
Constrained Optimization by ε Constrained
Differential Evolution with Dynamic ε-Level
Control

Tetsuyuki Takahama1 and Setsuko Sakai2

1 Department of Intelligent Systems, Hiroshima City University, Asaminami-ku,
Hiroshima 731-3194 Japan
takahama@its.hiroshima-cu.ac.jp

2 Faculty of Commercial Sciences, Hiroshima Shudo University, Asaminami-ku,
Hiroshima 731-3195 Japan
setuko@shudo-u.ac.jp

Summary. In this chapter, the improved ε constrained differential evolution (εDE) is
proposed to solve constrained optimization problems with very small feasible region,
such as problems with equality constraints, efficiently. The εDE is the combination of
the ε constrained method and differential evolution. In general, it is very difficult to
solve constrained problems with very small feasible region. To solve such problems,
static control schema of allowable constraint violation is often used, where solutions
are searched within enlarged region specified by the allowable violation and the region
is reduced to the feasible region gradually. However, the proper control depends on the
initial population and searching process. In this study, the dynamic control of allowable
violation is proposed to solve problems with equality constraints efficiently. In the εDE,
the amount of allowable violation can be specified by the ε-level. The effectiveness of
the εDE with dynamic ε-level control is shown by comparing with the original εDE
and well known optimization method on some nonlinear constrained problems with
equality constraints.

1 Introduction

Constrained optimization problems, especially nonlinear optimization problems,
where objective functions are minimized under given constraints, are very im-
portant and frequently appear in the real world. In this study, the following
optimization problem (P) with inequality constraints, equality constraints, up-
per bound constraints and lower bound constraints will be discussed.

(P)minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . , q

hj(x) = 0, j = q + 1, . . . , m
li ≤ xi ≤ ui, i = 1, . . . , n,

(1)

where x = (x1, x2, · · · , xn) is an n dimensional vector, f(x) is an objective
function, gj(x) ≤ 0 and hj(x) = 0 are q inequality constraints and m − q

U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 139–154, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

140 T. Takahama and S. Sakai

equality constraints, respectively. Functions f, gj and hj are linear or nonlinear
real-valued functions. Values ui and li are the upper bound and the lower bound
of xi, respectively. Also, let the feasible space in which every point satisfies all
constraints be denoted by F and the search space in which every point satisfies
the upper and lower bound constraints be denoted by S (⊃ F).

There exist many studies on solving constrained optimization problems using
evolutionary algorithms[1] and particle swarm optimization[2]. These studies can
be classified into several categories according to the way the constraints are
treated as follows:

(1) Constraints are only used to see whether a search point is feasible or
not[3]. In this category, the searching process begins with one or more feasible
points and continues to search for new points within the feasible region. When a
new search point is generated and the point is not feasible, the point is repaired
or discarded. In this category, generating initial feasible points is difficult and
computationally demanding when the feasible region is very small. It is almost
impossible to find initial feasible points in problems with equality constraints.

(2) The constraint violation, which is the sum of the violation of all constraint
functions, is combined with the objective function. The penalty function method
is in this category[4]. In the penalty function method, an extended objective func-
tion is defined by adding the constraint violation to the objective function as a
penalty. The optimization of the objective function and the constraint violation
is realized by the optimization of the extended objective function. The main dif-
ficulty of the penalty function method is the difficulty of selecting an appropriate
value for the penalty coefficient that adjusts the strength of the penalty.

(3) The constraint violation and the objective function are used separately.
In this category, both the constraint violation and the objective function are op-
timized by a lexicographic order in which the constraint violation precedes the
objective function. Takahama and Sakai proposed the α constrained method[5, 6]
and the ε constrained method[7], which adopt a lexicographic ordering with re-
laxation of the constraints. Deb[8] proposed a method in which the extended
objective function that realizes the lexicographic ordering is used. Runarsson
and Yao[9] proposed the stochastic ranking method in which the stochastic lex-
icographic order, which ignores the constraint violation with some probability,
is used. These methods were successfully applied to various problems.

(4) The constraints and the objective function are optimized by multiobjective
optimization methods. In this category, the constrained optimization problems
are solved as the multiobjective optimization problems in which the objective
function and the constraint functions are objectives to be optimized[10, 11, 12].
But in many cases, solving multiobjective optimization problems is a more dif-
ficult and expensive task than solving single objective optimization problems.

