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Foreword 

It is a great pleasure to see Uday Chakraborty, a foremost researcher in evolutionary 
computation, bring out an edited volume on differential evolution. 

Differential evolution, one of the newest members of the evolutionary algorithm 
family, has over the past few years been shown to be a simple yet versatile heuristic 
for global optimization, particularly real-parameter optimization. The spurt in interest 
in differential evolution is evident from the breathtakingly wide array of application 
areas, particularly in engineering, that have benefited from these algorithms, and also 
from the great number of differential evolution publications in scientific journals and 
conference proceedings. 

Despite its demonstrated success in many areas, differential evolution has many 
open problems. Optimization with differential evolution will continue to remain a 
challenging research area for years to come. 

This book brings together an outstanding collection of recent research contributions, 
all by top-notch researchers, to this emerging field. This is an excellent comprehensive 
resource that captures the state of the art. This volume should be of interest to both theo-
reticians and practitioners and is a must-have resource for researchers interested in  
stochastic optimization. 

 

 
 Zbigniew Michalewicz 

 



Preface 

Differential evolution is arguably one of the hottest topics in today's computational 
intelligence research. This book seeks to present a comprehensive study of the state of 
the art in this technology and also directions for future research.  

The fourteen chapters of this book have been written by leading experts in the area. 
The first seven chapters focus on algorithm design, while the last seven describe  
real-world applications.  

Chapter 1 introduces the basic differential evolution (DE) algorithm and presents a 
broad overview of the field. Chapter 2 presents a new, rotationally invariant DE algo-
rithm. The role of self-adaptive control parameters in DE is investigated in Chapter 3. 
Chapters 4 and 5 address constrained optimization; the former develops suitable stop-
ping conditions for the DE run, and the latter presents an improved DE algorithm for 
problems with very small feasible regions. A novel DE algorithm, based on the con-
cept of "opposite" points, is the topic of Chapter 6. Chapter 7 provides a survey of 
multi-objective differential evolution algorithms. A review of the major application 
areas of differential evolution is presented in Chapter 8. Chapter 9 discusses the appli-
cation of differential evolution in two important areas of applied electromagnetics. 
Chapters 10 and 11 focus on applications of hybrid DE algorithms to problems in 
power system optimization. Chapter 12 applies the DE algorithm to computer chess. 
The use of DE to solve a problem in bioprocess engineering is discussed in Chapter 
13. Chapter 14 describes the application of hybrid differential evolution to a problem 
in control engineering.   

I am truly grateful for the unstinting support and inspiration I received from Janusz 
Kacprzyk, Series Editor, Springer, who did me a great honor by inviting me to edit 
this book. Among the other people whose help, advice, encouragement and support I 
gratefully acknowledge, I must specially mention Thomas Ditzinger, Senior Editor, 
Engineering and Applied Sciences, Springer; Heather King, Editorial Assistant at 
Springer's Heidelberg office, for her extraordinary help during the production process 
(including cheerfully accommodating changes in schedule necessitated by my two 
lapses with regard to deadlines); Zbigniew Michalewicz, of the University of Ade-
laide; Xin Yao, of the University of Birmingham; the Office of Research Administra-
tion, University of Missouri St. Louis; my departmental colleagues, particularly A. P. 
Rao; Nasser Arshadi, Vice-Provost for Research, UMSL; Mark Burkholder, Dean of  



 Preface VIII 

the College of Arts and Sciences, UMSL; all the contributing authors for being so 
cooperative and patient through the unduly long review process; and particularly  
Rainer Storn and Kenneth Price for their interest and help with reviews. 

 

 
St. Louis, March 2008 Uday K. Chakraborty 
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Rui Mendes, Isabel Rocha, José P. Pinto, Eugénio C. Ferreira,
Miguel Rocha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Worst Case Analysis of Control Law for Re-entry Vehicles
Using Hybrid Differential Evolution
P.P. Menon, D.G. Bates, I. Postlethwaite, A. Marcos,
V. Fernandez, S. Bennani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339



U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 1–31, 2008. 
springerlink.com                                           © Springer-Verlag Berlin Heidelberg 2008 

Differential Evolution Research – Trends and Open 
Questions 

Rainer Storn 

Rohde & Schwarz GmbH & Co KG 
P.O. Box 80 14 69 
81614 München, Germany 
rainer.storn@freenet.de 

Summary. Differential Evolution (DE), a vector population based stochastic optimization 
method has been introduced to the public in 1995. During the last 10 years research on and with 
DE has reached an impressive state, yet there are still many open questions, and new 
application areas are emerging. This chapter introduces some of the current trends in DE-
research and touches upon the problems that are still waiting to be solved.   

1   Introduction 

It has been more than ten years since Differential Evolution (DE) was introduced by 
Ken Price and Rainer Storn in a series of papers that followed in quick succession [1, 
2, 3, 4, 5] and by means of an Internet page [6]. DE is a population-based stochastic 
method for global optimization. Throughout this chapter the term optimization shall 
always be equated with minimization without loss of generality. The original version 
of DE can be defined by the following constituents. 
 

1) The population 

( )
( ) .110  ,

,,...,1,0   ,1,...,1,0     ,P

,,,

max,,

−==

=−==

,...,D,jx

ggNpi

gijgi

gig

x

xx
 (1) 

 

where Np denotes the number of population vectors, g defines the generation counter, 
and D the dimensionality, i.e. the number of parameters. 
 

2) The initialization of the population via 

( ) .)1,0[rand L,L,U,0,, jjjjij bbbx +−⋅=  (2) 

 

The D-dimensional initialization vectors, bL and bU indicate the lower and upper 
bounds of the parameter vectors xi,j. The random number generator, randj[0,1), returns 
a uniformly distributed random number from within the range [0,1), i.e., 0 ≤ randj[0,1) 
< 1. The subscript, j, indicates that a new random value is generated for each 
parameter.  
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3) The perturbation of a base vector yi,g by using a difference vector based mutation 

( ).,2,1,, grgrgigi F xxyv −⋅+=  (3) 

to generate a mutation vector vi,g. The difference vector indices, r1 and r2, are 
randomly selected once per base vector. Setting yi,g = xr0,g defines what is often 
called classic DE where the base vector is also a randomly chosen population vector. 
The random indexes r0, r1, and r2 should be mutually exclusive. There are also 
variants of perturbations which are different to Eq. (3) and some of them will be 
described later. For example, setting the base vector to the current best vector or a 
linear combination of various vectors is also popular. Employing more than one 
difference vector for mutation has also been tried but has never gained a lot of 
popularity so far. 
 
4) Diversity enhancement 
 

The classic variant of diversity enhancement is crossover [1, 2, 3, 4, 5, 6, 7] which 
mixes parameters of the mutation vector vi,g and the so-called target vector xi,g in 
order to generate the trial vector ui,g. The most common form of crossover is uniform 
and is defined as 

( )
⎩
⎨
⎧ ≤

==
otherwise.  

[0,1)rand if   

,,

,,

,,,
gij

jgij

gijgi x

Crv
uu  (4) 

In order to prevent the case ui,g = xi,g at least one component is taken from the 
mutation vector vi,g, a detail that is not expressed in Eq. (4). Other variants of 
crossover are described by Price, Storn and Lampinen [7]. 
 
5) Selection 
 

DE uses simple one-to-one survivor selection where the trial vector ui,g competes 
against the target vector xi,g. The vector with the lowest objective function value 
survives into the next generation g+1. 

( ) ( )
⎪⎩

⎪
⎨
⎧ ≤

=+ otherwise.   

 if   

,

,,,
1,

gi

gigigi

gi

ff

x

xuu
x  (5) 

Please note that the presentation as well as notation has been chosen slightly different 
from the original papers[1, 2, 3, 4, 5]. Along with the DE algorithm came a notation 
[5] to classify the various DE-variants. The notation is defined by DE/x/y/z where x 
denotes the base vector, y denotes the number of difference vectors used, and z 
representing the crossover method. For example, DE/rand/1/bin is the shorthand 
notation for Eq. (1) through Eq. (5) with yi,g = xr0,g. DE/best/1/bin is the same 
except for yi,g = xbest,g. In this case xbest,g represents the vector with the lowest 
objective function value evaluated so far. With today’s extensions of DE the 
shorthand notation DE/x/y/z is not sufficient any more, but a more appropriate 
notation has not been defined yet. 



 Differential Evolution Research – Trends and Open Questions 3 
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Fig. 1. Flowchart of classical DE [7] 

In order to be able to represent DE pictorially the flowgraph representation in 
Figure 1 was contrived because flowgraphs are very common in the engineering 
world. The DE-flowgraph representation seemed to be ideal to convey DE’s 
simplicity and first appeared in the DE-article published in the Dr. Dobb’s journal at 
1997 [4], a magazine for computer programmers. The article spawned a lot of interest 
for DE among practitioners which Kenneth Price and Rainer Storn concluded from 
the large number of e-mails they received in which DE was attributed very good 
convergence along with simplicity. Simplicity is an asset which is very important to 
anyone who considers optimization to be a necessary but not the primary task. DE’s 
simplicity allowed many practicing engineers and researchers from very diverse 
disciplines to use global optimization without the need to be an optimization expert.  

Interestingly enough, DE received attention only very slowly from fellow 
researchers in the evolutionary computation community, even though it performed 
very well on the first international contest on evolutionary computation in Nagoya as 
early as 1996 [2]. DE’s lack of attention might have been due to a lack of 
understanding concerning its inner workings. More light was shed upon these in 2002 
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when Daniela Zaharie published a beautiful article [8] that enlightened the 
convergence of DE from theoretical point of view. Also the contour matching 
properties of DE, a phrase coined by Kenneth Price, were not explicitly advocated 
until 2005 [7] and only vaguely described as the self-steering property of DE. 

For the following discussions the terms population vectors and population points 
will be used interchangeably, depending on the circumstances. Talking about vectors 
is usually more appropriate when issues concerning the parameters of the vectors or 
the vector arithmetic used to generate new vectors are elaborated. Speaking in terms 
of points, however, is usually more convenient when the discussion concentrates on 
the sampling of the objective function surface. It should be kept in mind that the 
points are simply the endpoints of the vectors.  

Parameter x1

Param
eter x

2

a) difference vector V

point to be
perturbed

point after
perturbation

F*V

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Peaks function

Parameter x1

P
ar

am
et

er
 x

2

x1,min x1,max

x2,min

x2,max

difference vectors
promoting basin-to-basin
transfer

b)

 

Fig. 2. Peaks function a) and illustration of difference vectors b) that promote transfer of points 
between two basins of attraction of the objective function surface 

Some explanations concerning contour matching are in order. Contour matching 
means that the vector population adapts such that promising regions of the objective 
function surface are investigated automatically once they are detected. To this end an 
important ingredient besides selection is the promotion of basin-to-basin transfer 
where search points may move from one basin of attraction, i.e. a local minimum, to 
another one. Figure 2 illustrates that DE in fact supports basin-to-basin transfer by 
yielding a certain amount of difference vectors that are able to generate new trial 
points in the lower basin of attraction when the base points stem from the upper left 
basin of attraction. 

Professor Jouni Lampinen from Lappeenranta University of Technology, Finland, 
[7] was one of the first scientists who was intrigued by DE’s potential and not only 
did a lot of seminal DE-research but also started to maintain a bibliography of DE-
related papers [9]. A look into this bibliography on the Internet reveals that its 
maintenance has been halted after 2002. The reason for this stop was that the number 
of papers began to increase at such a large rate after the year 2002 that it was 
impossible to keep the bibliography up-to-date and complete. 
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A simple search for “Differential Evolution” using any kind of search engine on 
the Internet supports the above statement and shows that DE-research is in full swing. 

There are basically four main directions of DE-research that can be identified: 
 

• Basic DE research 
       Here the inner workings and theoretical aspects of DE are investigated. Ob-

jective functions involved are usually unconstrained. The goal is to better 
understand DE, identify its weaknesses and improve it in an overall fashion. 
It is worth mentioning that the majority of the research in this category is 
empirical. Purely theoretical treatments are rare as it is the case for EAs in 
general. This is probably due to the situation that those scenarios which lend 
themselves to feasible theoretical investigations rarely represent the com-
plexity of real-world problems.  

• Problem Domain Specific research 
       In this area the problem formulation and how DE can be adapted to it is  

under scrutiny. For example, constraints, time variations, and number of ob-
jectives of an objective function are of importance but also effects of dimen-
sionality and parameter granularity, i.e. discreteness are considered. 

• Application Specific research 
       This research domain is similar to the problem domain specific case, however, 

certain applications can be much more specific than the general problem do-
main they belong to. For example, the traveling salesman problem belongs to 
the problem domain of combinatorial optimization, but its specifics narrow 
down the heuristics one may use in order to solve the problem. 

• Computing Environment related research 
       In the real world computational efficiency of DE is often crucial to make de-

sign problems tractable. Some problems call for parallel computations while 
others have to deal with limited memory or processing power. 

 
In the following selected areas from the research domains mentioned above will be 

discussed. I have tried to highlight those that still exhibit many open questions and 
hence constitute rewarding research topics, but I am aware that I did not provide a 
complete picture. For example, the vast domain of multi-objective optimization using 
DE has not been covered at all, but it will be treated in another part of the book. 

2   Basic DE Research 

In the early days DE was only marginally understood concerning its strengths and 
weaknesses. By twisting and tuning the various constituents of DE, i.e. initialization, 
mutation, diversity enhancement, and selection of DE as well as the choice of the 
control variables it was tried to make it a foolproof and fast optimization method for any 
kind of objective function, even though the No Free Lunch Theorem (NFL) by Wolpert 
and Macready (1997) [10] suggested already that such a panacea could not exist. 
Nevertheless, many real-world problems seem to be of the kind that they are very well 
amenable to be treated by DE. And even though there will be no cure-all-optimization 
for every problem, DE can nevertheless be improved also in a general sense. 
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2.1   The Control Variables Np, F, and Cr 

Trying to tune the three main control variables Np, F, and Cr and finding bounds for 
their values has been a topic of intensive research [7, 8, 11, 12, 13, 14, 15, 16]. An 
important result was presented by Daniela Zaharie [8] where she proved that the 
mutation scale factor F should never be smaller than Fcrit where  

( )
Np

Cr
F 21

crit

−
= . (6) 

Another important result from Price, Storn, Lampinen [7] was that only high values of 
Cr guarantee the contour matching properties of DE. In addition, only when Cr=1 is 
the mean number of function evaluations for an objective function and its rotated 
counterpart the same, i.e. in this case DE is called rotationally invariant. This does 
not mean, however, that low values of Cr should always be avoided. Low values of Cr 
are advantageous for separable functions, since the search concentrates on the axes of 
the coordinate system as outlined in [7]. The rule of thumb values for the control 
variables given by Storn and Price [5]: 

1. F ∈ [0.5, 1.0] 
2. Cr ∈ [0.8, 1.0] 
3. Np = 10⋅D 

are valid for many practical purposes but still lack generality. Gämperle [11] reported 
that the control variable settings for F, Cr, and Np can be quite difficult to find, and 
some objective functions are sensitive to the proper setting. This finding was also 
stated by Liu and Lampinen [12]. Therefore research trends go towards finding the 
best settings of F, Cr, and Np automatically [13, 14, 15, 16, 17]. One recent approach 
by Brest et al. [17] uses F and Cr as additional parameters to evolve for each 
population vector, an idea pioneered by Schwefel [18]. Hence each parameter vector 
has D + 2 parameters with the last two parameters containing an individual F and Cr 
for the particular vector. If the trial vector wins in the selection process either both F 
and Cr from the base vector are transported into the winner vector or the individual  
F and Cr are randomly determined. It is claimed that the most appropriate values for F 
and Cr will survive in the long run. The results on a reasonably-sized testbed show 
that the scheme yields improved objective function values after a fixed set of function 
evaluations, compared to classical DE with F=0.5 and Cr=0.9, and compared to some 
other DE-variants. However, it is unclear whether the scheme would maintain it 
superiority if not a fixed number of evaluations but a fixed value-to-reach (VTR) 
would have been chosen as a goal. It may also be that the encouraging results are due 
to the occasionally occurring random selection of F and Cr. This kind of randomness 
known as dither [7] has been found to be advantageous as will be elaborated later. 
Furthermore the question remains whether the surviving F and Cr gear the 
optimization towards fast and therefore possibly premature convergence. Hence the 
area of automatic control parameter determination remains very interesting and a 
fruitful area of research. 

 



 Differential Evolution Research – Trends and Open Questions 7 

2.2   Perturbation 

Perturbation of the base vector by mutation has been treated very early and has lead to 
various variants of DE such as the one belonging to classical DE/rand/1/bin 

( ),,2,1,0, grgrgrgi F xxxv −⋅+=  (7) 

the mutation being used in DE/best/1/bin 

( ),,2,1,, grgrgbestgi F xxxv −⋅+=  (8) 

the mutation for DE/current-to-best/1/bin 

( ) ( ).,2,1,,,, grgrgigbestgigi FF xxxxxv −⋅+−⋅+=  (9) 

and the variant for DE/best/2/bin 

( ).,4,3,2,1,, grgrgrgrgbestgi F xxxxxv −+−⋅+=  (10) 

In fact many more linear combinations of vectors may be used for mutation, a 
generalization of which can be written as 

( ).1 1

0
),22(),12(,, ∑

−

=
++ −⋅+=

N

n
gnrgnrgigi N

F xxyv  (11) 

with yi,g being the base vector. The base vector should be distinct from the other 
vectors in Eq. (11). Most commonly used are the mutation schemes represented by 
Eq. (7) and Eq. (8) with the latter being more greedy. Recently Price and Rönkkönen 
[19] investigated Eq. (11) for the case yi,g = xi,g and N=0. In [7] the effect of 
recombination as a perturbation method  

( ) .
1

,

1

0
),22(),12(,, ⎟

⎠

⎞
⎜
⎝

⎛ −+⋅+= ∑
−

=
++ gi

N

n
gnrgnrrecgigi N

F yxxyv  (12) 

for the case yi,g = xi,g and N=0 has been elaborated. Eq. (12) is a generalization of the 
Nelder and Mead reflection operation [20] and defines a point between yi,g and the 
centroid of the vectors used in the recombination sum. So far no single perturbation 
method has turned out to be best for all problems which, of course, doesn’t come as a 
surprise with regard to the NFL [10]. Nevertheless all the various methods need 
further investigation under which circumstances they perform well. In practice this 
information can be very important because it may save many computations or may 
even be crucial for the solution of a certain problem.  

2.3   Diversity Enhancement 

One of the most fundamental aspects of mutation-based DE is the fact that vector 
perturbations are generated from the Np·(Np-1) nonzero difference vectors of the 
population rather than employing a predetermined probability density function. This 
leads to one of the main assets of DE: contour matching [7]. The contour matching 
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property can be observed in Figure 3 through Figure 5 which show the DE-population 
and the difference vector distribution for Np=8 on the peaks function the latter of 
which is defined by 

( ) ( )( )

( ) ( )( ).1exp
3

1
exp

5
101exp13),(

2
2

2
1

2
2

2
1

5
2

3
1

12
2

2
1

2
121

xxxx

xx
x

xxxxxf

++⋅−+⋅

⋅⎟
⎠
⎞

⎜
⎝
⎛ −−−++⋅−=

 (13) 
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Fig. 3. Generation g=1 using Np = 8 
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Fig. 4. Generation g=10 using Np = 8. The difference vector distribution (only endpoints 
shown) exhibits three main clouds where the outer ones promote the transfer between two 
basins of attraction. 
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Fig. 5. Generation g=20 using Np = 8. Now the difference vector distribution fosters the local 
search of the minimum the vector population is enclosing. 

It is intriguing to see the difference vector distribution adapt to the landscape of the 
objective function. This self-adaptivity renders DE’s mutation based perturbation 
superior to mere Gaussian- or Cauchy-based types in most cases. However, Figure 3 
through Figure 5 also reveals a weakness:  

In the endeavour to obtain fast convergence the population size Np is usually kept 
low. Due to the limitation of Np·(Np-1) potential perturbation possibilities for a base 
vector there is a limited possibility to find regions of improvement and hence 
stagnation [21] can be the price to pay for the low number of Np. The blessing of 
contour matching may then turn out to be a curse when the contour of the objective 
function is deceiving and the “matching” leads away from the global optimum. 

In order to increase the number of potential points to be searched while still 
maintaining a low number of Np gives rise to the various strategies for diversity 
enhancement, certainly one of the most interesting and rewarding areas of DE 
research today. The basic idea is simply to find some hopefully contour-matching and 
rotationally invariant way to generate more potential points without increasing the 
number Np of population members. As has been mentioned above one method for 
diversity enhancement has always been a part of DE, crossover. 
 
Crossover 
Crossover, i.e. mixing parameters of the target and the mutant vector in order to get 
the trial vector (see Eq. (4)) has been introduced to DE from the beginning [1, 2, 3, 4, 
5, 6]. It was felt that mutation alone is too restrictive as a perturbation method, just as 
genetic algorithms [22] require some random mutation in addition to the dominant 
recombination mechanism to make the optimization work properly. So both DE and 
genetic algorithms have some dominant method of change plus an additional 
ingredient which slightly breaks up the mechanics of the dominant perturbation. 
Figure 6, however, forebodes that crossover has the potential to destroy the 
directional information provided by the difference vectors for the sake of increasing 
diversity. In fact it has been shown [7] that DE’s contour matching property is lost 
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Fig. 6. Example for a population of Np=8 points and a mutation step a). The figure on the right 
b) shows the potential points when using crossover.  

when strong crossover is used (e.g. Cr=0.1) and that in this case DE has a strong 
tendency to search along the main parameter axes, a property that is in fact beneficial 
for separable objective functions. Yet for real-world applications separability is rarely 
present. Parameter dependency seems to be the rule rather than the exception instead.  

Another deficiency of crossover is that it is not rotationally invariant, i.e. 
optimization results obtained for a certain objective function do not directly translate 
to the rotated counterpart of this function. The differences in potential crossover 
points for two coordinate systems with the same origin are depicted in Figure 7. 
Despite its deficiencies the DE-literature reveals that crossover is almost always used. 
The diversity enhancing features of crossover seem to outweigh its disadvantages, at 
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Fig. 7. Potential trial points after crossover for coordinate system x1, x2 and  system x1’, x2’ 
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least if used lightly, i.e. if Cr stays close to 1 for the case of non-separable objective 
functions. 
 
Dither 
The term dither has been defined in [7] and presumably has been used by early 
practitioners of DE. The first reported publication advocating its use, however, seems 
to have been launched by Karaboga and Ökdem [23] in a Turkish Journal even though 
the term “dither” had not been employed. In [23] the scale factor F was randomized 
according to 

( )lhgldither FFrandFF −⋅+= )1,0(  (14) 

for every generation g. Independently of [23] Das, Konar, and Chakraborty [24] have 
reported improvements in DE’s convergence when using dither. In [24] dither had 
been applied to every difference vector i=0, 1, …, Np-1 rather than on a generational 
basis. 

( )lhildither FFrandFF −⋅+= )1,0(  (15) 

More variants are conceivable, for example changing F using some randomization 
different from uniform. A pictorial representation of dither is provided in Figure 8.  
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Fig. 8. Pictorial representation of dither which simply randomizes the mutation scale factor F 
and hence does not compromise DE’s contour matching 

Besides from improving DE’s convergence behavior on time-independent 
objective functions dither also improves DE’s handling of noisy objective functions 
[25]. Since dither is rotationally invariant and preserves the contour matching 
property this diversity enhancing method should always be used. 
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Jitter 
Jitter as defined in [7] is somewhat similar to dither in that the scaling factor F is 
randomized. However, F is randomized for each single parameter j=0, 1, …, D-1 and 
for every new mutant vector i according to 

( )( )5.0)1,0[1, −⋅+⋅= jijitter randFF δ  (16) 

Jitter has not been treated a lot in the literature. Zaharie [8] has used a Gaussian 
randomized form of jitter for the theoretical convergence proof of DE. Storn [26] has 
implemented it in a commercial program for digital filter design, and also Lampinen 
[27] reportedly has used but never published it. For jitter it seems to be very important 
that δ be small, e.g., δ=0.001. In fact δ may even be randomized itself. Figure 9 
visualizes jitter and shows the effect of randomizing all parameter directions. The 
effect is a square cloud of potential points centered at the tip of the mutant vector.  
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Fig. 9. Jitter randomizes the difference vector in all parameter directions 

As stated in [7] jitter is not rotationally invariant, but for small δ this deficiency is 
negligible. The benefit of jitter seems to be that Np can be reduced so that 
convergence is sped up without loosing robustness, but jitter-research is still in its 
infancy. Empirics indicate that jitter works well for non-deceiving objective 
functions. In this context non-deceiving shall mean that if an objective function 
posesses a strong global gradient information then it also leads towards the vicinity of 
the global minimum. For example, Corana’s paraboloid [28] which is riddled with 
small local minima would be non-deceiving.  

In addition it also seems to be beneficial to combine jitter with dither [26] as in 

( )( ) ( )( )5.0)1,0[1)1,0(,,& −⋅+⋅−⋅+= jlhglgiditherjitter randFFrandFF δ , (17) 

but more research is required with regard to jitter to get conclusive results. 
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Mixing perturbation techniques 
Mixing perturbation techniques is another diversity generating technique that has 
received some attention in the past. One example is the Either-Or-Algorithm proposed 
by Kenneth Price and described in [7]. This technique counteracts stagnation by 
choosing at random which perturbation method to use, mutation like in Eq. (11) or 
recombination like in Eq. (12). Figure 10 provides an example for the differences in 
potential target points. 
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Fig. 10. Potential target points after applying either Eq. (11) or Eq. (12) for N=0 

The advantage of this technique is that both rotational invariance and the basin-to-
basin transfer property (i.e. contour matching) are preserved. Extensive empirical tests 
have shown that this approach can be more robust than classical DE while exhibiting 
a slow-down in convergence. Yet not all varieties of perturbation have been explored 
to a sufficient extent, e.g. multi-vector mutation or recombination, as well as usage of 
dither and jitter in addition to mutation and recombination. So there are quite a 
number of loose ends which need to be investigated further. 
 
Opposition-based points 
Another interesting concept for diversity enhancement has been introduced by 
Rahnamayan, Tizhoosh, and Salama [29] which uses either the mutant vector 
obtained in the usual way or its opposing point, depending on some probabilistic 
descision. The scheme is dubbed ODE for opposition-based DE. The opposing vector 
is defined as 

.,max,min,,, giggopposedgi vxxv −+=  (18) 

where xg,min and xg,max define the momentary extremes for each parameter taken over 
the entire population at a certain generation g. For the initial generation g=0 the 
absolute bounds are taken for these extremes. It is interesting to see that the opposing 
points generation scheme neither fulfills rotational invariance nor has the capability 
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Fig. 11. Illustration of the construction of an opposition-based population point. Note that this 
point generating scheme does neither satisfy rotational invariance nor basin-to-basin transfer. 

for basin to basin transfer. Figure 11 provides an example for opposition based vector 
generation. 

Rahnamayan, Tizhoosh, and Salama [29] report a convergence speed up compared 
to classical DE. The reason for this may stem from two properties of the scheme:  

1. The opposing points are not chosen on an individual basis but an entire 
population is generated with some probability JR (in [29] with JR=0.3) on a 
generational basis. Once this population of opposing points is generated there 
are 2·Np points available, Np from the current population and another Np 
from the population of points which is opposite to the current population. 
Out of these 2·Np points the Np best ones are chosen to form the next gen-
eration of points. In the evolutionary programming community this selection 
scheme is called elitist, or (μ+λ)-selection [7]. As indicated above this elitist 
selection is not used for every generation but only with a probability JR. The 
authors of [29] refer to this scheme as generation jumping. Elitist schemes 
usually speed up convergence because only the best points are retained. On 
the downside the chances for premature convergence are increased. Genera-
tion jumping might offer a good balance between elitist and one-to-one  
survivor selection. 

2. The occasional generation jumping breaks up the vector generation scheme 
of DE just like the probabilistically occurring mutation breaks up the cross-
over scheme for GAs. This may hinder contour matching once in a while,  
but on the other hand it increases diversity, and the (μ+λ)-selection counter-
acts the loss of focus towards the optimum by being more greedy than the  
selection scheme of DE. 
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Again, the reasons for ODE’s success and potential deficiencies need to be 
investigated further. Also a combination with other diversity enhancing strategies is 
worth investigating. 

The strategies above are not the only diversity enhancing strategies that can be 
found in the literature. For example, in Ali [30] an extra distribution, the so-called β-
distribution is applied to enhance the diversity of DE. Enhancing diversity is certainly 
a very interesting area of DE-research and hopefully more fruitful ideas in that 
domain will appear. 

2.4   Controlling the Vector Population 

One-array vs. Two-array 
Classic DE uses two populations in order to allow computation on parallel computers 
or processors, something which is becoming increasingly important especially since 
the advent of multicore processors [80]. But in fact the very first algorithm that 
Kenneth Price came up with used just one single vector population array. This 
simplified version has been described in [7] in the light of saving memory on limited 
resource devices. In Feoktistov [31] this scheme is investigated further and extended 
to transversal DE where an individual may undergo several mutation/evaluation steps 
before it is compared to the target vector. Unfortunately in [31] the consequences, 
benefits or drawbacks are not regarded for a sufficiently large test set, so more 
research is needed to evaluate this idea. Transversal DE bears some similarity with 
hybrid DE versions that employ gradient algorithms or other greedy techniques for 
local search (see chapter 4.1.) in that the trial vector undergoes several improvement 
steps before it is compared to the target vector.  
 
Selection Methods 
Selection methods have been extensively discussed in [7]. The main methods of 
interest are: 

1. Elitist (μ+λ)-selection where the best μ individuals out of μ+λ individuals 
are selected. For DE usually μ=λ=Np is used. 

2. Tournament selection with one-to-one survivor selection as in classic DE. 
 

There have not been too many investigations on alternatives to DE’s one-to-one 
selection, but it can be said that elitist selection is accelerating convergence while 
making the optimization more prone to premature convergence. In addition, elitist 
selection makes parallel computation more difficult. An in-depth numerical comparison 
of selection methods using an extensive testbed, however, is still lacking. 

3   Problem Domain Specific Research 

So far we have regarded DE as an optimization method to minimize objective 
functions without specifying the makeup of these objective functions. The tacit 
assumption when looking at “basic research” of evolutionary optimization is 
generally that objective functions to be minimized have a single global minimum, are  
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potentially multimodal and nonlinear, and have a moderate number of parameters. 
Real-life problems, however, are often more complicated than that. Optimizations 
may include bounds constraints, inequality constraints, equality constraints, or they 
may even consist of constraints only without any objective to be optimized. The latter 
problem is well known as constraint satisfaction problem. If only equality constraints 
prevail and no objective is present we are encountering a system of equations. So far 
we have concentrated on parameters stemming from the continuous space, i.e. the 
floating point domain. Yet problems may also include discrete parameters or consist 
of discrete parameters only. If there are only discrete parameters and these parameters 
follow no metric, which means that there is no smaller, equal, or greater relationship, 
then we are looking at a combinatorial problem in the strict sense [7]. There are even 
more dimensions to optimization problems which the spider diagram in Figure 12 
attempts to visualize. Many of these problem domains have been treated in [7] but 
still a lot of open questions remain. An entire chapter can be written easily for each 
case depicted in Figure 12 so only a few problem domain types will be sketched in the 
following in order to illustrate the research potential.  
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Fig. 12. Spider diagram sketching the various problem domain characteristics 

3.1   Objective Functions with Single Objective 

Figure 13 shows a classification of objective functions with a single objective regarding 
three problem domain dimensions, time variance, constraints, and parameter granularity. 
When available in the literature real-world example applications are provided. Figure 13 
illustrates that at present DE is mostly used for time-invariant problems. 
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3.2   Combinatorial Problems 

Combinatorial problems in the strict sense are problems where the parameters are 
discrete, the number of discrete states is finite, and the parameters are not associated 
with a metric, i.e. one cannot tell which of two different values for the same parameter 
is greater than the other unless an artificial metric is applied. For example the letters A 
and F of the alphabet may have an order in the alphabet, but one cannot truly say that A 
is greater than F or the other way round. Many of the well-known combinatorial 
problems are also highly constrained like the traveling salesman problem (TSP) which 
we will look at for illustration purposes later on. Even though DE has a good reputation 
of solving discrete or mixed-integer problems [7, 26, 32, 44, 50, 51, 52] there is no good 
evidence so far that DE is applicable to strict-sense combinatorial problems, at least if 
they are heavily constrained. In [7] the topic of combinatorial problems has been 
discussed, and the success of DE-based solutions to combinatorial problems was 
attributed to well-chosen repair mechanisms in the algorithm rather than DE-mutation. 
However, the applicability of DE to strict-sense combinatorial problems is neither 
proven nor disproven and depends also on finding a discrete operator that corresponds 
to the difference vector in the continuous domain. In addition it is required that the 
combination of a base vector and a difference vector (or recombination vector) yields a 
new valid vector. The validity of the newly generated vector is a big problem for most 
of the classical combinatorial problems like the TSP. 

 
The traveling salesman problem (TSP) 
Let us regard the traveling salesman problem (TSP) as an example to see how DE 
may be used to solve it and what the difficulties are. The TSP is a universal strict-
sense combinatorial problem, and many other strict-sense combinatorial problems can 
be transformed into a TSP formulation [53]. Hence many findings about DE’s 
performance on the TSP can be extrapolated to other strict-sense combinatorial 
problems.  

Let there be M cities cm, m=1,2, ..., M. Each city cm has a distance dm,n = dn,m to 
some other city cn, n not equal to m, associated with it. The task in the TSP is to find a 
graph where all cities are visited and where the total distance 

differentmutuallyandmnwithdD
M

m
nm ≠=∑

=1
,  (19) 

is minimized. Figure 14 shows an example of a 5-city tour.  

An approach using distances as parameters 
In order to apply DE we first have to find an appropriate problem formulation. A 
natural approach would be to set up the problem vector x which contains all M 
distances dm,n as parameters, because the arithmetic difference of distances has a 
meaning and hence is suited for DE. For each city ci there are M-1 distances dm,n to 
the other cities. For a finite set of parameters it is helpful to have these parameters in 
ascending order. So for our five city TSP example the list of distances would be as 
shown in Table 1. If we look at the first row as well as Figure 14, we see that city c4 is 
closest to city c1. The next closest city is c2, then c3, and then c5. The other rows can 
be checked in a similar way. Since we know that DE prefers to have continuous 
parameters we take a table-based approach for non-uniform quantization. In this case 
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Fig. 14. Example for a city tour in a TSP for five cities [7] 

DE's parameters are not the distances themselves but the appropriate array indices.  In 
order to be able to use a continuous parameter vector x for DE we choose  

( )T
54321 x,x,x,x,x=x  (20) 

with xm representing a reference to the distance between city cm and its successor 
along the travel path. The values xm are continuous and from the range [-0.5,3.5], so 
the index of the distances is computed via 

( )5.0+= mm xfloorindex  (21) 

Table 1. Distance table containing the distances from each city cm to each other city in ascend-
ing order 

                   index m
city cm

0 1 2 3 

c1 d1,4 d1,2 d1,3 d1,5

c2 d2,3 d2,4 d2,1 d2,5

c3 d3,2 d3,4 d3,5 d3,1

c4 d4,2 d4,3 d4,1 d4,5

c5 d5,4 d5,3 d5,2 d5,1  

According to Eq. (21) abd the range information for xm the indexm can assume the 
values 0, 1, 2, or 3. 

While trying to construct a valid path we easily see the constraints. For the first 
parameter x1, which represents the distance associated with city c1, we may choose a 
value from all the available table entries in Table 1, e.g. d1,3. Since each city may be 
visited only once we must go to city c3 in the next step because in the first step a path 
from city 1 to city 3 was selected. In order to prevent traveling back to city 1 the distance  
 



20 R. Storn 

Table 2. If d1,3 is selected for city c1 then d3,1 may not be used for city c3. This is indicated by 
greyshading. 

         index n 

city cm  
0 1 2 3 

c1 d1,4 d1,2 d1,3 d1,5 

c2 d2,3 d2,4 d2,1 d2,5 
c3 d3,2 d3,4 d3,5 d3,1 
c4 d4,2 d4,3 d4,1 d4,5 
c5 d5,4 d5,3 d5,2 d5,1 

Table 3. If d3,4 is chosen the next city to work on is c4. Now only two distances are free to 
choose from. 

                   index n
city cm

0 1 2 3 

c1
d1,4 d1,2 d1,3

d1,5

c2 d2,3 d2,4 d2,1 d2,5

c3
d3,2 d3,4

d3,5 d3,1

c4 d4,2 d4,3 d4,1 d4,5

c5 d5,4 d5,3 d5,2 d5,1  

d3,1 in the row for c3 is excluded from the allowed list as indicated in Table 2 by 
greyshading.  

So our search range has been restricted. Let’s assume that we will choose d3,4 in the 
next step, then our next city to consider will be c4 and the associated parameter is x4. 

For x4 the choice of available distances is even more restricted, as indicated in 
Table 3. So all the cities which have already been considered are excluded from the 
further search. The constraints get tighter and tighter until just one city is left. The last 
city must be connected to the first one in order to complete the tour. 

Now the problem DE faces here becomes evident: Not only is the choice of 
allowable indexes for each city restricted, but also is this restriction dependent on 
which city we start the tour with and in which direction we go first. There is another 
fundamental problem with this approach: DE in general relies on the fact that a small 
difference vector means that the two parameter vectors are close together. This means 
that two identical solutions should yield the vector difference zero. However, we can 
immediately verify that the vectors xa = ( d1,2  d2,4  d4,3  d3,5  d5,1 ) and xb = ( d1,5  d5,3  
d3,4  d4,2  d2,1 ) describe exactly the same tour but do not yield the vector difference 
zero. Hence one of DE’s biggest assets, the self-adaptivity of the vector difference 
distribution is severely disturbed because a converged population still might exhibit 
large difference vectors. 

Additional problems arise due to the heavy constraints inherent in the TSP. For 
example, even if we have a population of valid vectors, the weighted difference of 
two vectors added to a third one rarely  yields a valid tour. If we want to repair this 
vector we can do this in many ways so that finally not much of DE's working 
principles are left. In the above case the constraints are dependent on the selection of 
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the city, so the problem is not invariant. There have been attempts to treat such kinds 
of problems by not caring about valid solutions at first and simply applying validity as 
a hard constraint on the vectors [50]. The problem with this approach, however, is that 
most of the generated vectors are invalid and hence the optimization is very prone to 
stagnation. There are a number other approaches to optimize the TSP with DE [7], but 
none of them is really convincing. So successful optimization of heavily constrained 
strict-sense combinatorial problems using DE still remains to be fairly uncharted 
territory and leaves substantial room for improvement. 

3.3   Design Centering 

The problem of design centering using DE [37] has been largely left untouched even 
though this problem is of great importance to manufacturing. The idea is very simple: 
the design of any technical system usually has to meet certain specifications. Due to 
imprecisions in the manufacturing process the actual properties of the system often 
deviate from the nominal ones. The goal of design centering is to estimate the 
manufacturing imprecisions and to consider them at design time so that the 
probability that the eventual design violates any of the specifications is minimized. 

In mathematical terms the design centering problem can be described as 

maximum.)(PDF
ROA

00 =∫ xx d  (22) 

which means that the D-dimensional parameter vector x0 should be located such in the 
so-called region of acceptability (ROA) that the deviations of the parameters from 
their nominal values, which are described by a D-dimensional probability density 
function, mostly fall into the ROA rather than outside. The ROA is the permitted  
region in the parameter space within which any actual parameter vector may lie in 
order to fulfill the design specifications. 
As an example Figure 15 shows a nominal magnitude function of a switched-
capacitor lowpass filter and also its real-world counterpart after manufacturing. The 
manufacturing process introduces so-called parasitic capacitors which make the 
magnitude function violate the tolerance scheme. Figure 16 on the other hand shows  
the resulting magnitude function after manufacturing if the nominal design has 
undergone a design centering optimization, i.e. the parasitics are included into the 
design and the nominal parameter vector is placed within the design center of  
the ROA. Because the magnitude function lies well between the boundaries of the 
tolerance scheme it is intuitive that there is some headroom for the parameter values.  

In [7] the problem of design centering and its solution via DE has been treated to 
some extent, and it was suggested that, provided that all population vectors are 
equally distributed within the ROA, a rough estimate of the design center is the point 
that maximizes the center index: 
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Fig. 15. Lowpass transfer function by standard filter design (left side) and after inclusion of 
parasitics (right side) [37] 
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Fig. 16. Transfer function with parasitics but after design centering [37] 

The center cj index increases with the number of vectors that are close to vector xj. 
In other words, if a vector has a lot of neighbors then it is probably located fairly 
close to the design center. For vectors close to the rim of the ROA there is simply not 
as much space to accommodate many neighbors. Although this claim may appear 
intuitive, it has not been verified for a large enough testbed, and in fact the usage of 
DE for design centering problems still offers a lot of research opportunities.  
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3.4   Time-Variant Objective Functions 

All population based optimization routines are mainly geared towards “offline 
optimization” or, in other words, optimization of time-independent objective 
functions.  Especially when it comes to realtime applications where the minimum-
finding process has to occur in a matter of seconds or even milliseconds, like in echo 
cancellation [41] or routing [42], minimization approaches have to be used that are 
more greedy and faster converging. Often the minimization problem is simplified to 
be a quadratic one, so fast gradient methods can be used [41]. Other applications may 
not necessarily require the global optimum because it will be gone anyway in a matter 
of seconds [42]. Nevertheless there are problem domains where population based 
optimizers may be applied. These domains comprise noisy and/or slowly varying 
multimodal objective functions. 
 
Noisy objective functions 
Noisy objective functions frequently occur in practice and are most often due to 
measurement imprecisions. As an example we may use the parameter identification 
problem for an induction motor [40]. First certain characteristic voltages of the motor 
are measured over time and/or over frequency. Then the parameters of a mathematical 
model of the motor are to be determined such that the absolute difference between the 
voltages generated by the model and the voltages from the measurements is 
minimized. The objective function to be minimized is noisy because the voltage 
measurements are noisy. 

It has been reported by Krink, Filipic, Fogel, and Thomsen [54], that classic DE 
exhibits convergence problems on some noisy objective functions, at least when 
resampling is used as a noise-mitigating strategy. The idea of resampling is simply to 
evaluate the same candidate solution m times and to estimate the ’true’ fitness value 
by the mean of the samples [54]. In [54] the question was raised whether thresholding 
rather than resampling may be a solution. The idea in thresholding [55] is to use a 
new selection operator for ES, such that a new candidate solution can only replace an 
existing one if the fitness difference is larger than a threshold τ. A disadvantage, 
however, is that with τ a new control variable enters the optimization scheme. A hint 
to the potential solution was already given in [54] when it was noticed that a specific 
Evolutionary Algorithm, which was compared to DE and showed better performance, 
used a Gaussian mutation operator. Eventually Chakraborty [24] showed that indeed 
DE is superior to this particular Evolutionary Algorithm if dither is added to classical 
DE. Rahnamayan, Tizhoosh, and Salama, [56] provided additional results showing 
the DE’s performance on noisy objective functions can be improved if the evaluation 
of opposition-based points is added to classic DE resulting in what the authors call 
ODE. Both methods, dither and ODE, are diversity enhancement methods, so the 
question arises if there are more diversity enhancement methods which are beneficial 
for noisy objective function minimization.  

 
Slowly time-variant objective functions 
The application of DE to slowly varying objective functions is a very young area of 
research that has been touched briefly in [7] and which has been more intensely 
investigated by Mendes and Mohais [57]. The investigation in [57] revolves around 
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the moving peaks benchmark (MPB) and suggests a DE-variant called DynDE 
(Dynamic DE) to approach this. The main ingredients in DynDE are: 

1. Usage of several populations in parallel 
2. Usage of uniform dither for F ∈ [0,1] as well as Cr ∈ [0,1] 
3. To maintain diversity of the populations two approaches may be chosen: 

a. Reinitialization of a population if the best individual of a population 
gets too close to the best individual of another population. The 
population with the absolute best individual is kept while the other 
one is reinitialized. This way the various populations are kept from 
merging. 

b. Randomization of one or more population vectors by adding a ran-
dom deviation to the vector components. Various schemes of ran-
domization are suggested. 

The authors conclude that DynDE yields reasonable results, but admit that more 
research is required to improve this particular DE-variant.  

The added dimension of time to the optimization problem requires to deal with 
many objective function instances at different points in time which makes research 
very expensive in terms of computational effort. This may be the reason why this 
problem domain has not been covered to a greater extent so far.  

Since there is only little available literature there remains a lot of room to further 
explore the very interesting problem area of slowly varying objective functions. 

4   Application Specific Research and Consequences for DE 

It has been mentioned before that specific applications may bear some properties that 
make it worthwhile revisiting or extending DE so that the optimization matches the 
problem in the best possible way. Generally should any knowledge about the problem 
be incorporated into the optimization method and/or the objective function in order to 
make it more efficient. In the following we will look at the problem of digital filter 
design to illuminate this. 

4.1   An Example: Digital Filter Design 

Digital Filter design is a field of signal processing where specialized numerical 
methods govern the field [61]. To perform a filter design in practice is generally a 
matter of seconds, once the correct specifications are available. In some cases, 
though, there may be applications that require unconventional designs which cannot 
be performed using the standard methods [7, 26]. This is where DE can be of help, but 
it must be kept in mind that the filter designer is used to short design times which is 
why DE’s convergence should be fast. It appears that the objective functions involved 
in digital filter design are non-deceiving, albeit multimodal. To illustrate this claim 
we look at the design task where a magnitude function A(Ω) has to fit into a tolerance 
scheme. An example for such a scheme is provided in Figure 17 which represents a 
so-called bandpass filter because only signal-portions with the normalized frequencies  
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Ω from the passband remain more or less unattenuated while the other portions get 
suppressed to a large degree. The equations needed to define A(Ω) are: 
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with 

1),2sin()2cos(2 −=Ω⋅+Ω== Ω jjez j πππ . (25) 

From Eq. (25) it is evident that for Ω=0 there must be z=1 and for Ω=0.5 there must 
be z=. Finally we define 
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(26) 

From Eq. (25) and Figure 17 it becomes clear that a range of Ω ∈ [0, 0.5] transforms 
itself into the upper semi-circle of the z-plane. It is typical for a digital filter that the 
poles zp(m) are located in the passband while the zeros z0(m) are located in the 
stopband. So already by defining the tolerance scheme the approximate locations of 
poles and zeros are known. In [26] the fact is utilized that if the parameters of the 
objective function are not the coefficients a(n) and b(m) but the zeros z0(n) and the 
poles zp(m) then applying jitter together with dither in the DE-variant DE/best/1/bin 
works extremely well. Reasonable values for the control variables are Cr=0.95 and 
Np = 2·D, …, 5·D. The mutation method used in [26] is described by Eq. (27) 
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The superscripts k on the random number randj(k)[0,1), k=1,2, in Eq. (27) shall 
denote that the numbers for k=1 and for k=2 are generated independently. Empirical 
evidence has shown that the positive effect of dither is small while jitter together with 
low values of Np is considerably speeding up convergence. These results come 
somewhat unexpected compared to the findings reported in [7] that jitter combined 
with DE/best/1/bin does not always perform well. The success of the described DE 
variant for this specific application is probably attributable to the benign nature of the 
objective functions, but more evidence needs to be gathered to corroborate this 
assumption.  

What can be learned from this example is the advice to not consider the findings about 
DE-variants obtained from a large testbed as being universally applicable. This is also in 
line with the NFL [10]. For a specific application it may be worthwhile to revisit certain 
variants of DE depending on the properties of the objective functions at hand.  

There are other potential possibilities to accelerate the convergence of DE-based 
digital filter design, one of which is using hybrid methods. In [62, 63, 64, 65] hybrid 
methods have already been used successfully. The basic idea usually is to refine one 
or more points from the DE-population by applying a fast-converging local search 
method like the Nelder and Mead optimization [20], dynamic hill climbing [66], or 
gradient type of algorithms [60, 67]. This refinement may take place for every  
DE-generation or after a certain amount of DE-generations. Gradient algorithms, 
however, are probably not appropriate since A(Ω) is not always differentiable. 

5   More Topics and Outlook 

The topics mentioned in the sections above are only some of many. Quite a few 
important topics have just been touched upon or not been discussed at all in order not 
to extend the chapter beyond a reasonable size. A few more important DE research 
topics are: 

• DE for multiple objectives and multiple constraints [68, 69, 70, 71, 72, 73] 
• DE for multiple global minima [58, 59, 60] 
• Stopping criteria [74] 
• Hybrid versions [62, 63, 64, 65, 66] 
• DE for various computational environments [7, 31, 75, 76, 77, 78, 79] 

The remaining chapters of this book will shed more light on many interesting 
topics of DE-research but are certainly unable to present a solution to all the questions 
raised in this chapter. So optimization with the help of DE remains a challenging and 
interesting research area for many years to come.  
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Eliminating Drift Bias from the Differential  
Evolution Algorithm 

Kenneth V. Price 

Summary. Differential evolution (DE) is an evolutionary algorithm designed for global nu-
merical optimization. This chapter presents a new, rotationally invariant DE algorithm that 
eliminates drift bias from its trial vector generating function by projecting randomly chosen 
vector differences along lines of recombination. In this way, the natural distribution of vector 
differences drives both mutation and recombination. The new method also eliminates drift bias 
from survivor selection, leaving recombination as the only migration pathway. A suite of scal-
able test functions benchmarks the performance of drift-free DE against that of the algorithm 
from which it was derived. 

1   Introduction 

It has been ten years since the first differential evolution (DE) algorithm was pub-
lished (Price and Storn 1997). Since then, DE has been applied to a multitude of op-
timization tasks, often with great success (Chap. 7, Price et al. 2005). Despite these 
successes, both theory and extended testing have exposed inadequacies in the “classic 
DE” algorithm (Storn and Price 1997; Price 1999). One of these deficiencies – the al-
gorithm’s rotation-dependent performance – was addressed in (Chap. 2, Price et al. 
2005), but other problems remain. In particular, DE’s generating and selection opera-
tors both exhibit drift bias. The goal of this chapter is to define drift bias, identify its 
sources and to empirically test the effectiveness of the modifications that eliminate it. 

For background, Sect. 2 describes both classic DE and a second, more recent algo-
rithm (DE/ran/1/either-or) that is comparatively unproven on real-world problems, but 
which the benchmark comparison in (Price et al. 2005) showed to be much more ef-
fective than classic DE on hard (rotated) benchmark problems. After discussing the 
drawbacks inherent in these previous methods, Sect. 3 identifies recombination as the 
source of drift bias in DE’s trial vector generating scheme, then Sect. 4 proposes a 
simple solution for eliminating it. Section 5 both computes the drift bias attributable 
to DE’s selection operator and shows how to eradicate it. Section 6 presents a drift-
free DE algorithm that incorporates the bias-free solutions described in Sects. 4 and 5. 
Section 7 not only describes the test bed and performance measures that benchmark 
both the new algorithm and its predecessor, but also presents and discusses test re-
sults. Section 8 offers guidelines for selecting the new algorithm’s control parameters, 
while Sect. 9 summarizes this study, presents conclusions and proposes topics for  
further research. 

2   Background 

Given an objective function f(x) of D, real-valued parameters xj = x, j = 1,2,…,D, DE 
attempts to find the vector x* at which f(x) attains its minimum (or maximum) value 
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over the D-dimensional space of real numbers ℜD. More specifically, the global 
minimization problem is 

( ) ( ) Dff ℜ∈∀≤∗∗ xxxx     :Find .                                   (1) 

Ordinarily, the search is restricted to S ⊂ ℜD and a solution is often considered sat-
isfactory if it lies some small distance from the (known) optimal vector x*, or if f(x) is 
greater than the (known) optimal value f(x*) by some small amount. 

Like many evolutionary algorithms (EAs), DE simultaneously explores ℜD at mul-
tiple points with a population of Np, real-valued vectors xi,g whose parameters are en-
coded as floating-point numbers. In addition to its population index i = 1,2,…,Np, 
each vector also carries a generation index g = 0,1,…,gmax. Ordinarily, the initial 
population (g = 0) is distributed over S with random uniformity. 

Although DE has relied on discrete crossover and arithmetic recombination, it has 
typically eschewed mutating vectors with deviations sampled from predefined prob-
ability distributions, choosing instead to alter them by differential mutation. Differen-
tial mutation creates a mutant vector vi,g by adding the scaled difference of two differ-
ent, but otherwise randomly chosen population vectors xr1,g and xr2,g to a third, distinct 
vector known as the base vector xb,g (Eq. 2 and Fig 1). 

( ) [ ] brrNpbrrF gxrgrgbgi ≠≠∈−⋅+= 21     ,,...,2,1,2,1     ,,2,1,, xxxv           (2) 

xr1,g

xb,g

vi,g xr2,g 

 

Fig. 1. Differential mutation. The randomly chosen vector difference xr1,g − xr2,g is scaled and 
added to the base vector xb,g to create a mutant vi,g that competes with xi,g (not shown). 

The base vector index b can be chosen in a variety of ways. In the “classic DE”  
algorithm described below, it is randomly selected. 

2.1   Classic DE 

As its name suggests, the DE/ran/1/bin algorithm (“classic DE”) pits each vector xi,g in 
the current population against a trial vector ui,g to whose composition it contributes 
through uniform crossover with a randomly (“/ran/”) chosen base vector xr1,g that has 
been mutated by the addition of a single (“/1/”) scaled and randomly chosen difference 
vector F⋅(xr2,g − xr3,g). The appellation “bin” refers to the fact that the number of  
parameters inherited by the trial vector ui,g from the mutant vector vi,g approximates a 
binomial distribution. During survivor selection, ui,g replaces xi,g if f(ui,g) ≤ f(xi,g); other-
wise, xi,g retains its place in the population. Figure 2 outlines the classic DE algorithm. 
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for (i = 1; i Np; i = i + 1)  //  Initialize population 
    for (j = 1; j D; j = j + 1) xj,i,g = xj

(lower) + Uj(0,1)·(xj
(upper) − xj

(lower));
end for 

    f(i) = f(xi,g);  //  Evaluate and store f(xi,g)
    end for 

for (g = 1; g gmax; g = g +1)  //  Generation loop 
for (i = 1; i Np; i = i + 1)  //  Generate a trial population 

jrandi = floor[Ui(0,1)·D] + 1;  //  Randomly select a parameter 
do r1=floor(U(0,1)i·Np)+1; while (r1 = i);  //  Select 3 distinct indices 
do r2=floor(U(0,1)i·Np)+1; while (r2 = i or r2 = r1); 
do r3=floor(U(0,1)i·Np)+1; while (r3 = i or r3 = r1 or r3 = r2); 

        for (j = 1; j D; j = j + 1)  //  Generate a trial vector 
                 if (Uj(0,1) Cr or j = jrandi) uj,i,g = vj,i,g = xj,r1,g + F·(xj,r2,g − xj,r3,g); 

    else uj,i,g = xj,i,g;
        end for 

end for 
for (i = 1; i Np; i = i + 1)  //  Select new population 
    if f(ui,g) f(xi,g)  //  Evaluate trial vector and compare with target vector 

        { 
   for (j = 1; j Np; j = j + 1) xj,i,g = uj,i,g;  // Replace inferior target 

 end for 
    f(i) = f(ui,g); 

        }  
end for 

end for  //  End 
 

Fig. 2. Pseudo-code for classic DE (DE/ran/1/bin). Input Np  ≥  4, F∈ (0,1+) and Cr∈ [0,1]. 
Try Np ≥ 4D, F = 0.7 and Cr = 0.9 initially. Also, F = 1 works well for many multimodal  
problems. 

The scale factor F ∈ (0,1+) controls the mutation step size and, as a consequence, 
the population’s convergence speed. The control variable Cr ∈ [0,1] is a probability 
that mediates crossover by determining the average number of parameters that the 
trial vector ui,g inherits from the mutant vector vi,g. The function Uj(0,1) is a random 
number generator that returns a uniformly distributed value in the range [0,1). The 
subscript j indicates that the random number generator is sampled anew for each pa-
rameter. The values xj

(upper) and xj
(lower) are the initial upper and lower parameter 

bounds, respectively, for the jth parameter. The base vector index r1 and both differ-
ence vector indices, r2 and r3, are different but otherwise randomly chosen popula-
tion indices each of which also differs from the target vector index i. To prevent ui,g 
from duplicating the target vector with which it will be compared, the trial vector al-
ways inherits the parameter with the randomly chosen index jrandi from vi,g. Its sub-
script i indicates that jrandi is generated anew for each vector. Figure 3 illustrates the 
trial vector generating process. 



36 K.V. Price 

xr1,g 

xr2,g

vi,g 
u 

u 

u 

xr3,g 

x2 

xi,g 
x1  

Fig. 3. The scaled difference of two randomly chosen vectors is added to the randomly selected 
base vector xr1,g to produce a mutant vi,g that is then uniformly crossed with the target vector 
xi,g. In this example, there are three possible trial vectors labeled “u”. When Cr =1, u = vi,g. 

The algorithm halts when termination criteria are met. In this study, trials were 
terminated either after reaching a preset number of generations, or once the objective 
function value of the best vector in the population was greater than the known  
minimum by less than a preset tolerance (see Sect. 7). 

2.2   Decomposability and the Role of Cr 

As long as Cr < 1, classic DE’s performance will depend on the orientation of the  
coordinate system in which vectors are represented. As Fig. 4 illustrates, uniform 
crossover with Cr < 1 generates trial vectors whose positions change as the coordinate 
system rotates. If the coordinate axes and the function’s principal axes are unfavora-
bly aligned, e.g., if the optima of a multimodal function lie on coordinate diagonals, 
then classic DE may fail when Cr < 1 (Salomon 1996; Price 1999). 

Only when Cr = 1 does classic DE’s performance become invariant under a coordi-
nate system rotation. This is because setting Cr = 1 transforms classic DE’s generating 
 

xr3,g 

vi,g u 

u 

u' 

x'1 

x2

u' 

u 

x'2 

x1  

Fig. 4. Rotating the coordinate system relocates some trial vectors, but the position of the  
mutant trial vector u = vi,g is rotationally invariant (Cr = 1) 
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equation into a purely vector relationship that eliminates uniform crossover with the tar-
get vector and equates the trial vector with the differentially mutated base vector 

( ). 321,, rrrgigi F xxxvu −⋅+==                                    (3) 

Since it preserves real vector inner products like the Euclidean distance (Hassani 
1999), an orthogonal rotation affects neither the position of one vector with respect to 
another, nor the vector differences on which differential mutation is based. Rotation 
also leaves unchanged the position of the vector population with respect to objective 
function’s contours. Consequently, a coordinate system rotation does not affect clas-
sic DE’s performance when Cr = 1 because it does not affect the placement of trial 
vectors with respect to the objective function’s contours. 

Without crossover, however, the classic DE algorithm performs poorly on multi-
modal functions (Chap. 3, Price et al. 2005). The next sub-section presents a rotation-
ally invariant algorithm that replaces uniform crossover with three-vector arithmetic 
recombination.  

2.3   The DE/ran/1/either-or Algorithm 

The goal when designing the DE/ran/1/either-or algorithm (Price et al. 2005) was to 
make DE’s performance rotationally invariant while also providing a way to recom-
bine vectors. The DE/ran/1/either-or algorithm assumes that trial vectors are normal-
ized linear combinations of three randomly chosen vectors (two vectors are not 
enough to create a mutant and four vectors are more than is necessary). Normalizing 
the linear combination eliminates scale bias from the generating equation. For exam-
ple, if the trial vector ui,g is a linear combination of only one randomly chosen vector, 
then 

grgi a ,11, xu ⋅= ,                                                      (4) 

where a1 is real-valued. Unless a1 = 1, ui,g will be subject to a scale bias that will  
either consistently enlarge (a1 > 1) or shrink (a1 < 1) trial vectors. In this case, nor-
malization, i.e., a1 = 1, transforms Eq. 4 into a cloning operation that has no search 
capability. 

Adding a second randomly selected vector to the combination and normalizing 
leads to the familiar equation for two-vector arithmetic recombination, also known as 
line recombination. 
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Two-vector arithmetic recombination places trial vectors along the line joining xr1,g 
and xr2,g at a point determined by the coefficient of combination a2. 

Vector differences like the one in the last line of Eq. 5 are recombination differen-
tials because the base vector – in this case xr1,g – also appears in the difference term. 
By contrast, mutation differentials are vector differences that do not contain the base 
vector. Since the base vector and both difference vectors must be distinct, differential 
mutation requires three vectors. 

After normalization, a linear combination of three randomly chosen vectors is 

( ) ( ).,1,33,1,22,1, grgrgrgrgrgi aa xxxxxu −⋅+−⋅+=                          (6) 

Written this way, a2 and a3 each control a two-vector arithmetic recombination opera-
tion, i.e., both difference terms contain the base vector (Fig. 5). 

xr2,g

ui,g 
a3 

a2 

xr3,g

xr1,g 

 

Fig. 5. In this decomposition, the trial vector’s “coordinates” are measured from the base vector 
xr1,g along the two (two-vector arithmetic) recombination differentials. 

With a change of variables, however, 
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the same combination also can be written as: 

                     ( ) ( )grgrgrgrgrgrgi KF ,1,3,2,3,2,1, 2xxxxxxu −+⋅+−⋅+=         (8) 

This change of variables splits the normalized, three-vector linear combination into 
separate mutation and recombination components that can be independently con-
trolled (Fig. 6). This decomposition also illustrates that three-vector arithmetic  
recombination is the natural counterpart to (three-vector) differential mutation. 

In Fig. 6, F ≠ 0 and K ≠ 0, so both recombination and mutation play a role creating 
the trial vector. When mutation and recombination are simultaneously applied, the 
value chosen for F usually affects the best value for K and vice versa. Since F and K 
control distinctly different operations, any dependence between them should be 
minimized. To reduce control parameter dependence between F and K and because of 
empirical evidence supporting the approach, the DE/ran/1/either-or algorithm creates 
trial vectors that are either mutants or three-vector recombinants (Fig. 7).  
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xr2,g F 

K 

xr3,g

ui,g 
xr1,g 

 

Fig. 6. The trial vector’s location can also be decomposed into recombination and mutation 
components. Positive values for K are measured from the base vector xr1,g along the medial line 
that passes midway between xr2,g and xr3,g. Positive values for F are measured from the base 
vector in the direction xr2,g – xr3,g. In this scheme, trial vectors can be located anywhere in the 
plane defined by the mutation and recombination differentials. 

xr2,g 

xr3,g 

ui,g = wi,g 

xr1,g 

ui,g = vi,g 
 

Fig 7. In the DE/ran/1/either-or algorithm, trial vectors are either mutants vi,g or three-vector 
arithmetic recombinants wi,g. In contrast to Fig. 6, trial vectors are restricted to the mutation and 
recombination axes. 

Equation 9 shows how the mutation probability pF determines whether the target 
vector competes against a mutant vi,g or a three-vector arithmetic recombinant wi,g. 
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2.4   A Rationale for Redesign 

Despite outperforming classic DE on rotated benchmark functions (Chap. 3, Price et 
al. 2005), the DE/ran/1/either-or algorithm retains old problems and introduces new 
ones. In particular, the addition of pF increases the number of control variables to four 
(Np, F, K, pF). To compensate, (Price et al. 2005) suggested a default relation linking 
F and K (i.e., K = 0.5·(F + 1)), but this approach surrenders independent control over 
mutation and recombination. Furthermore, both pF and K control recombination and 
this duplication of effort creates its own control parameter dependence: the choice of 
pF affects the best value for K and vice versa. Finally, holding K constant introduces 
drift bias into the trial vector generating process. The next section explores this last 
problem in more detail before the subsequent section presents a simple solution that 
not only eradicates drift bias from the DE/ran/1/either-or algorithm’s trial vector gen-
erating scheme, but also reduces the number of control variables from four to three by 
eliminating K. 

3   Drift Bias in DE’s Generating Function 

DE’s generating function exhibits a bias whenever the vector differences that perturb 
the base vector are not center-symmetrically distributed. In a center-symmetric distri-
bution, every vector difference ∆x has an oppositely directed counterpart of equal 
magnitude and probability, i.e., p(∆x) = p(−∆x). For example, the Gaussian and 
Cauchy mutation distributions that drive the Evolution Strategies (Schwefel 1995) 
and Fast Evolution Strategies (Yao and Liu 1997) algorithms, respectively, character-
istically generate center-symmetric ellipsoidal surfaces of constant probability. Any 
line that passes through the ellipsoid’s center intersects two points on its surface that 
are equally probable and equidistant from the center, i.e., center-symmetric counter-
parts are related by a reflection through the ellipsoid’s center (Fig. 8). 

A 

A' 
 

Fig. 8. The points A and A' are center-symmetric 

A distribution’s center-symmetry more reliably indicates that it is free of bias than 
does its expected value because there are zero-mean distributions that are not center-
symmetric (e.g., Fig. 9) and also center-symmetric distributions (e.g., Cauchy) whose 
expectations do not converge. When it does converge, however, a distribution’s ex-
pected (vector) value quantifies both the direction and the magnitude of its long-term 
drift bias. 
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A

A'

C 

p = 1/3 

p = 1/9 

p = 1/3 

p = 1/3 

= 0 

p = 1/3 

 

Fig. 9. The distribution depicted in the top left diagram contains three, equally probable vectors 
of equal magnitude that are oriented 120° apart. Its expected value is the sum of the probability-
weighted vectors (bottom left). Even though its expectation is null, the distribution is not cen-
ter-symmetric. As the diagram on the right shows, reaching point A from point C takes only 
one move sampled from this distribution, but to reach A’s center-reflected point A' takes two 
moves, each of which has a probability 1/3, so in this case,  p(∆x)/3 = p(−∆x). Thus, this distri-
bution suffers a short-term directional bias. 

