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Abstract. Decision making is an important issue in robot soccer, which has not 
been investigated deeply enough by the RoboCup research community. This 
paper proposes a probabilistic approach to decision making. The proposed 
methodology is based on the maximization of a game situation score function, 
which generalizes the concept of accomplishing different game objectives as: 
passing, scoring a goal, clearing the ball, etc. The methodology includes a 
quantitative method for evaluating the game situation score. Experimental results 
in a high-level strategy simulator, which runs our four-legged code in simulated 
AIBOs’ robots, show a noticeable improvement in the scoring effectiveness 
achieved by a team that uses the proposed approach for making decisions.  

1   Introduction 

The aim of this paper is to propose a general methodology for taking decisions 
probabilistically in robot soccer. In a robotic soccer match, a player needs to take 
several decisions as for example: (i) where to position itself in the field when not 
having the ball, (ii) when to approach the ball, (iii) when to act as a support player, 
either supporting an attacker or a defender, (iv) what movements to do with the ball 
when having it, and (v) when and (vi) to which position to kick the ball. The decisions 
must take into account the role of the robot (defender, attacker, etc), the state of the 
game (score), the robot surround (position of teammates, opponents and the ball), and 
the teammates actions. In addition, decisions should be taken as fast as possible. 

Most of the existent work related with decision making in robot soccer has focused 
in resolving specific tasks such as pass selection, and has not taken enough care of the 
big picture. The few approaches that consider several tasks at the same time, start 
their reasoning by considering a lot of reasonable decision criterions, and finally 
trying to mix them as best as possible. On the contrary, we believe that any strategy 
must start by defining a clear and general objective to be accomplished. Then, this 
general objective may be decomposed in more specific ones. In soccer, the general 
objective is to win the match, which can be also said as: “to score more goals than the 
opponent”. Thus, instead of making a detailed list of possible risks, gains and costs, 
and then trying to take them all into account in the best way, we are proposing to 
reason in the opposite way: to clearly define the general objective to achieve, and then 
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to find the more relevant criterions that can lead us to right decisions in order to 
accomplish this objective. 

When the problem is faced in this fashion, it is clear how to balance the specific 
objectives as passing the ball, shooting to the goal, etc., and a wide spectrum of 
decisions’ classes can be performed. Probabilities are nice to define such an approach, 
because in a probabilistic framework the natural uncertainties found in the process 
can be easily considered. The here-proposed methodology considers a score function 
of a given game situation. Decisions are taken in order to maximize the expected 
value of this score function. To make the kick decisions probabilistically, Montecarlo-
based algorithms are used to integrate the PDFs (Probability Density Functions) of the 
available kicks over the field space. Another particularity of the proposed system is 
the way it takes opponents into account: they are not merely seen as possible blockers 
of the intended actions. Instead, we consider that the opposite team is intending, as 
much as the own, to score goals. Thus, we evaluate their possibilities with the same 
deepness that we do with the own: all of our analysis is symmetric for both teams. As 
a result, the presented approach is able to naturally balance defensive and offensive 
behaviors, and furthermore, it is able to change this balance according to the present 
situation. As human players do, robots following our approach will be more averse to 
risk when facing a defensive situation, and will gradually become more prone to take 
risks as the situation gets more offensive. Finally, the proposed methodology provides 
a quantitative method for evaluating the game situation score. 

The advantages of the proposed system are the following: (i) the method relays only on 
the expected scored goal difference, and not in others conventionally taken into account 
such as pass success or ball possession time length; (ii) as stated in [8], when the space of 
the possible decisions is explored with a grid, it is possible to balance the accuracy of the 
decision and the computational cost; (iii) the uncertainty in the kicks result is considered; 
and (iv) the symmetric analysis of the situations allows a natural balancing between 
offensive and defensive behaviors. One disadvantage of the proposed method is the 
assumption of arbitrary models for the calculation of several of the probabilities. However, 
we believe this disadvantage may be corrected, by redefining if necessary the model of 
these probabilities, without affecting the core of the proposed system. 

This paper is organized as follows. In section 2 is presented some related work. 
The proposed probabilistic methodology for decision making is described in section 
3. In section 4, experimental results are presented. Finally, in section 5 conclusions of 
this work are given. 

