
19

Markov Processes and Markov Families

19.1 Distribution of the Maximum of Brownian Motion

Let Wt be a one-dimensional Brownian motion relative to a filtration Ft on
a probability space (Ω,F ,P). We denote the maximum of Wt on the interval
[0, T ] by MT ,

MT (ω) = sup
0≤t≤T

Wt(ω).

In this section we shall use intuitive arguments in order to find the distribution
of MT . Rigorous arguments will be provided later in this chapter, after we
introduce the notion of a strong Markov family. Thus, the problem at hand
may serve as a simple example motivating the study of the strong Markov
property.

For a non-negative constant c, define the stopping time τc as the first time
the Brownian motion reaches the level c if this occurs before time T , and
otherwise as T , that is

τc(ω) = min(inf{t ≥ 0 :Wt(ω) = c}, T ).
Since the probability of the event WT = c is equal to zero,

P(MT ≥ c) = P(τc < T ) = P(τc < T,WT < c) + P(τc < T,WT > c).

The key observation is that the probabilities of the events {τc < T,WT < c}
and {τc < T,WT > c} are the same. Indeed, the Brownian motion is equally
likely to be below c and above c at time T under the condition that it reaches
level c before time T . This intuitive argument hinges on our ability to stop the
process at time τc and then “start it anew” in such a way that the increment
WT −Wτc has symmetric distribution and is independent of Fτc .

Since τc < T almost surely on the event {WT > c},

P(MT ≥ c) = 2P(τc < T,WT > c) = 2P(WT > c) =

√
2√
πT

∫ ∞

c

e−
x2

2T dx.
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274 19 Markov Processes and Markov Families

Therefore,

P(MT ≤ c) = 1− P(MT ≥ c) = 1−
√
2√
πT

∫ ∞

c

e−
x2

2T dx,

which is the desired expression for the distribution of the maximum of Brow-
nian motion.

19.2 Definition of the Markov Property

Let (X,G) be a measurable space. In Chap. 5 we defined a Markov chain as
a measure on the space of sequences with elements in X which is generated
by a Markov transition function. In this chapter we use a different approach,
defining a Markov process as a random process with certain properties, and
a Markov family as a family of such random processes. We then reconcile
the two points of view by showing that a Markov family defines a transition
function. In turn, by using a transition function and an initial distribution we
can define a measure on the space of realizations of the process.

For the sake of simplicity of notation, we shall primarily deal with the time-
homogeneous case. Let us assume that the state space is Rd with the σ-algebra
of Borel sets, that is (X,G) = (Rd,B(Rd)). Let (Ω,F ,P) be a probability space
with a filtration Ft.

Definition 19.1. Let μ be a probability measure on B(Rd). An adapted process
Xt with values in R

d is called a Markov process with initial distribution μ if:

(1) P(X0 ∈ Γ ) = μ(Γ ) for any Γ ∈ B(Rd).
(2) If s, t ≥ 0 and Γ ⊆ R

d is a Borel set, then

P(Xs+t ∈ Γ |Fs) = P(Xs+t ∈ Γ |Xs) almost surely . (19.1)

Definition 19.2. Let Xx
t , x ∈ R

d, be a family of processes with values in
R

d which are adapted to a filtration Ft. This family of processes is called a
time-homogeneous Markov family if:

(1) The function p(t, x, Γ ) = P(Xx
t ∈ Γ ) is Borel-measurable as a function of

x ∈ R
d for any t ≥ 0 and any Borel set Γ ⊆ R

d.
(2) P(Xx

0 = x) = 1 for any x ∈ R
d.

(3) If s, t ≥ 0, x ∈ R
d, and Γ ⊆ R

d is a Borel set, then

P(Xx
s+t ∈ Γ |Fs) = p(t,Xx

s , Γ ) almost surely .

The function p(t, x, Γ ) is called the transition function for the Markov
family Xx

t . It has the following properties:

(1′) For fixed t ≥ 0 and x ∈ R
d, the function p(t, x, Γ ), as a function of Γ , is

a probability measure, while for fixed t and Γ it is a measurable function
of x.
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(2′) p(0, x, {x}) = 1.
(3′) If s, t ≥ 0, x ∈ R

d, and Γ ⊆ R
d is a Borel set, then

p(s+ t, x, Γ ) =

∫
Rd

p(s, x, dy)p(t, y, Γ ).

The first two properties are obvious. For the third one it is sufficient to
write

p(s+ t, x, Γ ) = P(Xx
s+t ∈ Γ ) = EP(Xx

s+t ∈ Γ |Fs)

= Ep(t,Xx
s , Γ ) =

∫
Rd

p(s, x, dy)p(t, y, Γ ),

where the last equality follows by Theorem 3.14.

