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Stochastic Integral and the Ito Formula

20.1 Quadratic Variation of Square-Integrable
Martingales

In this section we shall apply the Doob-Meyer Decomposition to submartin-
gales of the form X2

t , where Xt is a square-integrable martingale with contin-
uous sample paths. This decomposition will be essential in the construction
of the stochastic integral in the next section.

We shall call two random processes equivalent if they are indistinguishable.
We shall often use the same notation for a process and the equivalence class
it represents.

Definition 20.1. Let Ft be a filtration on a probability space (Ω,F ,P). Let
Mc

2 denote the space of all equivalence classes of square-integrable martingales
which start at zero, and whose sample paths are continuous almost surely. That
is, Xt ∈ Mc

2 if (Xt,Ft) is a square-integrable martingale, X0 = 0 almost
surely, and Xt is continuous almost surely.

We shall always assume that the filtration Ft satisfies the usual conditions
(as is the case, for example, if Ft is the augmented filtration for a Brownian
motion).

Let us consider the process X2
t . Since it is equal to a convex function

(namely x2) applied to the martingale Xt, the process X
2
t is a submartingale.

Let Sa be the set of all stopping times bounded by a. If τ ∈ Sa, by the
Optional Sampling Theorem

∫
{X2

τ>λ}
X2

τ dP ≤
∫
{X2

τ>λ}
X2

adP.

By the Chebyshev Inequality,

P(X2
τ > λ) ≤ EX2

τ

λ
≤ EX2

a

λ
→ 0 as λ → ∞.
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290 20 Stochastic Integral and the Ito Formula

Since the integral is an absolutely continuous function of sets,

lim
λ→∞

sup
τ∈Sa

∫
{X2

τ>λ}
X2

τdP = 0,

that is, the set of random variables {Xτ}τ∈Sa is uniformly integrable.
Therefore, we can apply the Doob-Meyer Decomposition (Theorem 13.26)

to conclude that there are unique (up to indistinguishability) processes Mt

and At, whose paths are continuous almost surely, such that X2
t = Mt + At,

where (Mt,Ft) is a martingale, and At is an adapted non-decreasing process,
and M0 = A0 = 0 almost surely.

Definition 20.2. The process At in the above decomposition X2
t = Mt + At

of the square of the martingale Xt ∈ Mc
2 is called the quadratic variation of

Xt and is denoted by 〈X〉t.
Example. Let us prove that 〈W 〉t = t. Indeed for s ≤ t,

E(W 2
t |Fs) = E((Wt −Ws)

2|Fs) + 2E(WtWs|Fs)− E(W 2
s |Fs) = W 2

s + t− s.

Therefore, W 2
t − t is a martingale, and 〈W 〉t = t due to the uniqueness of the

Doob-Meyer Decomposition.

Example. Let Xt ∈ Mc
2 and τ be a stopping time of the filtration Ft (here

τ is allowed to take the value ∞ with positive probability). Thus, the process
Yt = Xt∧τ also belongs to Mc

2. Indeed, it is a continuous martingale by
Lemma 13.29. It is square-integrable since Ytχ{t<τ} = Xtχ{t<τ}, while

Ytχ{τ≤t} = Xτχ{τ≤t} = E(Xtχ{τ≤t}|Fτ ) ∈ L2(Ω,F ,P).

Since X2
t −〈X〉t is a continuous martingale, the process X2

t∧τ −〈X〉t∧τ is also
a martingale by Lemma 13.29. Since 〈X〉t∧τ is an adapted non-decreasing
process, we conclude from the uniqueness of the Doob-Meyer Decomposition
that 〈Y 〉t = 〈X〉t∧τ .

Lemma 20.3. Let Xt ∈ Mc
2. Let τ be a stopping time such that 〈X〉τ = 0

almost surely. Then Xt = 0 for all 0 ≤ t ≤ τ almost surely.

Proof. Since 〈X〉t is non-decreasing, 〈X〉t∧τ = 0 almost surely for each t. By
Lemma 13.29, the process X2

t∧τ −〈X〉t∧τ is a martingale. Therefore, since the
expectation of a martingale is a constant,

EX2
t∧τ = E(X2

t∧τ − 〈X〉t∧τ ) = 0

for each t ≥ 0, that is Xt∧τ = 0 almost surely. Since Xt is continuous, Xt = 0
for all 0 ≤ t ≤ τ almost surely. �
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Clearly, the linear combinations of elements of Mc
2 are also elements

of Mc
2.

Definition 20.4. Let two processes Xt and Yt belong to Mc
2. We define their

cross-variation as

〈X,Y 〉t = 1

4
(〈X + Y 〉t − 〈X − Y 〉t). (20.1)

Clearly, XtYt − 〈X,Y 〉t is a continuous martingale, the cross-variation is
bi-linear and symmetric in X and Y , and |〈X,Y 〉t|2 ≤ 〈X〉t〈Y 〉t.

Let us introduce a metric which will turnMc
2 into a complete metric space.

Definition 20.5. For X,Y ∈ Mc
2 and 0 ≤ t < ∞, we define

||X ||t =
√
EX2

t , and dM(X,Y ) =
∞∑

n=1

1

2n
min(||X − Y ||n, 1).

In order to prove that dM is a metric, we need to show, in particular,
that dM(X,Y ) = 0 implies that Xt − Yt is indistinguishable from zero.
If dM(X,Y ) = 0, then Xn − Yn = 0 almost surely for every positive inte-
ger n. Since Xt − Yt is a martingale, Xt − Yt = E(Xn − Yn|Ft) = 0 almost
surely for every 0 ≤ t ≤ n. Therefore,

P({ω : Xt(ω)− Yt(ω) = 0 for all rational t}) = 1.

This implies that Xt−Yt is indistinguishable from zero, since it is continuous
almost surely. It is clear that dM has all the other properties required of a
metric. Let us show that the space Mc

2 is complete, which will be essential in
the construction of the stochastic integral.

Lemma 20.6. The space Mc
2 with the metric dM is complete.