2   Related Work 

For simulated soccer there have been proposed several interesting approaches that take 
into account several factors to make decisions ([4][7][8] to name a few). Some of them 
are based in reward functions, but finally, they use heuristics to mix probabilities (for 
example it is not clear how to compare the reward of a successful pass with the one of a 
successful shoot to the goal). Besides, they do not consider the uncertainty in the kicks’ 
result. 
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When choosing an appropriate kick for an objective, most of the teams consider the 
time that it takes to be realized, the ball departure angle, and the shoot power, which 
is reflected on the ball speed after the kick (see for example the Team Description 
Papers in [2]). This information is usually acquired using statistics of data obtained 
from the repetition of a particular kick, and calculating the mean values of the 
distance and the angle of the final ball position for each available punch. There are 
different ways to choose the kick as a function of these parameters. From the strategic 
point of view there are differences at the moment of choosing a kick. For instance, the 
method implemented by the German Team [5] to pass the ball does not only use the 
information provided by its team partners; it uses in addition some visual information 
about the position of the receiver. Then it chooses the pass so that the objective is 
exactly the position of the receiving robot, which has to be warned right on that 
moment to react, and go back to the initial position for a better control of the ball. 

In [1], it is proposed an interesting approach to deal with kicks uncertainty, based on 
a MonteCarlo sampling. The probabilities of accomplishing some prioritized objectives 
(passing, self-passing, shooting, and clearing) were estimated for each kick. We have 
incorporated the idea of the MonteCarlo sampling to our work, but instead of using a 
prioritized list of objectives for the objective and kick selection, we are proposing the 
use of a generalized objective which takes into account simultaneously all the listed 
objectives considered in [1], plus other possible objectives which are very difficult to 
consider in such an approach, as for example leading passing (passing not directly to the 
teammate but to a point ahead). 

3   Proposed Approach 

3.1   Game Segment 

A RoboCup soccer match may be split into game segments. A game segment is the 
interval between two kick offs (kick offs occur when the match starts, and after a goal 
is scored). Every game segment may end in two ways: time out or goal. We can then 
define the score obtained in the current game segment as: 
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Where gω ′  , tω  and gω  are respectively the events: “the opposite team scores”, 
“time is out before anyone scores” and “the own team scores”. 

3.2   Ball Control Action 

A ball control action (BCA) is what a robot does after catching the ball, and it consists 

in a relative displacement ( ),
T

x yΔ = Δ Δx  and rotation θΔ  of the robot holding the 

ball, and a kick k of the ball: 
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( ),
T

a = d k ; ( ),
Tθ= Δ Δd x  (2) 

Each game segment may be seen as a succession of BCA’s { }ka . We have a 

limited set of kicks { }l=Ω k . Let ( ),l lr θ  be the polar coordinates, relative to the 

kicking robot, to what the ball will arrive, if it is allowed to roll freely, after the kick 

lk  is performed. We assume that lr  and lθ  are independent Gaussian random 

variables with respective means ,r lμ  and ,lθμ , and variances 2
,r lσ  and 2

,lθσ . Then, the 

kick  lk  can be parameterized using: ( )2 2
, , , ,, , ,l r l l r l lθ θμ μ σ σ=Π . The parameters lΠ  

have to be calculated previously for each of the available kicks. Figure 1.a shows our 
current available set of kicks and their parameters.  

3.3   Score Function 

Let us define a game situation as a vector ( ),
T=S R b  where b is the estimated 

position of the ball and ( )1 1,..., , ,...,
R R

T

N N′ ′=R x x x x  is a vector containing the 

estimated poses of all robots, being RN  the number of robots per team. In particular, 

each robot may have an estimation of S . In our implementation, teammate robots 
share their own estimated positions, the observations of the ball and of the other 
robots, and each robot tracks all the mobile objects using an EKF based approach. We 
propose that any situation of the game may be evaluated in terms of how 
advantageous it is. We will call this measurement the Game Situation Score (GSS). 
The GSS is defined as: 

( ) ( ) ( ) ( )g gGSS E P Pβ ω ω ′= = −S S S S  (3) 

We are especially interested in situations when the ball just arrived to a new 

position, after a BCA. We define ( ),
T

k k k=S R b  as the situation produced by ka , in 

the moment when the ball stops rolling. The event “a goal is scored by means of ka ” 

is defined as g
kω  or g

kω ′ , depending on which team scored. The events g
kω +  and g

kω ′
+  

correspond to a goal scored, by means of a later BCA than ka , by respectively the 

own team and the opposite team. Then ( )g
kP ω S  is calculated as (the calculation of 

( )gP ω ′ S  is symmetrical): 

( ) ( ) ( )( ) ( )1g g g g
k k k k k k kP P P Pω ω ω ω += + −S S S S  (4) 