In lieu of a reason for biasing a search, a “black box” optimizer like DE should be 
drift-free so that optimization is driven by a response to the objective function and not 
by artifacts of the search process. The goals, therefore, of this section are to compute 
the expectations of the DE/ran/1/either-or algorithm’s generating distributions and to 
transform those that exhibit drift bias into unbiased, center-symmetric ones. The next 
two subsections prove that while the mutation distribution is center-symmetric and 
has a null expectation, the distribution of three-vector arithmetic recombination  
differentials is asymmetrical and biased toward the population’s centroid. 

3.1   The Mutation Distribution M 

Mutation differentials are drawn from the current distribution of vector differences, 
which also includes both null differentials and two-vector recombination differentials. 
More specifically, let M be defined as the matrix whose Np2 elements, mk,l, comprise 
the current generation of vector differences xk,g − xl,g, k,l = 1,2,…,Np. 
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M is a skew-symmetric matrix because  mk,l = (xk,g − xl,g) =  − (xl,g − xk,g) = − ml,,k. 
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Since xk,g − xk,g = 0 =  (0,0,…,0), the differentials that comprise the leading diago-
nal are null vectors, i.e., mk,k  =  0. The remaining Np2 − Np non-zero differentials can 
be partitioned into a set M(χ2) that contains 2(Np − 1) two-vector recombination dif-
ferentials and a set M(μ) that contains Np2 − 3Np + 2 mutation differentials. The two-
vector recombination differentials occupy row b and column b in M, where b is the 
index of the base vector. Using μ and χ2 to denote, respectively, mutation and two-
vector recombination, Eq. 12 shows the operation that each element of M performs 
for the case Np = 4 and b = 3. 
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When opting for mutation, the combination k = l is forbidden so that trial vectors 
do not simply clone the base vector by adding a null vector to it. Similarly, forbidding 
the combinations k = b and l = b prevents mutation from degenerating into two-vector 
recombination. The otherwise random selection of the remaining vector index combi-
nations ensures that all mutation differentials are chosen with the same probability 
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Substituting the appropriate values of pk,l into the general expression for a distribu-
tion’s expectation eliminates the leading diagonal terms as well as the two-vector re-
combination differentials in column b and row b (Eq. 14). Because the remaining 
(mutation) differentials are equally probable, the expected vector value E(F·M(μ)) of 
their scaled distribution reduces to a simple average, i.e., the sum of all F·mk,l, k ≠ l, k 
≠ b, l ≠ b divided by Np2 – 3Np + 2.  

( )

( )

.
23

 

000
23

 

2

,
1

,
1

,

1 1
,,,2

,
1

,
1

,

1 1
,,

)(

+−

⋅

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅+⋅+⋅⋅+
+−

⋅

=

⋅⋅=⋅

∑ ∑

∑ ∑
∑ ∑

∑∑

≠
=

≠
=

≠
= =

≠
=

≠
=

= =

NpNp

F

F
NpNp

F

FpF

Np

bkl
l

Np

blk
k

lk

Np

bk
k

Np

k
kkkbbk

Np

bkl
l

Np

blk
k

lk

Np

l

Np

k
lklk

m

mmm

m

mME μ

    (14) 



 Eliminating Drift Bias from the Differential Evolution Algorithm 43 

By pairing each element in M(μ) with its additive inverse, Eq. 15 rewrites the sum of 
the Np2 − 3Np + 2 mutation differentials as a sum of (Np2 − 3Np + 2)/2 null vectors. 
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Since the sum of the vectors in M(μ) is null, the expectation for the distribution of mu-
tation differentials is also null.  
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Simply put, its skew-symmetry ensures that M(μ) is both center-symmetric and free of 
drift bias when mutation differentials are randomly chosen. 

Like the elements of M(μ), the elements of M(χ2) also sum to zero because every 
element in row b can be paired with its additive inverse in column b, i.e., if mk,b is a 
two-vector recombination differential, then so is mb,k = − mk,b. Two-vector recombi-
nation differentials also appear as degenerate combinations in the matrix of three-
vector recombination differentials, but without their additive inverses. 

3.2   The Three-Vector Recombination Distribution R 

The matrix of three-vector recombination differentials R consists of Np2 elements rk,l 
= xk,g + xl,g − 2·xb,g, where b∈ [1,2,…,Np] is the base vector index, g is the current 
generation and k,l = 0,1,…,Np. 
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Unlike M, which is skew-symmetric, R is symmetric because rk,l  =  (xk,g + xl,g − 
2·xb,g)  =  (xl,g + xk,g − 2·xb,g)  =  rl,k. 
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R contains a single null vector rb,b = 0 corresponding to the case k = l = b. The re-
maining Np2 − 1 non-zero differentials can be partitioned into a set R(χ2) that contains 
3(Np − 1) two-vector recombination differentials and a set R(χ3) consisting of  
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Np2 − 3Np + 2 three-vector recombination differentials. The two-vector recombina-
tion differentials occupy column b, row b and the leading diagonal of R and respec-
tively correspond to the degenerate combinations: k = b, l = b and k = l. Denoting 
two- and three-vector recombination by χ2 and χ3, respectively, Eq. 19 shows which 
operation each element of R performs for the case Np = 4 and b = 3. 
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Transposing xk,g and xl,g does not change the sign of the recombination differential 
because rk,l forms their sum, not their difference. Consequently, R does not contain 
the additive inverse for any (non-zero) element, so randomly sampling the permitted 
combinations of k and l does not automatically generate an unbiased distribution as it 
does for M(μ). 

The expected value of R(χ3), which reveals both the magnitude and the direction of 
its drift bias, must exclude the combinations k = l, k = b and l = b so that null and two-
vector recombination differentials are not counted. The otherwise random selection of 
the remaining vector index combinations ensures that all three-vector recombination 
differentials are chosen with the same probability 
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Substituting the appropriate values of pk,l into the general expression for a distribu-
tion’s expectation eliminates the null element rk,k as well as the two-vector recombi-
nation differentials in column b, row b and on the leading diagonal. Because the  
remaining three-vector recombination differentials are equally probable, the expected 
vector value E(K·R(χ3)) reduces to a simple average, i.e., the sum of all K·rk,l, k ≠ l, k ≠ 
b, l ≠ b divided by Np2 – 3Np + 2. 
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To compute the sum of the elements in R(χ3), Eq. 22 subtracts all two-vector re-
combination differentials from the sum of the elements in R. 
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Equation 22 adds the term 2rb,b because otherwise, the element rb,b is counted three 
times in the rightmost summation  – once as an element of column b, once as an ele-
ment of row b and once as an element of the leading diagonal. Even so, rb,b contrib-
utes nothing to the sum because it is null. Since R is symmetric, the rightmost  
summation can be further simplified by replacing (rk,b + rb,k)  with 2rk,b. 

To compute the sum of the elements of R, Eq. 23 treats the base vector as a con-
stant that can be extracted from the double sum and multiplied by Np2. Similarly, xl,g 
can be extracted from the innermost summation over k and multiplied by Np. Next, 
the sum of all vectors in the population is replaced by Np·<x>g, where <x>g is the 
mean population vector, i.e., its centroid in generation g. 

( )

( )

( )

( ).2

2

2

2

2

2

2

,
2

22
,

2

1
,

2
,

2

1
,,

2

1 1
,,,

2

1 1
,,,

2

1 1
,,,

1 1
,

gbg

gggb

Np

l
glggb

Np

l
gglgb

Np

l

Np

k
gkglgb

Np

l

Np

k
glgkgb

Np

l

Np

k
gbglgk

Np

l

Np

k
lk

Np

NpNpNp

NpNpNp

NpNpNp

NpNp

Np

xx

xxx

xxx

xxx

xxx

xxx

xxxr

−⋅=

⋅+⋅+⋅−=

⋅⋅+⋅+⋅−=

⋅+⋅+⋅−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⋅+⋅−=

++⋅−=

−+=

∑

∑

∑ ∑

∑∑

∑∑∑∑

=

=

= =

= =

= == =

                        (23) 



46 K.V. Price 

The second term in Eq. 22 sums the contribution from all two-vector recombina-
tion differentials in R.  Substituting population vectors for recombination differentials 
and combining terms yields: 
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Combining the results of Eq. 23 and Eq. 24 gives the sum of the elements in R(χ3). 
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Plugging this value into the expression for the expected value of the three-vector 
recombination distribution shows that there is a residual bias in R(χ3) that points to-
ward or away from the current population centroid depending on the sign of K. 
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Dividing both the numerator and denominator by Np2 shows that the expected 
value of the three vector recombination distribution approaches 2K·(<x>g − xb,g) in the 
limit of large Np. 
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Equation 27 indicates that when K (≠0) is held constant, setting xb,g = <x>g gener-
ates a distribution of recombinant trial vectors that has a null expectation. Despite 
having a null expectation, the recombinant distribution generated by the equation wi,g 
= <x>g + K·(xk,g + xl,g – 2<x>g) is not center-symmetric. Like the vectors depicted in 
Fig. 9, differentials in this centroid-centric distribution radiate outward from the  
center, but not necessarily in the opposite direction. 

To be center-symmetric, the distribution of recombinant trial vectors must contain 
an equally probable additive inverse for each recombination differential. Since the 
additive inverse of K·(xk,g + xl,g − 2·xb,g) is −K·(xk,g + xl,g − 2·xb,g), sampling K from 
any distribution that is symmetric about zero ensures that each recombination differ-
ential can be paired with an equally probable and oppositely directed counterpart of 
the same magnitude. For example, K could be drawn from the bimodal distribution in 
which +K and –K are equally likely possibilities, or from a Cauchy distribution cen-
tered on zero. The next section shows how to harness the vector differences that drive 
mutation to distribute K symmetrically and transform K·R(χ3) into a center-symmetric 
distribution with a null expectation. 

4   Naturally Distributed K 

Just as adding a mutation differential to the base vector locates a mutant, projecting 
mk,l onto rm,n can locate a recombinant (Fig. 10). In this scheme, K is the ratio of the 
length of the projected mutation differential to the length of rm,n. More specifically, K 
is the inner (dot) product of mk,l and rm,n divided by the squared length of the recom-
bination differential (Eq. 28). Population indices k, l, m, and n are randomly chosen 
except that  k ≠ l, k ≠ b, l ≠ b and m ≠ n, m ≠ b,  n ≠ b. 
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Fig. 10. The recombinant trial vector wi,g is located along rm,n at a distance from the base vector 
equal to √D (√2 in this two-dimensional case) times the projection of the mutation differential 
mk,l onto rm,n 
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The factor √D compensates for the dimension-dependent foreshortening that occurs 
when vectors are projected. For example, the length of the component that a diagonal 
unit vector projects onto orthogonal coordinate axes is 1/√D, so multiplying projected 
differentials by √D ensures that recombination does not degenerate into a local search 
for large D. 

In Eq. 29, pk,l,m,n is the probability that mk,l will be projected onto rm,n. Since there 
are Np2 – 3Np + 2 equally probable elements of M(μ) and just as many equally proba-
bly elements in R(χ3), there are (Np2 – 3Np + 2)2 equally probable ways to combine 
them, so the probability that any particular combination of mutation and recombina-
tion differentials is chosen is 1/(Np2 − 3Np + 2)2. 
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Substituting the appropriate value for pk,l,m,n into the general expression for a distribu-
tion’s expectation gives the expected value of the projected three-vector recombina-
tion distribution E(Kk,l,m,n·R

(χ3)) (Eq.30). To save space, Eq. 30 does not enumerate 
impossible degenerate combinations (pk,l,m,n = 0). 
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The components that a mutation differential and its inverse project along any line 
of recombination are equal in magnitude and probability, but oppositely directed. 
Equation 31 exploits this symmetry by reordering the lower limit of the inner summa-
tion so that additive inverse pairs cancel. Like the mutation distribution from which it 
is derived, the distribution of projected recombination differentials has a null expecta-
tion and is free of drift bias. 
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In the projection method, rm,n determines the direction of the recombination differ-
ential, while the un-scaled mutation differential mk,l determines its length. Projecting 
the scaled mutation differential F·mk,l onto the medial line would, like the default 
equation linking F with K in the DE/ran/1/either-or algorithm, make recombination 
dependent on the mutation control parameter F. 

In summary, the projection method unifies DE’s approach to mutation and recom-
bination by driving both operations with randomly sampled vector differences. Pro-
jecting un-scaled mutation differentials along medial lines not only frees the 
DE/ran/1/either-or algorithm’s trial vector generating scheme from drift bias, it also 
eliminates the control variable K so that recombination’s effect on the population can 
be independently controlled with a single variable pF. Because F plays a secondary 
role as a control variable in the algorithm being developed here, the text that follows 
replaces pF with pμ to denote the probability of generating a mutant. 
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5   Drift Bias in Survivor Selection 

Naturally distributing K restores a neutral bias to DE’s trial vector generating func-
tion, but selection introduces its own drift bias because the potential trial vector dis-
tribution – although center-symmetric about the base vector – is not center-symmetric 
about the target vector. The move that occurs when a trial vector replaces a target vec-
tor defines a difference vector, ui,g − xi,g, that points from the target vector to the trial 
vector. The vector differences that are defined by a target vector and its potential ad-
versaries comprise a set of selection differentials S. Computing the expectation of the 
distribution of selection differentials reveals any drift bias in survivor selection. 

Selection differentials can be partitioned into a set S(μ) that contains the Np3 − 3Np2 
+ 2Np selection differentials that point from the target vector to all possible mutants 
and a set S(χ3) of Np·(Np2 − 3Np + 2)2 selection differentials that point from the target 
vector to all possible three-vector recombinants generated by projection. 
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The probability that a trial vector will come from S(μ) is pμ (= pF) and the probabil-
ity that it will come from S(χ3) is 1 − pμ, so the expectation for the full distribution of 
selection differentials is 
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5.1   Computing E(S(μ)) 

If the target vector is included as a possible base vector, then there will be Np3 − 3Np2 
+ 2Np possible mutants with which it can compete because each of the Np2 − 3Np + 2 
mutation differentials in M(μ) can be paired with one of Np possible base vectors. If 
both the mutation differential and the base vector are randomly chosen except l ≠ k, l 
≠ b and k ≠ b, then all elements in S(μ) have the same probability 
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Substituting the appropriate values of pk,l,b into the general expression for a distribu-
tion’s expectation eliminates those selection differentials that point from the target 
vector to null elements and to two-vector recombination differentials. Because the 
remaining selection differentials in S(μ) are equally probable, the expected vector 
value E(S(μ)) of their distribution reduces to a simple average, i.e., the sum of all sk,l,b, 
k ≠ l, k ≠ b, l ≠ b divided by Np3 – 3Np2 + 2Np. To save space, Eq. 36 does not list the 
null contributions from degenerate combinations. 
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In Eq. 37, the target vector xi,g is a constant that can be extracted from the summations 
because its net contribution of Np3 − 3Np2 + 2Np terms is ultimately divided by Np3 − 
3Np2 + 2Np. Similarly, the base vector is a constant within the inner two summations 
and the constant Np can be factored out of the triple sum altogether. The inner double 
sum is just the expected value of F·M(μ) which Eq. 16 showed to be 0. In the final 
step, averaging over all base vectors shows that the expected value of the S(μ) is the 
vector that points from the target vector to the population centroid. 
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Simply put, each element of S(μ) is the sum of two components (Fig. 11). One com-
ponent points from the target vector to a base vector, while the other points from that 
base vector to one of its mutants. Because the displacements from the base vector to 
center-symmetric pairs of its mutants cancel, the average of the selection differentials 
that point to mutants around a given base vector is just the vector that points from the 
target to that base vector. Furthermore, the average of the Np differentials that point 
from the target to all base vectors (including the target) is the vector that points from 
the target to the population’s centroid, i.e., <x>g − xi,g. As the next subsection shows, 
averaging all selection differentials to center-symmetrical pairs of recombinants also 
leaves a residual drift bias equal to <x>g − xi,g . 
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xi,g 
xb,g 

u'

u
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S' 

(S+S')/2 

S+S' 

S' 

 

Fig. 11. Because selection differentials S and S' point to a center-symmetric pair of trial vectors 
u and u', respectively, their components pointing from the base vector cancel, so their average 
is the vector that points from the target vector to the base vector, i.e., (S + S')/2 = xb,g – xi,g 

5.2   Computing E(S(χ3)) 

Each of the Np2 – 3Np + 2 mutation differentials mk,l can be projected onto any one of 
as many recombination differentials and each of these combined with one of Np pos-
sible base vectors. If xb,g, mk,l and rm,n are randomly chosen except that k ≠ l,  k ≠ b, l 
≠ b and m ≠ n,  m ≠ b, n ≠ b, then all elements in S(χ3) have the same probability  
 

( )⎪
⎩

⎪
⎨

⎧

+−⋅

=∨=∨=∨=∨=∨=
= otherwise.  

23

1

  if  0

22
,,,,

NpNpNp

bnbmnmblbklk

p bnmlk               (38) 

 

Substituting the appropriate values of pk,l,m,n,b into the general expression for a distri-
bution’s expectation eliminates those selection differentials that point from the target 
vector to both the null element and the two-vector recombination differentials. Be-
cause the remaining selection differentials in S(χ3) are equally probable, the expected 
vector value E(S(χ3)) of their distribution reduces to a simple average, i.e., the sum of 
all sk,l,m,n,b, k ≠ l, k ≠ b, l ≠ b, m ≠ n, m ≠ b, n ≠ b, divided by Np·(Np2 – 3Np + 2)2. For 
simplicity, Eq. 39 does not enumerate the components of E(S(χ3)) corresponding to the 
forbidden combinations that do not contribute to the expected value. 
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Once again, the target vector xi,g is a constant that can be extracted from the summa-
tions because its net contribution of Np·(Np 2 − 3Np + 2)2 terms is divided by the same 
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amount (Eq. 40). Similarly, the base vector is a constant within the inner four summa-
tions and the constant Np can be factored out of the quintuple sum altogether. The in-
ner quadruple sum is now just the expected value of Kk,l,m,n·R(χ3) which Eq. 31 showed 
to be 0. In the final step, averaging over all base vectors shows that, like E(S(μ)), the 
expected value of S(χ3) is the vector that points from the target vector to the popula-
tion’s centroid. 
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5.3   Computing E(S) 

The elements of S(μ) are chosen with probability pμ, while those from S(χ3) are chosen 
with probability 1 − pμ, so the expected value for the full distribution of selection  
differentials is  
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Because E(S(χ3)) and E(S(μ)) are equal, E(S) is independent of pμ. 

5.4   Drift-Free Selection 

If base vectors could be center-symmetrically distributed about each target vector, 
then there would be no drift bias due to survivor selection, but if only population  
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vectors can serve as base vectors, then this will not be possible since the same popula-
tion (of base vectors) would need to be center-symmetrically distributed around Np 
different centers (target vectors). If, however, each target vector serves as its own 
base vector, drift bias will be eliminated because trial vectors will be center-
symmetrically distributed about the target vector. For example, if xi,g is substituted for 
xb,g in the last line of Eq. 41, then the sum divided by Np yields xi,g, not <x>g, so the 
expected value becomes null. With the target vector as the center of the trial vector 
distribution, S(μ) = F·M(μ) and S(χ3) = Kk,l,m,n·R(χ3), i.e., the selection differentials be-
come identical to either mutation or three-vector recombination differentials. Since 
both generating distributions are center-symmetrical, so too are the corresponding  
selection distributions. 

By centering the trial vector distribution on the target vector, drift-free DE’s selec-
tion operator improves the population without homogenizing it. For example, when 
both three-vector arithmetic recombination and differential mutation are turned off 
(i.e., when pμ = 1 and F = 0), the DE/ran/1/either-or algorithm’s selection operator 
compares the target vector’s objective function value to that of a randomly selected 
base vector xr1,g. After what is known as the takeover time, selection operating alone 
will have filled the population with Np copies of the best vector, i.e., the population 
will have become homogenous through the action of selection alone (Price and Rönk-
könen 2006). Under the same circumstances (pμ = 1, F = 0), drift-free DE pits the  
target vector against itself, so the population’s composition never changes. Without 
selection’s constant background rate of homogenization, only pμ controls the rate at 
which the population coalesces. 

6   Drift-Free DE 

Modifying the DE/ran/1/either-or algorithm to be drift free is straightforward. If 
Ui(0,1) ≤ pμ, then mutation adds F·mr1,r2 to the target vector; otherwise, recombina-
tion adds the dimension-compensated component of mr1,r2 that points along rr3,r4. 
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Population indices r1, r2, r3 and r4 are randomly selected except that r1 ≠ r2, r1 ≠ i, 
r2 ≠ i and r3 ≠ r4, r3 ≠ i, r4 ≠ i. 

If er3,r4 is defined as the normalized version of the recombination differential rr3,r4, 
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and the drift-free DE generating function can be more compactly written as 
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This formulation emphasizes that in the projection method, recombination only de-
termines the direction in which the recombinant is placed. When combined with  
selection, the complete description for the drift-free DE algorithm becomes: 
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Figure 12 presents pseudo-code for a drift-free DE algorithm that terminates when 
reaching a preset maximum number of generations, but other halting criteria are  
possible. 

In drift-free DE, each operation has a unique function: mutation explores, recom-
bination homogenizes and selection improves. The drift-free DE algorithm achieves 
this goal with very few assumptions. In particular, the algorithm assumes that trial 
vectors are three-vector linear combinations, since three vectors are needed to imple-
ment differential mutation and four are more than is necessary. One of the vectors 
must be the target vector to eliminate selection drift bias and combinations are  
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    for (i = 1; i Np; i = i + 1)  // Initialize the population 
for (j = 1; j D; j = j + 1) xi,j,0 = xj

(lower) + U(0,1)j· (xj
(upper) – xj

(lower)); 
    end for 
    f(i) = f(xi,0);  // Evaluate and save f(xi)

    end for 

    for (g = 1; g gmax; g = g + 1)  //  Begin generation loop 
        for (i = 1; i Np; i = i + 1)  //  Generate Np trial vectors 

do r1 = floor(Np·U(0,1)) + 1; while (r1 = i); 
do r2 = floor(Np·U(0,1)) + 1; while (r2 = i or r2 = r1); 
if (U(0,1)i p )  // Mutate… 

        { 
            for (j = 1; j D; j = j + 1) uj,i,g = xj,i,g + F·(xj,r1,g – xj,r2,g); 
            end for;
        } 

else  //  …or recombine 
        { 
            do  //  Compute inner product and K
                do r3 = floor(Np·U(0,1)i) + 1; while (r3 = i); 
                do r4 = floor(Np·U(0,1)i) + 1; while (r4 = i or r4 = r3); 
                sum1 = 0; sum2 = 0; 
                for (j = 1; j D; j = j + 1) 
                    d1 = xj,r1,g – xj,r2,g;
                    d2 = xj,r3,g + xj,r4,g – 2xj,i,g;
                    sum1 = sum1 + d1*d2; 
                    sum2 = sum2 + d2*d2; 
                end for 
            while  (sum2 = 0); //  If  ||xr3,g + xr4,g – 2xi,g||

2 = 0, reselect r3 and r4
            K = sum1/sum2; 
            for (j = 1; j D; j = j + 1) uj,i,g = xj,i,g + K· (xj,r3,g + xj,r4,g – 2xj,i,g); 
            end for 
        } 

        end for 
        for (i = 1; i Np; i = i +1)  //  Select new population 

if (f(ui,g) f(i)  //  Evaluate the trial vector and compare with target value 
        { 
            for (j = 1; j Np; j = j + 1) xj,i,g = uj,i,g;  // Replace inferior target 
            end for 
            f(i) = f(ui,g);  //  Store trial vector function value 
        }  
    end for 

    end for  //  End
 

Fig. 12. Pseudo-code for the drift-free DE algorithm 
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normalized to eliminate scale bias. Any linear combination of the target and two ran-
domly chosen vectors can be decomposed into complimentary differential mutation 
and three-vector recombination operations, controlled by F and K respectively, which 
are interleaved with probability pμ to minimize control parameter interaction. Unless 
K is distributed center-symmetrically about zero, the recombination operator will be 
biased, but projecting randomly selected, un-scaled mutation differentials onto ran-
domly chosen (medial) lines of recombination eliminates both drift bias from the trial 
vector generating distribution and K as a control variable. With the aid of a test bed of 
scalable benchmark functions, the following section compares the algorithmic  
performance of drift-free DE to that of the DE/ran/1/either-or algorithm. 

7   Benchmarking Performance 

The comparison in (Chap. 3, Price et al. 2005) found classic DE to be faster and more 
reliable than DE/ran/1/either-or when optimizing separable functions, but less effec-
tive than DE/ran/1/either-or when the objective function was both non-separable and 
multi-modal. This section compares the algorithmic performance of drift-free DE to 
that of the DE/ran/1/either-or algorithm. There are only two aspects in which the 
DE/ran/1/either-or algorithm and the drift-free DE algorithm listed in Fig. 12 differ. 
In the DE/ran/1/either-or algorithm, K is a constant and the base vector is randomly 
chosen (except for being distinct from both difference vectors and the target vector), 
while in drift-free DE, K is a distributed value and the base vector is the target vector. 
For the DE/ran/1/either-or algorithm, K = 1/3 for all experiments in this study – a set-
ting that mimics a contraction operation in a 2-dimensional Nelder–Mead algorithm 
(Nelder and Mead 1965). 

All trials were run with F = 1 not only to keep the number of control variable com-
binations manageable, but also because preliminary experiments indicated that F = 1 
is effective on multimodal functions. Since K is either preset (K = 1/3) or determined 
by projection, the DE algorithms being tested here are particularly simple since their 
evolution only depends on two variables: Np and pμ. The test bed chosen to bench-
mark performance consists of fourteen scalable objective functions. 

7.1   The Test Bed: Scalable Benchmark Functions 

Because their dimension is variable, the scalable functions in this test bed can bench-
mark how an algorithm and its control parameters depend on problem size. Of the 
fourteen benchmark functions, twelve are multimodal and two are unimodal.  
Although some functions in this test bed are separable, no attempt has been made to 
exploit this special knowledge (e.g., by modifying only one target parameter per 
evaluation as is possible in classic DE when Cr = 0). 

Included with each function description is a tolerance ε chosen so that x lies within 
the basin of attraction containing the optimum x* if f(x) ≤  f(x*) + ε . As such, ε de-
termines how close a vector’s objective function value must be to the minimum be-
fore the optimization can be considered to be a success. Each function description 
also includes lower and upper initial parameter bounds (e.g., xj∈ [−100,100] for f1(x)) 
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In this study, initial parameter values were distributed with random uniformity over 
the specified range. 

 

( ) ( ))lower()upper(
0,, 1,0U jjjgij xxx −⋅==                                        (47) 

  

For constrained functions, these bounds remain active during the optimization and 
any constrained trial parameter uj,i,g that exceeds its bound is reset to a randomly cho-
sen point between the bound that is violated and the base vector’s corresponding pa-
rameter value. For the DE/ran/1/either-or algorithm, the base vector is a randomly 
chosen population vector, whereas for drift-free DE, it is the target vector (base = i). 
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The test bed’s first two functions – the multidimensional sphere f1(x) (Eq. 49) and 

Schwefel’s ridge f2(x) (Eq. 50) – are unimodal for all D. The sphere provides a base-
line for the minimum effort needed to optimize a D-dimensional function, whereas the 
ridge’s diagonally oriented ellipsoidal contours reveal the extent to which condition-
ing (disparate optimal parameter magnitudes) and coordinate rotation affect a search 
algorithm’s efficiency. The third function f3(x), (the extended, or modified Rosen-
brock function, Eq. 51) is unimodal when D ≤ 3, but reported to be bimodal for 4 ≤  
D ≤ 30 (Shang and Qiu 2006). Optimizing its banana-shaped basin of attraction has 
traditionally proven challenging. 
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Schwefel’s Ridge 
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Extended Rosenbrock 
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Functions f4(x)–f14(x) are multimodal. The function landscapes for f4(x) (Ackley,  
Eq. 52), f5(x) (Griewangk, Eq. 53) and f6(x) (Rastrigin, Eq. 54) are similar in that the 
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global optimum for each lies at the bottom of a large bowl, or funnel, whose surface is 
covered with many small dents (local optima). Whitley’s function f7(x) (Eq. 55) is a 
composite of the two-dimensional Rosenbrock and one-dimensional Griewangk func-
tions with a full matrix expansion that includes diagonal terms (see (Whitley et al. 1996) 
for details on function composition and matrix expansion). Its function landscape resem-
bles the banana-shaped Rosenbrock function at large scale and the highly multimodal 
Griewangk function at small scale. The Odd Square f8(x) (Eq. 56) has a function land-
scape which, in two dimensions, resembles square ripples on a pond (Equation 56 cor-
rects the erroneous description for the Odd Square given in (Price et al., 2005)). The term 
max(xj – bj)

2 in f8(x) is the largest squared coordinate difference between x and b. 
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Rastrigin 
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Functions f9(x) (Schwefel, Eq. 57), f10(x) (Rana, Eq. 58) and f11(x) (Weierstrass Eq. 59) are 
bound constrained problems. Both the Schwefel and Rana functions have optima located 
in the corner of their bounding hypercubes and both functions are highly multimodal. 
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Rana 
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Weierstrass 
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Storn’s Chebyshev polynomial fitting problem f12(x) (Eq. 60), Hilbert’s function f13(x) 
(Eq. 61) and the Lennard-Jones potential energy function f14(x) (Eq. 62) are only defined 
for D = 2n + 1, D = n2 and D = 3n, respectively, where n = 1,2,… . Storn’s Chebyshev 
problem asks for the coefficients of a (Chebyshev) polynomial T(x) whose value varies 
between [0,1] over the range x = [−1,1]. The function itself is a sum of squared error 
terms sampled at 32D + 1 regularly spaced intervals and also at x = ±1.2. 
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The constant d and x* for Storn’s Chebyshev 
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Like Storn’s Chebyshev problem, inverting the Hilbert matrix tests an algorithm’s 
ability to efficiently search highly conditioned function landscapes. The matrix W is 
the difference between the identity matrix I and the product of the Hilbert matrix H 
and its proposed inverse Z, so summing the absolute value of its elements wj,k meas-
ures the error due to Z’s approximate value. The relation zj,k = xj + n·(k – 1), j,k = 1,2,…,n,  
D = n2 maps trial vector parameters to matrix elements. 
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The Lennard-Jones function f14(x) (Eq. 62) simulates the atomic potential arising 
from a cluster of atoms in three-dimensional space. As such, this function is only  
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defined for D = 3n, n = 1,2,…. Minimizing cluster energy is an important problem 
made difficult by the fact that it is fully parameter dependent (a “many-body” prob-
lem). Differing spatial symmetries make some clusters harder to optimize than others. 
Since the position and orientation of the clusters are not specified, optimal parameter 
values are not unique. Optima for Lennard-Jones and other clusters are available at 
the Cambridge cluster database:  
http://www-wales.ch.cam.ac.uk/~jon/structures/LJ/ tables.150.html 
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7.2   Measuring Performance 

This study measured algorithmic performance by the AFES, or average number of 
function evaluations per success. A trial is counted as a success if the objective func-
tion value of the population’s best vector falls to within ε of the objective function’s 
known minimum f(x*) before reaching the allotted maximum number of generations 
gmax. In this study, gmax = 4000D. If no trials are successful, then the AFES is  
undefined. 

Measuring algorithmic performance is a multi-objective optimization problem in 
which speed and reliability are conflicting objectives. For example, reducing Np low-
ers not only the AFES, but also the probability of success. To allow for a fair com-
parison, the experiments in this section report the AFES at a constant probability of 
success. In particular, the lowest AFES (AFES*) for which ten-out-of-ten trials were 
successful and the Np at which it occurred (Np*) were recorded at pμ = 0.25, 0.5, 0.75, 
0.875 for each valid combination of objective function and dimension 2 ≤ D ≤ 15 
(Dmax = 16 for Hilbert). Populations ranged from 2D (empirically shown to be a 
minimum for f1(x)and f2(x) in (Price and Rönkkönen 2006)) up to 16D2 in six steps, 
i.e., Np = floor(2D·(8D)k/6), k = 0,1,…,6. The “floor()” operator returns the integer 
part of its argument. 

For example, the AFES for f1(x) was computed as a ten-trial average for each com-
bination of D, pμ and Np, with each trial running for no more than gmax = 4000D  
 
. 



 Eliminating Drift Bias from the Differential Evolution Algorithm 63 

generations. With both D and pμ held constant, Np was varied over the range 
[2D,…,16D2] after which the lowest AFES for which all ten trials were successful 
(i.e., AFES*) and the Np at which it occurred (i.e., Np*) were recorded. This  
experiment (varying Np to find Np* and AFES* with D and pμ held constant) was re-
peated three more times and the results for AFES* and Np* were averaged. Once the  
four-trial average for Np* and AFES* for f1(x) was determined for all D, pμ was in-
cremented by 0.25 and the entire process was repeated. Once the four-trial averages of 
AFES* and Np* were computed for all values of D and pμ for f1(x), f2(x) was  
evaluated and so on. This exhaustive search process has the nested loop structure: 

 
fk(x): k = 1,2,..14 

   { 
    pμ = 0.25,0.5,0.75,0.875 
     { 

               D = 2,3,…,15 (16)  // Not all functions are defined for all D in this range 
          { 
               q = 1,2,3,4          // Compute the four-trial average (AFES*, Np*) 
               { 
                    Np = 2D,…,16D2     // Compute (AFESq*, Npq*) 
                    { 
                          t = 1,2,…,10      // Run ten trials at constant k, pμ, D, q and Np 
                    } 
               } 
          } 
     } 

   } 

7.3   Results 

Figures 12–15 plot AFES* vs. D for pμ= 0.25, 0.5, 0.75, and 0.875 respectively, for 
the drift-free DE algorithm. Their non-consecutive dimension means that results for 
f12(x), f13(x) and f14(x) appear in these plots as isolated points. Figures 16–19 plot the 
corresponding Np* as a function dimension for drift-free DE. Similarly, Figs. 20–23 
plot AFES* vs. D for pμ= 0.25, 0.5, 0.75, and 0.875 respectively, for the 
DE/ran/1/either-or algorithm. Figures 24–27 plot the corresponding Np* as a function 
dimension for the DE/ran/1/either-or algorithm. 

7.4   Discussion of Results 

Based on the data in Figs. 12–27, this section categorizes the reliability and speed of 
both drift-free DE and the DE/ran/1/either-or algorithm. The compiled results suggest 
guidelines for setting drift-free DE’s control parameters. 
 



64 K.V. Price 

p μ = 0.25

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 5 10 15 D

AFES*

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

 

Fig. 12. A semi-log plot of AFES* vs. D for drift-free DE with F = 1 and pμ = 0.25 
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p μ = 0.5
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Fig. 13. A semi-log plot of AFES* vs. D for drift-free DE with F = 1 and pμ = 0.5 
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Fig. 14. A semi-log plot of AFES* vs. D for drift-free DE with F = 1 and pμ = 0.75 
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p μ = 0.875
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Fig. 15. A semi-log plot of AFES* vs. D for drift-free DE with F = 1 and pμ = 0.875 
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Fig. 16. Np* vs. D for drift-free DE with F = 1 and pμ = 0.25. The limit line is the maximum  
allowed population for this experiment: 16D2. 
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Fig. 17. Np* vs. D for drift-free DE with F = 1 and pμ = 0.5 
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Fig. 18. Np* vs. D for drift-free DE with F = 1 and pμ = 0.75 
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Fig. 19. Np* vs. D for drift-free DE with F = 1 and pμ = 0.875 
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Fig. 20. A semi-log plot of AFES* vs. D for DE/ran/1/either-or, with F = 1, K = 1/3 and  
pμ = 0.25 
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p μ = 0.5
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Fig. 21. A semi-log plot of AFES* vs. D for DE/ran/1/either-or, with F = 1, K = 1/3, pμ = 0.5 



74 K.V. Price 

p μ = 0.75

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 5 10 15 D

AFES*

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

 

Fig. 22. A semi-log plot of AFES* vs. D for DE/ran/1/either-or, with F = 1, K = 1/3, pμ = 0.75 
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p μ = 0.875
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Fig. 23. A semi-log plot of AFES* vs. D for DE/ran/1/either-or, with F = 1, K = 1/3, pμ = 0.875 
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Fig. 24. Np* vs. D for DE/ran/1/either-or with F = 1, K = 1/3 and pμ = 0.25 
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Fig. 25. Np* vs. D for the DE/ran/1/either-or F = 1, K = 1/3 and pμ = 0.5 
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Fig. 26. Np* vs. D for DE/ran/1/either-or with F = 1, K = 1/3 and pμ = 0.75 
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p μ = 0.875
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Fig. 27. Np* vs. D for DE/ran/1/either-or with F = 1, K = 1 and pμ = 0.875 

Reliability 
Table1 records the number of times that drift-free DE and the DE/ran/1/either-or algo-
rithm failed to optimize ten consecutive trials in all four runs. For example, the “1” in  
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Table 1. The number of failures for each combination of function, mutation probability and al-
gorithm. The maximum total number of failures is 169. 

Drift-free DE DE/ran/1/either-or       pμ 
 f(x) 0.25 0.5 0.75 0.875 0.25 0.5 0.75 0.875 

f1     12    
f2     12    
f3     14    
f4     12    
f5 4   1 12 10 8 1 
f6    1 11    
f7 9 7 7 5 14 14 14 8 
f8   9 10 13 12 9 12 
f9     13 5 2 1 

f10   1 2 14 10 7 8 
f11    1 12 1   
f12     7    
f13     3    
f14         

Total 13 7 17 20 149 52 40 30 

 
the row labeled “f10” and the column labeled “0.75” under the “Drift-free DE” head-
ing means that drift-free DE with pμ = 0.75 failed to reliably optimize f10(x) at one 
dimension. A glance at Fig. 14 shows that this failure occurred when D = 15. Simi-
larly, Table 1 reveals that drift-free DE failed a total of thirteen times when  
optimizing this test bed with pμ = 0.25. 

Overall, none of the mutation probability settings chosen for this study caused 
drift-free DE to fail more than 20 out of a possible 169 times and nearly all failures 
occurred at the higher dimensions. Drift-free DE performed most reliably when pμ = 
0.5, failing only on f7(x) when D > 8. Increasing pμ to 0.875 lowered the number of 
drift-free DE’s failures on f7(x) to five (D > 10), but at that setting f8(x) – and to a 
lesser extent, several other functions – could not reliably be solved. 

Both its contractile recombination operator and its homogenizing selection scheme 
caused the DE/ran/1/either-or algorithm to prematurely converge at values of pμ for 
which drift-free DE performed reliably, especially when the objective function was 
multi-modal. At pμ = 0.25, f14(x) was the only function that the DE/ran/1/either-or algo-
rithm could optimize over all dimensions (D = 3, 6, 9, 12, 15). Increasing the mutation 
probability to 0.5 diluted recombination’s intensity and improved the DE/ran/1/either-or 
algorithm’s reliability. Once the mutation probability reached pμ = 0.875, only f7(x), 
f8(x) and f10(x) continued to pose a significant challenge. While most DE/ran/1/either-or 
failures occurred at the highest dimensions, there were cases – most notably f10(x) – in 
which failures occurred even when D was small (see Figs. 21–23). 

It can be argued that arbitrarily choosing K = 1/3 and pμ ≤ 0.875 penalizes the 
DE/ran/1/either-or algorithm and biases the empirical comparison. While extending pμ 
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beyond 0.875 would probably improve the reliability of both algorithms on f7(x), it 
might also cause them both to fail more often on f8(x) and f10(x) – as the trend for both 
algorithms indicates – implying that pμ = 0.875 is probably close to the 
DE/ran/1/either-or algorithm’s most reliable setting when K = 1/3. Because of the 
control parameter dependence that exists between K and pμ in the DE/ran/1/either-or 
algorithm, increasing K beyond 1/3 would reduce the magnitude of recombination’s 
contractile effect and allow the DE/ran/1/either-or algorithm to perform more reliably 
when pμ < 0.875 than it does when K = 1/3, but to match drift-free DE’s low failure 
rate, any adjustment to K would have to improve the DE ran/1/either-or algorithm’s 
failure rate on f7(x) and several other functions without causing any additional fail-
ures. Thus, tuning K might modestly improve the DE/ran/1/either-or algorithm’s reli-
ability compared to the value chosen for this study, but allowing this extra degree of 
freedom would invalidate the fair comparison with drift-free DE, which does not  
explicitly depend on K. 

Speed 
To fairly measure algorithm speed, this study computed the AFES* at a constant 
probability of success. For the five-dimensional versions of functions f1(x)–f12(x),  
Table 2 lists, for both algorithms, the lowest AFES* along with both the optimal mu-
tation probability pμ* and population size Np* at which it occurred (D = 4 for f13(x) 
and D = 6 for f14(x)). Table 3 compiles the same information for D = 15 (D = 16 for 
f13(x)). In both tables, Np* has been rounded to the nearest integer. 

For functions f1(x), f2(x), f9(x), f12(x) and to a lesser extent f11(x) and f13(x), the differ-
ence between the two algorithm’s AFES* performance was too small to be significant 
given the coarse sampling of control parameter combinations. The DE/ran/1/either-or  
 

Table 2. Best AFES* (in bold) and its corresponding control parameter settings when D = 5 (D 
= 4 for f13(x) and D = 6 for f14(x)) 

Drift-free DE DE/ran/1/either-or  
pμ* Np* AFES* pμ* Np* AFES* 

f1 0.5 16 3252 0.75 34 3349 
f2 0.5 16 3426.8 0.875 22 3233.45 
f3 0.5 22 12285.5 0.875 34 7225 
f4 0.5 19 7711.73 0.75 41 5976.15 
f5 0.5 16 26536.8 0.75 76 34078.1 
f6 0.5 16 16651.2 0.5 116 12664.3 
f7 0.75 44 51021.3 0.875 116 32384.3 
f8 0.5 24 60050.3 – – – 
f9 0.25 16 10226.4 0.875 76 10641.9 

f10 0.25 97 15132.8 0.875 308 33717 
f11 0.5 22 15319.3 0.75 63 12333.8 
f12 0.5 16 4371.2 0.875 18 4075.65 
f13 0.5 12 4311 0.875 14 3765.3 
f14 0.25 24 650.7 0.25 22 265.65 
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Table 3. Best AFES* (in bold) and its corresponding control parameter settings when D = 15 
(D = 16 for f13(x)) 

Drift-free DE DE/ran/1/either-or  
pμ* Np* AFES* pμ* Np* AFES* 

f1 0.75 59 51353.6 0.875 147 50321.8 
f2 0.75 59 54238.7 0.875 147 54125.4 
f3 0.875 88 263678 0.75 328 262384 
f4 0.875 74 108318 0.875 238 99463.1 
f5 0.75 117 143068 0.875 1246 259134 
f6 0.25 459 268526 0.75 629 111072 
f7 – – – – – – 
f8 0.5 628 3.90E+06 – – – 
f9 0.875 59 959688 – – – 

f10 0.5 1800 5.77E+06 – – – 
f11 0.75 146 239698 0.875 528 267679 
f12 0.75 59 90910.1 0.875 147 125490 
f13 0.875 64 255682 0.75 362 256350 
f14 0.25 59 69764.6 0.875 66 58276.3 

 
algorithm was less than twice as fast as drift-free DE on functions f3(x), f4(x), f6(x) and 
f7(x), whereas drift-free was less than twice as the DE/ran/1/either-or algorithm only on 
f5(x), but a little more than twice as fast on f10(x). In addition, the DE/ran/1/either-or algo-
rithm was more than twice as fast as drift-free DE on f14(x), but only drift-free DE solved 
f8(x) when D = 5. 

For every case in Table 2 except f14(x), Np* was larger for the DE/ran/1/either-or 
algorithm – sometimes dramatically so – than for drift-free DE. With the exception of 
f6(x) and f14(x) for which both algorithms posted pμ* = 0.5 and pμ* = 0.25, respec-
tively, the DE/ran/1/either-or algorithm’s mutation probabilities were also larger than 
were those registered by drift-free DE. 

Table 3 reveals little difference between the two algorithm’s AFES* performance 
on the fifteen-dimensional versions of functions f1(x), f2(x), f3(x), f4(x) f11(x), f13(x) 
and to a lesser extent on f12(x) and f14(x). Although the DE/ran/1/either-or algorithm 
was a little more than twice as fast as drift-free DE on f6(x), drift-free DE was twice as 
fast on f5(x). By default, drift-free DE was faster on the multimodal functions that 
DE/ran/1/either-or algorithm could not solve when D = 15, i.e., for f8(x), f9(x) and 
f10(x). 

Although pμ = 0.5 was the most reliable setting for drift-free DE and its most com-
mon optimal mutation rate when D = 5, once D = 15, pμ = 0.5 produced the fastest 
convergence in only four of the fourteen cases listed in Table 3. Similarly, no value 
for pμ* in Table 3 under the DE/ran/1/either-or heading was less than 0.75. Compar-
ing the values of pμ* and Np* listed in Tables 2 and 3 reveals that for a given  
function, the optimal mutation probability – like the optimal population size – tends to 
increase along with the function’s dimension. 
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8   Control Parameter Guidelines for Drift-Free DE 

8.1   Population Size 

The optimal population size depends on the objective function, its dimension and the 
mutation probability. Because it is so simple, f1(x) provides a baseline for the mini-
mum reliable Np* for any D-dimensional function. When pμ = 1 and F = 1.3/√D, the 
authors of (Price and Rönkkönen 2006) found that Np* = 2D for both f1(x) and f2(x). 
Fifteen dimensions is too few to clearly indicate Np*’s asymptotic behavior with re-
spect to D, so to better understand how the minimum Np* grows as a function of di-
mension, Fig. 28 plots Np* vs. D for f1(x) over the range D = 5n, n = 1,2,…,8 for  
several combinations of F and pμ. The uppermost curve corresponds to pμ = 0, while 
the second and third lines from the top plot Np* as a function of D for pμ = 0.5 and  
pμ = 0.98, respectively. In all three cases, F = 1. The lowest curve was generated with 
pμ = 0.98 and F = 1.3/√D. The mutation probability pμ = 0.98 was chosen to represent 
the population requirements for high rates of mutation because pμ = 1 in conjunction 
with F = 1 did not reliably converge. 

Figure 28 includes trend lines that document Np*’s rate of growth. For the case pμ 
= 0, a slightly flatter curve than the best-fit trend line in the figure would better model 
Np*’s growth at high D, so the minimum population size when optimizing with re-
combination alone is likely to be very close to Np2. The trend line is a good fit when 
pμ = 0.5, so the minimum Np* when pμ = 0.5 is probably 0.5D2. 

The lowest line in Fig. 28 represents the linear growth that Np displayed when mu-
tation alone drives drift-free DE and the scale factor F = 1.3/√D is tuned for optimiz-
ing convex quadratic basins. The trend line Np* = 2D confirms that the linear growth 
reported in (Price and Rönkkönen 2006) extends to 40 dimensions. When F = 1, and 
pμ = 0.98, growth in Np is initially linear, with Np* = 2D for all D ≤ 20, but once  
D ≥ 25, nonlinear growth begins to appear. Equation 63 sums up these results with a 
simple rule of thumb for predicting the minimum Np required for reliable conver-
gence given pμ and D. 

( ) DpDpNp 21 2
min ⋅+⋅−≈∗ μμ .                                        (63) 

For example, this study found that Np* ≈ 4D when F = 1 and pμ = 0.875, not only for 
f1(x) and f2(x), but also for f4(x), f9(x), f12(x), f13(x), f14(x) and to a lesser extent, f3(x). 
Equation 63 predicts that when pμ = 0.875 and D = 10, Np*min = 30 (i.e., 3D) and 
Np*min = 54 (i.e., 3.6D) when D = 15 – a slight under estimation of the actual Np* = 
4D, but a good estimate for Np*min. Function f14(x) best illustrates that this rule of 
thumb is not always valid, since Np* (= 4D) was independent of pμ.  

While the sparse and noisy data makes it difficult to accurately estimate the maxi-
mum population size as a function of both D and pμ, the highest populations required 
in this study were never more than D3 and the dependence of the maximum Np* on pμ 
at a given dimension was roughly similar to that in Eq. 63. This meager data suggests 
that the maximum population needed to solve a D-dimensional multimodal function is 
no more than D times the minimum Np*, i.e., 

minmax *NpDNp ⋅≈∗ .                                               (64) 
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Fig. 28. Np* for f1(x) as a function of D = 5n, n = 1,2,…,8 and pμ = 0.0, 0.5 and 0.98. The upper 
three plots are with F = 1, while the bottom curve was generated with F = 1.3/√D. 

Equations 63 and 64 are not meant to imply a theoretically derived relationship; they 
are only intended to establish convenient default settings for Np. While it is unlikely 
that populations smaller than Eq. 63 predicts will be useful, exceptional cases may  
require larger populations than Eq. 64 predicts. 

8.2   Mutation Probability 

Based on the results in Sect. 7, pμ = 0.5 was the most successful mutation probability, 
but the value that produced the fastest success was usually higher. As a comparison of 
Tables 2 and 3 shows, the optimal mutation probability tends to increase with dimen-
sion. Whereas pμ = 0.5 is both reliable and fast when D = 5, once D = 15, pμ had in-
creased for every function except f6(x), f8(x) and f14(x). Although weak, this trend 
suggests a possible rule of thumb for selecting the mutation probability: 
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D
p

1
1−≈μ .                                                       (65) 

Functions like f7(x) demonstrate that in lieu of a very large population, success may 
depend on pμ being closer to 1.0 than Eq. 65 predicts. Conversely, some high-
dimensional functions may require substantially more recombination than Eq. 65 
specifies. 

8.3   Mutation Scale Factor 

If the results for drift-free DE in Sect. 7 are any guide, F will probably not have to be 
adjusted away from 1.0. On the other hand, F ≠ 1 generates a more diverse population 
of potential trial vectors, so F = 1 risks failing if it cannot generate a sufficiently ro-
bust trial vector population – especially when used in conjunction with pμ = 1. If sev-
eral combinations of Np and pμ fail to satisfactorily optimize an objective function, 
tuning F should be considered. Setting F = 0.98 capitalizes on the ability of F = 1 to 
exploit functions with regularly spaced local minima without diminishing the pool of 
potential trial vectors.  

The most obvious alternative value to F ~ 1 is F = 1.3/√D, which is optimal for 
convex quadratic functions like f1(x) and f2(x). This value for F is often too small to 
be effective when the objective function is multimodal, but it occasionally improves 
optimization speed. Although it is unusual for very small values for F to be effective, 
auxiliary experiments with f14(x) and published results (Chakraborti 2005) show that 
the most effective mutation scale factors for cluster optimization are on the order of F 
= 0.001. With such a small scale factor, mutation corresponds to a local search of the 
target vector’s immediate neighborhood. Unless the optimization problem is  
analogous to clustering, tiny values for F should only be tried as a last resort.  

8.4   Default Control Parameter Settings 

Below is a default setting for drift-free DE’s control parameters and a prescription for 
resetting them if the default settings produce unsatisfactory results. 

 

• Default setting: F = 1;  pμ = 0.5;  Np = D2  ( = 2Np*min) 
• If results are unsatisfactory: Np = k·Np*min, k = 4, 8, 16,…, D 
• If still unsatisfactory: pμ = 1 – 1/√D, 0.98, 0.25 
• If all else fails: F = 1.3/√D, 0.98, 0.85, 0.5, 0.001 

 

If the default setting fails to produce a satisfactory result, then double Np. Continue 
doubling Np until Np = Np*max = D·Np*min. If increasing the population size does not 
improve the result, then experiment with different values for pμ. Start by changing pμ 
from 0.5 to  1 – 1/√D, compute Np*min and reset Np to 2Np*min. If results at the new set-
tings are unsatisfactory, double Np until Np = D·Np*min. If results are still unsatisfactory 
after repeating this procedure for the values of pμ listed above, then experiment by  
tuning F. 
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9   Conclusion 

9.1   Synopsis 

This chapter describes two prior DE algorithms, discusses their limitations, proposes a 
new algorithm in response and offers a preliminary evaluation of its comparative ef-
fectiveness. More specifically, Sect. 2.2 showed that classic DE degenerates into a 
mutation-only algorithm at the one setting for which its performance is rotationally 
invariant (Cr = 1). In response, the DE/ran/1/either-or algorithm replaced uniform 
crossover with the rotationally invariant three-vector arithmetic recombination opera-
tor, showing it to be natural counterpart to differential mutation. By interleaving mu-
tation and arithmetic recombination, the DE/ran/1/either-or algorithm reduced the 
control parameter dependence between F and K, albeit at the expense of adding a 
fourth control variable, pF ( = pμ). 

Section 2.3 proved that the DE/ran/1/either-or algorithm generates a distribution of 
three-vector recombinants that is biased toward or away from the population’s cen-
troid whenever K (≠ 0) is held constant. Section 2.4 described how to eliminate  
recombination drift bias and the control variable K by projecting randomly chosen 
mutation differentials onto randomly chosen three-vector recombination differentials. 
By generating not only mutants but also recombinants with perturbations sampled 
from the population’s own distribution of vector differences, the projection method 
unifies DE’s approach to mutation and recombination. 

Section 2.5 proved that the DE/ran/1/either-or algorithm’s selection operator is also 
biased with respect to the population’s centroid. Drift-free DE eliminates this selec-
tion bias by distributing trial vectors center-symmetrically around the vector with 
which they compete, i.e., the target vector. As a result, only recombination can ho-
mogenize the population in drift-free DE. Section 2.6 presented the drift-free DE al-
gorithm, showing that the direction and distance from the target to a recombinant are 
respectively determined by recombination and mutation differentials. 

Section 2.7 demonstrated that drift-free DE was more reliable than the 
DE/ran/1/either-or algorithm when optimizing a test bed of fourteen scalable bench-
mark functions. The speed of the two algorithms measured at a constant probability of 
success was comparable, with the DE/ran/1/either-or algorithm prevailing at low di-
mension and drift-free DE gaining the edge as D increased. For both algorithms, de-
creasing pμ strongly correlated with increasing Np*, showing that the population must 
be enlarged to offset the higher rate of homogenization due to recombination. The 
homogenizing effect of the DE/ran/1/either-or algorithm’s selection bias was con-
stant, so compared to drift-free DE, Np* was large even when the recombination rate 
was low. The optimal population size also depended on the objective function’s di-
mension. With f1(x) as a baseline, Sect. 2.8 developed guidelines for setting drift-free 
DE’s control parameters. 

9.2   Drift-Free DE’s Benefits 

Like earlier DE algorithms, drift-free DE is easy to understand and requires little ef-
fort to apply. Drift-free DE is also robust inasmuch as it reliably optimized most test 
bed functions for all four values of pμ and for more than one value of Np. In most 
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cases, pμ= 0.5 was a good default value and increasing Np until the solution ceased 
improving was the only tuning involved. Since both drift-free DE and the 
DE/ran/1/either-or algorithm were roughly equal in speed when compared at the same 
probability of success, drift-free DE’s superior performance on high-dimensional 
multimodal functions, control parameter robustness and smaller system requirements 
(i.e., smaller Np*) make it the better choice. 

Apart from its reliable performance and robust control parameters, the drift-free 
DE algorithm has considerable esthetic appeal. Expressing trial vectors as linear com-
binations of three population vectors is both simple and fundamental, as are the sym-
metry conditions not met by earlier DE algorithms to which drift-free DE conforms. 
Furthermore, consistently implementing both recombination and mutation with  
randomly sampled vector differences improves the algorithm’s logical coherence. 

9.3   Future Research 

Future research will employ an expanded test bed to compare drift-free DE’s  
performance to that of one or more other EAs. The dependence of performance on 
control parameter settings will be more exhaustively sampled with the goal of under-
standing what general relationships exist between pμ, Np (and F). 

The delicate control that pμ provides over the population’s rate of homogenization 
potentially makes drift-free DE a valuable tool for multi-objective optimization where 
migration between evolutionary niches often must be restricted. Similarly, drift-free 
DE should be tested on both constrained problems and those with noisy objective 
functions, this last class of function being difficult for classic DE (Vesterstrom and 
Thomsen 2004). Finally, there may be an effective way to make pμ adaptive, perhaps 
by modifying DE’s selection rule. 
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Summary. The main goal of this chapter is to present an analysis of how self-adaptive
control parameters are being changed during the current evolutionary process. We
present a comparison of two distinct self-adaptive control parameters’ mechanisms,
both using Differential Evolution (DE). The first mechanism has recently been pro-
posed in the jDE algorithm, which uses self-adaptation for F and CR control parame-
ters. In the second one, we integrated the well known self-adaptive mechanism from
Evolution Strategies (ES) into the original DE algorithm, also for the F and CR control
parameters. Both mechanisms keep the third DE control parameter NP fixed during
the optimization process. They both use the same DE strategy, same mutation, cross-
over, and selection operations, even the same initial population, and they both use
self-adaptation at individual level.

1 Introduction

The Differential Evolution (DE) [13, 17, 21] algorithm was proposed by Storn and
Price, and since then it has been used during many practical cases. The original
DE was modified and many new versions have been proposed [13, 16, 17].

The original DE algorithm keeps all three control parameters fixed during the
optimization process. However, there still exists a lack of knowledge on how to
obtain reasonably good values for the control parameters of DE, over a given
function [16, 22]. The necessity for changing control parameters during the op-
timization process was confirmed, based on the experiment in [8].

Self-adaptation has proved to be highly beneficial when automatically and dy-
namically adjusting control parameters. Self-adaptation is usually used in Evo-
lution Strategies [4, 5, 6]. Self-adaptation allows an evolution strategy to adapt
itself to any general class of problem, by reconfiguring itself accordingly with-
out any user interaction [2, 3, 12]. DE with self-adaptive control parameters has
already been presented in [8, 22].

In this analysis the unconstrained benchmark functions will be used. There
are many studies that use DE algorithm in different research areas but, based on
our knowledge, there is no current study, regarding the analyses of self-adaptive
control parameters in DE algorithm.

U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 89–110, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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This chapter makes the following contributions: (1) the application of a self-
adaptive mechanism from evolution strategies to the original DE algorithm to
construct a new version of the self-adaptive DE algorithm; (2) comparative study
of the proposed DE algorithm with self-adaptive F and CR control parameters,
the jDE algorithm, and the original DE algorithm; (3) analysis of how the control
parameters are being changed during the evolutionary process.

The chapter is structured as follows. Section 2 gives an overview of work deal-
ing with DE. Section 3 gives a brief background of the original differential evolu-
tion algorithm. Section 4 describes those differential evolution algorithms, which
use self-adaptive adjusting control parameters. Two different self-adaptive mech-
anisms are described. Section 5 presents experimental results on the benchmark
functions and gives performance comparisons for the self-adaptive and original
DE algorithms. Discussion of the obtained results is given in Section 6. Section 7
concludes the chapter with some final remarks.

2 Work Related to Adaptation in Differential Evolution

Ali and Törn in [1] proposed new versions of the DE algorithm, and also sug-
gested some modifications to the classical DE in order to improve its efficiency
and robustness. They introduced an auxiliary population of NP individuals
alongside the original population (noted in [1], a notation using sets is used –
population set-based methods). Next they proposed a rule for calculating the
control parameter F , automatically. Liu and Lampinen [16] proposed a version
of DE, where the mutation control parameter and the crossover control parame-
ter are adaptive. Teo in [22] proposed an attempt at self-adapting the population
size parameter, in addition to self-adapting crossover and mutation rates. Brest
et al. in [8] proposed a DE algorithm, using a self-adapting mechanism on the
F and CR control parameters. The performance of the self-adaptive differential
evolution algorithm was evaluated on the set of benchmark functions provided
for constrained real parameter optimization [10]. In [18] Qin and Suganthan
proposed the Self-adaptive Differential Evolution algorithm (SaDE), where the
choice of learning strategy and the two control parameters F and CR do not
require pre-defining. During evolution, suitable learning strategy and parameter
settings are gradually self-adapted, according to the learning experience. Brest
et al. [7] reported the performance comparison of certain selected DE algorithms,
which use different self-adaptive or adaptive control parameter mechanisms.

In our paper [11] we presented experimental results on how control parame-
ters are being changed during the evolutionary process on the constrained real
parameter optimization benchmark functions (CEC2006 [10, 14]).

3 The Original DE Algorithm

In this section we give some background on the DE algorithm [19, 20, 21] that
is important for understanding the rest of this chapter.
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Differential Evolution (DE) is a floating-point encoding evolutionary algo-
rithm for global optimization over continuous spaces [13, 16, 17, 21], which can
also work with discrete variables. DE creates new candidate solutions by combin-
ing the parent individual and several other individuals of the same population. A
candidate replaces the parent only if it has better fitness value. DE has three con-
trol parameters: the amplification factor of the difference vector – F , crossover
control parameter – CR, and population size – NP.

The general problem an optimization algorithm is concerned with is to find
a vector x so as to optimize f(x);x = (x1, x2, ..., xD). D is the dimensionality
of the function f . The variables’ domains are defined by their lower and upper
bounds: xj,low, xj,upp; j ∈ {1, ..., D}. The initial population is selected uniform
randomly between the lower (xj,low) and upper (xj,upp) bounds defined for each
variable xj . These bounds are specified by the user according to the nature of
the problem.

DE is a population-based algorithm and vector xi,G, i = 1, 2, ..., NP is an
individual in the population. NP denotes population size and G the generation.
During one generation for each vector, DE employs mutation, crossover and
selection operations to produce a trial vector (offspring) and to select one of
those vectors with the best fitness value.

By mutation for each population vector a mutant vector vi,G is created. One
of the most popular DE mutation strategy is ’rand/1/bin’ [17, 21]:

vi,G = xr1,G + F × (xr2,G − xr3,G) (1)

where the indexes r1, r2, r3 represent the random and mutually different integers
generated within the range [1, NP ] and also different from index i. F is an
amplification factor of the difference vector within the range [0, 2], but usually
less than 1.

The original DE algorithm is described very well in literature [17, 21], and,
therefore, we will skip a detailed description of the whole DE algorithm.

4 Self-Adaptive DE Algorithms

In this section we describe two different self-adaptive mechanisms of control
parameters in the DE algorithm. Both mechanisms use self-adaptation of control
parameters at the individual level. The first mechanism uses uniform distribu-
tion for changing the values of the control parameter, while the second uses a
self-adaptive mechanism found in evolution strategies.

4.1 The Self-Adaptive Control Parameters in a jDE Algorithm

Self-Adaptive DE refers to the self-adaptive mechanism on the control para-
meters, as proposed by Brest et al. [8]. This self-adapting mechanism uses the
already exposed ’rand/1/bin’ strategy (see formula (1)).

In [8] a self-adaptive control mechanism was used to change the control para-
meters F and CR during the evolutionary process. The third control parameter
NP was kept unchanged.
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x1,1,G CR1,G

CR2,G

NP,G

F1,G

F2,G

FNP,G

1,D,Gx1,2,Gx ...

x2,D,Gxx2,1,G 2,2,G ...

NP,1,Gx NP,D,Gxx ...NP,2,G

...

CR

... ... ... ... ...

Fig. 1. Self-adapting control parameters F and CR are encoded into the individual.
The vector of each individual xi,G is extended by the values of two control parameters:
Fi,G and CRi,G.

Each individual in the population was extended using the values of these two
control parameters (see Figure 1). Both of them were applied at an individual
level. Better values for these (encoded) control parameters lead to better indi-
viduals which, in turn, are more likely to survive and produce offspring and,
hence, propagate these better parameter values.

New control parameters Fi,G+1 and CRi,G+1 were calculated as follows:

Fi,G+1 =

{
Fl + rand1 × Fu if rand2 < τ1,

Fi,G otherwise,
(2)

CRi,G+1 =

{
rand3 if rand4 < τ2,

CRi,G otherwise.
(3)

They produce control parameters F and CR in a new vector. randj , j ∈
{1, 2, 3, 4} are uniform random values ∈ [0, 1]. τ1 and τ2 represent the prob-
abilities of adjusting control parameters F and CR, respectively. τ1, τ2, Fl, Fu

were taken fixed values 0.1, 0.1, 0.1, 0.9, respectively. The new F takes a value
from [0.1, 1.0] in a random manner. The new CR takes a value from [0, 1]. Fi,G+1
and CRi,G+1 are obtained before the mutation is performed, so they influence
the mutation, crossover, and selection operations of the new vector xi,G+1.

4.2 The SA-DE Algorithm

As mentioned earlier, evolution strategies [6] are well-known for including a self-
adaptive mechanism, encoded directly in each individual of the population. An
evolution strategy (ES) has a notation μ/ρ, λ-ES, where μ is parent population
size, ρ is the number of parents for each new individual, and λ is child population
size. An individual is denoted as a = (x, s, F (x)), where x are search parameters,
s are control parameters, and F (x) is the evaluation of the individual.

We used the idea of self-adaptive mechanism from evolution strategies and
applied this idea to the original DE. We shall name the new constructed version
of DE, the SA-DE algorithm.
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Each individual (see Figure 1) of the SA-DE algorithm is extended to in-
clude self-adaptive F and CR control parameters in a similar way as in the jDE
algorithm.

A trial vector is composed by mutation and recombination for each individual
in population. The mutation procedure is different in the SA-DE algorithm in
comparison to the original DE. For adapting the amplification factor of the
difference vector Fi for trial individual i, from parent generation G into child
generation G + 1 for the trial vector, the following formula is used:

Fi,G+1 = 〈FG〉i × eτN(0,1), (4)

where τ denotes the learning factor and is equal to τ = 1/
√

2D, D being the
dimension of the problem. N(0, 1) is a random number with a Gauss distribution.
The 〈FG〉i denotes the averaging of the parameters F of individuals i, r1, r2,
and r3 from generation G:

〈FG〉i =
Fi,G + Fr1,G + Fr2,G + Fr3,G

4
. (5)

An analogous formula is used for CR of the trial individual i:

CRi,G+1 = 〈CRG〉i × eτN(0,1), (6)

where the τ used here is the same as for the adaptation of the F parameter. The
〈CRG〉i denotes the averaging of the parameters again:

〈CRG〉i =
CRi,G + CRr1,G + CRr2,G + CRr3,G

4
. (7)

The recombination process is not affected by our strategy, but rather taken
from the strategy ’rand/1/bin’ (see Eq. (1)) of the original DE, and the adapted
CRi is used for each individual. The selection principle also helps in adapting F
and CR, because only the individuals adapting good parameters can survive.

