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Conditional Probabilities and Independence

4.1 Conditional Probabilities

Let (Ω,F ,P) be a probability space, and let A,B ∈ F be two events. We
assume that P(B) > 0.

Definition 4.1. The conditional probability of A given B is

P(A|B) =
P(A

⋂
B)

P(B)
.

While the conditional probability depends on both A and B, this dependence
has a very different nature for the two sets. As a function of A the conditional
probability has the usual properties of a probability measure:

1. P(A|B) ≥ 0.
2. P(Ω|B) = 1.
3. For a finite or infinite sequence of disjoint events Ai with A =

⋃
iAi we

have
P(A|B) =

∑

i

P(Ai|B) .

As a function of B, the conditional probability satisfies the so-called formula
of total probability. Let {B1, B2, . . .} be a finite or countable partition of the
space Ω, that is Bi

⋂
Bj = ∅ for i �= j and

⋃
iBi = Ω. We also assume that

P(Bi) > 0 for every i. Take A ∈ F . Then

P(A) =
∑

i

P(A
⋂

Bi) =
∑

i

P(A|Bi)P(Bi) (4.1)

is called the formula of total probability. This formula is reminiscent of mul-
tiple integrals written as iterated integrals. The conditional probability plays
the role of the inner integral and the summation over i is the analog of the
outer integral.
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60 4 Conditional Probabilities and Independence

In mathematical statistics the events Bi are sometimes called hypothe-
ses, and probabilities P(Bi) are called prior probabilities (i.e., given pre-
experiment). We assume that as a result of the trial an event A occurred. We
wish, on the basis of this, to draw conclusions regarding which of the hypothe-
ses Bi is most likely. The estimation is done by calculating the probabilities
P(Bk|A) which are sometimes called posterior (post-experiment) probabili-
ties. Thus

P(Bk|A) = P(Bk

⋂
A)

P(A)
=

P(A|Bk)P(Bk)∑
i P(Bi)P(A|Bi)

.

This relation is called Bayes’ formula.

4.2 Independence of Events, σ-Algebras, and Random
Variables

Definition 4.2. Two events A1 and A2 are called independent if

P(A1

⋂
A2) = P(A1)P(A2) .

The events ∅ and Ω are independent of any event.

Lemma 4.3. If (A1, A2) is a pair of independent events, then (A1, A2),
(A1, A2), and (A1, A2), where Aj = Ω\Aj, j = 1, 2, are also pairs of in-
dependent events.

Proof. If A1 and A2 are independent, then

P(A1

⋂
A2) = P((Ω\A1)

⋂
A2)) =

P(A2)− P(A1

⋂
A2) = P(A2)− P(A1)P(A2) = (4.2)

(1− P(A1))P(A2) = P(A1)P(A2).

Therefore, A1 and A2 are independent. By interchanging A1 and A2 in the
above argument, we obtain that A1 and A2 are independent. Finally, A1 and
A2 are independent since we can replace A2 by A2 in (4.2). �

The notion of pair-wise independence introduced above is easily general-
ized to the notion of independence of any finite number of events.

Definition 4.4. The events A1, . . . , An are called independent if for any 1 ≤
k ≤ n and any 1 ≤ i1 < . . . < ik ≤ n

P(Ai1

⋂
. . .

⋂
Aik) = P(Ai1) . . .P(Aik) .
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For n ≥ 3 the pair-wise independence of events Ai and Aj for all 1 ≤ i < j ≤ n
does not imply that the events A1, . . . , An are independent (see Problem 5).

Consider now a collection of σ-algebras F1, . . . ,Fn, each of which is a
σ-subalgebra of F .

Definition 4.5. The σ-algebras F1, . . . ,Fn are called independent if for any
A1 ∈ F1, . . . , An ∈ Fn the events A1, . . . , An are independent.

Take a sequence of random variables ξ1, . . . , ξn. Each random variable ξi
generates the σ-algebra Fi, where the elements of Fi have the form C =
{ω : ξi(ω) ∈ A} for some Borel set A ⊆ R. It is easy to check that the collec-
tion of such sets is indeed a σ-algebra, since the collection of Borel subsets of
R is a σ-algebra.

Definition 4.6. Random variables ξ1, . . . , ξn are called independent if the
σ-algebras F1, . . . ,Fn they generate are independent.

Finally, we can generalize the notion of independence to arbitrary families of
events, σ-algebras, and random variables.

Definition 4.7. A family of events, σ-algebras, or random variables is called
independent if any finite sub-family is independent.

We shall now prove that the expectation of a product of independent
random variables is equal to the product of expectations. The converse is, in
general, not true (see Problem 6).

Theorem 4.8. If ξ and η are independent random variables with finite expec-
tations, then the expectation of the product is also finite and E(ξη) = EξEη.