In this study, the improved ε constrained differential evolution (εDE), is pro-
posed to solve constrained optimization problems with very small feasible region,
such as problems with equality constraints, efficiently. The εDE is the combina-
tion of the ε constrained method and differential evolution. The ε constrained
methods can convert algorithms for unconstrained problems to algorithms for

Constrained Optimization by ε Constrained Differential Evolution 141

constrained problems using the ε-level comparison, which compares the search
points based on the constraint violation of them. The ε constrained method is in
the promising category (3) and is proposed based on the α constrained method.
The α constrained method was applied to Powell’s direct search method in [5, 6],
the nonlinear simplex method by Nelder and Mead in [13, 14, 15], a genetic
algorithm (GA) using linear ranking selection in [16, 17] and particle swarm
optimization (PSO) in [18]. The ε constrained method was applied to PSO in
[7, 19, 20], GA in [21] and differential evolution (DE)[22, 23].

In general, it is very difficult to solve constrained problems with very small
feasible region. To solve such problems, static control schema of allowable con-
straint violation is often used, where solutions are searched within enlarged re-
gion specified by the allowable violation and the region is reduced to the feasible
region gradually. However, the proper control depends on the initial population
and searching process. It is very difficult to decide the control beforehand. In
this study, the dynamic control of allowable violation is proposed to solve prob-
lems with equality constraints efficiently. In the εDE, the amount of allowable
violation can be specified by the ε-level. The effectiveness of the εDE with dy-
namic ε-level control is shown by comparing with the εDE with static control
and well known optimization method on some nonlinear constrained problems
with equality constraints.

The rest of this chapter is organized as follows: Section 2 describes the ε
constrained method briefly. Section 3 describes the improved εDE by introducing
dynamic control of the ε-level. Section 4 presents experimental results on various
benchmark problems discussed in [9]. Comparisons with the results in [9] are
included in this section. Finally, Section 5 concludes with a brief summary of
this chapter and a few remarks.

2 The ε Constrained Method

2.1 Constraint Violation and ε-Level Comparison

In the ε constrained method, constraint violation φ(x) is defined. The constraint
violation can be given by the maximum of all constraints or the sum of all
constraints.

φ(x) = max{max
j

{0, gj(x)}, max
j

|hj(x)|} (2)

φ(x) =
∑

j

||max{0, gj(x)}||p +
∑

j

||hj(x)||p (3)

where p is a positive number.
The ε-level comparison is defined as an order relation on the set of (f(x), φ(x)).

If the constraint violation of a point is greater than 0, the point is not feasible
and its worth is low. The ε-level comparisons are defined by a lexicographic or-
der in which φ(x) proceeds f(x), because the feasibility of x is more important
than the minimization of f(x).

142 T. Takahama and S. Sakai

Let f1 (f2) and φ1 (φ2) be the function values and the constraint violation at
a point x1 (x2), respectively. Then, for any ε satisfying ε ≥ 0, ε-level comparison
<ε and ≤ε between (f1, φ1) and (f2, φ2) is defined as follows:

(f1, φ1) <ε (f2, φ2) ⇔

⎧⎨
⎩

f1 < f2, if φ1, φ2 ≤ ε
f1 < f2, if φ1 = φ2
φ1 < φ2, otherwise

(4)

(f1, φ1) ≤ε (f2, φ2) ⇔

⎧⎨
⎩

f1 ≤ f2, if φ1, φ2 ≤ ε
f1 ≤ f2, if φ1 = φ2
φ1 < φ2, otherwise

(5)

In case of ε=∞, the ε-level comparison <∞ and ≤∞ are equivalent to the ordinal
comparison < and ≤ between function values. Also, in case of ε = 0, <0 and ≤0
are equivalent to the lexicographic order in which the constraint violation φ(x)
precedes the function value f(x).

2.2 The Properties of the ε Constrained Method

The ε constrained method converts a constrained optimization problem into an
unconstrained one by replacing the order relation in direct search methods with
the ε-level comparison. An optimization problem solved by the ε constrained
method, that is, a problem in which the ordinary comparison is replaced with
the ε-level comparison, (P≤ε), is defined as follows:

(P≤ε) minimize≤ε f(x), (6)

where minimize≤ε means the minimization based on the ε-level comparison ≤ε.
Also, a problem (Pε) is defined that the constraints of (P), that is, φ(x) = 0, is
relaxed and replaced with φ(x) ≤ ε:

(Pε) minimize f(x)
subject to φ(x) ≤ ε

(7)

It is obvious that (P0) is equivalent to (P).
For the three types of problems, (Pε), (P≤ε) and (P), the following theorems

are given based on the α constrained method[5, 6, 7].

Theorem 1. If an optimal solution (P0) exists, any optimal solution of (P≤ε)
is an optimal solution of (Pε).

