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Stochastic Differential Equations

21.1 Existence of Strong Solutions to Stochastic
Differential Equations

Stochastic differential equations arise when modeling prices of financial instru-
ments, a variety of physical systems, and in many other branches of science. As
we shall see in the next section, there is a deep relationship between stochas-
tic differential equations and linear elliptic and parabolic partial differential
equations.

As an example, let us try to model the motion of a small particle suspended
in a liquid. Let us denote the position of the particle at time t byXt. The liquid
need not be at rest, and the velocity field will be denoted by v(t, x), where t
is time and x is a point in space. If we neglect the diffusion, the equation of
motion is simply dXt/dt = v(t,Xt), or, formally, dXt = v(t,Xt)dt.

On the other hand, if we assume that macroscopically the liquid is at rest,
then the position of the particle can change only due to the molecules of liquid
hitting the particle, and Xt would be modeled by the 3-dimensional Brownian
motion, Xt = Wt, or, formally, dXt = dWt. More generally, we could write
dXt = σ(t,Xt)dWt, where we allow σ to be non-constant, since the rate at
which the molecules hit the particle may depend on the temperature and
density of the liquid, which, in turn, are functions of space and time.

If both the effects of advection and diffusion are present, we can formally
write the stochastic differential equation

dXt = v(t,Xt)dt+ σ(t,Xt)dWt. (21.1)

The vector v is called the drift vector, and σ, which may be a scalar or a
matrix, is called the dispersion coefficient (matrix).

Now we shall specify the assumptions on v and σ, in greater generality than
necessary for modeling the motion of a particle, and assign a strict meaning
to the stochastic differential equation above. The main idea is to write the
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312 21 Stochastic Differential Equations

formal expression (21.1) in the integral form, in which case the right-hand
side becomes a sum of an ordinary and a stochastic integral.

We assume that Xt takes values in the d-dimensional space, whileWt is an
r-dimensional Brownian motion relative to a filtration Ft. Let v be a Borel-
measurable function from R

+ ×R
d to R

d, and σ a Borel-measurable function
from R

+×R
d to the space of d×r matrices. Thus, Eq. (21.1) can be re-written

as

dX i
t = vi(t,Xt)dt+

r∑

j=1

σij(t,Xt)dW
j
t , 1 ≤ i ≤ d. (21.2)

Let us further assume that the underlying filtration Ft satisfies the usual
conditions and that we have a random d-dimensional vector ξ which is
F0-measurable (and consequently independent of the Brownian motion Wt).
This random vector is the initial condition for the stochastic differential equa-
tion (21.1).

Definition 21.1. Suppose that the functions v and σ, the filtration, the Brow-
nian motion, and the random variable ξ satisfy the assumptions above. A pro-
cess Xt with continuous sample paths defined on the probability space (Ω,F ,P)
is called a strong solution to the stochastic differential equation (21.1) with
the initial condition ξ if:

(1) Xt is adapted to the filtration Ft.
(2) X0 = ξ almost surely.
(3) For every 0 ≤ t <∞, 1 ≤ i ≤ d, and 1 ≤ j ≤ r,

∫ t

0

(|vi(s,Xs)|+ |σij(s,Xs)|2)ds <∞ almost surely

(which implies that σij(t,Xt) ∈ P∗(W j
t )).

(4) For every 0 ≤ t <∞, the integral version of (21.2) holds almost surely:

X i
t = X i

0 +

∫ t

0

vi(s,Xs)ds+

r∑

j=1

∫ t

0

σij(s,Xs)dW
j
s , 1 ≤ i ≤ d.

(Since the processes on both sides are continuous, they are indistinguishable.)

We shall refer to the solutions of stochastic differential equations as dif-
fusion processes. Customarily the term “diffusion” refers to a strong Markov
family of processes with continuous paths, with the generator being a second
order partial differential operator (see Sect. 21.4). As will be discussed later
in this chapter, under certain conditions on the coefficients, the solutions to
stochastic differential equations form strong Markov families.

As with ordinary differential equations (ODE’s), the first natural question
which arises is that of the existence and uniqueness of strong solutions. As
with ODE’s, we shall require the Lipschitz continuity of the coefficients in the
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space variable, and certain growth estimates at infinity. The local Lipschitz
continuity is sufficient to guarantee the local uniqueness of the solutions (as
in the case of ODE’s), while the uniform Lipschitz continuity and the growth
conditions are needed for the global existence of solutions.

Theorem 21.2. Suppose that the coefficients v and σ in Eq. (21.1) are Borel-
measurable functions on R

+ × R
d and are uniformly Lipschitz continuous in

the space variable. That is, for some constant c1 and all t ∈ R
+, x, y ∈ R

d,

|vi(t, x)− vi(t, y)| ≤ c1||x− y||, 1 ≤ i ≤ d, (21.3)

|σij(t, x)− σij(t, y)| ≤ c1||x− y||, 1 ≤ i ≤ d, 1 ≤ j ≤ r. (21.4)

Assume also that the coefficients do not grow faster than linearly, that is,

|vi(t, x)| ≤ c2(1 + ||x||), |σij(t, x)| ≤ c2(1 + ||x||), 1 ≤ i ≤ d, 1 ≤ j ≤ r,
(21.5)

for some constant c2 and all t ∈ R
+, x ∈ R

d. Let Wt be a Brownian motion
relative to a filtration Ft, and ξ an F0-measurable R

d-valued random vector
that satisfies

E||ξ||2 <∞.

Then there exists a strong solution to Eq. (21.1) with the initial condition ξ.
The solution is unique in the sense that any two strong solutions are indistin-
guishable processes.

Remark 21.3. If we assume that (21.3) and (21.4) hold, then (21.5) is equiva-
lent to the boundedness of

|vi(t, 0)|, |σij(t, 0)|, 1 ≤ i ≤ d, 1 ≤ j ≤ r,

as functions of t.

We shall prove the uniqueness part of Theorem 21.2 and indicate the main idea
for the proof of the existence part. To prove uniqueness we need the Gronwall
Inequality, which we formulate as a separate lemma (see Problem 1).

Lemma 21.4. If a function f(t) is continuous and non-negative on [0, t0],
and

f(t) ≤ K + L

∫ t

0

f(s)ds

holds for 0 ≤ t ≤ t0, with K and L positive constants, then

f(t) ≤ KeLt

for 0 ≤ t ≤ t0.
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Proof of Theorem 21.2 (uniqueness part). Assume that both Xt and Yt are
strong solutions relative to the same Brownian motion, and with the same
initial condition. We define the sequence of stopping times as follows:

τn = inf{t ≥ 0 : max(||Xt||, ||Yt||) ≥ n}.

For any t and t0 such that 0 ≤ t ≤ t0,

E||Xt∧τn − Yt∧τn ||2

= E||
∫ t∧τn

0

(v(s,Xs)− v(s, Ys))ds

+

∫ t∧τn

0

(σ(s,Xs)− σ(s, Ys))dWs||2 ≤ 2E[

∫ t∧τn

0

||v(s,Xs)− v(s, Ys)||ds]2

+2E
d∑

i=1

[
r∑

j=1

∫ t∧τn

0

(σij(s,Xs)− σij(s, Ys))dW
j
s ]

2

≤ 2tE

∫ t∧τn

0

||v(s,Xs)− v(s, Ys)||2ds

+2E

d∑

i=1

r∑

j=1

∫ t∧τn

0

|σij(s,Xs)− σij(s, Ys)|2ds

≤ (2dt+ 2rd)c21

∫ t∧τn

0

E||Xs∧τn − Ys∧τn ||2ds

≤ (2dt0 + 2rd)c21

∫ t

0

E||Xs∧τn − Ys∧τn ||2ds.

By Lemma 21.4 with K = 0 and L = (2dt0 + 2rd)c21,

E||Xt∧τn − Yt∧τn ||2 = 0 for 0 ≤ t ≤ t0,

and, since t0 can be taken to be arbitrarily large, this equality holds for all
t ≥ 0. Thus, the processes Xt∧τn and Yt∧τn are modifications of one another,
and, since they are continuous almost surely, they are indistinguishable. Now
let n→ ∞, and notice that limn→∞ τn = ∞ almost surely. Therefore, Xt and
Yt are indistinguishable. �

The existence of strong solutions can be proved using the Method of Picard

Iterations. Namely, we define a sequence of processesX
(n)
t by setting X

(0)
t ≡ ξ

and

X
(n+1)
t = ξ +

∫ t

0

v(s,X(n)
s )ds+

∫ t

0

σ(s,X(n)
s )dWs, t ≥ 0

for n ≥ 0. It is then possible to show that the integrals on the right-hand

side are correctly defined for all n, and that the sequence of processes X
(n)
t
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converges to a process Xt for almost all ω uniformly on any interval [0, t0].
The process Xt is then shown to be the strong solution of Eq. (21.1) with the
initial condition ξ.

