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Markov Processes with a Finite State Space

14.1 Definition of a Markov Process

In this section we define a homogeneous Markov process with values in a finite
state space. We can assume that the state space X is the set of the first r
positive integers, that is X = {1, . . . , r}.

Let P (t) be a family of r× r stochastic matrices indexed by the parameter
t ∈ [0,∞). The elements of P (t) will be denoted by Pij(t), 1 ≤ i, j ≤ r. We
assume that the family P (t) forms a semi-group, that is P (s)P (t) = P (s+ t)
for any s, t ≥ 0. Since P (t) are stochastic matrices, the semi-group property
implies that P (0) is the identity matrix. Let μ be a distribution on X .

Let ˜Ω be the set of all functions ω̃ : R+ → X and B be the σ-algebra
generated by all the cylindrical sets. Define a family of finite-dimensional
distributions Pt0,...,tk , where 0 = t0 ≤ t1 ≤ . . . ≤ tk, as follows

Pt0,...,tk(ω̃(t0) = i0, ω̃(t1) = i1, . . . , ω̃(tk) = ik)

= μi0Pi0i1(t1)Pi1i2(t2 − t1) . . . Pik−1ik(tk − tk−1).

It can be easily seen that this family of finite-dimensional distributions satisfies
the consistency conditions. By the Kolmogorov Consistency Theorem, there is
a processXt with values in X with these finite-dimensional distributions. Any
such process will be called a homogeneous Markov process with the family
of transition matrices P (t) and the initial distribution μ. (Since we do not
consider non-homogeneous Markov processes in this section, we shall refer to
Xt simply as a Markov process).

Lemma 14.1. Let Xt be a Markov process with the family of transition ma-
trices P (t). Then, for 0 ≤ s1 ≤ . . . ≤ sk, t ≥ 0, and i1, . . . , ik, j ∈ X, we
have

P(Xsk+t = j|Xs1 = i1, . . . , Xsk = ik) = P(Xsk+t = j|Xsk = ik) = Pikj(t)
(14.1)

if the conditional probability on the left-hand side is defined.
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The proof of this lemma is similar to the arguments in Sect. 5.2, and thus
will not be provided here. As in Sect. 5.2, it is easy to see that for a Markov
process with the family of transition matrices P (t) and the initial distribution
μ the distribution of Xt is μP (t).

Definition 14.2. A distribution π is said to be stationary for a semi-group
of Markov transition matrices P (t) if πP (t) = π for all t ≥ 0.

As in the case of discrete time we have the Ergodic Theorem.

Theorem 14.3. Let P (t) be a semi-group of Markov transition matrices such
that for some t all the matrix entries of P (t) are positive. Then there is a
unique stationary distribution π for the semi-group of transition matrices.
Moreover, supi,j∈X |Pij(t)−πj| converges to zero exponentially fast as t → ∞.

This theorem can be proved similarly to the Ergodic Theorem for Markov
chains (Theorem 5.9). We leave the details as an exercise for the reader.

14.2 Infinitesimal Matrix

In this section we consider semi-groups of Markov transition matrices which
are differentiable at zero. Namely, assume that there exist the following limits

Qij = lim
t↓0

Pij(t)− Iij
t

, 1 ≤ i, j ≤ r, (14.2)

where I is the identity matrix.

Definition 14.4. If the limits in (14.2) exist for all 1 ≤ i, j ≤ r, then the
matrix Q is called the infinitesimal matrix of the semigroup P (t).

Since Pij(t) ≥ 0 and Iij = 0 for i �= j, the off-diagonal elements of Q are
non-negative. Moreover,

r
∑

j=1

Qij =

r
∑

j=1

lim
t↓0

Pij(t)− Iij
t

= lim
t↓0

∑r
j=1 Pij(t)− 1

t
= 0,

or, equivalently,

Qii = −
∑

j �=i

Qij .