It is straightforward from the previous definitions that the immediate goal 

probability ( )g
k kP ω S  is 1 or 0 depending on whether kb  is inside or outside the 

opposite goal. 
The future scoring probability of the own team may be calculated in a recursive 

form: 
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( ) ( ) ( )1 1 1
g g
k k k k k k kP P P dω ω+ + + + += ∫S S S S S  (5) 

It is impractical to calculate the former integral, so we make some simplifications: 
(i) after the ball arrives to kb , the closest robot of each team, will lead to kb  until one 

of them catches the ball, (ii) as the pose of the rest of the robots at k+1 is 
unpredictable, we will assume they will remain static, and (iii) 1ka + , and thus 1k +b , 

are totally determined by the team of the robot which will perform 1ka +  and by all the 

robots’ poses. Therefore, 1k +S  is only a function of which robot will capture the ball 

and consequently perform 1ka + . Two events are defined: “the closest robot of the own 

team will catch the ball”, called 1
c
kω + , and “the closest robot of the opposite team will 

catch the ball”, called 1
c
kω ′

+ . Then, equation (5) can be rewritten as: 

( ) ( ) ( ) ( ) ( )1 1 1 1, ,g g c c g c c
k k k k k k k k k k k kP P P P Pω ω ω ω ω ω ω′ ′

+ + + + + + +≈ +S S S S S  (6) 

The catching probabilities ( )( )'
1

c c
k kP ω + S  are approximated as (analogous for 1

c
kω ′

+ ): 

( ) ( )
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c kc
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Where ( )c kt S  and ( )c kt′ S  are the amounts of time required to arrive to kb  for the 

closest robot of respectively the own team and the opposite team: 

( ) ( ), ,, i k k i ki k k

c k
R R

t
v

θ
ω

− −−
= +

b xx b
S

(
 (8) 

Where ,i kx  and ,i kθ  are respectively the position and orientation of the robot of the 

own team closest to the ball at time k. Note that the time required for displacing and 
for rotating are considered in terms of the estimated robot linear speed Rv  

(=40cm/sec) and angular speed Rω  (=120°/sec) (these values correspond to AIBO 

ERS7 robots). The calculation of ( )c kt′ S  is analogous. 

The future scoring probabilities ( )( )1 ,c cg
k k kP ω ω ′

+ + S  can be calculated using (4): 

( )( ) ( )( ) ( )( )( ) ( )( )1 1 1 1 1 1 1, , 1 , ,c c c c c c c cg g g g
k k k k k k k k k k k kP P P Pω ω ω ω ω ω ω ω′ ′ ′ ′

+ + + + + + + + += + −S S S S  (9) 

This leads to a possibly infinite recursion, therefore we will approximate all the 
remaining probabilities as a function of some coarse indicators of how advantageous 
the resulting situations are. We introduce the expected free time ( ft  or ft′ ) of the 

robot that catches the ball, as the amount of time that the robot will be able to hold the 
ball without the direct presence of a rival, and is calculated as (analogous for ft′ ): 
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( ) ( )( )0; ;f k kt bnd t t′= − ∞S S  (10) 

With ( ); ;bnd c d e  defined as the quantity d lower bounded by c and upper bounded 

by e. We also define the aligning time ( at  or at′ ) of the robot that catches the ball as 

the amount of time that it will need for aligning to its opposite goal. If ′g  is the 

position of the opposite goal , at  is calculated as (analogous for at′ ): 

( ) ( ),k i k ka
a

R R

t
θ
ω ω

′− − −
= =

b x g b( (
 (11) 

 
(a)                          (b) 

Fig. 1. (a) Set of available kicks with their relative means and variances, each plotted polar 

rectangle is bounded by ( ), , , ,,r l r l l lθ θμ σ μ σ± ± . (b) illustration of 'φ  and aθ  for two objective 

points (A and B, respectively). 

We approximate ( )1 1,
g c
k k kP ω ω+ + S  as a function of the opening angle φ′ , which is 

the angle difference between the two posts of the goal from the point of the ball. 

