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Summary. This chapter describes an algorithm for the tuning of a chess program which is based
on Differential Evolution using adaptation and opposition based optimization mechanisms. The
mutation control parameter F is adapted according to the deviation of search parameters in each
generation. Opposition-based optimization is included in the initialization, and in the evolutionary
process itself. In order to demonstrate the behaviour of our algorithm we tuned our BBChess
chess program with a combination of adaptive and opposition-based optimization. Tuning results
show that adaptive optimization with an opposition-based mechanism increases the robustness
of the algorithm and has a comparable convergence to the algorithm which uses only adaptation
optimization.

Keywords: Differential Evolution, Adaptation, Tuning of a Chess Program, Opposition-Based
mechanisms.

1 Introduction

Computer chess games have a long history of research in the field of artificial in-
telligence. Computer chess has advanced to a remarkable degree where computers
now play against other computers and humans. With ever growing computer strength,
we are witnessing more and more matches between computers and humans where
computers usually win.

The reasons why the computer is beating humans are mainly hardware improvements
and chess algorithm optimizations. The first computer that won against a human world
champion chess player was Deep Blue which defeated the world champion chess player
Garry Kasparov in 1996. In 2006 the Deep Fritz 10 computer program which ran on a
PC, defeated world champion Vladimir Kramnik. So why are chess program developers
trying to improve already very strong chess programs, even further? Many professional
human chess players use chess programs to improve their own playing skills. Chess
programs are also very useful in correspondence and freestyle chess. Matches between
programs are also gaining popularity. As far as artificial intelligence is concerned, chess
is regarded as a very useful environment for testing different approaches.

In this chapter we describe a Differential Evolution (DE) based algorithm for tuning
chess programs. Using evolutionary concepts, this algorithm tunes chess programs and
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makes them stronger without any interaction with humans and without humans’ expert
knowledge. In order to improve the tuning process our algorithm includes the adaptation
of DE control parameters and opposition-based optimization mechanisms. Because our
DE uses adaptation and opposition-based optimization it is called ‘AODE’.

The chapter is structured as follows. Section 2 gives an overview on tuning chess
programs and briefly describes the basic DE and ODE (Opposition-Based Differential
Evolution Algorithm). Section 3 describes the structure of those chess programs and
parameters that may be tuned. Section 4 describes the details of our evolutionary algo-
rithm AODE. Section 5 presents three experiments which tune the chess program by
the use of AODE optimizations. We then show how these optimizations influence the
tuning process. Section 6 concludes the chapter with final remarks.

2 Related Work

One of the possible improvements of a chess program is achieved by parameter tuning,
but with conventional approaches this becomes a very difficult task. Developers have
to change program parameters and then choose the best values through out the testing
phase. The nature of such a task is very time consuming.

Another method is automated tuning or “learning”. When we talk about automated
tuning in computer chess we focus on algorithms such as hill climbing, simulated an-
nealing, temporal difference learning [1, 2], and evolutionary algorithms [7, 8]. All ap-
proaches enable tuning on the basis of the program’s own experiences, i.e. final result
of a chess games competition: win, lose, or draw.

The pioneer of computer chess was Shannon (1949). He advocated the idea that
computer chess programs would require an evaluation function and search algorithm
to successfully play a game against human players [14]. In the beginning computer
chess programs were designed “by hand” by the developers. The most important part
of every chess program is its evaluation function. Evaluation functions contains a lot of
parameters in the form of expressions and weights. In order to obtain a good evaluation
function the developers had first to test it by playing numerous games and then modify
it according to the produced results. Finding a proper evaluation function was a diffi-
cult and very time consuming task, because this was a recurring cycle. This is the main
reason why current research has become involved in finding a method for automati-
cally improving the evaluation function’s parameters. Additionally, developers can tune
the parameters of the search algorithm alone or together with those of the evaluation
function.

Samuel [13] shows that a computer can be programmed so that it will learn to play
better game of checkers than can be played by the person who wrote the program.
The NeuroChess [17] is a program which learns to play chess from the final outcome
of games. It learns its evaluation function, represented by artificial neural networks.
This learning approach included inductive neural network learning, temporal differenc-
ing, and a variation of explanation-based learning. Another important work on learning
is KnightCap [1] chess program. It learns parameters of its evaluation function using
combination of Temporal Differences learning and on-line play on FICS and ICC chess
servers. The program started with blitz rating 1650 and after 3 days of learning and 308



An Adaptive Differential Evolution Algorithm 289

games played the program obtained blitz rating of 2150. The principles of evolution
have also been used in the tuning of a chess evaluation function. Kendall and Whitwell
[8] presented one such approach by using population dynamics. Fogel et al. [7] pre-
sented an evolutionary algorithm which has managed to improve a chess program by
almost 400 rating points. Last two approaches used a population of individuals which
consist of evaluation function parameters and new individuals are generated using
mutation, crossover, and selection operators.

