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Conditional Probabilities and Independence

4.1 Conditional Probabilities

Let (£2,F,P) be a probability space, and let A, B € F be two events. We
assume that P(B) > 0.

Definition 4.1. The conditional probability of A given B is

P(AB)

PAIB) = =55

While the conditional probability depends on both A and B, this dependence
has a very different nature for the two sets. As a function of A the conditional
probability has the usual properties of a probability measure:

1. P(A|B) > 0.

2. P(2|B) =1.

3. For a finite or infinite sequence of disjoint events A; with A = (J, A; we
have

P(A|B) = ZP(AJB) .

As a function of B, the conditional probability satisfies the so-called formula
of total probability. Let {B1, Be, ...} be a finite or countable partition of the
space {2, that is B; (| Bj = 0 for ¢ # j and |J; B; = 2. We also assume that
P(B;) > 0 for every i. Take A € F. Then

P(A) = ZP(AﬂBi) = ZP(A|Bi)P(Bi) (4.1)

is called the formula of total probability. This formula is reminiscent of mul-
tiple integrals written as iterated integrals. The conditional probability plays
the role of the inner integral and the summation over i is the analog of the
outer integral.
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In mathematical statistics the events B; are sometimes called hypothe-
ses, and probabilities P(B;) are called prior probabilities (i.e., given pre-
experiment). We assume that as a result of the trial an event A occurred. We
wish, on the basis of this, to draw conclusions regarding which of the hypothe-
ses B; is most likely. The estimation is done by calculating the probabilities
P(By|A) which are sometimes called posterior (post-experiment) probabili-
ties. Thus

P(BxNA4) P(A[By)P(By)

P(By|A) = P(4) >, P(Bi)P(A|B;)

This relation is called Bayes’ formula.

4.2 Independence of Events, o-Algebras, and Random
Variables

Definition 4.2. Two events Ay and Ay are called independent if
P(A; () A2) = P(A1)P(Ay) .

The events () and 2 are independent of any event.

Lemma 4.3. If (A1, A2) is a pair of independent events, then (A1, Ay),
(A1, A2), and (A1, As), where A; = 2\A;, j = 1,2, are also pairs of in-
dependent events.

Proof. If A; and As are independent, then
P(A; () A2) = P((2\A1)[ ) A2)) =

P(Ay) — P(A; [ )A2) = P(A2) — P(41)P(A) = (4.2)

(1 —P(A1))P(Az) = P(A;)P(Ay).

Therefore, A; and A, are independent. By interchanging A; and A in the
above argument, we obtain that A; and Ay are independent. Finally, A; and
As are independent since we can replace Az by As in (4.2). O

The notion of pair-wise independence introduced above is easily general-
ized to the notion of independence of any finite number of events.

Definition 4.4. The events A1, ..., A, are called independent if for any 1 <
k<nandanyl<ip <...<ip<n

P(Ai, (). )Ai) =P(As) ... P(4;,) .



4.2 Independence of Events, o-Algebras, and Random Variables 61

For n > 3 the pair-wise independence of events A; and A; forall1 <i < j<mn
does not imply that the events Aj,..., A, are independent (see Problem 5).

Consider now a collection of c-algebras Fi,...,F,, each of which is a
o-subalgebra of F.

Definition 4.5. The o-algebras Fi,...,F, are called independent if for any
Ay € F,..., A, € F, the events Ay, ..., A, are independent.

Take a sequence of random variables &i,...,&,. Each random variable &;
generates the o-algebra F;, where the elements of F; have the form C =
{w: & (w) € A} for some Borel set A C R. Tt is easy to check that the collec-
tion of such sets is indeed a g-algebra, since the collection of Borel subsets of
R is a o-algebra.

Definition 4.6. Random wvariables &1,...,&, are called independent if the
o-algebras Fu, ..., Fn they generate are independent.

Finally, we can generalize the notion of independence to arbitrary families of
events, o-algebras, and random variables.

Definition 4.7. A family of events, o-algebras, or random variables is called
independent if any finite sub-family is independent.

We shall now prove that the expectation of a product of independent
random variables is equal to the product of expectations. The converse is, in
general, not true (see Problem 6).

