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Markov Chains with a Finite Number of States

5.1 Stochastic Matrices

The theory of Markov chains makes use of stochastic matrices. We therefore
begin with a small digression of an algebraic nature.

Definition 5.1. An r × r matrix Q = (qij) is said to be stochastic if

1. qij ≥ 0.
2.

∑r
j=1 qij = 1 for any 1 ≤ i ≤ r.

A column vector f = (f1, . . . , fr) is said to be non-negative if fi ≥ 0 for
1 ≤ i ≤ r. In this case we write f ≥ 0.

Lemma 5.2. The following statements are equivalent.

(a) The matrix Q is stochastic.
(b1) For any f ≥ 0 we have Qf ≥ 0, and
(b2) If 1 = (1, . . . , 1) is a column vector, then Q1 = 1, that is the vector 1 is

an eigenvector of the matrix Q corresponding to the eigenvalue 1.
(c) If μ = (μ1, . . . , μr) is a probability distribution, that is μi ≥ 0 and∑r

i=1 μi = 1, then μQ is also a probability distribution.

Proof. If Q is a stochastic matrix, then (b1) and (b2) hold, and therefore (a)
implies (b). We now show that (b) implies (a). Consider the column vector δj
all of whose entries are equal to zero, except the j-th entry which is equal to
one. Then (Qδj)i = qij ≥ 0. Furthermore, (Q1)i =

∑r
j=1 qij , and it follows

from the equality Q1 = 1 that
∑r

j=1 qij = 1 for all i, and therefore (b)
implies (a).

We now show that (a) implies (c). If μ′ = μQ, then μ′
j =

∑r
i=1 μiqij . Since

Q is stochastic, we have μ′
j ≥ 0 and

r∑

j=1

μ′
j =

r∑

j=1

r∑

i=1

μiqij =

r∑

i=1

r∑

j=1

μiqij =

r∑

i=1

μi = 1.
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68 5 Markov Chains with a Finite Number of States

Therefore, μ′ is also a probability distribution.
Now assume that (c) holds. Consider the row vector δi all of whose entries

are equal to zero, except the i-th entry which is equal to one. It corresponds
to the probability distribution on the set {1, . . . , r} which is concentrated at
the point i. Then δiQ is also a probability distribution. If follows that qij ≥ 0
and

∑r
j=1 qij = 1, that is (c) implies (a). �

Lemma 5.3. Let Q′ = (q′ij) and Q′′ = (q′′ij) be stochastic matrices and Q =
Q′Q′′ = (qij). Then Q is also a stochastic matrix. If q′′ij > 0 for all i, j, then
qij > 0 for all i, j.

Proof. We have

qij =

r∑

k=1

q′ikq
′′
kj .

Therefore, qij ≥ 0. If all q′′kj > 0, then qij > 0 since q′ik ≥ 0 and
∑r

k=1 q
′
ik = 1.

Furthermore,

r∑

j=1

qij =

r∑

j=1

r∑

k=1

q′ikq
′′
kj =

r∑

k=1

q′ik
r∑

j=1

q′′kj =
r∑

k=1

q′ik = 1 .

�

Remark 5.4. We can also consider infinite matrices Q = (qij), 1 ≤ i, j < ∞.
An infinite matrix is said to be stochastic if

1. qij ≥ 0, and
2.

∑∞
j=1 qij = 1 for any 1 ≤ i < ∞.

It is not difficult to show that Lemmas 5.2 and 5.3 remain valid for infinite
matrices.

5.2 Markov Chains

We now return to the concepts of probability theory. Let Ω be the space of
sequences (ω0, . . . , ωn), where ωk ∈ X = {x1, . . . , xr}, 0 ≤ k ≤ n. Without
loss of generality we may identify X with the set of the first r integers, X =
{1, . . . , r}.

Let P be a probability measure on Ω. Sometimes we shall denote by ωk the
random variable which assigns the value of the k-th element to the sequence
ω = (ω0, . . . , ωn). It is usually clear from the context whether ωk stands for
such a random variable or simply the k-th element of a particular sequence.
We shall denote the probability of the sequence (ω0, . . . , ωn) by p(ω0, . . . , ωn).
Thus,

p(i0, . . . , in) = P(ω0 = i0, . . . , ωn = in).
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Assume that we are given a probability distribution μ = (μ1, . . . , μr) on
X and n stochastic matrices P (1), . . . , P (n) with P (k) = (pij(k)).

Definition 5.5. The Markov chain with the state space X generated by the
initial distribution μ on X and the stochastic matrices P (1), . . . , P (n) is the
probability measure P on Ω such that

P(ω0 = i0, . . . , ωn = in) = μi0 · pi0i1(1) · . . . · pin−1in(n) (5.1)

for each i0, . . . , in ∈ X.

The elements of X are called the states of the Markov chain. Let us
check that (5.1) defines a probability measure on Ω. The inequality P(ω0 =
i0, . . . , ωn = in) ≥ 0 is clear. It remains to show that

r∑

i0=1

. . .

r∑

in=1

P(ω0 = i0, . . . , ωn = in) = 1.

