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Laws of Large Numbers

7.1 Definitions, the Borel-Cantelli Lemmas,
and the Kolmogorov Inequality

We again turn our discussion to sequences of independent random variables.
Let ξ1, ξ2, . . . be a sequence of random variables with finite expectations mn =
Eξn, n = 1, 2, . . .. Let ζn = (ξ1 + . . .+ ξn)/n and ζn = (m1 + . . .+mn)/n.

Definition 7.1. The sequence of random variables ξn satisfies the Law of
Large Numbers if ζn−ζn converges to zero in probability, that is P(|ζn−ζn|>ε)
→ 0 as n → ∞ for any ε > 0.

It satisfies the Strong Law of Large Numbers if ζn − ζn converges to zero
almost surely, that is limn→∞(ζn − ζn) = 0 for almost all ω.

If the random variables ξn are independent, and if Var(ξi) ≤ V < ∞, then
by the Chebyshev Inequality, the Law of Large Numbers holds:

P(|ζn − ζn| > ε) = P(|ξ1 + . . .+ ξn − (m1 + . . .+mn)| ≥ εn)

≤ Var(ξ1 + . . .+ ξn)

ε2n2
≤ V

ε2n
,

which tends to zero as n → ∞. There is a stronger statement due to Khinchin:

Theorem 7.2 (Khinchin). A sequence ξn of independent identically dis-
tributed random variables with finite mathematical expectation satisfies the
Law of Large Numbers.

Historically, the Khinchin Theorem was one of the first theorems related
to the Law of Large Numbers. We shall not prove it now, but obtain it later
as a consequence of the Birkhoff Ergodic Theorem, which will be discussed in
Chap. 16.

We shall need the following three general statements.
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102 7 Laws of Large Numbers

Lemma 7.3 (First Borel-Cantelli Lemma). Let (Ω,F ,P) be a proba-
bility space and {An} an infinite sequence of events, An ⊆ Ω, such that∑∞

n=1 P(An) < ∞. Define

A = {ω : there is an infinite sequence ni(ω) such that ω ∈ Ani , i = 1, 2, . . .}.

Then P(A) = 0.

Proof. Clearly,

A =
∞⋂

k=1

∞⋃

n=k

An.

Then P(A) ≤ P(
⋃∞

n=k An) ≤
∑∞

n=k P(An) → 0 as k → ∞. �

Lemma 7.4 (Second Borel-Cantelli Lemma). Let An be an infinite
sequence of independent events with

∑∞
n=1 P(An) = ∞, and let

A = {ω : there is an infinite sequence ni(ω) such that ω ∈ Ani , i = 1, 2, . . .}.

Then P(A) = 1.

Proof. We have Ω\A =
⋃∞

k=1

⋂∞
n=k(Ω\An). Then

P(Ω\A) ≤
∞∑

k=1

P(
∞⋂

n=k

(Ω\An))

for any n. By the independence of An we have the independence of Ω\An,
and therefore

P(

∞⋂

n=k

(Ω\An)) =

∞∏

n=k

(1− P(An)).

The fact that
∑∞

n=k P(An) = ∞ for any k implies that
∏∞

n=k(1−P(An)) = 0
(see Problem 1). �

Theorem 7.5 (Kolmogorov Inequality). Let ξ1, ξ2, . . . be a sequence of
independent random variables which have finite mathematical expectations and
variances, mi = Eξi, Vi = Var(ξi). Then

P( max
1≤k≤n

|(ξ1 + . . .+ ξk)− (m1 + . . .+mk)| ≥ t) ≤ 1

t2

n∑

i=1

Vi.

Proof. We consider the events Ck = {ω : |(ξ1 + . . .+ ξi)− (m1 + . . .+mi)|<t
for 1 ≤ i < k, |(ξ1 + . . . + ξk) − (m1 + . . . + mk)| ≥ t}, C =

⋃n
k=1 Ck. It is

clear that C is the event whose probability is estimated in the Kolmogorov
Inequality, and that Ck are pair-wise disjoint. Thus
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n∑

i=1

Vi = Var(ξ1 + . . .+ ξn) =

∫

Ω

((ξ1 + . . .+ ξn)− (m1 + . . .+mn))
2dP ≥

n∑

k=1

∫

Ck

((ξ1 + . . .+ ξn)− (m1 + . . .+mn))
2dP =

n∑

k=1

[

∫

Ck

((ξ1 + . . .+ ξk)− (m1 + . . .+mk))
2dP+

2

∫

Ck

((ξ1+. . .+ξk)−(m1+. . .+mk))((ξk+1+. . .+ξn)−(mk+1+. . .+mn))dP+

∫

Ck

((ξk+1 + . . .+ ξn)− (mk+1 + . . .+mn))
2dP].

