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Summary. Because real-world problems generally include computationally expensive
objective and constraint functions, an optimization run should be terminated as soon
as convergence to the optimum has been obtained. However, detection of this condi-
tion is not a trivial task. Because the global optimum is usually unknown, distance
measures cannot be applied for this purpose. Stopping after a predefined number of
function evaluations has not only the disadvantage that trial-and-error methods have
to be applied for determining a suitable number of function evaluations, but the num-
ber of function evaluations at which convergence occurs may also be subject to large
fluctuations due to the randomness involved in evolutionary algorithms. Therefore,
stopping criteria should be applied which react adaptively to the state of the opti-
mization run. In this work several stopping criteria are introduced that consider the
improvement, movement or distribution of population members to derive a suitable
time for terminating the Differential Evolution algorithm. Their application for other
evolutionary algorithms is also discussed. Based on an extensive test set the criteria
are evaluated using Differential Evolution, and it is shown that a distribution-based
criterion considering objective space yields the best results concerning the convergence
rate as well as the additional computational effort.

1 Introduction

Since the development of Differential Evolution (DE) in 1995 [1], considerable
effort has been spend to improve its convergence characteristics e.g. by varying
operators [2, 3] or changing the handling of constraints [4, 5]. As a consequence,
several enhancements have been found during the last years that have led to
successful applications in many different fields [6]. However, even the perfor-
mance of a very good algorithm may be bad for practical purposes when it is
not stopped at a proper time. For theoretical work about convergence proper-
ties or a comparison of different implementations of DE this aspect is generally
not important because for this purpose usually test functions are employed for
which the optimum is known. In that case, the execution of the algorithm can
be terminated if the optimum is found with a given accuracy, and the involved
computational effort can be used to analyze the performance of different DE
implementations. An alternative is to terminate after a defined number of func-
tion evaluations (FEs) and to evaluate the distance of the best individual to the

U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 111–138, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



112 K. Zielinski and R. Laur

optimum. This approach works well for theoretical work when algorithm vari-
ants are tested against each other but for real-world problems the situation is
different because the optimum is usually unknown.

A stopping rule for problems with unknown optimum that is widely used in the
literature is to terminate the execution of an algorithm after a given maximum
number of function evaluations FEmax (this stopping criterion will be called
LimFuncEval in the following). This approach is associated with two problems:
Suitable settings for FEmax vary considerably for different optimization prob-
lems, so usually FEmax has to be figured out by trial-and-error methods. A fur-
ther problem is that the number of objective function evaluations FEconv that is
needed for convergence for one specific optimization problem may also be subject
to large variations due to the stochastic nature of DE. This statement holds for
many different implementations of DE as can be seen in [3, 4, 5, 7, 8, 9, 10]. Be-
cause real-world problems usually contain computationally expensive objective
and constraint functions it is imperative that unnecessary function evaluations
are avoided. Therefore, it is important to examine other alternatives for stopping
the execution of the DE algorithm besides termination after a fixed number of
function evaluations. In order to deal with the problem that is caused by fluctua-
tions of FEconv, the stopping criteria have to be able to detect when convergence
is reached. Thus, they have to react adaptively to the current state of an opti-
mization run. The stopping criteria have to ensure that the algorithm is executed
long enough to obtain convergence to the global optimum but without wasting
of computational resources.

Different mechanisms can be used for deriving conclusions about the current
state of an optimization run. In principle any phenomenon can be used that
exhibits a definite trend from the beginning to the end of an optimization run.
For instance both the improvement as well as the movement of individuals are
typically large in the beginning of an optimization run and both become small
when approaching convergence. Another example is the distribution of popula-
tion members as they are scattered throughout the search space initially but
usually converge to one point towards the end of an optimization run. Conse-
quently, each of these properties is basically usable for detecting convergence.

Any of the before-mentioned population characteristics like improvement,
movement and distribution can be used in various implementations for the cre-
ation of stopping conditions. Because the performance of different implementa-
tions is not necessarily similar, an extensive study analyzing their abilities will
be presented in this chapter. Conclusions will be derived about which mecha-
nisms are best suited to meet the demands of reliable stopping after convergence
to the optimum has been obtained without wasting of computational resources.

Besides the problem with fluctuations of FEconv, terminating after a fixed
number of function evaluations is also connected with the problem that a suitable
setting for parameter FEmax has to be found. Apparently, this kind of problem
is inherent to all stopping criteria because up to now no parameter-free stopping
criterion is known. The adaptive stopping criteria which will be presented in
this chapter are also associated with parameters which have to be chosen by the
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user. Interestingly, it will be shown in this work that standard settings which
can be used for a large range of optimization problems exist for some of them.
As a consequence, the application of these stopping criteria is easy for the user.

One problem in the field of optimization is that authors often use different sets
of test functions or different accuracies (for defining convergence to the optimum
as well as for the allowed constraint violation of equality constraints). Hence, it is
generally difficult to compare results. In contrast, a subset of a standardized well-
defined test set that was specified in [11] for the Special Session on Constrained
Real ParameterOptimization at the Congress on Evolutionary Computation 2006
(CEC06) is used in this work. The reason for using only a subset of the mentioned
test set is that for the examination of stopping criteria it is reasonable to use opti-
mization problems for which the employed algorithm is able to converge reliably,
meaning that convergence is obtained in every optimization run. In that case, the
evaluation of stopping criteria is simplified because a convergence rate of less than
100% can be considered to be a result of unsuitable stopping conditions. The per-
formance of the DE variant that is used in the present examination has already
been analyzed adhering to the demands of [11] in a former study [10]. Based on
this study, 16 out of 24 test functions have been selected for which a reliable con-
vergence behavior has been found in [10].

