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Summary. The development and application of the differential evolution (DE) op-
timisation algorithm to the problem of worst-case analysis of nonlinear control laws
for hypersonic re-entry vehicles is described. The algorithm is applied to the problem
of evaluating a proposed nonlinear handling qualities clearance criterion for a detailed
simulation model of a hypersonic re-entry vehicle (also known as a reusable launch
vehicle (RLV)) having a full-authority nonlinear dynamic inversion (NDI) flight con-
trol law. A hybrid version of the differential evolution algorithm, incorporating local
gradient-based optimisation, is also developed and evaluated. Comparisons of compu-
tational complexity and global convergence properties reveal the significant benefits
which may be obtained through hybridisation of the standard differential evolution al-
gorithm. The proposed optimisation-based approach to worst-case analysis is shown to
have significant potential for improving both the reliability and efficiency of the flight
clearance process for next generation RLV’s.

1 Introduction

Atmospheric re-entry is an important and safety-critical part of the reusable
launch vehicle mission. During the re-entry flight phase, the space vehicle fol-
lows a predefined trajectory towards the designated landing point, travelling
from space to the dense atmosphere of earth. As a result, the vehicle is sub-
jected to high levels of uncertainty and variations in key flight parameters dur-
ing the course of its mission. A primary requirement for re-entry guidance and
flight control laws is that they exhibit sufficient levels of robustness to allow
close tracking of the pre-defined trajectory in spite of high levels of uncertainty
and disturbances. In order to demonstrate that this requirement is satisfied,
maximum deviations from the prescribed trajectory due to uncertainty in flight
parameters such as mass, centre-of-gravity locations, inertias and aerothermo-
dynamic parameters, as well as actuator and sensor uncertainties need to be
precisely evaluated in simulation , prior to any test flight. This process of “flight
clearance must be carried out in all normal and various failure conditions, and
in the presence of all possible parameter variations.
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The task of analysing and quantifying the robustness properties of the RLV
flight control algorithms is a very lengthy and expensive one, where different
combinations of large numbers of uncertain parameters must be investigated
such that an estimate about the worst case stability and performance of the
control laws can be made. For nonlinear flight clearance problems, the current
industrial standard is to use a gridding approach, where either the clearance
criteria are evaluated for all combinations of the extreme points of the vehicle’s
uncertain parameters or Monte-Carlo simulation is employed to randomly sam-
ple the parameter space, [1]. Unfortunately, the computational effort involved in
the resulting clearance assessment increases exponentially with the number of
uncertain parameters that are to be considered (combinations of extreme points)
or with the desired confidence levels for the clearance results (Monte-Carlo sim-
ulation). Another difficulty with these approaches is the fact that there is no
guarantee that the worst case uncertainty combination has in fact been found,
since it is possible that the worst-case combination of uncertain parameters
does not lie on the extreme points, or in the sampled set used by Monte-Carlo
approaches. A promising approach to address the above difficulties is to use ad-
vanced optimisation algorithms to search the parameter space for worst-cases
that violate the particular clearance criterion under investigation. Clearly, given
that the parameter space for this type of problem will in general be highly non-
linear and non-convex, [6], global optimisation methods will be required to avoid
getting trapped in locally optimal solutions. Previous work by the authors has
explored the applicability of various evolutionary optimisation methods to the
flight clearance problem for high-performance aircraft, and has shown that, when
hybridised with appropriate gradient-based algorithms, they have the potential
to improve significantly both the reliability and efficiency of the flight clearance
process, [24, 25].