Theorem 2. If an optimal solution of (P) exists, any optimal solution of (P≤0)
is an optimal solution of (P).

Theorem 3. Let {εn} be a strictly decreasing non-negative sequence and con-
verge to 0. Let f(x) and φ(x) be continuous functions of x. Assume that an
optimal solution x∗ of (P0) exists and an optimal solution x̂n of (P≤εn

) exists
for any εn. Then, any accumulation point to the sequence {x̂n} is an optimal
solution of (P0).

Constrained Optimization by ε Constrained Differential Evolution 143

Theorem 1 and 2 show that a constrained optimization problem can be trans-
formed into an equivalent unconstrained optimization problem by using the ε-
level comparison. So, if the ε-level comparison is incorporated into an existing
unconstrained optimization method, constrained optimization problems can be
solved. Theorem 3 shows that, in the ε constrained method, an optimal solution
of (P0) can be given by converging ε to 0 as well as by increasing the penalty
coefficient to infinity in the penalty method.

3 The εDE

In this section, we first describe differential evolution. Then, we describe the
εDE, which is the integration of the ε constrained method and DE. Static and
dynamic control functions of relaxing equality constraints are also defined.

3.1 Differential Evolution

Differential evolution is an evolutionary algorithm proposed by Storn and Price
[24, 25]. DE is a stochastic direct search method using population or multiple
search points. DE has been successfully applied to the optimization problems
including non-linear, non-differentiable, non-convex and multi-modal functions.
It has been shown that DE is fast and robust to these functions.

The main feature of DE is that DE uses simple arithmetic operations to avoid
the control of Gaussian mutation adopted in evolution strategy. In general, the
mutation process must be adaptive to the step size of the Gaussian mutation,
because the ideal step size depends on the gene or element that is mutated
and the state of the evolution process. DE adopts the sum of a base vector
and the scaled difference vectors as the mutation operation instead of Gaussian
mutation. The base vector is an individual selected from the population. The
difference vectors are formed by the differences between a pair of individuals
randomly selected from the population. As the search space by the population
contracts and expands over generations, the step size in each dimension, which
is given by the difference vectors, adapts automatically.

There are some variants of DE that have been proposed, such as DE/best
/1/bin and DE/rand/1/exp. The variants are classified using the notation
DE/base/num/cross. “base” indicates the method of selecting a parent that
will form the base vector. For example, DE/rand/num/cross selects the parent
for the base vector at random from the population. DE/best/num/cross selects
the best individual in the population. “num” indicates the number of differ-
ence vectors used to perturb the base vector. “cross” indicates the crossover
mechanism used to create a child. For example, DE/base/num/bin shows that
crossover is controlled by binomial crossover using constant crossover rate.
DE/base/num/exp shows that crossover is controlled by a binomial crossover
using exponentially decreasing the crossover rate.

144 T. Takahama and S. Sakai

In DE, initial individuals are randomly generated within the search space
and form an initial population. Each individual contains n genes as decision
variables or a decision vector. At each generation or iteration, all individuals
are selected as parents. Each parent is processed as follows: The mutation pro-
cess begins by choosing 1 + 2 num individuals from the parents except for the
parent in the processing. The first individual is a base vector. All subsequent
individuals are paired to create num difference vectors. The difference vectors
are scaled by the scaling factor F and added to the base vector. The result-
ing vector is then recombined or crossovered with the parent. The probability
of recombination at an element is controlled by the crossover factor CR. This
crossover process produces a trial vector. Finally, for survivor selection, the trial
vector is accepted for the next generation if the trial vector is better than the
parent.

3.2 The Algorithm of the εDE

The algorithm of the εDE based on DE/rand/1/exp variant, which is used in
this study, is as follows:

Step0 Initialization. Initial N individuals xi are generated as the initial search
points, where there is an initial population P (0) = {xi, i = 1, 2, · · · , N}. An
initial ε-level is given by the ε-level control function ε(0).

Step1 Termination condition. If the number of generations (iterations) exceeds
the maximum generation Tmax, the algorithm is terminated.

Step2 Mutation. For each individual xi, three different individuals xp1, xp2 and
xp3, each of which is also different from xi, are chosen from the population.
A new vector x′ is generated by the base vector xp1 and the difference vector
xp2 − xp3 as follows:

x′ = xp1 + F (xp2 − xp3) (8)

where F is a scaling factor.
Step3 Crossover. The vector x′ is crossovered with the parent xi. A crossover

point j is chosen randomly from all dimensions [1, n]. The element at the
j-th dimension of the trial vector xnew is inherited from the j-th element of
the vector x′. The elements of subsequent dimensions are inherited from x′

with exponentially decreasing probability defined by a crossover factor CR.
Otherwise, the elements are inherited from the parent xi. In real processing,
Step2 and Step3 are integrated as one operation.

