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Summary. The differential evolution (DE), proposed by Storn and Price, is a powerful 
population-based algorithm of evolutionary computation field designed for solving global 
optimization problems. The advantages of DE are its simple structure, easy use, convergence 
speed and robustness. However, the control parameters and learning strategies involved in DE 
are highly dependent on the problems under consideration. Choosing suitable parameter values 
requires also previous experience of the user. Despite its crucial importance, there is no 
consistent methodology for determining the control parameters of DE. In this chapter, different 
differential evolution approaches with self-adaptive mutation factor combined with a chaotic 
local search technique are proposed as alternative methods to solve the economic load dispatch 
problem of thermal units with valve-point effect. DE is used to produce good potential 
solutions, and the chaotic local search is used to fine-tune the DE run. DE and its variants with 
chaotic local search are validated for a test system consisting of 13 thermal units whose 
nonsmooth fuel cost function takes into account the valve-point loading effects. Numerical 
results indicate that performance of DE with chaotic local search presents best results when 
compared with previous optimization approaches in solving the load dispatch problem with the 
valve-point effect. 

1   Introduction 

The power economic dispatch problem (EDP) is one of the important problems for a 
power system. The objective of the EDP of electric power generation is to schedule 
the committed generating unit outputs so as to meet the required load demand at 
minimum operating cost while satisfying all unit and system equality and inequality 
constraints [1]. 

In traditional EDPs, the cost function of each generator is approximately 
represented by a simple quadratic function and the valve-points effects [2],[3] are 
ignored. These traditional EDPs are solved using mathematical programming based 
on several deterministic optimization techniques, such as lambda iteration, gradient 
method, dynamic programming, linear programming, nonlinear programming and 
quadratic programming [1]-[3].  

However, the EDP problem with valve-point effects is represented as a nonsmooth 
optimization problem having complex and nonconvex features with heavy equality 
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and inequality constraints [2]. This kind of optimization problem is hard, if not 
impossible, to solve using traditional deterministic optimization algorithms. In other 
words, none of these mentioned methods may be able to provide an optimal solution, 
for they usually get stuck at a local optimum to the EDPs considering valve-point 
effects.  

Recently, as an alternative to the conventional mathematical approaches, modern 
stochastic optimization techniques including genetic algorithms [3], evolutionary 
programming [4], evolution strategies [5], ant colony search algorithm [6], simulated 
annealing [7], and particle swarm optimization [1],[8] have been given much attention 
by many researchers due to their ability to find an almost global optimal solution.  

In this chapter, an alternative hybrid method is proposed. The proposed hybrid 
method combines the differential evolution (DE) algorithm with self-adaptive 
mutation factor in the global search phase and a chaotic local search technique in the 
local search to solve the EDP associated with the valve-point effect.  

DE as developed by Storn and Price [9] is one of the best evolutionary algorithms, 
and has proven to be a promising candidate to solve real-valued optimization 
problems [10]. The computational algorithm of DE is very simple and easy to 
implement, with only a few parameters required to be set by a user. 

Chaos is a bounded unstable dynamic behavior, which exhibits sensitive 
dependence on initial conditions and includes infinite unstable periodic motions [11]. 
Optimization algorithms based on chaos theory are search methodologies that differ 
from all of the existing traditional stochastic optimization techniques. Due to the non-
repetition of chaos, it can carry out overall searches at higher speeds than stochastic 
ergodic searches that depend on probabilities. The application of chaotic local search 
is a powerful strategy to prevent the premature convergence to local minima of DE 
approaches. 

An EDP with 13 thermal units using nonsmooth fuel cost functions [4],[8] is 
employed in this chapter for demonstrate the performance of the proposed chaotic DE 
method. The results obtained with the DE approaches were analyzed and compared 
with those obtained in recent literature. 

The remainder of this chapter is organized as follows. Section 2 describes the 
formulation of the EDP, while section 3 explains the concepts of validated optimization 
methods. Numerical simulation and comparisons are provided in section 5. Lastly, 
section 6 outlines the conclusion with a brief summary of results and future research.  