( ) ( )( )1 1, 0; ;3 0; ;1 max
sec j

f ag c
k k k r k

j

t t
P bnd bnd u

θ

φω ω μ
σ+ +

− ⎛ ⎞′⎛ ⎞ ′= − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

S b g  (12) 

Where θσ  is the mean of the angle variances of the available kicks, and u is the step 

function, which will become 1 if it is possible to reach the goal, considering the 
maximum mean distance reached by an available kick. 
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The remaining probabilities are even fuzzier, therefore we make use of coarser 

indicators. We approximate ( )1 1,
g c
k k kP ω ω+ + + S  as: 

( ) ( ) ( )
1 1 1

max
, irg c

k k k f a
k

P t t
μ

ω ω ν+ + + = −
′−

S
b g

 (13) 

With a selected value of 1 0.3Hzν = . For the calculation of ( )1,
g c
k k kP ω ω ′

+ + S , we 

assume that a robot will not score in its own goal. Thus,  

( )1 1, 0g c
k k kP ω ω ′

+ + =S   (14) 

⇒ ( ) ( )1 1 1, ,g c g c
k k k k k kP Pω ω ω ω′ ′

+ + + + +=S S  (15) 

The future crossed score probability ( )1 1,
g c
k k kP ω ω ′

+ + + S  is approximated as: 

( ) ( )
1 1

max
, irg c

k k k
f k

P
t

μτω ω ′
+ + + ≈

′ ′−
S

b g
 (16) 

Where a value of 0.3secτ =  is found to yield satisfactory results. Summarizing, 

( )kGSS S  may be calculated using equations (3), (4), (6), (7), (8), (9), (10), (11), (12), 

(13), (15), (16). Figure 1.b illustrates some of the variables used in the calculation of 
the GSS. 

3.4   Decision Map 

In the moment where a robot holds the ball, it has infinite possible BCA’s that should 
be evaluated in order to decide for the best. We make a discretization of this space to 
be able to explore it. The discretization consists in a polar grid, where the distance is 
limited by the maximum distance that the ball can be kicked considering the available 
kicks, and the amount of time that the ball can be held. This grid is called decision 
map and consists in M objective points mp . Figure 2 shows some examples of 

decision maps. Accomplishing the generalized objective is defined as maximizing the 
expected GSS of the final position of the ball. The decision map is used to explore the 
space of feasible final positions of the ball after a BCA. 

3.5   Objective and Ball Control Action Selection 

If we leave R  fixed, GSS may be seen as a function of the ball position b, ( )GSSR b . 

Then, for each objective point mp  in the decision map, its ideal score mπ  is 

calculated as: 

( )( )m mGSS repπ = R p�  (17) 
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If mp  is out of the field, the ball will be replaced by a human referee in an arbitrary 

point (see [3] for details). Thus ( )mrep p  is the expected ball replacement position if 

mp  is out of the field, and in other case it is equal to mp .  

  
                                  (a)                                                                     (b) 

Fig. 2. Examples of decision maps and taken decisions, using the developed high-level 
strategy’s simulator. The polar grid is around the red robot that holds the ball. Lighter points 
correspond to higher scores in the decision map. The big red points correspond to the selected 
points. (a) Defensive situation, the red robot holding the ball is blocked by two blue robots, thus 
points out of the field are selected (even preferring them over a possible but risky pass to the 
goalie), because its partner will be very close to the ball after the referee replace it. (b) 
Offensive situation, where a leading pass is selected, preferring it over a direct pass. 

Taking into account objective points out of the field, the rep function has the nice 
effect, often observed in human players, that in some situations the robot may decide 
to kick the ball out of the field (see a simulated example en figure 2.a). Let us define 
the filtered score of the objective point mp  as: 

( )( )( )m mE GSS repπ = R b p  (18) 

Note that m mπ π≠ �  since there is an uncertainty in the final position of the ball after 

performing any kick. To consider this uncertainty, mπ  is calculated as the result of 

applying a Gaussian low-pass filter over each polar coordinate to mπ� . Consequently, 

smooth maxima of mπ�  are preferred over sharp ones.  

For the sake of simplicity, to calculate mπ�  and mπ  we use R as the estimation of 

the poses of all the robots in the moment when the decision is taken. However, R will 
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probably vary from the moment when the robot makes de decision of where to kick 
the ball, to the moment when the ball finally arrives to its final position b. We assume 
that the variation of R when time passes will always diminish the maxima of mπ , 

which is a reasonable assumption since as time passes by, other robots may block the 
way from the robot holding the ball to any given objective point. Thus, for each 
objective point mp  in the decision map, we select the index ( )ml p  of the required 

kick ( )ml pk  as: 

( ) ( )( )arg min , ,m d l m
l

l t=p k p R  (19) 

Where ( ), ,d l mt k p R  is the required dribbling time for kicking to the objective point 

mp , using the kick lk , and given the robots (teammates and opponents) poses R , 

and is calculated as: 

( ) , ,, , m l m l

d l m
R R

t
v

θ
ω

Δ Δ
= +

x
k p R  (20) 

With ,m lΔx  and ,m lθΔ  being respectively the required displacement and rotation of 

the robot to perform lk  and reach mp , if the kick results in its expected values ,r lμ , 

,lθμ . If the way from the robot to mp  is free, ,m lΔx  just aims to adjust the distance to 

mp  (the robot moves in the axis between it and mp ). If the way to mp  is blocked, 

,m lΔx  also considers an obstacle-avoiding component, which means that the robot 

will move to the closer free axis to mp , to the point at a distance ,r lμ  of mp . In both 

cases, ,m lθΔ  is calculated to align the robot with the needed angle to kick to mp  using 

lk . Once ( )ml p  is selected, the minimum dribbling time, ( )( ), ,
md mlt pk p R , is used to 

punish the final score mπ  of the objective point mp . 