Step4 Survivor selection. The trial vector xnew is accepted for the next genera-
tion if the trial vector is better than the parent xi.

Step5 Controlling the ε-level. The ε-level is updated by the ε-level control func-
tion ε(t).

Step6 Go back to Step1.

Fig. 1 shows the algorithm of the εDE.

Constrained Optimization by ε Constrained Differential Evolution 145

εDE/rand/1/exp()
{

P (0)=Generate N individuals {xi} randomly;

ε=ε(0);
for(t=1; t ≤ Tmax; t++) {
for(i=1; i ≤ N; i++) {

(p1, p2, p3)=select randomly from [1, N]
s.t. p1 �= p2 �= p3 �= i;

xnew=xi ∈ P (t − 1);
j=select randomly from [1, n];
k=1;
do {

xnew
j =xp1

j +F (xp2
j − xp3

j);
j=(j + 1)%n;
k++;

} while(k ≤ n && u(0, 1) < CR);

if((f(xnew), φ(xnew)) <ε (f(xi), φ(xi)))
zi=xnew;

else

zi=xi;

}
P (t)={zi, i = 1, 2, · · · , N}
ε=ε(t);

}
}

Fig. 1. The algorithm of the ε constrained differential evolution with control of the
ε-level, where ε(t) is the ε-level control function, F is a scaling factor, CR is a crossover
factor, and u(0, 1) is a uniform random number generator in [0, 1]

3.3 Controlling the ε-Level

Usually, the ε-level does not need to be controlled. Many constrained problems
can be solved based on the lexicographic order where the ε-level is constantly 0.
However for problems with equality constraints, the ε-level should be controlled
properly to obtain high quality solutions.

Static control

A simple static control of the ε-level proposed in [7] can be defined according to
the equation (9). The initial ε-level ε(0) is the constraint violation of the top θ-
th individual in the initial search points. The ε-level is updated until the number
of iterations t becomes the control generation Tc. After the number of iterations
exceeds Tc, the ε-level is set to 0 to obtain solutions with minimum constraint
violation.

εs(0) = φ(xθ) (9)

εs(t) =
{

εs(0)(1 − t
Tc

)cp, 0 < t < Tc,

0, t ≥ Tc

146 T. Takahama and S. Sakai

where xθ is the top θ-th individual. When θ is too small, although a feasi-
ble solution can be found rapidly, the stability to find an optimal solution be-
comes low. When θ is too large, although the optimal solution can be found,
the efficiency to find feasible region and the optimal solution becomes low.
By using θ = 0.2N , the stability and the efficiency can be balanced in many
problems.

Dynamic control

To improve the efficiency of the εDEwith static control, we propose dynamic
control of the ε-level according to the equation (10). Modified generation t′ (t′ ≥
t) is introduced to speed up the convergence of enlarged region into the feasible
region. If the violation is reduced enough in search process, the generation t′ is
increased faster than usual generation t and the ε-level is decreased faster. If
not, the generation t′ is increased by 1 like usual generation t.

εd(0) = φ(xθ) (10)

εd(t) =
{

εd(0)(1 − t′

Tc
)cp, 0 < t′ < Tc,

0, t′ ≥ Tc

The modified generation t′ is updated in each generation as follows.

t′ =

⎧⎪⎪⎨
⎪⎪⎩

0, t = 0,
t′ + 1, φ(xη) ≥ εd(t)
t′ + 2, φ(xη) < εd(t) and t′ + 2 ≥ ε−1

s (φ(xη))
1
2 (t′ + 2) + 1

2ε−1
s (φ(xη)), otherwise

(11)

where xη is the worst η-th individual. ε−1
s (ε) is the inverse function of εs(t) that

returns the generation of the ε-level being ε in εs(t) and is defined as follows.

ε−1
s (ε) =

(
1 − cp

√
ε

εd(0)

)
Tc (12)

4 Solving Constrained Nonlinear Programming Problems
with Equality Constraints

In this section, four benchmark problems that are mentioned in some studies
[9, 26, 15] are optimized.

4.1 Test Problems and Experimental Conditions

Four test problems, which are nonlinear optimization problems with equality
constraints, are shown as follows.