Based on the previous considerations, the remainder of this chapter is orga-
nized as follows: In Sect. 2 the specification of the Differential Evolution variant
that is used for the present examination is given. In Sect. 3 an overview about
stopping criteria is provided, including a discussion if they can also possibly be
used for other evolutionary algorithms besides DE. The description of experi-
mental settings in Sect. 4 specifies parameter settings of DE, parameter settings
of the stopping criteria and the performance measures that are applied in this
work. Results are discussed in Sect. 5, and Sect. 6 ends with conclusions about
the suitability of the presented stopping criteria for Differential Evolution.

2 Differential Evolution

In this section first the general process of Differential Evolution is described
before giving details about the variant that is used here. For DE the positions of
individuals are represented as real-coded vectors which are randomly initialized
inside the limits of the given search space in the beginning of an optimization run
(see Fig. 1). The individuals are evolved during the optimization run by applying
mutation, recombination and selection to each individual in every generation. A
stopping criterion determines after the building of every new generation if the
optimization run should be terminated.

In this work the Differential Evolution algorithm is used in the variant
DE/rand/1/bin [12]. This notation means that in the mutation process a ran-
domly chosen population member xr1 is added to one vector difference (also built
from two randomly chosen members xr2 and xr3 of the current population) where
xr1 , xr2 , xr3 and the so-called target vector xi are mutually different:

vi = xr1 + F · (xr2 − xr3) (1)
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Random initialization of individuals xi with 

i in {0,…,NP-1}

Mutation: Create vi for every i in {0,…,NP-1}

Recombination: Generate ui using vi and xi for 

every i in {0,…,NP-1}

Selection: Compare xi and ui and insert the better 

performing solution into the next generation

Stopping criterion reached?

no

Termination: Best individual is the solution

yes

Fig. 1. Flowchart of Differential Evolution

F is a control parameter of DE that is usually chosen from the interval [0, 1].
Best values are usually in the range [0.5, 0.9] as indicated in [13, 14, 15, 16].

Furthermore, the notation of the variant DE/rand/1/bin specifies that a
binomial recombination process is used that can be written as follows:

ui,j =

{
vi,j if randj ≤ CR or j = k

xi,j otherwise
(2)

Equation 2 generates the so-called trial vector ui by copying components from
the mutated vector vi and the target vector xi in dependence on a random
number randj ∈ [0, 1] that is compared to the control parameter CR (where
randj is chosen anew for each parameter in every generation). Good settings
for CR are typically close to one but for some functions also small values have
been reported to yield good results [13, 14, 15, 16]. Because during the selection
process the target vector and the corresponding trial vector will compete for a
place in the subsequent generation, it is ensured that ui �= xi by selecting at
least one component from the mutated vector vi. For this purpose the variable
k ∈ {0, . . . , D−1} (where D is the dimension of the optimization problem that
is equal to the number of objective function parameters) is randomly chosen for
every trial vector in each generation, and the k-th component of the trial vector
is copied from the mutated vector.
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Hence, four population members are involved in the creation of each trial
vector which leads to an adaptive scaling of step sizes because the magnitude of
the vector differences varies during the different stages of an optimization run.

Selection is a deterministic process in DE: The target vector and the trial
vector are compared to each other, and the one with the lower objective func-
tion value (for minimization problems like in this work) is inserted into the
next generation. Because this selection scheme allows only improvement but not
deterioration of the objective function value, it is called greedy [14]. A further
characteristic of the DE selection process is that the best objective function value
cannot get lost when moving from one generation to the next. This property is
called elitist, and it is usually associated with fast convergence behavior [6].

Mutation, recombination and selection is applied to every population member
xi with i ∈ {0, . . . , NP−1} in each generation where NP specifies the population
size that has to be adjusted by the user. The fact that the evolutionary operators
are applied to every population member is a property that distinguishes DE from
several other evolutionary algorithms which often select only a subset of the
population for mating [17]. In that case, individuals with better characteristics
generally have better chances to reproduce, resulting in a possible increase of
the convergence speed but also in loss of diversity. Because DE already generates
enough convergence pressure by using an elitist selection procedure, diversity is
emphasized by allowing each individual to generate offspring.

Differential Evolution has originally been developed for unconstrained single-
objective optimization. Hence, a method for constraint-handling has to be added
if constrained optimization problems should be solved like in this work. Several
different constraint-handling approaches have been suggested in the literature
[4, 5, 6]. In this work a method is employed that is widely used because it is simple
but effective. It does not change the mutation and recombination processes of
DE but only modifies selection in the following way:

• Feasible individuals (meaning individuals that fulfill all constraints) are
favored over infeasible individuals.

• In the comparison of two infeasible individuals the one with the lower sum
of constraint violation wins.

• The original selection method is used in the comparison of two feasible indi-
viduals.

Using this approach the search is guided to feasible regions of the search space
by preferring individuals with lower or no constraint violation. This technique
is easy to use because no additional parameters have to be set. With a small
modification it can also be used for multi-objective optimization [18].

