
U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 148–158, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Improving Robot Self-localization Using Landmarks’ 
Poses Tracking and Odometry Error Estimation∗ 

Pablo Guerrero and Javier Ruiz-del-Solar 

Department of Electrical Engineering, Universidad de Chile 
{pguerrer,jruizd}@ing.uchile.cl 

Abstract. In this article the classical self-localization approach is improved by 
estimating, independently from the robot’s pose, the robot’s odometric error and 
the landmarks’ poses. This allows using, in addition to fixed landmarks, dynamic 
landmarks such as temporally local objects (mobile objects) and spatially local 
objects (view-dependent objects or textures), for estimating the odometric error, 
and therefore improving the robot’s localization. Moreover, the estimation or 
tracking of the fixed-landmarks’ poses allows the robot to accomplish successfully 
certain tasks, even when having high uncertainty in its localization estimation (e.g. 
determining the goal position in a soccer environment without directly seeing the 
goal and with high localization uncertainty). Furthermore, the estimation of the 
fixed-landmarks’ pose allows having global measures of the robot’s localization 
accuracy, by comparing the real map, given by the real (a priori known) position of 
the fixed-landmarks, with the estimated map, given by the estimated position of 
these landmarks. Based on this new approach we propose an improved self-
localization system for AIBO robots playing in a RoboCup soccer environment, 
where the odometric error estimation is implemented using Particle Filters, and the 
robot’s and landmarks’ poses are estimated using Extended Kalman Filters. 
Preliminary results of the system’s operation are presented. 

1   Introduction 

Localization is a key feature of a mobile robotic system, which has been deeply 
investigated over the last years. Commonly a localization module is expected to filter 
two sources of error: (i) observational errors that are produced by the imperfections of 
the sensors and their models, and (ii) odometric errors that are produced by flaws in 
the modeling of the actuators and by events that are very difficult to model as slipping 
and collisions. It is not the aim of this paper to compare or to analyze different 
localization methods -as it is a very largely discussed matter- but to discuss how to 
improve the localization process. 

Existent localization approaches filter simultaneously both sources of error, 
observational and odometric, making use of what we call global information, 
perceptions of objects with fixed and known global pose. However, we believe that, in 
addition to the global information, additional sources of information, what we call local 
information, can be exploited by localization methods. We use the word “local” in its 
temporal and spatial meanings. Spatially local information corresponds to information 
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that is only useful in a reduced region of the space, while temporally local information 
corresponds to information only valid in a short period of time. Temporally local 
information corresponds mainly to mobile objects, whose poses’ estimates are valid for 
a short period of time. Spatially local information corresponds mainly to view-
dependent objects or textures, whose perceptions are valid in a reduced neighborhood. 
The spatially restricted utility may be at least due to three reasons: (i) the object is only 
observable from a restricted region of the space, for example a design in the floor or a 
visual feature or detail only perceptible from close positions, (ii) its appearance changes 
from different points of view (most of the natural objects do not have a radial symmetry 
and also non isotropic light may make them appear different from different points of 
view), and/or (iii) several identical -or difficult to distinguish- objects are present in 
different places in the space, which could easily lead to confusion, for example, a tree in 
a forest, a tile or texture in the floor, or a chair in a classroom. SLAM approaches can 
deal with objects locally observable or with non-symmetric appearance by creating and 
maintaining a pose estimate for each of them, or of their different appearances treated as 
different objects. However, this could lead a system to maintain millions of estimates, 
which is computationally infeasible and practically senseless. Nevertheless, it is possible 
to think in a SLAM-like approach that maintains locally relevant information with the 
purpose of estimating the odometric error. We believe such an approach is more 
biologically inspired. For instance, humans are able to correct their odometry even when 
they have no knowledge of the environment. 

