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Conditional Expectations and Martingales

13.1 Conditional Expectations

For two events A,B ∈ F in a probability space (Ω,F ,P), we previously
defined the conditional probability of A given B as

P(A|B) =
P(A

⋂
B)

P(B)
.

Similarly, we can define the conditional expectation of a random variable f
given B as

E(f |B) =

∫
B f(ω)dP(ω)

P(B)
,

provided that the integral on the right-hand side is finite and the denominator
is different from zero.

We now introduce an important generalization of this notion by defining
the conditional expectation of a random variable given a σ-subalgebra G ⊆ F .

Definition 13.1. Let (Ω,F ,P) be a probability space, G a σ-subalgebra of F ,
and f ∈ L1(Ω,F ,P). The conditional expectation of f given G, denoted by
E(f |G), is the random variable g ∈ L1(Ω,G,P) such that for any A ∈ G

∫

A

fdP =

∫

A

gdP. (13.1)

Note that for fixed f , the left-hand side of (13.1) is a σ-additive function
defined on the σ-algebra G. Therefore, the existence and uniqueness (up to a
set of measure zero) of the function g are guaranteed by the Radon-Nikodym
Theorem. Here are several simple examples.

If f is measurable with respect to G, then clearly E(f |G) = f . If f is
independent of the σ-algebra G, then E(f |G) = Ef , since

∫
A
fdP = P(A)Ef in

this case. Thus the conditional expectation is reduced to ordinary expectation
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182 13 Conditional Expectations and Martingales

if f is independent of G. This is the case, in particular, when G is the trivial
σ-algebra, G = {∅, Ω}.

If G = {B,Ω\B, ∅, Ω}, where 0 < P(B) < 1, then

E(f |G) = E(f |B)χB + E(f |(Ω\B))χΩ\B.

Thus, the conditional expectation of f with respect to the smallest σ-algebra
containing B is equal to the constant E(f |B) on the set B.

Concerning the notations, we shall often write E(f |g) instead of E(f |σ(g)),
if f and g are random variables on (Ω,F ,P). Likewise, we shall often write
P(A|G) instead of E(χA|G) to denote the conditional expectation of the indi-
cator function of a set A ∈ F . The function P(A|G) will be referred to as the
conditional probability of A given the σ-algebra G.

13.2 Properties of Conditional Expectations

Let us list several important properties of conditional expectations. Note that
since the conditional expectation is defined up to a set of measure zero, all
the equalities and inequalities below hold almost surely.

1. If f1, f2 ∈ L1(Ω,F ,P) and a, b are constants, then

E(af1 + bf2|G) = aE(f1|G) + bE(f2|G).

2. If f ∈ L1(Ω,F ,P), and G1 and G2 are σ-subalgebras of F such that
G2 ⊆ G1 ⊆ F , then

E(f |G2) = E(E(f |G1)|G2).

3. If f1, f2 ∈ L1(Ω,F ,P) and f1 ≤ f2, then E(f1|G) ≤ E(f2|G).
4. E(E(f |G)) = Ef .
5. (Conditional Dominated Convergence Theorem) If a sequence of measur-

able functions fn converges to a measurable function f almost surely, and

|fn| ≤ ϕ,

where ϕ is integrable on Ω, then limn→∞ E(fn|G) = E(f |G) almost surely.
6. If g, fg ∈ L1(Ω,F ,P), and f is measurable with respect to G, then

E(fg|G) = fE(g|G).
Properties 1–3 are clear. To prove property 4, it suffices to take A = Ω in the
equality

∫
A fdP =

∫
A E(f |G)dP defining the conditional expectation.

To prove the Conditional Dominated Convergence Theorem, let us first
assume that fn is a monotonic sequence. Without loss of generality we may
assume that fn is monotonically non-decreasing (the case of a non-increasing
sequence is treated similarly). Thus the sequence of functions E(fn|G) sat-
isfies the assumptions of the Levi Convergence Theorem (see Sect. 3.5).



13.2 Properties of Conditional Expectations 183

Let g = limn→∞ E(fn|G). Then g is G-measurable and
∫
A gdP =

∫
A fdP

for any A ∈ G, again by the Levi Theorem.
If the sequence fn is not necessarily monotonic, we can consider the aux-

iliary sequences fn = infm≥n fm and fn = supm≥n fm. These sequences are
already monotonic and satisfy the assumptions placed on the sequence fn.
Therefore,

lim
n→∞E(fn|G) = lim

n→∞E(fn|G) = E(f |G).

Since fn ≤ fn ≤ fn, the Dominated Convergence Theorem follows from the
monotonicity of the conditional expectation (property 3).

To prove the last property, first we consider the case when f is the indicator
function of a set B ∈ G. Then for any A ∈ G

∫

A

χBE(g|G)dP =

∫

A
⋂

B

E(g|G)dP =

∫

A
⋂

B

gdP =

∫

A

χBgdP,

which proves the statement for f = χB. By linearity, the statement is also
true for simple functions taking a finite number of values. Next, without loss
of generality, we may assume that f, g ≥ 0. Then we can find a non-decreasing
sequence of simple functions fn, each taking a finite number of values such
that limn→∞ fn = f almost surely. We have fng → fg almost surely, and the
Dominated Convergence Theorem for conditional expectations can be applied
to the sequence fng to conclude that

E(fg|G) = lim
n→∞E(fng|G) = lim

n→∞ fnE(g|G) = fE(g|G).
We now state Jensen’s Inequality and the Conditional Jensen’s Inequality,

essential to our discussion of conditional expectations and martingales. The
proofs of these statements can be found in many other textbooks, and we
shall not provide them here (see “Real Analysis and Probability” by R. M.
Dudley).

We shall consider a random variable f with values in R
d defined on a

probability space (Ω,F ,P). Recall that a function g : Rd → R is called convex
if g(cx+ (1− c)y) ≤ cg(x) + (1− c)g(y) for all x, y ∈ R

d, 0 ≤ c ≤ 1.