We have
r∑

i0=1

. . .
r∑

in=1

P(ω0 = i0, . . . , ωn = in)

=

r∑

i0=1

. . .

r∑

in=1

μi0 · pi0,i1(1) · . . . · pin−1in(n) .

We now perform the summation over all the values of in. Note that in
is only present in the last factor in each term of the sum, and the sum∑r

in=1 pin−1in(n) is equal to one, since the matrix P (n) is stochastic. We then
fix i0, . . . , in−2, and sum over all the values of in−1, and so on. In the end we
obtain

∑r
i0=1 μi0 , which is equal to one, since μ is a probability distribution.

In the same way one can prove the following statement:

P(ω0 = i0, . . . , ωk = ik) = μi0 · pi0i1(1) · . . . · pik−1ik(k)

for any 1 ≤ i0, . . . , ik ≤ r, k ≤ n. This equality shows that the induced
probability distribution on the space of sequences of the form (ω0, . . . , ωk) is
also a Markov chain generated by the initial distribution μ and the stochastic
matrices P (1), . . . , P (k).

The matrices P (k) are called the transition probability matrices, and the
matrix entry pij(k) is called the transition probability from the state i to
the state j at time k. The use of these terms is justified by the following
calculation.

Assume that P(ω0 = i0, . . . , ωk−2 = ik−2, ωk−1 = i) > 0. We consider the
conditional probability P(ωk = j|ω0 = i0, . . . , ωk−2 = ik−2, ωk−1 = i). By the
definition of the measure P,
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P(ωk = j|ω0 = i0, . . . , ωk−2 = ik−2, ωk−1 = i)

=
P(ω0 = i0, . . . , ωk−2 = ik−2, ωk−1 = i, ωk = j)

P(ω0 = i0, . . . , ωk−2 = ik−2, ωk−1 = i)

=
μi0 · pi0i1(1) · . . . · pik−2i(k − 1) · pij(k)

μi0 · pi0i1(1) · . . . · pik−2i(k − 1)
= pij(k).

The right-hand side here does not depend on i0, . . . , ik−2. This property is
sometimes used as a definition of a Markov chain. It is also easy to see that
P(ωk = j|ωk−1 = i) = pij(k). (This is proved below for the case of a homoge-
neous Markov chain.)

Definition 5.6. A Markov chain is said to be homogeneous if P (k) = P for
a matrix P which does not depend on k, 1 ≤ k ≤ n.

The notion of a homogeneous Markov chain can be understood as a gener-
alization of the notion of a sequence of independent identical trials. Indeed,
if all the rows of the stochastic matrix P = (pij) are equal to (p1, . . . , pr),
where (p1, . . . , pr) is a probability distribution on X , then the Markov chain
with such a matrix P and the initial distribution (p1, . . . , pr) is a sequence of
independent identical trials.

In what follows we consider only homogeneous Markov chains. Such chains
can be represented with the help of graphs. The vertices of the graph are the
elements of X . The vertices i and j are connected by an oriented edge if
pij > 0. A sequence of states (i0, i1, . . . , in) which has a positive probability
can be represented as a path of length n on the graph starting at the point
i0, then going to the point i1, and so on. Therefore, a homogeneous Markov
chain can be represented as a probability distribution on the space of paths
of length n on the graph.

Let us consider the conditional probabilities P(ωs+l = j|ωl = i). It is
assumed here that P(ωl = i) > 0. We claim that

P(ωs+l = j|ωl = i) = p
(s)
ij ,

where p
(s)
ij are elements of the matrix P s. Indeed,

P(ωs+l = j|ωl = i) =
P(ωs+l = j, ωl = i)

P(ωl = i)

=

∑r
i0=1 . . .

∑r
il−1=1

∑r
il+1=1 . . .

∑r
is+l−1=1 P(ω0 = i0, . . . , ωl= i, . . . , ωs+l=j)

∑r
i0=1 . . .

∑r
il−1=1 P(ω0 = i0, . . . , ωl = i)

=

∑r
i0=1 . . .

∑r
il−1=1

∑r
il+1=1 . . .

∑r
is+l−1=1 μi0pi0i1 . . . pil−1ipiil+1

. . . pis+l−1j
∑r

i0=1 . . .
∑r

il−1=1 μi0pi0i1 . . . pil−1i
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=

∑r
i0=1 . . .

∑r
il−1=1 μi0pi0i1 . . . pil−1i

∑r
il+1=1 . . .

∑r
is+l−1=1 piil+1

. . . pis+l−1j
∑r

i0=1 . . .
∑r

il−1=1 μi0pi0i1 . . . pil−1i

=

r∑

il+1=1

. . .

r∑

is+l−1=1

piil+1
. . . pis+l−1j = p

(s)
ij .

Thus the conditional probabilities p
(s)
ij = P(ωs+l = j|ωl = i) do not depend on

l. They are called s-step transition probabilities. A similar calculation shows
that for a homogeneous Markov chain with initial distribution μ,

P(ωs = j) = (μP s)j =

r∑

i=1

μip
(s)
ij . (5.2)

Note that by considering infinite stochastic matrices, Definition 5.5 and
the argument leading to (5.2) can be generalized to the case of Markov chains
with a countable number of states.