During the experiments, the following parameter settings were used for the
SA-DE algorithm: the global lower and upper bounds for control parameter F
were 0.3 ≤ F ≤ 1.1, and for control parameter CR were 1/D ≤ CR ≤ 1.

5 Experimental Results

The benchmark function test suite used in the experiments for this work, is pre-
sented in Table 4. A detailed description about test functions is given in [23]. All
the included functions are to be minimised and have the same number of para-
meters, but they are tested with different number of function evaluations (FES),
have different search space domains, and test various optimizer characteristics.
Based on these functions, a performance evaluation of the listed algorithms is
applied here.

Parameters settings for the jDE and SA-DE algorithms were presented in the
previous section. Population size (NP = 100) was fixed for all algorithms in all
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Fig. 2. Values of F and CR control parameters and fitness values of algorithms over
one run for function f1

experiments. As already mentioned, it was of particular interest how the control
parameters are being changed during the evolutionary process.

Figures 2–13 show the values for initial parameters F and CR, and the con-
vergence graphs for benchmark functions. Each figure has five sub-figures. Let us
describe the sub-figures from the top to the bottom: the first two sub-figures rep-
resent the values for the SA-DE algorithm, the first one representing the values
of control parameter F and the second the values for the CR control parame-
ter. The fourth and fifth sub-figures represent the same control parameters for
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Fig. 3. Values of F and CR control parameters and fitness values of algorithms over
one run for function f2

the jDE algorithm as the first two sub-figures for the SA-DE algorithm. Third
sub-figure presents convergence graphs of the fitness values for the jDE, SA-DE,
and original DE algorithms. The original DE algorithm used fixed values for
control parameters F = 0.5 and CR = 0.9. All algorithms used the same initial
population (same seed for random generator).

Figure 2 shows the results obtained by typical evolutionary run, for function
f1. Both self-adaptive algorithms obtained similar results on the convergence



96 J. Brest et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50000  100000  150000  200000  250000  300000  350000  400000  450000  500000

F
 -

 S
A

-D
E

FES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50000  100000  150000  200000  250000  300000  350000  400000  450000  500000

C
R

 -
 S

A
-D

E

FES

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100
 10000
 1e+06

 0  50000  100000  150000  200000  250000  300000  350000  400000  450000  500000

f(
x)

FES

jDE
SA-DE

F=0.5 CR=0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50000  100000  150000  200000  250000  300000  350000  400000  450000  500000

F
 -

 jD
E

FES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50000  100000  150000  200000  250000  300000  350000  400000  450000  500000

C
R

 -
 jD

E

FES

Fig. 4. Values of F and CR control parameters and fitness values of algorithms over
one run for function f3

graph, but the graphs for control parameters F and CR differ. The original DE
algorithm obtained the worst results on the fitness convergence graph.

It can be noticed from Figure 3, that convergence graphs for the fitness val-
ues regarding the SA-DE and jDE algorithms are very similar (overlapped). The
values for control parameter F are, in most cases, less than 0.5 for both al-
gorithms. The original DE algorithm obtained the worst results regarding the
fitness convergence graph.
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Fig. 5. Values of F and CR control parameters and fitness values of algorithms over
one run for function f4

Figure 4 shows the obtained results for function f3, where the jDE algorithm
outperformed the SA-DE algorithm. A very small number of the currently best
fitness value’s improvement occurred by the SA-DE algorithm. This algorithm
obtained the worst results on the convergence graph.

If we compare the values for the control parameters F and CR of the jDE
algorithm in Figures 2–4, for functions f1, f2, and f3, a similarity to the control
parameter F can be noticed: there are more values for F less than 0.5. Values
for control parameter CR are equally distributed from 0 to 1 for functions f1
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Fig. 6. Values of F and CR control parameters and fitness values of algorithms over
one run for function f5

and f2, while the values of CR are very high (CR is greater than 0.8) in the case
of function f3.

The jDE and SA-DE algorithms obtained quite similar results on convergence
graphs for function f4 (see Figure 5). The jDE algorithm performed slightly bet-
ter. The original DE algorithm obtained the worst results on the fitness conver-
gence graph. It did not obtain much improvement in the fitness values after a
half of the predefined maximum number of function evaluations was reached.

Figure 6 shows the obtained results for function f5. In this case the best results
ware obtained by the original DE algorithm, followed by the jDE algorithm.
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Fig. 7. Values of F and CR control parameters and fitness values of algorithms over
one run for function f6

The SA-DE algorithm got trapped in local optimum and, therefore obtained the
worst result on the convergence graph. It can be noticed that both SA-DE and
jDE algorithms conducted a great number of improvements of the currently best
individual fitness value during the evolutionary process. CR values are usually
high (CR > 0.7) for the jDE algorithm.

Figure 7 shows that all algorithms succeeded in solving function f6. A slightly
better performance was obtained by the jDE algorithm, followed by the SA-DE
algorithm.
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Fig. 8. Values of F and CR control parameters and fitness values of algorithms over
one run for function f8

The self-adaptive algorithms jDE and SA-DE performed much better than the
original DE algorithm regarding function f8 (see Figure 8). The original DE al-
gorithm did not even get close to global optimum. It found the fitness value −
11382.06.

Figure 9 shows the results for function f9. The best performance results for
function f9 were obtained by the jDE algorithm. The worst performance was
obtained by the original DE algorithm. When comparing sub-figures with F and
CR for self-adaptive algorithms, it can seen that CR values by both algorithms
are very low (CR < 0.2).
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Fig. 9. Values of F and CR control parameters and fitness values of algorithms over
one run for function f9

Figure 9 shows that the jDE algorithm performed best for function f10. If we
look at Figures 8–10, it can be noticed that more improvements to the currently
best individual occurred by the SA-DE algorithm after approximately 100 000,
200 000 and 70 000 FES for functions f8, f9, and f10, respectively.

Figures 11–13 show the results for functions f11, f12, and f13, respectively.
For those functions both self-adaptive algorithms obtained better performance
than the original DE algorithm. The values for the F control parameter were
less than 0.5, while the CR values were equally distributed between 0 and 1 for
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Fig. 10. Values of F and CR control parameters and fitness values of algorithms over
one run for function f10

functions f11–f13. For these functions the F values were usually less than 0.5 for
the SA-DE algorithm, while the CR values were between 0.3 and 0.7.

The most important conclusion based on the results from Figures 2–13 is that
the F and CR values obtained by the self-adaptive jDE and SA-DE algorithms
differ. Actually, they also differ for functions, where the convergence graph shows
almost equal algorithm performances (f1, f2, f4, f11, f12, and f13).

Figures 2–13 show the obtained results for one typical run of algorithms.
Our description of the obtained results is only one point of view on how the
control parameters of self-adaptive DE algorithms are being changed during the
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Fig. 11. Values of F and CR control parameters and fitness values of algorithms over
one run for function f11

optimization process, and on how changes in control parameters F and CR have
an influence on the fitness value of the convergence graph.

Table 1 shows the obtained results for the three algorithms. The jDE algorithm
performed well, on average. It obtained the best results for some benchmark
functions, but it did not optimize the function f5 so well, because it got trapped
in a local optimum once. Similar observations were gathered for function f12. The
SA-DE algorithm gets the best results for the functions f1, f12, and f13, while it
has the worst results for functions f3, f8 (only a small number of missed global
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Fig. 12. Values of F and CR control parameters and fitness values of algorithms over
one run for function f12

optima), and f5. The original DE algorithm performs well, but convergence speed
is lower than for the self-adaptive algorithms on some benchmark functions.

Table 2 shows the average values for the control parameters F and CR, ob-
tained in the experiment during one evolutionary run. The average values for F
using the jDE algorithm are between 0.2 and 0.35, while CR values are more
evenly distributed over the [0, 1] interval. For the functions f8 and f9, the values
are both around 0.35. For the function f3, the value of the CR control parame-
ter is approximately 0.9, and for the other functions, the CR values are around
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Fig. 13. Values of F and CR control parameters and fitness values of algorithms over
one run for function f13

0.5. Remember that the initial values for the control parameters using the jDE
algorithms were F = 0.5 and CR = 0.9.

The next algorithm in Table 2 is the SA-DE algorithm. After evolutionary
process, the obtained average F and CR were quite different for each function.
For functions f1, f2, f4, f5, f11, f12, and f13, the obtained average F was between
[0.35, 0.39]. On these functions, SA-DE was quite successful, with the exception
of f5. For these functions, an average CR parameter was also quite similar,
between [0.47, 0, 54], with f5 again being an exception. A greater CR indicates
that many parameters still have to be changed to reach global optimum. In
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Table 1. The experimental results, averaged over 100 independent runs, of the jDE
algorithm, SA-DE algorithm, and the original DE algorithm (F = 0.5, CR = 0.9 ‘Mean’
indicates the average of the minimum best values obtained and ‘Std.Dev’ stands for
the standard deviation

jDE SA-DE DE F0.5CR0.9

Fun. Gen. Mean (Std.Dev) Mean (Std.Dev) Mean (Std.Dev)

f1 1500 2.83e-28 (2.54e-28) 2.61e-29 (2.97e-29) 8.79e-14 (5.83e-14)
f2 2000 1.51e-23 (9.13e-24) 4.08e-23 (4.02e-23) 1.42e-9 (9.95e-9)
f3 5000 6.47e-14 (1.25e-13) 21645 (16103) 6.25e-11 (6.64e-11)
f4 5000 2.08e-15 (3.18e-15) 5.32e-13 (6.31e-13) 7.35e-2 (1.17e-1)
f5 20000 0.039 (0.02) 26.46 (7.24) 4.21e-31 (2.27e-30)
f6 1500 0 (0) 0 (0) 0 (0)
f7 3000 0.0031 (0.0009) 0.0038 (0.00086) 0.0046 (0.0014)
f8 9000 −12569.5 (1.07e-11) −12568.3 (11.84) −11148.5 (496.6)
f9 5000 0 (0) 0 (0) 68.18 (33.67)
f10 1500 8.73e-15 (2.54e-15) 1.18e-05 (8.09e-05) 9.97e-8 (4.13e-8)
f11 2000 0 (0) 0 (0) 7.39e-5 (7.39e-4)
f12 1500 6.74e-30 (8.15e-30) 2.84e-29 (4.12e-29) 7.82e-15 (7.79e-15)
f13 2000 1.24e-28 (1.44e-28) 1.02e-28 (1.33e-28) 5.31e-14 (5.76e-14)

Table 2. Average F and CR in a typical run of each algorithm

jDE SA-DE
Fun. F CR F CR

f1 0.22±0.11 0.50±0.25 0.35±0.06 0.54±0.11
f2 0.21±0.12 0.45±0.24 0.36±0.08 0.51±0.11
f3 0.31±0.18 0.90±0.19 0.72±0.11 0.48±0.08
f4 0.22±0.13 0.44±0.25 0.39±0.07 0.18±0.04
f5 0.30±0.17 0.69±0.32 0.38±0.06 0.67±0.13
f6 0.21±0.11 0.49±0.27 0.47±0.16 0.36±0.06
f7 0.24±0.10 0.54±0.28 0.48±0.13 0.36±0.05
f8 0.32±0.23 0.36±0.30 0.48±0.21 0.30±0.12
f9 0.24±0.15 0.35±0.29 0.43±0.09 0.23±0.12
f10 0.23±0.12 0.48±0.25 0.45±0.21 0.39±0.09
f11 0.23±0.11 0.47±0.25 0.36±0.07 0.47±0.09
f12 0.22±0.11 0.48±0.25 0.36±0.06 0.48±0.11
f13 0.22±0.11 0.47±0.25 0.36±0.07 0.51±0.11

the case of f4, a CR drop allows a much more precise selection, which makes
the algorithm perform better than the original DE on this function, because
the overall function evaluation improvement is achieved by diminishing each
xi component. Another pattern can be observed with the functions f6–f10. The
average F is between [0.43, 0.48] here, and CR is smaller and between [0.23, 0.39].
For all these functions, the performance of the SA-DE algorithm is the same or
better than the original DE, except for the f8, where the convergence is not as
rapid as with the other two algorithms.
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Table 3. Number of improvements

Fun. jDE SA-DE DE F0.5 CR0.9

f1 805 726 353
f2 1024 985 411
f3 1224 19 387
f4 898 729 870
f5 2833 8106 1561
f6 106 93 80
f7 53 56 39
f8 415 402 364
f9 516 529 43
f10 680 440 325
f11 525 449 406
f12 763 734 287
f13 690 709 308

For the function f3, which is the worst case for SA-DE, F and CR still re-
mained quite high, keeping the algorithm from converging into a local optimum,
thus promising a potential global optimum convergence.

Table 3 shows how many times the currently best individual was changed. The
results were obtained during the same experiment used to obtain the results for
control parameters F and CR, as reported in Table 2. From Table 3 it can
be noticed that the original DE usually improved the currently best individual
fewer times than for other algorithms. If we compare only both self-adaptive
algorithms, the number of improvements is quite similar except for functions
f3 and f5, where the SA-DE algorithm performed either little or high numbers
of improvements, respectively. In both cases the jDE algorithm obtained better
results (see Table 1).

The best setting for control parameters is problem dependent. Self-adaptation
may help an algorithm to have higher convergence speed to global optimum. The
results in this section show that no algorithm performed superiorly better than
any other algorithm for all optimization problems.

6 Discussion

When introducing the SA-DE algorithm, we did not make fine-tunings of the τ
learning parameter, which is still open for further research. The τ could have been
separately defined for F and CR, or it could even be self-adapted, projecting
several new experimental combinations to try out. Another constraint that could
be changed or alleviated is our initialization phase and the bounds, mostly for
F , in SA-DE, where the bounds could be extended or dynamically adapted. As
has been confirmed in [15], the lower bound of F has indeed a strong impact on
the algorithm convergence.
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The SA-DE control parameters crossover process could also be changed to
include all the members (in ES, called global intermediate – GI) in the population
or the few random best ones.

Other possibilities for self-adaptation would be at the component level, where
each component xi of each individual would have its own control parameters.
Another possibility is to encode control parameters at the population level, where
same parameters are used for one generation – similarly, but not the same as
the GI approach. We have indeed tried many combinations of these proposals,
confirming that many research opportunities are still open.

The presented control parameters analysis did not include the NP parameter
adaptation, which is also a candidate for future research. Readers are referred
to our recent work [9].

7 Conclusion

The chapter presents two self-adaptive mechanisms in the DE. Both mechanisms
are implemented at the individual level. Self-adaptation may help an algorithm
to perform better for convergence speed, and an algorithm with self-adaptation
may have greater robustness, on average.

Our goal in this work was not to make fine tunning of each self-adaptive
mechanism to obtain the best result for a particular optimization problem, but
rather to give some ideas on how to apply self-adaptive control parameters (F
and CR) in a DE algorithm, in order to achieve better performance, in general.
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Appendix

Table 4. Benchmark functions used in this study

Test function D S fmin

f1(x) =
∑D

i=1 x2
i 30 [−100, 100]D 0

f2(x) =
∑D

i=1 |xi| + ∏D
i=1 |xi| 30 [−10, 10]D 0

f3(x) =
∑D

i=1(
∑i

j=1 xj)
2 30 [−100, 100]D 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ D} 30 [−100, 100]D 0

f5(x) =
∑D−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] 30 [−30, 30]D 0

f6(x) =
∑D

i=1(�xi + 0.5�)2 30 [−100, 100]D 0

f7(x) =
∑D

i=1 ix4
i + random[0, 1) 30 [−1.28, 1.28]D 0

f8(x) =
∑D

i=1 −xi sin(
√|xi|) 30 [−500, 500]D -12569.5

f9(x) =
∑D

i=1[x
2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12]D 0

f10(x) = −20 exp

(
−0.2

√
1
D

∑D
i=1 x2

i

)
− exp

(
1
D

∑D
i=1 cos 2πxi

)
30 [−32, 32]D 0

+20 + e

f11(x) = 1
4000

∑D
i=1 x2

i − ∏D
i=1 cos

(
xi√

i

)
+ 1 30 [−600, 600]D 0

f12(x) = π
D

{10 sin2(πyi) +
∑D−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] 30 [−50, 50]D 0

+(yD − 1)2} +
∑D

i=1 u(xi, 10, 100, 4),

yi = 1 + 1
4 (xi + 1),

u(xi, a, k, m) =

⎧⎪⎨
⎪⎩

k(xi − a)m, xi > a,

0, −a ≤ xi ≤ a,

k(−xi − a)m, xi < −a.

f13(x) = 0.1
{
sin2(3πx1) +

∑D−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)] 30 [−50, 50]D 0

+(xD − 1)2[1 + sin2(2πxD)]
}

+
∑D

i=1 u(xi, 5, 100, 4)
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Summary. Because real-world problems generally include computationally expensive
objective and constraint functions, an optimization run should be terminated as soon
as convergence to the optimum has been obtained. However, detection of this condi-
tion is not a trivial task. Because the global optimum is usually unknown, distance
measures cannot be applied for this purpose. Stopping after a predefined number of
function evaluations has not only the disadvantage that trial-and-error methods have
to be applied for determining a suitable number of function evaluations, but the num-
ber of function evaluations at which convergence occurs may also be subject to large
fluctuations due to the randomness involved in evolutionary algorithms. Therefore,
stopping criteria should be applied which react adaptively to the state of the opti-
mization run. In this work several stopping criteria are introduced that consider the
improvement, movement or distribution of population members to derive a suitable
time for terminating the Differential Evolution algorithm. Their application for other
evolutionary algorithms is also discussed. Based on an extensive test set the criteria
are evaluated using Differential Evolution, and it is shown that a distribution-based
criterion considering objective space yields the best results concerning the convergence
rate as well as the additional computational effort.

1 Introduction

Since the development of Differential Evolution (DE) in 1995 [1], considerable
effort has been spend to improve its convergence characteristics e.g. by varying
operators [2, 3] or changing the handling of constraints [4, 5]. As a consequence,
several enhancements have been found during the last years that have led to
successful applications in many different fields [6]. However, even the perfor-
mance of a very good algorithm may be bad for practical purposes when it is
not stopped at a proper time. For theoretical work about convergence proper-
ties or a comparison of different implementations of DE this aspect is generally
not important because for this purpose usually test functions are employed for
which the optimum is known. In that case, the execution of the algorithm can
be terminated if the optimum is found with a given accuracy, and the involved
computational effort can be used to analyze the performance of different DE
implementations. An alternative is to terminate after a defined number of func-
tion evaluations (FEs) and to evaluate the distance of the best individual to the

U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 111–138, 2008.
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optimum. This approach works well for theoretical work when algorithm vari-
ants are tested against each other but for real-world problems the situation is
different because the optimum is usually unknown.

A stopping rule for problems with unknown optimum that is widely used in the
literature is to terminate the execution of an algorithm after a given maximum
number of function evaluations FEmax (this stopping criterion will be called
LimFuncEval in the following). This approach is associated with two problems:
Suitable settings for FEmax vary considerably for different optimization prob-
lems, so usually FEmax has to be figured out by trial-and-error methods. A fur-
ther problem is that the number of objective function evaluations FEconv that is
needed for convergence for one specific optimization problem may also be subject
to large variations due to the stochastic nature of DE. This statement holds for
many different implementations of DE as can be seen in [3, 4, 5, 7, 8, 9, 10]. Be-
cause real-world problems usually contain computationally expensive objective
and constraint functions it is imperative that unnecessary function evaluations
are avoided. Therefore, it is important to examine other alternatives for stopping
the execution of the DE algorithm besides termination after a fixed number of
function evaluations. In order to deal with the problem that is caused by fluctua-
tions of FEconv, the stopping criteria have to be able to detect when convergence
is reached. Thus, they have to react adaptively to the current state of an opti-
mization run. The stopping criteria have to ensure that the algorithm is executed
long enough to obtain convergence to the global optimum but without wasting
of computational resources.

Different mechanisms can be used for deriving conclusions about the current
state of an optimization run. In principle any phenomenon can be used that
exhibits a definite trend from the beginning to the end of an optimization run.
For instance both the improvement as well as the movement of individuals are
typically large in the beginning of an optimization run and both become small
when approaching convergence. Another example is the distribution of popula-
tion members as they are scattered throughout the search space initially but
usually converge to one point towards the end of an optimization run. Conse-
quently, each of these properties is basically usable for detecting convergence.

Any of the before-mentioned population characteristics like improvement,
movement and distribution can be used in various implementations for the cre-
ation of stopping conditions. Because the performance of different implementa-
tions is not necessarily similar, an extensive study analyzing their abilities will
be presented in this chapter. Conclusions will be derived about which mecha-
nisms are best suited to meet the demands of reliable stopping after convergence
to the optimum has been obtained without wasting of computational resources.

Besides the problem with fluctuations of FEconv, terminating after a fixed
number of function evaluations is also connected with the problem that a suitable
setting for parameter FEmax has to be found. Apparently, this kind of problem
is inherent to all stopping criteria because up to now no parameter-free stopping
criterion is known. The adaptive stopping criteria which will be presented in
this chapter are also associated with parameters which have to be chosen by the
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user. Interestingly, it will be shown in this work that standard settings which
can be used for a large range of optimization problems exist for some of them.
As a consequence, the application of these stopping criteria is easy for the user.

One problem in the field of optimization is that authors often use different sets
of test functions or different accuracies (for defining convergence to the optimum
as well as for the allowed constraint violation of equality constraints). Hence, it is
generally difficult to compare results. In contrast, a subset of a standardized well-
defined test set that was specified in [11] for the Special Session on Constrained
Real ParameterOptimization at the Congress on Evolutionary Computation 2006
(CEC06) is used in this work. The reason for using only a subset of the mentioned
test set is that for the examination of stopping criteria it is reasonable to use opti-
mization problems for which the employed algorithm is able to converge reliably,
meaning that convergence is obtained in every optimization run. In that case, the
evaluation of stopping criteria is simplified because a convergence rate of less than
100% can be considered to be a result of unsuitable stopping conditions. The per-
formance of the DE variant that is used in the present examination has already
been analyzed adhering to the demands of [11] in a former study [10]. Based on
this study, 16 out of 24 test functions have been selected for which a reliable con-
vergence behavior has been found in [10].

Based on the previous considerations, the remainder of this chapter is orga-
nized as follows: In Sect. 2 the specification of the Differential Evolution variant
that is used for the present examination is given. In Sect. 3 an overview about
stopping criteria is provided, including a discussion if they can also possibly be
used for other evolutionary algorithms besides DE. The description of experi-
mental settings in Sect. 4 specifies parameter settings of DE, parameter settings
of the stopping criteria and the performance measures that are applied in this
work. Results are discussed in Sect. 5, and Sect. 6 ends with conclusions about
the suitability of the presented stopping criteria for Differential Evolution.

2 Differential Evolution

In this section first the general process of Differential Evolution is described
before giving details about the variant that is used here. For DE the positions of
individuals are represented as real-coded vectors which are randomly initialized
inside the limits of the given search space in the beginning of an optimization run
(see Fig. 1). The individuals are evolved during the optimization run by applying
mutation, recombination and selection to each individual in every generation. A
stopping criterion determines after the building of every new generation if the
optimization run should be terminated.

In this work the Differential Evolution algorithm is used in the variant
DE/rand/1/bin [12]. This notation means that in the mutation process a ran-
domly chosen population member xr1 is added to one vector difference (also built
from two randomly chosen members xr2 and xr3 of the current population) where
xr1 , xr2 , xr3 and the so-called target vector xi are mutually different:

vi = xr1 + F · (xr2 − xr3) (1)
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Random initialization of individuals xi with 

i in {0,…,NP-1}

Mutation: Create vi for every i in {0,…,NP-1}

Recombination: Generate ui using vi and xi for 

every i in {0,…,NP-1}

Selection: Compare xi and ui and insert the better 

performing solution into the next generation

Stopping criterion reached?

no

Termination: Best individual is the solution

yes

Fig. 1. Flowchart of Differential Evolution

F is a control parameter of DE that is usually chosen from the interval [0, 1].
Best values are usually in the range [0.5, 0.9] as indicated in [13, 14, 15, 16].

Furthermore, the notation of the variant DE/rand/1/bin specifies that a
binomial recombination process is used that can be written as follows:

ui,j =

{
vi,j if randj ≤ CR or j = k

xi,j otherwise
(2)

Equation 2 generates the so-called trial vector ui by copying components from
the mutated vector vi and the target vector xi in dependence on a random
number randj ∈ [0, 1] that is compared to the control parameter CR (where
randj is chosen anew for each parameter in every generation). Good settings
for CR are typically close to one but for some functions also small values have
been reported to yield good results [13, 14, 15, 16]. Because during the selection
process the target vector and the corresponding trial vector will compete for a
place in the subsequent generation, it is ensured that ui �= xi by selecting at
least one component from the mutated vector vi. For this purpose the variable
k ∈ {0, . . . , D−1} (where D is the dimension of the optimization problem that
is equal to the number of objective function parameters) is randomly chosen for
every trial vector in each generation, and the k-th component of the trial vector
is copied from the mutated vector.
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Hence, four population members are involved in the creation of each trial
vector which leads to an adaptive scaling of step sizes because the magnitude of
the vector differences varies during the different stages of an optimization run.

Selection is a deterministic process in DE: The target vector and the trial
vector are compared to each other, and the one with the lower objective func-
tion value (for minimization problems like in this work) is inserted into the
next generation. Because this selection scheme allows only improvement but not
deterioration of the objective function value, it is called greedy [14]. A further
characteristic of the DE selection process is that the best objective function value
cannot get lost when moving from one generation to the next. This property is
called elitist, and it is usually associated with fast convergence behavior [6].

Mutation, recombination and selection is applied to every population member
xi with i ∈ {0, . . . , NP−1} in each generation where NP specifies the population
size that has to be adjusted by the user. The fact that the evolutionary operators
are applied to every population member is a property that distinguishes DE from
several other evolutionary algorithms which often select only a subset of the
population for mating [17]. In that case, individuals with better characteristics
generally have better chances to reproduce, resulting in a possible increase of
the convergence speed but also in loss of diversity. Because DE already generates
enough convergence pressure by using an elitist selection procedure, diversity is
emphasized by allowing each individual to generate offspring.

Differential Evolution has originally been developed for unconstrained single-
objective optimization. Hence, a method for constraint-handling has to be added
if constrained optimization problems should be solved like in this work. Several
different constraint-handling approaches have been suggested in the literature
[4, 5, 6]. In this work a method is employed that is widely used because it is simple
but effective. It does not change the mutation and recombination processes of
DE but only modifies selection in the following way:

• Feasible individuals (meaning individuals that fulfill all constraints) are
favored over infeasible individuals.

• In the comparison of two infeasible individuals the one with the lower sum
of constraint violation wins.

• The original selection method is used in the comparison of two feasible indi-
viduals.

Using this approach the search is guided to feasible regions of the search space
by preferring individuals with lower or no constraint violation. This technique
is easy to use because no additional parameters have to be set. With a small
modification it can also be used for multi-objective optimization [18].

Boundary constraints are treated as a special case of constraint functions
here because especially for real-world problems it may be crucial that individ-
uals stay inside certain boundaries. A position that exceeds a limit is reset to
the middle between old position and boundary, so the boundary is approached
asymptotically [19]:
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ui,j,G+1 =

⎧⎪⎨
⎪⎩

1
2 (xi,j,G + Xmax,j) if ui,j,G+1 > Xmax,j

1
2 (xi,j,G + Xmin,j) if ui,j,G+1 < Xmin,j

ui,j,G+1 otherwise
(3)

where Xmax,j is the upper limit and Xmin,j is the lower limit for the j-th
parameter, and Eq. 3 is given for the i-th individual in generation G.

3 Stopping Criteria

The stopping criteria which are used in this work are grouped into three classes:

• Improvement-based criteria,
• movement-based criteria and
• distribution-based criteria.

In the following several implementations of stopping criteria based on mon-
itoring improvement, movement and distribution are summarized. Most of the
stopping criteria that are presented here have already been used for DE [20, 21].
Additionally, for one of them a generalization is newly introduced here because
it has been indicated elsewhere [22] that the generalized criterion may exhibit
improved behavior over the special case that was formerly used. Many of the
stopping criteria that are examined in this work can also be employed for other
evolutionary algorithms but it was shown that the performance is not neces-
sarily equal [20, 22]. This conclusion is also reached in [23] where it is stated
that the effectiveness of a stopping criterion is closely related to the procedure
of a certain optimization strategy and not automatically transferable to other
algorithms. Therefore, in the following description of stopping criteria references
are added, if available, in which other context or for which other optimization
algorithm the stopping criteria can be used also.

Every criterion that is presented here includes one or two specific parameters
which have to be set by the user. This property seems to be inherent to all
stopping criteria because even if a problem with known optimum is used and
termination is done when the optimum is found, the accuracy has to be set by
the user. Similarly, parameter FEmax has to be set when criterion LimFuncEval
is employed. Usually, no general guidelines can be given for the setting of FEmax

but the adaptive stopping criteria do not necessarily have this property as will
be shown in this work.

3.1 Improvement-Based Criteria

If the improvement of the objective function value decreases to a small value
for some time, it can be assumed that convergence has been obtained. Because
improvement can be measured in different ways, three conditions are examined
here:

• ImpBest : The improvement of the best objective function value of each gen-
eration is monitored. If it falls below a user-defined threshold t for a number
of generations g, the optimization run will be terminated.
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A similar approach is also discussed in [24] for Particle Swarm Optimiza-
tion (PSO) and furthermore in [25] to determine a suitable switch-over point
from a Genetic Algorithm to a local optimization technique.

• ImpAv : Because the best objective function value might not correctly reflect
the state of the whole population, the average improvement computed from
the whole population is examined for this criterion. Similar to ImpBest, an
optimization run is terminated if the average improvement is below a given
threshold t for g generations.

This criterion is also used in [26] to stop a local search procedure that is
embedded in a Genetic Algorithm. For the same purpose similar criteria as
ImpBest and ImpAv are also employed in [27].

• NoAcc: Because DE incorporates a greedy selection scheme, the acceptance
of trial vectors means that there is improvement in the population. Based
on this fact, it is monitored if still trial vectors have been accepted in a
specified number of generations g, and the optimization run is terminated if
this condition is violated.

NoAcc has the advantage that only one parameter has to be set whereas all
other stopping conditions that are presented here require the setting of two
parameters. However, in contrast to the other improvement-based criteria,
it is specific to the functionality of DE and may not be assignable to other
evolutionary algorithms. For PSO NoAcc can be adapted by observing if new
personal best positions have been found in a predefined number of generations
but in [22] the performance of this criterion was poor.

NoAcc is also described for DE in [6], and it is recommended to set g
not too low because long periods without improvement may occur during
optimization runs.

3.2 Movement-Based Criteria

In the beginning of an optimization run the individuals are randomly scattered in
the search space, and large step sizes are generated in mutation and recombina-
tion. Towards the end of an optimization run the population generally converges
to one point in the search space. Thus, step sizes become small because of the
adaptive scaling of DE. As a result, the movement of individuals in parameter
space can also be used to derive a stopping criterion (parameter space means
that the positions of the individuals are regarded while objective space refers to
the objective function values of the individuals):

• MovPar : If the average movement of the population members is below a
threshold t for a given number of generations g, the optimization run is
terminated.

MovPar is also usable for other evolutionary algorithms with real-coded
variables. It might be possible to adapt it also for binary-coded individuals
if a suitable distance measure can be found. Moreover, stopping criteria like
this are used in classical optimization algorithms like hill climbing techniques
[23].
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Movement can also be measured in objective space but because of the greedy
selection scheme of DE, the objective function value can only improve but not
deteriorate. Therefore, a stopping criterion based on movement in objective
space would be equal to an improvement-based criterion. In contrast, a cri-
terion MovObj could be used for other evolutionary algorithms which permit
deterioration of objective function values:

• MovObj : If the average movement of the population members in objective
space is below a threshold t for g generations, the optimization run is stopped.

3.3 Distribution-Based Criteria

In single-objective optimization DE individuals usually converge to one point
in the search space towards the end of an optimization run. As a result, the
distribution of individuals can be used to derive conclusions about the state of
an optimization run. Several possibilities exist to measure the distribution of
individuals. One of the easiest alternatives is the following:

• MaxDist : The maximum distance of any population member to the individual
with the best objective function value is monitored in parameter space. If it
falls below a threshold m, the optimization run will be terminated.

A similar criterion is also discussed in [24] for PSO.

If the positions of all population members should be regarded instead of ob-
serving only the maximum distance to the best individual, the following stopping
criterion can be used:

• StdDev : The standard deviation of positions of all population members is
examined. The optimization run is stopped if it drops below a given threshold
m.

In [28] a similar criterion is also used for DE.

Especially for Particle Swarm Optimization it has been shown that a gener-
alization of MaxDist has advantages [20, 22]:

• MaxDistQuick : Instead of examining the maximum distance of all population
members to the current best individual, only a subset of the current popu-
lation is used. For this purpose, the population members are sorted due to
their objective function value using a Quicksort algorithm, and only for the
best p% of the population it is checked if their distance is below a threshold
m. Because a feasible solution is wanted, it is also checked if the best p% of
the individuals are feasible.

MaxDist can be derived from MaxDistQuick by setting p to 100%.

In [22] it was concluded for PSO that it might be beneficial if a general-
ization of StdDev is also examined because it was shown that the generalized
criterion MaxDistQuick has advantages over the special case MaxDist. StdDev
and MaxDist rely on similar mechanisms, so it can be expected that the perfor-
mance of a generalized criterion might also be better for StdDev. Consequently,
the following criterion is newly introduced here:
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• StdDevQuick : Similar to MaxDistQuick, the population is first sorted due
to their objective function value using a Quicksort algorithm. The standard
deviation of positions is then calculated for the best p% of the population
and compared to the user-defined threshold m. Again, it is also examined if
the best p% of the individuals are feasible.

Similar to the relationship between MaxDist and MaxDistQuick, StdDev
is a special case of StdDevQuick with p = 100%.

Because MaxDist and StdDev are special cases of MaxDistQuick and StdDev-
Quick, respectively, only the generalizations MaxDistQuick and StdDevQuick are
regarded in the following.

All distribution-based criteria that have been mentioned so far are calculated
in parameter space. Another possibility to evaluate the distribution of the pop-
ulation members is to regard objective space:

• Diff : The difference between best and worst objective function value in a
generation is checked if it is below a given threshold d. Furthermore, it is
demanded that at least p% of the individuals are feasible because otherwise
Diff could lead to early termination of an optimization run if e.g. only two
individuals are feasible and they are close to each other by chance but the
population has not converged yet.

A similar implementation of this criterion without parameter p is de-
scribed in [6, 23] and also used in [29] (interestingly, it will be shown in
the following that the results of the present examination indicate that the
performance of Diff is independent from p so it may be omitted). It is rec-
ommended in [6] to set d to a value that is several orders of magnitude lower
than the desired accuracy of the optimum.

No DE-specific information is used for the distribution-based criteria so in
principle they can be used for other algorithms also. However, if another repre-
sentation than real-coded vectors is used for the positions of the individuals, the
distribution-based criteria in parameter space will have to be adapted.

3.4 Combined Criteria

Because functions have different features it can be concluded that a combination
of different stopping criteria may result in good performance. For example an
criterion like Diff that is easy to check can be tested first. Because the first
criterion might fail for certain characteristics of the objective function (e.g. it
was shown in former work [20] that Diff fails for functions with a flat surface),
a second criterion that is based on another mechanism might be evaluated after
the stopping condition of the first criterion has been fulfilled. In former work the
following combined criteria were tested:

• ComCrit : First, the improvement-based criterion ImpAv is evaluated. If ImpAv
indicates that the optimization run should be stopped, the distribution-based
criterion MaxDist is regarded additionally. ComCrit was examined in [20, 21]
for DE and also in [22] for PSO.
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• Diff MaxDistQuick : In this case, distribution-based criteria in objective and
parameter space were joined (Diff and MaxDistQuick) so that MaxDistQuick
is only checked if the stopping condition of Diff has been fulfilled. Up to now
this criterion has only been applied for PSO in [22].

In all former examinations the combined criteria always needed more function
evaluations for detecting convergence than the individual criteria. Furthermore,
selecting appropriate parameter settings was complicated because three param-
eters have to be set for each stopping criterion in contrast to one or two param-
eters for the individual criteria, respectively. Moreover, the connection between
parameter settings and problem features like desired accuracy was obliterated.
Because of these disadvantages, combined criteria are not considered further in
this work.

4 Experimental Settings

To be able to derive general conclusions about the suitability of stopping crite-
ria for a broad range of optimization problems, 16 test functions are used here.
They are chosen from the standardized test set that was used in the Special
Session on Constrained Real Parameter Optimization at the Congress on Evo-
lutionary Computation 2006. The test set originally consists of 24 constrained
single-objective test functions (g01–g24) but this work concentrates on the func-
tions for which a convergence rate of 100% has been found in former work [10]
for the same algorithm with the same parameter settings (F = 0.7, CR = 0.9,
NP = 50). In this case, the analysis of stopping criteria is simplified because
performance variations concerning the convergence rate can be accredited to
the unsuitability of stopping criteria. Because of these considerations, functions
g02, g03, g13, g17, g20, g21, g22 and g23 are omitted here. Nevertheless, the re-
maining functions permits extensive testing of stopping criteria because a broad
spectrum of different features is represented by them:

• Dimensionality,
• type of function,
• ratio of feasible space to the whole search space,
• linear and nonlinear inequality and equality constraints,
• active constraints at the optimum (meaning that the optimum is located at

the boundary of one or more constraints) and
• disconnected feasible regions.

Because the exact definition of the test functions has been shown in several
works, it is not repeated here as it takes a lot of space. Instead, the interested
reader should refer to [11, 30, 31, 32], while some general information is also
given in Table 1. In Table 1 ρ = |F|

S specifies the estimated ratio of feasible
space to the whole search space. The following four columns of Table 1 give
information about the number and type of constraints: LI is the number of linear
inequality constraints, NI is the number of nonlinear inequality constraints, LE
is the number of linear equality constraints and NE is the number of nonlinear
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Table 1. Details of the test functions (from [10] and [11])

Problem D Type of function ρ LI NI LE NE a Median FEs in [10]

g01 13 quadratic 0.0111% 9 0 0 0 6 32996
g04 5 quadratic 52.1230% 0 6 0 0 2 16166
g05 4 cubic 0.0000% 2 0 0 3 3 105780
g06 2 cubic 0.0066% 0 2 0 0 2 7198
g07 10 quadratic 0.0003% 3 5 0 0 6 93752
g08 2 nonlinear 0.8560% 0 2 0 0 0 1091
g09 7 polynomial 0.5121% 0 4 0 0 2 25602
g10 8 linear 0.0010% 3 3 0 0 6 120624
g11 2 quadratic 0.0000% 0 0 0 1 1 14993
g12 3 quadratic 4.7713% 0 1 0 0 0 5398
g14 10 nonlinear 0.0000% 0 0 3 0 3 68147
g15 3 quadratic 0.0000% 0 0 1 1 2 51619
g16 5 nonlinear 0.0204% 4 34 0 0 4 11522
g18 9 quadratic 0.0000% 0 13 0 0 6 80322
g19 15 nonlinear 33.4761% 0 5 0 0 0 176127
g24 2 linear 79.6556% 0 2 0 0 2 3067

equality constraints. Besides, the number of active constraints at the optimum is
given by a. Table 1 also gives information about the median number of function
evaluations that have been needed for convergence for the same algorithm in
former work [10] because it will be shown that the behavior of some stopping
criteria is dependent on it.

Each stopping criterion includes one or two parameters. The parameter set-
tings that are examined in this work are given in Table 2. For every parameter
combination and each test function 100 independent runs are conducted. In the
CEC06 special session 500,000FEs were allowed for solving each optimization
problem [11], so a maximum number of FEmax = 500, 000 is used in connection
with each stopping criterion to terminate the optimization run if the stopping
criterion is not able to do it. However, an optimization run that is stopped at
500,000FEs is considered as unsuccessful. In successful runs the execution of the
algorithm must be stopped before reaching 500,000FEs, and the optimum must
be located with an accuracy of 10−4 as it was required in [11] for the CEC06
special session (naturally, the solution must also be feasible where the allowed
remaining constraint violation for equality constraints is 10−4 as in [11]).

Two aspects are important for the assessment of the performance of stopping
criteria:

• Has convergence been achieved i.e. has the optimum been reached with the
desired accuracy before the algorithm was terminated?

• How fast was the termination i.e. how many function evaluations were done
after convergence has been reached?
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Table 2. Parameter settings for the stopping criteria

Criterion Parameter Start Stop Modifier
value value

ImpBest t 1e-2 1e-6 · 1e-1
g 5 20 + 5

ImpAv t 1e-2 1e-6 · 1e-1
g 5 20 + 5

NoAcc g 1 5 + 1
MovPar t 1e-2 1e-6 · 1e-1

g 5 20 + 5
MaxDistQuick m 1e-2 1e-5 · 1e-1

p 0.1 1.0 + 0.1
StdDevQuick m 1e-2 1e-5 · 1e-1

p 0.1 1.0 + 0.1
Diff d 1e-1 1e-6 · 1e-1

p 0.1 1.0 + 0.1

The first performance measure is evaluated by computing the percentage of
successful runs out of 100 independent optimization runs. Clearly, the first per-
formance measure is more important than the second here because fastness is
irrelevant if convergence is not obtained. Given that a sufficient convergence rate
has been achieved, the second performance measure also provides important in-
formation about the abilities of stopping criteria. It is examined by calculating
the additional computational effort FEstop−FEconv

FEconv
: The difference between the

number of function evaluations at which the execution of the algorithm is ter-
minated (FEstop) and the number of function evaluations at which convergence
is achieved for the first time (FEconv) is computed and the result is divided by
FEconv. Thereby, the additional computational effort is normalized because the
test problems require very different amounts of FEs for convergence. For both
performance measures the median is calculated for each function (the median is
preferred instead of the average that is often used in the literature because it is
more robust to outliers).

Due to the high amount of data that has been collected for this examination,
only general results can be visualized instead of going into detail. Therefore, box
plots of the number of successful runs and the additional computational effort
will be shown that provide a concise overview over the performance for all 16
optimization problems. Hence, performance over a large range of functions can
be easily evaluated for each combination of parameter settings of the stopping
criteria from Table 2.

Naturally, different parameter settings of stopping criteria are required if the
demanded accuracy of the result is varied. As a consequence, all examinations
are repeated with an accuracy of ε = 10−2 in order to make comparisons with
the formerly used accuracy of ε = 10−4 that was specified in [11]. Because the
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visualization of results takes a lot of space, the results for ε = 10−2 will only be
summarized qualitatively in the text.

5 Results

In this section the results based on the experimental settings discussed in the
previous section are shown for each stopping criterion.

5.1 Criterion ImpBest

Criterion ImpBest has a very bad performance (see Fig. 2). For many functions
the DE algorithm is stopped too early so the convergence rate is low. Only for
g08, g16 and g24 a rather high convergence rate has been achieved for certain
parameter settings (visible in Fig. 2 as outliers in the box plots). When searching
for commonalities of functions with a good performance, it is noticeable that
function g08 for which the best results have been achieved needs the least amount
of function evaluations for convergence of all functions (see Table 1). g16 and
g24 also belong to the functions which can be optimized with a comparably low
amount of function evaluations. With ε = 10−2 the convergence rate improves
for several functions but again only for functions which need a low amount
of function evaluations for convergence (e.g. g01, g06, g11, g12). Therefore, the
conclusion can be derived that ImpBest can only be used for functions which can
be optimized with low computational effort. However, obviously this property is
not sufficient because a poor performance concerning convergence rate is yielded
for several functions which can be optimized using few function evaluations.

Concerning the additional computational effort, a moderate result has been
achieved when compared to the performance of other stopping criteria. Naturally,
the additional computational effort is always higher if ε = 10−2 is used with the
same parameter settings of stopping criteria, respectively, because convergence
is obtained earlier.

When analyzing the dependence of the convergence rate and the additional
computational effort on parameter settings, it can be noticed that both slightly
increase with decreasing improvement threshold t and increasing number of gen-
erations g. In general, results are very different for different functions, so it is
not obvious how parameter settings should be chosen.

Mainly because of its bad results concerning convergence rate, ImpBest can-
not be regarded as a reliable stopping criterion. Moreover, the applicability of
ImpBest is complicated because of the difficulty that is connected with choosing
parameter settings. Former work on stopping criteria for DE also supports this
conclusion [20, 21].

5.2 Criterion ImpAv

Criterion ImpAv shows a better performance than ImpBest but again the al-
gorithm is constantly terminated too early for many functions (see Fig. 3). For
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Fig. 2. Results for criterion ImpBest
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Fig. 3. Results for criterion ImpAv
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ε = 10−4 the functions with better performance share the same property as for
ImpBest which is that a relatively small number of function evaluations is needed
for convergence. For ε = 10−2 this property is less pronounced, and there are
only two functions left for which convergence is never reached before termination
of the algorithm (g04 and g10).

Again, it is difficult to choose parameter settings because results differ for the
functions, and no commonalities are visible. Generally, a definitive dependence
of the performance on the threshold of improvement t can be seen where the
convergence rate improves and the additional computational effort degrades for
decreasing values of t. There is also a small difference in performance for varying
numbers of generations g as the convergence rate and the additional computation
effort slightly increase for higher settings of g. A similar result is also shown
in [21] where the performance varies considerably for different settings of the
parameters.

The additional computational effort is in moderate range for ε = 10−4, sim-
ilar as for ImpBest, but it increases dramatically for ε = 10−2 with the same
parameter settings, respectively.

Summing up, ImpAv cannot be regarded as a reliable stopping criterion, nei-
ther: No general guidelines for parameter settings can be given, and furthermore
there are other criteria that result in faster detection of convergence. As a result,
the use of ImpAv cannot be recommended.

5.3 Criterion NoAcc

For NoAcc mostly high convergence rates have been achieved, especially for
high settings of the number of generations without improvement g (see Fig. 4).
Unfortunately, especially for functions that can be optimized with a low amount
of function evaluations like g08, g16 and g24 the additional computational effort
is very high (see Fig. 4). There are several functions for which high convergence
rates have already been reached for g = 1 (g06, g08, g24) but there are also
functions for which even with parameter setting g = 5 no reliable detection of
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convergence can be achieved. For ε = 10−2 the convergence rates become higher
but there are still two functions for which the convergence rate is only moderate
(g18 and g19).

Although NoAcc has the advantage that it only incorporates one parameter,
its reliability is limited because it may not be easy to set parameter g as the
results concerning convergence rate vary for different functions. The additional
computational complexity also reaches considerable magnitude for NoAcc, espe-
cially for ε = 10−2. In former work NoAcc has shown a good performance [21]
but failed for a function with a flat surface [20].

In summary, NoAcc has the advantages that it incorporates only one parame-
ter, and moreover it is easy to check as only the number of accepted trial vectors
has to be counted. Nevertheless, it cannot be recommended without hesitation
because suitable settings of parameter g vary for different functions, and the
additional computational effort is very high for several functions. Additionally,
parameter g cannot take values smaller than 1 but even this setting leads to
a high additional computational effort for several functions. The missing possi-
bility of scaling to lower values which would lead to earlier termination of the
algorithm may be unfavorable.

5.4 Criterion MovPar

The convergence rate of criterion MovPar is dependent on both the threshold of
improvement t and the number of generations g (see Fig. 5). For small settings
of t and large settings of g convergence rates of 100% have been found for most
functions. Exceptions are g01, g04 and g06 but it is not clear which property is
the determining factor because the characteristics of these functions are quite
dissimilar. In contrast, for ε = 10−2 convergence rates of 100% are found for all
functions if parameter settings g = 20 and t ≤ 10−5 are used.

Concerning the additional computational effort, mostly moderate performance
is shown with ε = 10−4, but it reaches a considerable size for few outliers (g08
and g18). Again, it increases strongly for ε = 10−2 with the same parameter
settings.

Similar as for ImpBest and ImpAv, determination of suitable settings for the
parameters is not easy which can also be seen in former work [21]. In the present
examination mostly settings of t ≤ 10−5 and g ≥ 10 yielded good results.

To sum up, it can be stated that MovPar yields better results than ImpBest
and ImpAv here, but there are still a few functions where no reliable convergence
behavior was observed for ε = 10−4. It can be argued that different parameter
settings may result in better convergence rates but it must also be considered
that the additional computational effort becomes large for some functions. As a
consequence, MovPar cannot be recommended as a stopping criterion for DE.

5.5 Criterion MaxDistQuick

MaxDistQuick achieved very good results in former work on stopping criteria
for DE [20, 21] but with the broad set of functions that is used in this work the
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Fig. 5. Results for criterion MovPar
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Fig. 6. Results for criterion MaxDistQuick
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evaluation of its performance is not that clear (see Fig. 6). For several functions
convergence rates of 100% have been reached but for other functions no parame-
ter settings have resulted in good convergence behavior (g04, g06, g18). For g18
this is still the case for ε = 10−2. In contrast, convergence rates of 100% could
be obtained for all other functions with ε = 10−2 if proper parameter settings
are used.

For most functions the convergence rate slightly increases for growing p if m
is large, but for small m the opposite effect can be seen as the convergence rate
decreases for increasing p in this case. This is due to the fact that with a small
setting of m convergence is often not detected before reaching the maximum
number of function evaluations which leads to a decrease of convergence rate.
Hence, for several functions convergence rates of 100% are already reached for
m = 10−2 (g05, g08, g10, g12, g16) but e.g. for g05 and g10 it is decreased for
m = 10−5.

The additional computation effort mostly shows a good or at least moderate
performance (see Fig. 6). There is only one outlier that is caused by g18 because
the global optimum is always found a long time before all population members
have converged to the required distance from the optimum, so in that case a
larger setting of m would be required. For other functions generally an increase
of the additional computational effort can be seen for decreasing m.

In summary, MaxDistQuick is an interesting criterion that leads to reliable
termination of the DE algorithm when proper parameter settings have been
found. Thus, some test runs will be necessary when applying MaxDistQuick,
similar as for LimFuncEval.

5.6 Criterion StdDevQuick

For StdDevQuick similar results are obtained as for MaxDistQuick (see Fig. 7).
This outcome was expected because both stopping criteria rely on similar mech-
anisms. Nevertheless, there are some differences: As it was also noticed for
MaxDist and StdDev in former work [21], generally the setting of m has to
be lower for StdDevQuick to yield the same convergence rate as for MaxDist-
Quick, so the results are often shifted. There are two functions (g06, g18) for
which even with ε = 10−2 no satisfactory convergence rate has been achieved.
For ε = 10−4 three other functions also yielded bad performance (g01, g04 and
g15).

For the development of the convergence rate as well as for the additional com-
putational effort, the same general dependence on parameter settings was seen as
for MaxDistQuick. The outlier that can be seen in the additional computational
effort in Fig. 7 is again caused by g18.

Recapitulating, it can be stated that although the results are shifted in con-
trast to MaxDistQuick, the same conclusions can be derived which are that
reliable detection of convergence is obtained if suitable parameter settings are
used, but the proper settings may be different for varying functions.
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Fig. 9. Results for criterion Diff (continued)

5.7 Criterion Diff

The results of Diff are the most promising ones of this examination (see Fig. 8
and 9). Convergence rates of 100% have been achieved for all functions when the
difference threshold is set to d ≤ 10−5 which is exactly one order of magnitude
smaller than the demanded accuracy of ε = 10−4. For ε = 10−2 a similar result
is obtained as convergence rates of 100% have been achieved for all functions
with d ≤ 10−3 which is again one order of magnitude smaller than the desired
accuracy. It can be concluded that choosing suitable settings of parameter d is
an easy task because a connection to the demanded accuracy can be made.

For parameter p that denotes the percentage of the population that is de-
manded to be feasible, no dependence can be noticed, neither regarding conver-
gence rate nor regarding the additional computational effort. Thus, parameter
p can be omitted for criterion Diff. In this case, the number of parameters for
Diff is reduced from two to one, contributing to its simplicity.

The additional computation effort is relatively low when compared to the
results of other stopping criteria (see Fig. 8 and 9) which is also an advantage
of Diff.

One limitation of Diff is that it yields bad results when an optimization
problem contains an objective function with a flat surface, meaning that the
same objective function value is yielded for a large subset of the search space
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[20]. Fortunately, it can be argued that this is a special case that rarely occurs.
Moreover, it can be discovered easily when the optimization run is monitored,
so in that case another stopping criterion could be employed. Otherwise, the
performance of Diff was also good in former work [21].

In summary, Diff has led to the best results of the stopping criteria that
were examined here because all functions could be successfully terminated. Ad-
ditionally, parameter p can be omitted completely as no dependence on it could
be found. Choosing of parameter d is also simple because the results of this
work indicate that it is sufficient to set it to one order of magnitude lower than
the desired accuracy. Moreover, the results of Diff concerning the additional
computational effort are good in contrast to other stopping criteria.

6 Conclusions

In this chapter stopping criteria have been presented that react adaptively to
the state of an optimization run by considering the improvement, movement
or distribution of population members. The use of adaptive stopping criteria
was motivated by the fact that they could help to avoid the unnecessary high
computational effort that is usually associated with stopping after a preassigned
fixed number of function evaluations because of variations in the number of
function evaluations that are needed for convergence. This approach is mainly
intended for real-world problems because in this case normally the optimum is
unknown.

The best results were yielded by criterion Diff that can be classified as a
distribution-based criterion in objective space as it terminates an optimization
run if the difference between best and worst objective function value in the cur-
rent generation has fallen below a given threshold d. This work has shown that
the setting of d is linked with the desired accuracy of the result, so choosing a
suitable parameter setting for d is simple. The second parameter p that corre-
sponds to the demanded feasible percentage of the population can be omitted
completely as no dependence on it could be seen. The only limitation of Diff was
revealed in former work where Diff failed for a function with a flat surface [20].
However, this property can be detected easily when observing an optimization
run so this limitation is not grave.

The results for other stopping criteria were not as distinct as for Diff. Two
distribution-based criteria in parameter space were examined that terminate an
optimization run if the maximum distance of a specified subset of the population
to the best population member (MaxDistQuick) or the standard deviation of a
subset of population members (StdDevQuick) is below a user-defined threshold
m, respectively. Most functions could be successfully terminated in reasonable
time but the parameter settings that yielded these results varied for different
functions. There are few functions for which none of the examined parameter
settings were able to induce convergence rates of 100% (even with a decreased
demanded accuracy of ε = 10−2) but it is assumed that higher settings of m
might result in better performance for these functions.
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Apart from distribution-based stopping criteria, also a movement-based cri-
terion in parameter space MovPar was examined that induces termination of
an optimization run if the movement of the individuals in parameter space falls
below a given percentage t in a predefined number of generations g. For three
functions bad results concerning the convergence rate were found regardless of
parameter settings for an accuracy of ε = 10−4 while for the decreased accuracy
of ε = 10−2 all functions could be successfully terminated after convergence has
been obtained. It can be concluded that the criterion is basically able to stop
optimization runs reliably if suitable parameter settings have been found.

Two implementations of improvement-based criteria yielded the worst results
of this examination, where criterion ImpBest that observes the improvement of
the best objective function value is yet worse than criterion ImpAv that monitors
the improvement averaged over all individuals. For many functions no conver-
gence rates of 100% could be found so these criteria cannot be considered as
reliable, and furthermore choosing of parameter settings is not easy.

A third improvement-based criterion NoAcc was based on the number of gen-
erations g in which no trial vector has been accepted. Problems occurred because
parameter g has to be different for varying functions in order to give good per-
formance. Particularly, the missing scalability to values smaller than 1 may lead
to high additional computational effort for certain optimization problems. If
suitable settings for g can be found, NoAcc shows reliable performance.

It should be noted that although a large test set that contains a broad range
of functions was used here, still optimization problems may exist for which the
obtained conclusions do not hold. However, it is expected that at least similar
behavior will be found in these cases.

Most of the stopping criteria that are described in this work can also be used
for other evolutionary algorithms besides DE but it has to be noted that the
performance may be different as it was shown for Particle Swarm Optimization
in former work [20, 22]. It would be interesting to try the stopping criteria also
for other optimization algorithms in future work.

The stopping criteria presented in this chapter are mainly designated for
real-world problems with unknown optimum because for optimization problems
with known optimum other good alternatives exist for terminating an optimiza-
tion run. Only single-objective optimization was addressed yet but real-world
problems often contain multiple objectives, thus future work must include the
development of reliable stopping criteria for multi-objective optimization. Unfor-
tunately, the situation is more difficult in multi-objective optimization because
usually optimization goals are contradicting. Thus, not one single optimal point
exists but several trade-off solutions which are usually called the Pareto-optimal
front [17].

As a consequence, it is not easy to detect convergence even if the Pareto-
optimal front is known. It was shown here that distribution-based criteria pro-
vide the best results for single-objective optimization, but for multi-objective
problems with unknown Pareto-optimal front this concept will be generally not
transferable because usually multiple Pareto-optimal solutions exist. Monitoring
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the movement of individuals may also lead to false conclusions because the indi-
viduals may still move along the Pareto-optimal front after the population has
converged to it. If the improvement of individuals should be taken as basis for
stopping criteria, the problem arises how to define improvement in the presence
of several objectives.

Apart from the mechanisms presented in this work, there are some concepts
inherent in multi-objective optimization which may also possibly be exploited
for the definition of stopping conditions. For instance, a stopping criterion based
on the observation of crowding distance was tested in [33]. A further possibility
is to monitor the improvement of performance measures like hypervolume [17].
Because multi-objective optimization is a research topic that is currently dis-
cussed intensively in the evolutionary algorithms community and its importance
can still be expected to grow in the following years, this is an interesting field
for future work.
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Summary. In this chapter, the improved ε constrained differential evolution (εDE) is
proposed to solve constrained optimization problems with very small feasible region,
such as problems with equality constraints, efficiently. The εDE is the combination of
the ε constrained method and differential evolution. In general, it is very difficult to
solve constrained problems with very small feasible region. To solve such problems,
static control schema of allowable constraint violation is often used, where solutions
are searched within enlarged region specified by the allowable violation and the region
is reduced to the feasible region gradually. However, the proper control depends on the
initial population and searching process. In this study, the dynamic control of allowable
violation is proposed to solve problems with equality constraints efficiently. In the εDE,
the amount of allowable violation can be specified by the ε-level. The effectiveness of
the εDE with dynamic ε-level control is shown by comparing with the original εDE
and well known optimization method on some nonlinear constrained problems with
equality constraints.

1 Introduction

Constrained optimization problems, especially nonlinear optimization problems,
where objective functions are minimized under given constraints, are very im-
portant and frequently appear in the real world. In this study, the following
optimization problem (P) with inequality constraints, equality constraints, up-
per bound constraints and lower bound constraints will be discussed.

(P)minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . , q

hj(x) = 0, j = q + 1, . . . , m
li ≤ xi ≤ ui, i = 1, . . . , n,

(1)

where x = (x1, x2, · · · , xn) is an n dimensional vector, f(x) is an objective
function, gj(x) ≤ 0 and hj(x) = 0 are q inequality constraints and m − q
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equality constraints, respectively. Functions f, gj and hj are linear or nonlinear
real-valued functions. Values ui and li are the upper bound and the lower bound
of xi, respectively. Also, let the feasible space in which every point satisfies all
constraints be denoted by F and the search space in which every point satisfies
the upper and lower bound constraints be denoted by S (⊃ F).

There exist many studies on solving constrained optimization problems using
evolutionary algorithms[1] and particle swarm optimization[2]. These studies can
be classified into several categories according to the way the constraints are
treated as follows:

(1) Constraints are only used to see whether a search point is feasible or
not[3]. In this category, the searching process begins with one or more feasible
points and continues to search for new points within the feasible region. When a
new search point is generated and the point is not feasible, the point is repaired
or discarded. In this category, generating initial feasible points is difficult and
computationally demanding when the feasible region is very small. It is almost
impossible to find initial feasible points in problems with equality constraints.

(2) The constraint violation, which is the sum of the violation of all constraint
functions, is combined with the objective function. The penalty function method
is in this category[4]. In the penalty function method, an extended objective func-
tion is defined by adding the constraint violation to the objective function as a
penalty. The optimization of the objective function and the constraint violation
is realized by the optimization of the extended objective function. The main dif-
ficulty of the penalty function method is the difficulty of selecting an appropriate
value for the penalty coefficient that adjusts the strength of the penalty.

(3) The constraint violation and the objective function are used separately.
In this category, both the constraint violation and the objective function are op-
timized by a lexicographic order in which the constraint violation precedes the
objective function. Takahama and Sakai proposed the α constrained method[5, 6]
and the ε constrained method[7], which adopt a lexicographic ordering with re-
laxation of the constraints. Deb[8] proposed a method in which the extended
objective function that realizes the lexicographic ordering is used. Runarsson
and Yao[9] proposed the stochastic ranking method in which the stochastic lex-
icographic order, which ignores the constraint violation with some probability,
is used. These methods were successfully applied to various problems.

(4) The constraints and the objective function are optimized by multiobjective
optimization methods. In this category, the constrained optimization problems
are solved as the multiobjective optimization problems in which the objective
function and the constraint functions are objectives to be optimized[10, 11, 12].
But in many cases, solving multiobjective optimization problems is a more dif-
ficult and expensive task than solving single objective optimization problems.

In this study, the improved ε constrained differential evolution (εDE), is pro-
posed to solve constrained optimization problems with very small feasible region,
such as problems with equality constraints, efficiently. The εDE is the combina-
tion of the ε constrained method and differential evolution. The ε constrained
methods can convert algorithms for unconstrained problems to algorithms for
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constrained problems using the ε-level comparison, which compares the search
points based on the constraint violation of them. The ε constrained method is in
the promising category (3) and is proposed based on the α constrained method.
The α constrained method was applied to Powell’s direct search method in [5, 6],
the nonlinear simplex method by Nelder and Mead in [13, 14, 15], a genetic
algorithm (GA) using linear ranking selection in [16, 17] and particle swarm
optimization (PSO) in [18]. The ε constrained method was applied to PSO in
[7, 19, 20], GA in [21] and differential evolution (DE)[22, 23].

In general, it is very difficult to solve constrained problems with very small
feasible region. To solve such problems, static control schema of allowable con-
straint violation is often used, where solutions are searched within enlarged re-
gion specified by the allowable violation and the region is reduced to the feasible
region gradually. However, the proper control depends on the initial population
and searching process. It is very difficult to decide the control beforehand. In
this study, the dynamic control of allowable violation is proposed to solve prob-
lems with equality constraints efficiently. In the εDE, the amount of allowable
violation can be specified by the ε-level. The effectiveness of the εDE with dy-
namic ε-level control is shown by comparing with the εDE with static control
and well known optimization method on some nonlinear constrained problems
with equality constraints.

The rest of this chapter is organized as follows: Section 2 describes the ε
constrained method briefly. Section 3 describes the improved εDE by introducing
dynamic control of the ε-level. Section 4 presents experimental results on various
benchmark problems discussed in [9]. Comparisons with the results in [9] are
included in this section. Finally, Section 5 concludes with a brief summary of
this chapter and a few remarks.

2 The ε Constrained Method

2.1 Constraint Violation and ε-Level Comparison

In the ε constrained method, constraint violation φ(x) is defined. The constraint
violation can be given by the maximum of all constraints or the sum of all
constraints.

φ(x) = max{max
j

{0, gj(x)}, max
j

|hj(x)|} (2)

φ(x) =
∑

j

||max{0, gj(x)}||p +
∑

j

||hj(x)||p (3)

where p is a positive number.
The ε-level comparison is defined as an order relation on the set of (f(x), φ(x)).

If the constraint violation of a point is greater than 0, the point is not feasible
and its worth is low. The ε-level comparisons are defined by a lexicographic or-
der in which φ(x) proceeds f(x), because the feasibility of x is more important
than the minimization of f(x).
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Let f1 (f2) and φ1 (φ2) be the function values and the constraint violation at
a point x1 (x2), respectively. Then, for any ε satisfying ε ≥ 0, ε-level comparison
<ε and ≤ε between (f1, φ1) and (f2, φ2) is defined as follows:

(f1, φ1) <ε (f2, φ2) ⇔

⎧⎨
⎩

f1 < f2, if φ1, φ2 ≤ ε
f1 < f2, if φ1 = φ2
φ1 < φ2, otherwise

(4)

(f1, φ1) ≤ε (f2, φ2) ⇔

⎧⎨
⎩

f1 ≤ f2, if φ1, φ2 ≤ ε
f1 ≤ f2, if φ1 = φ2
φ1 < φ2, otherwise

(5)

In case of ε=∞, the ε-level comparison <∞ and ≤∞ are equivalent to the ordinal
comparison < and ≤ between function values. Also, in case of ε = 0, <0 and ≤0
are equivalent to the lexicographic order in which the constraint violation φ(x)
precedes the function value f(x).

2.2 The Properties of the ε Constrained Method

The ε constrained method converts a constrained optimization problem into an
unconstrained one by replacing the order relation in direct search methods with
the ε-level comparison. An optimization problem solved by the ε constrained
method, that is, a problem in which the ordinary comparison is replaced with
the ε-level comparison, (P≤ε), is defined as follows:

(P≤ε) minimize≤ε f(x), (6)

where minimize≤ε means the minimization based on the ε-level comparison ≤ε.
Also, a problem (Pε) is defined that the constraints of (P), that is, φ(x) = 0, is
relaxed and replaced with φ(x) ≤ ε:

(Pε) minimize f(x)
subject to φ(x) ≤ ε

(7)

It is obvious that (P0) is equivalent to (P).
For the three types of problems, (Pε), (P≤ε) and (P), the following theorems

are given based on the α constrained method[5, 6, 7].