2   Formulation of Economic Dispatch Problem 

The objective of the economic dispatch problem is to minimize the total fuel cost at 
thermal power plants subjected to the operating constraints of a power system. 
Therefore, it can be formulated mathematically as an optimization problem 
(minimization) with an objective function and constraints. The equality and inequality 
constraints are represented by equations (1) and (2) given by: 
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In the power balance criterion, an equality constraint must be satisfied, as shown 
in equation (1). The generated power should be the same as the total load demand 
plus total line losses. The generating power of each generator should lie between 
maximum and minimum limits represented by equation (2), where iP  is the power of 

generator i (in MW); n is the number of generators in the system; PD is the system 

load demand (in MW); LP  represents the total line losses (in MW) and min
iP and 

max
iP  are, respectively, the minimum and maximum power outputs of the i-th 

generating unit (in MW). The total fuel cost function is formulated as follows: 
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where iF  is the total fuel cost for the generator unity i (in $/h), which is defined by 

equation: 

iiiiiii cPbPa)P(F ++= 2                                             (4) 

where ia , ib  and ic  are cost coefficients of generator i. 

Also in conventional methods the generating units cost functions are assumed to be 
convex and their incremental heat rate curves exhibit a monotonically increasing 
characteristics. But in reality large steam turbines have steam admission valves, which 
cause discontinuities in the incremental heat rate curves. Thus, the input–output 
characteristics of the generating units will become non-convex. Accurate modeling of 
the economic dispatch will be improved when the valve point loadings in the 
generating units are taken into account and furthermore they may generate multiple 
local optimum points in the cost function [1]. In this context, a more realistic cost 
function is obtained based on the ripple curve for more accurate modeling. This curve 
contains higher order nonlinearities and discontinuities due to the valve point effect, 
and should be refined by a sinusoidal function. Therefore, equation (4) can be 
modified [12], as: 
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where ie  and if  are constants of the valve point effect of generators. Hence, the total 

fuel cost that must be minimized, according to equation (3), is modified to: 
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where iF
~

 is the cost function of generator i (in $/h) defined by equation (6). In the 

case study presented here, we disregarded the transmission losses, LP ; thus, .PL 0=  
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3   Proposed Optimization Techniques  

This section describes the proposed DE approaches. First, a brief overview of DE is 
provided, and then the DE with self-adaptive mutation factor and chaotic local search 
is detailed. 

3.1   Differential Evolution 

Evolutionary algorithms (EAs) are general-purpose stochastic search and optimization 
methods that find their inspiration in the biological world. EAs differ from other 
optimization methods, such as Newton method, conjugate gradient, simulated 
annealing, by the fact that EAs maintain a population of potential (or candidate) 
solutions rather than a single solution to a problem. 

EAs in a general sense encompass a number of related paradigms, such as genetic 
algorithms, evolution strategies, evolutionary programming and recently the 
differential evolution, all of which are based on the natural selection paradigm.  

In general, all EAs work as follows: a population of individuals is randomly 
initialized where each individual represents a potential solution to the problem. The 
quality of each solution is evaluated using a fitness function. A selection process is 
applied during each generation of an EA in order to form a new population. The 
selection process is biased toward the fitter individuals in order to increase their 
chances of being included in the new population. Individuals are altered using unary 
transformation (mutation) and higher-order transformation (crossover). This 
procedure is repeated until convergence is reached. The best solution found is 
expected to be a near-optimum solution [13]. 

DE is a population-based stochastic function minimizer (or maximizer) relating to 
EAs, whose simple yet powerful and straightforward features make it very attractive 
for numerical optimization.  

DE combines simple arithmetical operators with the classical operators of 
recombination, mutation and selection to evolve from a randomly generated starting 
population to a final solution. DE uses mutation which is based on the distribution of 
solutions in the current population. In this way, search directions and possible step 
sizes depend on the location of the individuals selected to calculate the mutation 
values [14]. It evolutes generation by generation until the termination conditions have 
been met. 

The different variants of DE are classified using the following notation: DE/α/β/δ, 
where α indicates the method for selecting the parent chromosome that will form the 
base of the mutated vector, β indicates the number of difference vectors used to 
perturb the base chromosome, and δ indicates the recombination mechanism used to 
create the offspring population. The bin acronym indicates that the recombination is 
controlled by a series of independent binomial experiments. 