Proof. Let Xm
t be a Cauchy sequence in Mc

2. Then Xm
n is a Cauchy sequence

in L2(Ω,Fn,P) for each n. If t ≤ n, then E|Xm1
t −Xm2

t |2 ≤ E|Xm1
n −Xm2

n |2
for all m1 and m2, since |Xm1

t −Xm2
t |2 is a submartingale. This proves that

Xm
t is a Cauchy sequence in L2(Ω,Ft,P) for each t. Let Xt be defined for

each t as the limit of Xm
t in L2(Ω,Ft,P). Let 0 ≤ s ≤ t, and A ∈ Fs. Then,∫

A

XtdP = lim
m→∞

∫
A

Xm
t dP = lim

m→∞

∫
A

Xm
s dP =

∫
A

XsdP,

where the middle equality follows from Xm
t being a martingale, and the other

two are due to the L2 convergence. This shows that (Xt,Ft) is a martingale.
By Lemma 13.25, we can choose a right-continuous modification of Xt. We
can therefore apply the Doob Inequality (Theorem 13.30) to the submartingale
|Xm

t −Xt|2 to obtain

P( sup
0≤s≤t

|Xm
s −Xs| ≥ λ) ≤ 1

λ2
E|Xm

t −Xt|2 → 0 as m → ∞
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for any t. We can, therefore, extract a subsequence mk such that

P( sup
0≤s≤t

|Xmk
s −Xs| ≥ 1

k
) ≤ 1

2k
for k ≥ 1.

The First Borel-Cantelli Lemma implies that Xmk
t converges to Xt uniformly

on [0, t] for almost all ω. Since t was arbitrary, this implies that Xt is contin-
uous almost surely, and thus Mc

2 is complete. �

Next we state a lemma which explains the relation between the quadratic
variation of a martingale (as in Definition 20.1) and the second variation of
the martingale over a partition (as in Sect. 3.2).

More precisely, let f be a function defined on an interval [a, b] of the real
line. Let σ = {t0, t1, . . . , tn}, a = t0 ≤ t1 ≤ . . . ≤ tn = b, be a partition of the
interval [a, b] into n subintervals. We denote the length of the largest interval
by δ(σ) = max1≤i≤n(ti − ti−1). Let V 2

[a,b](f, σ) =
∑n

i=1 |f(ti) − f(ti−1)|2 be
the second variation of the function f over the partition σ.

Lemma 20.7. Let Xt ∈ Mc
2 and t ≥ 0 be fixed. Then, for any ε > 0

lim
δ(σ)→0

P(|V 2
[0,t](Xs, σ)− 〈X〉t| > ε) = 0.

We omit the proof of this lemma, instead referring the reader to “Brownian
Motion and Stochastic Calculus” by I. Karatzas and S. Shreve. Note, however,
that Lemma 18.24 contains a stronger statement (convergence in L2 instead
of convergence in probability) when the martingale Xt is a Brownian motion.

Corollary 20.8. Assume that V 1
[0,t](Xs(ω)) < ∞ for almost all ω ∈ Ω, where

Xt ∈ Mc
2 and t ≥ 0 is fixed. Then Xs(ω) = 0, s ∈ [0, t], for almost all ω ∈ Ω.

Proof. Let us assume the contrary. Then, by Lemma 20.3, there is a positive
constant c1 and an event A′ ⊆ Ω with P(A′) > 0 such that 〈X〉t(ω) ≥ c1 for
almost all ω ∈ A′. Since V 1

[0,t](Xs(ω)) < ∞ for almost all ω ∈ A′, we can find a

constant c2 and a subset A′′ ⊆ A′ with P(A′′) > 0 such that V 1
[0,t](Xs(ω)) ≤ c2

for almost all ω ∈ A′′.
Let σn be a sequence of partitions of [0, t] into 2n intervals of equal

length. By Lemma 20.7, we can assume, without loss of generality, that
V 2
[0,t](Xs(ω), σn) 
= 0 for large enough n almost surely on A′′. Since a con-

tinuous function is also uniformly continuous,

lim
n→∞

V 1
[0,t](Xs(ω), σn)

V 2
[0,t](Xs(ω), σn)

= ∞ almost surely on A′′.

This, however, contradicts V 2
[0,t](Xs(ω), σn) → 〈X〉t(ω) ≥ c1 (in probability),

while limn→∞ V 1
[0,t](Xs(ω), σn) = V 1

[0,t](Xs(ω)) ≤ c2 for almost all ω ∈ A′′. �
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Lemma 20.9. Let Xt, Yt ∈ Mc
2. There is a unique (up to indistinguishability)

adapted continuous process of bounded variation At such that A0 = 0 almost
surely and XtYt −At is a martingale. In fact, At = 〈X,Y 〉t.
Proof. The existence part was demonstrated above. Suppose there are two
processes A1

t and A2
t with the desired properties. Then Mt = A1

t − A2
t is a

continuous martingale with bounded variation. Define the sequence of stop-
ping times τn = inf{t ≥ 0 : |Mt| = n}, where the infimum of an empty set
is equal to +∞. This is a non-decreasing sequence, which tends to infinity

almost surely. Note that M
(n)
t = Mt∧τn is a square-integrable martingale for

each n (by Lemma 13.29), and that M
(n)
t is also a process of bounded varia-

tion. By Corollary 20.8, M
(n)
t = 0 for all t almost surely. Since τn → ∞, A1

t

and A2
t are indistinguishable. �

An immediate consequence of this result is the following lemma.

Lemma 20.10. Let Xt, Yt ∈ Mc
2 with the filtration Ft, and let τ be a stop-

ping time for Ft. Then 〈X,Y 〉t∧τ is the cross-variation of the processes Xt∧τ

and Yt∧τ .

20.2 The Space of Integrands for the Stochastic Integral

Let (Mt,Ft)t∈R+ be a continuous square-integrable martingale on a probabil-
ity space (Ω,F ,P), and let Xt be an adapted process. In this chapter we shall

define the stochastic integral
∫ t

0
XsdMs, also denoted by It(X).

We shall carefully state additional assumptions on Xt in order to make
sense of the integral. Note that the above expression cannot be understood
as the Lebesgue-Stieltjes integral defined for each ω, unless 〈M〉t(ω) = 0.
Indeed, the function Ms(ω) has unbounded first variation on the interval [0, t]
if 〈M〉t(ω) 
= 0, as discussed in the previous section.

While the stochastic integral could be defined for a general square inte-
grable martingale Mt (by imposing certain restrictions on the process Xt), we
shall stick to the assumption that Mt ∈ Mc

2. Our prime example is Mt = Wt.
Let us now discuss the assumptions on the integrand Xt. We introduce

a family of measures μt, 0 ≤ t < ∞, associated to the process Mt, on the
product space Ω × [0, t] with the σ-algebra F × B([0, t]).