The DE [15, 9, 16] algorithm was proposed by Storn and Price, and since then
it has been used in many practical cases. The original DE was modified and many
new versions have been proposed [5]. Rahnamayan, Tizhoosh and Salama proposed an
opposition-based DE (ODE) algorithm [11, 12]. ODE includes opposition based op-
timizations in order to improve the efficiency of classical DE algorithm. DE has also
been used for chess program tuning [4, 6] because it converges quickly and improves
playing ability during the evolutionary process.

3 Chess Program

The basic components of all modern chess programs are the search algorithm, eval-
uation function, move generator, transposition table, representation of game, opening
book, and the end-game database [3]. These components enable a chess program to
play equally well against the strongest human players, or even better. To improve an
existing chess program with automated tuning, we can tune its parameters. The most
tunable components are the evaluation function and the search algorithm.

The evaluation function contains a lot of expressions and parameters as weights of
expressions. Expressions and parameters together represent all the chess knowledge
of a chess program. Like the evaluation function, the search algorithm also contains
parameters. However the number of parameters of a search algorithm is lower than in
an evaluation function. The parameters are responsible for pruning the search tree and
for selective searching.

Search algorithms only have a few parameters and their values have been tuned
by the conventional approach (by hand and expert knowledge). On the other hand, an
evaluation function has many more parameters which depend on each other and have
been set by the developer according to experience and expert human instructions. Be-
cause an evaluation function contains complex expressions, the values of the parameters
are approximated. Therefore, using automated tuning we can obtain better parameter
values and improve the evaluation function and, consequently, the efficiency of chess
programs.

4 AODE Algorithm for Tuning a Chess Program

Our tuning algorithm is based on Differential Evolution which uses adaptation and
opposition-based optimization techniques. DE is a floating-point encoding evolution-
ary algorithm for global optimization over continuous spaces [9, 10]. Each generation
of our AODE contains a current population Pg (g is a number of current generation),
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which further contains NP D-dimensional vectors (individuals)
−→
X g,i with parameter

values that represent the weights of a chess program.

−→
X g,i = {Xg,i,1, Xg,i,2, ..., Xg,i,D},

i = 1, 2, ..., NP , g = 1, 2, 3, ...

DE employs mutation, crossover, and selection operations during the evolutionary pro-
cess, in each generation. Our algorithm uses the idea of adaptation and opposition-based
optimization as shown in the algorithm below. P0 represents the initial population, PU,0

is an opposition population of P0, P1 is the first population, Pg is the current population,
PV,g is the mutant population, PU,g is the trial population, and Pg+1 is the population
of the next generation. CR and JR are control parameters defined by the user.

Algorithm 1. AODE Algorithm
1: Initialization(P0 );
2: PU,0 = Opposition(P0 );
3: Evaluation(P0 , PU,0 , depth);
4: P1 = Selection(P0 , PU,0 );
5: while continue tuning do
6: if rand(0,1) < JR then
7: PU,g = DynamicOpposition(Pg );
8: else
9: PV,g = AdaptiveMutation(Pg );

10: PU,g = Crossover(Pg , PV,g , CR);
11: end if
12: Evaluation(Pg , PU,g);
13: Pg+1 = Selection(Pg , PU,g );
14: end while

4.1 Initialization

At the beginning, the population P0 is initialized with parameter values that are dis-
tributed uniform-randomly between parameter bounds (Xj,low, Xj,high; j =1, 2, ..., D).
The bound values are problem-specific. In chess programs the parameters are set to ap-
proximate values by the developers. Developers can also intuitively determine those
intervals which effectively define the bounds for parameters tuning. Accurately-defined
bounds enable the algorithm to search through much smaller space and, consequently,
find better parameters more quickly. If the search space is too limited, our algorithm
can not find solution because it is out of bounds.

4.2 Opposition

The efficiency of the tuning process depends on the distance between the solution and
the individuals in the initial population. After initialization, an opposite population PU,0
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is generated from the initial population. This mechanism together with evaluation
(Section 4.3) and selection (Section 4.4), increases the probability of first generation
containing individuals closer to the solution and, thus, accelerates convergence [11, 12].

The opposition population contains opposite individuals of the initial population and
is defined by the following equations:

−→
U 0 ,i = {U0 ,i,1, U0 ,i,2, ..., U0 ,i,D}

U0 ,i,j = Xj,low + Xj,high − X0 ,i,j

i = 1, 2, ..., NP , j = 1, 2, ..., D,

where
−→
U 0 ,i represent the opposition individuals of the corresponding initial individuals

−→
X0 ,i.