Theorem 13.2 (Jensen’s Inequality). Let g be a convex (and consequently
continuous) function on R

d and f a random variable with values in R
d such

that E|f | < ∞. Then, either Eg(f) = +∞, or

g(Ef) ≤ Eg(f) < ∞.

Theorem 13.3 (Conditional Jensen’s Inequality). Let g be a convex
function on R

d and f a random variable with values in R
d such that

E|f |,E|g(f)| < ∞.

Let G be a σ-subalgebra of F . Then almost surely

g(E(f |G)) ≤ E(g(f)|G).
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Let G be a σ-subalgebra of F . Let H = L2(Ω,G,P) be the closed lin-
ear subspace of the Hilbert space L2(Ω,F ,P). Let us illustrate the use of
the Conditional Jensen’s Inequality by proving that for a random variable
f ∈L2(Ω,F ,P), taking the conditional expectation E(f |G) is the same as
taking the projection on H .

Lemma 13.4. Let f ∈ L2(Ω,F ,P) and PH be the projection operator on the
space H. Then

E(f |G) = PHf.

Proof. The function E(f |G) is square-integrable by the Conditional Jensen’s
Inequality applied to g(x) = x2. Thus, E(f |G) ∈ H . It remains to show that
f − E(f |G) is orthogonal to any h ∈ H . Since h is G-measurable,

E((f − E(f |G))h) = EE((f − E(f |G))h|G) = E(hE((f − E(f |G))|G)) = 0.

�

13.3 Regular Conditional Probabilities

Let f and g be random variables on a probability space (Ω,F ,P). If g takes
a finite or countable number of values y1, y2, . . ., and the probabilities of the
events {ω : g(ω) = yi} are positive, we can write, similarly to (4.1), the
formula of full expectation

Ef =
∑

i

E(f |g = yi)P(g = yi).

Let us derive an analogue to this formula, which will work when the number
of values of g is not necessarily finite or countable. The sets Ωy = {ω : g(ω) =
y}, where y ∈ R, still form a partition of the probability space Ω, but the
probability of each Ωy may be equal to zero. Thus, we need to attribute
meaning to the expression E(f |Ωy) (also denoted by E(f |g = y)). One way
to do this is with the help of the concept of a regular conditional probability,
which we introduce below.

Let (Ω,F ,P) be a probability space and G ⊆ F a σ-subalgebra. Let h be
a measurable function from (Ω,F) to a measurable space (X,B). To motivate
the formal definition of a regular conditional probability, let us first assume
that G is generated by a finite or countable partition A1, A2, . . . such that
P(Ai) > 0 for all i. In this case, for a fixed B ∈ B, the conditional probability
P(h ∈ B|G) is constant on each Ai equal to P(h ∈ B|Ai), as follows from the
definition of the conditional probability. As a function of B, this expression is
a probability measure on (X,B). The concept of a regular conditional proba-
bility allows us to view P(h ∈ B|G)(ω), for fixed ω, as a probability measure,
even without the assumption that G is generated by a finite or countable
partition.
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Definition 13.5. A function Q : B×Ω → [0, 1] is called a regular conditional
probability of h given G if:

1. For each ω ∈ Ω, the function Q(·, ω) : B → [0, 1] is a probability measure
on (X,B).

2. For each B ∈ B, the function Q(B, ·) : Ω → [0, 1] is G-measurable.
3. For each B ∈ B, the equality P(h ∈ B|G)(ω) = Q(B,ω) holds almost

surely.

We have the following theorem, which guarantees the existence and uniqueness
of a regular conditional probability when X is a complete separable metric
space. (The proof of this theorem can be found in “Real Analysis and Prob-
ability” by R. M. Dudley.)

Theorem 13.6. Let (Ω,F ,P) be a probability space and G ⊆ F a σ-subalgebra.
Let X be a complete separable metric space and B the σ-algebra of Borel sets
of X. Take a measurable function h from (Ω,F) to (X,B). Then there exists
a regular conditional probability of h given G. It is unique in the sense that if
Q and Q′ are regular conditional probabilities, then the measures Q(·, ω) and
Q′(·, ω) coincide for almost all ω.

The next lemma states that when the regular conditional probability exists,
the conditional expectation can be written as an integral with respect to the
measure Q(·, ω).
Lemma 13.7. Let the assumptions of Theorem 13.6 hold, and f : X → R be
a measurable function such that E(f(h(ω)) is finite. Then, for almost all ω,
the function f is integrable with respect to Q(·, ω), and

E(f(h)|G)(ω) =
∫

X

f(x)Q(dx, ω) for almost all ω. (13.2)

Proof. First, let f be an indicator function of a measurable set, that is f = χB

for B ∈ B. In this case, the statement of the lemma is reduced to

P(h ∈ B|G)(ω) = Q(B,ω),

which follows from the definition of the regular conditional probability.
Since both sides of (13.2) are linear in f , the lemma also holds when f

is a simple function with a finite number of values. Now, let f be a non-
negative measurable function such that E(f(h(ω)) is finite. One can find a
sequence of non-negative simple functions fn, each taking a finite number of
values, such that fn → f monotonically from below. Thus, E(fn(h)|G)(ω) →
E(f(h)|G)(ω) almost surely by the Conditional Dominated Convergence The-
orem. Therefore, the sequence

∫
X fn(x)Q(dx, ω) is bounded almost surely, and∫

X
fn(x)Q(dx, ω) → ∫

X
f(x)Q(dx, ω) for almost all ω by the Levi Monotonic

Convergence Theorem. This justifies (13.2) for non-negative f .
Finally, if f is not necessarily non-negative, it can be represented as a

difference of two non-negative functions. �
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Example. Assume that Ω is a complete separable metric space, F is the
σ-algebra of its Borel sets, and (X,B) = (Ω,F). Let P be a probability mea-
sure on (Ω,F), and f and g be random variables on (Ω,F ,P). Let h be the
identity mapping from Ω to itself, and let G = σ(g). In this case, (13.2) takes
the form

E(f |g)(ω) =
∫

Ω

f(ω̃)Q(dω̃, ω) for almost all ω. (13.3)

Let Pg be the measure on R induced by the mapping g : Ω → R. For any B ∈
B, the function Q(B, ·) is constant on each level set of g, since it is measurable
with respect to σ(g). Therefore, for almost all y (with respect to the measure
Pg), we can define measures Qy(·) on (Ω,F) by putting Qg(ω)(B) = Q(B,ω).