Boundary constraints are treated as a special case of constraint functions
here because especially for real-world problems it may be crucial that individ-
uals stay inside certain boundaries. A position that exceeds a limit is reset to
the middle between old position and boundary, so the boundary is approached
asymptotically [19]:
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ui,j,G+1 =

⎧⎪⎨
⎪⎩

1
2 (xi,j,G + Xmax,j) if ui,j,G+1 > Xmax,j

1
2 (xi,j,G + Xmin,j) if ui,j,G+1 < Xmin,j

ui,j,G+1 otherwise
(3)

where Xmax,j is the upper limit and Xmin,j is the lower limit for the j-th
parameter, and Eq. 3 is given for the i-th individual in generation G.

3 Stopping Criteria

The stopping criteria which are used in this work are grouped into three classes:

• Improvement-based criteria,
• movement-based criteria and
• distribution-based criteria.

In the following several implementations of stopping criteria based on mon-
itoring improvement, movement and distribution are summarized. Most of the
stopping criteria that are presented here have already been used for DE [20, 21].
Additionally, for one of them a generalization is newly introduced here because
it has been indicated elsewhere [22] that the generalized criterion may exhibit
improved behavior over the special case that was formerly used. Many of the
stopping criteria that are examined in this work can also be employed for other
evolutionary algorithms but it was shown that the performance is not neces-
sarily equal [20, 22]. This conclusion is also reached in [23] where it is stated
that the effectiveness of a stopping criterion is closely related to the procedure
of a certain optimization strategy and not automatically transferable to other
algorithms. Therefore, in the following description of stopping criteria references
are added, if available, in which other context or for which other optimization
algorithm the stopping criteria can be used also.

Every criterion that is presented here includes one or two specific parameters
which have to be set by the user. This property seems to be inherent to all
stopping criteria because even if a problem with known optimum is used and
termination is done when the optimum is found, the accuracy has to be set by
the user. Similarly, parameter FEmax has to be set when criterion LimFuncEval
is employed. Usually, no general guidelines can be given for the setting of FEmax

but the adaptive stopping criteria do not necessarily have this property as will
be shown in this work.

3.1 Improvement-Based Criteria

If the improvement of the objective function value decreases to a small value
for some time, it can be assumed that convergence has been obtained. Because
improvement can be measured in different ways, three conditions are examined
here:

• ImpBest : The improvement of the best objective function value of each gen-
eration is monitored. If it falls below a user-defined threshold t for a number
of generations g, the optimization run will be terminated.
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A similar approach is also discussed in [24] for Particle Swarm Optimiza-
tion (PSO) and furthermore in [25] to determine a suitable switch-over point
from a Genetic Algorithm to a local optimization technique.

• ImpAv : Because the best objective function value might not correctly reflect
the state of the whole population, the average improvement computed from
the whole population is examined for this criterion. Similar to ImpBest, an
optimization run is terminated if the average improvement is below a given
threshold t for g generations.

This criterion is also used in [26] to stop a local search procedure that is
embedded in a Genetic Algorithm. For the same purpose similar criteria as
ImpBest and ImpAv are also employed in [27].

• NoAcc: Because DE incorporates a greedy selection scheme, the acceptance
of trial vectors means that there is improvement in the population. Based
on this fact, it is monitored if still trial vectors have been accepted in a
specified number of generations g, and the optimization run is terminated if
this condition is violated.

NoAcc has the advantage that only one parameter has to be set whereas all
other stopping conditions that are presented here require the setting of two
parameters. However, in contrast to the other improvement-based criteria,
it is specific to the functionality of DE and may not be assignable to other
evolutionary algorithms. For PSO NoAcc can be adapted by observing if new
personal best positions have been found in a predefined number of generations
but in [22] the performance of this criterion was poor.

NoAcc is also described for DE in [6], and it is recommended to set g
not too low because long periods without improvement may occur during
optimization runs.

3.2 Movement-Based Criteria

In the beginning of an optimization run the individuals are randomly scattered in
the search space, and large step sizes are generated in mutation and recombina-
tion. Towards the end of an optimization run the population generally converges
to one point in the search space. Thus, step sizes become small because of the
adaptive scaling of DE. As a result, the movement of individuals in parameter
space can also be used to derive a stopping criterion (parameter space means
that the positions of the individuals are regarded while objective space refers to
the objective function values of the individuals):

• MovPar : If the average movement of the population members is below a
threshold t for a given number of generations g, the optimization run is
terminated.

MovPar is also usable for other evolutionary algorithms with real-coded
variables. It might be possible to adapt it also for binary-coded individuals
if a suitable distance measure can be found. Moreover, stopping criteria like
this are used in classical optimization algorithms like hill climbing techniques
[23].
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Movement can also be measured in objective space but because of the greedy
selection scheme of DE, the objective function value can only improve but not
deteriorate. Therefore, a stopping criterion based on movement in objective
space would be equal to an improvement-based criterion. In contrast, a cri-
terion MovObj could be used for other evolutionary algorithms which permit
deterioration of objective function values:

• MovObj : If the average movement of the population members in objective
space is below a threshold t for g generations, the optimization run is stopped.

