(Am,As). We can first assume that for some state qr in RepairedB(Am, As)
that is reachable from an initial state, there is no qs in As such that (qr, qs) ∈
B(RepairedB(Am, As), As). There are two cases to analyze. The first is that

Program Repair Suggestions from Graphical State-Transition Specifications 197

there is a transition (qr, a, q′r) that RepairedB(Am, As) can do at qr to tran-
sit to q′r but As cannot do at any qs to transit on input a to a state q′s with
(q′r, q′s) ∈ B(RepairedB(Am, As), As).

• Assume that qr is in 〈Am〉B(Am,As). According to the definition of B(Am, As),
there is a qs in 〈As〉B(Am,As) such that (qr , qs) ∈ B(Am, As). There are two
more cases to analyze.
− Assume that q′r is also in 〈Am〉B(Am,As). According to the definition

of B(Am, As), there is a (qs, a, q′s) in 〈As〉B(Am,As) such that (qr, qs) ∈
B(Am, As) and (q′r, q

′
s) ∈ B(Am, As). This violates our assumptions.

− Assume that q′r = [q′s] is in [As] − 〈As〉B(Am,As). According to the con-
struction of RepairedB(Am, As), transition (qr, a, [q′s]) is there because
we have a transition (qs, a, q′s) in As with (qr, qs) ∈ B(Am, As) and
q′r = [q′s]. This also violates the assumptions.

• The case that qr is in [As]−〈As〉B(Am,As) can be proved in a symmetric way.
The “vice versa” part is symmetric and is that there is a transition (qs, a, q′s)
that As can do at qs but RepairedB(Am, As) cannot match at any qr. This case
can be proven in a symmetric way. Thus the lemma is proven. �
The following lemma shows the complexity of the algorithm.

Lemma 8. RepairedB(Am, As) is constructible in PTIME.

Proof : According to the classical bisimulation checking algorithm [15],
B(Am, As), 〈Am〉B(Am,As), and 〈As〉B(Am,As) can all be calculated in PTIME. It
is easy to see that [As]−〈As〉B(Am,As) can also be computed in PTIME. Finally,
to disable Am −〈Am〉B(Am,As) and to glue [As]−〈As〉B(Am,As) to 〈Am〉B(Am,As),
there are at most polynomial number of states and transitions to check and to
work on. Thus the lemma is proven. �
Suppose Am = (Qm, P, μm, Σ, Em), As = (Qs, P, μs, Σ, Es), 〈Am〉B(Am,As) =
(Qb, P, μb, Σ, Eb), and [As] − 〈As〉B(Am,As) = (Qd, P, μs, Σ, Ed). By carefully
counting the edit operations, we find that the repair cost suggested by
RepairedB(Am, As) can be computed as follows.

|ini(Am)| − |ini(〈Am〉B(Am,As))|

+

∣

∣

∣

∣

∣

{

(q1, a, q2)

∣

∣

∣

∣

∣

(q1 ∈ ini(Am) − ini(〈Am〉B(Am,As)) ∧ (q1, a, q2) ∈ Em)
∨ (q2 ∈ ini(Am) − ini(〈Am〉B(Am,As)) ∧ (q1, a, q2) ∈ Es)

}∣

∣

∣

∣

∣

+ |{(q1, a, q2) | q1 ∈ Qb, q2 ∈ Qm − Qb, (q1, a, q2) ∈ Em}|
+ |[As] − 〈As〉B(Am,As)|
+ |{(q1, a, [q2]) | ∃(q1, q

′) ∈ B(Am, As)((q′, a, q2) ∈ Es ∧ [q2] ∈ Qd)}|
+ |{([q2], a, q1) | ∃(q1, q

′) ∈ B(Am, As)((q2, a, q′) ∈ Es ∧ [q2] ∈ Qd)}|

As for the complexity of the aglorithm, it is easy to see that this algorithm only
incurs polynomial numbers of set subtractions, graph subtractions, bisimulation
computations, and graph edit operations. This justifies that the algorithm is in
PTIME and only uses polynomial complexity of memory. Due to page limit, we
choose to omit the detailed complexity analysis.

198 F. Wang and C.-H. Cheng

6.4 Suggestions for Repairing Programs

The repairs that we may construct in subsection 6.3 are for model state graphs.
The engineers still need to know how such repairs can be used as repair sug-
gestions for their programs. Here we give the following rules for deriving re-
pair suggestions for programs. Again, suppose Am = (Qm, P, μm, Σ, Em), As =
(Qs, P, μs, Σ, Es), 〈Am〉B(Am,As) = (Qb, P, μb, Σ, Eb), and [As]−〈As〉B(Am,As) =
(Qd, P, μs, Σ, Ed). We also assume that for each state in Am, we still have the
information of its entry statements and exit statements in the original program.

• For every initial state in Am − 〈Am〉B(Am,As), we suggest to the engineers
that for such a state, its entry statements should not be the entry points of
the program.

• For each transition from a state q1 in 〈Am〉B(Am,As) to a state q2 in Am −
〈Am〉B(Am,As), we suggest to the engineers that the exit statement for the
transition from q1 to q2 should be disabled.

• We suggest that a program segment that implements [As] − 〈As〉B(Am,As)
should be there.

• For each transition from a state q1 in 〈Am〉B(Am,As) to a state q2 in [As] −
〈As〉B(Am,As), we suggest to the engineers that we should change a statement
of q1 to a conditional branch statement that may branch to q2.

• For each transition from a state q1 in [As] − 〈As〉B(Am,As) to a state q2 in
〈Am〉B(Am,As), we suggest to the engineers that we should enter an entry
statement of q2 from an exit statement of q1.

Such suggestions may not lead to the best repair that the engineers may have
in mind. But we feel it is certainly a good mechanical support for some initial
ideas in repairing a program.

7 Implementation and Experiment

Our experimental tool ModelRepair ver.0.1 realizes part of our ideas in find-
ing a minimum repair. The tool supports the construction of MCS, the explo-
ration of a repair space in searching for a repair, and repair construction with the
PTIME heuristic algorithm. The tool is available at http://cc.ee.ntu.edu.
tw/∼val. To visualize the model, we offer interfaces to convert our graph repre-
sentations into the GOAL format [17]. The users can thus conveniently see the
differences between a repaired model and an original model.

To check how well our algorithm performs, we have also implemented an
exploration procedure that searches through the space of edit sequences for a
minimum cost repair based on the results in section 5. The search strategy of the
procedure is breadth-first. Thus it is guaranteed to find a minimum cost repair
if enough time and space are allocated. Also we have designed some strate-
gies to speed up the exploration, including partial order among edit operations.
The procedure may still run slowly due to the vast repair space. However it can

http://cc.ee.ntu.edu.
tw/~val

Program Repair Suggestions from Graphical State-Transition Specifications 199

Table 1. Performance of ModelRepair ver.0.1

B Am As UB exploration algorithm PTIME algorithm

|Am| |Q| |E| |As| |Q| |E| |Amσ| |Q| |E| |σ| time |Amσ| |Q| |E| |σ| time

1 11 4 7 14 5 9 5 10 4 6 1 1.79s 14 5 9 5 0.46s

2 9 4 5 15 6 9 10 9 4 5 2 16.6s 9 4 5 4 0.50s

3 4 2 2 7 3 4 3 7 3 4 3 645s 7 3 4 3 0.32s

4 23 9 14 29 11 18 22 N/A, > 30min 23 9 14 16 101s

5 18 8 10 20 8 12 18 N/A, > 30min 18 8 10 12 11.1s

6 12 4 8 16 5 11 5 Specification inconsistency, 0.53s

7 12 4 8 15 5 10 5 No repair needed, 0.32s

B: benchmarks; UB: minimum cost upper-bound predicted with lemma 3;
σ: the corresponding repair; |Q|: # states; |E|: # transitions; s: seconds;

be used for performance comparison. For interested readers, we have left the
procedure to a full version of the paper in our tool website.

We have applied our tool to a few examples. Table 1 summarizes the result
of the experiment. All data are collected in Java runtime environment 1.6.0
with Intel Pentium-M 1.6 GHz processor and 512MB RAM. Here ‘σ’ denotes
the repairs we construct. As can be seen, for benchmarks 1 to 5, the PTIME
algorithm runs much faster than the repair-space exploration algorithm. For
benchmarks 2, 4, and 5, our PTIME algorithm also yields a repair cost lower
than the upper-bound predicted by lemma 3 in the column under ‘UB.’

For all benchmarks, our heuristic algorithm constructs a repair in less time
than the exploration procedure. For benchmarks 1 and 2, our heuristic algorithm
constructs repairs with costs greater than the minimum repair costs. But still for
benchmarks 2, 4, and 5, the repair costs of our heuristic algorithm are lower than
the predicted theoretical upper-bound. In contrast, the exploration procedure did
not construct the minimum repairs for benchmarks 3, 4, and 5 in a reasonable
amount of time.

8 Conclusion and Future Directions

Our work focuses on the automatic generation of repair suggestions with a cost
evaluation that could be useful in controlling the budget for program debugging
and preserving the original design intention. We feel that our work could be used
as a general foundation for the future research in this direction. One thing is that
bisimulation-based repair suggestions may sometimes be based on too strong an
assumption. Some program faults may destroy non-trivial bisimulation relations
between a model and a specification. In such a case, our algorithm may yield
worst-cost repairs. In the future, we may need to investiage what kind of repair
suggestions we should make in such a case.

200 F. Wang and C.-H. Cheng

Acknowledgment

We wish to thank Prof. Yih-Kuen Tsay and Mr. Yu-Fang Chen for their helpful
suggestions and effort in modifying GOAL to support our implementation and
experiments.

References

1. Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties
of Interfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122.
Springer, Heidelberg (2001)

2. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

3. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing Model Checking in
Verification by AI Techniques. Artificial Intelligence 112(1), 55–93 (1999)

4. Bunke, H.: On a Relation between Graph Edit Distance and Maximum Common
Subgraph. Pattern Recognition Letters 19, 255–259 (1997)

5. Clarke, E., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons using
Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131. Springer, Heidelberg (1982)

6. Ding, Y., Zhang, Y.: A Logic Approach for LTL System Modification. In: Hacid,
M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI),
vol. 3488, pp. 435–444. Springer, Heidelberg (2005)

7. Ding, Y., Zhang, Y.: Algorithms for CTL System Modification. In: Khosla, R.,
Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682. Springer,
Heidelberg (2005)

8. Fisler, K., Vardi, M.Y.: Bisimulation Minimization in an Automata-Theoretic Ver-
ification Framework. In: Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998.
LNCS, vol. 1522. Springer, Heidelberg (1998)

9. Griesmayer, A., Bloem, R., Cook, B.: Repair of Boolean Programs with an Appli-
cation to C. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144. Springer,
Heidelberg (2006)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

11. http://javaddlib.sourceforge.net/jdd/
12. Jobstmann, B., Griesmayer, A., Bloem, R.: Program Repair as a Game. In: Etes-

sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576. Springer, Heidelberg
(2005)

13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

14. Myers, G.J., Sandler, C., Badgett, T., Thomas, T.M.: The Art of Software Testing.
Wiley, Chichester (2004)

15. Paige, R., Tarjan, R.E.: Three Partition Refinement Algorithms. SIAM J. 6, 973–
989 (1987)

16. http://www.ifi.unizh.ch/ddis/research/semweb/simpack/
17. Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Wu, K.-N., Chan, W.-C.: GOAL: A Graphi-

cal Tool for Manipulating Buchi Automata and Temporal Formulae. In: Grumberg,
O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424. Springer, Heidelberg (2007)

http://javaddlib.sourceforge.net/jdd/
http://www.ifi.unizh.ch/ddis/research/semweb/simpack/

Verifying Erlang Telecommunication Systems

with the Process Algebra μCRL

Qiang Guo1, John Derrick1, and Csaba Hoch2

1 Department of Computer Science,
The University of Sheffield,

Regent Court, 211 Portobello, S1 4DP, UK
{Q.Guo, J.Derrick}@dcs.shef.ac.uk

2 Faculty of Informatics
Eötvös Loránd Tudományegyetem

Pázmány Péter sétány 1/c., 1117 Budapest, Hungary
hoch@inf.elte.hu

Abstract. Verification is an important process in the development of
Erlang systems. A recent strand of work has studied the verification of
Erlang applications using the process algebra μCRL. The general idea
is that Erlang programs are translated into a μCRL specification, upon
which the standard model checkers can be applied for checking the sys-
tem’s properties. In this paper, we pull together some of the existing
work and investigate the verification of an Erlang telecommunication
system in μCRL. This case study uses a server-client structure and in-
corporates timing restrictions and is designed and implemented using a
number of Erlang/OTP components. We show how this system is trans-
lated into a μCRL specification by using the defined rules, after which
system properties are checked via the toolset CADP. Through studying
the verification of such an application, we aim to validate the effective-
ness of the translation rules in an integrated way.

Keywords: Erlang, Telecoms case study, Process Algebras, μCRL,
Translation, Verification.

1 Introduction

Erlang [1] is a concurrent functional programming language with explicit support
for real-time and fault-tolerant distributed systems. It is available under an Open
Source Licence from Ericsson, and since its conception its use and development
has widened to a number of sectors such as TCP/IP programming, etc.

A key feature of Erlang is the Open Telecom Platform (OTP) architecture
where generic components are encapsulated as design patterns, each of which
solves a particular class of problem. These patterns include servers, supervisors,
finite state machines etc. This makes Erlang an ideal programming language for
the development of fault-tolerant systems containing soft real-time requirements.

Verification is an important part of the Erlang system process. Although Er-
lang has many high-level features, verification can be still non-trivial. A number

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 201–217, 2008.
c© IFIP International Federation for Information Processing 2008

202 Q. Guo, J. Derrick, and C. Hoch

of possible approaches have been explored, including the one we investigate here:
abstract an Erlang application into a formal model, upon which model checking
[9] techniques can be applied. This approach has recently been applied to the
verification of Erlang programs and OTP components [2,3,5,7,14,16] where the
process algebra μCRL [13] has been used as the formal language upon which
verification is carried out.

Arts et al. [2,3] initiated this strand of work and proposed rules for translat-
ing Erlang syntax and the OTP components gen server, supervisor into μCRL.
Benac-Earle [5] continued with the work and developed a toolset, etomcrl, to
automate the process of translation. Guo et al. extended the work by proposing
a model for the translation of the OTP finite state machine gen fsm [14] and
defining rules for coping with Erlang timeout events in μCRL [16].

However, rules for the translation of OTP gen server, supervisor, gen fsm and
Erlang timeout have, so far, only been independently evaluated via some small
examples, and no work has evaluated these rules in an application where the
above components are integrated as a system. One might argue that if all rules
are applied in an integrated way, will they show the similar effects for system
verification as they demonstrated in the existing work? Moreover, will a state
space explosion mean that effective verification is lost?

In this paper, we attempt to look at these questions by investigating the
verification of an Erlang telecommunication system in μCRL. A telecommuni-
cation system of server-client structure and timing restriction for operation is
developed with Erlang/OTP. The system integrates the use of the supervisor,
gen server, gen fsm components and uses explicit timeout events. We show how
the system is then translated into a μCRL specification using the proposed trans-
lation rules. We then verify a number of system’s properties by using the model
checker CADP [8] and investigate the changes of state space when the number
of clients increases. The experimental results suggest that when being applied
in an integrated system, the translation rules show the similar effect for system
verification as being applied independently.

The paper is organized as follows: Section 2 describes a telecommunication
system that is used as a case study in this paper; Section 3 implements the
system with Erlang programming langauge; Section 4 discusses the translation
of the telecoms case study into μCRL; Section 5 looks at the system verification
using the standard model checker CADP; conclusions are drawn in Section 6.

2 Telecommunication System

In this section we give an overview of our case study, which is implemented in
Erlang in Section 3.

2.1 System Infrastructure

Our telecoms case study uses a client-server structure, and comprises of a data-
base server (DBS) that is used to maintain all client’s data and a number of

Verifying Erlang Telecommunication Systems 203

functional servers (FS) that will process clients’ requests. An FS has a capacity
and a user list. The capacity defines the maximum number of clients (mobiles)
that can be connected to a server, while, the user list saves all clients (mobiles)
that have been connected to this server. The telecoms system illustrated in Fig-
ure 1 is designed with one DBS (named as DB), three FSs (named as SV R 1,
SV R 2 and SV R 3) and five clients (named as M 1, M 2, M 3, M 4 and M 5).

Fig. 1. Telecoms system designed with one DB, three FSs and five clients

Once the system starts up, an FS can communicate with DBS and any other
FSs. A client can communicate with any FSs, and can perform some functional
operations such as calling and top-up. The behaviour of clients is described in
section 2.2. Each client has an account maintained in the DBS, and in order to
make a phone call, a client needs to save enough money in its account.

Before performing any functional operations, a client needs to connect to an
FS. After being connected to an FS, the client’s identity is maintained in the FS’
user list. A client can only be connected to one FS, and if a client has connected
to an FS and tries to connect to another FS, an error message will be returned
and the request is denied. When a client disconnects, the appropriate FS cuts off
the connection and removes this client from the user list to release the resource.
The FS will notify all other FSs about the changes of its clients’ state so that
they can correctly respond to the client’s requests.

2.2 Client Behaviour Modelling

The behaviour of a client (mobile) is modeled as a finite state machine (FSM),
and the initial design is shown in Figure 2. There are four states: idle, connected,
calling and top up, where initially, the system is set to the idle state.

The FSM defines the behaviour of a number of operations: connecting, dis-
connecting, calling, terminating, top up and cancelling. Before performing any
operations, a client FSM needs to connect to an FS through sending the con-
necting request. If the FS replies {ok,connected}, it indicates that the request is
accepted and the connection is set up. The FSM moves to the state connected ;
otherwise, if {error,busy} arrives, it suggests that the server has reached it max-
imum capacity. The client will send the connecting request to another FS. The

204 Q. Guo, J. Derrick, and C. Hoch

Fig. 2. Client behaviour modelled as an FSM

FSM remains in the state idle. The client will iteratively send the connecting
request to each FS until the connection is approved and set up by an FS.

A client can stop the connection by sending the disconnecting request to
the FS. Once the disconnecting request being received, the FS will cut off the
connection and remove the client from its user list to release the resource. A
reply message {ok,disconnected} will be sent to the client, and upon receiving
this reply, the FSM will be reset to the state idle.

When in the state connected, a client can make a phone call through calling
operation or top up it account through top up operation. When the calling re-
quest is sent, if its account has enough money, a client will receive {ok,calling}
from the appropriate FS, enabling the calling process. The FSM then moves
to the state calling; otherwise, {error, low prepaid} will be received, asking the
client to top up its account. The FSM remains in the state connected.

When in the state calling, only the terminating operation can terminate a
calling process. This prevents the calling process from being disrupted by some
unintended actions. When the terminating request is sent, the DBS will reduce
the amount of money from this client’s account. The FS then cuts off the client’s
connection and releases the resource from its user list. Meanwhile, a message
{ok,disconnected} is sent to the client, and on receiving the reply, the FSM is
reset to the state idle.

After being connected to an FS, a client can ask to top up its account by
sending the top up request. If {ok, ready to top up} is received, it indicates that
the top up process is accepted by the FS, and the FSM moves to the state top up.
The client can then transfer money to its account through {top up, Prepaid}
operation where Prepaid is the amount of money that is about to be transfered.
When the transaction succeeds, the FS replies the client with {ok, top up} and
when receiving such a reply, the FSM returns to the state connected.

A client FSM has a timing restriction applicable when in states connected or
top up. Specifically, when the FSM is directed to the state connected or top up,
a timer will be instantiated which enables the timing process. If, within the
predefined time period, no action is performed by the client, a timeout event
will be generated and sent to the FS. By receiving timeout event, the FS cuts

Verifying Erlang Telecommunication Systems 205

off the connection and releases the resource from its user list. The FSM is then
reset to the state idle.

3 Erlang Implementation

Erlang is used to implement the telecoms system, making use of the OTP design
patterns as is common practice.

3.1 Functional Server Implementation

The functional server (FS) is implemented using the Erlang/OTP gen server
module. A generic server is implemented by providing a callback module where
(callback) functions are defined specifying the concrete actions of the server such
as server state handling and response to messages.

In this work, the callback function handle call in the FS module is comprised
of two parts. One (using keyword request) processes client’s requests; the other
(using keyword notify) deals with the notification sent from FSs:

handle call({request,R,M},Fr,Chs)→ : case Request of
{Reply,State}= handle request(R,M,Chs), : connecting →
{reply,Reply,State}; : do connecting(M,Chs);

handle call({notify,M,F},Fr,Chs)→ : disconnecting →
{C,N,MList,SVRList} = Chs, : do disconnecting(M,Chs);
case F of : cancelling →

add → : do cancelling(M,Chs);
{reply,ok,{C,N, : calling →

MList++[M],SVRList}}; : do calling(M,Chs);
remove → : terminating →

{reply,ok, : do terminating(M,Chs);
{C,N,delete(M,MList),SVRList}}: top up →

end. : do top up(M,Chs);
handle request(timeout,M,Chs)→ : {top up, Prepaid} →
do timeout(Mobile,Chs); : top up tranfer(M,Chs)

handle request(Request,M,Chs)→ : end.

The internal variable Chs (defined by the Erlang system for saving values) is defined
with the form of {C, N, MList, SVRList} where C defines the FS’ capacity, N counts
for the number of clients that has been connected to this FS, MList saves clients that
have connected to this FS and SVRList saves all FS servers running in the system.

The function handle request(Request,Mobile,Chs) is defined where a list of do func-
tions is called to process client’s requests. The function do connecting is defined to set
up connection between the FS and a client. It first examines whether the FS reaches
its maximum capacity. If the FS is full, {error, busy} will be returned to the client;
otherwise, the connection is set up. The client is then registered in MList and N is
increased by 1. The function do disconnecting is defined to disconnect a client from the
FS. When the disconnecting request arrives, the FS cuts off the connection and then,
by calling the function notify servers, notifies other FSs (saved in SVRList) to release
the resource (removes the client from MList).

206 Q. Guo, J. Derrick, and C. Hoch

The do calling function monitors the calling process. When the calling request is
received, the function reads the client’s data from the DBS and checks whether it
has enough money for making a call. If so, the calling process is enabled; otherwise,
{error, low prepaid} is replied, asking the client to top up its account. When the client
finishes calling, it sends the terminating request to the FS. Upon receiving the request,
the FS enables the do terminating function to subtract amount of money from the
client’s account, and then cut off the connection through disconnecting operation. The
function do top up and top up tranfer are defined to top up client’s account. When
the top up request is received, the FS enables the process by replying the client with
{ok,ready to top up}. Once the client’s money is received, the top up tranfer function
is enabled to complete the transaction.

3.2 Client Implementation

The client behaviour is implemented using the OTP gen fsm module, and the state
transition rules are defined conforming to the following convention:

StateName(Event, StateData) →
... code for actions ...;
{next state,StateName′ ,StateData′,Timer}.

where the state function returns a tuple that contains the name of the next state,
StateName′, and an updated state data, StateData′. Timer is an optional element,
if it is set to a value, a timer is instantiated, and a timeout event will be generated
when the time-up occurs. The function send event is defined to trigger a transition.
When send event is executed, the gen fsm module automatically calls the current state
function.

In accordance with the design given above, four state functions are defined in the
client module: idle, connected, calling and top up. The state function idle initiates a
connecting request to the FS SVR. If the FS SVR replies the FSM with {ok,connected},
the request is accepted and the connection is set up. The FSM moves to the state
connected ; otherwise, the request is denied and the FSM remains unchanged.

idle([Act,SVR],{M, RSVR,SVRList})→ : {error,busy}→
case member(SVR,SVRList) of : display(server,busy),

true → : {next state,idle,
F=gen server:call(SVR,{request,Act,M}),: {M,nil,SVRList}}
case F of : end;

{ok,connected}→ : false →
display(connected), : display(server,invalid)
{next state,connected, : {next state,idle,{M,nil,SVRList}}

{M,SVR,SVRList},20000}; :end.

Once the client is connected to an FS, an event will trigger the state function
connected, which evaluates the request and then makes decisions for the consequent
actions. For example, if a calling request is made, the function will call the FS to
evaluate the client’s state. If the client has enough money in its account, {ok,calling}
will be returned to approve the calling process, and upon receiving the reply, the FSM
moves to the state calling.

Verifying Erlang Telecommunication Systems 207

connected(timeout,{M,SVR,SVRList})→ : display(client,calling),
gen server:call(SVR,{request,timeout,M}), : {next state,calling,
display(M,timeout), : {M,SVR,SVRList}};
{next state,idle,{M,nil,SVRList}}; : {error,low prepaid}→

connected([Act, SVR],{M,SVR,SVRList})→ : display(low prepaid),
case Act==terminating of : {next state,connected,
true → : {M,SVR,SVRList},20000};

display(action,invalid), : {ok,ready to top up}→
{next state,connected, : display(ready to top up),

{M,SVR,SVRList},20000}; : {next state,top up,
false → : {M,SVR,SVRList},20000};

F=gen server:call(SVR,{request,Act,M}): Other →
case F of : display(action,invalid),

{ok,disconnected}→ : {next state,connected,
display(disconnected), : {M,SVR,SVRList},20000}
{next state,idle, : end

{M,SVR,SVRList}}; : end.
{ok,calling}→ :

When in the state calling, only the terminating action can stop the calling process.
This prevents the calling process from being disrupted by any unintended actions.

calling([Act, SVR],{M,SVR,SVRList})→ : {M,nil,SVRList}};
case Act of : false →

terminating → : display(server,invalid),
gen server:call(SVR,{request,Act,M}),: {next state,calling,
display(call,terminating), : {M,SVR,SVRList}}
{next state,idle, : end.

When being connected to an FS, the client can ask to top up its account by sending
the top up request to the FS. If {ok,ready to top up} is replied, the top up process
is enabled, and the FSM moves to the state top up. An action will trigger the state
function top up to either start the transaction by {top up, Prepaid} operation (Prepaid
is the amount of money the client is about to transfer), or cancel the process by sending
the cancelling request.

top up(timeout,{M,SVR,SVRList})→ : {ok,cancelled} →
gen server:call(SVR,{request,timeout,M}), : display(top up,cancelled),
display(M,timeout), : {next state,connected,
{next state,idle,{M,nil,SVRList}}; : {M,SVR,SVRList},20000};

top up([Act, SVR],{M,SVR,SVRList})→ : Other →
case gen server:call(SVR,{request,Act,M}) of: display(action,invalid),

{ok,top up} → : {next state,top up,
display(top up,ok), : {M,SVR,SVRList},20000}
{next state,connected, : end.

{M,SVR,SVRList},20000}; :

When the FSM moves to the state connected and top up, a timer is initiated. The
timer is set to 20,000ms. If within the time period, no action is performed, a timeout
event will be generated and sent to the FS. The FSM is reset to the state idle. A
function command is defined to simulate the receiving of external actions. It calls
gen server:send event to triggers the state functions.

208 Q. Guo, J. Derrick, and C. Hoch

4 Translating Our Case Study into μCRL

In this section we describe the verification methodology used in this project. It uses
the process algebra μCRL (micro Common Representation Language) [13] which is an
extension of the process algebra ACP [4], where equational abstract data types have
been integrated into the process specification to enable the specification of both data
and process behaviour. We assume the reader is familiar with μCRL.

4.1 Pre-processing

Before the translation begins, the Erlang input is pre-processed which transforms the
Erlang code into an optimized format, but has identical behaviour. For example, Erlang
makes extensive use of pattern matching in its function definitions, and overlapping
between patterns could lead to the system being represented by a faulty model in
μCRL. This work transforms Erlang programs using the techniques discussed in [15]
where pattern matching clauses in a function are replaced with a series of calling
functions, each of which being guarded by the function patterns match.

For example, the function handle request is transformed as shown above. A data
structure, called a Structure Splitting Tree (SST) [15], is applied for pattern evalua-
tion, and the use of such an SST for pattern evaluation guarantees the elimination of
overlapping between patterns in the transformed program.

handle request(R,M,Chs) → : hr case 6(true,R,M,Chs,Vars) →
hr case 1(eval:pattern match([R], : do top up(M,Chs,Vars);

[connecting]),R,M,Chs,[]). : hr case 6(false,R,M,Chs,Vars) →
: hr case 7(eval:pattern match([R],

hr case 1(true,R,M,Chs,Vars) → : [{top up,Prepaid}]),R,M,
do connecting(M,Chs,Vars); : Chs,Vars++[Prepaid]).

hr case 1(false,R,M,Chs,Vars) → : hr case 7(true,R,M,Chs,Vars) →
hr case 2(eval:pattern match([R], : top up transfer(M,Chs,Vars);

[disconnecting]),R,M,Chs,Vars).: hr case 7(false,R,M,Chs,Vars) →
... : {error, action}

4.2 Translating the Server Component

Erlang performs synchronous and asynchronous communications using the generic
server primitives gen sever:call / handle call and gen sever:cast / handle cast respec-
tively. One then has to model both synchronous and a synchronous communication in
μ CRL, and to do so we use a Server Buffer process (described in [5]). A data type
GSBuffer is defined to contain the data for the process Server Buffer. The actions
gen server call and gscall are defined to write a message to the buffer while, gshall and
handle call to read a message from the buffer.

The database server is translated into a process SDB, and it maintains a num-
ber of clients, each in the form {CName,Prepaid,State} where CName is the client’s
name, Prepaid shows the amount of money saved in the client’s account and State in-
dicates whether the client is connected to an FS or not. The actions server read db and
db send data are defined to read a client’s data out from the process, server read db
| db send data = read db. The actions servr update db and db ack request are used to
update the client’s data in the process, servr update db | db ack request = update db.

Verifying Erlang Telecommunication Systems 209

The functional server (FS) is translated into a process server. The process contains
a server ID SVRID, a capacity C and a client list CLs. It uses the action handle call to
receive the client’s requests: when a request is received, the server process first checks
whether the request is made for itself. If so, the process calls the process handle request
to tackle the request; otherwise, its returns without changing anything.

proc server(SVRID:Term,C:Term,CLs:Term) =
sum(SVR:Term,sum(Request:Term,sum(Client:Ter,

handle call(SVR,Request,Client).
handle request(SVR,Client,Request,C,CLs))))

� eq(SVRID,SVR) � server(SVRID,C,CLs)

For each client’s request, a request process is defined. Once the handle request is
enabled, it selects the corresponding request process. The selected process first performs
all pre-defined actions and then replies the client with a message through the action
gen server reply. For example, when the connecting request is received, the process
handle request connecting is activated. It first checks whether the server reaches its
maximum capacity. If the server is full, the process goes back to the process server
without changing anything; otherwise, if the client has not been connected to a server
before, the process sets up the connection and replies the client with {ok, connected}.

handle request connecting(SVRID:Term,CL:Term,C:Term,CLs:Term) =
sum(Vals:Term, server read db(Vals).

(gen server reply(SVRID,tuple(error,tuplenil(unregister user)),CL).
server(SVRID,C,CLs)

� is nil(find client(CL,Vals)) �
(gen server reply(SVRID,tuple(error,tuplenil(already connected)),CL).
server(SVRID,C,CLs)

� eq(find client(CL,Vals),CL) �
(server update db(CL,find client(CL,Vals),CL),true).
gen server reply(SVRID,tuple(ok,tuplenil(connected)),CL).
server(SVRID,C,list append(CL,CLs))

� mcrl less(list number(CLs),C) �
gen server reply(SVRID,tuple(error,tuplenil(busy)),CL).
server(SVRID,C,CLS)))))

The process handle timeout is defined to deal with timeout event. Once the timeout
event is generated from a client, the process handle timeout will be activated. It cuts
off the connection between the server and the client and removes the client from its
user list to release the resource.

4.3 Translating the Client Component

The client was initially modelled as an FSM and implemented using the OTP gen fsm.
This is then translated into μCRL using techniques defined in [14], where the transla-
tion process is comprised of two parts, simulating state management (SSM) and state
function translation (SFT).

In this work, a (one place) stack is used to perform the SSM which is modified by
using a global variable (GV) process. A GV process contains a list of indexed GVs,
where each GV is of the format {VName,Val} where the VName gives the variable’s
name and the Val the value. A GV process with three GVs, V1, V2 and V3, is defined
as follows:

210 Q. Guo, J. Derrick, and C. Hoch

proc
GVs(V1:Term,V2:Term,Var3:Term) =
sum(V:Term,receive val(V).

(GVs(V,V2,V3) � eq(element(int(1),V),element(int(1),V1)) �
(GVs(V1,V,V3) � eq(element(int(1),V),element(int(1),V2)) �

(GVs(V1,V2,V) � eq(element(int(1),V),element(int(1),V3)) � delta))))
+
send val(V1,V2,V3).GVs(V1,V2,V3)

A GV can be read out through the actions read val send val, write val | receive val =
write, and be modified through the actions write val / receive val, write val | receive val
= write. We use a GV to stand for a client where VName and Val are used to save the
client FSM’s current state and the state data respectively. We found that, by applying
such a modification, the state space is largely reduced.

The process receive cmd is defined to receive commands generated from the external
actions. For each client, a unique ID CLID is associated with all its FSM processes.
Once a command is received, the process receive cmd calls the process read clients.
According to the CLID, the designated FSM’s current state and the state data are
read out. The corresponding state process is then selected for performing all defined
actions. Once the execution of the state process finishes, the FSM moves to the process
fsm update state to update the current state and the state data.

For example, when the FSM is in the state idle and the connecting command is
received, the state process fsm idle is activated. The process fsm idle sends the request
to an FS and then waits for reply. If the FS returns busy, the process will calls for
another FS; otherwise, the connection is set up. The process then calls for the process
fsm update state to update the state connected as the current state. Thus we have the
following:

fsm idle(CLID:Term,Data:Term,Cmd:Term,SList:Term,SMList:Term) =
gen server call(hd(SList),Cmd,ClID).
wait for reply(hd(SList),CLID,Data,Cmd,SList,SMList)

wait for reply(SVRID:Term,CLID:Term,Data:Term,Cmd:Term,) =
sum(S:Term,sum(R:Term,sum(CL:Term,

gen server replied(S,R,CL).
((client info(S,R,CL).
(fsm idle(CLID,Data,Cmd,SMList,SMList)

� is nil(SList) � fsm idle(CLID,Data,Cmd,tl(SMList),SMList))
� is busy(element(int(2),R)) �

(fsm update state(CLID,connected,Data,SList,SMList,true,false)
� is connected(element(int(2),R))�

fsm update state(CLID,idle,Data,SList,SMList,false,false,2))))
� eq(CL,CLID) � wait for reply(SVRID,CLID,Data,Cmd)))))

The process fsm update state is parameterized with two arguments, FT and FTM.
The FT determines whether the updated current state has timing restrictions on it;
the FTM decides whether the process will be terminated due to some unexpected
events. If the newly updated current state process has timing restrictions, the FT will
be set to true, which enables the process fsm timing to count down the time. If, within
the predefined time period, no external action is performed, a timeout event will be

Verifying Erlang Telecommunication Systems 211

generated and sent to the FS. Afterwards, the process is terminated by setting the
FTM to true. Thus we have the following output from the translation process:

fsm update state(CLID:Term,SNext:Term,Data:Term,Cmd:Term,
SList:Term,SMList:Term,FT:Term,FTM:Term,TR:Nat) =

write val(tuple(CLID,tuplenil(tuple(SNext,tuplenil(Data))))).
(delta � eq(FTM,true) �

(fsm timing(CLID,SNext,Data,SList,SMList,on(TR))
�eq(FT,true)� receive cmd(SList,SMList)))

The process fsm timing and the process count down are parameterized with a timer
[16]. By using an explicit tick action in the process count down, we apply a discrete-time
timing model to support the translation of timeout event. When the process fsm timing
is called at the first time, the timer t is initiated and initialized. The process will either
call for the process count down to start the timing process or the receive cmd process
to continue with another external command.

fsm timing(CLID:Term,SNext:Term,Data:Term,SList:Term,SMList:Term,t:Timer) =
count down(CLID,SNext,Data,SList,t) + receive cmd(SList,SMList)

When the count down process is activated, it checks whether the timer expires (using
the function expire(t:Timer)). If not, the process will first perform the tick action once,
standing for the passing of one time unit. The process then moves back to the process
fsm timing, counting down the timer t by one unit (pred(t)); otherwise, if the timer
expires, the process fsm update state is called, with the next state SNext being reset
to idle and the FTM to true.

count down(CLID:Term,SNext:Term,Data:Term,SList:Term,SMList:Term,t:Timer) =
tick.fsm timing(CLID,SNext,Data,SList,SMList,pred(t))

� not(expire(t)) �
gen server call(hd(SList),timeout,CLID).
fsm update state(CLID,idle,nil,nil,SList,SMList,false,true)

4.4 System Translation

By considering the translation of server section and client section together, the system is
translated into a completeμCRLspecification. In the specification, every server and client
are initialized with a unique client ID. For each client, the process client cmds(CLID,
CmdList) is applied to initialize a list of external actions where CLID indicates the client’s
ID and CmdList saves the sequence of commands. A client receives a command through
the action r cmd(CLID, Cmd).

A client sends a request to an FS through the action gen server call(SVRID,Cmd,
CLID) where SVRID indicates the target server ID while CLID the sender’s ID. A
client receives a reply through the action gen server replied(SVRID,Reply,CLID) where
SVRID shows from which server the reply comes and CLID indicates to which client
the reply is sent.

When receiving a request, an FS process compares its ID with the received SVRID to
examine whether the request is made for the server itself. If so, the request is accepted
and the consequential actions will be performed; otherwise, the FS process ignores the
request and returns without changing anything. Similarly, when receiving a reply, a
client process compares its ID with the received CLID to check whether the message

212 Q. Guo, J. Derrick, and C. Hoch

is replied to the client itself. If so, the client process performs the actions extracted
from the reply; otherwise, the process ignores the message. Through ID checking, a
peer-to-peer communication structure is defined in the μCRL specification.

We have now reached a point whereby the design, as implemented in Erlang/OTP
has been translated (in fact, abstracted) to a μ CRL specification, and we now described
how properties of the initial design can be checked on this model.

5 Verifying the Telecommunication System with μCRL

In this section, a number of system properties are abstracted and verified. In our
experiments, the property under verification (PUV) is devised in a way where the
behaviour of FS(s), the behaviour of client(s) and the communication between the
FS and the client are considered as an integrated whole. Thus, instead of focusing on
particular individual components, the properties we are concerned with in this case
study are defined across the whole system.

5.1 Property Verification

The system used for simulation is constructed as shown in Figure 1 where three func-
tional servers (svr 1, svr 2 and svr 3) and five clients (m 1, m 2, m 3, m 4 and m 5)
are used. We initialize the capacity of every server to 1. The clients m 1, m 3, m 5 are
preset with £1 in their accounts, while m 2, m 4 with £0. We define that the minimum
cost of making a phone call to be £1. The timer for the functions with timing restriction
is set to 20,000ms, and we define the passing of one time unit as 10,000ms, represented
by one tick action. As discussed in Section 3.2, the gen fsm:send event is often called
through external actions. Therefore, before starting a simulation process, for each client
FSM, a sequence of actions needs to be initialized in the process Client Cmds to sim-
ulate the external behaviour.

We first devise two experiments to verify the system’s client-server property. In the
first experiment, the client m 1 attempts to make a phone call while m 2, m 3, m 4
and m 5 are idle; in the second, the client m 2 tries to make a phone call while m 1,
m 3, m 4 and m 5 are idle. Thus, for both these initial experiments, only one client is
active. Through these two experiments we want to check whether the FS(s) and the
client act as defined in design, and whether the communication between the FS and
the client is correctly running.

The commands for the two experiments are coded in the list Cmd = cons(connecting,
cons(calling, nil)) and initialized in the process client cmds respectively. The Labelled
Transition Systems (LTSs) derived from the toolset CADP [8] are shown in Figure 3
and 4. Here, we hide the actions update db and read db as internal actions, denoted by
i in the LTSs.

Verification of the properties can be performed by using the model checker CADP,
where the system properties are formalized by a set of temporal logic formulae. For
example, in the first experiment, to check “without being connected to svr 1, m 1
cannot make a phone call.”. This property can be formalized as:

[not(client info(m 1, connected, svr 1))*. client info(m 1, calling, svr 1))] false

Similarly, to check “when m 1 is connected to svr 1, without delaying enough time (two
tick actions being consecutively performed), a timeout event cannot be generated.”, the
property is formalized as:

Verifying Erlang Telecommunication Systems 213

Fig. 3. LTS: The client m 1 makes a phone call

Fig. 4. LTS: The client m 2 makes a phone call

[true*. client info(m 1, connected, svr 1)*]
<not(‘tick.tick’)*. client info(m 1, timeout, disconnected, svr 1)> false

In the second experiment, to check “when m 2 is connected to svr 1, if m 2 has
not preset enough money in its account, the calling process cannot be accepted.”, the
property is formalized as:

<true*. client info(m 1, connected, svr 1) *. client info(m 2, low prepaid, svr 1) *.
client info(m 1, calling, svr 1)> false

Next, we construct an experiment to examine the system’s behaviour where more
than one clients are active. Two clients m 1 and m 2 request to connect to a server
simultaneously. Since the capacity of the FS is set to 1, according to the design, when
an FS, for example svr 1, accepts the request of a client, say m 1, it should reply
the other m 2 with busy ; the client m 2 should afterwards request a connection to
svr 2. Similar to the previous experiments, we want to check the behaviour of FSs and
the clients in an integrated way, but use more complicated system structure. Figure 5
illustrates the derived LTS. Here, the actions call, buffercall and reply are hidden as
internal actions as well.

214 Q. Guo, J. Derrick, and C. Hoch

Fig. 5. m 1 and m 2 make requests to connect

A number of properties can then be automatically verified via CADP. For example,
to check “when m 1 is connected to svr 1 and m 2 requests to svr 1, svr 1 will reply
m 2 with busy.”. The property is formalized as:

<true*. client info(m 1, connected, svr 1) *. cmd(m 2, connecting) *.
client info(m 2, busy, svr 1)> true

Another property we want to check is formalized as:

<true*. cmd(m 2, connecting) *. client info(m 2, busy, svr 1) *.
cmd(m 2, connecting) *. client info(m 2, connected, svr 2)> true

stating that “when m 2 requests to connect to svr 1 and receives the reply of busy, it
will request to connect to svr 2 and its request will be accepted by svr 2.”

We also devise an experiment to show how the methodology can be used for fault
detection. A system with two FSs (svr 1 and svr 2) and four clients (m 1, m 2, m 3
and m 4) is constructed, where four clients simultaneously request a connection to an
FS. Both svr 1 and svr 2 are meant to be designed with a capacity of 2, and we assume
that one (say svr 2) by mistakenly implemented with a capacity of 1. This could cause
serious problems as one client will iteratively make a request to connect to the system
without knowing whether he/she will ever get through.