The function E(f |g) is constant on each level set of g. Therefore, we can
define E(f |g = y) = E(f |g)(ω), where ω is such that g(ω) = y. This function
is defined up to a set of measure zero (with respect to the measure Pg). In
order to calculate the expectation of f , we can write

Ef = E(E(f |g)) =
∫

R

E(f |g = y)dPg(y) =

∫

R

(

∫

Ω

f(ω̃)dQy(ω̃))dPg(y),

where the second equality follows from the change of variable formula in the
Lebesgue integral. It is possible to show that the measure Qy is supported on
the event Ωy = {ω : g(ω) = y} for Pg−almost all y (we do not prove this
statement here). Therefore, we can write the expectation as a double integral

Ef =

∫

R

(

∫

Ωy

f(ω̃)dQy(ω̃))dPg(y).

This is the formula of the full mathematical expectation.

Example. Let h be a random variable with values in R, f the identity map-
ping on R, and G = σ(g). Then Lemma 13.7 states that

E(h|g)(ω) =
∫

R

xQ(dx, ω) for almost all ω,

where Q is the regular conditional probability of h given σ(g). Assume that h
and g have a joint probability density p(x, y), which is a continuous function
satisfying 0 <

∫
R
p(x, y)dx < ∞ for all y. It is easy to check that

Q(B,ω) =

∫

B

p(x, g(ω))dx(

∫

R

p(x, g(ω))dx)−1

has the properties required of the regular conditional probability. Therefore,

E(h|g)(ω) =
∫

R

xp(x, g(ω))dx(

∫

R

p(x, g(ω))dx)−1 for almost all ω,

and

E(h|g = y) =

∫

R

xp(x, y)dx(

∫

R

p(x, y)dx)−1 for Pg−almost all y.
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13.4 Filtrations, Stopping Times, and Martingales

Let (Ω,F) be a measurable space and T a subset of R or Z.

Definition 13.8. A collection of σ-subalgebras Ft ⊆ F , t ∈ T , is called a
filtration if Fs ⊆ Ft for all s ≤ t.

Definition 13.9. A random variable τ with values in the parameter set T is
a stopping time of the filtration Ft if {τ ≤ t} ∈ Ft for each t ∈ T .

Remark 13.10. Sometimes it will be convenient to allow τ to take values in
T ∪ {∞}. In this case, τ is still called a stopping time if {τ ≤ t} ∈ Ft for
each t ∈ T .

Example. Let T = N and Ω be the space of all functions ω : N → {−1, 1}.
(In other words, Ω is the space of infinite sequences made of −1’s and 1’s.)
Let Fn be the smallest σ-algebra which contains all the sets of the form

{ω : ω(1) = a1, . . . , ω(n) = an},
where a1, . . . , an ∈ {−1, 1}. Let F be the smallest σ-algebra containing all Fn,
n ≥ 1. The space (Ω,F) can be used to model an infinite sequence of games,
where the outcome of each game is either a loss or a gain of one dollar. Let

τ(ω) = min{n :

n∑

i=1

ω(i) = 3}.

Thus, τ is the first time when a gambler playing the game accumulates three
dollars in winnings. (Note that τ(ω) = ∞ for some ω.) It is easy to demon-
strate that τ is a stopping time. Let

σ(ω) = min{n : ω(n+ 1) = −1}.
Thus, a gambler stops at time σ if the next game will result in a loss. Follow-
ing such a strategy involves looking at the outcome of a future game before
deciding whether to play it. Indeed, it is easy to check that σ does not satisfy
the definition of a stopping time.

Remark 13.11. Recall the following notation: if x and y are real numbers, then
x ∧ y = min(x, y) and x ∨ y = max(x, y).

Lemma 13.12. If σ and τ are stopping times of a filtration Ft, then σ ∧ τ is
also a stopping time.

Proof. We need to show that {σ ∧ τ ≤ t} ∈ Ft for any t ∈ T , which immedi-
ately follows from

{σ ∧ τ ≤ t} = {σ ≤ t}
⋃

{τ ≤ t} ∈ Ft.

�
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In fact, if σ and τ are stopping times, then σ ∨ τ is also a stopping time.
If, in addition, σ, τ ≥ 0, then σ + τ is also a stopping time (see Problem 7).

Definition 13.13. Let τ be a stopping time of the filtration Ft. The σ-algebra
of events determined prior to the stopping time τ , denoted by Fτ , is the col-
lection of events A ∈ F for which A

⋂{τ ≤ t} ∈ Ft for each t ∈ T .

Clearly, Fτ is a σ-algebra. Moreover, τ is Fτ -measurable since

{τ ≤ c}
⋂

{τ ≤ t} = {τ ≤ c ∧ t} ∈ Ft,

and therefore {τ ≤ c} ∈ Fτ for each c. If σ and τ are two stopping times such
that σ ≤ τ , then Fσ ⊆ Fτ . Indeed, if A ∈ Fσ, then

A
⋂

{τ ≤ t} = (A
⋂

{σ ≤ t})
⋂

{τ ≤ t} ∈ Ft.

Now let us consider a process Xt together with a filtration Ft defined on a
common probability space.

Definition 13.14. A random process Xt is called adapted to a filtration Ft if
Xt is Ft-measurable for each t ∈ T .