3.3 Distribution-Based Criteria

In single-objective optimization DE individuals usually converge to one point
in the search space towards the end of an optimization run. As a result, the
distribution of individuals can be used to derive conclusions about the state of
an optimization run. Several possibilities exist to measure the distribution of
individuals. One of the easiest alternatives is the following:

• MaxDist : The maximum distance of any population member to the individual
with the best objective function value is monitored in parameter space. If it
falls below a threshold m, the optimization run will be terminated.

A similar criterion is also discussed in [24] for PSO.

If the positions of all population members should be regarded instead of ob-
serving only the maximum distance to the best individual, the following stopping
criterion can be used:

• StdDev : The standard deviation of positions of all population members is
examined. The optimization run is stopped if it drops below a given threshold
m.

In [28] a similar criterion is also used for DE.

Especially for Particle Swarm Optimization it has been shown that a gener-
alization of MaxDist has advantages [20, 22]:

• MaxDistQuick : Instead of examining the maximum distance of all population
members to the current best individual, only a subset of the current popu-
lation is used. For this purpose, the population members are sorted due to
their objective function value using a Quicksort algorithm, and only for the
best p% of the population it is checked if their distance is below a threshold
m. Because a feasible solution is wanted, it is also checked if the best p% of
the individuals are feasible.

MaxDist can be derived from MaxDistQuick by setting p to 100%.

In [22] it was concluded for PSO that it might be beneficial if a general-
ization of StdDev is also examined because it was shown that the generalized
criterion MaxDistQuick has advantages over the special case MaxDist. StdDev
and MaxDist rely on similar mechanisms, so it can be expected that the perfor-
mance of a generalized criterion might also be better for StdDev. Consequently,
the following criterion is newly introduced here:
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• StdDevQuick : Similar to MaxDistQuick, the population is first sorted due
to their objective function value using a Quicksort algorithm. The standard
deviation of positions is then calculated for the best p% of the population
and compared to the user-defined threshold m. Again, it is also examined if
the best p% of the individuals are feasible.

Similar to the relationship between MaxDist and MaxDistQuick, StdDev
is a special case of StdDevQuick with p = 100%.

Because MaxDist and StdDev are special cases of MaxDistQuick and StdDev-
Quick, respectively, only the generalizations MaxDistQuick and StdDevQuick are
regarded in the following.

All distribution-based criteria that have been mentioned so far are calculated
in parameter space. Another possibility to evaluate the distribution of the pop-
ulation members is to regard objective space:

• Diff : The difference between best and worst objective function value in a
generation is checked if it is below a given threshold d. Furthermore, it is
demanded that at least p% of the individuals are feasible because otherwise
Diff could lead to early termination of an optimization run if e.g. only two
individuals are feasible and they are close to each other by chance but the
population has not converged yet.

A similar implementation of this criterion without parameter p is de-
scribed in [6, 23] and also used in [29] (interestingly, it will be shown in
the following that the results of the present examination indicate that the
performance of Diff is independent from p so it may be omitted). It is rec-
ommended in [6] to set d to a value that is several orders of magnitude lower
than the desired accuracy of the optimum.

No DE-specific information is used for the distribution-based criteria so in
principle they can be used for other algorithms also. However, if another repre-
sentation than real-coded vectors is used for the positions of the individuals, the
distribution-based criteria in parameter space will have to be adapted.

3.4 Combined Criteria

Because functions have different features it can be concluded that a combination
of different stopping criteria may result in good performance. For example an
criterion like Diff that is easy to check can be tested first. Because the first
criterion might fail for certain characteristics of the objective function (e.g. it
was shown in former work [20] that Diff fails for functions with a flat surface),
a second criterion that is based on another mechanism might be evaluated after
the stopping condition of the first criterion has been fulfilled. In former work the
following combined criteria were tested:

• ComCrit : First, the improvement-based criterion ImpAv is evaluated. If ImpAv
indicates that the optimization run should be stopped, the distribution-based
criterion MaxDist is regarded additionally. ComCrit was examined in [20, 21]
for DE and also in [22] for PSO.
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• Diff MaxDistQuick : In this case, distribution-based criteria in objective and
parameter space were joined (Diff and MaxDistQuick) so that MaxDistQuick
is only checked if the stopping condition of Diff has been fulfilled. Up to now
this criterion has only been applied for PSO in [22].

In all former examinations the combined criteria always needed more function
evaluations for detecting convergence than the individual criteria. Furthermore,
selecting appropriate parameter settings was complicated because three param-
eters have to be set for each stopping criterion in contrast to one or two param-
eters for the individual criteria, respectively. Moreover, the connection between
parameter settings and problem features like desired accuracy was obliterated.
Because of these disadvantages, combined criteria are not considered further in
this work.

4 Experimental Settings

To be able to derive general conclusions about the suitability of stopping crite-
ria for a broad range of optimization problems, 16 test functions are used here.
They are chosen from the standardized test set that was used in the Special
Session on Constrained Real Parameter Optimization at the Congress on Evo-
lutionary Computation 2006. The test set originally consists of 24 constrained
single-objective test functions (g01–g24) but this work concentrates on the func-
tions for which a convergence rate of 100% has been found in former work [10]
for the same algorithm with the same parameter settings (F = 0.7, CR = 0.9,
NP = 50). In this case, the analysis of stopping criteria is simplified because
performance variations concerning the convergence rate can be accredited to
the unsuitability of stopping criteria. Because of these considerations, functions
g02, g03, g13, g17, g20, g21, g22 and g23 are omitted here. Nevertheless, the re-
maining functions permits extensive testing of stopping criteria because a broad
spectrum of different features is represented by them:

• Dimensionality,
• type of function,
• ratio of feasible space to the whole search space,
• linear and nonlinear inequality and equality constraints,
• active constraints at the optimum (meaning that the optimum is located at

the boundary of one or more constraints) and
• disconnected feasible regions.

