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Lebesgue Integral and Mathematical

Expectation

3.1 Definition of the Lebesgue Integral

In this section we revisit the familiar notion of mathematical expectation, but
now we define it for general (not necessarily discrete) random variables. The
notion of expectation is identical to the notion of the Lebesgue integral.

Let (Ω,F , μ) be a measurable space with a finite measure. A measurable
function is said to be simple if it takes a finite or countable number of values.
The sum, product and quotient (when the denominator does not take the
value zero) of two simple functions is again a simple function.

Theorem 3.1. Any non-negative measurable function f is a monotone limit
from below of non-negative simple functions, that is f(ω) = limn→∞ fn(ω) for
every ω, where fn are non-negative simple functions and fn(ω) ≤ fn+1(ω) for
every ω. Moreover, if a function f is a limit of measurable functions for all ω,
then f is measurable.

Proof. Let fn be defined by the relations

fn(ω) = k2−n if k2−n ≤ f(ω) < (k + 1)2−n, k = 0, 1, . . . .

The sequence fn satisfies the requirements of the theorem.
We now prove the second statement. Given a function f which is the limit

of measurable functions fn, consider the subsets A ⊆ R for which f−1(A) ∈ F .
It is easy to see that these subsets forms a σ-algebra which we shall denote
by Rf . Let us prove that open intervals At = (−∞, t) belong to Rf . Indeed
it is easy to check the following relation

f−1(At) =
⋃

k

⋃

m

⋂

n≥m

{ω : fn(ω) < t− 1

k
} .

Since fn are measurable, the sets {ω : fn(ω) < t− 1
k} belong to F , and there-

fore f−1(At) ∈ F . Since the smallest σ-algebra which contains all At is the
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38 3 Lebesgue Integral and Mathematical Expectation

Borel σ-algebra on R, f−1(A) ∈ F for any Borel set A of the real line. This
completes the proof of the theorem. �

We now introduce the Lebesgue integral of a measurable function. When
f is measurable and the measure is a probability measure, we refer to the
integral as the expectation of the random variable, and denote it by Ef .

We start with the case of a simple function. Let f be a simple function
taking non-negative values, which we denote by a1, a2, . . .. Let us define the
events Ci = {ω : f(ω) = ai}.
Definition 3.2. The sum of the series

∑∞
i=1 aiμ(Ci), provided that the se-

ries converges, is called the Lebesgue integral of the function f . It is denoted
by

∫
Ω
fdμ. If the series diverges, then it is said that the integral is equal to

plus infinity.

It is clear that the sum of the series does not depend on the order of summa-
tion. The following lemma is clear.

Lemma 3.3. The integral of a simple non-negative function has the following
properties.

1.
∫
Ω fdμ ≥ 0.

2.
∫
Ω
χΩdμ = μ(Ω), where χΩ is the function identically equal to 1 on Ω.

3.
∫
Ω(af1 + bf2)dμ = a

∫
Ω f1dμ+ b

∫
Ω f2dμ for any a, b > 0.

4.
∫
Ω
f1dμ ≥ ∫

Ω
f2dμ if f1 ≥ f2 ≥ 0.

Now let f be an arbitrary measurable function taking non-negative values.
We consider the sequence fn of non-negative simple functions which converge
monotonically to f from below. It follows from the fourth property of the
Lebesgue integral that the sequence

∫
Ω fndμ is non-decreasing and there exists

a limit limn→∞
∫
Ω
fndμ, which is possibly infinite.

Theorem 3.4. Let f and fn be as above. Then the value of limn→∞
∫
Ω fndμ

does not depend on the choice of the approximating sequence.

We first establish the following lemma.

Lemma 3.5. Let g ≥ 0 be a simple function such that g ≤ f . Assume that
f = limn→∞ fn, where fn are non-negative simple functions such that fn+1 ≥
fn. Then

∫
Ω
gdμ ≤ limn→∞

∫
Ω
fndμ.

Proof. Take an arbitrary ε > 0 and set Cn = {ω : fn(ω) − g(ω) > −ε}. It
follows from the monotonicity of fn that Cn ⊆ Cn+1. Since fn ↑ f and f ≥ g,
we have

⋃
n Cn = Ω. Therefore, μ(Cn) → μ(Ω) as n → ∞. Let χCn be the

indicator function of the set Cn. Then gn = gχCn is a simple function and
gn ≤ fn + ε. Therefore, by the monotonicity of

∫
Ω
fndμ,

∫

Ω

gndμ ≤
∫

Ω

fndμ+ ε,

∫

Ω

gndμ ≤ lim
m→∞

∫

Ω

fmdμ+ ε.
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Since ε is arbitrary, we obtain
∫
Ω gndμ ≤ limm→∞

∫
Ω fmdμ. It remains to

prove that limn→∞
∫
Ω
gndμ =

∫
Ω
gdμ.

We denote by b1, b2, . . . the values of the function g, and by Bi the set
where the value bi is taken, i = 1, 2, . . .. Then

∫

Ω

gdμ =
∑

i

biμ(Bi),

∫

Ω

gndμ =
∑

i

biμ(Bi

⋂
Cn).

It is clear that for all i we have limn→∞ μ(Bi

⋂
Cn) = μ(Bi). Since the series

above consists of non-negative terms and the convergence is monotonic for
each i, we have

lim
n→∞

∫

Ω

gndμ = lim
n→∞

∑

i

biμ(Bi

⋂
Cn)

=
∑

i

bi lim
n→∞μ(Bi

⋂
Cn) =

∑

i

biμ(Bi) =

∫

Ω

gdμ .

This completes the proof of the lemma. �

It is now easy to prove the independence of limn→∞
∫
Ω fndμ from the

choice of the approximating sequence.

Proof of Theorem 3.4. Let there be two sequences f
(1)
n and f

(2)
n such that

f
(1)
n+1 ≥ f

(1)
n and f

(2)
n+1 ≥ f

(2)
n for all n, and

lim
n→∞ f (1)

n (ω) = lim
n→∞ f (2)

n (ω) = f(ω) for every ω.

It follows from Lemma 3.5 that for any k,
∫

Ω

f
(1)
k dμ ≤ lim

n→∞

∫

Ω

f (2)
n dμ,

and therefore,

lim
n→∞

∫

Ω

f (1)
n dμ ≤ lim

n→∞

∫

Ω

f (2)
n dμ.