The last integral on the right-hand side is non-negative. Most importantly, the
middle integral is equal to zero. Indeed, by Lemma 4.15, the random variables

η1 = ((ξ1 + . . .+ ξk)− (m1 + . . .+mk))χCk

and
η2 = (ξk+1 + . . .+ ξn)− (mk+1 + . . .+mn)

are independent. By Theorem 4.8, the expectation of their product is equal
to the product of the expectations. Thus, the middle integral is equal to

E(η1η2) = Eη1Eη2 = 0.

Therefore,

n∑

i=1

Vi ≥
n∑

k=1

∫

Ck

((ξ1 + . . .+ ξk)− (m1 + . . .+mk))
2dP ≥

t2
n∑

k=1

P(Ck) = t2P(C).

That is P(C) ≤ 1
t2

∑n
i=1 Vi. �

7.2 Kolmogorov Theorems on the Strong Law of
Large Numbers

Theorem 7.6 (First Kolmogorov Theorem). A sequence of independent
random variables ξi, such that

∑∞
i=1 Var(ξi)/i

2 < ∞, satisfies the Strong Law
of Large Numbers.
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Proof. Without loss of generality we may assume that mi = Eξi = 0 for all i.
Otherwise we could define a new sequence of random variables ξ′i = ξi −mi.
We need to show that ζn = (ξ1 + . . .+ ξn)/n → 0 almost surely. Let ε > 0,
and consider the event

B(ε) = {ω : there is N = N(ω) such that for all n ≥ N(ω) we have |ζn| < ε}.

Clearly

B(ε) =
∞⋃

N=1

∞⋂

n=N

{ω : |ζn| < ε}.

Let
Bk(ε) = {ω : max

2k−1≤n<2k
|ζn| ≥ ε}.

By the Kolmogorov Inequality,

P(Bk(ε)) = P( max
2k−1≤n<2k

1

n
|

n∑

i=1

ξi| ≥ ε|) ≤

P( max
2k−1≤n<2k

|
n∑

i=1

ξi| ≥ ε2k−1) ≤

P( max
1≤n<2k

|
n∑

i=1

ξi| ≥ ε2k−1) ≤ 1

ε222k−2

2k∑

i=1

Var(ξi).

Therefore,
∞∑

k=1

P(Bk(ε)) ≤
∞∑

k=1

1

ε222k−2

2k∑

i=1

Var(ξi) =

1

ε2

∞∑

i=1

Var(ξi)
∑

k≥[log2 i]

1

22k−2
≤ c

ε2

∞∑

i=1

Var(ξi)

i2
< ∞,

where c is some constant. By the First Borel-Cantelli Lemma, for almost every
ω there exists an integer k0 = k0(ω) such that max2k−1≤n≤2k |ζn| < ε for all
k ≥ k0. Therefore P(B(ε)) = 1 for any ε > 0. In particular P(B( 1

m )) = 1
and P(

⋂
mB( 1

m )) = 1. But if ω ∈ ⋂
m B( 1

m ), then for any m there exists
N = N(ω,m) such that for all n ≥ N(ω,m) we have |ζn| < 1

m . In other
words, limn→∞ ζn = 0 for such ω. �

Theorem 7.7 (Second Kolmogorov Theorem). A sequence ξi of inde-
pendent identically distributed random variables with finite mathematical ex-
pectation m = Eξi satisfies the Strong Law of Large Numbers.
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This theorem follows from the Birkhoff Ergodic Theorem, which is discussed
in Chap. 16. For this reason we do not provide its proof now.

The Law of Large Numbers, as well as the Strong Law of Large Numbers, is
related to theorems known as Ergodic Theorems. These theorems give general
conditions under which the averages of random variables have a limit.

Both Laws of Large Numbers state that for a sequence of random vari-
ables ξn, the average 1

n

∑n
i=1 ξi is close to its mathematical expectation, and

therefore does not depend asymptotically on ω, i.e., it is not random. In other
words, deterministic regularity appears with high probability in long series of
random variables.

Let c be a constant and define

ξc(ω) =

{
ξ(ω) if |ξ(ω)| ≤ c,
0 if |ξ(ω)| > c.

Theorem 7.8 (Three Series Theorem). Let ξi be a sequence of indepen-
dent random variables. If for some c > 0 each of the three series

∞∑

i=1

Eξci ,

∞∑

i=1

Var(ξci ),

∞∑

i=1

P(|ξi| ≥ c)

converges, then the series
∑∞

i=1 ξi converges almost surely.
Conversely, if the series

∑∞
i=1 ξi converges almost surely, then each of the

three series above also converges for each c > 0.

