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Gibbs Random Fields

22.1 Definition of a Gibbs Random Field

The notion of Gibbs random fields was formalized by mathematicians rela-
tively recently. Before that, these fields were known in physics, particularly
in statistical physics and quantum field theory. Later, it was understood that
Gibbs fields play an important role in many applications of probability theory.
In this section we define the Gibbs fields and discuss some of their properties.

We shall deal with random fields with a finite state space X defined over
Z
d. The realizations of the field will be denoted by ω = (ωk, k ∈ Z

d), where
ωk is the value of the field at the site k.

Let V and W be two finite subsets of Z
d such that V ⊂ W and

dist(V,Zd\W ) > R for a given positive constant R. We can consider the
following conditional probabilities:

P(ωk = ik, k ∈ V |ωk = ik, k ∈ W\V ), where ik ∈ X for k ∈ W.

Definition 22.1. A random field is called a Gibbs field with memory R
if, for any finite sets V and W as above, these conditional probabilities
(whenever they are defined) depend only on those of the values ik for which
dist(k, V ) ≤ R.

Note that the Gibbs fields can be viewed as generalizations of Markov chains.
Indeed, consider a Markov chain on a finite state space. The realizations of
the Markov chain will be denoted by ω = (ωk, k ∈ Z). Let k1, k2, l1 and l2 be
integers such that k1 < l1 ≤ l2 < k2. Consider the conditional probabilities

f(ik1 , . . . , il1−1, il2+1, . . . , ik2) =

P(ωl1 = il1 , . . . , ωl2 = il2 |ωk1 = ik1 , . . . , ωl1−1= il1−1, ωl2+1= il2+1, . . . , ωk2 = ik2)

with il1 ,. . . ,il2 fixed. It is easy to check that whenever f is defined, it depends
only on il1−1 and il2+1 (see Problem 12, Chap. 5). Thus, a Markov chain is a
Gibbs field with d = 1 and R = 1.
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Let us introduce the notion of the interaction energy. Let Nd,R be the
number of points of Zd that belong to the closed ball of radius R centered at
the origin. Let U be a real-valued function defined on XNd,R. As arguments of
U we shall always take the values of the field in a ball of radius R centered at
one of the points of Zd. We shall use the notation U(ωk;ωk′ , 0 < |k′−k| ≤ R)
for the value of U on a realization ω in the ball centered at k and call U the
interaction energy with radius R.

For a finite set V ⊂ Z
d, its R-neighborhood will be denoted by V R,

V R = {k : dist(V, k) ≤ R}.
Definition 22.2. A Gibbs field with memory 2R is said to correspond to the
interaction energy U if

P(ωk = ik, k ∈ V |ωk = ik, k ∈ V 2R\V )

=
exp(−∑

k∈V RU(ik; ik′ , 0 < |k′ − k| ≤ R))

Z(ik, k ∈ V 2R\V )
, (22.1)

where Z = Z(ik, k ∈ V 2R\V ) is the normalization constant, which is called
the partition function,

Z(ik, k ∈ V 2R\V ) =
∑

{ik,k∈V }
exp(−

∑

k∈V R

U(ik; ik′ , 0 < |k′ − k| ≤ R)).

The equality (22.1) for the conditional probabilities is sometimes called the
Dobrushin-Lanford-Ruelle or, simply, DLR equation after three mathemati-
cians who introduced the general notion of a Gibbs random field. The minus
sign is adopted from statistical physics.

Let Ω(V ) be the set of configurations (ωk, k ∈ V ). The sum

∑

k∈V R

U(ωk;ωk′ , 0 < |k′ − k| ≤ R)

is called the energy of the configuration ω ∈ Ω(V ). It is defined as soon as we
have the boundary conditions ωk, k ∈ V 2R\V .

Theorem 22.3. For any interaction energy U with finite radius, there exists
at least one Gibbs field corresponding to U .

Proof. Take a sequence of cubes Vi centered at the origin with sides of length
2i. Fix arbitrary boundary conditions {ωk, k ∈ V 2R

i \Vi}, for example ωk = x
for all k ∈ V 2R

i \Vi, where x is a fixed element of X , and consider the probabil-
ity distribution PVi(·|ωk, k ∈ V 2R

i \Vi) on the finite set Ω(Vi) given by (22.1)
(with Vi instead of V ).

Fix Vj . For i > j, the probability distribution PVi(·|ωk, k ∈ V 2R
i \Vi) in-

duces a probability distribution on the set Ω(Vj). The space of such prob-
ability distributions is tight. (The set Ω(Vj) is finite, and we can consider
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an arbitrary metric on it. The property of tightness does not depend on the
particular metric.)