The erroneous implementation is then translated into a μCRL specification from
which we derive its LTS, however, since it has a total of 354 states and 407 transitions
it cannot be clearly presented here. As usual we use the toolset CADP to verify the
properties.

One way to detect such a problem is to check whether the four clients are successfully
connected to the FSs. Since the system is designed with the capacity of 4, all four clients
should have connected to an FS. Thus, for each client, we define the following property:

Verifying Erlang Telecommunication Systems 215

[true*. “cmd(m i, connecting)” *]
(<true* “client info(m i, connected, svr 1))”> or
<true* “client info(m i, connected, svr 2))”>) true

stating “when client m i sends connecting request to the system, its request should
be either accepted by sver 1 or by sver 2”. Using these properties, the CADP model
checker can correctly distinguish the correct and faulty implementations based upon
the design we wish to check against.

5.2 State Space Investigation

In addition to system wide property checking, we were interested in whether the inte-
grated system had a tractable state space as the size of its components grew, thus we
also investigated the state space generated from the μCRL specification by using the
toolset CADP.

Table 1. One FS with capacity of 5

Clients States Transitions

1 39 40
2 413 456
3 4381 5055
4 4845 5681
5 5309 6307

Table 2. Three FSs with capacity
of 1,2 and 3 respectively

Clients States Transitions

1 49 50
2 867 932
3 12307 14073
4 13449 15917
5 14591 17761

We first construct a system where only one FS is applied. The FS’ capacity is set to 5.
A number of clients simultaneously request a phone connection. Before the simulation
starts, all clients have preset enough money in their account. We incrementally increase
the number of clients from 1 to 5, and Table 1 illustrates the changes of the state space
that result. It can be seen that when the second and third client are connected to the
FS, the state space increases rapidly: by a factor of almost 10. However, after this the
subsequent increases level off, and the size is increased by roughly 20% when one new
client is added to the system.

The same phenomenon is noticed as well when we apply three FSs to the system.
The server capacities are set to 1, 2 and 3 respectively, and the resultant state space
is shown in Table 2. This seems to suggest that, with the number of clients being
increased, the state space will fairly reach a saturated point where the state space
is slowly increased by a stable pace. We are currently investigating whether this is a
general phenomenon or one peculiar to this particular example.

6 Conclusions and Future Work

Verification is an important process in the development of Erlang applications. This pa-
per contributes to the recent strand of work which has studied the verification of Erlang
applications using the process algebra μCRL. The basic methodology in this approach

216 Q. Guo, J. Derrick, and C. Hoch

is for an Erlang application to be translated (abstracted) into a μCRL specification,
upon which the standard model checker CADP can be applied.

The study of how best to translate Erlang into μCRL contains many open research
issues and is still in its early stage. Recent results had shown how components such as
supervisor, gen server, gen fsm and the Erlang timeout event could be translated into
μCRL, but the translation rules for each component had been evaluated independently.
At FORTE’07 we defined the rules for translating gen fsm into μCRL, and evaluated
the rules with two case studies. This was extended in [16] by defining the rules for
coping with Erlang timeout events and evaluated the work with some case studies. The
experimental results show quite a promising effect for system verification.

However, no work had investigated the translation rules in an application where the
gen server, supervisor, gen fsm and timeout events were incorporated in an integrated
system. This forces us to face a challenge. If we apply all rules in an integrated way,
will these rules show the similar effects for system verification as they independently
demonstrated? Moreover, will a state space explosion mean that effective verification
is lost? These questions are important to us since we want to make sure (or at least
be confident) that all the defined rules can work in an integrated way, or that this
requirement could be achieved through modifying some rules before we looked at the
translation of other OTP components (such as applications).

In this paper, we have attempted to look at these questions by investigating the ver-
ification of an Erlang telecommunication system in μCRL. The system integrates the
use of the supervisor, gen server, gen fsm components and uses explicit timeout events.
We have shown how the system is translated into a μCRL specification using the pro-
posed translation rules, and verified a number of system properties by using CADP
and investigated the changes of state space when the number of clients increases. In
our experiments, a property under verification (PUV) is defined in a way where the
behaviour of the functional servers (FSs), the behavior of the clients and the commu-
nication between the FSs and the clients should be verified simultaneously. Thus, each
PUV looks at a property in the view of complete system. A faulty implementation was
also used to test the capability of fault detection, and based upon the design the faulty
implementation was correctly distinguished by CADP.

The experimental results suggest that when being applied in an integrated system,
the translation rules show the similar effect for system verification as being applied
independently. The study of the changes in state space suggests, with the number
of clients being increased, the state space is slowly increased by a stable pace. All
experimental evidence gives us confidence that we are working in the correct direction,
and thus we can continue with the study of some other OTP components.

There remains much to be done. Work continues on the automation of the transla-
tion of additional OTP components, as does work on verifying the correctness of the
translation against the Erlang semantics [10,11]. This latter aspect remains a challeng-
ing task, for the full semantics for distributed nodes in an Erlang application can have,
semantically, some very subtle behaviour, as discussed in, for example, [18].

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) grant EP/C525000/1. We would like to thank the developers of the tool sets
of μCRL and CADP for permitting the use of tools for system verification.

Verifying Erlang Telecommunication Systems 217

References

1. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

2. Arts, T., Benac-Earle, C., Derrick, J.: Verifying Erlang code: a resource locker
case-study. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391,
pp. 184–203. Springer, Heidelberg (2002)

3. Arts, T., Benac-Earle, C., Penas, J.J.S.: Translating Erlang to μCRL. In: The
Fourth International Conference on Application of Concurrency to System Design
(ACSD 2004), June 2004, pp. 135–144. IEEE Computer Society, Los Alamitos
(2004)

4. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
Cambridge (1990)

5. Benac-Earle, C.: Model checking the interaction of Erlang components. PhD thesis,
The University of Kent, Canterbury, Department of Computer Science (2006)

6. Benac-Earle, C., Fredlund, L.-Å.: Verification of Language Based Fault-Tolerance.
In: Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005.
LNCS, vol. 3643, pp. 140–149. Springer, Heidelberg (2005)

7. Benac-Earle, C., Fredlund, L.-Å., Derrick, J.: Verifying Fault-Tolerant Erlang Pro-
grams. In: Sagonas, K., Armstrong, J. (eds.) Proceedings of ACM SigPlan Erlang
2005 Workshop, pp. 26–34. ACM Press, New York (2005)

8. CADP, http://www.inrialpes.fr/vasy/cadp/
9. Clarke, E., Grumberg, O., Long, D.: Model Checking. MIT Press, Cambridge

(1999)
10. Fredlund, L.Å: Towards a sematics for Erlang. In: Foundatins of Mobile Compu-

tation: A Post-Conference Satellite Workshop of FST and TCS (1999)
11. Fredlund, L.-Å.: A Framework for Reasoning about Erlang Code. PhD thesis, Roral

Institute of Technology, Stockholm, Sweden (2001)
12. Fredlund, L.-Å., Gurov, D., Noll, T., Dam, M., Arts, T., Chugunov, G.: A veri-

fication tool for Erlang. International Journal on Software Tools for Technology
Transfer 4(4), 405–420 (2003)

13. Groote, J.F., Ponse, A.: The syntax and sematics of μCRL. In: Algebra of Com-
municating Processes 1994, Workshop in Computing, pp. 26–62 (1995)

14. Guo, Q.: Verifying Erlang/OTP Components in μCRL. In: Derrick, J., Vain, J.
(eds.) FORTE 2007. LNCS, vol. 4574. pp. 227–246. Springer, Heidelberg (2007)

15. Guo, Q., Derrick, J.: Eliminating overlapping of pattern matching when verifying
Erlang programs in μCRL. In: Sha, E., Han, S.-K., Xu, C.-Z., Kim, M.-H., Yang,
L.T., Xiao, B. (eds.) EUC 2006. LNCS, vol. 4096, Springer, Heidelberg (2006)

16. Guo, Q., Derrick, J.: Verification of Timed Erlang/OTP Components Using the
Process Algebra μCRL. In: Thompson, S., Fredlund, L.-A. (eds.) 6th ACM SIG-
PLAN Erlang Workshop, pp. 55–64. ACM Press, New York (2007)

17. Huch, F.: Verification of Erlang programs using abstract interpretation and model
checking. ACM SIGPLAN Notices 34(9), 261–272 (1999)

18. Svensson, H., Fredlund, L.-ȦA.: A More Accurate Semantics for Distributed Er-
lang. In: Thompson, S., Fredlund, L.-A. (eds) 6th ACM SIGPLAN Erlang Work-
shop, pp. 43–54. ACM Press, New York (2007)

http://www.inrialpes.fr/vasy/cadp/

NQSL - Formal Language and Tool Support for

Network Quality-of-Service Requirements

Christian Webel, Reinhard Gotzhein, and Joachim Nicolay

Department of Computer Sciences, University of Kaiserslautern,
Kaiserslautern, Germany

{webel, gotzhein, j nicola}@cs.uni-kl.de

Abstract. Network Quality-of-Service (QoS) is a central characteristic
of the design of modern communication systems. Before designing and
implementing communication systems, network QoS requirements and
QoS mappings have to be specified and analyzed. In this paper, we pro-
vide language and tool support for this purpose. To specify network QoS
requirements and QoS mappings, we define a formal description tech-
nique called NQSL, the Network QoS Specification Language. To support
the efficient handling of NQSL specifications, we present a tool chain con-
sisting of the Graphical NQSL Editor (GNE), the NQSL Analyzer (NA)
for QoS domain reduction, and the NQSL-to-SDL Compiler (NSC) for
the generation of SDL data and process types.

1 Introduction

The provision of network Quality-of-Service (network QoS) is one of the ma-
jor challenges in the development of future communication systems. Network
QoS comprises performance, reliability, guarantee, and scalability aspects on
different levels of abstraction, as well as mappings between these levels. During
requirements analysis, network QoS requirements are to be specified formally.
In particular, the relevant network QoS aspects of a system are to be identified
by defining QoS domains, QoS domains of adjacent levels are to be mapped,
and subsets of QoS domains are to be selected. During system design, a QoS
architecture has to be devised, QoS functionalities are to be identified, and QoS
mechanisms to realize these functionalities must be supplied. Since QoS func -tion
alities are placed on different system levels and have high interdependencies, and

both on application level and on resource level, the provision of network QoS is
a highly complex task that requires a cross-layer approach in all development
phases.

In previous work [1], we have introduced a formalization of network QoS. In
particular, we have formalized the notions of QoS domain, QoS scalability, QoS
mapping, and QoS requirements. Moreover, we have identified formal criteria to
reduce QoS domains for consistency and tractability, based on utility and cost.
In this paper, we build on and extend these results by providing language and

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 218–234, 2008.
c© IFIP International Federation for Information Processing 2008

since the QoS status of a networked system may be subject to frequent changes

NQSL - Formal Language and Tool Support for Network QoS Requirements 219

tool support. To specify network QoS requirements and QoS mappings, we de-
fine a formal description technique called NQSL, the Network QoS Specification
Language. To support the efficient handling of NQSL specifications, we present a
tool chain consisting of the Graphical NQSL Editor (GNE), the NQSL Analyzer
(NA), and the NQSL-to-SDL Compiler (NSC). These tools relieve the system
developer from several tedious and error-prone tasks, such as applying QoS map-
pings by hand or reducing QoS domains based on the definitions of utility and
cost functions. Both tasks are required to evaluate and assess QoS mappings and
the set of relevant QoS domain values on different levels of abstraction, and have
to be repeated after each modification of the QoS requirements specification.

The remaining part of this paper is organized as follows: In Section 2, we sur-
vey related work. In Section 3, we summarize our formalization of network QoS
requirements (cf. [1]). Section 4 introduces NQSL, the Network QoS Specifica-
tion Language. In Section 5, the NQSL tools GNE, NA, and NSC are presented.
Conclusions are drawn in Section 6.

2 Related Work

To cope with various requirements of system designs, user preferences, middle-
ware, hardware, networks, operating systems, and applications, several QoS spec-
ification techniques have been proposed (see [2] for a classification):

– QML (Quality Modelling Language) [3] is focused on the specification of
application layer QoS requirements. QoS requirements of lower layers, QoS
scaling, and QoS mappings are not addressed.

– CQML (Component Quality Modeling Language) [4] adopts some of the
fundamental concepts of QML, and also addresses dynamic QoS scaling. As
QML, it is focused on the application layer. Since CQML is widely used,
several tool kits exist, including front-end tools and parsers, e.g. [5].

– QDL (Quality Description Language) has been proposed as a part of the QuO
(Quality Objects) framework [6] that supports QoS on the CORBA object
layer. With QDL, it is possible to specify QoS requirements on application
layer and on resource layer, and to define QoS scaling.

– The Quality Assurance Language (QuAL) is part of the Quality of Service
Management Environment (QoSME) [7]. With QuAL, QoS requirements are
specified in a process-oriented way. QoS-A (Quality-of-Service Architecture)
[8] uses a parameter-based specification approach, including QoS adaptation
and QoS mappings.

In summary, it can be stated that previous formal treatments of QoS address
only some aspects of QoS requirement specification, focusing, for instance, on a
subset of abstraction layers, or leaving out QoS mappings. Our work comprises
the aforementioned issues and therefore provides a holistic, comprehensive for-
malization of network QoS requirements, across layers. Furthermore, we provide
QoS tools beyond front-end tools, in particular, an analysis tool and a compiler.

220 C. Webel, R. Gotzhein, and J. Nicolay

3 Formalization of Quality-of-Service

In previous work [1], we have introduced a formalization of network QoS. In
particular, we have formalized the notions of QoS domain, QoS scalability, QoS
mapping, and QoS requirements. In this paper, we build on and extend these
results. Therefore, we provide a survey of the formalization of network QoS in
this section.

3.1 Formalization of Network QoS Requirements

The need for formalization of network QoS requirements arises from the fact that
a precise description of network QoS between service user and service provider is
needed to police, control, and maintain the data flow a user emits to the commu-
nication system. Further on, the mechanisms realizing these functionalities need
a precise and well-defined description of QoS. Formalization of network QoS is
done by firstly identifying the QoS domain, and secondly by describing the QoS
scalability.

The QoS domain Q captures the QoS characteristics of a class of data flows,
i.e. performance, reliability, and guarantee and is therefore defined as Q =
P×R×G, where P is the performance domain, R is the reliability domain, and G
is the guarantee domain. An element q = (p, r, g) of Q is called QoS domain value.
QoS performance describes efficiency aspects characterizing the required amount
of resources and the timeliness of the service. The relevant efficiency parameters
are included in the QoS performance domain P with P = P1×. . .×Pn =

∏n
i=1 Pi,

where P1, . . . , Pn are performance subdomains. The QoS reliability describes the
safety-of-operation aspects characterizing the fault behaviour (e.g., loss rate and
distribution, corruption rate and distribution, error burstiness) and is defined as
R = Loss × Period × Burstiness × Corruption , with Loss = N0, Period = R+,
Burstiness = R+, and CorruptionRate = {cr ∈ R | 0 ≤ cr < 100}. The QoS
guarantee describes the degree of commitment characterizing the binding char-
acter of the service. QoS guarantee is formalized by the QoS guarantee domain
as G = DoC × Stat × Prio, where Stat = {p ∈ R | 0 < p ≤ 1}, Prio = N, and
DoC = {bestEffort , enhancedBestEffort , statistical , deterministic}.

Varying communication resources require adaptive mechanisms to avoid net-
work overload, and to scale the application service. The QoS scalability S de-
scribes the control aspects characterizing the scope for dynamic adaptation of
the QoS aspects of a data flow (described by a QoS domain) to a certain granted
network QoS. The QoS scalability domain S is defined as S = Util × Cost ×
Up × Down, where Util = {u | u : Q → [0, 1]}, Cost = {c | c : Q → R+}, and
Up,Down ∈ {x ∈ R+ | 0 ≤ x ≤ 1}. The elements of Util and Cost are called
utility functions and cost functions, respectively. A utility function determines
the usefulness of QoS domain values, a cost function c expresses the amount of
needed resources, associating higher costs with scarcer resources. QoS domain
values with the same utility (cost) (∼u(c)) are assigned to the same so-called
u(c)-equivalence class of Q: [x]u(c) =

{

q ∈ Q | q ∼u(c) x
}

.

NQSL - Formal Language and Tool Support for Network QoS Requirements 221

The QoS requirements qosReq define the set of valid QoS domain values and
a QoS scalability value, and are formally stated as a triple (qmin , qopt , s), where
qmin , qopt ∈ Q and s ∈ S. The QoS domain values qmin and qopt specify a set
Q

′ ⊆ Q of valid QoS domain values. To obtain Q
′
, a preorder �u induced by

the utility function is applied: Q
′
= {q ∈ Q | qmin �u q �u qopt}.

For consistency and tractability, we stepwise reduce the QoS domain Q. In a
first step, we define the reduced QoS domain Qu by selecting the best element
of each u-equivalence class of Q regarding c, and by considering values from Q

′

only. Let m be the cardinality of Q/∼u, the quotient set of Q w.r.t. ∼u, and
let [x]iu denote the ith element of Q/∼u regarding �u (ith u-equivalence class).
Then, Qu = {q1, . . . , qm} ∩ Q

′
, qi = q ∈ [x]iu | ∀y ∈ [x]iu . q �c y, 1 ≤ i ≤ m.

A further reduction induces a derived QoS domain Qu,c, discarding QoS domain
values with higher cost, but less utility, Qu,c = {q ∈ Qu | ∀y ∈ Qu . c(q) > c(y) ⇒
u(q) > u(y)} 1.

3.2 Formal QoS Mappings

The mechanisms realizing QoS management tasks are typically embedded in the
communication system, prevalent across layers, hiding complex tasks from the
application. This leads to abstract QoS requirements on higher system layers,
whereas on lower system layers, the level of detail increases. To rigorously re-
late the different viewpoints on network QoS, a well-defined translation of the
requirements is needed, called QoS mapping. The QoS mapping can be decom-
posed into QoS domain mapping and QoS scalability mapping.

The QoS domain mapping dm : Qh → Ql is a function from a (higher layer)
QoS domain Qh to a (lower layer) QoS domain Ql. The domain mapping dm may
be defined using the auxiliary functions dmP : Qh → Pl (performance mapping),
dmR : Qh → Rl (reliability mapping) and dmG : Qh → Gl (guarantee mapping).
A detailed description of the three mapping subfunctions is given in [1]. In general,
the QoS mappings are neither injective nor surjective.

The QoS scalability mapping is needed to apply control aspects characterizing
the dynamic adaptation of QoS parameters on different system levels. A QoS
scalability mapping sm is a set of four mapping functions smUtil , smCost , smUp

and smDown , translating the different scalability domains into each other [1].

4 The Network Quality-of-Service Specification Language

In this section, we introduce NQSL, the Network Quality-of-Service Specification
Language for the formal specification of QoS requirements. NQSL is directly
derived from the formalization of network QoS in [1], which we have outlined
in Section 3. It supports the specification of QoS domains and subdomains,
QoS scalability, QoS mappings, and QoS requirements. The syntax of NQSL
mainly adds keywords identifying concepts of network QoS, notation to specify

1 For examples, see Section 5.2.

222 C. Webel, R. Gotzhein, and J. Nicolay

functions, and a set of basic data types. Due to this direct correspondance of
the formalization of network QoS, which uses basic mathematical notation, and
NQSL language elements, it is straightforward to associate a formal semantics
with NQSL specifications.

To give a flavour of NQSL, we briefly present the language elements for the
specification of QoS domains and subdomains. The complete definition of NQSL
can be found in [9]. The syntax of NQSL is defined in Extended BNF (EBNF), us-
ing the usual notational conventions: non-terminals are written in angle-brackets
<non-terminal>, terminals are enclosed by single quotes ’terminal’, produc-
tions are declared in the form <non-terminal> = expansion;, square brackets
enclose optional parts [optional], and alternatives are separated by |.

As stated in Section 3.1, a QoS domain captures the QoS characteristics of a
class of data flows, i.e. performance, reliability, and guarantee. A QoS domain
(see List. 1.1) is identified by its domain name and defined by a domain body
consisting of declarations of performance, reliability, and guarantee domains. A
QoS subdomain is identified by a unique name and defined by a type, using
basic data types (Integer, Real, Enum), tuples of data types (Integer× Real),
or previously defined subdomains. Optionally, the domain of the data type can
be restricted to a set of possible values.

Listing 1.1. NQSL: QoS domain and subdomain definition (excerpt)

<qosdomain dec l> = ’QoSDomain ’ <domain name> ’{ ’ <domain body>’} ’ ;
<domain body> = <performance domain> <r e l i a b i l i t y doma in >

<guarantee domain >;
<performance domain> = ’ Performance ’ ’ { ’ <partdomain body> ’ } ’ ;
<r e l i a b i l i t y d oma i n > = ’ R e l i a b i l i t y ’ ’ { ’ <partdomain body> ’ } ’ ;
<guarantee domain> = ’ Guarantee ’ ’ { ’ <partdomain body> ’ } ’ ;
(. . .)

<subdomain dec l> = ’ Subdomain ’ <subdomain body >;
| ’ Subdomain ’ < i d e n t i f i e r >;

<subdomain body> = ’ { ’ <name decl> <type dec l> [< typedomain dec l >] ’ } ’ ;
<name decl> = ’name ’ ’ : ’ < i d e n t i f i e r > ’ ; ’ ;
<type dec l> = ’ type ’ ’ : ’ <datatype body> ’ ; ’ ;
<typedomain dec l> = ’ domain ’ ’ : ’ <typedomain body> ’ ; ’ ;

In Listing 1.2, an excerpt of the QoS domain Video is specified in NQSL.
The performance domain consists of three subdomains. The first subdomain
Resolution is defined as a tuple of integers, with the values restricted to the pairs
(320, 240), (480, 360), and (640, 480). The subdomains Quality and FrameRate
have already been defined, and therefore are referenced.

Listing 1.2. NQSL specification: QoS domain Video (excerpt)

QoSDomain Video{
Performance{

Subdomain {
name : Reso lut ion ;
type : (Integer , Integer) ;
domain : { (320 , 240) , (480 , 360) , (640 , 480)} ; }

Subdomain Qual ity ;
Subdomain FrameRate ;

}
Reliabi l i ty{ (. . .) }
Guarantee{ (. . .) }

}

NQSL - Formal Language and Tool Support for Network QoS Requirements 223

A QoS requirements specification is identified by a unique name and uses a
QoS domain defined beforehand. It consists of a set of QoS requirement profiles
qosReq, which are subdivided into a description of minimum and optimum QoS as
well as scalability. Listing 1.3 gives an excerpt of the QoS requirement spec
ification VideoTransmission. The specification consists of two QoS requirement
profiles Surveillance and Panorama. In the example, the scalability aspect is
shown, with utility and cost functions restricted to the performance domain.For
instance, utility is defined by refering to performance subdomains Resolution,
Quality, and FrameRate, with Resolution.1 denoting the first tuple element.
W.l.o.g. we assume that the needed transmission rate on Hardware layer would
provide a good metric for the needed resources. The specification of optimum
QoS can be found below (see Fig. 4).

Listing 1.3. NQSL specification: QoS scalability of Video (excerpt)

speci f ication VideoTransmission uses Video {
qosreq Sur v e i l l a n c e {

minimum{ (. . .) }
optimum{ (. . .) }
sca lab i l i ty {

ut i l = 0 . 1∗ ((Reso lut ion .1 −160)/480) + 0 . 1∗ (Qual ity /75) +
0 . 8∗ (FrameRate /25) ;

cost Hardware = TransmissionRate ;
up = 0 . 2 ;
down = 0 . 1 ; }

}
qosreq Panorama { (. . .) }

}

To determine the costs of a video data flow configuration on application level
from the costs specified on hardware level, QoS domain mappings are used.
In Listing 1.4, two domain mappings are specified, mapping the QoS domain
Video to Hardware via Middleware. Note that for the subdomains reliability and
guarantee, we assume identical mappings, therefore, no explicit QoS mappings
are provided.

Listing 1.4. NQSL specification: QoS domain mappings

domainmapping from Video to Middleware{
performance :

NoOfFrames=c e i l ((160∗ Qual ity +3000)∗(Reso lut ion .1 −160)/(160∗1420)) ;
Period=1/FrameRate ;

r e l i ab i l i t y ;
guarantee ; }

domainmapping from Middleware to Hardware{
performance :

TransmissionRate = NoOfFrames/Period ∗1512 ;
r e l i ab i l i t y ;
guarantee ; }

5 Tool Support for NQSL

In this section, we present our tool support for NQSL, consisting of the Graph-
ical NQSL Editor (GNE), the NQSL Analyzer (NA), and the NQSL-to-SDL
Compiler (NSC).

-

224 C. Webel, R. Gotzhein, and J. Nicolay

5.1 Graphical NQSL Editor

The Graphical NQSL Editor (GNE) is generated from a metamodel for network
QoS, and implemented as a plugin for Eclipse IDE, using the Eclipse Model-
ing Framework (EMF) [10] and the Graphical Modeling Framework (GMF) [11].
Starting point is the domain model defined as a metamodel that is described
in ECore, a UML-dialect and part of the Meta Object Facility (MOF) [12] that
is limited to class diagrams. Based on this metamodel, EMF generates a rudi-
mentary editor with basic functionalities such as creating or modifying objects.
In the next step, GMF is used to generate a more sophisticated editor. Based
on the Java classes generated by EMF and the domain model, GMF creates a
graphical editor that is much more comfortable and intuitive to use. To this,
the graphical definition model identifying graphical elements, e.g. figures, nodes,
links etc., and the tooling definition model specifying the palette, creation tools,
actions, etc. of the graphical elements are needed. These three models are bound
by the mapping definition model. Based on this model, the generation model is
obtained by a transformation step.

Fig. 1. Domain Model for the Graphical NQSL Editor

Starting point for the development of the graphical editor for NQSL is the do-
main model in Fig. 1. This metamodel is based on the formalization of network
QoS surveyed in Section 3. The metamodel introduces a class NetworkQoS, which
encapsulates QoS requirements and QoS mappings. Additionally, QoS domains
and QoS subdomains are aggregated in this class; this way, a QoS subdomain
can be used in different QoS domains, which is modeled by references. A QoS re-
quirement specification is modeled by the class QoSRequirements, which in turn

NQSL - Formal Language and Tool Support for Network QoS Requirements 225

consists of a set of QoS profiles capturing different application scenarios. The
relation between QoS requirements and QoS domain is modeled by a reference.
To simplify the implementation, the domains of QoS performance, QoS reliabil-
ity and QoS guarantee are collected in a superclass Domain. The QoSScalabiliy
is modelled as described in the formalization. QoS scalability consists of Utili-
tyFunction, CostFunction, and two thresholds up and down. The mappings for
performance, reliability and guarantee are collected in MappingFunction. The
QoS scalability mapping is not be explicitly modeled, as it is identical for all
QoS specifications.

Following the formalization of network QoS, the Graphical NQSL Editor
(GNE) consists of three parts: an editor for QoS domains and subdomains, an
editor for QoS mappings between QoS domains, and an editor for QoS require-
ments. Fig. 2 shows the user interface of the GNE domain editor. A QoS domain
is created by referencing previously built QoS subdomains. Notice that QoS
subdomains can be used in several QoS domains.

Fig. 2. GNE Domain Editor

The user interface of the GNE Mapping Editor is shown in Fig. 3. Two pre-
viously defined QoS domains Video and Middleware are related by specifying
the QoS mapping Video2Middleware. If QoS subdomains of source and target
domain are different, a customized mapping function has to be supplied. If some
QoS subdomains are identical, e.g. priority or loss, a default mapping is gener-
ated. In addition, the direction of the mapping can be controlled by relations
map from and map to.

Finally, the GNE Requirements Editor is used to define QoS requirements,
consisting of a set of QoS profiles, on application level (see Fig. 4). First, a new

226 C. Webel, R. Gotzhein, and J. Nicolay

Fig. 3. GNE Mapping Editor

Fig. 4. GNE Requirements Editor

QoS requirements specification is created and associated with a QoS domain.
Then, QoS profiles can be added by specifying concrete minimum and optimum
QoS, and a QoS scalability value. In the example, the QoS requirements specifi-
cation VideoTransmission is associated with the QoS domain Video and consists
of the QoS profile Surveillance.

For further processing, GNE supports the transformation of QoS domains,
QoS requirements, and QoS mappings from XMI [13], which is the default data
format, to NQSL. Since the data is available in a XML-based format, we used
XSLT [14] for this transformation.Figure 5 shows the transformation of subdo-
main Resolution to the corresponding NQSL description.

NQSL - Formal Language and Tool Support for Network QoS Requirements 227

(a) Subdomain Resolution

Subdomain {

name: Resolution;

type: (Integer, Integer);

domain: {(320, 240),(480,360),(640, 480)};

}

(b) Result in NQSL

<xsl:for-each select="/qos:NetworkQoSDescription/subdomains">

subdomain {

name: <xsl:value-of select="@name" />;

type: <xsl:value-of select="@type" />;

domain: <xsl:value-of select="@domain" />;

}

</xsl:for-each>

(c) Transformation in XSLT

Fig. 5. Transformation Process

5.2 NSQL Analyzer

Based on the definition of QoS domains on all abstraction levels, QoS mappings
between them, and the QoS requirements on application level (see Section 5.1),
the NQSL Analyzer (NA) performs QoS domain reductions and derives QoS
requirements on communication level and on resource level. This relieves the
system developer from filling in QoS requirements on lower levels and checking
their consistency. Moreover, the analysis results provide feedback on QoS map-
pings, and support the assessment of utility and cost functions. Finally, they
serve as input for generating fragments of the system design, e.g. QoS data
structures and QoS scaling functionality based on QoS scaling tables.

To perform QoS domain reductions, the NQSL analyzer works in three steps,
which are performed subsequently on all abstraction levels and for each QoS
profile:

– In Step 1, the QoS domain is reduced to a set of u-equivalence class repre-
sentatives. Here, the NQSL analyzer determines the u-equivalence classes of
the QoS domain as induced by the utility function u of a QoS requirement
profile (see Section 3.1). For each equivalence class, the QoS domain value
with minimum cost according to the cost function c is kept as representative
for that class, i.e. all other QoS domain values of that class are discarded.
To limit memory needs of the system implementation later on, an upper
bound for the number of equivalence classes can be set. At this point, the
system developer obtains feedback about the distribution of the correspond-
ing utility values in the interval [0, 1]. An example is given in Table 1. Note
that to keep the presentation concise, we consider a very small QoS domain,
comprising 9 values only (see Table 1(a)). A more realistic cardinality would
be in the order of 103 to 105. Each QoS domain value consists of a tuple for
resolution and values denoting JPEG quality and frame rate. Furthermore,
the corresponding utilities and costs are shown. In the example, the utility

228 C. Webel, R. Gotzhein, and J. Nicolay

of each QoS value is defined by the user, whereas the costs are calculated by
means of the QoS performance mappings and cost function shown in List-
ings 1.3 and 1.4. Based on the utility, 5 equivalence classes [x]u are obtained.
Selecting the QoS domain value with minimum cost in each equivalence class
leads to a reduced QoS domain Qu, as shown in Table 1(b).

Table 1. QoS Domain QVideo

(a) QoS domain values qVideo of QoS domain QVideo

value utility cost[103] value utility cost[103]

(
(320,240),25,25) 0.1 175 ((480,360),75,25) 0.5 750

(
(320,240),50,25) 0.1 275 ((640,480),25,25) 0.7 525

(
(320,240),75,25) 0.3 375 ((640,480),50,25) 0.7 825

(
(480,360),25,25) 0.3 350 ((640,480),75,25) 0.9 1125

(
(480,360),50,25) 0.5 550

(b) equivalence partitioning into 5 classes and keeping cost-optimal QoS domain values

[x]u value cost[103] [x]u value cost[103]
[0.1]u ((320,240),25,25) 175 [0.7]u ((640,480),25,25) 525
[0.3]u ((480,360),25,25) 350 [0.9]u ((640,480),75,25) 1125
[0.5]u ((480,360),50,25) 550

– In Step 2, the number of QoS domain values is further reduced by applying
the cost criterion (see also [1]). In general, it is possible that for QoS domain
values q and q′, u(q) > u(q′), while c(q) ≤ c(q′). If this is the case, the QoS
domain value q′ can be discarded, as it is associated with higher or equal
cost, but less utility. Discarding of QoS domain values is continued until for
all remaining QoS domain values q and q′, u(q) > u(q′) implies c(q) > c(q′).
In the example, the QoS domain value ((480, 360), 50, 25) is discarded since
((640, 480), 25, 25) provides better utility at lower cost.

Table 2. Reduced Equivalence Classes

[x]u value cost[103] [x]u value cost[103]

[0.1]u ((320,240),25,25) 175 [0.7]u ((640,480),25,25) 525
[0.3]u ((480,360),25,25) 250 [0.9]u ((640,480),75,25) 1125
[0.5]u ((480,360),50,25) 550

– In Step 3, the QoS domain values are further reduced by keeping only those
QoS domain values that satisfy the QoS profiles of the QoS requirements, i.e.
qmin and qopt. First, the equivalence class representatives of qmin and qopt are
determined. From these representatives, the utility interval corresponding to
the QoS requirements are obtained. Finally, all QoS domain values with a
utility outside this interval are discarded. The remaining QoS domain values
constitute entries of the QoS scaling table. In the example, we assume that

NQSL - Formal Language and Tool Support for Network QoS Requirements 229

we have only one QoS profile with qmin in [0.3]u and qopt in [0.9]u. This leads
to the QoS scaling table shown in Tab. 3.

Table 3. QoS Scaling Table

[x]u value cost [x]u value cost
[0.3]u ((480,360),25,25) 350 [0.9]u ((640,480),75,25) 1125
[0.7]u ((640,480),25,25) 525

Thus, for every QoS profile of a QoS requirements specification, a QoS scaling
table is generated. To derive QoS requirements on communication level and on
resource level, the NQSL analyzer applies the corresponding QoS mappings to
the set of QoS domain values remaining after QoS domain reduction. For each
layer, the QoS requirement specification is derived by determining the utility of
the resulting QoS domain values, and by selecting the QoS domain values with
minimum and optimum utility. In the example shown in Tab. 4, the QoS profile
is mapped to a corresponding QoS profile on middleware layer, described by the
number of data frames required for the transmission of one picture frame, and
the period between two picture frames, i.e. QMiddleware = NoFrames×Period [s].
To obtain the corresponding QoS domain values on middleware layer, the QoS
mapping defined in Listing 1.3 has been applied. From these results, it follows
that the minimum and maximum QoS domain values on middleware layer are
(10, 0.04) and (32, 0.04), respectively.

Table 4. Results of QoS Mapping

application layer middleware layer
[x]u value cost [x]u value cost
[0.3]u ((480,360),25,25) 350 [0.3]u (10, 0.04) 350
[0.7]u ((640,480),25,25) 525 [0.7]u (15, 0.04) 525
[0.9]u ((640,480),75,25) 1125 [0.9]u (32, 0.04) 1125

We have implemented the NQSL analyzer in Java. Currently, performance
and guarantee mappings are supported by the tool.

5.3 NQSL-to-SDL Compiler

After finalizing the QoS requirements specification in NQSL, the developer turns
to the specification of the system design. For the design, a QoS architecture has to
be devised, required QoS functionalities such as access tests, resource reservation,
traffic control, and scaling strategies are to be identified, and corresponding
mechanisms to realize these functionalities must be provided. Furthermore, it
has to be shown that the design satisfies the abstract QoS requirements.

230 C. Webel, R. Gotzhein, and J. Nicolay

Certainly, the design decisions that are to be taken here are far too complex
to be automated entirely. However, it is feasible to generate fragments of the de-
sign. To start with, we have developed the NQSL-to-SDL Compiler (NSC) that
translates QoS domains and QoS requirements specified in NQSL to correspond-
ing data type definitions and QoS scaling process types based on QoS domain
tables in SDL [15]. SDL, ITU-T’s Specification and Description Language, is a
formal design language for telecommunication systems that is widely used in
industry and academia, with commercial tool support including graphical edi-
tors, analyzers, simulators, and SDL-to-C compilers. Fig. 6(a) shows a screen
dump of the user interface of the NSC. As input, the tool accepts the NQSL
output of the Graphical NQSL Editor. One output of the NSC are layer specific
SDL packages, containing the according SDL data type definitions of the QoS
domain. The NSC has been integrated into Telelogic TAU [16], the SDL tool
suite of a commercial provider of SDL tools. It has been written in Java, using
JFlex [17] for lexical analysis and CUP [18] for parsing. For better usability, we
have integrated the NQSL Analyzer into the NSC user interface.

(a) User Interface integrated in Telelogic TAU

package VideoPkg

newtype Resolution_base struct
 param1 Integer;
 param2 Integer;
endnewtype;

syntype Resolution = Resolution_base
 constants (. 320, 240 .), (. 480, 360 .),
 (. 640, 480 .)
endsyntype;

syntype Quality = Integer
 constants 25, 50, 75
endsyntype;

syntype FrameRate = Integer
 constants 1 : 25
endsyntype;

newtype Video_P struct
 param1 Resolution;
 param2 Quality;
 param3 FrameRate;
endnewtype;

(...)

newtype Video struct
 performance Video_P;
 reliability Video_R;
 guarantee Video_G;
endnewtype;

VideoScaler

(b) Generated SDL data
types

Fig. 6. NQSL-to-SDL Compiler

For a given QoS domain, the NSC generates an SDL package, i.e. a library
that can be imported by SDL system specifications. The generated SDL package
contains SDL data type definitions of all problem-specific QoS subdomains of
the NQSL specification. QoS subdomains that are not problem-specific, such as
degree of commmitment or priority of the QoS guarantee domain, are collected
in the predefined SDL package CommonDataTypes, which s imported by every
other SDL package generated by the NSC.

QoS domains and subdomains are mapped to SDL syntypes or newtypes,
depending on their complexity. Fig. 6(b) shows the SDL data types generated

NQSL - Formal Language and Tool Support for Network QoS Requirements 231

process type VideoScaler

newtype VideoSort struct
 value Video; util Utility;
endnewtype;

newtype VideoTableEntry struct
 index Cost; sort VideoSort;
endnewtype;

newtype VideoScalingTable
 String(VideoTableEntry, empty)
 operators
 scale : VideoScalerTable, Cost −> Video_P;
 operator scale
 fpar t VideoScalingTable, c Cost
 returns result Video_P {
 dcl i Integer;
 for (i := 1, i <= length(t), i + 1) {
 if (t(i)!index > c) break;
 result := t(i)!sort!value!performance;
 }
 }
endnewtype;

newtype ScalingTable
 Array(Charstring, VideoScalingTable)
endnewtype;

/*declaration of local variables */
DCL
 (...)
 scalingTable ScalingTable;

initialize QoS
scaling table

(...)

val := (. (. (. 480, 360 .), 25, 25 .), (...) .);
s := (. val, 0.3 .);
te := (. 350000.0, s .);
append(st, te);

(...)

scalingTable(’Surveillance’) := st;

wait2scale

wait2scale

changed connection
resources

availableConnRes
(c)

scale to currently
available resources

valP :=
scale(st, c)

parametrize user
data flow

setQoSParameter
(valP)

update traffic
parameters of other
QoS mechanisms

curUserFlowCfg
(valP)

−

Fig. 7. Generated Process Type VideoScaler (excerpt)

for the QoS domain QVideo,which are contained in the new SDL packageVideoPkg.
For the QoS domain QVideo, the SDL data type Video (see bottom of Fig. 6(b))
is derived. This data type is structured into the performance data type Video P,
the reliability data type Video R, and the guarantee data type Video G. The sub-
domains Resolution, Quality and FrameRate of the performance domain Video P
are also defined within this package; the subdomains of the reliability and per-
formance domain are imported from in the predefined SDL package Common-
DataTypes.

Starting point for the translation of a QoS requirements specification to SDL
is a reduced and optimized QoS domain as described in Sections 3.1 and 5.2.
For this reason, a preceding NQSL analyzer run is mandatory. For every QoS
requirements specification, an SDL scaling process type is automatically gen-
erated, consisting of a scaling algorithm and a scaling table. The scaling table
aggregates the reduced QoS domain tables containing the optimal QoS domain
values created for every QoS profile of a QoS requirements specification. The
scaling algorithm selects the currently best QoS domain value under a given
resource situation.

Figure 7 shows the process type VideoScaler generated by the NSC. The scaling
algorithm is realized by an operator scale defined on the SDL data type VideoScal-
ingTable. During the startup phase of the process, the tables for the QoS profiles
of a specification are initialised according the output of the NQSL analyzer. If the
resource situation changes as indicated by the input signal availableConnRes, the

232

scaling operation is performed, and the user data flow configuration is updated.
Further, the current application scenario can be chosen by another input signal
(not shown in the figure).

6 Conclusions and Future Work

In this paper, we have presented NQSL, the Network QoS Specification Lan-
guage, to formally specify network QoS. NQSL is derived from our previous
formalization of network QoS with specific emphasis of scalability and cross-
layer development. It provides language elements for specifying QoS domains,
QoS subdomains, and QoS mappings. Further, QoS requirements can be defined
by specifying QoS profiles, expressed by minimum and optimum QoS domain
values and a QoS scalability value that consists of utility function, cost function,
and two thresholds. To support the efficient handling of NQSL specifications, we
have presented a tool chain consisting of the Graphical NQSL Editor (GNE),
the NQSL Analyzer (NA), and the NQSL-to-SDL Compiler (NSC).

The work presented in this paper solves a number of problems of practical rel-
evance. First, it is very important that network QoS requirements be specified
formally. While there are several languages reported in the literature already,
NQSL goes one step further by supporting the specification of network QoS re-
quirements on all system layers, by including QoS scalability, and by supporting
QoS mappings. Second, for practical usage, tool support is mandatory. Here,
our tool chain supports editing, analyzing, and transforming NQSL specifica-
tions, relieving the system developer from several tedious and error-prone tasks,
such as applying QoS mappings by hand or reducing QoS domains based on the
definitions of utility and cost functions. To further increase usability, the SDL
generator has been integrated into Telelogic SDL Suite. We are currently not
aware of QoS tools with comparable functionality.

Our future work aims at extensions of our tool chain for QoS system devel-
opment, and at SDL system designs satisfying formally specified network QoS
requirements. The next step will be the extension of the NQSL-to-SDL compiler
by architectural QoS concepts. Thereby, it will be possible to automatically gen-
erate a complete SDL system structure with QoS functionalities. Another step is
the formal definition of a distributed resource management and scalability model
for multiple data flows. This model will use the derived QoS profiles across layers
to provide and manage QoS for different user data flows in a correct and efficient
manner.

Acknowledgments. The work presented in this paper was in part carried out
in the BelAmI (Bilateral German-Hungarian Research Collaboration on Ambient
Intelligence Systems) project, funded by German Federal Ministry of Education
and Research (BMBF), Fraunhofer-Gesellschaft and the Ministry for Science,
Education, Research and Culture (MWWFK) of Rheinland-Pfalz.