5.3 Ergodic and Non-ergodic Markov Chains

Definition 5.7. A stochastic matrix P is said to be ergodic if there exists s

such that the s-step transition probabilities p
(s)
ij are positive for all i and j. A

homogeneous Markov chain is said to be ergodic if it can be generated by some
initial distribution and an ergodic stochastic matrix.

By (5.2), ergodicity implies that in s steps one can, with positive probability,
proceed from any initial state i to any final state j.

It is easy to provide examples of non-ergodic Markov Chains. One could
consider a collection of non-intersecting sets X1, . . . , Xn, and take X =⋃n

k=1 Xk. Suppose the transition probabilities pij are such that pij = 0, unless
i and j belong to consecutive sets, that is i ∈ Xk, j ∈ Xk+1 or i ∈ Xn, j ∈ X1.
Then the matrix P is block diagonal, and any power of P will contain zeros,
thus P will not be ergodic.

Another example of a non-ergodic Markov chain arises when a state j
cannot be reached from any other state, that is pij = 0 for all i �= j. Then the
same will be true for the s-step transition probabilities.

Finally, there may be non-intersecting sets X1, . . . , Xn such that X =⋃n
k=1 Xk, and the transition probabilities pij are such that pij = 0, unless i

and j belong to the same set Xk. Then the matrix is not ergodic.
The general classification of Markov chains will be discussed in Sect. 5.6.

Definition 5.8. A probability distribution π on X is said to be stationary (or
invariant) for a matrix of transition probabilities P if πP = π.

Formula (5.2) means that if the initial distribution π is a stationary distribu-
tion, then the probability distribution of any ωk is given by the same vector
π and does not depend on k. Hence the term “stationary”.
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Theorem 5.9 (Ergodic Theorem for Markov chains). Given a Markov
chain with an ergodic matrix of transition probabilities P , there exists a unique
stationary probability distribution π = (π1, . . . , πr). The n-step transition
probabilities converge to the distribution π, that is

lim
n→∞ p

(n)
ij = πj .

The stationary distribution satisfies πj > 0 for 1 ≤ j ≤ r.

Proof. Let μ′ = (μ′
1, . . . , μ

′
r), μ

′′ = (μ′′
1 , . . . , μ

′′
r ) be two probability distribu-

tions on the space X . We set d(μ′, μ′′) = 1
2

∑r
i=1 |μ′

i − μ′′
i |. Then d can be

viewed as a distance on the space of probability distributions on X , and the
space of distributions with this distance is a complete metric space. We note
that

0 =

r∑

i=1

μ′
i −

r∑

i=1

μ′′
i =

r∑

i=1

(μ′
i − μ′′

i ) =
∑+

(μ′
i − μ′′

i )−
∑+

(μ′′
i − μ′

i) ,

where
∑+ denotes the summation with respect to those indices i for which

the terms are positive. Therefore,

d(μ′, μ′′) =
1

2

r∑

i=1

|μ′
i−μ′′

i | =
1

2

∑+
(μ′

i−μ′′
i )+

1

2

∑+
(μ′′

i −μ′
i) =

∑+
(μ′

i−μ′′
i ) .

It is also clear that d(μ′, μ′′) ≤ 1.
Let μ′ and μ′′ be two probability distributions on X and Q = (qij) a

stochastic matrix. By Lemma 5.2, μ′Q and μ′′Q are also probability distribu-
tions. Let us demonstrate that

d(μ′Q,μ′′Q) ≤ d(μ′, μ′′), (5.3)

and if all qij ≥ α, then

d(μ′Q,μ′′Q) ≤ (1− α)d(μ′, μ′′). (5.4)

Let J be the set of indices j for which (μ′Q)j − (μ′′Q)j > 0. Then

d(μ′Q,μ′′Q) =
∑

j∈J

(μ′Q− μ′′Q)j =
∑

j∈J

r∑

i=1

(μ′
i − μ′′

i )qij

≤
∑

i

+
(μ′

i − μ′′
i )

∑

j∈J

qij ≤
∑

i

+
(μ′

i − μ′′
i ) = d(μ′, μ′′),

which proves (5.3). We now note that J can not contain all the indices j since
both μ′Q and μ′′Q are probability distributions. Therefore, at least one index
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j is missing in the sum
∑

j∈J qij . Thus, if all qij > α, then
∑

j∈J qij < 1 − α
for all i, and

d(μ′Q,μ′′Q) ≤ (1− α)
∑

i

+
(μ′

i − μ′′
i ) = (1− α)d(μ′, μ′′),

which implies (5.4).
Let μ0 be an arbitrary probability distribution on X and μn = μ0P

n.
We shall show that the sequence of probability distributions μn is a Cauchy
sequence, that is for any ε > 0 there exists n0(ε) such that for any k ≥ 0 we
have d(μn, μn+k) < ε for n ≥ n0(ε). By (5.4),

d(μn, μn+k) = d(μ0P
n, μ0P

n+k) ≤ (1− α)d(μ0P
n−s, μ0P

n+k−s) ≤ . . .