Namely, let K be the collection of sets of the form A = B × [a, b], where
B ∈ F and [a, b] ⊆ [0, t]. Let G be the collection of measurable sets A ∈
F × B([0, t]) for which

∫ t

0 χA(ω, s)d〈M〉s(ω) exists for almost all ω and is a
measurable function of ω. Note that K ⊆ G, that K is a π-system, and that G
is closed under unions of non-intersecting sets and complements in Ω × [0, t].
Therefore, F × B([0, t]) = σ(K) = G, where the second equality is due to
Lemma 4.12.
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We can now define

μt(A) = E

∫ t

0

χA(ω, s)d〈M〉s(ω),

where A ∈ F ×B([0, t]). The expectation exists since the integral is a measur-
able function of ω bounded from above by 〈M〉t. The fact that μt is σ-additive
(that is a measure) follows from the Levi Convergence Theorem. If f is defined
on Ω × [0, t] and is measurable with respect to the σ-algebra F × B([0, t]),
then ∫

Ω×[0,t]

fdμt = E

∫ t

0

f(ω, s)d〈M〉s(ω).

(If the function f is non-negative, and the expression on one side of the equal-
ity is defined, then the expression on the other side is also defined. If the func-
tion f is not necessarily non-negative, and the expression on the left-hand side
is defined, then the expression on the right-hand side is also defined). Indeed,
this formula is true for indicator functions of measurable sets, and therefore,
for simple functions with a finite number of values. It also holds for non-
negative functions since they can be approximated by monotonic sequences
of simple functions with a finite number of values. Furthermore, any function
can be represented as a difference of two non-negative functions, and thus, if
the expression on the left-hand side is defined, so is the one on the right-hand
side.

We can also consider the σ-finite measure μ on the product space Ω×R
+

with the σ-algebra F ×B(R+) whose restriction to Ω× [0, t] coincides with μt

for each t. For example, if Mt = Wt, then d〈M〉t(ω) is the Lebesgue measure
for each ω, and μ is equal to the product of the measure P and the Lebesgue
measure on the half-line.

Let Ht = L2(Ω × [0, t],F × B([0, t]), μt), and || · ||Ht be the L2 norm on
this space. We define H as the space of classes of functions on Ω ×R

+ whose
restrictions to Ω × [0, t] belong to Ht for every t ≥ 0. Two functions f and
g belong to the same class, and thus correspond to the same element of H,
if f = g almost surely with respect to the measure μ. We can define the metric
on H by

dH(f, g) =

∞∑
n=1

1

2n
min(||f − g||Hn , 1).

It is easy to check that this turns H into a complete metric space.
We shall define the stochastic integral It(X) for all progressively measur-

able processes Xt such that Xt ∈ H. We shall see that It(X) is indistinguish-
able from It(Y ) if Xt and Yt coincide as elements of H. The set of elements
of H which have a progressively measurable representative will be denoted
by L∗ or L∗(M), whenever it is necessary to stress the dependence on the
martingale Mt. It can be also viewed as a metric space with the metric dH,
and it can be shown that this space is also complete (although we will not use
this fact).
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Lemma 20.11. Let Xt be a progressively measurable process and At a contin-
uous adapted processes such that At(ω) almost surely has bounded variation
on any finite interval and

Yt(ω) =

∫ t

0

Xs(ω)dAs(ω) < ∞ almost surely.

Then Yt is progressively measurable.

Proof. As before, Xt can be approximated by simple functions from below,
proving Ft-measurability of Yt for fixed t. The process Yt is progressively mea-
surable since it is continuous. �

20.3 Simple Processes

In this section we again assume that we have a probability space (Ω,F ,P)
and a continuous square-integrable martingale Mt ∈ Mc

2.

Definition 20.12. A process Xt is called simple if there are a strictly increas-
ing sequence of real numbers tn, n ≥ 0, such that t0 = 0, limn→∞ tn = ∞,
and a sequence of bounded random variables ξn, n ≥ 0, such that ξn is Ftn-
measurable for every n and

Xt(ω) = ξ0(ω)χ{0}(t) +
∞∑

n=0

ξn(ω)χ(tn,tn+1](t) for ω ∈ Ω, t ≥ 0. (20.2)

The class of all simple processes will be denoted by L0.

It is clear that L0 ⊆ L∗. We shall first define the stochastic integral for simple
processes. Then we shall extend the definition to all the integrands from L∗

with the help of the following lemma.

Lemma 20.13. The space L0 is dense in L∗ in the metric dH of the space H.

The lemma states that, given a process Xt ∈ L∗, we can find a sequence of
simple processes Xn

t such that limn→∞ dH(Xn
t , Xt) = 0. We shall only prove

this for Xt continuous for almost all ω, the general case being somewhat more
complicated.

Proof. It is sufficient to show that for each integer m there is a sequence of
simple processes Xn

t such that

lim
n→∞ ||Xn

t −Xt||Hm = 0. (20.3)

Indeed, if this is the case, then for each m we can find a simple pro-

cess X
(m)
t such that ||X(m)

t −Xt||Hm ≤ 1/m. Then limm→∞ dH(X
(m)
t , Xt) =

0 as required. Let m be fixed, and
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Xn
t (ω) = X0(ω)χ{0}(t) +

n−1∑
k=0

Xkm/n(ω)χ(km/n,(k+1)m/n](t).

This sequence converges to Xt almost surely uniformly in t ∈ [0,m], since
Xt is continuous almost surely. If Xt is bounded on the interval [0,m] (that
is, |Xt(ω)| ≤ c for all ω ∈ Ω, t ∈ [0,m]), then, by the Lebesgue Dominated
Convergence Theorem, limn→∞ ||Xn

t − Xt||Hm = 0. If Xt is not necessarily
bounded, it can be first approximated by bounded processes as follows. Let

Y n
t (ω) =

⎧⎨
⎩

−n if Xt(ω) < −n,
Xt(ω) if − n ≤ Xt(ω) ≤ n,
n if Xt(ω) > n.

Note that Y n
t are continuous progressively measurable processes, which are

bounded on [0,m]. Moreover, limn→∞ ||Y n
t −Xt||Hm = 0. Each of the processes

Y n
t can, in turn, be approximated by a sequence of simple processes. There-

fore, (20.3) holds for some sequence of simple processes. Thus, we have shown
that for an almost surely continuous progressively measurable process Xt,
there is a sequence of simple processesXn

t such that limn→∞ dH(Xn
t , Xt) = 0.