C. Webel, R. Gotzhein, and J. Nicolay

233

References

1. Webel, C., Gotzhein, R.: Formalization of Network Quality-of-Service Require-
ments. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 309–324.
Springer, Heidelberg (2007)

2. Jin, J., Nahrstedt, K.: QoS Specification Languages for Distributed Multimedia
Applications: A Survey and Taxonomy. IEEE MultiMedia 11(3), 74–87 (2004)

3. Frølund, S., Koistinen, J.: QML: A Language for Quality of Service Specification.
Technical Report HPL-98-10, p. 63, Software Technology Laboratory, Hewlett-
Packard Company (1998)

4. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, Oslo, Norway (2001)

5. Röttger, S., Zschaler, S.: Tool support for refinement of non-functional specifica-
tions. Software and Systems Modelling journal (SoSyM) 6(2) (June 2007)

6. Vanegas, R., Zinky, J.A., Loyall, J.P., Karr, D., Schantz, R.E., Bakken, D.E.: QuO’s
Runtime Support for Quality of Service in Distributed Objects. In: Proceedings of
the IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware 1998), The Lake District, UK, pp. 207–222
(1998)

7. Florissi, P.G.S.: QoSME: QoS Management Environment. PhD thesis, Columbia
University (1996)

8. Campbell, A.T.: A Quality of Service Architecture. PhD thesis, Computing De-
partment, Lancaster University (1996)

9. Webel, C.: NQSL - A Specification Language for Network Quality of Service.
Technical Report 368/07, Department of Computer Science, University of Kaiser-
slautern (2007)

10. Eclipse Foundation: Eclipse Modeling Framework Project (EMF) (2007),
http://www.eclipse.org/modeling/emf/

11. Eclipse Foundation: The Eclipse Graphical Modeling Framework (GMF) (2007),
http://www.eclipse.org/gmf/

12. Object Management Group, Inc.: Meta Object Facility (MOF) Specification (2000),
http://www.omg.org/mof/

13. Object Management Group, Inc.: Xml metadata interchange (xmi) specification
(2007), http://www.omg.org/technology/documents/formal/xmi.htm

14. World Wide Web Consortium: XSL Transformations (XSLT). W3C Recommenda-
tion (1999), http://www.w3.org/TR/xslt

15. International Telecommunications Union: Specification and Description Language
(SDL). ITU-T Recommendation Z.100 (August 2002)

16. Telelogic AB: Telelogic SDL Suite and TTCN Suite (2007), http://www.
telelogic.com/products/tau/sdl/index.cfm

17. JFlex: JFlex - The Fast Scanner Generator for Java (2007), http://jflex.de/
18. CUP: CUP – LALR Parser Generator in Java (2006), http://www2.cs.

tum.edu/projects/cup/

NQSL - Formal Language and Tool Support for Network QoS Requirements

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gmf/
http://www.omg.org/mof/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/TR/xslt
http://www.
telelogic.com/products/tau/sdl/index.cfm
http://jflex.de/
http://www2.cs.
tum.edu/projects/cup/

Timed Mobile Ambients for Network Protocols

Bogdan Aman2 and Gabriel Ciobanu1,2

1 “A.I.Cuza” University, Faculty of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania

2 Romanian, Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. Ambient calculus is a calculus for mobile computing able
to express local communications inside hierarchical domains. So far the
timing properties have not been considered in the framework of mobile
ambients. We add timers to capabilities and ambients, and provide an
operational semantics of the new calculus. Certain results are related to
the passage of time, and some new behavioural equivalences over timed
mobile ambients are defined. Timeout for network communication (TTL)
can be naturally modelled by the time constraints over capabilities and
ambients. The new formalism can be used to describe network protocols;
Simple Network Management Protocol (SNMP) may implement its own
strategy for timeout and retransmission in TCP/IP.

1 Introduction

Ambient calculus is a formalism for describing distributed and mobile compu-
tation introduced in [6]. In contrast with other formalisms for mobile processes
such as the π-calculus [19] whose computational model is based on the notion
of communication, the ambient calculus is based on the notion of movement. An
ambient represents a unit of movement. Ambient mobility is controlled by the
capabilities in, out, and open. Capabilities are similar to prefixes in CCS [18]
and π-calculus. Several variants of the ambient calculus have been proposed by
adding and/or removing features of the original calculus [5,15,17].

The definition of mobile ambients is related in [6] to the network communica-
tion. Ambient calculus can model communication protocols. Timing properties
are important in network communication. For instance, a Time to Live (TTL)
value is used to indicate the timeout for a communication unit before it should
be discarded. Servers do not apply a single fixed timeout for all communication
units. Simple Network Management Protocol (SNMP) could implement its own
strategy for timeout and retransmission in TCP/IP communication protocol.
TTL and retransmission in TCP/IP protocol provide a good motivation to add
timers to ambients. So far the timing properties have not been considered in
the framework of mobile ambients. In this paper we associate timers not only to
ambients, but also to capabilities. The resulting formalism is called timed mobile
ambients (tMA), and represents a conservative extension of the ambient calculus.

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 234–250, 2008.
c© IFIP International Federation for Information Processing 2008

Timed Mobile Ambients for Network Protocols 235

We use a clock just for the sake of uniformity; all the clocks work in the same
way. In fact, working with located processes and a migration primitive go, we use
only local clocks, and the change from one local clock to another one is possible
by the migration primitive go. This is sound because we use relative time given
by timers, and not an absolute time.

The structure of the paper is as follows. Section 2 introduces the pure mo-
bile ambients followed by the description of the timed mobile ambients (tMA).
The passage of time is given by a discrete time progress function. We provide
an operational semantics of the new calculus given by a reduction relation. In
Section 3 we use tMA to describe the Transmission Control Protocol (TCP).
In Section 4 we introduce and study some behavioural equivalences over timed
mobile ambients. Other results are related to the passage of time. Conclusion
and references end the paper.

2 Mobile Ambients with Time Constraints

We provide a short description of the pure mobile ambients, an algebraic for-
malism which studies the distributed concurrent systems; more information can
be found in [6]. The following table describes the syntax of mobile ambients.

Table 1. Mobile Ambients Syntax
n, m, p ambient names P, Q :: = processes
C :: = capabilities 0 inactivity

in n can enter n C.P movement
out n can exit n n[P] ambient
open n can open n P | Q composition

(νn)P restriction
∗P replication

Process 0 is an inactive process (it does nothing). A movement C.P is provided
by the capability C, followed by the execution of P . An ambient n[P] represents
a bounded place labelled by n in which a process P is executed. P | Q is a parallel
composition of processes P and Q. (νn)P creates a new unique name n within
the scope of P . ∗P denotes the unbounded replication of a process P , producing
as many parallel replicas of P as needed.

The semantic of the ambient calculus is given by two relations: structural
congruence and reduction. The structural congruence P ≡ Q relates different
syntactic representations of the same process; it is used to define the reduction
relation. The reduction relation P → Q describes the system evolution. We
denote by →∗ the reflexive and transitive closure of →.

The structural congruence is defined as the least relation over processes sat-
isfying the axioms from the table below:

236 B. Aman and G. Ciobanu

Table 2. Structural congruence
(P | Q) | R ≡ P | (Q | R) P ≡ Q implies Q ≡ P
P | Q ≡ Q | P , ∗P ≡ P | ∗ P P ≡ Q, Q ≡ R implies P ≡ R
(νn)(νm)P ≡ (νm)(νn)P if n �= m P ≡ Q implies (νn)P ≡ (νn)Q
(νn)(P | Q) ≡ P | (νn)Q if n /∈ fnAmb(P) P ≡ Q implies P | R ≡ Q | R
(νn)m[P] ≡ m[(νn)P] if n �= m P ≡ Q implies ∗P ≡ ∗Q
P ≡ P , P |0 ≡ P P ≡ Q implies n[P] ≡ n[Q]
(νn)0 ≡ 0 ; ∗0 ≡ 0 P ≡ Q implies C.P ≡ C.Q

The rules from the left side of the table describe the commutativity/ associa-
tivity of composition, unfolding recursion, changing the restriction scope. The
rules from the right side describe how structural congruence is propagated across
processes. The set of free names for a process is defined as follows:

fnAmb(P) =

�
�������
�������

∅ if P = 0
fnAmb(R) ∪ {n} if P = cap n.R, with cap ∈ {in, out, open}
fnAmb(R) ∪ {n} if P = n[R]
fnAmb(R) ∪ fnAmb(Q) if P = R | Q
fnAmb(R) − {n} if P = (νn)R
fnAmb(R) if P = ∗R

The reduction relation is defined as the least relation over processes satisfying
the following set of axioms and rules:

Table 3. Reduction Rules
(In) n[in m. P | Q] | m[R] → m[n[P | Q] | R]
(Out) m[n[out m. P | Q] | R] → n[P | Q] | m[R]
(Open) open n. P | n[Q] → P | Q
(Res) P → Q implies (νn)P → (νn)Q
(Amb) P → Q implies n[P] → n[Q]
(Par) P → Q implies P | R → Q | R

(Struct)
P ′ ≡ P, P → Q, Q ≡ Q′

P ′ → Q′

The first three rules are the reductions for in, out, open. The next three rules
propagate reductions across scopes, ambient nesting and parallel composition.
The final rule allows the use of structural congruence during reduction.

We ignore the communications inside ambients and use pure mobile ambients
to express the time and space constraints. We can also easily introduce channels
and study the aspects related to them, with no difference in expressing the
network protocols.

In order to identify an entity, TCP/IP protocols use the IP address, which
uniquely identifies the connection of a host to the Internet. However, people
prefer to use names instead of numeric addresses. A system that can map a

Timed Mobile Ambients for Network Protocols 237

Fig. 1. Domain Name System(DNS)

name to an address or an address to a name is the domain name system, which
is represented hierarchically in what follows:

The information contained in DNS must be stored. One way to do this is to
divide the whole space into many domains based on the first level.

Inspired from the domain name system, we also consider a distribution of
parallel locations between which the ambients can migrate, each location be-
ing the place where the nested ambients interact. In our model the root node,
represented in the above picture, disappears and its function is supplied by the
execution of the migration primitive go. Thus we get a more realistic description
of the distributed computation and mobility. A natural example motivating an
extension from timed distributed π-calculus to timed mobile ambients is pre-
sented in [7].

The syntax of the timed mobile ambients is defined in Table 4.

Table 4. Syntax of tMA

a, b, . . . names P, Q:: = processes
C :: = capabilities 0 inactivity

in n can enter an ambient n CΔt. (P, Q) movement
out n can exit an ambient n (nΔt[P]μ, Q) ambient
open n can open an ambient n P | Q composition
go k migration (νn)P restriction

M, N ::= located processes ∗P replication
l[[P]] location
(νk)M restriction
M | N composition

We use m, n for ambient names; k, l for physical locations; a, p for ambient tags
- a stands for active ambients, while p stands for passive ambients - we use μ to
stand for both ambient tags.

In timed Mobile Ambients (tMA) capabilities and ambients are used as tem-
poral resources; if nothing happens in a predefined interval of time, the waiting
process goes to another state. Since the expiration of a timer offers an alternative,

238 B. Aman and G. Ciobanu

we shall not use the choice operator as in other process calculi. The timer Δt
of each temporal resource indicates that the resource is available only for a de-
termined period of time t. We add timers to both ambients and capabilities. A
process can be executed only if it is inside a location. When an ambient migrates
between locations, all the processes running inside suspend their execution until
the ambient reaches its destination.

We write nΔt[P]μ to denote an ambient having the timer Δt and the tag μ.
The tag μ is a neutral tag that indicates if an ambient is active or passive. The
novelty comes from the fact that an ambient can disappear. If t > 0 the ambient
behaves exactly as in untimed mobile ambients. Since the timer Δt can expire
(t = 0) we use a pair (nΔt[P]μ, Q) to denote a timed ambient, where Q is a
safety process. If nothing happens in t units of time, the ambient n is dissolved,
the process P running inside the ambient is reduced to 0, and the process Q
is executed. If Q = 0 we can simply write nΔt[P]μ instead of (nΔt[P]μ, Q).
Similarly, for movement, we use a pair of processes. The process openΔtn.(P, Q)
evolves to P whenever, in the period of time Δt, the process becomes sibling to
an ambient n; otherwise it evolves to Q.

When we describe initially the ambients, we consider that all ambients are
active, and we associate the tag a to them. From Table 4 it can be seen that we
consider only ambients to be placed at some locations.

2.1 Semantics

The main feature of tMA is given by the explicit use of time. The passage of time
is described by two discrete time progress functions: ΦΔ defined over the set L of
located processes, and φΔ defined over the set P of timed processes. The possible
actions are performed at every tick of a universal clock. The function φΔ, inspired
from [3], affects the ambients, and the capabilities which are not consumed. The
consumed capabilities and ambients disappear together with their timers. If a
capability or ambient has the timer equal to ∞, thus simulating the behaviour of
an untimed capability or ambient, we use the equality ∞−1 = ∞ when applying
the function φΔ. This function modifies a process accordingly with the passage
of time. Another property of the time progress function φΔ is that the passive
ambients can become active in the next unit of time in order to participate in
other reductions.

For the process CΔt.(P, Q) the timer of P is activated only after the con-
sumption of capability CΔt (in at most t units of time). Reduction rules (Table
6) show how the time function ΦΔ is used.

Definition 1. (Global time progress function) We define ΦΔ : L → L, by:

ΦΔ(M) =

��
�

ΦΔ(M1) | ΦΔ(M2) if M = M1 | M2

(νk)ΦΔ(N) if M = (νk)N
l[[φΔ(P)]] if M = l[[P]]

where the function φΔ : P → P has the following definition:

Timed Mobile Ambients for Network Protocols 239

φΔ(P) =

�
���������
���������

CΔ(t−1). (R,Q) if P = CΔt. (R, Q), t > 0
Q if P = CΔt. (R, Q), t = 0
φΔ(R) | φΔ(Q) if P = R | Q
(νn)φΔ(R) if P = (νn)R

(nΔ(t−1)[φΔ(R)]a, Q) if P = (nΔt[R]μ, Q), t > 0
Q if P = (nΔt[R]μ, Q), t = 0
P if P = ∗R or P = 0

Processes are grouped into equivalence classes by the following equivalence
relation, Ξ, called structural congruence. This relation provides a way of rear-
ranging expressions so that interacting parts can be brought together.

Table 5. Structural Congruence in tMA
(S-Sym) PΞQ implies QΞP (S-Refl) PΞP
(S-Trans) PΞR, RΞQ implies PΞQ (S-Par Assoc) (P | Q) | RΞP | (Q | R)
(S-Res) PΞQ implies (νn)PΞ(νn)Q (S-Repl Par) ∗PΞP | ∗ P
(S-Par) PΞQ implies R | PΞR | Q (S-Zero Par) P |0ΞP
(S-Par Com) P | QΞQ | P (S-Zero Res) (νn)0Ξ0
(S-Repl) PΞQ implies ∗PΞ ∗ Q (S-Zero Repl) ∗0Ξ0
(S-Amb) PΞQ and RΞR′ implies (nΔt[P]μ, R)Ξ(nΔt[Q]μ, R′)
(S-Loc) PΞQ implies k[[P]]Ξk[[Q]]
(S-Par Loc) k[[P | Q]]Ξk[[P]] | k[[Q]]

(S-Cap) PΞQ and RΞR′ implies CΔt. (P, R)ΞCΔt. (Q, R′)
(S-Res Res) (νn)(νm)PΞ(νm)(νn)P if n �= m
(S-Res Par) (νn)(P | Q)ΞP | (νn)Q if n /∈ fnAmb(P)
(S-Res Par Loc)(νk)(M | N)ΞM | (νk)N if k /∈ fnLoc(M)
(S-Res Amb) (νn)(mΔt[P]μ, Q)Ξ(mΔt[(νn)P]μ, Q) if m �= n and n /∈ fnAmb(Q)

The set of free names for a located process is defined as follow:

fnLoc(M) =

��
�

fnLoc(P) ∪ {k} if M = k[[P]]
fnLoc(N1) ∪ fnLoc(N2) if M = N1 | N2

fnLoc(N) − {k} if M = (νk)N
, where

fnLoc(P) =

��
�

∅ if P = 0
fnLoc(R) ∪ {k} if P = goΔtk.(R.R′)
fnLoc(R) ∪ fnLoc(Q) otherwise

We denote by ���� the fact that none of the rules from the following Table,
except the rule (R-TimePass) can be applied. The behaviour of processes is
given by the following reduction rules:

240 B. Aman and G. Ciobanu

Table 6. Reduction rules

(R-Migrate)
t′ = 1

l[[(nΔt[goΔt′
k.(P, P ′)]a, Q)]] ��� k[[(nΔt[P]p, Q)]]

(R-In)
−

(nΔt′
[inΔtm.(P, P ′) | Q]a, S′) | (mΔt′′

[R]μ, S′′) ���
(mΔt′′

[(nΔt′
[P | Q]p, S′) | R]μ, S′′)

(R-Out)
−

(mΔt′
[(nΔt′′

[outΔtm.(P, P ′) | Q]a, S′′) | R]μ, S′) ���
(nΔt′′

[P | Q]p, S′′) | (mΔt′
[R]μ, S′)

(R-Open)
−

openΔtm. (P, P ′) | (mΔt′
[Q]μ, S′) ��� P | Q

(R-Amb)
P ��� Q

(nΔt[P]μ, R) ��� (nΔt[Q]μ, R)
(R-Par1)

P ��� Q

P | R ��� Q | R

(R-Par2)
P ��� Q, P ′ ��� Q′

P | P ′ ��� Q | Q′ (R-Res)
P → Q

(νn)P ��� (νn)Q

(R-Struct)
M ′ΞM, M ��� N, NΞN ′

M ′ ��� N ′ (R-Loc)
P ��� Q

l[[P]] ��� l[[Q]]

(R-LocPar1)
M ��� M ′

M | N ��� M ′ | N
(R-LocPar2)

M ��� M ′, N ��� N ′

M | N ��� M ′ | N ′

(R-LocRes)
M ��� M ′

(νk)M ��� (νk)M
(R-TimePass)

M ����
M ��� ΦΔ(M)

In the rules (R-In), (R-Out), (R-Open) ambient m can be passive or active,
while in the rules (R-Migrate), (R-In), (R-Out) ambient n is active. The
difference between passive and active ambients is that the passive ambients can
be used in several reductions in a unit of time, while the active ambients can be
used in at most one reduction in a unit of time, by consuming their capabilities.
In the rules (R-In), (R-Out) the active ambient n becomes passive, forcing it to
consume only one capability in one unit of time. The ambients which are tagged
as passive, become active again by applying the global time-stepping function
(R-TimePass). We use the tag μ in these rules because it does not matter
whether or not the ambient is passive or active.

In the rules (R-Migrate) if the physical location k does not exist then it
is created. Rule (R-Migrate) simulates the movement of an active ambient n
from location l to location k in order to interact with some ambient located at
k; notice that the ambient tag changes to p, meaning that the ambient becomes
passive.

In timed mobile ambients, if a process evolves by one of the rules (R-In),
(R-Out), (R-Open), (R-Migrate), while another one does not perform any
reduction, then rule (R-Par1) should be applied. If more than one process
evolve in parallel by applying one of the rules (R-In), (R-Out), (R-Open),
(R-Migrate), then the rule (R-Par2) should be applied. We use the rule (R-
Par2) to compose processes that are active, and the rule (R-Par1) to compose

Timed Mobile Ambients for Network Protocols 241

processes that are active and passive. An example for the usage of the rule
(R-Par1) is given by:

mΔt1 [Q]μ | openΔt2m → Q
mΔt1 [Q]μ | openΔt2m | inΔt3t → Q | inΔt3t

A similar argument can be used for arguing in case of the rules (R-LocPar1)
and (R-LocPar2). The rule (R-LocRes) propagate reductions across location
scopes. In Section 3 illustrate how some of the rules from Table 6 are working.

We can say that a system described with tMA satisfies the properties [13]:
• Time Determinism: at each time only one reduction rule can be applied.

A possible problem could appear only if we apply (R-TimePass) when we
can apply another rule. However this is not possible because (R-TimePass)
is applied only if the process does not evolve (����).

• Maximal Progress: a process cannot delay if it can evolve.
• Time Continuity: to go from a process P at time t, to a process P0 at time

t + Δt, we must go through all the intermediate time steps of the interval
[t, t + Δt].

3 Transmission Control Protocol

Transmission Control Protocol (TCP) is a connection-oriented protocol. Using
TCP applications on networked hosts can establish connections to one another,
over which they can exchange data. The protocol is reliable and delivers the
data from sender to receiver in the order it has been sent. TCP distinguishes
data from multiple connections made by concurrent applications running on the
same host.

TCP needs to establish a connection before sending data. To establish a con-
nection, TCP uses a three-way handshake. In order for a client to connect to
a server, the server must first open a port for the connection: this is called a
passive open. A client can initiate an active open, only after the passive open is
established. TCP connections have three phases:
1. the active open is performed by sending a synchronization packet (SYN flag

set) to the server;
2. the server replies with a packet (SYN and ACK flag set);
3. the client sends a packet (ACK flag set) back to the server.

After all these steps are performed, both the client and the server have received
an acknowledgement of the connection and the data transfer can begin.

The connection termination phase uses, at most, a four-way handshake. This
is caused by TCP’s half closed. Since a TCP connection is full-duplex (data can
flow in each direction independently of the other direction), each direction must
be shut down independently. When an endpoint wishes to stop its half of the
connection, it transmits a FIN packet, which the other end acknowledges with an
ACK. The receipt of a FIN only means that there can be no more data flowing
in that direction. A TCP can still send data after receiving a FIN. Therefore,
a connection termination requires a pair of FIN and ACK segments from each
TCP endpoint.

242 B. Aman and G. Ciobanu

It is also possible to terminate the connection by a 3-way handshake, when
a process sends a FIN and the other host replies with a FIN & ACK (merely
combines 2 steps into one) and first host replies with an ACK. This is perhaps
the most common method.

Fig 2. TCP State Diagram

Every implementation must choose a value for its maximum segment lifetime.
It is the maximum amount of time any segment can exist in the network before
being discarded; this justifies why we have added timers to ambients. We know
this time limit is bounded, since TCP segments are transmitted as IP datagrams,
and the IP datagram has the TTL field that limits its lifetime. (RFC 793 specifies
the MSL as 2 minutes. Common implementation values, however, are 30 seconds,
1 minute, or 2 minutes. [21])

In what follows, we represent TCP in tMA, when only a client and a server
are involved. For simplicity, we do not add the safety process to the capabilities
which we know for sure that they are going to be consumed, and for the ambients
which have the timer ∞.

Table 7. Transmission Control Protocol represented in tMA
system := l1[[client∞[send | send ack]μ1]] | l2[[server∞[receive]μ2]]
send =

SY NΔt1 [outΔt2client.goΔtl2.in
Δt3server]μ3

send ack =
openΔt4SY NACK. (ACKΔt5 [outΔt6client.goΔtl2.in

Δt7server]μ4 , send | send ack)
receive =

openΔt8SY N. (SY NACKΔt9 [outΔt10server.goΔtl1.in
Δt11client]μ5 | receive)

Timed Mobile Ambients for Network Protocols 243

We write send, send ack and receive processes to simulate the three-way
handshake for establishing the connection. The transmission of data and the end
of the connection could be represented in a similar way.

The client tries to connect to the server by sending an ambient SY N . If
μ3 = a, then the capability outΔt2client can be executed immediately such that
we do not use a safety process. This is realized by applying a rule (R-Out)

client∞[(SY NΔt1 [outΔt2client.goΔtl2. . . .]a, . . .) | . . .]μ1

��� client∞[. . .]μ1 | (SY NΔt1 [goΔtl2. . . .]p, . . .)
If the timer Δt4 representing the units of time the client is willing to wait for

the SY NACK ambient expires, then the client sends another SY N ambient.
If t4 = 0 then the rule (R-TimePass) is applied and the safety process is
launched:

openΔ0SY NACK.(ACKΔt5 [outΔt6client.inΔt7server]μ4 , send | send ack)
��� send | send ack

At this moment the process of establishing the connection could begin again.
Suppose that before the timer Δt expires the ambient SY N with μ3 = a migrates
to location l2 by applying a (R-Migrate) rule:

l1[[SY NΔt1 [goΔtl2.in
Δt3server]a]] ��� l2[[SY NΔt1 [inΔt3server]p]]

Then by applying the rule (R-In) for μ3 = a we obtain:
SY NΔt1 [inΔt3server : l4]a]] | l2[[server∞[. . .]μ2 ��� server∞[SY NΔt1 []p]μ2

Here the ambient SY N is dissolved and a new SY NACK ambient is created.
This is realized by applying a rule (R-Open):
SY NΔt1 []μ3 | openΔt8SY N.(SY NACKΔt9 [. . .]μ5 , . . .) ��� SY NACKΔt9 [. . .]μ5

If the timer Δt1 expires the client still waits for the timer Δt4 to expire in order
to send another ambient SY N . If the SY N ambient reaches the server ambient
and an ambient SY NACK is received from the server, then the client sends an
ambient ACK. Once the server receives with success the ambient SY N it tries
to sends an ambient SY NACK to confirm that is agrees with the connection.

4 Timed Mobile Ambients Behaviour

In this section we provide some bisimulation relations with respect to the passage
of time and locations inspired from domain name system. In process algebra two
terms are said to be equivalent if they have the same behaviour in all possible
contexts.

One of the most important scenario in which the services of ARP can be used
is the following one: the sender is a router that has received a datagram destined
for a host on another network. It checks its routing table and finds the IP address
of the next router. The IP address of the next router becomes the logical address
that must be mapped to a physical address.

The routing table consists of all the names of the routers from the first level,
which in our cases are represented by top ambients. Also, DNS requires that
each server keep a TTL counter for each mapping it caches. This two cases are
treated in the following two subsections.

244 B. Aman and G. Ciobanu

4.1 Location Bisimulation

Instead of comparing the behaviour of two ambients in all possible contexts, we
compare the two ambients with respect to an observer placed at a given location
k. That is, two ambients are equivalent with respect to an observer placed at a
location k if they have the same observable behaviour at location k. We consider
that an observer placed at the physical location k can only observe the top
ambients from the physical location k.

Definition 2. i) A k-barb predicate ↓n@k over ambients is defined inductively
by the following system of rules:

−
k[[(nΔt[P]μ, R)]] ↓n@k

k[[P]] ↓n@k

k[[P | Q]] ↓n@k

M ↓n@k

M | N ↓n@k

M ↓n@k and l �= k
(νl)M ↓n@k

ii) A k-barbed bisimulation R over ambients is a symmetric binary relation
over processes which for all (M, N) ∈ R implies

1. if M ↓n@k, then N ↓n@k for any barb ↓n@k;
2. if M ��� M ′, then N ��� N ′ and (M ′, N ′) ∈ R.

Two processes are k-barbed bisimilar over ambients with respect to a location k,
denoted M

·∼k N , if and only if (M, N) ∈ R for some k-barbed bisimulation over
ambients R.

Instead of considering observers placed at given physical locations, we say that
two ambients are similar if they contain the same top ambients. A global observer
has a global view of the system, while a local observer has a local view of the
system.

Definition 3. i) A global barb predicate ↓n over ambients is defined inductively
by the following system of rules:

−
k[[(nΔt[P]μ, R)]] ↓n

k[[P]] ↓n

k[[P | Q]] ↓n

M ↓n

M | N ↓n

M ↓n and l �= k
(νl)M ↓n

ii) A global barbed bisimulation R over ambients is a symmetric binary rela-
tion over processes which for all (M, N) ∈ R implies

1. if M ↓n, then N ↓n for any barb ↓n;
2. if M ��� M ′, then N ��� N ′ and (M ′, N ′) ∈ R.

Two processes are global barbed bisimilar over ambients, denoted M
·∼ N , if and

only if (M, N) ∈ R for some global barbed bisimulation over ambients R.

The following proposition states that if two ambients are equivalent with respect
to observers placed at all locations, then they are equivalent with respect to a
global observer. The reverse of the proposition it is not true because in M

·∼ N
there is no mention of any locations, so two ambients placed at different locations
can contain the same top ambients, but they can contain different top ambients
with respect to observers placed at all the possible locations.

Timed Mobile Ambients for Network Protocols 245

Proposition 1. If M
·∼k N for all the locations k, then M

·∼ N .

Proof (Sketch). From the definition of ·∼k it results that the processes perform
the same reductions and contain the same top ambients related to an observer
placed at physical location k. By considering observers placed at all the possible
locations k, the processes execute the same reductions and contain the same top
ambients after every reduction. Because they perform the same reductions related
to every location k, it means that they have the same movement through space
and time. From the definition of ·∼ it results that M

·∼ N .

In both local and global bisimulations, the observer is restricted to observe only
top ambients. In a similar way we can replace the power to observe ambients with
the power to observe capabilities. Having locations, ambients and capabilities, it
is rather natural to strengthen the observing power of the observer by combining
these observation possibilities.

4.2 Timed Location Bisimulation

Since we also deal with timed features, we may consider the observer able to
check the value of different timers. We consider that an observer placed at the
physical location k can only observe the top ambients together with their timers
placed at the physical location k.

Definition 4. i) A timed k-barb predicate ↓t
n@k over ambients is defined induc-

tively by the following system of rules:

−
k[[(nΔt[P]μ, R)]] ↓t

n@k

k[[P]] ↓t
n@k

k[[P | Q]] ↓t
n@k

M ↓t
n@k

M | N ↓t
n@k

M ↓t
n@k and l �= k

(νl)M ↓t
n@k

ii) A timed k-barbed bisimulation R over ambients is a symmetric binary
relation over processes which for all (M, N) ∈ R implies

1. if M ↓t
n@k, then N ↓t

n@k for any barb ↓t
n@k;

2. if M ��� M ′, then N ��� N ′ and (M ′, N ′) ∈ R.

Two processes are timed k-barbed bisimilar over ambients related to location k,
denoted M

·∼
t

k N , if and only if (M, N) ∈ R for some timed k-barbed bisimulation
over ambients R.

Instead of considering observers placed at given physical locations, we may say
that two ambients are similar if they contain the same top ambients with the
same timers.

Definition 5. i) A timed global barb predicate ↓t
n over ambients is defined in-

ductively by the following system of rules:

−
k[[(nΔt[P]μ, R)]] ↓t

n

k[[P]] ↓t
n

k[[P | Q]] ↓t
n

M ↓t
n

M | N ↓t
n

M ↓t
n and l �= k

(νl)M ↓t
n

246 B. Aman and G. Ciobanu

ii) A timed global barbed bisimulation R over ambients is a symmetric binary
relation over processes which for all (M, N) ∈ R implies

1. if M ↓t
n then N ↓t

n for any barb ↓t
n;

2. if M ��� M ′, then N ��� N ′ and (M ′, N ′) ∈ R.

Two processes are timed global barbed bisimilar over ambients, denoted M
·∼

t
N ,

if and only if (M, N) ∈ R for some timed global barbed bisimulation over ambi-
ents R.

The following proposition is similar to Proposition 1, the main difference being
the fact that the observers work also with the timers of the ambients.

Proposition 2. If M
·∼

t

k N for all the locations k, then M
·∼

t
N .

Proof (Sketch). The same reasoning as at Proposition 1.

Proposition 3. The timed barbed bisimulation over ambients is strictly finer
than the barbed bisimulation over ambients:

1. ∀M, N , if M
·∼

t

k N then M
·∼k N

2. ∃M, N such that M
·∼k N and M � ·∼

t

k N .

Proof. It is easy to see that M ↓t
n@k implies M ↓n@k. If the observer can ob-

serve the same top ambients and ambient timers at location k, then the observer
can observe just the top ambients at location k while ignoring the timers of the
ambients. For the second part we give a counterexample.
Counterexample: let us consider the processes M, N defined as follows:

M = k[[nΔt1 [P]μ1]] and N = k[[nΔt2 [P]μ2]] with t1 �= t2
It holds that M ↓n@k and N ↓n@k, and thus M

·∼k Q. Following the definition
of timed barbed bisimulation over ambients, it holds that M ↓t1

n@k and N ↓t2
n@k,

and since t1 �= t2 we have M � ·∼
t

k N .

Similar results can be obtained between various bisimulations by considering
observers with power of observing any combination of ambients, capabilities,
timers over ambients and capabilities, located or not.

Example 1. Let us consider the following two mobile ambients: M = k[[nΔ4[]μ |
outΔ1n.(mΔ6[P]μ, Q)]] and N = k[[nΔ4[(mΔ7[outΔ1n.P]μ, Q)]]μ]].

We have that M ↓4
n@k and also N ↓4

n@k. After one reduction step we obtain:
M ��� M ′, with M ′ = k[[nΔ4[]μ | (mΔ6[P]μ, Q)]] and N ��� N ′, with N ′ =

k[[nΔ4[]μ | (mΔ6[P]μ, Q)]]. We observe that M ′ = N ′ so M ′ ·∼
t

k N ′, from where

it results that M
·∼

t

k N .

4.3 Properties Related to the Passage of Time

We denote by M
t��� N the fact that process P evolves to process Q after

applying the rule (R-TimePass) for t ≥ 0 times. We denote by ∼= the relation
which respects all the rules of Table 5 except the rule (S-Repl Par).

We claim that the passage of time cannot cause a nondeterministic behaviour.

Timed Mobile Ambients for Network Protocols 247

Proposition 4. If M ∼= N , M
t��� M ′ and N

t��� N ′ then M ′ ∼= N ′.

Proof. The proof proceeds by structural induction, by studying all the cases from
Table 5 except the rule (S-Repl Par).

The following example motivates why we have removed the rule (S-Repl
Par). Let P = inΔ5n. Then we have k[[∗P]]Ξk[[P | ∗P]]. By applying the time-
progress function ΦΔ, we obtain ΦΔ(k[[P | ∗ P]]) = k[[inΔ4n | ∗ P]] �Ξk[[∗P]] =
ΦΔ(k[[∗P]]).

We say that a process M simulates another process N if whenever N reduces,
M may mimic this reduction and evolves into a new state which continues to
be in the same simulation relation with the new state of N . Bisimilarity of
two processes is defined by requiring that the simulation relation is symmetric,
that is, each process can mimic any event of the other while remaining in the
bisimulation relation with the new state of the former process. Since we have a
clock, it is possible to define a bisimulation in tMA which requires processes to
match their time passages.

Definition 6. A binary relation R over processes is a strong simulation if when-
ever (M, N) ∈ R, if M

t��� M ′ then there exists N ′ such that N
t��� N ′ and

(M ′, N ′) ∈ R. A binary relation R is said to be a strong bisimulation if both R
and its converse are strong simulations. We say that M and N are strongly bisim-
ilar, written M ∼t N , if there exists a strong bisimulation R such that MRN .

Proposition 5. If M ∼t N , then M ∼kt N for any k ∈ N∗.

Proposition 6. If M ∼t N and M ∼t′ N , then M ∼[t,t′] N where by [t, t′] we
have denoted the least common multiple.

Proposition 7. ∼t is an equivalence relation.

Proof. To demonstrate that ∼t is an equivalence relation we must show that:
1. M ∼t M
2. if M ∼t N then N ∼t M
3. if M ∼t N and N ∼t N1 then M ∼t N1

1. Obvious.
2. It results from the definition.
3. To demonstrate that M ∼t N1 we must show that if M

t��� M ′ then there
exist N ′

1 such that N1
t��� N ′

1 with M ′ ∼t N ′
1. M ∼t N implies that if

M
t��� M ′ then there exists N ′ such that N

t��� N ′ and M ′ ∼t N ′. Similarly,
N ∼t N1 implies that if N

t��� N ′ then there exists N ′
1 such that N1

t��� N ′
1

and N ′ ∼t N ′
1. It results that if M

t��� M ′ then there exists N ′
1 such that

N1
t��� N ′

1, and by induction and using the symmetry expressed by 2 we have
that M ′ ∼t N ′

1. From Definition 6, it results that M ∼t N1.

Definition 7. A process context C is a process containing a hole, represented
by []. The elementary process contexts are given by the following syntax:

C ::= [] | (νn)C | P | C | C |P | (nΔt[C]μ, Q), (nΔt[P]μ, C)

248 B. Aman and G. Ciobanu

Let C(P) be the process obtained by filling the hole in C with a copy of P ; we note
that certain names free in P may become bound. We say that an equivalence
relation is a congruence if it is preserved by all elementary contexts, namely the
ones from the above definition.

Proposition 8. ∼t is a congruence.

Proof. We know that ∼t is an equivalence relation (Proposition 7), and we should
prove that if k[[P]] ∼t k[[Q]] then the following relations hold:
1. k[[(νn)P]] ∼t k[[(νn)Q]]
2. k[[P | R]] ∼t k[[Q | R]]
3. k[[R | P]] ∼t k[[R | Q]]
4. k[[(nΔt[P]μ, R)]] ∼t k[[(nΔt[Q]μ, R)]]
5. k[[(nΔt[R]μ

′
, P)]] ∼t k[[(nΔt[R]μ, Q)]]

We consider only the second relationship; the others are similar. We prove that
R = {(k[[P | R]], k[[Q | R]]) | k[[P]] ∼t k[[Q]]}

is a strong bisimulation. Let k[[P | R]]
t��� U . We must find V such that

k[[Q | R]]
t��� V and (U, V) ∈ R. We have that U = k[[P ′ | R′]] and V =

k[[Q′ | R′]], where k[[P]]
t��� k[[P ′]], k[[Q]]

t��� k[[Q′]] and k[[R]]
t��� k[[R′]]. From

k[[P]] ∼t k[[Q]] we have that k[[P ′]] ∼t k[[Q′]], which means that (U, V) ∈ R.

Definition 8. A binary relation R over processes is a weak timed simulation if
whenever (M, N) ∈ R, if M

t��� M ′ then there exists N ′ and t′ ≥ t such that

N
t′

��� N ′ and (M ′, N ′) ∈ R. We say that M can simulate in time N , written
M �t N , if there exists a weak timed simulation R such that MRN .

Proposition 9. M ∼t N iff M �t N and M �t M .

Proof (Sketch).
If M ∼t N then it is obvious that exists t′ = t such that M �t N and N �t M .
If M �t N and N �t M it results that there exists t′ in both cases such that

t = t′, which implies that M ∼t N .

5 Conclusion

Process algebra is the general study of distributed concurrent systems in an alge-
braic framework. In the past few years, some successful models have been formu-
lated within this framework: ACP [4], CCS [18], CSP [16], distributed π-calculus
[14], MA [6]. None of these approaches is able to naturally describe properties of
timing. Process algebra with timing features are presented in [1,9,10,11,12,20].
We have extended the pure mobile ambients by adding time constraints to capa-
bilities and ambients. Two formalisms called timed π-calculus and timed distrib-
uted π-calculus are presented in [2], respectively [8]; it also uses a relative time
given by timers, and a clock whose tick decreases the timers. Timers are used to
restrict the interaction between components, and both types and timers are used

Timed Mobile Ambients for Network Protocols 249

to control the resource availability. In timed distributed π-calculus the notion of
space is flat. A more realistic account of physical distribution is obtained using
a hierarchical representation of space, and this is given in timed mobile am-
bients. Thus we get a more realistic description of the distributed computation
and mobility. A natural example motivating an extension from timed distributed
π-calculus to timed mobile ambients is presented in [7].

The formalism defined in this paper does not follow any of the other process al-
gebra mentioned above. It is well motivated by the existence of timers in TCP/IP
communication protocols; the timers fit very well to the description of messages
as mobile ambients. Another motivation for our work is given by the Real-time
Transport Protocol (or RTP) which defines a standardized packet format for
delivering audio and video over the Internet. RTP can carry any data with real-
time characteristics, such as interactive audio and video. It goes along with the
RTCP and it is built on top of the User Datagram Protocol (UDP). Applications
using RTP are less sensitive to packet loss, but typically very sensitive to delays,
so UDP is a better choice than TCP for such applications. The protocols them-
selves do not provide mechanisms to ensure timely delivery. They also do not
give any Quality of Service (QoS) guarantees. These things have to be provided
by some other mechanism.

Starting from such motivations, we extend with time restrictions a formalism
designed for mobility in order to study various aspects related to time. The
formalism used is the basic ambient calculus, which means that we have not taken
into account the primitives for communication. The novelty comes from the fact
that the ambients can also expire, simulating in this way the maximum amount of
time any package can exist in a network before being discarded. We have provided
an operational semantics by a structural equivalence and a reduction relation.
The structural relation introduced in this paper is different from the structural
congruence for mobile ambients because it does not allow sibling ambients to
commute their position. The reduction relation is intuitive, and we have shown
in Section 4 how some of the reduction rules are used, namely (R-In), (R-Out),
(R-Open), (R-Migrate) and (R-TimePass). To describe thes passage of time
we have given a discrete time progress function. We have introduced and studied
some behavioural equivalences over timed mobile ambients. After introducing the
aspects of time and locations over mobile ambients, we have established some
bisimulations between processes by defining different barbs.

References

1. Aceto, L., Murphy, D.: Timing and Causality in Process Algebra. Acta Informat-
ica 33(4), 317–350 (1996)

2. Berger, M.: Basic Theory of Reduction Congruence for Two Timed Asynchronous
pi-Calculi. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 115–130. Springer, Heidelberg (2004)

3. Berger, M.: Towards Abstractions for Distributed Systems PhD thesis, Imperial
College, Department of Computing (2002)

250 B. Aman and G. Ciobanu

4. Bergstra, J.A., Klop, J.W.: Process Theory based on Bisimulation Semantics. In:
de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354,
pp. 50–122. Springer, Heidelberg (1989)

5. Bugliesi, M., Castagna, G., Crafa, S.: Boxed Ambients. In: Kobayashi, N., Pierce,
B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 38–63. Springer, Heidelberg (2001)

6. Cardelli, L., Gordon, A.: Mobile Ambients. Theoretical Computer Science 240(1),
170–213 (2000)

7. Ciobanu, G.: Interaction in time and space. In: Proceedings of Foundations of
Interactive Computation. Electronic Notes in Theoretical Computer Science, pp.
45–61 (to appear, 2007)

8. Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. In: International
Workshop on Quantitative Aspects of Programming Languages. Electronic Notes
in Theoretical Computer Science, vol. 164(3), pp. 81–99 (2006)

9. Cleveland, R., Zwarico, A.: A theory of testing for real-time. Logic in Computer
Science, 110–119 (1991)

10. Corradini, F.: On performance Congruences for Process Algebras. Information and
Computation 145(2), 191–230 (1998)

11. Corradini, F.: Absolute versus relative time in process algebras. Information and
Computation 156(1), 122–172 (2000)

12. Gorrieri, R., Roccetti, M., Stancampiano, E.: A Theory of Processes with Dura-
tional Actions. Theoretical Computer Science 140(1), 73–94 (1995)

13. Hennessy, M., Regan, T.: A process algebra for timed systems. Information and
Computation 117, 221–239 (1995)

14. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Infor-
mation and Computation 173(1), 82–120 (2002)

15. Hirschkoff, D., Teller, D., Zimmer, P.: Using ambients to control resources. In:
Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 288–303. Springer, Heidelberg (2002)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International,
Englewood Cliffs (1985)

17. Levi, F., Sangiorgi, D.: Controlling interference in ambients. Principles of Program-
ming Languages, 352–364 (2000)

18. Milner, R.: Communication and Concurrency. Prentice Hall International, Engle-
wood Cliffs (1989)

19. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

20. Moller, F., Tofts, C.: A temporal Calculus of Communicating Systems. In: Groote,
J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 401–415. Springer,
Heidelberg (1991)

21. Stevens, W.R.: TCP/IP Illustrated, Volume 1 - The Protocols, vol. 1. Addison-
Wesley, Reading (1993)

A Specification Framework for Earth-Friendly Logistics

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. This paper describes the use of a formal approach to logistics manage-
ment systems to reduce the environmental impact of logistics operations. Trucks
play an essential role as carriers in modern logistics services, but collectively they
emit a huge quantity of carbon dioxide. To reduce fossil fuel consumption and
carbon dioxide emissions resulting from transport, we must enhance the trans-
port efficiency of trucks. The milk-run approach is one of the most effective and
popular solutions to this problem. However, it tends to be too complicated to
implement in a logistics management system. The framework described in this
paper provides a language for specifying the routes of trucks and an order rela-
tion as a route selection mechanism. The former is formulated as process calculus
and the latter selects suitable trucks according to their routes. This paper also de-
scribes a prototype implementation of the framework as a distributed logistics
management system based on the use of RFID tags.