Because the exact definition of the test functions has been shown in several
works, it is not repeated here as it takes a lot of space. Instead, the interested
reader should refer to [11, 30, 31, 32], while some general information is also
given in Table 1. In Table 1 ρ = |F|

S specifies the estimated ratio of feasible
space to the whole search space. The following four columns of Table 1 give
information about the number and type of constraints: LI is the number of linear
inequality constraints, NI is the number of nonlinear inequality constraints, LE
is the number of linear equality constraints and NE is the number of nonlinear
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Table 1. Details of the test functions (from [10] and [11])

Problem D Type of function ρ LI NI LE NE a Median FEs in [10]

g01 13 quadratic 0.0111% 9 0 0 0 6 32996
g04 5 quadratic 52.1230% 0 6 0 0 2 16166
g05 4 cubic 0.0000% 2 0 0 3 3 105780
g06 2 cubic 0.0066% 0 2 0 0 2 7198
g07 10 quadratic 0.0003% 3 5 0 0 6 93752
g08 2 nonlinear 0.8560% 0 2 0 0 0 1091
g09 7 polynomial 0.5121% 0 4 0 0 2 25602
g10 8 linear 0.0010% 3 3 0 0 6 120624
g11 2 quadratic 0.0000% 0 0 0 1 1 14993
g12 3 quadratic 4.7713% 0 1 0 0 0 5398
g14 10 nonlinear 0.0000% 0 0 3 0 3 68147
g15 3 quadratic 0.0000% 0 0 1 1 2 51619
g16 5 nonlinear 0.0204% 4 34 0 0 4 11522
g18 9 quadratic 0.0000% 0 13 0 0 6 80322
g19 15 nonlinear 33.4761% 0 5 0 0 0 176127
g24 2 linear 79.6556% 0 2 0 0 2 3067

equality constraints. Besides, the number of active constraints at the optimum is
given by a. Table 1 also gives information about the median number of function
evaluations that have been needed for convergence for the same algorithm in
former work [10] because it will be shown that the behavior of some stopping
criteria is dependent on it.

Each stopping criterion includes one or two parameters. The parameter set-
tings that are examined in this work are given in Table 2. For every parameter
combination and each test function 100 independent runs are conducted. In the
CEC06 special session 500,000FEs were allowed for solving each optimization
problem [11], so a maximum number of FEmax = 500, 000 is used in connection
with each stopping criterion to terminate the optimization run if the stopping
criterion is not able to do it. However, an optimization run that is stopped at
500,000FEs is considered as unsuccessful. In successful runs the execution of the
algorithm must be stopped before reaching 500,000FEs, and the optimum must
be located with an accuracy of 10−4 as it was required in [11] for the CEC06
special session (naturally, the solution must also be feasible where the allowed
remaining constraint violation for equality constraints is 10−4 as in [11]).

Two aspects are important for the assessment of the performance of stopping
criteria:

• Has convergence been achieved i.e. has the optimum been reached with the
desired accuracy before the algorithm was terminated?

• How fast was the termination i.e. how many function evaluations were done
after convergence has been reached?
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Table 2. Parameter settings for the stopping criteria

Criterion Parameter Start Stop Modifier
value value

ImpBest t 1e-2 1e-6 · 1e-1
g 5 20 + 5

ImpAv t 1e-2 1e-6 · 1e-1
g 5 20 + 5

NoAcc g 1 5 + 1
MovPar t 1e-2 1e-6 · 1e-1

g 5 20 + 5
MaxDistQuick m 1e-2 1e-5 · 1e-1

p 0.1 1.0 + 0.1
StdDevQuick m 1e-2 1e-5 · 1e-1

p 0.1 1.0 + 0.1
Diff d 1e-1 1e-6 · 1e-1

p 0.1 1.0 + 0.1

The first performance measure is evaluated by computing the percentage of
successful runs out of 100 independent optimization runs. Clearly, the first per-
formance measure is more important than the second here because fastness is
irrelevant if convergence is not obtained. Given that a sufficient convergence rate
has been achieved, the second performance measure also provides important in-
formation about the abilities of stopping criteria. It is examined by calculating
the additional computational effort FEstop−FEconv

FEconv
: The difference between the

number of function evaluations at which the execution of the algorithm is ter-
minated (FEstop) and the number of function evaluations at which convergence
is achieved for the first time (FEconv) is computed and the result is divided by
FEconv. Thereby, the additional computational effort is normalized because the
test problems require very different amounts of FEs for convergence. For both
performance measures the median is calculated for each function (the median is
preferred instead of the average that is often used in the literature because it is
more robust to outliers).

Due to the high amount of data that has been collected for this examination,
only general results can be visualized instead of going into detail. Therefore, box
plots of the number of successful runs and the additional computational effort
will be shown that provide a concise overview over the performance for all 16
optimization problems. Hence, performance over a large range of functions can
be easily evaluated for each combination of parameter settings of the stopping
criteria from Table 2.