�

20.4 Definition and Basic Properties of the Stochastic
Integral

We first define the stochastic (Ito) integral for a simple process,

Xt(ω) = ξ0(ω)χ{0}(t) +
∞∑

n=0

ξn(ω)χ(tn,tn+1](t) for ω ∈ Ω, t ≥ 0. (20.4)

Definition 20.14. The stochastic integral It(X) of the process Xt is defined
as

It(X) =

m(t)−1∑
n=0

ξn(Mtn+1 −Mtn) + ξm(t)(Mt −Mtm(t)
),

where m(t) is the unique integer such that tm(t) ≤ t < tm(t)+1.

When it is important to stress the dependence of the integral on the martin-
gale, we shall denote it by IMt (X). While the same process can be represented
in the form (20.4) with different ξn and tn, the definition of the integral does
not depend on the particular representation.

Let us study some properties stochastic integral. First, note that I0(X) = 0
almost surely. It is clear that the integral is linear in the integrand, that is,

It(aX + bY ) = aIt(X) + bIt(Y ) (20.5)
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for any X,Y ∈ L0 and a, b ∈ R. Also, It(X) is continuous almost surely since
Mt is continuous. Let us show that It(X) is a martingale. If 0 ≤ s < t, then

E((It(X)− Is(X))|Fs)

= E(ξm(s)−1(Mtm(s)
−Ms) +

m(t)−1∑
n=m(s)

ξn(Mtn+1 −Mtn) + ξn(Mt −Mtm(t)
)|Fs).

Since ξn is Ftn -measurable andMt is a martingale, the conditional expectation
with respect to Fs of each of the terms on the right-hand side is equal to zero.
Therefore, E(It(X)− Is(X)|Fs) = 0, which proves that It is a martingale.

The process It(X) is square-integrable since Mt is square-integrable and
the random variables ξn are bounded. Let us find its quadratic variation. Let
0 ≤ s < t. Assume that tm(t) > s (the case when tm(t) ≤ s can be treated
similarly). Then,

E(I2t (X)− I2s (X)|Fs)

= E((It(X)− Is(X))2|Fs)

= E((ξm(s)(Mtm(s)+1
−Ms) +

m(t)−1∑
n=m(s)+1

ξn(Mtn+1 −Mtn)

+ξm(t)(Mt −Mtm(t)
))2|Fs)

= E(ξ2m(s)(Mtm(s)+1
−Ms)

2 +

m(t)−1∑
n=m(s)+1

ξ2n(Mtn+1 −Mtn)
2

+ξ2m(t)(Mt −Mtm(t)
)2|Fs)

= E(ξ2m(s)(〈M〉tm(s)+1
− 〈M〉s) +

m(t)−1∑
n=m(s)+1

ξ2n(〈M〉tn+1 − 〈M〉tn)

+ξ2m(t)(〈M〉t − 〈M〉tm(t)
)|Fs) = E(

∫ t

s

X2
ud〈M〉u|Fs).

This implies that the process I2t (X)− ∫ t

0
X2

ud〈M〉u is a martingale. Since the

process
∫ t

0
X2

ud〈M〉u is Ft-adapted (as follows from the definition of a simple
process), we conclude from the uniqueness of the Doob-Meyer Decomposition

that 〈I(X)〉t =
∫ t

0
X2

ud〈M〉u. Also, by setting s = 0 in the calculation above
and taking expectation on both sides,

EI2t (X) = E

∫ t

0

X2
ud〈M〉u. (20.6)

Recall that we have the metric dM given by the family of norms || · ||n on
the space Mc

2 of martingales, and the metric dH given by the family of norms
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|| · ||Hn on the space L∗ of integrands. So far, we have defined the stochastic
integral as a mapping from the subspace L0 into Mc

2,

I : L0 → Mc
2.

Equation (20.6) implies that I is an isometry between L0 and its image
I(L0) ⊆ Mc

2, with the norms || · ||Hn and || · ||n respectively. Therefore, it
is an isometry with respect to the metrics dH and dM, that is

dM(It(X), It(Y )) = dH(X,Y )

for any X,Y ∈ L0. Since L0 is dense in L∗ in the metric dH (Lemma 20.13),
and the space Mc

2 is complete (Lemma 20.6), we can now extend the mapping
I to an isometry between L∗ (with the metric dH) and a subset of Mc

2 (with
the metric dM),

I : L∗ → Mc
2.

Definition 20.15. The stochastic integral of a process Xt ∈ L∗ is the unique
(up to indistinguishability) martingale It(X) ∈ Mc

2 such that

lim
Y→X,Y ∈L0

dM(It(X), It(Y )) = 0.

Given a pair of processes Xt, Yt ∈ L∗, we can find two sequences Xn
t , Y

n
t ∈ L0

such that Xn
t → Xt and Y n

t → Yt in L∗. Then aXn
t + bY n

t → aXt + bYt in
L∗, which justifies (20.5) for any X,Y ∈ L∗.

For Xt ∈ L0, we proved that

E(I2t (X)− I2s (X)|Fs) = E(

∫ t

s

X2
ud〈M〉u|Fs). (20.7)

If Xt ∈ L∗, we can find a sequence Xn
t such that Xn

t → Xt in L∗. For
any A ∈ Fs,

∫
A

(I2t (X)− I2s (X))dP = lim
n→∞

∫
A

(I2t (X
n)− I2s (X

n))dP (20.8)

= lim
n→∞

∫
A

∫ t

s

(Xn
u )

2d〈M〉u=
∫
A

∫ t

s

X2
ud〈M〉u.

This proves that (20.7) holds for all Xt ∈ L∗. By Lemma 20.11, the process∫ t

0 X
2
ud〈M〉u is Ft-adapted. Thus, due to the uniqueness in the Doob-Meyer

Decomposition, for all X ∈ L∗,

〈I(X)〉t =
∫ t

0

X2
ud〈M〉u. (20.9)

Remark 20.16. We shall also deal with stochastic integrals over a segment
[s, t], where 0 ≤ s ≤ t. Namely, let a process Xu be defined for u ∈ [s, t]. We
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can consider the process X̃u which is equal to Xu for s ≤ u ≤ t and to zero
for u < s and u > t. If X̃u ∈ L∗, we can define

∫ t

s

XudMu =

∫ t

0

X̃udMu.

Clearly, for Xu ∈ L∗,
∫ t

s XudMu = It(X)− Is(X).

20.5 Further Properties of the Stochastic Integral

We start this section with a formula similar to (20.9), but which applies to
the cross-variation of two stochastic integrals.