Proof. Let ξ1 and ξ2 be the positive and negative parts, respectively, of the
random variable ξ, as defined above. Similarly, let η1 and η2 be the positive and
negative parts of η. It is sufficient to prove that E(ξiηj) = EξiEηj , i, j = 1, 2.
We shall prove that E(ξ1η1) = Eξ1Eη1, the other cases being completely
similar. Define fn(ω) and gn(ω) by the relations

fn(ω) = k2−n if k2−n ≤ ξ1(ω) < (k + 1)2−n ,

gn(ω) = k2−n if k2−n ≤ η1(ω) < (k + 1)2−n .

Thus fn and gn are two sequences of simple random variables which mono-
tonically approximate from below the variables ξ1 and η1 respectively. Also,
the sequence of simple random variables fngn monotonically approximates
the random variable ξ1η1 from below. Therefore,

Eξ1 = lim
n→∞Efn, Eη1 = lim

n→∞Egn, Eξ1η1 = lim
n→∞Efngn .

Since the limit of a product is the product of the limits, it remains to show that
Efngn = EfnEgn for any n, . Let An

k be the event {k2−n ≤ ξ1 < (k + 1)2−n}
and Bn

k be the event {k2−n ≤ η1 < (k + 1)2−n}. Note that for any k1 and
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k2 the events An
k1

and Bn
k2

are independent due to the independence of the
random variables ξ and η. We write

Efngn =
∑

k1,k2

k1k22
−2nP(An

k1

⋂
Bn

k2
) =

∑

k1

k12
−nP(An

k1
)
∑

k2

k22
−nP(Bn

k2
) = EfnEgn ,

which completes the proof of the theorem. �

Consider the space Ω corresponding to the homogeneous sequence of n
independent trials, ω = (ω1, . . . , ωn), and let ξi(ω) = ωi.

Lemma 4.9. The sequence ξ1, . . . , ξn is a sequence of identically distributed
independent random variables.

Proof. Each random variable ξi takes values in a space X with a σ-algebra G,
and the probabilities of the events {ω : ξi(ω) ∈ A}, A ∈ G, are equal to the
probability of A in the space X . Thus they are the same for different i if A
is fixed, which means that ξi are identically distributed. Their independence
follows from the definition of the sequence of independent trials. �

4.3 π-Systems and Independence

The following notions of a π-system and of a Dynkin system are very useful
when proving independence of functions and σ-algebras.

Definition 4.10. A collection K of subsets of Ω is said to be a π-system
if it contains the empty set and is closed under the operation of taking the
intersection of two sets, that is

1. ∅ ∈ K.
2. A,B ∈ K implies that A

⋂
B ∈ K.

Definition 4.11. A collection G of subsets of Ω is called a Dynkin system if
it contains Ω and is closed under the operations of taking complements and
finite and countable non-intersecting unions, that is

1. Ω ∈ G.
2. A ∈ G implies that Ω\A ∈ G.
3. A1, A2, . . . ∈ G and An

⋂
Am = ∅ for n �= m imply that

⋃
n An ∈ G.

Note that an intersection of Dynkin systems is again a Dynkin system.
Therefore, it makes sense to talk about the smallest Dynkin system containing
a given collection of sets K—namely, it is the intersection of all the Dynkin
systems that contain all the elements of K.
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Lemma 4.12. Let K be a π-system and let G be the smallest Dynkin system
such that K ⊆ G. Then G = σ(K).

Proof. Since σ(K) is a Dynkin system, we obtain G ⊆ σ(K). In order to prove
the opposite inclusion, we first note that if a π-system is a Dynkin system, then
it is also a σ-algebra. Therefore, it is sufficient to show that G is a π-system.
Let A ∈ G and define

GA = {B ∈ G : A
⋂

B ∈ G}.

The collection of sets GA obviously satisfies the first and the third conditions
of Definition 4.11. It also satisfies the second condition since if A,B ∈ G and
A
⋂
B ∈ G, then A

⋂
(Ω\B) = Ω\[(A⋂

B)
⋃
(Ω\A)] ∈ G. Moreover, if A ∈ K,

then K ⊆ GA. Thus, for A ∈ K we have GA = G, which implies that if A ∈ K,
B ∈ G, then A

⋂
B ∈ G. This implies that K ⊆ GB and therefore GB = G for

any B ∈ G. Thus G is a π-system. �

Lemma 4.12 can be re-formulated as follows.

Lemma 4.13. If a Dynkin system G contains a π-system K, then it also con-
tains the σ-algebra generated by K, that is σ(K) ⊆ G.

Let us consider two useful applications of this lemma.

Lemma 4.14. If P1 and P2 are two probability measures which coincide on
all elements of a π-system K, then they coincide on the minimal σ-algebra
which contains K.