The fundamental idea behind DE is a scheme whereby it generates the trial 
parameter vectors. In each step, the DE mutates vectors by adding weighted, random 
vector differentials to them. If the cost of the trial vector is better than that of the 
target, the target vector is replaced by the trial vector in the next generation. The 
variant implemented here was DE/rand/1/bin, which involved the following steps and 
procedures: 
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Step 1: Initialization of the parameter setup: The user must choose the key 
parameters that control DE, i.e., population size, boundary constraints of optimization 
variables, mutation factor (fm), crossover rate (CR), and the stopping criterion (tmax).  
Step 2: Initialize the initial population of individuals: Initialize the generation’s 
counter  t= 0 and also initialize a population of individuals (solution vectors) x(t) with 
random values generated according to a uniform probability distribution in the  
n-dimensional problem space. 
Step 3: Evaluate the objective function value: For each individual, evaluate its 
objective function (fitness) value.  
Step 4: Mutation operation (or differential operation): Mutate individuals according 
to the following equation: 

])()([)()1( 321 txtxftxtz i,ri,rmi,ri −⋅+=+                              (8) 

where i =1,2,...,N is the individual’s index of population; t is the generation 
counter (time or iteration); fm > 0 is a real parameter, called mutation factor, which 
controls the amplification of the difference between two individuals and it is 

usually taken form the range [0.1, 1]; [ ]T
21 )(...,),(),()( txtxtxtx
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the i-th individual of population of N real-valued n-dimensional vectors; 
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niiii =   stands for the i-th individual of a mutant vector; 

r1, r2 and r3 are mutually different integers and also different from the running 
index, i, randomly selected with uniform distribution from the set  
{ }Nii ,,1,1,,2,1 LL +− . 

Step 5: Crossover (recombination) operation: Following the mutation operation, 
crossover is applied in the population. For each mutant vector, zi(t+1), an index 
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where j=1,2,..., n is the parameter index; xij(t) stands for the i-th individual of j-th 
real-valued vector; zij(t)  stands for the i-th individual of j-th real-valued vector of 
a mutant vector; uij(t)   stands for the i-th individual of j-th real-valued vector after 
crossover operation; randb(j) is the j-th evaluation of a uniform random number 
generation with [0, 1]; CR is a crossover rate in the range [0, 1]. 

To decide whether or not the vector ui(t + 1) should be a member of the 
population comprising the next generation, it is compared to the corresponding 
vector  xi( t ). Thus, if f denotes the objective function under minimization, then 
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Step 6: Update the generation’s counter: t = t + 1;  
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Step 7: Verification of the stopping criterion: Loop to Step 2 until a stopping criterion 
is met, usually a maximum number of iterations (generations), tmax. 

3.2   Self-adaptive Differential Evolution Approaches 

The parameters CR and fm of DE are generally the key factors affecting the DE’s 
convergence [13],[15],[16]. In this chapter, we use a self-adaptive control mechanism 
to change the mutation factor fm during the run. The control parameters M and CR are 
not changed during the run. In this context, the DE/rand/1/bin algorithm based on 
self-adaptive mutation factor is proposed in this work. Several DE-variants are used in 
this work for comparison purposes: 

• DE(1): classical DE using a constant mutation factor of  fm = 0.50; 
• DE(2): classical DE using a constant mutation factor of  fm = 0.75; 
• DE(3): classical DE using a constant mutation factor of  fm = 1.00; 
• ADE(1): adaptive DE using a linear increase of fm with initial and final values of 

0.5 and 1.0, respectively; 
• ADE(2): adaptive DE using a linear reduction of fm with initial and final values of 

1.0 and 0.5, respectively; 
• ADE(3): adaptive DE using a mutation factor fm generated by random number 

with uniform distribution in the range [0.5, 1]; 
• ADE(4): adaptive DE using a mutation factor fm generated by random number 

with Gaussian distribution and normalized in the range [0.5, 1]. 

3.3   Chaotic Local Search 

Chaos theory is recognized as very useful in many optimization applications. An 
essential feature of chaotic systems is that small changes in the parameters or the 
starting values for the data lead to vastly different future behaviors, such as stable 
fixed points, periodic oscillations, bifurcations, and ergodicity.  

This sensitive dependence on initial conditions of chaotic systems is generally 
exhibited by systems containing multiple elements with nonlinear interactions, 
particularly when the system is forced and dissipative. Sensitive dependence on initial 
conditions is not only observed in complex systems, but even in the simplest logistic 
equation [17]. 

The application of chaotic sequences in DE approaches can be a good alternative 
to maintain the search diversity in an optimization procedure. Due to the non-
repetition of chaos, it can carry out overall searches at higher speeds than stochastic 
ergodic searches that depend on probabilities [18]-[20].  

Different types of equations of chaotic systems have been considered in the 
literature for applications in optimization methods. The logistic equation and other 
equations, such as sinusoidal iterator, Chua’s oscillator, Lorenz system, Ikeda map, 
and others, have been adopted instead of generation of random numbers using a 
uniform distribution and very interesting results have emerged [18]-[20]. The design 
of approaches to improve the convergence of chaotic optimization is a challenging 
issue. A chaotic local search approach is proposed here based on Lozi map [19].  