Example (Black and Scholes formula). In this example we consider a
model for the behavior of the price of a financial instrument (a share of stock,
for example) and derive a formula for the price of an option. Let Xt be the
price of a stock at time t. We assume that the current price (at time t = 0) is
equal to P . One can distinguish two phenomena responsible for the change of
the price over time. One is that the stock prices grow on average at a certain
rate r, which, if we were to assume that r was constant, would lead to the
equation dXt = rXtdt, since the rate of change is proportional to the price of
the stock.

Let us, for a moment, assume that r = 0, and focus on the other phe-
nomenon affecting the price change. One can argue that the randomness in
Xt is due to the fact that every time someone buys the stock, the price in-
creases by a small amount, and every time someone sells the stock, the price
decreases by a small amount. The intervals of time between one buyer or seller
and the next are also small, and whether the next person will be a buyer or a
seller is a random event. It is also reasonable to assume that the typical size
of a price move is proportional to the current price of the stock. We described
intuitively the model for the evolution of the priceXt as a random walk, which
will tend to the process defined by the equation dXt = σXtdWt if we make
the time step tend to zero. (This is a result similar to the Donsker Theorem,
which states that the measure induced by a properly scaled simple symmetric
random walk tends to the Wiener measure.) Here, σ is the volatility which we
assumed to be a constant.

When we superpose the above two effects, we obtain the equation

dXt = rXtdt+ σXtdWt (21.6)

with the initial condition X0 = P . Let us emphasize that this is just a partic-
ular model for the stock price behavior, which may or may not be reasonable,
depending on the situation. For example, when we modeled Xt as a random
walk, we did not take into account that the presence of informed investors
may cause it to be non-symmetric, or that the transition from the random
walk to the diffusion process may be not justified if, with small probability,
there are exceptionally large price moves.

Using the Ito formula (Theorem 20.27), with the martingale Wt and the
function f(t, x) = P exp(σx+ (r − 1

2σ
2)t), we obtain

f(t,Wt) = P exp(σWt + (r − 1

2
σ2)t) =

P +

∫ t

0

rP exp(σWs + (r − 1

2
σ2)s)ds+

∫ t

0

σP exp(σWs + (r − 1

2
σ2)s)dWs.
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This means that

Xt = P exp(σWt + (r − 1

2
σ2)t)

is the solution of (21.6).
A European call option is the right to buy a share of the stock at an agreed

price S (strike price) at an agreed time t > 0 (expiration time). The value of
the option at time t is therefore equal to (Xt − S)+ = (Xt − S)χ{Xt≥S} (if
Xt ≤ S, then the option becomes worthless). Assume that the behavior of the
stock price is governed by (21.6), where r and σ were determined empirically
based on previous observations. Then the expected value of the option at
time t will be

Vt = E(P exp(σWt + (r − 1

2
σ2)t)− S)+

=
1√
2πt

∫ ∞

−∞
e−

x2

2t (Peσx+(r− 1
2σ

2)t − S)+dx.

The integral on the right-hand side of this formula can be simplified somewhat,
but we leave this as an exercise for the reader.

Finally, the current value of the option may be less than the expected value
at time t. This is due to the fact that the money spent on the option at the
present time could instead be invested in a no-risk security with an interest
rate γ, resulting in a larger buying power at time t. Therefore the expected
value Vt should be discounted by the factor e−γt to obtain the current value
of the option. We obtain the Black and Scholes formula for the value of the
option

V0 =
e−γt

√
2πt

∫ ∞

−∞
e−

x2

2t (Peσx+(r− 1
2σ

2)t − S)+dx.

Example (A Linear Equation). Let Wt be a Brownian motion on a prob-
ability space (Ω,F ,P) relative to a filtration Ft. Let ξ be a square-integrable
random variable measurable with respect to F0.

Consider the following one-dimensional stochastic differential equation
with time-dependent coefficients

dXt = (a(t)Xt + b(t))dt+ σ(t)dWt. (21.7)

The initial data is X0 = ξ. If a(t), b(t), and σ(t) are bounded measurable
functions, by Theorem 21.2 this equation has a unique strong solution. In order
to find an explicit formula for the solution, let us first solve the homogeneous
ordinary differential equation

y′(t) = a(t)y(t)

with the initial data y(0) = 1. The solution to this equation is y(t) =

exp(
∫ t

0 a(s)ds), as can be verified by substitution. We claim that the solu-
tion of (21.7) is
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Xt = y(t)(ξ +

∫ t

0

b(s)

y(s)
ds+

∫ t

0

σ(s)

y(s)
dWs). (21.8)

Note that if σ ≡ 0, we recover the formula for the solution of a linear ODE,
which can be obtained by the method of variation of constants. If we formally
differentiate the right-hand side of (21.8), we obtain the expression on the
right-hand side of (21.7). In order to justify this formal differentiation, let us
apply Corollary 20.28 to the pair of semimartingales

X1
t = y(t) and X2

t = ξ +

∫ t

0

b(s)

y(s)
ds+

∫ t

0

σ(s)

y(s)
dWs.

Thus,

Xt = y(t)(ξ +

∫ t

0

b(s)

y(s)
ds+

∫ t

0

σ(s)

y(s)
dWs)

= ξ +

∫ t

0

y(s)d(

∫ s

0

b(u)

y(u)
du) +

∫ t

0

y(s)d(

∫ s

0

σ(u)

y(u)
dWu) +

∫ t

0

X2
sdy(s)

= ξ +

∫ t

0

b(s)ds+

∫ t

0

σ(s)dWs +

∫ t

0

a(s)Xsds,

where we used (20.11) to justify the last equality. We have thus demonstrated
that Xt is the solution to (21.7) with initial data X0 = ξ.

Example (the Ornstein-Uhlenbeck Process). Consider the stochastic
differential equation

dXt = −aXtdt+ σdWt, X0 = ξ. (21.9)

This is a particular case of (21.7) with a(t) ≡ −a, b(t) ≡ 0, and σ(t) ≡ σ.
By (21.8), the solution is

Xt = e−atξ + σ

∫ t

0

e−a(t−s)dWs.

This process is called the Ornstein-Uhlenbeck Process with parameters (a, σ)
and initial condition ξ. Since the integrand e−a(t−s) is a deterministic function,
the integral is a Gaussian random process independent of ξ (see Problem 1,
Chap. 20). If ξ is Gaussian, then Xt is a Gaussian process. Its expectation and
covariance can be easily calculated:

m(t) = EXt = e−atEξ,

b(s, t) = E(XsXt) = e−ase−atEξ2 + σ2

∫ s∧t

0

e−a(s−u)−a(t−u)du

= e−a(s+t)(Eξ2 + σ2 e
2as∧t − 1

2a
).



318 21 Stochastic Differential Equations

In particular, if ξ is Gaussian with Eξ = 0 and Eξ2 = σ2

2a , then

b(s, t) =
σ2e−a|s−t|

2a
.

Since the covariance function of the process depends on the difference of the
arguments, the process is wide-sense stationary, and since it is Gaussian, it is
also strictly stationary.

21.2 Dirichlet Problem for the Laplace Equation

In this section we show that solutions to the Dirichlet problem for the Laplace
equation can be expressed as functionals of the Wiener process.

Let D be an open bounded domain in R
d, and let f : ∂D → R be a

continuous function defined on the boundary. We shall consider the following
partial differential equation

Δu(x) = 0 for x ∈ D (21.10)

with the boundary condition

u(x) = f(x) for x ∈ ∂D. (21.11)

This pair, Eq. (21.10) and the boundary condition (21.11), is referred to as the
Dirichlet problem for the Laplace equation with the boundary condition f(x).