4.3 Evaluation

Using trial PU,g(PU,0 ) and current Pg(P0 ) populations we have to evaluate their in-
dividuals. To do this we calculate the relative efficiencies of individuals according to
both populations. Relative efficiency is measured according to the collected points and
number of played games, as shown with the following equation:

efficiency =
collected points

2 · number of played games
.

We can use more strategies to play games. Firstly, each individual of a trial population
can play a specific number of games (N ) against randomly chosen individuals of the
current population. Secondly each individual of a trial population can play two games
(one as white and one as black) against a corresponding individual of the current popu-
lation. Other strategies are also possible.

An individual plays each game with a specific search depth and gets 2 points for
winning, 1 for a draw, and 0 for losing. An individual wins when opponent’s King is
mate. The game is a draw if the position is a known draw position or the same position is
obtained three times in one game, or because of the 50-moves rule. Games are limited
to 150 moves for both players. Therefore, if the game has 150 moves, the result is a
draw. An individual loses if its opponent wins.

4.4 Selection

The selection operation selects according to the relative efficiency of those individuals
among the i-th current population and their corresponding individuals in the trial popu-
lation. Selection dictates which individuals will survive into the next generation. In our
case we used the following selection rule for a maximization problem:

−→
X g+1 ,i =

{−→
U g,i, efficiency(

−→
U g,i) > efficiency(

−→
X g,i),−→

X g,i, otherwise.

i = 1, 2, ..., NP,
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where
−→
U g,i is an i-th individual from the trial population,

−→
X g,i is an i-th individual

from the current population, and
−→
X g+1,i is an i-th individual from the population of the

next generation.

4.5 Dynamic Opposition

As proposed in [11, 12], we can also use opposition-based optimization during the
evolutionary process. This optimization is applied using a jump rate JR, as shown in
Algorithm 1, and dynamic interval bounds (Xg

j,low, Xg
j,high; j = 1, 2, ..., D), as shown

by the following equation:
−→
U g,i = {Ug,i,1, Ug,i,2, ..., Ug,i,D}

Ug,i,j = Xg
j,low + Xg

j,high − Xg,i,j

i = 1, 2, ..., NP , j = 1, 2, ..., D,

where
−→
U g,i represents an opposition individual of a corresponding current individual

−→
X g,i and Xg

j,low, Xg
j,high are bound values for each parameter in the current population.

4.6 Adaptive Mutation

Adaptive mutation generates a mutant population PV,g from the current population Pg ,
using mutant strategy and adaptive mutation scale factor F . For each vector from the
current population, mutation (using one of the mutation strategies) creates a mutant
vector

−→
V g,i, which is an individual of mutant population.

−→
V g,i = {Vg,i,1, Vg,i,2, ..., Vg,i,D}, i = 1, 2, ..., NP.

DE includes various mutation strategies for global optimization. In our algorithm we
used the rand/2 mutation strategy, which is given by the equation:

−→
V g,i =

−→
X g,r1 + Fg · (

−→
X g,r2 − −→

X g,r3) + Fg · (
−→
X g,r4 − −→

X g,r5)

The indexes r1, r2, r3, r4, r5 are random and mutually different integers generated
within the range [1, NP ] and also different from index i. Fg is a mutation scale factor
in the g-th generation within the range [0, 2] but usually less than 1.0. Because Fg

scales the distance between the new and old individuals, it is responsible for exploration
and exploitation balance in the evolutionary process. Therefore, we used adaptive Fg

defined as the ratio of the standard deviations between parameters of the initial and
current populations, as shown in the following equations:

Fg =
∑D

i=1 σg,i∑D
i=1 σ0 ,i

σg,i =

√∑NP
j=1(Xg,i,j − Xg,i)2

NP − 1
.

where σg,i is a standard deviation of the i-th parameter in the current population.
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4.7 Crossover

After mutation, a ”binary” crossover forms a trial population PU,g . According to the i-
th population vector and its corresponding mutant vector, crossover creates trial vectors−→
U g,i using the following rule:

−→
U g,i = {Ug,i,1, Ug,i,2, ..., Ug,i,D}

Ug,i,j =

{
Vg,i,j , randj(0, 1) ≤ CR or j = jrand,

Xg,i,j , otherwise.

i = 1, 2, ..., NP , j = 1, 2, ..., D.

CR is a crossover factor within the range [0,1) and determines the probability of cre-
ating parameters of the trial vector from the mutant vector. Index jrand is a randomly
chosen integer within the range [1, NP ] and is responsible for the trial vector contain-
ing at least one parameter from the mutant vector. After crossover, the parameters of
trial vector may be out of bounds (Xj,low, Xj,high). In this case the parameters can be
mapped inside an interval, set to bounds or used as they are – out of bounds.

5 Experiments

Our algorithm was tested for tuning a simplified chess evaluation function of the chess
program, BBChess. The evaluation function contains only material (values of pieces)
and mobility (number of available moves for pieces) information, as shown in the fol-
lowing equation:

chess evaluation = Xm(Mw − Mb) +
5∑

i=0

Xi(Ni,w − Ni,b).