Theorem 4.8. If £ and n are independent random variables with finite expec-
tations, then the expectation of the product is also finite and E({n) = E{En.

Proof. Let & and & be the positive and negative parts, respectively, of the
random variable &, as defined above. Similarly, let ; and 72 be the positive and
negative parts of 7. It is sufficient to prove that E(&;n;) = E¢En;, i,7 =1,2.
We shall prove that E(£1m1) = E& En, the other cases being completely
similar. Define f,(w) and g, (w) by the relations

Folw)=k2™" if k27" <& (w) < (k+1)27",

gn(w) =k27" if k27" <m(w) < (k+1)27".

Thus f, and g, are two sequences of simple random variables which mono-
tonically approximate from below the variables £ and 77 respectively. Also,
the sequence of simple random variables f, g, monotonically approximates
the random variable &;7m; from below. Therefore,

n—oo n—oo n—>00
Since the limit of a product is the product of the limits, it remains to show that

Efngn = Ef,Egy for any n, . Let A} be the event {k27" < & < (k+1)27"}
and B} be the event {k27" < n; < (k+ 1)27"}. Note that for any ki and
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ko the events A7 and By, are independent due to the independence of the
random variables ¢ and 1. We write

Efugn = Y kike2 >"P(A}, (| Bp,) =

k1,k2

> k27"P(A}) Y k2 "P(BY,) = EfuEg, |
k}l k2

which completes the proof of the theorem. O

Consider the space {2 corresponding to the homogeneous sequence of n
independent trials, w = (wr,...,wy), and let &(w) = w;.

Lemma 4.9. The sequence &1, ...,&, is a sequence of identically distributed
independent random variables.

Proof. Each random variable &; takes values in a space X with a o-algebra G,
and the probabilities of the events {w : &(w) € A}, A € G, are equal to the
probability of A in the space X. Thus they are the same for different 7 if A
is fixed, which means that & are identically distributed. Their independence
follows from the definition of the sequence of independent trials. O

4.3 w-Systems and Independence

The following notions of a m-system and of a Dynkin system are very useful
when proving independence of functions and o-algebras.

Definition 4.10. A collection K of subsets of (2 is said to be a m-system
if it contains the empty set and is closed under the operation of taking the
intersection of two sets, that is

1.)ek.
2. A, B € K implies that A(\B € K.

Definition 4.11. A collection G of subsets of 2 is called a Dynkin system if
it contains 2 and is closed under the operations of taking complements and
finite and countable non-intersecting unions, that is

1. 2€g.
2. A € G implies that 2\A € G.
3. A1,As,...€G and A, A =0 for n# m imply that | J,, An € G.

Note that an intersection of Dynkin systems is again a Dynkin system.
Therefore, it makes sense to talk about the smallest Dynkin system containing
a given collection of sets K—namely, it is the intersection of all the Dynkin
systems that contain all the elements of K.
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Lemma 4.12. Let I be a m-system and let G be the smallest Dynkin system
such that KK C G. Then G = o(K).

Proof. Since o(K) is a Dynkin system, we obtain G C ¢(K). In order to prove
the opposite inclusion, we first note that if a m-system is a Dynkin system, then

it is also a o-algebra. Therefore, it is sufficient to show that G is a w-system.
Let A € G and define

Ga={BeG:A[\Beg}.

The collection of sets G4 obviously satisfies the first and the third conditions
of Definition 4.11. It also satisfies the second condition since if A, B € G and
ANB € G, then AN\B) = 2\[(AN B)UJ(2\A)] € G. Moreover, if A € K,
then K C Ga. Thus, for A € K we have G4 = G, which implies that if A € IC,
B e G, then A( B € G. This implies that K C Gp and therefore Gg = G for
any B € G. Thus G is a w-system. O

Lemma 4.12 can be re-formulated as follows.

Lemma 4.13. If a Dynkin system G contains a m-system KC, then it also con-
tains the o-algebra generated by K, that is o(K) C G.

Let us consider two useful applications of this lemma.

Lemma 4.14. If P1 and P2 are two probability measures which coincide on
all elements of a m-system K, then they coincide on the minimal o-algebra
which contains IC.

Proof. Let G be the collection of sets A such that P(A4) = P3(A). Then G is
a Dynkin system, which contains K. Consequently, o(K) C G. O

In order to discuss sequences of independent random variables and the
laws of large numbers, we shall need the following statement.