By a solution of the Dirichlet problem we mean a function u which satis-
fies (21.10), (21.11) and belongs to C2(D) ∩ C(D).

Let Wt be a d-dimensional Brownian motion relative to a filtration Ft.
Without loss of generality we may assume that Ft is the augmented filtration
constructed in Sect. 19.4. Let W x

t = x+Wt. For a point x ∈ D, let τx be the
first time the process W x

t reaches the boundary of D, that is

τx(ω) = inf{t ≥ 0 :W x
t (ω) /∈ D}.

In Sect. 19.6 we showed that the function

u(x) = Ef(W x
τx) (21.12)

defined in D is harmonic inside D, that is, it belongs to C2(D) and satis-
fies (21.10). From the definition of u(x) it is clear that it satisfies (21.11).
It remains to study the question of continuity of u(x) at the points of the
boundary of D.

Let
σx(ω) = inf{t > 0 : W x

t (ω) /∈ D}.
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Note that here t > 0 on the right-hand side, in contrast to the definition of
τx. Let us verify that σx is a stopping time. Define an auxiliary family of
stopping times

τx,s(ω) = inf{t ≥ s :W x
t (ω) /∈ D}

(see Lemma 13.15). Then, for t > 0,

{σx ≤ t} =
∞⋃

n=1

{τx, 1
n ≤ t} ∈ Ft.

In addition,

{σx = 0} =

∞⋂

m=1

∞⋃

n=1

{τ0, 1
n ≤ 1/m} ∈

∞⋂

m=1

F1/m = F0+ = F0,

where we have used the right-continuity of the augmented filtration. This
demonstrates that σx is a stopping time. Also note that since {σx = 0} ∈ F0,
the Blumenthal Zero-One Law implies that P(σx = 0) is either equal to one
or to zero.

Definition 21.5. A point x ∈ ∂D is called regular if P(σx = 0) = 1, and
irregular if P(σx = 0) = 0.

Regularity means that a typical Brownian path which starts at x ∈ ∂D does
not immediately enter D and stay there for an interval of time.

Example. Let D = {x ∈ R
d, 0 < ||x|| < 1}, where d ≥ 2, that is, D is a

punctured unit ball. The boundary of D consists of the unit sphere and the
origin. Since Brownian motion does not return to zero for d ≥ 2, the origin is
an irregular point for Brownian motion in D.

Similarly, let D = Bd\{x ∈ R
d : x2 = . . . = xd = 0}. (D is the set of points

in the unit ball that do not belong to the x1-axis.) The boundary of D consists
of the unit sphere and the segment {x ∈ R

d : −1 < x1 < 1, x2 = . . . = xd = 0}.
If d ≥ 3, the segment consists of irregular points.

Example. Let x ∈ ∂D, y ∈ R
d, ||y|| = 1, 0 < θ ≤ π, and r > 0. The cone

with vertex at x, direction y, opening θ, and radius r is the set

Cx(y, θ, r) = {z ∈ R
d : ||z − x|| ≤ r, (z − x, y) ≥ ||z − x|| cos θ}.

We shall say that a point x ∈ ∂D satisfies the exterior cone condition if there
is a cone Cx(y, θ, r) with y, θ, and r as above such that Cx(y, θ, r) ⊆ R

d \D.
It is not difficult to show (see Problem 8) that if x satisfies the exterior cone
condition, then it is regular. In particular, if D is a domain with a smooth
boundary, then all the points of ∂D are regular.

The question of regularity of a point x ∈ ∂D is closely related to the
continuity of the function u given by (21.12) at x.
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Theorem 21.6. Let D be a bounded open domain in R
d, d ≥ 2, and x ∈ ∂D.

Then x is regular if and only if for any continuous function f : ∂D → R, the
function u defined by (21.12) is continuous at x, that is

lim
y→x,y∈D

Ef(W y
τy ) = f(x). (21.13)

Proof. Assume that x is regular. First, let us show that, with high probability,
a Brownian trajectory which starts near x exits D fast. Take ε and δ such
that 0 < ε < δ, and define an auxiliary function

gδε(y) = P(W y
t ∈ D for ε ≤ t ≤ δ).

This is a continuous function of y ∈ D, since the indicator function of the set
{ω : W y

t (ω) ∈ D for ε ≤ t ≤ δ} tends to the indicator function of the set
{ω :W y0

t (ω) ∈ D for ε ≤ t ≤ δ} almost surely as y → y0. Note that

lim
ε↓0

gδε(y) = P(W y
t ∈ D for 0 < t ≤ δ) = P(σy > δ),

which implies that the right-hand side is an upper semicontinuous function
of y, since it is a limit of a decreasing sequence of continuous functions.
Therefore,

lim sup
y→x,y∈D

P(τy > δ) ≤ lim sup
y→x,y∈D

P(σy > δ) ≤ P(σx > δ) = 0,

since x is a regular point. We have thus demonstrated that

lim
y→x,y∈D

P(τy > δ) = 0

for any δ > 0.
Next we show that, with high probability, a Brownian trajectory which

starts near x exits D through a point on the boundary which is also near x.
Namely, we wish to show that for r > 0,

lim
y→x,y∈D

P(||x−W y
τy || > r) = 0. (21.14)

Take an arbitrary ε > 0. We can then find δ > 0 such that

P( max
0≤t≤δ

||Wt|| > r/2) < ε/2.

We can also find a neighborhood U of x such that ||y − x|| < r/2 for y ∈ U ,
and

sup
y∈D∩U

P(τy > δ) < ε/2.

Combining the last two estimates, we obtain
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sup
y∈D∩U

P(||x−W y
τy || > r) < ε,

which justifies (21.14).
Now let f be a continuous function defined on the boundary, and let ε > 0.

Take r > 0 such that supz∈∂D,||z−x||≤r |f(x)− f(z)| < ε. Then

|Ef(W y
τy)− f(x)| ≤

sup
z∈∂D,||z−x||≤r

|f(x)− f(z)|+ 2P(||x−W y
τy || > r) sup

z∈∂D
|f(y)|.

The first term on the right-hand side here is less than ε, while the second one
tends to zero as y → x by (21.14). We have thus demonstrated that (21.13)
holds.

Now let us prove that x is regular if (21.13) holds for every continuous f .
Suppose that x is not regular. Since σx > 0 almost surely, and a Brownian
trajectory does not return to the origin almost surely for d ≥ 2, we conclude
that ||W x

σx − x|| > 0 almost surely. We can then find r > 0 such that

P(||W x
σx − x|| ≥ r) > 1/2.

Let Sn be the sphere centered at x with radius rn = 1/n. We claim that if
rn < r, there is a point yn ∈ Sn ∩D such that

P(||W yn
τyn − x|| ≥ r) > 1/2. (21.15)

Indeed, let τxn be the first time the process W x
t reaches Sn. Let μn be the

measure on Sn ∩ D defined by μn(A) = P(τxn < σx;W x
τx
n
∈ A), where A is a

Borel subset of Sn∩D. Then, due to the Strong Markov Property of Brownian
motion,

1/2 < P(||W x
σx − x|| ≥ r) =

∫

Sn∩D

P(||W y
τy − x|| ≥ r)dμn(y)

≤ sup
y∈Sn∩D

P(||W y
τy − x|| ≥ r),

which justifies (21.15). Now we can take a continuous function f such that
0 ≤ f(y) ≤ 1 for y ∈ ∂D, f(x) = 1, and f(y) = 0 if ||y − x|| ≥ r. By (21.15),

lim sup
n→∞

Ef(W yn
τyn ) ≤ 1/2 < f(x),

which contradicts (21.13). �

Now we can state the existence and uniqueness result.

Theorem 21.7. Let D be a bounded open domain in R
d, d ≥ 2, and f a

continuous function on ∂D. Assume that all the points of ∂D are regular.
Then the Dirichlet problem for the Laplace equation (21.10)–(21.11) has a
unique solution. The solution is given by (21.12).
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Proof. The existence follows from Theorem 21.6. If u1 and u2 are two so-
lutions, then u = u1 − u2 is a solution to the Dirichlet problem with zero
boundary condition. A harmonic function which belongs to C2(D) ∩ C(D)
takes the maximal and the minimal values on the boundary of the domain.
This implies that u is identically zero, that is u1 = u2. �

Probabilistic techniques can also be used to justify the existence and
uniqueness of solutions to more general elliptic and parabolic partial differen-
tial equations. However, we shall now assume that the boundary of the domain
is smooth, and thus we can bypass the existence and uniqueness questions,
instead referring to the general theory of PDE’s. In the next section we shall
demonstrate that the solutions to PDE’s can be expressed as functionals of
the corresponding diffusion processes.