In this chapter, the flight clearance problem for a highly detailed simulation
model of a generic RLV over a lower atmospheric phase of its re-entry trajectory
is considered. The flight control law included in the model has been designed
using nonlinear dynamic inversion (NDI) methods to provide robust trajectory
tracking over the specified flight phase. The clearance problem is solved using
differential evolution and a hybrid version of differential evolution. Differential
evolution is a relatively new global optimisation method, introduced by Storn
and Price in [11]. This method belongs to the same class of evolutionary global
optimisation techniques as GA, but unlike GA it does not require either a se-
lection operator or a particular encoding scheme. To reduce the computational
complexity of the approach, the DE algorithm is hybridised with a local gradient-
based optimisation method ‘fmincon’. The contributions of this chapter are as
follows. We demonstrate conclusively, for a realistic, industry-standard re-entry
vehicle simulation model with an NDI control law, the ability of the DE global
optimisation algorithm to avoid getting trapped in local solutions to the flight
clearance problem. We also show, however, that incorporation of local optimi-
sation methods into global algorithms can drastically reduce computation times
and improve convergence to the global solution. To the authors knowledge, this
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is the first time that advanced optimisation methods of this type have been
applied to the problem of worst-case analysis for space applications.

2 RLV Model, Control Law and Clearance Criterion

The generic RLV high-fidelity simulation model is based on the HL-20 aerody-
namic database and X38-type geometric and aerodynamic surface configuration,
and has a dry mass of 19,100-lb. This simulation model has been developed by
DEIMOS Space S.L. for the European Space Agency (ESA) to act as a research
platform for the investigation of re-entry and autoland guidance, navigation and
control systems, [23].

The model consists of a reference trajectory generator, a nonlinear dynamic
inversion (NDI)-based flight control system, nonlinear actuator models, the RLV
dynamics, sensors such as gyros and accelerometers, and detailed environment
models (US standard 1969 and Earth gravity and geoid models). Figure 1 shows
a block diagram schematic of the RLV simulation model, which is implemented
in the Matlab Simulink environment.

The reference trajectory is defined in terms of Angle of Attack (AoA or α),
Angle of Side Slip (AoSS or β), and bank angle φ. The NDI controller provides
the elevator, aileron, rudder and brake control inputs according to the desired
dynamics. The controller also includes actuator allocation functions depending
on the commanded moments, altitude and velocity of the RLV. More details of
the model and its associated flight control system are available in [23]. The pa-
rameters in the model, and associated uncertainty values, are accessible through
a database consisting of a collection of XML files accessible by the user.

Table 1. RLV Model Uncertain Parameters

Parameter Bound Description

Δmass [-2313.3, 2313.3] variation in dry mass from nominal (11566.55 kg)
ΔIxx [-1627, +1627] variation in M.I about X (8135.0 4kgm2)
ΔIyy [-15185, +15185] variation in M.I about Y (75926.0 kgm2)
ΔIzz [-15863, +15863] variation in M.I about Z (79315.0 kgm2)
ΔIxz [-628.8, +628.8] variation in Product of inertia XZ (3144.0 kgm2

Δxcog [-0.4912, +0.4912] variation in X c.g from nominal (4.9213 m)
Δycog [-0.01, +0.01] variation in Y c.g from nominal (0.0 m)
Δzcog [-0.1009, +0.1009] variation in Z c.g from nominal (1.0094976 m)

The complete re-entry trajectory for the vehicle takes 1680 seconds of sim-
ulation time and is divided in flight phases based on dynamic pressure and
atmospheric layer. The present analysis focuses on a lower atmosphere phase
starting at 1588 seconds and ending at 1675 seconds that covers the 32 to 20 km
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Fig. 1. Block schematic of RLV

altitude range. The reference trajectory in this segment includes a reduction of
AoA from 30 degrees to nearly 20 degrees, while keeping a zero AoSS and with
a defined bank angle variation. The description and allowed ranges of the uncer-
tain parameters considered for the present analysis are given in Table 1. As can
be seen from the table, in the present analysis we focus mainly on uncertainty
in the parameters representing the vehicle’s mass, inertias and centre-of-gravity.