Now assume that we are given a function p(t, x, Γ ) with properties
(1′)–(3′) and a measure μ on B(Rd). As we shall see below, this pair can

be used to define a measure on the space of all functions Ω̃ = {ω̃ : R+ → R
d}

in such a way that ω̃(t) is a Markov process. Recall that in Chap. 5 we defined
a Markov chain as the measure corresponding to a Markov transition function
and an initial distribution (see the discussion following Definition 5.17).

Let Ω̃ be the set of all functions ω̃ : R+ → R
d. Take a finite collection

of points 0 ≤ t1 ≤ . . . ≤ tk < ∞, and Borel sets A1, . . . , Ak ∈ B(Rd). For
an elementary cylinder B = {ω̃ : ω̃(t1) ∈ A1, . . . , ω̃(tk) ∈ Ak}, we define the
finite-dimensional measure Pμ

t1,...,tk
(B) via

Pμ
t1,...,tk(B) =

∫
Rd

μ(dx)

∫
A1

p(t1, x, dy1)

∫
A2

p(t2 − t1, y1, dy2) . . .

∫
Ak−1

p(tk−1 − tk−2, yk−2, dyk−1)

∫
Ak

p(tk − tk−1, yk−1, dyk).

The family of finite-dimensional probability measures Pμ
t1,...,tk

is consistent
and, by the Kolmogorov Theorem, defines a measure Pμ on B, the σ-algebra
generated by all the elementary cylindrical sets. Let Ft be the σ-algebra gener-
ated by the elementary cylindrical sets B = {ω̃ : ω̃(t1) ∈ A1, . . . , ω̃(tk) ∈ Ak}
with 0 ≤ t1 ≤ . . . ≤ tk ≤ t, and Xt(ω̃) = ω̃(t). We claim that Xt is a Markov

process on (Ω̃,B,Pμ) relative to the filtration Ft. Clearly, the first property
in Definition 19.1 holds. To verify the second property, it is sufficient to show
that

Pμ(B
⋂

{Xs+t ∈ Γ}) =
∫
B

p(t,Xs, Γ )dP
μ (19.2)

for any B ∈ Fs, since the integrand on the right-hand side is clearly σ(Xs)-
measurable. When B = {ω̃ : ω̃(t1) ∈ A1, . . . , ω̃(tk) ∈ Ak} with 0 ≤ t1 ≤ . . . ≤
tk ≤ s, both sides of (19.2) are equal to

∫
Rd

μ(dx)

∫
A1

p(t1, x, dy1)

∫
A2

p(t2 − t1, y1, dy2) . . .
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∫
Ak

p(tk − tk−1, yk−1, dyk)

∫
Rd

p(s− tk, yk, dy)p(t, y, Γ ).

Since such elementary cylindrical sets form a π-system, it follows from
Lemma 4.13 that (19.2) holds for all B ∈ Fs.

Let Ω̃ be the space of all functions from R
+ to R

d with the σ-algebra B
generated by cylindrical sets. We can define a family of shift transformations
θs : Ω̃ → Ω̃, s ≥ 0, which act on functions ω̃ ∈ Ω̃ via

(θsω̃)(t) = ω̃(s+ t).

If Xt is a random process with realizations denoted by X·(ω), we can apply θs
to each realization to get a new process, whose realizations will be denoted
by Xs+·(ω).

If f : Ω̃ → R is a bounded measurable function and Xx
t , x ∈ R

d, is a
Markov family, we can define the function ϕf (x) : R

d → R as

ϕf (x) = Ef(Xx
· ).

Now we can formulate an important consequence of the Markov property.

Lemma 19.3. Let Xx
t , x ∈ R

d, be a Markov family of processes relative to a

filtration Ft. If f : Ω̃ → R is a bounded measurable function, then

E(f(Xx
s+·)|Fs) = ϕf (X

x
s ) almost surely . (19.3)

Proof. Let us show that for any bounded measurable function g : Rd → R

and s, t ≥ 0,

E(g(Xx
s+t)|Fs) =

∫
Rd

g(y)p(t,Xx
s , dy) almost surely. (19.4)

Indeed, if g is the indicator function of a Borel set Γ ⊆ R
d, this statement

is part of the definition of a Markov family. By linearity, it also holds for
finite linear combinations of indicator functions. Therefore, (19.4) holds for
all bounded measurable functions, since they can be uniformly approximated
by finite linear combinations of indicator functions.

