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Weak Convergence of Measures

8.1 Definition of Weak Convergence

In this chapter we consider the fundamental concept of weak convergence of
probability measures. This will lay the groundwork for the precise formulation
of the Central Limit Theorem and other Limit Theorems of probability theory
(see Chap. 10).

Let (X, d) be a metric space, B(X) the σ-algebra of its Borel sets and Pn

a sequence of probability measures on (X,B(X)). Recall that Cb(X) denotes
the space of bounded continuous functions on X .

Definition 8.1. The sequence Pn converges weakly to the probability measure
P if, for each f ∈ Cb(X),

lim
n→∞

∫
X

f(x)dPn(x) =

∫
X

f(x)dP(x).

The weak convergence is sometimes denoted as Pn ⇒ P.

Definition 8.2. A sequence of real-valued random variables ξn defined on
probability spaces (Ωn,Fn,Pn) is said to converge in distribution if the in-
duced measures Pn, Pn(A) = Pn(ξn ∈ A), converge weakly to a probability
measure P.

In Definition 8.1 we could omit the requirement that Pn and P are prob-
ability measures. We then obtain the definition of the weak convergence for
arbitrary finite measures on B(X). The following lemma provides a useful
criterion for the weak convergence of measures.

Lemma 8.3. If a sequence of measures Pn converges weakly to a measure P,
then

lim sup
n→∞

Pn(K) ≤ P(K) (8.1)

for any closed set K. Conversely, if (8.1) holds for any closed set K, and
Pn(X) = P(X) for all n, then Pn converge weakly to P.
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110 8 Weak Convergence of Measures

Proof. First assume that Pn converges to P weakly. Let ε > 0 and select
δ > 0 such that P(Kδ) < P(K) + ε, where Kδ is the δ-neighborhood of the
set K. Consider a continuous function fδ such that 0 ≤ fδ(x) ≤ 1 for x ∈ X ,
fδ(x) = 1 for x ∈ K, and fδ(x) = 0 for x ∈ X\Kδ. For example, one can take
fδ(x) = max(1− dist(x,K)/δ, 0).

Note that Pn(K) =
∫
K fδdPn ≤ ∫

X fδdPn and
∫
X fδdP =

∫
Kδ

fδdP ≤
P(Kδ) < P(K) + ε. Therefore,

lim
n→∞ supPn(K) ≤ lim

n→∞

∫
X

fδdPn =

∫
X

fδdP < P(K) + ε,

which implies the result since ε was arbitrary.
Let us now assume that Pn(X) = P (X) for all n and lim supn→∞ Pn(K) ≤

P(K) for any closed set K. Let f ∈ Cb(X). We can find a > 0 and b such that
0 < af + b < 1. Since Pn(X) = P (X) for all n, if the relation

lim
n→∞

∫
X

g(x)dPn(x) =

∫
X

g(x)dP(x)

is valid for g = af + b, then it is also valid for f instead of g. Therefore,
without loss of generality, we can assume that 0 < f(x) < 1 for all x. Define
the closed sets Ki = {x : f(x) ≥ i/k}, where 0 ≤ i ≤ k. Then

1

k

k∑
i=1

Pn(Ki) ≤
∫
X

fdPn ≤ Pn(X)

k
+

1

k

k∑
i=1

Pn(Ki),

1

k

k∑
i=1

P(Ki) ≤
∫
X

fdP ≤ P(X)

k
+

1

k

k∑
i=1

P(Ki).

Since lim supn→∞ Pn(Ki) ≤ P(K) for each i, and Pn(X) = P (X), we obtain

lim sup
n→∞

∫
X

fdPn ≤ P(X)

k
+

∫
X

fdP.

Taking the limit as k → ∞, we obtain

lim sup
n→∞

∫
X

fdPn ≤
∫
X

fdP.

By considering the function −f instead of f we can obtain

lim inf
n→∞

∫
X

fdPn ≥
∫
X

fdP.

This proves the weak convergence of measures. �
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The following lemma will prove useful when proving the Prokhorov The-
orem below.

Lemma 8.4. Let X be a metric space and B(X) the σ-algebra of its Borel sets.
Any finite measure P on (X,B(X)) is regular, that is for any A ∈ B(X) and
any ε > 0 there are an open set U and a closed set K such that K ⊆ A ⊆ U
and P(U)− P(K) < ε.