In this context we propose improving the classical self-localization approach by 
estimating, independently from the robot’s pose, the robot’s odometric error and the 
landmarks’ poses. This allows using, in addition to fixed landmarks, dynamic 
landmarks such as temporally local objects (mobile objects) and spatially local objects 
(view-dependent objects or textures), for estimating the odometric error, and therefore 
improving the robot’s localization. Moreover, the estimation or tracking of the fixed-
landmarks’ poses allows the robot to carry out certain tasks, even when having high 
uncertainty in the localization estimation. This is especially valuable when performing 
attention demanding tasks, like pursuing a ball, which forbid the use of active vision 
in order to get more (standard) landmarks’ perceptions. Another nice feature of the 
proposed system is that the robot is able to correct its odometry even when it is totally 
lost. The latter ability may be useful in several situations as for example, when 
shooting the ball to a recently seen goal, by correcting the relative robot’s pose 
estimation with only observations of the ball. In this sense, we believe our approach 
also goes in the direction towards performing tasks with much less use of global 
localization, as certainly humans do. 

Furthermore, the estimation of the fixed-landmarks’ pose allows having global 
measures of the robot’s localization accuracy, by comparing the real map, given by 
the real (a priori known) position of the fixed-landmarks, with the estimated map, 
given by the estimated position of these landmarks.  

Based on the described new self-localization approach, we propose an improved 
self-localization system for AIBO robots playing in a RoboCup soccer environment, 
that implements odometric error estimation using Particle Filters, and robot’s and 
landmarks’ poses estimation using Extended Kalman Filters.  

How and when to select spatially local observations as valid landmarks is a topic not 
addressed in this article. In the current implementation we consider temporally local 
observations, mobile objects, such as the ball and robot players in a soccer environment. 
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This paper is organized as follows. In section 2 is presented some related work. 
The improved self-localization approach is described in section 3. In section 4 some 
features of the proposed approach are discussed. In section 5, preliminary results are 
presented. Finally, in section 6 some conclusions and future work are given. 

2   Related Work 

Standard Bayesian-based robot self-localization fuses odometric information with 
perceptual information coming from different sensors. Thus, odometry is employed for 
predicting the next robot pose state using a cinematic model of the robot, while 
perceptual information from landmarks is employed for correcting this prediction using 
an observational model. For implementing these two steps, the most employed Bayesian 
filters are Kalman [6] and Particle Filters [3][5]. Kalman Filtering is a very well-known 
technique for parameter estimation, whose main drawback is the linearity and 
Gaussianity assumptions. EKF extends the Kalman Filtering idea by linearizing the 
measurement and plant (in this case the robot) models, but still has the assumption of 
Gaussianity [4]. On the other hand, particle filters overcome the drawbacks of assuming 
linearity and Gaussianity, by implementing a “factored sampling” of the processes’ 
conditional densities [5]. Particle Filtering is very popular in the Computer Vision 
community where the most employed implementation is called Condensation [5], while 
in the mobile robotics community the most used implementation is the Monte Carlo 
Localization – MCL algorithm. However, particle filters have an important drawback: 
their performance depends strongly on the number of particles. In specific applications as 
robot soccer, in which the computational resources are limited, the number of employed 
particles may not be very high (normally between 50 and 200), and therefore particle 
filters do not clearly outperforms EKF. As a fact, in the RoboCup soccer leagues 
successful teams use either EKF, MCL, or mixtures of both (see for example [8] or [9]). 

Nevertheless, it is not our intention to analyze or to compare different Bayesian filters 
and their application to the robot self-localization problem, but to improve the standard 
Bayesian-based robot self-localization by including new independent stages for estimating 
the robot’s odometric error and the landmarks’ poses. To the best of our knowledge this 
idea is novel, and has not being implemented before in robot localization systems. 
Although decoupling the odometry estimation from the landmark position estimation has 
been proposed in the SLAM literature [10], there is a strong implicit assumption in these 
works, which is that all the landmarks will remain static forever. In some SLAM 
approaches detected objects are tracked and characterized as mobile or static [11]. 
However the mobile object’s information is not used for estimating the odometric error. 