To prove (19.3), we first assume that f is the indicator function of an
elementary cylindrical set, that is f = χA, where

A = {ω̃ : ω̃(t1) ∈ A1, . . . , ω̃(tk) ∈ Ak}

with 0 ≤ t1 ≤ . . . ≤ tk and some Borel sets A1, . . . , Ak ⊆ R
d. In this case the

left-hand side of (19.3) is equal to P(Xx
s+t1 ∈ A1, . . . , X

x
s+tk

∈ Ak|Fs). We can
transform this expression by inserting conditional expectations with respect
to Fs+tk−1

,. . . ,Fs+t1 and applying (19.4) repeatedly. We thus obtain
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P(Xx
s+t1 ∈ A1, . . . , X

x
s+tk ∈ Ak|Fs)

= E(χ{Xx
s+t1

∈A1} . . . χ{Xx
s+tk

∈Ak}|Fs)

= E(χ{Xx
s+t1

∈A1} . . . χ{Xx
s+tk−1

∈Ak−1}E(χ{Xx
s+tk

∈Ak}|Fs+tk−1
)|Fs)

= E(χ{Xx
s+t1

∈A1} . . . χ{Xx
s+tk−1

∈Ak−1}p(tk − tk−1, X
x
s+tk−1

, Ak)|Fs)

= E(χ{Xx
s+t1

∈A1} . . . χ{Xx
s+tk−2

∈Ak−2}E(χ{Xx
s+tk−1

∈Ak−1}

p(tk − tk−1, X
x
s+tk−1

, Ak)|Fs+tk−2
)|Fs)

= E(χ{Xx
s+t1

∈A1} . . . χ{Xx
s+tk−2

∈Ak−2}

∫
Ak−1

p(tk−1 − tk−2, X
x
s+tk−2

, dyk−1)p(tk − tk−1, yk−1, Ak)|Fs) = . . .

=

∫
A1

p(t1 − s,Xx
s , dy1)

∫
A2

p(t2 − t1, y1, dy2) . . .

∫
Ak−1

p(tk−1 − tk−2, yk−2, dyk−1)p(tk − tk−1, yk−1, Ak).

Note that ϕf (x) is equal to P(Xx
t1 ∈ A1, . . . , X

x
tk ∈ Ak). If we insert con-

ditional expectations with respect to Ftk−1
, . . . ,Ft1 , F0 and apply (19.4)

repeatedly,

P(Xx
t1 ∈ A1, . . . , X

x
tk

∈ Ak) =

∫
A1

p(t1 − s, x, dy1)

∫
A2

p(t2 − t1, y1, dy2) . . .

∫
Ak−1

p(tk−1 − tk−2, yk−2, dyk−1)p(tk − tk−1, yk−1, Ak).

If we replace x with Xx
s , we see that the right-hand side of (19.3) coincides

with the left-hand side if f is an indicator function of an elementary cylinder.
Next, let us show that (19.3) holds if f = χA is an indicator function

of any set A ∈ B. Indeed, elementary cylinders form a π-system, while the
collection of sets A for which (19.3) is true with f = χA is a Dynkin system.
By Lemma 4.13, formula (19.3) holds for f = χA, where A is any element
from the σ-algebra generated by the elementary cylinders, that is B.

Finally, any bounded measurable function f can be uniformly approxi-
mated by finite linear combinations of indicator functions. �

Remark 19.4. If we assume that Xx
t are continuous processes, Lemma 19.3

applies in the case when f is a bounded measurable function on C([0,∞)).

Remark 19.5. The arguments in the proof of the lemma imply that ϕf is a
measurable function for any bounded measurable f . It is enough to take s = 0.
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It is sometimes useful to formulate the third condition of Definition 19.2 in
a slightly different way. Let g be a bounded measurable function g : Rd → R.
Then we can define a new function ψg : R+ × R

d → R by

ψg(t, x) = Eg(Xx
t ).

Note that ψg(t, x) = ϕf (x), if we define f : Ω̃ → R by f(ω̃) = g(ω̃(t)).

Lemma 19.6. If conditions (1) and (2) of Definition 19.2 are satisfied, then
condition (3) is equivalent to the following:

(3′) If s, t ≥ 0, x ∈ R
d, and g : Rd → R is a bounded continuous function,

then
E(g(Xx

s+t)|Fs) = ψg(t,X
x
s ) almost surely .

Proof. Clearly, (3) implies (3′) as a particular case of Lemma 19.3. Conversely,
let s, t ≥ 0 and x ∈ R

d be fixed, and assume that Γ ⊆ R
d is a closed set. In

this case we can find a sequence of non-negative bounded continuous functions
gn such that gn(x) ↓ χΓ (x) for all x ∈ R

d. By taking the limit as n → ∞ in
the equality

E(gn(X
x
s+t)|Fs) = ψgn(t,X

x
s ) almost surely,

we obtain
P(Xx

s+t ∈ Γ |Fs) = p(t,Xx
s , Γ ) almost surely (19.5)

for closed sets Γ . The collection of all closed sets is a π-system, while the col-
lection of all sets Γ for which (19.5) holds is a Dynkin system. Therefore (19.5)
holds for all Borel sets Γ by Lemma 4.13. �

19.3 Markov Property of Brownian Motion

Let Wt be a d-dimensional Brownian motion relative to a filtration Ft. Con-
sider the family of processes W x

t = x +Wt. Let us show that W x
t is a time-

homogeneous Markov family relative to the filtration Ft.
Since W x

t is a Gaussian vector for fixed t, there is an explicit formula for
P(W x

t ∈ Γ ). Namely,

p(t, x, Γ ) = P(W x
t ∈ Γ ) = (2πt)−

d
2

∫
Γ

exp(−||y − x||2/2t)dy (19.6)

if t > 0. As a function of x, p(0, x, Γ ) is simply the indicator function of the
set Γ . Therefore, p(t, x, Γ ) is a Borel-measurable function of x for any t ≥ 0
and any Borel set Γ .