Lemma 4.15. Let &1,...,&, be independent random variables, m1 + ... +
mg =n and f1,..., [r be measurable functions of my, ..., my variables respec-
tively. Then the random wvariables 1 = f1(€1,---,&my), 2 = fo(Emyt1s---s
Emitms)se s M = [(Emytotmp_14+1,---+En) are independent.

Proof. We shall prove the lemma in the case kK = 2 since the general case
requires only trivial modifications. Consider the sets A = A; X ... X A,,, and
B =By x...X By,,, where Ay,...,An,, B1,...,Bn, are Borel subsets of R.
We shall refer to such sets as rectangles. The collections of all rectangles in
R™! and in R™2 are w-systems. Note that by the assumptions of the lemma,

P((gla oo 757711) € A)P((§m1+lu cee 7§m1+m2) € B) =

P((€17""€m1) € Av (§m1+1;---;€m1+m2) € B)

(4.3)
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Fix aset B = B X...x B, and notice that the collection of all the measurable
sets A that satisfy (4.3) is a Dynkin system containing all the rectangles
in R™t. Therefore, the relation (4.3) is valid for all sets A in the smallest
o-algebra containing all the rectangles, which is the Borel o-algebra on R™!.
Now we can fix a Borel set A and, using the same arguments, demonstrate
that (4.3) holds for any Borel set B.

It remains to apply (4.3) to A = f;*(A) and B = f; '(B), where A and

B are arbitrary Borel subsets of R. O

4.4 Problems

10.

. Let P be the probability distribution of the sequence of n Bernoulli trials,

w=(w1,...,wn), w; =1 or 0 with probabilities p and 1 — p. Find P(w; =
lwi + ...+ w, =m).

. Find the distribution function of a random variable £ which takes positive

values and satisfies P(§ > x 4+ y|¢ > x) = P(§ > y) for all z,y > 0.

. Two coins are in a bag. One is symmetric, while the other is not—if

tossed it lands heads up with probability equal to 0.6. One coin is ran-
domly pulled out of the bag and tossed. It lands heads up. What is the
probability that the same coin will land heads up if tossed again?

. Suppose that each of the random variables £ and 7 takes at most two

values, a and b. Prove that £ and n are independent if E(¢n) = ESEn.

. Give an example of three events Ay, Ao, and A3 which are not indepen-

dent, yet pair-wise independent.

. Give an example of two random variables £ and 1 which are not indepen-

dent, yet E(£n) = EEEn.
A random variable ¢ has Gaussian distribution with mean zero and vari-
ance one, while a random variable 7 has the distribution with the density

t2
te”z ift>0
t) = <
pn( ) {O otherwise.

Find the distribution of {( = £ - n assuming that £ and 7 are independent.

. Let & and & be two independent random variables with Gaussian dis-

tribution with mean zero and variance one. Prove that n; = &7 + £5 and
no = &1 /& are independent.

. Two editors were independently proof-reading the same manuscript. One

found a misprints, the other found b misprints. Of those, ¢ misprints
were found by both of them. How would you estimate the total number
of misprints in the manuscript?

Let &, be independent Poisson distributed random variables with ex-
pectations A1 and Ag respectively. Find the distribution of ( = & + 7.



11.

12.

13.

14.
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Let &, 1 be independent random variables. Assume that £ has the uniform
distribution on [0, 1], and 1 has the Poisson distribution with parameter
A. Find the distribution of ( = £ + 7.

Let &1,&2,... be independent identically distributed Gaussian random
variables with mean zero and variance one. Let 71,72,... be indepen-
dent identically distributed exponential random variables with mean one.
Prove that there is n > 0 such that

P(max(ny,...,m,) > max(&y,...,&,)) > 0.99.

Suppose that A; and A, are independent algebras, that is any two sets
A1 € Ay and As € As are independent. Prove that the o-algebras o(A;)
and o(As) are also independent. (Hint: use Lemma 4.12.)

Let &1, &2, ... be independent identically distributed random variables and
N be an N-valued random variable independent of &;’s. Show that if &
and N have finite expectation, then

N
EZ@ = E(N)E(&).
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