Constrained Optimization by ε Constrained Differential Evolution 147

g03 [27]:

maximize f(x) = (
√

n)n
n∏

i=1

xi,

subject to h1(x) =
n∑

i=1

x2
i − 1 = 0,

0 ≤ xi ≤ 1 (i = 1, · · · , n), n = 10

The optimal solution x∗
i =

1√
n

(i=1, · · · , n) and the optimal value f(x∗)=1.

g05 [28]:

minimize f(x) = 3x1 + 0.000001x3
1 + 2x2 +

0.000002
3

x3
2,

subject to g1(x) = x3 − x4 − 0.55 ≤ 0,
g2(x) = −x3 + x4 − 0.55 ≤ 0,
h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25)

+894.8 − x1 = 0,
h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25)

+894.8 − x2 = 0,
h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25)

+1294.8 = 0,
0 ≤ xi ≤ 1200 (i = 1, 2), −0.55 ≤ xi ≤ 0.55 (i = 3, 4)

The minimum value is unknown. The known best value is f(x) = 5126.4981
[29].

g11 [29]:
minimize f(x) = x2

1 + (x2 − 1)2,
subject to h(x) = x2 − x2

1 = 0,
−1 ≤ xi ≤ 1 (i = 1, 2)

The optimal solution is x∗ =
(

± 1√
2
,
1
2

)
and the optimal value f(x∗) =

0.75.

g13 [28]:
minimize f(x) = ex1x2x3x4x5 ,
subject to h1(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 − 10 = 0,
h2(x) = x2x3 − 5x4x5 = 0,
h3(x) = x3

1 + x3
2 + 1 = 0,

−2.3 ≤ xi ≤ 2.3 (i = 1, 2), −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5)

The optimal solution is x∗ = (-1.717143, 1.595709, 1.827247, -0.7636413,
-0.763645) and the optimal value f(x∗) = 0.0539498.

In many other methods, problems with equality constraints cannot be solved
directly. Thus, the equality constraints are relaxed, that is, all equality con-
straints hj(x) = 0, j = q + 1, · · · , m are replaced by inequalities:

148 T. Takahama and S. Sakai

Table 1. Results using static control and dynamic control; 25 independent runs

Problem Control Best Mean Median Worst
↑g03 static 1.00050010 1.00050010 1.00050010 1.00050010
(1.0) dynamic 1.00050010 1.00050010 1.00050010 1.00050010
g05 static 5126.49671 5126.49671 5126.49671 5126.49671

(5126.498) dynamic 5126.49671 5126.49671 5126.49671 5126.49671
g11 static 0.74990000 0.74990000 0.74990000 0.74990000

(0.750) dynamic 0.74990000 0.74990000 0.74990000 0.74990000
g13 static 0.05394151 0.05394151 0.05394151 0.05394151

(0.053950) dynamic 0.05394151 0.05394151 0.05394151 0.05394151

|hj(x)| ≤ δ, δ > 0 (13)

In the experiments, δ = 0.001.
In εDE, the same settings are used for all problems. The parameters for the

ε constrained method are defined as follows: The constraint violation φ is given
by the sum of all constraints (p=1) in equation (3). The ε-level is controlled by
equation (9) in static control and (10) in dynamic control where Tc = 0.5T . The
εDE can solve problems with equality constraints directly. However, to compare
with other method, δ = 0.001 is tested. The parameters for DE are as follows:
The number of agents N = 40, F = 0.7, CR = 0.9. The maximum number of
generation T = 5000, and independent 25 runs are performed in each problem.

4.2 Experimental Results

Experimental results on the test problems are shown in Table 1, in which each
value is the average of 25 runs. The column labeled “problem” shows the problem
number. The optimal value in each problem is shown in parentheses under the
problem number. The column labeled “control” shows the type of control for the
ε-level, where the parameter for dynamic control is η = 5. Also, “best”, “mean”,
“median”, and “worst” are the best value, the average value, the median value,
the worst value, respectively. Problem g03 is the maximization problem and is
shown with an up arrow.

In all problems, both of εDE with static control and εDE with dynamic control
found the same solutions in all runs. In all cases, the εDEs found smaller values
than the optimal values. The solutions obtained by the εDEs were away about
0.001 from the feasible region because the constraints are relaxed with equation
(13). Thus, it is thought that the εDEs’ ability to search for feasible solutions
is very high for the problems with the equality constraints. This result shows
that both of static and dynamic control have equivalent ability to find optimal
solutions.

To compare the efficiency of the static control and the dynamic control, an-
other experiment is performed with changing the parameter η = 0, 1, 2, 3, 4, 5, 6.