An example of a stopping time is provided by the first time when a continuous
process hits a closed set.

Lemma 13.15. Let Xt be a continuous Rd-valued process adapted to a filtra-
tion Ft, where t ∈ R

+. Let K be a closed set in R
d and s ≥ 0. Let

τs(ω) = inf{t ≥ s,Xt(ω) ∈ K}
be the first time, following s, when the process hits K. Then τs is a stopping
time.

Proof. For an open set U , define

τsU (ω) = inf{t ≥ s,Xt(ω) ∈ U},
where the infimum of the empty set is +∞. First, we show that the set
{ω : τsU (ω) < t} belongs to Ft for any t ∈ R

+. Indeed, from the continu-
ity of the process it easily follows that

{τsU < t} =
⋃

u∈Q,s<u<t

{Xu ∈ U},

and the right-hand side of this equality belongs to Ft. Now, for the set K,
we define the open sets Un = {x ∈ R

d : dist(x,K) < 1/n}. We claim that for
t > s,

{τs ≤ t} =

∞⋂

n=1

{τsUn
< t}. (13.4)
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Indeed, if τs(ω) ≤ t, then for each n the trajectory Xu(ω) enters the open
set Un for some u, s < u < t, due to the continuity of the process. Thus ω
belongs to the event on the right-hand side of (13.4).

Conversely, if ω belongs to the event on the right-hand side of (13.4), then
there is a non-decreasing sequence of times un such that s < un < t and
Xun(ω) ∈ Un. Taking u = limn→∞ un, we see that u ≤ t and Xu(ω) ∈ K,
again due to the continuity of the process. This means that τs(ω) ≤ t, which
justifies (13.4).

Since the event on the right-hand side of (13.4) belongs to Ft, we see that
{τs ≤ t} belongs to Ft for t > s. Furthermore, {τs ≤ s} = {Xs ∈ K} ∈ Fs.
We have thus proved that τs is a stopping time. �

For a given random process, a simple example of a filtration is that gen-
erated by the process itself:

FX
t = σ(Xs, s ≤ t).

Clearly, Xt is adapted to the filtration FX
t .

Definition 13.16. A family (Xt,Ft)t∈T is called a martingale if the process
Xt is adapted to the filtration Ft, Xt ∈ L1(Ω,F ,P) for all t, and

Xs = E(Xt|Fs) for s ≤ t.

If the equal sign is replaced by ≤ or ≥, then (Xt,Ft)t∈T is called a submartin-
gale or supermartingale respectively.

We shall often say that Xt is a martingale, without specifying a filtration, if
it is clear from the context what the parameter set and the filtration are.

If one thinks of Xt as the fortune of a gambler at time t, then a martingale
is a model of a fair game (any information available by time s does not affect
the fact that the expected increment in the fortune over the time period from
s to t is equal to zero). More precisely, E(Xt −Xs|Fs) = 0.

If (Xt,Ft)t∈T is a martingale and f is a convex function such that f(Xt)
is integrable for all t, then (f(Xt),Ft)t∈T is a submartingale. Indeed, by the
Conditional Jensen’s Inequality,

f(Xs) = f(E(Xt|Fs)) ≤ E(f(Xt)|Fs).

For example, if (Xt,Ft)t∈T is a martingale, then (|Xt|,Ft)t∈T is a submartin-
gale, If, in addition, Xt is square-integrable, then (X2

t ,Ft)t∈T is a submartin-
gale.

13.5 Martingales with Discrete Time

In this section we study martingales with discrete time (T = N). In the next
section we shall state the corresponding results for continuous time martin-
gales, which will lead us to the notion of an integral of a random process with
respect to a continuous martingale.
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Our first theorem states that any submartingale can be decomposed, in a
unique way, into a sum of a martingale and a non-decreasing process adapted
to the filtration (Fn−1)n≥2.

Theorem 13.17 (Doob Decomposition). If (Xn,Fn)n∈N is a submartin-
gale, then there exist two random processes, Mn and An, with the following
properties:

1. Xn = Mn +An for n ≥ 1.
2. (Mn,Fn)n∈N is a martingale.
3. A1 = 0, An is Fn−1-measurable for n ≥ 2.
4. An is non-decreasing, that is

An(ω) ≤ An+1(ω)

almost surely for all n ≥ 1.

If another pair of processes Mn, An has the same properties, then Mn=Mn,
An = An almost surely.

Proof. Assuming that the processes Mn and An with the required properties
exist, we can write for n ≥ 2

Xn−1 = Mn−1 +An−1,

Xn = Mn +An.

Taking the difference and then the conditional expectation with respect to
Fn−1, we obtain

E(Xn|Fn−1)−Xn−1 = An −An−1.

This shows that An is uniquely defined by the process Xn and the random
variable An−1. The random variable Mn is also uniquely defined, since Mn =
Xn − An. Since M1 = X1 and A1 = 0, we see, by induction on n, that the
pair of processes Mn, An with the required properties is unique.

Furthermore, given a submartingale Xn, we can use the relations

M1 = X1, A1 = 0,

An = E(Xn|Fn−1)−Xn−1 +An−1, Mn = Xn −An, n ≥ 2,

to define inductively the processes Mn and An. Clearly, they have properties
1, 3 and 4. In order to verify property 2, we write

E(Mn|Fn−1) = E(Xn −An|Fn−1) = E(Xn|Fn−1)−An

= Xn−1 −An−1 = Mn−1, n ≥ 2,

which proves that (Mn,Fn)n∈N is a martingale. �
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If (Xn,Fn) is an adapted process and τ is a stopping time, then Xτ(ω)(ω)
is a random variable measurable with respect to the σ-algebra Fτ . Indeed,
one needs to check that {Xτ ∈ B}⋂{τ ≤ n} ∈ Fn for any Borel set B of
the real line and each n. This is true since τ takes only integer values and
{Xm ∈ B} ∈ Fn for each m ≤ n.