Proof. We’ll only prove the direct statement, leaving the converse as an exer-
cise for the reader.

We first establish the almost sure convergence of the series
∑∞

i=1(ξ
c
i −Eξci ).

Let Sn =
∑n

i=1(ξ
c
i −Eξci ). Then, by the Kolmogorov Inequality, for any ε > 0

P(sup
i≥1

|Sn+i − Sn| ≥ ε) = lim
N→∞

P( max
1≤i≤N

|Sn+i − Sn| ≥ ε) ≤

lim
N→∞

∑n+N
i=n+1 E(ξ

c
i )

2

ε2
=

∑∞
i=n+1 E(ξ

c
i )

2

ε2
.

The right-hand side can be made arbitrarily small by choosing n large enough.
Therefore

lim
n→∞P(sup

i≥1
|Sn+i − Sn| ≥ ε) = 0.

Hence the sequence Sn is fundamental almost surely. Otherwise a set of pos-
itive measure would exist where supi≥1 |Sn+i − Sn| ≥ ε for some ε > 0. We
have therefore proved that the series

∑∞
i=1(ξ

c
i −Eξci ) converges almost surely.

By the hypothesis, the series
∑∞

i=1 Eξ
c
i converges almost surely. Therefore∑∞

i=1 ξ
c
i converges almost surely.

Since
∑∞

i=1 P(|ξi| ≥ c) < ∞ almost surely, the First Borel-Cantelli Lemma
implies that P({ω : |ξi| ≥ c for infinitely many i}) = 0. Therefore, ξci = ξi
for all but finitely many i with probability one. Thus the series

∑∞
i=1 ξi also

converges almost surely. �
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7.3 Problems

1. Let y1, y2, . . . be a sequence such that 0 ≤ yn ≤ 1 for all n, and
∑∞

n=1

yn = ∞. Prove that
∏∞

n=1(1− yn) = 0.
2. Let ξ1, ξ2, . . . be independent identically distributed random variables.

Prove that supn ξn = ∞ almost surely if and only if P(ξ1 > A) > 0 for
every A.

3. Let ξ1, ξ2, . . . be a sequence of random variables defined on the same
probability space. Prove that there exists a numeric sequence c1, c2, . . .
such that ξn/cn → 0 almost surely as n → ∞.

4. For each γ > 2, define the set Dγ ⊂ [0, 1] as follows: x ∈ Dγ if there is
Kγ(x) > 0 such that for each q ∈ N

min
p∈N

|x− p

q
| ≥ Kγ(x)

qγ
.

(The numbers x which satisfy this inequality for some γ > 2, Kγ(x) > 0,
and all q ∈ N are called Diophantine.) Prove that λ(Dγ) = 1, where λ is
the Lebesgue measure on ([0, 1],B([0, 1])).

5. Let ξ1, . . . , ξn be a sequence of n independent random variables, each ξi
having a symmetric distribution. That is, P(ξi ∈ A) = P(ξi ∈ −A) for
any Borel set A ⊆ R. Assume that Eξ2mi < ∞, i = 1, 2, . . . , n. Prove the
stronger version of the Kolmogorov Inequality:

P( max
1≤k≤n

|ξ1 + . . .+ ξk| ≥ t) ≤ E(ξ1 + . . .+ ξn)
2m

t2m
.

6. Let ξ1, ξ2, . . . be independent random variables with non-negative values.
Prove that the series

∑∞
i=1 ξi converges almost surely if and only if

∞∑

i=1

E
ξi

1 + ξi
< ∞.

7. Let ξ1, ξ2, . . . be a sequence of independent identically distributed random
variables with uniform distribution on [0, 1]. Prove that the limit

lim
n→∞

n
√
ξ1 · . . . · ξn

exists with probability one. Find its value.
8. Let ξ1, ξ2, . . . be a sequence of independent random variables, P(ξi =2i)

= 1/2i, P(ξi = 0) = 1 − 1/2i, i ≥ 1. Find the almost sure value of the
limit limn→∞ (ξ1 + . . .+ ξn)/n.

9. Let ξ1, ξ2, . . . be a sequence of independent identically distributed random
variables for which Eξi = 0 and Eξ2i = V < ∞. Prove that for any
γ > 1/2, the series

∑
i≥1 ξi/i

γ converges almost surely.
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10. Let ξ1, ξ2, . . . be independent random variables uniformly distributed on
the interval [−1, 1]. Let a1, a2, . . . be a sequence of real numbers such that∑∞

n=1 a
2
n converges. Prove that the series

∑∞
n=1 anξn converges almost

surely.
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