≤ (1− α)md(μ0P
n−ms, μ0P

n+k−ms) ≤ (1− α)m,

where m is such that 0 ≤ n − ms < s. For sufficiently large n we have
(1− α)m < ε, which implies that μn is a Cauchy sequence.

Let π = limn→∞ μn. Then

πP = lim
n→∞μnP = lim

n→∞(μ0P
n)P = lim

n→∞(μ0P
n+1) = π.

Let us show that the distribution π, such that πP = π, is unique. Let π1 and
π2 be two distributions with π1 = π1P and π2 = π2P . Then π1 = π1P

s and
π2 = π2P

s. Therefore, d(π1, π2) = d(π1P
s, π2P

s) ≤ (1− α)d(π1, π2) by (5.4).
It follows that d(π1, π2) = 0, that is π1 = π2.

We have proved that for any initial distribution μ0 the limit

lim
n→∞μ0P

n = π

exists and does not depend on the choice of μ0. Let us take μ0 to be the
probability distribution which is concentrated at the point i. Then, for i fixed,

μ0P
n is the probability distribution (p

(n)
ij ). Therefore, limn→∞ p

(n)
ij = πj .

The proof of the fact that πj > 0 for 1 ≤ j ≤ r is left as an easy exercise
for the reader. �

Remark 5.10. Let μ0 be concentrated at the point i. Then

d(μ0P
n, π)= d(μ0P

n, πPn) ≤ . . . ≤ (1−α)md(μ0P
n−ms, πPn−ms)≤ (1−α)m,

where m is such that 0 ≤ n−ms < s. Therefore,

d(μ0P
n, π) ≤ (1− α)

n
s −1 ≤ (1− α)−1βn,

where β = (1 − α)
1
s < 1. In other words, the rate of convergence of p

(n)
ij to

the limit πj is exponential.

Remark 5.11. The term ergodicity comes from statistical mechanics. In our
case the ergodicity of a Markov chain implies that a certain loss of memory
regarding initial conditions occurs, as the probability distribution at time n
becomes nearly independent of the initial distribution as n → ∞. We shall
discuss further the meaning of this notion in Chap. 16.
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5.4 Law of Large Numbers and the Entropy of a Markov
Chain

As in the case of a homogeneous sequence of independent trials, we introduce
the random variable νni (ω) equal to the number of occurrences of the state
i in the sequence ω = (ω0, . . . , ωn), that is the number of those 0 ≤ k ≤ n
for which ωk = i. We also introduce the random variables νnij(ω) equal to the
number of those 1 ≤ k ≤ n for which ωk−1 = i, ωk = j.

Theorem 5.12. Let π be the stationary distribution of an ergodic Markov
chain. Then for any ε > 0

lim
n→∞P(|ν

n
i

n
− πi| ≥ ε) = 0, for 1 ≤ i ≤ r,

lim
n→∞P(|ν

n
ij

n
− πipij | ≥ ε) = 0, for 1 ≤ i, j ≤ r.

Proof. Let

χk
i (ω) =

{
1 if ωk = i,
0 if ωk �= i,

χk
ij(ω) =

{
1 if ωk−1 = i, ωk = j,
0 otherwise,

so that

νni =

n∑

k=0

χk
i , νnij =

n∑

k=1

χk
ij .

For an initial distribution μ

Eχk
i =

r∑

m=1

μmp
(k)
mi , Eχk

ij =

r∑

m=1

μmp
(k)
mipij .

As k → ∞ we have p
(k)
mi → πi exponentially fast. Therefore, as k → ∞,

Eχk
i → πi, Eχk

ij → πipij

exponentially fast. Consequently

E
νni
n

= E

∑n
k=0 χ

k
i

n
→ πi, E

νnij
n

= E

∑n
k=1 χ

k
ij

n
→ πipij .

For sufficiently large n

{ω : |ν
n
i (ω)

n
− πi| ≥ ε} ⊆ {ω : |ν

n
i (ω)

n
− 1

n
Eνni | ≥

ε

2
},

{ω : |ν
n
ij(ω)

n
− πipij | ≥ ε} ⊆ {ω : |ν

n
ij(ω)

n
− 1

n
Eνnij | ≥

ε

2
}.



5.4 Law of Large Numbers and the Entropy of a Markov Chain 75

The probabilities of the events on the right-hand side can be estimated using
the Chebyshev Inequality:

P(|ν
n
i

n
− 1

n
Eνni | ≥

ε

2
) = P(|νni − Eνni | ≥

εn

2
) ≤ 4Var(νni )

ε2n2
,

P(|ν
n
ij

n
− 1

n
Eνnij | ≥

ε

2
) = P(|νnij − Eνnij | ≥

εn

2
) ≤ 4Var(νnij)

ε2n2
.

Thus the matter is reduced to estimating Var(νni ) and Var(νnij). If we set

mk
i = Eχk

i =
∑r

s=1 μsp
(k)
si , then

Var(νni ) = E(

n∑

k=0

(χk
i −mk

i ))
2 =

E

n∑

k=0

(χk
i −mk

i )
2 + 2

∑

k1<k2

E(χk1

i −mk1

i )(χk2

i −mk2

i ).