In order to develop an intuitive understanding of the next theorem, one
can again think of a martingale as a model of a fair game. In a fair game, a
gambler cannot increase or decrease the expectation of his fortune by entering
the game at a point of time σ(ω), and then quitting the game at τ(ω), provided
that he decides to enter and leave the game based only on the information
available by the time of the decision (that is, without looking into the future).

Theorem 13.18 (Optional Sampling Theorem). If (Xn,Fn)n∈N is a
submartingale and σ and τ are two stopping times such that σ ≤ τ ≤ k for
some k ∈ N, then

Xσ ≤ E(Xτ |Fσ).

If (Xn,Fn)n∈N is a martingale or a supermartingale, then the same statement
holds with the ≤ sign replaced by = or ≥ respectively.

Proof. The case of (Xn,Fn)n∈N being a supermartingale is equivalent to con-
sidering the submartingale (−Xn,Fn)n∈N. Thus, without loss of generality,
we may assume that (Xn,Fn)n∈N is a submartingale.

Let A ∈ Fσ. For 1 ≤ m ≤ n we define

Am = A
⋂

{σ = m}, Am,n = Am

⋂
{τ = n},

Bm,n = Am

⋂
{τ > n}, Cm,n = Am

⋂
{τ ≥ n}.

Note that Bm,n ∈ Fn, since {τ > n} = Ω\{τ ≤ n} ∈ Fn. Therefore, by
definition of a submartingale,

∫

Bm,n

XndP ≤
∫

Bm,n

Xn+1dP.

Since Cm,n = Am,n

⋃
Bm,n,

∫

Cm,n

XndP ≤
∫

Am,n

XndP +

∫

Bm,n

Xn+1dP,

and thus, since Bm,n = Cm,n+1,

∫

Cm,n

XndP−
∫

Cm,n+1

Xn+1dP ≤
∫

Am,n

XndP.

By taking the sum from n = m to k, and noting that we have a telescopic
sum on the left-hand side, we obtain
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∫

Am

XmdP ≤
∫

Am

XτdP,

were we used that Am = Cm,m. By taking the sum from m = 1 to k, we
obtain ∫

A

XσdP ≤
∫

A

XτdP.

Since A ∈ Fσ was arbitrary, this completes the proof of the theorem. �

Definition 13.19. A set of random variables {fs}s∈S is said to be uniformly
integrable if

lim
λ→∞

sup
s∈S

∫

{|fs|>λ}
|fs|dP = 0.

Remark 13.20. The Optional Sampling Theorem is, in general, not true for
unbounded stopping times σ and τ . If, however, we assume that the random
variables Xn, n ∈ N, are uniformly integrable, then the theorem remains valid
even for unbounded σ and τ .

Remark 13.21. There is an equivalent way to define uniform integrability (see
Problem 9). Namely, a set of random variables {fs}s∈S is uniformly integrable
if

(1) There is a constant K such that
∫
Ω |fs|dP ≤ K for all s ∈ S, and

(2) For any ε > 0 one can find δ > 0 such that
∫
A
|fs(ω)|dP(ω) ≤ ε for all

s ∈ S, provided that P(A) ≤ δ.

For a random process Xn and a constant λ > 0, we define the event
A(λ, n) = {ω : max1≤i≤n Xi(ω) ≥ λ}. From the Chebyshev Inequality it
follows that λP({Xn ≥ λ}) ≤ Emax(Xn, 0). If (Xn,Fn) is a submartingale,
we can make a stronger statement. Namely, we shall now use the Optional
Sampling Theorem to show that the event {Xn ≥ λ} on the left-hand side
can be replaced by A(λ, n).

Theorem 13.22 (Doob Inequality). If (Xn,Fn) is a submartingale, then
for any n ∈ N and any λ > 0,

λP(A(λ, n)) ≤
∫

A(λ,n)

XndP ≤ Emax(Xn, 0).

Proof. We define the stopping time σ to be the first moment when Xi ≥ λ
if maxi≤n Xi ≥ λ and put σ = n if maxi≤n Xi < λ. The stopping time τ is
defined simply as τ = n. Since σ ≤ τ , the Optional Sampling Theorem can be
applied to the pair of stopping times σ and τ . Note that A(λ, n) ∈ Fσ since

A(λ, n)
⋂

{σ ≤ m} = {max
i≤m

Xi ≥ λ} ∈ Fm.
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Therefore, since Xσ ≥ λ on A(λ, n),

λP(A(λ, n)) ≤
∫

A(λ,n)

XσdP ≤
∫

A(λ,n)

XndP ≤ Emax(Xn, 0),

where the second inequality follows from the Optional Sampling Theorem. �

Remark 13.23. Suppose that ξ1, ξ2,. . . is a sequence of independent random
variables with finite mathematical expectations and variances,mi = Eξi, Vi =
Varξi. One can obtain the Kolmogorov Inequality of Sect. 7.1 by applying
Doob’s Inequality to the submartingale ζn = (ξ1 + . . .+ ξn −m1− . . .−mn)

2.

13.6 Martingales with Continuous Time

In this section we shall formulate the statements of the Doob Decomposition,
the Optional Sampling Theorem, and the Doob Inequality for continuous time
martingales. The proofs of these results rely primarily on the corresponding
statements for the case of martingales with discrete time. We shall not provide
additional technical details, but interested readers may refer to “Brownian
Motion and Stochastic Calculus” by I. Karatzas and S. Shreve for the complete
proofs.

Before formulating the results, we introduce some new notations and def-
initions.

Given a filtration (Ft)t∈R+ on a probability space (Ω,F ,P), we define the
filtration (Ft+)t∈R+ as follows: A ∈ Ft+ if and only if A ∈ Ft+δ for any δ > 0.
We shall say that (Ft)t∈R+ is right-continuous if Ft = Ft+ for all t ∈ R

+.
Recall that a set A ⊆ Ω is said to be P-negligible if there is an event

B ∈ F such that A ⊆ B and P(B) = 0.
We shall often impose the following technical assumption on our filtration.