Theorem 1. If an optimal solution (P0) exists, any optimal solution of (P≤ε)
is an optimal solution of (Pε).

Theorem 2. If an optimal solution of (P) exists, any optimal solution of (P≤0)
is an optimal solution of (P).

Theorem 3. Let {εn} be a strictly decreasing non-negative sequence and con-
verge to 0. Let f(x) and φ(x) be continuous functions of x. Assume that an
optimal solution x∗ of (P0) exists and an optimal solution x̂n of (P≤εn

) exists
for any εn. Then, any accumulation point to the sequence {x̂n} is an optimal
solution of (P0).



Constrained Optimization by ε Constrained Differential Evolution 143

Theorem 1 and 2 show that a constrained optimization problem can be trans-
formed into an equivalent unconstrained optimization problem by using the ε-
level comparison. So, if the ε-level comparison is incorporated into an existing
unconstrained optimization method, constrained optimization problems can be
solved. Theorem 3 shows that, in the ε constrained method, an optimal solution
of (P0) can be given by converging ε to 0 as well as by increasing the penalty
coefficient to infinity in the penalty method.

3 The εDE

In this section, we first describe differential evolution. Then, we describe the
εDE, which is the integration of the ε constrained method and DE. Static and
dynamic control functions of relaxing equality constraints are also defined.

3.1 Differential Evolution

Differential evolution is an evolutionary algorithm proposed by Storn and Price
[24, 25]. DE is a stochastic direct search method using population or multiple
search points. DE has been successfully applied to the optimization problems
including non-linear, non-differentiable, non-convex and multi-modal functions.
It has been shown that DE is fast and robust to these functions.

The main feature of DE is that DE uses simple arithmetic operations to avoid
the control of Gaussian mutation adopted in evolution strategy. In general, the
mutation process must be adaptive to the step size of the Gaussian mutation,
because the ideal step size depends on the gene or element that is mutated
and the state of the evolution process. DE adopts the sum of a base vector
and the scaled difference vectors as the mutation operation instead of Gaussian
mutation. The base vector is an individual selected from the population. The
difference vectors are formed by the differences between a pair of individuals
randomly selected from the population. As the search space by the population
contracts and expands over generations, the step size in each dimension, which
is given by the difference vectors, adapts automatically.

There are some variants of DE that have been proposed, such as DE/best
/1/bin and DE/rand/1/exp. The variants are classified using the notation
DE/base/num/cross. “base” indicates the method of selecting a parent that
will form the base vector. For example, DE/rand/num/cross selects the parent
for the base vector at random from the population. DE/best/num/cross selects
the best individual in the population. “num” indicates the number of differ-
ence vectors used to perturb the base vector. “cross” indicates the crossover
mechanism used to create a child. For example, DE/base/num/bin shows that
crossover is controlled by binomial crossover using constant crossover rate.
DE/base/num/exp shows that crossover is controlled by a binomial crossover
using exponentially decreasing the crossover rate.
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In DE, initial individuals are randomly generated within the search space
and form an initial population. Each individual contains n genes as decision
variables or a decision vector. At each generation or iteration, all individuals
are selected as parents. Each parent is processed as follows: The mutation pro-
cess begins by choosing 1 + 2 num individuals from the parents except for the
parent in the processing. The first individual is a base vector. All subsequent
individuals are paired to create num difference vectors. The difference vectors
are scaled by the scaling factor F and added to the base vector. The result-
ing vector is then recombined or crossovered with the parent. The probability
of recombination at an element is controlled by the crossover factor CR. This
crossover process produces a trial vector. Finally, for survivor selection, the trial
vector is accepted for the next generation if the trial vector is better than the
parent.

3.2 The Algorithm of the εDE

The algorithm of the εDE based on DE/rand/1/exp variant, which is used in
this study, is as follows:

Step0 Initialization. Initial N individuals xi are generated as the initial search
points, where there is an initial population P (0) = {xi, i = 1, 2, · · · , N}. An
initial ε-level is given by the ε-level control function ε(0).

Step1 Termination condition. If the number of generations (iterations) exceeds
the maximum generation Tmax, the algorithm is terminated.

Step2 Mutation. For each individual xi, three different individuals xp1, xp2 and
xp3, each of which is also different from xi, are chosen from the population.
A new vector x′ is generated by the base vector xp1 and the difference vector
xp2 − xp3 as follows:

x′ = xp1 + F (xp2 − xp3) (8)

where F is a scaling factor.
Step3 Crossover. The vector x′ is crossovered with the parent xi. A crossover

point j is chosen randomly from all dimensions [1, n]. The element at the
j-th dimension of the trial vector xnew is inherited from the j-th element of
the vector x′. The elements of subsequent dimensions are inherited from x′

with exponentially decreasing probability defined by a crossover factor CR.
Otherwise, the elements are inherited from the parent xi. In real processing,
Step2 and Step3 are integrated as one operation.

Step4 Survivor selection. The trial vector xnew is accepted for the next genera-
tion if the trial vector is better than the parent xi.

Step5 Controlling the ε-level. The ε-level is updated by the ε-level control func-
tion ε(t).

Step6 Go back to Step1.

Fig. 1 shows the algorithm of the εDE.
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εDE/rand/1/exp()
{

P (0)=Generate N individuals {xi} randomly;

ε=ε(0);
for(t=1; t ≤ Tmax; t++) {
for(i=1; i ≤ N; i++) {

(p1, p2, p3)=select randomly from [1, N ]
s.t. p1 �= p2 �= p3 �= i;

xnew=xi ∈ P (t − 1);
j=select randomly from [1, n];
k=1;
do {

xnew
j =xp1

j +F (xp2
j − xp3

j );
j=(j + 1)%n;
k++;

} while(k ≤ n && u(0, 1) < CR);

if((f(xnew), φ(xnew)) <ε (f(xi), φ(xi)))
zi=xnew;

else

zi=xi;

}
P (t)={zi, i = 1, 2, · · · , N}
ε=ε(t);

}
}

Fig. 1. The algorithm of the ε constrained differential evolution with control of the
ε-level, where ε(t) is the ε-level control function, F is a scaling factor, CR is a crossover
factor, and u(0, 1) is a uniform random number generator in [0, 1]

3.3 Controlling the ε-Level

Usually, the ε-level does not need to be controlled. Many constrained problems
can be solved based on the lexicographic order where the ε-level is constantly 0.
However for problems with equality constraints, the ε-level should be controlled
properly to obtain high quality solutions.

Static control

A simple static control of the ε-level proposed in [7] can be defined according to
the equation (9). The initial ε-level ε(0) is the constraint violation of the top θ-
th individual in the initial search points. The ε-level is updated until the number
of iterations t becomes the control generation Tc. After the number of iterations
exceeds Tc, the ε-level is set to 0 to obtain solutions with minimum constraint
violation.

εs(0) = φ(xθ) (9)

εs(t) =
{

εs(0)(1 − t
Tc

)cp, 0 < t < Tc,

0, t ≥ Tc
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where xθ is the top θ-th individual. When θ is too small, although a feasi-
ble solution can be found rapidly, the stability to find an optimal solution be-
comes low. When θ is too large, although the optimal solution can be found,
the efficiency to find feasible region and the optimal solution becomes low.
By using θ = 0.2N , the stability and the efficiency can be balanced in many
problems.

Dynamic control

To improve the efficiency of the εDEwith static control, we propose dynamic
control of the ε-level according to the equation (10). Modified generation t′ (t′ ≥
t) is introduced to speed up the convergence of enlarged region into the feasible
region. If the violation is reduced enough in search process, the generation t′ is
increased faster than usual generation t and the ε-level is decreased faster. If
not, the generation t′ is increased by 1 like usual generation t.

εd(0) = φ(xθ) (10)

εd(t) =
{

εd(0)(1 − t′

Tc
)cp, 0 < t′ < Tc,

0, t′ ≥ Tc

The modified generation t′ is updated in each generation as follows.

t′ =

⎧⎪⎪⎨
⎪⎪⎩

0, t = 0,
t′ + 1, φ(xη) ≥ εd(t)
t′ + 2, φ(xη) < εd(t) and t′ + 2 ≥ ε−1

s (φ(xη))
1
2 (t′ + 2) + 1

2ε−1
s (φ(xη)), otherwise

(11)

where xη is the worst η-th individual. ε−1
s (ε) is the inverse function of εs(t) that

returns the generation of the ε-level being ε in εs(t) and is defined as follows.

ε−1
s (ε) =

(
1 − cp

√
ε

εd(0)

)
Tc (12)

4 Solving Constrained Nonlinear Programming Problems
with Equality Constraints

In this section, four benchmark problems that are mentioned in some studies
[9, 26, 15] are optimized.

4.1 Test Problems and Experimental Conditions

Four test problems, which are nonlinear optimization problems with equality
constraints, are shown as follows.
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g03 [27]:

maximize f(x) = (
√

n)n
n∏

i=1

xi,

subject to h1(x) =
n∑

i=1

x2
i − 1 = 0,

0 ≤ xi ≤ 1 (i = 1, · · · , n), n = 10

The optimal solution x∗
i =

1√
n

(i=1, · · · , n) and the optimal value f(x∗)=1.

g05 [28]:

minimize f(x) = 3x1 + 0.000001x3
1 + 2x2 +

0.000002
3

x3
2,

subject to g1(x) = x3 − x4 − 0.55 ≤ 0,
g2(x) = −x3 + x4 − 0.55 ≤ 0,
h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25)

+894.8 − x1 = 0,
h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25)

+894.8 − x2 = 0,
h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25)

+1294.8 = 0,
0 ≤ xi ≤ 1200 (i = 1, 2), −0.55 ≤ xi ≤ 0.55 (i = 3, 4)

The minimum value is unknown. The known best value is f(x) = 5126.4981
[29].

g11 [29]:
minimize f(x) = x2

1 + (x2 − 1)2,
subject to h(x) = x2 − x2

1 = 0,
−1 ≤ xi ≤ 1 (i = 1, 2)

The optimal solution is x∗ =
(

± 1√
2
,
1
2

)
and the optimal value f(x∗) =

0.75.

g13 [28]:
minimize f(x) = ex1x2x3x4x5 ,
subject to h1(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 − 10 = 0,
h2(x) = x2x3 − 5x4x5 = 0,
h3(x) = x3

1 + x3
2 + 1 = 0,

−2.3 ≤ xi ≤ 2.3 (i = 1, 2), −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5)

The optimal solution is x∗ = (-1.717143, 1.595709, 1.827247, -0.7636413,
-0.763645) and the optimal value f(x∗) = 0.0539498.

In many other methods, problems with equality constraints cannot be solved
directly. Thus, the equality constraints are relaxed, that is, all equality con-
straints hj(x) = 0, j = q + 1, · · · , m are replaced by inequalities:
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Table 1. Results using static control and dynamic control; 25 independent runs

Problem Control Best Mean Median Worst

↑g03 static 1.00050010 1.00050010 1.00050010 1.00050010
(1.0) dynamic 1.00050010 1.00050010 1.00050010 1.00050010
g05 static 5126.49671 5126.49671 5126.49671 5126.49671

(5126.498) dynamic 5126.49671 5126.49671 5126.49671 5126.49671
g11 static 0.74990000 0.74990000 0.74990000 0.74990000

(0.750) dynamic 0.74990000 0.74990000 0.74990000 0.74990000
g13 static 0.05394151 0.05394151 0.05394151 0.05394151

(0.053950) dynamic 0.05394151 0.05394151 0.05394151 0.05394151

|hj(x)| ≤ δ, δ > 0 (13)

In the experiments, δ = 0.001.
In εDE, the same settings are used for all problems. The parameters for the

ε constrained method are defined as follows: The constraint violation φ is given
by the sum of all constraints (p=1) in equation (3). The ε-level is controlled by
equation (9) in static control and (10) in dynamic control where Tc = 0.5T . The
εDE can solve problems with equality constraints directly. However, to compare
with other method, δ = 0.001 is tested. The parameters for DE are as follows:
The number of agents N = 40, F = 0.7, CR = 0.9. The maximum number of
generation T = 5000, and independent 25 runs are performed in each problem.

4.2 Experimental Results

Experimental results on the test problems are shown in Table 1, in which each
value is the average of 25 runs. The column labeled “problem” shows the problem
number. The optimal value in each problem is shown in parentheses under the
problem number. The column labeled “control” shows the type of control for the
ε-level, where the parameter for dynamic control is η = 5. Also, “best”, “mean”,
“median”, and “worst” are the best value, the average value, the median value,
the worst value, respectively. Problem g03 is the maximization problem and is
shown with an up arrow.

In all problems, both of εDE with static control and εDE with dynamic control
found the same solutions in all runs. In all cases, the εDEs found smaller values
than the optimal values. The solutions obtained by the εDEs were away about
0.001 from the feasible region because the constraints are relaxed with equation
(13). Thus, it is thought that the εDEs’ ability to search for feasible solutions
is very high for the problems with the equality constraints. This result shows
that both of static and dynamic control have equivalent ability to find optimal
solutions.

To compare the efficiency of the static control and the dynamic control, an-
other experiment is performed with changing the parameter η = 0, 1, 2, 3, 4, 5, 6.
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Table 2. Results with changing the parameter η; 25 independent runs

Problem Param Success Best Worst Mean Sigma Ratio

g03 static 25 87,031 92,438 90,034.2 1,347.6 1
0 25 79,062 84,124 81,821.4 1,309.3 0.91
1 25 63,647 72,966 69,184.8 2,281.1 0.77
2 25 55,334 62,539 59,032.2 1,849.0 0.66
3 25 47,261 54,213 51,170.0 1,861.2 0.57
4 25 41,342 48,950 44,467.4 2,033.8 0.49
5 25 36,584 69,402 45,551.7 6,118.2 0.51
6 19 39,870 105,202 73,796.9 17,928.0 0.82

g05 static 25 96,688 98,290 97,572.0 362.0 1
0 25 94,531 97,058 95,850.9 572.2 0.98
1 25 91,776 94,321 93,099.6 732.8 0.95
2 25 87,248 90,730 88,980.2 817.7 0.91
3 25 81,998 85,982 84,225.6 1058.3 0.86
4 25 76,026 81,286 78,620.8 1,299.8 0.81
5 25 71,180 76,797 73,722.4 1,296.6 0.76
6 25 65,644 71,312 67,783.2 1,315.4 0.69

g11 static 25 22,558 62,184 45,046.8 9,330.4 1
0 25 7,044 47,736 34,894.0 8,811.0 0.77
1 25 21,714 49,530 34,130.1 7,496.9 0.76
2 25 12,545 41,469 30,411.5 6,805.9 0.68
3 25 7,810 37,409 23,740.1 6,818.6 0.53
4 25 17,403 33,025 26,380.2 4,100.5 0.59
5 25 4,676 29,511 19,533.7 5,873.8 0.43
6 25 5,918 28,345 18,572.0 6,849.0 0.41

g13 static 25 76,582 88,947 85,037.3 2,694.5 1
0 25 75,854 84,101 80,048.8 2,178.8 0.94
1 25 67,573 78,873 73,090.9 2,396.2 0.86
2 25 57,850 70,317 63,716.6 2,902.4 0.75
3 25 51,056 59,640 55,575.9 1,902.8 0.65
4 25 42,432 51,819 47,945.0 2,401.3 0.56
5 25 37,404 46,565 42,308.2 2,562.8 0.50
6 25 31,639 40,491 36,964.5 2,216.6 0.43

Table 2 shows the number of function evaluations needed for satisfying the suc-
cess condition of fbest − f∗ ≤ 0.0001 and xbest being feasible, where xbest and
fbest are the best solution found in each run and its value, respectively. The col-
umn labeled “param” shows the parameter value of η for dynamic control, and
the result of static control is also shown. The column labeled “success” shows the
number of runs in which solutions satisfying success condition are found. Also,
“best”, “worst”, “mean” and “sigma” are the best value, the worst value, the
average value and the standard deviation of the number of function evaluations
for satisfying success condition. The ratio of the number of function evaluations
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Fig. 2. The control of the ε-level in problem g03
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Fig. 3. The control of the ε-level in problem g05

between the static control and dynamic control is shown in the column labeled
“ratio”. The better cases are highlighted using boldface.

When the parameter η is in [0, 5], solutions satisfying success condition are
found in all runs. If η is large, the convergence speed of enlarged region into
feasible region becomes high and feasible solutions and the optimal solution can
be found faster. When the parameter η is 5, the number of function evaluations
is reduced about 50% in g03, g11 and g13 and it is reduced about 24% in g05.
So, the efficiency of the εDE with dynamic control is very higher than that of
the εDE with static control. However, when η is 6, success condition cannot be
attained in 6 runs out of 25 runs for g03. It is thought that the decrease of the
ε-level is too fast, enlarged region is reduced too fast, and search process cannot
find the optimal solution. Thus, the value of η should be selected properly to
find optimal solutions, and the proper value of parameter η is 5.
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Fig. 4. The control of the ε-level in problem g11
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Fig. 5. The control of the ε-level in problem g13

Figures 2, 3, 4 and 5 show the change of the ε-level over generations for
static control and dynamic control with η = 5 in problems g03, g05, g11 and
g13, respectively. Apparently, the convergence speed of the ε-level in dynamic
control with η = 5 is higher than that in static control. These graphs show the
effectiveness of the dynamic control.

4.3 Comparison with the Stochastic Ranking Method

To show the effectiveness of the εDE with dynamic control, the solutions found
by this method are compared to those found by Runarsson and Yao’s stochastic
ranking method[9]. In [9], the maximum number of evaluations in each run was
1750 × 200 = 350, 000 and all equality constraints were relaxed using δ = 10−4.
Table 3 shows the comparison of the two methods. The better cases are high-
lighted using boldface. The results of the εDE were taken from Table 1 where
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Table 3. Comparison between our (indicated by εDE) and Runarsson and Yao’s (in-
dicated by RY[9]) algorithms

f Optimal Best Result Median Result Mean Result Worst Result
εDE RY εDE RY εDE RY εDE RY

↑g03 1.000 1.001 1.000 1.001 1.000 1.001 1.000 1.001 1.000
g05 5126.498 5126.497 5126.497 5126.497 5127.372 5126.497 5128.881 5126.497 5142.472
g11 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750
g13 0.053950 0.053942 0.053957 0.053942 0.057006 0.053942 0.067543 0.53942 0.438803

all equality constraints were relaxed using δ = 10−4 and the maximum num-
ber of evaluations was 5000 × 40 = 200, 000 which was much less than that of
the stochastic ranking method. The solutions found by the stochastic ranking
method were very high quality solutions that were equivalent to the known op-
timal solutions. Nevertheless, the εDE found better solutions for problems g03
and g13. Also, the stability of the εDE was better than that of the stochastic
ranking method for problems g05 and g13. Therefore, the performance of the
εDE is better than the stochastic ranking method.

5 Conclusions

This chapter presented the improved εDE with dynamic ε-level control to solve
problems with very small feasible region, such as problems with equality con-
straints. By applying the εDE to the four constrained optimization problems
with equality constraints, it was shown that the εDE obtained the optimal so-
lution for every problem by the numerical experiments and the εDE was a high
precision and stable optimization algorithm. By comparing the εDE with static
control, we showed that the improved εDE was a very efficient algorithm. Also,
by comparing the εDE with stochastic ranking method that is known as an ef-
ficient algorithm for the constrained optimization problems, it was shown that
the εDE was a very stable and good algorithm.

In the future, we will explore ways to prevent the ε-level from converging too
fast. Also, we will apply the εDE to various application fields.
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Opposition-Based Differential Evolution
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Summary. Although the concept of the opposition has an old history in other fields and sci-
ences, this is the first time that it contributes to enhance an optimizer. This chapter presents a
novel scheme to make the differential evolution (DE) algorithm faster. The proposed opposition-
based DE (ODE) employs opposition-based optimization (OBO) for population initialization and
also for generation jumping. In this work, opposite numbers have been utilized to improve the
convergence rate of the classical DE. A test suite with 15 benchmark functions is employed for
experimental verification. The contribution of the opposite numbers is empirically verified. Ad-
ditionally, two time varying models for control parameter adjustment of ODE are investigated.
Details of the ODE algorithm, the test set, and the comparison strategy are provided.

1 Introduction

The footprints of the opposition concept can be observed in many areas around us. This
concept has sometimes been called by different names. Opposite particles in physics,
antonyms in languages, complement of an event in probability, antithetic variables in
simulation, opposite proverbs in culture, absolute or relative complement in set theory,
subject and object in philosophy of science, good and evil in animism, opposition par-
ties in politics, theses and antitheses in dialectic, opposition day in parliaments, and
dualism in religions and philosophies are just some examples to mention (Table 1 con-
tains more examples and corresponding details).

The Yin-Yang symbol in the ancient Chinese philosophy is probably the oldest op-
position concept which was expressed by human kind (Figure 1). Black and white rep-
resent yin and yang, respectively. This symbol reflects the twisted duality of all things
in nature, namely, receptive vs. creative, feminine vs. masculine, dark vs. bright, and
finally passive force vs. active force. Greek’s classical elements to explain patterns in
nature (Figure 2) also mention and make use of the opposition concept, namely, fire
(hot and dry) vs. water (cold and wet), earth (cold and dry) vs. air (hot and wet).

It seems that without using the opposition concept explaining of different entities
around us is hard and maybe even impossible. In order to explain an entity or a situa-
tion we sometimes explain its opposite instead. In fact, opposition often offers a balance
between the entities. For instance, the east, west, south, and north can not be defined

U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 155–171, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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alone. The same is valid for cold and hot and many other examples. Extreme oppo-
sites constitute our upper and lower boundaries. Imagination of the infinity is vague but
when we consider the limited, then it becomes more imaginable because its opposite is
definable. We finish the introduction with Rumi’s quote:

Therefore, the foundation of the creation was (based) upon opposites. Nec-
essarily, we are battling because of loss and gain. Rumi (1207 – 1273) in
“Masnawi”

In the following section, we explain how opposition concept can be utilized in opti-
mization. Firstly, the opposite point in one- and D-dimensional spaces are defined, and
secondly, the opposition-based optimization is described.

Table 1. Footprints of opposition in variant fields

Example Field Description

Opposite Particles/Elements Physics
Such as magnetic poles (N and S), opposite polarities (+
and −), electron-proton in an atom, action-reaction forces in
Newton’s third law, and so on.

Antonyms Language
A word that means the opposite of another word (e.g.,
hot/cold, fast/slow, top/down, left/right, day/night, on/off).

Antithetic Variables Simulation
Antithetic (negatively correlated) pair of random variables
used for variance reduction.

Opposite Proverbs Culture

Two proverbs with the opposite advice or meaning (e.g., The
pen is mightier than the sword. Actions speak louder than
words.); proverb or its opposite pair offers an applicable so-
lution based on specific situation or condition.

Complements Set theory
a) Relative complement (B −A = {x ∈ B|x �∈ A}), b) Ab-
solute complement (Ac = U − A, where U is the universal
set).

Opposition Politics
A political party or organized group opposed to the govern-
ment.

Inverter Digital design
Output of the inverter gate is one if input is zero and vice
versa.

Opposition Day Legislation
A day in the parliament in which small opposition parties
are allowed to propose the subject for debate (e.g., Canada’s
parliament has 25 opposition days).

Dualism Philosophy and Religion

Two fundamental principles/concepts, often in opposition to
each other; such as “Yin” and “Yang” in Chinese philoso-
phy and Taoist religion (Figure 1), “subject” and “object” in
philosophy of science, “good” and “evil” in animism.

Dialectic Philosophy

An exchange of “theses” and “antitheses” resulting in a “syn-
thesis” (e.g. in Hinduism, these three elements are creation
(Brahma), maintenance of order (Vishnu) and destruction or
disorder (Shiva)).

Classical Elements Archetype

A set of archetypal classical elements to explain patterns in
nature (e.g., the Greek classical elements are Fire (hot and
dry), Earth (cold and dry), Air (hot and wet), and Water (cold
and wet), Figure 2).

if-then-else Algorithm
if condition then statements [else elsestatements], the else
statements are executed when the opposite of the condition
happens.

Complement of an Event Probability P (A′) = 1 − P (A).
Revolution socio-political A significant Socio-political change in a short period of time.
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Fig. 1. Yin-Yang symbol or Taijitu in ancient Chinese philosophy. Black and white are repre-
senting yin (receptive, feminine, dark, passive force) and yang (creative, masculine, bright, active
force), respectively.

Fig. 2. Greek classical elements to explain patterns in nature are Fire (hot and dry), Earth (cold
and dry), Air (hot and wet), and Water (cold and wet).

2 Opposition-Based Optimization

Generally speaking, evolutionary optimization methods start with some candidate solu-
tions (initial population) and try to improve them toward some optimal solution(s). The
process of searching terminates when some predefined criteria are satisfied. In the ab-
sence of a priori information about the solution, we usually start with a random guesse.
The computation time, among others, is related to the distance of these initial guesses
from the optimal solution. We can improve our chance of starting with a closer (fitter)
solution by simultaneously checking the opposite solution. By doing this, the fitter one
(guess or opposite guess) can be chosen as an initial solution. In fact, according to prob-
ability theory, 50% of the time a guess is farther from the solution than its opposite. So,
starting with the closer of the two guesses (as judged by its fitness) has the potential to
accelerate convergence. The same approach can be applied not only to initial solutions
but also continuously to each solution in the current population. However, before con-
centrating on opposition-based optimization, we need to define the concept of opposite
numbers [1]:

Definition (opposite number) - Let x be a real number in an interval [a, b] (x ∈ [a, b]);
the opposite of x, denoted by x̆, is defined by

x̆ = a + b − x. (1)
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Fig. 3. Illustration of a point and its corresponding opposite

Figure 3 (top) illustrates x and its opposite x̆ in interval [a, b]. As seen, x and x̆ are
located in equal distance from the interval center (|(a + b)/2 − x| = |x̆ − (a + b)/2|)
and from the interval boundaries (|x − a| = |b − x̆|) as well.

This definition can be extended to higher dimensions [1].

Definition (opposite point) - Let P (x1, x2, ..., xD) be a point in D-dimensional space,
where x1, x2, ..., xD are real numbers and xi ∈ [ai, bi] , i = 1, 2, ..., D. The opposite
point of P is defined by P̆ (x̆1, x̆2, ..., x̆D) where

x̆i = ai + bi − xi. (2)

Figure 3 illustrates a sample point and its corresponding opposite point in one, two,
and three dimensional spaces.

Now, after the definition of the opposite points we are ready to define Opposition-
Based Optimization (OBO).

Opposition-Based Optimization (OBO) - Let P (x1, x2, ..., xD), a point in a D-
dimensional space with xi ∈ [ai, bi] (i = 1, 2, 3, ..., D), be a candidate solution.
Assume f(x) is a fitness function which is used to measure candidate’s optimal-
ity. According to the opposite point definition, P̆ (x̆1, x̆2, ..., x̆D) is the opposite of
P (x1, x2, ..., xD). Now, if f(P̆ ) ≥ f(P ), then point P can be replaced with P̆ ;
otherwise we continue with P . Hence, the point and its opposite point are evaluated
simultaneously to continue with the fitter one [1].
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3 Opposition-Based Differential Evolution

Similar to all population-based optimization algorithms, two main steps are distinguish-
able for DE, namely population initialization and producing new generations by evo-
lutionary operations such as mutation, crossover, and selection. We will enhance these
two steps using the opposition-based optimization concept. The classical DE is chosen
as a parent algorithm and the proposed opposition-based schemes are embedded in DE
to accelerate its convergence speed. Corresponding pseudo-code and flowchart for the
proposed approach (ODE) are given in Algorithm 1 and Figure 4, respectively. Newly
added/extended code segments (which are shown by grey blocks in Figure 4) will be
explained in the following subsections.

Fig. 4. New blocks are illustrated by gray boxes. Block (1): Opposition-based initialization, Block
(2): Opposition-based generation jumping (Jr: jumping rate, rand(0, 1): uniformly generated
random number, Np: population size)

3.1 Opposition-Based Population Initialization

In absence of a priori knowledge, random number generation is generally the only
choice to create an initial population. But as mentioned before, by utilizing OBO we
can obtain fitter starting candidates even when there is no a priori knowledge about
the solution(s). Block (1) from Figure 4 shows the implementation of opposition-based
population initialization. Following steps explain that procedure:
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Algorithm 1. Pseudo-code for Opposition-Based Differential Evolution (ODE). P0:
Initial population, OP0: Opposite of initial population, P : Current population, OP :
Opposite of current population, D: Problem dimension, [aj , bj ]: Range of the j-th vari-
able, Jr: Jumping rate, minp

j /maxp
j : Minimum/maximum value of the j-th variable in

the current population. Steps 2-7 and 27-34 are implementations of opposition-based
population initialization and opposition-based generation jumping, respectively.

1: Generate uniformly distributed random population P0

{Begin of Opposition-Based Population Initialization}
2: for i = 0 to Np do
3: for j = 0 to D do
4: OP0i,j ← aj + bj − P0i,j

5: end for
6: end for
7: Select Np fittest individuals from set the {P0, OP0} as initial population P0

{End of Opposition-Based Population Initialization}
{Begin of DE’s Evolution Steps}

8: while ( BFV > VTR and NFC < MAXNFC ) do
9: for i = 0 to Np do

10: Select three parents Pi1 , Pi2 , and Pi3 randomly from current population where i �=
i1 �= i2 �= i3

11: Vi ← Pi1 + F × (Pi2 − Pi3)
12: for j = 0 to D do
13: if rand(0, 1) < Cr then
14: Ui,j ← Vi,j

15: else
16: Ui,j ← Pi,j

17: end if
18: end for
19: Evaluate Ui

20: if (f(Ui) ≤ f(Pi)) then
21: P ′

i ← Ui

22: else
23: P ′

i ← Pi

24: end if
25: end for
26: P ← P ′

{End of DE’s Evolution Steps}
{Begin of Opposition-Based Generation Jumping}

27: if rand(0, 1) < Jr then
28: for i = 0 to Np do
29: for j = 0 to D do
30: OPi,j ← MINp

j + MAXp
j − Pi,j

31: end for
32: end for
33: Select Np fittest individuals from set the {P, OP} as current population P
34: end if

{End of Opposition-Based Generation Jumping}
35: end while
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step 1. Initialize the population P(Np) randomly,
step 2. Calculate opposite population by

OPi,j = aj + bj − Pi,j , (3)

i = 1, 2, ..., Np ; j = 1, 2, ..., D.

where Pi,j and OPi,j denote the jth variable of the ith population and the opposite-
population vector, respectively.

step 3. Select the Np fittest individuals from the set {P ∪ OP} as the initial population.

According to the above procedure, 2Np function evaluations are required instead
of Np for the regular random population initialization. But, by the opposition-based
initialization, the parent algorithm can start with the fitter initial individuals instead.

3.2 Opposition-Based Generation Jumping

By applying a similar approach to the current population, the evolutionary process can
be forced to jump to a fitter generation. Based on a jumping rate Jr (i.e. jumping prob-
ability), after generating new populations by mutation, crossover, and selection, the op-
posite population is calculated and the Np fittest individuals are selected from the union
of the current population and the opposite population. As a difference to opposition-
based initialization, it should be noted here that in order to calculate the opposite pop-
ulation for generation jumping, the opposite of each variable is calculated dynamically.
That is, the maximum and minimum values of each variable in the current popula-
tion ([MINp

j , MAXp
j ]) are used to calculate opposite points instead of using variables’

predefined interval boundaries ([aj , bj ]):

OPi,j = MINp
j + MAXp

j − Pi,j , i = 1, 2, ..., Np; j = 1, 2, ..., D. (4)

By staying within variables’ static boundaries, it is possible to jump outside of the
already shrunken search space and loose the knowledge of the current reduced space
(converged population). Hence, we calculate opposite points by using variables’ current
interval in the population ([MINp

j , MAXp
j ]) which is, as the search does progress, in-

creasingly smaller than the corresponding initial range [aj , bj]. Block (2) from Figure 4
indicates the implementation of opposition-based generation jumping.

A pictorial example is presented in Figure 5 to exhibit opposition-based generation
jumping procedure in 2D space. The ‘S’ indicates location of the solution. Dark and
light circles present the points and the opposite points, respectively. As seen, in the
resulted population (shown by the current P), the average distance of the selected can-
didates (which contains some original points and the opposite of some others) from
the solution is smaller than it was for population (P) and opposite population (OP),
individually.

Generally speaking, in order to utilize the advantages of the opposition-based op-
timization to accelerate population-based algorithms, many schemes can be suggested
and investigated. But, it seems that considering the following features during the design
of these schemes are crucial:
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Fig. 5. A pictorial example to show the opposition-based generation jumping in 2D space
(Np = 8)

Generality - Proposing general schemes makes it easy to use OBO on a wider range
of population-based optimization methods. Tailored schemes would be obviously
more rigid for generalization. Manipulating the internal operators of the optimizer
leads to lower generality, although, the customized schemes can result a higher
performance.

Simplicity - This feature is always desirable in all science and engineering design
problems. Simplicity supports a higher understandability and makes any design
easy to implement and modify. Also, in practical environments, the simple schemes
are widely appreciated.

Problem Independency - Proposed schemes have to be universal and capable to solve
a wider range of optimization problems. By equipping the parent optimizer with the
opposition-based schemes, it should not be specialized to solve a group of specific
problems (e.g., unimodal). This case is experimentally verifiable by applying the
algorithm to solve various global optimization problems. In other words, the pro-
posed schemes should not reduce the universality of the parent optimizer to solve
different problems.

Effectiveness - Considering opposite points needs more function calls and should
be controlled smartly to prevent loosing the benefits through extra computations.
Overall, the extra function calls should be reasonable and bring a benefit to the
optimization process. The benefit can be faster convergence, higher robustness,
or higher solution quality. Furthermore, improving one of these features should
not affect the other benefits. During the experimental verification of the pro-
posed algorithm, different measures are employed to investigate each criterion
individually.
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4 Experimental Verifications

4.1 Comparison of DE and ODE

A set of 15 well-known benchmark functions, which contains 7 unimodal and 8 mul-
timodal functions, has been selected for performance verification of the ODE. The
definition of the benchmark functions is given in Table 2.

Table 2. List of employed benchmark functions. S denotes the search space.

Name Definition S

1st De Jong
f1(X) =

D∑
i=1

xi
2 [−5.12, 5.12]D

Axis Parallel Hyper-Ellipsoid
f2(X) =

D∑
i=1

ixi
2 [−5.12, 5.12]D

Schwefel’s Problem 1.2
f3(X) =

D∑
i=1

(
i∑

j=1
xj

)2

[−65, 65]D

Rastrigin’s Function
f4(X) = 10D +

D∑
i=1

(
x2

i − 10 cos(2πxi)
)

[−5.12, 5.12]D

Griewangk’s Function
f5(X) =

D∑
i=1

x2
i

4000 −
D∏

i=1
cos

(
xi√

i

)
+ 1 [−600, 600]D

Sum of Different Power
f6(X) =

D∑
i=1

|xi|(i+1) [−1, 1]D

Ackley’s Problem
f7(X) = −20 exp

⎛
⎜⎜⎝−0.2

√
D∑

i=1
x2

i

D

⎞
⎟⎟⎠ − exp

⎛
⎜⎝

D∑
i=1

cos(2πxi)

D

⎞
⎟⎠ + 20 + e [−32, 32]D

Levy Function
f8(X) = sin2(3πx1) +

D−1∑
i=1

(xi − 1)2(1 + sin2(3πxi+1)) + (xD − 1)(1 + sin2(2πxD)) [−10, 10]D

Michalewicz Function
f9(X) = −

D∑
i=1

sin(xi)(sin(ix2
i /π))2m, (m = 10) [0, π]D

Zakharov Function
f10(X) =

D∑
i=1

x2
i +

(
D∑

i=1
0.5ixi

)2

+
(

D∑
i=1

0.5ixi

)4

[−5, 10]D

Schwefel’s Problem 2.22
f11(X) =

D∑
i=1

|xi| +
D∏

i=1
|xi| [−10, 10]D

Step Function
f12(X) =

D∑
i=1

(�xi + 0.5	)2 [−100, 100]D

Alpine Function
f13(X) =

D∑
i=1

|xi sin(xi) + 0.1xi| [−10, 10]D

Exponential Problem
f14(X) = exp

(
−0.5

D∑
i=1

x2
i

)
[−1, 1]D

Salomon Problem
f15(X) = 1 − cos(2π ‖ x ‖) + 0.1 ‖ x ‖, where ‖ x ‖=

√
D∑

i=1
x2

i [−100, 100]D

We compare the convergence speed of DE and ODE by measuring the number of
function calls (NFC) which is the most commonly used metric in literature [16, 11, 2,
3, 4, 5, 6]. A smaller NFC means higher convergence speed. The termination criterion
is to find a value smaller than the value-to-reach (VTR) before reaching the maximum
number of function calls MAXNFC. In order to minimize the effect of the stochastic
nature of the algorithms on the metric, the reported number of function calls (NFC) for
each function is the average over 50 trials. The number of times, for which the algorithm
successfully reaches the VTR for each test function is measured as the success rate SR:

SR =
number of times reached VTR

total number of trials
. (5)

In order to combine these two measures (NFC and SR), a new measure, called
success performance, has been introduced as follows [6]:

SP =
mean (NFC for successful runs)

SR
. (6)
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By this definition, the two following algorithms have equal performances (SP=100):

Algorithm A: mean (NFC for successful runs)=50 and SR=0.5,
Algorithm B: mean (NFC for successful runs)=100 and SR=1.

SP gives an equal importance weight for NFC and SR, but dependent to the different
applications each of them can be more important than other one. Some times success
rate is more crucial factor than convergence speed and vice versa. For our experiments,
gathering results for unsuccessful case is more time consuming because the algorithm
should meet the maximum number of function calls (MAXNFC) for termination. Param-
eter settings for all conducted experiments are presented in Table 3.

Table 3. Parameter settings

Parameter name Setting Reference

population size (Np)
100 [7, 9, 8]

differential amplification factor (F )
0.5 [10, 11, 13, 12, 7]

crossover probability constant (Cr)
0.9 [10, 11, 13, 12, 7]

jumping rate constant (Jr)
0.3 [4, 14, ?, 15]

maximum number of function calls (MAXNFC)
106 [4, 14, 15]

value to reach (VTR) 10−8 [6]

mutation strategy
DE/rand/1/bin [10, 16, 18, 7, 17]

In order to maintain a reliable and fair comparison (a) the parameter settings are
kept the same for all conducted experiments, unless we mention new settings, (b) for
all experiments, the reported values are the average of the results for 50 independent
runs, and most importantly (c) extra fitness evaluations required for the opposite points
(both in population initialization and also generation jumping phases) are counted as
well.

Results for DE and ODE to solve test problems are given in Table 4 (the results in
the last column will be discussed in section 4.2). As seen, ODE outperforms DE on
14 benchmark functions with respect to the success performance. Some sample perfor-
mance comparison graphs are presented in Figure 6. With the same control parameter
settings for both algorithms and fixing the jumping rate for the ODE (Jr = 0.3), their
success rates are comparable while ODE shows better convergence speed than DE. The
jumping rate is an important control parameter which, if optimally set, can achieve even
better results. Detailed discussion about this parameter is given in [14, ?].

4.2 Contribution of Opposite Points

In this section, we want to verify that the achieved acceleration rate is really due to
utilizing opposite points. For this purpose, all parts of the proposed algorithm are kept
untouched and instead of using opposite points for the population initialization and the
generation jumping, uniformly generated random points are employed. In order to have
a fair competition for this case, exactly like what we did for opposite points, the current
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Table 4. Comparison of DE, ODE, and RDE. The best result for each case is highlighted in
boldface. Results for RDE has been explained in section 4.2 (corresponding results for replacing
the opposite points with random points).

DE ODE RDE
F D NFC SR SP NFC SR SP NFC SR SP
f1 30 87748 1 87748 47716 1 47716 115096 1 115096
f2 30 96488 1 96488 53304 1 53304 126780 1 126780
f3 20 177880 1 177880 168680 1 168680 231152 1 231152
f4 10 328844 1 328844 70389 0.76 92617 501875 0.96 522786
f5 30 113428 1 113428 69342 0.96 72231 149744 1 149744
f6 30 25140 1 25140 8328 1 8328 29096 1 29096
f7 30 169152 1 169152 98296 1 98296 222784 1 222784
f8 30 101460 1 101460 70408 1 70408 138308 1 138308
f9 10 191340 0.76 251763 213330 0.56 380946 306900 0.60 511500
f10 30 385192 1 385192 369104 1 369104 498200 1 498200
f11 30 187300 1 187300 155636 1 155636 244396 1 244396
f12 30 41588 1 41588 23124 1 23124 54316 1 54316
f13 30 411164 1 411164 337532 1 337532 927230 0.24 3863458
f14 10 19528 1 19528 15704 1 15704 23156 1 23156
f15 10 37824 1 37824 24260 1 24260 46800 1 46800

SRave 0.98 0.95 0.92

interval ( dynamic interval, [MINp
j , MAXp

j ]) of the variables are used to generate new
random points in the generation jumping phase. So, line 4 from Algorithm 1 should be
changed to:

RP0i,j ←− aj + (bj − aj) × rand(0, 1),

where rand(0, 1) generates a uniformly distributed random number on the interval
(0, 1). This change is for the initialization part, so the predefined boundaries of vari-
ables ([aj , bj]) have been used to generate new random numbers. In fact, instead of
generating Np, 2Np random individuals are generated. In the same manner, line 30
should be replaced with

RPi,j ←− MINp
j + (MAXp

j − MINp
j ) × rand(0, 1).

As mentioned before, for generation jumping, the current boundaries of the variables
([MAXp

j , MINp
j ]) are used to generate random numbers. And finally, in order to have

the same selection method, lines 7 and 33 in Algorithm 1 are substituted with

Select Np fittest individuals from set the {P, RP} as current population P ;

After these modifications, the random version of ODE (called RDE) is introduced.
Now, we are ready to apply this algorithm to solve our test problems. All control param-
eters are kept the same to have a fair comparison. Results for the current algorithm are
presented in Table 4. As seen, RDE can not outperform DE or ODE on any of bench-
mark function with respect to the success performance (even, its average success rate
is less than others). This clearly demonstrates that the achieved improvements are due
to usage of opposite points, and that the same level of improvement cannot be achieved
via additional random sampling.
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(a) f1, ODE is 1.83 times faster (b) f2, ODE is 1.81 times faster

(c) f5, ODE is 1.63 times faster (d) f7, ODE is 1.72 times faster

Fig. 6. Sample graphs ( best solution vs. number of function calls)

5 ODE with Variable Jumping Rate

In this section, a time varying jumping rate (TVJR) model for opposition-based differ-
ential evolution (ODE) has been investigated. According to this model, the jumping rate
changes during the evolution based on the number of function evaluations. The same
test suite has been employed to compare performance of DE and ODE with variable
jumping rate settings.

Generally speaking, parameter control in evolutionary algorithms (EAs) can be per-
formed in following three ways [19]: deterministic, adaptive, and self-adaptive. The first
one uses a predefined rule to modify the parameter value without gaining any feedback
from the evolution process while the second one changes the parameter value based on
the information which receives from the search process. The third one utilizes the same
evolutionary approach not only to solve the problem but also to optimize own control
parameters by encoding some strategic parameters inside the population.

The proposed idea in this section is similar to Das et al. work [20]. They uti-
lized time varying approach for setting of the scale factor F in differential evolution
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(DE), which can be considered as a deterministic approach according to the mentioned
categorization.

5.1 Investigated Jumping Rate Models

For ODE a constant value for jumping rates was utilized. Here, two types of varying
jumping rate are investigated (linearly increasing and decreasing functions). Three pro-
posed settings for Jr are as follows:

• Jr (constant)= Jrave ,

• Jr(TVJR1) = (Jrmax − Jrmin) ×
(

MAXNFC−NFC
MAXNFC

)
,

• Jr(TVJR2) = (Jrmax − Jrmin) − (Jrmax − Jrmin) ×
(

MAXNFC−NFC
MAXNFC

)
,

where Jrave , Jrmax , and Jrmin are the average, maximum, and minimum jumping rates,
respectively. MAXNFC and NFC are the maximum number of function calls and the
current number of function calls, respectively.

In order to support a fair comparison between these three different jumping rate
settings, the average jumping rate should be the same for all of them. Obviously we

should have Jrave = (Jrmax+Jrmin
)

2 . Following values for these parameters are se-
lected: Jrave = 0.3 and Jrmin = 0 (no jumping), so Jrmax = 0.6. Figure 7 shows the
corresponding diagrams (jumping rate vs. NFCs) for three following settings:

• Jr(constant) = 0.3,

• Jr(TVJR1) = 0.6 ×
(

MAXNFC−NFC
MAXNFC

)
,

• Jr(TVJR2) = 0.6 − 0.6 ×
(

MAXNFC−NFC
MAXNFC

)
.

Jr(TVJR1) represents higher jumping rate during exploration and lower jumping
rate during exploitation (fine-tuning); Jr(TVJR2) performs exactly in reverse manner.
By these settings, we can investigate effects of generation jumping during optimization
process.

Fig. 7. Jumping rate vs. NFCs for Jr(ODE) = 0.3, Jr(TVJR1) = 0.6 ×
(

MAXNFC−NFC
MAXNFC

)
, and

Jr(TVJR2) = 0.6 − 0.6 ×
(

MAXNFC−NFC
MAXNFC

)
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5.2 Empirical Results

The benchmark test set and all parameter settings are the same as before. The only dif-
ference is the maximum number of function calls, which is 2×105 for f1, f2, f3, f6, f8,
f15, f21; 5×105 for f5, f18, f19, f31; and 5×104 for f7, f23, f41, f56. Results of apply-
ing DE, ODE (Jr = 0.3), ODE (TVJR1), and ODE (TVJR2) to solve the test problems
are given in Table 5. As seen, ODE (TVJR1) delivers best success performance (SP)
for 13 benchmark functions, while this number for DE, ODE (Jr = 0.3), and ODE
(TVJR2) is 0, 1, and 1, respectively.

Table 5. Comparison of DE, ODE (Jr = 0.3), ODE (TVJR1), and ODE (TVJR2). D: Dimen-
sion, NFC: Number of function calls (average over 50 trials), SR: Success rate, SP: Success
performance.

DE ODE (Jr = 0.3) ODE (TVJR1) ODE (TVJR2)
F D NFC SR SP NFC SR SP NFC SR SP NFC SR SP
f1 30 87748 1 87748 47716 1 47716 42300 1 42300 66305 1 66305
f2 30 96488 1 96488 53304 1 53304 45720 1 45720 72990 1 72990
f3 20 177880 1 177880 168680 1 168680 159775 1 159775 175460 1 175460
f4 10 328844 1 328844 65056 0.64 101650 59063 0.80 73829 136070 1 136070
f5 30 113428 1 113428 64920 0.75 86560 63594 0.90 70660 86235 1 86235
f6 30 25140 1 25140 8328 1 8328 6080 1 6080 14175 1 14175
f7 30 169152 1 169152 98296 1 98296 88355 1 88355 117095 1 117095
f8 30 101460 1 101460 70408 1 70408 65247 0.95 68681 82245 1 82245
f9 10 215260 0.56 384393 168470 0.76 221671 188440 0.65 289908 379660 0.60 632767
f10 30 385192 1 385192 369104 1 369104 389955 1 389955 360595 1 360595
f11 30 187300 1 187300 155636 1 155636 146795 1 146795 167685 1 167685
f12 30 41588 1 41588 23124 1 23124 20290 1 20290 29165 1 29165
f13 30 411164 1 411164 337532 1 337532 326350 1 326350 377425 1 377425
f14 10 19528 1 19528 15704 1 15704 14270 1 14270 17735 1 17735
f15 10 37824 1 37824 24260 1 24260 21400 1 21400 28710 1 28710

SRave 0.97 0.94 0.95 0.97

Pairwise comparison of these algorithms is presented in Table 6. The given number
in each cell indicates on how many functions the algorithm in each row outperforms
the corresponding algorithm in each column. The last column of the table shows the
total numbers (number of cases which the algorithm outperforms other competitors);
by comparing these numbers the following ranking is obtained: ODE (TVJR1) (best),
ODE (Jr = 0.3), ODE (TVJR2), and DE.

Table 6. Pairwise comparison of DE, ODE (Jr = 0.3), ODE (TVJR1), and ODE (TVJR2).
Given number in each cell shows how many functions the algorithm in each row outperforms the
corresponding algorithm in each column. The last column shows the total numbers (number of
cases which the algorithm outperforms other competitors).

DE ODE (Jr = 0.3) ODE (TVJR1) ODE (TVJR2) Total
DE - 0 1 1 2

ODE (Jr = 0.3) 15 - 2 12 29
ODE (TVJR1) 14 13 - 14 41
ODE (TVJR2) 14 3 1 - 18
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The average success rate (shown in the last row of the Table 5) for DE and ODE
(TVJR2) is marginally better than other two competitors.

6 Conclusion

In this chapter, the concept of opposition-based optimization (OBO) has been employed
to accelerate differential evolution. The OBO was utilized to introduce opposition-based
population initialization and opposition-based generation jumping. By embedding these
two steps within DE, opposition-based differential evolution (ODE) was proposed. The
experimental results clearly confirmed that ODE is faster than the classical DE. Our
conclusion can be summarized as follows:

• By replacing opposite points with uniformly generated random points in the same
variables’ range, the resulted algorithm (RDE) performs slower than the parent
algorithm (DE). Therefore, the contribution of opposite points to the acceleration
process was confirmed and was not reproducible by additional random sampling.

• According to our comprehensive experiments (not included in this chapter), the
range [0.1, 0.4] is recommended for an unknown optimization problem. Most of
the functions presented a reliable acceleration improvement and almost a smooth
behavior in this interval. Although, the optimal jumping rate can be somewhere out
of this range, higher jumping rates are generally not recommended.

• As an advantageous of an opposite versus random point, purely random resampling
or selection of solutions from a given population has the higher chance of visiting or
even revisiting unproductive regions of the search space compared to the opposite
points [25] .

• The benefits of opposition-based optimization is not the same for different prob-
lems. This is because of using fix settings for the parameters instead of the optimal
ones and/or the different characteristics of each problem (e.g., modality, dimension,
surface features, separability of the variables and so on). Similar to all optimization
approaches, ODE does not present a consistent behavior over different problems.
However, in overall and over the employed benchmark test suite, ODE performed
better than classical DE.

• The proposed opposition-based schemes are general enough to be applied on other
population-based algorithms. The opposition-based schemes work at the population
level and leave the evolutionary part of the algorithms untouched. This generality
gives higher flexibility to these schemes to be embedded inside other population-
based algorithms for further investigation.

• The optimal control parameters are problem-oriented such that developing a self-
adaptive/ adaptive algorithm is a valuable attempt. Many studies confirm that for
population-based algorithms the optimal parameters are problem-oriented. Running
limited trials to determine desirable parameters is a common approach (if not a
practical way for time consuming objective functions). For this reason, the self-
adaptive/adaptive control parameter setting would be a valuable improvement for
ODE.

• The time varying jumping rate for opposition-based differential evolution was pro-
posed and two behaviorally reverse versions (linearly decreasing and increasing
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functions) were compared with the constant setting [15]. The results show that the
linearly decreasing jumping rate performs better than constant setting and also than
linearly increasing policy. This means generation jumping in the exploration time
is more desirable than during exploitation. Because during the fine-tuning, we are
faced with shrunken search space and the jumping of the individuals may not be ad-
vantageous (because the point and the opposite-point are very close together). There
is no exact border between exploration and exploitation stage. Hence, the gradual
behavior for the decreasing and increasing functions are proposed.

• The proposed time varying jumping rate functions utilize the maximum number of
function calls (MAXNFC) which may not be exactly known for the black-box opti-
mization problems; this can be regarded as a disadvantage for this method. Adaptive
setting of the jumping rate can be a desirable solution.

• Results are promising, however, the opposition-based optimization is still in its in-
fancy. Results confirm that the opposition concept has the potential to play desire
and positive role in optimization. But, it is important to mention that the current
study constitutes the first step of this newly opened direction. Like many other new
concepts, opposition-based optimization needs further studies to disclose its exact
benefits, weaknesses, and limitations. In fact, the main claim is not defeating DE
or any of its numerous versions but to introduce a new notion into optimization via
metaheuristics; this is the notion of opposition.

The opposition-based optimization is simple to implement and open to be used in
many different ways for different purposes. This study is a starting point in this direction
to confirm the potentials and motivate other researchers in optimization and machine
learning fields to engage with the opposition concept.
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3. Hrstka, O., Kučerová, A.: Improvement of Real Coded Genetic Algorithm Based on Differ-
ential Operators Preventing Premature Convergence. Advance in Engineering Software 35,
237–246 (2004)

4. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolu-
tion Algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2006), IEEE World
Congress on Computational Intelligence, Vancouver, Canada, pp. 7363–7370 (2006)

5. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution
for Optimization of Noisy Problems. In: IEEE Congress on Evolutionary Computation (CEC
2006), IEEE World Congress on Computational Intelligence, Vancouver, Canada, pp. 6756–
6763 (2006)

6. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem
Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Op-
timization. Technical Report, Nanyang Technological University, Singapore And KanGAL
Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur) (May 2005)



Opposition-Based Differential Evolution 171
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Summary. Differential Evolution is currently one of the most popular heuristics to
solve single-objective optimization problems in continuous search spaces. Due to this
success, its use has been extended to other types of problems, such as multi-objective
optimization. In this chapter, we present a survey of algorithms based on differential
evolution which have been used to solve multi-objective optimization problems. Their
main features are described and, based precisely on them, we propose a taxonomy of
approaches. Some theoretical work found in the specialized literature is also provided.
To conclude, based on our findings, we suggest some topics that we consider to be
promising paths for future research in this area.

1 Introduction

Nowadays, evolutionary algorithms (EAs) are considered a very effective alter-
native to solve complex search problems, including either global (i.e., single-
objective) [39] or multi-objective optimization problems [10]. The first attempts
to use EAs to solve multi-objective problems relied mainly on genetic algorithms
(GAs) [16] and evolution strategies (ES) [6]. A comprehensive review of these
approaches can be found in [10].

In 1995, Storn and Price proposed the most recent evolutionary algorithm
called Differential Evolution (DE) [45] to solve real-parameter optimization prob-
lems. DE uses a simple mutation operator based on differences between pairs of
solutions (called vectors) with the aim of finding a search direction based on the
distribution of solutions in the current population. DE also utilizes a steady-
state-like replacement mechanism, where the newly generated offspring (called
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trial vector) competes only against its corresponding parent (old object vector)
and replaces it if the offspring has a higher fitness value. In the remainder of this
chapter, we will use trial vector and offspring as synonymous. The same applies
for parent and old object vector.

DE shares some characteristics with previous EAs and also has some differ-
ences. The similarities are the following: DE is a population-based approach,
recombination and mutation are the variation operators used to generate new
solutions and a replacement mechanism provides capabilities to maintain a fixed
size in the population.

However, unlike GAs, where binary encoding can be used, solutions in DE are
coded with real values as in ES. But, DE does not use a fixed distribution (as the
Gaussian distribution adopted in ES) to control the behavior of the mutation
operator; instead, the current distribution of the solutions in the search space
determines the stepsize and the search direction for each individual. This last
feature seems to be one of its main advantages.

Due to the multicriteria nature of most real-world problems, multi-objective
optimization problems are very common, particularly in engineering applica-
tions. As the name indicates, multi-objective optimization problems involve mul-
tiple objectives, which should be optimized simultaneously and that often are in
conflict with each other. This results in a group of alternative solutions which
must be considered equivalent in the absence of information concerning the rel-
evance of the others.

Since Evolutionary Algorithms (EAs) deal with a group of candidate solutions,
it seems natural to use them in multi-objective optimization problems to find
a group of optimal solutions. Indeed, EAs have proved very efficient in solving
multi-objective optimization problems [10, 11].

With the rise of new bio-inspired heuristics for numerical optimization, like
Particle Swarm Optimization (PSO) [27] and also DE, it is important to analyze
how they are adapted to solve different types of problems, like, in our case,
multi-objective optimization problems. This work focuses on a review of the
state-of-the-art in multi-objective optimization with DE as a search engine.

This chapter is organized as follows: In Section 2, DE is explained in detail and
its main variants are presented. Section 3, provides the statement of the multi-
objective optimization problems and also some related definitions. In Section 4
some multi-objective issues included in evolutionary multi-objective optimiza-
tion are addressed. After that, in Section 5 we show our proposed taxonomy
of DE-based approaches for multi-objective optimization. Some theoretical re-
sults regarding DE for multi-objective optimization are summarized in Section
6. Finally, Section 7 includes our conclusions and future paths of research.

2 Differential Evolution Variants

There are some variants of the DE algorithm. They vary on (1) the type of the
criterion to select one of the individuals to be used in the mutation operator
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1 Begin
2 G=0
3 Create a random initial population xi,G ∀i, i = 1, . . . , NP
4 Evaluate f(xi,G) ∀i, i = 1, . . . , NP
5 For G=1 to MAX GEN Do
6 For i=1 to NP Do
7 ⇒ Select randomly r1 �= r2 �= r3 :
8 ⇒ jrand = randint(1, D)
9 ⇒ For j=1 to D Do
10 ⇒ If (randj [0, 1) < CR or j = jrand) Then
11 ⇒ ui,j,G+1 = xr3,j,G + F (xr1,j,G − xr2,j,G)
12 ⇒ Else
13 ⇒ ui,j,G+1 = xi,j,G

14 ⇒ End If
15 ⇒ End For
16 If (f(ui,G+1) ≤ f(xi,G)) Then
17 xi,G+1 = ui,G+1

18 Else
19 xi,G+1 = xi,G

20 End If
21 End For
22 G = G + 1
23 End For
24 End

Fig. 1. “DE/rand/1/bin” algorithm. randint(min,max) is a function that returns an
integer number between min and max. rand[0, 1) is a function that returns a real
number between 0 and 1. Both are based on a uniform probability distribution. “NP”,
“MAX GEN”, “CR” and “F” are user-defined parameters. “D” is the dimensionality
of the problem. Steps pointed with arrows change from variant to variant.

(called donor vector), (2) the number of differences computed also in the muta-
tion operator and, finally, (3) in the recombination operator chosen.

The most popular variant is called “DE/rand/1/bin”, where “DE” refers to
the name of the algorithm, the word “rand” indicates that the donor vector
selected to compute the mutation values is chosen at random, “1” is the number
of pairs of solutions chosen (most of the time chosen at random) to calculate the
mutation differential and finally “bin” means that a binomial recombination is
used. The corresponding algorithm of this variant is presented in Figure 1.

Besides typical parameters used in EAs (number of individuals and number of
generations), two parameters are adopted in DE: “CR” and “F”. “CR” controls
the influence of the parent in the generation of the offspring. Higher values mean
less influence of the parent in the features of its offspring. “F” scales the influence
of the set of pairs of solutions selected to calculate the mutation value (one pair
in the case of the algorithm in Figure 1).
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xr1

xr2

xr3
F (xr1 − xr2)

xr3 + F (xr1 − xr2)

Fig. 2. DE/rand/1/bin recombination and mutation operators example. xi is the
current parent, xr3 is the donor individual chosen at random (but it can be the best
solution in the population in other variants), xr1 and xr2 are the individuals chosen at
random to calculate the scaled difference between them and to define a search direction.
The black square represents the mutation vector which can be the location of the only
offspring generated after performing recombination. Additionally, the filled squares are
the other two possible locations for the only offspring after recombination.

In Figure 2 the effect of the DE mutation and recombination operator in its
most popular variant (DE/rand/1/bin) is explained. xr3 is the donor solution
which can be chosen either at random or it can be the best solution in the
population. xr1 and xr2 are the pair of solutions chosen always at random and
used to compute the difference between them in order to define a search direction.
This difference is scaled with the “F” parameter. After that, it is added to xr3

to define the location of the “mutation vector” (black square in Figure 2). This
“mutation vector” is combined with the original parent with a binomial (discrete)
recombination and the location of the mutation vector plus the two filled squares
in the figure represent the possible positions of the offspring generated. Finally,
this offspring will compete against its parent (based on fitness) and the best one
will remain in the population for the next generation.

As it was mentioned before, the difference among the different DE variants
are mainly on the way the donor solution (from the set chosen to compute the
“mutation vector”) is selected, the number of pairs of randomly chosen solutions
and the type of recombination operator adopted. Among the main variations we
distinguish the following:

• Variants with discrete recombination operator (either binomial or exponen-
tial):
– DE/rand/1/bin
– DE/rand/1/exp
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– DE/best/1/bin
– DE/best/1/exp
The “rand” variants select the donor solution (xr3) and the pair of solutions
to calculate the mutation differential (xr1 and xr2) at random. In contrast,
the “best” variants use the best solution in the population as the donor
solution and the pair of solutions are chosen at random.

• Variants with arithmetic recombination:
– DE/current-to-rand/1
– DE/current-to-best/1
The only difference between them is that the first one selects the donor so-
lution (xr3) and the pair of solutions to calculate the differential mutation
(xr1 and xr2) at random. The second one uses the best solution in the popu-
lation as the donor solution and, again, the pair of solutions to calculate the
differential mutation are chosen randomly.

• Variants with combined arithmetic-discrete recombination:
– DE/current-to-rand/1/bin

The implementation details of each DE variant are summarized in Table 1.

Table 1. DE basic variants. jr is a random integer number generated between [0, n],
where n is the number of variables of the problem. Uj(0, 1) is a real number generated
at random between 0 an 1. Both numbers are generated using a uniform distribution.
p is the number of pairs of solutions used to compute the differences in the mutation
operator. ui is the offspring (or trial vector), xr3 is the donor solution chosen at random,
xbest is the best solution in the population as donor solution, xi is the current parent
(old object vector) and xr

p
1

and xr
p
2

are the “pth” pair to compute the mutation
differential.

Variant
rand/p/bin:

ui,j =

{
xr3,j + F · ∑ p

k=1(xr
p
1 ,j

− x
r

p
2 ,j

) if Uj(0, 1) < CR or j = jr

xi,j otherwise
rand/p/exp:

ui,j =

{
xr3,j + F · ∑ p

k=1(xr
p
1 ,j − xr

p
2 ,j) from Uj(0, 1) < CR or j = jr

xi,j otherwise
best/p/bin:

ui,j =

{
xbest,j + F · ∑ p

k=1(xr
p
1 ,j − xr

p
2 ,j) if Uj(0, 1) < CR or j = jr

xi,j otherwise
best/p/exp:

ui,j =

{
xbest,j + F · ∑ p

k=1(xr
p
1 ,j − xr

p
2 ,j) from Uj(0, 1) < CR or j = jr

xi,j otherwise
current-to-rand/p:
ui = xi + K · (xr3 − xi) + F · ∑ p

k=1(xr
p
1
− x

r
p
2
)

current-to-best/p:
ui = xi + K · (xbest − xi) + F · ∑p

k=1(xr
p
1
− xr

p
2
)

current-to-rand/p/bin:

ui,j =

{
xi,j + K · (xr3,j − xi,j) + F · ∑ p

k=1 (xr
p
1 ,j − xr

p
2 ,j) if Uj(0, 1) < CR or j = jr

xi,j otherwise
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3 Multi-objective Optimization

We are interested in solving problems of the type1:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . , m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]T is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ..., m,
j = 1, ..., p are the constraint functions of the problem.

To describe the concept of optimality in which we are interested, we will in-
troduce next a few definitions.

Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x �= y.

Figure 3 shows a particular case of the dominance relation in the presence of
two objective functions.

dominated solutions

f

f2

1

Fig. 3. Dominance relation in a bi-objective space

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is non-
dominated with respect to X , if there does not exist another x′ ∈ X such that
f(x′) ≺ f(x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is the
feasible region) is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto-optimal}
1 Without loss of generality, we will assume only minimization problems.
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dominated solutions

Pareto front solutions

f

f2

1

Fig. 4. The Pareto front of a set of solutions in a two objective space

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

Figure 4 shows a particular case of the Pareto front in the presence of two
objective functions.

We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3). Note however that in practice,
not all the Pareto optimal set is normally desirable (e.g., it may not be desirable
to have different solutions that map to the same values in objective function
space) or achievable.

4 Differential Evolution for Multi-objective Problems

In order to apply the DE strategy for solving multi-objective optimization prob-
lems, the original scheme has to be modified since the solution set of a problem
with multiple objectives does not consist of a single solution (as in global op-
timization). Instead, in multi-objective optimization, we aim to find a set of
different solutions (the so-called Pareto optimal set), as mentioned in Section 3.

Two are the main aspects that have been considered by researchers who have
extended the DE approach to multi-objective optimization:

1. How to promote diversity into the population?
2. How to select and/or retain the best individuals? That is, how to perform

elitism?

We briefly discuss these two design aspects in the following Sections.

4.1 Promoting Diversity

Promoting diversity may be done through the selection process by means of
mechanisms based on some quality measures that indicate the closeness of the
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individuals within the population. In order to help understanding the specific ap-
proaches that are going to be described later on, we present here two of the most
important density measures used in the area of multi-objective optimization:

• Crowding distance [14]. The crowding distance factor gives us an idea of
how crowded are the closest neighbors of a given individual, in objective
function space. This measure estimates the perimeter of the cuboid formed
by using the nearest neighbors as the vertices. See Figure 5.

i−1

i

i+1

f

f

1

2

Fig. 5. The crowding distance factor for an example with two objective functions.
Individuals with a larger value of this factor are preferred.

• Fitness sharing [17, 13]: When an individual is sharing resources with oth-
ers, its fitness is degraded in proportion to the number and closeness to
individual that surround it within a certain perimeter. A neighborhood of
an individual is defined in terms of a parameter called σshare that indicates
the radius of the neighborhood. Such neighborhoods are called niches. See
Figure 6.

