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Generalized Random Processes

17.1 Generalized Functions and Generalized Random
Processes

We start this section by recalling the definitions of test functions and gener-
alized functions.1 Thenwe shall introduce the notion of generalized random
processes and see that they play the same role, when compared to ordinary
random processes, as the generalized functions, when compared to ordinary
functions.

As the space of test functions we shall consider the particular example
of infinitely differentiable functions whose derivatives decay faster than any
power. To simplify the notation we shall define test functions and generalized
functions over R, although the definitions can be easily replicated in the case
of Rn.

Definition 17.1. The space S of test functions consists of infinitely differ-
entiable complex-valued functions ϕ such that for any non-negative integers r
and q,

max
0≤s≤r

sup
t∈R

((1 + t2)q|ϕ(s)(t)|) = cq,r(ϕ) <∞.

Note that cq,r(ϕ) are norms on the space S, so that together with the col-
lection of norms cq,r, S is a countably-normed linear space. It is, therefore, a
linear topological space with the basis of neighborhoods of zero given by the
collection of sets Uq,r,ε = {ϕ : cq,r(ϕ) < ε}.

Let us now consider the linear continuous functionals on the space S.
Definition 17.2. The space S ′ of generalized functions consists of all the lin-
ear continuous functionals on the space S.

1 This chapter can be omitted during the first reading.
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246 17 Generalized Random Processes

The action of a generalized function f ∈ S ′ on a test function ϕ will be
denoted by f(ϕ) or (f, ϕ). Our basic example of a generalized function is the
following. Let μ(t) be a σ-finite measure on the real line such that the integral

∫ ∞

−∞
(1 + t2)−qdμ(t)

converges for some q. Then the integral

(f, ϕ) =

∫ ∞

−∞
ϕ(t)dμ(t)

is defined for any ϕ(t) ∈ S and is a continuous linear functional on the space
of test functions. Similarly, if g(t) is a continuous complex-valued function
whose absolute value is bounded from above by a polynomial, then it defines
a generalized function via

(f, ϕ) =

∫ ∞

−∞
ϕ(t)g(t)dt

(the complex conjugation is needed here if g(t) is complex-valued). The space
of generalized functions is closed under the operations of taking the derivative
and Fourier transform. Namely, for f ∈ S ′, we can define

(f ′, ϕ) = −(f, ϕ′) and (f̂ , ϕ) = (f, ϕ̃),

where ϕ̃ stands for the inverse Fourier transform of the test function ϕ. Note
that the right-hand sides of these equalities are linear continuous functionals
on the space S, and thus the functionals f ′ and f̂ belong to S ′.

Since all the elements of S are bounded continuous functions, they can
be considered as elements of S ′, that is S ⊂ S ′. The operations of taking
derivative and Fourier transform introduced above are easily seen to coincide
with the usual derivative and Fourier transform for the elements of the space S.

Let us now introduce the notion of generalized random processes. From
the physical point of view, the concept of a random process Xt is related
to measurements of random quantities at certain moments of time, without
taking the values at other moments of time into account. However, in many
cases, it is impossible to localize the measurements to a single point of time.
Instead, one considers the “average” measurements Φ(ϕ) =

∫
ϕ(t)Xtdt, where

ϕ is a test function. Such measurements should depend on ϕ linearly, and
should not change much with a small change of ϕ.

This leads to the following definition of generalized random processes.

Definition 17.3. Let Φ(ϕ) be a collection of complex-valued random variables
on a common probability space (Ω,F ,P) indexed by the elements of the space
of test functions ϕ ∈ S with the following properties:

1. Linearity: Φ(a1ϕ1+a2ϕ2) = a1Φ(ϕ1)+a2Φ(ϕ2) almost surely, for a1, a2∈C
and ϕ1, ϕ2 ∈ S.



17.1 Generalized Functions and Generalized Random Processes 247

2. Continuity: If ψnk → ϕk in S as n→ ∞ for k = 1, . . . ,m, then the vector-
valued random variables (Φ(ψn1 ), . . . , Φ(ψ

n
m)) converge in distribution to

(Φ(ϕ1), . . . , Φ(ϕm)) as n→ ∞.

Then Φ(ϕ) is called a generalized random process (over the space S of test
functions).

Note that if Xt(ω) is an ordinary random process such that Xt(ω) is con-
tinuous in t for almost every ω, and |Xt(ω)| ≤ pω(t) for some polynomial
pω(t), then Φ(ϕ) =

∫
ϕ(t)Xtdt is a generalized random process. Alternatively,

we could require that Xt(ω) be an ordinary random process continuous in t
as a function from R to L2(Ω,F ,P) and such that ||Xt||L2 ≤ p(t) for some
polynomial p(t).