1 Introduction

Most transport logistics operations involve huge numbers of trucks, with each truck con-
suming large quantities of fossil fuel and discharging a large quantity of carbon dioxide
(CO2) into the atmosphere. To reduce fossil-fuel consumption and CO2 emissions from
transport, we need to enhance the efficiency of trucks. The milk-run approach, which
is one of the most efficient and popular ways of improving truck-load ratios, refers to
a means of transportation in which a single truck cycles around multiple suppliers to
collect or deliver freight. The name is derived from the milk-runs carried out by farm-
ers collecting milk from dairy cows spread out over pastures. For example, suppose five
suppliers, e.g., dairy farmers, send their products to the processing plant every week-
day. Using the milk-run approach, one truck calls at each of the suppliers on a daily
basis before delivering the collected milk to the customer’s plant. In a more traditional
approach, e.g., the Just-In-Time approach, all suppliers have their own trucks and send
one truckload per day to the customer (Figure 1).

Recently, a variety of industries, e.g., food and automobile manufacturers, in addition
to the dairy industry, have attempted to use the milk-run approach to reduce the envi-
ronmental impact of their logistics operations. However, in the milk-run approach, they
have to provide multiple trucks using varied routes to satisfy the needs of customers
and cater for the requirements of the products. Therefore, the customers and suppliers
are confronted by another problem: they need to design truck routes and select suitable
trucks with routes that satisfy their requirements.

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 251–266, 2008.
c© IFIP International Federation for Information Processing 2008

252 I. Satoh

Legacy approach
(three trucks)

Milk-run approach
(one truck)

Dairy factory

Dairy farmar Dairy farmar

Dairy
farmar's
truck

Dairy
factory's
truck

Dairy
farmar's
truck

Dairy
farmar's
truck

Fig. 1. Legacy approach vs. Milk-run approach

This paper proposes a novel framework for specifying truck routes and selecting
appropriate trucks. The framework introduces a specification language that describes
truck routes and a mechanism for selecting suitable milk-run trucks. Since the language
is formulated based on an extended process calculus for specifying and reasoning on the
routes of trucks, we can determine whether a truck can visit various points, e.g., farmers
and manufacturers, along its route to collect or deliver items. The mechanism enables
collection/delivery points to select trucks according to the truck route because the route
a truck takes is critical in determining its efficiency. The framework was inspired by
our experience of real logistics systems. We implemented a prototype of the framework
in a distributed logistics management system. We believe that this framework provides
a novel and practical application of process calculi in the real world. However, we
leave the theoretical aspects of the framework to our future papers because this paper
addresses a fundamental platform for managing a milk-run logistics operation.

This paper is organized as follows: Section 2 presents the basic ideas behind the
framework. Section 3 defines a process calculus for specifying the routes of trucks for a
milk-run logistics-operation, and Section 4 presents an order relation over terms of the
languages as a mechanism for selecting routes. Section 5 describes a prototype imple-
mentation of the framework and a typical application scenario and Section 6 includes a
survey of related work. Section 7 discusses our future work and Section 8 has conclud-
ing remarks.

E

D C

Factory A

B

Product

Fig. 2. Five factories with dependencies

A Specification Framework for Earth-Friendly Logistics 253

2 Background

This paper describes a formal method for specifying the routes of trucks and selecting
appropriate trucks to support milk-run operations in transport logistics.

2.1 Example Scenario

Before discussing the framework proposed in this paper, we describe our basic example
scenario. Figure 2 shows five factories, A, B, C, D, and E, that have the following
dependencies:

– Factory A manufactures products and ships the products to factories B and C.
– Factory B manufactures products and ships the products to factory D.
– Factory C manufactures products and ships the products to factory D.
– Factory D manufactures products and ships the products to factory E.

We assume that a truck has sufficient carrying capacity. It starts at factory A and may
visit factory A again. Figure 3 shows four trucks carrying out milk-runs on different
routes. The first, second, and third trucks can satisfy the above requirements but the
fourth cannot. The third is less efficient than the first and second on their rounds. The
framework proposed in this paper was inspired by our real experiences. Although the
milk-run approach is effective in reducing the amount of CO2 emitted by trucks, its
management tends to be complicated, which is one of the most significant barriers pre-
venting wider adoption of the approach in real logistics.

2.2 Requirements

This paper assumes that one or more trucks involved in milk-run logistics operations
call at multiple points along their routes. Customers and suppliers have to decide which
truck and which route will best satisfy their requirements, and this decision is not an
easy one. The framework must therefore satisfy the following demands of real logistics
systems.

– One or more trucks are available for a milk-run, but their routes may be different.
Therefore, points, i.e., suppliers and customers, need to select appropriate trucks
according to truck routes. This framework therefore needs to provide a mechanism
for selecting truck routes.

– Trucks may be shared by multiple suppliers and customers, so that they collect
products at one or more source points and deliver the products at one or more
destination points on their way. The trucks need to visit the source points before
they visit the destination points. The framework therefore needs to specify the order
in which trucks call at various points.

– The routes taken by trucks may also affect product quality. For example, foods
should be transported by the shortest route possible to keep their freshness, and per-
ishable foodstuffs should be picked up later than preservable foodstuffs and taken
to a food processor or consumer.

254 I. Satoh

Truck 1
A

E

D C

B

Truck 2

A

E

D C

B

Truck 3

A

E

D C

B

Truck 4

A

E

D C

B

Fig. 3. Four trucks for milk-run operation

– Some products may be collected/delivered at points by trucks without any need
for a specific order of arrival at collection/delivery points. That is, the order of the
movement of trucks between points does not affect the efficiency of the trucks’
operations. Suppliers or customers should select a truck according to the number
of movements between the points that the trucks visit.

– Truck routes tend to be regular and static, although they may be changed weekly
or monthly. Nevertheless, trucks may bypass some points or take shortcuts with-
out stopping at specified points if they have no freight to deliver to the points or
products to pick up.

– Pallets or boxes that contain multiple products are considered as transport units in
many current logistics systems, rather than as individual products. These types of
containers may have multiple destinations and the receivers may take only some of
the products in the container when it arrives at their point.

– In real logistics systems, most points, i.e., suppliers and customers, involve small
to medium enterprises or individual operators. They do not want to invest in any
additional equipment to support milk-run logistics.

– Current logistics management systems rely heavily on barcodes or RFID tags at-
tached to products or containers. The framework should therefore be compatible

A Specification Framework for Earth-Friendly Logistics 255

with existing infrastructure and equipment for reading barcodes or tags. However,
two-dimensional barcodes or RFID tags do not hold a large amount of data, e.g., up
to 128 bytes.1 The time required to read data from an RFID tag tends to be propor-
tional to the size of the data. The length of route specification should be compact.

2.3 Basic Approach

Truck routes and the requirements of suppliers and customers are various and com-
plex. The selection of trucks for milk-run operations is critical for industrial efficiency
and for minimizing carbon dioxide emissions. Careful consideration must be given to
selecting suitable trucks with routes that satisfy the requirements of customers and sup-
pliers. Therefore, we need a formal method to solve this problem. To satisfy the above
requirements, the framework has two parts.

– It provides a specification language for describing and analyzing truck routes. The
language is aimed at specifying only the routes of trucks formulated as an extended
process calculus with the expressiveness of truck routes between collection/delivery
points.

– It framework defines an algebraic order relation over the terms of the language. The
relation is defined based on the notion of bisimulation and compares possible truck
routes and the routes required by its specifications. This allows us to accurately
determine whether the former satisfies the latter.

Note that the order relation is not intended to generate the most efficient route. Thus,
the computational complexity for this relation is not large. Since our goal is to develop
a suitable mechanism for selecting trucks for milk-run logistics operations, this paper
does not limit the types of products that the trucks carry.

2.4 Remarks

– The framework does not assume any particular logistics system and the specifica-
tions of all trucks are independent of any particular logistics service.

– The current implementation does not support any real-time constraints. However,
the timing of a truck’s arrival at various points tends to depend on external factors,
e.g., traffic congestion and the cost of the shipment, in real logistics systems. The
milk-run approach is, by its nature, suitable for earth-friendly logistics systems, but
not for just-in-time ones.

– The framework is not intended to provide route optimization because truck routes
tend to be designed according to external factors.

– Some readers may think that simple executable languages, such as Lisp and Prolog,
should be used to specify routes, but it is difficult to verify whether or not routes
written in such languages will satisfy the requirements of customers and suppli-
ers because these languages have many primitives that are not used in describing
routes.

1 The amount of data held by barcodes and RFID tags depends on individual systems.

256 I. Satoh

3 Specification Language for Milk-Run Truck Routes

This section defines a language for specifying and reasoning about truck routes. The
language consists of two classes. The first is designed to specify truck routes and the
second is designed to specify the routes required by products or customers.

Definition 1. it The set E of expressions of the language, ranged over by E, E1, E2, . . .
is defined recursively by the following abstract syntax:

E ::= 0 | � | E1 ;E2 | E1 +E2
| E1 #E2 | E1 %E2 | E1 &E2 | E*

where L is the set of location names ranged over by �, �1, �2, . . ., and where points
correspond to the locations of suppliers and customers. We often omit 0. We describe a
subset language of E as S, when eliminating E1 #E2, E1 %E2, E1 &E2, and E* from
E . Let S, S1, S2, . . . be elements of S. ��

This framework assumes that each truck has its own route written in S and that its driver
visits points along the route, i.e., intuitively, the meaning of the terms is as follows:

– 0 represents a terminated route.

– � represents that a truck moves to a point called �.

– E1;E2 denotes the sequential composition of two routes E1 and E2. If the route
of E1 terminates, then the route of E2 follows that of E1.

– E1+E2 represents the route of a truck according to either E1 or E2, where the
selection is done by the truck.

– E1#E2 means that a truck itself can go through either E1 or E2.

– E1%E2 means that a truck can follow either E1 before E2 or E2 before E1 on its
route.

– E1&E2 means that two routes, E1 and E2, may be executed asynchronously.

– E* is a transitive closure of E and means that a truck may move along E an
arbitrary number of times.

where in E1+E2 the truck can select the E1 (or E2) route when the E1 route is avail-
able. For example, if the E1 route is available and the E2 route is congested, the truck
goes through the E1 route. E1#E2 means that a truck can go through either E1 or E2.
E1%E2, E1&E2, and E* are used to specify possible routes. For example, E1#E2
permits the truck to go through one of the E1 or E2 routes.

To accurately express such routes, we need to define a specification language based
on a process calculus approach such as CCS [6]. The semantics of the language are
defined by the following labeled transition rules:

Definition 2. it The language is a labeled transition system 〈 E , L ∪ {τ} { α−→⊆ E ×
E | α ∈ E ∪ {τ} } 〉 is defined as the induction rules below:

A Specification Framework for Earth-Friendly Logistics 257

−
�

�−→ 0

E1
�−→ E′

1

E1 ;E2
�−→ E′

1 ;E2

E1
�−→ E′

1

E1 +E2
�−→ E′

1

E2
�−→ E′

2

E1 +E2
�−→ E′

2

E1
�−→ E′

1

E1 &E2
�−→ E′

1 &E2

E2
�−→ E′

2

E1 &E2
�−→ E1 &E′

2

E1
τ−→ E′

1

E1 ;E2
τ−→ E′

1 ;E2

−
E1 #E2

τ−→ E1

−
E1 #E2

τ−→ E2

−
E1 %E2

τ−→ E1 ;E2

−
E1 %E2

τ−→ E2 ;E1

E1
τ−→ E′

1

E1 +E2
τ−→ E′

1 +E2

E2
τ−→ E′

2

E1 +E2
τ−→ E1 +E′

2

E1
τ−→ E′

1

E1 &E2
τ−→ E′

1 &E2

E2
τ−→ E′

2

E1 &E2
τ−→ E1 &E′

2

where 0;E is treated as being syntactically equal to E. E* is recursively defined as
0# (E ; E*). We often abbreviate E0

τ−→ · · · τ−→ En to E0(
τ−→)nEn. ��

In Definition 2, the �-transition defines the semantics of a trucks movement. For ex-
ample E

�−→ E′ means that the truck moves to a point named � and then behaves as

E′. Also, if there are two possible transitions E
�1−→ E1 and E

�2−→ E2 for a truck,
the processing by the truck chooses one of the destinations, �1 or �2. In contrast, the
τ -transition corresponds to a non-deterministic choice of a truck’s routes .

Readers may think that the above operational semantics could be more compact.
However, the aim is to design a system that can be easily implemented because the
purpose of the framework is not to provide just a theoretical foundation for determining
truck-route logistics, but a practical mechanism for selecting suitable trucks for milk-
run operations. The language does not needs recursive or loop notations, because each
truck does not continue to run for 24 hours everyday.

We show several basic examples of the language as shown in Figure 4.

– Route specification, a; b; c; d, in S is interpreted as follows:

a; b; c; d
a−→ b; c; d
b−→ c; d
c−→ d
d−→

The first diagram in Figure 4 illustrates the above derivation.
– Next, we show an example of a specification in E . This is a route requirement.

a; (b# c); d; e
a−→ (b# c); d; e
τ−→ b; d; e or c; d; e

where # corresponds to a combination of two required routes so that trucks are
required to follow both routes as shown in the third diagram in Figure 4. That is, a
truck needs to call at point a and then at either b or c. Next, it calls at d and then e.

– We show another route requirement specification, a; (b% c); d; e, in E . It has
two derivations as follows:

a; (b% c); d; e
a−→ (b% c); d; e
τ−→ b; c; d; e or c; b; d; e

258 I. Satoh

a

e

d c

b

a

e

d c

b

a;(b#c);d;e

a;(b%c);d;e a;((b;c)&d);e

a

e

d c

b

a

e

d c

b

a;b;c;d;e

Fig. 4. Examples of specification

where % means that trucks can take either one of the two routes before they take
the other. The second diagram in Figure 4 shows possible routes that could satisfy
this requirement specification.

– a; ((b; c)& d); e in E is an example of & .
a; ((b; c)& d); e

a−→ ((b; c)& d); e
b−→ (c& d); e
c−→ d; e
d−→ e

where & corresponds to asynchronous reduction. Thus, this permits a truck to move
to d while moving along c; b. As shown in the fourth diagram in Figure 4, the
following two derivations are possible in addition to the above derivation.

a; ((b; c)& d); e
a−→ ((b; c)& d); e
b−→ (c& d); e
d−→ c; e
c−→ e
or

a; ((b; c)& d); e
a−→ ((b; c)& d); e
d−→ (b; c); e
b−→ c; e
c−→ e

A Specification Framework for Earth-Friendly Logistics 259

– The first requirement presented in the previous section is described as specification
(a; (b% c))& d* & e*. We show one of the possible derivations from the specifi-
cation as follows:

(a; (b% c))& d* & e*
a−→ (b% c))& d* & e*
b−→ c& d* & e*

We can also have another derivation from the specification as follows:

(a; (b% c))& d* & e*
a−→ (b% c))& d* & e*
c−→ b& d* & e*

where E & d* means that the truck can visit d more than zero times while it moves
along E.

(a; (b% c))& d* & e*
def= (a; (b% c))& (0# d; d*)& e*
tau−→ (a; (b% c))& (d; d*)& e*
d−→ (a; (b% c))& d* & e*

To describe routes in a compact notation, we define several macro notations for spec-
ifying the typical routes of trucks in a logistics operation. We describe a list of point
names as [�1, �2, . . . , �n], where �1, �2, . . . , �n ∈ L. Let [] be an empty list, car(X)
be the top element of list X, i.e., �1, and cdr (X) be the remaining list of X except for
the top element, i.e., [�2, . . . , �n]. Each point list is often written as $(H) in terms of
the language, where H is the name of a list, to avoid confusion between the name of a
point and the name of the list. These macros do not extend the language because they
are mapped into E .

Cycle($(X)) def= car($(X));Cycle(cdr($(X)))
Cycle([]) def= 0

Star($(X)|�) def= (car($(X)); �); Star(cdr ($(X))|�)
Star([]|�) def= 0

Figure 5 illustrates Cycle and Star notations. Let � be an element of L and X be a
list of node names in L. For example, Cycle($(DAIRY-FARMERS)) allows a truck
to travel around the points specified in the DAIRY- FARMERS list consisting of the
names of dairy farmers that produce milk; and f is a processing plant for dairy prod-
ucts. Star($(DAIRY-FARMERS)|f) corresponds to a star-shaped route, which allows a
truck to go back and forth between the destinations specified in the DAIRY-FARMERS
list and a given base point, e.g., a dairy factory, specified as f as the order of the
list. To illustrate the transition defined in Definition 2, we show the transition of Star

260 I. Satoh

($(DAIRY-FARMERS)|f) in $(DAIRY-FARMERS) = [a, b, c, d], where a, b, c, and d
are the locations of dairy farmers as follows:

Star($(DAIRY-FARMERS)|f) is Star([a, b, c, d]|f)
def= (a; f);Star([b, c, d]|f)
a−→ f ; Star([b, c, d]|f)
f−→ Star([b, c, d]|f)

def= (b; f); Star([c, d]|f)
b−→ f ; Star([c, d]|f)
f−→ Star([c, d]|f)

a

e

d c

b
f

Star([a,b,c,d,e]|f)

a

e

d c

b

Cycle([a,b,c,d,e])

Fig. 5. Cycle and Star macros for routes

4 Order Relation for Route Selection

This section defines an order relation for selecting trucks according to their routes based
on the concept of bisimulation [6]. The relation is suitable for selecting a truck for a
milk-run operation with a route that satisfies the requirements of suppliers and cus-
tomers.

Definition 3. it A binary relation Rn (R ⊆ (E×S)×N) is an n-route prebisimulation,
where N is the set of natural numbers, if whenever (E, S) ∈ Rn where n ≥ 0, then,
the following holds for all � ∈ L or τ .

i) if E
�−→ E′ then there is an S′ such that S

�−→ S′ and (E′, S′) ∈ Rn−1

ii) E (τ−→)∗ E′ and (E′, S) ∈ Rn

iii) if S
�−→ S′ then there exist E′, E′′ such that E (τ−→)∗E′ �−→ E′′ and (E′, S′) ∈

Rn−1

where E �n S if there exist some n-route prebisimulations such that (E, S) ∈ Rn. We
call the �n n-route order. We often abbreviate �n to � . ��

A Specification Framework for Earth-Friendly Logistics 261

The informal meaning of E �n S is that S is included in one of the permissible routes
specified in E and n corresponds to the number of movements of a truck that can satisfy
E. We show several basic properties of the order relation below. Let us look at some
basic examples.

– (a% b% c); d �4 c; a; b; d
where the left-hand-side requires a truck to carry products to three points, a, b, and c
in an indefinite order and then return to point d; the right-hand-side requires a truck
to carry products to three points, c, a, and b, sequentially. When the left-hand-side
is changed to a; b; c; d, the relation is still preserved, but when the left-hand-side
becomes a; d; b; d; c; d or a; b; d, the relation is not preserved.

– ((a; b; c)& d*); d �6 a; d; b; d; c; d
where the left-hand-side allows a truck to drop in at point d an arbitrary number of
times on route a; b; c and then finish its movement at point d. The right-hand-side
is a star-shaped route between three destinations, a, b, c, and point d satisfies the
left-hand-side.

– ((a; b)& c*)# ((b; c)& a*) �3 a; b; c
where ((a; b)& c*) and ((b; c)& a*) on the left-hand-side are the required routes
of two products, respectively. The first product is collected from point a and is then
delivered to point b. The second product is collected from point b and is then deliv-
ered to point c. Both products permit trucks to visit c or a more then zero times. #
on the left-hand-side means that trucks must satisfy both required routes. a; b; c
can satisfy the requirement specified on the left-hand-side. b; c; a; b still satisfies
the left-hand-side, but the number of truck movements is greater than the a; b; c.

5 Implementation

This section describes a prototype implementation of our framework and a preliminary
experiment using an RFID tag system. The experiment was constructed as a distributed
logistics management system consisting of six supplier points in addition to a customer
point with a route-selection server. Figure 6 shows the basic structure of the system.
The server was responsible for receiving route requirements from suppliers and cus-
tomers through a network and selecting suitable trucks with routes that satisfied these
requirements.

5.1 Route Selection Algorithm

Here, let us explain the selection algorithm used for the current implementation, which
we tried to make as faithful to Definition 3 as possible. The server maintains its own
repository database containing the routes of trucks. To reduce the cost of the selec-
tion algorithm, the possible routes written in E are transformed into tree structures
before they are stored in the database. These are called transition trees or
derivation trees in the literature on process calculus [6]. Each tree is derived
from a route in E according to Definition 2 and consists of arcs corresponding to �-
transitions or τ -transitions in the route. When a route selection server receives a re-
quired route from suppliers or customers, it extracts the required route written in S and

262 I. Satoh

Route selection server

RFID tag reader
Box with RFID tag

RFID tag reader
Box with RFID tag

Data in tag
(required route)

Route
Selection
Engine

Route
Specification
Database

Client (supplier a)

Client (supplier c)

Client (supplier b)
Recommended
truck identifier

Recommended
truck identifier

Recommended
truck identifier

Data in tag
(required route)

Data in tag
(required route)

Route

Route

Route

Fig. 6. Basic structure of logistics management system

then transforms the route into a transition tree. It next determines whether or not the
trees derived from the routes stored in the database system can satisfy the tree derived
from the required route by matching the two trees according to the definition of the
order relation (�n ⊆ E × S) as in the following.

(1) If each node in one of the two trees has arcs corresponding to �-transitions, then
the corresponding node in the other tree can have the same arcs, and the sub-nodes
derived through the matching arcs of the two trees can still satisfy either (1) or (2).

(2) If each node in the tree derived from the required route has one or more arcs corre-
sponding to τ -transitions, then at least one of the nodes derived through the arcs and
the corresponding node in the tree derived from the truck’s route can still satisfy
(1) or (2).

(3) If neither (1) nor (2) is satisfied, the route selection server backtracks from the
current nodes in the two trees and tries to apply (1) or (2) to their two backtracked
nodes.

Figure 7 illustrates the matching of two transition trees in the above algorithm. If one
or more truck routes in the database satisfy the required route, it selects the truck with
the least number of truck movement between points, which is n of �n in Definition
3. Although the cost of selecting a route is dependent on the number of trucks and the
length of their routes, the system can handle each of the routes presented in this paper
within a few milliseconds.

Non-deterministic operators, e.g., # and % , tend to cause the exposition of a number
of sub-trees in transition trees. Nevertheless, our algorithm can easily restrain the number
of sub-trees resulting from non-deterministic operators because the expansion rules of
expressions, i.e., the operational semantics of the language, distinguish between deriva-
tions resulting from deterministic operators and those resulting from non-deterministic
operators. Readers may wonder why E* operator creates an infinite number of sub-
trees, but the current implementation interprets the operator in a lazy evaluation manner.

A Specification Framework for Earth-Friendly Logistics 263

a;b;(c+d)a;((b;(c+d))#d)

(b;(c+d))#d

τ τ

b;(c+d) d

b;(c+d)

c+d
dc

dc

a a

b

b d

3

Fig. 7. Matching transition trees in route-order relation algorithm

5.2 Route Specification in RFID Tags

The current implementation assumes that the routes required for products or pallets are
stored in RFID tags attached to the products or pallets because they may have their own
delivery requirements. The current implementation supported three commercial passive
RFID tags systems: OMRON V700 RFID system (125 kHz), Phillips i-Code system
(13.56 MHz), and Texas Instruments Tag-It systems (13.56 MHz). The first system
provides each tag with 240 bytes, the second with 112 bytes, and the third with 32
bytes. We were able to maintain each of the example routes presented in these papers
in the first and second tag systems, where the length of the identifier for each point was
4 bytes. Tags in the third system may not be able to store route specifications internally,
but can maintain references to route specifications stored in a database server.

Fig. 8. RFID tag reader scans route specification from tag

5.3 Early Experience

Our prototype implementation assumes that each client-side system at a supplier or cus-
tomer point has more than one RFID tag reader. The reader periodically or explicitly
tries to detect the presence of tags within its coverage area. Figure 8 shows a 13.56-
MHz-based RFID tag reader embedded with a WiFi network interface scanning a tag

264 I. Satoh

attached to a pallet in a warehouse The tag specifies the route required to deliver the
pallet. When it reads the data from a tag, it sends the route stored in the tag to the route-
selection server via WiFi and waits for a response from the server. When it receives a
truck identifier from the server, it displays the identifier on its screen.

The current implementation of the algorithm was not optimized for performance.
Nevertheless, we describe the basic performance of the implementation. The cost of
reading the route specification in a tag depends on the length of the specification, e.g.
the cost of reading a specification with a length of less than 40 bytes is within 0.2 sec.
When the routes of five trucks were registered in the server running on a computer (Intel
Core 2 Duo 2 GHz and Windows XP), the cost of selecting a truck after the reader had
detected a tag, including the cost of communication between the server and client via a
TCP/IP session, was less than 1.2 sec. Client-side systems for suppliers and customers
can be operated using only RFID readers, which connect to a server through either
wired or wireless networks. This means they do not need any special equipment to use
the logistics management system. This is important because in milk-run logistics, most
suppliers are small to medium enterprises that do not want to have to invest in additional
equipment for milk-run logistics.

6 Related Work

There have been many attempts to use process calculi, e.g., as formal methods for
various business enterprise processes. Several researchers have used process calculi,
e.g., π-calculus, as business-process modeling languages, such as BPEL, [13,4,8,12].
π-calculus has been used as a formal composition language for software composition
and Web service composition, e.g., Orc [7] and SCC [1]. Process calculi are theoreti-
cally sound and support bisimulation analysis and model checking. They are also gain-
ing increasing acceptance as a support tool in industry. However, there have been no
process-calculus-based formal methods for logistics, in particular for improving the
transport efficiency of trucks.

Several papers have explored formal models for specifying and reasoning about mo-
bile agents, e.g., Mobile UNITY [5], Ambient calculus [2], and Join-calculus [3]. Am-
bient calculus [2] allows mobile agents (called ambients in the calculus) to contain other
agents and to move with all inner ambients. The calculus must always model the mo-
bility of agents as navigation along a hierarchy of agents, whereas the itineraries of real
mobile agents may be more complicated. Join-calculus [3] also introduces the notion
of named locations that form a tree. The mobility of an agent is modeled as a transfor-
mation of sub-trees from one part of the tree to another. The author presented a formal
method for using mobile agents in network management systems [11]. However, this
method was aimed only at mobile agents and assumed the notion of two-layer mobile
agents.

7 Future Work

This section discusses further issues that need to be resolved. This paper assumes that
trucks are independent, but coordination of multiple trucks is often necessary to ensure

A Specification Framework for Earth-Friendly Logistics 265

efficient transportation. In future research, we are interested in developing a mechanism
for dividing single routes into multiple sub-routes and assigning these subtasks to one
or more trucks. The order relation proposed in this paper can select truck routes ac-
cording to the number of movements between points as well as the order in which the
trucks visit each point. The amount of CO2 emissions resulting from transport depends
on the distance covered by trucks. We need to introduce the notion of distance into
the framework. Although the milk-run approach is useful for non-just-in-time logistics,
we are interesting in extending the framework by incorporating the ability to reason
about time constraints. The language itself is general. We developed a methodology for
testing software for mobile terminals that can be carried between networks and recon-
nected to current networks [9]. We plan to use the language as a control language for
testing software in the methodology. As mentioned previously, the goal of the proposed
framework is to establish both a theoretical and practical foundation for earth-friendly
logistics. In fact, we have already started some large-scale experiments with logistics
and warehouse companies in collaboration with the Ministry of Land, Infrastructure
and Transport in Japan, to demonstrate the effectiveness of the proposed framework.
The author is a member of the ISO/IEC standardization committee (SC31) for RFID
tags and barcodes and supported several logistic services, including milk-run based lo-
gistic operations. We believe the the language can provide a foundation for tags and
barcodes for earth-friendly logistic systems.

8 Conclusion

We presented a formal method for improving transport efficiency, using the example
of milk-run logistics, to reduce the environmental impacts of transport operations. The
method was formulated based on a process calculus-based language and an order re-
lation over two terms corresponding to truck routes and the required routes in the lan-
guage. The language can specify truck routes for milk-run operations and the required
routes for shipping. The relation can be used to accurately determine whether a truck
route satisfies the requirements of customers and suppliers. A prototype implementa-
tion system based on the framework was constructed using Java language and RFID tag
systems and applied to our experimental distributed logistics management system.

References

1. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Monta-
nari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T., Zavattaro, G.: SCC: a Service Centered
Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 38–57. Springer, Heidelberg (2006)

2. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Nivat, M. (ed.) ETAPS 1998 and FOS-
SACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

3. Fournet, C., Gonthier, G., Levy, J., Marnaget, L., Remy, D.: A Calculus of Mobile Agents. In:
Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 406–421. Springer,
Heidelberg (1996)

4. Mazzara, M., Lucchi, R.: A pi-calculus based semantics for WS-BPEL. Journal of Logic and
Algebraic Programming 70(1), 96–118 (2006)

266 I. Satoh

5. McCann, P.J., Roman, G.-C.: Compositional Programming Abstractions for Mobile Com-
puting. IEEE Transaction on Software Engineering 24(2) (1998)

6. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
7. Misra, J., Cook, W.R.: Computation orchestration: A basis for wide-area computing. Journal

of Software and Systems Modeling (2006); A preliminary version of this paper appeared in
the Lecture Notes for NATO summer school (August 2004)

8. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Patterns. In:
Proceedings of the International Conference on Business Process Management, pp. 153–168
(2005)

9. Satoh, I.: A Testing Framework for Mobile Computing Software. IEEE Transactions on Soft-
ware Engineering 29(12), 1112–1121 (2003)

10. Satoh, I.: A Location Model for Pervasive Computing Environments. In: Proceedings of
IEEE 3rd International Conference on Pervasive Computing and Communications (PerCom
2005), pp. 215–224. IEEE Computer Society, Los Alamitos (2005)

11. Satoh, I.: Building and Selecting Mobile Agents for Network Management. Journal of Net-
work and Systems Management 14(1), 147–169 (2006)

12. Smith, H.: Business Process Management-The Third Wave: Business Process Modeling
Language (BPML) and Its Pi-Calculus Foundations. Information and Software Technol-
ogy 45(15), 1065–1069 (2003)

13. Xu, K., Liu, Y., Zhu, J., Wu, C.: Pi-Calculus Based Bi-transformation of State-Driven Model
and Flow-Driven Model. International Journal of Business Process Integration and Manage-
ment (2006)

A Hierarchy of Equivalences for Probabilistic

Processes�

Manuel Núñez and Luis Llana

Dept. Sistemas Informáticos y Computación
Facultad de Informática

Universidad Complutense de Madrid, 28040 Madrid, Spain
{mn,llana}@sip.ucm.es

Abstract. We study several process equivalences on a probabilistic pro-
cess algebra. First, we define an operational semantics. Afterwards we in-
troduce the notion of passing a test with a probability. We consider three
families of tests according to the intended behavior of an external ob-
server: Reactive (sequential tests), generative (branching tests), and lim-
ited generative (equitable branching tests). For each of these families we
define three predicates over processes and tests (may-pass, must-pass,
passp) which induce three equivalences. Finally, we relate these nine
equivalences and provide either alternative characterizations or fully ab-
stract denotational semantics. These semantic frameworks cover from
simple traces to probabilistic acceptance trees.

1 Introduction

Process algebras [16,24,1,25,2] are an adequate mechanism to formally specify
and analyze networked and distributed systems. The process algebra literature
includes numerous semantic models. These semantic frameworks are used to
describe the behavior of processes as well as to define relations on them. Testing
semantics [7,15] represents one of these semantic frameworks. Intuitively, two
processes are testing equivalent if they have the same responses for all the tests
belonging to a certain set. Depending on how these responses are analyzed,
several testing semantics can be defined: May, must, refusal, fair, etc. We consider
that this semantic framework is very suitable because it is easy to understand
and allows us to give different equivalences just by modifying the idea of what
a test is or when a test is successfully passed.

Once the basic frameworks were studied, research in process algebras has tried
to close the gap between formal models and real systems. Thus, features which
were initially abstracted have been introduced later. This is the case of proba-
bilistic information. In particular, if we concentrate only on probabilistic testing,
regardless whether the underlying model is a process algebra or another formal-
ism, several semantics have been defined. This area of research was very active
� This research was partially supported by the Spanish MEC project WEST/FAST

TIN2006-15578-C02-01 and the Marie Curie project MRTN-CT-2003-505121/
TAROT.

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 267–282, 2008.
c© IFIP International Federation for Information Processing 2008

268 M. Núñez and L. Llana

in the previous decade (we can mention [5,35,18,30,29,33,26,12,21,6,31]). More-
over, there also exists recent work on the topic (see, for example [19,3,28,34,4,8]).
Despite the myriad of papers on the subject, there is a lack of papers comparing
several testing approaches under the same umbrella. In fact, most work in this
direction is limited to compare a may and a must variants in a given probabilistic
setting. That is, we miss a classification in the probabilistic setting similar to
the ones provided in [9,10] for nonprobabilistic processes. This paper represents
a first step towards such a complete study.

In this paper we study different testing semantics for the probabilistic process
algebra PPA defined in [30,28]. This process algebra has two choice operators
(external and internal), which are extended with a probability. In addition, it
allows the definition of recursive behaviors. The study of the different semantics
is performed in a testing framework. We propose three families of tests according
to the capabilities of an external observer:

– In the reactive model [22] the environment can offer only one action at a
given time. Intuitively, an entity interacting with a system can press only
one button at a given time.

– In the generative model [11] the environment can offer more than an action
and with different probabilities. So, more than one button can be pressed at
a given time and they can be pressed with different strengths.

– In the limited generative model [29] the environment can offer several actions
at a given time, but the probabilities associated with these actions are the
same. So, more than one button can be pressed at a given time, but they have
to be pressed with the same strength.

For each of the above families of tests we consider three different definitions
of successfully passing a test:

– P may-pass T if the probability with which P passes T is greater than zero.
– P muss-pass T if the probability with which P passes T is equal to one.
– P passp T if the probability with which P passes T is equal to p.

The combination of these two ideas (the different families of tests and the
different interpretations of successfully passing a test) induce nine equivalence
relations. In order to provide real usefulness to these equivalences, we relate them
and provide either alternative characterizations or fully abstract denotational
semantics.

We will show that the may interpretation coincides in the three families of
tests. We define a fully abstract denotational semantics, based on traces, for the
induced equivalence. For the must-reactive interpretation, we show that a fully
abstract denotational semantics cannot be defined by using the usual least fix-
point techniques. Thus, we give an alternative characterization based on must
traces. The must interpretation coincides for the generative and limited gener-
ative models, and we give an alternative characterization based on acceptance
sets [15]. We show that the reactive testing equivalence is not a congruence and
we define an alternative characterization based on probabilistic traces. For the

A Hierarchy of Equivalences for Probabilistic Processes 269

≈R
must

�≈LG
must

= ≈G
must

� � �
≈R � ≈LG � ≈G

� � �
≈R

may
= ≈LG

may
= ≈G

may

Fig. 1. Hierarchy of testing equivalences for PPA

generative model we have a fully abstract denotational semantics based on prob-
abilistic acceptance trees [28]. Finally, we provide an alternative characterization,
based on a set of essential tests, for the limited generative model. In Figure 1
we show how the different equivalences studied in this paper are related.

As a derived result, our testing equivalences appropriately deal with unfair di-
vergences caused by unguarded recursive definitions in the context of an internal
choice. In fact, our results about fairness can be compared with those in [27,32],
while they are not so similar to those in [14] where fairness is only considered
in the context of parallel compositions. A study on the relation between proba-
bilistic testing and fairness can be found in [31].

In terms of related work, our reactive and generative models follow the same
intuitive ideas as those in [11], but we do not need to give different operational
semantics for each of the models. We have just an operational semantics and
the differences between the models come from the considered families of tests.
The model described in [35], and other testing frameworks based on it, can be
compared to our generative point of view. They define a probabilistic process
algebra with two choice operators but, unlike PPA, the external choice does not
have an associated probability. This fact simplifies the operational semantics but
complicates the definition of a testing semantics: A process passes a test with
a set of probabilities. They adapt the notions of may and must equivalences by
computing the infimum and supremum of sets of probabilities. For these equiv-
alences, compositional characterizations are defined in [18] and characterized as
simulations in [19]. We think that these characterizations are so complicated
because of the absence of probabilities in external choices. In contrast, our oper-
ational semantics is slightly harder, because we have to deal with probabilities
in the scope of the external choice, but testing equivalences are simpler and
more intuitive. Thus, the alternative characterizations for the may and must
interpretations are clearer and more similar to the nonprobabilistic model.

In [20,17,23] several equivalence relations for probabilistic processes are given
by adapting nonprobabilistic relations to the probabilistic setting. In spite of
being interesting, they relate probabilistic equivalence relations which are not in
a common framework. We address our work in a rather different way: We begin

270 M. Núñez and L. Llana

by settling a testing framework, then we define natural semantic equivalences in
this framework, and, finally, we provide alternative characterizations for these
equivalences and relate them.

The rest of the paper is organized as follows. Section 2 presents the syntax,
operational and testing semantics for PPA. In Sections 3, 4, and 5 we study
testing semantics and alternative characterizations for the reactive, generative,
and limited generative models, respectively. Finally, in Section 6 we present our
conclusions.

2 An Overwiew of PPA

In this section, we briefly review the basic concepts of our probabilistic process
algebra: Syntax, operational semantics and testing semantics. This process alge-
bra was used in [28], so more details can be found there (in particular, intuitive
explanations of the operational semantics rules and the intended meaning of the
rules defining the interaction between a process and a test). In addition, in this
section we also define the interaction between a process and a test and adapt
the must and may equivalences to our probabilistic framework.

2.1 Syntax and Operational Semantics of PPA

Definition 1. Given a finite set of actions Act and a set of identifiers Id, the
set of PPA processes is defined by the following BNF expression:

P ::= Nil | Ω | X | a; P | P ⊕p P | P +p P | recX.P

where p ∈ (0, 1), a ∈ Act, and X ∈ Id. ��
From now on, except as noted, we only consider closed processes, that is processes
without free occurrences of variables. In this process algebra, Nil is a deadlocked
process, Ω is a divergent process, a; P denotes the action a prefixing the process
P , P ⊕p Q denotes an internal choice between P and Q with associated probabil-
ity p, P +p Q is an external choice between P and Q with associated probability
p, and recX.P is used to define recursive processes. We can extend the external
choice operator to an n-ary one.

Definition 2. Let P1, . . . , Pn be processes and p1, . . . , pn > 0 such that
∑

pi =
1. We define the generalized external choice as:

1.
∑1

i=1[1] P = P .
2.

∑n
i=1[pi] Pi = P1 +p1 (

∑n−1
i=1 [pi+1

1−p1
] Pi+1). ��

Next we give a syntactic definition for the stability of a process. It expresses
that a process does not have unguarded internal choices, or equivalently that
a process will not be able to (immediately) perform an internal transition. We
also define a function live computing whether a stable process is operationally
equivalent to Nil.

A Hierarchy of Equivalences for Probabilistic Processes 271

(PRE)
a;P a−→1P

(INT1)
P⊕pQ>−→pP

(INT2)
P⊕pQ>−→1−pQ

(EXT1)
P>−→qP ′ ∧ stable(Q)

P+pQ>−→qP ′+pQ
(EXT2)

Q>−→qQ′ ∧ stable(P)
P+pQ>−→qP+pQ′

(EXT3)
P>−→q1P ′ ∧ Q>−→q2Q′

P+pQ>−→q1·q2P ′+pQ′

(EXT4)
P

a−→qP ′ ∧ stable(Q)

P+pQ
a−→p·q̂P ′ (EXT5)

Q
a−→qQ′ ∧ stable(P)

P+pQ
a−→(1−p)·q̂Q′

(REC)rec X.P>−→1P{rec X.P/X} (DIV)
Ω>−→1Ω

where q̂ = q
p·live(P)+(1−p)·live(Q) .

Fig. 2. Operational Semantics of PPA

Definition 3. We define the predicate stable(P) over PPA processes as:

– stable(Nil) = stable(a; P) = true
– stable(Ω) = stable(X) = stable(P1 ⊕p P2) = stable(recX.P) = false
– stable(P1 +p P2) = stable(P1) ∧ stable(P2)

We define the function live(P) over PPA processes as:

– live(Nil) = 0
– live(a; P) = 1
– live(P1 +p P2) = max(live(P1), live(P2)) ��

Even though the function live() is not defined for unstable processes, this fact
does not represent a problem since we will apply it only to stable processes. The
set of rules that define the operational semantics is given in Figure 2. There
are two types of transitions. The intuitive meaning of a transition P

a−→p Q
(external transitions) is that if the environment offers all the actions in Act then
the probability with which P performs a and then behaves as Q is equal to p;
the meaning of P >−→p Q (internal transitions) is that the process P evolves
to Q with probability p without interaction with the environment.

For the sake of simplicity, we use multisets of transitions in order to get sets
of transitions. So, if a transition can be derived in several ways, each derivation
generates a different instance of this transition. For example, let us consider the
process P = a + 1

2
a, where trailing occurrences of Nil have been omitted. If we

were not careful, we would have the transition P
a−→ 1

2
Nil only once, while we

should have this transition twice. This problem is similar for the ⊕p operator. So,
if a transition can be derived in several ways, we consider that each derivation
generates a different instance. In particular, when we define the testing semantics
we will consider multisets of computations as well. We will use the delimiters
{| and |} to denote multisets.