Clearly, the second condition of Definition 19.2 is satisfied by the family
of processes W x

t .
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In order to verify the third condition, let us assume that t > 0, since
otherwise the condition is satisfied. For a Borel set S ⊆ R

2d and x ∈ R
d, let

Sx = {y ∈ R
d : (x, y) ∈ S}.

Let us show that

P((W x
s ,W

x
s+t −W x

s ) ∈ S|Fs) = (2πt)−
d
2

∫
SWx

s

exp(−||y||2/2t)dy. (19.7)

First, assume that S = A×B, where A and B are Borel subsets of Rd. In this
case,

P(W x
s ∈ A,W x

s+t −W x
s ∈ B|Fs) = χ{Wx

s ∈A}P(W x
s+t −W x

s ∈ B|Fs)

= χ{Wx
s ∈A}P(W x

s+t −W x
s ∈ B) = χ{Wx

s ∈A}(2πt)−
d
2

∫
B

exp(−||y||2/2t)dy,

since W x
s+t −W x

s is independent of Fs. Thus, (19.7) holds for sets of the form
S = A × B. The collection of sets that can be represented as such a direct
product is a π-system. Since the collection of sets for which (19.7) holds is a
Dynkin system, we can apply Lemma 4.13 to conclude that (19.7) holds for
all Borel sets. Finally, let us apply (19.7) to the set S = {(x, y) : x+ y ∈ Γ}.
Then,

P(W x
s+t ∈ Γ |Fs) = (2πt)−

d
2

∫
Γ

exp(−||y −W x
s ||2/2t)dy = p(t,W x

s , Γ ).

This proves that the third condition of Definition 19.2 is satisfied, and that
W x

t is a Markov family.

19.4 The Augmented Filtration

LetWt be a d-dimensional Brownian motion on a probability space (Ω,F ,P).
We shall exhibit a probability space and a filtration satisfying the usual con-
ditions such that Wt is a Brownian motion relative to this filtration.

Recall that FW
t = σ(Ws, s ≤ t) is the filtration generated by the Brownian

motion, and FW = σ(Ws, s ∈ R
+) is the σ-algebra generated by the Brownian

motion. Let N be the collection of all P-negligible sets relative to FW , that
is A ∈ N if there is an event B ∈ FW such that A ⊆ B and P(B) = 0. Define

the new filtration F̃W
t = σ(FW

t

⋃N ), called the augmentation of FW
t , and

the new σ-algebra F̃W = σ(FW
⋃N ).

Now consider the process Wt on the probability space (Ω, F̃W ,P), and

note that it is a Brownian motion relative to the filtration F̃W
t .
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Lemma 19.7. The augmented filtration F̃W
t satisfies the usual conditions.

Proof. It is clear that F̃W
0 contains all the P-negligible events from F̃W . It

remains to prove that F̃W
t is right-continuous.

Our first observation is that Wt − Ws is independent of the σ-algebra
FW

s+ if 0 ≤ s ≤ t. Indeed, assuming that s < t, the variable Wt −Ws+δ is
independent of FW

s+ for all positive δ. Then, as δ ↓ 0, the variable Wt −Ws+δ

tends toWt−Ws almost surely, which implies thatWt−Ws is also independent
of FW

s+.

Next, we claim that FW
s+ ⊆ F̃W

s . Indeed, let t1, . . . , tk ≥ s for some positive
integer k, and let B1, . . . , Bk be Borel subsets of Rd. By Lemma 19.3, the
random variable P(Wt1 ∈ B1, . . . ,Wtk ∈ Bk|FW

s ) has a σ(Ws)-measurable
version. The same remains true if we replace FW

s by FW
s+. Indeed, in the

statement of the Markov property for the Brownian motion, we can replace
FW

s by FW
s+, since in the arguments of Sect. 19.3 we can use that Wt −Ws is

independent of FW
s+.

Let s1, . . . , sk1 ≤ s ≤ t1, . . . , tk2 for some positive integers k1 and k2, and
let A1, . . . , Ak1 , B1, . . . , Bk2 be Borel subsets of Rd. Then,

P(Ws1 ∈ A1, . . . ,Wsk1
∈ Ak1 ,Wt1 ∈ B1, . . . ,Wtk2

∈ Bk2 |FW
s+)

= χ{Ws1∈A1,...,Wsk1
∈Ak1

}P(Wt1 ∈ B1, . . . ,Wtk2
∈ Bk2 |FW

s+),

which has a FW
s -measurable version. The collection of sets A ∈ FW , for which

P(A|FW
s+) has a FW

s -measurable version, forms a Dynkin system. Therefore,
by Lemma 4.13, P(A|FW

s+) has a FW
s -measurable version for each A ∈ FW .