21.3 Stochastic Differential Equations and PDE’s

First we consider the case in which the drift and the dispersion matrix do not
depend on time. Let Xt be the strong solution of the stochastic differential
equation

dX i
t = vi(Xt)dt+

r∑

j=1

σij(Xt)dW
j
t , 1 ≤ i ≤ d, (21.16)

with the initial condition X0 = x ∈ R
d, where the coefficients v and σ satisfy

the assumptions of Theorem 21.2. In fact, Eq. (21.16) defines a family of pro-
cesses Xt which depend on the initial point x and are defined on a common
probability space. When the dependence of the process on the initial point
needs to be emphasized, we shall denote the process by Xx

t . (The superscript x
is not to be confused with the superscript i used to denote the i-th component
of the process.)

Let aij(x) =
∑r

k=1 σik(x)σjk(x) = (σσ∗)ij(x). This is a square non-
negative definite symmetric matrix which will be called the diffusion matrix
corresponding to the family of processes Xx

t . Let us consider the differential
operator L which acts on functions f ∈ C2(Rd) according to the formula

Lf(x) =
1

2

d∑

i=1

d∑

j=1

aij(x)
∂2f(x)

∂xi∂xj
+

d∑

i=1

vi(x)
∂f(x)

∂xi
. (21.17)

This operator is called the infinitesimal generator of the family of diffusion
processes Xx

t . Let us show that for f ∈ C2(Rd) which is bounded together
with its first and second partial derivatives,

Lf(x) = lim
t↓0

E[f(Xx
t )− f(x)]

t
. (21.18)
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In fact, the term “infinitesimal generator” of a Markov family of processes Xx
t

usually refers to the right-hand side of this formula. (The Markov property
of the solutions to SDE’s will be discussed below.) By the Ito Formula, the
expectation on the right-hand side of (21.18) is equal to

E[

∫ t

0

Lf(Xx
s )ds+

∫ t

0

d∑

i=1

r∑

j=1

∂f(Xx
s )

∂xi
σij(X

x
s )dW

j
s ] = E[

∫ t

0

Lf(Xx
s )ds],

since the expectation of the stochastic integral is equal to zero. Since Lf is
bounded, the Dominated Convergence Theorem implies that

lim
t↓0

E[
∫ t

0 Lf(X
x
s )ds]

t
= Lf(x).

The coefficients of the operator L can be obtained directly from the law
of the process Xt instead of the representation of the process as a solution of
the stochastic differential equation. Namely,

vi(x) = lim
t↓0

E[(Xx
t )

i − xi]

t
, aij(x) = lim

t↓0
E[((Xx

t )
i − xi)((X

x
t )

j − xj)]

t
.

We leave the proof of this statement to the reader.
Now let L be any differential operator given by (21.17). LetD be a bounded

open domain in R
d with a smooth boundary ∂D. We shall consider the fol-

lowing partial differential equation

Lu(x) + q(x)u(x) = g(x) for x ∈ D, (21.19)

with the boundary condition

u(x) = f(x) for x ∈ ∂D. (21.20)

This pair, Eq. (21.19) and the boundary condition (21.20), is referred to as the
Dirichlet problem for the operator L with the potential q(x), the right-hand
side g(x), and the boundary condition f(x). We assume that the coefficients
aij(x), vi(x) of the operator L, and the functions q(x) and g(x) are continuous
on the closure of D (denoted by D), while f(x) is assumed to be continuous
on ∂D.

Definition 21.8. An operator L of the form (21.17) is called uniformly ellip-
tic on D if there is a positive constant k such that

d∑

i=1

d∑

j=1

aij(x)yiyj ≥ k||y||2 (21.21)

for all x ∈ D and all vectors y ∈ R
d.



324 21 Stochastic Differential Equations

We shall use the following fact from the theory of partial differential equa-
tions (see “Partial Differential Equations” by A. Friedman, for example).

Theorem 21.9. If aij, vi, q, and g are Lipschitz continuous on D, f is con-
tinuous on ∂D, the operator L is uniformly elliptic on D, and q(x) ≤ 0 for
x ∈ D, then there is a unique solution u(x) to (21.19)–(21.20) in the class of
functions which belong to C2(D) ∩C(D).

Let σij(x) and vi(x), 1 ≤ i ≤ d, 1 ≤ j ≤ r, be Lipschitz continuous on D.
It is not difficult to see that we can then extend them to bounded Lipschitz
continuous functions on the entire space Rd and define the family of processes
Xx

t according to (21.16). Let τxD be the stopping time equal to the time of the
first exit of the process Xx

t from the domain D, that is

τxD = inf{t ≥ 0 : Xx
t /∈ D}.

By using Lemma 20.18, we can see that the stopped process Xx
t∧τx

D
and the

stopping time τxD do not depend on the values of σij(x) and vi(x) outside
of D.

When L is the generator of the family of diffusion processes, we shall
express the solution u(x) to (21.19)–(21.20) as a functional of the process Xx

t .
First, we need a technical lemma.

Lemma 21.10. Suppose that σij(x) and vi(x), 1 ≤ i ≤ d, 1 ≤ j ≤ r, are
Lipschitz continuous on D, and the generator of the family of processes Xx

t is
uniformly elliptic in D. Then

sup
x∈D

EτxD <∞.

Proof. Let B be an open ball so large that D ⊂ B. Since the boundary of D
is smooth and the coefficients σij(x) and vi(x) are Lipschitz continuous in D,
we can extend them to Lipschitz continuous functions on B in such a way that
L becomes uniformly elliptic on B. Let ϕ ∈ C2(B) ∩ C(B) be the solution of
the equation Lϕ(x) = 1 for x ∈ B with the boundary condition ϕ(x) = 0 for
x ∈ ∂B. The existence of the solution is guaranteed by Theorem 21.9. By the
Ito Formula,

Eϕ(Xx
t∧τx

D
)− ϕ(x) = E

∫ t∧τx
D

0

Lϕ(Xx
s )ds = Et ∧ τxD.

(The use of the Ito Formula is justified by the fact that ϕ is twice continuously
differentiable in a neighborhood ofD, and thus there is a function ψ ∈ C2

0 (R
2),

which coincides with ϕ in a neighborhood of D. Theorem 20.27 can now be
applied to the function ψ.)

Thus,
sup
x∈D

E (t ∧ τxD) ≤ 2 sup
x∈D

|ϕ(x)|,

which implies the lemma if we let t→ ∞. �
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Theorem 21.11. Suppose that σij(x) and vi(x), 1 ≤ i ≤ d, 1 ≤ j ≤ r, are
Lipschitz continuous on D, and the generator L of the family of processes
Xx

t is uniformly elliptic on D. Assume that the potential q(x), the right-hand
side g(x), and the boundary condition f(x) of the Dirichlet problem (21.19)–
(21.20) satisfy the assumptions of Theorem 21.9. Then the solution to the
Dirichlet problem can be written as follows:

u(x) = E[f(Xx
τx
D
) exp(

∫ τx
D

0

q(Xx
s )ds)−

∫ τx
D

0

g(Xx
s ) exp(

∫ s

0

q(Xx
u)du)ds].

Proof. As before, we can extend σij(x) and vi(x) to Lipschitz continuous
bounded functions on R

d, and the potential q(x) to a continuous function on
R

d, satisfying q(x) ≤ 0 for all x. Assume at first that u(x) can be extended as a
C2 function to a neighborhood of D. Then it can be extended as a C2 function
with compact support to the entire space R

d. We can apply the integration

by parts (20.23) to the pair of semimartingales u(Xx
t ) and exp(

∫ t

0 q(X
x
s )ds).

In conjunction with (20.11) and the Ito formula,

u(Xx
t ) exp(

∫ t

0

q(Xx
s )ds) = u(x) +

∫ t

0

u(Xx
s ) exp(

∫ s

0

q(Xx
u)du)q(X

x
s )ds

+

∫ t

0

exp(

∫ s

0

q(Xx
u)du)Lu(X

x
s )ds

+

d∑
i=1

r∑
j=1

∫ t

0

exp(

∫ s

0

q(Xx
u)du)

∂u

∂xi
(Xx

s )σij(X
x
s )dW

j
s .