As shown in [28], this operational semantics separates between internal and
external transitions. So, a process can perform an external transition only if this
process is stable (that is, it cannot perform internal transitions).

272 M. Núñez and L. Llana

P >−→p P ′ ∧ T⊕ = 0

P | T �−→p P ′ | T

T >−→p T ′ ∧ P⊕ = 0

P | T �−→p P | T ′
P >−→p P ′ ∧ T >−→q T ′

P | T �−→p·q P ′ | T ′

P
a−→p P ′ ∧ T

a−→q T ′

P | T �−→r1 P ′ | T ′
T

ω−→p T ′ ∧ P⊕ = 0

P | T
ω�−→r2 Nil

where r1 =
f

P,T
1 (p)·fP,T

2 (q)
μ(P,T) and r2 =

f
P,T
2 (p)
μ(P,T) .

fP,T
1 (p)= p

�
a {| r | ∃P ′,T ′,p′: P

a−→rP ′∧T
a−→p′ T ′ |}

fP,T
2 (q)= q

�
a {| r | ∃P ′,T ′,p′: T

a−→rT ′∧P
a−→p′ P ′ |}+

�{| r | ∃T ′: T
ω−→rT ′ |}

μ(P, T) =
�

a {| fP,T
1 (p) · fP,T

2 (q) | ∃P ′, T ′ : P
a−→p P ′ ∧ T

a−→q T ′ |}
+
�

{| fP,T
2 (p) | ∃T ′ : T

ω−→p T ′ |}

Fig. 3. Rules for the parallel composition

Lemma 1. Let P be a process. If there exist p and P ′ such that P >−→p P ′

then there do not exist q, a, P ′′ such that P
a−→q P ′′. Equivalently, if there

exist p, a, P ′ such that P
a−→p P ′ then there do not exist q and P ′′ such that

P >−→q P ′′.

2.2 Testing Semantics

As usual, tests are processes where the alphabet Act is extended with a new
action ω indicating successful termination. The operational semantics of tests is
the same as that of processes (considering ω as an ordinary action). The rules
defining the interaction between a process and a test (modelled by their parallel
composition) are given in Figure 3. In these rules we use a normalization fac-
tor μ(P, T) similar to that in [6]. In addition, we also use two prenormalization
factors (fP,T

1 and fP,T
2) in order to distribute the probability associated with

those actions which cannot be performed by both sides of the parallel composi-
tion among the actions which can be performed by both sides. This represents a
small change with respect to the definition given in [28], but it does not change
the induced testing equivalence (even though it changes the probability with
which processes pass tests).

Example 1. Let P = (a;Nil)+ 1
4
(b;Nil) and T = (a;Nil)+ 1

2
ω. If we would not

use prenormalization factors we would have P passes the test T with a probabil-
ity 1

5 =
1
4 ·

1
2

1
4 ·

1
2+ 1

2
while using prenormalization factors we obtain a probability of

1
2 =

1
2

1
2+ 1

2
. This is a more intuitive result because the action b should not subtract

probability from a.

A Hierarchy of Equivalences for Probabilistic Processes 273

Definition 4. Let P be a process and T be a test. A computation is a maximal
sequence of transitions of the form

C = P | T 	−→p1 P1 | T1 	−→p2 · · ·Pn−1 | Tn−1
?	−→pn R

where ? denotes either an empty label or the special action ω. A sequence is said
to be maximal when there do not exist p > 0 and R′ such that R

?	−→p R′.
When the last transition is of the form Pn−1 | Tn−1

ω	−→pn Nil we say that the
computation is successful. We denote by C̃ the set of successful computations
from C. The probability of a successful computation S, denoted by Pr(S), is
inductively defined as

Pr(Nil) = 1 (i.e. T has succeeded)
Pr(P | T

∗	−→p C) = p · Pr(C)

We write P may-pass T if
∑

S∈C̃ Pr(S) > 0. We write P muss-pass T if
∑

S∈C̃ Pr(S) = 1. We write P passp T if
∑

S∈C̃ Pr(S) = p. ��
In the previous definition, by maximal we mean that it cannot be extended, that
is, from the reached point on, the composition of process and test cannot perform
any action. Given a family of tests we can define the corresponding notions of
testing, may, and must equivalences with respect to this family.

Definition 5. Given a family of probabilistic tests T and two processes P and Q
we say:

– P and Q are probabilistic testing equivalent with respect to T , denoted by
P ≈T Q, iff for all T ∈ T we have P passp T ⇐⇒ Q passp T .

– P and Q are probabilistic may-testing equivalent with respect to T , denoted
by P ≈T

may Q, iff for all T ∈ T we have P may-pass T ⇐⇒ Q may-pass T .
– P and Q are probabilistic must-testing equivalent with respect to T , denoted

by P ≈T
must Q, iff for all T ∈ T we have P muss-pass T ⇐⇒ Q muss-pass T .

��
As shown in [28], the set of tests can be reduced by considering tests without
internal choices and without nondeterminism caused by prefixing by the same
action in an external choice.

Lemma 2. Let P be a process, T and T ′ be tests, and a ∈ Act. We have:

1. P passq (T ⊕p T ′) iff P passq1 T ∧ P passq2 T ′ ∧ p · q1 + (1 − p) · q2 = q
2. P passq (a; T) +p (a; T ′) iff P passq a; (T ⊕p T ′)

3 The Reactive Model

In the reactive model the environment can offer only one action each time, that
is, only one button can be pressed at a given time. In a testing framework, this
interpretation gives rise to tests being just traces finishing with the acceptance
action ω.

274 M. Núñez and L. Llana

Definition 6. (Reactive Tests) The set of reactive tests, denoted by R, is
defined by the BNF expression T = ω | a; T . ��

3.1 Alternative Characterization for ≈R

The next example shows that ≈R, that is, the test equivalence induced by con-
sidering R as set of tests, is not a congruence. So, we cannot define a fully
abstract (compositional) denotational semantics for this equivalence.

Example 2. Consider P = (a; c)+ 1
2
b and P ′ = (a; c)+ 1

3
b. Obviously, P ≈R P ′,

but if we consider Q = a; b, we have P + 1
2

Q �≈R P ′ + 1
2

Q. For example, if
T = a; b; ω then we have P + 1

2
Q pass 2

3
T while P ′ + 1

2
Q pass 3

4
T .

However, the rest of the operators are congruent for ≈R.

Proposition 1. Let P and P ′ be processes such that P ≈R P ′. Then,

– For all action a ∈ Act we have a; P ≈R a; P ′.
– For all process Q and probability p ∈ (0, 1) we have P ⊕p Q ≈R P ′⊕p Q and

Q ⊕p P ≈R Q ⊕p P ′.

Let P (X) and P ′(X) be two terms with the free occurrence of the identifier X
(that is, processes but with a free variable). If for all process Q we have P (Q) ≈R

P ′(Q) then recX.P ≈R recX.P ′.

We will define an alternative characterization of this equivalence based on the
operational behavior of processes, considering probabilistic traces. First we ex-
tend −→ to sequences of actions and >−→ to sequences of internal transitions.

Definition 7. Let P and P ′ be processes. We write P >−→∗
p P ′ if this transition

can be derived from the following rules:

P >−→∗
1 P if stable(P)

P >−→∗
p P ′ if ∃q, q′, Q : P >−→q Q >−→∗

q′ P ′ ∧ p = q · q′

We write P
s−→p P ′ if this transition can be derived from the following rules:

P
ε−→p P ′ if P >−→∗

p P ′

P
〈a〉◦s′

−→ p P ′ if ∃P1, P2, p1, p2, p3 : P >−→∗
p1

P1 ∧ P1
a−→p2 P2 ∧ P2

s′−→p3 P ′

where p = p1 · p2
�

P ′ {| q | P1
a−→qP ′ |} · p3 and s ◦ s′ denotes the concatenation of s

and s′. We write P
s−→0 P ′ if P

s−→p P ′ cannot be derived from the previous
rules. ��
Let us note that if P >−→∗

p P ′ then P ′ must be stable. So, >−→∗ is not exactly
the reflexive and transitive closure of >−→. Let us also note that the value p
appearing in P

s−→p P ′ indicates the product of the probabilities associated with

A Hierarchy of Equivalences for Probabilistic Processes 275

the nondeterministic choices involved in the execution of the sequence s. This
nondeterminism can be produced by internal transitions but also by external
transitions labelled with the same action. As in the case of >−→ and −→, we must
consider the possible repetitions of generalized transitions of the form P

s−→p P ′

and P >−→∗
p P ′.

Definition 8. Let P be a process. We define the set of probabilistic traces of P
as ptraces(P) = {(s, p) | p =

∑

P ′ {| q | P s−→q P ′ |} ∧ p > 0}. Given a trace s,
we define the function prob(P, s) as p if (s, p) ∈ ptraces(P) and as 0, otherwise.

��
Lemma 3. Let P be a process. We have prob(P, s) = p iff P passp s̃, where s̃
denotes the reactive test conformed by the actions of the sequence s finishing
with ω.

Theorem 1. Let P and P ′ be processes. We have P ≈R P ′ iff ptraces(P) =
ptraces(P ′).

3.2 The must Reactive Equivalence

The next example shows that we cannot define a fully abstract denotational
semantics using the usual least fixpoint technique. Instead, we will define an
alternative characterization from the probabilistic traces of a process.

Example 3. Let Q = recX.P (X), where P (X) = (a;Nil) ⊕p X . We have that
Q ≈R

must a;Nil. However, Ω is fixpoint of the equation X = P (X) because Ω ≈R
must

(a;Nil)⊕p Ω. Obviously, Ω is the least fixpoint. So, if we define the semantics of
a recursive process with the usual technique we do not obtain the desired results.

Definition 9. Let P be a process. We define the set of must probabilistic traces
of P as must-traces(P) = {s | (s, 1) ∈ ptraces(P)}. ��
That is, given a process, we consider its probabilistic traces which have 1 as
associated probability. The induced equivalence coincides with ≈R

must as it is
stated in the next result.

Theorem 2. Let P, P ′ be processes. We have P ≈R
must P ′ iff must-traces(P) =

must-traces(P ′).

3.3 The may Reactive Equivalence

Following a similar reasoning to that used for the must reactive equivalence, we
can define an alternative characterization for ≈R

may, considering the traces of a
process and forgetting the probabilistic information.

Definition 10. Let P be a process. We define the set of may probabilistic traces
of P as may-traces(P) = {s | (s, p) ∈ ptraces(P)}. ��

276 M. Núñez and L. Llana

Theorem 3. Let P and P ′ be processes. We have P ≈R
may P ′ iff may-traces(P) =

may-traces(P ′).

But in this equivalence we can go further because a fully abstract denotational
semantics for ≈R

may can be given in terms of traces. The semantic domain, denoted
by TRAAct, will be the sets of traces. We denote by R, R1, . . . the elements
of TRAAct and by [[P]]Rmay the semantics of process P .

Definition 11. Let R1, R2 ∈ TRAAct. We write R1 �TRA R2 if for all s ∈ Act∗

we have s ∈ R1 implies s ∈ R2. We write R1 =TRA R2 if for all s ∈ Act∗ we have
s ∈ R1 iff s ∈ R2. ��

Lemma 4. (TRAAct,�TRA) is a cpo.

Nil only has the empty trace. So, [[Nil]]Rmay = {ε}. Ω can execute no trace because
the only transition which Ω can perform is Ω >−→1 Ω. So, this process cannot
be stable. Thus, [[Ω]]Rmay = ∅.

For all a ∈ Act we define the semantic function a; :: TRAAct −→ TRAAct.
The element a; R ∈ TRAAct has the same traces as R but prefixed by the action
a. So, a; R = {(a◦s)|s ∈ R}∪{ε}. We add the empty trace because the syntactic
process associated with this semantic process is stable.

For all p ∈ (0, 1) the functions ⊕p :: TRAAct × TRAAct −→ TRAAct return
the union of the corresponding sets of traces. That is, R1 ⊕p R2 = R1 ∪ R2.

In the case of the external choice we must consider if any of the processes is
equivalent to Ω. For all p ∈ (0, 1) the function +p :: TRAAct × TRAAct −→
TRAAct is defined as

R1 +p R2 =
{ ∅ if R1 =TRA ∅ ∨ R2 =TRA ∅

R1 ∪ R2 otherwise

Proposition 2. For all a ∈ Act the semantic function a; is continuous. For all
p ∈ (0, 1) the semantic functions ⊕p and +p are continuous.

As usual when defining a denotational semantics, the meaning of recursive ex-
pressions recX.P (X) is given by the limit of its finite approximations

P0 = Ω, P1 = P (Ω), . . . , Pn = Pn(Ω)

Since all the operators of the language are continuous, this limit is the least
fixpoint of the equation X = P (X). That is, [[recX. P (X)]]Rmay = �∞

n=0[[Pn]]Rmay.

Lemma 5. Let P be a process. We have s ∈ [[P]]Rmay iff P may-pass s̃, where s̃
denotes the reactive test conformed by the actions of the sequence s finishing
with ω.

Theorem 4. Let P, P ′ be processes. We have [[P]]Rmay =TRA [[P ′]]Rmay iff P ≈R
may P ′.

A Hierarchy of Equivalences for Probabilistic Processes 277

Let us remark that a fully abstract denotational semantics can be easily defined,
from this one, for ≈R (reactive testing equivalence) if we consider the subset
of PPA without external choices. It is enough to modify the semantic functions
adding a probability equal to 1 to the empty trace, taking into account the
probability associated with the traces of R, when defining a; R, and considering
the probability associated with internal choices (see [28]).

As a concluding remark, we have that may and must reactive equivalences do
not imply reactive equivalence (obviously, reactive equivalence implies may and
must equivalences). For example, let us consider P = a ⊕ 1

3
b and Q = a ⊕ 1

2
b,

where trailing occurrences of Nil have been removed. We have P ≈R
may Q and

P ≈R
must Q but P �≈R Q, because, for example, P pass 1

3
a; ω while Q pass 1

2
a; ω.

Finally, let us mention that reactive equivalences are in general too weak.
For example, they cannot distinguish between a +p b and a +q b. Also, these
equivalences identify processes which will be divergent in the next step. For
example, reactive equivalences identify the processes a; Ω and b; Ω (and both
are equivalent to Nil).

4 The Generative Model

In the generative model the environment can offer several actions each time, and
with different probabilities. That is, several buttons can be pressed at the same
time and with different strengths. So, in this model the family of tests, denoted
by G, is the whole set of probabilistic tests. Nevertheless, the set of tests can
be reduced by applying Lemma 2 and by considering that recursive tests do not
increase the distinguishing power of tests.

For the generative testing equivalence (≈G) a fully abstract denotational se-
mantics was defined in [28] and extensively studied. This denotational semantics
is based on the notion of probabilistic acceptance trees which are a natural ex-
tension of acceptance trees [13]. These trees have two kinds of nodes: Internal
and external. The root is an internal node. Arcs outgoing from internal nodes
are labelled with different states (sets of pairs 〈action, probability〉 where the
actions are different, and if the state is not empty then the probabilities sum
up to one), with an associated probability. The sum of these probabilities is less
than or equal to 1, and the difference between one and this sum denotes the
probability of divergence at this point. These arcs go to external nodes. The
arcs outgoing from external nodes are labelled with the actions belonging to the
state labelling the ingoing arc. For any action in that state, there is a (unique)
arc labelled with this action. These arcs go to internal nodes. An example is
shown in Figure 4.

There are two important differences with respect to nonprobabilistic accep-
tance trees (of course, out of probabilities). First, there can be more than
one state with the same actions. For example, a process may have the states:
{(a, 1

3), (b, 2
3)} and {(a, 1

4), (b, 3
4)}. Second, the continuations after the same

278 M. Núñez and L. Llana

action are not joined. So the process (a; P)⊕p ((a; P ′)+q (b; Q)) is not necessarily
equivalent to the process (a; (P ⊕q′ P ′)) ⊕p ((a; (P ⊕q′′ P ′)) +q (b; Q)).

Due to lack of space, we do not present the semantic functions corresponding
to the syntactic operators (they can be found in [28]) and we just repeat the
final result.

Theorem 5. Let P, P ′ be processes. We have P ≈G P ′ iff [[P]]G = [[P ′]]G .

⊕
�����

��������

[13]{(a, 1
4), (b, 3

4)} [13]{(a, 3
4), (b, 1

4)}
[13] {(a, 1)}

+ ++

�
�

�
�

a b �
�

�
�

a ba

⊕⊕ ⊕ ⊕ ⊕

+

⊕

[1] {(d, 1)}

d

+

⊕

[1]{(c, 1)}

c

+

⊕

[1]{(d, 1)}

d

+

[1] ∅

Generative probabilistic acceptance tree of P

• {a}, {a, b}

�� ��
◦∅, {c}, {d} •

�� ��
◦◦

c d

a b

Probabilistic-must
generative
acceptance sets of P

Fig. 4. Semantics of P = (a;d; Ω) ⊕ 1
3

(((a; c; Ω) + 1
4

b; Ω) ⊕ 1
2

((a;Nil) + 3
4

b; d; Ω))

Even though we have increased the set of tests, this fact does not influence
the may interpretation, that is, as in the nonprobabilistic case, it is enough to
consider sequential tests to characterize a may equivalence. Thus, if two processes
are may reactive equivalent, they will be may generative equivalent. This is so
because if one process passes a generative test with a probability greater than
zero then each successful computation generates a sequential test conformed
by the actions taking part in the computation. Because they are may reactive
equivalent, this computation is also successful for the other process, and so it
passes the generative test with a probability greater than 0.

Theorem 6. Let P and P ′ be processes. We have P ≈R
may P ′ iff P ≈G

may P ′.

4.1 The must Generative Equivalence

Using a similar argument to that of Example 3, we cannot define a fully abstract
denotational semantics using the usual least fixpoint techniques for this equiv-
alence. Instead, we will define an alternative characterization, in the same way
that for the nonprobabilistic case, based on acceptance sets [7,15].

Definition 12. Given a stable process P , the set of actions that can be (imme-
diately) performed by P is given by S(P) = {a | ∃P ′, p : P

a−→p P ′}. Given a

A Hierarchy of Equivalences for Probabilistic Processes 279

process P and a sequence of actions s ∈ Act∗, we define the acceptance sets of
P after s as:

A(P, s) =

�
∅ if

�
Q {| p | P

s−→p Q |} < 1

{S(P ′) | ∃P ′, p : P
s−→p P ′ ∧ p > 0} otherwise

��
The previous definition needs some explanation. In order to compute the accep-
tance sets of a process after a sequence s, first we compute the processes to which
the process may evolve by performing the generalized external transition corre-
sponding to s. If the sum of the probabilities associated with these transitions
is less than one, then there exists a computation reaching a divergent process.
In this case, as in the nonprobabilistic case, we consider that from this point on
the process is divergent, and we return ∅ as acceptance set.1 For example, let

us consider P = (a; Ω) + 1
2

(a; b;Nil). We have
∑ {| p | P 〈a〉−→p Q |} = 1

2 because

we only can derive P
〈a〉−→ 1

2
b;Nil (we cannot derive P

〈a〉−→ 1
2

Ω because Ω is
not stable). Thus, A(P, 〈a〉) = ∅ (as in the nonprobabilistic case, this process is
must equivalent to a; Ω). If the sum of these probabilities is equal to 1 then we
compute the acceptance sets as in the nonprobabilistic setting (an example is
shown in Figure 4).

Let us note that, as in the must-reactive case, this alternative characterization
considers unfair divergences caused by unguarded recursive definitions in internal
choices. For example, let P = recX.(a;Nil) ⊕ 1

3
X . We have

P >−→∗
1
3

a;Nil, P >−→∗
2
9

a;Nil, P >−→∗
4
27

a;Nil . . .

and the probabilities associated with these transitions sum up to 1 since we have
1
3

∑∞
i=0(1 − 1

3)i = 1. So, A(P, ε) = {{a}} and then P is equivalent to a;Nil.
Next, we define an equivalence relation which coincides with ≈G

must.

Definition 13. Let A and B be acceptance sets. We write A � B if for every
A ∈ A there exists B ∈ B such that B ⊆ A, and for every B ∈ B there exists
A ∈ A such that A ⊆ B.

Let P and P ′ be processes. We write P =must P ′ if for all s ∈ Act∗ we have
A(P, s) � A(P ′, s). ��
Theorem 7. Let P and P ′ be processes. We have P ≈G

must P ′ iff P =must P ′.

5 The Limited Generative Model

In the limited generative model we consider deterministic2 tests and such that
there is an equitable distribution of probabilities among the offered actions at
1 Let us remark that A(P, s) = ∅ is not the same as A(P, s) = {∅}. The former

corresponds to a divergent process (i.e. equivalent to Ω) while the latter corresponds
to a deadlocked process (i.e. equivalent to Nil).

2 This is not a real constraint because, by Lemma 2, nondeterministic tests do not
increase the distinguishing power.

280 M. Núñez and L. Llana

a given time. This means that several buttons can be simultaneously pressed but
all of them with the same strength.

Definition 14. The set of limited generative tests, denoted by LG, is defined
by the BNF expression T = Nil | ∑n

i=1[
1
n]bi; Ti, where bi ∈ Act ∪ ω are different

actions. ��
The may interpretation in this model coincides with that of the reactive model.
In the case of the must interpretation, we have that ≈LG

must coincides with ≈G
must.

Intuitively, if a process passes a test with probability 1 it does not matter the
possible distribution of probabilities among the offered actions.

Theorem 8. Let P and P ′ be processes. We have P ≈LG
may P ′ iff P ≈G

may P ′. We
have P ≈LG

must P ′ iff P ≈G
must P ′.

In [29], an alternative characterization based on limited probabilistic barbs was
given for the limited generative testing equivalence (≈LG), for a probabilistic
version of LOTOS. These results can be adapted to our framework. First, we
precisely define the new set of tests.

Definition 15. The set of limited probabilistic barbs, denoted by LPB, is defined
by the BNF expression: T = ω | ∑n

i=1[
1
n]bi; Ri, where bi ∈ Act ∪ ω are different

actions, and Ri = Nil for all 1 ≤ i < n while Rn = T .
We write P ≈LGB P ′ if for all T ∈ LGB we have P passp T iff P ′ passp T . ��

That is, a limited probabilistic barb is a limited probabilistic test such that
at most only one of the offered actions at each time has a continuation (the
rest of actions are prefixing the process Nil). This family of tests has the same
distinguishing power as the whole family, as it is stated in the next result.

Theorem 9. Let P and P ′ be processes. We have P ≈LG P ′ iff P ≈LGB P ′.

But this alternative characterization is not suitable to be extended to a deno-
tational semantics. A fully abstract denotational semantics could be given for
this equivalence by modifying the probabilistic acceptance trees model, but the
definitions are too involved since several states must be joined into one. For
example, we have (a + 1

4
b) ⊕ 1

2
(a + 3

4
b) ≈LG a + 1

2
b (Nil’s have been omitted),

while these two processes are not equivalent in the generative model (the test
T = (a; ω) + 1

3
(b;Nil) distinguishes them).

6 Conclusion

In this paper we have proposed a number of testing equivalences on PPA. Since
we use a testing framework, the definitions of these equivalences are very natural
and easy to understand. Testing equivalences are intuitive but they are not
suitable for a practical use since they are based on the behavior of a process with
respect to an infinite set of tests. So, we have given alternative characterizations
and fully abstract denotational semantics. The hierarchy we have settled brings
up both useful information about different probabilistic testing equivalences and
relationships between denotational models.

A Hierarchy of Equivalences for Probabilistic Processes 281

References

1. Baeten, J.C.M., Weijland, W.P.: Process Algebra. In: Cambridge Tracts in Com-
puter Science 18, Cambridge University Press, Cambridge (1990)

2. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra.
North-Holland, Amsterdam (2001)

3. Cazorla, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.J.: Algebraic theory
of probabilistic and non-deterministic processes. Journal of Logic and Algebraic
Programming 55(1–2), 57–103 (2003)

4. Cheung, L., Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic
processes. Journal of the ACM 54(6), Article 29 (2007)

5. Christoff, I.: Testing equivalences and fully abstract models for probabilistic
processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458,
pp. 126–140. Springer, Heidelberg (1990)

6. Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilis-
tic processes. Information and Computation 154(2), 93–148 (1999)

7. de Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical
Computer Science 34, 83–133 (1984)

8. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C., Zhang, C.: Characterising
testing preorders for finite probabilistic processes. In: 22nd Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2007, pp. 313–325. IEEE Computer
Society Press, Los Alamitos (2007)

9. van Glabbeek, R.: The linear time-branching time spectrum II. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

10. van Glabbeek, R.: The linear time-branching time spectrum I. The semantics of
concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of process algebra, ch. 1, North-Holland, Amsterdam (2001)

11. van Glabbeek, R., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Information and Computation 121(1), 59–80
(1995)

12. Gregorio, C., Núñez, M.: Denotational semantics for probabilistic refusal testing.
In: PROBMIV 1998. Electronic Notes in Theoretical Computer Science, vol. 22.
Elsevier, Amsterdam (1999)

13. Hennessy, M.: Acceptance trees. Journal of the ACM 32(4), 896–928 (1985)

14. Hennessy, M.: An algebraic theory of fair asynchronous communicating processes.
Theoretical Computer Science 49, 121–143 (1987)

15. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

17. Huynh, D.T., Tian, L.: On some equivalence relations for probabilistic processes.
Fundamenta Informaticae 17, 211–234 (1992)

18. Jonsson, B., Yi, W.: Compositional testing preorders for probabilistic processes.
In: 10th IEEE Symposium on Logic In Computer Science, pp. 431–443. IEEE
Computer Society Press, Los Alamitos (1995)

19. Jonsson, B., Yi, W.: Testing preorders for probabilistic processes can be charac-
terized by simulations. Theoretical Computer Science 282, 33–51 (2002)

20. Jou, C.-C., Smolka, S.A.: Equivalences, congruences and complete axiomatizations
for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990.
LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990)

282 M. Núñez and L. Llana

21. Kwiatkowska, M., Norman, G.J.: A testing equivalence for reactive probabilistic
processes. In: EXPRESS 1998. Electronic Notes in Theoretical Computer Science,
vol. 16. Elsevier, Amsterdam (1998)

22. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and
Computation 94(1), 1–28 (1991)

23. López, N., Núñez, M.: An overview of probabilistic process algebras and their
equivalences. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle,
M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 89–123. Springer,
Heidelberg (2004)

24. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

25. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

26. Narayan Kumar, K., Cleaveland, R., Smolka, S.A.: Infinite probabilistic and non-
probabilistic testing. In: Arvind, V., Ramanujam, R. (eds.) FST TCS 1998. LNCS,
vol. 1530, pp. 209–220. Springer, Heidelberg (1998)

27. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Fülöp, Z., Gecseg,
F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 648–659. Springer, Heidelberg (1995)

28. Núñez, M.: Algebraic theory of probabilistic processes. Journal of Logic and Alge-
braic Programming 56(1–2), 117–177 (2003)

29. Núñez, M., de Frutos, D.: Testing semantics for probabilistic LOTOS. In: 8th IFIP
WG6.1 Int. Conf. on Formal Description Techniques, FORTE 1995, pp. 365–380.
Chapman & Hall, Boca Raton (1995)

30. Núñez, M., de Frutos, D., Llana, L.: Acceptance trees for probabilistic processes. In:
Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 249–263. Springer,
Heidelberg (1995)

31. Núñez, M., Rupérez, D.: Fair testing through probabilistic testing. In: Formal De-
scription Techniques for Distributed Systems and Communication Protocols (XII),
and Protocol Specification, Testing, and Verification (XIX), pp. 135–150. Kluwer
Academic Publishers, Dordrecht (1999)

32. Rensink, A., Vogler, W.: Fair testing. Information and Computation 205(2), 125–
198 (2007)

33. Segala, R.: Testing probabilistic automata. In: Sassone, V., Montanari, U. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)

34. Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic automata. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 464–477. Springer, Heidelberg (2003)

35. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: 12th
IFIP/WG6.1 Int. Symposium on Protocol Specification, Testing and Verification,
PSTV 1992, pp. 47–61. North-Holland, Amsterdam (1992)

Multiset Bisimulations as a Common Framework

for Ordinary and Probabilistic Bisimulations�

David de Frutos Escrig, Miguel Palomino, and Ignacio Fábregas

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

{defrutos,miguelpt}@sip.ucm.es, fabregas@fdi.ucm.es

Abstract. Our concrete objective is to present both ordinary bisimula-
tions and probabilistic bisimulations in a common coalgebraic framework
based on multiset bisimulations. For that we show how to relate the un-
derlying powerset and probabilistic distributions functors with the multi-
set functor by means of adequate natural transformations. This leads us
to the general topic that we investigate in the paper: a natural transfor-
mation from a functor F to another G transforms F -bisimulations into G-
bisimulations but, in general, it is not possible to express G-bisimulations
in terms of F -bisimulations. However, they can be characterized by con-
sidering Hughes and Jacobs’ notion of simulation, taking as the order on
the functor F the equivalence induced by the epi-mono decomposition of
the natural transformation relating F and G. We also consider the case
of alternating probabilistic systems where non-deterministic and proba-
bilistic choices are mixed, although only in a partial way, and extend all
these results to categorical simulations.

1 Introduction

Bisimulations are the adequate way to capture behavioural indistinguishability
of states of systems. Ordinary bisimulations were introduced [11] to cope with
labelled transition systems and other similar models and have been used to define
the formal observational semantics of many popular languages and formalisms,
such as CCS. Bisimilarity is also the natural way to express equivalence of states
in any system described by means of a coalgebra over an arbitrary functor F .
The general categorical definition can be presented in a more concrete way for
the class of polynomial functors, that are defined by means of a simple signature
of constructors and whose properties, including the definition of relation lifting,
can be studied by means of structural induction. In particular, the powerset
constructor is one of them, and therefore the class of labelled transition systems
can be studied as a simple and illustrative example of the categorical framework.

The simplicity and richness of the theory of bisimulations made it interest-
ing to define several extensions in which the structure on the set of labels of

� Research supported by the Spanish projects DESAFIOS TIN2006-15660-C02-01,
WEST TIN2006-15578-C02-01 and PROMESAS S-0505/TIC/0407.

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 283–298, 2008.
c© IFIP International Federation for Information Processing 2008

284 D. de Frutos Escrig, M. Palomino, and I. Fábregas

the considered systems was taken into account, instead of the plain approach
made by simple (strong) bisimulations. For instance, weak bisimulation takes
into account the existence of non-observable actions, while timed and proba-
bilistic bisimulation introduce timed or probabilistic features. In particular, the
original definition of probabilistic bisimulation for probabilistic transition sys-
tems had to capture the fact that one should be able to accumulate the prob-
abilities of several transitions arriving at equivalent (bisimilar) states in order
to simulate some transition or, conversely, that one should be able to distribute
the probability of a transition among several others connecting the same states.

The classical definition by Larsen and Skou [9] certainly generalizes the defi-
nition of ordinary bisimulation in a nice way, although at the cost of leaving out
the categorical scenario discussed above. However, Vink and Rutten proved in
[17] that the definition can be reformulated in a coalgebraic way. For that, they
considered a functor D defining probabilistic distributions, that appears as the
primitive construction in the definition of the corresponding probabilistic sys-
tems. Even though this is quite an elegant characterization, it forces us to leave
the realm of (probabilistic) transition systems, moving into the more abstract
one of probabilistic distributions.

We would like to directly manage probabilistic transition systems in order to
compare the results about ordinary transition systems and those on probabilistic
systems as much as possible. We have found that multi-transition systems, where
we can have several identical transitions and the number of times they appear
matters, constitute the adequate framework to establish the relation between
those two kinds of transition systems. As a matter of fact, we will see that the
use of multisets instead of just plain sets leads us to a natural presentation
of relation lifting for that construction; besides, we can add the corresponding
functor to the collection defining polynomial functors, thus obtaining an enlarged
class with nice properties similar to those in the original class.

Although a general theory combining non-deterministic and probabilistic
choices seems quite hard to develop, since it is difficult to combine both func-
tors in a smooth way [16], we will present the case of alternating1 probabilistic
systems. In those systems, the classical definitions of ordinary and probabilis-
tic bisimulation can be combined to obtain the natural definition of alternating
probabilistic bisimulation, that perfectly fits into our framework based on cate-
gorical simulations on our multi-transition systems.

The functors defining ordinary transition systems and probabilistic systems can
be obtained by applying an adequate natural transformation to a functor defining
multiset transition systems. In both cases bisimulations are preserved in both di-
rections when applying those transformations. This leads us to the general theory
that we investigate in this paper: as is well-known, any natural transformation be-
tween two functors F and G transforms F -bisimulations into G-bisimulations; in
addition, and more interesting, whenever the natural transformation relating F

1 Although we call alternating to our systems, we do not need the strict alternation
between non-deterministic and probabilistic states as appears in [4], but only that
these two kind of choices do not appear mixed after the same state.

Multiset Bisimulations as a Common Framework 285

and G is an epi, we can reflect G-bisimulations and express them at the level of the
functor F , though this cannot be done in general just by means of F -bisimulations.
However, they can be characterized by using Hughes and Jacobs’ notion of simula-
tion [6], when we consider as the order on the functor F the equivalence induced by
the epi-mono decomposition of the natural transformation relating F and G. Once
categorical simulations have come into play, it is nice to find that we can extend all
our results to simulations based on any order. These extensions can be considered
to be the main results in the paper, since all our previous results on bisimulations
could be presented as particular cases of them, using the fact that bisimulations are
a particular case of categorical simulations.

Although in a different direction, namely, that of exploring the relation be-
tween non-deterministic and probabilistic choices instead of the different no-
tions of distributed bisimulations, in this paper we continue the work initiated
in FORTE 2007 [3]. The goal is the exploration of ways in which the general the-
ory of categorical bisimulations and simulations can be applied to obtain almost
for free interesting results on concrete cases that, without the support of that
general theory, would need different non-trivial proofs. Therefore, our work has a
mixed flavour: on the one hand we develop new abstract results that extend the
general theory; on the other hand we apply these results to simple but important
concrete concepts, that therefore are proved to be particular cases of the rich
general theory. These are only concrete examples that we hope to extend and
generalize in the near future.

2 Basic Definitions

We review in this section standard material on coalgebras and bisimulations, as
can be found for example in [8,12,7]. Besides, we introduce some notations on
multisets and the corresponding functor M, as well as for the functor D defining
discrete probabilistic distributions.

An arbitrary endofunctor F : Sets −→ Sets can be lifted to a functor in the
category Rel of relations Rel(F) : Rel −→ Rel. In set-theoretic terms, for a
relation R ⊆ X1 × X2,

Rel(F)(R) = {〈u, v〉 ∈ FX1 × FX2 | ∃w ∈ F (R). F (r1)(w) = u, F (r2)(w) = v} .

It is well-known that for polynomial functors F , Rel(F) can be equivalently
defined by induction on the structure of F . Since we will be making extensive
use of the powerset functor, we next present how the definition particularizes to
it:

Rel(PG)(R) = {(U, V) | ∀u ∈ U. ∃v ∈ V. Rel(G)(R)(u, v) ∧
∀v ∈ V. ∃u ∈ U. Rel(G)(R)(u, v)} .

Multisets will be represented by considering their characteristic function χM :
X −→ IN; similarly, discrete probabilistic distributions are represented by dis-
crete measures pD : X −→ [0, 1], with

∑

x∈X pD(x) = 1.

286 D. de Frutos Escrig, M. Palomino, and I. Fábregas

We will use along the paper several different ways to enumerate the “elements”
of a multiset. We define the support of a multiset M as the set of elements
that appear in it: {M}X = {x ∈ X | χM (x) > 0}. We are only interested in
multisets having a finite support, so that in the following we will assume that
every multiset is finite. Given a finite subset Y of X and an enumeration of
its elements {y1, . . . ym}, for each tuple of natural weights 〈n1, . . . , nm〉 we will
denote by

∑

yi∈Y ni ·yi the multiset M given by χM (yi) = ni and χM (y) = 0 for
y /∈ Y . By abuse of notation we will sometimes consider sets as a particular case
of multisets, by taking for each finite set Y = {y1, . . . yn} the canonical associated
multiset

∑

yi∈Y 1 · yi. Finally, we also enumerate the elements of a multiset by
means of a generating function: given a finite set I and x : I −→ X , we denote
by {xi | i ∈ I} the multiset MI given by χMI (y) = |{i ∈ I | xi = y}|. Note
that in this case sets are just the multisets generated by an injective generating
function.

We will denote by M(X) the set of multisets on X , while D(X) represents
the set of probabilistic distributions on X . Both constructions can be naturally
extended to functions, thus getting the desired functors: for f : X −→ Y we
define M(f) : M(X) −→ M(Y) by M(f)(χ)(y) =

∑

f(x)=y χ(x), and D(f) :
D(X) −→ D(Y) by D(f)(p)(y) =

∑

f(x)=y p(x).
Although the multiset and the probabilistic distributions functors are not

polynomial, this class can be enlarged by incorporating them since their liftings
can be defined with the following equations:

Rel(MG)(R) = {(M, N) | ∃f : I −→ GX, g : I −→ GY, generating functions of
M and N s.t. ∀i ∈ I. (f(i), g(i)) ∈ Rel(G)(R)} ;

Rel(DG)(R) = {(dx, dy) ∈ D(G(X)) × D(G(Y)) | ∀U ⊆ G(X). ∀V ⊆ G(Y).
Π−1

1 (U) = Π−1
2 (V) ⇒

∑

x∈U dx(x) =
∑

y∈V dy(y)} ,

where Π1 and Π2 are the projections of Rel(G)(R) into GX and GY , respectively.
F -coalgebras are just functions α : X −→ FX . For instance, plain labelled

transition systems arise as coalgebras for the functor P(A × X). We will also
consider multitransition systems, which correspond to the functor M(A × X),
and probabilistic transition systems, corresponding to M1([0, 1]×A×X), where
we only allow multisets in which the sum of its associated probabilities is 1.

Then, the lifting of the functor M1([0, 1] × ·) is defined as a particular case
of that of M by:

Rel(M1([0, 1] × ·)G)(R) =
{(M, N) ∈ M1([0, 1] × GX) × M1([0, 1] × GY) |
∃f : I → [0, 1] × GX, g : I → [0, 1] × GY, generating functions of M and
N s.t. ∀i ∈ I. Π1(f(i)) = Π1(g(i)) ∧ (Π2(f(i)), Π2(g(i))) ∈ Rel(G)(R)} .

A bisimulation for coalgebras c : X −→ FX and d : Y −→ FY is a relation
R ⊆ X × Y which is “closed under c and d”: if (x, y) ∈ R then (c(x), d(y)) ∈
Rel(F)(R). We shall use the term F -bisimulation sometimes to emphasize the
functor we are working with.

Multiset Bisimulations as a Common Framework 287

Bisimulations can also be characterized by means of spans, using the general
categorical definition by Aczel and Mendler [1]:

X

c

��

R

e

��

r1�� r2 �� Y

d
��

FX FR
Fr1�� Fr2 �� FY

R is a bisimulation iff it is the carrier of some coalgebra e making the above
diagram commute, where the ri are the projections of R into X and Y .

We will also need the general concept of simulation introduced by Hughes and
Jacobs [6] using orders on functors. Let F : Sets −→ Sets be a functor. An order
on F is defined by means of a functorial collection of preorders �X⊆ FX × FX
that must be preserved by renaming: for every f : X −→ Y , if u �X u′ then
Ff(u) �Y Ff(u′).

Given an order � on F , a �-simulation for coalgebras c : X −→ FX and
d : Y −→ FY is a relation R ⊆ X × Y such that

if (x, y) ∈ R then (c(x), d(y)) ∈ Rel(F)�(R) ,

where Rel(F)�(R) is � ◦ Rel(F)(R) ◦ �, which can be expanded to

Rel(F)�(R) = {(u, v) | ∃w ∈ F (R). u � Fr1(w) ∧ Fr2(w) � v} .

One of the cases under this general notion of coalgebraic simulation is that of
ordinary simulation. Also, equivalence (functorial) relations, represented by ≡,
are a particular class of orders on F , thus generating the corresponding class of ≡-
simulations. As is the case for ordinary bisimulations, ≡-simulations themselves
need not be equivalence relations, but once we impose to the equivalence ≡ the
technical condition of being stable [6] then the induced notion of ≡-similarity
becomes an equivalence itself.

Proposition 1. For any stable functorial equivalence relation ≡X⊆ FX ×FX,
the induced notion of ≡a-similarity relating elements of X for a coalgebra a :
X −→ FX is an equivalence relation. In particular, for the plain equality relation
=X⊆ FX × FX, =X-similarity coincides with plain F -bisimulation.

3 Natural Transformations and Bisimulations

Natural transformations are the natural way to relate two functors. Given F and
G, two functors on Sets, a natural transformation α : F ⇒ G is defined as a
family of functions αX : FX → GX such that, for all f : X −→ Y , Gf ◦ αX =
αY ◦Ff . We are particularly interested in the natural transformations relating M
and P , and those between the functors defining probabilistic transition systems
and probabilistic distributions. For the sake of conciseness we will often omit the
action component A when working with these functors; this does not affect the
validity of the definitions nor the results.

288 D. de Frutos Escrig, M. Palomino, and I. Fábregas

Proposition 2. The support of multisets, {·}X : M(X) −→ P(X), gives rise
to a natural transformation {·} : M ⇒ P.

Similarly, DMX : M1([0, 1] × X) −→ D(X) given by

DM (
∑

ni · (pi, xi))(x) =
∑

xi=x

nipi

induces a natural transformation DM : M1([0, 1] × ·) ⇒ D(·).

Proof. Let f : X −→ Y . We have (Pf ◦{·}X)(
∑

ni ·xi) = Pf({xi}) = {f(xi)} =
{·}Y (

∑

ni · f(xi)) = ({·}Y ◦Mf)(
∑

ni · xi), which proves that {·} is a natural
transformation.

In the case of DM : (Df ◦ DMX)(
∑

ni · (pi, xi)) = Df(
∑

nipi · xi), which is
∑

f(xi)=y nipi · y = DMY (
∑

ni · (pi, f(xi))) = (DMY ◦ M1f)(
∑

ni · (pi, xi)); this
proves that DM is a natural transformation. ��

Probabilistic transition systems were defined in [9] as P = (Pr, Act,Can, μ),
where Pr is a set of processes, Act the set of actions, Can : Pr −→ P(Act)
indicates the initial offer of each process, and μp,a ∈ D(Pr) for all p ∈ Pr,
a ∈ Can(p). Under this definition we cannot talk about “different probabilistic
transitions” reaching the same process, that is, whenever we have a transition
p

a−→μ p′ it “accumulates” all possible ways to go from p to p′ executing a.
In our opinion this is not a purely operational way to present probabilistic

systems. For instance, if we are defining the operational semantics of a process
such as p = 1

2a + 1
2a, then we would intuitively have two different transitions

reaching the same final state stop, but if we were using Larsen and Skou’s original
definition, we should mix them both into a single p

a−→1 stop. Certainly, we could
keep these two transitions separated under that definition if, for some reason,
we decided to introduce in the set Pr two different states stop1 and stop2, thus
obtaining p

a−→1/2 stop1 and p
a−→1/2 stop2. But then we observe that whether

our model captures or not the existence of two different transitions depends on
the way we define our set of processes Pr.