This easily implies our claim that FW
s+ ⊆ F̃W

s .

Finally, let us show that F̃W
s+ ⊆ F̃W

s . Let A ∈ F̃W
s+. Then A ∈ F̃W

s+ 1
n

for

every positive integer n. We can find sets An ∈ FW
s+ 1

n

such that AΔAn ∈ N .

Define

B =
∞⋂

m=1

∞⋃
n=m

An.

ThenB ∈ FW
s+, since B ∈ FW

s+ 1
m

for anym. It remains to show that AΔB ∈ N .

Indeed,

B \A ⊆
∞⋃

n=1

(An \A) ∈ N ,

while

A \B = A
⋂

(

∞⋃
m=1

∞⋂
n=m

(Ω \An)) =

∞⋃
m=1

(A
⋂

(

∞⋂
n=m

(Ω \An)))

⊆
∞⋃

m=1

(A
⋂

(Ω \Am)) =

∞⋃
m=1

(A \Am) ∈ N .


�
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Lemma 19.8 (Blumenthal Zero-One Law). If A ∈ F̃W
0 , then either

P(A) = 0 or P(A) = 1.

Proof. For A ∈ F̃W
0 , there is a set A0 ∈ FW

0 such that AΔA0 ∈ N . The set A0

can be represented as {ω ∈ Ω :W0(ω) ∈ B}, where B is a Borel subset of Rd.
Now it is clear that P(A0) is equal to either 0 or 1, depending on whether the
set B contains the origin. Since P(A) = P(A0), we obtain the desired result. �

19.5 Definition of the Strong Markov Property

It is sometimes necessary in the formulation of the Markov property to replace
Fs by a σ-algebra Fσ, where σ is a stopping time. This leads to the notions
of a strong Markov process and a strong Markov family. First, we need the
following definition.

Definition 19.9. A random process Xt is called progressively measurable
with respect to a filtration Ft if Xs(ω) is Ft×B([0, t])-measurable as a function
of (ω, s) ∈ Ω × [0, t] for each fixed t ≥ 0.

For example, any progressively measurable process is adapted, and any con-
tinuous adapted process is progressively measurable (see Problem 1). If Xt is
progressively measurable and τ is a stopping time, then Xt∧τ is also progres-
sively measurable, and Xτ is Fτ -measurable (see Problem 2).

Definition 19.10. Let μ be a probability measure on B(Rd). A progressively
measurable process Xt (with respect to filtration Ft) with values in R

d is called
a strong Markov process with initial distribution μ if:

(1) P(X0 ∈ Γ ) = μ(Γ ) for any Γ ∈ B(Rd).
(2) If t ≥ 0, σ is a stopping time of Ft, and Γ ⊆ R

d is a Borel set, then

P(Xσ+t ∈ Γ |Fσ) = P(Xσ+t ∈ Γ |Xσ) almost surely . (19.8)

Definition 19.11. Let Xx
t , x ∈ R

d, be a family of progressively measur-
able processes with values in R

d. This family of processes is called a time-
homogeneous strong Markov family if:

(1) The function p(t, x, Γ ) = P(Xx
t ∈ Γ ) is Borel-measurable as a function of

x ∈ R
d for any t ≥ 0 and any Borel set Γ ⊆ R

d.
(2) P(Xx

0 = x) = 1 for any x ∈ R
d.

(3) If t ≥ 0, σ is a stopping time of Ft, x ∈ R
d, and Γ ⊆ R

d is a Borel set,
then

P(Xx
σ+t ∈ Γ |Fσ) = p(t,Xx

σ , Γ ) almost surely .

We have the following analog of Lemmas 19.3 and 19.6.
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Lemma 19.12. Let Xx
t , x ∈ R

d, be a strong Markov family of processes rel-

ative to a filtration Ft. If f : Ω̃ → R is a bounded measurable function and σ
is a stopping time of Ft, then

E(f(Xx
σ+·)|Fσ) = ϕf (X

x
σ ) almost surely , (19.9)

where ϕf (x) = Ef(Xx
· ).

Remark 19.13. If we assume that Xx
t are continuous processes, Lemma 19.12

applies in the case when f is a bounded measurable function on C([0,∞)).

Lemma 19.14. If conditions (1) and (2) of Definition 19.11 are satisfied,
then condition (3) is equivalent to the following:

(3′) If t ≥ 0, σ is a stopping time of Ft, x ∈ R
d, and g : Rd → R is a bounded

continuous function, then

E(g(Xx
σ+t)|Fσ) = ψg(t,X

x
σ ) almost surely ,

where ψg(t, x) = Eg(Xx
t ).