σ
share

σ
share

Fig. 6. For each individual, a niche is defined. Individuals whose niche is less crowded
are preferred.

4.2 Performing Elitism

In evolutionary multi-objective optimization, elitism is usually implemented
through an external archive, also called secondary population, which stores the
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nondominated individuals found along the search. Such an archive will allow the
entrance of a solution only if: (a) it is nondominated with respect to the contents
of the archive or (b) it dominates any of the solutions within the archive (in this
case, the dominated solutions have to be deleted from the archive).

Besides, elitism can also be implemented through the use of (μ + λ)-selection
(also called plus selection), by which, at each generation, parents and children
are compared in order to select the best of them to conform the next population.

One of the most popular mechanisms used to select the best individuals from
the combined population of parents and children is the so-called nondominated
sorting approach. This approach is based on the Pareto ranking mechanism
firstly proposed by Goldberg in 1989 [16]. The nondominated sorting mechanism
ranks the individuals of the population in different levels in the following way.
All nondominated individuals are classified into one category with rank 1 (level
1), then, this group of individuals with rank 1 is ignored and the process is
repeated. This time, the nondominated individuals will have rank 2 (level 2).
The process continues until all individuals are classified. Individuals with lower
rank are always preferred for selection. Figure 7 shows the ranking process of
the nondominated sorting approach.
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Level 1

Level 2

Level 3

Fig. 7. Ranking process of the nondominated sorting approach

According to Goldberg [16], to maintain appropriate diversity, the nondomi-
nated sorting procedure should be used in conjunction with niching techniques
as, for example, the fitness sharing mechanism previously mentioned.

The first multi-objective evolutionary algorithm (MOEA) which used the non-
dominated sorting approach proposed by Goldberg was the Nondominated Sort-
ing Genetic Algorithm (NSGA) proposed by Srinivas and Deb in 1994 [54]. The
NSGA algorithm combined the nondominated sorting approach with fitness shar-
ing in its corresponding fitness assignment process. Later, the improved version
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of the NSGA, called NSGA-II [14], incorporated the nondominated sorting ap-
proach in order to perform a (μ + λ)-selection. In the NSGA-II, the population
for the next generation is obtained by first introducing all individuals with rank
1 (level 1), then all individuals with rank 2 (level 2) and the process continues
until the population is complete. However, when there is not enough space to
include all individuals with rank i (level i), a crowding distance mechanism is
applied in order to select the best individuals from such level.

5 Taxonomy

In this section, we propose a classification of approaches, based on common
features to adapt DE for multi-objective optimization. The proposed classes are
enumerated as follows:

1. Non-Pareto-based approaches.
2. Pareto-based approaches.

a) Using Pareto dominance
b) Using Pareto ranking.

3. Combined approaches.

In the following Subsections, we will show the approaches located in each cate-
gory, by describing their main features, regarding the DE variant used and their
companion mechanisms to deal with multi-objective problems.

5.1 Non-Pareto-Based Approaches

In this class, we consider those approaches that use multi-objective concepts like
combination of functions, problem transformation, etc.

Babu and Jehan [5] propose the Differential Evolution for Multi-Objective
Optimization approach. This algorithm uses the DE/rand/1/bin variant with
two different mechanisms to solve bi-objective problems: (1) incorporating one
objective function as a constraint, and (2) using an aggregating function. A
single optimal solution is obtained after N iterations using the Penalty Function
Method [11] to handle the objective treated as a constraint in the first case. On
the other hand, a set of optimal solutions is obtained after N iterations using
the Weighting Factor Method [11] to provide the importance of each objective
from the user’s perspective, in the second case. The authors present results for
two bi-objective problems and compare them with respect to a simple GA. The
authors indicate that the DE algorithm provides the exact optimum with a lower
number of evaluations than the GA.

Li and Zhang [36] propose a multi-objective differential evolution algorithm
based on decomposition (MODE/D) for continuous multi-objective optimization
problems with variable linkages. The authors use the weighted Tchebycheff ap-
proach to decompose a multi-objective optimization problem into several scalar
optimization subproblems. The differential evolution operator based on the
DE/rand/1/bin variant is used for generating new trail solutions, and a neigh-
borhood relationship among all the subproblems generated is defined, such that
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they all have similar optimal solutions. For validating their approach, the authors
adopt test problems with variable linkages [41] and propose variants of some of the
Zitzler-Deb-Thiele (ZDT) test problems [59]. Results are compared with respect
to the NSGA-II [14], the Nondominated Sorting Differential Evolution (NSDE)
[25] and GD3 [30]. The authors report that MODE/D clearly outperformed the
other approaches with respect to which it was compared.

5.2 Pareto-Based Approaches

In this group we classify those methods that use Pareto concepts to deal with
multiple objectives. We divided this class into two subclasses, because we de-
tected two different ways to apply them: (1) as a criterion to select the best
solution in the DE selection mechanism and (2) as a ranking procedure.

Pareto dominance

In this subclass, we describe those approaches where Pareto Dominance was
used as a criterion to select the best solution between the old population vec-
tor and the trial vector. One of the features that distinguishes each approach
is the decision made when both solutions are nondominated between each
other. Furthermore, other authors use Pareto Dominance as a filter to get only
nondominated solutions.

Apparently, Chang et al. [9] constitutes the first reported attempt to extend
differential evolution for multi-objective problems. In this paper, the authors
use DE/rand/1/bin with an external archive (called “Pareto optimal set” by the
authors) to store the nondominated solutions obtained during the search. The
approach also incorporates fitness sharing to maintain diversity. An interesting
aspect of this approach is that the selection mechanism of the differential evo-
lution algorithm is modified in order to enforce that the members of the new
generation are nondominated not only regarding their objective values but also
regarding a set of distance metric values (one assigned to each objective) which
ensure the new solutions are at certain minimum distance from the previously
found nondominated solutions. This approach is adopted to fine-tune the fuzzy
automatic train operation (ATO) for a typical mass transit system, in which
three objectives are considered: (1) punctuality (least deviation from scheduled
arrival time), (2) least energy consumption and (3) maximum passenger comfort.
This application is discussed in further detail in [8].

Abbass et al. [4, 3, 51] propose the Pareto Differential Evolution (also ab-
breviated as PDE) algorithm. The authors use an special case of the DE/-
current to rand/1/bin variant with K = 0 (see last row in Table 1), because
the old population vector (the parent) is used in the calculation of the trial
vector (combined with the difference vector) and also in the discrete recombina-
tion. The algorithm works as follows. The initial population is initialized using
a Gaussian distribution with mean 0.5 and standard deviation 0.15. Only the
nondominated solutions are retained in the population for recombination (all
dominated solutions are removed). Three parents are randomly selected (one as



184 E. Mezura-Montes, M. Reyes-Sierra, and C.A.C. Coello

the main parent and also trial solution) and a child is generated with them.
The offspring is placed in the population only if it dominates the main parent;
otherwise, a new selection process takes place. This process continues until the
population is completed. If the number of nondominated solutions exceeds a
certain threshold (50 was adopted in [4]), a distance metric is adopted to re-
move parents which are too close from each other (this can be seen as a niching
procedure in which this distance metric is the niche radius). In this approach,
the step-length parameter F is generated from a Gaussian distribution N(0, 1)
and the boundary constraints are preserved either by reversing the sign if the
variable is ≤ 0 or by repetitively subtracting 1 if it is ≥ 0, until the variable
is within the allowable boundaries. This algorithm also incorporates a mutation
operator which is applied with certain probability (after the crossover operator),
by adding to each variable a small random perturbation. PDE is compared with
respect to SPEA [60] in [3] (without mutation) and also with respect to many
other approaches (including PAES [28], the NSGA [54] and the NPGA [22]) in
[4] (including mutation).

In [2], a new version of PDE is introduced. This version is called Self-
adaptive Pareto Differential Evolution (SPDE) algorithm, because it self-adapts
its crossover and its mutation rates.

In [1], Abbass proposes an approach called Memetic Pareto Artificial Neural
Networks (MPANN). This approach consists of a version of Pareto Differential
Evolution (PDE) [3] enhanced with the Back-Propagation (BP) local search algo-
rithm, in order to speed up convergence. MPANN is used to evolve neural networks
in which an attempt is made to obtain a trade-off between the architecture and
generalization ability of the network. So, two objectives are minimized: (1) error
and (2) the number of hidden units. MPANN is validated using two benchmark
data sets: the Australian credit card assessment problem and the diabetes prob-
lem (both were taken from the UCI Machine Learning Repository [40]). Results are
compared with respect to 23 algorithms, which include decision trees, rule-based
methods, neural networks and statistical algorithms. MPANN was able to outper-
form the traditional backpropagation approach and obtained results competitive
against the other 23 algorithms with respect to which it was compared.

Kukkonen and Lampinen extended DE/rand/1/bin to solve multi-objective
optimization problems in their approach called Generalized Differential Evolu-
tion (GDE). In fact, GDE is able to solve global and multi-objective optimiza-
tion problems (either constrained or unconstrained). The first version of their
approach [32] modified the original DE selection operation by introducing Pareto
Dominance as a selection criterion between the old population member and the
trial vector. Also, Pareto dominance in the constraint space is considered to
handle the constraints of the problem.

To promote a better distribution of the nondominated solutions, a second ver-
sion of the approach, called GDE2 [29] was introduced. In this version, a crowding
distance measure was used to select the best solution when the old population
vector and the trial vector are feasible and nondominated with respect to each
other, in such a way that the vector located in the less crowded region will be
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part of the population of the next generation. The authors acknowledge that
GDE2 was sensitive to its initial parameters and that the modified selection
mechanism slows down convergence.

Santana-Quintero and Coello Coello [50] propose the ε-MyDE. This approach
keeps two populations: the main population (which is used to select the parents)
and a secondary (external) population, in which the concept of ε-dominance [35]
is adopted to retain the nondominated solutions found and to distribute them in
an uniform way. The concept of ε-dominance does not allow two solutions with
a difference less than εi in the i-th objective to be nondominated with respect
to each other, thereby allowing a good spread of solutions. ε-MyDE uses real
numbers representation, and incorporates a constraint-handling mechanism that
allows infeasible solutions to intervene during recombination. DE/rand/1/bin
variant is used to evolve the main population. However, after a user-defined
number of generations, the three random solutions used in the mutation operator
are selected from the secondary population in such a way that they are close
among them in the objective function space. If none of the solutions satisfies this
condition, a random solution from this secondary population is chosen. Finally,
to improve exploration capabilities, a uniform mutation operator is added.

Portilla Flores [44] proposes a multi-objective version of differential evolution,
which is used for concurrent design of pinion–rack continuously variable trans-
mission (CVT). This mechatronic design problem is formulated as a dynamic
multi-objective optimization problem in which two objectives are considered:
(1) maximize the mechanical CVT efficiency, and (2) minimize the controller
energy. The DE/rand/1/bin variant is used in this approach and Pareto domi-
nance between a parent and its offspring works like the selection criterion. Also,
this technique incorporates a secondary population to retain the nondominated
solutions found during the evolutionary process. Finally, it uses the feasibility
rules from [38] to handle the constraints of the problem.

However, the approach does not include an explicit mechanism to maintain di-
versity (although a set of diverse solutions is actually generated). An interesting
aspect of this work is that results are compared with respect to a mathematical
programming technique: the goal attainment method. The comparison of results
indicated that, as expected, the goal attainment method was very sensitive to
its initial search point. Also, in several runs, it was not able to converge to a
feasible solution. In contrast, the differential evolution algorithm was able to
converge to feasible solutions in all the runs performed. However, the solutions
generated by the goal attainment method were nondominated with respect to
the solutions produced by differential evolution. Additionally, the CPU time re-
quired by differential evolution was about twice the time required by the goal
attainment method.

Pareto Ranking

This subsection includes those approaches where a Pareto ranking procedure
was added to them. The aim is to perform a (μ + λ)-selection after the set of
trial vectors have been generated from the current population.
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In [37], Madavan proposes the Pareto-Based Differential Evolution (PBDE)
approach. In this algorithm, Differential Evolution is extended to multi-objective
optimization by incorporating Pareto-based mechanisms proposed previously by
Deb et al. [12, 14]. It is interesting to note that this approach uses the same
special case of the DE/current to rand/1/bin variant used by Abbass [4, 3, 51]
where K = 0. The PBDE algorithm modifies the selection procedure in the basic
DE algorithm by incorporating the key elements of the NSGA-II algorithm: the
nondominated sorting and ranking selection procedure. In this way, once the new
candidate vectors are obtained using DE operators (where the basic crossover
operator is applied using the trial vector as the main parent), the new population
is combined with the existing parents population and then the best members of
the combined population (parents plus offspring) are chosen. As in the NSGA-II
algorithm, the population for the next generation is filled by taking the individ-
uals from the best nondominated rank down and discarding individuals with the
same rank based on the diversity measure (crowding distance). This algorithm
is not compared with respect to any other approach and is tested on 10 different
unconstrained problems performing 250,000 evaluations. The authors indicate
that the approach has difficulties to converge to the true Pareto front in two
problems (Kursawe’s test function [31] and ZDT4 [59]).

Xue et al. [56, 55] propose the Multi-Objective Differential Evolution (MODE)
approach. This algorithm uses a variant of DE created by the authors in which
the best individual is incorporated to create the offspring. This variant has some
similarities with the traditional DE/best/1/bin. A Pareto-based approach is in-
troduced to implement the selection of the best individual: if the trial solution is
dominated, a set of nondominated individuals can be identified, and the “best”
turns out to be any individual (randomly picked) from this set. On the other
hand, if the trial solution is nondominated, it will be the “best” solution itself.
The formula used by Xue et al. to create the offspring is the following:

p′i = γ · pbest + (1 − γ)pi + F ·
K∑

k=1

(
pi

ak
− pi

bk

)

where pbest is the best individual selected, γ ∈ [0, 1] represents the greediness of
the operator, and K is the number of perturbation vectors (they use K = 2). It
is worth noting that the previous formula is applied with certain mutation prob-
ability (pm). Also, the authors adopt (μ+λ)-selection, Pareto ranking (according
to Goldberg [16]) and crowding distance [14] in order to produce and maintain
well-distributed solutions. Actually, the authors incorporate a new parameter,
called σcrowd, which is used to penalize the fitness of the individuals, based
on the crowding distance values, in order to improve the (μ + λ)-selection ap-
proach. MODE is used to solve five high dimensionality unconstrained problems
with 250,000 evaluations and the results are compared only to those obtained
by SPEA [61].

Iorio and Li [25] propose the Nondominated Sorting Differential Evolution
(NSDE). This approach is a simple modification of the NSGA-II [14]. The
only difference between this approach and the NSGA-II is in the method for
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generating new individuals. The NSGA-II uses a real-coded crossover and muta-
tion operator, but in the NSDE, these operators are replaced with the operators
of Differential Evolution. New candidates are generated using the DE/current-
to-rand/1 variant, which is known to be rotationally invariant. A number of
experiments are conducted on a uni-modal rotated problem from the literature.
NSDE is used to solve a uni-modal rotated problem with a certain degree of ro-
tation on each plane. The results of the NSDE outperformed those produced by
the NSGA-II, and thus, it is shown that Differential Evolution can provide rota-
tionally invariant behavior on a multi-objective optimization problem. In further
work, Iorio and Li [26] propose three new versions of NSDE that incorporate di-
rectional information, by selecting parents for the generation of new individuals
according to measures of both convergence and spread. For convergence, the
authors modify the selection process (of the main parent) of NSDE in order to
calculate differential vectors that point towards regions where better ranked in-
dividuals are located. For spread, the authors modify NSDE so that it favors the
selection process (of the supporting parents) from different regions of decision
variable space, but with the same rank. The modified approach is called NSDE-
DCS (DCS stands for “directional convergence and spread”) and is compared
with respect to the NSGA-II, the original NSDE [25], NSDE-DC (NSDE only
with the directional convergence mechanism), and NSDE-DS (NSDE only with
the directional spread mechanism). Results indicate that all the NSDE versions
outperform the NSGA-II, but NSDE-DS practically provides the same results
as NSDE-DCS. This is a very interesting outcome that indicates that improving
spread may, in some cases, also improve convergence.

Robič and Filipič [48] propose an approach called Differential Evolution for
Multi-Objective Optimization (DEMO). They used the DE/rand/1/bin variant.
DEMO modifies the mechanism followed to decide when a new vector replaces
the parent: if the new vector dominates the parent, the new vector replaces the
parent; if the parent dominates the new vector, the new vector is discarded; oth-
erwise, the new vector is added in the population. In this way, the population
can be extended and the newly created vectors take part immediately in the
creation of the subsequent vectors. After the creation process of new vectors has
finished, DEMO applies a nondominated sorting mechanism (combined with the
use of the crowding distance measure) in order to truncate the population and
maintain a fixed number of vectors at each iteration. This enables a fast con-
vergence towards the true Pareto front, while the use of nondominated sorting
and crowding distance (derived from the NSGA-II [14]) of the extended popu-
lation promotes the uniform spread of solutions. Robič and Filipič also propose
two additional versions of DEMO in which the newly created vector is not com-
pared against the parent, but against the most similar individual in either the
decision variable space or the objective space. The three DEMO variants are
compared in five high-dimensionality unconstrained problems outperforming in
some problems to the NSGA-II, PDE [2], PAES [28], SPEA [61] and MODE [56].
However, the authors didn’t find any variant of DEMO to be significantly better
than another, so they recommend to use the original version of DEMO (which
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compares the new vector against the parent), since it is the most efficient one
(computationally speaking).

To deal with the shortcomings of GDE2 (described in the previous group)
regarding slow convergence, Kukkonen and Lampinen proposed an improved
version called GDE3 [30] (a combination of the earlier GDE versions and the
Pareto-Based Differential Evolution algorithm [37]). This version added a grow-
ing population size and nondominated sorting (as in the NSGA-II [14]) to im-
prove the distribution of solutions in the final Pareto front and to decrease the
sensitivity of the approach to its initial parameters. In GDE3, when the old pop-
ulation vector and the trial vector are feasible and nondominated with respect to
each other, both of them are maintained. Hence, the population size will grow.
To maintain a fixed population size for the next generation, nondominated sort-
ing is performed after each generation to prune the population size. GDE3 is
compared with respect to the NSGA-II in several test functions, including some
from the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [15].

5.3 Combined Approaches

Finally, this class considers those approaches where a set of schemes have been
mixed in the DE-based multi-objective algorithm. There are approaches which
consider either Pareto concepts and also population-based concepts in the same
approach, or techniques where, besides global search, local search is considered.

In [42], Parsopoulos et al. introduce a parallel multi-population DE called the
Vector Evaluated Differential Evolution (VEDE) approach, for multi-objective
optimization. VEDE is inspired by the Vector Evaluated Genetic Algorithm
(VEGA) [52] approach. A number M of sub-populations are considered in a ring
topology. Each population is evaluated using one of the objective functions of the
problem, and there is an exchange of information among the populations through
the migration of the best individuals. In this way, only the versions of DE that
use the best individual to create new vectors can take full advantage of this
information exchange. Also, the algorithm incorporates a domination selection
procedure to enhance its performance by favoring non-dominated individuals in
the population. The selection mechanism introduced by Parsopoulos et al. is
similar to that used by Abbass et al. [4], in which the new vector is introduced
in the population if it dominates the main parent. Finally, VEDE uses an exter-
nal archive for the maintenance of the Pareto optimal set. VEDE is validated
using four bi-objective unconstrained problems and is compared with respect
to VEGA. Furthermore, VEDE was tested on three versions, using different DE
variants: DE/best/1/bin, DE/best/2/bin and DE/current to best/1. The authors
indicate that the proposed approach outperformed VEGA in all cases, however,
among the three DE variants, none of the them was clearly superior to the other
two.

Santana-Quintero’s approach (ε-MyDE) was further hybridized with rough
sets to give raise to a new approach called DEMORS (Differential Evolution for
Multiobjective Optimization with Rough Sets) [20]. DEMORS operates in two
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phases. During the first phase, an improved version of ε-MyDE is applied
for 2000 fitness function evaluations. The main improvement on ε-MyDE is the
incorporation of the so-called Pareto-adaptive ε-grid [21] for the secondary pop-
ulation. The concept of Pareto-adaptive ε-dominance eliminates several of the
drawbacks of ε-dominance [35]. During the second phase, a local search procedure
based on rough sets theory [43] is applied for 1000 fitness function evaluations,
in order to improve the solutions produced at the previous phase. The idea is to
combine the high convergence rate of differential evolution with the high local
search capabilities of rough sets. DEMORS is able to converge to the true Pareto
front (or very close to it) in test problems with up to 30 decision variables, while
only performing 3000 fitness function evaluations. Results are compared with
respect to the NSGA-II.

Landa-Becerra and Coello Coello [34] propose the use of the ε-constraint tech-
nique [18] hybridized with a single-objective evolutionary optimizer: the cultured
differential evolution [33]. The variant used in this approach is DE/rand/1/bin,
however, the influence of the knowledge of the problem during the process, al-
lows to change the variant to DE/best/1/bin. In fact, some modifications to the
original DE/rand/1/bin are used (e.g. using the absolute value of the differences,
adding another scaling factor besides “F” and using historical values of the best
solution during the evolutionary process). The ε-constraint method transforms a
multi-objective optimization problem into several single-objective optimization
problems (each of these optimizations leads to a single Pareto optimal point).
This method has been normally disregarded in the evolutionary multi-objective
optimization literature due to its high computational cost [53, 46]. However,
the authors argue that, if care is placed in the single-objective optimizer, this
sort of hybrid can generate the true Pareto front of very difficult multi-objective
optimization problems at a reasonable computational cost. Such a hypothesis
is validated by solving DTLZ8 and DTLZ9 from the benchmark proposed in
[15] together with several other test problems from the benchmark proposed in
[23, 24]. All of these test functions are considered very hard to solve by current
MOEAs, and this is illustrated by showing the results obtained by the NSGA-II
in them. In most cases, even when performing a very high number of fitness
function evaluations, the NSGA-II is unable to reach the true Pareto front. In
contrast, the hybrid algorithm proposed in this paper is able to converge to the
true Pareto front (or very close to it) of all the problems.

6 Convergence Properties of Multi-Objective Differential
Evolution

Some theoretical studies about multi-objective extensions of differential evolu-
tion have been done recently. In [56, 57], Xue et al. perform a mathematical
modeling and convergence analysis of a continuous Multi-Objective Differen-
tial Evolution (C-MODE) algorithm. The convergence properties of C-MODE
are studied in a similar manner to the work presented by Hanne in [19], where
convergence has been defined as follows:
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Definition 6. A MOEA is said to converge to the entire set of Pareto
optimal solutions P∗ with probability one if

d(P∗,Pt)→ 0 with probability one as t → ∞,

where d(P∗,Pt) is a distance function between P∗ and Pt, and it is defined as:

d(P∗, Pt) =| P∗ ∪ Pt | − | P∗ ∩ Pt |

The approach of Xue et al. employs underlying geometric structures (cones)
based primarily on convex sets, to prove the convergence of the population of the
C-MODE to the Pareto optimal set with probability one. Readers are directed
to the associated references for a detailed description and associated theorem
proof details.

On the other hand, Xue et al. study the C-MODE operators and their effects
on the convergence properties of the algorithm, under the Gaussian initial pop-
ulation assumption. They show that the limiting properties of C-MODE depend
on the factor (2KF 2 + (1 − γ)2), where K, F and γ are the parameters asso-
ciated to the approach. If this factor is greater than 1, the population variance
matrix explodes, and C-MODE successfully identifies the optimal solution set;
otherwise, the population variance matrix vanishes.

Xue et al. confirm the mathematical results developed by simulation results
obtained by applying C-MODE to numerical examples with different parame-
ter settings. Also, they conduct simulation results on complicated continuous
benchmark functions and show that the C-MODE performs better when the
parameters are set to meet the obtained conditions. In this way, the results ob-
tained by Xue et al. can also be used to guide the parameter setting of the
C-MODE when applied in real world applications.

In [56, 58], Xue et al. extend their theoretical work by modeling a discrete
version of MODE, D-MODE, in the framework of Markov processes and develop
the corresponding convergence properties. They study the Markov model for
the D-MODE with finite population size. Two situations are considered: one
with a population large enough to contain all the Pareto optimal solutions while
the other is the opposite. In the second situation, an external archive is needed
to store all visited Pareto optimal solutions. In both cases, Xue et al. prove
the convergence with probability one of D-MODE to the set of Pareto optimal
solutions in a similar manner to the work presented by Rudolph in [49].

7 Conclusions and Future Research Paths

In this chapter, we have presented a survey of Differential Evolution approaches
modified to solve multi-objective optimization problems. We found that the tech-
niques can be categorized in three classes: (1) Non-Pareto-based, (2) Pareto-
based and (3) combined approaches. In fact, Pareto-based approaches were
divided into two sub-classes: Using Pareto dominance and Using Pareto ranking.
Combined approaches, as the name indicates, combines different schemes (e.g.
global and local search, Pareto dominance and ranking) into one single approach.
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In other heuristics to solve multi-objective optimization problems, such as
particle swarm optimization (PSO) [47], key features of the heuristic itself have
been adapted as to get some benefit in the way the problem is being solved
(e.g. leader selection for creating new solutions). In contrast, from our findings,
we observed that in the case of DE, the selection of the individuals used for
the generation of new solutions has not been modified in most cases, with the
exception of a few proposals [26]. We also found that the most popular schemes
added to DE for multi-objective optimization were Pareto dominance for the
selection mechanism between parent and offspring and Pareto ranking after the
whole set of offspring have been generated.

Based on the aforementioned findings, we enumerate the topics we consider
as promising paths for future research:

• Diversity: DE has shown a high convergence rate, like other metaheuris-
tics such as PSO [27], but with a higher degree of robustness. However, DE
present problems to actually reach the true Pareto front (it gets trapped in
local optimum fronts). Furthermore, DE has some problems to spread solu-
tions along the obtained front. This seems to indicate that multi-objective
DE-based approaches require alternative (i.e., more effective) diversity main-
tenance schemes.

• Variants: Most approaches included in this survey use the most popular
variant (DE/rand/1/bin) [9, 5, 32, 29, 30, 48, 50, 44, 20, 34, 36]. Despite the
fact that other authors have used others variants like DE/current to best/1
[42], DE/current to rand/1 [26], special cases of DE/current to rand/1/bin
[4, 1, 3, 37] and new variants [56, 55], it is not clear which variant is more
suited for multi-objective optimization (i.e., which type of mutation and re-
combination operator is able to bias the search in a better way as to reach
the true Pareto front in a more effective manner).

• DE mutation operator: In DE for global optimization, it is common to
assume that the vectors that will be used to calculate the differences when
computing the trial vector are chosen at random. However, as it was shown
by Iorio and Li [26], in multi-objective optimization, some additional criteria
might be taken into account for the selection of the pairs of solutions to
participate in the mutation operator.

• Parameter adaptation: Online and self-adaptation attempts are still
scarce in multi-objective differential evolution. Novel schemes to adapt key
parameters like “CR”, “F” or even the number of differences for the mutation
operator are promising topics for future research.

• Alternative encodings: DE was proposed for continuous search spaces.
Thus, one topic of interest is to develop alternative encodings that allow
the use of differential evolution in problems requiring alternative encodings
(e.g., combinatorial optimization problems). The use of encodings such as
the random keys [7] or other proposals may be alternatives worth exploring
in such cases.

• Theory: Studies about convergence of different DE variants, and runtime
analysis, among other topics, will improve the current DE theory.
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• Applications: Another path of research is the application of previously pro-
posed DE-based approaches to the solution of real-world multi-objective op-
timization problems. Interesting behaviors may be found when applying DE
in real-world multi-objective search spaces.
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Dinámicos para el Diseño Óptimo de un Sistema de Transmisión de Variación Con-
tinua. PhD thesis, Departamento de Ingenieŕıa Eléctrica, Sección de Mecatrónica,
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Summary. In this chapter we present an overview of the major applications areas of differential
evolution. In particular we pronounce the strengths of DE algorithms in tackling many difficult
problems from diverse scientific areas, including single and multiobjective function optimiza-
tion, neural network training, clustering, and real life DNA microarray classification. To improve
the speed and performance of the algorithm we employ distributed computing architectures and
demonstrate how parallel, multi–population DE architectures can be utilised in single and multi-
objective optimization. Using data mining we present a methodology that allows the simultane-
ous discovery of multiple local and global minimizers of an objective function. At a next step we
present applications of DE in real life problems including the training of integer weight neural
networks and the selection of genes of DNA microarrays in order to boost predictive accuracy of
classification models. The chapter concludes with a discussion on promising future extensions of
the algorithm, and presents novel mutation operators, that are the result of a genetic programming
procedure, as very interesting future research direction.

1 Introduction

Evolutionary Algorithms (EAs) refer to problem solving optimization algorithms which
employ computational models of evolutionary processes. A variety of evolutionary al-
gorithms have been proposed. The major ones include: Genetic Algorithms [21, 24],
Evolutionary Programming [17, 19], Evolution Strategies [39], Genetic Programming
[29], Particle Swarm Optimization [27], and the Differential Evolution algorithm [46].
All these algorithms share the common conceptual base of simulating the evolution of
a population of individuals using a predefined set of operators. Commonly two kinds of
operators are used: the selection and the search operators. The most widely used search
operators are mutation and recombination.

The selection operator enforces the natural selection and the survival of the fittest on
the population of individuals. The recombination and the mutation operators stochas-
tically perturb the individuals providing efficient exploration of the search space. This
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perturbation is primarily controlled by the user defined recombination and mutation
rates. Although simplistic from a biologist’s point of view, these algorithms are suffi-
ciently complex to provide robust and powerful search mechanisms and have shown
their strength in solving hard optimization problems.

In this chapter we focus on the Differential Evolution algorithm and present some
of its applications, including single and multiobjective function optimization, neural
network training, clustering, and real life DNA microarray problems. Furthermore, we
discuss promising future extensions of the algorithm by the incorporation of genetically
programmed mutation operators.

2 The Differential Evolution Algorithm

More than ten years ago, Storn and Price [46] have presented a novel optimiza-
tion method, called Differential Evolution (DE), which has been designed to handle
nondifferentiable, nonlinear and multimodal objective functions. To fulfill this require-
ment, DE has been designed as a stochastic parallel direct search method, which
utilizes concepts borrowed from the broad class of evolutionary algorithms, but re-
quires few easily chosen control parameters. Early experimental results have shown that
DE has good convergence properties and outperforms other well known evolutionary
algorithms [45, 46]. In the following paragraphs we outline the workings of DE.

2.1 The Workings of DE

In each population, new individuals (vectors) are generated by the combination of ran-
domly chosen vectors. This operation in our context can be referred as mutation. The
outcoming vectors are then mixed with another predetermined vector – the target vector
– and this operation can be called recombination. This operation yields the so–called
trial vector. The trial vector is accepted for the next generation if and only if it reduces
the value of the objective function f . This operation can be referred as selection. A
high-level description of the above mentioned operators (for one generation) is given
below:

Step 1. Do for each Vector
Step 2. MutantVector := MUTATION(Vector)
Step 3. TrialVector := RECOMBINATION(MutantVector)
Step 4. If f(TrialVector) � f(Vector)
Step 5. Vector := TrialVector
Step 6. EndIf
Step 7. EndDo

We now briefly review the two basic DE variation operators. The first DE operator
we consider is mutation. Specifically, for each individual xi

g , i = 1, 2, . . . ,NP, where
g denotes the current generation and NP the number of individuals in the population,
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a new individual vi
g+1 (mutant vector) is generated according to one of the following

equations:

vi
g+1 =xbest

g + μ(xr1
g − xr2

g ), (1)

vi
g+1 =xr1

g + μ(xr2
g − xr3

g ), (2)

vi
g+1 =xi

g + μ(xbest
g − xi

g) + μ(xr1
g − xr2

g ), (3)

vi
g+1 =xbest

g + μ(xr1
g − xr2

g ) + μ(xr3
g − xr4

g ), (4)

vi
g+1 =xr1

g + μ(xr2
g − xr3

g ) + μ(xr4
g − xr5

g ), (5)

where xbest
g is the best member of the previous generation; μ > 0 is a real pa-

rameter, called mutation constant, which controls the amplification of the difference
between two individuals so as to avoid the stagnation of the search process; and
r1, r2, r3, r4, r5 ∈ {1, 2, . . . , i − 1, i + 1, . . . ,NP}, are random integers mutually
different and not equal to the running index i.

Trying to rationalize the above equations, we observe that Equation (2) is similar to
the crossover operator used by some Genetic Algorithms and Equation (1) derives from
it, when the best member of the previous generation is employed. Equations (3), (4)
and (5) are modifications obtained by the combination of Equations (1) and (2). It is
clear that more such relations can be generated using the above ones as building blocks.
For example, the recently proposed trigonometric mutation operator [14] performs
mutations with probability τμ according to the following equation:

vi
g+1 =(xr1

g +xr2
g +xr3

g )/3+(p2 −p1)(xr1
g −xr2

g )+
+(p3 −p2)(xr2

g −xr3
g )+(p1 −p3)(xr3

g −xr1
g ), (6)

and with probability (1−τμ) performs mutations according to Equation (2), where τμ is
a user defined parameter. The values of pm, m = {1, 2, 3} and p′ are obtained through
the following equations:

p1 =
∣∣f(xr1

g )
∣∣ /p′, p2 =

∣∣f(xr2
g )

∣∣ /p′, p3 =
∣∣f(xr3

g )
∣∣ /p′, and

p′=
∣∣f(xr1

g )
∣∣ +

∣∣f(xr2
g )

∣∣ +
∣∣f(xr3

g )
∣∣ .

For the rest of the chapter, we call DE1 the differential evolution algorithm that uses
Equation (1) as the mutation operator, DE2 the algorithm that uses Equation (2), and so
on.

The recombination operator is subsequently applied to further increase the diversity
of the mutant individuals. To this end, the resulting individuals are combined with other
predetermined individuals, called the target individuals. Specifically, for each compo-
nent l (l = 1, 2, . . . , n) of the mutant individual vi

g+1, we randomly choose a real
number r in the interval [0, 1]. Then, we compare this number with the recombination
constant, ρ. If r � ρ, then we select, as the l–th component of the trial individual ui

g+1,
the l–th component of the mutant individual vi

g+1. Otherwise, the l–th component of
the target vector xi

g+1 becomes the l–th component of the trial vector. This operation
yields the trial individual.
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Finally, the trial vector ui
g+1 is accepted for the next generation only if it reduces the

value of the objective function. Thus:

xi
g+1 =

{
ui

g+1, if f(ui
g+1) < f(xi

g),
xi

g, otherwise.
(7)

To prevent an individual from surviving indefinitely, we can employ the concept of
aging [45]. To this end, each vector is randomly assigned a maximum age, i.e. an integer
from the interval [α, β], where α and β are the minimum and the maximum possible
age, respectively. At each iteration, the age of each vector is increased by one, and if it
exceeds its maximum age then the individual “dies”. This individual is then replaced by
another vector randomly chosen from the current population. Note that it is desirable
the best individual of the population not to be eliminated.

2.2 Implementation of Parallel Evolutionary Algorithms

Parallel processing, that is the method of having many small tasks solve one large prob-
lem, has emerged as a key enabling technology in modern computing. As a result of the
demand for higher performance, lower cost, and sustained productivity, the past several
years have witnessed an ever-increasing acceptance and adoption of parallel processing,
both for high-performance scientific computing and for more general–purpose applica-
tions. Exploiting recent software advances [1, 20], collections of heterogeneous com-
puters can be used as a coherent and flexible concurrent computational resource. These
technologies have allowed the vast number of individual personal computers available
in most scientific laboratories to be used as parallel machines at no, or at a very low,
cost. Network interfaces, linking individual computers, are necessary to produce such
pools of computational power.

EAs, as well as DEs, are easily parallelized [32, 43]. There are two typical models
for EA parallelization. The first uses fine grained parallelism, so each individual is rep-
resented by a processor. This creates certain problems when the number of processors
available is limited or when the individual’s fitness to reproduce needs to be evaluated
over the whole population. The second model, maps an entire subpopulation to a pro-
cessor. Thus each subpopulation evolves independently toward a solution. This allows
each subpopulation to develop its own solution uniquely. Then, the best individual of
each subpopulation is propagated to other subpopulations, according to the selected
network topology. This operation is called migration. This model is called the Parallel
Evolutionary Algorithm (PEA).

Usually, the topology of the PEA is a ring, i.e. the best individuals from each sub-
population are allowed to migrate to the next subpopulation of the ring. This concept
reduces the migration between the subpopulations and consequently the messages be-
tween the processors. The migration of the best individuals is controlled by the migra-
tion constant, ϕ ∈ (0, 1). At each iteration, a random number from the interval (0, 1) is
uniformly chosen and compared with the migration constant. If the migration constant
is bigger, then the best individuals of each subpopulation migrate and take the place of
a randomly selected individual (different from the best one) in the next subpopulation;
otherwise no migration is permitted. We have experimentally found that a migration
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constant, ϕ � 0.5, is a good choice, since it allows each subpopulation to evolve for
some iterations before the migration phase actually occur.

3 Function Optimization Using DE

Let us know consider the minimization problem of finding global minima of a con-
tinuous nonlinear, (possibly) nondifferentiable, multimodal objective function f . More
specifically, our goal is to locate global minimizers x∗

t of the real–valued objective func-
tion f : E → R:

f(x∗
t ) � f(x), ∀ x ∈ E ,

where t = 1, 2, . . . , and the compact set E ⊆ R
n is a n–dimensional scaled translation

of the unit hypercube.

3.1 Single Objective Optimization

Firstly, we will evaluate the performance of the DE algorithms employing seven single
objective test functions. We briefly describe them below.

Test Function 1: Sphere

f1(x) =
5∑

j=1

x2
j , xj ∈ [−5.12, 5.12].

The sphere test function is a considered to be a simple minimization problem. The
minimum is f1(0, 0, . . . , 0) = 0.

Test Function 2: Rosenbrock’s Saddle

f2(x) = 100 · (x2
1 − x2)2 + (1 − x1)2, xj ∈ [−2.048, 2.048].

This is a two–dimensional test function, which is known to be relatively difficult to
minimize. The minimum is f2(1, 1) = 0.

Test Function 3: Step Function

f3(x) = 30 +
5∑

j=1

�xj�, xj ∈ [−5.12, 5.12],

where the floor function �x� gives the largest integer less than or equal to x. The mini-
mum of this function is f3(−5−ξ, . . . ,−5−ξ) = 0, where ξ ∈ [0, 0.12]. This function
exhibits many flat regions that can cause search stagnation.

Test Function 4: Quartic Function

f4(x) =
30∑

j=1

(
j · x4

j + η
)
, xj ∈ [−1.28, 1.28].

This is test function is designed to evaluate the behavior of minimization algorithms
in the presence of noise. To this end, η is a random variable following the uniform
distribution in the range [0, 1]. The inclusion of η makes f4 more difficult to optimize.
The functional minimum of the function is f4(0, 0, . . . , 0) � 30 · E[η] = 15, where
E[η] is the expectation of η.
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Test Function 5: Shekel’s Foxholes

f5(x) =
1

0.002 + ψ1(x)
, xj ∈ [−65.536, 65.536],

where, ψ1(x) =
∑24

i=0
1

1+i+
∑ 2

j=1(xj−aij)6
. The parameters for this function are:

ai1 = {−32, −16, 0, 16, 32}, where i = {0, 1, 2, 3, 4} and ai1 = aimod 5,1

ai2 = {−32, −16, 0, 16, 32}, where i = {0, 5, 10, 15, 20} and ai2 = ai+k,2,

and k = {1, 2, 3, 4}. The global minimum of f5(−32, −32) = 0.998004.

Test Function 6: Corana Parabola

f6(x) =
4∑

j=1

{
ψ2(xj), if |xj − zj | < 0.05,
ψ3(xj), otherwise.

where ψ2(xj) = 0.15 (zj − 0.05sign(zj))
2
dj , ψ3(xj) = djx

2
j , zj = �5|xj| +

0.49999�sign(xj)0.2 and dj = {1, 1000, 10, 100}. The Corana test function defines
a paraboloid with axes parallel to the coordinate axes. The function is characterized by
a multitude of local minima, increasing in depth as one moves closer to the origin. The
global minimum of the function is f6(x) = 0, for xj ∈ (−0.05, 0.05).

Test Function 7: Griewangk’s Function

f7(x) =
10∑

j=1

x2
j

4000
−

10∏
j=1

cos
(

xj√
j

)
+ 1, where xj ∈ [−400, 400].

This test function is riddled with local minima. The global minimum of the function is
f7(0, 0, . . . , 0) = 0.

Experimental Results on Parallel Differential Evolution

Here we present results of the Parallel Differential Evolution (PARDE) algorithm [47],
on the above test functions. In Table 1 the parameter setup used in the numerical ex-
periments conducted is summarized. Specifically, D denotes the dimensionality of the
problem, NP stands for the size of the subpopulation assigned to each of the processors
employed, g is the maximum number of generations allowed, finally, μ and ρ are the
values of the mutation and recombination constants, respectively.

Little effort has been devoted to the selection of the values of NP, μ and ρ since
the scope of these experiments is to study extensively, the implications of information
sharing in a parallel environment, which is controlled by the migration constant, ϕ.
It is worth noting that further performance improvements can be achieved by further
fine–tuning NP, μ, and ρ. The parameter τμ used by the trigonometric mutation strat-
egy, Equation (6), was set to 0.1. Figure 1 illustrates the speedup achieved by assigning
each subpopulation to a different processor, relative to assigning all subpopulations to
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Table 1. Parameter values

Test function D NP g μ ρ

Sphere function 5 30 1000 0.9 0.3
Rosenbrock’s saddle 2 30 1000 0.9 0.5
Step function 5 20 1000 0.8 0.3
Quartic function 30 100 2000 0.8 0.5
Shekel’s foxholes 2 30 1000 0.9 0.3
Corana’s parabola 4 15 2000 0.4 0.2
Griewangk’s function 10 50 10000 1.0 0.3
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Fig. 1. Speedup using up to 32 nodes

a single processor. To obtain the plotted
values, the algorithm performed 1000
generations with a migration constant
equal to 0.5. Table 2 reports the mean
number of generations required to lo-
cate the global minimum of each test
function, averaged over all the consid-
ered mutation constants. It is clear from
Table 2 that the best performing muta-
tion strategy, for all test problems, was
the first one. Furthermore, Griewangk’s
function appears to be the hardest to
minimize. Figures 2–4 illustrate the per-
formance of the 16–node model for all

the considered mutation strategies, on all the test functions, for a particular migration
constant. In all the 3D plots, the mutation strategies are given by the x–axis, the test
functions by the y–axis, and finally, the mean number of generations required is re-
ported in the z–axis. Concerning the overall performance of the alternative mutation
strategies, the worst performance is exhibited by strategies 5 and 6. Strategies 1 and 3
appear to be the most efficient and robust.
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Table 2. Mean number of generations for the 16–node model

Test function Mutation Strategy
1 2 3 4 5 6

Sphere 231.09 611.58 247.02 341.08 409.79 642.02
Rosenbrock 82.21 386.01 130.14 220.77 271.39 371.59
Step 21.91 76.85 25.48 47.59 25.40 31.59
Quartic 244.92 249.90 260.21 406.13 454.18 244.11
Shekel 63.39 136.96 96.21 186.91 158.30 101.55
Corana 282.35 364.09 513.36 329.48 491.01 398.85
Griewangk 1872.17 1885.19 1975.61 2644.47 4448.66 2434.45
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Fig. 3. Parallel DE results
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Figure 5 exhibits the mean number of generations required for each migration con-
stant, ϕ ∈ [0, 1] with stepsize 0.1, for all the mutation strategies on the Griewangk test
function. It is evident that selecting the appropriate migration constant has a significant
impact on the performance of the algorithm. Moreover, it appears that setting ϕ close to
one or to zero can lead to a substantial increase in the number of generations required.
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A superior performance is typically obtained for intermediate values of ϕ. It has already
been noted from the results of Table 2 and Figures 2–4 that the first mutation strategy,
Equation (1), is the most efficient. From Figure 5 we can infer that this strategy also
exhibits the most robust behavior with respect to the migration constant. The third mu-
tation strategy, Equation (3), also exhibits a relatively robust behavior with respect to
ϕ. It is worth noting, however, that the other considered mutation strategies can achieve
a comparable, or even better, performance after fine–tuning the value of ϕ.

3.2 Multiobjective Optimization

Multiobjective Optimization (MO) problems consist of several competing and incom-
mensurable objective functions. Such problems are frequently encountered in numer-
ous scientific and engineering applications. The need for the concurrent minimization
of more than one objective functions, renders the use of EAs particularly attractive.
In contrast to traditional gradient–based techniques, EAs operate on a set of potential
solutions of the problem. Thus, EAs are capable of detecting several solutions of an
MO problem in a single run [11, 12, 42, 54, 59, 60]. These solutions are called Pareto
optimal, and each corresponds to a different trade–off among the objective functions.
Typically, a large number of Pareto optimal solutions exist.

Here we present a multi–population variant of DE, named Vector Evaluated Differ-
ential Evolution (VEDE), which is inspired by the Vector Evaluated Genetic Algorithm
(VEGA) approach [42]. In VEDE, each population is evaluated using one of the ob-
jective functions of the problem under consideration. Information sharing among the
populations takes place through the migration of the best individuals. The performance
of a parallel version of VEDE, which incorporates a domination selection scheme,
is investigated on widely used test problems and compared to the VEGA approach.
The parallel computation of solutions of an MO problem is preferred, because besides
the reduction in execution time, can also yield a better representation of the possible
outcomes, thereby enhancing the performance of the algorithm [54].



206 V.P. Plagianakos, D.K. Tasoulis, and M.N. Vrahatis

Background Material

Let S ⊂ R
n be an n–dimensional search space, and let k objective functions:

fi(x) : S → R, i = 1, 2, . . . , k,

be defined over S. Further assume, gj(x) � 0, j = 1, . . . , m, to be m inequality
constraints. Then the MO problem can be stated as finding a vector, x∗ = (x∗

1, x
∗
2,

. . . , x∗
n)� ∈ S, that satisfies the constraints and minimizes the function f(x) =

[f1(x), f2(x), . . . , fk(x)] : R
n → R

k. The goal of MO is to compute a set of Pareto
optimal solutions to the aforementioned problem.

Let u = (u1, 2, . . . , uk), and v = (v1, v2, . . . , vk), be two vectors. Then, u dom-
inates v if and only if, ui � vi, i = 1, 2, . . . , k, and ui < vi, for at least one i.
This property is known as Pareto dominance and it is used to define the Pareto optimal
points. A solution, x, of the MO problem is said to be Pareto optimal if and only if,
there does not exist another solution y, such that f(y) dominates f(x). The set of all
Pareto optimal solutions of an MO problem is called Pareto optimal set and is denoted
as P∗. The set, PF∗ =

{
(f1(x), f2(x), . . . , fk(x))� | x ∈ P∗}, is called Pareto

front. A Pareto front PF∗ is convex if and only if, there exists w ∈ PF∗, such that,
λ‖u‖ + (1 − λ)‖v‖ � ‖w‖, ∀ u, v ∈ PF∗, ∀ λ ∈ (0, 1). Respectively, it is concave
if and only if, there exists w ∈ PF∗, such that, λ‖u‖ + (1 − λ)‖v‖ � ‖w‖, ∀ u, v ∈
PF∗, ∀ λ ∈ (0, 1). A Pareto front can be convex, concave or partially convex and/or
concave and/or discontinuous.

The VEDE Algorithm

For VEDE a number of M subpopulations is considered in a prespecified ring topology.
Each population is evaluated using as fitness function, one of the objective functions of
the problem at hand. If k is the number of the objective functions, and k < M , then the
i–th population is evaluated according to the j–th objective function, where,

j ≡
{

i mod k, if i �= rk, r = 1, 2, . . .
k, otherwise

and i = 1, 2, . . . , M.

In every generation, the best individual, xbest
g , of the i–th population, migrates to the

(i + 1)–th population of the ring. Then, the (i + 1)–th population uses xbest
g as the

best individual to produce its mutant vectors at generation (g + 1). Obviously, only the
DE operators that use the best individual in the mutations, i.e. the variants described
in Equations (1), (3), and (4), can take full advantage of this information exchange
procedure. Moreover, a domination selection procedure, similar to that of Abbass [2],
is applied, i.e. instead of using the plain DE selection operator of Equation (7), we use
the following one:

xi
g+1 =

{
ui

g+1, if f(ui
g+1) dominates f(xi

g),
xi

g, otherwise,

where f is the vector function defined above. This selection scheme favors non–
dominated individuals in the population and it has proved to perform better in prac-
tice. VEDE can be easily parallelized. The populations can be distributed in several
machines, with migrations taking place from node to node.
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Experiments on Multi-Objective Optimization

Four well–known MO benchmark problems were used in the investigation of VEDE’s
performance. Each test problem consists of two objective functions of the form

f1(x1) = x1,

f2(x1, x2, . . . , xn) = g(x2, x3, . . . , xn) × h(f1, g).

Specifically, we considered the following problems [60]:

Test Problem 1. This test problem is defined as:

f1(x1) = x1,

g(x2, x3, . . . , xn) = 1 +
9

n − 1

n∑
i=2

xi,

h(f1, g) = 1 −

√
f1

g
,

with n = 30 and xi ∈ [0, 1]. The Pareto front for this problem is convex.

Test Problem 2. This test problem is the non–convex counterpart to Test Problem 1. It
is defined as:

f1(x1) = x1,

g(x2, x3, . . . , xn) = 1 +
9

n − 1

n∑
i=2

xi,

h(f1, g) = 1 −
(

f1

g

)2

,

with n = 30 and xi ∈ [0, 1].
Test Problem 3. This test problem is defined as:

f1(x1) = x1,

g(x2, x3, . . . , xn) = 1 +
9

n − 1

n∑
i=2

xi,

h(f1, g) = 1 −

√
f1

g
− f1

g
sin(10πf1),

with n = 30 and xi ∈ [0, 1]. The Pareto front consists of several convex parts.

Test Problem 4. This test problem is defined as:

f1(x) = x1,

g(x2, x3, . . . , xn) = 1 + 10(n − 1) +
n∑

i=2

(
x2

i − 10 cos(4πxi)
)
,

h(f1, g) = 1 −

√
f1

g
,

and it has 219 local Pareto fronts.
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All experiments were performed in
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Fig. 6. Speedup gained using up to 5 nodes

parallel, using the PVM communica-
tion library. For the maintenance of the
Pareto optimal set, the archiving tech-
nique described in [25], which uses an
external archive, was employed. The
obtained results were compared to that
of VEGA algorithm. For this purpose,
two established measures, namely the
C measure [16, 60], and the V mea-
sure [16, 30] were employed. Metric
C(A, B) measures the fraction of
members of the Pareto front B that are
dominated by members of the Pareto

front A, while V(A, B) is the fraction of the volume of the minimal hypercube con-
taining both fronts, that is strictly dominated by members of A but is not dominated
by members of B [16]. Following the analysis presented in [60], a total number of 100
individuals divided in several populations, as well as a maximum of 250 iterations per
population per run, were used. We performed 30 experiments for each test problem,
using the DE with the mutation operator of Equation (1), because it suits better the mi-
gration scheme described in the previous section. This variant is denoted as VEDE1.
The results are reported in the boxplots of Figures. 7–10.
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Fig. 7. Results of VEDE1 for the Test Problem 1
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Fig. 8. Results of VEDE1 for the Test Problem 2
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Fig. 9. Results of VEDE1 for the Test Problem 3
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Fig. 10. Results of VEDE1 for the Test Problem 4

Each boxplot depicts the obtained values of the corresponding measure, in 30 exper-
iments. The box has lines at the lower quartile, median, and upper quartile values. The
lines extending from each end of the box (whiskers) show the extent of the rest of the
data. The outliers, i.e. the values that lie beyond the ends of the whiskers, are denoted
with crosses. DE is quite sensitive to population size, especially when the number of
individuals becomes too small. This was verified in our preliminary experiments with
VEDE. Dividing the 100 individuals into more than 5 populations (less than 20 individ-
uals per population) resulted in substantial performance decline. Thus, our experiments
were performed using 2 up to 5 populations. Standard values for the μ and ρ parame-
ters, equal to 0.7 and 0.9, respectively, were used. The speedup gained from the parallel
implementation using up to 5 nodes is depicted in Figure 6. As illustrated, there is an al-
most linearly increasing speedup rate using up to 4 nodes. Beyond 4 nodes, the speedup
rate increases marginally. This effect can be attributed to the small number of individu-
als per population, which falls under 20. Additionally, we have tested the remaining DE
mutation operators and in all cases, VEDE outperformed the VEGA with respect to the
two metrics, C and V . However, our results support the claim that VEDE, just like DE,
is sensitive to population size.

4 Computing Simultaneously Local and Global Minima

In this Section the recently proposed clustering operator for Evolutionary Algorithms is
described [48]. This operator utilizes already computed pieces of information regarding
the search space in an attempt to discover regions containing groups of individuals



A Review of Major Application Areas of Differential Evolution 211

located close to different minimizers. Consequently, the search is confined inside these
regions and a large number of global and local minima of the objective function can be
efficiently computed [48].

4.1 Exploration vs. Exploitation

The main problem when applying EAs is to find a set of control parameters which opti-
mally balances the exploration and the exploitation capabilities of the algorithm. There
is always a trade off between the efficient exploration of the search space and its ef-
fective exploitation. For example, if the recombination and mutation rates are too high,
much of the space will be explored, but there is a high probability of losing good solu-
tions. In extreme cases the algorithm has difficulty to converge to the global minimum
due to insufficient exploitation of the search space. Fortunately, the convergence prop-
erties of the DE typically do not heavily depend on its control parameters. However,
since not all search operators have the same impact on the exploration of the search
space, the choice of the optimal mutation operator can be troublesome.

To illustrate this we utilize the simple
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Fig. 11. Plot of f(x) = sin(x1)
2 + sin(x2)

2

multimodal 2–dimensional function:
f(x1, x2) = sin(x1)2 + sin(x2)2, where
(x1, x2) ∈ R

2. This function has an infi-
nite number of global minimizers in R

2,
with function value equal to zero, at the
points (κπ, λπ), where κ, λ ∈ Z. In the
hypercube [−5, 5]2 the function f has 9
global minimizers. In Figure 11 a surface
plot of the function f is exhibited. The
six DE variants described above are ap-
plied to compute the global minimizers
of the objective function f . Experimen-
tal results indicate that DE1 exhibits very
fast convergence to one of the global min-

imizers of f . On the contrary, DE2 explores a large portion of the search space before
converging to a solution. This behavior is illustrated in Figure 12, where (for visualiza-
tion purposes) a population consisting of 1000 individuals is plotted after 1, 5, 10, 20
generations of DE2. A closer look at Equations (1) and (2) reveals that DE1 uses the
best individual as a starting point for the computation of the mutant vector, thus con-
stantly pushing the population closer to the location of the best computed point. On the
other hand, since DE2 utilizes three randomly chosen individuals for the computation
of the mutant one, its exploration capability is greatly enhanced. However, it exhibits
lower convergence speed.

The performance of algorithms DE3 and DE4 resembles that of DE1, due to the use
of the best individual. However, DE3 and DE4 exhibited better exploration than DE1,
since they also incorporate randomly selected individuals. Algorithms DE5 and DE6
use only randomly selected individuals resulting in maximum exploration and the indi-
viduals of their populations are simultaneously attracted by more than one minimizers.
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Fig. 12. DE2 population after 1, 5, 10, and 20 generations

Experimental results show that some mutation operators have the tendency to con-
centrate subsets of the population in the region of attraction of different minimizers
of the objective function. This observation motivated the incorporation of a cluster-
ing algorithm to identify such subsets. The k–windows clustering algorithm discovers
boxes capturing subpopulations of individuals located in the region of a minimizer.
Consequently, the subpopulations are confined to search within each box. Thus, the op-
timization of the objective function proceeds without affecting the dynamics of the DE
algorithm. This process gives all the minimizers existing in regions that the DE al-
gorithm explored before the use of the clustering operator. It is obvious that DE
algorithm must adequately explore the search space prior to the call of the clustering op-
erator. In the next section, for completeness purposes, we give a brief description of the
k–windows clustering algorithm.

4.2 The Unsupervised k–Windows Clustering Algorithm

The recently proposed k–windows clustering algorithm [50] uses a windowing tech-
nique to discover the clusters present in an n–dimensional dataset. More specifically,
assuming that the dataset lies in n dimensions, the algorithm initializes a number of
n–dimensional windows (boxes) over the dataset. Subsequently, it iteratively perturbs
these windows using the movement and enlargement procedures, in order to capture
within each window patterns that belong to a single cluster.

The movement and enlargement procedures are guided by the points that lie within
each window. As soon as the movement and enlargement procedures do not signifi-
cantly increase the number of points within each window they terminate. The final set
of windows defines the clustering result of the algorithm.

A fundamental issue in cluster analysis, independent of the particular clustering tech-
nique applied, is the determination of the number of clusters present in a dataset. The



A Review of Major Application Areas of Differential Evolution 213

unsupervised k–windows algorithm is capable to determine the number of clusters
through a generalization of the original algorithm [50]. Finally, it must be noted that
no objective function evaluations are necessary during the operation of the k–windows
clustering algorithm [51].

4.3 The Proposed Clustering Operator

In this section, the clustering operator is described. This operator utilizes the unsu-
pervised k–windows algorithm and is called only once, after a user–defined number of
generations. In practice, a small number of generations is sufficient for the DE algorithm
to explore the search space. Afterwards, the clusters of individuals are determined and
subpopulations are confined within each region. Each subpopulation has NP/β individ-
uals, where β is the number of clusters found. If a region contains more individuals, the
clustering operator selects the best NP/β. On the other hand, if less individuals exist
the clustering operator initializes new ones. The result of the algorithm is the location
of many minimizers in a single run, including the global one.

To better utilize the described approach it is advisable to start the DE algorithm using
a mutation operator that permits adequate exploration of the search space (for example
DE2 or DE6). Once the clusters around the minima have been determined, one can
switch to a mutation operator that has faster convergence speed (for example DE1).

For very hard optimization problems, when the objective function is defined in many
dimensions and possesses multitudes of local and global minima, the clustering operator
could be called more than once. The same might be true for real–life optimization tasks,
where the function value of the global minimum is unknown.

Each consecutive call of the clustering
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Fig. 13. Clusters and global minimizers

operator will result in more promising
subregions of the original search space
and will save unneeded objective func-
tion evaluations, since the subpopulations
will stay focused on regions containing
desirable minimizers. For all the exper-
iments reported here, one call of the
clustering operator was sufficient for the
algorithm to locate the global, as well
as, many local minimizers. To determine
the applicability and the efficiency of the
clustering operator we incorporated it to
the DE algorithm and applied the new

method to the multimodal test function f , which posses 9 global minimizers in the hy-
percube [−5, 5]2. The result of the application of the clustering operator on the function
f is illustrated in Figure 13.

It must be noted that a number of independent experiments of the original DE algo-
rithm gives no guarantee that all global minimizers will be detected, since the algorithm
has no memory; no information concerning previously detected minimizers is kept. We
performed 100 independent simulations, using each one of the six different mutation
operators described above and Table 3 exhibits the average number of restarts needed
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Table 3. Restarts needed to locate all the minimizers of f

Original DE Algorithm DE with k–win
Min Mean Max Min Mean Max

DE1 54 110.2 203 1 17.5 66
DE2 57 119.1 294 1 1.0 1
DE3 60 133.0 239 1 1.1 7
DE4 52 114.9 212 1 1.0 1
DE5 49 106.7 245 1 1.0 1
DE6 62 111.4 221 1 1.0 1

for the DE algorithms to locate all the global minimizers of f . The modified algorithm
that uses the clustering operator in most cases managed to find all the minimizers of f
in a single execution.

4.4 Experimental Results on Multi-minima Discovery

We implemented and tested the clustering operator on a number of hard optimization
tasks and it exhibited stable and robust performance. We report results from the Levy
No. 5 test function. For each mutation operator we performed 100 independent ex-
periments. A population consisting of 200 individuals was used and the mutation and
recombination constants had values μ = 0.6 and ρ = 0.8, respectively. The algorithm
was terminated when the global minimum was located. The clustering operator was
called only once for the optimization of each of the four test function considered below,
after 20, 20, 10, and 200 generations, respectively. Table 4 summarizes the average re-
sults for the 100 runs. The first column of the table indicates the name of the algorithm
and the second column the average number of generations needed for the algorithm
to locate the global minimum without the use of the clustering operator. The third and
fourth columns give the average number of minimizers discovered (including the global
one) and the corresponding average generations needed for the DE algorithm to locate
the global minimum using the clustering operator.

The Levy No. 5 test function is given by the following equation:

f1(x) = σ1σ2 + (x1 + 1.42513)2 + (x2 + 0.80032)2,

where xi ∈ [−10, 10], i = 1, 2, and σ1 and σ2 are given by:

σ1 =
5∑

i=1

i cos[(i + 1)x1 + i], and σ2 =
5∑

j=1

j cos[(j + 1)x2 + j].

There exist about 760 local minima and one global minimum with function value f∗
1 =

−176.1375 located at x∗ = (−1.3068, −1.4248). The large number of local optimizers
makes extremely difficult for any method to locate the global minimizer.

The experimental results exhibited in Table 4 indicate that generally the use of the
clustering operator enhances the performance of the DE algorithms. In detail, there is an
average acceleration of the algorithm’s convergence speed ranging from 30% to 80%.
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Table 4. Average results for the Levy function

w/o k-win operator with k-win operator
Generations Minima located Generations

DE1 33.21 5.97 34.36
DE2 70.66 20.52 54.26
DE3 64.09 11.96 39.77
DE4 65.11 20.22 50.25
DE5 133.01 22.70 70.85
DE6 64.89 19.20 50.24
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Fig. 14. The effect of the population size on the number of located minimizers

Additionally, as many as 20 minimizers (including the global one) were simultaneously
computed. The only exception is DE1 where a slight increase in the generations is ob-
served (3%), but the modified algorithm locates the global as well as 5 local minimizers.

To better demonstrate the ability of this approach to locate many minima at once, in-
dependent runs were conducted with the number of individuals in the population grad-
ually increasing from 200 to 2000. In general, a larger population explores better the
search space and more regions containing minimizers are located by the k–windows
operator. In Figure 14 we exhibit the detailed results. The algorithm DE1 locates on av-
erage 10 minimizers regardless of the size of its populations. On the contrary, the rest of
the algorithms locate more minimizers as their population is increased. DE5 exhibited
the best performance finding simultaneously up to 85 minimizers.

The above experiments show that this approach greatly accelerates the convergence
speed of the DE algorithms and that in addition to the global minimum is capable to lo-
cate simultaneously many local minima without extra function evaluations. To this end,
the use of the clustering operator is always suggested. In brief, the clustering operator
has the following advantages:

1. locates global minimizers and local minimizers with relatively low function value,
2. in general, fewer generations are required for the DE algorithm to converge,
3. there is no need for additional function evaluations,
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4. utilizes the range search algorithm for fast and reliable execution,
5. its parallel implementation is straightforward,
6. is better suited to difficult high–dimensional multimodal objective functions.

5 Neural Network Training Using DE

Artificial Feedforward Neural Networks (FNNs) have been widely used in many appli-
cation areas in recent years and have shown their strength in solving hard problems in
Artificial Intelligence. Although many different models of neural networks have been
proposed, multilayered FNNs are the most common. FNNs consist of many intercon-
nected identical simple processing units, called neurons. Each neuron calculates the dot
product of the incoming signals with its weights, adds the bias to the resultant, and
passes the calculated sum through its activation function. In a multilayer feedforward
network the neurons are organized into layers with no feedback connections [23].

The incremental adaptation of the connection weights that propagate information
between the neurons, is called training. The majority of the training algorithms use the
negative of the gradient of the error function, −∇E(w), as their descent direction. The
gradient ∇E(w) can be computed by the BackPropagation of the error through the
layers of the network. Here, a new class of DE-based training algorithms that do not
need the gradient of E and train integer weight neural networks with threshold units is
discussed. Formally, a typical FNN consists of L layers, where the first layer denotes
the input, the last one, L, is the output, and the intermediate layers are the hidden layers.
It is assumed that the (l − 1) layer has Nl−1 neurons. The neurons operate according to
the following equations

netlj =
Nl−1∑
i=1

wl−1,l
ij yl−1

i + θl
j , yl

j = f l
(
netlj

)
,

where wl−1,l
ij is the integer connection weight from the i-th neuron at the (l − 1) layer

to the j-th neuron at the l-th layer, yl
i is the output of the i-th neuron belonging to

the l-th layer, θl
j denotes the integer bias of the j-th neuron at the l-th layer, and f is

the activation function. The weights in the FNN can be expressed in vector notation.
Let the weight vector have the form: w = (w1, w2, . . . , wn). The weight vector, in
general, defines a point in the n–dimensional real Euclidean space R

n, where n denotes
the total number of weights and biases in the network. From the optimization point of
view, supervised training of an FNN is equivalent to minimizing the corresponding error
function, which is a multivariate function that depends on the weights in the network.
The square error over the set of input–desired output patterns with respect to every
weight, is usually taken as the function to be minimized. Specifically, the error function
for an input pattern t is defined as, ej(t) = yL

j (t)−dj(t), j = 1, 2, . . . , NL, where dj(t)
is the desired response of an output neuron at the input pattern t. For a fixed, finite set
of input–desired output patterns, the square error over the training set which contains T
representative pairs is:

E(w) =
T∑

t=1

Et(w) =
T∑

t=1

NL∑
j=1

e2
j(t),
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where Et(w) is the sum of the squares of errors associated with the pattern t. Mini-
mization of E is attempted by using a training algorithm to update the weights.