Lemma 20.17. Let M1
t ,M

2
t ∈ Mc

2, X
1
t ∈ L∗(M1), and X2

t ∈ L∗(M2). Then

〈IM1

(X1), IM
2

(X2)〉t =
∫ t

0

X1
sX

2
sd〈M1,M2〉s, t ≥ 0, almost surely.

(20.10)

We only sketch the proof of this lemma, referring the reader to “Brownian
Motion and Stochastic Calculus” by I. Karatzas and S. Shreve for a more
detailed exposition. We need the Kunita-Watanabe Inequality, which states
that under the assumptions of Lemma 20.17,

∫ t

0

|X1
sX

2
s |dV 1

[0,s](〈M1,M2〉)

≤ (

∫ t

0

(X1
s )

2d〈M1〉s)1/2(
∫ t

0

(X2
s )

2d〈M2〉s)1/2, t ≥ 0, almost surely,

where V 1
[0,s](〈M1,M2〉) is the first total variation of the process 〈M1,M2〉t

over the interval [0, s]. In particular, the Kunita-Watanabe Inequality justifies
the existence of the integral on the right-hand side of (20.10).

As we did with (20.7), we can show that for 0 ≤ s ≤ t < ∞,

E((IM
1

t (X1)− IM
1

s (X1))(IM
2

t (X2)− IM
2

s (X2))|Fs)

= E(

∫ t

s

X1
uX

2
ud〈M1M2〉u|Fs)

for simple processes X1
t , X

2
t ∈ L0. This implies that (20.10) holds for simple

processes X1
t and X2

t . If X1
t ∈ L∗(M1), X2

t ∈ L∗(M2), then they can be
approximated by simple processes as in the proof of (20.9). The transition
from the statement for simple processes to (20.10) can be justified using the
Kunita-Watanabe Inequality.

The following lemma will be used in the next section to define the stochas-
tic integral with respect to a local martingale.
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Lemma 20.18. Let M1
t ,M

2
t ∈ Mc

2 (with the same filtration), X1
t ∈ L∗(M1),

and X2
t ∈ L∗(M2). Let τ be a stopping time such that

M1
t∧τ = M2

t∧τ , X1
t∧τ = X2

t∧τ for 0 ≤ t < ∞ almost surely.

Then IM
1

t∧τ (X
1) = IM

2

t∧τ (X
2) for 0 ≤ t < ∞ almost surely.

Proof. Let Yt = X1
t∧τ = X2

t∧τ and Nt = M1
t∧τ = M2

t∧τ . Take an arbi-
trary t ≥ 0. By the formula for cross-variation of two integrals,

〈IMi

(X i), IM
j

(Xj)〉t∧τ =

∫ t∧τ

0

X i
sX

j
sd〈M i,M j〉s =

∫ t

0

Y 2
s d〈N〉s,

where 1 ≤ i, j ≤ 2. Therefore,

〈IM1

(X1)− IM
2

(X2)〉t∧τ

= 〈IM1

(X1)〉t∧τ + 〈IM2

(X2)〉t∧τ − 2〈IM1

(X1), IM
2

(X2)〉t∧τ = 0.

Lemma 20.3 now implies that IM
1

s (X1) = IM
2

s (X2) for all 0 ≤ s ≤ t ∧ τ

almost surely. Since t was arbitrary, IM
1

s (X1) = IM
2

s (X2) for 0 ≤ s < τ al-
most surely, which is equivalent to the desired result. �

The next lemma will be useful when applying the Ito formula (to be defined
later in this chapter) to stochastic integrals.

Lemma 20.19. Let Mt ∈ Mc
2, Yt ∈ L∗(M), and Xt ∈ L∗(IM (Y )). Then

XtYt ∈ L∗(M) and
∫ t

0

Xsd(

∫ s

0

YudMu) =

∫ t

0

XsYsdMs. (20.11)

Proof. Since 〈IM (Y )〉t =
∫ t

0 Y 2
s d〈M〉s, we have

E

∫ t

0

X2
sY

2
s d〈M〉s = E

∫ t

0

X2
sd〈IM (Y )〉s < ∞,

which shows thatXtYt ∈ L∗(M). Let us examine the quadratic variation of the
difference between the two sides of (20.11). By the formula for cross-variation
of two integrals,

〈IIM (Y )(X)− IM (XY )〉t
= 〈IIM (Y )(X)〉t + 〈IM (XY )〉t − 2〈IIM (Y )(X), IM (XY )〉t
=

∫ t

0

X2
sd〈IM (Y )〉s +

∫ t

0

X2
sY

2
s d〈M〉s − 2

∫ t

0

X2
sYsd〈IM (Y ),M〉s

=

∫ t

0

X2
sY

2
s d〈M〉s +

∫ t

0

X2
sY

2
s d〈M〉s − 2

∫ t

0

X2
sY

2
s d〈M〉s = 0.

By Lemma 20.3, (20.11) holds. �
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20.6 Local Martingales

In this section we define the stochastic integral with respect to continuous
local martingales.

Definition 20.20. Let Xt, t ∈ R
+, be a process adapted to a filtration Ft.

Then (Xt,Ft) is called a local martingale if there is a non-decreasing sequence
of stopping times τn : Ω → [0,∞] such that limn→∞ τn = ∞ almost surely,
and the process (Xt∧τn ,Ft) is a martingale for each n.

This method of introducing a non-decreasing sequence of stopping times,
which convert a local martingale into a martingale, is called localization.

The space of equivalence classes of local martingales whose sample paths
are continuous almost surely and which satisfy X0 = 0 almost surely will be
denoted by Mc,loc. It is easy to see that Mc,loc is a vector space (see Prob-
lem 3). It is also important to note that a local martingale may be integrable
and yet fail to be a martingale (see Problem 4).

Now let us define the quadratic variation of a continuous local martingale

(Xt,Ft) ∈ Mc,loc. We introduce the notation X
(n)
t = Xt∧τn . Then, for m ≤ n,

as in the example before Lemma 20.3,

〈X(m)〉t = 〈X(n)〉t∧τm .

This shows that 〈X(m)〉t and 〈X(n)〉t agree on the interval 0 ≤ t ≤ τm(ω) for
almost all ω. Since τm → ∞ almost surely, we can define the limit 〈X〉t =
limm→∞〈X(m)〉t, which is a non-decreasing adapted process whose sample
paths are continuous almost surely. The process 〈X〉t is called the quadratic
variation of the local martingale Xt. This is justified by the fact that

(X2 − 〈X〉)t∧τn = (X
(n)
t )2 − 〈X(n)〉t ∈ Mc

2.