We omit the proofs of these lemmas since they are analogous to those in
Sect. 19.3. Let us derive another useful consequence of the strong Markov
property.

Lemma 19.15. Let Xx
t , x ∈ R

d, be a strong Markov family of processes rel-
ative to a filtration Ft. Assume that Xx

t is right-continuous for every x ∈ R
d.

Let σ and τ be stopping times of Ft such that σ ≤ τ and τ is Fσ-measurable.
Then for any bounded measurable function g : Rd → R,

E(g(Xx
τ )|Fσ) = ψg(τ − σ,Xx

σ ) almost surely ,

where ψg(t, x) = Eg(Xx
t ).

Remark 19.16. The function ψg(t, x) is jointly measurable in (t, x) if Xx
t is

right-continuous. Indeed, if g is continuous, then ψg(t, x) is right-continuous
in t. This is sufficient to justify the joint measurability, since it is measurable in
x for each fixed t. Using arguments similar to those in the proof of Lemma 19.6,
one can show that ψg(t, x) is jointly measurable when g is an indicator function
of a measurable set. Approximating an arbitrary bounded measurable function
by finite linear combinations of indicator functions justifies the statement in
the case of an arbitrary bounded measurable g.

Proof of Lemma 19.15. First assume that g is a continuous function, and
that τ − σ takes a finite or countable number of values. Then we can write
Ω = A1 ∪A2 ∪ . . ., where τ(ω)−σ(ω) = tk for ω ∈ Ak, and all tk are distinct.
Thus,

E(g(Xx
τ )|Fσ) = E(g(Xx

σ+tk)|Fσ) almost surely on Ak,
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since g(Xx
τ ) = g(Xx

σ+tk) on Ak, and Ak ∈ Fσ. Therefore,

E(g(Xx
τ )|Fσ) = E(g(Xx

σ+tk
)|Fσ) = ψg(tk, X

x
σ) = ψg(τ − σ,Xx

σ ) a.s. on Ak,

which implies

E(g(Xx
τ )|Fσ) = ψg(τ − σ,Xx

σ ) almost surely. (19.10)

If the distribution of τ−σ is not necessarily discrete, it is possible to find a se-
quence of stopping times τn such that τn−σ takes at most a countable number
of values for each n, τn ↓ τ , and each τn is Fσ-measurable. For example, we can
take τn(ω) = σ(ω)+k/2n for all ω such that (k−1)/2n ≤ τ(ω)−σ(ω) < k/2n,
where k ≥ 1. Thus,

E(g(Xx
τn)|Fσ) = ψg(τn − σ,Xx

σ ) almost surely.

Clearly, ψg(τn − σ, x) is a Borel-measurable function of x. Since g is bounded
and continuous, and Xt is right-continuous,

lim
n→∞ψg(τn − σ, x) = ψg(τ − σ, x).

Therefore, limn→∞ ψg(τn − σ,Xx
σ ) = ψg(τ − σ,Xx

σ ) almost surely. By the
Dominated Convergence Theorem for conditional expectations,

lim
n→∞E(g(Xx

τn)|Fσ) = E(g(Xx
τ )|Fσ),

which implies that (19.10) holds for all σ and τ satisfying the assumptions of
the theorem.

As in the proof of Lemma 19.6, we can show that (19.10) holds if g is
an indicator function of a measurable set. Since a bounded measurable func-
tion can be uniformly approximated by finite linear combinations of indicator
functions, (19.10) holds for all bounded measurable g. �

19.6 Strong Markov Property of Brownian Motion

As before, let Wt be a d-dimensional Brownian motion relative to a filtration
Ft, andW

x
t = x+Wt. In this section we show thatW x

t is a time-homogeneous
strong Markov family relative to the filtration Ft.

Since the first two conditions of Definition 19.11 were verified in Sect. 19.3,
it remains to verify condition (3′) from Lemma 19.14. Let σ be a stopping
time of Ft, x ∈ R

d, and g : Rd → R be a bounded continuous function. The
case when t = 0 is trivial, therefore we can assume that t > 0. In this case,
ψg(t, x) = Eg(W x

t ) is a bounded continuous function of x.
First, assume that σ takes a finite or countable number of values. Then

we can write Ω = A1 ∪ A2 ∪ . . ., where σ(ω) = sk for ω ∈ Ak, and all sk are
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distinct. Since a set B ⊆ Ak belongs to Fσ if and only if it belongs to Fsk ,
and g(W x

σ+t) = g(W x
sk+t) on Ak,

E(g(W x
σ+t)|Fσ) = E(g(W x

sk+t)|Fsk) almost surely on Ak.