Take a subsequence {j(1)s } such that the induced probability distributions

on Ω(V1) converge to a limit Q(1). Then find a subsequence {j(2)s } ⊆ {j(1)s }
such that the induced probability distributions on the space Ω(V2) converge

to a limit Q(2). Since {j(2)s } ⊂ {j(1)s }, the probability distribution induced
by Q(2) on the space Ω(V1) coincides with Q(1). Arguing in the same way,

we can find a subsequence {j(m)
s } ⊆ {j(m−1)

s }, for any m ≥ 1, such that
the probability distributions induced by PVj(m)

(·|ωk, k /∈ Vj(m)) on Ω(Vm)

converge to a limit, which we denote by Q(m). Since {j(m)
s } ⊆ {j(m−1)

s }, the
probability distribution on Ω(Vm−1) induced by Q(m) coincides with Q(m−1).

Then, for the sequence of probability distributions

PV
j
(m)
m

(·|ωk, k ∈ V 2R

j
(m)
m

\V
j
(m)
m

)

corresponding to the diagonal subsequence {j(m)
m }, we have the following prop-

erty:
For each m, the restrictions of the probability distributions to the set

Ω(Vm) converge to a limit Q(m), and the probability distribution induced by
Q(m) on Ω(Vm−1) coincides with Q(m−1). The last property is a version of the
Consistency Conditions, and by the Kolmogorov Consistency Theorem, there
exists a probability distribution Q defined on the natural σ-algebra of subsets
of the space Ω of all possible configurations {ωk, k ∈ Z

d} whose restriction to
each Ω(Vm) coincides with Q(m) for any m ≥ 1.

It remains to prove that Q is generated by a Gibbs random field corre-
sponding to U . Let V be a finite subset of Zd, W a finite subset of Zd such
that V 2R ⊆ W , and let the values ωk = ik be fixed for k ∈ W\V . We need to
consider the conditional probabilities

q = Q{ωk = ik, k ∈ V |ωk = ik, k ∈ W\V }.

In fact, it is more convenient to deal with the ratio of the conditional prob-
abilities corresponding to two different configurations, ωk = īk and ωk = ¯̄ik,
k ∈ V , which is equal to

q1 =
Q{ωk = īk, k ∈ V |ωk = ik, k ∈ W\V }
Q{ωk = ¯̄ik, k ∈ V |ωk = ik, k ∈ W\V }

=
Q{ωk = īk, k ∈ V, ωk = ik, k ∈ W\V }
Q{ωk = ¯̄ik, k ∈ V, ωk = ik, k ∈ W\V } .

(22.2)

It follows from our construction that the probabilities Q in this ratio are
the limits found with the help of probability distributions PV

j
(m)
m

(·|ωk, k ∈
V 2R

j
(m)
m

\V
j
(m)
m

). We can express the numerator in (22.2) as follows:
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Q{ωk = īk, k ∈ V, ωk = ik, k ∈ W\V }
= lim

m→∞PV
j
(m)
m

(ωk = īk, k ∈ V, ωk = ik, k ∈ W\V |ωk = ik, k ∈ V 2R

j
(m)
m

\V
j
(m)
m

)

= lim
m→∞

∑

{ik,k∈V
j
(m)
m

\W}
exp(−∑

k∈V R

j
(m)
m

U(ik; ik′ , 0 < |k′ − k| ≤ R))

Z(ik, k ∈ V 2R

j
(m)
m

\V
j
(m)
m

)
.

A similar expression for the denominator in (22.2) is also valid. The difference
between the expressions for the numerator and the denominator is that, in
the first case, ik = īk for k ∈ V , while in the second, ik = ¯̄ik for k ∈ V .

Therefore, the corresponding expressions U(ik; ik′ , |k′−k| ≤ R) for k such
that dist (k, V ) > R coincide in both cases, and

q1 =
r1
r2

,

where

r1 = exp(−
∑

k∈V R

U(ik; ik′ , 0 < |k′ − k| ≤ R)), ik = īk for k ∈ V,

while

r2 = exp(−
∑

k∈V R

U(ik; ik′ , 0 < |k′ − k| ≤ R)), ik = ¯̄ik for k ∈ V.

This is the required expression for q1, which implies that Q is a Gibbs field. �

22.2 An Example of a Phase Transition

Theorem 22.3 is an analogue of the theorem on the existence of stationary
distributions for finite Markov chains. In the ergodic case, this distribution
is unique. In the case of multi-dimensional time, however, under very general
conditions there can be different random fields corresponding to the same
function U . The related theory is connected to the theory of phase transitions
in statistical physics.

If X = {−1, 1}, R = 1 and U(i0; ik, |k| = 1) = ±β
∑

|k|=1(i0 − ik)
2,

the corresponding Gibbs field is called the Ising model with inverse tem-
perature β (and zero magnetic field). The plus sign corresponds to the
so-called ferromagnetic model; the minus sign corresponds to the so-called
anti-ferromagnetic model. Again, the terminology comes from statistical me-
chanics. We shall consider here only the case of the ferromagnetic Ising model
and prove the following theorem.
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Theorem 22.4. Consider the following interaction energy over Z
2:

U(ω0;ωk, |k| = 1) = β
∑

|k|=1

(ω0 − ωk)
2.