That is, X2
t − 〈X〉t is a local martingale. Let us show that the process 〈X〉t

does not depend on the choice of the sequence of stopping times τn.

Lemma 20.21. Let Xt ∈ Mc,loc. There exists a unique (up to indistinguisha-
bility) non-decreasing adapted continuous process Yt such that Y0 = 0 almost
surely and X2

t − Yt ∈ Mc,loc.

Proof. The existence part was demonstrated above. Let us suppose that there
are two processes Y 1

t and Y 2
t with the desired properties. Then Mt = Y 1

t −Y 2
t

belongs to Mc,loc (since Mc,loc is a vector space) and is a process of bounded
variation. Let τn be a non-decreasing sequence of stopping times which tend to

infinity, such that M
(n)
t = Mt∧τn is a martingale for each n. Then M

(n)
t is also

a process of bounded variation. By Corollary 20.8, M
(n)
t = 0 for all t almost

surely. Since τn → ∞, this implies that Y 1
t and Y 2

t are indistinguishable. �
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The cross-variation of two local martingales can be defined by the same
formula (20.1) as in the square-integrable case. It is also not difficult to see
that 〈X,Y 〉t is the unique (up to indistinguishability) adapted continuous
process of bounded variation, such that 〈X,Y 〉0 = 0 almost surely, and XtYt−
〈X,Y 〉t ∈ Mc,loc.

Let us now define the stochastic integral with respect to a continuous local
martingale Mt ∈ Mc,loc. We can also extend the class of integrands. Namely,
we shall say that Xt ∈ P∗ if Xt is a progressively measurable process such
that for every 0 ≤ t < ∞,

∫ t

0

X2
s (ω)d〈M〉s(ω) < ∞ almost surely.

More precisely, we can view P∗ as the set of equivalence classes of such pro-
cesses, with two elements X1

t and X2
t representing the same class if and only

if
∫ t

0
(X1

t −X2
t )

2d〈M〉s = 0 almost surely for every t.
Let us consider a sequence of stopping times τn : Ω → [0,∞] with the

following properties:

1. The sequence τn is non-decreasing and limn→∞ τn = ∞ almost surely.

2. For each n, the process M
(n)
t = Mt∧τn is in Mc

2.

3. For each n, the process X
(n)
t = Xt∧τn is in L∗(M (n)).

For example, such a sequence can be constructed as follows. Let τ1n be a non-
decreasing sequence such that limn→∞ τ1n = ∞ almost surely and the process
(Xt∧τ1

n
,Ft) is a martingale for each n. Define

τ2n(ω) = inf{t :
∫ t

0

X2
s (ω)d〈M〉s(ω) = n},

where the infimum of an empty set is equal to +∞. It is clear that the sequence
of stopping times τn = τ1n ∧ τ2n has the properties (1)–(3).

Given a sequence τn with the above properties, a continuous local martin-
gale Mt ∈ Mc,loc, and a process Xt ∈ P∗, we can define

IMt (X) = lim
n→∞ IM

(n)

t (X(n)).

For almost all ω, the limit exists for all t. Indeed, by Lemma 20.18, almost
surely,

IM
(m)

t (X(m)) = IM
(n)

t (X(n)), 0 ≤ t ≤ τm ∧ τn.

Let us show that the limit does not depend on the choice of the sequence of
stopping times, thus providing a correct definition of the integral with respect
to a local martingale. If τ̃n and τn are two sequences of stopping times with

properties (1)–(3), and M̃
(n)
t , X̃

(n)
t , M

(n)

t , and X
(n)

t are the corresponding
processes, then
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I
˜M(n)

t (X̃(n)) = IM
(n)

t (X
(n)

), 0 ≤ t ≤ τ̃n ∧ τn,

again by Lemma 20.18. Therefore, the limit in the definition of the integral
IMt (X) does not depend on the choice of the sequence of stopping times.

It is clear from the definition of the integral that IMt (X) ∈ Mc,loc, and
that it is linear in the argument, that is, it satisfies (20.5) for any X,Y ∈ P∗

and a, b ∈ R. The formula for cross-variation of two integrals with respect to
local martingales is the same as in the square-integrable case, as can be seen
using localization. Namely, if Mt, Nt ∈ Mc,loc, Xt ∈ P∗(M), and Yt ∈ P∗(N),
then for almost all ω,

〈IM (X), IN (Y )〉t =
∫ t

0

XsYsd〈M,N〉s, 0 ≤ t < ∞.

Similarly, by using localization, it is easy to see that (20.11) remains true if
Mt ∈ Mc,loc, Yt ∈ P∗(M), and Xt ∈ P∗(IM (Y )).

Remark 20.22. Let Xu, s ≤ u ≤ t, be such that the process X̃u ∈ P∗, where
X̃u is equal to Xu for s ≤ u ≤ t, and to zero otherwise. In this case we can
define

∫ t

s
XudMu =

∫ t

0
X̃udMu as in the case of square-integrable martingales.

20.7 Ito Formula

In this section we shall prove a formula which may be viewed as the analogue
of the Fundamental Theorem of Calculus, but is now applied to martingale-
type processes with unbounded first variation.

Definition 20.23. Let Xt, t ∈ R
+, be a process adapted to a filtration Ft.

Then (Xt,Ft) is a continuous semimartingale if Xt can be represented as

Xt = X0 +Mt +At, (20.12)

where Mt ∈ Mc,loc, At is a continuous process adapted to the same filtration
such that the total variation of At on each finite interval is bounded almost
surely, and A0 = 0 almost surely.

Theorem 20.24 (Ito Formula). Let f ∈ C2(R) and let (Xt,Ft) be a con-
tinuous semimartingale as in (20.12). Then, for any t ≥ 0, the equality

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dMs +

∫ t

0

f ′(Xs)dAs +
1

2

∫ t

0

f ′′(Xs)d〈M〉s
(20.13)

holds almost surely.