Proof. If A is a closed set, we can take K = A and consider a sequence of
open sets Un = {x : dist(x,A) < 1/n}. Since ⋂n Un = A, there is a sufficiently
large n such that P(Un) − P(A) < ε. This shows that the statement is true
for all closed sets.

Let K be the collection of sets A such that for any ε there exist K and
U with the desired properties. Note that the collection of all closed sets is a
π-system. Clearly, A ∈ K implies that X\A ∈ K. Therefore, due to Lemma
4.13, it remains to prove that if A1, A2, . . . ∈ K and Ai

⋂
Aj = ∅ for i 
= j,

then A =
⋃

n An ∈ K.
Let ε > 0. Find n0 such that P(

⋃∞
n=n0

An) < ε/2. Find open sets Un and

closed sets Kn such that Kn ⊆ An ⊆ Un and P(Un) − P(Kn) < ε/2n+1 for
each n. Then U =

⋃
n Un and K =

⋃n0

n=1 Kn have the desired properties, that
is K ⊆ A ⊆ U and P(U)− P(K) < ε. �

8.2 Weak Convergence and Distribution Functions

Recall the one-to-one correspondence between the probability measures on R

and the distribution functions. Let Fn and F be the distribution functions
corresponding to the measures Pn and P respectively. Note that x is a con-
tinuity point of F if and only if P(x) = 0. We now express the condition of
weak convergence in terms of the distribution functions.

Theorem 8.5. The sequence of probability measures Pn converges weakly to
the probability measure P if and only if limn→∞ Fn(x) = F (x) for every con-
tinuity point x of the function F .

Proof. Let Pn ⇒ P and let x be a continuity point of F . We consider the
functions f , f+

δ and f−
δ , which are defined as follows:

f(y) =

{
1, y ≤ x,
0, y > x,

f+
δ (y) =

⎧⎨
⎩

1, y ≤ x,
1− (y − x)/δ, x < y ≤ x+ δ,
0, y > x+ δ,
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f−
δ (y) =

⎧⎨
⎩

1, y ≤ x− δ,
1− (y − x+ δ)/δ, x− δ < y ≤ x,
0, y > x.

The functions f+
δ and f−

δ are continuous and f−
δ ≤ f ≤ f+

δ . Using the fact
that x is a continuity point of F we have, for any ε > 0 and n ≥ n0(ε),

Fn(x) =

∫
R

f(y)dFn(y) ≤
∫
R

f+
δ (y)dFn(y)

≤
∫
R

f+
δ (y)dF (y) +

ε

2
≤ F (x+ δ) +

ε

2
≤ F (x) + ε,

if δ is such that |F (x± δ)−F (x)| ≤ ε
2 . On the other hand, for such n we also

have

Fn(x) =

∫
R

f(y)dFn(y) ≥
∫
R

f−
δ (y)dFn(y)

≥
∫
R

f−
δ (y)dF (y)− ε

2
≥ F (x− δ)− ε

2
≥ F (x) − ε.

In other words, |Fn(x)− F (x)| ≤ ε for all sufficiently large n.
Now we prove the converse. Let Fn(x) → F (x) at every continuity point

of F . Let f be a bounded continuous function. Let ε be an arbitrary positive
constant. We need to prove that

|
∫
R

f(x)dFn(x)−
∫
R

f(x)dF (x)| ≤ ε (8.2)

for sufficiently large n.
Let M = sup |f(x)|. Since the function F is non-decreasing, it has at most

a countable number of points of discontinuity. Select two points of continuity
A and B for which F (A) ≤ ε

10M and F (B) ≥ 1− ε
10M . Therefore Fn(A) ≤ ε

5M
and Fn(B) ≥ 1− ε

5M for all sufficiently large n.
Since f is continuous, it is uniformly continuous on [A,B]. Therefore

we can partition the half-open interval (A,B] into finitely many half-open
subintervals I1 = (x0, x1], I2 = (x1, x2], . . . , In = (xn−1, xn] such that
|f(y) − f(xi)| ≤ ε

10 for y ∈ Ii. Moreover, the endpoints xi can be selected
to be continuity points of F (x). Let us define a new function fε on (A,B]
which is equal to f(xi) on each of the intervals Ii.