Notice that, by (21.19), Lu(Xx
s ) = g(Xx

s )−q(Xx
s )u(X

x
s ) for s ≤ τxD. Therefore,

after replacing t by t∧τxD and taking the expectation on both sides, we obtain

E(u(Xx
t∧τx

D
) exp(

∫ t∧τx
D

0

q(Xx
s )ds)) = u(x)

+E

∫ t∧τx
D

0

g(Xx
s ) exp(

∫ s

0

q(Xx
u )du)ds.

By letting t→ ∞, which is justified by the Dominated Convergence Theorem,
since EτxD is finite, we obtain

u(x) = E[u(Xx
τx
D
) exp(

∫ τx
D

0

q(Xx
s )ds)− E

∫ τx
D

0

g(Xx
s ) exp(

∫ s

0

q(Xx
u )du)ds].

(21.22)
Since Xx

τx
D

∈ ∂D and u(x) = f(x) for x ∈ ∂D, this is exactly the desired

expression for u(x).
At the beginning of the proof, we assumed that u(x) can be extended as a

C2 function to a neighborhood of D. In order to remove this assumption, we
consider a sequence of domains D1 ⊆ D2 ⊆ . . . with smooth boundaries, such
that Dn ⊂ D and

⋃∞
n=1Dn = D. Let τxDn

be the stopping times corresponding
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to the domains Dn. Then limn→∞ τxDn
= τxD almost surely for all x ∈ D. Since

u is twice differentiable in D, which is an open neighborhood of Dn, we have

u(x) = E[u(Xx
τx
Dn

) exp(

∫ τx
Dn

0

q(Xx
s )ds)− E

∫ τx
Dn

0

g(Xx
s ) exp(

∫ s

0

q(Xx
u)du)ds]

for x ∈ Dn. By taking the limit as n → ∞ and using the dominated conver-
gence theorem, we obtain (21.22). �

Example. Let us consider the partial differential equation

Lu(x) = −1 for x ∈ D

with the boundary condition

u(x) = 0 for x ∈ ∂D.

By Theorem 21.11, the solution to this equation is simply the expectation of
the time it takes for the process to exit the domain, that is u(x) = EτxD.

Example. Let us consider the partial differential equation

Lu(x) = 0 for x ∈ D

with the boundary condition

u(x) = f for x ∈ ∂D.

By Theorem 21.11, the solution of this equation is

u(x) = Ef(Xx
τx
D
) =

∫

∂D

f(y)dμx(y),

where μx(A) = P(Xx
τx
D

∈ A), A ∈ B(∂D), is the measure on ∂D induced
by the random variable Xx

τx
D
.

Now let us explore the relationship between diffusion processes and para-
bolic partial differential equations. Let L be a differential operator with time-
dependent coefficients, which acts on functions f ∈ C2(Rd) according to the
formula

Lf(x) =
1

2

d∑

i=1

d∑

j=1

aij(t, x)
∂2f(x)

∂xi∂xj
+

d∑

i=1

vi(t, x)
∂f(x)

∂xi
.

We shall say that L is uniformly elliptic on D ⊆ R
1+d (with t considered as a

parameter) if
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d∑

i=1

d∑

j=1

aij(t, x)yiyj ≥ k||y||2

for some positive constant k, all (t, x) ∈ D, and all vectors y ∈ R
d. Without

loss of generality, we may assume that aij form a symmetric matrix, in which
case aij(t, x) = (σσ∗)ij(t, x) for some matrix σ(t, x).

Let T1 < T2 be two moments of time. We shall be interested in the solutions
to the backward parabolic equation

∂u(t, x)

∂t
+Lu(t, x)+q(t, x)u(t, x) = g(t, x) for (t, x) ∈ (T1, T2)×R

d (21.23)

with the terminal condition

u(T2, x) = f(x) for x ∈ R
d. (21.24)

The function u(t, x) is called the solution to the Cauchy problem (21.23)–
(21.24). Let us formulate an existence and uniqueness theorem for the
solutions to the Cauchy problem (see “Partial Differential Equations” by A.
Friedman, for example).

Theorem 21.12. Assume that q(t, x) and g(t, x) are bounded, continuous,
and uniformly Lipschitz continuous in the space variables on (T1, T2]×R

d, and
that σij(t, x) and vi(t, x) are continuous and uniformly Lipschitz continuous
in the space variables on (T1, T2] × R

d. Assume that they do not grow faster
than linearly, that is (21.5) holds, and that f(x) is bounded and continuous
on R

d. Also assume that the operator L is uniformly elliptic on (T1, T2]×R
d.

Then there is a unique solution u(t, x) to the problem (21.23)–(21.24) in
the class of functions which belong to C1,2((T1, T2)×R

d)∩Cb((T1, T2]×R
d).

(These are the functions which are bounded and continuous in (T1, T2]× R
d,

and whose partial derivative in t and all second order partial derivatives in x
are continuous in (T1, T2)× R

d.)

Remark 21.13. In textbooks on PDE’s, this theorem is usually stated under
the assumption that σij and vi are bounded. As will be explained below, by
using the relationship between PDE’s and diffusion processes, it is sufficient
to assume that σij and vi do not grow faster than linearly.

Let us now express the solution to the Cauchy problem as a functional
of the corresponding diffusion process. For t ∈ (T1, T2], define X

t,x
s to be the

solution to the stochastic differential equation

dX i
s = vi(t+s,Xs)ds+

r∑

j=1

σij(t+s,Xs)dW
j
s , 1 ≤ i ≤ d, s ≤ T2−t, (21.25)
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with the initial condition Xt,x
0 = x. Let

aij(t, x) =

r∑

k=1

σik(t, x)σjk(t, x) = (σσ∗)ij(t, x).

Theorem 21.14. Suppose that the assumptions regarding the operator L and
the functions q(t, x), g(t, x), and f(x), formulated in Theorem 21.12, are sat-
isfied. Then the solution to the Cauchy problem can be written as follows:

u(t, x) = E[f(Xt,x
T2−t) exp(

∫ T2−t

0

q(t+ s,Xt,x
s )ds)

−
∫ T2−t

0

g(t+ s,Xt,x
s ) exp(

∫ s

0

q(t+ u,Xt,x
u )du)ds].

This expression for u(t, x) is called the Feynman-Kac formula.
The proof of Theorem 21.14 is the same as that of Theorem 21.11, and

therefore is left to the reader.

Remark 21.15. Let us assume that we have Theorems 21.12 and 21.14 only
for the case in which the coefficients are bounded.

Given σij(t, x) and vi(t, x), which are continuous, uniformly Lipschitz con-
tinuous in the space variables, and do not grow faster than linearly, we can
find continuous functions σn

ij(t, x) and v
n
i (t, x) which are uniformly Lipschitz

continuous in the space variables and bounded on (T1, T2] × R
d, and which

coincide with σij(t, x) and vi(t, x), respectively, for ||x|| ≤ n.
Let un(t, x) be the solution to the corresponding Cauchy problem. By

Theorem 21.14 for the case of bounded coefficients, it is possible to show that
un converge point-wise to some function u, which is a solution to the Cauchy
equation with the coefficients which do not grow faster than linearly, and that
this solution is unique. The details of this argument are left to the reader.

In order to emphasize the similarity between the elliptic and the parabolic
problems, consider the processes Y x,t0

t = (t+ t0, X
x
t ) with values in R

1+d and
initial conditions (t0, x). Then the operator ∂/∂t+L, which acts on functions
defined on R

1+d, is the infinitesimal generator for this family of processes.
Let us now discuss fundamental solutions to parabolic PDE’a and their

relation to the transition probability densities of the corresponding diffusion
processes.

Definition 21.16. A non-negative function G(t, r, x, y) defined for t < r and
x, y ∈ R

d is called a fundamental solution to the backward parabolic equation

∂u(t, x)

∂t
+ Lu(t, x) = 0, (21.26)

if for fixed t, r, and x, the function G(t, r, x, y) belongs to L1(Rd,B(Rd), λ),
where λ is the Lebesgue measure, and for any f ∈ Cb(R

d), the function
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u(t, x) =

∫

Rd

G(t, r, x, y)f(y)dy

belongs to C1,2((−∞, r)×R
d)∩Cb((−∞, r]×R

d) and is a solution to (21.26)
with the terminal condition u(r, x) = f(x).