In visual odometry approaches (see for example [12][13]) local visual features (e.g. 
Harris or SIFT features) are employed for estimating the robot relative movements (the 
odometry) by detecting and matching the features between consecutive frames. The 
main differences with our approach are: (1) In our approach the estimated odometry is 
used in the robot localization process, and also for updating the high-level tracking of 
landmarks. Traditional visual odometry approaches do not include high-level tracking of 
landmarks, therefore the use of the estimated odometry is much simpler; (2) Visual 
odometry approaches use local features, while in our case high-level fixed or moving 
landmarks are employed (e.g. a ball or a goal in a soccer environment). We believe that 
using high-level landmarks is more robust because: (i) local features cannot be detected 
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in any environment or moment (e.g. in a robot soccer carpet no local features can be 
detected), and (ii) when analyzing images corresponding to real-world environments the 
process of matching local features can produce a larger number of false matches (due to 
shadows, highlights, symmetry problems, too many detected features, etc.) than the one 
of matching high-level features. 

3   Proposed Self-localization Using Landmarks’ Tracking and 
Odometry Error Estimation 

As already mentioned, the basic idea of the proposed approach is to estimate, 
independently from the robot’s pose, the robot’s odometric error and the landmarks’ 
poses. For achieving this two new processes are included: High-Level Tracking  
(HL-Tracking module) and Odometry Error Estimation (OEE module). As can be 
observed in figure 1, the operation of all modules is tightly interconnected. First, in the 
HL-Tracking module the pose of the observed landmark ( x l*,k

−− ), either static or mobile, 

is early predicted using the odometry information ( u k−1). Then, the odometric error 
( ek ) is estimated in the OEE module using the information of current observations 
(coming from Vision) ( zk ), and the corresponding landmark’s early estimated pose. 
Afterwards, in the HL-Tracking module the estimated odometric error is used for 
estimating the new landmarks’ poses ( {x li ,k }). Finally, the corrected odometry and the 

landmarks’ poses are employed for estimating the robot’s localization ( xR,k ). 

In the next sections the operation of all modules is described in detail for the case 
of a RoboCup four-legged environment using AIBO robots. The pseudo code and 
equations are detailed in tables 1-3. 

 
 

Fig. 1. Block diagram of the system. Two stages are added between vision and localization: 
HL-Tracking and Odometry Error Estimation. 
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3.1   Vision 

Our vision system (RoboCup four-legged league scenario) is based on color segmentation 
of the images, and rule based perceptors for the relevant objects (ball, robots, beacons and 
goals) (see detailed description in [1]). The vision system also includes a recently 
proposed context filter, which takes into account the coherence between current and past 
detections, as well as scene and situation contexts, to filter incoherent detections [2]. 

3.2   HL-Tracking 

In this module the state of every detected and coherent object/landmark ( x li ,k ) is 

tracked (estimated). For the fixed objects, the state corresponds to their 2D pose, relative 
to the robot, for the mobile ones, a relative velocity is also added (see figure 2). The 
pose of any object includes a 2D position, and may include a relative orientation, if this 
is distinguishable (for objects with radial symmetry as ball and beacons it is not possible 
to notice their orientation). 

The current implementation of the HL-Tracking stage consists of one independent 
EKF for each object. The prediction of each EKF has two stages: (i) early prediction 
(step (1) in pseudo code shown in table1), where the pose of the l*  landmark 
associated with the current observation zk , is predicted using the last executed 
odometry u k−1, and (ii) a standard prediction stage (step (6) in pseudo code), where 

the poses of all landmarks ( {x li ,k }) is predicted using the corrected odometry 

( u k −1 + e k ). The correction stage is standard and considers only the observed 
landmark l*  (step (7) in pseudo code). In the case of mobile objects, the correction 
that the filter takes is standard and very straightforward, since the predicted 
observation may be extracted directly from the state -the observation model Jacobian 
H is equal to the identity or some submatrix-. 

For the system to be able to quickly detect and recover from kidnaps, all tracked 
estimates of objects’ poses in HL-Tracking has a smoothed object coherence indicator 
(see [2] for details). 