5.1 Training Integer Weight Neural Networks with Threshold Activations

FNNs can be simulated in software, but to be utilized in real life applications, where
high speed of execution is required, hardware implementation is needed. The natural
implementation of an FNN – because of its modularity – is a parallel one. Hardware–
friendly algorithms are essential to ensure the functionality and cost effectiveness of the
hardware implementation. Moreover, the need for hardware–friendly algorithms, which
have the ability to cope with time–varying problems and real–time timing constraints,
has been recently increased [35].

FNNs having integer weights and biases are easier and less expensive to implement
in electronics as well as in optics and the storage of the integer weights is much easier
to be achieved. Additionally, the use of threshold activation functions for all the hidden
and output neurons, greatly reduces the complexity of the hardware implementation,
because there is no need to design and implement complicated non–linear activation
functions. Another advantage of the FNNs with integer weights and threshold activation
functions is that the trained neural network is to some extend immune to noise in the
training data. Such networks only capture the main feature of the training data. Low
amplitude noise that possibly contaminates the training set cannot perturb the discrete
weights, because those networks require relatively large variations to “jump” from one
integer weight value to another.

Mathematical operations that are easy to implement in software might often be
very burdensome in the hardware and therefore more costly. This property reduces the
amount of memory required for weight storage in digital electronic implementations.
Additionally, it simplifies the digital multiplication operation. Finally, if inputs are re-
stricted to the set {−1, 1} (bipolar inputs), the neurons in the first hidden layer require
only sign changes during multiplication operations, and only integer additions.

To apply DE to neural network training with integer weights, we initialize the in-
dividuals with N–dimensional integer weight vectors, following a uniform probability
distribution, and evolve them over time. The only problem is that the mutation operator
results in real weight vectors. As our aim is to maintain an integer weight population at
each generation, each component of the mutant weight vector is rounded to the nearest
integer.

It must be noted that the evolutionary class of algorithms does not need the activation
function to be differentiable and is suitable for training with threshold units [34]. In the
first phase of our approach, the DE algorithms are used to train a neural network “off–
line”, using sigmoid activation functions, such as:

f1(x) = tanh(λx) ≡ 2
1 + e−λx

− 1, f2(x) =
1

1 + e−λx
,

where λ is the gain parameter. This seems to be a good practice since the network is
trained much faster with sigmoid functions. In the second phase we alter the gain of the
sigmoid function in such a way that allows a mapping to a threshold unit network.



218 V.P. Plagianakos, D.K. Tasoulis, and M.N. Vrahatis

Specifically, when the inputs are correctly classified and the network error is rela-
tively small, the value of λ is increased in the sequence (1, 10, 20, 30, 40, 50, ∞). Addi-
tional training might be necessary after each increase of λ. That justifies the additional
iterations needed to train an FNN, using only threshold activation functions. This pro-
cedure is analogous to taking the limit of the sigmoid function as the gain parameter
λ goes to infinity. Finally, the trained network uses only threshold activation functions
and thus the complexity of the hardware implementation is greatly reduced. If new input
data are introduced, training can be continued sequentially or in parallel “on–chip”.

5.2 Experiments on Neural Network Training

Next, we exhibit results of the DE-based algorithms on the Encoder/Decoder FNN train-
ing problem. For all the simulations bipolar input and output vectors have been used.
Table 5 summarizes the performance of the DE algorithms using different mutation
rules when sigmoid activation functions are used. Hyperbolic tangent activation func-
tions in both the hidden and output layer neurons have been used. In Table 6 we exhibit
the performance of the DE algorithms, when the training has been performed as de-
scribed above in order to lead to a network that uses only threshold activation functions.

We must note here that a key feature of the DE algorithms is that only error function
values are needed. No gradient information is required, so there is no need of backward
passes. For the test problems considered, we made no effort to tune the mutation, re-
combination and migration constants, μ, ρ and ϕ respectively, to obtain optimal or at
least nearly optimal convergence speed. Default fixed values (μ = 0.5, ρ = 0.7 and
ϕ = 0.3) have been used instead. Smaller values of ϕ can further reduce the messages
between the processors, but may result in rare and inefficient migrations. It is obvious
that one can try to fine–tune the μ, ρ, ϕ and NP parameters to achieve better results,
i.e. less error function evaluations and/or exhibit higher success rates. The weight sub-
populations have been initialized with random integers from the interval [−3, 3] and the
total population size 3NP has been divided equally to 3 subpopulations, each having
NP individuals. Regarding the total population size, experimental results have shown
that a good choice is 2n � 3NP � 4n, where n denotes the dimensionality of the error
function, i.e. the total number of weights and biases. It is obvious that the exploitation
of the weight space is more effective for large values of NP, but sometimes more er-
ror function evaluations are required. On the other hand, small values of NP render the
algorithm inefficient and more generations are required to converge.

4–2–4 Encoder/Decoder

Here, we consider the 4–2–4 encoder/decoder (sixteen weights and six biases, dimen-
sion of the problem n = 22). The network is presented with 4 distinct input patterns,
each having only one bit turned on. The task is to duplicate the input pattern in the out-
put units. Since all information must flow through the hidden units, the network must
develop a unique encoding for each of the 4 patterns in the 2 hidden units and a set of
connection weights performing the encoding and decoding operations. This particular
encoding is considered to be “tight”, since the number of the hidden nodes equals the
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Table 5. Results for the encoder/decoder problem using sigmoid activation functions

Algorithm min mean max s.d. Success
DE1 330 1614.8 4686 868.5 100%
DE2 3960 8160.6 13376 2160.5 100%
DE3 308 1428.2 4004 660.9 100%
DE4 660 4540.5 8514 1505.4 100%
DE5 7260 13110.9 20636 3092.4 100%

Table 6. Results for the encoder/decoder problem using threshold activation functions

Algorithm min mean max s.d. Success
DE1 990 2520.8 23260 2326.4 100%
DE2 4796 8724.9 16588 2264.6 100%
DE3 1034 2104.5 4664 680.0 100%
DE4 1870 4778.1 9724 1278.0 100%
DE5 6072 14070.3 20746 2795.4 100%

base 2 logarithm of the input nodes (log2 4 = 2). This problem has been selected be-
cause it is quite close to real world pattern classification tasks, where small changes in
the input pattern cause small changes in the output pattern. The size of each subpopula-
tion was NP = 20. The low and high bound of the age of each individual, were α = 50
and β = 200 respectively. A typical 3–bit weight vector is w = ( 0, 2, −2, 3, −3, −3,
2, 3, −3, −3, 2, −3, −2, 2, 3, 2, 1, 0, −3, −3, −2, −2) and the corresponding value of
the error function is E = 0.0459. Simulation results are exhibited in Tables 5 and 6.

6 Data Mining Using DE

Although originally designed for global optimization the DE algorithm is versatile
enough to be applied in a variety of scientific tasks. For example here we present an
application of DE for data clustering. Evolutionary clustering is a recent trend in cluster
analysis, that has the potential to yield high partitioning accuracy results. Traditional
evolutionary techniques applied in clustering are typically hindered by the high cost in-
volved in the computation of the objective function. In this section we demonstrate how
DE can be employed to evolve cluster solutions. Furthermore we present how recent
advances in clustering can be employed to estimate the number of clusters from this
evolutionary technique. Finally, by employing real world datasets, we exhibit the high
quality clustering results that this scheme can provide.

6.1 Data Clustering

Clustering is a fundamental step in the process of transforming data to knowledge. It
aims at discovering groups (clusters) in a set of objects such that similarity among the
objects in the same group is higher than that of objects belonging to different clusters.
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The application domain of clustering techniques is very wide including data mining,
text mining, statistical data analysis, compression and vector quantization, global opti-
mization and web personalization [7, 15, 38, 52].

Clustering algorithms are traditionally categorized into three main categories, Hier-
archical, Partitioning [44] and Distance-based. Hierarchical clustering algorithms con-
struct hierarchies of clusters in a top-down (agglomerative) or bottom-up (divisive)
fashion. Hierarchical clustering algorithms have proved to yield high quality results
especially for applications involving clustering text collections. Nonetheless, their high
computational requirements, usually limits their applicability in real life applications,
where the number of samples and their dimensionality is typically high (the cost is
quadratic to the number of samples).

Partitioning clustering algorithms, start from an initial clustering (that can be ran-
domly formed) and create partitionings by iteratively adjusting the clusters based on
the distance of the data points from a representative member of the cluster. The most
commonly used partitioning clustering algorithm is k-means. This algorithm initializes
k centers and iteratively assigns each data point to the cluster whose centroid minimizes
the Euclidean distance from the data point. Algorithms of this type can give good clus-
tering results at low cost, since their running time is proportional to kN , where N is the
number of patterns present in the dataset. However, their results rely heavily on their
initialization and they can converge to arbitrary local optima.

Distance based clustering algorithms create a partitioning by considering neighbors
of data points. DBSCAN [41] is a distance-based clustering algorithm that has proved
quite effective for spatial databases. Clusters are considered as high density neigh-
borhoods of data points. Although the density parameter is critical for the success-
ful application of DBSCAN, recently proposed heuristics appear to yield high qual-
ity results. The computational complexity of DBSCAN comes up to O(N log(N))
under the assumption that the data are organized in a spatial index (R∗-tree).

In evolutionary clustering, a solution to the clustering problem is typically encoded
as a chromosome. By employing evolutionary operators and a population of solutions
the algorithm probes the search space to find a globally optimum partition of the data.
In early approaches [9, 26], chromosomes encoded the partition of n objects into K
clusters and Genetic Algorithms were employed to identify the best partition. However,
the sensitivity of GAs to the selection of the various parameters like population size,
and crossover and mutation probabilities, as well as, the difficulties associated with the
representation scheme, presented a major problem. Better results were obtained through
hybrid approaches [5].

However, it is possible to represent the clustering procedure as an optimization prob-
lem of locating the optimal centroids of clusters. Thus, all evolutionary techniques can
be employed since a clustering solution can be represented as a real-valued vector of
the centroids. Previous approaches employed Evolutionary Strategies [6], Evolution-
ary Programming [18], and recently Particle Swarm Optimization [53]. All these ap-
proaches demonstrated that it is possible to obtain high quality partitions, but at a high
computational cost. Here we attempt to tackle the high computational cost of traditional
evolutionary techniques by introducing a new fitness criterion. This criterion is based
on a windowing technique already employed in other clustering algorithms [51, 55].
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A critical and open issue in cluster analysis, is the determination of the number of
clusters present in a dataset. The evolutionary clustering techniques proposed so far,
with the exception of [22], require from the user to specify the number of clusters
present in the data prior to the execution of the algorithm. The described approach can
provide an approximation to the number of clusters present in a dataset.

6.2 Designing an Efficient Clustering Fitness Criterion

Let the data set comprise a set X = {x1, x2, . . . , xn}, where xj is a data vector in the
d dimensional Euclidean space R

d. A k clustering of X is a partition C of X into k
disjoint groups Ci, for i = 1, 2, . . . , k. The clustering problem amounts to the determi-
nation of a partition of X which is optimal with respect to a function f that quantifies
the goodness of the partition.

Different statistical functions have been proposed for f [31, 58]. But in most ap-
proaches at least a full scan over the dataset is necessary to compute the function value
for a specific instance. Evolving a population using such a fitness criterion can be expen-
sive in terms of computational cost, compared to k-means like approaches that typically
do not require more than 10 to 20 scans of the dataset. However an efficient clustering
fitness criterion can be constructed by utilizing computational geometry techniques. In
detail, let us define structure in the form of axis parallel hyper-rectangles (d-ranges).

Definition 1: Let a d-range of size a ∈ R and center z ∈ R
d be the orthogonal range

[z1 − a, z1 + a] × · · · × [zd − a, zd + a]. Assume further, that the set Sa,z , with respect
to the set X , is defined as Sa,z = {y ∈ X : zi − a � yi � zi + a, ∀i = 1, 2, . . . , d}.
Then the Window Density Function WDF for the set X , with respect to a given size
a ∈ R, is defined as: WDFa(z) = |Sa,z|, where | · | denotes the cardinality of the set,
i.e. a measure of the number of elements of the set.

In other words, WDF represents the number of points from the dataset X , that reside in
a window of size a centered at z. WDF is a meaningful clustering objective function,
since as the center of a d-range, z, moves to the center of the cluster the number of points
around it should increase. As it is obvious the size a, is critical to the procedure as it

Fig. 15. Dataset DSet1
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Fig. 16. 3D-Plot of WDF for Dset1 and a = 1, 5, 10 (left to right)

determines the location of the minimizers of the objective function. To illustrate this we
employ the dataset Dset1, exhibited in Figure 15. This dataset contains 500 points or-
ganized in 5 clusters with 100 points each. Each cluster is constructed by sampling 100
points from a two dimensional Gaussian distribution. The mean of each distribution was
randomly scattered in the range [0, 200]2, and the covariance matrices were randomly
generated by obtaining for each element of the matrix a random number between 1
and 2.

In Figure 16, the 3D plots of WDF are provided to visualize the impact of the pa-
rameter a. As the value of a increases, the extreme points of WDF tend to merge. When
a = 1 there are five maxima, equal to the number of clusters. On the other hand, when
a = 10, the three maxima corresponding to the three closest clusters previously identi-
fied merge to a single one.

The most important feature of the density function is that it is not necessary to scan
the entire dataset to obtain a fitness value for a specific object. In particular, the compu-
tation of WDF is the well studied Computational Geometry Orthogonal Range Search
Problem. Numerous Computational Geometry techniques have been proposed to ad-
dress this problem. All these techniques employ a preprocessing stage at which they
construct a data structure storing the patterns. This data structure allows them to answer
range queries fast. For applications of very high dimensionality, data structures like the
Multidimensional Binary Tree [37], and Bentley and Maurer [8] seem more suitable.
On the other hand, for low dimensional data with a large number of points the approach
of Alevizos [3] appears more attractive.

6.3 Evolutionary Clustering under the WDF Objective Function

In the DE settings, the population of potential solutions should be properly defined to
represent nominal clustering solutions. As such, each individual, in the clustering con-
text, is expressed using a predetermined number of d–dimensional vectors that represent
the centers of the d–ranges, which in turn constitute the clustering result. The fitness of
each individual is measured by the sum of the WDF function over all the d–ranges,
under a fixed value of the parameter a. The remaining procedure of the DE algorithm
remains unchanged.

As it is obvious an evolutionary optimization procedure using the above described
characteristics aims at discovering the set of d-ranges that include as many points from
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Fig. 17. (a) W1 and W2 satisfy the similarity condition and W1 is deleted. (b) W3 and W4
satisfy the merge operation and are considered to belong to the same cluster. (c) W5 and W6
capture two different clusters.

the dataset as possible. Thus a single execution is able to determine a clustering re-
sult. Note that in the final clustering solution empty d-ranges may appear, or even d-
ranges that overlap may exist. By employing the merge operation of the unsupervised
k-windows clustering algorithm [51], the number of clusters can be approximated. Dur-
ing this step, for each pair of overlapping windows, the number of patterns that lie in
their intersection is computed. With respect to the proportion of this number to the total
number of points contained in each window, the algorithm can decide whether to either:

(a) Ignore one window if the proportion is very high.
(b) Consider the windows to contain parts of the same cluster if the proportion is rela-

tively high.
(c) Consider the windows to capture different clusters, if the proportion is low.

An example of this operation is exhibited in Figure 17 and a high level description of
the described algorithmic scheme follows:

DEEC algorithm
Step 1. Construct a data structure for the storing of the data.
Step 2. Set the parameter a of WDF function.
Step 3. Repeat
Step 4. Execute the DE algorithm.
Step 5. Until a sufficient part of the dataset is covered

or a maximum number or iterations is performed.
Step 6. Merge the resulting d–ranges
Step 7. Report the final clusters.

6.4 Evolutionary Clustering Results

To demonstrate the applicability of this approach we firstly employ Dset1, exhibited
in Figure 15, which is two dimensional and allows the visual inspection of the results.
Note that in all the experiments reported in this section the population size was set to
20 individuals, and a maximum of 200 epochs was allowed. The DE parameters μ and
p were set to 0.6, and 0.8, respectively, in all experiments. Moreover, if the d–ranges of
the best individual discovered contain more than 90% of the total points the execution
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Fig. 18. The clustering result of DEUC for a = 1, 3, 5, 10

of DE terminates. The application of the DEUC algorithm over the Dset1 dataset with
the parameter a obtaining values 1, 2, 5, 10 is exhibited in Figure 18. These results were
obtained, by stopping the iterative executions of DE when more than 90% of the data-
set was covered. Each individual encoded the center of five d-ranges. Comparing the
clustering result, with the 3D plots of the WDF function in Figure 16, it is obvious that
DEUC is able to detect the extrema of WDF and form a clustering result that is in accor-
dance with the form of WDF. The colors in the plots correspond to the different cluster
labels of the points that were assigned to the closest d-range under the Euclidean metric.
It is obvious that DEUC is able to provide visually optimal clustering results when a
ranges between 1 and 5. On the other hand, when a is too large the adjacent clusters are
merged to a single cluster by the merging procedure.

Comparing the results of DEUC involves the usage of a clustering algorithm that can
approximate the number of clusters. To compare the results of DEUC with other ap-
proaches we employ the DBSCAN clustering algorithm [41]. This choice is motivated
by the fact that DBSCAN computes the number of points (MinPts) that reside in a
hypersphere of size Eps. Thus, the Eps parameter of DBSCAN is strongly related to
the a parameter of the WDF function. The execution of DBSCAN on Dset1, setting
MinPts = 5, (anything with less than 5 points in an Eps neighborhood around it is
considered noise), and for Eps obtaining the values Eps = 1, 3, 5, 10 is exhibited in
Figure 19. Similarly in this case the colors designate different cluster labels, and the red
crosses represent points recognized as noise. From the plots we can see that DBSCAN
is more sensitive to the value of Eps than DEUC is on the value of a. Moreover, for
DBSCAN to be able to recognize the three different adjacent clusters a very careful
selection of Eps and MinPts is needed.
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Fig. 19. The clustering result of DBSCAN for Eps = 1, 3, 5, 10

Fig. 20. The impact on the clustering result of different number of d-ranges (3,5,10 and 15) when
a = 3

Next, in Figure 20, we investigate the ability of DEUC to approximate the num-
ber of clusters. To this end we apply DEUC using 3, 5, 10 and 15 windows. As il-
lustrated, when the number of d-ranges is less than the true number of clusters, each
d-range is located over a minimum of WDF, but due to the inability to cover all the
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minimizers the cluster labels are
incorrect. On the other hand,
as the number of d-ranges be-
comes larger than the real num-
ber of clusters, the algorithm
has no problem of detecting the
five clusters, since the merging
procedure assigns correctly the
cluster labels.

The complexity of the DEUC
algorithm can be analyzed by
the number of function evalu-
ations it requires to provide a

clustering result. As already mentioned for each function evaluation a range search op-
eration over the dataset is performed. Measuring the total number of range searches that
are needed is an indication of the relative speed of DEUC. To this end, we constructed
Dset2 in a manner similar to Dset1, but with a size ranging from 5000 to 30000 points.
The mean number of range searches required over 100 executions of DEUC, for all mu-
tation operators is depicted in Figure 21.

From this figure it is clear that
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Fig. 22. Classification accuracy for the Iris dataset

all the DE operators require a
steady number of range searches
to converge, irrespective of the
dataset size. When the dataset size
is small (5000) the number of
ranges searches is relatively high.
It even exceeds the total number of
points. DBSCAN for each dataset
requires at least n range searches,
where n is the number of points
in the dataset. It is evident that
for small datasets DEUC appears
computationally expensive. On the
other hand, as the dataset size in-

creases, the efficiency of DEUC also increases. For example for 30000 points in
the dataset DE1 requires less than 6000 range searches, that is five times less than
DBSCAN.

To demonstrate the quality of the partitioning results we employ the four dimen-
sional Iris dataset Dsetiris from the UCI Machine Learning Repository [10]. This
dataset is among the best known databases to be found in the pattern recognition lit-
erature. It contains 150 records of four features. The features are measurements of the
sepal and petal length and width of three different types of the iris plant (Setosa, Ver-
sicolour and Virginica). The 150 records are equally distributed in three classes, each
corresponding to a different type of the plant. To evaluate the clustering result we re-
solve to the correspondence they have to the true cluster labels of the patterns.
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Ideally, each cluster should contain patterns that belong to only one type of the Iris
plant. After normalizing the data in the [10, 100]4 range, DEUC was executed 100 times,
using a population of 20 individuals while each individual encoded 5 d–ranges. In most
cases 3 clusters were recognized by the algorithm, but there were also cases that resulted
in 4 and 5 clusters. Moreover, as a comparison measure we executed DBSCAN using all
the combinations of values in [1, 10] with a step of 1, for the Eps and MinPts param-
eters, yielding 100 different clustering results. In the box-plots exhibited in Figure 22,
we summarize the results with respect to the partitioning accuracy. As it is obvious from
Figure 22, all the different DE operators are able to capture the dynamics of the dataset
and result in high partitioning accuracy. Among all the operators DE3 exhibits the most
robust behavior and is able to provide the best results even with respect to outliers. On
the other hand, DBSCAN is unable to provide highly accurate results since in this data-
set two of the classes are somewhat close and DBSCAN tends to merge them to a single
cluster, thus destroying its classification accuracy.

In conclusion, it seems that it is possible using clustering criteria as the WDF den-
sity function, to design efficient and effective evolutionary clustering techniques. This
is achieved by utilizing Computational Geometry data structures. Moreover, such an
evolutionary procedure has the ability to approximate the number of clusters and yield
high quality partitions as it is evident from the experimental results.

7 Real Life Application: DNA Microarrays

To understand a biological processes that a living cell undergoes, one has to measure
the gene expression levels in different developmental phases, different body tissues, and
different clinical conditions. Compared to the traditional approach to genomic research,
which has been to examine and collect data for a single gene locally, DNA microar-
ray technologies have rendered possible the simultaneous monitoring of the expression
pattern of thousands of genes. Unfortunately, the original gene expression data are con-
taminated with noise, missing values and systematic variations due to the experimental
procedure. Several methodologies can be employed to alleviate these problems, such as
Singular Value Decomposition based methods, weighted k–nearest neighbors, row av-
erages, replication of the experiments to model the noise, and/or normalization, which
is the process of identifying and removing systematic sources of variation. Discovering
the patterns hidden in the gene expression microarray data and subsequently using them
to classify the various conditions is a tremendous opportunity and a challenge for func-
tional genomics and proteomics. A promising approach to address this task is to utilize
computational intelligence techniques, such as EAs and Feedforward Neural Networks
(FNNs). Unfortunately, employing FNNs (or any other classifier) directly to classify
the samples is almost infeasible due to the curse of dimensionality (limited number of
samples coupled with very high feature dimensionality). One solution is to preprocess
the expression matrix using a dimension reduction technique.

Here, we follow a different approach. DE and FNNs are employed to discover subsets
of informative genes that accurately characterize all the samples [49]. Generally, the
aim is to reduce the initial gene pool from several thousand genes (5,000–10,000 or
more) to 50–100. Several gene selection methods based on statistical analysis have
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been developed to select these predictive genes and perform dimension reduction. Those
methods include t-statistics, information gain theory, and principal component analysis
(PCA). It is evident that the choice of feature selection is difficult and bears a significant
effect on the overall classification accuracy. Typically, accuracy on the training data can
be quite high, but not replicated on the testing data.

7.1 Algorithms and Methodology

To classify samples using microarray data, it is necessary to decide which genes, from
the ones assayed, should be included in the classifier. Including too few genes and the
test data will be incorrectly classified. On the other hand, having too many genes is not
desirable either, as many of the genes will be irrelevant, mostly adding noise. This is
particularly severe with a noisy data set and few subjects, as is the case with microarray
data.

In the literature, both supervised and unsupervised classifiers have been used to build
classification models from microarray data. This study addresses the supervised classi-
fication task where data samples belong to a known class. EAs are applied to microarray
classification to determine the optimal, or near optimal, subset of predictive genes on
complex and large spaces of possible gene sets. Although a vast number of gene sub-
sets are evaluated by the EA, selecting the most informative genes is a non trivial task.
Common problems include the existence of:

(a) relevant genes that are not included in the final subset, because of the insufficient
exploration of the gene pool,

(b) significantly different subsets of genes being the most informative as the evolution
progresses, and

(c) many subsets that perform equally well, as they all predict the test data satisfactorily.

From a practical point of view, the lack of a unique solution does not seem to present a
problem.

The EA approach we describe maintains a population of trial gene subsets; imposes
random changes on the genes that compose those subsets; and incorporates selection
(driven by a neural network classifier) to determine which are the most informative
ones. Only those genes are maintained in successive generations; the rest are removed
from the trial pool. At each iteration, every subset is given as input to an FNN classifier
and the effectiveness of the FNN determines the fitness of the subset of genes. The
size of the population and the number of features in each subset are parameters that we
explore experimentally.

For the outlined system, each population member represents a subset of genes, so
a special representation must be designed. When seeking subsets containing n genes,
each individual consists of n integers. The first integer is the index of the first gene
to be included in the subset, the second integer denotes the number of genes to skip
until the second gene to be included is reached, the third integer component denotes the
number of genes to skip until the third included gene, and so on. This representation was
necessary in order to avoid multiple inclusion of the same gene. Moreover, a version of
DE that uses integer vectors has been thoroughly studied in previous Section.
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FNNs were used as a classifier to evaluate the fitness of each gene subset. One third
of the data set is used as a training set for the FNN and one third is used to measure the
classification accuracy of the FNN classifier. The remaining patterns of the data set are
kept to estimate the classification capability of the final gene subset. All the FNNs were
trained using the well known and widely used Resilient backpropagation (Rprop) [40]
training algorithm. Rprop is a fast local adaptive learning scheme, performing super-
vised training. To update each weight of the FNN, Rprop exploits information concern-
ing the sign of the partial derivative of the error function. In our experiments, the five
parameters of the Rprop method were initialized using values commonly employed in
the literature. In particular, the increase factor was set to η+ = 1.2; the decrease fac-
tor was set to η− = 0.5; the initial update value is set to Δ0 = 0.1; the maximum
step, which prevents the weights from becoming too large, was Δmax = 50; and the
minimum step, which is used to avoid too small weight updates, was constantly fixed
to Δmin = 10−6.

7.2 Presentation of Experiments in Evolutionary Dimension Reduction

Next, we report the experimental results. We have tested and compared the performance
of the described system on many publicly available microarray data sets. Here we report
results from the following two data sets:

(a) The COLON data set [4] consists of 40 tumor and 22 normal colon tissues. For
each sample there exist 2000 gene expression level measurements. The data set is
available at http://microarray.princeton.edu/oncology.

(b) The PROSTATE data set [13] contains 52 prostate tumor samples and 50 nontumor
prostate samples. For each sample there exist 6033 gene expression level measure-
ments. It is available at http://www.broad.mit.edu/cgi-bin/cancer/
datasets.cgi.

Since the appropriate size of the most predictive gene set is unknown, DE was em-
ployed for various gene set sizes ranging from 10 to 100 with a step of 10. The FNN
used at the fitness function consisted of 2 hidden layers with eight and seven neurons,
respectively. The input layer contained as many neurons as the size of the gene set. One
output neuron was used at the output layer whose value for each sample determined
the network classification decision. Since both problems had two different classes for
the patterns, a value lower than 0.5 regarded the pattern to belong to class 1 otherwise
regarded it to belong to class 2.

For each different gene set size the data was partitioned randomly into a learning set
consisting of two-thirds of the whole set and a test set consisting of the remaining one
third, as already mentioned. The one third of the training set was used by the Rprop
algorithm to train the FNNs, and the performance of the respective gene set was mea-
sured in the other one third. The test set was only used to evaluate the classification
accuracy that can be obtained using the final gene set discovered by the DE algorithm.
To reduce the variability, the splitting was repeated 10 times and 10 independent runs
were performed each time, resulting in a total of 100 experiments, for gene set size.

The classification accuracy of the system is illustrated using boxplots in Figure 23.
Each boxplot depicts the obtained values for the classification accuracy, in the 100

http://microarray.princeton.edu/oncology
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
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Fig. 23. Classification accuracy obtained by FNNs trained using the DE selected gene set for the
COLON (left) and PROSTATE (right) datasets

experiments. As demonstrated, using a gene set size of 50–80 for the COLON dataset
the algorithm managed to achieve the best results; comparable to those obtained by
other approaches. The same is achieved for the PROSTATE dataset for a gene set size
ranging from 40 to 60.

8 Future Directions: What Lies Ahead?

More than ten years have passed since the initial proposal of DE by Storn and Price,
and DE has been accepted as a strong the robust global optimization algorithm capable
to handle nondifferentiable, nonlinear and multimodal objective functions. Although
the driving force of DE are the mutation operators, little progress has been made to
the extension of the algorithm by introducing new operators. Here, we utilize Genetic
Programming (GP) to evolve novel DE mutation operators.

GP is a method for automatically creating working computer programs employing
principles of Darwinian evolution, and having as input a high-level statement of the
problem [28]. GP aspires to induce a population of computer programs that gradually
improve as they evolve and experience the data on which they are evaluated. In this
Section, we present a comparison between already known human-designed mutation
operators and new genetically programmed ones. Our experimental results indicate that
the performance of the genetically programmed operators is comparable and in some
cases is considerably better than the already existing human designed ones. A genet-
ically evolved operator also exhibited the most robust performance. Additionally, the
genetic evolution resulted in parameter free mutation operators.

8.1 Genetic Programming

GP is an extension of Genetic Algorithms in which individuals are no longer fixed-
length strings but rather computer programs expressed as syntax trees. GP individuals
consist of function and terminal nodes. Terminal nodes store a value which they return
as an output, while functions process their inputs to compute an output. The terminal set,
T , is comprised of the inputs, the constants supplied, and the zero-argument functions.
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Thus, terminal nodes have an arity of zero. On the other hand, the function set, F , is
composed of the statements and functions available to GP.

The primary GP search operators are crossover and mutation. In crossover, a ran-
domly selected subtree from each of the two selected parents is exchanged between
them to form two new individuals (offsprings). The idea is that useful building blocks
for the solution of a problem are accumulated in the population and crossover permits
the aggregation of good building blocks into even better solutions to the problem [29].
Crossover is the predominant search operator in GP [56]. Mutation operates on a single
individual by altering a random subtree. Next, we briefly describe the GP initialization
and the GP operators used.

The GP Initialization

The individuals in the GP population are initialized by recursively generating syntax
trees composed of random function and terminal nodes. Two established GP initializa-
tion methods are the grow and the full method. Both methods require from the user to
specify the maximum initial tree depth. According to the grow method, nodes are se-
lected randomly from the function and the terminal sets. The grow method, therefore,
produces trees of irregular shape, since once a terminal node is inserted the path end-
ing with this node cannot be extended, even if the maximum initial depth has not been
reached. On the other hand, in the full initialization method only function nodes are
selected until the maximum initial depth is reached. Beyond that depth only terminal
nodes are chosen to end the branches. This method results in a balanced tree, every
branch of which reaches the maximum initial depth.

The GP Selection Algorithm

To derive the individuals that will comprise the population of the next generation, GP
initially selects individuals from the current generation. The selection operators that
have been proposed for Genetic Algorithms are also applicable to GP. In this study,
we employed the most commonly encountered one, namely roulette wheel selection.
Define the fitness of the ith individual as Ei, where E is the error function we wish to
minimize. Then the probability of selecting individual i as a parent of an individual of
the next generation is equal to En

i /
∑N

j=1 En
j ; where En

i = 1/(1 + Ei).

The GP Crossover Operator

The crossover operator combines the genetic material of two parents chosen by the
selection operator to yield two offsprings. In particular, a real number r is randomly
chosen in the interval [0.1]. Crossover takes place only if r � C, where C is the prede-
fined crossover constant. In this case, a random node in each parent is chosen and the
subtrees rooted at these nodes are exchanged between the parents to yield the offsprings.
If an offspring exceeds the maximum depth it is discarded and the corresponding parent
individual takes its place in the population of the next generation. Thus, crossover pro-
duces offsprings by swapping a part of one parent with a part of the other. If crossover
does not take place (r > C) the offsprings are exact copies of the parents.
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The GP Mutation Operator

After the crossover operator has finished, each offspring produced undergoes muta-
tion. The probability of mutation is a user defined parameter. The mutation operator in
GP randomly selects a node of the tree. If the node is a function then it is replaced
by another function. If the node is terminal, another randomly selected terminal is
used instead (point mutation) [56]. The mutated individual is then placed back into the
population.

8.2 Genetically Programmed Differential Evolution Mutation Operators

As previously mentioned, in this section we investigate the discover of new efficient DE
mutation operators using GP [33]. This is possible since, mutation operators are simply
the composition of elementary functions such as addition, subtraction, and multiplica-
tion, operating on the vectors that represent individuals of the DE population. To this
end, the terminal set used for GP, included two numerical constants, the vector of the
best so far DE individual, xbest

g , three vectors of different randomly selected DE indi-
viduals, and the fixed mutation constant μ employed by the DE mutation operators. In
detail, the terminal set used in this study was, T = {0.5, 1, μ, xbest

g , xr1
g , xr2

g , xr3
g }. The

function set was F = {+, −, �, �}, where � and � are defined as follows:

x � y = x� · diag{y1, y2, . . . , yn} = (x1y1, x2y2, . . . , xnyn)�

x � y = x� · diag{1/y1, 1/y2, . . . , 1/yn} = (x1/y1, x2/y2, . . . , xn/yn)�,

where the vectors x, y ∈ R
n, with x� = (x1, x2, . . . , xn) and y� = (y1, y2, . . . , yn).

Note that the operator � utilizes a protected division; if the absolute
value of the denominator is less 0.0001, then � returns 1.

The presentation of the problem and the fitness function typically define the space of
candidate solutions for each particular problem. At present, more than one performance
measure are applicable. One approach is to use the distance of the discovered minimizer
from the global one to measure the operator’s performance [36]. However, in many real
life applications the location of the global minimizer is unknown. Conversely, the value
of the global minimum could be known (for example when minimizing the sum of
squares, a chemical or physical process, etc.).

In this study, we defined a fitness function, suitable for general optimization tasks,
which utilizes three benchmark optimization problems discussed in previous Section:
the Shekel’s Foxholes, the Corana Parabola and the Levy No. 5 test problems. More
specifically, the performance of each operator was measured through the sum of the
generations required to locate the global minimum on each benchmark function, plus
the minimum function values that were discovered. It is known that the performance
of the DE algorithm (like the performance of every other EA) can vary with the initial
random individuals. To reduce the effect of the stochastic nature of DE, 10 independent
evaluations were performed, and the final fitness was averaged. If the global minimum
was not found after 100 generations DE terminated. Using this fitness function, we
strain GP evolution towards obtaining DE operators capable of locating the global op-
timum, within a minimum number of generations.
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8.3 Experimental Discovery of Genetically Programmed Operators

The computational experiments were performed utilizing a novel GP–DE interface. We
employed the full GP initialization method with a maximum initial tree depth of 3. An-
other critical GP parameter is the maximum allowed depth for the trees. The maximum
depth parameter is the largest allowed depth between the root node and the outermost
terminals. The maximum depth during the GP execution was 100. GP population size
was 40, while the maximum number of generations was set to 1000. The mutation
and crossover probabilities for GP were set to 0.6 and 0.1, respectively. The values for
the parameters μ and ρ employed by the DE algorithm (irrespective of the mutation
operator), were set to 0.6 and 0.8, respectively.

We conducted 100 independent GP experiments. The five best performing DE
mutation operators discovered are the following:

vi
g+1 =

(
xr1

g + xr2
g

)
�

(
1 + (xr3

g � xbest
g )

)
, (8)

vi
g+1 =xbest

g + 0.5(xr1
g − xr2

g ), (9)

vi
g+1 =

(
xr1

g +xr3
g

)
�

((
xr1

g �xbest
g

)
+

(
xr2

g �xbest
g

))
, (10)

vi
g+1 =

(
xr3

g +xbest
g

)
�

((
xr3

g �xr1
g

)
+

(
xr2

g �xbest
g

))
, (11)

vi
g+1 =

((
xr1

g �xr3
g

)
�

(
xr1

g +xr3
g

))
�

((
xbest

g �xr3
g

)
+

(
xbest

g �xr2
g

))
. (12)

Throughout the remaining chapter, we call GPDE1, GPDE2, . . . , GPDE5 the DE al-
gorithm that uses Equation (8), Equation (9), . . ., Equation (12) as the mutation opera-
tor, respectively. It is evident that this methodology allows us to routinely “invent” new
specialized DE operators, which are optimal or near-optimal for a specific problem. No-
tice that although the mutation constant μ was included in the terminal set, all the above
mentioned GP derived DE mutation operators are parameter free. This is a considerable
advantage since it alleviates the need for parameter tuning by the user.

The original DE algorithm exploits the information from the differences between
pairs of individuals to guide its search in the solution domain. Although, in all the
mutation operators discovered here, individuals interact in pairs, pairwise differences
are not encountered in any GPDE operator but GPDE2. Indeed, GPDE2 is equivalent
to DE1 for the special case that μ = 0.5. The experimental results reported below
suggest that this particular setting is more effective than a typical value of μ for the
benchmark problems considered. Note that DE1 has been documented as one of the
most effective and robust mutation operators. It is also interesting to note that the best
individual of the current generation appears at least once in all GPDE operators.

To measure the efficiency and effectiveness of the newly discovered GPDE op-
erators, we tested them on the three previously mentioned optimization benchmark
functions, as well as on two additional functions; namely the Griewangk’s and the
Rosenbrock’s Saddle test functions.

The performance of the human-designed and the genetically programmed DE muta-
tion operators is presented in Table 7. In particular, for each mutation operator and for
each benchmark function, Table 7 reports the mean number of generations required to
locate a global minimizer (Gen.), as well as, the percentage of times the algorithm was
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Table 7. Human Designed vs. Genetically Programmed Differential Evolution Operators

TRAINING PHASE TESTING PHASE

PROBLEM 1 PROBLEM 2 PROBLEM 3 PROBLEM 1 PROBLEM 2
Gen. (%) Gen. (%) Gen. (%) Gen. (%) Gen. (%)

DE1 95.6 5 87.5 42 64.9 50 29.8 100 — 0
DE2 83.8 95 — 0 76.8 100 56.8 100 — 0
DE3 97.5 13 97.9 35 76.9 63 43.7 100 — 0
DE4 — 0 39.8 79 89.2 16 52.3 74 96.8 12
DE5 94.6 20 — 0 92.9 22 81.2 85 — 0
DE6 81.2 64 — 0 72.1 100 63.1 96 — 0

GPDE1 — 0 29.9 94 43.7 96 55.9 68 93.6 44
GPDE2 84.1 23 98.8 3 34.0 88 25.1 100 — 0
GPDE3 78.5 25 58.2 57 52.8 65 28.0 100 76.9 53
GPDE4 — 0 12.1 100 82.6 32 38.8 100 20.3 100
GPDE5 — 0 25.7 100 57.1 59 38.4 93 82.2 28
(— denotes that the algorithm failed to find the global minimum in all runs).

successful in locating a global minimizer (%). The reported results are averages over
100 independent experiments for each mutation operator. Note, that in the cases DE was
unable to identify a global minimizer, the maximum allowed number of generations was
added to the sum used to compute the mean number of generations required to locate a
global minimizer. The entry “—” in the table suggests that the success rate of a muta-
tion operator for the corresponding benchmark was zero. Finally, bold faced entries are
used to indicate the mutation operator with the lowest mean number of generations to
detect a global minimizer and the one with the highest success rate.

With respect to the mean number of generations required to detect a global mini-
mizer, the best performing mutation operator is in all cases derived by Genetic Pro-
gramming. The best performing mutation strategy in this respect is GPDE2, which is
a special case of DE1. For two out the five optimization problems (Train Problem 3
and Test Problem 1), DE1 requires the lowest mean number of generations to com-
pute a global minimizer among the original DE operators. On the same two problems
GPDE2 is the overall best performing strategy in this respect, but it performs badly on
Test Problem 2. GPDE4 is by far the best performing strategy on Train Problem 2 and
Test Problem 2, for which most operators performed badly. With respect to the percent-
age of times a minimizer was located, the two types of operators perform similarly well
on Test Problem 1. Last but not least, it is important to note that the most robust operator
with respect to both criteria is GPDE3. It is the best performing operator with respect
to mean number of generations on Train Problem 1, the second best on Test Problem 1,
and the third best performing on Train Problem 3 and Test Problem 2. Furthermore, it is
the only operator that achieved a positive percentage of locating a minimizer on all the
test functions. Our experience is that GPDE3 is stable and effective, and can be used to
optimize an unknown function with good results.

In accordance to the “no free lunch theorem” [57], it is impossible to find a single
DE operator that outperforms all the other in every test problem. Instead, here we try to
discover new DE operators better suited for general optimization problems, or classes
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of problems. The experimental results indicate that the best performing DE mutation
operator is in all cases GP derived. GP has been able to automatically evolve a vari-
ety of new DE mutation operators that operate as well or considerably better, for the
considered problems, than the already existing human-designed ones. It is interesting
to note that all the new DE mutation operators are parameter free, in the sense that no
mutation constant is needed.

9 Synopsis

In this chapter we presented an overview of the major applications areas of differen-
tial evolution. The DE algorithms have shown their strength in tackling many diffi-
cult problems from diverse scientific areas, including single and multiobjective func-
tion optimization, neural network training, clustering, and real life DNA microarray
classification.

All the experiments presented in this chapter have been performed using distributed
computing environments, since DE can be easily parallelized in a virtual parallel envi-
ronment so as to improve both its speed and performance. The results indicate that the
extent of information exchange among subpopulations assigned to different processor
nodes, aids the algorithm to converge faster and find better solutions. To demonstrate
that we have introduced the parallel, multi–population DE algorithm for single and
multiobjective optimization.

Next, we presented a case where DE can be utilized to perform data clustering. Ad-
ditionally, clustering algorithms can also aid DE to locate simultaneously multiple local
and global minimizers of an objective function. This can be accomplished by the new
clustering operator. This operator incorporates the unsupervised k–windows cluster-
ing algorithm, utilizing already computed pieces of information regarding the search
space in an attempt to discover regions containing groups of individuals located close
to different minimizers. Then, the search is confined inside these regions and a large
number of global and local minimizers of the objective function can be efficiently
computed.

The real life DE applications presented here include the training of integer weight
neural networks with threshold activations and the selection of genes of DNA microar-
rays in order to obtain high predictive accuracy subsets. In both cases, the DE addressed
problems of very high dimensionality successfully.

We closed this chapter with a discussion on promising future extensions of the algo-
rithm by the incorporation of genetically programmed mutation operators. These oper-
ators improve the quality of the solutions and accelerate the execution of the algorithm.
It must be noted that the genetic evolution resulted in parameter free DE operators.
This is a considerable advantage since it alleviates the need for parameter tuning by
the user. The results indicate that the performance of the genetically programmed op-
erators is comparable and in some cases is considerably better than the already exist-
ing human designed ones. We feel that this can be a very interesting future research
direction.
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Summary. The application of the differential evolution method in two important areas of ap-
plied electromagnetics is discussed in this chapter. The first one refers to the synthesis and  
design of array antennas, for which differential evolution, as well as other evolutionary algo-
rithms, is now considered a fundamental design tool. The second one concerns the diagnostic 
applications faced as a result of using radiofrequency and microwave imaging techniques. Be-
ing based on the inverse scattering problem, these techniques suffer from nonlinearity and ill 
posedness. The differential evolution method has been successfully proposed for optimizing 
this multimodal and complex inverse problem.  

The chapter includes a brief review of some results recently published in the scientific litera-
ture concerning the application of differential evolution to the above-mentioned problems. 
Moreover, the main contributions of the authors in these areas are reviewed and discussed.  
Finally, some new results are reported. 

1   Introduction 

Evolutionary algorithms are now very common for the solution of complex problems 
in the field of applied electromagnetics [1-8]. The flexibility, the accuracy, and the 
possibility of obtaining the global optimum of an optimization problem, which very 
often correspond to the “best” solution, are the most appreciated features of evolu-
tionary algorithms. A number of electromagnetic problems for which real time is not 
a requirement have greatly benefited from the development of this kind of ap-
proaches, and, more generally, from the introduction of global optimization methods, 
including “serial” methods (e.g. the simulated annealing) [9] and population-based 
method (e.g., the genetic algorithm (GA).) [10]. 

Among the various applications that, in recent year, have been treated by using 
stochastic global optimization methods in the field of applied electromagnetics, array 
antenna design and radiofrequency and microwave imaging represent significant  
examples. 
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In the following, the application of the differential evolution (DE) algorithm to 
these research areas is reviewed. In the first case, the DE method has been applied to 
solve several different synthesis problem. Among them (which are discussed in  
Section 2), the synthesis of monopulse antennas is described in details. The other case 
concerns the complex problem of the inspection and imaging of unknown targets by 
inverting field-scattered data. The problem is multimodal, nonlinear, and ill posed. In 
several works reported in the scientific literature, which are briefly reviewed in  
Section 3, the differential evolution method has yielded very accurate reconstruction 
results. The case of tomographic imaging for inspecting inhomogeneous dielectric tar-
gets is described in details. Some new results, concerning both the applicative areas of 
antenna synthesis and electromagnetic imaging, are reported for illustrative purposes. 

2   The DE Method in Antenna Applications 

The differential evolution method has been intensively applied in the field of antenna 
synthesis and design, as well as most of the new evolutionary algorithms that have 
opened new grounds in this field. In its basic formulation, the array synthesis problem 
concerns the definition of some parameters of a given array configurations (e.g., 
number and/or positions of the antenna elements and their excitation coefficients, 
which are usually complex numbers, although, in some cases, the amplitudes or the 
phases are assumed to be given.) The unknown parameters are optimized in order to 
fulfill prescribed constrains concerning, for example, the shape of the array pattern, 
the beamwidth, the level of the side lobes, etc.  

The way in which the DE is applied to these synthesis problems is schematized in 
Fig. 1.  

Parameters of 
the optimized 

structure
Input

parameters
Array antenna 

model
Cost function 
construction

DE algorithm 

Synthesis
constrains

Control
parameters

Unknowns  

Fig. 1. Schematic representation of the application of the DE algorithm to the array synthesis 
problem 

Usually, one chooses the array configuration (e.g., linear, circular, planar array) 
and the other fixed elements of the design. Then a suitable cost function is constructed 
on the bases of the prescribed constrains (which are in general related, as previously 
mentioned, to some radiation properties of the array.) The unknown parameters are 
the “arguments” of the cost function, and the DE algorithm is used to optimize the 
cost function versus the unknown parameters. The result is of course an optimized  
design of the array. 
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Several applications have been recently proposed in the scientific literature. In 
[11], the DE method has been used to suppress the sideband radiation patterns in time 
modulated linear array antennas. The DE algorithm has been found to be a very effec-
tive tool in optimizing the static excitation amplitudes and the “switch-on” time  
intervals of each element. In this application, the DE algorithm has been applied to 
optimize 32 variables. Moreover, the authors of [11] have found the DE method to be 
“more powerful” than the standard GA for the present application. 

The DE algorithm has been also efficiently used for the synthesis of uniform am-
plitude arrays [12]. In particular, two classes of arrays have been optimized, i.e., un-
equally spaced arrays with equal phases (position-only synthesis) and unequal phases 
(position/phase synthesis). For the proposed application, the authors have devised 
some guidelines for the choice of the parameters of the DE method based on the re-
ported numerical simulations. In particular, following the implemented version of the 
DE algorithm reported in reference [19] of [12], they suggest to choice the probability 
of generating the trial members (cr) in the range 0.5 δ cr δ 1, the probability of  
mutation (cm) in the range 0 < cm δ 0.2 and the constant function F controlling the  
differential variations between 0.4 and 1. 

In designing an array antenna, however, the mutual coupling among the antenna 
elements must be often taken into account properly. In [13], a method to compensate 
the mutual coupling effects in time-modulated arrays has been reported. In that work, 
the coupling effects are compensated by making the broadside beam of the antenna to 
match a standard low-sidelobe pattern of Taylor type [14]. In particular, the weights 
of the “compensated” elements, as well as the time sequences of the time-modulated 
array, have been optimized by the DE method, which has resulted to be very effective 
for this optimization problem. In particular, a L-band antenna with 16 elements 
(equally-spaced printed dipoles linearly aligned) has been designed.  

The DE algorithm has been also used in [15], in order to perform the power-pattern 
synthesis, which has several applications both in telecommunications and in the  
development of electronic countermeasure systems. In this field, the use of stochastic 
approaches has represented a significant advance over the approaches based on  
classical synthesis methods (e.g., the Woodward-Lawson method [14].) 

Another antenna synthesis problem that has been successfully solved by using the 
DE algorithm concerns the design of monopulse array antennas [14,16-18]. Mo-
nopulse antennas are able to generate sequentially the so-called sum pattern (which 
has a maximum in the broadside direction) and difference pattern (which has a null in 
the same direction.) Although several methods for implementing monopulse antennas 
have been proposed, in the last years a growing interest has been drawn to methods 
that use proper feed networks in order to avoid the need for the design of two com-
pletely independent feeds for the sum and different patterns. A challenging approach 
is the one proposed by Lopez et al. [18] that is based on a subarray configuration in 
which one of the excitation sets (for the sum or difference pattern) is assumed to be 
known and optimum, whereas the other one is realized by using a subarray configura-
tion to reduce the feeding complexity. The objective of the synthesis is to construct a 
reduced subarray configuration able to synthesize as better as possible this pattern. In  
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particular, the problem can be recast as an optimization problem in which a functional 
is constructed and optimized in order to define, for each array element, the corre-
sponding subarray, the weights of all the subarrays and, consequently, the excitation  
sets of the pattern to be constructed. Clearly, the goal of the synthesis is to realize a 
good compromise between the feed network complexity and the quality of the  
patterns. 

To show the approach, we refer here to a linear array of M=2N equally-spaced 
elements whose array factor F(θ) is given by [14] 

N

n

kdnj

n
Nn

kdnj

n eaeaF  (1)

where an are the complex excitation coefficients, k is the wavenumber, and θ defines 
the angle at which F is calculated with respect to the broadside direction. Finally, d is 
the inter-element distance. 

The sum pattern is constructed by using assigned and symmetric coefficients, 
s
n

s
n aa =− . Equation (1) then reduces to  

N

n

s
ns kdnaF  (2)

In order to construct the difference pattern, the M elements of the array are grouped 
in P subarrays. Each subarray has a weighting coefficient, gp, p = 1,..,P, and the group 
membership of the antennas must be optimized in order to create a difference pattern 
fulfilling the prescribed requirements. To achieve this goal, a positive integer number, 
cn  (0 ≤ cn ≤ P ), is associated to each element of the array and denotes the subarray at 
which the antenna element must be connected. In particular, if cn = p, the n-th element 
is to be connected to the p-th subarray. If cn = 0, the element is not considered in the 
synthesis process. The set of elements associated to the p-th subarray is indicated by 
Γ(p). Once the memberships of the subarrays have been defined, the excitation coeffi-
cients of the difference pattern can be obtained by multiplying each coefficient of the 
sum pattern for the coefficient of the corresponding subarray. Formally, 
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p
ppc
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d
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n N

 
(3)

where pcn
δ  denotes the Kronecker function, i.e., pcn

δ  = 1 if cn = p, pcn
δ  = 0 elsewhere. 

Since the excitations of the difference pattern must be antisymmetric, i.e. a-n = –an, only 
one half of the array is considered in the synthesis problem. The array pattern is then 
given by 

N

n

d
nd kdnaF  (4)
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The previous approach has been followed in [18] and the obtained functional has 
been optimized by a standard binary GA. However, in [19] the same optimization 
problem has been faced by using a DE algorithm with hybrid chromosomes (consti-
tuted by real and integer genes), which allow to avoid coding and decoding processes 
for the real variables (excitation coefficients). In [19], the cost function has been  
constructed in order to obtain a side lobe level (SLL) with a prescribed value 

dkdkk SLLiSLLHSLLiSLLif x  (5)

where SLLd  is the desired side lobe level, ( )iSLLk  is the SLL value corresponding to 

)(ikx , which is the i-th element of the population at the k-th iteration, and H(·) de-

notes the Heaviside step function. However, other types of constraints can be used in 
the synthesis process (as previously discussed). 

The application of the DE algorithm has been found to be particularly suitable in 
this case. Several different configurations have been analyzed in [19]. In particular, 
the choice of the weighting factor F and of the probability that control the crossover 
operator has been made after a large numerical assessment. It resulted that for the pre-
sent application good results can be obtained by assuming cr = 0.7 and F = 0.5. In  
particular, these values avoid a premature convergence to local minima or a slow  
convergence rate. 

For the design of monopulse antennas with the subarray configuration, the applica-
tion of a standard real-coded GA has been discussed, too [19]. By using the same ini-
tial population and the same cost function (equation (5)) the DE method has been 
found to be superior in terms of cost functions evaluations needed to obtain the same 
level of accuracy in determining the weights of the subarrays and the various group 
memberships of the antenna elements. 

The DE algorithm has shown excellent capabilities also in another synthesis prob-
lem again related to monopulse antennas, i.e., the maximization of the directivity of 
the difference pattern [20]. To this end, according with reference [5] of [20], the  
following fitness function has been used (directivity) 

dd
t
d

dd
t
df
aBa
aAa

 (6)

where Ad and Bd are N × N matrices whose elements are given by  

Nji
kdijkdijb

kdjkdia

ij

ij

 (7)

and da  denotes the array containing the values of the excitation coefficients of the 

difference pattern. For the above synthesis problems, accurate results have been  
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Fig. 3. Directivity of the difference pattern versus the number of subarrays 

obtained by setting cr = 0.8 and the parameter F in the range [0.5, 2] (a random choice 
has been performed in [20]). 

An example is reported in the following. An array of 2N = 30 elements with spac-
ing d = 0.5λ has been considered. The sum pattern has been obtained by using uni-

form excitations s
na , n = 1,…,N. The corresponding array space factor is shown in 

Fig. 2. 
The difference pattern has been computed by using the DE algorithm. The popula-

tion size has been set equal to ten times the number of unknowns, i.e., Np = 10NP. 
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Fig. 4. Array space factor for the difference pattern. (a) P = 5. (b) P = 10. 

Moreover, the maximum number of generations has been set equal to kmax = 1000. The 
number of subarrays has been changed in the range [1, 15]. 

The behavior of the directivity obtained by the DE-based approach versus the 
number of subarrays is reported in Fig. 3. Fig. 4 shows two examples of the obtained 
difference-mode array space factor (for the cases in which P = 5 and P = 10). More-
over, the behavior of the fitness function versus the number of iterations for the case 
in which P = 10 is reported in Fig. 5. 
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Fig. 5. Behavior of the fitness function (directivity) versus the number of iterations. P = 10. 

3   The DE Method in Radiofrequency and Microwave Imaging 

The nondestructive inspection of materials and structures is another important area in 
which stochastic optimization approaches have been very successfully applied [21-
25]. Challenging applications are related to industrial and civil engineering, subsur-
face prospecting, and medical imaging. Imaging systems and techniques working at 
radiofrequencies and microwaves represent potentially powerful tools since they are 
able to provide directly the distributions of the dielectric parameters (i.e., dielectric 
permittivity, electric conductivity, magnetic permeability) of unknown targets. 

Approaches based on inverse scattering are aimed at retrieving the dielectric  
parameters of the object under test by inverting the measured samples of the electro-
magnetic field scattered by the unknown objects when illuminated by a known “inci-
dent” wave produced by a proper source. These approaches then require the solution 
of the equations of the electromagnetic inverse scattering problem, which constitute 
the relationships between the unknown parameters of the target and the “input” data 
(i.e., the samples of the scattered field collected in a suitable measurement domain.) 
The main difficulties in solving these equations are related to their nonlinear nature 
and their severe ill-posedness, which require the use of “regularizations” techniques. 
In addition, the computational load is usually a limiting factor for the application of 
these methods. 

The use of evolutionary algorithms for solving the inverse scattering problems is a 
very suitable choice, since these methods are able to find the global minimum of the 
problem, which corresponds to the “correct” solution, whereas local minima corre-
spond to false solutions, which, in imaging modalities, often result in “artifacts” in the 
final images. 

However, since evolutionary algorithms are computationally expensive, they can 
be difficulty applied in a straightforward way to discretized problems in which the ob-
ject (and, more precisely, the investigation region where the object is assumed to be 
present) is represented by grids of pixels (in two-dimensional imaging) or voxels (in 
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three-dimensional imaging, which, as a matter of fact, is still in its “infancy”.) Conse-
quently, evolutionary algorithms can be efficiently applied only with reduced parame-
terization or combined with other inversion strategies in order to devise hybrid  
approaches (e. g., those combining deterministic and stochastic methods.) 

In the recent literature, some very interesting imaging approaches based on inverse 
scattering have been successfully solved by using the DE algorithm, which has been 
particularly appreciated for some peculiarities that will be discussed in the following. 

To describe the inverse scattering formulation, we refer to the case in which the 
body under test is assumed to be of cylindrical shape (i.e., the cross section is uniform 
along a given direction, the cylindrical axis). Moreover, the illuminating field is polar-
ized along this axis (in the following, the z axis), i.e., it has only the component paral-
lel to the cylinder axis (transverse magnetic illumination conditions [26].) Under these 
hypotheses, which are usually followed in tomography, the problem to be solved is 
now a two-dimensional and scalar one. Let the cross section of the object be charac-
terized by the dielectric parameters ( )yx,εε =  (dielectric permittivity) and 

( )yx,σσ =  (electric conductivity), where ( )yx,  denotes the transversal coordi-

nates. Non magnetic materials are assumed ( 0μμ = ), although the formulation could 

be easily extended to these materials.  
The equation that relates the incident interrogating field, the dielectric properties of 

the object under test and the field “scattered” by the target is the so-called Lippmann-
Schwinger integral equation [26] 

A

Dtotinctot dsdttsyxGtsEtsyxEyxE  (8)

where ( )yxEinc ,  and ( )yxEtot ,   denote the z-components of the incident and total 

electric fields, ( )yx,τ  = ( )[ ]0, εεω −yxj  is the object function, which includes the 

information on the scatterer ( 0ε  is the dielectric permittivity of vacuum), A is the in-

vestigation area (i.e., the area that can be investigated by the imaging system and that 
includes, by hypothesis, the cross section of the cylindrical target); finally, 

( )tsyxG D ,/,2  is the known Green's function for free space [26] and is given by  

tysxkHjtsyxG D  (9)

where 00μεω=k  is the wavenumber in the propagation medium (it is assumed 

here to be vacuum, but different media could be simply assumed by modifying the 

propagation constants), ω is the operating angular frequency, and ( )2
0H  is the Hankel 

function of second kind and zero-th order. For lossy dielectrics, the relative dielectric 

permittivity is complex and given by ( ) ( ) ( )yxjyxyx ,,,~ 1σωεε −−= . 

By using proper sensors, the total electric field, which is the sum of the incident 
field and the field scattered by the unknown target, is collected in a certain region out-
side the investigation area A. Usually, the same field cannot be measured inside the 
target region A and, consequently, it is an unknown quantity. The incident field is 



248 A. Massa, M. Pastorino, and A. Randazzo 

known everywhere. It results that the inverse scattering problem is nonlinear, since 

both ( )yx,τ  and ( )yxEtot ,  for points ( ) Ayx ∈,  must be determined. 

In the past, several approximate methods have been proposed to overcome the 
nonlinearity of this problem. In particular, linearized approaches, in which the un-
known internal total electric field is essentially approximated by the know incident 
field, have been proposed. These methods are valid for weak scatterers only. How-
ever, to inspect very strong scatterers, the original nonlinear equation should be 
solved. In that case, one can resort to numerical methods, which “discretize” the  
continuous model and result in algebraic (nonlinear) equations to be solved. Evolu-
tionary algorithms can play a key role in solving these kind of problems as it will be 
discussed in the following. 

It should be mentioned that, since the information content of the data (which are 
measured in the observation domain) may not be sufficient to retrieve the unknown 
distributions of the dielectric parameters and also due to the severe ill-posedness of 
the inverse scattering problem, another relation is usually employed, in addition to 
equation (8). In general, the scattering equation for the internal field is used. This 
equation is formally equal to equation (8), but in this case ( ) Ayx ∈, . It imposes that 

the retrieved dielectric properties of the object and the internal total electric field must 
be consistent with the known incident field inside A. 

The nonlinear inverse scattering problem has been solved in the past by using de-
terministic techniques (e.g., conjugate gradient methods, Newton methods, etc.) [27-
40]. The main limitation of these techniques is that they are local methods and can be 
trapped in local minima corresponding to false solutions. In general, they require that 
the starting point of the iterative search must be very close to the right solution. In 
practical applications, this requires “a priori” information on the configuration to be 
inspected that is not always available.  

It is almost evident that this challenging nonlinear problem can notably benefit 
from the application of stochastic optimization methods. As a matter of fact, since 
they introduction in the field of computational electromagnetics, stochastic ap-
proaches have been exploited for inverse scattering based diagnostic approaches. The 
DE algorithm has been found to be particularly suitable for this kind of applications. 

In order to apply optimization techniques (a schematic representation is reported in 
Fig. 6), the problem solution is first recast as an optimization problem by defining a 
suitable cost function (often called fitness function.) 

The fitness function can contain different terms, e.g.,  

tot
penalty

tottot
ext

tot EfcEfcEfcEf  (10) 

where { }tot
ext Ef ,τ  is a term related to the minimization of the residual of the discre-

tized version of the scattering equation for the measured data in the external re-

gion(observation domain); { }totEf ,int τ  is an analogous term concerning the equation 

for the field inside the investigation area A; finally, { }tot
penalty Ef ,τ  represents a term 

in which all the available information on the scatterer under test can be included as a 
penalty function. This term can also play the role of a regularization function. In  
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Fig. 6. Schematic representation of the application of the DE to the electromagnetic imaging 
problem 

equation (10) each term is multiplied by a constant coefficient that can be used to 
properly “balance” the different terms. 

An example of the results that can be obtained by the previous approach is reported 
for illustration. The electric field data have been collected by using V = 8 views, and 
for each view, the scattered field has been collected in M = 51 measurement points. In 
particular, in the v-th view, the source, modeled as an infinite z-directed line-current 
source, is located at position ( )πλ )1(25.0,4.2 0 −= vvs , Vv ,...,1 = , whereas the 

measurement points are located on an arc of circumference at positions 

( )ππλ )1(027.025.0,4.2 0 −+= mvv
mr , Mm ,...,1= , Vv ,...,1 = . 

The investigation area is a square domain of side L = 1.5λ0, centered in the origin 
of the coordinate system. In the reconstruction phase, this domain is discretized by us-
ing a mesh of N = 14 × 14 = 196 square subdomains. The input electric field data have 
been obtained by using a numerical simulator based on the method of moments [26] 
in which a finer mesh (with respect to that considered in the inversion phase) is used. 
Furthermore, the electric field values have been corrupted by a Gaussian noise (with 
zero mean value) with a signal-to-noise ratio of 25 dB. 

 0.95
 1
 1.05
 1.1
 1.15
 1.2
 1.25
 1.3
 1.35
 1.4

x/λ

y/
λ

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 

Fig. 7. Actual distribution of the dielectric permittivity in the investigation domain. Two sepa-
rated circular cylinders. N = 196. 
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Fig. 8. Reconstructed distribution of the dielectric permittivity in the investigation domain. 
Two separated circular cylinders. N = 196. V = 8. M = 51. SNR = 25 dB. 
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Fig. 9. Cost function versus the iteration number. Two circular cylinders. 

In the considered case, two dielectric cylinders with circular cross sections of radi-
uses r1 = r2 = 0.3λ0 are considered. They are centered at points 

( )00
)1( 3.0,3.0 λλ−=cx  and ( )00

)2( 3.0,3.0 λλ −=cx . The relative dielectric permittivi-

ties are εr1 = 1.2 and εr2 = 1.4, respectively. 
For this simulation, the parameters of the inversion method have been set equal to 

cr = 0.8, F = rand(0., 2.), being rand(x,y) a function which returns a uniformly distrib-
uted random number in the range [x,y], Np = 2000, fth = 0.02 (fth, threshold value for 
stopping the minimization process,) kmax = 15000.  

The original distribution of the dielectric permittivity in the investigation domain is 
reported in Fig. 7, whereas the corresponding reconstruction is shown in Fig. 8. 
Moreover, Fig. 9 shows the behavior of the cost function versus the iteration number. 

It should be noted that we refers here to a case in which the investigation area is 
represented by a pixel grid, being the objective of this example the evaluation of the  
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DE algorithm capabilities in solving the inverse problem. However, being computa-
tional intensive, the DE method can only be applied with a reduced parameterization. 
Consequently, focusing or hybrid approaches should be used. In the first case, the in-
spection starts with a coarse grid and the grid is successively refined as well as the 
position of the scatterer is retrieved (iterative approach). In the former case, once the 
scatterer has been localized by the DE, it is further inspected by a deterministic  
procedure (e.g., a conjugate gradient method) with a finer discretization. 

A focused approach has been considered for example in [41], where the DE algo-
rithm has been applied for the detection of buried structures.  Essentially, the formula-
tion is the same of the one reported in this section, but the Green's function for free 

space ( )tsyxG D ,/,2  is replaced by the Green's function for the half space, which is 

given by [42] 

deejyxyxG yyjxxj
D

 (11) 

when it is used in the "external" equation (equation (8), in the case ( ) Ayx ∉, ), and by 

deej

deejyxyxG

yyjxxj

yyjxxj
D

 
(12) 

for the equation for the internal total electric field (equation (8) in the case 
( ) Ayx ∈, ). Equations (11) and (12) are valid for a half space geometry with homo-

geneous half spaces [42]. In these relations, )( 22
1 uk−= λγ  and )( 22

2 lk−= λγ , 

being ku and kl the propagation constants in the upper and lower regions, respectively. 
In [41] the DE algorithm has been applied by combining two of the various possi-

ble implementing strategies for this evolutionary approach. In particular, the 
DE/1/best/bin version [43] is used until the cost function has reached a predefined 
value; successively, the DE/1/rand/bin strategy [43] is applied. It has been found that  
the DE/1/best/bin strategy is quite able to rapidly locate the “attraction basin” of a 
minimum, but, since it uses the best individual of the population to perform the muta-
tion, it can sometimes be trapped in a local minimum. This drawback is overcame by 
switching, after a predefined threshold, to the DE/1/rand/bin strategy, which is able to 
explore more efficiently the search space, without modifying the previous best solu-
tion if it is inside the correct attraction basin. Concerning the choice of the control pa-
rameters, F has been chosen in the range [0.5,1.0], whereas good reconstructions have 
been obtained with cr = 0.8. 