The Lozi’s piecewise liner model is a simplification of the Hénon map [21] and it 
admits strange attractors. The Lozi map is given by 



 Self-adaptive DE Using Chaotic Local Search for Solving Power Economic Dispatch 281 

)y(k)(kya(k)y 111 11 −+−⋅−=                                           (11) 
 

)(kyby(k) 11 −⋅=                                                      (12) 
 

where k is the iteration number. In this work, the values of y are normalized in the 
range [0,1] to each i-th decision variable. This transformation is given by 
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where y∈[-0.6418,0.6716] and (α,β) = (-0.6418,0.6716). The parameters used in this 
work are a=1.7 and b=0.5, as these values have been suggested by [19].  

The chaotic search procedure based on the Lozi map can be illustrated as follows: 

Notation: 
],...,,[ 21 nxxxX = : solution vector consisting of n variables xi , i = 1,…,n bounded 

by lower (Li) and upper limits (Ui). 
 
Input: 
ML: maximum number of iterations of chaotic Local search; 
λ: step size in chaotic local search. 
 
Output: 
Xi*: best solution of j-th variable from current run of chaotic search;  
f*: best objective function (minimization problem).  
 
Chaotic optimization algorithm: 
Step 1:  Initialization of variables: Set k = 0, where k represents the iteration 

number. Set the initial conditions y1(0),y(0), a=1.7 and b=0.5 of Lozi map. Set the 
initial best objective function f*. In this work, the best objective function is the best 
individual of differential evolution in current generation t; 

 

Step 2: Exploitation phase of chaotic search: 
            Begin 

While k ≤ ML do 
     For i =1 to n 

                         If r < 0.5  then   
                         (where r is a uniformly distributed random variable in [0, 1]) 

                           ** )()( iiiii XUkwXkx −⋅⋅+= λ  

                         Else If 

                           iiiii LXkwXkx −⋅⋅−= ** )()( λ  

                         End If 
                 End 
                 If ))(( kXf < f* then 

                        X* = X(k)      
                        f* = ))(( kXf   
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                  End If 
                     k = k + 1; 
              End 
           End 
 

During the exploitation phase of chaotic search, the step size λ is an important 
parameter for the convergence behavior of the optimization method, which adjusts 
small ranges around X*. A suitable value for the step size usually provides a balance 
between global and local search abilities and consequently a reduction on the number 
of iterations required to locate the optimum solution. In this work, the step size λ = 
0.0001 is adopted in chaotic local search (CLS). 

3.4   Differential Evolution with Chaotic Local Search 

The approaches configuration composite by DE hybridized with stochastic techniques is 
a promising alternative in optimization and must be evaluated. DE and the proposed 
chaotic local method have supplementary potentialities. In this work, the following way 
of hybridizing of DE combined with CLS was tested: after having solved the EDP use 
the best solution from DE as a starting point and solve the EDP using CLS method. 

4   Simulation Results   

In this section, we judge the performance of the DE and DE-CLS algorithms using a 
case study of power economic dispatch using 13 thermal units. 

This case study consisted of 13 thermal units of generation with the effects of 
valve-point loading, as given in Table 1. The data shown in Table 1 is also available 
in [4] and [22]. In this case, the load demand expected to be determined was 

1800=DP  MW. This EDP has many local minima, and the global minimum is 
difficult to determine. 

Table 1. Data for the 13 thermal units 

 
Thermal unit 

min
iP  max

iP  a b c e f 

1 0 680 0.00028 8.10 550 300 0.035 
2 0 360 0.00056 8.10 309 200 0.042 
3 0 360 0.00056 8.10 307 150 0.042 
4 60 180 0.00324 7.74 240 150 0.063 
5 60 180 0.00324 7.74 240 150 0.063 
6 60 180 0.00324 7.74 240 150 0.063 
7 60 180 0.00324 7.74 240 150 0.063 
8 60 180 0.00324 7.74 240 150 0.063 
9 60 180 0.00324 7.74 240 150 0.063 

10 40 120 0.00284 8.60 126 100 0.084 
11 40 120 0.00284 8.60 126 100 0.084 
12 55 120 0.00284 8.60 126 100 0.084 
13 55 120 0.00284 8.60 126 100 0.084 
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Each optimization method was implemented in Matlab (MathWorks). All the 
programs were run on a 3.2 GHz Pentium IV processor with 2 GB of random access 
memory. In each case study, 50 independent runs were made for each of the 
optimization methods involving 50 different initial trial solutions for each 
optimization method.  