If β is sufficiently large, there exist at least two different Gibbs fields corre-
sponding to U .

Proof. As before, we consider the increasing sequence of squares Vi and plus-
minus boundary conditions, i.e., either ωk ≡ +1, k /∈ Vi, or ωk ≡ −1, k /∈ Vi.
The corresponding probability distributions on Ω(Vi) will be denoted by P+

Vi

and P−
Vi

respectively. We shall show that P+
Vi
(ω0 = +1) ≥ 1− ε(β), P−

Vi
(ω0 =

−1) ≥ 1− ε(β), ε(β) → 0 as β → ∞. In other words, the Ising model displays
strong memory of the boundary conditions for arbitrarily large i. Sometimes
this kind of memory is called the long-range order. It is clear that the limiting
distributions constructed with the help of the sequences P+

Vi
and P−

Vi
are

different, which constitutes the statement of the theorem.
We shall consider only P+

Vi
, since the case of P−

Vi
is similar. We shall show

that a typical configuration with respect to P+
Vi

looks like a “sea” of +1’s sur-
rounding small “islands” of −1’s, and the probability that the origin belongs
to this “sea” tends to 1 as β → ∞ uniformly in i.

Take an arbitrary configuration ω ∈ Ω(Vi). For each k ∈ Vi such that
ωk = −1 we construct a unit square centered at k with sides parallel to the
coordinate axes, and then we slightly round off the corners of the square.

The union of these squares with rounded corners is denoted by I(ω). The
boundary of I(ω) is denoted by B(ω). It consists of those edges of the squares
where ω takes different values on different sides of the edge. A connected
component of B(ω) is called a contour.

It is clear that each contour is a closed non-self-intersecting curve. If B(ω)
does not have a contour containing the origin inside the domain it bounds,
then ω0 = +1.

Given a contour Γ , we shall denote the domain it bounds by int(Γ ). Let a
contour Γ be such that the origin is contained inside int(Γ ). The number of
such contours of length n does not exceed n3n−1.

Indeed, since the origin is inside int(Γ ), the contour Γ intersects the semi-
axis {z1 = 0} ∩ {z2 < 0}. Of all the points belonging to Γ ∩ {z1 = 0}, let us
select that with the smallest z2 coordinate and call it the starting point of
the contour. Since the contour has length n, there are no more than n choices
for its starting point. Once the starting point of the contour is fixed, the edge
of Γ containing it is also fixed. It is the horizontal segment centered at the
starting point of the contour. Counting from the segment connected to the
right end-point of this edge, there are no more than three choices for each
next edge, since the contour is not self-intersecting. Therefore, there are no
more than n3n−1 contours in total.

Lemma 22.5 (Peierls Inequality). Let Γ be a closed curve of length n.
Then,
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P+
Vi
({ω ∈ Ω(Vi) : Γ ⊆ B(ω)}) ≤ e−8βn.

We shall prove the Peierls Inequality after completing the proof of Theo-
rem 22.4.

Due to the Peierls Inequality, the probability P+
Vi

that there is at least one
contour Γ with the origin inside int(Γ ), is estimated from above by

∞∑

n=4

n3n−1e−8βn,

which tends to zero as β → ∞. Therefore, the probability of ω0 = −1 tends
to zero as β → ∞. Note that this convergence is uniform in i. �

Proof of the Peierls Inequality. For each configuration ω ∈ Ω(Vi), we can
construct a new configuration ω′ ∈ Ω(Vi), where

ω′
k = −ωk if k ∈ int(Γ ),

ω′
k = ωk if k /∈ int(Γ ).

For a given Γ , the correspondence ω ↔ ω′ is one-to-one.
Let ω ∈ Ω(Vi) be such that Γ ⊆ B(ω). Consider the ratio

P+
Vi
(ω)

P+
Vi
(ω′)

=
exp(−β

∑
k:dist(k,Vi)≤1

∑
k′:|k′−k|=1(ωk − ωk′)2)

exp(−β
∑

k:dist(k,Vi)≤1

∑
k′:|k′−k|=1(ω

′
k − ω′

k′)2)
.

Note that all the terms in the above ratio cancel out, except those in which k
and k′ are adjacent and lie on the opposite sides of the contour Γ . For those
terms, |ωk−ωk′ | = 2, while |ω′

k −ω′
k′ | = 0. The number of such terms is equal

to 2n (one term for each side of each of the edges of Γ ). Therefore,

P+
Vi
(ω) = e−8βnP+

Vi
(ω′).

By taking the sum over all ω ∈ Ω(Vi) such that Γ ⊆ B(ω), we obtain the
statement of the lemma. �

One can show that the Gibbs field is unique if β is sufficiently small. The
proof of this statement will not be discussed here.

The most difficult problem is to analyze Gibbs fields in neighborhoods of
those values βcr where the number of Gibbs fields changes. This problem is
related to the so-called critical percolation problem and to conformal quantum
field theory.
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