Suppose that σij(t, x) and vi(t, x), 1 ≤ i ≤ d, 1 ≤ j ≤ r, (t, x) ∈ R
1+d, are

continuous, uniformly Lipschitz continuous in the space variables, and do not
grow faster than linearly. It is well-known that in this case the fundamental
solution to (21.26) exists and is unique (see “Partial Differential Equations of
Parabolic Type” by A. Friedman). Moreover, for fixed r and y, the function
G(t, r, x, y) belongs to C1,2((−∞, r) × R

d) and satisfies (21.26). Let us also
consider the following equation, which is formally adjoint to (21.26)

− ∂ũ(r, y)

∂r
+

1

2

d∑

i=1

d∑

j=1

∂2

∂yi∂yj
[aij(r, y)ũ(r, y)]−

d∑

i=1

∂

∂yi
[vi(r, y)ũ(r, y)] = 0,

(21.27)
where ũ(r, y) is the unknown function. If the partial derivatives

∂aij(r, y)

∂yi
,
∂2aij(r, y)

∂yi∂yj
,
∂vi(r, y)

∂yi
, 1 ≤ i, j ≤ d, (21.28)

are continuous, uniformly Lipschitz continuous in the space variables, and do
not grow faster than linearly, then for fixed t and x the function G(t, r, x, y)
belongs to C1,2((t,∞)× R

d) and satisfies (21.27).
Let Xt,x

s be the solution to Eq. (21.25), and let μ(t, r, x, dy) be the dis-
tribution of the process at time r > t. Let us show that under the above
conditions on σ and v, the measure μ(t, r, x, dy) has a density, that is

μ(t, r, x, dy) = ρ(t, r, x, y)dy, (21.29)

where ρ(t, r, x, y) = G(t, r, x, y). It is called the transition probability density
for the process Xt,x

s . (It is exactly the density of the Markov transition func-
tion, which is defined in the next section for the time-homogeneous case.) In
order to prove (21.29), take any f ∈ Cb(R

d) and observe that

∫

Rd

f(y)μ(t, r, x, dy) =

∫

Rd

f(y)G(t, r, x, y)dy,

since both sides are equal to the solution to the same backward parabolic
PDE evaluated at the point (t, x) due to Theorem 21.14 and Definition 21.16.
Therefore, the measures μ(t, r, x, dy) and G(t, r, x, y)dy coincide (see Prob-
lem 4, Chap. 8). We formalize the above discussion in the following lemma.

Lemma 21.17. Suppose that σij(t, x) and vi(t, x), 1 ≤ i ≤ d, 1 ≤ j ≤ r,
(t, x) ∈ R

1+d, are continuous, uniformly Lipschitz continuous in the space
variables, and do not grow faster than linearly.
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Then, the family of processes Xt,x
s defined by (21.25) has transition prob-

ability density ρ(t, r, x, y), which for fixed r and y satisfies equation (21.26)
(backward Kolmogorov equation). If, in addition, the partial derivatives in
(21.28) are continuous, uniformly Lipschitz continuous in the space variables,
and do not grow faster than linearly, then, for fixed t and x, the function
ρ(t, r, x, y) satisfies equation (21.27) (forward Kolmogorov equation).

Now consider a process whose initial distribution is not necessarily con-
centrated in a single point.

Lemma 21.18. Assume that the distribution of a square-integrable R
d-valued

random variable ξ is equal to μ, where μ is a measure with continuous den-
sity p0. Assume that the coefficients vi and σij and their partial derivatives
in (21.28) are continuous, uniformly Lipschitz continuous in the space vari-
ables, and do not grow faster than linearly. Let Xμ

t be the solution to (21.16)
with initial condition Xμ

0 = ξ.
Then the distribution of Xμ

t , for fixed t, has a density p(t, x) which belongs
to C1,2((0,∞) × R

d) ∩ Cb([0,∞) × R
d) and is the solution of the forward

Kolmogorov equation

(− ∂

∂t
+ L∗)p(t, x) = 0

with initial condition p(0, x) = p0(x).

Sketch of the Proof. Let μ̃t be the measure induced by the process at time t,
that is, μ̃t(A) = P(Xμ

t ∈ A) for A ∈ B(Rd). We can view μ̃ as a general-
ized function (element of S ′(R1+d)), which acts on functions f ∈ S(R1+d)
according to the formula

(μ̃, f) =

∫ ∞

0

∫

Rd

f(t, x)dμ̃t(x)dt.

Now let f ∈ S(R1+d), and apply Ito’s formula to f(t,Xμ
t ). After taking ex-

pectation on both sides,

Ef(t,Xμ
t ) = Ef(0, Xμ

0 ) +

∫ t

0

E(
∂f

∂s
+ Lf)(s,Xμ

s )ds.

If f is equal to zero for all sufficiently large t, we obtain

0 =

∫

Rd

f(0, x)dμ(x) + (μ̃,
∂f

∂t
+ Lf),

or, equivalently,

((− ∂

∂t
+ L∗)μ̃, f) +

∫

Rd

f(0, x)dμ(x) = 0. (21.30)

A generalized function μ̃, such that (21.30) is valid for any infinitely smooth
function with compact support, is called a generalized solution to the equation
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(− ∂

∂t
+ L∗)μ̃ = 0

with initial data μ. Since the partial derivatives in (21.28) are continuous,
uniformly Lipschitz continuous in the space variables, and do not grow faster
than linearly, and μ has a continuous density p0(x), the equation

(− ∂

∂t
+ L∗)p(t, x) = 0

with initial condition p(0, x) = p0(x) has a unique solution in C1,2((0,∞) ×
R

d)∩Cb([0,∞)×R
d). Since μ̃t is a finite measure for each t, it can be shown

that the generalized solution μ̃ coincides with the classical solution p(t, x).
Then it can be shown that for t fixed, p(t, x) is the density of the distribution
of Xμ

t . �

21.4 Markov Property of Solutions to SDE’s

In this section we prove that solutions to stochastic differential equations form
Markov families.

Theorem 21.19. Let Xx
t be the family of strong solutions to the stochastic

differential equation (21.16) with the initial conditions Xx
0 = x. Let L be the

infinitesimal generator for this family of processes. If the coefficients vi and
σij are Lipschitz continuous and do not grow faster than linearly, and L is
uniformly elliptic in R

d, then Xx
t is a Markov family.

Proof. Let us show that p(t, x, Γ ) = P(Xx
t ∈ Γ ) is Borel-measurable as a

function of x ∈ R
d for any t ≥ 0 and any Borel set Γ ⊆ R

d. When t = 0,
P(Xx

0 ∈ Γ ) = χΓ (x), so it is sufficient to consider the case t > 0. First assume
that Γ is closed. In this case, we can find a sequence of bounded continuous
functions fn ∈ Cb(R

d) such that fn(y) converge to χΓ (y) monotonically from
above. By the Lebesgue Dominated Convergence Theorem,

lim
n→∞

∫

Rd

fn(y)p(t, x, dy) =

∫

Rd

χΓ (y)p(t, x, dy) = p(t, x, Γ ).

By Theorem 21.14, the integral
∫
Rd fn(y)p(t, x, dy) is equal to u(0, x), where u

is the solution of the equation

(
∂

∂t
+ L)u = 0 (21.31)

with the terminal condition u(t, x) = f(x). Since the solution is a smooth
(and therefore measurable) function of x, p(t, x, Γ ) is a limit of measurable
functions, and therefore measurable. Closed sets form a π-system, while the
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collection of sets Γ for which p(t, x, Γ ) is measurable is a Dynkin system.
Therefore, p(t, x, Γ ) is measurable for all Borel sets Γ by Lemma 4.13. The
second condition of Definition 19.2 is clear.

To verify the third condition of Definition 19.2, it suffices to show that

E(f(Xx
s+t)|Fs) =

∫

Rd

f(y)p(t,Xx
s , dy) (21.32)

for any f ∈ Cb(R
d). Indeed, we can approximate χΓ by a monotonically non-

increasing sequence of functions from Cb(R
d), and, if (21.32) is true, by the

Conditional Dominated Convergence Theorem,

P(Xx
s+t ∈ Γ |Fs) = p(t,Xx

s , Γ ) almost surely.