Lemma 14.5. If the limits in (14.2) exist, then the transition matrices are
differentiable for all t ∈ R

+ and satisfy the following systems of ordinary
differential equations.

dP (t)

dt
= P (t)Q (forward system).

dP (t)

dt
= QP (t) (backward system).

The derivatives at t = 0 should be understood as one-sided derivatives.
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Proof. Due to the semi-group property of P (t),

lim
h↓0

P (t+ h)− P (t)

h
= P (t) lim

h↓0
P (h)− I

h
= P (t)Q. (14.3)

This shows, in particular, that P (t) is right-differentiable. Let us prove that
P (t) is left-continuous. For t > 0 and 0 ≤ h ≤ t,

P (t)− P (t− h) = P (t− h)(P (h)− I).

All the elements of P (t−h) are bounded, while all the elements of (P (h)− I)
tend to zero as h ↓ 0. This establishes the continuity of P (t).

For t > 0,

lim
h↓0

P (t)− P (t− h)

h
= lim

h↓0
P (t− h) lim

h↓0
P (h)− I

h
= P (t)Q. (14.4)

Combining (14.3) and (14.4), we obtain the forward system of equations.
Due to the semi-group property of P (t), for t ≥ 0,

lim
h↓0

P (t+ h)− P (t)

h
= lim

h↓0
P (h)− I

h
P (t) = QP (t),

and similarly, for t > 0,

lim
h↓0

P (t)− P (t− h)

h
= lim

h↓0
P (h)− I

h
lim
h↓0

P (t− h) = QP (t).

This justifies the backward system of equations. �

The system dP (t)/dt = P (t)Q with the initial condition P0 = I has the
unique solution P (t) = exp(tQ). Thus, the transition matrices can be uniquely
expressed in terms of the infinitesimal matrix.

Let us note another property of the infinitesimal matrix. If π is a stationary
distribution for the semi-group of transition matrices P (t), then

πQ = lim
t↓0

πP (t)− π

t
= 0.

Conversely, if πQ = 0 for some distribution π, then

πP (t) = π exp(tQ) = π(I + tQ+
t2Q2

2!
+

t3Q3

3!
+ · · · ) = π.

Thus, π is a stationary distribution for the family P (t).
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14.3 A Construction of a Markov Process

Let μ be a probability distribution on X and P (t) be a differentiable
semi-group of transition matrices with the infinitesimal matrix Q. Assume
that Qii < 0 for all i.

On an intuitive level, a Markov process with the family of transition ma-
trices P (t) and initial distribution μ can be described as follows. At time t = 0
the process is distributed according to μ. If at time t the process is in a state i,
then it will remain in the same state for time τ , where τ is a random vari-
able with exponential distribution. The parameter of the distribution depends
on i, but does not depend on t. After time τ the process goes to another state,
where it remains for exponential time, and so on. The transition probabilities
depend on i, but not on the moment of time t.

Now let us justify the above description and relate the transition times
and transition probabilities to the infinitesimal matrix. Let Q be an r × r
matrix with Qii < 0 for all i. Assume that there are random variables ξ, τni ,
1 ≤ i ≤ r, n ∈ N, and ηni , 1 ≤ i ≤ r, n ∈ N, defined on a common probability
space, with the following properties.

1. The random variable ξ takes values in X and has distribution μ.
2. For any 1 ≤ i ≤ r, the random variables τni , n ∈ N, are identi-

cally distributed according to the exponential distribution with param-
eter ri = −Qii.

3. For any 1 ≤ i ≤ r, the random variables ηni , n ∈ N, take values in X \ {i}
and are identically distributed with P(ηni = j) = −Qij/Qii for j �= i.

4. The random variables ξ, τni , η
n
i , 1 ≤ i ≤ r, n ∈ N, are independent.

We inductively define two sequences of random variables: σn, n ≥ 0, with
values in R

+, and ξn, n ≥ 0, with values in X . Let σ0 = 0 and ξ0 = ξ.
Assume that σm and ξm have been defined for all m < n, where n ≥ 1,
and set

σn = σn−1 + τnξn−1 .