Constrained Optimization by ε Constrained Differential Evolution 149

Table 2. Results with changing the parameter η; 25 independent runs

Problem Param Success Best Worst Mean Sigma Ratio
g03 static 25 87,031 92,438 90,034.2 1,347.6 1

0 25 79,062 84,124 81,821.4 1,309.3 0.91
1 25 63,647 72,966 69,184.8 2,281.1 0.77
2 25 55,334 62,539 59,032.2 1,849.0 0.66
3 25 47,261 54,213 51,170.0 1,861.2 0.57
4 25 41,342 48,950 44,467.4 2,033.8 0.49
5 25 36,584 69,402 45,551.7 6,118.2 0.51
6 19 39,870 105,202 73,796.9 17,928.0 0.82

g05 static 25 96,688 98,290 97,572.0 362.0 1
0 25 94,531 97,058 95,850.9 572.2 0.98
1 25 91,776 94,321 93,099.6 732.8 0.95
2 25 87,248 90,730 88,980.2 817.7 0.91
3 25 81,998 85,982 84,225.6 1058.3 0.86
4 25 76,026 81,286 78,620.8 1,299.8 0.81
5 25 71,180 76,797 73,722.4 1,296.6 0.76
6 25 65,644 71,312 67,783.2 1,315.4 0.69

g11 static 25 22,558 62,184 45,046.8 9,330.4 1
0 25 7,044 47,736 34,894.0 8,811.0 0.77
1 25 21,714 49,530 34,130.1 7,496.9 0.76
2 25 12,545 41,469 30,411.5 6,805.9 0.68
3 25 7,810 37,409 23,740.1 6,818.6 0.53
4 25 17,403 33,025 26,380.2 4,100.5 0.59
5 25 4,676 29,511 19,533.7 5,873.8 0.43
6 25 5,918 28,345 18,572.0 6,849.0 0.41

g13 static 25 76,582 88,947 85,037.3 2,694.5 1
0 25 75,854 84,101 80,048.8 2,178.8 0.94
1 25 67,573 78,873 73,090.9 2,396.2 0.86
2 25 57,850 70,317 63,716.6 2,902.4 0.75
3 25 51,056 59,640 55,575.9 1,902.8 0.65
4 25 42,432 51,819 47,945.0 2,401.3 0.56
5 25 37,404 46,565 42,308.2 2,562.8 0.50
6 25 31,639 40,491 36,964.5 2,216.6 0.43

Table 2 shows the number of function evaluations needed for satisfying the suc-
cess condition of fbest − f∗ ≤ 0.0001 and xbest being feasible, where xbest and
fbest are the best solution found in each run and its value, respectively. The col-
umn labeled “param” shows the parameter value of η for dynamic control, and
the result of static control is also shown. The column labeled “success” shows the
number of runs in which solutions satisfying success condition are found. Also,
“best”, “worst”, “mean” and “sigma” are the best value, the worst value, the
average value and the standard deviation of the number of function evaluations
for satisfying success condition. The ratio of the number of function evaluations

150 T. Takahama and S. Sakai

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 500 1000 1500 2000 2500

Static
Dynamic

Fig. 2. The control of the ε-level in problem g03

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 10000

 0 500 1000 1500 2000 2500

Static
Dynamic

Fig. 3. The control of the ε-level in problem g05

between the static control and dynamic control is shown in the column labeled
“ratio”. The better cases are highlighted using boldface.

When the parameter η is in [0, 5], solutions satisfying success condition are
found in all runs. If η is large, the convergence speed of enlarged region into
feasible region becomes high and feasible solutions and the optimal solution can
be found faster. When the parameter η is 5, the number of function evaluations
is reduced about 50% in g03, g11 and g13 and it is reduced about 24% in g05.
So, the efficiency of the εDE with dynamic control is very higher than that of
the εDE with static control. However, when η is 6, success condition cannot be
attained in 6 runs out of 25 runs for g03. It is thought that the decrease of the
ε-level is too fast, enlarged region is reduced too fast, and search process cannot
find the optimal solution. Thus, the value of η should be selected properly to
find optimal solutions, and the proper value of parameter η is 5.

Constrained Optimization by ε Constrained Differential Evolution 151

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500

Static
Dynamic

Fig. 4. The control of the ε-level in problem g11

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500

Static
Dynamic

Fig. 5. The control of the ε-level in problem g13

Figures 2, 3, 4 and 5 show the change of the ε-level over generations for
static control and dynamic control with η = 5 in problems g03, g05, g11 and
g13, respectively. Apparently, the convergence speed of the ε-level in dynamic
control with η = 5 is higher than that in static control. These graphs show the
effectiveness of the dynamic control.