Definition 13.24. A filtration (Ft)t∈R+ is said to satisfy the usual conditions
if it is right-continuous and all the P-negligible events from F belong to F0.

We shall primarily be interested in processes whose every realization is
right-continuous (right-continuous processes), or every realization is continu-
ous (continuous processes). It will be clear that in the results stated below the
assumption that a process is right-continuous (continuous) can be replaced by
the assumption that the process is indistinguishable from a right-continuous
(continuous) process.

Later we shall need the following lemma, which we state now without a
proof. (A proof can be found in “Brownian Motion and Stochastic Calculus”
by I. Karatzas and S. Shreve.)

Lemma 13.25. Let (Xt,Ft)t∈R+ be a submartingale with filtration which sat-
isfies the usual conditions. If the function f : t → EXt from R

+ to R is right-
continuous, then there exists a right-continuous modification of the process Xt
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which is also adapted to the filtration Ft (and therefore is also a submartin-
gale).

We formulate the theorem on the decomposition of continuous submartingales.

Theorem 13.26 (Doob-Meyer Decomposition). Let (Xt,Ft)t∈R+ be a
continuous submartingale with filtration which satisfies the usual conditions.
Let Sa be the set of all stopping times bounded by a. Assume that for every
a > 0 the set of random variables {Xτ}τ∈Sa is uniformly integrable. Then
there exist two continuous random processes Mt and At such that:

1. Xt = Mt +At for all t ≥ 0 almost surely.
2. (Mt,Ft)t∈R+ is a martingale.
3. A0 = 0, At is adapted to the filtration Ft.
4. At is non-decreasing, that is As(ω) ≤ At(ω) if s ≤ t for every ω.

If another pair of processes M t, At has the same properties, then Mt is indis-
tinguishable from M t and At is indistinguishable from At.

We can also formulate the Optional Sampling Theorem for continuous time
submartingales. If τ is a stopping time of a filtration Ft, and the process Xt

is adapted to the filtration Ft and right-continuous, then it is not difficult to
show that Xτ is Fτ -measurable (see Problems 1 and 2 in Chap. 19).

Theorem 13.27 (Optional Sampling Theorem). If (Xt,Ft)t∈R+ is a
right-continuous submartingale, and σ and τ are two stopping times such that
σ ≤ τ ≤ r for some r ∈ R

+, then

Xσ ≤ E(Xτ |Fσ).

If (Xt,Ft)t∈R+ is a either martingale or a supermartingale, then the same
statement holds with the ≤ sign replaced by = or ≥ respectively.

Remark 13.28. As in the case of discrete time, the Optional Sampling Theorem
remains valid even for unbounded σ and τ if the random variables Xt, t ∈ R

+,
are uniformly integrable.

The proof of the following lemma relies on a simple application of the
Optional Sampling Theorem.

Lemma 13.29. If (Xt,Ft)t∈R+ is a right-continuous (continuous) martin-
gale, τ is a stopping time of the filtration Ft, and Yt = Xt∧τ , then (Yt,Ft)t∈R+

is also a right-continuous (continuous) martingale.

Proof. Let us show that E(Yt − Ys|Fs) = 0 for s ≤ t. We have

E(Yt − Ys|Fs) = E(Xt∧τ −Xs∧τ |Fs) = E((X(t∧τ)∨s −Xs)|Fs).

The expression on the right-hand side of this equality is equal to zero by the
Optional Sampling Theorem. Since t ∧ τ is a continuous function of t, the
right-continuity (continuity) of Yt follows from the right-continuity (continu-
ity) of Xt. �
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Finally, we formulate the Doob Inequality for continuous time submartin-
gales.

Theorem 13.30 (Doob Inequality). If (Xt,Ft) is a right-continuous sub-
martingale, then for any t ∈ R

+ and any λ > 0

λP(A(λ, t)) ≤
∫

A(λ,t)

XtdP ≤ Emax(Xt, 0),

where A(λ, t) = {ω : sup0≤s≤t Xs(ω) ≥ λ}.

13.7 Convergence of Martingales

We first discuss convergence of martingales with discrete time.

Definition 13.31. A martingale (Xn,Fn)n∈N is said to be right-closable if
there is a random variable X∞ ∈ L1(Ω,F ,P) such that E(X∞|Fn) = Xn for
all n ∈ N.

The random variable X∞ is sometimes referred to as the last element of the
martingale.

We can define F∞ as the minimal σ-algebra containing Fn for all n. For
a right-closable martingale we can define X ′

∞ = E(X∞|F∞). Then X ′
∞ also

serves as the last element since

E(X ′
∞|Fn) = E(E(X∞|F∞)|Fn) = E(X∞|Fn) = Xn.

Therefore, without loss of generality, we shall assume from now on that, for a
right-closable martingale, the last element X∞ is F∞-measurable.

Theorem 13.32. A martingale is right-closable if and only if it is uniformly
integrable (that is the sequence of random variables Xn, n ∈ N, is uniformly
integrable).

We shall only prove that a right-closable martingale is uniformly integrable.
The proof of the converse statement is slightly more complicated, and we omit
it here. Interested readers may find it in “Real Analysis and Probability” by
R. M. Dudley.

Proof. We need to show that

lim
λ→∞

sup
n∈N

∫

{|Xn|>λ}
|Xn|dP = 0.

Since | · | is a convex function,

|Xn| = |E(X∞|Fn)| ≤ E(|X∞||Fn)
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by the Conditional Jensen’s Inequality. Therefore,
∫

{|Xn|>λ}
|Xn|dP ≤

∫

{|Xn|>λ}
|X∞|dP.

Since |X∞| is integrable and the integral is absolutely continuous with respect
to the measure P, it is sufficient to prove that

lim
λ→∞

sup
n∈N

P{|Xn| > λ} = 0.