In this equation Xi represents material weights for all piece types without king and Xm

the mobility weight. Mw represents mobility for white and Mb for black pieces. Ni,w

is the number of specific white pieces (i.e. the number of white pawns) and Ni,b for
specific black pieces. The principal reason for using such a simple and straightforward
evaluation function was to demonstrate how the weight parameters of the function can
be tuned by applying our tuning algorithm. In addition the behavior and features of the
AODE algorithm were also presented. To do this, three experiments were performed. In
the first experiment only adaptation optimization was used, in the second opposition-
based optimization was included, and the third included all optimizations including
opposition-based optimization during the evolutionary process.

In all experiments pawn material weight was fixed to 100 and the search depth set
to 5 ply (half move). Experiments were run 30 times and tuning performed through-
out 50 generations. The size of the population NP was 20 because larger NP would
substantially increase the number of required games in one generation. The control pa-
rameter CR was set to 0.9 and the parameter bounds for all parameters were set to
Xj,low = 0 and Xj,high = 1000 for all experiments. If the parameters were out of
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Fig. 1. Average parameter values along generations for AODE without opposition based
optimization mechanisms
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Fig. 2. Standard deviation of parameters along generations for AODE without opposition based
optimization mechanisms
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Fig. 3. Average parameter values along generations for AODE with initial population opposition
and JR = 0.0
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Fig. 4. Standard deviation of parameters along generations for AODE with initial population
opposition and JR = 0.0
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bounds after crossover they were set to bound values. When evaluating the individuals
they evaluated according to two played games between corresponding individuals from
the current and trial populations. Each individual played one game as a white player.
This strategy was used because of the simplified evaluation function and it was that two
games between corresponding individuals gave fair judgment as to which individual
was better.

All experiments gave good parameter values. The number of runs was 30 for all
experiments. Good parameter values are those which have an approximate ratio similar
to that of the chess theory (Queen = 900, Rook = 500, Bishop = 330, Knight = 300 and
mobility = 10).

The first experiment used only adaptive optimization (without opposition-based op-
timization during the evolutionary process JR = 0.0) and had average parameter val-
ues and standard deviation, as shown in Figures 1 and 2. Results of average parameter
values show that the algorithm found good values. Standard deviation shows that our
algorithm had some problems with tuning of mobility. The value of the mobility param-
eter greatly influenced the playing ability of a chess program. Large values mean that
mobility becomes more important than material of pieces and generally speaking this
weakens overall playing ability.

The second experiment included adaptive optimization and opposition-based opti-
mization during initialization and had average parameter values and their standard devi-
ation, as shown in Figures 3 and 4. This experiment also found good parameters values.
The main difference from the first experiment is in the first few generations. In these
generations the algorithm had better convergence.
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Fig. 5. Average parameter values along generations for AODE with initial population opposition
and JR = 0.1
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Fig. 6. Standard deviation of parameters along generations for AODE with initial population
opposition and JR = 0.1

The third experiment included all optimizations (JR = 0.1) and achieved average
parameter values and standard deviation are shown in Figures 5 and 6. In comparison
with first two experiments this algorithm had poor convergence in the beginning but at
the end obtained equally good parameters.

As shown on Figures 1, 3, and 5, the most critical parameter is mobility. Using ad-
ditional analysis, it was discovered that the AODE in the first two experiments con-
verged to local optima over two runs and in the third experiment only over one run. In
all these runs, the algorithm found mobility parameter values that are considered inade-
quate in chess theory. In the third experiment we also observed that two populations had
equal individuals sequentially because of repositioning in the dynamic opposition. Al-
though JR was 0.1, the rand(0, 1) was smaller than JR sequentially and, therefore, the
algorithm generated a lot of equal individuals.

6 Conclusions

We have proposed an algorithm for the tuning of a chess program based on Differ-
ential Evolution. In the chess program we tuned only the parameters of its evaluation
function. The algorithm included adaptation and opposition-based optimization mech-
anisms. Using different combinations of these mechanisms inside DE, which already
includes adaptation, we have demonstrated the behavior of our algorithm. With oppo-
sition based-optimization only in initialization the algorithm has better convergence at
the beginning. With opposition-based optimization during the entire evolutionary pro-
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cess the algorithm has poor convergence at the beginning but at the end obtains equal
results. The results also show that such settings of the algorithm make it more robust.

References

1. Baxter, J., Tridgell, A., Weaver, L.: Experiments in Parameter Learning Using Temporal
Differences. International Computer Chess Association Journal 21(2), 84–99 (1998)

2. Baxter, J., Tridgell, A., Weaver, L.: Learning to Play Chess Using Temporal Differences.
Machine Learning 40(3), 243–263 (2000)
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