As previously mentioned, the application of the DE to imaging problems requires a 
reduced parameterization. This has been obtained in [44-45] by approximating the cy-
lindrical scatterers with canonical objects with circular and elliptical cross sections.  

The proposed application concerns the inspection of tunnels and pipes in a cross-
borehole configuration [46] in which the effects of the interface between the upper 
and lower media have been neglected assuming deeply buried objects. In the inverse 
problem, the problem unknowns are represented by the cylinder center and the radius 
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(circular cross section) or the major semiaxis, the eccentricity, and the tilt angle (ellip-
tic cross section). The DE algorithm has been applied to a cost function simply based 
on the “external” equation only (equation (8) for ( ) Ayx ∉, ). Excellent reconstruc-

tions have been obtained with the following control parameters: Np = 25, kmax = 40, cr 
= 0.9 and F = 0.7. 

Finally, the DE algorithm has been further applied to inspecting single and multi-
ple PEC cylinders of arbitrary shapes [47-49]. The DE-based approach has been 
proven to be able to obtain good reconstructions of the profiles of the PEC cylinders 
(both with synthetic and real data) by using the following values of the control pa-
rameters: cr = 0.9 and F = 0.7. For this specific application, the DE method has been 
compared with a standard real-coded GA under the same operating conditions. In this 
case, too, the DE algorithm has been found to outperform the GA due to the need for 
a smaller population. It should be mentioned that the author used in [49] the so-called 
“dynamic DE strategy,” in which an additional competition is introduced between the 
“resultant vector” and the current optimal individual. The current optimal element is 
replaced if the new element corresponds to a better solution and the updated element 
is immediately included in the new population. 

4   Conclusions 

In this chapter, the application of the differential evolution algorithm to antenna syn-
thesis and microwave imaging has been reviewed. These two areas constitute impor-
tant examples in the framework of the computational electromagnetics, which, due to 
the complex mathematical problems involved, greatly benefit from the introduction of 
evolutionary algorithms. The differential evolution method, in particular, has been 
found very suitable in various antenna synthesis problems, including the design of 
monopulse antennas, for which a recently proposed approach based on a subarray 
configuration has been outlined and discussed with the help of new results. Further-
more, the application of the differential evolution method for retrieving unknown  
targets has been discussed, too. Recently proposed solutions, both for perfectly con-
ducting objects and penetrable materials, have been briefly reviewed. The formulation 
of the inverse-scattering based inverse problem has been reported. Following an ap-
proach based on the differential evolution method (previously applied for detecting 
buried objects in a half space) an example showing the reconstruction capabilities of 
the algorithm (in a tomographic configuration) has been included. Clearly, as previ-
ously discussed, differential evolution being computationally expensive can be ap-
plied in the imaging field only with reduced parameterizations. Consequently, other 
strategies can be followed for high-resolution imaging. However, the differential evo-
lution has shown excellent capabilities in finding the “attraction basin” for the related 
optimization problem. Analogously, very efficient array antennas have been designed 
for different applications by applying the differential evolution method. Finally, in 
both the applications, comparative results have been reported in the scientific litera-
ture suggesting the superiority of the differential evolution method with respect to the 
standard genetic algorithm. 
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Summary. Modern power systems are very large, complex and widely distributed. Scarcity in 
energy resources, increasing power generation cost and ever-growing demand for electric 
energy necessitates optimal operation of power systems. Even a small reduction in production 
cost may lead to a large savings. Hence efficient algorithms for solving the power system 
scheduling are needed. New optimization methods based on evolutionary computation that 
abstract the principle of natural selection and genetics are employed for scheduling problems. 
They are easy to implement and have the capability to converge to global optimum at a 
relatively lesser computational effort. Differential Evolution (DE), a numerical optimization 
approach is simple, easy to implement, significantly faster and robust. It has been verified as a 
promising candidate for solving real-valued engineering optimization problems. This chapter is 
concerned with the applications of differential evolution and its variants for various power 
system scheduling problems like economic dispatch, dynamic economic dispatch and unit 
commitment. Different case studies have been conducted including nonlinearities such as the 
valve-point effects, prohibited operating zones and transmission losses. This chapter 
enumerates the advantages of differential evolution to determine the most economic conditions 
of the electric power system.  

1   Introduction 

Electricity is the indispensable form of energy in the modern world. The modern 
economy is totally dependent on the electricity as a basic input. The load demand is 
increasing year by year. The increasing energy demand and decreasing energy  
resources have necessitated the optimum use of available resources. One of the re-
quirements of power system operation is to supply power to the customers economi-
cally. In recent years, more stringent requirements have been imposed on electric 
utilities in order to supply high quality electrical energy. Interconnections between 
systems are also increasing to enhance reliability and economy. Therefore, optimum 
scheduling of power plant generation is of great importance to electric utility systems 
and the optimal operating strategies are to be determined to satisfy versatile  
operational constraints.  

The application of optimization techniques to power system planning and operation 
has been an active research in the recent past. Power system optimization problems 
are very difficult to solve because power systems are very large, complex, geographi-
cally widely distributed and are influenced by many unexpected events. It is therefore 
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necessary to employ most efficient optimization methods to take full advantages in 
simplifying the formulation and implementation of the problem.  

A wide variety of mathematical optimization techniques have been applied to solve 
the power system operation and control problems. However, they are beset by weak 
convergence, unrealistic assumptions and inadequate modeling of power systems. The 
traditional optimization techniques have the possibility of getting trapped at local op-
tima, depending upon the degree of non-linearity and the initial guess. Therefore, 
there is a need to develop new optimization techniques that can deal with the highly 
non-linear characteristics of power system components, and are able to determine the 
global optimum solution. 

In the recent past non-traditional optimization techniques called evolutionary com-
putation techniques such as genetic algorithms (GA), evolutionary programming (EP) 
and differential evolution (DE), are employed for power system optimization prob-
lems. Evolutionary algorithms are powerful optimization techniques based on the 
principle of natural selection. These algorithms are easy to implement and have the 
capability to converge to global optimum at a relatively lesser computational effort. 
The advantages of evolutionary computation includes conceptual simplicity, broader 
domain applications, efficiency in solving real world problems, versatility in incorpo-
rating domain knowledge, hybridization with conventional techniques, parallelism, 
robustness, self adoption and requirement of least human expertise. These techniques 
do not require any in-depth mathematical understanding of the problems to which 
they are applied. Among the evolutionary computation techniques DE is catching up 
fast and is being applied to a wide range of complex power system optimization  
problems. 

Differential evolution (DE) developed by Storn and Price, (1997) is a numerical 
optimization approach that is simple, easy to implement, significantly faster and  
robust. The fittest of an offspring competes one-to-one with that of corresponding par-
ent, which is different from the other evolutionary algorithms. This one-to-one com-
petition gives rise to faster convergence rate. DE is the real coded GA combined with 
an adaptive random search using a normal random generator. DE uses floating point 
numbers that are more appropriate than integers for representing points in a continu-
ous space. This method has been verified as a promising candidate for solving  
real-valued optimization problems.  

The DE has been successfully applied for various power system optimization prob-
lems such generation expansion planning (Kannan et al. 2005) and hydrothermal 
scheduling (Lakshminarasimman and Subramanian, 2006). The hybrid differential 
evolution (HDE) has been employed for the solution of large capacitor placement 
problem (Chiou et al. 2004). The mixed integer hybrid differential evolution 
(MIHDE) has been employed for hydrothermal coordination (Lakshminarasimman 
and Subramanian, 2007), hydrothermal optimal power flow (Lakshminarasimman and 
Subramanian, 2007a) and network reconfiguration problem (Su and Lee, 2003).  

This chapter focuses on the applications of DE algorithms to various power system 
optimization problems such as economic dispatch (ED), dynamic economic dispatch 
(DED) and unit commitment (UC). The ED problem, one of the fundamental issues in 
power system operation, is solved using the differential evolution algorithm. DED 
that determines the optimal operation of units with predicted load demand over a 
scheduling period has been solved using hybrid differential evolution. The optimal 
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unit commitment solution is an essential factor in planning and operation of power 
systems. It is a combinatorial optimization problem involving continuous and discrete 
variables and has been solved using mixed integer hybrid differential evolution 
(MIHDE).  

2   Economic Dispatch 

Economic dispatch is an optimization problem, which is to distribute the total re-
quired generation among the units in operation so as to minimize the total cost of gen-
eration and transmission for a prescribed schedule of loads. It has complex and 
nonlinear characteristics with heavy equality and inequality constraints, such as load 
and operational constraints (Wood AJ and Wollenberg, 1984).  

2.1   Problem Objective 

The objective of economic dispatch problem can be defined as  
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where Ng is number of thermal units and F is the total cost of generation. The produc-
tion cost, FC in terms of decision variables of generated powers is expressed as 
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where iP is the real power generation and iii c and b,a are the fuel cost coefficients of 

the ith generator. 

2.2   Problem Constraints 

Power Balance Constraint 
While minimizing the total generation cost, the total generation should be equal to the 
total system demand plus the transmission network loss. Therefore, the power system 
equality constraint is expressed as 
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where  PD is the total load of the system and PL is the total transmission losses of the 
system.  PL is a function of unit power outputs that can be represented using B  
coefficients as given by  
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where Bij, B0i and B00 are the loss coefficients, which are constants under certain as-
sumed operating conditions. 

Generator Capacity Constraints 
For stable operation, the real power generation of each generator should be restricted 
between its lower and upper limits of generation. The generator capacity constraints 
are expressed as 

max
ii

min
i PPP ≤≤  (5)

where min and max represent the minimum and maximum values. 
Plant operators, to avoid shortening the life of their equipment, try to keep thermal 

gradients inside the turbine within safe limits. This mechanical constraint is usually 
translated into a limit on the rate of increase of electrical power output. Therefore, the 
operating range of all online units is restricted by their ramp rate limits as given by 

i
0
ii URPP ≤−  (6)
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where 0
iP  is the previous output power, URi is the up-ramp limit and DRi is the 

down-ramp limit of the ith generator.  
The prohibited operating zone constraints avoid the operation of units in the pro-

hibited zones. The prohibited operating zones of a unit divide the operating range  
between its minimum and maximum generation limits into several disjoint convex 
sub-regions. The valve points of thermal units also generate many prohibited zones. 
Therefore, the feasible operating zones of unit i can be described as 
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where ni is the number of prohibited zones of ith unit.  

2.3   Economic Dispatch Using Differential Evolution 

The differential evolution algorithm employed for economic dispatch problem is 
briefly discussed as follows:  

Initialization 
The initial population of Np individuals is randomly selected based on uniform prob-
ability distribution for all variables to cover the entire search space uniformly. The 
real power generation of ith plant is expressed as    
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( )min
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where ρ ∈ [0,1] is uniformly distributed random number. 
A penalty function approach is used to handle the power balance constraint. The 

penalty factor reduces the fitness of the vector according to the magnitude of con-
straint violation. The objective function of the ED problem, which is to be minimized, 
is given by 
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where λ is the penalty factor, Nc represents the number of constraints and VIOL is the 
constraint violation. 

Mutation 
DE generates new parameter vectors by adding the weighted difference vector be-
tween two population members to a third member. A perturbed individual is therefore 
generated on the basis of the parent individual in the mutation process by 
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where F is a scaling factor and j and k are randomly selected. The scaling factor F ∈ 
[0,1] ensures the fastest possible convergence and G represents generation number.  

If the new decision variable is out of the limits (lower and upper) by an amount, 
this amount is subtracted or added to the limit violated to shift the value inside the 
limits and appropriate adjustments are made to satisfy the prohibited operating zone 
constraints.  

Crossover 
In the crossover operation, the gene of an individual at the next generation is pro-
duced from the perturbed individual and the present individual by a binomial distribu-
tion to perform the crossover operation to generate the offspring.  
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where i = 1, …, Np,  j = 1, …, n  and the crossover factor CR ∈ [0,1] is assigned by the 
user. 

Evaluation and Selection 

In the evaluation process an offspring competes one-to-one with the parent. The par-
ent is replaced by its offspring if the fitness of the offspring is better than that of its 
parent. Contrarily, the parent is retained in next generation if the fitness of offspring is 
worse than the parent as expressed by  



262 L. Lakshminarasimman and S. Subramanian 
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where i =1,…NP and arg min means the argument of the minimum. 
Then the vector with lesser cost replaces the initial population. With the members 

of the next generation thus selected, the cycle repeats until the maximum number of 
generations or no improvement is seen in the best individual after many generations.  

Different strategies can be adopted in DE algorithm depending on the vector to be 
perturbed, number of difference vectors considered for perturbation, and the type of 
crossover. In this study, DE with random vector perturbation and binominal crossover 
is employed. DE control parameters are the population size NP, weight applied to the 
random differential F and crossover constant CR. 

2.4   Computer Simulation 

In this study, the performance of the DE based economic dispatch algorithm is im-
plemented using C++ code on a PIV 2.4GHz personal computer and is evaluated  
using an illustrative test system consisting of 15 generators (Gaing ZL, 2003).  

The generating unit characteristics are given in Table 1 and 2. The loss coefficients 
matrix can be taken from the reference. The dimension of the problem is 15 variables 
representing the real power generation and the control parameters are Np = 78, F = 1.0 
and CR = 0.9. The comparison of the optimal system costs obtained from the DE 
based approach with that of particle swarm optimization (PSO) and genetic algorithm 
is given in Table 3. The proposed approach yields better results than PSO and GA.  

Table 1. Generating unit data 

Unit 
min
iP  

(MW) 

max
iP  

(MW) 

ai  
(MW) 

bi  
($/MW) 

ci  
($/MW2) 

URi  
(MW/h) 

DRi  
(MW/h) 

0
iP  

1 150 455 671 10.1 0.000299   80 120 400 
2 150 455 574 10.2 0.000183   80 120 300 
3   20 130 374   8.8 0.001126 130 130 105 
4   20 130 374   8.8 0.001126 130 130 100 
5 150 470 461 10.4 0.000205   80 120   90 
6 135 460 630 10.1 0.000301   80 120 400 
7 135 465 548   9.8 0.000364   80 120 350 
8   60 300 227 11.2 0.000338   65 100   95 
9   25 162 173 11.2 0.000807   60 100 105 
10   25 160 175 10.7 0.001203   60 100 110 
11   20   80 186 10.2 0.003586   80   80   60 
12   20   80 230   9.9 0.005513   80   80   40 
13   25   85 225 13.1 0.000371   80   80   30 
14   15   55 309 12.1 0.001929   55   55   20 
15   15   55 323 12.4 0.004447   55   55   20 



 Applications of Differential Evolution in Power System Optimization 263 

Table 2. Prohibited zones of generating units 

Unit Prohibited zones (MW) 
  2 [185 225] [305 335] [420 450] 
  5 [180 200] [305 335] [390 420] 
  6 [230 255] [365 395] [430 455] 
12 [30 40] [55 65]  

 
The success rate, a best measure for the performance of the technique, is defined 

the ratio of the total number of times the optimal solution is found to the total number 
of test runs. DE is found to have a success rate of hundred percent. The proposed ap-
proach converges to the optimal solution in 0.25 seconds. The proposed algorithm has 
been demonstrated to have superior features including high-quality solution and  
computational efficiency.  

Table 3. Comparison of optimal solution for 15-generator system 

Generation 
Schedule 

DE PSO GA 

P1, MW   455.0000   439.1162   415.3108 
P2, MW   420.0000   407.9727   359.7206 
P3, MW   130.0000   119.6324   104.4250 
P4, MW   130.0000   129.9925     74.9853 
P5, MW   270.0000   151.0681   380.2844 
P6, MW   460.0000   459.9978   426.7992 
P7, MW   430.0000   425.5601   341.3164 
P8, MW     60.0000     98.5699   124.7867 
P9, MW     25.0000   113.4936   133.1445 
P10, MW     63.0498   101.1142     89.2567 
P11, MW     80.0000     33.9116     60.0572 
P12, MW     79.9349     79.9583     49.9998 
P13, MW     25.0000     25.0042     38.7713 
P14, MW     15.0000     41.4140     41.9425 
P15, MW     15.0000     35.6140     22.6445 
Total power output (MW)       2658.0       2662.4       2668.4 
PL (MW)     27.9778     32.4306     38.2782 
Total cost ($/h)        32589        32858        33113 

3   Dynamic Economic Dispatch 

Dynamic economic dispatch (DED), an extension of the economic dispatch problem, 
is a method of scheduling the online generators with a predicted load demand over a 
certain period of time taking into account the various constraints imposed on the sys-
tem operation. The DED problem has been recognized as not only a more accurate 
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formulation of the economic dispatch but also a difficult dynamic optimization prob-
lem because of its large dimensionality (Han et al. 2001). 

3.1   Objective Function 

The objective of the dynamic economic dispatch problem is to schedule the commit-
ted units economically over a scheduling period T as given by  

∑ ∑
= =

=
T

1t

N

1i

 )t,i(FC  F     Minimize
g

 (15)

The production cost is expressed in a quadratic form with valve point loading effect is 
given as  

( ){ }it
min
itii

2
itiitii PPfsinePcPba)t,i(FC −××+++=  (16)

where ei and fi represent the cost coefficients of ith unit valve point effects. 

3.2   System Constraints 

Power Balance Constraint 

The power system equality constraint is expressed as 

0PPP LtDt

N

1i
it

g

=−−∑
=

 (17)

where T,,2,1t K= , PDt is the forecasted total power demand at time t and PLt is the 
total transmission losses of the system at time t. The general form of loss formula us-
ing B coefficients is  

∑∑
= =

=
g gN

1i

N

1j
jtijitLt PBPP  (18)

Generator Capacity Constraints 

The generator capacity constraints are expressed as 

max
iit

min
i PPP ≤≤  (19)

The ramp rate limits are given by 

( ) i1tiit URPP ≤− −  (20)

( ) ii1ti DRPP ≤−−  (21)



 Applications of Differential Evolution in Power System Optimization 265 

3.3   DED Using Hybrid Differential Evolution 

The dynamic economic dispatch has to determine optimal scheduling of generators 
over specified intervals of time period. Therefore, the number of decision variables 
will be number of generating units multiplied by the number of time intervals. The 
population size should be 5-10 times the value of the dimension of the problem in  
order to avoid premature convergence.  

Hybrid differential evolution (HDE) has overcome the usage of large population, 
which results in lesser computation time. The hybrid version employs two additional 
operations, acceleration operation that improves the fitness from one generation to 
another and migration operation to upgrade the exploration of the search space. The 
acceleration phase is used to accelerate convergence, although this faster convergence 
generally leads to obtaining a local optimum. The migration phase is used to escape 
this local optimum point since the new candidate individuals are regenerated on the 
basis of the best individual at the current generation. Correspondingly, the diversity 
can still be retained by such a regeneration procedure.  

The DED problem with large number of decision variables is well suited for the 
application of hybrid differential evolution. The mutation, crossover and evaluation 
operations are same as explained in the preceding sections.  Only the initialization, 
acceleration and migration phases of the HDE algorithm are enumerated as follows:  

Initialization 

The initial population of Np individuals is randomly selected based on uniform prob-
ability distribution for all variables to cover the entire search space uniformly. The 
real power generation of ith plant at time t is expressed as    

( )min
i

max
i

min
iit PPPP −ρ+=  (22)

where ρ ∈ [0,1] is uniformly distributed random number. The objective function of 
the DED problem, which is to be minimized, is given by 

( )    VIOL     PFC   
T

1t

N

1z
zz

N

1i
it

cg

∑ ∑∑
= ==

λ+=ψ  (23)

where λ is the penalty factor, Nc represents the number of constraints and VIOL is the 
constraint violation. 

Acceleration Operation  

If the best fitness at the present generation is not further improved by the mutation 
and crossover operations, then the present best individual is pushed towards a better 
point. Thus, the accelerated phase is represented as 
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where 1+G
bZ  is the best individual. The gradient of the objective function ψ∇  can be 

calculated with finite variation. The step size α ∈ [0,1] is determined by the descent 

property. Initially α is set a value of one to obtain the new individual N
bZ . If the  

descent property is satisfied, i.e., 

( ) ( )1G
b

N
b ZZ +ψ<ψ  (25)

then the N
bZ  becomes a candidate in the next generation and is added to this popula-

tion replacing the worst individual. If the descent property is not satisfied, then step 

size is lowered a little. The descent method is repeated to search N
bZ  until ψα ∇  is 

sufficiently small or a specified number of iterations are performed. This faster decent 
results in a premature convergence and the migration phase regenerates a new  
population.  

Migration Operation 

A migration phase is introduced to regenerate a newly diverse population of individu-
als to enhance the investigation over the search space, and thus, reduce the pressure of 
selection from a small population. The new populations are obtained based on the best 

individual 1+G
bZ . The hth gene of the ith individual is regenerated as 
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where δ and δ~ denote uniformly distributed random numbers. This diversified popu-
lation is then used as the initial decision parameters to escape the local optimum 
points. The migration operation is performed only if the population diversity ρ is 
smaller than the desired tolerance of population diversity ε1. 
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Parameter ε2 expresses the gene diversity with respect to the best individual. ηZ is 
the scale index. Degree of population diversity is between zero and one. A value of 
zero implies that all genes gather around the best individual. On the other hand, the 
value of one implies that the current candidate individuals are a diversified popula-
tion. Therefore, the tolerance of population diversity is accordingly assigned within 
this region. 

With the members of the next generation thus selected, the cycle repeats until there 
is no improvement in the best individual. In this study also HDE with random vector 
perturbation and binominal crossover is employed. 

3.4   Simulation Results 

In this study, the performance of the proposed HDE based dynamic economic dis-
patch algorithm is evaluated using a five-unit test system. The scheduling horizon is 
chosen as one day with 24 intervals of one hour each. In order to illustrate the robust-
ness of the proposed algorithm the effect of valve point loading is also included in the 
fuel cost characteristics. This case study does not consider the prohibited discharge 
zones (Panigrahi et al. 2006). The thermal generator data and the load demand are 
summarized in Tables 4 and 5. The B-coefficient data are as same as given in  
reference.  

The number of decision variables is 120 (5×24), which represents the generations 
over the entire scheduling period. The best production costs obtained by using the 
proposed HDE based DED approach is found to be $44,235 as against $47,356  
 

Table 4. Generating unit data 

Unit 
min
iP  

(MW) 

max
iP  

(MW) 

ai 
(MW) 

bi 
($/MW) 

ci 
($/MW2) 

ei 
($/h) 

fi 
(1/MW) 

URi 
(MW/h) 

DRi 
(MW/h) 

1 10   75 20 2.0 0.0080 100 0.042 30 30 
2 20 125 60 1.8 0.0030 140 0.040 30 30 
3 30 175 100 2.1 0.0012 160 0.038 40 40 
4 40 250 120 2.0 0.0010 180 0.037 50 50 
5 50 300 40 1.8 0.0015 200 0.035 50 50 

Table 5. Load demand for 24 hours 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

1 410 7 626 13 704 19 654 
2 435 8 654 14 690 20 704 
3 475 9 690 15 654 21 680 
4 530 10 704 16 580 22 605 
5 558 11 720 17 558 23 527 
6 608 12 740 18 608 24 463 
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Table 6. Optimal generation schedules in MW for 5 units system 

Time 
(h) 

P1 
(MW) 

P2 
(MW) 

P3 
(MW) 

P4 
(MW) 

P5 
(MW) 

1 10.0000 105.0000  30.0000  40.0000 229.4899 
2 10.0000  95.0000  30.0000  90.0000 229.4697 
3 10.0000  95.0000  30.0000 140.0000 229.5456 
4 10.0000  95.0000  30.0000 190.0000 227.3372 
5 10.0000  97.7046  30.0000 200.0000 229.4675 
6 19.7666  89.8540  70.0000 210.0000 227.8791 
7 10.0000  95.0000 110.0000 204.4402 229.1949 
8 12.9776 101.2120 110.0000 210.7557 230.2335 
9 40.0000 110.0487 111.3030 210.0000 229.5979 
10 70.0000 101.2120 106.2030 207.0073 230.2335 
11 75.0000 105.0000 112.8693 211.3861 228.8660 
12 75.0000 101.1819 119.7351 209.7317 246.0311 
13 49.0258 101.1819 121.5641 212.7384 230.0821 
14 46.9723  97.6674 115.5194 211.9302 230.2335 
15 25.2711  98.4512 112.3599 200.0000 227.5293 
16 10.0000  95.0000 115.5194 150.0000 228.8709 
17 10.0000  97.5175 112.5328 123.6323 227.5293 
18 10.0000  97.3031 111.8747 170.2601 229.5031 
19 29.0263  93.2956 109.9234 209.1855 229.1019 
20 59.0263 102.2993 118.0707 206.3134 229.1094 
21 75.0000  97.4094 109.9234 194.1341 229.1019 
22 45.0000  98.4975 114.1504 144.1341 228.3510 
23 15.0000  98.4012 112.7850 117.6849 226.4812 
24 10.0000  95.0000 114.1504  67.6849 229.3537 
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Fig. 1. Convergence characteristics of HDE based dynamic economic dispatch 
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obtained using simulated annealing (SA) technique. The best generation schedule is 
given in Table 6. The convergence characteristics of the HDE based DED is shown in 
Figure 1. From the results it is quite evident that the proposed HDE based dynamic 
economic dispatch algorithm provides better solution than those reported in literature. 
The best HDE parameters are Np = 32, F = 1.0 and CR = 0.75. The optimum results 
are obtained in 12 seconds.  

4   Unit Commitment 

The goal of optimal unit commitment (UC) problem is to properly schedule the on/off 
state of all the units in the system such that the total cost is minimum while satisfying 
a large number of constraints. The UC problem is formulated as a combinatorial op-
timization problem with 1/0 variables that represent on /off states and continuous 
variables that represent the power generations. The number of combinations of 1/0 
variables grows exponentially as being a large-scale problem. Therefore, this problem 
is known as one of the problems that are most difficult to solve in power systems. 

4.1   Objective Function 

The objective of the unit commitment problem is to minimize the thermal cost of 
committed units over a scheduling period T, and is expressed as  

{ }∑ ∑
= =

+=
T

1t

N

1i
it  )t,i(SC)t,i(FCu  F                Minimize

g

 (29)

where uit represents the operating status of the ith thermal unit at a time t and  SC is 
the start-up cost. The production cost can be expressed in a general quadratic form us-
ing cost coefficients of the thermal plant. 

4.2   System Constraints 

Power Balance Constraint 

The load balance constraint expressed as 

Dt

N

1i
itit PPu

g

=∑
=

 (30)

The spinning reserve constraint is given by 

tDt
max

i

N

1i
it RPPu

g

≥−∑
=

 (31)

where Rt is the reserve requirement at time t.  
The reserve requirement was 10% of the hourly load and the start-up cost was  

calculated as  
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where CST is the cold starting hour.  

Unit Constraints 

The generator capacity constraints are expressed as 

max
iitit

min
iit PuPPu ≤≤  (33)

where min and max represent the minimum and maximum values. The minimum  
uptime mu and minimum down time, md constraints are represented as   

on
ii Xmu ≤  (34)

off
ii Xmd ≤  (35)

where onX and offX represent the duration for which the unit is continuously on and 
off respectively. 

4.3   UC Using Mixed Integer Hybrid Differential Evolution 

The unit commitment problem is a mixed integer non-linear optimization problem 
that includes continuous variables (X) representing the generation schedules and dis-
crete variables (Y) representing the operating status of the thermal units. The HDE  
algorithm is modified to handle both these variables. Therefore unit commitment 
problem is well suited for the application of mixed integer hybrid differential evolu-
tion (MIHDE). The different steps in the MIHDE algorithm for the unit commitment 
problem are briefly discussed as follows: 

Initialization 

( ))YY(round)XX()Y,X()Y,X( minmaximinmaximinmin
0
i

0
i −ρ+−ρ+=  (36)

where round represents the nearest integer to the real number.  
The fitness function of the unit commitment problem in terms of thermal genera-

tions and their operating status is given by  
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Mutation  

The mutation process is explained as 
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Crossover 

The perturbed individual ( )1G
i

1G
i V,U ++ and the current individual )Y,X( G

i
G
i are  

selected by a binomial distribution to perform the crossover operation to generate the 
offspring.  
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Evaluation and selection 

The steps involved in the evaluation process are expressed as 
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Acceleration Operation 

The accelerated phase is represented as: 
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Migration Operation 

The migration phase is represented as: 
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The migration operation is performed only if the population diversity ρ is smaller than 
the desired tolerance of population diversity ε1. 
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4.4   Simulation Results 

The MIHDE algorithm is tested on a 20 generating units test system. The algorithm is 
implemented under the same conditions as taken from reference (Kazarlis et al. 1996). 
The total number of decision variables is 960 (20×24+20×24) representing the genera-
tions of units and their operating status.  

Table 7 provides comparison of the optimal production costs obtained using the 
proposed approach with that of the conventional techniques like LR and other evolu-
tionary computation techniques like EP (Juste et al. 1999), integer coded genetic  
algorithm -ICGA (Damousis et al. 2004) and matrix real coded genetic algorithm – 
MRCGA(Sun et al. 2005). From the results it is quite evident that the proposed 
MIHDE based algorithm provides better solution for the large scale unit commitment 
of thermal plants. The MIHDE parameters are Np = 30, F = 1.0 and CR = 0.95. The 
proposed approach converges to the optimal solution in 17 seconds. 

Table 7. Comparison of production cost for 20 units system 

Technique Best cost ($) 
Proposed approach 1124959 
MRCGA  1125035 
ICGA  1127244 
GA 1126243 
EP  1127257 
LR 1130660 
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5   Conclusion 

This chapter presented the application of differential evolution and its variants for  
solution of power system optimization problems. The algorithms have been devised to 
efficiently according to the problem dimensionality and the constraints. It is quiet  
evident from the comparison against other evolutionary algorithms that the differen-
tial evolution approach provides a competitive performance in terms of optimal solu-
tion as well as computation effort. Therefore DE based approaches can well be  
extended to other power system optimization and control problems.  
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Summary. The differential evolution (DE), proposed by Storn and Price, is a powerful 
population-based algorithm of evolutionary computation field designed for solving global 
optimization problems. The advantages of DE are its simple structure, easy use, convergence 
speed and robustness. However, the control parameters and learning strategies involved in DE 
are highly dependent on the problems under consideration. Choosing suitable parameter values 
requires also previous experience of the user. Despite its crucial importance, there is no 
consistent methodology for determining the control parameters of DE. In this chapter, different 
differential evolution approaches with self-adaptive mutation factor combined with a chaotic 
local search technique are proposed as alternative methods to solve the economic load dispatch 
problem of thermal units with valve-point effect. DE is used to produce good potential 
solutions, and the chaotic local search is used to fine-tune the DE run. DE and its variants with 
chaotic local search are validated for a test system consisting of 13 thermal units whose 
nonsmooth fuel cost function takes into account the valve-point loading effects. Numerical 
results indicate that performance of DE with chaotic local search presents best results when 
compared with previous optimization approaches in solving the load dispatch problem with the 
valve-point effect. 

1   Introduction 

The power economic dispatch problem (EDP) is one of the important problems for a 
power system. The objective of the EDP of electric power generation is to schedule 
the committed generating unit outputs so as to meet the required load demand at 
minimum operating cost while satisfying all unit and system equality and inequality 
constraints [1]. 

In traditional EDPs, the cost function of each generator is approximately 
represented by a simple quadratic function and the valve-points effects [2],[3] are 
ignored. These traditional EDPs are solved using mathematical programming based 
on several deterministic optimization techniques, such as lambda iteration, gradient 
method, dynamic programming, linear programming, nonlinear programming and 
quadratic programming [1]-[3].  

However, the EDP problem with valve-point effects is represented as a nonsmooth 
optimization problem having complex and nonconvex features with heavy equality 
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and inequality constraints [2]. This kind of optimization problem is hard, if not 
impossible, to solve using traditional deterministic optimization algorithms. In other 
words, none of these mentioned methods may be able to provide an optimal solution, 
for they usually get stuck at a local optimum to the EDPs considering valve-point 
effects.  

Recently, as an alternative to the conventional mathematical approaches, modern 
stochastic optimization techniques including genetic algorithms [3], evolutionary 
programming [4], evolution strategies [5], ant colony search algorithm [6], simulated 
annealing [7], and particle swarm optimization [1],[8] have been given much attention 
by many researchers due to their ability to find an almost global optimal solution.  

In this chapter, an alternative hybrid method is proposed. The proposed hybrid 
method combines the differential evolution (DE) algorithm with self-adaptive 
mutation factor in the global search phase and a chaotic local search technique in the 
local search to solve the EDP associated with the valve-point effect.  

DE as developed by Storn and Price [9] is one of the best evolutionary algorithms, 
and has proven to be a promising candidate to solve real-valued optimization 
problems [10]. The computational algorithm of DE is very simple and easy to 
implement, with only a few parameters required to be set by a user. 

Chaos is a bounded unstable dynamic behavior, which exhibits sensitive 
dependence on initial conditions and includes infinite unstable periodic motions [11]. 
Optimization algorithms based on chaos theory are search methodologies that differ 
from all of the existing traditional stochastic optimization techniques. Due to the non-
repetition of chaos, it can carry out overall searches at higher speeds than stochastic 
ergodic searches that depend on probabilities. The application of chaotic local search 
is a powerful strategy to prevent the premature convergence to local minima of DE 
approaches. 

An EDP with 13 thermal units using nonsmooth fuel cost functions [4],[8] is 
employed in this chapter for demonstrate the performance of the proposed chaotic DE 
method. The results obtained with the DE approaches were analyzed and compared 
with those obtained in recent literature. 

The remainder of this chapter is organized as follows. Section 2 describes the 
formulation of the EDP, while section 3 explains the concepts of validated optimization 
methods. Numerical simulation and comparisons are provided in section 5. Lastly, 
section 6 outlines the conclusion with a brief summary of results and future research.  

2   Formulation of Economic Dispatch Problem 

The objective of the economic dispatch problem is to minimize the total fuel cost at 
thermal power plants subjected to the operating constraints of a power system. 
Therefore, it can be formulated mathematically as an optimization problem 
(minimization) with an objective function and constraints. The equality and inequality 
constraints are represented by equations (1) and (2) given by: 

0
1

=−−∑
=

DL

n

i
i PPP                                                     (1) 

 max
ii

min
i PPP ≤≤                                                       (2) 
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In the power balance criterion, an equality constraint must be satisfied, as shown 
in equation (1). The generated power should be the same as the total load demand 
plus total line losses. The generating power of each generator should lie between 
maximum and minimum limits represented by equation (2), where iP  is the power of 

generator i (in MW); n is the number of generators in the system; PD is the system 

load demand (in MW); LP  represents the total line losses (in MW) and min
iP and 

max
iP  are, respectively, the minimum and maximum power outputs of the i-th 

generating unit (in MW). The total fuel cost function is formulated as follows: 

∑=
=

n

i
ii )P(Ff min

1
                                                    (3) 

where iF  is the total fuel cost for the generator unity i (in $/h), which is defined by 

equation: 

iiiiiii cPbPa)P(F ++= 2                                             (4) 

where ia , ib  and ic  are cost coefficients of generator i. 

Also in conventional methods the generating units cost functions are assumed to be 
convex and their incremental heat rate curves exhibit a monotonically increasing 
characteristics. But in reality large steam turbines have steam admission valves, which 
cause discontinuities in the incremental heat rate curves. Thus, the input–output 
characteristics of the generating units will become non-convex. Accurate modeling of 
the economic dispatch will be improved when the valve point loadings in the 
generating units are taken into account and furthermore they may generate multiple 
local optimum points in the cost function [1]. In this context, a more realistic cost 
function is obtained based on the ripple curve for more accurate modeling. This curve 
contains higher order nonlinearities and discontinuities due to the valve point effect, 
and should be refined by a sinusoidal function. Therefore, equation (4) can be 
modified [12], as: 

( )( )iiiiiii PPfsinePFPF −+= min)()(
~

   or                           (5) 

( )( )iiiiiiiiiii PPfsinecPbPaPF −+++= min2)(
~

                       (6) 

where ie  and if  are constants of the valve point effect of generators. Hence, the total 

fuel cost that must be minimized, according to equation (3), is modified to: 
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                                                 (7) 

where iF
~

 is the cost function of generator i (in $/h) defined by equation (6). In the 

case study presented here, we disregarded the transmission losses, LP ; thus, .PL 0=  
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3   Proposed Optimization Techniques  

This section describes the proposed DE approaches. First, a brief overview of DE is 
provided, and then the DE with self-adaptive mutation factor and chaotic local search 
is detailed. 

3.1   Differential Evolution 

Evolutionary algorithms (EAs) are general-purpose stochastic search and optimization 
methods that find their inspiration in the biological world. EAs differ from other 
optimization methods, such as Newton method, conjugate gradient, simulated 
annealing, by the fact that EAs maintain a population of potential (or candidate) 
solutions rather than a single solution to a problem. 

EAs in a general sense encompass a number of related paradigms, such as genetic 
algorithms, evolution strategies, evolutionary programming and recently the 
differential evolution, all of which are based on the natural selection paradigm.  

In general, all EAs work as follows: a population of individuals is randomly 
initialized where each individual represents a potential solution to the problem. The 
quality of each solution is evaluated using a fitness function. A selection process is 
applied during each generation of an EA in order to form a new population. The 
selection process is biased toward the fitter individuals in order to increase their 
chances of being included in the new population. Individuals are altered using unary 
transformation (mutation) and higher-order transformation (crossover). This 
procedure is repeated until convergence is reached. The best solution found is 
expected to be a near-optimum solution [13]. 

DE is a population-based stochastic function minimizer (or maximizer) relating to 
EAs, whose simple yet powerful and straightforward features make it very attractive 
for numerical optimization.  

DE combines simple arithmetical operators with the classical operators of 
recombination, mutation and selection to evolve from a randomly generated starting 
population to a final solution. DE uses mutation which is based on the distribution of 
solutions in the current population. In this way, search directions and possible step 
sizes depend on the location of the individuals selected to calculate the mutation 
values [14]. It evolutes generation by generation until the termination conditions have 
been met. 

The different variants of DE are classified using the following notation: DE/α/β/δ, 
where α indicates the method for selecting the parent chromosome that will form the 
base of the mutated vector, β indicates the number of difference vectors used to 
perturb the base chromosome, and δ indicates the recombination mechanism used to 
create the offspring population. The bin acronym indicates that the recombination is 
controlled by a series of independent binomial experiments. 

The fundamental idea behind DE is a scheme whereby it generates the trial 
parameter vectors. In each step, the DE mutates vectors by adding weighted, random 
vector differentials to them. If the cost of the trial vector is better than that of the 
target, the target vector is replaced by the trial vector in the next generation. The 
variant implemented here was DE/rand/1/bin, which involved the following steps and 
procedures: 
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Step 1: Initialization of the parameter setup: The user must choose the key 
parameters that control DE, i.e., population size, boundary constraints of optimization 
variables, mutation factor (fm), crossover rate (CR), and the stopping criterion (tmax).  
Step 2: Initialize the initial population of individuals: Initialize the generation’s 
counter  t= 0 and also initialize a population of individuals (solution vectors) x(t) with 
random values generated according to a uniform probability distribution in the  
n-dimensional problem space. 
Step 3: Evaluate the objective function value: For each individual, evaluate its 
objective function (fitness) value.  
Step 4: Mutation operation (or differential operation): Mutate individuals according 
to the following equation: 

])()([)()1( 321 txtxftxtz i,ri,rmi,ri −⋅+=+                              (8) 

where i =1,2,...,N is the individual’s index of population; t is the generation 
counter (time or iteration); fm > 0 is a real parameter, called mutation factor, which 
controls the amplification of the difference between two individuals and it is 

usually taken form the range [0.1, 1]; [ ]T
21 )(...,),(),()( txtxtxtx

niiii =  stands for 

the i-th individual of population of N real-valued n-dimensional vectors; 

[ ]T
21 )(...,),(),()( tztztztz

niiii =   stands for the i-th individual of a mutant vector; 

r1, r2 and r3 are mutually different integers and also different from the running 
index, i, randomly selected with uniform distribution from the set  
{ }Nii ,,1,1,,2,1 LL +− . 

Step 5: Crossover (recombination) operation: Following the mutation operation, 
crossover is applied in the population. For each mutant vector, zi(t+1), an index 

{ }nirnbr ,,2,1)( L∈  is randomly chosen using a uniform distribution, and a trial 

vector, [ ]T
niiii )(tu),...,(tu), (tu tu 111)1(
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where j=1,2,..., n is the parameter index; xij(t) stands for the i-th individual of j-th 
real-valued vector; zij(t)  stands for the i-th individual of j-th real-valued vector of 
a mutant vector; uij(t)   stands for the i-th individual of j-th real-valued vector after 
crossover operation; randb(j) is the j-th evaluation of a uniform random number 
generation with [0, 1]; CR is a crossover rate in the range [0, 1]. 

To decide whether or not the vector ui(t + 1) should be a member of the 
population comprising the next generation, it is compared to the corresponding 
vector  xi( t ). Thus, if f denotes the objective function under minimization, then 
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Step 6: Update the generation’s counter: t = t + 1;  
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Step 7: Verification of the stopping criterion: Loop to Step 2 until a stopping criterion 
is met, usually a maximum number of iterations (generations), tmax. 

3.2   Self-adaptive Differential Evolution Approaches 

The parameters CR and fm of DE are generally the key factors affecting the DE’s 
convergence [13],[15],[16]. In this chapter, we use a self-adaptive control mechanism 
to change the mutation factor fm during the run. The control parameters M and CR are 
not changed during the run. In this context, the DE/rand/1/bin algorithm based on 
self-adaptive mutation factor is proposed in this work. Several DE-variants are used in 
this work for comparison purposes: 

• DE(1): classical DE using a constant mutation factor of  fm = 0.50; 
• DE(2): classical DE using a constant mutation factor of  fm = 0.75; 
• DE(3): classical DE using a constant mutation factor of  fm = 1.00; 
• ADE(1): adaptive DE using a linear increase of fm with initial and final values of 

0.5 and 1.0, respectively; 
• ADE(2): adaptive DE using a linear reduction of fm with initial and final values of 

1.0 and 0.5, respectively; 
• ADE(3): adaptive DE using a mutation factor fm generated by random number 

with uniform distribution in the range [0.5, 1]; 
• ADE(4): adaptive DE using a mutation factor fm generated by random number 

with Gaussian distribution and normalized in the range [0.5, 1]. 

3.3   Chaotic Local Search 

Chaos theory is recognized as very useful in many optimization applications. An 
essential feature of chaotic systems is that small changes in the parameters or the 
starting values for the data lead to vastly different future behaviors, such as stable 
fixed points, periodic oscillations, bifurcations, and ergodicity.  

This sensitive dependence on initial conditions of chaotic systems is generally 
exhibited by systems containing multiple elements with nonlinear interactions, 
particularly when the system is forced and dissipative. Sensitive dependence on initial 
conditions is not only observed in complex systems, but even in the simplest logistic 
equation [17]. 

The application of chaotic sequences in DE approaches can be a good alternative 
to maintain the search diversity in an optimization procedure. Due to the non-
repetition of chaos, it can carry out overall searches at higher speeds than stochastic 
ergodic searches that depend on probabilities [18]-[20].  

Different types of equations of chaotic systems have been considered in the 
literature for applications in optimization methods. The logistic equation and other 
equations, such as sinusoidal iterator, Chua’s oscillator, Lorenz system, Ikeda map, 
and others, have been adopted instead of generation of random numbers using a 
uniform distribution and very interesting results have emerged [18]-[20]. The design 
of approaches to improve the convergence of chaotic optimization is a challenging 
issue. A chaotic local search approach is proposed here based on Lozi map [19].  

The Lozi’s piecewise liner model is a simplification of the Hénon map [21] and it 
admits strange attractors. The Lozi map is given by 
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)y(k)(kya(k)y 111 11 −+−⋅−=                                           (11) 
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where k is the iteration number. In this work, the values of y are normalized in the 
range [0,1] to each i-th decision variable. This transformation is given by 

 

αβ
α

−
−= y(k)

kwi )(                                                      (13) 

where y∈[-0.6418,0.6716] and (α,β) = (-0.6418,0.6716). The parameters used in this 
work are a=1.7 and b=0.5, as these values have been suggested by [19].  

The chaotic search procedure based on the Lozi map can be illustrated as follows: 

Notation: 
],...,,[ 21 nxxxX = : solution vector consisting of n variables xi , i = 1,…,n bounded 

by lower (Li) and upper limits (Ui). 
 
Input: 
ML: maximum number of iterations of chaotic Local search; 
λ: step size in chaotic local search. 
 
Output: 
Xi*: best solution of j-th variable from current run of chaotic search;  
f*: best objective function (minimization problem).  
 
Chaotic optimization algorithm: 
Step 1:  Initialization of variables: Set k = 0, where k represents the iteration 

number. Set the initial conditions y1(0),y(0), a=1.7 and b=0.5 of Lozi map. Set the 
initial best objective function f*. In this work, the best objective function is the best 
individual of differential evolution in current generation t; 

 

Step 2: Exploitation phase of chaotic search: 
            Begin 

While k ≤ ML do 
     For i =1 to n 

                         If r < 0.5  then   
                         (where r is a uniformly distributed random variable in [0, 1]) 

                           ** )()( iiiii XUkwXkx −⋅⋅+= λ  

                         Else If 

                           iiiii LXkwXkx −⋅⋅−= ** )()( λ  

                         End If 
                 End 
                 If ))(( kXf < f* then 

                        X* = X(k)      
                        f* = ))(( kXf   
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                  End If 
                     k = k + 1; 
              End 
           End 
 

During the exploitation phase of chaotic search, the step size λ is an important 
parameter for the convergence behavior of the optimization method, which adjusts 
small ranges around X*. A suitable value for the step size usually provides a balance 
between global and local search abilities and consequently a reduction on the number 
of iterations required to locate the optimum solution. In this work, the step size λ = 
0.0001 is adopted in chaotic local search (CLS). 

3.4   Differential Evolution with Chaotic Local Search 

The approaches configuration composite by DE hybridized with stochastic techniques is 
a promising alternative in optimization and must be evaluated. DE and the proposed 
chaotic local method have supplementary potentialities. In this work, the following way 
of hybridizing of DE combined with CLS was tested: after having solved the EDP use 
the best solution from DE as a starting point and solve the EDP using CLS method. 

4   Simulation Results   

In this section, we judge the performance of the DE and DE-CLS algorithms using a 
case study of power economic dispatch using 13 thermal units. 

This case study consisted of 13 thermal units of generation with the effects of 
valve-point loading, as given in Table 1. The data shown in Table 1 is also available 
in [4] and [22]. In this case, the load demand expected to be determined was 

1800=DP  MW. This EDP has many local minima, and the global minimum is 
difficult to determine. 

Table 1. Data for the 13 thermal units 

 
Thermal unit 

min
iP  max

iP  a b c e f 

1 0 680 0.00028 8.10 550 300 0.035 
2 0 360 0.00056 8.10 309 200 0.042 
3 0 360 0.00056 8.10 307 150 0.042 
4 60 180 0.00324 7.74 240 150 0.063 
5 60 180 0.00324 7.74 240 150 0.063 
6 60 180 0.00324 7.74 240 150 0.063 
7 60 180 0.00324 7.74 240 150 0.063 
8 60 180 0.00324 7.74 240 150 0.063 
9 60 180 0.00324 7.74 240 150 0.063 

10 40 120 0.00284 8.60 126 100 0.084 
11 40 120 0.00284 8.60 126 100 0.084 
12 55 120 0.00284 8.60 126 100 0.084 
13 55 120 0.00284 8.60 126 100 0.084 



 Self-adaptive DE Using Chaotic Local Search for Solving Power Economic Dispatch 283 

Each optimization method was implemented in Matlab (MathWorks). All the 
programs were run on a 3.2 GHz Pentium IV processor with 2 GB of random access 
memory. In each case study, 50 independent runs were made for each of the 
optimization methods involving 50 different initial trial solutions for each 
optimization method.  

A key factor in the application of DE approaches is how the algorithm handles the 
constraints relating to the problem. In this work, a penalty-based method proposed in 
[23] was used for the equality constraints. 

The population size N was 20 and the stopping criterion tmax was 800 generations 
(16000 evaluations of the objective function) for classical DE.  

In the DE-CLS, the population size of DE was 12 and the stopping criterion tmax 
was 500 generations. CLS procedure is adopted using 12 cost function evaluations 
(ML = 12) in each generation of DE. In this case, the DE-CLS routine is adopted using 
16000 cost function evaluations in each run. The crossover rate of CR = 0.8 was 
adopted for both the classical DE and DE-CLS approaches. 

The results obtained for this case study are given in Table 2, which shows that the 
DE(3)-CLS succeeded in finding the best solution for the tested methods. The best 
result obtained for solution vector Pi, i=1,..,13 with DE(3)-CLS is the minimum cost 
of 17963.9571 which is given in Table 3. However, the ADE(1)-CLS approach shows 
a performance which is clearly better than that of DE(3)-CLS in terms of mean cost. 

It also observed that the classical DE approaches outperformed the other tested 
DE-CLS methods in terms of solution time.   

Table 4 compares the results obtained in this chapter with those of other studies 
reported in the literature. Note that in the case studied here, the best result reported 
using DE(3)-CLS is comparatively lower than recent studies presented in the 
literature.  

Table 2. Convergence results (50 runs) of DE and DE-CLS approaches 

Optimization 
Method 

Mean 
Time (s) 

Minimum 
Cost ($/h) 

Mean  
Cost ($/h) 

Maximum 
Cost  ($/h) 

DE(1) 1.78 18095.7270 18323.9653 18637.0927 
DE(2) 1.77 18091.1464 18315.6026 18682.1625 
DE(3) 1.82 18377.7128 18752.4246 19116.6163 

ADE(1) 1.78 18052.7891 18294.6310 18645.2262 
ADE(2) 1.77 18069.1528 18419.8325 18903.2219 
ADE(3)  1.79 18097.9214 18302.1210 18646.4057 
ADE(4) 1.79 18070.2032 18337.7369 18782.8841 

DE(1)-CLS 5.39 18085.5078 18427.0199 18815.4248 
DE(2)-CLS 5.38 18089.7461 18327.8504 18623.3178 
DE(3)-CLS 5.37 17963.9571   18431.1479 18892.7540 

ADE(1)-CLS 5.37 18001.7035 18274.9005 18524.9235 
ADE(2)-CLS 5.37 18093.4723 18424.7626 18782.6906 
ADE(3)-CLS 5.36 18101.2664 17320.5504 17683.0652 
ADE(4)-CLS 5.36 18057.9074 18371.7782 18786.6667 
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Table 3. Best result (50 runs) obtained for the case study using DE(3)-CLS 

Power Generation 
(MW) 

Power Generation 
(MW) 

P1 628.3180 P8 60.0000 
P2 149.1094 P9 109.8664 
P3 223.3226 P10 40.0000 
P4 109.8650 P11 40.0000 
P5 109.8618 P12 55.0000 
P6 109.8656 P13 55.0000 
P7 109.7912 

∑
=

13

1i
iP  

 
1800.0000 

Table 4. Comparison of best results for fuel costs presented in the literature 

Optimization Technique Best Objective  
Function 

Evolutionary programming [4] 17994.07 
Particle swarm optimization [1] 18030.72 
Hybrid evolutionary programming with SQP [1] 17991.03 
Hybrid particle swarm with SQP [1] 17969.93 
Genetic algorithms [24] 17975.3437 
Improved genetic algorithm with multiplier updating [24] 17963.9848 
Best result of this chapter using DE(3)-CLS 17963.9571   

5   Conclusion and Future Research 

In this chapter, DE and DE-CLS methods have been successfully introduced to solve 
a case study of EDP considering 13 thermal units with valve-point effect. In this case 
study, DE, DE-CLS and ADE-CLS can provide accurate dispatch solutions in 
reasonable time.  

In relation to procedure of solution of the economic dispatch problem of electric 
energy with effect of valve point, the results with the DE(3)-CLS for optimization of 
the equations (1) and (2) were best that the results presented in [1], [4] and [24].  

Future research will investigate theoretically the effect of chaos incorporation into 
DE further and apply the DE-CLS methods for solving the multiobjective economic 
dispatch problems in power systems. 
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Summary. This chapter describes an algorithm for the tuning of a chess program which is based
on Differential Evolution using adaptation and opposition based optimization mechanisms. The
mutation control parameter F is adapted according to the deviation of search parameters in each
generation. Opposition-based optimization is included in the initialization, and in the evolutionary
process itself. In order to demonstrate the behaviour of our algorithm we tuned our BBChess
chess program with a combination of adaptive and opposition-based optimization. Tuning results
show that adaptive optimization with an opposition-based mechanism increases the robustness
of the algorithm and has a comparable convergence to the algorithm which uses only adaptation
optimization.

Keywords: Differential Evolution, Adaptation, Tuning of a Chess Program, Opposition-Based
mechanisms.

1 Introduction

Computer chess games have a long history of research in the field of artificial in-
telligence. Computer chess has advanced to a remarkable degree where computers
now play against other computers and humans. With ever growing computer strength,
we are witnessing more and more matches between computers and humans where
computers usually win.

The reasons why the computer is beating humans are mainly hardware improvements
and chess algorithm optimizations. The first computer that won against a human world
champion chess player was Deep Blue which defeated the world champion chess player
Garry Kasparov in 1996. In 2006 the Deep Fritz 10 computer program which ran on a
PC, defeated world champion Vladimir Kramnik. So why are chess program developers
trying to improve already very strong chess programs, even further? Many professional
human chess players use chess programs to improve their own playing skills. Chess
programs are also very useful in correspondence and freestyle chess. Matches between
programs are also gaining popularity. As far as artificial intelligence is concerned, chess
is regarded as a very useful environment for testing different approaches.

In this chapter we describe a Differential Evolution (DE) based algorithm for tuning
chess programs. Using evolutionary concepts, this algorithm tunes chess programs and

U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 287–298, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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makes them stronger without any interaction with humans and without humans’ expert
knowledge. In order to improve the tuning process our algorithm includes the adaptation
of DE control parameters and opposition-based optimization mechanisms. Because our
DE uses adaptation and opposition-based optimization it is called ‘AODE’.

The chapter is structured as follows. Section 2 gives an overview on tuning chess
programs and briefly describes the basic DE and ODE (Opposition-Based Differential
Evolution Algorithm). Section 3 describes the structure of those chess programs and
parameters that may be tuned. Section 4 describes the details of our evolutionary algo-
rithm AODE. Section 5 presents three experiments which tune the chess program by
the use of AODE optimizations. We then show how these optimizations influence the
tuning process. Section 6 concludes the chapter with final remarks.

2 Related Work

One of the possible improvements of a chess program is achieved by parameter tuning,
but with conventional approaches this becomes a very difficult task. Developers have
to change program parameters and then choose the best values through out the testing
phase. The nature of such a task is very time consuming.

Another method is automated tuning or “learning”. When we talk about automated
tuning in computer chess we focus on algorithms such as hill climbing, simulated an-
nealing, temporal difference learning [1, 2], and evolutionary algorithms [7, 8]. All ap-
proaches enable tuning on the basis of the program’s own experiences, i.e. final result
of a chess games competition: win, lose, or draw.

The pioneer of computer chess was Shannon (1949). He advocated the idea that
computer chess programs would require an evaluation function and search algorithm
to successfully play a game against human players [14]. In the beginning computer
chess programs were designed “by hand” by the developers. The most important part
of every chess program is its evaluation function. Evaluation functions contains a lot of
parameters in the form of expressions and weights. In order to obtain a good evaluation
function the developers had first to test it by playing numerous games and then modify
it according to the produced results. Finding a proper evaluation function was a diffi-
cult and very time consuming task, because this was a recurring cycle. This is the main
reason why current research has become involved in finding a method for automati-
cally improving the evaluation function’s parameters. Additionally, developers can tune
the parameters of the search algorithm alone or together with those of the evaluation
function.

Samuel [13] shows that a computer can be programmed so that it will learn to play
better game of checkers than can be played by the person who wrote the program.
The NeuroChess [17] is a program which learns to play chess from the final outcome
of games. It learns its evaluation function, represented by artificial neural networks.
This learning approach included inductive neural network learning, temporal differenc-
ing, and a variation of explanation-based learning. Another important work on learning
is KnightCap [1] chess program. It learns parameters of its evaluation function using
combination of Temporal Differences learning and on-line play on FICS and ICC chess
servers. The program started with blitz rating 1650 and after 3 days of learning and 308
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games played the program obtained blitz rating of 2150. The principles of evolution
have also been used in the tuning of a chess evaluation function. Kendall and Whitwell
[8] presented one such approach by using population dynamics. Fogel et al. [7] pre-
sented an evolutionary algorithm which has managed to improve a chess program by
almost 400 rating points. Last two approaches used a population of individuals which
consist of evaluation function parameters and new individuals are generated using
mutation, crossover, and selection operators.

The DE [15, 9, 16] algorithm was proposed by Storn and Price, and since then
it has been used in many practical cases. The original DE was modified and many
new versions have been proposed [5]. Rahnamayan, Tizhoosh and Salama proposed an
opposition-based DE (ODE) algorithm [11, 12]. ODE includes opposition based op-
timizations in order to improve the efficiency of classical DE algorithm. DE has also
been used for chess program tuning [4, 6] because it converges quickly and improves
playing ability during the evolutionary process.

3 Chess Program

The basic components of all modern chess programs are the search algorithm, eval-
uation function, move generator, transposition table, representation of game, opening
book, and the end-game database [3]. These components enable a chess program to
play equally well against the strongest human players, or even better. To improve an
existing chess program with automated tuning, we can tune its parameters. The most
tunable components are the evaluation function and the search algorithm.

The evaluation function contains a lot of expressions and parameters as weights of
expressions. Expressions and parameters together represent all the chess knowledge
of a chess program. Like the evaluation function, the search algorithm also contains
parameters. However the number of parameters of a search algorithm is lower than in
an evaluation function. The parameters are responsible for pruning the search tree and
for selective searching.

Search algorithms only have a few parameters and their values have been tuned
by the conventional approach (by hand and expert knowledge). On the other hand, an
evaluation function has many more parameters which depend on each other and have
been set by the developer according to experience and expert human instructions. Be-
cause an evaluation function contains complex expressions, the values of the parameters
are approximated. Therefore, using automated tuning we can obtain better parameter
values and improve the evaluation function and, consequently, the efficiency of chess
programs.

4 AODE Algorithm for Tuning a Chess Program

Our tuning algorithm is based on Differential Evolution which uses adaptation and
opposition-based optimization techniques. DE is a floating-point encoding evolution-
ary algorithm for global optimization over continuous spaces [9, 10]. Each generation
of our AODE contains a current population Pg (g is a number of current generation),
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which further contains NP D-dimensional vectors (individuals)
−→
X g,i with parameter

values that represent the weights of a chess program.

−→
X g,i = {Xg,i,1, Xg,i,2, ..., Xg,i,D},

i = 1, 2, ..., NP , g = 1, 2, 3, ...

DE employs mutation, crossover, and selection operations during the evolutionary pro-
cess, in each generation. Our algorithm uses the idea of adaptation and opposition-based
optimization as shown in the algorithm below. P0 represents the initial population, PU,0

is an opposition population of P0, P1 is the first population, Pg is the current population,
PV,g is the mutant population, PU,g is the trial population, and Pg+1 is the population
of the next generation. CR and JR are control parameters defined by the user.

Algorithm 1. AODE Algorithm
1: Initialization(P0 );
2: PU,0 = Opposition(P0 );
3: Evaluation(P0 , PU,0 , depth);
4: P1 = Selection(P0 , PU,0 );
5: while continue tuning do
6: if rand(0,1) < JR then
7: PU,g = DynamicOpposition(Pg );
8: else
9: PV,g = AdaptiveMutation(Pg );

10: PU,g = Crossover(Pg , PV,g , CR);
11: end if
12: Evaluation(Pg , PU,g);
13: Pg+1 = Selection(Pg , PU,g );
14: end while

4.1 Initialization

At the beginning, the population P0 is initialized with parameter values that are dis-
tributed uniform-randomly between parameter bounds (Xj,low, Xj,high; j =1, 2, ..., D).
The bound values are problem-specific. In chess programs the parameters are set to ap-
proximate values by the developers. Developers can also intuitively determine those
intervals which effectively define the bounds for parameters tuning. Accurately-defined
bounds enable the algorithm to search through much smaller space and, consequently,
find better parameters more quickly. If the search space is too limited, our algorithm
can not find solution because it is out of bounds.

4.2 Opposition

The efficiency of the tuning process depends on the distance between the solution and
the individuals in the initial population. After initialization, an opposite population PU,0
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is generated from the initial population. This mechanism together with evaluation
(Section 4.3) and selection (Section 4.4), increases the probability of first generation
containing individuals closer to the solution and, thus, accelerates convergence [11, 12].

The opposition population contains opposite individuals of the initial population and
is defined by the following equations:

−→
U 0 ,i = {U0 ,i,1, U0 ,i,2, ..., U0 ,i,D}

U0 ,i,j = Xj,low + Xj,high − X0 ,i,j

i = 1, 2, ..., NP , j = 1, 2, ..., D,

where
−→
U 0 ,i represent the opposition individuals of the corresponding initial individuals

−→
X0 ,i.

4.3 Evaluation

Using trial PU,g(PU,0 ) and current Pg(P0 ) populations we have to evaluate their in-
dividuals. To do this we calculate the relative efficiencies of individuals according to
both populations. Relative efficiency is measured according to the collected points and
number of played games, as shown with the following equation:

efficiency =
collected points

2 · number of played games
.

We can use more strategies to play games. Firstly, each individual of a trial population
can play a specific number of games (N ) against randomly chosen individuals of the
current population. Secondly each individual of a trial population can play two games
(one as white and one as black) against a corresponding individual of the current popu-
lation. Other strategies are also possible.

An individual plays each game with a specific search depth and gets 2 points for
winning, 1 for a draw, and 0 for losing. An individual wins when opponent’s King is
mate. The game is a draw if the position is a known draw position or the same position is
obtained three times in one game, or because of the 50-moves rule. Games are limited
to 150 moves for both players. Therefore, if the game has 150 moves, the result is a
draw. An individual loses if its opponent wins.

4.4 Selection

The selection operation selects according to the relative efficiency of those individuals
among the i-th current population and their corresponding individuals in the trial popu-
lation. Selection dictates which individuals will survive into the next generation. In our
case we used the following selection rule for a maximization problem:

−→
X g+1 ,i =

{−→
U g,i, efficiency(

−→
U g,i) > efficiency(

−→
X g,i),−→

X g,i, otherwise.

i = 1, 2, ..., NP,
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where
−→
U g,i is an i-th individual from the trial population,

−→
X g,i is an i-th individual

from the current population, and
−→
X g+1,i is an i-th individual from the population of the

next generation.

4.5 Dynamic Opposition

As proposed in [11, 12], we can also use opposition-based optimization during the
evolutionary process. This optimization is applied using a jump rate JR, as shown in
Algorithm 1, and dynamic interval bounds (Xg

j,low, Xg
j,high; j = 1, 2, ..., D), as shown

by the following equation:
−→
U g,i = {Ug,i,1, Ug,i,2, ..., Ug,i,D}

Ug,i,j = Xg
j,low + Xg

j,high − Xg,i,j

i = 1, 2, ..., NP , j = 1, 2, ..., D,

where
−→
U g,i represents an opposition individual of a corresponding current individual

−→
X g,i and Xg

j,low, Xg
j,high are bound values for each parameter in the current population.

4.6 Adaptive Mutation

Adaptive mutation generates a mutant population PV,g from the current population Pg ,
using mutant strategy and adaptive mutation scale factor F . For each vector from the
current population, mutation (using one of the mutation strategies) creates a mutant
vector

−→
V g,i, which is an individual of mutant population.

−→
V g,i = {Vg,i,1, Vg,i,2, ..., Vg,i,D}, i = 1, 2, ..., NP.

DE includes various mutation strategies for global optimization. In our algorithm we
used the rand/2 mutation strategy, which is given by the equation:

−→
V g,i =

−→
X g,r1 + Fg · (

−→
X g,r2 − −→

X g,r3) + Fg · (
−→
X g,r4 − −→

X g,r5)

The indexes r1, r2, r3, r4, r5 are random and mutually different integers generated
within the range [1, NP ] and also different from index i. Fg is a mutation scale factor
in the g-th generation within the range [0, 2] but usually less than 1.0. Because Fg

scales the distance between the new and old individuals, it is responsible for exploration
and exploitation balance in the evolutionary process. Therefore, we used adaptive Fg

defined as the ratio of the standard deviations between parameters of the initial and
current populations, as shown in the following equations:

Fg =
∑D

i=1 σg,i∑D
i=1 σ0 ,i

σg,i =

√∑NP
j=1(Xg,i,j − Xg,i)2

NP − 1
.

where σg,i is a standard deviation of the i-th parameter in the current population.
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4.7 Crossover

After mutation, a ”binary” crossover forms a trial population PU,g . According to the i-
th population vector and its corresponding mutant vector, crossover creates trial vectors−→
U g,i using the following rule:

−→
U g,i = {Ug,i,1, Ug,i,2, ..., Ug,i,D}

Ug,i,j =

{
Vg,i,j , randj(0, 1) ≤ CR or j = jrand,

Xg,i,j , otherwise.

i = 1, 2, ..., NP , j = 1, 2, ..., D.