Since 0 ≤ χk
i ≤ 1, we have −1 ≤ χk

i − mk
i ≤ 1, (χk

i − mk
i )

2 ≤ 1 and∑n
k=0 E(χ

k
i −mk

i )
2 ≤ n+ 1. Furthermore,

E(χk1

i −mk1

i )(χk2

i −mk2

i ) = Eχk1

i χk2

i −mk1

i mk2

i =

r∑

s=1

μsp
(k1)
si p

(k2−k1)
ii −mk1

i mk2

i = Rk1,k2 .

By the Ergodic Theorem (see Remark 5.10),

mk
i = πi + dki , |dki | ≤ cλk,

p
(k)
si = πi + βk

s,i, |βk
s,i| ≤ cλk,

for some constants c < ∞ and λ < 1. This gives

|Rk1,k2 | = |
r∑

s=1

μs(πi + βk1

s,i)(πi + βk2−k1

i,i )− (πi + dk1

i )(πi + dk2

i )| ≤

c1(λ
k1 + λk2 + λk2−k1)

for some constant c1 < ∞. Therefore,
∑

k1<k2
Rk1,k2 ≤ c2n, and consequently

Var(νni ) ≤ c3n for some constants c2 and c3. The variance Var(νnij) can be
estimated in the same way. �

We now draw a conclusion from this theorem about the entropy of a
Markov chain. In the case of a homogeneous sequence of independent trials,
for large n the entropy is approximately equal to − 1

n ln p(ω) for typical ω, that
is for ω which constitute a set whose probability is arbitrarily close to one.
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In order to use this property to derive a general definition of entropy, we need
to study the behavior of ln p(ω) for typical ω in the case of a Markov chain.
For ω = (ω0, . . . , ωn) we have

p(ω) = μω0

∏

i,j

p
νn
ij(ω)

ij = exp(lnμω0 +
∑

i,j

νnij(ω) ln pij),

ln p(ω) = lnμω0 +
∑

i,j

νnij(ω) ln pij .

From the Law of Large Numbers, for typical ω

νnij(ω)

n
∼ πipij .

Therefore, for such ω

− 1

n
ln p(ω) = − 1

n
lnμω0 −

∑

i,j

νnij(ω) ln pij ∼ −
∑

i,j

πipij ln pij .

Thus it is natural to define the entropy of a Markov chain to be

h = −
∑

i

πi

∑

j

pij ln pij .

It is not difficult to show that with such a definition of h, the MacMillan
Theorem remains true.

5.5 Products of Positive Matrices

Let A = (aij) be a matrix with positive entries, 1 ≤ i, j ≤ r. Let A∗ = (a∗ij)
be the transposed matrix, that is a∗ij = aji. Let us denote the entries of A

n by

a
(n)
ij . We shall use the Ergodic Theorem for Markov chains in order to study

the asymptotic behavior of a
(n)
ij as n → ∞. First, we prove the following:

Theorem 5.13 (Perron-Frobenius Theorem). There exist a positive num-
ber λ (eigenvalue) and vectors e = (e1, . . . , er) and f = (f1, . . . , fr) (right and
left eigenvectors) such that

1. ej > 0, fj > 0, 1 ≤ j ≤ r.
2. Ae = λe and A∗f = λf .

If Ae′ = λ′e′ and e′j > 0 for 1 ≤ j ≤ r, then λ′ = λ and e′ = c1e for some
positive constant c1. If A

∗f ′ = λ′f ′ and f ′
j > 0 for 1 ≤ j ≤ r, then λ′ = λ

and f ′ = c2f for some positive constant c2.
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Proof. Let us show that there exist λ > 0 and a positive vector e such that
Ae = λe, that is

r∑

j=1

aijej = λej , 1 ≤ i ≤ r.

Consider the convex set H of vectors h = (h1, . . . , hr) such that hi ≥ 0, 1 ≤
i ≤ r, and

∑r
i=1 hi = 1. The matrix A determines a continuous transformation

A of H into itself through the formula

(Ah)i =

∑r
j=1 aijhj

∑r
i=1

∑r
j=1 aijhj

.

The Brouwer Theorem states that any continuous mapping of a convex closed
set in R

n to itself has a fixed point. Thus we can find e ∈ H such that Ae = e,
that is,

ei =

∑r
j=1 aijej∑r

i=1

∑r
j=1 aijej

.

Note that ei > 0 for all 1 ≤ i ≤ r. By setting λ =
∑r

i=1

∑r
j=1 aijej, we obtain∑r

j=1 aijej = λei, 1 ≤ i ≤ r.

In the same way we can show that there is λ > 0 and a vector f with
positive entries such that A∗f = λf . The equalities

λ(e, f) = (Ae, f) = (e, A∗f) = (e, λf) = λ(e, f)

show that λ = λ.
We leave the uniqueness part as an exercise for the reader. �

Let e and f be positive right and left eigenvectors, respectively, which
satisfy

r∑

i=1

ei = 1 and

r∑

i=1

eifi = 1.