In order to get a more natural operational representation of probabilistic
systems we define them2 as M1([0, 1]×A×·)-coalgebras. Once we use “ordinary”
transitions labelled by pairs (q, a) to represent the probabilistic transitions we
have no problem to distinguish two “different” transitions p

a−→q′ p′, p
a−→q′′ p′′,

if p′ �= p′′. However, in such a case it would not be adequate to treat the case
p′ = p′′ in a different way. This is why we use M1 instead of P1 to define our
probabilistic multi-transition systems (abbreviated as pmts).

We can easily translate the classical definition of probabilistic bisimulation
between probabilistic transition systems in [9], to our own pmts’s as follows.

2 Although Larsen and Skou defined their systems following the reactive aproach [4],
and therefore the sum of their probabilities is 1 for each action a, we prefer to
follow in this paper the generative aproach, so that the total addition of all the
probabilities is 1. This is done to simplify the notation, since all the results in this
paper are equally valid for the reactive model.

Multiset Bisimulations as a Common Framework 289

Definition 1. A probabilistic bisimulation on a coalgebra p : X → M1([0, 1] ×
A × X) is an equivalence relation ≡p on X such that, whenever x1 ≡p x2,
taking p(xi) =

∑

tjj · (pi
j , a

i
j , x

i
j), we also have

∑

{t1j · p1
j | a1

j = a, x1
j ∈ E} =

∑

{t2j · p2
j | a2

j = a, x2
j ∈ E}, for all a ∈ A and every equivalence class E in

X/≡p.

In [17] it is proved that probabilistic bisimilarity defined by probabilistic bisim-
ulations coincides with categorical D-bisimilarity. By applying the functor DM

we can transform our pmts’s into their presentation as Larsen and Skou’s pts’s.
Then it is trivial to check that the corresponding notions of probabilistc bisimu-
lation coincide, and therefore they also coincide with categorical D-bisimilarity.

However, that is clearly not the case for plain categorical M1([0, 1] × A × ·)-
bisimulations. This is so because when we consider the functor M1([0, 1]×A×·),
probabilistic transitions are considered as plain transitions labelled with pairs
over [0, 1] × A, whose first component has no special meaning. As a result, we
have, for instance, no bisimulation relating x and y if we consider X = {x},
Y = {y}, pa : X → M1([0, 1] × A × X) with pa(x) = 1 · (1, a, x) and pb : Y →
M1([0, 1] × A × Y) with pb(y) = 2 · (1

2 , a, y).
All these facts prove that our probabilistic multi-transition systems are too

concrete a representation of probabilistic distributions, which is formally cap-
tured by the fact that the components of the natural transformation DM are not
injective. As a consequence, by using them we do not have a pure coalgebraic
characterization of probabilistic bisimulations. By contrast, the original defini-
tion of pts’s stands apart from the operational way, mixing different transitions
into a single distribution. Besides it has to consider the quotient set X/≡p when
defining probabilistic bisimulations. Our goal will be to obtain a characterization
of the notion of probabilistic bisimilarity in terms of our pmts’s, and this will
be done using the notion of categorical simulation, as we will see in Section 4.
Next, we present a collection of general interesting results. First we will see that
bisimulations are preserved by natural transformations.

Theorem 1 ([12]). If R ⊆ X ×Y is a bisimulation relating a : X −→ FX and
b : Y −→ FY , then R is also a bisimulation relating a′ : X −→ GX, given by
a′ = αX ◦ a, and b′ : Y −→ GY , given by b′ = αY ◦ b.

Corollary 1. For a and a′ = αX ◦ a, bisimulation equivalence in a is included
in bisimulation equivalence in a′, that is, x1 ≡a x2 implies x1 ≡a′ x2.

A general converse result cannot be expected because in general there is no
canonical way to transform G into F . Since the main objective in this paper is to
relate M-bisimulations with P and D-bisimulations, we searched for particular
properties of the natural transformations relating these functors which could
help us to get the desired general results covering in particular these two cases.
This is how we have obtained the concept of quotient functors that we develop
in the following.

290 D. de Frutos Escrig, M. Palomino, and I. Fábregas

Definition 2. Let F be an endofunctor on Sets and ≡ a functorial equivalence
relation ≡X⊆ FX × FX. We define the quotient functor F/≡ by (F/≡)(X) =
FX/≡X, and for any f : X −→ Y , u ∈ FX, and u its equivalence class,
(F/≡)(f)(u) = F (f)(u), that is well defined since ≡ is functorial.

Definition 3. 1. We say that a functor G is the quotient of F under a func-
torial equivalence relation ≡ whenever F/≡ and G are isomorphic, which
means that there is a pair of natural transformations α : F/≡ ⇒ G and
β : G ⇒ F/≡ such that β ◦ α = IdF/≡ and α ◦ β = IdG.

2. Given a natural transformation α : F ⇒ G, we write ≡α for the family of
equivalence relations ≡α

X ⊆ FX × FX defined by the kernel of α: u1 ≡α
X

u2 ⇐⇒ αX(u1) = αX(u2) .

Proposition 3. For every natural transformation α : F ⇒ G, ≡α is functorial.

Proof. We need to show that, for any f : X −→ Y , whenever u1 ≡α
X u2, that

is, αX(u1) = αX(u2), we also have Ff(u1) ≡α
Y Ff(u2), that is αY (F (f)(u1)) =

αY (F (f)(u2)); this follows because αY ◦ F (f) = G(f) ◦ αX . ��

If every component αX of a natural transformation is surjective, α is said to be
epi.

Proposition 4. Whenever α is epi, G is the quotient of F under ≡α, just con-
sidering the inverse natural transformation α−1 : G ⇒ F/≡ given by α−1

X :
G(X) −→ (F/≡α)(X) with α−1

X (v) = u where αX(u) = v.

Corollary 2. P is the quotient of M under the kernel of the natural transfor-
mation {·} : M ⇒ P.

Corollary 3. D is the quotient of M1([0, 1] × ·) under the kernel of the natural
transformation DM : M1([0, 1] × ·) ⇒ D.

4 ≡α-simulations Through Quotients of Bisimulations

Let us start by studying the relationships between coalgebras corresponding to
functors related by an epi natural transformation.

Definition 4. Let α : F ⇒ G be a natural transformation and a : X −→ FX
an F -coalgebra. We define the α-image of a as the coalgebra aα : X −→ GX
given by aα = αX ◦ a.

Definition 5. Given a natural transformation α : F ⇒ G and a G-coalgebra
b : X −→ GX, we say that a : X −→ FX is a concrete F -representation of b iff
b = αX ◦ a.

The following result follows immediately from the previous definitions.

Proposition 5. If α is epi then every G-coalgebra has an F -representation.

Multiset Bisimulations as a Common Framework 291

Next we relate G-bisimulations with ≡α-simulations:

Theorem 2. Let α : F ⇒ G be an epi natural transformation and b1 : X1 −→
GX1, b2 : X2 −→ GX2 two G-coalgebras, with concrete F -representations a1 :
X1 −→ FX1 and a2 : X2 −→ FX2. Then, the G-bisimulations relating b1 and
b2 are precisely the ≡α-simulations relating a1 and a2.

Proof. Let us show3 that, for every relation R ⊆ X1 × X2,

Rel(F)≡α(R) = {(u, v) ∈ FX1 × FX2 | (αX1 (u), αX2(v)) ∈ Rel(G)(R)} .

We have, unfolding the definition of Rel(F)≡α(R) and using the fact that α is a
natural transformation:

Rel(F)≡α(R)={(u, v) ∈ FX1 × FX2 | ∃w ∈ FR. u ≡α Fr1(w) ∧ Fr2(w) ≡α v}
={(u, v) ∈ FX1 × FX2 | ∃w ∈ FR. αX1(u) = αX1(Fr1(w)) ∧

αX2(v) = αX2(Fr2(w))}
={(u, v) ∈ FX1 × FX2 | ∃w ∈ FR. αX1(u) = Gr1(αR(w)) ∧

αX2(v) = Gr2(αR(w))} .

On the other hand,

Rel(G)(R) = {(x, y) ∈ GX1 × GX2 | ∃z ∈ GR. Gr1(z) = x ∧ Gr2(z) = y} .

Now, if (u, v) ∈ Rel(F)≡α(R), by taking αR(w) as the value of z ∈ GR we
have that (αX1(u), αX2(v)) ∈ Rel(G)(R). Conversely, if (αX1(u), αX2(v)) ∈
Rel(G)(R) is witnessed by z, let w ∈ FR be such that αR(w) = z, which must
exists because α is epi; it follows that (u, v) ∈ Rel(F)≡α(R).

Then, (b1(x), b2(y)) ∈ Rel(G)(R) if and only if (a1(x), a2(x)) ∈ Rel(F)≡α(R),
from where it follows that R is a G-bisimulation if and only if it is a ≡α-
simulation. ��

Corollary 4. (i) Bisimulations between labelled transition systems are ≡{·}-
simulations between multi-transition systems. (ii) Bisimulations between prob-
abilistic systems are just ≡DM -simulations between (an appropriate class of)
multi-transition systems.

Example 1. Let us illustrate this result by means of some simple examples using
the natural transformation {·} : M → P .

1. If we consider the ordinary transition systems sX : {x, x′} −→ P({x, x′}),
with sX(x) = {x′}, sX(x′) = ∅, and sY : {y, y′

1, y
′
2} −→ P({y, y′

1, y
′
2})

with sY (y) = {y′
1, y

′
2}, sY (y′

1) = ∅, and sY (y′
2) = ∅, we have a simple P-

bisimulation relating the initial states x and y, given by R = {(x, y), (x′, y′
1),

(x′, y′
2)}.

3 It is not difficult to present this proof as a commutative diagram. Then one has to
check that all the “small squares” in the diagram are indeed commutative, in order
to be able to conclude commutativity of the full diagram. This is what we have
carefully done in our proof above.

292 D. de Frutos Escrig, M. Palomino, and I. Fábregas

Denoting by s1
X and s1

Y the canonical M-representations of sX and sY ,
obtained by the embedding of sets into multisets, it is obvious that there is
no M-bisimulation relating x and y. But if we consider s2

X(x) = {2 · x′},
s2

X(x′) = ∅, we have now an M-bisimulation between the multi-transition
systems s2

X and s1
Y relating x and y. And, by Theorem 2, we have that s1

X

is also ≡{·}-simulated by s1
Y , since {s1

X}M = {s2
X}M = sX and sX and sY

are P-bisimilar. Obviously, the same happens for any {·}-representation of
sX , sk

X with sk
X = {k · x′} and sk

X(x′) = ∅.
2. In the example above we got the ≡{·}-simulation by proving that there are

M-representations of the considered coalgebras for which the given relation
is also an M-bisimulation. However, this is not necessary as the following
shows. Let us consider tX : {x} −→ P({x}) with tX(x) = {x} and Y =
{β | β ∈ N

∗, βi ≤ i} with tY (β) = {β ◦ 〈j〉 | β ◦ 〈j〉 ∈ Y }. It is clear that
R = {(x, β) | β ∈ Y } is the (only) P-bisimulation relating x and ε, the initial
states of tX and tY . However, in this case there exists no M-bisimulation
relating two M-representations of tX and tY , because |tY (β)| = |β| + 1
and therefore we would need a representation tkX with tkX(x) = {k · x} such
that k ≥ l for all l ∈ N, which is not possible because the definition of
multiset does not allow the infinite repetition of any of its members. Instead,
Theorem 2 shows that any two M-representations of tX and tY are ≡{·}-
similar.

The reason why we had an M-bisimulation relating the appropriate M-
representations of the compared P-coalgebras in our first example was because
we were under the hypothesis of the following proposition.

Proposition 6. Let α : F ⇒ G be an epi natural transformation. Whenever a
G-bisimulation R relating b1 : X −→ GX and b2 : Y −→ GY is near injective,
which means that |{b2(y) | (x, y) ∈ R}| ≤ 1 for all x ∈ X and |{b1(x) | (x, y) ∈
R}| ≤ 1 for all y ∈ Y , there exist some F -representations of b1 and b2, a1 :
X −→ FX and a2 : Y −→ FY , respectively, such that R is also a bisimulation
relating a1 and a2.

Proof. By Theorem 2, R is also a ≡α-simulation for any pair of F -representations
of b1 and b2; let a1, a2 be any such pair. Then, for all (x, y) ∈ R we have
(a1(x), a2(y)) ∈ (≡α ◦Rel(F) ◦ ≡α)(R), and hence there exist a′

1(x, y) ∈ FX ,
a′
2(x, y) ∈ FY such that

a1(x) ≡α a′
1(x, y), a′

2(x, y) ≡α a2(y) and (a′
1(x, y), a′

2(x, y)) ∈ Rel(F)(R) .

We now define an equivalence relation ≡ on R by considering the transitive
closure of:

– (x, y1) ≡ (x, y2) for all (x, y1), (x, y2) ∈ R.
– (x1, y) ≡ (x2, y) for all (x1, y), (x2, y) ∈ R.

Since R is near injective, it follows that if (x1, y1) ≡ (x2, y2) then b1(x1) =
b1(x2) and b2(y1) = b2(y2), and thus a′

1(x1, y1) ≡α a′
1(x2, y2) and a′

2(x1, y1) ≡α

a′
2(x2, y2).

Multiset Bisimulations as a Common Framework 293

We consider R/≡ and for each equivalence class of the quotient set we choose
a canonical representative (x, y). Obviously we have that (x, y1), (x, y2) ∈ R
implies (x, y1) = (x, y2) and that (x1, y), (x2, y) ∈ R implies (x1, y) = (x2, y).

Let us now define two coalgebras a′
1 : X −→ FX and a′

2 : Y −→ FY as
follows:

– If there exists some y such that (x, y) ∈ R we take a′
1(x) = a′

1(x, y) for any
such y; otherwise, we define a′

1(x) as a1(x).
– If there exists some x such that (x, y) ∈ R we take a′

2(y) = a′
2(x, y) for any

such x; otherwise, a′
2(y) is a2(y).

With the above definitions,

a′
1(x) = a′

1(x, y) ≡α a′
1(x, y) ≡α a1(x) ,

and similarly a′
2(y) ≡α a2(y), so that a′

1, a′
2 are F -representations of b1 and b2.

Besides,
if (x, y) ∈ R then (a′

1(x), a′
2(y)) ∈ Rel(F)(R)

and R is an F -bisimulation relating them. ��

Let us conclude this illustration of our main theorem by explaining why we
needed an infinite coalgebra to get a counterexample of the result between bisim-
ulations relating G-coalgebras and those relating their F -representations. As a
matter of fact, in the case of the multiset and the powerset functors we could
prove the result in Proposition 6 not only for near injective bisimulations but for
any relation where no element is related with infinitely many others. However,
we will not prove this fact here since it does not seem to generalize to arbitrary
natural transformations relating two functors.

Example 2. Next we present an example for the natural transformation DM :
M1([0, 1] × X) ⇒ D(X). If we consider the two probabilistic transition sys-
tems sX and sY given by their multisets of probabilistic transitions: sX =
{(1

2 , x, x′
1), (

1
2 , x, x′

2)}, sY = {(1
3 , y, y′

1), (
1
3 , y, y′

2), (
1
3 , y, y′

3)}, where each triple
(p, x, x′) represents the probabilistic transition x

p→ x′, we have the following
D-bisimulation relating the initial states x and y: R = {(x, y)} ∪ {(x′

i, y
′
j) |

i = 1, 2, j = 1, 2, 3}. It is easy to see that for the two M1-representations
s3

X = {3 ·(1
6 , x, x′

1), 3 ·(1
6 , x, x′

2)} and s2
Y = {2 ·(1

6 , y, y′
1), 2 ·(1

6 , y, y′
2), 2 ·(1

6 , y, y′
3)},

R is also an M1-bisimulation between them, using the facts that (x′
1, y

′
1) ∈ R,

(x′
2, y

′
2) ∈ R and (x′

1, y
′
3) ∈ R, (x′

2, y
′
3) ∈ R. From this result we immediately

conclude that any two M1-representations of sX and sY are ≡DM-similar.

5 Natural Transformations and Simulations

In this section we will see that all our results about bisimulations in the pre-
vious sections can be extended to categorical simulations defined by means of
an order on the corresponding functors. Therefore, our first result concerns the
preservation of functorial orders by means of natural transformations.

294 D. de Frutos Escrig, M. Palomino, and I. Fábregas

Definition 6. Given a natural transformation α : F ⇒ G and �G an order on
G, we define the induced order �α−

G on F by: x �α−
G x′ ⇐⇒ αX(x) �G αX(x′).

It is immediate that �α−
G is indeed an order on F ; given f : X −→ Y and

x, x′ ∈ X :
x �α−

G x′ ⇐⇒ αX(x) �G αX(x′)
=⇒ Gf(αX(x)) �G Gf(αX(x′))
⇐⇒ αY (Ff(x)) �G αY (Ff(x′))
⇐⇒ Ff(x) �α−

G Ff(x′) ,

where the implication follows because �G is functorial.

Example 3. Taking {·} : M ⇒ P and �P = ⊆, then the induced order �{·}−
P

on M is defined as u �{·}−
P v iff {u} ⊆ {v}: that is, it coincides with multiset

inclusion.

Another example corresponds to the equality relation on G.

Proposition 7. The induced order =α−
G on F is just the relation ≡α.

Proof. The definition of ≡α is just the particular case of our definition of �α−
G

for the equality relation on G as an order on it. ��

Orders on F can be also translated to G through a natural transformation α :
F ⇒ G.

Definition 7. Given a natural transformation α : F ⇒ G and �F an order on
F , we define the projected order �α

F on G as the transitive closure of the relation
x �α

F x′, which holds if:

there exist x1, x′
1 such that x = αX(x1), x′ = αX(x′

1) and x1 �F x′
1, or x = x′.

We need to add the last condition in the definition above in order to cover the
case in which α is not an epi. Obviously, we can remove it whenever α is indeed
an epi, and in the following we will see that we only need that condition in
order to guarantee reflexivity of �α

F in the whole of GX , because all of our
results concerning this order will be based on its restriction to the images of the
components of the natural transformation αX .

Again, it is easy to prove that �α
F is indeed an order on G. By defini-

tion, it is reflexive and transitive. It is also functorial: given f : X −→ Y
and x �α

F x′, with x = αX(x1) and x′ = α(x′
1) such that x1 �F x′

1, we
need to show Gf(x) �α

F Gf(x′). Since Gf(x) = Gf(α(x1)) = α(Ff(x1)),
Gf(x′) = Gf(α(x′

1)) = α(Ff(x′
1)), and Ff(x1) �F Ff(x′

1), the result follows
by the definition of �α

F .

Theorem 3 (Simulations are preserved by natural transformations). If
R ⊆ X × Y is a �F -simulation relating a : X −→ FX and b : Y −→ FY , and
α : F ⇒ G is a natural transformation, then R is also a �α

F -simulation relating
a′ = αX ◦ a and b′ = αY ◦ b.

Multiset Bisimulations as a Common Framework 295

Proof. Let (x, y) ∈ R: we need to show that (a′(x), b′(y)) ∈ Rel(G)�α
F
(R). Since

R is a �F -simulation, (a(x), b(x)) ∈ Rel(F)�F (R). This means that there exists
w ∈ FR such that a(x) �F Fr1(w) and Fr2(w) �F b(x), and hence that
there exists z = αR(w) ∈ GR such that a′(x) �α

F αX(Fr1(w)) = Gr1(z) and
Gr2(z) = αY (Fr2(w)) �α

F b′(x); therefore, (a′(x), b′(x)) ∈ Rel(G)�α
F
(R). ��

As said before, bisimulations are just the particular case of simulations corre-
sponding to the equality relation. Obviously we have that =α

F is =G and therefore
Theorem 1 about the preservation of bisimulations by natural transformations
is a particular case of our new preservation theorem covering arbitrary �F -
simulations.

Analogously, we now generalized Theorem 2 to arbitrary �G-simulations.

Theorem 4. Let α : F ⇒ G be an epi natural transformation, �G an order on
G and b1 : X1 −→ GX1, b2 : X2 −→ GX2 two coalgebras, with a1 : X1 −→
FX1, a2 : X2 −→ FX2 arbitrary concrete F -representations. Then, the �G-
simulations relating b1 and b2 are precisely the �α−

G -simulations relating a1 and
a2.

Proof. Just like Theorem 2, the result follows from showing that, for every rela-
tion R ⊆ X1 × X2,

Rel(F)�α−
G

(R) = {(u, v) ∈ FX1 × FX2 | (αX1 (u), αX2(v)) ∈ Rel(G)�α
G
(R)} .

Unfolding the definition of Rel(F)�α−
G

(R) and using the fact that α is a natural
transformation:

Rel(F)�α−
G

(R) = {(u, v) ∈ FX1 × FX2 | ∃w ∈ FR. u �α−
G Fr1(w) ∧

Fr2(w) �α−
G v}

= {(u, v) ∈ FX1 × FX2 | ∃w ∈ FR. αX1(u) �G αX1(Fr1(w)) ∧
αX2(Fr2(w)) �G αX2(v)}

= {(u, v) ∈ FX1 × FX2 | ∃w ∈ FR. αX1(u) �G Gr1(αR(w)) ∧
Gr2(αR(w)) �G αX2(v)} .

On the other hand,

Rel(G)�G(R) = {(x, y) ∈ GX1 × GX2 | ∃z ∈ GR. x �G Gr1(z) ∧ Gr2(z) �G y} .

Now, if (u, v) ∈ Rel(F)�α−
G

(R), by taking αR(w) as the value of z ∈ GR we
have that (αX1(u), αX2 (v)) ∈ Rel(G)�G(R). Conversely, if (αX1(u), αX2(v)) ∈
Rel(G)�G(R) is witnessed by z, let w ∈ FR be such that αR(w) = z, which
must exist because α is epi; it follows that (u, v) ∈ Rel(F)�α−

G
(R). ��

6 Combining Non-determinism and Probabilistic Choices

Probabilistic choice appears as a quantitative counterpart of non-deterministic
choice. However, it has been also argued that the motivations supporting the use

296 D. de Frutos Escrig, M. Palomino, and I. Fábregas

of these two constructions are different, so that it is also interesting to be able to
manage both together. The literature on the subject is full of proposals in this
direction [13,10,14], but it has been proved in [16] that there is no distributive law
of the probabilistic monad V over the powerset monad P . As a consequence, if we
want to combine the two categorical theories to obtain a common framework,
we have to sacrifice some of the properties of one of those monads. Varacca
and Winskel have followed this idea by relaxing the definition of the monad V ,
removing the axiom A ⊕p A = A, so that they are aware of the probabilistic
choices taken along a computation even if they are superfluous.

We have not yet studied that general case, whose solution in [16] is technically
correct, but could be considered intuitively not too satisfactory since one would
like to maintain the idempotent law A ⊕p A = A, even if this means that only
some practical cases can be considered.

As a first step in this direction we will present here the simple case of al-
ternating probabilistic systems, which in our multi-transition system framework
can be defined as follows:

Definition 8. Alternating multi-transition systems are defined as (M(A × ·) ∪
M1([0, 1] × A × ·))-coalgebras: any state of a system represents either a non-
deterministic choice or a probabilistic choice; however, probabilistic and non-
deterministic choices cannot be mixed together.

By combining the two natural transformations {·} and DM we obtain the nat-
ural transformation Da

M , that captures the behaviour of alternating transition
systems.

Definition 9. We use the term alternating probabilistic systems to refer to the
(P(A × ·) ∪ D(A × ·))-coalgebras. By combining the classical definition of bisim-
ulation and that of probabilistic bisimulations we obtain the natural definition of
probabilistic bisimulation for alternating probabilistic systems.

We define Da
MX

: M(A × ·) ∪ M1([0, 1] × A × ·) ⇒ P(A × ·) ∪ D(A × ·)
as Da

MX
(M) = {·}(M), Da

MX
(M1) = DM (M1), where M ∈ M(A × X), M1 ∈

M1([0, 1] × A × X).

Then we can consider the induced functorial equivalence ≡Da
M which roughly

corresponds to the application of ≡{·} in the non-deterministic states, and the
application of ≡DM in the probabilistic states. As a consequence of Theorem 2
we obtain the following corollary.

Corollary 5. Bisimulations between alternating probabilistic systems are just
≡Da

M -simulations between alternating multi-transition systems.

Example 4. Let X = {x, x′
1, x

′
2, x

′
3, x

′
4}, Y = {y, y′

1, y
′
2, y

′
3, y

′
4} and let us de-

fine (disregarding actions) the alternating multi-transition systems aX : X −→
M(X) ∪ M1([0, 1] × X) and aY : Y −→ M(Y) ∪ M1([0, 1] × Y) as aX(x) =
{1·(1

2 , x′
1), 1·(1

2 , x′
2)}, aX(x′

1) = {1·x′
3}, aX(x′

2) = {1·x′
4}, aX(x′

3) = aX(x′
4) = ∅,

aY (y) = {1 · (1
3 , y′

1), 1 · (1
3 , y′

2), 1 · (1
3 , y′

3)}, aY (y′
1) = aY (y′

2) = aY (y′
3) = {1 · y′

4},

Multiset Bisimulations as a Common Framework 297

aY (y′
4) = ∅. aX and aY induce the canonical alternating probabilistic sys-

tems bX : X −→ P(X) ∪ D(X) and bY : Y −→ P(Y) ∪ D(Y) (for example,
bX(x) = 1

2x′
1 + 1

2x′
2 and bY (y′

3) = {y′
4}).

Now, if we want to know if there is a bisimulation between bX and bY we can
use the fact that R = {(x, y)}∪{(x′

i, y
′
j) | i = 1, 2, j = 1, 2, 3}∪{(x′

i, y
′
4) | i = 3, 4}

is a ≡Da
M -bisimulation between aX and aY (using a similar argument to that

in Example 2), and apply Corollary 5 to conclude that there is a (P ∪ D)-
bisimulation between bX and bY .

7 Conclusion

In this paper we have shown that multitransition systems are a common frame-
work wherein bisimulation of ordinary and probabilistic transition systems al-
most collapse into the same concept of multiset (bi)simulation. Indeed, the defin-
ition of bisimulation for the multiset functor is extremely simple, which supports
the idea that multisets are the natural framework in which to justify the use of
bisimulation as the canonical notion of equivalence between (states of) systems.

These results have been obtained by exploiting the fact that natural trans-
formations between two functors relate in a nice way bisimulations over their
corresponding coalgebras. We have illustrated these general results by means
of the natural transformations that connect the powerset and the probabilistic
distributions functors with the multiset functor.

The categorical notion of simulation proposed by Hughes and Jacobs has
played a very important role in our work; this fact, in our opinion, is far from
being casual. In particular, categorical simulations based on equivalence rela-
tions always define equivalence relations weaker than bisimulation equivalence.
Besides, as illustrated by their use in this paper, they can be used to relate
the bisimulation equivalence corresponding to functors connected by a natural
transformation.

Related to our work is [2], where probabilistic bisimulations are studied in
connection with natural transformations and other categorical notions. Even
though some connections can be found, there are very important differences;
in particular they do not consider categorical simulations nor use the multiset
functor as a general framework in which to study both ordinary and probabilistic
bisimulations. We can also mention [15], where the functor D is replaced with
a functor of indexed valuations so that it can be combined with the powerset
functor.

A direction for further study that we intend to explore concerns other classes
of bisimulations, like the forward-backward ones estudied in [5]. Besides we will
study more general combinations of non-deterministic and probabilistic choices,
comparing in detail our approach with the use of indexed valuations in [15,16]
to combine the monads defining the corresponding functors.

We are confident we will be able to study them in a common setting by
generalizing and adapting all the appropriate notions on categorical simulations.

298 D. de Frutos Escrig, M. Palomino, and I. Fábregas

References

1. Aczel, P., Mendler, N.P.: A final coalgebra theorem. In: Pitt, D.H., Rydeheard,
D.E., Dybjer, P., Pitts, A.M., Poigné, A. (eds.) Category Theory and Computer
Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)

2. Bartels, F., Sokolova, A., de Vink, E.P.: A hierarchy of probabilistic system types.
Theoretical Computer Science 327(1-2), 3–22 (2004)

3. de Frutos-Escrig, D., Rosa-Velardo, F., Gregorio-Rodŕıguez, C.: New Bisimulation
Semantics for Distributed Systems. In: Derrick, J., Vain, J. (eds.) FORTE 2007.
LNCS, vol. 4574, pp. 143–159. Springer, Heidelberg (2007)

4. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, Generative and Stratified
Models of Probabilistic Processes. Information and Computation 121(1), 59–80
(1995)

5. Hasuo, I.: Generic forward and backward simulations. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 406–420. Springer, Heidelberg (2006)

6. Hughes, J., Jacobs, B.: Simulations in coalgebra. Theoretical Computer Sci-
ence 327(1-2), 71–108 (2004)

7. Jacobs, B.: Introduction to coalgebra. towards mathematics of states and ob-
servations. Book in preparation, Available at: http://www.cs.ru.nl/B.Jacobs/
CLG/JacobsCoalgebraIntro.pdf

8. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of
the European Association for Theoretical Computer Science 62, 222–259 (1997)

9. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94(1), 1–28 (1991)

10. Mislove, M.W.: Nondeterminism and Probabilistic Choice: Obeying the Laws. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 350–364. Springer,
Heidelberg (2000)

11. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

12. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249(1), 3–80 (2000)

13. Segala, R., Lynch, N.A.: Probabilistic Simulations for Probabilistic Processes.
Nordic Journal on Computing 2(2), 250–273 (1995)

14. Tix, R., Keimel, K., Plotkin, G.: Semantic Domains for Combining Probability and
Non-Determinism. ENTCS, vol. 129, pp. 1–104. Elsevier, Amsterdam (2005)

15. Varacca, D.: The powerdomain of indexed valuations. In: LICS 2002: Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, pp. 299–310.
IEEE Computer Society, Los Alamitos (2002)

16. Varacca, D., Winskel, G.: Distributing Probabililty over Nondeterminism. Mathe-
matical Structures in Computer Science 16(1), 87–113 (2006)

17. de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems:
A coalgebraic approach. Theoretical Computer Science 221(1-2), 271–293 (1999)

http://www.cs.ru.nl/B.Jacobs/
CLG/JacobsCoalgebraIntro.pdf

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 299 – 304, 2008.
© IFIP International Federation for Information Processing 2008

Detecting Communication Protocol Security Flaws by
Formal Fuzz Testing and Machine Learning

Guoqiang Shu, Yating Hsu, and David Lee

Department of Computer Science and Engineering, the Ohio State University
Columbus, OH 43210, USA

{shug, hsuya, lee}@cse.ohio-state.edu

Abstract. Network-based fuzz testing has become an effective mechanism to
ensure the security and reliability of communication protocol systems. How-
ever, fuzz testing is still conducted in an ad-hoc manner with considerable man-
ual effort, which is mainly due to the unavailability of protocol model. In this
paper we present our on-going work of developing an automated and measur-
able protocol fuzz testing approach that uses a formally synthesized approxi-
mate formal protocol specification to guide the testing process. We adopt the
Finite State Machine protocol model and study two formal methods for protocol
synthesis: an active black-box checking algorithm that has provable optimality
and a passive trace minimization algorithm that is less accurate but much more
efficient. We also present our preliminary results of using this method to im-
plementations of the MSN instant messaging protocol: MSN clients Gaim
(pidgin) and aMSN. Our testing reveals some serious reliability and security
flaws by automatically crashing both of them.

Keywords: Fuzz testing, Security Testing, Protocol Synthesis.

1 Motivation

Network-based fuzz testing is a very effective approach to improve the security and
reliability of protocol system implementations [7, 9]. It works by mutating the normal
traffic at the ingress interface of a component in order to reveal unwanted behavior
such as crashing or confidentiality violation [3]. Identifying such flaws is extremely
important since they might be exploited by malicious parties to launch attacks. On the
other hand, it has been reported that for today’s complicated system these flaws are
ubiquitous due to incorrect assumptions on the input data. However, unlike software
fuzz testing where white-box approach [4, 5] is widely used, protocol fuzz testing is
usually conducted in an ad-hoc manner with input selected either randomly or manu-
ally [5]. With such restrictions it is very difficult to measure the comprehensiveness
of testing and the level of test automation is low. With knowledge of the protocol
message format, some preliminary systematic approaches such as message type cov-
ering become feasible. However they are in general inaccurate for various reasons.
For example, messages of same type could serve very different roles in a protocol
session and therefore should be distinguished in testing.

In this work we propose an automated solution to improve the quality and measur-
ability of black-box fuzz testing using a formal protocol specification synthesis

300 G. Shu, Y. Hsu, and D. Lee

approach. The key idea is to obtain an approximate formal model of the component
under test and use it to automatically guide test selection for better fault coverage.
Such model is based on presumed knowledge of protocol messages [2] while its pri-
mary function is to describe the states and transitions in a session. Note that formal
specifications are usually not available in practice for real protocol systems. Construc-
tion of such a specification model endows significant guidance to systematic black-
box testing which is otherwise impossible. Specifically, we can design test sequences
to achieve formally defined fault coverage criteria with regard to the specification,
and meanwhile to intelligently choose mutated inputs based on special context in the
model. Note that the specification synthesis problem we study has fundamental dif-
ference with the protocol design and implementation synthesis problems extensively
studied in the literature, which aim at using formal models to facilitate developing
error-free protocol instead of recovering the specification for given implementation.

In this paper we discuss two alternative formal methods for Finite State Machine
(FSM) based specification synthesis which we applied in fuzz testing of real world
network applications. Our experiments show that this approach is promising in auto-
matic discovery of new bugs in protocol implementations of real internet applications.

2 Formal Protocol Synthesis

We adopt a variant of classic Communicating Extended Finite State Machine
(CEFSM) to model a communication protocol. The behavior of each protocol princi-
pal is described by a deterministic EFSM that has state variables and input/output
message parameters with symbolic value domain. The detailed modeling is in [8, 11].
In this work we focus on one principal and use its reachability graph (an FSM) repre-
sentation. An FSM is a 5-tuple <S,s0, I, O, fnext, foutput>, where S and s0 are state (con-
figuration in EFSM) set and initial state, I and O are input and output alphabet, fnext : S
× I→S is the transition function and foutput : S × I→O is the output function. Both fnext
and foutput might be partial function. We call an FSM a tree FSM if its state transition
graph is a tree. A trace of FSM is a sequence of input/output pairs, tr =
{<I1,O1>,<I2,O2>,…,<Ik,Ok>}, and a test case is simply a sequence of inputs.

Given a black box protocol component implementation B, our objective is to syn-
thesize a deterministic FSM model Mx that later guides our fuzz testing algorithm. Mx
should ideally be an abstraction of all observed behavior of B, and its input (output)
alphabet Ix is a subset of B’s input alphabet IB. The ultimate goal of testing then is to
find a sequence of any length L: {<Ik,Ok>, 0≤k≤L, Ik ⊆ IB, Ok ⊆ OB} that will lead B to
an observable failure state. Below we discuss two approaches to construct Mx – an
active learning algorithm and a passive machine minimization algorithm.

2.1 FSM Learning Algorithm

Since the tester has full control of the input and output of B, an obvious way to get its
model is through active learning. Following the theoretical insights of [1,10] on auto-
mata learning, we design the following procedure. An estimation model B* of the
implementation B is maintained and initialized as an FSM with an initial state only. B*
is updated as more traces are discovered according to the supervised FSM learning

 Detecting Communication Protocol Security Flaws 301

algorithm L*
fsm (based on Angluin’s L* algorithm with details omitted due to space

limit; see [1]). A conformance test generator serves the role of “teacher” in learning
process that provides traces as counter-example – showing the difference between B*
and B. The counter-example is used to prepare for the next estimation that becomes
supposedly more accurate: containing more input types or more states.
 This iterative process starts with a small subset of input alphabet and terminates
when the teacher is not able to find any counter-examples to help learning. We can
prove this strategy is always “promising” in the following sense: if B contains N states
and P inputs, at most (N+P) guesses will be made before we get Mx=B*=B. The cost
of this process is determined by both the strategy used by the teacher and the L*

fsm
learning algorithm itself. We could prove that it takes O(P*·N*2) to update B* with P*
inputs and N* states, and the total cost of learning B in worst case is
O(T·P2·N2+T·P·N3) where T denotes the cost of calculating the counter-example at
each round. In practice due to this high cost we usually stop after several iterations
with an approximate model.

2.2 Partial FSM Minimization Algorithm

We also study an alternative that requires more observation but potentially less com-
putation. The idea is to first gather a large number of traces from B by passive moni-
toring, compute a tree FSM, and minimize it. Given a set of traces, the synthesis of
tree FSM is quite straightforward. Starting with empty FSM we add one trace at a
time. We find the longest prefix of a trace that is already in the current FSM, pre-
sumably ending at state s, then create a new branch from s with the rest of the trace.
One practical issue in this step is handling session related fields. We want to identify
data fields in an input/output message whose value does not affect the state transition
of this session and therefore could be symbolized. Typical examples of such fields
include username, nonce and session ID. Identification of these fields reduces the
redundancy of the tree FSM; however it is nontrivial and sometimes requires manual
effort. In our on-going work we are investigating efficient and automated solutions.

After the tree FSM is constructed, we want to minimize the number of states by
merging compatible sets. Minimization problem for partial FSM is a well studied NP-
hard problem and many heuristic solutions have been proposed [6]. A simple optimis-
tic algorithm is Bierman’s algorithm also described in [6]: first a set of constraints of
merging is calculated dictating which pair of states can be merged and which two
pairs must be both merged or both unmerged; after that new state IDs are given to the
states and whenever a constraint is violated the assignment is modified. The complex-
ity of this algorithm in worst case is obviously exponential but we can modify it by
limiting backtracking to get a polynomial suboptimal algorithm. As an extreme case,
we might choose not to backtrack at all (i.e. always assign new state ID) to achieve
linear time.

3 Fuzz Testing Strategy

Once we have synthesized the approximate protocol specification Mx, it is used to
guide fuzz testing experiments. Coverage metrics can be formally defined to measure
the comprehensiveness of a set of tests. Let I0I1…IL be a sequence in Mx, and a fuzz

302 G. Shu, Y. Hsu, and D. Lee

testing sequence has the general form of I0I1…Ik ffuzz(Ik+1…IL), where the prefix of
length k is a leading sequence that takes B to a certain state and the rest is the result of
applying a fuzz function ffuzz:I

*→IB
* to the original postfix. Let us consider a special

function that modifies the format of last input message only, and we want to test this
function for all transitions in Mx. Given a set of K test sequences {SEQi = PREFIXi
f(LASTi)| 0≤i≤K,PREFIXi∈I+, LASTi∈I}, the formula below computes its transition
coverage as the number of transitions covered by the last input of a message divided
by the total transitions in Mx.

},,),(|,{

}0,),'(),('|,'{
_

0

IiSsisfis

KiLASTsfPREFIXsfsLASTs
CoverageTR

next

inextinexti

∈∈↓><

≤≤↓∧=><
=

Other metrics could be similarly developed corresponding to popular fuzz functions
on input sequence such as repetition, stealing, replay and pre-play. The actual test
generator should be designed to give preference to sequences that increase the metric.

4 Experiments and Evaluation

We have implemented both of the synthesis strategies as well as several typical fuzz
functions and applied them to evaluate two popular alternatives of MSN instant mes-
saging clients Gaim (pidgin) and aMSN. In order to take over the I/O of the client we
developed a proxy through which the client is connected to the server (shown in Fig-
ure 1). We also implement a simple encoder and decoder for MSN protocol messages.
The goal of fuzz testing is to find input sequences that will crash the client process (a
behavior that is definitely unwanted). We synthesize a model for the login phase of
MSN protocol containing around 50 states and 70 transitions. Several typical fuzz
functions on single transition are manually developed, after which testing is done
automatically toward 100% transition coverage for each function.

Table 1. Testing two MSN Clients
with synthesized model

Size of tree FSM 450
#states/#transitions
of synthesized FSM

50/
70

Fuzz functions used 5
Bugs found in Gaim 3
Bugs found in aMSN 8

Fig. 1. An MSN Client Fuzz Testing Tool

As summarized by Table 1, we found many previously unknown bugs of both cli-
ents and we are continuously uncovering more. Our fuzz functions fall into two cate-
gories: (1) changing the data field of a message to form an invalid input from IB-IMx;
and (2) changing the message type to form an undefined transition with respect to the
current state. Below we report instances of bugs from each category.

 Detecting Communication Protocol Security Flaws 303

• Invalid Status Code: ILN message type is used for buddy presence notification;
the syntax of the command is “ILN TrID status_code Account Display ClientID”
where the status_code field is used to indicate the presence of a contact such as avail-
able, busy, or away. MSN protocol gives a list of legitimate status codes but if we
change it to an invalid value, aMSN crashes immediately after receiving the message.
• Elimination of E-Mail Address Field: a simple fuzz function that eliminates
every field from an input message that is in the form of an email address (used as
account name) will cause both Gaim and aMSN to crash.
• Skipping Contact List Message: in order to obtain the buddy list of a user, a
sequence of messages is exchanged between the server and client including an LST
message to download the contact list followed by a sequence of ILN messages to
obtain presence information. We found that if the LST message is skipped (i.e.
dropped); aMSN will crash when receiving the ILN message.
• Random Message Type Mutation: we could simply modify the input message
type to a random message type that is undefined in the current state. For instance,
when we change CVR or VER message (both used to negotiate protocol version) to
LST type, both clients will crash. A variant of this operation is random message type
swapping of two adjacent transitions, and aMSN crashes when this is applied to LST
and UBX messages.

5 Conclusion

We investigate the proposed fuzz testing approach that has shown great potential and
practicality. A key problem to tackle is how to improve the quality of the synthesized
specification. For instance, our current tool does not recover the dependency relation-
ship among message fields, which gives valuable insights regarding what input might
be destructive. Toward this goal analysis for both control plane and data plane of the
protocol traces are to be integrated. On the other hand, we envision that formal proto-
col synthesis techniques could be useful in other domains, such as protocol reverse
engineering [2] and network testbed development [12].