As with generalized functions, we can define the derivative and Fourier
transform of a generalized random process via

Φ′(ϕ) = −Φ(ϕ′), Φ̂(ϕ) = Φ(ϕ̃).

A generalized random process Φ is called strictly stationary if, for any
ϕ1, . . . , ϕn ∈ S and any h ∈ R, the random vector (Φ(ϕ1(t+h)), . . . , Φ(ϕn(t+
h))) has the same distribution as the vector (Φ(ϕ1(t)), . . . , Φ(ϕn(t))).

We can consider the expectation and the covariance functional of the gen-
eralized random process. Namely, assuming that the right-hand side is a con-
tinuous functional, we define

m(ϕ) = EΦ(ϕ).

Assuming that the right-hand side is a continuous functional of each of the
variables, we define

B(ϕ, ψ) = EΦ(ϕ)Φ(ψ).

Clearly, the expectation and the covariance functional are linear and hermitian
functionals respectively on the space S (hermitian meaning linear in the first
argument and anti-linear in the second). The covariance functional is non-
negative definite, that is B(ϕ, ϕ) ≥ 0 for any ϕ. A generalized process is
called wide-sense stationary if

m(ϕ(t)) = m(ϕ(t+ h)), B(ϕ(t), ψ(t)) = B(ϕ(t+ h), ψ(t+ h))

for any h ∈ R. If an ordinary random process is strictly stationary or wide-
sense stationary, then so too is the corresponding generalized random process.
It is easily seen that the only linear continuous functionals on the space S,
which are invariant with respect to translations, are those of the form

m(ϕ) = a

∫ ∞

−∞
ϕ(t)dt,

where a is a constant. The number a can also be referred to as the expectation
of the wide-sense stationary generalized process.
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The notions of spectral measure and random spectral measure can be
extended to the case of generalized random processes which are wide-sense
stationary. Consider a generalized random process with zero expectation. In
order to define the notion of spectral measure, we need the following lemma,
which we provide here without a proof. (See “Generalized Functions”, Vol-
ume 4, by I.M. Gelfand and N.Y. Vilenkin.)

Lemma 17.4. Let B(ϕ, ψ) be a hermitian functional on S, which is continu-
ous in each of the arguments, translation-invariant, and non-negative definite
(that is B(ϕ, ϕ) ≥ 0 for all ϕ ∈ S). Then there is a unique σ-finite measure ρ
on the real line such that the integral

∫ ∞

−∞
(1 + t2)−qdρ(t)

converges for some q ≥ 0, and

B(ϕ, ψ) =

∫ ∞

−∞
ϕ̂(λ)ψ̂(λ)dρ(λ). (17.1)

Note that the covariance functional satisfies all the requirements of the lemma.
We can thus define the spectral measure as the measure ρ for which (17.1)
holds, where B on the left-hand side is the covariance functional.

Furthermore, it can be shown that there exists a unique orthogonal random
measure Z such that E|Z(Δ)|2 = ρ(Δ), and

Φ(ϕ) =

∫ ∞

−∞
ϕ̂dZ(λ). (17.2)

Let μρ be the generalized function corresponding to the measure ρ. Let
F = μ̃ρ be its inverse Fourier transform in the sense of generalized functions.
We can then rewrite (17.1) as

B(ϕ, ψ) = (F, ϕ ∗ ψ∗),

where the convolution of two test functions is defined as

ϕ ∗ ψ(t) =
∫ ∞

−∞
ϕ(s)ψ(t− s)ds,

and ψ∗(t) = ψ(−t). For generalized processes which are wide-sense stationary,
the generalized function F is referred to as the covariance function.

Let us assume that Xt is a stationary ordinary process with zero expec-
tation, which is continuous in the L2 sense. As previously mentioned, we can
also consider it as a generalized process, Φ(ϕ) =

∫
ϕ(t)Xtdt. We have two sets

of definitions of the covariance function, spectral measure, and the random
orthogonal measure (one for the ordinary process Xt, and the other for the
generalized process Φ). It would be natural if the two sets of definitions led
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to the same concepts of the covariance function, spectral measure, and the
random orthogonal measure. This is indeed the case (we leave this statement
as an exercise for the reader).