We obtain

lim
n→∞

∫

Ω

f (1)
n dμ ≥ lim

n→∞

∫

Ω

f (2)
n dμ

by interchanging f
(1)
n and f

(2)
n . Therefore,

lim
n→∞

∫

Ω

f (1)
n dμ = lim

n→∞

∫

Ω

f (2)
n dμ.

�
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Definition 3.6. Let f be a non-negative measurable function and fn a se-
quence of non-negative simple functions which converge monotonically to f
from below. The limit limn→∞

∫
Ω fndμ is called the Lebesgue integral of the

function f . It is denoted by
∫
Ω
fdμ.

In the case of a simple function f , this definition agrees with the definition of
the integral for a simple function, since we can take fn = f for all n.

Now let f be an arbitrary (not necessarily positive) measurable function.
We introduce the indicator functions:

χ+(ω) =

{
1 if f(ω) ≥ 0,
0 if f(ω) < 0,

χ−(ω) =
{
1 if f(ω) < 0,
0 if f(ω) ≥ 0.

Then χ+(ω) + χ−(ω) ≡ 1, f = fχ+ + fχ− = f+ − f−, where f+ = fχ+ and
f− = −fχ−. Moreover, f+ ≥ 0, f− ≥ 0, so the integrals

∫
Ω f+dμ and

∫
Ω f−dμ

have already been defined.

Definition 3.7. The function f is said to be integrable if
∫
Ω f+dμ < ∞ and∫

Ω
f−dμ < ∞. In this case the integral is equal to

∫
Ω
fdμ =

∫
Ω
f+dμ −∫

Ω f−dμ. If
∫
Ω f+dμ = ∞ and

∫
Ω f−dμ < ∞ (

∫
Ω f+dμ < ∞,

∫
Ω f−dμ = ∞),

then
∫
Ω
fdμ = ∞ (

∫
Ω
fdμ = −∞). If

∫
Ω
f+dμ =

∫
Ω
f−dμ = ∞, then

∫
Ω
fdμ

is not defined.

Since |f | = f++f−, we have
∫
Ω |f |dμ =

∫
Ω f+dμ+

∫
Ω f−dμ, and so

∫
Ω fdμ

is finite if and only if
∫
Ω
|f |dμ is finite. The integral has Properties 2–4 listed

in Lemma 3.3.
Let A ∈ F be a measurable set and f a measurable function on (Ω,F , μ).

We can define the integral of f over the set A (which is a subset of Ω) in two
equivalent ways. One way is to define

∫

A

fdμ =

∫

Ω

fχAdμ,

where χA is the indicator function of the set A. Another way is to consider
the restriction of μ from Ω to A. Namely, we consider the new σ-algebra
FA, which contains all the measurable subsets of A, and the new measure
μA on FA, which agrees with μ on all the sets from FA. Then (A,FA) is a
measurable space with a measure μA, and we can define

∫

A

fdμ =

∫

A

fdμA.

It can easily be seen that the above two definitions lead to the same notion
of the integral over a measurable set.

Let us note another important property of the Lebesgue integral: it is a
σ-additive function on F . Namely, let A =

⋃∞
i=1 Ai, where A1, A2, . . . are
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measurable sets such that Ai ∩ Aj = ∅ for i �= j. Let f be a measurable
function such that

∫
A
fdμ is finite. Then

∫

A

fdμ =
∞∑

i=1

∫

Ai

fdμ.

To justify this statement we can first consider f to be a non-negative simple
function. Then the σ-additivity follows from the fact that in an infinite se-
ries with non-negative terms the terms can be re-arranged. For an arbitrary
non-negative measurable f we use the definition of the integral as a limit of
integrals of simple functions. For f which is not necessarily non-negative, we
use Definition 3.7.

If f is a non-negative function, the σ-additivity of the integral implies that
the function η(A) =

∫
A
fdμ is itself a measure.

The mathematical expectation (which is the same as the Lebesgue inte-
gral over a probability space) has all the properties described in Chap. 1. In
particular

1. Eξ ≥ 0 if ξ ≥ 0.
2. EχΩ = 1 where χΩ is the random variable identically equal to 1 on Ω.
3. E(aξ1 + bξ2) = aEξ1 + bEξ2 if Eξ1 and Eξ2 are finite.

The variance of the random variable ξ is defined as E(ξ − Eξ)2, and the
n-th order moment is defined as Eξn. Given two random variables ξ1 and
ξ2, their covariance is defined as Cov(ξ1, ξ2) = E(ξ1 − Eξ1)(ξ2 − Eξ2). The
correlation coefficient of two random variables ξ1, ξ2 is defined as ρ(ξ1, ξ2) =
Cov(ξ1, ξ2)/

√
Varξ1Varξ2.

3.2 Induced Measures and Distribution Functions

Given a probability space (Ω,F ,P), a measurable space (Ω̃, F̃) and a mea-

surable function f : Ω → Ω̃, we can define the induced probability measure
P̃ on the σ-algebra F̃ via the formula

P̃(A) = P(f−1(A)) for A ∈ F̃ .

Clearly P̃(A) satisfies the definition of a probability measure. The following
theorem states that the change of variable is permitted in the Lebesgue inte-
gral.

Theorem 3.8. Let g : Ω̃ → R be a random variable. Then
∫

Ω

g(f(ω))dP(ω) =

∫

˜Ω

g(w̃)dP̃(w̃) .

The integral on the right-hand side is defined if and only if the integral on the
left-hand side is defined.
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Proof. Without loss of generality we can assume that g is non-negative. When
g is a simple function, the theorem follows from the definition of the induced
measure. For an arbitrary measurable function it suffices to note that any
such function is a limit of a non-decreasing sequence of simple functions. �

Let us examine once again the relationship between the random variables
and their distribution functions. Consider the collection of all intervals:

I = {(a, b), [a, b), (a, b], [a, b], where −∞ ≤ a ≤ b ≤ ∞}.
Let m : I → R be a σ-additive nonnegative function, that is

1. m(I) ≥ 0 for any I ∈ I.
2. If I, Ii ∈ I, i = 1, 2, . . ., Ii

⋂
Ij = ∅ for i �= j, and I =

⋃∞
i=1 Ii, then

m(I) =
∞∑

i=1

m(Ii) .

Although m is σ-additive, as required of a measure, it is not truly a measure
since it is defined on the collection of intervals, which is not a σ-algebra.