ξn = ηnξn−1 .

We shall treat σn as the time till the n-th transition takes place, and ξn as
the n-th state visited by the process. Thus, define

Xt = ξn for σn ≤ t < σn+1. (14.5)

Lemma 14.6. Assume that the random variables ξ, τni , 1 ≤ i ≤ r, n ∈ N,
and ηni , 1 ≤ i ≤ r, n ∈ N, are defined on a common probability space and
satisfy assumptions 1–4 above. Then the process Xt defined by (14.5) is a
Markov process with the family of transition matrices P (t) = exp(tQ) and
initial distribution μ.
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Sketch of the Proof. It is clear from (14.5) that the initial distribution of Xt

is μ. Using the properties of τni and ηni it is possible to show that, for k �= j,

P(X0 = i,Xt = k,Xt+h = j)

= P(X0 = i,Xt = k)(P(τ1k < h)P(ξ1k = j) + o(h))

= P(X0 = i,Xt = k)(Qkjh+ o(h)) as h ↓ 0.

In other words, the main contribution to the probability on the left-hand side
comes from the event that there is exactly one transition between the states
k and j during the time interval [t, t+ h).

Similarly,
P(X0 = i,Xt = j,Xt+h = j)

= P(X0 = i,Xt = j)(P(τ1j ≥ h) + o(h))

= P(X0 = i,Xt = j)(1 +Qjjh+ o(h)) as h ↓ 0,

that is, the main contribution to the probability on the left-hand side comes
from the event that there are no transitions during the time interval [t, t+ h].

Therefore,
r

∑

k=1

P(X0 = i,Xt = k,Xt+h = j)

= P(X0 = i,Xt = j) + h
r

∑

k=1

P(X0 = i,Xt = k)Qkj + o(h).

Let Rij(t) = P(X0 = i,Xt = j). The last equality can be written as

Rij(t+ h) = Rij(t) + h

r
∑

k=1

Rik(t)Qkj + o(h).

Using matrix notation,

lim
h↓0

R(t+ h)−R(t)

h
= R(t)Q.

The existence of the left derivative is justified similarly. Therefore,

dR(t)

dt
= R(t)Q for t ≥ 0.

Note that Rij(0) = μi for i = j, and Rij(0) = 0 for i �= j. These are the same
equation and initial condition that are satisfied by the matrix-valued function
μiPij(t). Therefore,

Rij(t) = P(X0 = i,Xt = j) = μiPij(t). (14.6)
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In order to prove that Xt is a Markov process with the family of transition
matrices P (t), it is sufficient to demonstrate that

P(Xt0 = i0, Xt1 = i1, . . . , Xtk = ik)

= μi0Pi0i1(t1)Pi1i2(t2 − t1) . . . Pik−1ik(tk − tk−1).

for 0 = t0 ≤ t1 ≤ . . . ≤ tk. The case k = 1 has been covered by (14.6). The
proof for k > 1 is similar and is based on induction on k. �

14.4 A Problem in Queuing Theory

Markov processes with a finite or countable state space are used in the Queuing
Theory. In this section we consider one basic example.

Assume that there are r identical devices designed to handle incoming
requests. The times between consecutive requests are assumed to be indepen-
dent exponentially distributed random variables with parameter λ. At a given
time, each device may be either free or busy servicing one request. An incom-
ing request is serviced by any of the free devices and, if all the devices are
busy, the request is rejected. The times to service each request are assumed to
be independent exponentially distributed random variables with parameter μ.
They are also assumed to be independent of the arrival times of the requests.

Let us model the above system by a process with the state space X =
{0, 1, . . . , r}. A state of the process corresponds to the number of devices
busy servicing requests. If there are no requests in the system, the time till
the first one arrives is exponential with parameter λ. If there are r requests
in the system, the time till the first one of them is serviced is an exponential
random variable with parameter rμ. If there are 1 ≤ i ≤ r − 1 requests in
the system, the time till either one of them is serviced, or a new request
arrives, is an exponential random variable with parameter λ+ iμ. Therefore,
the process remains in a state i for a time which is exponentially distributed
with parameter

γ(i) =

⎧

⎨

⎩

λ if i = 0,
λ+ iμ if 1 ≤ i ≤ r − 1,
iμ if i = r.