Naturally, different parameter settings of stopping criteria are required if the
demanded accuracy of the result is varied. As a consequence, all examinations
are repeated with an accuracy of ε = 10−2 in order to make comparisons with
the formerly used accuracy of ε = 10−4 that was specified in [11]. Because the



Stopping Criteria for Differential Evolution 123

visualization of results takes a lot of space, the results for ε = 10−2 will only be
summarized qualitatively in the text.

5 Results

In this section the results based on the experimental settings discussed in the
previous section are shown for each stopping criterion.

5.1 Criterion ImpBest

Criterion ImpBest has a very bad performance (see Fig. 2). For many functions
the DE algorithm is stopped too early so the convergence rate is low. Only for
g08, g16 and g24 a rather high convergence rate has been achieved for certain
parameter settings (visible in Fig. 2 as outliers in the box plots). When searching
for commonalities of functions with a good performance, it is noticeable that
function g08 for which the best results have been achieved needs the least amount
of function evaluations for convergence of all functions (see Table 1). g16 and
g24 also belong to the functions which can be optimized with a comparably low
amount of function evaluations. With ε = 10−2 the convergence rate improves
for several functions but again only for functions which need a low amount
of function evaluations for convergence (e.g. g01, g06, g11, g12). Therefore, the
conclusion can be derived that ImpBest can only be used for functions which can
be optimized with low computational effort. However, obviously this property is
not sufficient because a poor performance concerning convergence rate is yielded
for several functions which can be optimized using few function evaluations.

Concerning the additional computational effort, a moderate result has been
achieved when compared to the performance of other stopping criteria. Naturally,
the additional computational effort is always higher if ε = 10−2 is used with the
same parameter settings of stopping criteria, respectively, because convergence
is obtained earlier.

When analyzing the dependence of the convergence rate and the additional
computational effort on parameter settings, it can be noticed that both slightly
increase with decreasing improvement threshold t and increasing number of gen-
erations g. In general, results are very different for different functions, so it is
not obvious how parameter settings should be chosen.

Mainly because of its bad results concerning convergence rate, ImpBest can-
not be regarded as a reliable stopping criterion. Moreover, the applicability of
ImpBest is complicated because of the difficulty that is connected with choosing
parameter settings. Former work on stopping criteria for DE also supports this
conclusion [20, 21].

5.2 Criterion ImpAv

Criterion ImpAv shows a better performance than ImpBest but again the al-
gorithm is constantly terminated too early for many functions (see Fig. 3). For
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Fig. 2. Results for criterion ImpBest
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Fig. 3. Results for criterion ImpAv
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ε = 10−4 the functions with better performance share the same property as for
ImpBest which is that a relatively small number of function evaluations is needed
for convergence. For ε = 10−2 this property is less pronounced, and there are
only two functions left for which convergence is never reached before termination
of the algorithm (g04 and g10).

Again, it is difficult to choose parameter settings because results differ for the
functions, and no commonalities are visible. Generally, a definitive dependence
of the performance on the threshold of improvement t can be seen where the
convergence rate improves and the additional computational effort degrades for
decreasing values of t. There is also a small difference in performance for varying
numbers of generations g as the convergence rate and the additional computation
effort slightly increase for higher settings of g. A similar result is also shown
in [21] where the performance varies considerably for different settings of the
parameters.

The additional computational effort is in moderate range for ε = 10−4, sim-
ilar as for ImpBest, but it increases dramatically for ε = 10−2 with the same
parameter settings, respectively.

Summing up, ImpAv cannot be regarded as a reliable stopping criterion, nei-
ther: No general guidelines for parameter settings can be given, and furthermore
there are other criteria that result in faster detection of convergence. As a result,
the use of ImpAv cannot be recommended.

5.3 Criterion NoAcc

For NoAcc mostly high convergence rates have been achieved, especially for
high settings of the number of generations without improvement g (see Fig. 4).
Unfortunately, especially for functions that can be optimized with a low amount
of function evaluations like g08, g16 and g24 the additional computational effort
is very high (see Fig. 4). There are several functions for which high convergence
rates have already been reached for g = 1 (g06, g08, g24) but there are also
functions for which even with parameter setting g = 5 no reliable detection of
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convergence can be achieved. For ε = 10−2 the convergence rates become higher
but there are still two functions for which the convergence rate is only moderate
(g18 and g19).

Although NoAcc has the advantage that it only incorporates one parameter,
its reliability is limited because it may not be easy to set parameter g as the
results concerning convergence rate vary for different functions. The additional
computational complexity also reaches considerable magnitude for NoAcc, espe-
cially for ε = 10−2. In former work NoAcc has shown a good performance [21]
but failed for a function with a flat surface [20].

In summary, NoAcc has the advantages that it incorporates only one parame-
ter, and moreover it is easy to check as only the number of accepted trial vectors
has to be counted. Nevertheless, it cannot be recommended without hesitation
because suitable settings of parameter g vary for different functions, and the
additional computational effort is very high for several functions. Additionally,
parameter g cannot take values smaller than 1 but even this setting leads to
a high additional computational effort for several functions. The missing possi-
bility of scaling to lower values which would lead to earlier termination of the
algorithm may be unfavorable.