3.3   Odometry Error Estimation 

The odometry error estimation (OEE) stage is implemented using a particle filter, as 
in MCL, but in this case each particle represents a hypothesis for the accumulated 
odometric error (instead of the global pose of the robot, as in MCL). Consequently, 
the state of each particle is a pose (x, y, θ) relative to a coordinate system centered in 
an odometry error-free pose. Then, the particles are drawn over the same coordinate 
system shown in figure 2. 

In the sampling stage of the OEE (step (3) in pseudo code), it is considered that the 
expected odometric error is zero, thus, we only add noise covariance to the particles, 
coming from the standard odometry. Given any odometry u k−1, an a priori odometry 
error covariance Qk−1 is used to scatter the particles. The weighting stage consists in  
the calculation of weights for each particle (step (4) in pseudo code). A particle will 
have a higher weight when it better explains the difference between the observed and 
estimated poses of the observed objects. Finally, in the Resampling Stage (step (2) in  
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Fig. 2. Tracked objects and their state in the HL-Tracking stage. Static objects are represented 
by their relative pose, which includes a position and may include a relative orientation (blue 
goal). For mobile objects, a relative velocity is also added (orange ball). 

pseudo code), particles are resampled according to their weights. A particle is copied a 
number of times that has an expected value proportional to its weight. As Resampling is 
the first stage in our implementation, it considers the weights calculated in the previous 
iteration of the system. 

Every time an observation arrives, the system executes these three steps, and finally 
the estimated odometric error ( ek ) and its covariance ( Q e ,k ) are statistically calculated 
over the particles (step (5) in pseudo code), and used as additional predictive inputs for 
the HL-Tracking and Localization stages. Finally, the odometric error estimate is 
subtracted from each particle, to set the new odometry error estimate to zero. 

3.4   Localization 

We have implementations of standard robot’s localization modules based on EKF, 
MCL, and mixtures of them [1]. However, for the proposed approach, we have 
implemented the robot’s localization using a standard EKF filter (see pseudo code in 
table 2). The main new features are: (i) the corrected odometry ( u k −1 + e k ) is used for 
predicting the new robot’s pose (step (8) in the pseudo code), and (ii) the filtered 
relative poses of all landmarks, fixed and mobile, are employed as the filter’s 
observations in the correction stage (step (9) and (10) in pseudo code). 

4   Discussion 

4.1   Is It Good for a Robot to Be Egocentric? 

A clear difference between the proposed approach and most of the existent approaches 
for localization is that, in this one, all the analysis is made in reference to the robot  
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Table 1. HL-Tracking and OEE pseudo code and equations. See definitions in table 3. 

(1) High-Level Tracking Early Prediction Stage // Early prediction using odometry 
x l* ,k

− − = f l (x l* ,k −1 , u k −1 , 0 )  // l*  the landmark associated with the current observation zk , 

and u k−1 the last executed odometry 
(2) Odometry Error Resampling Stage 

Resample ′ x p j ,k{ } according to x p j ,k−1,ω p j ,k−1{ }, j = 1,...,T //T: total number of particles 

(3) Odometry Error Sampling Stage 
Qk−1 = Q u k−1( ) // a priori odometry error covariance 
For each particle p j , j = 1,...,T  do: 

u p j ,k ~ N 0,Q k −1( )  //Normal distribution with zero mean and Q k −1  covariance 

x p j ,k = f p ( ′ x p j ,k , u p j ,k , 0 )  

(4) Odometry Error Weighting Stage 
For each particle p j , j = 1,...,T  do: 

v p j ,k = zk − h l*
( f l (x l* ,k

−− ,u(x p j ,k ),0),0) // zk  the current observation, and l*  the 

corresponding landmark  

˜ ω p j ,k = e
−

v p j ,k
T R l j ,k

−1 v p j ,k

2   

ω p j ,k =
˜ ω p j ,k

˜ ω p n ,k

n

∑
 // weights normalization 

(5) Odometry Error Statistics Calculation 

ek = ω p j ,kx p j ,k

j

∑  // estimated odometry error 

∑=
j

T
kpkpkpk jjj ,,,, xxQ e ω  // estimated odometry error covariance 

For each particle p j , j = 1,...,T  do: 
x p j ,k = x p j ,k − e k  

(6) High-Level Tracking Odometry Prediction Stage  
For each landmark li ,i = 1,...,L  do: // The new poses of all landmarks are predicted 

x l i ,k
− = f l (x l i ,k −1 , (u k −1 + e k ), 0 ) // Prediction using the corrected odometry  