In order to prove (21.32), we can assume that s, t > 0, since otherwise the
statement is obviously true. Let u be the solution to (21.31) with the terminal
condition u(s+ t, x) = f(x). By Theorem 21.14, the right-hand side of (21.32)
is equal to u(s,Xx

s ) almost surely. By the Ito formula,

u(s+ t,Xx
s+t) = u(0, x) +

d∑

i=1

r∑

j=1

∫ s+t

0

∂u

∂xi
(Xx

u)σij(X
x
u)dW

j
u .

After taking conditional expectation on both sides,

E(f(Xx
s+t)|Fs) = u(0, x) +

d∑

i=1

r∑

j=1

∫ s

0

∂u

∂xi
(Xx

u)σij(X
x
u )dW

j
u

= u(s,Xx
s ) =

∫

Rd

f(y)p(t,Xx
s , dy).

�

Remark 21.20. Since p(t,Xx
s , Γ ) is σ(X

x
s )-measurable, it follows from the third

property of Definition 19.2 that

P(Xx
s+t ∈ Γ |Fs) = P(Xx

s+t ∈ Γ |Xx
s ).

Thus, Theorem 21.19 implies that Xx
t is a Markov process for each fixed x.

We state the following theorem without a proof.

Theorem 21.21. Under the conditions of Theorem 21.19, the family of pro-
cesses Xx

t is a strong Markov family.

Given a Markov family of processes Xx
t , we can define two families of

Markov transition operators. The first family, denoted by Pt, acts on bounded
measurable functions. It is defined by
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(Ptf)(x) = Ef(Xx
t ) =

∫

Rd

f(y)p(t, x, dy),

where p is the Markov transition function. From the definition of the Markov
property, we see that Ptf is again a bounded measurable function.

The second family of operators, denoted by P ∗
t , acts on probability mea-

sures. It is defined by

(P ∗
t μ)(C) =

∫

Rd

P(Xx
t ∈ C)dμ(x) =

∫

Rd

p(t, x, C)dμ(x).

It is clear that the image of a probability measure μ under P ∗
t is again a

probability measure. The operators Pt and P ∗
t are adjoint. Namely, if f is a

bounded measurable function and μ is a probability measure, then

∫

Rd

(Ptf)(x)dμ(x) =

∫

Rd

f(x)d(P ∗
t μ)(x). (21.33)

Indeed, by the definitions of Pt and P
∗
t , this formula is true if f is an indicator

function of a measurable set. Therefore, it is true for finite linear combina-
tions of indicator functions. An arbitrary bounded measurable function can,
in turn, be uniformly approximated by finite linear combinations of indicator
functions, which justifies (21.33).

Definition 21.22. A measure μ is said to be invariant for a Markov family
Xx

t if P ∗
t μ = μ for all t ≥ 0.

Let us answer the following question: when is a measure μ invariant for
the family of diffusion processes Xx

t that solve (21.16) with initial condi-
tions Xx

0 = x? Let the coefficients of the generator L satisfy the conditions
stated in Lemma 21.19. Assume that μ is an invariant measure. Then the
right-hand side of (21.33) does not depend on t, and therefore neither does
the left hand side. In particular,

∫

Rd

(Ptf − f)(x)dμ(x) = 0.

Let f belong to the Schwartz space S(Rd). In this case,

∫

Rd

Lf(x)dμ(x) =

∫

Rd

lim
t↓0

(Ptf − f)(x)

t
dμ(x)

= lim
t↓0

∫

Rd

(Ptf − f)(x)

t
dμ(x) = 0,

where the first equality is due to (21.18) and the second one to the Dominated
Convergence Theorem. Note that we can apply the Dominated Convergence
Theorem, since (Ptf − f)/t is uniformly bounded for t > 0 if f ∈ S(Rd), as is
clear from the discussion following (21.18).
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We can rewrite the equality
∫
Rd Lf(x)dμ(x) = 0 as (L∗μ, f) = 0, where

L∗μ is the following generalized function

L∗μ =
1

2

d∑

i=1

d∑

j=1

∂2

∂xi∂xj
[aij(x)μ(x)] −

d∑

i=1

∂

∂xi
[vi(x)μ(x)].

Here, aij(x)μ(x) and vi(x)μ(x) are the generalized functions corresponding to
the signed measures whose densities with respect to μ are equal to aij(x) and
vi(x), respectively. The partial derivatives here are understood in the sense
of generalized functions. Since f ∈ S(Rd) was arbitrary, we conclude that
L∗μ = 0.

The converse is also true: if L∗μ = 0, then μ is an invariant measure for
the family of diffusion processes Xx

t . We leave this statement as an exercise
for the reader.

Example. Let Xx
t be the family of solutions to the stochastic differential

equation
dXx

t = dWt −Xx
t dt

with the initial data Xx
t = x. (See Sect. 21.1, in which we discussed the

Ornstein-Uhlenbeck process.) The generator for this family of processes and
the adjoint operator are given by

Lf(x) =
1

2
f ′′(x) − xf ′(x) and L∗μ(x) =

1

2
μ′′(x) + (xμ(x))′.

It is not difficult to see that the only probability measure that satisfies
L∗μ=0 is that whose density with respect to the Lebesgue measure is equal to
p(x) = 1√

π
exp(−x2). Thus, the invariant measure for the family of Ornstein-

Uhlenbeck processes is μ(dx) = 1√
π
exp(−x2)λ(dx), where λ is the Lebesgue

measure.

21.5 A Problem in Homogenization

Given a parabolic partial differential equation with variable (e.g. periodic)
coefficients, it is often possible to describe asymptotic properties of its solu-
tions (as t → ∞) in terms of solutions to a simpler equation with constant
coefficients. Similarly, for large t, solutions to a stochastic differential equation
with variable coefficients may exhibit similar properties to those for an SDE
with constant coefficients.

In order to state one such homogenization result, let us consider the R
d-

valued process Xt which satisfies the following stochastic differential equation

dXt = v(Xt)dt+ dWt (21.34)

with initial condition X0 = ξ, where ξ is a bounded random variable, v(x) =
(v1(x), . . . , vd(x)) is a vector field on R

d, and Wt = (W 1
t , . . . ,W

d
t ) is a d-

dimensional Brownian motion. We assume that the vector field v is smooth,
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periodic (v(x + z) = v(x) for z ∈ Z
d) and incompressible (divv = 0). Let T d

be the unit cube in R
d,

T d = {x ∈ R
d : 0 ≤ xi < 1, i = 1 . . . , d}

(we may glue the opposite sides to make it into a torus). Let us assume that∫
Td vi(x)dx = 0, 1 ≤ i ≤ d, that is the “net drift” of the vector field is equal
to zero. Notice that we can consider Xt as a process with values on the torus.

Although the solution to (21.34) cannot be written out explicitly, we can
describe the asymptotic behavior of Xt for large t. Namely, consider the R

d-
valued process Yt defined by

Y i
t =

∑

1≤j≤d

σijW
j
t , 1 ≤ i, j ≤ d,

with some coefficients σij . Due to the scaling property of Brownian motion, for
any positive ε, the distribution of the process Y ε

t =
√
εYt/ε is the same as that

of the original process Yt. Let us now apply the same scaling transformation
to the process Xt. Thus we define

Xε
t =

√
εXt/ε.

Let Pε
X be the measure on C([0,∞)) induced by the process Xε

t , and PY the
measure induced by the process Yt. It turns out that for an appropriate choice
of the coefficients σij , the measures Pε

X converge weakly to PY when ε → 0.
In particular, for t fixed, Xε

t converges in distribution to a Gaussian random
variable with covariance matrix aij = (σσ∗)ij .

We shall not prove this statement in full generality, but instead study
only the behavior of the covariance matrix of the process Xε

t as ε → 0 (or,
equivalently, of the process Xt as t → ∞). We shall show that E(X i

tX
j
t )

grows linearly, and identify the limit of E(X i
tX

j
t )/t as t → ∞. An additional

simplifying assumption will concern the distribution of ξ.
Let L be the generator of the process Xt which acts on functions u ∈ C2

(T d) (the class of smooth periodic functions) according to the formula

Lu(x) =
1

2
Δu(x) + (v,∇u)(x).