A key factor in the application of DE approaches is how the algorithm handles the 
constraints relating to the problem. In this work, a penalty-based method proposed in 
[23] was used for the equality constraints. 

The population size N was 20 and the stopping criterion tmax was 800 generations 
(16000 evaluations of the objective function) for classical DE.  

In the DE-CLS, the population size of DE was 12 and the stopping criterion tmax 
was 500 generations. CLS procedure is adopted using 12 cost function evaluations 
(ML = 12) in each generation of DE. In this case, the DE-CLS routine is adopted using 
16000 cost function evaluations in each run. The crossover rate of CR = 0.8 was 
adopted for both the classical DE and DE-CLS approaches. 

The results obtained for this case study are given in Table 2, which shows that the 
DE(3)-CLS succeeded in finding the best solution for the tested methods. The best 
result obtained for solution vector Pi, i=1,..,13 with DE(3)-CLS is the minimum cost 
of 17963.9571 which is given in Table 3. However, the ADE(1)-CLS approach shows 
a performance which is clearly better than that of DE(3)-CLS in terms of mean cost. 

It also observed that the classical DE approaches outperformed the other tested 
DE-CLS methods in terms of solution time.   

Table 4 compares the results obtained in this chapter with those of other studies 
reported in the literature. Note that in the case studied here, the best result reported 
using DE(3)-CLS is comparatively lower than recent studies presented in the 
literature.  

Table 2. Convergence results (50 runs) of DE and DE-CLS approaches 

Optimization 
Method 

Mean 
Time (s) 

Minimum 
Cost ($/h) 

Mean  
Cost ($/h) 

Maximum 
Cost  ($/h) 

DE(1) 1.78 18095.7270 18323.9653 18637.0927 
DE(2) 1.77 18091.1464 18315.6026 18682.1625 
DE(3) 1.82 18377.7128 18752.4246 19116.6163 

ADE(1) 1.78 18052.7891 18294.6310 18645.2262 
ADE(2) 1.77 18069.1528 18419.8325 18903.2219 
ADE(3)  1.79 18097.9214 18302.1210 18646.4057 
ADE(4) 1.79 18070.2032 18337.7369 18782.8841 

DE(1)-CLS 5.39 18085.5078 18427.0199 18815.4248 
DE(2)-CLS 5.38 18089.7461 18327.8504 18623.3178 
DE(3)-CLS 5.37 17963.9571   18431.1479 18892.7540 

ADE(1)-CLS 5.37 18001.7035 18274.9005 18524.9235 
ADE(2)-CLS 5.37 18093.4723 18424.7626 18782.6906 
ADE(3)-CLS 5.36 18101.2664 17320.5504 17683.0652 
ADE(4)-CLS 5.36 18057.9074 18371.7782 18786.6667 
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Table 3. Best result (50 runs) obtained for the case study using DE(3)-CLS 

Power Generation 
(MW) 

Power Generation 
(MW) 

P1 628.3180 P8 60.0000 
P2 149.1094 P9 109.8664 
P3 223.3226 P10 40.0000 
P4 109.8650 P11 40.0000 
P5 109.8618 P12 55.0000 
P6 109.8656 P13 55.0000 
P7 109.7912 

∑
=

13

1i
iP  

 
1800.0000 

Table 4. Comparison of best results for fuel costs presented in the literature 

Optimization Technique Best Objective  
Function 

Evolutionary programming [4] 17994.07 
Particle swarm optimization [1] 18030.72 
Hybrid evolutionary programming with SQP [1] 17991.03 
Hybrid particle swarm with SQP [1] 17969.93 
Genetic algorithms [24] 17975.3437 
Improved genetic algorithm with multiplier updating [24] 17963.9848 
Best result of this chapter using DE(3)-CLS 17963.9571   

5   Conclusion and Future Research 

In this chapter, DE and DE-CLS methods have been successfully introduced to solve 
a case study of EDP considering 13 thermal units with valve-point effect. In this case 
study, DE, DE-CLS and ADE-CLS can provide accurate dispatch solutions in 
reasonable time.  

In relation to procedure of solution of the economic dispatch problem of electric 
energy with effect of valve point, the results with the DE(3)-CLS for optimization of 
the equations (1) and (2) were best that the results presented in [1], [4] and [24].  

Future research will investigate theoretically the effect of chaos incorporation into 
DE further and apply the DE-CLS methods for solving the multiobjective economic 
dispatch problems in power systems. 
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