Pli ,k
− = A l,kPli ,k−1A l,k

T + Wli ,kQe,kWli ,k   

(7) High-Level Tracking Correction Stage // Only the observed-landmark’s pose is corrected 
v v ,k = z k − h l*

( x l* ,k
− , 0 )  // zk  the current observation, and l*  the corresponding landmark 

Ml*,k = Hl* ,kPl* ,k
− Hl* ,k

T + Vl*,kR l* ,kVl* ,k
T  

K l*,k = Pl* ,k
− Hl*,k

T Ml* ,k
−1  

x l*,k = x l* ,k
− +K l* ,kv v,k  

Pl*,k = (I−K l* ,kHl* ,k )Pl* ,k
−  
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Table 2. EKF Localization pseudo code and equations. See definition in table 3. 

(8) Localization Prediction Stage // Robot pose prediction using the corrected odometry  
x R ,k

− = f R (x R ,k −1 , (u k −1 + e k ), 0 )   

PR,k
− = AR,kPR,k−1A R,k

T + WR,kQe,kWR,k
T  

(9) Localization Data Association Stage  
v l,k = ∅  
For each landmark li ,i = 1,...,L  do: //Landmarks are filtered out using an innovation 

threshold g 
v l i ,k = x l i ,k − h R , l i

(x R
− , 0 )  

MR,li ,k = HR,li ,kPR
−HR,li ,k

T + VR,li ,kPli ,kVR,li ,k
T  

if (v li ,kMR,li ,kv li ,k
T ≤ g2 )  then  v l,k = v l,k ∪v li ,k  

(10) Localization Correction Stage // Robot pose correction 
KR,k = PR,k

− HR,k
T MR,k

−1  

x R,k = x R ,k
− +K R,kv l,k  

PR,k = (I−KR,kHR,k )PR,k
−  

 

Table 3. Variables, matrices and functions definitions 

Variable/Matrix Definition 

x li ,k , Pli ,k  Landmark li  state vector and covariance matrix. 

xR,k , PR,k  Robot state vector and covariance matrix. 

Qk  A priori odometry error covariance 

f l , fR  Landmarks and robot process models. 

u k−1 Robot odometry. 

ek  and Q e ,k  Estimated odometric error and its covariance. 

x p j ,k  and ω p j ,k  Position and weigh of particle p j  (odometry error estimation) 

f p  Cinematic model of the particles (odometry error estimation) 

AR,k /WR,k  The Jacobian matrix of the partial derivatives of fR  with respect to the 
state vector and process noise, respectively. 

Al,k /Wl,k  The Jacobian matrix of the partial derivatives of f l  with respect to the state 
vector and process noise, respectively. 

H R,k /VR,k  The Jacobian matrix of the partial derivatives of hR  with respect to the 
state vector and observational noise, respectively. 

HR,li ,k /VR,li ,k  The Jacobian submatrix, corresponding to the landmark li , of the partial 

derivatives of hR  with respect to the state vector and observational noise, 
respectively. 

H li ,k /Vli ,k  The Jacobian matrix of the partial derivatives of hli
 with respect to the 

state vector and observational noise, respectively. 
R li ,k  Landmarks observational noise covariance. 

 



156 P. Guerrero and J. Ruiz-del-Solar 

instead of making it from a global point of view. One could argue that all the previous 
formulation could be transported to a global approach by representing all the local 
information in a global coordinate system. We believe that being egocentric (taking a 
self-centered coordinate system for most of the calculations) is a good decision because: 
(i) many (may be most) of the tasks a robot must perform can be executed with only 
local information, for example, a robot does not need to know its global pose neither the 
global pose of the ball to approach to it, and (ii) even high level tasks that need global 
information normally result in low-level tasks that can be performed locally. 
 