Note that these conditions determine e and f uniquely. Let λ > 0 be the
corresponding eigenvalue. Set

pij =
aijej
λei

.

It is easy to see that the matrix P = (pij) is a stochastic matrix with strictly
positive entries. The stationary distribution of this matrix is πi = eifi. Indeed,

r∑

i=1

πipij =

r∑

i=1

eifi
aijej
λei

=
1

λ
ej

r∑

i=1

fiaij = ejfj = πj .
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We can rewrite a
(n)
ij as follows:

a
(n)
ij =

∑

1≤i1,...,in−1≤r

aii1 · ai1i2 · . . . · ain−2in−1 · ain−1j

= λn
∑

1≤i1,...,in−1≤r

pii1 · pi1i2 · . . . · pin−2in−1 · pin−1j · ei · e−1
j = λneip

(n)
ij e−1

j .

The Ergodic Theorem for Markov chains gives p
(n)
ij → πj = ejfj as n → ∞.

Therefore,

a
(n)
ij

λn
→ eiπje

−1
j = eifj

and the convergence is exponentially fast. Thus

a
(n)
ij ∼ λneifj as n → ∞.

Remark 5.14. One can easily extend these arguments to the case where the
matrix As has positive matrix elements for some integer s > 0.

5.6 General Markov Chains and the Doeblin Condition

Markov chains often appear as random perturbations of deterministic dynam-
ics. Let (X,G) be a measurable space and f : X → X a measurable mapping
ofX into itself. We may wish to consider the trajectory of a point x ∈ X under
the iterations of f , that is the sequence x, f(x), f2(x), . . .. However, if random
noise is present, then x is mapped not to f(x) but to a nearby random point.
This means that for each C ∈ G we must consider the transition probability
from the point x to the set C. Let us give the corresponding definition.

Definition 5.15. Let (X,G) be a measurable space. A function P (x,C), x ∈
X,C ∈ G, is called a Markov transition function if for each fixed x ∈ X the
function P (x,C), as a function of C ∈ G, is a probability measure defined on
G, and for each fixed C ∈ G the function P (x,C) is measurable as a function
of x ∈ X.

For x and C fixed, P (x,C) is called the transition probability from the initial
point x to the set C. Given a Markov transition function P (x,C) and an
integer n ∈ N, we can define the n-step transition function

Pn(x,C) =

∫

X

. . .

∫

X

∫

X

P (x, dy1) . . . P (yn−2, dyn−1)P (yn−1, C).

It is easy to see that Pn satisfies the definition of a Markov transition function.
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A Markov transition function P (x,C) defines two operators:

1. The operator P which acts on bounded measurable functions

(Pf)(x) =

∫

X

f(y)P (x, dy); (5.5)

2. The operator P ∗ which acts on the probability measures

(P ∗μ)(C) =

∫

X

P (x,C)dμ(x). (5.6)

It is easy to show (see Problem 15) that the image of a bounded measurable
function under the action of P is again a bounded measurable function, while
the image of a probability measure μ under P ∗ is again a probability measure.

Remark 5.16. Note that we use the same letter P for the Markov transition
function and the corresponding operator. This is partially justified by the
fact that the n-th power of the operator corresponds to the n-step transition
function, that is

(Pnf)(x) =

∫

X

f(y)Pn(x, dy).

Definition 5.17. A probability measure π is called a stationary (or invariant)
measure for the Markov transition function P if π = P ∗π, that is

π(C) =

∫

X

P (x,C)dπ(x)

for all C ∈ G.
Given a Markov transition function P and a probability measure μ0 on

(X,G), we can define the corresponding homogeneous Markov chain, that is
the measure on the space of sequences ω = (ω0, . . . , ωn), ωk ∈ X , k = 0, . . . , n.
Namely, denote by F the σ-algebra generated by the elementary cylinders,
that is by the sets of the form A = {ω : ω0 ∈ A0, ω1 ∈ A1, . . . , ωn ∈ An}
where Ak ∈ G, k = 0, . . . , n. By Theorem 3.19, if we define

P(A) =

∫

A0×...×An−1

dμ0(x0)P (x0, dx1) . . . P (xn−2, dxn−1)P (xn−1, An),

there exists a measure on F which coincides with P(A) on the elementary
cylinders. Moreover, such a measure on F is unique.

Remark 5.18. We could also consider a measure on the space of infinite se-
quences ω = (ω0, ω1, . . .) with F still being the σ-algebra generated by the
elementary cylinders. In this case, there is still a unique measure on F which
coincides with P(A) on the elementary cylinder sets. Its existence is guaran-
teed by the Kolmogorov Consistency Theorem which is discussed in Chap. 12.



80 5 Markov Chains with a Finite Number of States

We have already seen that in the case of Markov chains with a finite state
space the stationary measure determines the statistics of typical ω (the Law
of Large Numbers). This is also true in the more general setting which we are
considering now. Therefore it is important to find sufficient conditions which
guarantee the existence and uniqueness of the stationary measure.