5.4 Criterion MovPar

The convergence rate of criterion MovPar is dependent on both the threshold of
improvement t and the number of generations g (see Fig. 5). For small settings
of t and large settings of g convergence rates of 100% have been found for most
functions. Exceptions are g01, g04 and g06 but it is not clear which property is
the determining factor because the characteristics of these functions are quite
dissimilar. In contrast, for ε = 10−2 convergence rates of 100% are found for all
functions if parameter settings g = 20 and t ≤ 10−5 are used.

Concerning the additional computational effort, mostly moderate performance
is shown with ε = 10−4, but it reaches a considerable size for few outliers (g08
and g18). Again, it increases strongly for ε = 10−2 with the same parameter
settings.

Similar as for ImpBest and ImpAv, determination of suitable settings for the
parameters is not easy which can also be seen in former work [21]. In the present
examination mostly settings of t ≤ 10−5 and g ≥ 10 yielded good results.

To sum up, it can be stated that MovPar yields better results than ImpBest
and ImpAv here, but there are still a few functions where no reliable convergence
behavior was observed for ε = 10−4. It can be argued that different parameter
settings may result in better convergence rates but it must also be considered
that the additional computational effort becomes large for some functions. As a
consequence, MovPar cannot be recommended as a stopping criterion for DE.

5.5 Criterion MaxDistQuick

MaxDistQuick achieved very good results in former work on stopping criteria
for DE [20, 21] but with the broad set of functions that is used in this work the
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Fig. 5. Results for criterion MovPar
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Fig. 6. Results for criterion MaxDistQuick



130 K. Zielinski and R. Laur

evaluation of its performance is not that clear (see Fig. 6). For several functions
convergence rates of 100% have been reached but for other functions no parame-
ter settings have resulted in good convergence behavior (g04, g06, g18). For g18
this is still the case for ε = 10−2. In contrast, convergence rates of 100% could
be obtained for all other functions with ε = 10−2 if proper parameter settings
are used.

For most functions the convergence rate slightly increases for growing p if m
is large, but for small m the opposite effect can be seen as the convergence rate
decreases for increasing p in this case. This is due to the fact that with a small
setting of m convergence is often not detected before reaching the maximum
number of function evaluations which leads to a decrease of convergence rate.
Hence, for several functions convergence rates of 100% are already reached for
m = 10−2 (g05, g08, g10, g12, g16) but e.g. for g05 and g10 it is decreased for
m = 10−5.

The additional computation effort mostly shows a good or at least moderate
performance (see Fig. 6). There is only one outlier that is caused by g18 because
the global optimum is always found a long time before all population members
have converged to the required distance from the optimum, so in that case a
larger setting of m would be required. For other functions generally an increase
of the additional computational effort can be seen for decreasing m.

In summary, MaxDistQuick is an interesting criterion that leads to reliable
termination of the DE algorithm when proper parameter settings have been
found. Thus, some test runs will be necessary when applying MaxDistQuick,
similar as for LimFuncEval.

5.6 Criterion StdDevQuick

For StdDevQuick similar results are obtained as for MaxDistQuick (see Fig. 7).
This outcome was expected because both stopping criteria rely on similar mech-
anisms. Nevertheless, there are some differences: As it was also noticed for
MaxDist and StdDev in former work [21], generally the setting of m has to
be lower for StdDevQuick to yield the same convergence rate as for MaxDist-
Quick, so the results are often shifted. There are two functions (g06, g18) for
which even with ε = 10−2 no satisfactory convergence rate has been achieved.
For ε = 10−4 three other functions also yielded bad performance (g01, g04 and
g15).

For the development of the convergence rate as well as for the additional com-
putational effort, the same general dependence on parameter settings was seen as
for MaxDistQuick. The outlier that can be seen in the additional computational
effort in Fig. 7 is again caused by g18.

Recapitulating, it can be stated that although the results are shifted in con-
trast to MaxDistQuick, the same conclusions can be derived which are that
reliable detection of convergence is obtained if suitable parameter settings are
used, but the proper settings may be different for varying functions.
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Fig. 9. Results for criterion Diff (continued)

5.7 Criterion Diff

The results of Diff are the most promising ones of this examination (see Fig. 8
and 9). Convergence rates of 100% have been achieved for all functions when the
difference threshold is set to d ≤ 10−5 which is exactly one order of magnitude
smaller than the demanded accuracy of ε = 10−4. For ε = 10−2 a similar result
is obtained as convergence rates of 100% have been achieved for all functions
with d ≤ 10−3 which is again one order of magnitude smaller than the desired
accuracy. It can be concluded that choosing suitable settings of parameter d is
an easy task because a connection to the demanded accuracy can be made.

For parameter p that denotes the percentage of the population that is de-
manded to be feasible, no dependence can be noticed, neither regarding conver-
gence rate nor regarding the additional computational effort. Thus, parameter
p can be omitted for criterion Diff. In this case, the number of parameters for
Diff is reduced from two to one, contributing to its simplicity.

The additional computation effort is relatively low when compared to the
results of other stopping criteria (see Fig. 8 and 9) which is also an advantage
of Diff.

One limitation of Diff is that it yields bad results when an optimization
problem contains an objective function with a flat surface, meaning that the
same objective function value is yielded for a large subset of the search space
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[20]. Fortunately, it can be argued that this is a special case that rarely occurs.
Moreover, it can be discovered easily when the optimization run is monitored,
so in that case another stopping criterion could be employed. Otherwise, the
performance of Diff was also good in former work [21].