Remark 20.25. The first integral on the right-hand side is a stochastic integral,
while the other two integrals must be understood in the Lebesgue-Stieltjes
sense. Since both sides are continuous functions of t for almost all ω, the
processes on the left- and right-hand sides are indistinguishable.
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Proof of Theorem 20.24. We shall prove the result under stronger assump-
tions. Namely, we shall assume that Mt = Wt and that f is bounded together
with its first and second derivatives. The proof in the general case is similar,
but somewhat more technical. In particular, it requires the use of localization.
Thus we assume that

Xt = X0 +Wt +At,

and wish to prove that

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dWs +

∫ t

0

f ′(Xs)dAs +
1

2

∫ t

0

f ′′(Xs)ds. (20.14)

Let σ = {t0, t1, . . . , tn}, 0 = t0 ≤ t1 ≤ . . . ≤ tn = t, be a partition of the
interval [0, t] into n subintervals. By the Taylor formula,

f(Xt) = f(X0) +

n∑
i=1

(f(Xti)− f(Xti−1))

= f(X0) +

n∑
i=1

f ′(Xti−1)(Xti −Xti−1) +
1

2

n∑
i=1

f ′′(ξi)(Xti −Xti−1)
2,

(20.15)

where min(Xti−1 , Xti) ≤ ξi ≤ max(Xti−1 , Xti) is such that

f(Xti)− f(Xti−1) = f ′(Xti−1)(Xti −Xti−1) +
1

2
f ′′(ξi)(Xti −Xti−1)

2.

Note that we can take ξi = Xti−1 if Xti−1 = Xti . If Xti−1 
= Xti , we can solve
the above equation for f ′′(ξi), and therefore we may assume that f ′′(ξi) is
measurable.

Let Ys = f ′(Xs), 0 ≤ s ≤ t, and define the simple process Y σ
s by

Y σ
s = f ′(X0)χ{0}(s) +

n∑
i=1

f ′(Xti−1)χ(ti−1,ti](s) for 0 ≤ s ≤ t.

Note that limδ(σ)→0 Y
σ
s (ω) = Ys(ω), where the convergence is uniform on [0, t]

for almost all ω since the process Ys is continuous almost surely.
Let us examine the first sum on the right-hand side of (20.15),

n∑
i=1

f ′(Xti−1)(Xti −Xti−1)

=

n∑
i=1

f ′(Xti−1)(Wti −Wti−1) +

n∑
i=1

f ′(Xti−1)(Ati −Ati−1)

=

∫ t

0

Y σ
s dWs +

∫ t

0

Y σ
s dAs = Sσ

1 + Sσ
2 ,

where Sσ
1 and Sσ

2 denote the stochastic and the ordinary integral, respectively.
Since
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E(

∫ t

0

(Y σ
s − Ys)dWs)

2 = E

∫ t

0

(Y σ
s − Ys)

2ds → 0,

we obtain

lim
δ(σ)→0

Sσ
1 = lim

δ(σ)→0

∫ t

0

Y σ
s dWs =

∫ t

0

YsdWs in L2(Ω,F ,P).

We can apply the Lebesgue Dominated Convergence Theorem to the Lebesgue-
Stieltjes integral (which is just a difference of two Lebesgue integrals) to obtain

lim
δ(σ)→0

Sσ
2 = lim

δ(σ)→0

∫ t

0

Y σ
s dAs =

∫ t

0

YsdAs almost surely.

Now let us examine the second sum on the right-hand side of (20.15):

1

2

n∑
i=1

f ′′(ξi)(Xti −Xti−1)
2 =

1

2

n∑
i=1

f ′′(ξi)(Wti −Wti−1 )
2

+

n∑
i=1

f ′′(ξi)(Wti −Wti−1)(Ati−Ati−1) (20.16)

+
1

2

n∑
i=1

f ′′(ξi)(Ati−Ati−1)
2=Sσ

3+Sσ
4 +Sσ

5 .

The last two sums on the right-hand side of this formula tend to zero almost
surely as δ(σ) → 0. Indeed,

|
n∑

i=1

f ′′(ξi)(Wti −Wti−1)(Ati −Ati−1) +
1

2

n∑
i=1

f ′′(ξi)(Ati −Ati−1)
2|

≤ sup
x∈R

f ′′(x)( max
1≤i≤n

(|Wti −Wti−1 |) +
1

2
max
1≤i≤n

(|Ati −Ati−1 |))
n∑

i=1

|Ati −Ati−1 |,

which tends to zero almost surely since Wt and At are continuous and At has
bounded variation.

It remains to deal with the first sum on the right-hand side of (20.16). Let
us compare it with the sum

S̃σ
3 =

1

2

n∑
i=1

f ′′(Xti−1)(Wti −Wti−1)
2,

and show that the difference converges to zero in L1. Indeed,

E|
n∑

i=1

f ′′(ξi)(Wti −Wti−1)
2 −

n∑
i=1

f ′′(Xti−1)(Wti −Wti−1)
2|
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≤ (E( max
1≤i≤n

(f ′′(ξi)− f ′′(Xti−1))
2)1/2(E(

n∑
i=1

(Wti −Wti−1)
2)2)1/2.

The first factor here tends to zero since f ′′ is continuous and bounded. The
second factor is bounded since

E(

n∑
i=1

(Wti −Wti−1)
2)2 = 3

n∑
i=1

(ti − ti−1)
2 +

∑
i	=j

(ti − ti−1)(tj − tj−1)

≤ 3(

n∑
i=1

(ti − ti−1))(

n∑
j=1

(tj − tj−1)) = 3t2,

which shows that (Sσ
3 − S̃σ

3 ) → 0 in L1(Ω,F ,P) as δ(σ) → 0. Let us compare

S̃σ
3 with the sum

S
σ

3 =
1

2

n∑
i=1

f ′′(Xti−1)(ti − ti−1),

and show that the difference converges to zero in L2. Indeed, similarly to the
proof of Lemma 18.24,

E[
n∑

i=1

f ′′(Xti−1)(Wti −Wti−1)
2 −

n∑

i=1

f ′′(Xti−1)(ti − ti−1)]
2

=

n∑

i=1

E([f ′′(Xti−1)
2][(Wti −Wti−1)

2 − (ti − ti−1)]
2)

≤ sup
x∈R

|f ′′(x)|2(
n∑

i=1

E(Wti −Wti−1)
4 +

n∑

i=1

(ti − ti−1)
2)

= 4 sup
x∈R

|f ′′(x)|2
n∑

i=1

(ti − ti−1)
2 ≤ 4 sup

x∈R

|f ′′(x)|2 max
1≤i≤n

(ti − ti−1)
n∑

i=1

(ti − ti−1)

= 4 sup
x∈R

|f ′′(x)|2tδ(σ),

where the first equality is justified by

E[f ′′(Xti−1)((Wti −Wti−1)
2 − (ti − ti−1))

f ′′(Xtj−1 )((Wtj −Wtj−1 )
2 − (tj − tj−1))]

= E[f ′′(Xti−1)((Wti −Wti−1)
2 − (ti − ti−1))

E(f ′′(Xtj−1)((Wtj −Wtj−1 )
2 − (tj − tj−1))|Fj−1)] = 0 if i < j.