We shall need the following theorem (a particular case of the theorem on
the extension of a measure discussed in Sect. 3.4).

Theorem 3.9. Let m be a σ-additive function satisfying conditions 1 and 2.
Then there is a unique measure μ defined on the σ-algebra of Borel sets of
the real line, which agrees with m on all the intervals, that is μ(I) = m(I) for
each I ∈ I.

Consider the following three examples, which illustrate how a measure can
be constructed given its values on the intervals.

Example. Let F (x) be a distribution function. We define

m((a, b]) = F (b)− F (a), m([a, b]) = F (b)− lim
t↑a

F (t),

m((a, b)) = lim
t↑b

F (t)− F (a), m([a, b)) = lim
t↑b

F (t)− lim
t↑a

F (t).

Let us check that m is a σ-additive function. Let I, Ii, i = 1, 2, . . . be inter-
vals of the real line (open, half-open, or closed) such that I =

⋃∞
i=1 Ii and

Ii
⋂
Ij = ∅ if i �= j. We need to check that

m(I) =

∞∑

i=1

m(Ii). (3.1)

It is clear that m(I) ≥ ∑n
i=1 m(Ii) for each n, since the intervals Ii do not

intersect. Therefore, m(I) ≥ ∑∞
i=1 m(Ii).
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In order to prove the opposite inequality, we assume that an arbitrary
ε > 0 is given. Consider a collection of intervals J, Ji, i = 1, 2, . . . which are
constructed as follows. The interval J is a closed interval, which is contained
in I and satisfies m(J) ≥ m(I)− ε/2. (In particular, if I is closed we can take
J = I). Let Ji be an open interval, which contains Ii and satisfies m(Ji) ≤
m(Ii) + ε/2i+1. The fact that it is possible to select such intervals J and Ji
follows from the definition of the function m and the continuity from the right
of the function F . Note that J ⊆ ⋃∞

i=1 Ji, J is compact, and all Ji are open.
Therefore, J ⊆ ⋃n

i=1 Ji for some n. Clearly m(J) ≤ ∑n
i=1 m(Ji). Therefore,

m(I) ≤ ∑n
i=1 m(Ii) + ε. Since ε is arbitrary, we obtain m(I) ≤ ∑∞

i=1 m(Ii).
Therefore, (3.1) holds, and m is a σ-additive function.

Thus any distribution function gives rise to a probability measure on the
Borel σ-algebra of the real line. This measure will be denoted by μF . Some-
times, instead of writing dμF in the integral with respect to such a measure,
we shall write dF .

Conversely, any probability measure μ on the Borel sets of the real line
defines a distribution function via the formula F (x) = μ((−∞, x]). Thus there
is a one-to-one correspondence between probability measures on the real line
and distribution functions.

Remark 3.10. Similarly, there is a one-to-one correspondence between the dis-
tribution functions on R

n and the probability measures on the Borel sets
of Rn. Namely, the distribution function F corresponding to a measure μ is
defined by F (x1, . . . , xn) = μ((−∞, x1]× . . .× (−∞, xn]).

Example. Let f be a function defined on an interval [a, b] of the real line.
Let σ = {t0, t1, . . . , tn}, with a = t0 ≤ t1 ≤ . . . ≤ tn = b, be a partition of the
interval [a, b] into n subintervals. We denote the length of the largest interval
by δ(σ) = max1≤i≤n(ti − ti−1). The p-th variation (with p > 0) of f over the
partition σ is defined as

V p
[a,b](f, σ) =

n∑

i=1

|f(ti)− f(ti−1)|p.

Definition 3.11. The following limit

V p
[a,b](f) = lim sup

δ(σ)→0

V p
[a,b](f, σ),

is referred to as the p-th total variation of f over the interval [a, b].

Now let f be a continuous function with finite first (p = 1) total variation
defined on an interval [a, b] of the real line. Then it can be represented as a
difference of two continuous non-decreasing functions, namely,

f(x) = V 1
[a,x](f)− (V 1

[a,x](f)− f(x)) = F1(x) − F2(x).
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Now we can repeat the construction used in the previous example to define
the measures μF1 and μF2 on the Borel subsets of [a, b]. Namely, we can define

mi((x, y]) = mi([x, y]) = mi((x, y)) = mi([x, y)) = Fi(y)− Fi(x), i = 1, 2,

and then extend mi to the measure μFi using Theorem 3.9. The difference
μf = μF1 − μF2 is then a signed measure (see Sect. 3.6). If g is a Borel-
measurable function on [a, b], its integral with respect to the signed mea-

sure μf , denoted by
∫ b

a g(x)df(x) or
∫ b

a g(x)dμf (x), is defined as the difference
of the integrals with respect to the measures μF1 and μF2 ,

∫ b

a

g(x)df(x) =

∫ b

a

g(x)dμF1 (x)−
∫ b

a

g(x)dμF2 (x).

It is called the Lebesgue-Stieltjes integral of g with respect to f .

Example. For an interval I, let In = I ∩ [−n, n]. Define mn(I) as the length
of In. As in the first example, mn is a σ-additive function. Thus mn gives
rise to a measure on the Borel sets of the real line, which will be denoted by
λn and referred to as the Lebesgue measure on the segment [−n, n]. Now
for any Borel set A of the real line we can define its Lebesgue measure λ(A)
via λ(A) = limn→∞ λn(A). It is easily checked that λ is a σ-additive measure
which, however, may take infinite values for unbounded sets A.

Remark 3.12. The Lebesgue measure on the real line is an example of a σ-finite
measure. We now give the formal definition of a σ-finite measure, although
most of the measures that we deal with in this book are finite (probability)
measures. An integral with respect to a σ-finite measure can be defined in the
same way as an integral with respect to a finite measure.

Definition 3.13. Let (Ω,F) be a measurable space. A σ-finite measure is a
function μ, defined on F with values in [0,∞], which satisfies the following
conditions.

1. There is a sequence of measurable sets Ω1 ⊆ Ω2 ⊆ . . . ⊆ Ω such that
μ(Ωi) < ∞ for all i, and

⋃∞
i=1 Ωi = Ω.

2. If Ci ∈ F , i = 1, 2, . . . and Ci

⋂
Cj = ∅ for i �= j, then

μ(

∞⋃

i=1

Ci) =

∞∑

i=1

μ(Ci) .