2.1 Clearance Criterion

To analyse the robustness of the NDI control law in tracking AoA trajectories
over the considered flight phase, a cost J is defined by Equation (1),

J = ‖αref − αΔ‖∞ (1)
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where αref represents the reference AoA trajectory and αΔ represents the actual
AoA trajectory followed by the vehicle in simulation in the presence of any
uncertainty Δ. This particular clearance criterion was chosen for this study as
criteria of this type are widely used throughout the European aerospace industry
for the clearance of flight control laws for high performance aircraft [1, 6]. The
uncertain parameter vector Δ consists of the parameters defined in Table 1,
and its dimension is hence fixed at 8. The worst-case analysis problem is posed
as identifying the Δ∗ vector such that the following maximisation problem is
solved.

maxJ = ‖αref − αΔ‖∞ (2)
sub.to Δ ≤ Δ ≤ Δ (3)

where Δ and Δ define the lower and upper bounds on the uncertain parameters.
The maximum cost value J∗ corresponds to the uncertain parameters Δ∗ that
give the maximum deviation from the reference trajectory αref . The resulting
optimisation problem is obviously nonlinear and nonconvex in general. Note that
in this chapter we focus on a clearance criterion involving AoA only. However,
the optimisation framework proposed is generic, and thus many other types of
clearance could be assessed in a similar way.

3 Optimisation Based Worst Case Analysis

In this chapter the robustness analysis of an NDI flight control law for a RLV is
formulated as an optimisation problem and solved using a global optimisation
algorithm, DE, and its hybrid version. The optimisation problem itself is to find
the combination of real parametric uncertainties that gives the worst value of the
criterion defined in Eq. 1. Since this and many other clearance criteria must be
checked over a huge number of conditions and re-entry vehicle configurations, it
is imperative to find the most computationally efficient approach to the problem.
Previous efforts to apply optimisation methods to similar problem, [1] Chapter
7, have revealed that the nonlinear optimisation problems arising in flight clear-
ance, while having relatively low order, often have multiple local optima and
expensive function evaluations. Therefore, the issue of whether to use local or
global optimisation, and the associated impact on computation times is a key
consideration for this problem.

In [1] Chapter 21, local optimisation methods such as SQP (Sequential
Quadratic Programming), and L-BFGS-B (Limited memory Broyden-Fletcher-
Goldfarb-Shanno method with Bounded constraints) were used to evaluate a
range of linear clearance criteria for the HIRM+ (High Incidence Research
Model) aircraft model. In [1] Chapter 22, global optimisation schemes such as
Genetic Algorithms (GA), Adaptive Simulated Annealing (ASA) and Multi Co-
ordinate Search (MCS) were also applied to evaluate nonlinear clearance criteria
for the same aircraft model. In [5, 6] global optimisation methods such as GA and
ASA were applied to the ADMIRE model with a different flight clearance crite-
rion. In [25], a number of optimisation schemes were employed and compared,
evaluating a nonlinear clearance criterion for ADMIRE aircraft.
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4 Differential Evolution

The global optimisation method considered in this study is differential evolution
, a relatively new global optimisation method, introduced by Storn and Price
in [11]. This method belongs to the same class of evolutionary global optimisation
techniques as Genetic Algorithm (GA) [15], but unlike GA it does not require
either a selection operator or a particular encoding scheme. Essentially a sub-
type of GA, despite its apparent simplicity, the quality of the solutions computed
using this approach has been claimed to be often better than that achieved using
other evolutionary algorithms, both in terms of accuracy and computational
overhead [11].

The DE method has recently been applied to several problems in different
fields of engineering design, with promising results. In [17], for example, it was
applied to find the optimal solution for a mechanical design example formulated
as a mixed integer discrete continuous optimisation problem. In [18], DE was
successfully applied in system design application, in particular handling the non-
linear design specification constraints. In [10], the DE method was applied and
compared with other local and global optimisation schemes in an aerodynamic
shape optimisation problem for an aerofoil. The application of differential evolu-
tion and its hybridised versions with neural networks and local search methods
for aerodynamic shape optimisation has been reported in [27]. In [25], a nonlin-
ear flight clearance criterion for a modern high performance aircraft was posed
and solved using both standard and hybrid GA and DE optimisation methods.
In that study, it was demonstrated that a hybrid version of the DE algorithm
significantly outperforms the corresponding GA method.