If the process is in the state i = 0, it can only make a transition to the
state i = 1, which corresponds to an arrival of a request. From a state 1 ≤ i ≤
r−1 the process can make a transition either to state i−1 or to state i+1. The
former corresponds to completion of one of i requests being serviced before
the arrival of a new request. Therefore, the probability of transition from i
to i − 1 is equal to the probability that the smallest of i exponential random
variables with parameter μ is less than an exponential random variable with
parameter λ (all the random variables are independent). This probability is
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equal to iμ/(iμ+ λ). Consequently, the transition probability from i to i+ 1
is equal to λ/(iμ+λ). Finally, if the process is in the state r, it can only make
a transition to the state r − 1.

Let the initial state of the process Xt be independent of the arrival times
of the requests and the times it takes to service the requests. Then the pro-
cess Xt satisfies the assumptions of Lemma 14.6 (see the discussion before
Lemma 14.6). The matrix Q is the (r + 1)× (r + 1) tridiagonal matrix with
the vectors γ(i), 0 ≤ i ≤ r, on the diagonal, u(i) ≡ λ, 1 ≤ i ≤ r, above the
diagonal, and l(i) = iμ, 1 ≤ i ≤ r, below the diagonal. By Lemma 14.6, the
process Xt is Markov with the family of transition matrices P (t) = exp(tQ).

It is not difficult to prove that all the entries of exp(tQ) are positive for
some t, and therefore the Ergodic Theorem is applicable. Let us find the
stationary distribution for the family of transition matrices P (t). As noted in
Sect. 14.2, a distribution π is stationary for P (t) if and only if πQ = 0. It is
easy to verify that the solution of this linear system, subject to the conditions
π(i) ≥ 0, 0 ≤ i ≤ r, and

∑r
i=0 π(i) = 1, is

π(i) =
(λ/μ)i/i!

∑r
j=0(λ/μ)

j/j!
, 0 ≤ i ≤ r.

14.5 Problems

1. Let P (t) be a differentiable semi-group of Markov transition matrices with
the infinitesimal matrix Q. Assume that Qij �= 0 for 1 ≤ i, j ≤ r. Prove
that for every t > 0 all the matrix entries of P (t) are positive. Prove that
there is a unique stationary distribution π for the semi-group of transition
matrices. (Hint: represent Q as (Q+ cI)− cI with a constant c sufficiently
large so that to make all the elements of the matrix Q+ cI non-negative.)

2. Let P (t) be a differentiable semi-group of transition matrices. Prove that
if all the elements of P (t) are positive for some t, then all the elements of
P (t) are positive for all t > 0.

3. Let P (t) be a differentiable semi-group of Markov transition matrices with
the infinitesimal matrix Q. Assuming that Q is self-adjoint, find a station-
ary distribution for the semi-group P (t).

4. Let Xt be a Markov process with a differentiable semi-group of transition
matrices and initial distribution μ such that μ(i) > 0 for 1 ≤ i ≤ r. Prove
that P(Xt = i) > 0 for all i.

5. Consider a taxi station where taxis and customers arrive according to Pois-
son processes. The taxis arrive at the rate of 1 per min, and the customers
at the rate of 2 per min. A taxi will wait only if there are no other taxis
waiting already. A customer will wait no matter how many other cus-
tomers are in line. Find the probability that there is a taxi waiting at a
given moment and the average number of customers waiting in line.
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6. A company gets an average of five calls an hour from prospective clients. It
takes a company representative an average of 20min to handle one call (the
distribution of time to handle one call is exponential). A prospective client
who cannot immediately talk to a representative never calls again. For
each prospective client that talks to a representative the company makes
$1,000. How many representatives should the company maintain if each is
paid $10 an hour?
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