If Fξ is the distribution function of a random variable ξ, then the measure
μFξ

(also denoted by μξ) coincides with the measure induced by the random
variable ξ. Indeed, the values of the induced measure and of μξ coincide on
the intervals, and therefore on all the Borel sets due to the uniqueness part
of Theorem 3.9.

Theorem 3.8 together with the fact that μξ coincides with the induced
measure imply the following.
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Theorem 3.14. Let ξ be a random variable and g be a Borel measurable func-
tion on R. Then

Eg(ξ) =

∫ ∞

−∞
g(x)dFξ(x).

Applying this theorem to the functions g(x) = x, g(x) = xp and g(x) =
(x− Eξ)2, we obtain the following.

Corollary 3.15.

Eξ =

∫ ∞

−∞
xdFξ(x), Eξp =

∫ ∞

−∞
xpdFξ(x), Varξ =

∫ ∞

−∞
(x− Eξ)2dFξ(x) .

3.3 Types of Measures and Distribution Functions

Let μ be a finite measure on the Borel σ-algebra of the real line. We distinguish
three special types of measures.

(a) Discrete measure. Assume that there exists a finite or countable set
A = {a1, a2, . . .} such that μ((−∞,∞)) = μ(A), that is A is a set of
full measure. In this case μ is called a measure of discrete type.

(b) Singular continuous measure. Assume that the measure of any single point
is zero, μ(a) = 0 for any a ∈ R, and there is a Borel set B of Lebesgue
measure zero which is of full measure for the measure μ, that is λ(B) = 0
and μ((−∞,∞)) = μ(B). In this case μ is called a singular continuous
measure.

(c) Absolutely continuous measure. Assume that for every set of Lebesgue
measure zero the μmeasure of that set is also zero, that is λ(A) = 0 implies
μ(A) = 0. In this case μ is called an absolutely continuous measure.

While any given measure does not necessarily belong to one of the three
classes above, the following theorem states that it can be decomposed into
three components, one of which is discrete, the second singular continuous,
and the third absolutely continuous.

Theorem 3.16. Given any finite measure μ on R there exist measures μ1, μ2

and μ3, the first of which is discrete, the second singular continuous and the
third absolutely continuous, such that for any Borel set C of the real line we
have

μ(C) = μ1(C) + μ2(C) + μ3(C) .

Such measures μ1, μ2 and μ3 are determined by the measure μ uniquely.

Proof. Let A1 be the collection of points a such that μ(a) ≥ 1, let A2 be the
collection of points a ∈ R\A1 such that μ(a) ≥ 1

2 , let A3 be the collection of
points a ∈ R\(A1

⋃
A2) such that μ(a) ≥ 1

3 , and so on. Since the measure is
finite, each setAn contains only finitely many elements. Therefore, A =

⋃
n An

is countable. At the same time μ(b) = 0 for any b /∈ A. Let μ1(C) = μ(C
⋂
A).
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We shall now construct the measure μ2 and a set B of zero Lebesgue
measure, but of full μ2 measure. (Note that it may turn out that μ2(B) = 0,
that is μ2 is identically zero.) First we inductively construct sets Bn, n ≥ 1, as
follows. Take B1 to be an empty set. Assuming that Bn has been constructed,
we take Bn+1 to be any set of Lebesgue measure zero, which does not intersect⋃n

i=1 Bi and satisfies

μ(Bn+1)− μ1(Bn+1) ≥ 1

m
(3.2)

with the smallest possible m, where m ≥ 1 is an integer. If no such m ex-
ists, then we take Bn+1 to be the empty set. For each m there is at most
a finite number of non-intersecting sets which satisfy (3.2), and therefore
the set R\⋃∞

n=1 Bn contains no set C for which μ(C) − μ1(C) > 0. We
put B =

⋃∞
n=1 Bn, which is a set of Lebesgue measure zero, and define

μ2(C) = μ(C
⋂
B)−μ1(C

⋂
B). Note that μ2(B) = μ2((−∞,∞)), and there-

fore μ2 is singular continuous.
By the construction of μ1 and μ2, we have that μ3(C) = μ(C) − μ1(C) −

μ2(C) is a measure which is equal to zero on each set of Lebesgue measure
zero. Thus we have the desired decomposition. The uniqueness part is left as
an easy exercise for the reader. �

Since there is a one-to-one correspondence between probability measures
on the real line and distribution functions, we can single out the classes of
distribution functions corresponding to the discrete, singular continuous and
absolutely continuous measures. In the discrete case F (x) = μ((−∞, x]) is a
step function. The jumps occur at the points ai of positive μ-measure.

If the distribution function F has a Lebesgue integrable density p, that is
F (x) =

∫ x

−∞ p(t)dt, then F corresponds to an absolutely continuous measure.

Indeed, μF (A) =
∫
A
p(t)dt for any Borel set A, since the equality is true for

all intervals, and therefore it is true for all Borel sets due to the uniqueness
of the extension of the measure. The value of the integral

∫
A p(t)dt over any

set of Lebesgue measure zero is equal to zero.
The converse is also true, i.e., any absolutely continuous measure has a

Lebesgue integrable density function. This follows from the Radon-Nikodym
theorem, which we shall state below.

If a measure μ does not contain a discrete component, then the distribution
function is continuous. Yet if the singular continuous component is present,
it cannot be represented as an integral of a density. The so-called Cantor
Staircase is an example of such a distribution function. Set F (t) = 0 for t ≤ 0,
F (t) = 1 for t ≥ 1. We construct F (t) for 0 < t < 1 inductively. At the n-th
step (n ≥ 0) we have disjoint intervals of length 3−n, where the function F (t)
is not yet defined, although it is defined at the end points of such intervals. Let
us divide every such interval into three equal parts, and set F (t) on the middle
interval (including the end-points) to be a constant equal to the half-sum of its
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values at the above-mentioned end-points. It is easy to see that the function
F (t) can be extended by continuity to the remaining t. The limit function is
called the Cantor Staircase. It corresponds to a singular continuous probability
measure. The theory of fractals is related to some classes of singular continuous
measures.

3.4 Remarks on the Construction of the Lebesgue
Measure

In this section we provide an abstract generalization of Theorem 3.9 on the
extension of a σ-additive function. Theorem 3.9 applies to the construction of
a measure on the real line which, in the case of the Lebesgue measure, can be
viewed as an extension of the notion of length of an interval. In fact we can
define the notion of measure starting from a σ-additive function defined on a
certain collection of subsets of an abstract set.