In order to prove (8.2), we write

|
∫
R

f(x)dFn(x)−
∫
R

f(x)dF (x)|

≤
∫
(−∞,A]

|f(x)|dFn(x) +

∫
(−∞,A]

|f(x)|dF (x)

+

∫
(B,∞)

|f(x)|dFn(x) +

∫
(B,∞)

|f(x)|dF (x)
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+|
∫
(A,B]

f(x)dFn(x) −
∫
(A,B]

f(x)dF (x)|.

The first term on the right-hand side is estimated from above for large enough
n as follows: ∫

(−∞,A]

|f(x)|dFn(x) ≤ MFn(A) ≤ ε

5

Similarly, the second, third and fourth terms are estimated from above by ε
10 ,

ε
5 and ε

10 respectively.
Since |fε − f | ≤ ε

10 on (A,B], the last term can be estimated as follows:

|
∫
(A,B]

f(x)dFn(x)−
∫
(A,B]

f(x)dF (x)|

≤ |
∫
(A,B]

fε(x)dFn(x) −
∫
(A,B]

fε(x)dF (x)| + ε

5
.

Note that

lim
n→∞ |

∫
Ii

fε(x)dFn(x) −
∫
Ii

fε(x)dF (x)|

= lim
n→∞(|f(xi)||Fn(xi)− Fn(xi−1)− F (xi) + F (xi−1)|) = 0,

since Fn(x) → F (x) at the endpoints of the interval Ii. Therefore,

lim
n→∞ |

∫
(A,B]

fε(x)dFn(x)−
∫
(A,B]

fε(x)dF (x)| = 0,

and thus

|
∫
(A,B]

fε(x)dFn(x)−
∫
(A,B]

fε(x)dF (x)| ≤ ε

5

for large enough n. �

8.3 Weak Compactness, Tightness, and the Prokhorov
Theorem

Let X be a metric space and Pα a family of probability measures on the Borel
σ-algebra B(X). The following two concepts, weak compactness (sometimes
also referred to as relative compactness) and tightness, are fundamental in
probability theory.

Definition 8.6. A family of probability measures {Pα} on (X,B(X)) is said
to be weakly compact if from any sequence Pn, n = 1, 2, . . ., of measures from
the family, one can extract a weakly convergent subsequence Pnk

, k = 1, 2, . . .,
that is Pnk

⇒ P for some probability measure P.
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Remark 8.7. Note that it is not required that P ∈ {Pα}.
Definition 8.8. A family of probability measures {Pα} on (X,B(X)) is said
to be tight if for any ε > 0 one can find a compact set Kε ⊆ X such that
P(Kε) ≥ 1− ε for each P ∈ {Pα}.

In the case when (X,B(X)) = (R,B(R)), we have the following theorem.

Theorem 8.9 (Helly Theorem). A family of probability measures {Pα} on
(R,B(R)) is tight if and only if it is weakly compact.

The Helly Theorem is a particular case of the following theorem, due to
Prokhorov.

Theorem 8.10 (Prokhorov Theorem). If a family of probability measures
{Pα} on a metric space X is tight, then it is weakly compact. On a separable
complete metric space the two notions are equivalent.

The proof of the Prokhorov Theorem will be preceded by two lemmas. The
first lemma is a general fact from functional analysis, which is a consequence
of the Alaoglu Theorem and will not be proved here.

Lemma 8.11. Let X be a compact metric space. Then from any sequence of
measures μn on (X,B(X)), such that μn(X) ≤ C < ∞ for all n, one can
extract a weakly convergent subsequence.

We shall denote an open ball of radius r centered at a point a ∈ X by B(a, r).
The next lemma provides a criterion of tightness for families of probability
measures.

Lemma 8.12. A family {Pα} of probability measures on a separable complete
metric space X is tight if and only if for any ε > 0 and r > 0 there is a finite
family of balls B(ai, r), i = 1, . . . , n, such that

Pα(

n⋃
i=1

B(ai, r)) ≥ 1− ε

for all α.