The DE method consists of the following four main steps 1) Random ini-
tialisation, 2) Mutation 3) Crossover 4) Evaluation and Selection. There are
different schemes of DE available based on the operators. The one used in the
present studies is referred as “DE/rand/1/bin”. The steps of this scheme will
be described in detail in the sequel.

4.1 Random Initialisation

Like other evolutionary algorithms, DE works with a fixed number, Np, of po-
tential solution vectors, initially generated at random according to

xi = xL + ρi(xU − xL), i = 1, 2, ..., Np (4)

where xU and xL are the upper and lower bounds of the parameters of the
solution vector and ρi is a vector of random numbers in the range [0 1]. Np is
fixed at 30 in the current study. Each xi consists of elements (x1i, x2i, ..., xdi),
which are the uncertain parameters defined in Table 1. The dimension d of the
optimisation problem considered is, therefore, 8. The fitness of each of these Np

solution vectors is evaluated using the cost function given in Eq. 1.
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Fig. 2. DE mutation strategy

4.2 Mutation

The scaled difference vector FmDij between two random solution vectors xi and
xj is added to another randomly selected solution vector xk to generate the new
mutated solution vector x̄G+1

n , i.e.,

x̄G+1
n = xG

k + FmDij , Dij = xG
i − xG

j (5)

where Fm is the mutation scale factor, a real valued number in the range [0,
1], (fixed at 0.8 in this study), and G represents the iteration number. Fig. 2
shows a simple two dimensional example of the mutation operation used in the
DE scheme. The difference vector Dij determines the search direction and Fm

determines the step size in that direction from the point xG
k .

4.3 Crossover

During crossover, each element of the nth solution vector of the new iteration,
xG+1, is reproduced from the mutant vector x̄G+1

n and a chosen parent individual
xG

n as given in Eq. 6,

xG+1
ji =

{
xG

ji, ifageneratedrandomnumber > ρc

x̄G+1
ji , otherwise;

(6)

where j = 1, 2, . . . , d and i = 1, 2, . . . , Np. Note that x̄G+1
n has elements

(x̄G+1
1n , x̄G+1

2n , ..., x̄G+1
dn ) and xG

n has elements (xG
1n, xG

2n, ..., xG
dn). ρc ∈ [0, 1] is the

crossover factor, which is fixed at 0.8 in the present study.
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4.4 Evaluation and Selection

After crossover, the fitness of the new candidate xG+1
n is evaluated and if the

new candidate xG+1
n has a better fitness than the parent candidate xG

n , then
xG+1

n is selected to become part of the next iteration. Otherwise xG
n is selected

and subsequently identified as xG+1
n .

4.5 Termination Criterion

Many different termination criteria can be employed. In the present study, an
adaptive termination criterion is used that is dependent on improvement in the
solution accuracy over a finite number of successive generations along with an
upper limit on the computational budget. The algorithm terminates the search if
there is no improvement on the best solution achieved (above a defined accuracy
level, here chosen as 10−6) for a defined successive number of generations. This
number of generations is fixed at 20. Also, if the optimisation exceeds the defined
computational budget, fixed at 2250, the algorithm is terminated. Defining the
computational budget as a termination criterion is standard practice in aerospace
industry applications.

5 Hybrid Optimisation

Global optimisation methods based on evolutionary principles are generally ac-
cepted as having a high probability of converging to the global or near global
solution, if allowed to run for a long enough time with sufficient initial candi-
dates and reasonably appropriate probabilities for the evolutionary optimisation
parameters. As shown by the preceding results, however, the rate of convergence
can be very slow, and moreover, there is still no guarantee of convergence to
the true global solution. Local optimisation methods, on the other hand, can
very rapidly find optimal solutions, but the quality of those solutions entirely
depends on the starting point chosen for the optimisation routine. In order to
try to extract the best from both schemes, several researchers have proposed
combining the two approaches [16], [19], [20]. In such hybrid schemes there is
the possibility of incorporating domain knowledge, which gives them an advan-
tage over a pure blind search based on evolutionary principles. In [25], a Hybrid
GA (HGA) scheme was developed using a switching strategy originally proposed
in [20], and applied to a nonlinear flight clearance problem. The performance of
the HGA scheme was compared to that of a novel Hybrid DE (HDE) scheme.
For a recent comprehensive overview of other approaches to hybrid optimisation
(also known as memetic algorithms), the reader is referred to [21].