Definition 3.17. A collection G of subsets of Ω is called a semialgebra if it
has the following three properties:

1. Ω ∈ G.
2. If C1, C2 ∈ G, then C1

⋂
C2 ∈ G.

3. If C1, C2 ∈ G and C2 ⊆ C1, then there exists a finite collection of dis-
joint sets A1, . . . , An ∈ G such that C2

⋂
Ai = ∅ for i = 1, . . . , n and

C2

⋃
A1

⋃
. . .

⋃
An = C1.

Definition 3.18. A non-negative function with values in R defined on a semi-
algebra G is said to be σ-additive if it satisfies the following condition:

If C =
⋃∞

i=1 Ci with C ∈ G, Ci ∈ G, i = 1, 2, . . ., and Ci

⋂
Cj = ∅ for

i �= j, then

m(C) =

∞∑

i=1

m(Ci) .

Theorem 3.19 (Caratheodory). Let m be a σ-additive function defined on
a semialgebra (Ω,G). Then there exists a measure μ defined on (Ω, σ(G)) such
that μ(C) = m(C) for every C ∈ G. The measure μ which has this property is
unique.

We shall only indicate a sequence of steps used in the proof of the theorem,
without giving all the details. A more detailed exposition can be found in the
textbook of Fomin and Kolmogorov “Elements of Theory of Functions and
Functional Analysis”.

Step 1. Extension of the σ-additive function from the semialgebra to the
algebra. Let A be the collection of sets which can be obtained as finite unions
of disjoint elements of G, that is A ∈ A if A =

⋃n
i=1 Ci for some Ci ∈ G,
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where Ci

⋂
Cj = ∅ if i �= j. The collection of sets A is an algebra since it

contains the set Ω and is closed under finite unions, intersections, differences,
and symmetric differences. For A =

⋃n
i=1 Ci with Ci

⋂
Cj = ∅, i �= j, we

define m(A) =
∑n

i=1 m(Ci). We can then show that m is still a σ-additive
function on the algebra A.

Step 2. Definition of exterior measure and of measurable sets. For any set
B ⊆ Ω we can define its exterior measure as μ∗(B) = inf

∑
i m(Ai), where the

infimum is taken over all countable coverings of B by elements of the algebra
A. A set B is called measurable if for any ε > 0 there is A ∈ A such that
μ∗(A�B) ≤ ε. Recall that A�B is the notation for the symmetric difference
of the sets A and B. If B is measurable we define its measure to be equal to
the exterior measure: μ(B) = μ∗(B). Denote the collection of all measurable
sets by B.

Step 3. The σ-algebra of measurable sets and σ-additivity of the measure.
The main part of the proof consists of demonstrating that B is a σ-algebra, and
that the function μ defined on it has the properties of a measure. We can then
restrict the measure to the smallest σ-algebra containing the original semial-
gebra. The uniqueness of the measure follows easily from the non-negativity
of m and from the fact that the measure is uniquely defined on the algebra A.
Alternatively, see Lemma 4.14 in Chap. 4, which also implies the uniqueness
of the measure.

Remark 3.20. It is often convenient to consider the measure μ on the mea-
surable space (Ω,B), rather than to restrict the measure to the σ-algebra
σ(G), which is usually smaller than B. The difference is that (Ω,B) is al-
ways complete with respect to measure μ, while (Ω, σ(G)) does not need to
be complete. We discuss the notion of completeness in the remainder of this
section.

Definition 3.21. Let (Ω,F) be a measurable space with a finite measure μ on
it. A set A ⊆ Ω is said to be μ-negligible if there is an event B ∈ F such that
A ⊆ B and μ(B) = 0. The space (Ω,F) is said to be complete with respect to
μ if all μ-negligible sets belong to F .

Given an arbitrary measurable space (Ω,F) with a finite measure μ on it,

we can consider an extended σ-algebra F̃ . It consists of all sets B̃ ⊆ Ω
which can be represented as B̃ = A ∪ B, where A is a μ-negligible set
and B ∈ F . We define μ̃(B̃) = μ(B). It is easy to see that μ̃(B̃) does

not depend on the particular representation of B̃, (Ω, F̃) is a measurable

space, μ̃ is a finite measure, and (Ω, F̃) is complete with respect to μ̃.

We shall refer to (Ω, F̃) as the completion of (Ω,F) with respect to the
measure μ.

It is not difficult to see that F̃ = σ(F ∪ Nμ), where Nμ is the collection
of μ-negligible sets in Ω.
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3.5 Convergence of Functions, Their Integrals,
and the Fubini Theorem

Let (Ω,F , μ) be a measurable space with a finite measure. Let f and fn,
n = 1, 2, . . . be measurable functions.

Definition 3.22. A sequence of functions fn is said to converge to f uni-
formly if

lim
n→∞ sup

ω∈Ω
|fn(ω)− f(ω)| = 0.

Definition 3.23. A sequence of functions fn is said to converge to f in mea-
sure (or in probability, if μ is a probability measure) if for any δ > 0 we
have

lim
n→∞μ(ω : |fn(ω)− f(ω)| > δ) = 0.

Definition 3.24. A sequence of functions fn is said to converge to f almost
everywhere (or almost surely) if there is a measurable set A with μ(Ω \A) = 0
such that

lim
n→∞ fn(ω) = f(ω) for ω ∈ A.

It is not difficult to demonstrate that convergence almost everywhere implies
convergence in measure. The opposite implication is only true if we consider a
certain subsequence of the original sequence fn (see Problem 8). The following
theorem relates the notions of convergence almost everywhere and uniform
convergence.

Theorem 3.25 (Egorov Theorem). If a sequence of measurable functions
fn converges to a measurable function f almost everywhere, then for any δ > 0
there exists a measurable set Ωδ ⊆ Ω such that μ(Ωδ) ≥ μ(Ω) − δ and fn
converges to f uniformly on Ωδ.

Proof. Let δ > 0 be fixed. Let

Ωm
n =

⋂

i≥n

{ω : |fi(ω)− f(ω)| < 1

m
}

and

Ωm =

∞⋃

n=1

Ωm
n .