Definition 5.19. A Markov transition function P is said to satisfy the strong
Doeblin condition if there exist a probability measure ν on (X,G) and a func-
tion p(x, y) (the density of P (x, dy) with respect to the measure ν) such that

1. p(x, y) is measurable on (X ×X,G × G).
2. P (x,C) =

∫
C p(x, y)dν(y) for all x ∈ X and C ∈ G.

3. For some constant a > 0 we have

p(x, y) ≥ a for all x, y ∈ X.

Theorem 5.20. If a Markov transition function satisfies the strong Doeblin
condition, then there exists a unique stationary measure.

Proof. By the Fubini Theorem, for any measure μ the measure P ∗μ is given
by the density

∫
X dμ(x)p(x, y) with respect to the measure ν. Therefore, if a

stationary measure exists, it is absolutely continuous with respect to ν. Let
M be the space of measures which are absolutely continuous with respect
to ν. For μ1, μ2 ∈ M , the distance between them is defined via d(μ1, μ2) =
1
2

∫ |m1(y) − m2(y)|dν(y), where m1 and m2 are the densities of μ1 and μ2

respectively. We claim that M is a complete metric space with respect to the
metric d. Indeed, M is a closed subspace of L1(X,G, ν), which is a complete
metric space. Let us show that the operator P ∗ acting on this space is a
contraction.

Consider two measures μ1 and μ2 with the densities m1 and m2. Let
A+ = {y : m1(y) − m2(y) ≥ 0} and A− = X\A+. Similarly let B+ =
{y :

∫
X p(x, y)(m1(x) − m2(x))dν(x) ≥ 0} and B− = X\B+. Without loss

of generality we can assume that ν(B−) ≥ 1
2 (if the contrary is true and

ν(B+) > 1
2 , we can replace A+ by A−, B+ by B− and reverse the signs in

some of the integrals below).
As in the discrete case, d(μ1, μ2) =

∫
A+(m

1(y)−m2(y))dν(y). Therefore,

d(P ∗μ1, P ∗μ2) =

∫

B+

[

∫

X

p(x, y)(m1(x)−m2(x))dν(x)]dν(y)

≤
∫

B+

[

∫

A+

p(x, y)(m1(x)−m2(x))dν(x)]dν(y)

=

∫

A+

[

∫

B+

p(x, y)dν(y)](m1(x)−m2(x))dν(x).
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The last expression contains the integral
∫
B+ p(x, y)dν(y) which we estimate

as follows
∫

B+

p(x, y)dν(y) = 1−
∫

B−
p(x, y)dν(y) ≤ 1− aν(B−) ≤ 1− a

2
.

This shows that
d(P ∗μ1, P ∗μ2) ≤ (1− a

2
)d(μ1, μ2).

Therefore P ∗ is a contraction and has a unique fixed point, which completes
the proof of the theorem. �

The strong Doeblin condition can be considerably relaxed, yet we may
still be able to say something about the stationary measures. We conclude
this section with a discussion of the structure of a Markov chain under the
Doeblin condition. We shall restrict ourselves to formulation of results.

Definition 5.21. We say that P satisfies the Doeblin condition if there is a
finite measure μ with μ(X) > 0, an integer n, and a positive ε such that for
any x ∈ X

Pn(x,A) ≤ 1− ε if μ(A) ≤ ε.

Theorem 5.22. If a Markov transition function satisfies the Doeblin condi-
tion, then the space X can be represented as the union of non-intersecting
sets:

X =

k⋃

i=1

Ei

⋃
T,

where the sets Ei (ergodic components) have the property P (x,Ei) = 1 for
x ∈ Ei, and for the set T (the transient set) we have limn→∞ Pn(x, T ) = 0
for all x ∈ X. The sets Ei can in turn be represented as unions of non-
intersecting subsets:

Ei =

mi−1⋃

j=0

Cj
i ,

where Cj
i (cyclically moving subsets) have the property

P (x,C
j+1(mod mi)
i ) = 1 for x ∈ Cj

i .

Note that if P is a Markov transition function on the state space X , then
P (x,A), x ∈ Ei, A ⊆ Ei is a Markov transition function on Ei. We have the
following theorem describing the stationary measures of Markov transition
functions satisfying the Doeblin condition (see “Stochastic Processes” by J.L.
Doob).

Theorem 5.23. If a Markov transition function satisfies the Doeblin condi-
tion, and X =

⋃k
i=1 Ei

⋃
T is a decomposition of the state space into ergodic

components and the transient set, then
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1. The restriction of the transition function to each ergodic component has
a unique stationary measure πi.

2. Any stationary measure π on the space X is equal to a linear combination
of the stationary measures on the ergodic components:

π =
k∑

i=1

αiπi

with αi ≥ 0, α1 + . . .+ αk = 1.

Finally, we formulate the Strong Law of Large Numbers for Markov chains
(see “Stochastic Processes” by J.L. Doob).