Therefore,

E(g(W x
σ+t)|Fσ) = E(g(W x

sk+t)|Fsk) = ψg(t,W
x
sk) = ψg(t,W

x
σ ) a.s. on Ak,

which implies that

E(g(W x
σ+t)|Fσ) = ψg(t,W

x
σ ) almost surely. (19.11)

If the distribution of σ is not necessarily discrete, we can find a sequence of
stopping times σn, each taking at most a countable number of values, such
that σn(ω) ↓ σ(ω) for all ω. We wish to derive (19.11) starting from

E(g(W x
σn+t)|Fσn) = ψg(t,W

x
σn

) almost surely. (19.12)

Since the realizations of Brownian motion are continuous almost surely, and
ψg(t, x) is a continuous function of x,

lim
n→∞ψg(t,W

x
σn

) = ψg(t,W
x
σ ) almost surely.

Let F+ =
⋂∞

n=1 Fσn . By the Doob Theorem (Theorem 16.11),

lim
n→∞E(g(W x

σ+t)|Fσn) = E(g(W x
σ+t)|F+).

We also need to estimate the difference E(g(W x
σn+t)|Fσn)−E(g(W x

σ+t)|Fσn).
Since the sequence g(W x

σn+t) − g(W x
σ+t) tends to zero almost surely, and

g(W x
σn+t) is uniformly bounded, it is easy to show that E(g(W x

σn+t)|Fσn) −
E(g(W x

σ+t)|Fσn) tends to zero in probability. (We leave this statement as an
exercise for the reader.) Therefore, upon taking the limit as n→ ∞ in (19.12),

E(g(W x
σ+t)|F+) = ψg(t,W

x
σ ) almost surely.

Since Fσ ⊆ F+, and W x
σ is Fσ-measurable, we can take conditional expecta-

tions with respect to Fσ on both sides of this equality to obtain (19.11). This
proves that W x

t is a strong Markov family.
Let us conclude this section with several examples illustrating the use of

the strong Markov property.

Example. Let us revisit the problem on the distribution of the maximum of
Brownian motion. We use the same notation as in Sect. 19.1. Since W x

t is a
strong Markov family, we can apply Lemma 19.15 with σ = τc, τ = T , and
g = χ(c,∞). Since P(WT > c|Fτc) = 0 on the event {τc ≥ T },

P(WT > c|Fτc) = χ{τc<T}P(W c
t > c)|t=T−τc .
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Since P(W c
t > c) = 1/2 for all t,

P(WT > c|Fτc) =
1

2
χ{τc<T},

and, after taking expectation on both sides,

P(WT > c) =
1

2
P(τc < T ). (19.13)

Since the event {WT > c} is contained in the event {τc < T }, (19.13) implies
P(τc < T,WT < c) = P(τc < T,WT > c), thus justifying the arguments of
Sect. 19.1.

Example. Let Wt be a Brownian motion relative to a filtration Ft, and σ be
a stopping time of Ft. Define the process W̃t =Wσ+t −Wσ. Let us show that

W̃t is a Brownian motion independent of Fσ.
Let Γ be a Borel subset of Rd, t ≥ 0, and let f : Ω̃ → R be the indicator

function of the set {ω̃ : ω̃(t)− ω̃(0) ∈ Γ}. By Lemma 19.12,

P(W̃t ∈ Γ |Fσ) = E(f(Wσ+·)|Fσ) = ϕf (Wσ) almost surely,

where ϕf (x) = Ef(W x
· ) = P(W x

t −W x
0 ∈ Γ ) = P(Wt ∈ Γ ), thus showing

that ϕf (x) does not depend on x. Therefore, P(W̃t ∈ Γ |Fσ) = P(W̃t ∈ Γ ).

Since Γ was an arbitrary Borel set, W̃t is independent of Fσ.
Now let k ≥ 1, t1, . . . , tk ∈ R

+, B be a Borel subset of Rdk, and f : Ω̃ → R

the indicator function of the set {ω̃ : (ω̃(t1)− ω̃(0), . . . , ω̃(tk)− ω̃(0)) ∈ B}.
By Lemma 19.12,

P((W̃t1 , . . . , W̃tk) ∈ B|Fσ) = E(f(Wσ+·)|Fσ) = ϕf (Wσ) almost surely,
(19.14)

where
ϕf (x) = Ef(W x

· ) = P((W x
t1 −W x

0 , . . . ,W
x
tk

−W x
0 ) ∈ B)

= P((Wt1 , . . . ,Wtk) ∈ B),

which does not depend on x. Taking expectation on both sides of (19.14) gives

P((W̃t1 , . . . , W̃tk) ∈ B) = P((Wt1 , . . . ,Wtk) ∈ B),

which shows that W̃t has the finite-dimensional distributions of a Brownian
motion. Clearly, the realizations of W̃t are continuous almost surely, that is
W̃t is a Brownian motion.

Example. Let Wt be a d-dimensional Brownian motion and W x
t = x +Wt.