Proof. Let G be the collection of sets A such that P1(A) = P2(A). Then G is
a Dynkin system, which contains K. Consequently, σ(K) ⊆ G. �

In order to discuss sequences of independent random variables and the
laws of large numbers, we shall need the following statement.

Lemma 4.15. Let ξ1, . . . , ξn be independent random variables, m1 + . . . +
mk = n and f1, . . . , fk be measurable functions of m1, . . . ,mk variables respec-
tively. Then the random variables η1 = f1(ξ1, . . . , ξm1), η2 = f2(ξm1+1, . . . ,
ξm1+m2),. . . , ηk = f(ξm1+...+mk−1+1, . . . , ξn) are independent.

Proof. We shall prove the lemma in the case k = 2 since the general case
requires only trivial modifications. Consider the sets A = A1 × . . .×Am1 and
B = B1 × . . .×Bm2 , where A1, . . . , Am1 , B1, . . . , Bm2 are Borel subsets of R.
We shall refer to such sets as rectangles. The collections of all rectangles in
R

m1 and in R
m2 are π-systems. Note that by the assumptions of the lemma,

P((ξ1, . . . , ξm1) ∈ A)P((ξm1+1, . . . , ξm1+m2) ∈ B) =
(4.3)

P((ξ1, . . . , ξm1) ∈ A, (ξm1+1, . . . , ξm1+m2) ∈ B).
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Fix a setB = B1×. . .×Bm2 and notice that the collection of all the measurable
sets A that satisfy (4.3) is a Dynkin system containing all the rectangles
in R

m1 . Therefore, the relation (4.3) is valid for all sets A in the smallest
σ-algebra containing all the rectangles, which is the Borel σ-algebra on R

m1 .
Now we can fix a Borel set A and, using the same arguments, demonstrate
that (4.3) holds for any Borel set B.

It remains to apply (4.3) to A = f−1
1 (A) and B = f−1

2 (B), where A and
B are arbitrary Borel subsets of R. �

4.4 Problems

1. Let P be the probability distribution of the sequence of n Bernoulli trials,
ω = (ω1, . . . , ωn), ωi = 1 or 0 with probabilities p and 1−p. Find P(ω1 =
1|ω1 + . . .+ ωn = m).

2. Find the distribution function of a random variable ξ which takes positive
values and satisfies P(ξ > x+ y|ξ > x) = P(ξ > y) for all x, y > 0.

3. Two coins are in a bag. One is symmetric, while the other is not—if
tossed it lands heads up with probability equal to 0.6. One coin is ran-
domly pulled out of the bag and tossed. It lands heads up. What is the
probability that the same coin will land heads up if tossed again?

4. Suppose that each of the random variables ξ and η takes at most two
values, a and b. Prove that ξ and η are independent if E(ξη) = EξEη.

5. Give an example of three events A1, A2, and A3 which are not indepen-
dent, yet pair-wise independent.

6. Give an example of two random variables ξ and η which are not indepen-
dent, yet E(ξη) = EξEη.

7. A random variable ξ has Gaussian distribution with mean zero and vari-
ance one, while a random variable η has the distribution with the density

pη(t) =

{

te−
t2

2 if t ≥ 0
0 otherwise.

Find the distribution of ζ = ξ · η assuming that ξ and η are independent.
8. Let ξ1 and ξ2 be two independent random variables with Gaussian dis-

tribution with mean zero and variance one. Prove that η1 = ξ21 + ξ22 and
η2 = ξ1/ξ2 are independent.

9. Two editors were independently proof-reading the same manuscript. One
found a misprints, the other found b misprints. Of those, c misprints
were found by both of them. How would you estimate the total number
of misprints in the manuscript?

10. Let ξ, η be independent Poisson distributed random variables with ex-
pectations λ1 and λ2 respectively. Find the distribution of ζ = ξ + η.
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11. Let ξ, η be independent random variables. Assume that ξ has the uniform
distribution on [0, 1], and η has the Poisson distribution with parameter
λ. Find the distribution of ζ = ξ + η.

12. Let ξ1, ξ2, . . . be independent identically distributed Gaussian random
variables with mean zero and variance one. Let η1, η2, . . . be indepen-
dent identically distributed exponential random variables with mean one.
Prove that there is n > 0 such that

P(max(η1, . . . , ηn) ≥ max(ξ1, . . . , ξn)) > 0.99.

13. Suppose that A1 and A2 are independent algebras, that is any two sets
A1 ∈ A1 and A2 ∈ A2 are independent. Prove that the σ-algebras σ(A1)
and σ(A2) are also independent. (Hint: use Lemma 4.12.)

14. Let ξ1, ξ2, . . . be independent identically distributed random variables and
N be an N-valued random variable independent of ξi’s. Show that if ξ1
and N have finite expectation, then

E

N∑

i=1

ξi = E(N)E(ξ1).
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