By the Chebyshev Inequality,

lim
λ→∞

sup
n∈N

P{|Xn| > λ} ≤ lim
λ→∞

sup
n∈N

E|Xn|/λ ≤ lim
λ→∞

E|X∞|/λ = 0,

which proves that a right-closable martingale is uniformly integrable. �

The fact that a martingale is right-closable is sufficient to establish con-
vergence in probability and in L1.

Theorem 13.33 (Doob). Let (Xn,Fn)n∈N be a right-closable martingale.
Then

lim
n→∞Xn = X∞

almost surely and in L1(Ω,F ,P).

Proof. (Due to C.W. Lamb.) Let K =
⋃

n∈N
Fn. Let G be the collection of

sets which can be approximated by sets from K. Namely, A ∈ G if for any
ε > 0 there is B ∈ K such that P(AΔB) < ε. It is clear that K is a π-system,
and that G is a Dynkin system. Therefore, F∞ = σ(K) ⊆ G by Lemma 4.13.

Let F be the set of functions which are in L1(Ω,F ,P) and are measurable
with respect to Fn for some n < ∞. We claim that F is dense in L1(Ω,F∞,P).
Indeed, any indicator function of a set from F∞ can be approximated by
elements of F , as we just demonstrated. Therefore, the same is true for fi-
nite linear combinations of indicator functions which, in turn, are dense in
L1(Ω,F∞,P).

Since X∞ is F∞-measurable, for any ε > 0 we can find Y∞ ∈ F such that
E|X∞−Y∞| ≤ ε2. Let Yn = E(Y∞|Fn). Then (Xn−Yn,Fn)n∈N is a martingale.
Therefore, (|Xn − Yn|,Fn)n∈N is a submartingale, as shown in Sect. 13.4, and
E|Xn − Yn| ≤ E|X∞ − Y∞|. By Doob’s Inequality (Theorem 13.22),

P(sup
n∈N

|Xn − Yn| > ε) ≤ sup
n∈N

E|Xn − Yn|/ε ≤ E|X∞ − Y∞|/ε ≤ ε.

Note that Yn = Y∞ for large enough n, since Y∞ is Fn measurable for some
finite n. Therefore,

P(lim sup
n→∞

Xn − Y∞ > ε) ≤ ε and P(lim inf
n→∞ Xn − Y∞ < −ε) ≤ ε.
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Also, by the Chebyshev Inequality, P(|X∞ − Y∞| > ε) ≤ ε. Therefore,

P(lim sup
n→∞

Xn −X∞ > 2ε) ≤ 2ε and P(lim inf
n→∞ Xn −X∞ < −2ε) ≤ 2ε.

Since ε > 0 was arbitrary, this implies that limn→∞ Xn = X∞ almost surely.
As shown above, for each ε > 0 we have the inequalities E|X∞−Y∞| ≤ ε2,

E|Xn − Yn| ≤ E|X∞ − Y∞|, while Yn = Y∞ for all sufficiently large n. This
implies the convergence of Xn to X∞ in L1(Ω,F ,P). �

Example (Polya Urn Scheme). Consider an urn containing one black and
one white ball. At time step n we take a ball randomly out of the urn and
replace it with two balls of the same color.

More precisely, consider two processes An (number of black balls) and Bn

(number of white balls). Then A0 = B0 = 1, and An, Bn, n ≥ 1, are defined
inductively as follows: An = An−1 + ξn, Bn = Bn−1 + (1− ξn), where ξn is a
random variable such that

P(ξn = 1|Fn−1) =
An−1

An−1 +Bn−1
, and P(ξn = 0|Fn−1) =

Bn−1

An−1 +Bn−1
,

and Fn−1 is the σ-algebra generated by all Ak, Bk with k ≤ n− 1. Let Xn =
An/(An+Bn) be the proportion of black balls. Let us show that (Xn,Fn)n≥0

is a martingale. Indeed,

E(Xn −Xn−1|Fn−1) = E(
An

An +Bn
− An−1

An−1 +Bn−1
|Fn−1) =

E(
(An−1 +Bn−1)ξn −An−1

(An +Bn)(An−1 +Bn−1)
|Fn−1) =

1

An +Bn
E(ξn − An−1

An−1 +Bn−1
)|Fn−1) = 0,

as is required of a martingale. Here we used that An+Bn = An−1+Bn−1+1,
and is therefore Fn−1-measurable. The martingale (Xn,Fn)n≥0 is uniformly
integrable, simply because Xn are bounded by one. Therefore, by Theo-
rem 13.33, there is a random variableX∞ such that limn→∞ Xn = X∞ almost
surely.

We can actually write the distribution of X∞ explicitly. The variable An

can take integer values between 1 and n + 1. We claim that P(An = k) =
1/(n+ 1) for all 1 ≤ k ≤ n + 1. Indeed, the statement is obvious for n = 0.
For n ≥ 1, by induction,

P(An = k) = P(An−1 = k − 1; ξn = 1) + P(An−1 = k; ξn = 0) =

1

n
· k − 1

n+ 1
+

1

n
· n− k + 1

n+ 1
=

1

n+ 1
.

This means that P(Xn = k/(n+ 2)) = 1/(n+ 1) for 1 ≤ k ≤ n+ 1. Since the
sequence Xn converges to X∞ almost surely, it also converges in distribution.
Therefore, the distribution of X∞ is uniform on the interval [0, 1].
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If (Xn,Fn)n∈N is bounded in L1(Ω,F ,P) (that is E|Xn| ≤ c for some
constant c and all n), we cannot claim that it is right-closable. Yet, the
L1-boundedness still guarantees almost sure convergence, although not nec-
essarily to the last element of the martingale (which does not exist unless the
martingale is uniformly integrable). We state the following theorem without
a proof.