Due to the continuity of the measure (Theorem 1.36), for every m there is
n0(m) such that μ(Ωm\Ωm

n0(m)) < δ/2m. We define Ωδ =
⋂∞

m=1 Ω
m
n0(m). We

claim that Ωδ satisfies the requirements of the theorem.
The uniform convergence follows from the fact that |fi(ω)− f(ω)| < 1/m

for all ω ∈ Ωδ if i > n0(m). In order to estimate the measure of Ωδ, we note
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that fn(ω) does not converge to f(ω) if ω is outside of the set Ωm for some
m. Therefore, μ(Ω\Ωm) = 0. This implies

μ(Ω\Ωm
n0(m)) = μ(Ωm\Ωm

n0(m)) <
δ

2m
.

Therefore,

μ(Ω\Ωδ) = μ(

∞⋃

m=1

(Ω\Ωm
n0(m))) ≤

∞∑

m=1

μ(Ω\Ωm
n0(m)) <

∞∑

m=1

δ

2m
= δ,

which completes the proof of the theorem. �

The following theorem justifies passage to the limit under the sign of the
integral.

Theorem 3.26 (Lebesgue Dominated Convergence Theorem). If a se-
quence of measurable functions fn converges to a measurable function f almost
everywhere and

|fn| ≤ ϕ,

where ϕ is integrable on Ω, then the function f is integrable on Ω and

lim
n→∞

∫

Ω

fndμ =

∫

Ω

fdμ.

Proof. Let some ε > 0 be fixed. It is easily seen that |f(ω)| ≤ ϕ(ω) for almost
all ω. Therefore, as follows from the elementary properties of the integral, the
function f is integrable. Let Ωk = {ω : k − 1 ≤ ϕ(ω) < k}. Since the integral
is a σ-additive function,

∫

Ω

ϕdμ =

∞∑

k=1

∫

Ωk

ϕdμ

Let m > 0 be such that
∑∞

k=m

∫
Ωk

ϕdμ < ε/5. Let A =
⋃∞

k=m Ωk. By the

Egorov Theorem, we can select a set B ⊆ Ω\A such that μ(B) ≤ ε/5m and
fn converges to f uniformly on the set C = (Ω\A)\B. Finally,

|
∫

Ω

fndμ−
∫

Ω

fdμ| ≤ |
∫

A

fndμ−
∫

A

fdμ|

+|
∫

B

fndμ−
∫

B

fdμ|+ |
∫

C

fndμ−
∫

C

fdμ|.

The first term on the right-hand side can be estimated from above by 2ε/5,
since

∫
A |fn|dμ,

∫
A |f |dμ ≤ ∫

A ϕdμ < ε/5. The second term does not exceed
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μ(B) supω∈B(|fn(ω)| + |f(ω)|) ≤ 2ε/5. The last term can be made smaller
than ε/5 for sufficiently large n due to the uniform convergence of fn to f on
the set C. Therefore, | ∫Ω fndμ − ∫

Ω fdμ| ≤ ε for sufficiently large n, which
completes the proof of the theorem. �

From the Lebesgue Dominated Convergence Theorem it is easy to derive
the following two statements, which we provide here without proof.

Theorem 3.27 (Levi Monotonic Convergence Theorem). Let a se-
quence of measurable functions be non-decreasing almost surely, that is

f1(ω) ≤ f2(ω) ≤ . . . ≤ fn(ω) ≤ . . .

almost surely. Assume that the integrals are bounded:

∫

Ω

fndμ ≤ K for all n.

Then, almost surely, there exists a finite limit

f(ω) = lim
n→∞ fn(ω),

the function f is integrable, and
∫
Ω fdμ = limn→∞

∫
Ω fndμ.

Lemma 3.28 (Fatou Lemma). If fn is a sequence of non-negative measur-
able functions, then

∫

Ω

lim inf
n→∞ fndμ ≤ lim inf

n→∞

∫

Ω

fndμ ≤ ∞.

Let us discuss products of σ-algebras and measures. Let (Ω1,F1, μ1) and
(Ω2,F2, μ2) be two measurable spaces with finite measures. We shall define
the product space with the product measure (Ω,F , μ) as follows. The set Ω
is just a set of ordered pairs Ω = Ω1 ×Ω2 = {(ω1, ω2), ω1 ∈ Ω1, ω2 ∈ Ω2}.

In order to define the product σ-algebra, we first consider the collection of
rectangles R = {A × B,A ∈ F1, B ∈ F2}. Then F is defined as the smallest
σ-algebra containing all the elements of R.

Note that R is a semialgebra. The product measure μ on F is defined
to be the extension to the σ-algebra of the function m defined on R via
m(A×B) = μ1(A)μ2(B). In order to justify this extension, we need to prove
that m is a σ-additive function on R.

Lemma 3.29. The function m(A×B) = μ1(A)μ2(B) is a σ-additive function
on the semialgebra R.

Proof. Let A1 × B1, A2 × B2, . . . be a sequence of non-intersecting rectan-
gles such that A × B =

⋃∞
n=1 An × Bn. Consider the sequence of functions
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fn(ω1) =
∑n

i=1 χAi(ω1)μ2(Bi), where χAi is the indicator function of the set
Ai. Similarly, let f(ω1) = χA(ω1)μ2(B). Note that fn ≤ μ2(B) for all n and
limn→∞ fn(ω1) = f(ω1). Therefore, the Lebesgue Dominated Convergence
Theorem applies. We have

lim
n→∞

n∑

i=1

m(Ai × Bi) = lim
n→∞

n∑

i=1

μ1(Ai)μ2(Bi) = lim
n→∞

∫

Ω1

fn(ω1)dμ1(ω1)

=

∫

Ω1

f(ω1)dμ1(ω1) = μ1(A)μ2(B) = m(A×B).

�

We are now in a position to state the Fubini Theorem. If (Ω,F , μ) is a mea-
surable space with a finite measure, and f is defined on a set of full measure
A ∈ F , then

∫
Ω fdμ will mean

∫
A fdμ.

Theorem 3.30 (Fubini Theorem). Let (Ω1,F1, μ1) and (Ω2,F2, μ2) be two
measurable spaces with finite measures, and let (Ω,F , μ) be the product space
with the product measure. If a function f(ω1, ω2) is integrable with respect to
the measure μ, then ∫

Ω

f(ω1, ω2)dμ(ω1, ω2)

=

∫

Ω1

(

∫

Ω2

f(ω1, ω2)dμ2(ω2))dμ1(ω1) (3.3)

=

∫

Ω2

(

∫

Ω1

f(ω1, ω2)dμ1(ω1))dμ2(ω2).

In particular, the integrals inside the brackets are finite almost surely and are
integrable functions of the exterior variable.