Theorem 5.24. Consider a Markov transition function which satisfies the
Doeblin condition and has only one ergodic component. Let π be the unique
stationary measure. Consider the corresponding Markov chain (measure on
the space of sequences ω = (ω0, ω1, . . .)) with some initial distribution. Then
for any function f ∈ L1(X,G, π) the following limit exists almost surely:

lim
n→∞

∑n
k=0 f(ωk)

n+ 1
=

∫

X

f(x)dπ(x).

5.7 Problems

1. Let P be a stochastic matrix. Prove that there is at least one non-negative
vector π such that πP = π.

2. Consider a homogeneous Markov chain on a finite state space with the
transition matrix P and the initial distribution μ. Prove that for any
0 < k < n the induced probability distribution on the space of sequences
(ωk, ωk+1, . . . , ωn) is also a homogeneous Markov chain. Find its initial
distribution and the matrix of transition probabilities.

3. Consider a homogeneous Markov chain on a finite state space X with
transition matrix P and the initial distribution δx, x ∈ X , that is P(ω0 =
x) = 1. Let τ be the first k such that ωk �= x. Find the probability
distribution of τ .

4. Consider the one-dimensional simple symmetric random walk (Markov
chain on the state space Z with transition probabilities pi,i+1 = pi,i−1 =
1/2). Prove that it does not have a stationary distribution.

5. For a homogeneous Markov chain on a finite state spaceX with transition
matrix P and initial distribution μ, find P(ωn = x1|ω0 = x2, ω2n = x3),
where x1, x2, x3 ∈ X .

6. Consider a homogeneous ergodic Markov chain on the finite state space
X = {1, . . . , r} with the transition matrix P and the stationary distribu-
tion π. Assuming that π is also the initial distribution, find the following
limit

lim
n→∞

ln P(ωi �= 1 for 0 ≤ i ≤ n)

n
.
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7. Consider a homogeneous ergodic Markov chain on the finite state space
X = {1, . . . , r}. Define the random variables τn, n ≥ 1, as the consecutive
times when the Markov chain is in the state 1, that is

τ1 = inf(i ≥ 0 : ωi = 1),

τn = inf(i > τn−1 : ωi = 1), n > 1.

Prove that τ1, τ2 − τ1, τ3 − τ2, . . . is a sequence of independent random
variables.

8. Consider a homogeneous ergodic Markov chain on a finite state space with
the transition matrix P and the stationary distribution π. Assuming that
π is also the initial distribution, prove that the distribution of the inverse
process (ωn, ωn−1, . . . , ω1, ω0) is also a homogeneous Markov chain. Find
its matrix of transition probabilities and stationary distribution.

9. Find the stationary distribution of the Markov chain with the countable
state space {0, 1, 2, . . . , n, . . .}, where each point, including 0, can either
return to 0 with probability 1/2 or move to the right n 
→ n + 1 with
probability 1/2.

10. Let P be a matrix of transition probabilities of a homogeneous ergodic
Markov chain on a finite state space such that pij = pji. Find its station-
ary distribution.

11. Consider a homogeneous Markov chain on the finite state space X =
{1, . . . , r}. Assume that all the elements of the transition matrix are pos-
itive. Prove that for any k ≥ 0 and any x0, x1, . . . , xk ∈ X ,

P(there is n such that ωn = x0, ωn+1 = x1, . . . , ωn+k = xk) = 1.

12. Consider a Markov chain on a finite state space. Let k1, k2, l1 and l2
be integers such that 0 ≤ k1 < l1 ≤ l2 < k2. Consider the conditional
probabilities

f(ik1 , . . . , il1−1, il2+1, . . . , ik2) =

P(ωl1 = il1 , . . . , ωl2 = il2 |ωk1 = ik1 , . . . , ωl1−1 = il1−1, ωl2+1

= il2+1, . . . , ωk2 = ik2)

with il1 ,. . . ,il2 fixed. Prove that whenever f is defined, it depends only
on il1−1 and il2+1.

13. Consider a Markov chain whose state space is R. Let P (x,A), x ∈ R,
A ∈ B(R), be the following Markov transition function,

P (x,A) = λ([x − 1/2, x+ 1/2] ∩ A),

where λ is the Lebesgue measure. Assuming that the initial distribution
is concentrated at the origin, find P(|ω2| ≤ 1/4).
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14. Let pij , i, j ∈ Z, be the transition probabilities of a Markov chain on the
state space Z. Suppose that

pi,i−1 = 1− pi,i+1 = r(i)

for all i ∈ Z, where r(i) = r− < 1/2 if i < 0, r(0) = 1/2, and r(i) = r+ >
1/2 if i > 0. Find the stationary distribution for this Markov chain. Does
this Markov chain satisfy the Doeblin condition?

15. For a given Markov transition function, let P and P ∗ be the operators
defined by (5.5) and (5.6), respectively. Prove that the image of a bounded
measurable function under the action of P is again a bounded measurable
function, while the image of a probability measure μ under P ∗ is again a
probability measure.

16. Consider a Markov chain whose state space is the unit circle. Let the
density of the transition function P (x, dy) be given by

p(x, y) =

{
1/(2ε) if angle (y, x) < ε,
0 otherwise,

where ε > 0. Find the stationary measure for this Markov chain.
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