Finally, let us discuss the relationship between generalized random pro-
cesses and measures on S ′. Given a Borel set B ⊆ C

n and n test functions
ϕ1, . . . , ϕn, we define a cylindrical subset of S ′ as the set of elements f ∈ S ′

for which (f(ϕ1), . . . , f(ϕn)) ∈ B. The Borel σ-algebra F is defined as the
minimal σ-algebra which contains all the cylindrical subsets of S ′. Any prob-
ability measure P on F defines a generalized process, since f(ϕ) is a random
variable on (S ′,F ,P) for any ϕ ∈ S and all the conditions of Definition 17.3
are satisfied. The converse statement is also true. We formulate it here as a
theorem. The proof is non-trivial and we do not provide it here. (See “Gen-
eralized Functions”, Volume 4, by I.M. Gelfand and N.Y. Vilenkin.)

Theorem 17.5. Let Φ(ϕ) be a generalized random process on S. Then there
exists a unique probability measure P on S ′ such that for any n and any
ϕ1, . . . , ϕn ∈ S the random vectors (f(ϕ1), . . . , f(ϕn)) and (Φ(ϕ1), . . . , Φ(ϕn))
have the same distributions.

17.2 Gaussian Processes and White Noise

A generalized random process Φ is called Gaussian if for any test functions
ϕ1, . . . , ϕk, the random vector (Φ(ϕ1), . . . , Φ(ϕk)) is Gaussian. To simplify
the notation, let us consider Gaussian processes with zero expectation. We
shall also assume that the process is real-valued, meaning that Φ(ϕ) is real,
whenever ϕ is a real-valued element of S.

The covariance matrix of the vector (Φ(ϕ1), . . . , Φ(ϕk)) is simply Bij =
E(Φ(ϕi)Φ(ϕj)) = B(ϕi, ϕj). Therefore, all the finite-dimensional distributions
with ϕ1, . . . , ϕk real are determined by the covariance functional. We shall say
that a hermitian form is real if B(ϕ, ψ) is real whenever ϕ and ψ are real.

Recall that the covariance functional of any generalized random process
is a non-negative definite hermitian form which is continuous in each of the
variables. We also have the converse statement.

Theorem 17.6. Let B(ϕ, ψ) be a real non-negative definite hermitian form
which is continuous in each of the variables. Then there is a real-valued Gaus-
sian generalized process with zero expectation with B(ϕ, ψ) as its covariance
functional.

To prove this theorem we shall need the following important fact from the
theory of countably normed spaces. We provide it here without a proof.

Lemma 17.7. If a hermitian functional B(ϕ, ψ) on the space S is continuous
in each of the variables separately, then it is continuous in the pair of the
variables, that is lim(ϕ,ψ)→(ϕ0,ψ0)B(ϕ, ψ) = B(ϕ0, ψ0) for any (ϕ0, ψ0).
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Proof of Theorem 17.6. Let Sr be the set of real-valued elements of S. Let Ω
be the space of all functions (not necessarily linear) defined on Sr. Let B be
the smallest σ-algebra containing all the cylindrical subsets of Ω, that is the
sets of the form

{ω : (ω(ϕ1), . . . , ω(ϕk)) ∈ A},
where ϕ1, . . . , ϕk ∈ Sr and A is a Borel subset of Rk. Let Bϕ1,...,ϕk

be the
smallest σ-algebra which contains all such sets, where A is allowed to vary
but ϕ1, . . . , ϕk are fixed. We define the measure Pϕ1,...,ϕk

on Bϕ1,...,ϕk
by

Pϕ1,...,ϕk
({ω : (ω(ϕ1), . . . , ω(ϕk)) ∈ A}) = η(A),

where η is a Gaussian distribution with the covariance matrixBij = B(ϕi, ϕj).
The measures Pϕ1,...,ϕk

clearly satisfy the assumptions of Kolmogorov’s Con-
sistency Theorem and, therefore, there exists a unique measure P on B whose
restriction to each Bϕ1,...,ϕk

coincides with Pϕ1,...,ϕk
.

We define Φ(ϕ), where ϕ ∈ Sr for now, simply by putting Φ(ϕ)(ω) = ω(ϕ).
Let us show that Φ(ϕ) is the desired generalized process. By construction,
E(Φ(ϕ)Φ(ψ)) = B(ϕ, ψ). Next, let us show that Φ(aϕ+ bψ) = aΦ(ϕ) + bΦ(ψ)
almost surely with respect to the measure P, when ϕ, ψ ∈ Sr and a, b ∈ R.
Note that we definedΩ as the set of all functions on Sr, not just the linear ones.
To prove the linearity of Φ, note that the variance of Φ(aϕ+bψ)−aΦ(ϕ)−bΦ(ψ)
is equal to zero. Therefore Φ(aϕ+ bψ) = aΦ(ϕ) + bΦ(ψ) almost surely.