CR is a crossover factor within the range [0,1) and determines the probability of cre-
ating parameters of the trial vector from the mutant vector. Index jrand is a randomly
chosen integer within the range [1, NP ] and is responsible for the trial vector contain-
ing at least one parameter from the mutant vector. After crossover, the parameters of
trial vector may be out of bounds (Xj,low, Xj,high). In this case the parameters can be
mapped inside an interval, set to bounds or used as they are – out of bounds.

5 Experiments

Our algorithm was tested for tuning a simplified chess evaluation function of the chess
program, BBChess. The evaluation function contains only material (values of pieces)
and mobility (number of available moves for pieces) information, as shown in the fol-
lowing equation:

chess evaluation = Xm(Mw − Mb) +
5∑

i=0

Xi(Ni,w − Ni,b).

In this equation Xi represents material weights for all piece types without king and Xm

the mobility weight. Mw represents mobility for white and Mb for black pieces. Ni,w

is the number of specific white pieces (i.e. the number of white pawns) and Ni,b for
specific black pieces. The principal reason for using such a simple and straightforward
evaluation function was to demonstrate how the weight parameters of the function can
be tuned by applying our tuning algorithm. In addition the behavior and features of the
AODE algorithm were also presented. To do this, three experiments were performed. In
the first experiment only adaptation optimization was used, in the second opposition-
based optimization was included, and the third included all optimizations including
opposition-based optimization during the evolutionary process.

In all experiments pawn material weight was fixed to 100 and the search depth set
to 5 ply (half move). Experiments were run 30 times and tuning performed through-
out 50 generations. The size of the population NP was 20 because larger NP would
substantially increase the number of required games in one generation. The control pa-
rameter CR was set to 0.9 and the parameter bounds for all parameters were set to
Xj,low = 0 and Xj,high = 1000 for all experiments. If the parameters were out of
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Fig. 1. Average parameter values along generations for AODE without opposition based
optimization mechanisms
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Fig. 3. Average parameter values along generations for AODE with initial population opposition
and JR = 0.0
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Fig. 4. Standard deviation of parameters along generations for AODE with initial population
opposition and JR = 0.0
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bounds after crossover they were set to bound values. When evaluating the individuals
they evaluated according to two played games between corresponding individuals from
the current and trial populations. Each individual played one game as a white player.
This strategy was used because of the simplified evaluation function and it was that two
games between corresponding individuals gave fair judgment as to which individual
was better.

All experiments gave good parameter values. The number of runs was 30 for all
experiments. Good parameter values are those which have an approximate ratio similar
to that of the chess theory (Queen = 900, Rook = 500, Bishop = 330, Knight = 300 and
mobility = 10).

The first experiment used only adaptive optimization (without opposition-based op-
timization during the evolutionary process JR = 0.0) and had average parameter val-
ues and standard deviation, as shown in Figures 1 and 2. Results of average parameter
values show that the algorithm found good values. Standard deviation shows that our
algorithm had some problems with tuning of mobility. The value of the mobility param-
eter greatly influenced the playing ability of a chess program. Large values mean that
mobility becomes more important than material of pieces and generally speaking this
weakens overall playing ability.

The second experiment included adaptive optimization and opposition-based opti-
mization during initialization and had average parameter values and their standard devi-
ation, as shown in Figures 3 and 4. This experiment also found good parameters values.
The main difference from the first experiment is in the first few generations. In these
generations the algorithm had better convergence.
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Fig. 5. Average parameter values along generations for AODE with initial population opposition
and JR = 0.1
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Fig. 6. Standard deviation of parameters along generations for AODE with initial population
opposition and JR = 0.1

The third experiment included all optimizations (JR = 0.1) and achieved average
parameter values and standard deviation are shown in Figures 5 and 6. In comparison
with first two experiments this algorithm had poor convergence in the beginning but at
the end obtained equally good parameters.

As shown on Figures 1, 3, and 5, the most critical parameter is mobility. Using ad-
ditional analysis, it was discovered that the AODE in the first two experiments con-
verged to local optima over two runs and in the third experiment only over one run. In
all these runs, the algorithm found mobility parameter values that are considered inade-
quate in chess theory. In the third experiment we also observed that two populations had
equal individuals sequentially because of repositioning in the dynamic opposition. Al-
though JR was 0.1, the rand(0, 1) was smaller than JR sequentially and, therefore, the
algorithm generated a lot of equal individuals.

6 Conclusions

We have proposed an algorithm for the tuning of a chess program based on Differ-
ential Evolution. In the chess program we tuned only the parameters of its evaluation
function. The algorithm included adaptation and opposition-based optimization mech-
anisms. Using different combinations of these mechanisms inside DE, which already
includes adaptation, we have demonstrated the behavior of our algorithm. With oppo-
sition based-optimization only in initialization the algorithm has better convergence at
the beginning. With opposition-based optimization during the entire evolutionary pro-
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cess the algorithm has poor convergence at the beginning but at the end obtains equal
results. The results also show that such settings of the algorithm make it more robust.

References

1. Baxter, J., Tridgell, A., Weaver, L.: Experiments in Parameter Learning Using Temporal
Differences. International Computer Chess Association Journal 21(2), 84–99 (1998)

2. Baxter, J., Tridgell, A., Weaver, L.: Learning to Play Chess Using Temporal Differences.
Machine Learning 40(3), 243–263 (2000)
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Summary. The optimization of input variables (typically feeding trajectories over
time) in fed-batch fermentations has gained special attention, given the economic im-
pact and the complexity of the problem. Evolutionary Computation (EC) has been a
source of algorithms that have shown good performance in this task. In this chapter,
Differential Evolution (DE) is proposed to tackle this problem and quite promising
results are shown. DE is tested in several real world case studies and compared with
other EC algorihtms, such as Evolutionary Algorithms and Particle Swarms. Further-
more, DE is also proposed as an alternative to perform online optimization, where the
input variables are adjusted while the real fermentation process is ongoing. In this case,
a changing landscape is optimized, therefore making the task of the algorithms more
difficult. However, that fact does not impair the performance of the DE and confirms
its good behaviour.

1 Introduction

In recent years, many efforts have been devoted to the optimization of processes
in biotechnology and bioengineering, since a number of valuable products such
as recombinant proteins, antibiotics and amino-acids are produced using fermen-
tation techniques.

A problem that has received major attention is the dynamic optimization of
fed-batch bioreactors, which has traditionally been done on the substrate feed
rates as key manipulated variables. The optimization problem is usually solved
before the beginning of the fermentation process (open-loop optimal control)
and may consist on finding an expression or a sequence of values for the feed-
ing rate, that maximize a given objective function. This function will typically
be a performance index that measures the process productivity, subject to the
constraints represented by a dynamical model.

U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 299–317, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Several optimization methods have been applied to solve this class of prob-
lems. It has been shown that for relatively simple bioreactor systems, which
are expressed as differential equation models, the optimization problem can be
solved analytically from the Hamiltonian function, by applying the Minimum
Principle of Pontryagin [3]. However, in the majority of the cases reported, de-
termination of the optimal feed rate profile has a problem of singular control,
because the control variable (feed rate) often appears linearly in the system of
differential equations. Thus, this approach fails to provide a complete solution.
Also, those methodologies become too complex when the number of state and
control variables increase.

Numerical methods make a distinct approach to dynamic optimization. The
gradient algorithms are used to adjust the control trajectories in order to it-
eratively improve the objective function [4]. In contrast, dynamic programming
methods discretize both time and control variables to a predefined number of val-
ues. A systematic backward search method in combination with the simulation
of the system model equations is then used to find the optimal path through the
defined grid. However, in order to achieve a global minimum, the computational
burden is very high [22].

An alternative approach comes from the use of algorithms from the Evolu-
tionary Computation (EC) field, which have been used in the past to optimize
nonlinear problems with a large number of variables. These techniques have been
applied with success to the optimization of feeding or temperature trajectories
[14][1], and, when compared with traditional methods, usually perform better
[19][6].

In this chapter, the application of Differential Evolution (DE) to the optimiza-
tion of input variables in fed-batch fermentation processes is proposed. The DE
is implemented and tested in several distinct variants and compared to other al-
gorithms from the EC field, such as Evolutionary Algorithms (EAs) and Particle
Swarm Optimization (PSO) .

Three case studies were used to illustrate and validate the approach and to
compare the performance of the different algorithms. Each algorithm was allowed
to run for a given number of function evaluations and the comparison among
the methods was based on their final result and on the convergence speed.

This work also tackled the complementary issue of online optimization . In
fact, in a real environment, even when the mathematical models used for open-
loop optimization are reliable and validated by experimentation, several sources
of noise can contribute to changes in the observed values of the state variables.
These issues are of particular importance when dealing with recombinant high-
cell density fermentations, as the process, besides the nonlinearities exhibited,
tends to change dramatically upon some events, like induction. Also, it is likely
that there exists a time-variance of both yield and kinetic parameters not con-
templated in most process models. These scenarios have an important impact
on the experimental results, that end up being worse than the ones predicted
after running the offline optimization.
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An alternative to cope with these model inaccuracies is the use of online
optimization algorithms that periodically generate new solutions as the process
is running, making use of the measurement of relevant state variables for update
of the internal model. In this case, the optimization is performed simultaneously,
taking into account values of the state variables measured by sensors within the
fermentation process.

The performance of DE in this online optimization task was evaluated and
compared to the results of a real-valued EA. The same case studies used in offline
optimization, are now used in order to test the performance of both algorithms.
These are firstly used to perform an offline optimization and then a simulation
of a real-world fermentation is conducted. The relevant state variables are, in
each case, disturbed by adding noise, at regular periods of time. The behavior
of both algorithms is compared, as well as the degradation in performance when
the initial offline solution is subjected to perturbations.

This chapter is organized as follows: firstly, the fed-batch fermentation case
studies are presented; next, the optimization algorithms are described; the results
of the application of the different algorithms to the case studies are presented,
followed by a discussion of the results; online optimization is described, followed
by the description of the experiments conducted and the discussion of the results;
finally, the conclusions and further work are presented.

2 Case Studies: Fed-Batch Fermentation Processes

In fed-batch fermentations there is an addition of certain nutrients to the biore-
actor along the time, in order to prevent the accumulation of toxic products,
allowing the achievement of higher product concentrations.

During this process the system states change considerably, from a low ini-
tial to a very high biomass and product concentrations. This dynamic behavior
motivates the development of optimization methods to find the optimal input
feeding trajectories in order to improve the process. The typical inputs in this
process are the substrate inflow rates time profiles.

For the proper optimization of the process, a white box mathematical model
is typically developed, based on differential equations that represent the mass
balances of the relevant state variables.

2.1 Case Study I

In previous work by the authors, a fed-batch recombinant Escherichia coli fer-
mentation process was optimized by EAs [16][17]. This was considered as the
first case study in this work.

During the aerobic growth of the bacterium, with glucose as the only added
substrate, the microorganism can follow three main different metabolic pathways:

• Oxidative growth on glucose:

k1S + k5O
μ1−→ X + k8C (1)
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• Fermentative growth on glucose:

k2S + k6O
μ2−→ X + k9C + k3A (2)

• Oxidative growth on acetic acid:

k4A + k7O
μ3−→ X + k10C (3)

where S, O, X , C and A represent glucose, dissolved oxygen, biomass, dissolved
carbon dioxide and acetate components, respectively. In the sequel, the same
symbols are used to represent the state variables’ concentrations (in g/kg); μ1
to μ3 are time variant specific growth rates that nonlinearly depend on the state
variables, and ki are constant yield coefficients.

The associated dynamical model can be described by the following equations:

dX

dt
= (μ1 + μ2 + μ3)X − DX (4)

dS

dt
= (−k1μ1 − k2μ2)X +

Fin,SSin

W
− DS (5)

dA

dt
= (k3μ2 − k4μ3)X − DA (6)

dO

dt
= (−k5μ1 − k6μ2 − k7μ3)X + OTR − DO (7)

dC

dt
= (k8μ1 + k9μ2 + k10μ3)X − CTR − DC (8)

dW

dt
� Fin,S (9)

being D the dilution rate, Fin,S the substrate feeding rate (in kg/h), W the
fermentation weight (in kg), OTR the oxygen transfer rate and CTR the carbon
dioxide transfer rate.

The kinetic behavior, expressed in the rates μ1 to μ3, was given by specific
functions of the state variables, whose description is out of the scope of the
present work but can be found in [15].

The purpose of the optimization is to determine the feeding rate profile
(Fin,S(t)) that maximizes the productivity of the process, defined as the units
of product (recombinant protein) formed per unit of time. In this case, this is
related with the final biomass obtained, when the duration of the process is pre-
defined. Thus, a performance index (PI) is defined by the following expression:

PI =
X(Tf)W (Tf ) − X(0)W (0)

Tf
(10)

The relevant state variables are initialized with the following values: X(0) = 5,
S(0) = 0, A(0) = 0, W (0) = 3. Due to limitations in the feeding pump capacity,
the value of Fin,S(t) must be in the range [0.0; 0.4]. Furthermore, the following
constraint is defined over the value of W : W (t) ≤ 5. The final time (Tf ) is set
to 25 hours.
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2.2 Case Study II

This system is a fed-batch bioreactor for the production of ethanol by Saccha-
romyces cerevisiae, firstly studied by Chen and Huang [5]. The aim is to find the
substrate feed rate profile that maximizes the final amount of ethanol.

The model equations are the following:

dx1

dt
= g1x1 − u

x1

x4
(11)

dx2

dt
= −10g1x1 + u

150 − x2

x4
(12)

dx3

dt
= g2x1 − u

x3

x4
(13)

dx4

dt
= u (14)

where x1, x2 and x3 are the cell mass, substrate and ethanol concentrations
(g/L), x4 the volume of the reactor (L) and u) the feeding rate (L/h).

On the other hand, the kinetic variables g1 and g2 are given by:

g1 =
0.408
1 + x3

16

x2

0.22 + x2
(15)

g2 =
1

1 + x3
71.5

x2

0.44 + x2
(16)

The performance index (PI) is given by: PI = x3(Tf )x4(Tf ).
The final time is set to Tf = 54 hours, and the initial values for the state

variables are the following: x1(0) = 1, x2(0) = 150, x3(0) = 0 and x4(0) =
10. Additionally, there are physical constraints over the variables, namely: 0 ≤
x4(t) ≤ 200 for all time points and the feeding rate 0 ≤ u(t) ≤ 12.

2.3 Case Study III

This case study handles a hybridoma reactor described by the equations [19]:

dXv

dt
= (μ − kd)Xv − F1 + F2

V
Xv (17)

dGlc

dt
=

F1

V
Glcin − F1 + F2

V
Glc − qGlcXv (18)

dGln

dt
=

F2

V
Glnin − F1 + F2

V
Gln − qGlnXv (19)

dLac

dt
= qLacXv − F1 + F2

V
Lac (20)

dAmm

dt
= qAmmXv − F1 + F2

V
Amm (21)
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dMab

dt
= qMabXv − F1 + F2

V
Mab (22)

dV

dt
= (F1 + F2) (23)

where the state variables Xv, Glc, Gln, Lac, Amm, Mab, V are the concentra-
tions of viable cells, glucose, glutamine, lactate, ammonia, monoclonal antibodies
and culture volume, respectively. The control variables F1 and F2 are the vol-
umetric feed rates. The complete kinetic expressions for μ, kd, qGlc, qGln, qLac,
qAmm and qMab are given in [19].

The target of the optimization process, in this case, is to increase the total
amount of monoclonal antibodies produced. So, the PI is given by:

PI =
∫ Tf

0
−qMabXv(t)V (t) (24)

Initialization values for the state variables are the following: Xv = 2.0 ×
108cells/L, Glc = 25g/L, Gln = 4g/L, Lac = 0g/L, Amm = 0g/L, Mab =
0g/L, V = 0.8L. Tf is 10 days and the value of V (t) is constrained by
V (t) ≤ Vmax.

3 Algorithms

3.1 Solution Representation and Evaluation

The optimization task addressed in this chapter is to find the best trajectory of
some input variables (e.g. substrate feed), that yield the maximum performance
index, defined in each specific case. A solution to the problem will consist in
a real-valued vector, that encodes a temporal sequence of values, one per each
time unit.

As mentioned above, the typical input variable in fed-batch fermentation pro-
cesses is the feeding trajectory or trajectories, i.e. the amount of a given substrate
to be introduced into the bioreactor, in a given time unit. Case studies I and II
have only one input variable, given by the substrate feeding rate ; case study III
has two feeding rates F1 and F2.

The size of the solution will be determined by the final time of the process
(Tf ), the discretization step (d) considered in the numerical simulation of the
model and the number of input variables NV , given by the expression: NV

Tf

d .
However, as the resulting genome would be very large (e.g. 5000 genes, for

case study I), feeding values were defined only at certain equally spaced points,
and the remaining values are linearly interpolated . The size of the genome (G)
becomes:

G = NV (
Tf

dI
+ 1) (25)

where I stands for the number of points within each interpolation interval. The
value of d used in the experiments was d = 0.005, for all case studies.
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The evaluation of each solution is performed by running a numerical simu-
lation of the defined model, given as input the feeding values. The numerical
simulation is performed using ODEToJava, a package of ordinary differential
equation solvers, using a linearly implicit implicit/explicit (IMEX) Runge-Kutta
scheme used for stiff problems [2]. The fitness value is then calculated from the
values of the state variables according to the PI defined for each case.

3.2 Differential Evolution

Differential Evolution (DE) is a population-based approach to function optimiza-
tion that generates trial individuals by calculating vector differences between
other randomly selected members of the population.

Given a function f : R
n → R to be minimised, a DE begins by randomly

generating p n-dimensional vectors. These vectors (called individuals) form a
population that will evolve over the course of the algorithm’s run. The algorithm
then proceeds to manipulate the population until a termination criterion is met.
The termination condition can be that a fixed number of function evaluations
have elapsed or no sufficient improvement is achieved.

The following is an outline of DE that uses a binomial crossover [21]. For
clarity, the computation of the new trial vector has been shown separately from
the crossover operation that selects only some of the dimensions of the trial
vector.

1. Initialize the population;
2. Evaluate the population;
3. Generate a new population where each candidate individual i is generated

in parallel according to:
(i) Randomly select 3 distinct individuals r1, r2, r3 from the population that

are different from i;
(ii) Generate a trial vector based on the scheme
(iii) Perform crossover between this vector and the vector of the current in-

dividual, with probability CR, using at least one dimension of the trial
vector.

(iv) If the candidate is not valid, change its invalid coordinates by resetting
them to the closest bound;

(v) Evaluate the candidate;
(vi) Use the candidate in the new generation if it is at least as good as the

current individual;
(vii) Replace the current individual by the candidate if the candidate is at

least as good.
4. Loop to 3 unless the termination criterion is met.

Various schemes are currently in use for DEs [20]. Each scheme varies accord-
ing to the number of difference vectors used and to whether or not the current
individual or the global best individual will be used as part of that computation.
Four schemes are considered in this paper. These are shown below along with
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the corresponding trial vector generation formula. The variables xrj , 2 ≤ j ≤ 5
represent distinct randomly selected individuals that are different from the cur-
rent individual xi and xbest is the best individual. The parameter F ∈ R is the
scale of the difference vectors and is usually set between 0 and 2 and CR is the
crossover probability.

DE/rand/1 t = xr1 + F (xr2 − xr3)
DE/rand/2 t = xr1 + F (xr2 + xr3 − xr4 − xr5)
DE/best/1 t = xbest + F (xr2 − xr3)
DE/best/2 t = xbest + F (xr2 + xr3 − xr4 − xr5)

3.3 Real-Valued EA

A real-valued Evolutionary Algorithm (EA) was also considered, since it pro-
vided good results in previous work [17][18]. The overall structure of the EA is
given by:

1. Initialize time (t = 0), generate and evaluate the initial population (P0).
2. While the termination criteria is not met:

(i) Select from Pt a subset of individuals for reproduction.
(ii) Apply the genetic operators to the individuals in order to breed the

offspring and evaluate them.
(iii) Insert the offspring into the next population (Pt+1).
(iv) Select the survivors from Pt to be kept in Pt+1.
(v) Increase current time (t = t + 1).

Regarding the reproduction step, this EA uses the following mutation and
crossover operators:

• Random Mutation, which replaces one gene by a new randomly generated
value, within the range [mini, maxi] [13]; and

• Gaussian Mutation, which adds to a given gene a value taken from a Gaussian
distribution, with a zero mean and a standard deviation given by maxi−mini

4
(i.e., small perturbations will be preferred over larger ones).

• Two-Point crossover, a standard Genetic Algorithm operator [13], applied in
the traditional way;

• Arithmetical crossover, where each gene in the offspring will be a linear com-
bination of the values in the ancestors’ chromosomes [13];

where [mini; maxi] is the range of values allowed for gene i.
Both mutation operators are applied to a variable number of genes (a value

that is randomly set between 1 and 10 in each application). In previous work,
the best result was obtained using an alternative that contemplates the use of
all genetic operators described above [17]. All operators are used with equal
probabilities to breed the offspring.

The selection procedure is done by converting the fitness value into a linear
ranking in the population, and then applying a roulette wheel scheme. In each
generation, 50% of the individuals are kept from the previous generation, and
50% are bred by the application of the genetic operators.
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3.4 Fully Informed Particle Swarm

A particle swarm optimizer (PSO) uses a population of particles that evolve
over time by flying through the search space. Particles imitate their neighbors
by approaching their best positions. In the canonical particle swarm, the two
sources of imitation are the individual’s previous best position and the best
position found by the most successful neighbor.

Due to the fact that in previous studies [11] the Fully Informed Particle Swarm
(FIPS) [12] clearly outperformed the canonical particle swarm in this class of
problems, this method will be used in this study. In this case, each particle is
defined by:

P
(i)
t = 〈xt, vt, pt, et〉

where xt ∈ R
d is the current position in the search space; pt ∈ R

d is the position
visited by the particle in the past that had the best function evaluation; vt ∈ R

d

is a vector that represents the direction in which the particle is moving, it is
called the ‘velocity’; et is the evaluation of pt under the function f : R

d → R

being optimized, i.e. et = f(pt).
Particles are connected to others in the population via a predefined topology.

This can be represented by the adjacency matrix of a directed graph M = (mij),
where mij = 1 if there is an edge from particle i to particle j and mij = 0 otherwise.

In FIPS, each particle moves in the direction of the stochastic barycenter of
the previous best position of all the neighboring particles (excluding the particle
itself). As in the canonical particle swarm, the neighbors of a particle are the
ones that share a vertex in the graph that represents the topology.

The following is an outline of a generic PSO:

1. Set the iteration counter, t = 0.
2. Initialize each x

(i)
0 and v

(i)
0 randomly. Set p

(i)
0 = x

(i)
0 .

3. Evaluate each particle and set e
(i)
0 = f(p(i)

0 ).
4. Let t = t + 1 and generate a new population, where each particle i is moved

to a new position in the search space according to:
(i) v

(i)
t = velocity update(v(i)

t−1).
(ii) x

(i)
t = x

(i)
t−1 + v

(i)
t .

(iii) Evaluate the new position, e = f(x(i)
t ).

(iv) If the new position is better than the previous best, update the particle’s
previous best position. i.e if e < e

(i)
t−1 then let p

(i)
t = x

(i)
t and e

(i)
t = e

else let p
(i)
t = p

(i)
t−1 and e

(i)
t = e

(i)
t−1.

(v) Loop to 4 until the termination criterion is met.

Clerc and Kennedy [7] introduced the use of a factor called the ‘constriction
factor’, symbolized by χ, into the velocity update equation. The velocity update
equation for FIPS is given by:

velocity update(v
(i)
t−1) = χ(v

(i)
t +

∑
j∈N(i)

U(0, 1) · ϕ

|N(i)| · (p
(j)
t−1 − x

(i)
t−1))
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where U is the generator of pseudo-random numbers following the uniform dis-
tribution, ϕ = 4.1, χ = 0.729, N(i) is the neighborhood (the set of the particles)
of particle i. The values of ϕ and χ are given by Clerc’s formula. In this study,
the population is organized according to the von Neumann topology [10], where
each particle is connected to four others, in a torus configuration.

4 Offline Optimization

4.1 Methodology

The results reported in this text are the means of 30 runs and are presented
with 95% confidence intervals. Additionally, the use of t-tests [8] for two-sample
comparisons was adopted. In order to improve the readibility of the analysis, a
symbolic encoding of the p-values resulting from the t-tests was used. To enhance
readability of the tables and allow a straighforward comparison between the
approaches tested, different symbols are used to report whether the mean of
approach A1 is greater than the mean of A2 or vice-versa. The encoding used is
presented in Table 1.

Table 1. Encoding used in the presentation of p-values of the pairwise t-tests compar-
ing approaches A1 and A2

p-value condition symbol

p ≤ 0.001 mean(A1) > mean(A2) +++
p ≤ 0.001 mean(A1) < mean(A2) - - -

0.001 < p ≤ 0.01 mean(A1) > mean(A2) ++
0.001 < p ≤ 0.01 mean(A1) < mean(A2) - -
0.01 < p ≤ 0.05 mean(A1) > mean(A2) +
0.01 < p ≤ 0.05 mean(A1) < mean(A2) -

p ≥ 0.05 O

Given that multiple pairwise comparisons were performed, the authors used
the Holm correction for the p-values [9]. Sometimes statistical tests cannot find
a significant difference between two algorithms (e.g., because the confidence in-
terval of one of them is too wide). Nonetheless, we are interested in a reliable
method: one that consistently yields good results. Thus, an algorithm with a
good average and a narrow confidence interval is preferred in these cases.

4.2 Parameter Settings and Test Conditions

When solving a real world problem, the main concern is to have a tool that
may be applied to the problem with as few fine-tuning as possible. The main
focus of this work will be in the results and not in a thorough study about the
parameterization of the algorithms involved. It was not an aim of this work to
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go through the cumbersome task of testing the valuation of all the parameters of
these algorithms until a suitable setting for the problem at hand could be found.
Furthermore, these experiments take a long time (typically a few hours per run)
and there are usually time constraints. Thus, it was decided to use standard
configurations for each algorithm that were either validated by experimental
results or suggested by previous studies.

Due to the previous experience of the authors with the real-valued EA, each
run was stopped after 200,000 function evaluations. In the case of FIPS the
population size was 20 and the other parameters have the usual values given in
the literature. The neighborhood topology selected was the von Neumann [10].

For all DE algorithms, the population size was set to 20, F was set to 0.5,
CR to 0.6 and the schemes used were DE/rand/1, DE/rand/2, DE/best/1 and
DE/best/2. In terms of the real-valued EA, the population size was set to 200.

For each case study, 30 runs were performed with each algorithm. The value of
I was determined, for each case study, based on preliminary results, and set in the
following way: I = 200 in case studies 1 and 2, and I = 100 for the case study III.

Thus, the solution sizes are equal to 26, 55 and 21 for the three case studies.

4.3 Results

For all case studies, the results will be shown in two distinct tables. The first will
present the results obtained by each of the algorithms showing the mean and
the 95% confidence intervals for the PI. These will be shown for three distinct
steps of the optimization process: when 50,000, 100,000 and 200,000 function
evaluations were performed by each algorithm. It was decided to probe PI at
these time-steps to estimate the possibility of terminating the runs earlier whilst
still maintaining good quality solutions.

The second set of tables will help to further validate the results, showing
the pairwise t-test results, when 200 k FEs have elapsed, using the methodoloy
aforementioned. This will show the statistically significant differences among
the algorithms. In these tables, the algorithm that appears on each row will
correspond to A1 on Table 1 and the algorithm given by the column to A2.

Tables 2 and 3, 4 and 5 and finally 6 and 7, present the results obtained by
each of the algorithms on the case studies I, II and III, respectively.

Table 2. Results for case study I: mean and confidence intervals of the PI

Algorithm PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

DE/rand/1 9.4726 ± 0.0005 9.4727 ± 0.0005 9.4727 ± 0.0003
DE/rand/2 9.0669 ± 0.0390 9.4074 ± 0.0102 9.4728 ± 0.0001
DE/best/1 5.1580 ± 0.4795 5.2274 ± 0.4470 5.2315 ± 0.4443
DE/best/2 9.4423 ± 0.0626 9.4729 ± 0.0000 9.4729 ± 0.0000

EA 8.4762 ± 0.0731 8.7891 ± 0.0613 9.0037 ± 0.0497
FIPS 9.4716 ± 0.0014 9.4729 ± 0.0000 9.4729 ± 0.0000
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Table 3. Pairwise t-test with the Holm p-value adjustment for the algorithms of case
study I

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA

DE/rand/2 O
DE/best/1 - - - - - -
DE/best/2 O +++ +++

EA - - - - - - +++ - - -
FIPS O +++ +++ O +++

Table 4. Results for case study II: mean and confidence intervals of the PI

Algorithm PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

DE/rand/1 20386 ± 7 20400 ± 7 20409 ± 6
DE/rand/2 20348 ± 8 20366 ± 6 20382 ± 6
DE/best/1 19702 ± 128 19723 ± 128 19751 ± 134
DE/best/2 20229 ± 86 20263 ± 80 20281 ± 84

EA 20119 ± 48 20280 ± 35 20373 ± 17
FIPS 19821 ± 120 19822 ± 120 19822 ± 120

Table 5. Pairwise t-test with the Holm p-value adjustment for the algorithms of case
study II

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA

DE/rand/2 O
DE/best/1 - - - - - -
DE/best/2 O O +++

EA - - O +++ O
FIPS - - - - - - O - - - - - -

Table 6. Results for case study III: mean and confidence intervals of the PI

Algorithm PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

DE/rand/1 392.81 ± 3.81 393.93 ± 3.20 394.99 ± 3.13
DE/rand/2 391.66 ± 0.48 394.18 ± 0.33 395.73 ± 0.20
DE/best/1 276.40 ± 10.74 283.50 ± 12.25 289.37 ± 12.82
DE/best/2 372.90 ± 12.44 375.08 ± 12.60 378.67 ± 11.86

EA 374.83 ± 1.67 382.49 ± 0.86 387.62 ± 0.52
FIPS 362.45 ± 15.10 370.66 ± 13.68 375.69 ± 10.79

The first conclusion to be drawn from the results is a superiority of some of
the DE schemes (specially DE/rand/1 and DE/rand/2) over the EA and FIPS
as soon as 50,000 FEs. FIPS converges fast, but the quality of the solutions in
cases II and III is not at the level of the results of DE and even the EA. The EA
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Table 7. Pairwise t-test with the Holm p-value adjustment for the algorithms of case
study III

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA

DE/rand/2 O
DE/best/1 - - - - - -
DE/best/2 O O +++

EA - - - - - - +++ O
FIPS - - - +++ O O

is usually the algorithm with the slowest convergence, although it steadly im-
proves over the entire run. The worst algorithm in all problems is the DE/best/1
scheme. DE/best/2 is much better showing that in some problems having a nois-
ier setup with a greedier scheme can pay off. However, it is still a step behind
the DE/rand alternatives.

In case study I, DE/rand/1 has already obtained good solutions with only
50,000 FEs, closely followed by FIPS and DE/best/2. When 100,000 FEs have
elapsed, the quality of the solutions of the three approaches is very similar,
with the EA still trailing far behind and DE/best/1 out of the competition. Fi-
nally, with 200,000 FEs the three approaches (DE/rand/1, FIPS and DE/best/2)
maintain similar performance and the EA is still trailing behind, although
steadily improving.

In case study II, there are some changes. FIPS is not as good as the EA and
presents results similar to the ones of DE/best/1. DE/rand/1 and DE/rand/2
have similar results with 50,000 FEs, slowly improving with a larger number of
FEs. The EA is the algorithm that shows the steadier improvement but still ex-
hibits a somewhat lower performance when compared to DE/rand at 200,000 FE.

Case study III shows a similar performance for DE/rand/1 and DE/rand/2,
with DE/rand/2 having somewhat better performance for 100,000 and 200,000
FEs. In this case, the EA is again the third best alternative and the worst
performer is still DE/best/1.

5 Online Optimization

5.1 Description

During the fermentation process, some of the state variables can be measured,
but its values are scarcely used for closed-loop optimization purposes, and are
rather employed to evaluate qualitatively the performance of the process. How-
ever, it is possible to develop dynamic optimization algorithms capable of timely
reacting to this new knowledge generated by updating the corresponding internal
model and generating new solutions.

EC is a promising approach to this real-time optimization task, since the
algorithms keep a population of solutions that can be easily adapted to perform
re-optimization. Indeed, a population of solutions previously obtained can be
evaluated under the new scenario and better adapted solutions can be created
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through the use of evolution. The fact that a set of solutions is kept, and not
only the best solution, makes a faster adaptation to new conditions possible,
while taking advantage of previous optimisation efforts.

In this work, two online optimization strategies based on EAs and DE are
proposed, working in two stages: before the fermentation process starts, an offline
optimization is conducted as it is described in the previous sections. After this
preliminary step, online optimization algorithms use information gathered by
measuring the value of relevant state variables in certain points in time during
the real fermentation. These algorithms react by updating their internal model
and reaching an improved solution, that is available to be sent back to the
fermentation monitoring software.

The version of the EA/DE used to perform online optimization is similar to the
ones described for the offline problem. The DE scheme selected was DE/rand/1
due to the fact that it is the simplest to implement and the one that usually gave
the best results. When new information regarding the state variables is received,
the following steps are followed by both EA and DE:

1. a starting point (in time) is determined for the re-optimized solution, by
adding the time label of the received data with the predicted time necessary
to compute a new solution (since it is impossible to reach and therefore apply
a solution before that time);

2. the last available population is adapted by removing from the genome of each
individual the genes that encode feeding values for elapsed time periods;

3. half of the individuals in the population are replaced by new randomly gen-
erated solutions (these individuals are chosen randomly, although the best
individual is always kept). This helps in maintaining genetic diversity, a
useful feature for the optimization in changing landscapes;

4. the internal model of the fermentation used by the EA/DE is updated with
the new information available from the real process and each of the individ-
uals is re-evaluated taking this new knowledge into consideration;

5. the normal process of the DE or EA proceeds for a given number of iterations;
6. the best solution obtained is sent to the fermentation software and can be

used in the real process.

5.2 Experimental Setup

In this study, and given time and physical constraints, real fermentations were
not conducted and instead these were replaced by simulating the fermentation
process and adding noise to the value of the state variables. This process is
implemented by considering two interacting components: an optimizer, that im-
plements the optimization algorithm (DE or EA), and a noise simulator (NS),
that simulates the real fermentation process adding noise to the state variables.

This is performed by considering that there is a deviation between the model
prediction and the behaviour of the process due to several reasons (e.g. model
innacuracies or parameters changing over time). Therefore, for each sampling
time, the state variables that represent the real process are obtained from the
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simulated variables by adding noise. These new values of the state variables
would originate a deviation of the process from its optimal behavior, which had
been defined during offline optimization. To compensate for this deviation, the
new values of the state variables will be used by the optimization algorithm to
reach a new feeding profile.

The following sequence of events takes place:

1. an offline optimization is performed by the optimizer and its results are
passed on to the NS, used to compute the predicted values of the state
variables. The optimizer stops and waits for new information.

2. the variable t, which stores the simulated time in the NS is set to t = 0.
3. while t < Tf (where Tf denotes the final time of the fermentation process)

the following steps are executed:
(i) the values of all state variables at time t are disturbed by the NS by

adding/ subtracting noise, given by the original value multiplied by a
value taken from an uniform distribution with range [0, U ]. The new
values of the state variables are sent to the optimizer.

(ii) the optimizer receives this information and runs the steps for online
optimization listed in the previous section. The best solution reached is
sent to the NS that updates its model accordingly.

(iii) the NS updates t = t + Δt.

Each run for the initial optimization is stopped after 200, 000 function eval-
uations and the re-optimization process is allowed 20, 000 function evaluations.
The parameters of the DE and EA keep the values of the offline optimization
given in the previous sections The value of Δt was set to 1 (h.) in case study I,
2 (h.) in II and 0.5 (d.) in III.

5.3 Results

The results will be presented in terms of the mean of the PI values obtained in 30
runs, as well as 95% confidence intervals. The Tables 8, 9 and 10 show the results
of the algorithms obtained on case studies I, II and III, respectively. In every case,
the first column represents the parameter U used to generate noise (an increase
in this parameter implies noisier setups). The next two columns show the results
for the DE and the EA during offline optimization; columns 4 and 5 show the
results obtained for the same algorithms, but applying the noise disturbances
without changing the solutions of offline optimization (simulating the case where
there are discrepancies between model predictions and real processes but without
intervention of online optimizers) and, finally, the last two columns show the
results obtained by the online optimization.

The first conclusion to draw from the results is that, in every case study, even
a low level of noise is enough to clearly disturb the results, although that effect
is clearly more visible in case study I.

The levels of noise studied are certainly within the range of the differences
observed between model predictions and experimental results in biotechnological
processes. However, the consequences in terms of process performance when an
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Table 8. Results obtained by the DE and EAs in case study I

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 9.47 ± 0.00 8.85 ± 0.04 4.67 ± 0.70 4.79 ± 0.73 9.11 ± 0.14 8.72 ± 0.14
0.02 9.47 ± 0.00 8.83 ± 0.05 4.41 ± 0.75 4.69 ± 0.78 8.80 ± 0.24 8.53 ± 0.25
0.03 9.47 ± 0.00 8.81 ± 0.05 4.20 ± 0.76 4.35 ± 0.81 8.47 ± 0.34 8.17 ± 0.35

Table 9. Results obtained by the DE and EAs in case study II

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 20405 ± 4 20374 ± 9 20097 ± 133 20236 ± 108 20421 ± 115 20408 ± 119
0.02 20407 ± 3 20379 ± 7 19832 ± 305 19986 ± 244 20404 ± 243 20392 ± 242
0.03 20405 ± 5 20376 ± 9 19711 ± 357 19938 ± 393 20282 ± 317 20236 ± 335

Table 10. Results obtained by the DE and EAs in case study III

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 394.7 ± 0.2 386.3 ± 0.8 371.7 ± 8.5 367.9 ± 7.1 386.2 ± 4.8 379.8 ± 3.8
0.02 394.7 ± 0.2 385.2 ± 0.7 353.9 ± 14.9 351.2 ± 12.3 374.1 ± 9.2 371.8 ± 8.3
0.03 394.7 ± 0.2 386.1 ± 0.9 330.0 ± 23.5 343.0 ± 15.4 364.5 ± 13.0 367.6 ± 11.0

open-loop fermentation (without online optimization) is performed are quite
extreme, implying that in many cases the utility of even relatively good models
for process optimization with current state-of-the-art optimization techniques
(mostly offline approaches) is quite low.

Therefore, the results obtained with online optimization strategies indicate
that the reward obtained in terms of process productivity is probably more than
enough to justify its implementation and the corresponding costs. In fact, he
results obtained for all 3 case studies are quite close to the ones predicted by
offline optimization without added noise, thus implying that the optimization
scheme is robust to the levels of noise studied in this work. Furthermore, the
degradation of the results that is caused by the increase of U is quite graceful,
as an increase in U does not cause dramatic effects in the PI.

A comparison of the results obtained by both optimization algorithms show
that DE seems to be more effective than the EAs. The difference is very clear when
offline optimization is performed, but decreases when the level of noise increases.
In fact, the differences for U = 0.02 and 0.03 are not significant from a statistical
perspective and in case study III, the EA displays a better mean than DE for U =
0.03. Nevertheless, if an alternative has to be chosen the DE still has an advantage,
since it shows the best results (mean) in almost all scenarios.
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6 Conclusions and Further Work

This chapter compares FIPS, a real-valued EA (EA) and four distinct schemes
of Differential Evolution (DE) in three case studies of optimizing the feeding
trajectory in fed-batch fermentation processes. The best overall algorithms in
these tasks were the DE/rand/1 and DE/rand/2, that consistently obtained
good results in all the case studies and furthermore had a good convergence
speed. If a single configuration was to be chosen, the DE/rand/1 scheme would
be the selected one, since it represents the simpler alternative to implement and
obtains good results.

Fips was a good contender in one of the cases where it found good results and
was as fast as DE. However, it got stuck on local optima on the other ones. EA
was slower to converge but reliable. If one can afford the computational time
needed, it always finds good solutions. However, in some problems (specially
case study I) it requires a large number of function evaluations to achieve a
good result. Given that the computational time needed for these problems is
quite large, it is a good reason to choose DE instead.

In this work, the task of optimizing feed profiles for fed-batch fermentation
problems was also approached by proposing optimization algorithms, such as
EAs and DE, that are able to implement online optimization strategies, i.e., to
perform the optimization simultaneously with the real process. The proposed
approach was validated by conducting a number of experiments that used a
noise simulator to emulate the differences between the values predicted by the
mathematical model and the real values in the fermentation process. The results
of the experiments show that even small differences lead to important disruptions
in the behavior that was predicted by offline optimization.

The proposed approach to online optimization deals well with the noise and
exhibits properties of graceful degradation. When comparing the optimization
algorithms, the DE seems the best alternative, but its superiority seems to de-
crease when noisier settings are considered.

In future work, the priority is to validate these results by implementing the
approach to online optimization with a real fed-batch fermentation process. Fur-
thermore, other case studies will be tested and distinct optimization algorithms
will be taken into account.

Previous work by the authors [18] developed a new representation in EAs in
order to allow the optimization of a time trajectory with automatic interpolation.
It would be interesting to develop a similar approach within DE.
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Summary. The development and application of the differential evolution (DE) op-
timisation algorithm to the problem of worst-case analysis of nonlinear control laws
for hypersonic re-entry vehicles is described. The algorithm is applied to the problem
of evaluating a proposed nonlinear handling qualities clearance criterion for a detailed
simulation model of a hypersonic re-entry vehicle (also known as a reusable launch
vehicle (RLV)) having a full-authority nonlinear dynamic inversion (NDI) flight con-
trol law. A hybrid version of the differential evolution algorithm, incorporating local
gradient-based optimisation, is also developed and evaluated. Comparisons of compu-
tational complexity and global convergence properties reveal the significant benefits
which may be obtained through hybridisation of the standard differential evolution al-
gorithm. The proposed optimisation-based approach to worst-case analysis is shown to
have significant potential for improving both the reliability and efficiency of the flight
clearance process for next generation RLV’s.

1 Introduction

Atmospheric re-entry is an important and safety-critical part of the reusable
launch vehicle mission. During the re-entry flight phase, the space vehicle fol-
lows a predefined trajectory towards the designated landing point, travelling
from space to the dense atmosphere of earth. As a result, the vehicle is sub-
jected to high levels of uncertainty and variations in key flight parameters dur-
ing the course of its mission. A primary requirement for re-entry guidance and
flight control laws is that they exhibit sufficient levels of robustness to allow
close tracking of the pre-defined trajectory in spite of high levels of uncertainty
and disturbances. In order to demonstrate that this requirement is satisfied,
maximum deviations from the prescribed trajectory due to uncertainty in flight
parameters such as mass, centre-of-gravity locations, inertias and aerothermo-
dynamic parameters, as well as actuator and sensor uncertainties need to be
precisely evaluated in simulation , prior to any test flight. This process of “flight
clearance must be carried out in all normal and various failure conditions, and
in the presence of all possible parameter variations.

U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 319–333, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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The task of analysing and quantifying the robustness properties of the RLV
flight control algorithms is a very lengthy and expensive one, where different
combinations of large numbers of uncertain parameters must be investigated
such that an estimate about the worst case stability and performance of the
control laws can be made. For nonlinear flight clearance problems, the current
industrial standard is to use a gridding approach, where either the clearance
criteria are evaluated for all combinations of the extreme points of the vehicle’s
uncertain parameters or Monte-Carlo simulation is employed to randomly sam-
ple the parameter space, [1]. Unfortunately, the computational effort involved in
the resulting clearance assessment increases exponentially with the number of
uncertain parameters that are to be considered (combinations of extreme points)
or with the desired confidence levels for the clearance results (Monte-Carlo sim-
ulation). Another difficulty with these approaches is the fact that there is no
guarantee that the worst case uncertainty combination has in fact been found,
since it is possible that the worst-case combination of uncertain parameters
does not lie on the extreme points, or in the sampled set used by Monte-Carlo
approaches. A promising approach to address the above difficulties is to use ad-
vanced optimisation algorithms to search the parameter space for worst-cases
that violate the particular clearance criterion under investigation. Clearly, given
that the parameter space for this type of problem will in general be highly non-
linear and non-convex, [6], global optimisation methods will be required to avoid
getting trapped in locally optimal solutions. Previous work by the authors has
explored the applicability of various evolutionary optimisation methods to the
flight clearance problem for high-performance aircraft, and has shown that, when
hybridised with appropriate gradient-based algorithms, they have the potential
to improve significantly both the reliability and efficiency of the flight clearance
process, [24, 25].

In this chapter, the flight clearance problem for a highly detailed simulation
model of a generic RLV over a lower atmospheric phase of its re-entry trajectory
is considered. The flight control law included in the model has been designed
using nonlinear dynamic inversion (NDI) methods to provide robust trajectory
tracking over the specified flight phase. The clearance problem is solved using
differential evolution and a hybrid version of differential evolution. Differential
evolution is a relatively new global optimisation method, introduced by Storn
and Price in [11]. This method belongs to the same class of evolutionary global
optimisation techniques as GA, but unlike GA it does not require either a se-
lection operator or a particular encoding scheme. To reduce the computational
complexity of the approach, the DE algorithm is hybridised with a local gradient-
based optimisation method ‘fmincon’. The contributions of this chapter are as
follows. We demonstrate conclusively, for a realistic, industry-standard re-entry
vehicle simulation model with an NDI control law, the ability of the DE global
optimisation algorithm to avoid getting trapped in local solutions to the flight
clearance problem. We also show, however, that incorporation of local optimi-
sation methods into global algorithms can drastically reduce computation times
and improve convergence to the global solution. To the authors knowledge, this
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is the first time that advanced optimisation methods of this type have been
applied to the problem of worst-case analysis for space applications.

2 RLV Model, Control Law and Clearance Criterion

The generic RLV high-fidelity simulation model is based on the HL-20 aerody-
namic database and X38-type geometric and aerodynamic surface configuration,
and has a dry mass of 19,100-lb. This simulation model has been developed by
DEIMOS Space S.L. for the European Space Agency (ESA) to act as a research
platform for the investigation of re-entry and autoland guidance, navigation and
control systems, [23].

The model consists of a reference trajectory generator, a nonlinear dynamic
inversion (NDI)-based flight control system, nonlinear actuator models, the RLV
dynamics, sensors such as gyros and accelerometers, and detailed environment
models (US standard 1969 and Earth gravity and geoid models). Figure 1 shows
a block diagram schematic of the RLV simulation model, which is implemented
in the Matlab Simulink environment.

The reference trajectory is defined in terms of Angle of Attack (AoA or α),
Angle of Side Slip (AoSS or β), and bank angle φ. The NDI controller provides
the elevator, aileron, rudder and brake control inputs according to the desired
dynamics. The controller also includes actuator allocation functions depending
on the commanded moments, altitude and velocity of the RLV. More details of
the model and its associated flight control system are available in [23]. The pa-
rameters in the model, and associated uncertainty values, are accessible through
a database consisting of a collection of XML files accessible by the user.

Table 1. RLV Model Uncertain Parameters

Parameter Bound Description

Δmass [-2313.3, 2313.3] variation in dry mass from nominal (11566.55 kg)

ΔIxx [-1627, +1627] variation in M.I about X (8135.0 4kgm2)

ΔIyy [-15185, +15185] variation in M.I about Y (75926.0 kgm2)

ΔIzz [-15863, +15863] variation in M.I about Z (79315.0 kgm2)

ΔIxz [-628.8, +628.8] variation in Product of inertia XZ (3144.0 kgm2

Δxcog [-0.4912, +0.4912] variation in X c.g from nominal (4.9213 m)

Δycog [-0.01, +0.01] variation in Y c.g from nominal (0.0 m)

Δzcog [-0.1009, +0.1009] variation in Z c.g from nominal (1.0094976 m)

The complete re-entry trajectory for the vehicle takes 1680 seconds of sim-
ulation time and is divided in flight phases based on dynamic pressure and
atmospheric layer. The present analysis focuses on a lower atmosphere phase
starting at 1588 seconds and ending at 1675 seconds that covers the 32 to 20 km
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Fig. 1. Block schematic of RLV

altitude range. The reference trajectory in this segment includes a reduction of
AoA from 30 degrees to nearly 20 degrees, while keeping a zero AoSS and with
a defined bank angle variation. The description and allowed ranges of the uncer-
tain parameters considered for the present analysis are given in Table 1. As can
be seen from the table, in the present analysis we focus mainly on uncertainty
in the parameters representing the vehicle’s mass, inertias and centre-of-gravity.

2.1 Clearance Criterion

To analyse the robustness of the NDI control law in tracking AoA trajectories
over the considered flight phase, a cost J is defined by Equation (1),

J = ‖αref − αΔ‖∞ (1)
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where αref represents the reference AoA trajectory and αΔ represents the actual
AoA trajectory followed by the vehicle in simulation in the presence of any
uncertainty Δ. This particular clearance criterion was chosen for this study as
criteria of this type are widely used throughout the European aerospace industry
for the clearance of flight control laws for high performance aircraft [1, 6]. The
uncertain parameter vector Δ consists of the parameters defined in Table 1,
and its dimension is hence fixed at 8. The worst-case analysis problem is posed
as identifying the Δ∗ vector such that the following maximisation problem is
solved.

maxJ = ‖αref − αΔ‖∞ (2)
sub.to Δ ≤ Δ ≤ Δ (3)

where Δ and Δ define the lower and upper bounds on the uncertain parameters.
The maximum cost value J∗ corresponds to the uncertain parameters Δ∗ that
give the maximum deviation from the reference trajectory αref . The resulting
optimisation problem is obviously nonlinear and nonconvex in general. Note that
in this chapter we focus on a clearance criterion involving AoA only. However,
the optimisation framework proposed is generic, and thus many other types of
clearance could be assessed in a similar way.

3 Optimisation Based Worst Case Analysis

In this chapter the robustness analysis of an NDI flight control law for a RLV is
formulated as an optimisation problem and solved using a global optimisation
algorithm, DE, and its hybrid version. The optimisation problem itself is to find
the combination of real parametric uncertainties that gives the worst value of the
criterion defined in Eq. 1. Since this and many other clearance criteria must be
checked over a huge number of conditions and re-entry vehicle configurations, it
is imperative to find the most computationally efficient approach to the problem.
Previous efforts to apply optimisation methods to similar problem, [1] Chapter
7, have revealed that the nonlinear optimisation problems arising in flight clear-
ance, while having relatively low order, often have multiple local optima and
expensive function evaluations. Therefore, the issue of whether to use local or
global optimisation, and the associated impact on computation times is a key
consideration for this problem.

In [1] Chapter 21, local optimisation methods such as SQP (Sequential
Quadratic Programming), and L-BFGS-B (Limited memory Broyden-Fletcher-
Goldfarb-Shanno method with Bounded constraints) were used to evaluate a
range of linear clearance criteria for the HIRM+ (High Incidence Research
Model) aircraft model. In [1] Chapter 22, global optimisation schemes such as
Genetic Algorithms (GA), Adaptive Simulated Annealing (ASA) and Multi Co-
ordinate Search (MCS) were also applied to evaluate nonlinear clearance criteria
for the same aircraft model. In [5, 6] global optimisation methods such as GA and
ASA were applied to the ADMIRE model with a different flight clearance crite-
rion. In [25], a number of optimisation schemes were employed and compared,
evaluating a nonlinear clearance criterion for ADMIRE aircraft.
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4 Differential Evolution

The global optimisation method considered in this study is differential evolution
, a relatively new global optimisation method, introduced by Storn and Price
in [11]. This method belongs to the same class of evolutionary global optimisation
techniques as Genetic Algorithm (GA) [15], but unlike GA it does not require
either a selection operator or a particular encoding scheme. Essentially a sub-
type of GA, despite its apparent simplicity, the quality of the solutions computed
using this approach has been claimed to be often better than that achieved using
other evolutionary algorithms, both in terms of accuracy and computational
overhead [11].

The DE method has recently been applied to several problems in different
fields of engineering design, with promising results. In [17], for example, it was
applied to find the optimal solution for a mechanical design example formulated
as a mixed integer discrete continuous optimisation problem. In [18], DE was
successfully applied in system design application, in particular handling the non-
linear design specification constraints. In [10], the DE method was applied and
compared with other local and global optimisation schemes in an aerodynamic
shape optimisation problem for an aerofoil. The application of differential evolu-
tion and its hybridised versions with neural networks and local search methods
for aerodynamic shape optimisation has been reported in [27]. In [25], a nonlin-
ear flight clearance criterion for a modern high performance aircraft was posed
and solved using both standard and hybrid GA and DE optimisation methods.
In that study, it was demonstrated that a hybrid version of the DE algorithm
significantly outperforms the corresponding GA method.

The DE method consists of the following four main steps 1) Random ini-
tialisation, 2) Mutation 3) Crossover 4) Evaluation and Selection. There are
different schemes of DE available based on the operators. The one used in the
present studies is referred as “DE/rand/1/bin”. The steps of this scheme will
be described in detail in the sequel.

4.1 Random Initialisation

Like other evolutionary algorithms, DE works with a fixed number, Np, of po-
tential solution vectors, initially generated at random according to

xi = xL + ρi(xU − xL), i = 1, 2, ..., Np (4)

where xU and xL are the upper and lower bounds of the parameters of the
solution vector and ρi is a vector of random numbers in the range [0 1]. Np is
fixed at 30 in the current study. Each xi consists of elements (x1i, x2i, ..., xdi),
which are the uncertain parameters defined in Table 1. The dimension d of the
optimisation problem considered is, therefore, 8. The fitness of each of these Np

solution vectors is evaluated using the cost function given in Eq. 1.
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Fig. 2. DE mutation strategy

4.2 Mutation

The scaled difference vector FmDij between two random solution vectors xi and
xj is added to another randomly selected solution vector xk to generate the new
mutated solution vector x̄G+1

n , i.e.,

x̄G+1
n = xG

k + FmDij , Dij = xG
i − xG

j (5)

where Fm is the mutation scale factor, a real valued number in the range [0,
1], (fixed at 0.8 in this study), and G represents the iteration number. Fig. 2
shows a simple two dimensional example of the mutation operation used in the
DE scheme. The difference vector Dij determines the search direction and Fm

determines the step size in that direction from the point xG
k .

4.3 Crossover

During crossover, each element of the nth solution vector of the new iteration,
xG+1, is reproduced from the mutant vector x̄G+1

n and a chosen parent individual
xG

n as given in Eq. 6,

xG+1
ji =

{
xG

ji, ifageneratedrandomnumber > ρc

x̄G+1
ji , otherwise;

(6)

where j = 1, 2, . . . , d and i = 1, 2, . . . , Np. Note that x̄G+1
n has elements

(x̄G+1
1n , x̄G+1

2n , ..., x̄G+1
dn ) and xG

n has elements (xG
1n, xG

2n, ..., xG
dn). ρc ∈ [0, 1] is the

crossover factor, which is fixed at 0.8 in the present study.
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4.4 Evaluation and Selection

After crossover, the fitness of the new candidate xG+1
n is evaluated and if the

new candidate xG+1
n has a better fitness than the parent candidate xG

n , then
xG+1

n is selected to become part of the next iteration. Otherwise xG
n is selected

and subsequently identified as xG+1
n .

4.5 Termination Criterion

Many different termination criteria can be employed. In the present study, an
adaptive termination criterion is used that is dependent on improvement in the
solution accuracy over a finite number of successive generations along with an
upper limit on the computational budget. The algorithm terminates the search if
there is no improvement on the best solution achieved (above a defined accuracy
level, here chosen as 10−6) for a defined successive number of generations. This
number of generations is fixed at 20. Also, if the optimisation exceeds the defined
computational budget, fixed at 2250, the algorithm is terminated. Defining the
computational budget as a termination criterion is standard practice in aerospace
industry applications.

5 Hybrid Optimisation

Global optimisation methods based on evolutionary principles are generally ac-
cepted as having a high probability of converging to the global or near global
solution, if allowed to run for a long enough time with sufficient initial candi-
dates and reasonably appropriate probabilities for the evolutionary optimisation
parameters. As shown by the preceding results, however, the rate of convergence
can be very slow, and moreover, there is still no guarantee of convergence to
the true global solution. Local optimisation methods, on the other hand, can
very rapidly find optimal solutions, but the quality of those solutions entirely
depends on the starting point chosen for the optimisation routine. In order to
try to extract the best from both schemes, several researchers have proposed
combining the two approaches [16], [19], [20]. In such hybrid schemes there is
the possibility of incorporating domain knowledge, which gives them an advan-
tage over a pure blind search based on evolutionary principles. In [25], a Hybrid
GA (HGA) scheme was developed using a switching strategy originally proposed
in [20], and applied to a nonlinear flight clearance problem. The performance of
the HGA scheme was compared to that of a novel Hybrid DE (HDE) scheme.
For a recent comprehensive overview of other approaches to hybrid optimisation
(also known as memetic algorithms), the reader is referred to [21].

5.1 Hybrid DE

In [22], the conventional DE methodology was augmented by combining it with
a downhill simplex local optimisation scheme. This hybrid scheme was applied to
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an aerofoil shape optimisation problem and was found to significantly improve
the convergence properties of the method. At each iteration, local optimisation
was applied to the best individual in a current random set. The hybrid DE
scheme employed in this study applies gradient-based local optimisation, again
using “fmincon”, to a solution vector randomly selected from the current set
- for our problem, this was seen to give better results than using the best so-
lution vector, as proposed in [22]. Use of the local optimisation method based
on gradient estimation, specifically the function “fmincon” provided in [7], is
considered in present study to hybridise the DE algorithm. Local optimisation
methods can, of course, get locked into a local optimum in the case of nonconvex
and/or multimodal surfaces, however, they are also much more computationally
efficient than global optimisation approaches. Whether a local method converges
to a local or global optimum completely depends on the initial starting point in
the search space, and the convexity of the search space. In the present context,
the aim is to obtain local improvements in the search space and thereby accel-
erate the search to global solution. Crucially however, in typical flight clearance
problems very little information is available as to where to start the optimisa-
tion - the number of uncertain parameters and strong nonlinearity of the system
mean that even advanced knowledge of flight mechanics provides little insight
into how to choose initial values for the uncertain parameters. In such case, a
hybrid version of DE will be very beneficial in finding the true global solution,
through ensuring an adequate coverage of search space. The function “fmincon”
finds the constrained minimum of a scalar function of several variables starting

Table 2. Hybrid Differential Evolution Algorithm - Pseudo-Code:

1. Initialize random candidate solutions in search space
2. Evaluate fitness of each solution and choose best fitness
3. Apply DE for a fixed number of initial iterations(say 10); Update best fitness value

in each iteration
4. While termination criteria not satisfied

a) calculate the improvement in best fitness
i. If Improvement in best fitness
ii. Continue DE
iii. else
iv. Choose a random solution from current set, say X0

v. Apply local optimisation with X0 as initial point (termination occurs
when exceeding the defined maximum number of function evaluations)

vi. If Improvement in best fitness
vii. Replace X0 with the new solution
viii. else
ix. Keep X0 in the set
x. end
xi. end

5. end of While
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at an initial estimate. In the present analysis, constraints are due only to the
upper and lower bounds of the uncertainty in the variables. A medium scale
optimisation scheme is chosen where the gradients are estimated by the func-
tion itself using the finite difference method. The function uses the sequential
quadratic programming (SQP) method - for further details of the “fmincon”
optimisation strategy, the reader is referred to [7]. When the local scheme is
chosen, the optimisation starts from the given initial condition and continues
until it either converges or reaches a defined maximum number of cost function
evaluations. The algorithm is simple, and tries to search for the global optimum
in a “greedy” way, demanding improvement in the achieved optimum value in
every iteration. A pseudo-code for the hybrid DE algorithm is given in Table 2.

6 Worst-Case Analysis Results

The optimisation-based worst-case analysis procedure is implemented in the
Matlab 2006A and Simulink 6.1 environments. The various uncertain param-
eters listed in Table 1 are considered as the optimisation parameters and these
variables are normalised by multiplication with an appropriate scaling factor.
Prior to simulation, the respective entries of the uncertain variables in the XML
database are accessed and updated with the new set of values provided by the
optimisation algorithm. The cost function as given in Eqn.(1) is evaluated at
the end of every simulation. The optimisation algorithm iterates, identifies the

1580 1600 1620 1640 1660 1680
20

21

22

23

24

25

26

27

28

29

30

α 
(d

eg
)

Time(sec)

 

 
Nominal
Worst−case (DE)
Reference

Fig. 3. Re-entry Angle of Attack trajectory



Worst Case Analysis of Control Law for Re-entry Vehicles 329

1580 1600 1620 1640 1660 1680
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
β 

(d
eg

)

Time(sec)

 

 

Nominal
Worst−case (DE)
Reference

Fig. 4. Re-entry Angle of Sideslip trajectory

potential solutions and eventually converges to the global solution. However, to
control the computational complexity we defined an adaptive termination cri-
terion for the worst case analysis problem. In addition, an upper bound on the
computational budget is also provided, fixed at 2250.

For the problem considered here, the DE algorithm took a total number of
2250 simulations, which is the computational budget termination criterion. The
normalised worst-case obtained is [Δmass, ΔIxx,ΔIyy, ΔIzz , ΔIxz, Δxcog ,Δycog ,
Δzcog ] = [−0.9995, 0.9897, 0.9937, 0.3428, −0.9914, −0.9986, −0.1967, 0.9949].

Figure 3 shows the corresponding reference trajectory, worst-case and nominal
angle-of-attack responses for the RLV model. Figure 4 shows the corresponding
nominal and worst-case deviations from the desired zero value of β(t). Interest-
ingly, although the present cost function depends only on the value of α(t), the
significant amount of cross-coupling between longitudinal and lateral dynamics
at high AoA results in the worst-case β trajectory also being significantly differ-
ent from the nominal response. To explore this issue further, a multi objective
clearance criteria can be considered in this same framework, to identify the set
of worst-case uncertain parameters for all of the controlled variables that define
the reference trajectory.

Figure 5 shows the convergence of the DE algorithm. The x-axis indicates
the function evaluations and the y-axis represents the maximum best cost value
achieved over iterations. It can be seen from this figure that the DE algorithm
shows good performance in the initial runs but subsequently the convergence rate
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becomes significantly slower. A second experiment was conducted with double
the allowable computational budget criterion, with the adaptive termination cri-
terion part left untouched. In this case, the maximum allowable computational
budget was 5000. The repeated optimisation took a total number of 3250 simu-
lations and the normalised worst-case obtained was [Δmass, ΔIxx, ΔIyy, ΔIzz ,
ΔIxz, Δxcog , Δycog , Δzcog ]=[−1, 1, 1, 1, −1, −1, 1, 1], producing a worst-case
cost value 3.178. The difference in the worst-case solution obtained from the two
experiments can be explained with the help of a sensitivity analysis about the
solution obtained from the optimisation. Figure 6 shows the results of a sensitiv-
ity analysis conducted about the global solution, by varying one parameter at a
time and fixing all the other parameter values to their worst-case values. It can
be noticed that the parameter Δxcog has the greatest influence on the dynamics
of the model, while the dynamics are relatively insensitive to the parameters
ΔIxx and ΔIzz . The presence of such insensitive parameters can make the op-
timisation convergence very slow. A possible way to avoid such a situation is
by providing a termination condition of variation for insensitivity in parameter
space.

The fact that the worst-case value of the uncertainties describing mass, centre-
of-gravity and inertia variations are all on their maximum or minimum bounds
is not surprising, and agrees well both with flight mechanics intuition and with
the results of previous studies. The situation will becomes much more complex
however when stability derivatives, sensor errors, etc are included, since in this
case the corresponding worst-cases will not necessarily lie on the uncertain pa-
rameter bounds.

When compared with the standard DE algorithm, the HDE algorithm took
a total number of 1775 simulations to converge. The normalised worst-case
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obtained is [Δmass, ΔIxx, ΔIyy, ΔIzz , ΔIxz, Δxcog , Δycog , Δzcog ]=[−1, 1, 1, 1, −
1, − 1, 1, 1]. Thus, to obtain a solution of the same quality, HDE has taken
45% less simulations than those required for the standard DE algorithm. This
clearly demonstrates the significant computational savings which may be made
by hybridising global optimisation algorithms with local gradient-based meth-
ods. Such savings are particularly crucial in the context of flight clerance, where
computational cost is one of the key drivers for industrial applications.

7 Conclusions

In this chapter, differential evolution and hybrid differential evolution algorithms
were applied to perform a worst-case analysis of a nonlinear-dynamic inversion
(NDI) flight control law for a realistic simulation model of a re-entry vehicle
over a particular phase of the trajectory for re-entry flight. A clearance crite-
rion was defined based on the maximisation of the infinity norm of the error
vector between the reference trajectory in Angle-of-Attack and the actual tra-
jectory obtained by simulation of the model. The results of the study suggest
that the proposed optimisation-based approach has the potential to improve
significantly both the reliability and efficiency of the flight clearance process for
future Reusable Launch Vehicles.



332 P.P. Menon et al.

References

1. Fielding, C., Varga, A., Bennani, S., Selier, M. (eds.): Advanced techniques for
clearance of flight control laws. Springer, Heidelberg (2002)

2. Menon, P.P., Kim, J., Bates, D.G., Postlethwaite, I.: Improved Clearance of Flight
Control Laws Using Hybrid Optimisation. In: Proc. of the IEEE Conference on
Cybernetics and Intelligent Systems, Singapore (December 2004)

3. Forssell, L.S., Hovmark, G., Hyden, Å., Johansson, F.: The aero-data model
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