5.1 Hybrid DE

In [22], the conventional DE methodology was augmented by combining it with
a downhill simplex local optimisation scheme. This hybrid scheme was applied to
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an aerofoil shape optimisation problem and was found to significantly improve
the convergence properties of the method. At each iteration, local optimisation
was applied to the best individual in a current random set. The hybrid DE
scheme employed in this study applies gradient-based local optimisation, again
using “fmincon”, to a solution vector randomly selected from the current set
- for our problem, this was seen to give better results than using the best so-
lution vector, as proposed in [22]. Use of the local optimisation method based
on gradient estimation, specifically the function “fmincon” provided in [7], is
considered in present study to hybridise the DE algorithm. Local optimisation
methods can, of course, get locked into a local optimum in the case of nonconvex
and/or multimodal surfaces, however, they are also much more computationally
efficient than global optimisation approaches. Whether a local method converges
to a local or global optimum completely depends on the initial starting point in
the search space, and the convexity of the search space. In the present context,
the aim is to obtain local improvements in the search space and thereby accel-
erate the search to global solution. Crucially however, in typical flight clearance
problems very little information is available as to where to start the optimisa-
tion - the number of uncertain parameters and strong nonlinearity of the system
mean that even advanced knowledge of flight mechanics provides little insight
into how to choose initial values for the uncertain parameters. In such case, a
hybrid version of DE will be very beneficial in finding the true global solution,
through ensuring an adequate coverage of search space. The function “fmincon”
finds the constrained minimum of a scalar function of several variables starting

Table 2. Hybrid Differential Evolution Algorithm - Pseudo-Code:

1. Initialize random candidate solutions in search space
2. Evaluate fitness of each solution and choose best fitness
3. Apply DE for a fixed number of initial iterations(say 10); Update best fitness value

in each iteration
4. While termination criteria not satisfied

a) calculate the improvement in best fitness
i. If Improvement in best fitness
ii. Continue DE
iii. else
iv. Choose a random solution from current set, say X0

v. Apply local optimisation with X0 as initial point (termination occurs
when exceeding the defined maximum number of function evaluations)

vi. If Improvement in best fitness
vii. Replace X0 with the new solution
viii. else
ix. Keep X0 in the set
x. end
xi. end

5. end of While
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at an initial estimate. In the present analysis, constraints are due only to the
upper and lower bounds of the uncertainty in the variables. A medium scale
optimisation scheme is chosen where the gradients are estimated by the func-
tion itself using the finite difference method. The function uses the sequential
quadratic programming (SQP) method - for further details of the “fmincon”
optimisation strategy, the reader is referred to [7]. When the local scheme is
chosen, the optimisation starts from the given initial condition and continues
until it either converges or reaches a defined maximum number of cost function
evaluations. The algorithm is simple, and tries to search for the global optimum
in a “greedy” way, demanding improvement in the achieved optimum value in
every iteration. A pseudo-code for the hybrid DE algorithm is given in Table 2.

6 Worst-Case Analysis Results

The optimisation-based worst-case analysis procedure is implemented in the
Matlab 2006A and Simulink 6.1 environments. The various uncertain param-
eters listed in Table 1 are considered as the optimisation parameters and these
variables are normalised by multiplication with an appropriate scaling factor.
Prior to simulation, the respective entries of the uncertain variables in the XML
database are accessed and updated with the new set of values provided by the
optimisation algorithm. The cost function as given in Eqn.(1) is evaluated at
the end of every simulation. The optimisation algorithm iterates, identifies the
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potential solutions and eventually converges to the global solution. However, to
control the computational complexity we defined an adaptive termination cri-
terion for the worst case analysis problem. In addition, an upper bound on the
computational budget is also provided, fixed at 2250.