Proof. Let {Pα} be tight, ε > 0, and r > 0. Select a compact set K such that
P(K) ≥ 1−ε for all P ∈ {Pα}. Since any compact set is totally bounded, there
is a finite family of balls B(ai, r), i = 1, . . . , n, which cover K. Consequently,
P(

⋃n
i=1 B(ai, r)) ≥ 1− ε for all P ∈ {Pα}.
Let us prove the converse statement. Fix ε > 0. Then for any integer k > 0

there is a family of balls B(k)(ai,
1
k ), i = 1, . . . , nk, such that P(Ak) ≥ 1−2−kε

for all P ∈ {Pα}, where Ak =
⋃nk

i=1 B
(k)(ai,

1
k ). The set A =

⋂∞
k=1 Ak satisfies

P(A) ≥ 1 − ε for all P ∈ {Pα} and is totally bounded. Therefore, its closure
is compact since X is a complete metric space. �
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Proof of the Prokhorov Theorem. Assume that a family {Pα} is weakly com-
pact but not tight. By Lemma 8.12, there exist ε > 0 and r > 0 such that for
any family B1, . . . , Bn of balls of radius r, we have P(

⋃
1≤i≤n Bi) ≤ 1− ε for

some P ∈ {Pα}. Since X is separable, it can be represented as a countable
union of balls of radius r, that is X =

⋃∞
i=1 Bi. Let An =

⋃
1≤i≤n Bi. Then we

can select Pn ∈ {Pα} such that Pn(An) ≤ 1 − ε. Assume that a subsequence
Pnk

converges to a limit P. Since Am is open, P(Am) ≤ lim infk→∞ Pnk
(Am)

for every fixed m due to Lemma 8.3. Since Am ⊆ Ank
for large k, we have

P(Am) ≤ lim infk→∞ Pnk
(Ank

) ≤ 1 − ε, which contradicts
⋃∞

m=1 Am = X .
Thus, weak compactness implies tightness.

Now assume that {Pα} is tight. Consider a sequence of compact sets Km

such that

P(Km) ≥ 1− 1

m
for all P ∈ {Pα}, m = 1, 2, . . .

Consider a sequence of measures Pn ∈ {Pα}. By Lemma 8.11, using the
diagonalization procedure, we can construct a subsequence Pnk

such that,

for each m, the restrictions of Pnk
to K̃m =

⋃m
i=1 Ki converge weakly to a

measure μm. Note that μm(K̃m) ≥ 1− 1
m since Pnk

(K̃m) ≥ 1− 1
m for all k.

Let us show that for any Borel set A the sequence μm(A
⋂
K̃m) is non-

decreasing. Thus, we need to show that μm1(A
⋂
K̃m1) ≤ μm2(A

⋂
K̃m2) if

m1 < m2. By consideringA
⋂
K̃m1 instead of A we can assume that A ⊆ K̃m1 .

Fix an arbitrary ε > 0. Due to the regularity of the measures μm1 and μm2

(see Lemma 8.4), there exist sets U
i
,K

i ⊆ K̃mi , i = 1, 2, such that U
i
(K

i
)

are open (closed) in the topology of K̃mi , K
i ⊆ A ⊆ U

i
and

μmi(U
i
)− ε < μmi(A) < μmi(K

i
) + ε, i = 1, 2.

Note that U
1
= U ∩ K̃m1 for some set U that is open in the topology of K̃m2 .

Let U = U ∩ U
2
and K = K

1 ∪K
2
. Thus U ⊆ K̃m2 is open in the topology

of K̃m2 , K ⊆ K̃m1 is closed in the topology of K̃m1 , K ⊆ A ⊆ U and

μm1(U
⋂

K̃m1)− ε < μm1(A) < μm1(K) + ε, (8.3)

μm2(U)− ε < μm2(A) < μm2(K) + ε. (8.4)

Let f be a continuous function on K̃m2 such that 0 ≤ f ≤ 1, f(x) = 1 if
x ∈ K, and f(x) = 0 if x /∈ U . By (8.3) and (8.4),

|μm1(A)−
∫

˜Km1

fdμm1 | < ε,

|μm2(A)−
∫

˜Km2

fdμm2 | < ε.
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Noting that
∫
˜Kmi

fdμmi = limk→∞
∫
˜Kmi

fdPnk
, i = 1, 2, and

∫
˜Km1

fdPnk
≤∫

˜Km2
fdPnk

, we conclude that

μm1(A) ≤ μm2(A) + 2ε.