Sketch of the Proof . The fact that the theorem holds if f is an indicator
function of a set A×B, where A ∈ F1, B ∈ F2, follows from the construction
of the Lebesgue measure on the product space. The fact that the theorem also
holds if f is an indicator function of a measurable set then easily follows from
Lemma 4.13 proved in the next chapter. �

Concerning f which is not necessarily an indicator function, without loss of
generality we may assume that f is non-negative. If f is a simple integrable
function with a finite number of values, we can represent it as a finite linear
combination of indicator functions, and therefore the theorem holds for such
functions. If f is any integrable function, we can approximate it by a mono-
tonically non-decreasing sequence of simple integrable functions with finite
number of values. Then from the Levi Convergence Theorem it follows that
the repeated integrals are finite and are equal to the integral on the left-hand
side of (3.3).
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3.6 Signed Measures and the Radon-Nikodym Theorem

In this section we state, without proof, the Radon-Nikodym Theorem and the
Hahn Decomposition Theorem. Both proofs can be found in the textbook of S.
Fomin and A. Kolmogorov, “Elements of Theory of Functions and Functional
Analysis”.

Definition 3.31. Let (Ω,F) be a measurable space. A function η : F → R is
called a signed measure if

η(

∞⋃

i=1

Ci) =

∞∑

i=1

η(Ci)

whenever Ci ∈ F , i ≥ 1, are such that Ci ∩ Cj = ∅ for i �= j.

If μ is a non-negative measure on (Ω,F), then an example of a signed measure
is provided by the integral of a function with respect to μ,

η(A) =

∫

A

fdμ,

where f ∈ L1(Ω,F , μ). Later, when we talk about conditional expectations, it
will be important to consider the converse problem—given a measure μ and a
signed measure η, we would like to represent η as an integral of some function
with respect to measure μ. In fact this is always possible, provided μ(A) = 0
for a set A ∈ F implies that η(A) = 0 (which is, of course, true if η(A) is an
integral of some function over the set A).

To make our discussion more precise we introduce the following definition.

Definition 3.32. Let (Ω,F) be a measurable space with a finite non-negative
measure μ. A signed measure η : F → R is called absolutely continuous with
respect to μ if μ(A) = 0 implies that η(A) = 0 for A ∈ F .

Remark 3.33. An equivalent definition of absolute continuity is as follows. A
signed measure η : F → R is called absolutely continuous with respect to μ
if for any ε > 0 there is a δ > 0 such that μ(A) < δ implies that |η(A)| < ε.
(In Problem 10 the reader is asked to prove the equivalence of the definitions
when η is a non-negative measure.)

Theorem 3.34 (Radon-Nikodym Theorem). Let (Ω,F) be a measurable
space with a finite non-negative measure μ, and η a signed measure absolutely
continuous with respect to μ. Then there is an integrable function f such that

η(A) =

∫

A

fdμ

for all A ∈ F . Any two functions which have this property can be different on
at most a set of μ-measure zero.
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The function f is called the density or the Radon-Nikodym derivative of η
with respect to the measure μ.

The following theorem implies that signed measures are simply differences
of two non-negative measures.

Theorem 3.35 (Hahn Decomposition Theorem). Let (Ω,F) be a mea-
surable space with a signed measure η : F → R. Then there exist two sets
Ω+ ∈ F and Ω− ∈ F such that

1. Ω+ ∪Ω− = Ω and Ω+ ∩Ω− = ∅.
2. η(A ∩Ω+) ≥ 0 for any A ∈ F .
3. η(A ∩Ω−) ≤ 0 for any A ∈ F .

If Ω̃+, Ω̃− is another pair of sets with the same properties, then η(A) = 0 for

any A ∈ F such that A ∈ Ω+ΔΩ̃+ or A ∈ Ω−ΔΩ̃−.

Consider two non-negative measures η+ and η− defined by

η+(A) = η(A ∩Ω+) and η−(A) = −η(A ∩Ω−).

These are called the positive part and the negative part of η, respectively.
The measure |η| = η+ + η− is called the total variation of η. It easily follows
from the Hahn Decomposition Theorem that η+, η−, and |η| do not depend
on the particular choice of Ω+ and Ω−. Given a measurable function f which
is integrable with respect to |η|, we can define

∫

Ω

fdη =

∫

Ω

fdη+ −
∫

Ω

fdη−.

3.7 Lp Spaces

Let (Ω,F , μ) be a space with a finite measure. We shall call two complex-
valued measurable functions f and g equivalent (f ∼ g) if μ(f �= g) = 0. Note
that ∼ is indeed an equivalence relationship, i.e.,

1. f ∼ f .
2. f ∼ g implies that g ∼ f .
3. f ∼ g and g ∼ h imply that f ∼ h.

It follows from general set theory that the set of measurable functions can be
viewed as a union of non-intersecting subsets, the elements of the same subset
being all equivalent, and the elements which belong to different subsets not
being equivalent.

We next introduce the Lp(Ω,F , μ) spaces, whose elements are some of the
equivalence classes of measurable functions. We shall not distinguish between
a measurable function and the equivalence class it represents.
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For 1 ≤ p < ∞ we define

||f ||p = (

∫

Ω

|f |pdμ) 1
p .

The set of functions (or rather the set of equivalence classes) for which ||f ||p
is finite is denoted by Lp(Ω,F , μ) or simply Lp. It readily follows that Lp is
a normed linear space, with the norm || · ||p, that is
1. ||f ||p ≥ 0, ||f ||p = 0 if and only if f = 0.
2. ||αf ||p = |α|||f ||p for any complex number α.
3. ||f + g||p ≤ ||f ||p + ||g||p.

It is also not difficult to see, and we leave it for the reader as an exercise,
that all the Lp spaces are complete. We also formulate the Hölder Inequality,
which states that if f ∈ Lp and g ∈ Lq with p, q > 1 such that 1/p+1/q = 1,
then fg ∈ L1 and

||fg||1 ≤ ||f ||p||g||q.
When p = q = 2 this is also referred to as the Cauchy-Bunyakovskii Inequality.
Its proof is available in many textbooks, and thus we omit it, leaving it as an
exercise for the reader.

The norm in the L2 space comes from the inner product, ||f ||2 = (f, f)1/2,
where

(f, g) =

∫

Ω

fgdμ.

The set L2 equipped with this inner product is a Hilbert space.