We also need to demonstrate the continuity of Φ(ϕ). If ψnk → ϕk in
Sr as n → ∞ for k = 1, . . . ,m, then the covariance matrix of the vector
(Φ(ψn1 ), . . . , Φ(ψ

n
m)) is Bnij = B(ψni , ψ

n
j ), while the covariance matrix of the

vector (Φ(ϕ1), . . . , Φ(ϕm)) is equal to Bij = B(ϕi, ϕj). If ψ
n
k → ϕk in Sr as

n → ∞ for k = 1, . . . ,m, then limn→∞Bnij = Bij due to Lemma 17.7. Since
the vectors are Gaussian, the convergence of covariance matrices implies the
convergence in distribution.

Finally, for ϕ = ϕ1 + iϕ2, where ϕ1 and ϕ2 are real, we define Φ(ϕ) =
Φ(ϕ1) + iΦ(ϕ2). Clearly, Φ(ϕ) is the desired generalized random process. �

We shall say that a generalized function F is non-negative definite if
(F, ϕ ∗ ϕ∗) ≥ 0 for any ϕ ∈ S. There is a one-to-one correspondence be-
tween non-negative definite generalized functions and continuous translation-
invariant non-negative definite hermitian forms. Namely, given a generalized
function F , we can define the form B(ϕ, ψ) = (F, ϕ ∗ ψ∗). Conversely, the
existence of the non-negative definite generalized function corresponding to a
form is guaranteed by Lemma 17.4. Theorem 17.6 can now be applied in the
translation-invariant case to obtain the following statement.

Lemma 17.8. For any non-negative definite generalized function F , there is
a real-valued stationary Gaussian generalized process with zero expectation for
which F is the covariance function.
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Let us introduce an important example of a generalized process. Note that
the delta-function (the generalized function defined as (δ, ϕ) = ϕ(0)) is non-
negative definite.

Definition 17.9. A real-valued stationary Gaussian generalized process with
zero expectation and covariance function equal to delta-function is called white
noise.

Let us examine what happens to the covariance functional of a generalized
process when we take the derivative of the process. If BΦ is the covariance
functional of the process Φ and BΦ′ is the covariance functional of Φ′, then

BΦ′(ϕ, ψ) = E(Φ′(ϕ)Φ
′
(ψ)) = E(Φ(ϕ′)Φ(ψ′)) = BΦ(ϕ

′, ψ′).

If the process Φ is stationary, and FΦ and FΦ′ are the covariance functions of
Φ and Φ′ respectively, we obtain

(FΦ′ , ϕ ∗ ψ∗) = (FΦ, ϕ
′ ∗ (ψ′)∗).

Since ϕ′ ∗ (ψ′)∗ = −(ϕ ∗ ψ∗)′′,

(FΦ′ , ϕ ∗ ψ∗) = (−F ′′
Φ , ϕ ∗ ψ∗).

Therefore, the generalized functions FΦ′ and −F ′′
Φ agree on all test functions

of the form ϕ∗ψ∗. It is not difficult to show that such test functions are dense
in S. Therefore, FΦ′ = −F ′′

Φ .
In Chap. 18 we shall study Brownian motion (also called Wiener process).

It is a real Gaussian process, denoted by Wt, whose covariance functional is
given by the formula

BW (ϕ, ψ) =

∫ ∞

−∞

∫ ∞

−∞
k(s, t)ϕ(s)ψ(t)dsdt,

where

k(s, t) =

{
min(|s|, |t|) if s and t have the same sign,
0 otherwise.

Although the Wiener process itself is not stationary, its derivative is, as will
be seen below. Indeed, by using integration by parts,∫ ∞

−∞

∫ ∞

−∞
k(s, t)ϕ′(s)ψ′(t)dsdt =

∫ ∞

−∞
ϕ(t)ψ(t)dt.

Therefore, the covariance functional of the derivative of the Wiener process is
equal to

BW ′(ϕ, ψ) = BW (ϕ′, ψ′) =
∫ ∞

−∞
ϕ(t)ψ(t)dt = (δ, ϕ ∗ ψ∗).

Since the derivative of a Gaussian process is a (generalized) Gaussian process,
and the distributions of a Gaussian process are uniquely determined by its
covariance function, we see that the derivative of the Wiener process is a
white noise.
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