For the problem considered here, the DE algorithm took a total number of
2250 simulations, which is the computational budget termination criterion. The
normalised worst-case obtained is [Δmass, ΔIxx,ΔIyy, ΔIzz , ΔIxz, Δxcog ,Δycog ,
Δzcog ] = [−0.9995, 0.9897, 0.9937, 0.3428, −0.9914, −0.9986, −0.1967, 0.9949].

Figure 3 shows the corresponding reference trajectory, worst-case and nominal
angle-of-attack responses for the RLV model. Figure 4 shows the corresponding
nominal and worst-case deviations from the desired zero value of β(t). Interest-
ingly, although the present cost function depends only on the value of α(t), the
significant amount of cross-coupling between longitudinal and lateral dynamics
at high AoA results in the worst-case β trajectory also being significantly differ-
ent from the nominal response. To explore this issue further, a multi objective
clearance criteria can be considered in this same framework, to identify the set
of worst-case uncertain parameters for all of the controlled variables that define
the reference trajectory.

Figure 5 shows the convergence of the DE algorithm. The x-axis indicates
the function evaluations and the y-axis represents the maximum best cost value
achieved over iterations. It can be seen from this figure that the DE algorithm
shows good performance in the initial runs but subsequently the convergence rate
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becomes significantly slower. A second experiment was conducted with double
the allowable computational budget criterion, with the adaptive termination cri-
terion part left untouched. In this case, the maximum allowable computational
budget was 5000. The repeated optimisation took a total number of 3250 simu-
lations and the normalised worst-case obtained was [Δmass, ΔIxx, ΔIyy, ΔIzz ,
ΔIxz, Δxcog , Δycog , Δzcog ]=[−1, 1, 1, 1, −1, −1, 1, 1], producing a worst-case
cost value 3.178. The difference in the worst-case solution obtained from the two
experiments can be explained with the help of a sensitivity analysis about the
solution obtained from the optimisation. Figure 6 shows the results of a sensitiv-
ity analysis conducted about the global solution, by varying one parameter at a
time and fixing all the other parameter values to their worst-case values. It can
be noticed that the parameter Δxcog has the greatest influence on the dynamics
of the model, while the dynamics are relatively insensitive to the parameters
ΔIxx and ΔIzz . The presence of such insensitive parameters can make the op-
timisation convergence very slow. A possible way to avoid such a situation is
by providing a termination condition of variation for insensitivity in parameter
space.

The fact that the worst-case value of the uncertainties describing mass, centre-
of-gravity and inertia variations are all on their maximum or minimum bounds
is not surprising, and agrees well both with flight mechanics intuition and with
the results of previous studies. The situation will becomes much more complex
however when stability derivatives, sensor errors, etc are included, since in this
case the corresponding worst-cases will not necessarily lie on the uncertain pa-
rameter bounds.

When compared with the standard DE algorithm, the HDE algorithm took
a total number of 1775 simulations to converge. The normalised worst-case
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obtained is [Δmass, ΔIxx, ΔIyy, ΔIzz , ΔIxz, Δxcog , Δycog , Δzcog ]=[−1, 1, 1, 1, −
1, − 1, 1, 1]. Thus, to obtain a solution of the same quality, HDE has taken
45% less simulations than those required for the standard DE algorithm. This
clearly demonstrates the significant computational savings which may be made
by hybridising global optimisation algorithms with local gradient-based meth-
ods. Such savings are particularly crucial in the context of flight clerance, where
computational cost is one of the key drivers for industrial applications.

7 Conclusions

In this chapter, differential evolution and hybrid differential evolution algorithms
were applied to perform a worst-case analysis of a nonlinear-dynamic inversion
(NDI) flight control law for a realistic simulation model of a re-entry vehicle
over a particular phase of the trajectory for re-entry flight. A clearance crite-
rion was defined based on the maximisation of the infinity norm of the error
vector between the reference trajectory in Angle-of-Attack and the actual tra-
jectory obtained by simulation of the model. The results of the study suggest
that the proposed optimisation-based approach has the potential to improve
significantly both the reliability and efficiency of the flight clearance process for
future Reusable Launch Vehicles.
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