4.2   Towards Playing Soccer with Much Less Use of Localization 

Human soccer players can effectively perform most of their tasks with a very poor 
estimation of their global pose in the field. They make extensive use of local 
information to: go to the ball, shoot to the goal, pass, keep close to the goal (in the case 
of the goalie), keep the ball inside of the field, mark opponents, etc. Even strategically 
positioning, which could be argued to be a localization-dependent task is performed 
with extensive use of local information; players do not only tend to be close to one static 
part of the field, they also (and may be more important) tend to maintain certain 
positions relative to their teammates, opponents and the ball. We believe our work is a 
step towards that direction, because it allows a robot to correct its odometry, and thus its 
relative estimates of non-seen objects, with local information. 

5   Results 

Preliminary results that illustrate the operation of the system are presented. Figure 3 
shows a sequence of egocentric local maps, relative to the robot (coordinate system 
shown in figure 2), in selected moments of a real movement’s sequence (data are 
collected from the robot and displayed in a visualization software). The sequence 
corresponds to the following situation: the robot walks from the yellow goal area to 
the center of the field, while panning its camera. In colors are shown the blue goal and 
the beacons (with exaggerated radiuses) estimations carried out by HL-Tracking. In 
the center of each map, the OEE particles appear, where lighter ones corresponds to 
those having a higher score. In order to make the functioning of the OEE visible, the 
particles’ positions, relative to the center of the egocentric map, are zoomed ~4x with 
respect to the HL-Tracking estimation. In the tested sequence, the odometry was 
specially poorly calibrated, with a high bias (the accumulated odometry was of 
~600cm, while the actual movement of the robot was of ~240cm). However OEE 
combined with HL-Tracking was able to keep tracking of the observed objects and 
correct the non-seen ones (yellow landmarks after they are left behind). 

We have performed several experiments as the one already illustrated. In these 
experiments we have seen that when the robot perceives the fixed landmarks (the ones 
defining the map) regularly, the accuracy of the proposed robot’s localization 
approach is similar that the one obtained when using a standard EKF, and no OEE or 
HL-Tracking stages (variations are less than 1% in accuracy). However, when the 
robot executes attention demanding tasks as approaching the ball without active 
vision behaviors for looking for the fixed landmarks, or turning with the ball while  
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(a) 
  

(b) 

(c) 

 
(d) 

Fig. 3. Egocentric local maps in selected moments of a movement sequence: the robot walks 
from the yellow goal area to the center of the field, while panning its camera. a) The robot starts 
with a perception of the blue goal, all particles are together, with a high score. b) As odometry 
arrives, the particles start scattering, which allows the odometry correction. c) The robot is 
walking, in an intermediate point, d) The robot arrives to the center of the field. 

preparing a goal-kick, the accuracy of the robot’s odometry estimation is 14% better 
than in the case when the OEE and HL-Tracking stages are not used, while the robot’s 
localization is 6% more accurate. 

6   Conclusions and Future Work 

In this article, an improvement over the classical robot’s localization approach was 
proposed, in which, in addition to the robot’s pose, the robot’s odometric error and the 
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landmarks’ poses are estimated. Based on this new approach, we developed an 
improved self-localization system for AIBO robots playing in a RoboCup soccer 
environment. In this system odometric error estimation is implemented using Particle 
Filters, while robot’s and landmarks’ poses are estimated using Extended Kalman 
Filters. Preliminary results show that, when the robot executes attention-demanding 
tasks, the accuracy of the robot’s odometry estimation is 14% better than in the case 
when the new estimation modules are not used, while the robot’s localization is 6% 
more accurate. 

Currently we are carrying out a better characterization of the proposed system. In 
addition, we are developing an extension to the presented system, which consists in 
using the robot’s odometric error for modeling and correcting the permanent 
odometric error using an on-line trained neural network. 
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