Thus, we see that (S̃σ
3 − S

σ

3 ) → 0 in L2(Ω,F ,P) as δ(σ) → 0. It is also clear
that

lim
δ(σ)→0

S
σ

3 =
1

2

∫ t

0

f ′′(Xs)ds almost surely.

Let us return to formula (20.15), which we can now write as
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f(Xt) = f(X0) + Sσ
1 + Sσ

2 + (Sσ
3 − S̃σ

3 ) + (S̃σ
3 − S

σ

3 ) + S
σ

3 + Sσ
4 + Sσ

5 .

Take a sequence σ(n) with limn→∞ δ(σ(n)) = 0. We saw that

lim
n→∞S

σ(n)
1 =

∫ t

0

f ′(Xs)dWs in L2(Ω,F ,P), (20.17)

lim
n→∞S

σ(n)
2 =

∫ t

0

f ′(Xs)dAs almost surely, (20.18)

lim
n→∞(S

σ(n)
3 − S̃

σ(n)
3 ) = 0 in L1(Ω,F ,P), (20.19)

lim
n→∞(S̃

σ(n)
3 − S

σ(n)

3 ) = 0 in L2(Ω,F ,P), (20.20)

lim
n→∞S

σ(n)

3 =
1

2

∫ t

0

f ′′(Xs)ds almost surely, (20.21)

lim
n→∞S

σ(n)
4 = lim

n→∞S
σ(n)
5 = 0 almost surely. (20.22)

We can replace the sequence σ(n) by a subsequence for which all the equali-
ties (20.17)–(20.22) hold almost surely. This justifies (20.14). �

Remark 20.26. The stochastic integral on the right-hand side of (20.13) be-
longs to Mc,loc, while the Lebesgue-Stieltjes integrals are continuous adapted
processes with bounded variation. Therefore, the class of semimartingales
is invariant under the composition with twice continuously differentiable
functions.

Example. Let f ∈ C2(R), At and Bt be progressively measurable processes

such that
∫ t

0
A2

sds < ∞ and
∫ t

0
|Bs|ds < ∞ for all t almost surely, and Xt a

semimartingale of the form

Xt = X0 +

∫ t

0

AsdWs +

∫ t

0

Bsds.

Applying the Ito formula, we obtain

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)AsdWs +

∫ t

0

f ′(Xs)Bsds+
1

2

∫ t

0

f ′′(Xs)A
2
sds,

where the relation
∫ t

0 f
′(Xs)d(

∫ s

0 AudWu) =
∫ t

0 f
′(Xs)AsdWs is justified by

formula (20.11) applied to local martingales.
This is one of the most common applications of the Ito formula, particu-

larly when the processes At and Bt can be represented as At = σ(t,Xt) and
Bt = v(t,Xt) for some smooth functions σ and v, in which case Xt is called a
diffusion process with time-dependent coefficients.
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We state the following multi-dimensional version of the Ito formula, whose
proof is very similar to that of Theorem 20.24.

Theorem 20.27. Let Mt = (M1
t , . . . ,M

d
t ) be a vector of continuous local

martingales, that is (M i
t ,Ft)t∈R+ is a local martingale for each 1 ≤ i ≤ d. Let

At = (A1
t , . . . , A

d
t ) be a vector of continuous processes adapted to the same

filtration such that the total variation of Ai
t on each finite interval is bounded

almost surely, and Ai
0 = 0 almost surely. Let Xt = (X1

t , . . . , X
d
t ) be a vector

of adapted processes such that Xt = X0+Mt+At, and let f ∈ C1,2(R+×R
d).

Then, for any t ≥ 0, the equality

f(t,Xt) = f(0, X0) +

d∑
i=1

∫ t

0

∂

∂xi
f(s,Xs)dM

i
s +

d∑
i=1

∫ t

0

∂

∂xi
f(s,Xs)dA

i
s

+
1

2

d∑
i,j=1

∫ t

0

∂2

∂xi∂xj
f(s,Xs)d〈M i,M j〉s +

∫ t

0

∂

∂s
f(s,Xs)ds

holds almost surely.

Let us apply this theorem to a pair of processes X i
t = X i

0 +M i
t +Ai

t, i = 1, 2,
and the function f(x1, x2) = x1x2.

Corollary 20.28. If (X1
t ,Ft) and (X2

t ,Ft) are continuous semimartingales,
then

X1
t X

2
t = X1

0X
2
0 +

∫ t

0

X1
sdM

2
s +

∫ t

0

X1
sdA

2
s

+

∫ t

0

X2
sdM

1
s +

∫ t

0

X2
sdA

1
s + 〈M1,M2〉t.

Using the shorthand notation
∫ t

0 YsdXs =
∫ t

0 YsdMs +
∫ t

0 YsdAs for a process
Ys and a semimartingale Xs, we can rewrite the above formula as

∫ t

0

X1
sdX

2
s = X1

t X
2
t −X1

0X
2
0 −

∫ t

0

X2
sdX

1
s − 〈M1,M2〉s. (20.23)

This is the integration by parts formula for the Ito integral.

20.8 Problems

1. Prove that if Xt is a continuous non-random function, then the stochastic
integral It(X) =

∫ t

0
XsdWs is a Gaussian process.

2. Let Wt be a one-dimensional Brownian motion defined on a probability
space (Ω,F ,P). Prove that there is a unique orthogonal random mea-
sure Z with values in L2(Ω,F ,P) defined on a ([0, 1],B([0, 1]) such that
Z([s, t]) = Wt −Ws for 0 ≤ s ≤ t ≤ 1. Prove that
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∫ 1

0

ϕ(t)dZ(t) =

∫ 1

0

ϕ(t)dWt

for any function ϕ that is continuous on [0, 1].
3. Prove that if Xt, Yt ∈ Mc,loc, then aXt + bYt ∈ Mc,loc for any constants

a and b.
4. Give an example of a local martingale which is integrable, yet fails to be

a martingale.
5. Let Wt be a one-dimensional Brownian motion relative to a filtration Ft.

Let τ be a stopping time of Ft with Eτ < ∞. Prove the Wald Identities

EWτ = 0, EW 2
τ = Eτ.

(Note that the Optional Sampling Theorem can not be applied directly
since τ may be unbounded.)

6. Find the distribution function of the random variable
∫ 1

0
Wn

t dWt, where
Wt is a one-dimensional Brownian motion.
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