References

1. Angulin, D.: Learning regular sets from queries and counterexamples. Information and
Computation 75, 87–106 (1987)

2. Cui, W., Kannan, J., Wang, H.: Discoverer: Automatic Protocol Reverse Engineering from
Network Traces. In: The 16th USENIX Security Symposium (2007)

3. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transaction on Informa-
tion Theory 29, 198–208 (1983)

4. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing. In:
Proceedings of PLDI 2005 (ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation), pp. 213–223 (2005)

5. Godefroid, P., Levin, M.Y., Molnar, D.: Automated Whitebox Fuzz Testing. Technical
Report MS-TR-2007-58, Microsoft (May 2007)

6. Gören, S., Ferguson, F.J.: On state reduction of incompletely specified finite state ma-
chines. Computers and Electrical Engineering 33(1), 58–69 (2007)

7. Howard, M.: Inside the Windows Security Push. IEEE Security & Privacy, 57–61 (2003)

304 G. Shu, Y. Hsu, and D. Lee

8. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - A sur-
vey. In: Proceedings of the IEEE, 1090–1123 (1996)

9. Oehlert, P.: Violating Assumptions with Fuzzing. IEEE Security & Privacy, pp. 58-62
(2005)

10. Peled, D., Vardi, M.Y., Yannakakis, M.: Black-box checking. In: Proceedings of IFIP
FORTE/PSTV (1999)

11. Shu, G., Lee, D.: Testing Security Properties of protocol implementations – a machine
learning based approach. In: Proceedings of IEEE ICDCS (2007)

12. Wang, L., Ellis, C., Yin, W., Luong, D.D.: Hercules: An Environment for Large-Scale En-
terprise Infrastructure Testing. In: Proceedings of the Workshop on Advances and Innova-
tions in Systems Testing (2007)

Using SPIN to Detect Vulnerabilities in the AACS
Drive-Host Authentication Protocol

Wei Wang and Dongyao Ji

The State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Science,

No.19 Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
bessie19831109@163.com

Abstract. In this paper, we use SPIN, a model checker for LTL, to detect vulner-
abilities in the AACS drive-host authentication protocol. Before the detection, we
propose a variant of the Dolev-Yao attacker model [4] and incorporate the synthe-
sis and analysis rules [7] to formalize the protocol and the intruder capabilities.
During the detection, we check the authenticity of the protocol and identify a few
weaknesses. Besides, we propose a novel collusion attack that seriously threaten
the security of the protocol, and build a corresponding LTL formula. Based on
the formula, SPIN detects a few relevant attack instances in the original scheme
of the authentication protocol and a modified scheme advanced in [5].

Keywords: AACS, SPIN, Model Checker, LTL, Authenticity, Collusion Attack.

1 Introduction

Nowadays, in the field of protocol verification, the formal verification techniques ap-
pear to be a popular method for analyzing the vulnerabilities of protocols. There are
two major approaches: theorem-proving and model-checking. Compared with theorem-
proving, model-checking seems to be more suitable to detect errors and find correspond-
ing attack modes of the target protocols [3].

So far, some researchers have developed specific model checkers for particular prop-
erties verification, whereas others have shown the ability of the general purpose tools
such as FDR and SMV to achieve the same purpose. In this paper, we would like to
implement our protocol verification using the general purpose tool of SPIN, which is
one of the most powerful general purpose model checkers. Until now, some researchers
have already shown how it can be used to check the security properties such as secrecy
and authenticity, and successfully found the known attack in the Needham-Schroeder
Public Key Authentication Protocol [2,8].

In this paper, we will use SPIN to verify the AACS drive-host authentication pro-
tocol. The Advanced Access Content System (AACS) is a content distribution system
for recordable and pre-recorded media. This system consists of three entities: a drive,
PC host and the AACS protected optical media. The AACS drive-host authentication
protocol, a part of the AACS protection scheme, plays the role of practicing the mutual
authentication between the PC host and the drive and letting them negotiate a shared

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 305–323, 2008.
c© IFIP International Federation for Information Processing 2008

306 W. Wang and D. Ji

key which is used for message authentication in the subsequent interaction between the
PC host and the drive [1].

In the whole process of verifying the AACS drive-host authentication protocol, we
not only make use of the technique of model-checking, but also adopt the method of
static analysis. And according to the variant of the Dolev-Yao attacker model [4] ad-
vanced by us in order to match the specific scheme of the target protocol, we make the
formalization of the protocol and the intruder’s behavior. Besides checking the prop-
erty of authenticity, we also define a novel collusion attack which poses a threat to the
security of the AACS protection scheme. Through the verification, we have discovered
several relevant attack instances in the original AACS drive-host authentication scheme.
In addition, a modified AACS drive-host authentication scheme, proposed in [5], also
reveals its vulnerability to the novel collusion attack in our further verification.

This paper is organized as follows. In section 2, we construct the formal model of
the target protocol, which includes the description of a variant of Dolev-Yao attacker
model. In section 3, we briefly describe the general process of verifying the target pro-
tocol using SPIN. In section 4 and section 5, we present the process of checking the
authenticity and verifying the feasibility of the newly-defined collusion attack in SPIN.

2 A Formal Model for Security Protocols

In this section, we present a formal model of the AACS drive-host authentication pro-
tocol and describe a variant of Dolev-Yao attacker model [4]. Besides, we have made
some modifications of the semantics of security protocols built in [9] to simplify the
process of modeling the target protocol. More detailed description can be found in [10].

First, we would like to discuss the occasion of generating a fresh nonce in the AACS
drive-host authentication scheme: when finish one session no matter whether it is suc-
ceed or not, both the host and the drive would call the random number generator to
acquire a fresh nonce used in a next session. But in this paper, our concern is only about
a single session. Therefore, for the purpose of simplifying the model of the AACS
drive-host authentication protocol, we define nonces as constants.

Next, we describe the definitions of several necessary terms used in the following
discussion. We start with the set of agents – Ag, which includes the intruder I and other
agents who are called honest agents. K, denotes the set of private keys which are owned
by corresponding agents, and we use kp to denote the private key belongs to agent
p. Cert, denotes the set of certificates which represent the identities of corresponding
agents, and we use Certp to denote the certificate of p. N, denotes the set of nonces. P,
the set of parameters, is used for some particular purposes. T0, the set of basic terms,
is defined to be Ag∪K∪Cert∪N ∪P. T , the set of information terms, is defined to be:

T � m | (t, t′) | {t}k . (1)

where m ranges over T0, k ranges over K, t and t’ range over T ; and (t, t′) denotes the
concatenation of t and t′, and {t}k denotes using k to encrypt the term t.

In addition, we define a set of actions:

Σ = {A!B:t, A?B:t | A, B ∈ Ag, A � B, t ∈ T } . (2)

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication 307

Axa
T t t

Axs
T t t

T t1, t2

T ti

split i (i=1, 2) pair
T t1 T t2

T t1, t2

T t kp T Certp T t
verify

T true
sign

T t T kp

T t kp

analz synth

Fig. 1. The Modified Analz and Synth Rules

As we can see, there are two actions which are denoted as “Send” and “Receive”:

- Send: A!B:t, A is the sender, B is the intended receiver, and t is the message.
- Receive: A?B:t, A is the receiver, B is the purported sender, and t is the message.

Definition 1. A protocol is a pair Pr = (C, R), where C ⊆ T0 is the set of constants of
Pr, and R is the set of roles of Pr.

Definition 2. A sequent is of the form T � t where T ⊆ T and t ∈ T . An analz-proof
(synth-proof) π of T � t is an inverted tree whose nodes are labeled by sequents and
connected by one of the analz-rules (synth-rules) in Fig. 1, whose root is labeled T � t,
and whose leaves are labeled by instances of the Axa rule (Axs rule). For a set of terms
T , analz(T) (synth(T)) is the set of terms t such that there is an analz-proof (a synth-
proof) of T � t. For ease of notation, synth(analz(T)) is denoted by T .

The definitions of analz and synth are due to [7].
As we can see, Fig. 1 shows the modified analz and synth rules, which are based on

the variant of the Dolev-Yao model [4], consist of split, pair, verify and sign. Specifi-
cally, the verify rule has its practical significance: if one knows three items – the signa-
ture {t}kp (denoting using kp, the private key of p, to sign the term t), Certp (the certificate
of p), and the term t, it can confirm the validity of the signature, which means that the
signature {t}kp would be successfully decrypted by the public key extracted from Certp,
and the decrypted term is the same with t.

Definition 3. An information state s is a tuple (sA)A∈Ag where sA ⊆ T for each agent
A. The notions of an action enabled at a state and update of a state on an action are
defined as follows:

- A!B:t is enabled at s iff t ∈ sA.
- A?B:t is enabled at s iff t ∈ sI .

- update(s, A!B:t)
def
= s′ where s′A = sA, s′I = sI∪ {t}, and for all agents C distinct

from A and I, s′C = sC.

- update(s, A?B:t)
def
= s′ where s′A = sA∪ {t} and for all agents C distinct from A,

s′C = sC.

308 W. Wang and D. Ji

3 Protocol Verification Using Spin

Spin is designed to validate the logical consistency of concurrent and distributed sys-
tems, such as data communications protocols, and trace the logical design errors [11].
By constructing a LTL formula of a desired property and simulating a correct model of
the target protocol, one could easily carry out the verification on SPIN; and when de-
tecting a violation of the target property, SPIN could provide the counterexample run.
In this fragment, we will discuss the model construction process, which amounts to two
steps: the formalization of the protocol and the formalization of the intruder’s behavior.

3.1 Formalization of the Protocol

First of all, we want to simplify the original flow representation of the drive-host authen-
tication scheme [1] by abstracting the core steps. The simplified scheme is represented
in Fig. 2.

Verify Hcert.
Check Host ID in the HRL.
Generate 160 bits Nonce (Dn).

Verify Dcert
Check Drive ID in the DRL

Generate 160 bits Nonce (Dk).
Calculate Dv = Dk G on the elliptic curve
where G is the Base Point of ECDSA.
Calculate Dsig = AACS_Sign (Dpriv, Hn || Dv).

Generate 160 bits Nonce (Hk).
Calculate Hv = Hk G On the elliptic curve
where G is the Base Point of ECDSA.
Calculate Hsig = AACS_Sign (Hpriv, Dn || Hv).

Calculate the Bus Key (BK) by BK = Dk Hv on
the elliptic curve.

Hn || Hcert

Dn || Dcert

Dv || Dsig

Hv || Hsig

AACS Optical Drive Host

Calculate the Bus Key (BK) by BK = Hk Dv on the
elliptic curve.

Generate 160 bits Nonce (Hn)

Verify Dsig by AACS_Verify(Dpub, Dsig, Hn || Dv).

Verify Hsig by
AACS_Verify(Hpub, Hsig, Dn || Hv).

Fig. 2. The Simplified AACS Drive-Host Authentication Protocol

In the model-checking approach, protocols can be described as patterns of messages
exchanged between different agents, and each agent is described as a proctype in SPIN.
In the init process, we would provide a fresh instance to each proctype. Sometimes an
agent may play multiple roles in the practical operation of the protocol, thus, we need
to construct multiple instances of it. In the init process of the model built for the AACS
drive-host authentication protocol, we construct four instances in all: PHost(host, in-
truder, Hn, Hv, Hcert, Hsk), PHost(host, drive, Hn, Hv, Hcert, Hsk) for the host;
PDrive(drive, Dn, Dv, Dcert, Dsk) for the drive; PIntruder() for the intruder.

init{

...

atomic{

if

:: run PHost(host, intruder, Hn, Hv, Hcert, Hsk)

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication 309

:: run PHost(host, drive, Hn, Hv, Hcert, Hsk)

fi;

run PDrive(drive, Dn, Dv, Dcert, Dsk);

run PIntruder();

}

}

In addition, we need to model the certificate used in the protocol. Instead of intro-
ducing the widely accepted format of the X.509 digital certificate, we define a new data
type – Cert. In the X.509 digital certificate, there are various fields storing necessary
information; but, among them, what matters to us are merely “Subject Distinguished
Name” and “Public Key”. So, in this model, the structure of the digital certificate is
redefined like this:

typedef Cert {

mtype identifier;

byte pk

};

We also need to model the private key. Actually, private key is the value of number
that could be worked with the corresponding public key to sign and verify a message in
order to achieve authentication: if one receives a message encrypted with a private key
and such message can be decrypted using the public key acquired from the certificate
of a particular agent – P, it could confirm that the message is sent by agent P. So
the match relation between the certificate and the private key is the key to the overall
authentication procedure, and thus it is also the focus of our modeling. In our model,
we choose to expand the data structure of the private key to abstract the match relation.

typedef Private_Key {

mtype identifier;

byte sk

};

As we can see, there are two fields in the structure of Private Key. Obviously, the
first one, Private Key.identifier, represents the identity of the owner. By comparing it
with the first field of Cert, we can verify the match relation and then carry out the
signature verification process. The following is the core part of the process simulating
the host, from which we can see the signature verification process more specifically.

Proctype PHost(mtype self; mtype party; mtype nonce; mtype v; Cert

cert; Private_Key hk){

mtype g1, g2, g3; Cert c; Private_Key k;

atomic{

HostRunning(self, party);

//Host initiates a session with the corresponding party

ca! self, nonce, cert; //Host sends "Hn||Hcert"

}

atomic{

310 W. Wang and D. Ji

ca? eval(self), g1, c;//Host receives "Dn||Dcert"

cb? eval(self), eval(nonce), g2, k, g3;

//Host receives "(Hn||Dv)SK(Dsk)||Dv"

if

::(g2 == g3 && c.identifier == k.identifier)

->HostCommit(self, c.identifier);

//Host commits the session with the corresponding party

cb! self, g1, v, hk, v;//Host sends "(Dn||Hv)SK(Hsk)||Hv"

::else skip

fi;

}

}

Besides, SPIN also provides a data type – chan, to simulate the synchronous chan-
nels in the system. According to the different message modes used in the protocol, we
build corresponding structure for each of them. In this protocol, there are two message
modes: x1 ‖ x2 and (x1 ‖ x2)SK(x3) ‖ x4. So the channel structures are defined as follows:

chan ca = [0] of {mtype, mtype, Cert};//Message mode x1||x2

chan cb = [0] of {mtype, mtype, mtype, Private_Key, mtype};

//Message mode (x1||x2)SK(x3)||x4

3.2 Formalization of the Intruder

Based on Dolev-Yao attacker model [4], the intruder could non-deterministically inter-
cept a message on some channel to update its knowledge, and generate a new message
on some channel using the known information. The intruder updates its knowledge by
using analz-rules and generates messages by using synth-rules.

In the subsequent discussion, we will describe the whole process of formalizing the
intruder’s behavior concretely, which consists of three parts: the initial knowledge, the
analz-phase and the synth-phase. We need to note that, in this model, the intruder is
a legitimate agent; in other words, the intruder is not a revoked device, and it has a
valid certificate signed by AACS LA and can thus sign and verify the digital signatures
specified in the AACS drive-host authentication protocol.

Before the commencement of the protocol, the intruder has its initial knowledge
which is the basis of the later analz-phase and synth-phase. The intruder’s initial knowl-
edge is made up of the identities of all the principles in the system, i.e. host, drive, and
intruder; moreover, the intruder also holds its private key Isk, its certificate Icert and
the generic data gD. After the protocol begins running, the intruder would start on in-
tercepting and generating messages.

In the analz-phase, the intruder breaks up a message into constituent parts and stores
them; furthermore, it also verifies the signatures included in the messages using the
certificates contained in its knowledge. And by doing these jobs, the intruder could in-
crease its knowledge. For instance, if the intruder intercepts the message Hn‖Hcert, it
could acquire and store the nonce Hn and the certificate Hcert. In order to avoid storing
redundant knowledge elements, we assume that the intruder always records the learned
items in their most elementary forms. For example, if message Hn‖Icert is intercepted,

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication 311

what the intruder records is Hn, rather than Icert or the whole message Hn‖Icert; be-
cause Icert is not fresh to it, and message Hn‖Icert can be built from Hn and Icert,
which is not in the most elementary form. We also assume that the intruder records a
complex message in its knowledge only if it cannot build that message. Taking another
case for example, if the intruder intercepts the message (Dn‖Hv)SK(Hsk)‖Hv, besides
recording the parameter Hv, it also needs to record the complex part (Dn‖Hv)SK(Hsk).
Since the intruder cannot get private key of the host – Hsk, and thus cannot generate
the signature, though it might know the certificate of the host – Hcert, and decrypt that
signature.

In the synth-phase, based on the synth-rules, the intruder can generate a message by
choosing the recipient and the message type and filling in each field with the appropriate
data item which is known to it; besides, the intruder also can simply replay an entire
stored message. For example, if the intruder possesses the data items Hn and Hcert, it
can concatenate them into Hn‖Hcert and send it to the drive. Theoretically, the intruder
can generate whatever it wants; but, to improve the efficiency of our model, we build
a restriction in the synth-phase: the message the intruder generates should be valid
and in accordance with the corresponding message mode. Obviously, the purpose of
making this restriction is to prevent the intruder from generating invalid message. For
instance, if the intruder generates and sends a message (Hn‖Hv)SK(Hsk)‖Dv, none of
the agents in the system would accept it, since this message does not comply with the
message mode which requires the second parameter should be identical with the fourth
parameter (but Hv�Dv).

4 Formalization of the Authenticity Property

4.1 Formalization of the Authenticity Property

Property formalization is another essential part of verifying security protocols with
model checkers. In general, secrecy and authenticity are the properties often be checked
when analyzing security protocols, but in this paper, secrecy does not need to be con-
sidered. Since in the AACS drive-host authentication protocol, data items contained in
messages are transferred in two forms – plain text and cipher text. The plain text data
could be seen by any agent. The cipher text data, encrypted with someone’s private key,
could be decrypted by anyone who possesses the corresponding certificate; and other
agents without the proper certificate also could acquire the corresponding plain text of
all the cipher text data, since in this protocol all the cipher text data has another copy
which is transferred in the plain text. So secrecy is not the property worth verification
in this protocol. The property we choose to verify here is authenticity.

During the verification, we firstly build three roles involved – Host, Drive and In-
truder; then, we define six global Boolean variables:

bit HostRunningHD = 0, HostCommitHD = 0, HostKnowDv = 0;

bit DriveRunningHD = 0, DriveCommitHD = 0, DriveKnowHv = 0;

HostRunningHD is true iff Host takes apart in a session with Drive. DriveRun-
ningHD is true iff Drive takes apart in a session with Host. HostCommitHD is true iff

312 W. Wang and D. Ji

Host commits to a session with Drive. DriveCommitHD is true iff Drive commits to a
session with Host. HostKnowDv is true iff Host knows the parameter Dv. DriveKnowHv
is true iff Drive knows the parameter Hv.

The authentication of Host to Drive can be expressed as that HostRunningHD must
become true before the DriveCommitHD becomes true, whereas the converse authen-
tication of Drive to Host is that DriveRunningHD must become true before the Host-
CommitHD becomes true. These properties can be expressed in the LTL formalism:

�((�!DriveCommitHD) ‖ (!DriveCommitHD ∪ HostRunningHD)) . (3)

�((�!HostCommitHD) ‖ (!HostCommitHD ∪ DriveRunningHD)) . (4)

Equation (3) means that the protocol suffices to the authentication of Host to Drive; (4)
means that the protocol suffices to the authentication of Drive to Host.

4.2 The Experimental Result

After the verification on SPIN, we discover two attack instances (Attack 1 & Attack
2) violating (3) and two attack instances (Attack 3 & Attack 4) violating (4). Those
instances are shown in Fig. 3, and the relevant experimental data is list in Table 1.

Table 1. Attack and Relevant Data

Attack Attack 1 Attack 2 Attack 3 Attack 4

HostRunningHD 0 0 1 1
HostCommitHD 0 0 1 1
DriveRunningHD 1 1 0 0
DriveCommitHD 1 1 0 0
HostKnowDv 1 0 1 1
DriveKnowHv 1 1 0 1

Here, we want to make some notations about those attacks shown in Fig. 3. In At-
tack 1 and Attack 2, Host initially sends its random nonce Hn and certificate Hcert to
Intruder rather than Drive, in order to initiate a session with Intruder; in Attack 3 and
Attack 4, Host intends to send its random nonce Hn and certificate Hcert to Drive to
initiate a session with Drive, but this message is intercepted by Intruder. In addition, in
Attack 1 and Attack 4, Host and Drive can negotiate a shared Bus Key when the session
finished; however, they cannot get the shared Bus Key in Attack 2 and Attack 3, since
Host has no way to get Drive’s parameter Dv in Attack 2 and Drive cannot get Host’s
parameter Hv in Attack 3 during the whole session.

5 Formalization of the Collusion Attack

5.1 Introduction of the Collusion Attack

AACS is applicable to a PC-based system. In such a system, a drive and PC host act
together as the Recording Device and/or Playback Device for AACS protected content.

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication 313

Drive Intruder Host

Drive Intruder Host

Drive Intruder Host

Drive Intruder Host

Attack 1:

Attack 2:

Attack 3:

Attack 4:

Hn Hcert

Dn Dcert

(Hn Dv)SK(Dsk) Dv

(Dn Hv)SK(Hsk) Hv

Hn Hcert

Dn Icert

(Hn Dv)SK(Isk) Dv

(Dn Hv)SK(Hsk) Hv

Hn Icert

Dn Dcert

(Hn Dv)SK(Dsk) Dv

(Dn gD)SK(Isk) gD

Hn Hcert

Dn Dcert

(Hn Dv)SK(Dsk) Dv

(Dn Hv)SK(Hsk) Hv

Hn Hcert

Dn Dcert

(Hn Dv)SK(Dsk) Dv

(Dn Hv)SK(Hsk) Hv

Hn Hcert

Dn Icert

(Hn gD)SK(Isk) gD

(Dn Hv)SK(Hsk) Hv

Hn Icert

Dn Dcert

(Hn Dv)SK(Dsk) Dv

(Dn Hv)SK(Isk) Hv

Hn Hcert

Dn Dcert

(Hn Dv)SK(Dsk) Dv

(Dn Hv)SK(Hsk) Hv

Fig. 3. The Attack Instances

Mutual authentication is the initial procedure in the whole system, by which the drive
and the PC host verify each counterpart is an AACS compliant device which has a valid
certificate signed by the AACS LA and can sign and verify digital signatures specified
in the AACS drive-host authentication protocol.

In the AACS drive-host authentication scheme, the host’s process of verifying the
drive’s legitimacy consists of three steps: first, the host verifies the signature of the
Drive Certificate using the AACS LA Public Key; next, it checks the Drive Revocation
List to ensure that the Drive ID of the Drive Certificate has not been revoked; then it
verifies the second message sent by the drive to check whether the drive pass the nonce-
challenging procedure or not. If the above verifications succeed, the host could confirm
the validity of the drive, and exchange parameters with it to negotiate a shared Bus
Key.

From the above analysis, we think of a special kind of attack aiming at offering a
revoked drive the opportunity to bypass the authentication procedure, negotiate a shared
Bus Key with a legal host and use this key to exchange necessary information with the
host in order to play/record the protected content in the disc. And this attack could be
successfully carried out by hiring a third party – a legitimate drive; obviously, this kind
of attack, launched by a revoked drive and a hired drive, is what we called “the collusion
attack”. But the relationship between them is not mutual trust but mutual utilization. To
the revoked drive, the hired drive is a lessor who leases out its legitimate identity; and
to the hired drive, the revoked drive is just one of the lessees who pay for the use of its
identity.

314 W. Wang and D. Ji

Therefore, there is a restriction lies in this attack mode: Bus Key is the secret merely
known to the host and the revoked drive, which implies the hired drive cannot acquire
it. Bus Key, in the AACS system, is used for message authentication in the subsequent
interaction between the host and the drive, after the authentication protocol is over.
Accordingly, in this attack mode, Bus Key is used for messages authentication between
the host and the revoked drive after the authentication protocol completed running. Once
the hired drive possesses Bus Key, it has the ability to tamper the messages, obstruct
the host from acquiring parameters necessary to decrypt the encrypted content in the
disc and prevent the revoked drive from playing/recording the disc, which contravenes
the goal of the collusion attack. So the purpose of setting the restriction is to make the
lessee (the revoked drive) get rid of the influence of the third party (the hired drive) after
the authentication protocol completed running, and successfully interact with the host.

Considering the AACS adopts the technique of Elliptic Curve Cryptographic Sig-
nature Algorithm (ECDSA) in the key agreement procedure, the crucial factor of im-
plementing the restriction specified above is the parties participating in the Bus Key
negotiation. In this attack mode, besides the host and the revoked drive, there should
not be a third party participating in the Bus Key negotiation. That is to say, the hired
drive should not replace the revoked drive’s parameter Dv by its own parameter in order
to negotiate the Bus Key with the host itself; and the revoked drive should participate in
the negotiation itself, rather than simply obtain a Bus Key generated by the hired drive.

5.2 Formalization of the Collusion Attack

There are three parties in this attack mode: Host, Drive-R and Drive-L.

- Host is just a legal host in the PC-based system;
- Drive-R is a revoked drive whose ID is in the Drive Revocation List located in Host;
- Drive-L is a legitimate drive.

Remarkably, in this attack mode, Drive-R plays the role of Drive and Drive-L plays
the role of Intruder. The details about this attack are described as follows:

- If Drive-R wants to interact with Host, it hires Drive-L as its accomplice to employ
the attack.

- During the protocol running, Host only can see the certificate of Drive-L and does
not know the existence of Drive-R in the whole process of interaction.

- The parameter Dv, calculated by Drive-R based on its 160 bits nonce Dk, the elliptic
curve and the Base Point G of ECDSA, could be finally acquired by Host in order
to calculate the Bus Key.

- The parameter Hv, calculated by Host based on its 160 bits nonce Hk, the elliptic
curve and the Base Point G of ECDSA, could be finally known by Drive-R for the
purpose of calculating the Bus Key.

- Because Drive-L is the device hired by Drive-R, Drive-R can pick up necessary
information from Drive-L. That is to say, the fact Drive-L knows the parameter Hv
is equivalent to the fact that Drive-R knows Hv.

- During the whole process, Drive-L cannot get the Bus Key.

Based on the above analysis, we define eight global Boolean variables:

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication 315

bit HostRunningHD = 0, HostCommitHD = 0, HostKnowDv = 0;

bit DriveRunningHD = 0, DriveCommitHD = 0, DriveKnowHv = 0;

bit IntruderKnowHv = 0, HostKnowDcert = 0;

HostRunningHD is true iff Host takes apart in a session with Drive. DriveRun-
ningHD is true iff Drive takes apart in a session with Host. HostCommitHD is true
iff Host commits to a session with Drive. DriveCommitHD is true iff Drive commits
to a session with Host. HostKnowDv is true iff Host knows the parameter Dv. Drive-
KnowHv is true iff Drive knows the parameter Hv. IntruderKnowHv is true iff Intruder
knows the parameter Hv. HostKnowDcert is true iff Host knows Dcert, the certificate
of Drive.

The property we want to check could be expressed in the LTL formalism:

	 (HostKnowDv&&(DriveKnowHv ‖ IntruderKnowHv)&&

!HostKnowDcert&&!HostRunningHD&&!HostCommitHD) . (5)

If there is an instance existing in the protocol running that could suffice (5), we could
confirm the feasibility of this collusion attack.

5.3 The Experimental Result

Using SPIN, we have found five attack instances shown in Fig. 4 and Fig. 5, and the
relevant experimental data is list in Table 2.

Table 2. Attack and Relevant Data

Attack Attack 1 Attack 2 Attack 3 Attack 4 Attack 5

HostRunningHD 0 0 0 0 0
HostCommitHD 0 0 0 0 0
HostKnowDv 1 1 1 1 1
HostKnowDcert 0 0 0 0 0
DriveRunningHD 0 1 1 0 1
DriveCommitHD 0 1 0 0 0
DriveKnowHv 1 1 1 0 0
IntruderKnowHv 1 1 1 1 1

First, let us focus on Attack 1 and Attack 2. In these two attack instances, the protocol
could be successfully completed. In the end of the session, Drive (Drive-R) acquires
Hv, and Host gets Dv. (Attack 2 has already been found by J.Sui and D.R. Stinson by
simulating the “Unknown Key-Share Attack” in [5].)

In Attack 3, the session does not proceed well. The last message Drive (Drive-R)
received has an improper data item: when verifying the signature (Dn‖Hv)SK(Isk) by
using Hcert received in the first message, Drive (Drive-R) would detect the invalidity
of the signature. According to the rule of this protocol, if the verification fails, Drive
(Drive-R) will determine the counterpart is not compliant and abort this session. But in
this model, Drive (Drive-R) is not a good boy but a revoked drive. So, after the failure

316 W. Wang and D. Ji

Drive Intruder Host

Attack 3:

Hn Hcert

Dn Dcert

(Hn Dv)SK(Dsk) Dv

(Dn Hv)SK(Isk) Hv

Hn Hcert

gD Icert

(Hn Dv)SK(Isk) Dv

(gD Hv)SK(Hsk) Hv

Drive Intruder Host Drive Intruder Host

Attack 1: Attack 2:

gD Icert

Dn Dcert

(gD Dv)SK(Dsk) Dv

(Dn Hv)SK(Isk) Hv

Hn Hcert

Dn Icert

(Hn Dv)SK(Isk) Dv

(Dn Hv)SK(Hsk) Hv

Hn Hcert

Dn Dcert

(Hn Dv)SK(Dsk) Dv

(Dn Hv)SK(Hsk) Hv

Dn Icert

Hn Hcert

(Hn Dv)SK(Isk) Dv

(Dn Hv)SK(Hsk) Hv

Fig. 4. The Attack 1 & Attack 2 & Attack 3

of the signature verification, it would not only keep the session, but also pick up the
parameter Hv from the last message, regardless of the validity of the signature. For
the purpose of checking the authenticity of the parameter Hv, Drive (Drive-R) is still
required to check the validity of the signature using the certificate of Intruder Icert,
which could be got from Intruder before the protocol running, since they are partners.

From the analysis of Attack 3, we can conclude that, in this attack mode, Drive
(Drive-R) does not care the rule of the protocol; what it actually cares is whether or not
it can get the parameter Hv. And this conclusion could also explain the feasibility of
Attack 5, in which Drive (Drive-R) encounters the same problem as in Attack 3.

Moreover, we want to discuss the instances of Attack 4 and Attack 5. It is easy
to discover that Drive (Drive-R) could not obtain the parameter Hv at the end of the
protocol running; whereas Intruder (Drive-L) has already got Hv at this time. Thus, what
Drive (Drive-R) needs to do is just asking Intruder (Drive-L) to send Hv to it. And for the
convenience of checking the authenticity of the parameter Hv sent by Intruder (Drive-
L), this additional message, written in italics in both attack instances shown in Fig. 5, is
requested to follow one of the message modes in the protocol as (Dn‖Hv)SK(Isk)‖Hv.
After receiving this additional message, Drive (Drive-R) would check the validity of the
signature using Intruder’s certificate Icert which it can get before the protocol running,
and pick up the parameter Hv.

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication 317

Fig. 5. The Attack 4 & Attack 5

5.4 The Modified Scheme

So far, there are several papers about the AACS drive-host authentication protocol.
Particularly, a modified scheme has been advanced, which is declared to be competent
of resisting the Unknown Key-Share attack and the Man-In-The-Middle attack in [5].

Drive Host

Dv = Dk G

Bk = Dk Hv

Hv = Hk G

Bk = Hk Dv

Hv Hcert

(IDhost Dv Hv)SK(Dsk) Dv Dcert

(IDdrive Hv Dv) SK(Hsk)

= Dk Hk G = Hk Dk G

Fig. 6. The Modified Scheme

The modified version is shown in Fig. 6.
Compared with the original one, this modified scheme has two remarkable features:

first, Hv and Dv play the role as random challenges, instead of Hn and Dn; second, the
ID of the message receiver has been added into the signature.

In this paper, we also carry out an experiment on this modified scheme, and find out
that this scheme cannot resist the collusion attack either. In our experiment, in order to
check the effectiveness of the modified scheme, we construct a corresponding model on
SPIN, and make use of (5) to verify the feasibility of the collusion attack. During the
process of verification, we have found four attack instances. These instances are shown
in Fig. 7 and Fig. 8, and the relevant experimental data is list in Table 3.

As mentioned earlier, Drive (Drive-R) and Intruder (Drive-L) are allies in the collu-
sion attack, and the purpose of the attack is to let Drive (Drive-R) and Host exchange
the parameters Hv and Dv and prevent Host from knowing the existence of Drive in the

318 W. Wang and D. Ji

Drive Intruder Host

Attack 1:

Drive Intruder Host
Attack 2:

Hv Icert

(intruder Dv Hv)SK(Dsk) Dv Dcert

(drive Hv Dv)SK(Isk)

Hv Hcert

(host Dv Hv)SK(Isk) Dv Icert

(intruder Hv Dv)SK(Hsk)

Hv Hcert

(host Dv Hv)SK(Dsk) Dv Dcert

(drive Hv Dv)SK(Isk)

Hv Hcert

(host Dv Hv)SK(Isk) Dv Icert

(intruder Hv Dv)SK(Hsk)

Fig. 7. The Attack 1 & Attack 2

Fig. 8. The Attack 3 & Attack 4

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication 319

Table 3. Attack and Relevant Data

Attack Attack 1 Attack 2 Attack 3 Attack 4

HostRunningHD 0 0 0 0
HostCommitHD 0 0 0 0
HostKnowDv 1 1 1 1
HostKnowDcert 0 0 0 0
DriveRunningHD 0 1 0 1
DriveCommitHD 0 0 0 0
DriveKnowHv 1 1 0 0
IntruderKnowHv 1 1 1 1

whole process of the protocol running. In Attack 1 and Attack 2, this purpose could be
successfully reached; and in Attack 3 and Attack 4, though failing to get Hv at the end
of the protocol, Drive (Drive-R) could get it from Intruder (Drive-L). Similarly, for the
convenience of checking the parameter Hv, the additional message, written in italics in
both attack instances shown in Fig. 8, is still required to comply with one of the message
modes used in the modified scheme – (drive‖Hv‖Dv)SK(Isk)‖Hv‖Icert.

5.5 Relevant Analysis

Apparently, the collusion attack would make a revoked drive bypass the authentica-
tion procedure, negotiate a shared Bus Key with a legitimate host and use this key to
exchange necessary information with the host in order to play/record the protected con-
tent in the disc released by AACS LA after the drive is revoked. All this work could be
done with the assistance of a valid drive with a legitimate certificate. This situation is
just like once getting the valid serial number and password from a licensed user, one
can install and use an unauthorized copy of a legally released software, downloaded
from the internet illegally or obtained from illegal DVD/VCD duplicators, unless the
software releaser detects this improper action and locks that compromised serial num-
ber. Similarly, with the help of a legitimate drive, one could freely use a revoked drive
along with a PC host to play/record discs until the AACS LA detects this illegitimate
action, which has threatened the security offered by the AACS system seriously.

6 Conclusion

Through the strict model-checking analysis of the AACS drive-host authentication pro-
tocol, depending on the variant of the Dolev-Yao attacker model [4], we have discovered
a few weaknesses of the target protocol in providing authenticity. Besides, we have ad-
vanced a novel collusion attack and found several corresponding attack instances in the
original scheme of the target protocol and a modified scheme [5].

In this paper, we have not yet advanced a new scheme to resist that collusion attack.
Future work might focus on the modification of the AACS drive-host authentication
protocol by introducing the threshold decryption scheme which is mainly used to pre-
vent the collusion attack.

320 W. Wang and D. Ji

Acknowledgement

This research was funded by grant 90604010 from the National Nature Science Founda-
tion and grant 2007BC311202 of the National Key Foundation Research Plan of China.

References

1. Intel et al. Advanced Access Content System (AACS) – Introduction and Common Crypto-
graphic Elements. Revision 0.91, pp. 32–34 (2006)

2. Khan, A.S., Mukund, M., Suresh, S.P.: Generic Verification of Security Protocols. Technical
Report, Chennai Mathematical Institute (2005)

3. Basin, D., Mödersheim, S., Viganó, L.: An On-the-fly Model-Checker for Security Protocol
Analysis. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp.
253–270. Springer, Heidelberg (2003)

4. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Infor-
mation Theory 29(2), 198–208 (1983)

5. Sui, J., Stinson, D.R.: A Critical Analysis and Improvement of AACS Drive-Host Authenti-
cation. Centre for Applied Cryptographic Research (CACR) (2007)

6. Henry, K., Sui, J., Zhong, G.: An Overview of the Advanced Access Content System
(AACS). Centre for Applied Cryptographic Research (CACR), 2007 April 12 (2007)

7. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of com-
puter security 6, 85–128 (1998)

8. Maggi, P., Sisto, R.: Using SPIN to Verify Security Properties of Cryptographic Protocols.
In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 187–204. Springer, Hei-
delberg (2002)

9. Ramanujam, R., Suresh, S.P.: A decidable subclass of unbounded security protocols. In: Proc.
IFIP Workshop on Issues in the Theory of Security (WITS–3), Warsaw (Poland), pp. 11–20
(2003)

10. Ramanujam, R., Suresh, S.P.: Decidability of context-explicit security protocols. Journal of
Computer Security 13(1), 135–165 (2005)

11. Spin Workshop. Spin-Formal Verification (2008),
http://spinroot.com/spin/whatispin.html

http://spinroot.com/spin/whatispin.html

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication 321

Appendix: The Sequence Charts of Attack Instances in SPIN

Fig. 9. The Attack Instances Violating the Property of Authenticity

322 W. Wang and D. Ji

Fig. 10. The Collusion Attack Instances in the AACS Drive-Host Authentication Scheme

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication 323

Fig. 11. The Collusion Attack Instances in the Modified AACS Drive-Host Authentication
Scheme

Protocol Modeling with Model Program Composition

Margus Veanes and Wolfram Schulte

Microsoft Research, Redmond, WA, USA
{margus,schulte}@microsoft.com

Abstract. Designing and interoperability testing of distributed, application-level
network protocols is complex. Windows, for example, supports currently more
than 200 protocols, ranging from simple protocols for email exchange to com-
plex ones for distributed file replication or real time communication. To fight this
increasing complexity problem, we introduce a methodology and formal frame-
work that uses model program composition to specify behavior of such protocols.
A model program can be used to specify an increment of protocol functionality
with a coherent purpose, which can be understood and analyzed separately. The
overall behavior of a protocol can be defined by a composite model program,
which defines how the individual parts interoperate.

1 Introduction

Protocols are abundant; we rely on the reliable sending and receiving of email, multi-
media, and business data. But protocols, such as SMB [28], can be very complex and
hard to get right. They require careful design to guarantee reliability and failure re-
silience; they require careful and efficient implementations, to not clog the system; and
they require careful documentation and interoperability testing, so that different vendors
understand the same protocol.

A protocol typically has many different facets. Each facet provides a partial view
of the overall functionality of the protocol with a coherent purpose. An example of a
facet is a set of rules that describes how message ids are allowed to be computed and
communicated between a client and a server in a client-server protocol.

In this paper we provide a methodology and a formal framework for specifying pro-
tocol facets as separate model programs. A model program is a collection of guarded
update rules indexed by actions. A model program of a single facet can be subject to
liveness and safety analysis, which can be infeasible to perform for the whole proto-
col model. Instead, one can apply compositional reasoning in the following sence. If
a model program satisfies one property and another model program satisfies another
property, then the composition of those model programs satisfies both properties. Dis-
tilling facet model programs also fosters reuse, since facets, such as an algorithm for
request cancellation in a particular client-server protocol, typically reappear in similar
protocols.

Model programs of different facets of a protocol can be composed into a single model
program. Composition of model programs is syntactic, but the underlying trace seman-
tics is based on the classical theory of labeled transition systems (LTSs) [31,32]. This
enables a direct application of the formal LTS based theory of testing using IOCO [9] or

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 324–339, 2008.
c© IFIP International Federation for Information Processing 2008

Protocol Modeling with Model Program Composition 325

interface automata refinement [15]. The step semantics of model programs is based on
the theory of abstract state machines (ASMs) [25] with a rich background universe [6].
This enables explicit state exploration techniques [21] and symbolic analysis techniques
that support the needed background theories [36], as well as a range of other ASM tech-
nologies [8] to be applied to model programs.

A key property of the composition of model programs is that actions may include pa-
rameters as logic variables. When actions are synchronized, values are shared through
unification from one model program to another, which is different from communica-
tion through actions by composition of input/output automata [33], where input actions
in one model are synchronized with output actions in the other model. We provide
tool support for analyzing safety and liveness properties for basic and composed model
programs within the NModel framework [34]. We have integrated model program com-
position into a model-based test environment in NModel so that interoperability tests
can be driven from those combined models. The NModel framework uses C# for writ-
ing model programs and is explained in detail in [30], which also discusses the use of
model programs as a practical modeling technique.

To summarize, this paper makes the following contributions.

– We introduce a novel modeling technique for protocols using a decomposition of
a protocol into different facets that are modeled separately and composed using
model programs.

– We define formally the composition of model programs that simplifies and extends
the definition of parallel composition of model programs in [38]. In particular, the
composition admits sharing of state variables and can be used for state-dependent
scenario control.

– We illustrate the use of this modeling technique and composition on an excerpt of
an industrially relevant and non-trivial SMB2 protocol.

The remainder of the paper is organized as follows. Section 2 defines model pro-
grams and related notions needed in the sequel. Section 3 defines model program com-
position. Section 4 illustrates the application of the technique to a sample protocol.
Section 5 explains some aspects of the implementation and experiments. Section 6 is
about related work. We finish off the paper with a short conclusion.

2 Model Programs

Model programs can be viewed as abstract state machines (ASMs) [25] indexed by
actions. The main use of model programs is as high-level specifications in model-based
testing tools such as Spec Explorer [1,37] and NModel [34]. In Spec Explorer, one
of the supported input languages is the abstract state machine language AsmL [2,26].
AsmL is used in this paper as the concrete specification language for update rules that
correspond to basic ASMs with a rich background [6] T including arithmetic, sets,
maps, tuples, user defined data types, etc.

We let Σ denote the overall signature of function symbols. Part of the signature,
denoted by Σvar, contains function symbols whose interpretation may vary from state
to state. The remaining part Σstatic contains symbols whose interpretation is fixed by

326 M. Veanes and W. Schulte

the background theory. A ground term over Σstatic is called a value term. Formally,
the interpretation of a value term t is the same in all states and is denoted by [[t]]. An
example of a value term t, using AsmL syntax, is a range expression {3..7}; whose
value [[t]] is the set of all integers from 3 to 7.

A subset of Σstatic, denoted by Σaction are free constructors called action symbols. An
action is a value term f(t1, . . . , tn) where f is an action symbol, also called an f -action.
We also say action for [[f(t1, . . . , tn)]] = f([[t1]], . . . , [[tn]]). For all action symbols f
with arity n ≥ 0, and all i, 1 ≤ i ≤ n, there is a unique parameter variable denoted by
f.i. We write Σf for {f.i}1≤i≤n. Note that if n = 0 then Σf = ∅.