Since ε was arbitrary, we obtain the desired monotonicity.
Define

P(A) = lim
m→∞μm(A

⋂
K̃m).

Note that P(X) = limm→∞ μm(K̃m) = 1. We must show that P is σ-additive
in order to conclude that it is a probability measure. If A =

⋃∞
i=1 Ai is a union

of non-intersecting sets, then

P(A) ≥ lim
m→∞μm(

n⋃
i=1

Ai

⋂
K̃m) =

n∑
i=1

P(Ai)

for each n, and therefore P(A) ≥ ∑∞
i=1 P(Ai). If ε > 0 is fixed, then for

sufficiently large m

P(A) ≤ μm(A
⋂

K̃m) + ε =

∞∑
i=1

μm(Ai

⋂
K̃m) + ε ≤

∞∑
i=1

P(Ai) + ε.

Since ε was arbitrary, P(A) ≤ ∑∞
i=1 P(Ai), and thus P is a probability mea-

sure.
It remains to show that the measures Pnk

converge to the measure P
weakly. Let A be a closed set and ε > 0. Then, by the construction of the sets
K̃m, there is a sufficiently large m such that

lim sup
k→∞

Pnk
(A) ≤ lim sup

k→∞
Pnk

(A
⋂

K̃m) + ε ≤ μm(A) + ε ≤ P(A) + ε.

By Lemma 8.3, this implies the weak convergence of measures. Therefore the
family of measures {Pα} is weakly compact. �

8.4 Problems

1. Let (X, d) be a separable complete metric space. For x ∈ X , let δx be
the measure on (X,B(X)) which is concentrated at x, that is δ(A) = 1 if
x ∈ A, δ(A) = 0 if x /∈ A, A ∈ B(X). Prove that δxn converge weakly if
and only if there is x ∈ X such that xn → x as n → ∞.

2. Prove that if Pn and P are probability measures, then Pn converges
weakly to P if and only if

lim inf
n→∞ Pn(U) ≥ P(U)

for any open set U .
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3. Prove that if Pn and P are probability measures, then Pn converges to P
weakly if and only if

lim
n→∞Pn(A) = P(A)

for all sets A such that P(∂A) = 0, where ∂A is the boundary of the
set A.

4. Let X be a metric space and B(X) the σ-algebra of its Borel sets. Let μ1

and μ2 be two probability measures such that
∫
X
fdμ1 =

∫
X
fdμ2 for all

f ∈ Cb(X), f ≥ 0. Prove that μ1 = μ2.
5. Give an example of a family of probability measures Pn on (R,B(R))

such that Pn ⇒ P (weakly), Pn,P are absolutely continuous with respect
to the Lebesgue measure, yet there exists a Borel set A such that Pn(A)
does not converge to P(A).

6. Assume that a sequence of random variables ξn converges to a random
variable ξ in distribution, and a numeric sequence an converges to 1.
Prove that anξn converges to ξ in distribution.

7. Suppose that ξn, ηn, n ≥ 1, and ξ are random variables defined on the
same probability space. Prove that if ξn ⇒ ξ and ηn ⇒ c, where c is a
constant, then ξnηn ⇒ cξ.

8. Prove that if ξn → ξ in probability, then Pξn ⇒ Pξ, that is the conver-
gence of the random variables in probability implies weak convergence of
the corresponding probability measures.

9. Let Pn, P be probability measures on (R,B(R)). Suppose that ∫
R
fdPn →∫

R
fdP as n → ∞ for every infinitely differentiable function f with com-

pact support. Prove that Pn ⇒ P.
10. Prove that if ξn and ξ are defined on the same probability space, ξ is

identically equal to a constant, and ξn converge to ξ in distribution, then
ξn converge to ξ in probability.

11. Consider a Markov transition function P on a compact state space X .
Prove that the corresponding Markov chain has at least one stationary
measure. (Hint: Take an arbitrary initial measure μ and define μn =
(P ∗)nμ, n ≥ 0. Prove that the sequence of measures νn = (μ0 + . . . +
μn−1)/n is weakly compact, and the limit of a subsequence is a stationary
measure.)
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