4.3 Comparison with the Stochastic Ranking Method

To show the effectiveness of the εDE with dynamic control, the solutions found
by this method are compared to those found by Runarsson and Yao’s stochastic
ranking method[9]. In [9], the maximum number of evaluations in each run was
1750 × 200 = 350, 000 and all equality constraints were relaxed using δ = 10−4.
Table 3 shows the comparison of the two methods. The better cases are high-
lighted using boldface. The results of the εDE were taken from Table 1 where

152 T. Takahama and S. Sakai

Table 3. Comparison between our (indicated by εDE) and Runarsson and Yao’s (in-
dicated by RY[9]) algorithms

f Optimal Best Result Median Result Mean Result Worst Result
εDE RY εDE RY εDE RY εDE RY

↑g03 1.000 1.001 1.000 1.001 1.000 1.001 1.000 1.001 1.000
g05 5126.498 5126.497 5126.497 5126.497 5127.372 5126.497 5128.881 5126.497 5142.472
g11 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750
g13 0.053950 0.053942 0.053957 0.053942 0.057006 0.053942 0.067543 0.53942 0.438803

all equality constraints were relaxed using δ = 10−4 and the maximum num-
ber of evaluations was 5000 × 40 = 200, 000 which was much less than that of
the stochastic ranking method. The solutions found by the stochastic ranking
method were very high quality solutions that were equivalent to the known op-
timal solutions. Nevertheless, the εDE found better solutions for problems g03
and g13. Also, the stability of the εDE was better than that of the stochastic
ranking method for problems g05 and g13. Therefore, the performance of the
εDE is better than the stochastic ranking method.

5 Conclusions

This chapter presented the improved εDE with dynamic ε-level control to solve
problems with very small feasible region, such as problems with equality con-
straints. By applying the εDE to the four constrained optimization problems
with equality constraints, it was shown that the εDE obtained the optimal so-
lution for every problem by the numerical experiments and the εDE was a high
precision and stable optimization algorithm. By comparing the εDE with static
control, we showed that the improved εDE was a very efficient algorithm. Also,
by comparing the εDE with stochastic ranking method that is known as an ef-
ficient algorithm for the constrained optimization problems, it was shown that
the εDE was a very stable and good algorithm.

In the future, we will explore ways to prevent the ε-level from converging too
fast. Also, we will apply the εDE to various application fields.

Acknowledgements

This research is supported in part by Grant-in-Aid for Scientific Research (C)
(No. 16500083, 17510139) of Japan society for the promotion of science and Hi-
roshima City University Grant for Special Academic Research (General Studies)
7111.

References

1. Michalewicz, Z.: A survey of constraint handling techniques in evolutionary com-
putation methods. In: Proceedings of the 4th Annual Conference on Evolutionary
Programming, pp. 135–155. MIT Press, Cambridge (1995)

Constrained Optimization by ε Constrained Differential Evolution 153

2. Coath, G., Halgamuge, S.K.: A comparison of constraint-handling methods for the
application of particle swarm optimization to constrained nonlinear optimization
problems. In: Proc. of IEEE Congress on Evolutionary Computation, Canberra,
Australia, pp. 2419–2425 (2003)

3. Hu, X., Eberhart, R.C.: Solving constrained nonlinear optimization problems with
particle swarm optimization. In: Proc. of the Sixth World Multiconference on Sys-
temics, Cybernetics and Informatics, Orlando, Florida (2002)

4. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method for con-
strained optimization problems. In: Sincak, P., Vascak, J., et al. (eds.) Intelligent
Technologies — Theory and Application: New Trends in Intelligent Technologies.
Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 214–220. IOS Press,
Amsterdam (2002)

5. Takahama, T., Sakai, S.: Tuning fuzzy control rules by α constrained method
which solves constrained nonlinear optimization problems. The Transactions of
the Institute of Electronics, Information and Communication Engineers J82-A(5),
658–668 (1999) (in Japanese)

6. Takahama, T., Sakai, S.: Tuning fuzzy control rules by the α constrained method
which solves constrained nonlinear optimization problems. Electronics and Com-
munications in Japan, Part3: Fundamental Electronic Science 83(9), 1–12 (2000)

7. Takahama, T., Sakai, S.: Constrained optimization by ε constrained particle swarm
optimizer with ε-level control. In: Proc. of the 4th IEEE International Workshop
on Soft Computing as Transdisciplinary Science and Technology (WSTST 2005),
May 2005, pp. 1019–1029 (2005)

8. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering 186(2/4), 311–338 (2000)

9. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary opti-
mization. IEEE Transactions on Evolutionary Computation 4(3), 284–294 (2000)