( )( ) ( )( )2 , , , , 3

1
m mm d m d ml l

m

t tπ ν
π

⎧ − <⎪= ⎨
−⎪⎩

p pk p R k p R

∼
 (21) 

With a selected value of 2 0.12Hzν = . The condition in (21) ensures that only feasible 

points are considered (the robot is allowed to hold the ball for a maximum of 3 
seconds [3]). The selected objective point mp  is selected as the one that maximizes 

mπ . Figure 2 shows some examples of the calculation of mπ  in determined situations.  

4   Results 

As we have defined the decision making problem –in terms of maximizing the 
expected score advantage obtained– results should show that a team using the 
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presented decision making framework is able to beat, getting as much score advantage 
as possible, another team using another decision making framework. The complete 
benefits of the system should be noticeable in a standard 4 versus 4 robots match. To 
test the system and to be able to present comprehensive results, we have developed a 
high-level strategy simulator, UChile HL-SIM, which runs our four-legged code in 
simulated AIBO’s robots. Differing from our realistic simulator, UChilSim [6], 
UChile HL-SIM is not focused in realistic 3D visualization of scenes, neither in 
realistic dynamic interactions simulation, but it is intended for debugging specifically 
high-level strategy and behaviors. For that purpose, each simulated robot runs our 
strategy and actuation code, and the simulator brings them error-free perception and 
world modeling information. The result of the intended displacements of the robot is 
also simulated as error-free. Dynamic interactions between objects (ball, robots, and 
goals) are modeled in an idealized but comprehensive fashion (simplified 2D 
geometry). In order to provide a normal game flow, refereeing is also simulated, 
taking into account the RoboCup 2006 Four Legged League Competition Rules [3]. 
Figure 3 shows a screenshot of UChile HL-SIM. 

 

Fig. 3. UChile HL-SIM: High Level simulator used for testing the proposed strategy 

For testing and validation purposes, we tested the described probabilistic-based 
decision making strategy, in 10 simulated matches between a team which uses this 
new strategy against a team which uses the decision making system proposed in [1] 
(probabilistic kick selection). It should be stressed that in both cases the only 
difference in the robot control software (UChile) is the strategy module. The matches 
were always won by the team running the proposed approach with an average goal 
difference of 8.5 (see Table 1 for details on the results). In the simulated matches, it 
was evident how some of the described improvements, as leading passes and clearing 
outside the field, appeared. 
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Table 1. Detailed results of the simulated matches. The score of the team running the proposed 
strategy goes first. 

 

5   Conclusions 

We have presented a novel approach for general decision making in robot soccer, 
based on the definition of a game situation score function, and the consequent 
discrimination of more specific objectives as passing and shooting to the goal. 

The main advantage of the proposed system is that it relays only on the scored 
goals probability, and not in others conventionally taken into account such as pass 
success or ball possession time length. Additional advantages are the possibility of 
balancing the accuracy of the decision and the computational cost, by modifying the 
decision map resolution, and the consideration of the kicks’ result uncertainty. The 
assumption of arbitrary models for the calculation of some of the probabilities should 
be corrected in future works, for example by using a machine learning approach. 

The presented approach takes into account the uncertainty in the actions’ results 
(kicks PDF’s), but it does not take into account the uncertainty in the perception of 
the situations (vision, objects tracking and localization). We are planning to extend 
our work to make it able to consider the perceptual uncertainty. 

The presented high-level strategy simulator is very well suited for testing high-
level strategy and behaviors. We are planning to extend its capabilities in order to 
learn the parameters and morphology of the decision-making’s algorithms inside the 
behaviors of different levels. 

The preliminary results encourage us to continue developing our system. In 
particular, more factors may be included to better estimate some probabilities, but 
always keeping the conceptually hierarchized approach. On the other hand, some of 
the parameters used for calculating probabilities may be learned during a game, in 
order to adapt the strategy to the opponent characteristics. 
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