If u is periodic, then so is Lu, and therefore we can consider L as an operator
on C2(T d) with values in C(T d). Consider the following partial differential
equations for unknown periodic functions ui, 1 ≤ i ≤ d,

L(ui(x) + xi) = 0, (21.35)

where xi is the i-th coordinate of the vector x. These equations can be rewrit-
ten as

Lui(x) = −vi(x).
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Note that the right-hand side is a periodic function. It is well-known in the
general theory of elliptic PDE’s that this equation has a solution in C2(T d)
(which is then unique up to an additive constant) if and only if the right-hand
side is orthogonal to the kernel of the adjoint operator (see “Partial Differential
Equations” by A. Friedman). In other words, to establish the existence of a
solution we need to check that
∫

Td

−vi(x)g(x)dx = 0 if g ∈ C2(T d) and L∗g(x) =
1

2
Δg(x)−div(gv)(x) = 0.

It is easy to see that the only C2(T d) solutions to the equation L∗g = 0
are constants, and thus the existence of solutions to (21.35) follows from∫
Td vi(x)dx = 0. Since we can add an arbitrary constant to the solution,
we can define ui(x) to be the solution to (21.35) for which

∫
Td ui(x)dx = 0.

Now let us apply Ito’s formula to the function ui(x) + xi of the process
Xt:

ui(Xt) +X i
t − ui(X0)−X i

0 =

∫ t

0

d∑

k=1

∂(ui + xi)

∂xk
(Xs)dW

k
s

+

∫ t

0

L(ui + xi)(Xs)ds =

∫ t

0

d∑

k=1

∂(ui + xi)

∂xk
(Xs)dW

k
s ,

since the ordinary integral vanishes due to (21.35). Let git = ui(Xt)−ui(X0)−
X i

0. Thus,

X i
t + git =

∫ t

0

d∑

k=1

∂(ui + xi)

∂xk
(Xs)dW

k
s .

Similarly, using the index j instead of i, we can write

Xj
t + gjt =

∫ t

0

d∑

k=1

∂(uj + xj)

∂xk
(Xs)dW

k
s .

Let us multiply the right-hand sides of these equalities, and take expectations.
With the help of Lemma 20.17 we obtain

E(

∫ t

0

d∑

k=1

∂(ui + xi)

∂xk
(Xs)dW

k
s

∫ t

0

d∑

k=1

∂(uj + xj)

∂xk
(Xs)dW

k
s )

=

∫ t

0

E((∇ui,∇uj)(Xs) + δij)ds,

where δij = 1 if i = j, and δij = 0 if i �= j.
Notice that, since v is periodic, we can consider (21.34) as an equation for

a process on the torus T d. Let us assume that X0 = ξ is uniformly distributed
on the unit cube (and, consequently, when we consider Xt as a process on
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the torus, X0 is uniformly distributed on the unit torus). Let p0(x) ≡ 1 be
the density of this distribution. Since L∗p0(x) = 0, the density of Xs on the
torus is also equal to p0. (Here we used Lemma 21.18, modified to allow for
processes to take values on the torus.) Consequently,

∫ t

0

E((∇ui,∇uj)(Xs) + δij)ds =

∫ t

0

∫

Td

((∇ui,∇uj)(x) + δij)dxds

= t

∫

Td

((∇ui,∇uj)(x) + δij)dx.

Thus,

E((X i
t + git)(X

j
t + gjt ))/t =

∫

Td

((∇ui,∇uj)(x) + δij)dx. (21.36)

Lemma 21.23. Under the above assumptions,

E(X i
tX

j
t )/t→

∫

Td

((∇ui,∇uj)(x) + δij)dx as t→ ∞. (21.37)

Proof. The difference between (21.37) and (21.36) is the presence of the
bounded processes git and gjt in expectation on the left-hand side of (21.36).
The desired result follows from the following simple lemma.

Lemma 21.24. Let f i
t and h

i
t, 1 ≤ i ≤ d, be two families of random processes.

Suppose

E
(
(f i

t + hit)(f
j
t + hjt )

)
= φij . (21.38)

Also suppose there is a constant c such that

tE(hit)
2 ≤ c. (21.39)

Then,
lim
t→∞E(f i

tf
j
t ) = φij .

Proof. By (21.38) with i = j,

E(f i
t )

2 = φii − E(hit)
2 − 2E(f i

th
i
t) . (21.40)

By (21.40) and (21.39), we conclude that there exists a constant c′ such that

E(f i
t )

2 < c′ for all t > 1 . (21.41)

By (21.38),

E(f i
tf

j
t )− φij = −E(hith

j
t )− E(f i

th
j
t)− E(f j

t h
i
t) . (21.42)

By the Schwartz Inequality, (21.39) and (21.41), the right-hand side of (21.42)
tends to zero as t→ ∞. �

To complete the proof of Lemma 21.23 it suffices to take f i
t = X i

t/
√
t,

hit = git/
√
t, and apply Lemma 21.24. �
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21.6 Problems

1. Prove the Gronwall Inequality (Lemma 21.4).
2. Let Wt be a one-dimensional Brownian motion. Prove that the process

Xt = (1− t)

∫ t

0

dWs

1− s
, 0 ≤ t < 1,

is the solution of the stochastic differential equation

dXt =
Xt

t− 1
dt+ dWt, 0 ≤ t < 1, X0 = 0.

3. For the process Xt defined in Problem 2, prove that there is the almost
sure limit

lim
t→1−

Xt = 0.

Define X1 = 0. Prove that the process Xt, 0 ≤ t ≤ 1 is Gaussian, and
find its correlation function. Prove that Xt is a Brownian Bridge (see
Problem 13, Chap. 18).

4. Consider two European call options with the same strike price for the
same stock (i.e., r, σ, P and S are the same for the two options). Assume
that the risk-free interest rate γ is equal to zero. Is it true that the option
with longer time till expiration is more valuable?

5. Let Wt be a one-dimensional Brownian motion, and Yt = e−t/2W (et).
Find a, σ and ξ such that Yt has the same finite-dimensional distributions
as the solution of (21.9).

6. LetWt be a two-dimensional Brownian motion, and τ the first time when
Wt hits the unit circle, τ = inf(t : ||Wt|| = 1). Find Eτ .

7. Prove that if a point satisfies the exterior cone condition, then it is reg-
ular.

8. Prove that regularity is a local condition. Namely, let D1 and D1 be
two domains, and let x ∈ ∂D1 ∩ ∂D2. Suppose that there is an open
neighborhood U of x such that U

⋂
∂D1 = U

⋂
∂D1. Then x is a regular

boundary point for D1 if and only if it is a regular boundary point for
D2.

9. Let Wt be a two-dimensional Brownian motion. Prove that for any x ∈
R

2, ||x|| > 0, we have

P(there is t ≥ 0 such that Wt = x) = 0.

Prove that for any δ > 0

P(there is t ≥ 0 such that ||Wt − x|| ≤ δ) = 1.

10. Let Wt be a d-dimensional Brownian motion, where d ≥ 3. Prove that

lim
t→∞ ||Wt|| = ∞

almost surely.
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11. Let Wt = (W 1
t ,W

2
t ) be a two-dimensional Brownian motion, and τ the

first time when Wt hits the unit square centered at the origin, τ = inf(t :
min(|W 1

t |, |W 2
t |) = 1/2). Find Eτ .

12. Let D be the open unit disk in R
2 and uε ∈ C2(D) ∩ C(D) the solution

of the following Dirichlet problem

εΔuε +
∂uε

∂x1
= 0,

u(x) = f(x) for x ∈ ∂D,

where f is a continuous function on ∂D. Find the limit limε↓0 uε(x1, x2)
for (x1, x2) ∈ D.

13. Let Xt be the strong solution to the stochastic differential equation

dXt = v(Xt)dt+ σ(Xt)dWt

with the initial condition X0 = 1, where v and σ are Lipschitz continuous
functions on R. Assume that σ(x) ≥ c > 0 for some constant c and
all x ∈ R. Find a non-constant function f such that f(Xt) is a local
martingale.

14. Let Xt, v and σ be the same as in the previous problem. For which
functions v and σ do we have

P(there is t ∈ [0,∞) such that Xt = 0) = 1?
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