10. Camponogara, E., Talukdar, S.N.: A genetic algorithm for constrained and mul-
tiobjective optimization. In: Alander, J.T. (ed.) 3rd Nordic Workshop on Genetic
Algorithms and Their Applications (3NWGA), August 1997, pp. 49–62. University
of Vaasa, Vaasa, Finland (1997)

11. Surry, P.D., Radcliffe, N.J.: The COMOGA method: Constrained optimisation by
multiobjective genetic algorithms. Control and Cybernetics 26(3), 391–412 (1997)

12. Ray, T., Liew, K.M., Saini, P.: An intelligent information sharing strategy within a
swarm for unconstrained and constrained optimization problems. Soft Computing
– A Fusion of Foundations, Methodologies and Applications 6(1), 38–44 (2002)

13. Takahama, T., Sakai, S.: Learning fuzzy control rules by α-constrained simplex
method. The Transactions of the Institute of Electronics, Information and Com-
munication Engineers J83-D-I(7), 770–779 (2000) (in Japanese)

14. Takahama, T., Sakai, S.: Learning fuzzy control rules by α-constrained simplex
method. Systems and Computers in Japan 34(6), 80–90 (2003)

15. Takahama, T., Sakai, S.: Constrained optimization by applying the α constrained
method to the nonlinear simplex method with mutations. IEEE Transactions on
Evolutionary Computation 9(5), 437–451 (2005)

16. Takahama, T., Sakai, S.: Constrained optimization by α constrained genetic algo-
rithm (αGA). The Transactions of the Institute of Electronics, Information and
Communication Engineers J86-D-I(4), 198–207 (2003) (in Japanese)

17. Takahama, T., Sakai, S.: Constrained optimization by α constrained genetic algo-
rithm (αGA). Systems and Computers in Japan 35(5), 11–22 (2004)

154 T. Takahama and S. Sakai

18. Takahama, T., Sakai, S.: Constrained optimization by combining the α constrained
method with particle swarm optimization. In: Proc. of Joint 2nd International Con-
ference on Soft Computing and Intelligent Systems and 5th International Sympo-
sium on Advanced Intelligent Systems (2004)

19. Takahama, T., Sakai, S., Iwane, N.: Constrained optimization by the ε constrained
hybrid algorithm of particle swarm optimization and genetic algorithm. In: Zhang,
S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 389–400. Springer,
Heidelberg (2005)

20. Takahama, T., Sakai, S.: Solving constrained optimization problems by the ε con-
strained particle swarm optimizer with adaptive velocity limit control. In: Proc.
of the 2nd IEEE International Conference on Cybernetics & Intelligent Systems,
June 2006, pp. 683–689 (2006)

21. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained genetic
algorithm. IPSJ Journal 47(6), 1861–1871 (2006)

22. Takahama, T., Sakai, S., Iwane, N.: Solving nonlinear constrained optimization
problems by the ε constrained differential evolution. In: Proc. of the 2006 IEEE
Conference on Systems, Man, and Cybernetics, October 2006, pp. 2322–2327 (2006)

23. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential
evolution with gradient-based mutation and feasible elites. In: Proc. of 2006 IEEE
Congress on Evolutionary Computation, July 2006, pp. 308–315 (2006)

24. Storn, R., Price, K.: Minimizing the real functions of the ICEC 1996 contest by
differential evolution. In: Proc. of the International Conference on Evolutionary
Computation, pp. 842–844 (1996)

25. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization 11,
341–359 (1997)

26. Mezura-Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy
to solve constrained optimization problems. IEEE Trans. on Evolutionary Compu-
tation 9(1), 1–17 (2005)

27. Mchalewicz, Z., Nazhiyath, G., Michalewicz, M.: A note on usefullness of geomet-
ricalcrossover of numerical optimization problems. In: Fogel, L.J., Angeline, P.J.,
Bäck, T. (eds.) Proc. 5th Annual Conference on Evolutionary Programming, pp.
305–312. MIT Press, Cambridge (1996)

28. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. Lec-
ture Notes in Economics and Mathematical Systems. Springer, Heidelberg (1981)

29. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings,
and constrained parameter optimization. Evolutionary Computation 7(1), 19–44
(1999)

	Constrained Optimization by ε Constrained Differential Evolution with Dynamic ε-Level Control
	Introduction
	The ε Constrained Method
	Constraint Violation and -Level Comparison
	The Properties of the Constrained Method

	The εDE
	Differential Evolution
	The Algorithm of the εDE
	Controlling the ε-Level

	Solving Constrained Nonlinear Programming Problems with Equality Constraints
	Test Problems and Experimental Conditions
	Experimental Results
	Comparison with the Stochastic Ranking Method

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