Definition 1. A model program P is a tuple (VP , AP , IP , RP), where

– VP is a finite subset of Σvar, called the state variables of P ;
– AP is a finite subset of Σaction, called the action symbols of P ;
– IP is a formula over ΣP = Σstatic ∪ VP , called the initial state condition of P ;
– RP is a family {Rf

P }f∈AP of action rules Rf
P = (Gf

P , Uf
P), where

• Gf
P is a formula over ΣP ∪ Σf called the guard or enabling condition of Rf

P ;
• Uf

P is an update rule over ΣP ∪ Σf called the update rule of Rf
P .

We often say action to also mean an action rule or an action symbol, if the intent is clear
from the context.

Example 1 (Credits). The following model program is written in AsmL. It specifies
how a client and a server need to use message ids, based on a sliding window proto-
col (see Section 4). Here we illustrate the components of the Credits model program
according to Definition 1.

var window as Set of Integer = {0}
var maxId as Integer = 0
var requests as Map of Integer to Integer = {->}

[Action("Req(_,m,c)")]
Req(m as Integer, c as Integer)

require m in window and c > 0
requests := Add(requests,m,c)
window := window difference {m}

[Action("Res(_,m,c,_)")]
Res(m as Integer, c as Integer)

require m in requests
require requests(m) >= c
require c >= 0
window := window union {maxId + i | i in {1..c}}
requests := RemoveAt(requests,m)
maxId := maxId + c

Its three state variables are indicated with the keyword var. Credits has two actions
Req and Res, indicated with the [Action] attribute on the corresponding method defi-
nition. The initial state condition is given by the initial assignment of values to the state
variables. The argument of the [Action] attribute provides the arity of the action sym-
bol and the mapping from the formal parameter names used in the method definition to
the corresponding parameter variables for the action symbol.1 Each occurrence of the

1 If the mapping coincides with the method signature, this argument can be omitted.

Protocol Modeling with Model Program Composition 327

placeholder ‘_’ indicates that the corresponding parameter variable is not referenced.
The Req action rule RReq

Credits has the following components. The guard GReq
Credits is the

conjunction of all of the require-statements. The update rule UReq
Credits is defined by the

body of the method. Note that the parallel update rule is the default in AsmL, thus both
assignments in the Req action are executed in parallel as a single transaction, although
in this case a sequential execution would yield the same updates. The Res action rule is
analogous. To summarize,

VCredits = {window, maxId, requests},

ACredits = {Req, Res},

ICredits = (window = {0} ∧ maxId = 0 ∧ requests = {�→}),
GReq

Credits = (Req.2 ∈ window ∧ Req.3 > 0),
UReq

Credits = (requests := Add(requests, Req.2, Req.3) ‖
window := window \ {Req.2}).

We introduce a special class of model programs used here for scenario control. A
finite state model program is a model program all of whose state variables have a finite
range. There is a straightforward encoding of regular expressions over the alphabet of
actions with placeholders to finite state model programs.2 Given such a regular expres-
sion ρ we write FSMP(ρ) for the corresponding finite state model program.

Example 2 (FSMP(Req(,0,2)∗)). The following model program P is a finite state
model program, since VP = ∅. Intuitively, P describes the closure Req(,0,2)∗.

[Action("Req(_,m,c)")]
Req(m as Integer, c as Integer)

require m = 0 and c = 2
skip

Let P be a fixed model program. A P -state is a mapping of VP to values.3 Given a
P -state S, an extension of S with the parameter assignment θ = {xi �→ vi}1≤i≤n is
denoted by (S; θ). Given an extended P -state S, the reduction of S to VP is denoted
by S � VP . Given an action a = f(t1, . . . , tn), let θa denote the parameter assignment
{f.i �→ [[ti]]}1≤i≤n.

Let S be a P -state, and let a be an f -action. We use the notion of firing of an update
rule U in a state S [25], denoted here by Fire(S, U), that yields the updated state,
provided that Fire(S, U) is defined (a consistent update set exists).4 Then a is enabled
in S if (S; θa) |= Gf

P and S′ = Fire((S; θa), Uf
P) � VP is defined. Then a causes a

transition from S to S′.
A labeled transition system or LTS is a tuple (S, S0, L, T), where S is a set of states,

S0 ⊆ S is a set of initial states, L is a set of labels and T ⊆ S × L × S is a transition
relation.

2 Model programs also have an accepting state condition that has been omitted from the discus-
sion in this paper.

3 More precisely, this is the foreground part of the state, the background part is the canonical
model of the background theory T .

4 There is no consistent update set when for example U is a parallel update of two distinct values
to the same state variable.

328 M. Veanes and W. Schulte

Definition 2. Let P be a model program. The LTS of P , denoted by [[P]] is the LTS
(S, S0, L, T), where S0, is the set of all P -states s such that s |= IP ; L is the set of all
actions over AP ; T and S are the least sets such that, S0 ⊆ S, and if s ∈ S and there is
an action a that causes a transition from s to s′ then s′ ∈ S and (s, a, s′) ∈ T .

A run of P is a sequence of transitions (si, ai, si+1)i<κ in [[P]], for some κ ≤ ω, where
s0 is an initial state of [[P]]. The sequence (ai)i<κ is called an (action) trace of P . The
run or the trace is finite if κ < ω. We write Traces(P) for the set of all finite traces of
P .

To illustrate the notion of a trace, consider P = FSMP(Req(,0,2)∗). In this case
[[P]] has a single state s0 that is the empty mapping, because there are no state variables.
There is a transition (s0, Req(v, 0, 2), s0) in [[P]] for all values v. Thus a trace of P
is any sequence of Req-actions whose second argument is 0 and third argument is 2,
which explains the intuition provided in Example 2.

3 Model Program Composition

Under composition, model programs with the same action signature synchronize their
steps for the actions. The guards of the actions in the composition are the conjunctions
of the guards of the component model programs. The update rules are the parallel com-
positions of the update rules of the component model programs. We use ‘‖’ to denote
parallel composition of update rules (ASMs) [25].

Definition 3. Let P and Q be model programs such that A = AP = AQ. The compo-
sition P ⊕ Q is (VP ∪ VQ, A, IP ∧ IQ, (Gf

P ∧ Gf
Q, Uf

P ‖ Uf
Q)f∈A).

The following facts follow immediately from the definition of composition. Let P and
Q (possibly with indices) denote model programs with the same action signature.

Fact 1 (Commutativity) [[P ⊕ Q]] = [[Q ⊕ P]].

Fact 2 (Associativity) [[(P1 ⊕ P2) ⊕ P3]] = [[P1 ⊕ (P2 ⊕ P3)]].

A straightforward technique to lift two model programs to use the same action signature,
that is commonly used to compose FSMs and LTSs, is provided by the following basic
action signature extensions.

Definition 4. Let P be a model program and f an action symbol not in AP . The en-
abling extension of P for f , denoted by P f , is the extension of P such that AP f =
AP ∪ {f} and Rf

P f = (true, skip). The disabling extension of P for f , denoted by

P−f , is the extension of P such that AP −f = AP ∪ {f} and Rf
P −f = (false, skip).

Example 3 (OrderedRequests). Consider the following model program, called Ordere-
dRequests.

var window as Set of Integer

[Action("Req(_,m,_)")]
Req(m as Integer)

require m = Min(window)
skip

Protocol Modeling with Model Program Composition 329

It requires the second argument of a Req action to be the smallest element in window.
Note that IOrderedRequests = true because the initial values of the state variables are un-
specified, i.e. all states of [[OrderedRequests]] are initial states. The enabling extension
OrderedRequestsRes adds the action rule (true, skip) for Res to OrderedRequests. The
model programs OrderedRequestsRes and Credits in Example 1 have the same action
signature.

The enabling (or disabling) extension of P for a set of action symbols F not in AP is
denoted by PF (or P−F). Note that P ∅ = P−∅ = P . Let P and Q be model programs.
Let P Q

def= [[PAQ\AP ⊕QAP \AQ]] and P �Q
def= [[P−AQ\AP ⊕Q−AP \AQ]]. Intuitively,

‘’ is an operator, where all actions whose symbol is not in the shared action signature
are interleaved; ‘�’ on the other hand disables all such actions.

In the sequel, we overload the composition operator ‘⊕’ so that, for arbitrary model
programs P and Q, P ⊕ Q stands for P Q.

3.1 Trace Intersection

When composition is used in an unrestricted manner then the end result is a new model
program which from the point of view of trace semantics might be unrelated to the
original model programs. In general this happens if the composed model programs share
state variables. The following proposition follows from [38, Theorem 1].

Proposition 1. Let P and Q be model programs such that AP = AQ and VP ∩VQ = ∅.
Then Traces(P ⊕ Q) = Traces(P) ∩ Traces(Q).

The main reason why this property is important is that it makes it possible to do com-
positional reasoning over the traces in the following sence. If all traces of P satisfy a
property ϕ and all traces of Q satisfy a property ψ then all traces of P ⊕ Q satisfy both
properties ϕ and ψ.

3.2 Trace Restriction

For scenario control, it is sometimes useful to refer to the state variables of a model
program in order to write a scenario for it. In other words, there is a contract model
program P and there is a scenario model program Q that may read the state variables
of P but it may not change the values of those variables. Let WriteSet(Q) be the set of
all state variables of Q that appear as left hand sides of assignment rules in Q.

Proposition 2. Let P and Q be model programs such that AQ ⊆ AP , and WriteSet(Q)
and VP are disjoint. Then Traces(P ⊕ Q) ⊆ Traces(P).

In this case composition of P and Q does not introduce traces that were not traces
of P . A typical use of such composition is guard strengthening that is illustrated in
Example 4.

Example 4. Let P be the model program Credits in Example 1 and let Q be the model
program OrderedRequests in Example 3. In this case VQ = {window} ⊂ VP and
WriteSet(Q) = ∅. In P ⊕ Q, Q strengthens the guard GReq

P so that all other choices
for the parameter m besides the smallest element in windows are eliminated, which is a
particular valid scenario for P . It is not possible to achieve this effect easily with “pure”
composition as in Proposition 1.

330 M. Veanes and W. Schulte

4 Sample Protocol

We consider an excerpt of the new SMB2 protocol, a successor of the Windows file-
sharing client-server protocol SMB [28], which is used for filesharing between Vista
machines and future Windows hosts. We consider a fixed client and a fixed server. The
client sends requests to the server and the server sends responses back to the client.
One can decompose SMB2 into various facets, that, when modeled individually, would
comprise between 20 and 30 model programs. We look at two facets that are represen-
tative from the point of view of complexity and size. The excerpt is henceforth called
SP.

– Credit negotiation describes how the client and the server need to use message ids,
based on a sliding window algorithm.

– Cancellation describes how the client can cancel a previously sent request.

Concrete messages of the protocol are mapped to (abstract) actions where message
fields that are not relevant for the given facets have been omitted. We consider three ac-
tion symbols and the following message fields. Each message has a command field that
indicates the operation communicated between the client and the server. This command
field is either mapped to the first argument of the action, or it is mapped to the action
symbol Cancel when the command is a special cancellation command.

– Req is a ternary action symbol that represents a request from the client to execute
a command. A request is an action Req(c,m,n), where c is a command, m is a
message id and n is a number of requested credits.

– Res is an action symbol that takes four arguments and represents responses from
the server. A response is an action Res(c,m,n,s) where c is a command, m is a
message id, n is a number of granted credits, and s is a status value.

– Cancel is a unary action symbol that represents a “meta” request from the client to
cancel a previous request. A cancellation request is an action Cancel(m) where
m is a message id.

4.1 Credit Negotiation

The client can use certain message identifiers to communicate with the server. The set
of available message identifiers can be seen as a window of numbers that changes over
time. The window is, strictly speaking, not a consecutive interval of numbers because
the client does not have to use the available numbers in any particular order. This is an
important aspect of the specification that leaves open implementation specific details
of the client-side of the protocol. An identifier of a request can only be used once.
The client can ask for credits in the requests that it sends to the server in order to
expand the window. The server may grant credits in its responses to the client. The
number of credits granted in a response determines how the window grows or shrinks as
time progresses. Note that the server may grant credits using different implementation
specific algorithms the details of which are left open by the specification.

The Credits model program is defined uniformly for all of the commands, except for
Cancel, see Example 1.

Protocol Modeling with Model Program Composition 331

The state variable window is the set of all message ids that the client may use to send
new requests to the server, requests is a map containing all the outstanding credit
requests with message ids as keys, and maxId is the largest id that has been granted
by the server. In the initial state of the model the only possible message id is 0, the
maximum id is also 0, and there are no pending requests.

The Req action records in the state variable requests that message m has an out-
standing credit request for c credits, and removes m from the window. The actual com-
mand (the first argument) is irrelevant here. The guard of this action rule requires that
m appears in the window and that the requested number of credits is positive. The Res
action updates the window with the new ids and updates the value of the maximum id.
This action is enabled if the given id is an outstanding request, and the granted credits
do not exceed the requested credits.

Validation. The client starves if it runs out of message ids and cannot send further
requests. An important safety requirement of the credits algorithm is that the client
must not starve. Note that this does not mean that the server always has to grant at least
one credit to the client in every response. It may be that the client has pending requests
and the server will eventually grant the client more credits. Thus, the state invariant
describing this safety condition is that if there are no pending requests then the window
must be nonempty.

[StateInvariant]
ClientHasEnoughCredits()

require (requests = {->}) implies (window <> {})

A natural question that arises here is if the Credits model program has any unsafe
states, i.e., states that are reachable (through a trace) from the initial state that violate
the state invariant. We use the finite state model program FSMP(Req(,0,2)∗) in
Example 2 to restrict the number of requested credits to 2 and the message id to 0.
[[Credits ⊕ FSMP(Req(,0,2)∗)]] is shown in Figure 1 and reveals an unsafe state
reached by the trace Req(,0,2),Res(,0,0,). The labels on the states show the
values of the state variables of the credits model program listed in the same order they
appear in Example 1. We need to strengthen the guard of the Res action so that if there
are no pending requests and the window is empty, then the granted number of credits
must be at least one; see Figure 2. Notice that if the window is empty and no credits are

{0}
0

{->}

{}
0

{0 -> 2}

Req(_,0,2)

{1,2}
2

{->}

{1}
1

{->}

{}
0

{->}

Res(_,0,2,_)

Res(_,0,1,_)

Res(_,0,0,_)

Fig. 1. Exploration of Credits⊕ FSMP(Req(,0,2)∗).

332 M. Veanes and W. Schulte

[Action("Res(_,m,c,_)")]
Res(m as Integer, c as Integer)

require m in requests
require requests(m) >= c
require c >= 0
require requests.Size > 1 or window <> {} or c > 0
window := window union {maxId + i | i in {1..c}}
requests := RemoveAt(requests,m)
maxId := maxId + c

Fig. 2. Correction of the Res action in the Credits model program. The guard is stengthened with
an additional condition, indicated in boldface.

enum Mode
Sent //Client has sent the request
Cancel //Client has asked to cancel the request

var reqMode as Map of Integer to Mode = {->}

[Action("Req(_,m,_)")]
Req(m as Integer)

require m in window
reqMode := Add(reqMode,m,Sent)

[Action]
Cancel(m as Integer)

if reqMode(m) = Sent
reqMode := Add(reqMode,m,Cancel)

[Action("Res(_,m,_,status)")]
Res(m as Integer, status as Boolean)

require m in reqMode.Keys
require (status or reqMode(m) = Cancel) //status=false means cancelled
reqMode := RemoveAt(reqMode,m)

Fig. 3. Cancellation model program

granted then there must be at least two message ids pending when the new condition is
checked, because the update rule will remove one of the ids.

4.2 Cancellation

Cancellation enables the client to cancel requests that have been sent to the server. In
order to cancel a previously sent request with message id m, the client sends a cancel-
lation message to the server that identifies the request to be cancelled by including its
id in the message. The model program is shown in Figure 3. Notice that it is natural
to refer to the window of the Credits model program for the valid message ids in a
request.

The state variable reqMode records for each message id whether it has been sent
or cancelled by the client. Initially, no request has either been sent or cancelled, so the
value of reqMode is the empty map.

The Req action records the mode of the message as Sent. The Cancel action is
always enabled, it updates a Sent mode to Cancel mode, and ignores the request
otherwise (this behavior is needed for robustness). The Res action removes the pending
request and requires that the request has indeed been cancelled by the client if the status

Protocol Modeling with Model Program Composition 333

{->}

Cancel(5)
{5->Sent}Req(_,5,_)

Res(_,5,_,true)
{5->Cancel}

Cancel(5)

Res(_,5,_,false)
Res(_,5,_,true)

Cancel(5)

Fig. 4. Exploration of Cancellation ⊕ Cancel5

is false. Note that the client may try to cancel a request but is too late to do so, when
the server has already completed it but the response has not yet reached the client due
to network latencies. Therefore, the status of a response to a request that the client tried
to cancel, is either true or false, so that a potential race condition that would otherwise
arise in the specification is avoided.

Validation. Cancellation behaves uniformly for all message ids. It is therefore enough
to fix a single message id, say 5, to expose all possible isomorphic behaviors. As above,
we use a finite state model program to do this.

Cancel5 = FSMP({Cancel(5),Req(,5,),Res(,5, ,)}∗)

Exploration of [[Cancellation ⊕ Cancel5]] is shown in Figure 4. The labels on the states
show the value of reqMode. Using more message ids does not provide any additional
useful information about Cancellation, but blows up the state space exponentially in the
number of distinct message ids. With k distinct message ids there are 3k states.

4.3 Composition

Once the individual facets have been modeled and validated in isolation, we can com-
pose some or all of their model programs to validate their interactions. We use an
additional model program called Commands: if a request with id m has command c,
then the response with id m must also have command c, i.e., the server cannot re-
spond with a command that is different from the one it was requested to execute. Note
that it is convenient to refer to window of the Credits model program in the Com-
mands model program for the domain of message ids. (The definition of the Com-
mands model program is straightforward, using a map from message ids to commands.)
We assume that the commands are A and B.5 Note that only the first two arguments
of Req and Res actions are relevant in the Commands model program. Moreover,
we use two scenario model programs: AB = FSMP(Req(A, ,)Req(B, ,)) and
M = FSMP({Cancel(1),Req(, ,2)}∗). AB restricts the client behavior so that
a single A request is followed by a single B request. M restricts the client behavior so
that only message 1 is ever cancelled, and all requests ask for two credits. Exploration
of the composition

SPscenario = Credits ⊕ Cancellation ⊕ Commands ⊕ AB ⊕ M

is illustrated in Figure 5. All self-loops of Cancel(1) are hidden. All occurrences of
placeholders (for the status argument of responses) indicate that both true and false are

334 M. Veanes and W. Schulte

0

1

Req(A,0,2)

2

4

Req(B,1,2)

3

5

Req(B,1,2)

87 10

Res(A,0,2,true)Res(A,0,1,true)

Res(B,1,1,true)Res(B,1,2,true) 6

Cancel(1)

Res(B,1,1,_)Res(B,1,2,_)

Res(B,1,0,true)Res(B,1,1,true) Res(B,1,2,true)9

Cancel(1)

Res(B,1,0,_)Res(B,1,1,_) Res(B,1,2,_)

Fig. 5. Exploration of SPscenario

Client Server

Req(A,0,2)

Res(A,0,1,true)

Req(B,1,2)

Cancel(1)

Res(B,1,1,false)

Fig. 6. A trace in Figure 5 from state 0 to state 8

possible. Notice that the server behavior is unconstrained. In the states 7, 8 and 10, the
value of window is, respectively, {2, 3}, {2}, and {2, 3, 4}, corresponding to all the
possible ways in which the server could grant credits on the way from the initial state.
A particular trace from the initial state to state 8 in Figure 5 is illustrated in Figure 6.

5 Implementation and Experiences

All experiments in this paper have been made within the NModel framework using C#
as the modeling language. The complete examples, as well as the full source of NModel
itself, can be downloaded from [34]. The exploration and the composition examples
have been carried out using the mpv utility of NModel.

In NModel a model program is scoped by a namespace. Within that namespace,
classes can be given a [Feature] attribute that declares that class as a feature or

5 In reality, SMB2 has 19 commands.

Protocol Modeling with Model Program Composition 335

submodel program of the full model program. This mechanism can be used to construct
separate facet model programs that share state variables, as discussed in this paper. The
main composition operator in NModel assumes that the composed model programs do
not share state variables.

The FSMP construct is supported in NModel by entering a textual representation of
a nondeterministic finite automaton or NFA (e.g. in a text file), that is converted to a
finite state model program representing a lazy determinization of the NFA based on the
Rabin-Scott algorithm, see e.g. [29, Theorem 2.1].

For conformance testing of the server, the client actions are declared controllable
and the server actions (in this case responses) are declared observable. For online (or
on-the-fly) test execution, with the ct utility of NModel, the composed model program
is explored lazily by firing the actions one at a time, i.e. building up a trace of the
model program incrementally. Due to the lazy exploration, scalability is not an issue.
The discussion about accepting states has been omitted in this paper. Accepting states
are used to define states where a trace may end, thus providing a way to finish a test in
a clean way.

Model program analysis in NModel is based on explicit state exploration over abstract
states. Much of the algorithmic support builds on earlier work in Spec Explorer [37]. In
addition, the exploration includes a pruning technique based on isomorphism checking
of states that use objects and unordered data structures [40].

NModel does currently not support symbolic analysis. We are investigating an SMT
approach for doing reachability analysis of model programs [36], where we use Z3 [41,5]
for our implementation, as it supports background theories [17,16] for arithmetic as well
as sets and maps. A prototype is being implemented for a fragment of model programs
written in AsmL. Integration of this analysis into NModel is future work.

The entire SMB2 specification contains over 300 pages of natural language specifi-
cation and corresponds to roughly 20 facets. The specification is written in a way where
the different facets are specified in separate sections of the document and therefore the
corresponding model programs are closely tied to these sections. Thus, having separate
facet model programs matches well with the style of the natural language specs and
makes it possible to do requirements tracking in the corresponding model programs.

The internal version of the modeling tool based on model programs is called Spec
Explorer 2007 and is being developed and used internally in Windows as a core tech-
nology for protocol modeling and model-based testing. In Spec Explorer 2007, model
programs and composition are used for modeling and scenario control of industrial
application-level network protocols. The entire SMB2 protocol has been modeled. In
addition to the contract part of the protocol, over 100 additional model programs were
used for scenario control. The use of composition between contract model programs and
model programs for scenario control (test purposes) is one of the core techniques for
controlling exploration [24]. For complex protocols it may be hard to identify facets due
to dependencies. A crude classification of the protocols we have looked at is whether
remote procedure call or message passing is being used, where SMB2 belongs to the
latter kind. Being able to decompose a large protocol into facets is crucial for the latter
kind of protocols.

336 M. Veanes and W. Schulte

At least half of the effort in model-based conformance testing of protocols is actually
spent in harnessing of the implementation. A big part of this effort goes into implement-
ing a protocol-specific adapter from concrete messages on the wire to abstract actions.
When defining a mapping from concrete messages on the wire not all of the fields of
messages are relevant. For example, some of the fields in a message are solely related to
well-formedness of the message structure, checking of which can be part of a message
validation layer that is orthogonal to the behavioral model.

6 Related Work

The notion of facets as behavioral aspects of a protocol is similar to protocol features.
Feature oriented specifications have a long standing in the telecommunication indus-
try [42], because it makes specifications easy to change and individual features easy to
understand, but it also introduces semantic challenges due to unintended feature inter-
actions [10]. More recently, features, as increments of program functionality, are being
used in feature oriented programming (FOP) for step-wise refinement of systems, and
are supported by theory and tools using algebraic specifications [4]. In FOP, features
are viewed as program transformations, and the purpose is to support feature oriented
development through program synthesis and generative programming [4]. This is quite
different from model programs that provide a partial view of the expected behavior of a
system as an LTS, where the system itself is a black box, that is typically a combination
of different applications from different vendors. However, the relationship between the
mathematical underpinnings of model programs and FOP deserves a closer look.

Composition of model programs is a lazy automata-theoretic composition of the un-
derlying LTSs, where actions are composed by unification. The unification between
action parameters happens through the conjoined action guards. The motivation comes
from the domain of model-based testing and analysis tools such as Spec Explorer [37].
A survey of model-based approaches to software modeling, with an emphasis on test-
ing, is given in the recent book [35]. The notion of model program composition is a
simplified and extended version of parallel composition of model programs in [38].
Work related to other forms of composition of automata is discussed in [38]. The use
of several feature classes within a single C# model program in NModel [34] allows
for sharing of state variables across features. This enables state-dependent parameter
generation and guard strengthening, which is, in general, not possible with composition
of model programs with disjoint state signatures. Feature classes are also implemented
in Spec Explorer 2007 [24]. The semantics of model programs can also be formulated
in terms of labeled Kripke structures. This formulation has the advantage that one can
adapt techniques that are used for model checking of temporal properties of concurrent
software systems, including counterexample-guided abstraction refinement and compo-
sitional reasoning [12].

In aspect oriented programming two concerns crosscut when the related method be-
haviors intersect [19]. In the current paper the crosscutting of concerns corresponds to
interacting behaviors between different facets of a protocol. The sharing of information
is achieved through unification of actions, that allow data to be shared between traces
but make the sharing explicitly visible in action traces. Model program composition

Protocol Modeling with Model Program Composition 337

might be a viable approach for formalizing certain forms of composition of trace based
aspects [18] or model weaving of stateful aspects in aspect oriented modeling [13].

The main application of model programs is for analysis and testing of software sys-
tems. In particular, for passive testing or runtime monitoring, a model program can be
used as an oracle that observes the traces of a system under test and reports a failure
when an action occurs that is not enabled in the model. This is related to aspect oriented
approaches to trace monitoring [3]. In the context of testing of reactive systems with
model programs [39], the action symbols are separated into controllable and observable
ones. In that context the semantics of a model program as an LTS [31,32] is fundamen-
tal in order to use IOCO [9], or refinement of interface automata [14], for formalizing
the conformance relation.

Model program composition as defined in this paper is independent of the mech-
anism of exploration or analysis. Various approaches, including explicit state explo-
ration [30] as well as symbolic reachability analysis [36], may be applied. The main
difference compared to composition of action machines [23] is that composition of
model programs is syntactic, whereas composition of action machines is defined in the
style of natural semantics using inference rules and symbolic computation that incor-
porates the notion of computable approximations of subsumption checking between
symbolic states. The computable approximations reflect the power of the underlying
decision procedures that are being used and are an integral part of the composition,
using a three-valued logic. More about model-based testing applications and further
motivation for the composition of model programs can be found in [11,23,39,37].

Model programs are also related to symbolic transition systems that have an explicit
notion of data and data-dependent control flow [20].

The FSMP(ρ) construction introduced here is a subset of a more general coordination
language approach for scenario control called Cord [22].

Besides protocol modeling, model program composition is also being investigated
as a technique for modeling and analyzing scheduling problems in embedded real-time
systems [27].

When considering interaction of model programs that require synchronization or
communication on objects rather than actions, then composition of model programs
may be too limited. A more general foundation can be based on interactive abstract
state machines [7].

7 Conclusion

The modeling approach introduced in this paper is being applied in a variety of indus-
trially relevant modeling and testing contexts. In particular, model programs are being
adopted as a technique for protocol modeling within Microsoft. The use of composition
of model programs is an important part of this effort that enables scenario control as
well as a divide-and-conquer approach to model complex protocols. Individual facet
model programs can be analyzed separately, they can be composed for interoperability
analysis and for constructing the oracle for the full protocol model for test case genera-
tion and conformance testing.

338 M. Veanes and W. Schulte

References

1. Spec Explorer (released, January 2005), http://research.microsoft.com/
specexplorer

2. AsmL, http://research.microsoft.com/fse/AsmL/
3. Avgustinov, P., Bodden, E., Hajiyev, E., Hendren, L., Lhoták, O., de Moor, O., Ongkingco,

N., Sereni, D., Sittampalam, G., Tibble, J., Verbaere, M.: Aspects for trace monitoring. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS,
vol. 4262, pp. 20–39. Springer, Heidelberg (2006)

4. Batory, D.: A tutorial on feature oriented programming and the AHEAD tool suite. In:
Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 3–35. Springer,
Heidelberg (2006)

5. Bjørner, N., de Moura, L.: Z3: An efficient SMT solver. In: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2008). LNCS, vol. 4963, Springer, Heidel-
berg (2008)

6. Blass, A., Gurevich, Y.: Background, reserve, and gandy machines. In: Clote, P.G., Schwicht-
enberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 1–17. Springer, Heidelberg (2000)

7. Blass, A., Gurevich, Y.: Ordinary interactive small-step algorithms, I. ACM Transactions on
Computation Logic 7(2), 363–419 (2006)

8. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, Heidelberg (2003)

9. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliography. In:
Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp.
187–193. Springer, Heidelberg (2001)

10. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a critical
review and considered forecast. Computer Networks 41(1), 115–141 (2003)

11. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: Test-
ing concurrent object-oriented systems with Spec Explorer (extended abstract). In: Fitzger-
ald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 542–547. Springer,
Heidelberg (2005)

12. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based software
model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999,
pp. 128–147. Springer, Heidelberg (2004)

13. Cottenier, T., van den Berg, A., Elrad, T.: Stateful aspects: the case for aspect-oriented mod-
eling. In: AOM 2007, pp. 7–14. ACM, New York (2007)

14. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification: Theory
and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

15. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001, pp. 109–120. ACM,
New York (2001)

16. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning, F. (ed.) CADE
2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)

17. de Moura, L., Bjørner, N.: Model-based theory combination. In: 5th International Work-
shop on Satisfiability Modulo Theories (SMT 2007), Berlin, Germany, July 2007, pp. 46–57
(2007)

18. Douence, R., Fradet, P., Südholt, M.: Aspect-Oriented Software Development. In: Trace-
based Aspects, pp. 201–218. Addison Wesley, Reading (2004)

19. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.: Discussing aspects of AOP.
Commun. ACM 44(10), 33–38 (2001)

20. Frantzen, L., Tretmans, J., Willemse, T.: A symbolic framework for model-based testing.
In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS,
vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

http://research.microsoft.com/
specexplorer
http://research.microsoft.com/fse/AsmL/

Protocol Modeling with Model Program Composition 339

21. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state machines from
abstract state machines. In: ISSTA 2002. Software Engineering Notes, vol. 27, pp. 112–122.
ACM, New York (2002)

22. Grieskamp, W., Kicillof, N.: A schema language for coordinating construction and composi-
tion of partial behavior descriptions. In: 5th International Workshop on Scenarios and State
Machines: Models, Algorithms and Tools (SCESM) (2006)

23. Grieskamp, W., Kicillof, N., Tillmann, N.: Action machines: a framework for encoding and
composing partial behaviors. IJSEKE 16(5), 705–726 (2006)

24. Grieskamp, W., MacDonald, D., Kicillof, N., Nandan, A., Stobie, K., Wurden, F.: Model-
based quality assurance of windows protocol documentation. In: First Intl. Conf. on Software
Testing, Verification and Validation, ICST, Lillehammer, Norway (April 2008)

25. Gurevich, Y.: Specification and Validation Methods. In: Evolving Algebras 1993: Lipari
Guide, pp. 9–36. Oxford University Press, Oxford (1995), research.microsoft.
com/∼gurevich/Opera/103.pdf

26. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of asml. Theor. Comput.
Sci. 343(3), 370–412 (2005)

27. Helander, J., Serg, R., Veanes, M., Roy, P.: Adapting futures: Scalability for real-world com-
puting. In: Proc. 28th IEEE Real-Time Systems Symposium, pp. 105–116. IEEE, Los Alami-
tos (2007)

28. Hertel, C.: Implementing CIFS: The Common Internet File System. Prentice-Hall, Engle-
wood Cliffs (2003)

29. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading (1979)

30. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing and Analysis
with C#. Cambridge University Press, Cambridge (2007)

31. Keller, R.: Formal verification of parallel programs. Communications of the ACM, 371–384
(July 1976)

32. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms. In: 6th an-
nual ACM Symposium on Principles of distributed computing, pp. 137–151. ACM, New
York (1987)

33. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Quarterly 2(3), 219–
246 (1989)

34. NModel (released, May 2007), http://www.codeplex.com/NModel
35. Utting, M., Legeard, B.: Practical Model-Based Testing - A tools approach. Elsevier Science,

Amsterdam (2006)
36. Veanes, M., Bjørner, N., Raschke, A.: An SMT approach to bounded reachability analysis of

model programs. In: Suzuki, K., Higashino, T., Yasumoto, K., El - Fakih, K. (eds.) FORTE
2008. LNCS, vol. 5048, pp. 53–68. Springer, Heidelberg (2008)

37. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson, L.:
Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer. In: Hierons,
R., Bowen, J., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 39–76.
Springer, Heidelberg (2008)

38. Veanes, M., Campbell, C., Schulte, W.: Composition of model programs. In: Derrick, J.,
Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 128–142. Springer, Heidelberg (2007)

39. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model programs.
In: Proc. ESEC/FSE-13, pp. 273–282. ACM, New York (2005)

40. Veanes, M., Ernits, J., Campbell, C.: State isomorphism in model programs with abstract
data structures. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 112–127.
Springer, Heidelberg (2007)

41. Z3 (released, September 2007),http://research.microsoft.com/projects/z3
42. Zave, P.: Feature interactions and formal specifications in telecommunications. Com-

puter 26(8), 20–29 (1993)

research.microsoft.
com/~gurevich/Opera/103.pdf
http://www.codeplex.com/NModel
http://research.microsoft.com/projects/z3

Author Index

Abdulla, Parosh Aziz 69
Aman, Bogdan 234

Baarir, Souheib 99
Basu, Ananda 116
Ben Henda, Noomene 69
Bidinger, Philippe 116
Billington, Jonathan 169
Bjørner, Nikolaj 53
Bogdoll, Jonathan 37
Bozga, Marius 116

Cheng, Chih-Hong 185
Ciancia, Vincenzo 134
Ciobanu, Gabriel 234

de Frutos Escrig, David 283
Delzanno, Giorgio 69
Derrick, John 201

Fábregas, Ignacio 283
Ferrari, Gian Luigi 134

Gallasch, Guy Edward 169
Gotzhein, Reinhard 218
Guanciale, Roberto 134
Guo, Qiang 201
Gupta, Amar Kumar 169

Haziza, Frédéric 69
He, Jifeng 149
Hermanns, Holger 37
Hoch, Csaba 201
Hsu, Yating 299

Jackson, Ethan K. 1
Ji, Dongyao 305

Lee, David 299
Legond-Aubry, Fabrice 99
Li, Jing 149
Llana, Luis 267

Nicolay, Joachim 218
Núñez, Manuel 267

Pajault, C. 84
Palomino, Miguel 283
Pradat-Peyre, J.-F. 84

Raschke, Alexander 53
Rezine, Ahmed 69
Rousseau, P. 84

Satoh, Ichiro 251
Schulte, Wolfram 1, 324
Shu, Guoqiang 299
Sifakis, Joseph 116
Sopena, Julien 99
Strollo, Daniele 134

Toben, Tobe 21

Veanes, Margus 53, 324

Wang, Farn 185
Wang, Wei 305
Webel, Christian 218

Zhang, Lijun 37
Zhu, Huibiao 149

	Title Page
	Preface
	Organization
	Table of Contents
	Model Generation for Horn Logic with Stratified Negation
	Introduction
	Background and Running Example
	Classical Horn Logic
	Closed World Assumption
	Negation-as-Failure

	Definitions
	Basic Concepts
	Substitutions and Unifiers
	Horn Logic with CWA and NAF
	The Model Generation Problem

	Utilizing Backwards Chaining
	Simplification of Backwards Chaining
	Restratification
	Generating Schedules: Part 1

	Eliminating the Closed World
	Generating Schedules: Part 2
	A Better Algorithm Using SMT

	Conclusion and Future Work

	Counterexample Guided Spotlight Abstraction Refinement
	Introduction
	Preliminaries
	Dynamic Systems
	Spotlight Abstraction of Dynamic Systems
	Specification Logic for Dynamic Systems

	Spotlight Abstraction Refinement
	Evaluation
	Conclusion

	An Experimental Evaluation of Probabilistic Simulation
	Introduction
	Preliminaries
	Optimization Options
	Case Studies
	Regular Case Studies
	Randomly Generated Models

	Conclusions

	An SMT Approach to Bounded Reachability Analysis of Model Programs
	Introduction
	Model Programs
	Background Theory
	Variables and Values
	Actions
	Update Rules
	Model Program Definition
	Composition of Model Programs

	Bounded Reachability of Model Programs
	Step Formula Creation
	Reachability
	Array Model Programs and Quantifier Elimination

	Implementation Using Z3
	Experiments
	Related and Future Work

	Parameterized Tree Systems
	Introduction
	Preliminaries
	Parameterized Tree Systems
	Operational Semantics
	Approximation
	Scheme
	Algorithm
	Case Studies
	The Tree- rbitA er Protocol
	The IEEE 1394 Tree Identification Protocol

	Experiments
	Conclusions and Future Work
	References

	Adapting Petri Nets Reductions to Promela Specifications
	Introduction
	Petri Nets Transitions Agglomerations
	Brief Petri Nets Definitions and Notations
	Petri Nets Agglomerations

	Simplifying Promela Model Analysis
	The Promela Language
	Syntactical Promela Agglomerations

	Experimentations
	Related Works on Syntactical Model Reductions
	Conclusion
	Agglomerated Petri Net Definition

	Verification of a Hierarchical Generic Mutual Exclusion Algorithm
	Introduction
	Related Work
	Our Composition Algorithm - An Informal Approach
	Coordinator Algorithm
	Coordinator Automaton

	Our Composition Algorithm - A Formal Model
	A Basic Mutual Exclusion Aware Application Modelization
	Our Composition Algorithm Petri Net

	Fundamental Properties
	Formal Expression of Properties

	Simplified Models for Mutual Exclusion Algorithms
	Model Checking
	Conclusion

	Distributed Semantics and Implementation for Systems with Interaction and Priority
	Introduction
	BIP -- Basic Semantic Models
	Global State Semantics
	Partial State Semantics
	Comparing Global and Partial State Semantics

	Partial State Semantics with Oracles
	Basic Definitions and Properties
	Oracles
	Correctness with Respect to Global State Semantics

	Distributed Semantics
	Implementation
	Experimental Results

	Conclusion

	Checking Correctness of Transactional Behaviors
	Introduction
	Background: The Signal Calculus
	Reaction Rules

	LTS Semantics
	The Car Repair Scenario
	The Sensoria Scenario
	Modeling the Car Repair Scenario
	Checking Sub-transaction Isolation

	Future Work

	Specifying and Verifying Web Transactions
	Introduction
	Compensable Transaction
	The Transactional Model
	Behavioral Dependencies
	A Case Study

	Verification
	Acceptable Termination States
	Verifying Temporal Constraints

	Related Work
	Conclusion

	Modelling and Analysing the Contract Net Protocol - Extension Using Coloured Petri Nets
	Introduction
	Contract Net Protocol - Extension
	CPN Model of the Contract Net Protocol - Extension
	Assumptions
	Declarations
	Model Structure
	Model of the Auctioneers
	Model of the Bidders

	State Space Analysis Results
	Absence of Deadlocks and Consistency in Beliefs
	Absence of Livelocks and Proper Termination
	Absence of Dead Code
	Channel Bound

	Conclusions and Future Work

	Program Repair Suggestions from Graphical State-Transition Specifications
	Introduction
	Related Work
	State Graphs
	Repairs and Their Cost Estimation
	Upper-Bounds for Minimum Repair Cost
	Upper-Bounds from the Graph Theory
	A Logic-Based Algorithm for the MCS

	Techniques for Repair Suggestions with a Cost Concept
	Identifying the Common Structure Between Am and As
	Identifying of the Difference Between Am and As
	Constructing Repair Based on the Common Structure and the Difference
	Suggestions for Repairing Programs

	Implementation and Experiment
	Conclusion and Future Directions

	Verifying Erlang Telecommunication Systems with the Process Algebra $μ$CRL�
	Introduction
	Telecommunication System
	System Infrastructure
	Client Behaviour Modelling

	Erlang Implementation
	Functional Server Implementation
	Client Implementation

	Translating Our Case Study into CRL
	Pre-processing
	Translating the Server Component
	Translating the Client Component
	System Translation

	Verifying the Telecommunication System with CRL
	Property Verification
	State Space Investigation

	Conclusions and Future Work

	NQSL - Formal Language and Tool Support for Network Quality-of-Service Requirements
	Introduction
	Related Work
	Formalization of Quality-of-Service
	Formalization of Network QoS Requirements
	Formal QoS Mappings

	The Network Quality-of-Service Specification Language
	Tool Support for NQSL
	Graphical NQSL Editor
	NSQL Analyzer
	NQSL-to-SDL Compiler

	Conclusions and Future Work

	Timed Mobile Ambients for Network Protocols
	Introduction
	Mobile Ambients with Time Constraints
	Semantics

	Transmission Control Protocol
	Timed Mobile Ambients Behaviour
	Location Bisimulation
	Timed Location Bisimulation
	Properties Related to the Passage of Time

	Conclusion

	A Specification Framework for Earth-Friendly Logistics
	Introduction
	Background
	Example Scenario
	Requirements
	Basic Approach
	Remarks

	Specification Language for Milk-Run Truck Routes
	Order Relation for Route Selection
	Implementation
	Route Selection Algorithm
	Route Specification in RFID Tags
	Early Experience

	Related Work
	Future Work
	Conclusion

	A Hierarchy of Equivalences for Probabilistic Processes
	Introduction
	An Overwiew of PPA
	Syntax and Operational Semantics of PPA
	Testing Semantics

	The Reactive Model
	Alternative Characterization for R
	The must Reactive Equivalence
	The may Reactive Equivalence

	The Generative Model
	The must Generative Equivalence

	The Limited Generative Model
	Conclusion

	Multiset Bisimulations as a Common Framework for Ordinary and Probabilistic Bisimulations
	Introduction
	Basic Definitions
	Natural Transformations and Bisimulations
	\equiv^α-simulations Through Quotients of Bisimulations
	Natural Transformations and Simulations
	Combining Non-determinism and Probabilistic Choices
	Conclusion

	Detecting Communication Protocol Security Flaws by Formal Fuzz Testing and Machine Learning
	Motivation
	Formal Protocol Synthesis
	FSM Learning Algorithm
	Partial FSM Minimization Algorithm

	Fuzz Testing Strategy
	Experiments and Evaluation
	Conclusion
	References

	Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol
	Introduction
	A Formal Model for Security Protocols
	Protocol Verification Using Spin
	Formalization of the Protocol
	Formalization of the Intruder

	Formalization of the Authenticity Property
	Formalization of the Authenticity Property
	The Experimental Result

	Formalization of the Collusion Attack
	Introduction of the Collusion Attack
	Formalization of the Collusion Attack
	The Experimental Result
	The Modified Scheme
	Relevant Analysis

	Conclusion

	Protocol Modeling with Model Program Composition
	Introduction
	Model Programs
	Model Program Composition
	Trace Intersection
	Trace Restriction

	Sample Protocol
	Credit Negotiation
	Cancellation
	Composition

	Implementation and Experiences
	Related Work
	Conclusion

	Author Index