LetD be a bounded open domain in R
d, and f a bounded measurable function

defined on ∂D. For a point x ∈ D, we define τx to be the first time the process
W x

t reaches the boundary of D, that is
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τx(ω) = inf{t ≥ 0 :W x
t (ω) ∈ ∂D}.

Since D is a bounded domain, the stopping time τx is finite almost surely.
Let us follow the process W x

t till it reaches ∂D and evaluate f at the
point W x

τx(ω)(ω). Let us define

u(x) = Ef(W x
τx) =

∫
∂D

f(y)dμx(y),

where μx(A) = P(W x
τx ∈ A) is the measure on ∂D induced by the random

variable W x
τx and A ∈ B(∂D). Let us show that u(x) is a harmonic function,

that is Δu(x) = 0 for x ∈ D.
Let Bx be a ball in R

d centered at x and contained in D. Let σx be the
first time the process W x

t reaches the boundary of Bx, that is

σx(ω) = inf{t ≥ 0 :W x
t (ω) ∈ ∂Bx}.

For a continuous function ω̃ ∈ Ω̃, denote by τ(ω̃) the first time ω̃ reaches ∂D,
and put τ(ω̃) equal to infinity if ω̃ never reaches ∂D, that is

τ(ω̃) =

{
inf{t ≥ 0 : ω̃(t) ∈ ∂D} if ω̃(t) ∈ ∂D for some t ∈ R

+,
∞ otherwise.

Define the function f̃ on the space Ω̃ via

f̃(ω̃) =

{
f(ω̃(τ(ω̃))) if ω̃(t) ∈ ∂D for some t ∈ R

+,
0 otherwise.

Let us apply Lemma 19.12 to the family of processesW x
t , the function f̃ , and

the stopping time σx:

E(f̃(W x
σx+·)|Fσx) = ϕ

˜f (W
x
σx ) almost surely,

where ϕ
˜f (x) = Ef̃(W x

· ) = Ef(W x
τx) = u(x). The function u(x) is measurable

by Remark 19.5. Note that f̃(ω̃) = f̃(ω̃(s+ ·)) if s < τ(ω̃), and therefore the
above equality can be rewritten as

E(f(W x
τx)|Fσx) = u(W x

σx) almost surely.

After taking expectation on both sides,

u(x) = Ef(W x
τx) = Eu(W x

σx) =

∫
∂Bx

u(y)dνx(y),

where νx is the measure on ∂Bx induced by the random variableW x
σx . Due to

the spherical symmetry of Brownian motion, the measure νx is the uniform
measure on the sphere ∂Bx. Thus u(x) is equal to the average value of u(y)
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over the sphere ∂Bx. For a bounded measurable function u, this property,
when valid for all x and all the spheres centered at x and contained in the
domain D (which is the case here), is equivalent to u being harmonic (see
“Elliptic Partial Differential Equations of Second Order” by D. Gilbarg and
N. Trudinger, for example). We shall further discuss the properties of the
function u(x) in Sect. 21.2.

19.7 Problems

1. Prove that any right-continuous adapted process is progressively measur-
able. (Hint: see the proof of Lemma 12.3.)

2. Prove that if a process Xt is progressively measurable with respect to a
filtration Ft, and τ is a stopping time of the same filtration, then Xt∧τ is
also progressively measurable and Xτ is Fτ -measurable.

3. Let Wt be a one-dimensional Brownian motion. For a positive constant c,
define the stopping time τc as the first time the Brownian motion reaches
the level c, that is

τc(ω) = inf{t ≥ 0 :Wt(ω) = c}.

Prove that τc <∞ almost surely, and find the distribution function of τc.
Prove that Eτc = ∞.

4. Let Wt be a one-dimensional Brownian motion. Prove that one can find
positive constants c and λ such that

P( sup
1≤s≤2t

|Ws|√
s

≤ 1) ≤ ce−λt, t ≥ 1.

5. Let Wt be a one-dimensional Brownian motion and Vt =
∫ t

0 Wsds. Prove
that the pair (Wt, Vt) is a two-dimensional Markov process.

6. Let Wt be a one-dimensional Brownian motion. Find P(sup0≤t≤1

|Wt| ≤ 1).
7. LetWt = (W 1

t ,W
2
t ) be a standard two-dimensional Brownian motion. Let

τ1 be the first time when W 1
t = 1, that is

τ1(ω) = inf{t ≥ 0 :W 1
t (ω) = 1}.

Find the distribution of W 2
τ1 .

8. Let Wt be a one-dimensional Brownian motion. Prove that with proba-
bility one the set S = {t : Wt = 0} is unbounded.


	19 Markov Processes and Markov Families
	19.1 Distribution of the Maximum of Brownian Motion
	19.2 Definition of the Markov Property
	19.3 Markov Property of Brownian Motion
	19.4 The Augmented Filtration
	19.5 Definition of the Strong Markov Property
	19.6 Strong Markov Property of Brownian Motion
	19.7 Problems