Theorem 13.34 (Doob). Let (Xn,Fn)n∈N be a L1(Ω,F ,P)-bounded mar-
tingale. Then

lim
n→∞Xn = Y

almost surely, where Y is some random variable from L1(Ω,F ,P).

Remark 13.35. Although the random variable Y belongs to L1(Ω,F ,P), the
sequence Xn need not converge to Y in L1(Ω,F ,P).

Let us briefly examine the convergence of submartingales. Let (Xn,Fn)n∈N

be an L1(Ω,F ,P)-bounded submartingale, and letXn = Mn+An be its Doob
Decomposition. Then EAn = E(Xn − Mn) = E(Xn − M1). Thus, An is a
monotonically non-decreasing sequence of random variables which is bounded
in L1(Ω,F ,P). By the Levi Monotonic Convergence Theorem, there exists
the almost sure limit A = limn→∞ An ∈ L1(Ω,F ,P).

Since An are bounded in L1(Ω,F ,P), so too are Mn. Since An are non-
negative random variables bounded from above by A, they are uniformly
integrable. Therefore, if (Xn,Fn)n∈N is a uniformly integrable submartingale,
then (Mn,Fn)n∈N is a uniformly integrable martingale. Upon gathering the
above arguments, and applying Theorems 13.33 and 13.34, we obtain the
following lemma.

Lemma 13.36. Let a submartingale (Xn,Fn)n∈N be bounded in L1(Ω,F ,P).
Then

lim
n→∞Xn = Y

almost surely, where Y is some random variable from L1(Ω,F ,P). If Xn are
uniformly integrable, then the convergence is also in L1(Ω,F ,P).

Although our discussion of martingale convergence has been focused so
far on martingales with discrete time, the same results carry over to the case
of right-continuous martingales with continuous time. In Definition 13.31 and
Theorems 13.33 and 13.34 we only need to replace the parameter n ∈ N by
t ∈ R

+. Since the proof of Lemma 13.36 in the continuous time case relies on
the Doob-Meyer Decomposition, in order to make it valid in the continuous
time case, we must additionally assume that the filtration satisfies the usual
conditions and that the submartingale is continuous.
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13.8 Problems

1. Let g : R → R be a measurable function which is not convex. Show
that there is a random variable f on some probability space such that
E|f | < ∞ and −∞ < Eg(f) < g(Ef) < ∞.

2. Let ξ and η be two random variables with finite expectations such that
E(ξ|η) ≥ η and E(η|ξ) ≥ ξ. Prove that ξ = η almost surely.

3. Let (Xn,Fn)n∈N be a square-integrable martingale with EX1 = 0. Show
that for each c > 0

P( max
1≤i≤n

Xi ≥ c) ≤ Var(Xn)

Var(Xn) + c2
.

4. Let (ξ1, . . . , ξn) be a Gaussian vector with zero mean and covariance
matrix B. Find the distribution of the random variable E(ξ1|ξ2, . . . , ξn).

5. Let A = {(x, y) ∈ R
2 : |x− y| < a, |x+ y| < b}, where a, b > 0. Assume

that the random vector (ξ1, ξ2) is uniformly distributed on A. Find the
distribution of E(ξ1|ξ2).

6. Let ξ1, ξ2, ξ3 be independent identically distributed bounded random
variables with density p(x). Find the distribution of

E(max(ξ1, ξ2, ξ3)|min(ξ1, ξ2, ξ3))

in terms of the density p.
7. Prove that if σ and τ are stopping times of a filtration Ft, then so is

σ ∨ τ . If, in addition, σ, τ ≥ 0, then σ + τ is a stopping time.
8. Let ξ1, ξ2, . . . be independent N(0, 1) distributed random variables. Let

Sn = ξ1+ . . .+ξn and Xn = eSn−n/2. Let FX
n be the σ-algebra generated

by X1, . . . , Xn. Prove that (Xn,FX
n )n∈N is a martingale.

9. Prove that the definition of uniform integrability given in Remark 13.21
is equivalent to Definition 13.19.

10. A man tossing a coin wins one point for heads and five points for tails.
The game stops when the man accumulates at least 1,000 points. Esti-
mate with an accuracy ±2 the expectation of the length of the game.

11. Let Xn be a process adapted to a filtration Fn, n ∈ N. Let M > 0 and
τ(ω) = min(n : |Xn(ω)| ≥ M) (where τ(ω) = ∞ if |Xn(ω)| < M for all
n). Prove that τ is a stopping time of the filtration Fn.

12. Let a martingale (Xn,Fn)n∈N be uniformly integrable. Let the stopping
time τ be defined as in the previous problem. Prove that (Xn∧τ ,Fn∧τ)n∈N

is a uniformly integrable martingale.
13. Let Nn, n ≥ 1, be the size of a population of bacteria at time step n. At

each time step each bacteria produces a number of offspring and dies. The
number of offspring is independent for each bacteria and is distributed
according to the Poisson law with parameter λ = 2. Assuming that N1 =
a > 0, find the probability that the population will eventually die, that
is find P (Nn = 0 for some n ≥ 1). (Hint: find c such that exp(−cNn) is
a martingale.)
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14. Ann and Bob are gambling at a casino. In each game the probability of
winning a dollar is 48%, and the probability of loosing a dollar is 52%.
Ann decided to play 20 games, but will stop after 2 games if she wins
them both. Bob decided to play 20 games, but will stop after 10 games
if he wins at least 9 out of the first 10. What is larger: the amount of
money Ann is expected to loose, or the amount of money Bob is expected
to loose?

15. Let (Xt,Ft)t∈R be a martingale with continuous realizations. For

0≤ s≤ t, find E(
∫ t

0
Xudu|Fs).

16. Consider an urn containing A0 black balls and B0 white balls. At time
step n we take a ball randomly out of the urn and replace it with two
balls of the same color. Let Xn denote the proportion of the black balls.
Prove that Xn converges almost surely, and find the distribution of the
limit.
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