3.8 Monte Carlo Method

Consider a bounded measurable set U ⊂ R
d and a bounded measurable func-

tion f : U → R. In this section we shall discuss a numerical method for
evaluating the integral I(f) =

∫
U f(x)dx1 . . . dxd.

One way to evaluate such an integral is based on approximating it by
Riemann sums. Namely, the set U is split into measurable subsets U1,. . . ,Un

with small diameters, and a point xi is selected in each of the subsets Ui.
Then the sum

∑n
i=1 f(xi)λ(Ui), where λ(Ui) is the measure of Ui, serves as

an approximation to the integral. This method is effective provided that f
does not change much for a small change of the argument (for example, if its
gradient is bounded), and if we can split the set U into a reasonably small
number of subsets with small diameters (so that n is not too large for a
computer to handle the summation).

On the other hand, consider the case when U is a unit cube in R
d, and

d is large (say, d = 20). If we try to divide U into cubes Ui, each with the
side of length 1/10 (these may still be rather large, depending on the desired
accuracy of the approximation), there will be n = 1020 of such sub-cubes,
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which shows that approximating the integral by the Riemann sums cannot be
effective in high dimensions.

Now we describe the Monte Carlo method of numerical integration. Con-
sider a homogeneous sequence of independent trials ω = (ω1, ω2, . . .), where
each ωi ∈ U has uniform distribution in U , that is P(ωi ∈ V ) = λ(V )/λ(U)
for any measurable set V ⊆ U . If U is a unit cube, such a sequence can be
implemented in practice with the help of a random number generator. Let

In(ω) =

n∑

i=1

f(ωi).

We claim that In/n converges (in probability) to I(f)/λ(U).

Theorem 3.36. For every bounded measurable function f and every ε > 0

lim
n→∞P(|I

n

n
− I(f)

λ(U)
| < ε) = 1 .

Proof. Let ε > 0 be fixed, and assume that |f(x)| ≤ M for all x ∈ U and
some constant M . We split the interval [−M,M ] into k disjoint sub-intervals
Δ1, . . . , Δk, each of length not greater than ε/3. The number of such intervals
should not need to exceed 1 + 6M/ε. We define the sets Uj as the pre-images
of Δj , that is Uj = f−1(Δj). Let us fix a point aj in each Δj . Let νnj (ω)
be the number of those ωi with 1 ≤ i ≤ n, for which ωi ∈ Uj . Let Jn(ω) =∑k

j=1 ajν
n
j (ω).

Since f(x) does not vary by more than ε/3 on each of the sets Uj ,

|I
n(ω)

n
− Jn(ω)

n
| ≤ ε

3
and

|I(f)−∑k
j=1 ajλ(Uj)|

λ(U)
≤ ε

3
.

Therefore, it is sufficient to demonstrate that

lim
n→∞P(|J

n

n
−

∑k
j=1 ajλ(Uj)

λ(U)
| < ε

3
) = 1 ,

or, equivalently,

lim
n→∞P(|

k∑

j=1

aj(
νnj
n

− λ(Uj)

λ(U)
)| < ε

3
) = 1 .

This follows from the law of large numbers, which states that νnj /n converges
in probability to λ(Uj)/λ(U) for each j. �

Remark 3.37. Later we shall prove the so-called strong law of large num-
bers, which will imply the almost sure convergence of the approximations
in the Monte Carlo method (see Chap. 7). It is important that the conver-
gence rate (however it is defined) can be estimated in terms of λ(U) and
supx∈U |f(x)|, independently of the dimension of the space and the smooth-
ness of the function f .
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3.9 Problems

1. Let fn, n ≥ 1, and f be measurable functions on a measurable space
(Ω,F). Prove that the set {ω : limn→∞ fn(ω) = f(ω)} is F -measurable.
Prove that the set {ω : limn→∞ fn(ω) exists} is F -measurable.

2. Prove that if a random variable ξ taking non-negative values is such that

P(ξ ≥ n) ≥ 1/n for all n ∈ N,

then Eξ = ∞.
3. Construct a sequence of random variables ξn such that ξn(ω) → 0 for

every ω, but Eξn → ∞ as n → ∞.
4. A random variable ξ takes values in the interval [A,B] and Var(ξ) =

((B −A)/2)2. Find the distribution of ξ.
5. Let {x1, x2, . . .} be a collection of rational points from the interval [0, 1].

A random variable ξ takes the value xn with probability 1/2n. Prove
that the distribution function Fξ(x) of ξ is continuous at every irrational
point x.

6. Let ξ be a random variable with a continuous density pξ such that
pξ(0)> 0. Find the density of η, where

η(ω) =

{
1/ξ(ω) if ξ(ω) �= 0,
0 if ξ(ω) = 0.

Prove that η does not have a finite expectation.
7. Let ξ1, ξ2, . . . be a sequence of random variables on a probability space

(Ω,F ,P) such that E|ξn| ≤ 2−n. Prove that ξn → 0 almost surely as
n → ∞.

8. Prove that if a sequence of measurable functions fn converges to f almost
surely as n → ∞, then it also converges to f in measure. If fn converges
to f in measure, then there is a subsequence fnk

which converges to f
almost surely as k → ∞.

9. Let F (x) be a distribution function. Compute
∫∞
−∞(F (x+10)−F (x))dx.

10. Prove that a measure η is absolutely continuous with respect to a measure
μ if and only if for any ε > 0 there is a δ > 0 such that μ(A) < δ implies
that η(A) < ε.

11. Prove that the Lp([0, 1],B, λ) spaces are complete for 1 ≤ p < ∞. Here
B is the σ-algebra of Borel sets, and λ is the Lebesgue measure.

12. Prove the Hölder Inequality.
13. Let ξ1, ξ2, . . . be a sequence of random variables on a probability space

(Ω,F ,P) such that Eξ2n ≤ c for some constant c. Assume that ξn → ξ
almost surely as n → ∞. Prove that Eξ is finite and Eξn → Eξ.


	3 Lebesgue Integral and Mathematical Expectation
	3.1 Definition of the Lebesgue Integral
	3.2 Induced Measures and Distribution Functions
	3.3 Types of Measures and Distribution Functions
	3.4 Remarks on the Construction of the Lebesgue Measure
	3.5 Convergence of Functions, Their Integrals, and the Fubini Theorem
	3.6 Signed Measures and the Radon-Nikodym Theorem
	3.7 Lp Spaces
	3.8 Monte Carlo Method
	3.9 Problems