In summary, Diff has led to the best results of the stopping criteria that
were examined here because all functions could be successfully terminated. Ad-
ditionally, parameter p can be omitted completely as no dependence on it could
be found. Choosing of parameter d is also simple because the results of this
work indicate that it is sufficient to set it to one order of magnitude lower than
the desired accuracy. Moreover, the results of Diff concerning the additional
computational effort are good in contrast to other stopping criteria.

6 Conclusions

In this chapter stopping criteria have been presented that react adaptively to
the state of an optimization run by considering the improvement, movement
or distribution of population members. The use of adaptive stopping criteria
was motivated by the fact that they could help to avoid the unnecessary high
computational effort that is usually associated with stopping after a preassigned
fixed number of function evaluations because of variations in the number of
function evaluations that are needed for convergence. This approach is mainly
intended for real-world problems because in this case normally the optimum is
unknown.

The best results were yielded by criterion Diff that can be classified as a
distribution-based criterion in objective space as it terminates an optimization
run if the difference between best and worst objective function value in the cur-
rent generation has fallen below a given threshold d. This work has shown that
the setting of d is linked with the desired accuracy of the result, so choosing a
suitable parameter setting for d is simple. The second parameter p that corre-
sponds to the demanded feasible percentage of the population can be omitted
completely as no dependence on it could be seen. The only limitation of Diff was
revealed in former work where Diff failed for a function with a flat surface [20].
However, this property can be detected easily when observing an optimization
run so this limitation is not grave.

The results for other stopping criteria were not as distinct as for Diff. Two
distribution-based criteria in parameter space were examined that terminate an
optimization run if the maximum distance of a specified subset of the population
to the best population member (MaxDistQuick) or the standard deviation of a
subset of population members (StdDevQuick) is below a user-defined threshold
m, respectively. Most functions could be successfully terminated in reasonable
time but the parameter settings that yielded these results varied for different
functions. There are few functions for which none of the examined parameter
settings were able to induce convergence rates of 100% (even with a decreased
demanded accuracy of ε = 10−2) but it is assumed that higher settings of m
might result in better performance for these functions.
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Apart from distribution-based stopping criteria, also a movement-based cri-
terion in parameter space MovPar was examined that induces termination of
an optimization run if the movement of the individuals in parameter space falls
below a given percentage t in a predefined number of generations g. For three
functions bad results concerning the convergence rate were found regardless of
parameter settings for an accuracy of ε = 10−4 while for the decreased accuracy
of ε = 10−2 all functions could be successfully terminated after convergence has
been obtained. It can be concluded that the criterion is basically able to stop
optimization runs reliably if suitable parameter settings have been found.

Two implementations of improvement-based criteria yielded the worst results
of this examination, where criterion ImpBest that observes the improvement of
the best objective function value is yet worse than criterion ImpAv that monitors
the improvement averaged over all individuals. For many functions no conver-
gence rates of 100% could be found so these criteria cannot be considered as
reliable, and furthermore choosing of parameter settings is not easy.

A third improvement-based criterion NoAcc was based on the number of gen-
erations g in which no trial vector has been accepted. Problems occurred because
parameter g has to be different for varying functions in order to give good per-
formance. Particularly, the missing scalability to values smaller than 1 may lead
to high additional computational effort for certain optimization problems. If
suitable settings for g can be found, NoAcc shows reliable performance.

It should be noted that although a large test set that contains a broad range
of functions was used here, still optimization problems may exist for which the
obtained conclusions do not hold. However, it is expected that at least similar
behavior will be found in these cases.

Most of the stopping criteria that are described in this work can also be used
for other evolutionary algorithms besides DE but it has to be noted that the
performance may be different as it was shown for Particle Swarm Optimization
in former work [20, 22]. It would be interesting to try the stopping criteria also
for other optimization algorithms in future work.

The stopping criteria presented in this chapter are mainly designated for
real-world problems with unknown optimum because for optimization problems
with known optimum other good alternatives exist for terminating an optimiza-
tion run. Only single-objective optimization was addressed yet but real-world
problems often contain multiple objectives, thus future work must include the
development of reliable stopping criteria for multi-objective optimization. Unfor-
tunately, the situation is more difficult in multi-objective optimization because
usually optimization goals are contradicting. Thus, not one single optimal point
exists but several trade-off solutions which are usually called the Pareto-optimal
front [17].

As a consequence, it is not easy to detect convergence even if the Pareto-
optimal front is known. It was shown here that distribution-based criteria pro-
vide the best results for single-objective optimization, but for multi-objective
problems with unknown Pareto-optimal front this concept will be generally not
transferable because usually multiple Pareto-optimal solutions exist. Monitoring
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the movement of individuals may also lead to false conclusions because the indi-
viduals may still move along the Pareto-optimal front after the population has
converged to it. If the improvement of individuals should be taken as basis for
stopping criteria, the problem arises how to define improvement in the presence
of several objectives.

Apart from the mechanisms presented in this work, there are some concepts
inherent in multi-objective optimization which may also possibly be exploited
for the definition of stopping conditions. For instance, a stopping criterion based
on the observation of crowding distance was tested in [33]. A further possibility
is to monitor the improvement of performance measures like hypervolume [17].
Because multi-objective optimization is a research topic that is currently dis-
cussed intensively in the evolutionary algorithms community and its importance
can still be expected to grow in the following years, this is an interesting field
for future work.
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