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Abstract. Learning of Markov blanket (MB) can be regarded as an optimal 
solution to the feature selection problem. In this paper, an efficient and effective 
framework is suggested for learning MB. Firstly, we propose a novel algorithm, 
called Iterative Parent-Child based search of MB (IPC-MB), to induce MB 
without having to learn a whole Bayesian network first. It is proved correct, and 
is demonstrated to be more efficient than the current state of the art, PCMB, by 
requiring much fewer conditional independence (CI) tests. We show how to 
construct an AD-tree into the implementation so that computational efficiency 
is further increased through collecting full statistics within a single data pass. 
We conclude that IPC-MB plus AD-tree appears a very attractive solution in 
very large applications.  

Keywords: Markov blanket, local learning, feature selection, single pass, 
AD-tree. 

1   Introduction 

Classification is a fundamental task in data mining and machine learning that requires 
learning a classifier through the observation of data. Basically, a classifier is a 
function that maps instances described by a set of attributes to a class label. How to 
identify the minimal, or close to minimal, subset of variables that best predicts the 
target variable of interest is known as feature (or variable) subset selection (FSS). In 
the past three decades, FSS for classification has been given considerable attention, 
and it is even more critical today in many applications, like biomedicine, where high 
dimensionality but few observations are challenging traditional FSS algorithms. 

A principle solution to the feature selection problem is to determine a subset of 
attributes that can render the rest of all attributes independent of the variable of 
interest [8,9,16]. Koller and Sahami (KS) [9] first recognized that the Markov blanket 
(see its definition below) of a given target attribute is the theoretically optimal set of  
attributes to predict the target’s value, though the Markov blanket itself is not a new 
concept and can be traced back to 1988 [11]. 

A Markov blanket of a target attribute T  renders it statistically independent from 
all the remaining attributes, that is, given the values of the attributes in the Markov 
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blanket, the probability distribution of T  is completely determined and knowledge of 
any other variable(s) becomes superfluous [11].  

Definition 1 (Conditional independent). Variable X and T are conditionally indepen-
dent given the set of variables Z (bold symbol is used for set), iff. 

( | , ) ( | )Z ZP T X P T= , denoted as | ZT X⊥ .  

Similarly, | ZT X⊥ is used to denote that X and T are NOT conditionally 

independent given Z . 

Definition 2 (Markov blanket, MB ). Given all attributes U of a problem domain, a 
Markov blanket of an attribute UT ∈ is any subset { }MB U\ T⊆ for which   

\{ } \ , |X T T X∀ ∈ ⊥U MB  MB  
A set is called Markov boundary of T  if it is a minimal Markov blanket of T .  

Definition 3 (Faithfulness). A Bayesian network G and a joint distribution P are 
faithful to one another, if and only if every conditional independence encoded by the 
graph of G is also present in P , i.e., | |Z ZG PT X T X⊥ ⇔ ⊥ [12].   

Pearl [11] points out that: if the probability distribution over U can be faithfully 
represented by a Bayesian network (BN), which is one kind of graphical model that 
compactly represent a joint probability distribution among U using a directed acyclic 
graph, then the Markov blanket of an attribute T is unique, composing of the T ’s 
parents, children and spouses (sharing common children with T ). So, given the 
faithfulness assumption, learning an attribute’s Markov blanket actually corresponds 
to the discovery of its Markov boundary, and therefore can be viewed as selecting the 
optimal minimum set of feature to predict a given T . In the remaining text, unless 
explicitly mentioned, Markov blanket of T  will refer to its Markov boundary under 
the faithfulness assumption, and it is denoted as ( )MB T . 

( )MB T is trivial to obtain if we can learn a BN over the U first, but the BN’s 
structure learning is known as NP-complete, and readily becomes non-tractable in 
large scale applications where thousands of attributes are involved. Until now, none 
of existing known BN learning algorithms claims to scale correctly over more than a 
few hundred variables. For example, the publicly available versions of the PC [12] 
and the TPDA (also known as PowerConstructor) [2] algorithms accept datasets with 
only 100 and 255 variables respectively.  

The goal of this paper is to develop an efficient algorithm for the discovery of 
Markov blanket from data without having to learn a BN first.  

2   Related Work 

A reasonable compromise to learning the full BN is to discover only the local 
structure around an attribute T of interest. We refer to the conventional BN learning 
as global learning and the latter as local learning. Local learning of ( )MB T is 

expected to remain a viable solution in domains with thousands of attributes.  
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Local learning of MB began to attract attention after the work of KS [9].  
However, the KS algorithm is heuristic, and provides no theoretical guarantee of 
success. Grow-Shrink (GS) algorithm [10] is the first provably correct one, and, as 
indicated by its name, it contains two sequential phases, growing first and shrinking 
secondly. To improve the speed and reliability, several variants of GS, like IAMB, 
InterIAMB [15,16] and Fast-IAMB[17], were proposed. They are proved correct 
given the faithfulness assumption, and indeed make the MB discovery more time 
efficient, but none of them are data efficient. In practice, to ensure reliable 
independence tests, which is essential for this family of algorithm, IAMB and its 
variants decide a test is reliable when the number of instances available is at least five 
times the number of degree of freedom in the test. This means that the number of 
instances required by IAMB to identify ( )MB T is at least exponential in the size of 

( )MB T , because the number of degrees of freedom in a test is exponential with 

respect to the size of conditioning set, and the test to add a new node in ( )MB T will 

be conditioned on at least the current nodes in ( )MB T  (Line 4, Table 1 in [8]).  

Several trials were made to overcome this limitation, including MMPC/MB[14], 
HITON-PC/MB[1] and PCMB[8]. All of them have the same two assumptions as 
IAMB, i.e. faithfulness and correct independence test, but they differ from IAMB by 
taking into account the graph topology, which helps to improve data efficiency 
through conditioning over a smaller set instead of the whole ( )MB T as done by 

IAMB. However, MMPC/MB and HITON-PC/MB are shown not always correct by 
the authors of PCMB since false positives will be wrongly learned due to non-
complete conditional independence tests [8]. So, based on our knowledge, PCMB is 
the only one proved correct, scalable and represents a truly data-efficient means to 
induce the MB.  

In this paper, we propose a novel MB local learning algorithm, called Iterative 
Parent-Child based search of Markov Blanket (IPC-MB).  It is built on the same two 
assumptions of IAMB and PCMB. IPC-MB algorithm is compared with two of the 
algorithms discussed above: IAMB and PCMB.  IAMB is a well known algorithm 
and referred to as MB local discovery.  PCMB is the most successful break over 
IAMB to our knowledge and our own work is based on this algorithm. 

Akin to PCMB, IPC-MB is designed to execute an efficient search by taking the 
topology into account to ensure a data efficient algorithm. We believe this approach is 
an effective means to conquer the data inefficiency problem occurring in GS, IABM 
and their variants. As its name implies, IPC-MB starts the search of ( )MB T from its 

neighbors first, which actually are the parents and children of T , denoted as ( )PC T . 

Then, given each ( )PCX T∈ , it further searches for ( )PC X  and checks each 

( )PCY X∈  to determine if it is the spouse of T or not. So, our algorithm is quite 

similar to PCMB, but it finds the PC of an attribute in a much more efficient manner.  
More detail about the algorithm can be found in Section 3. Considering that the 
discovery of ( )PC X is a common basic operation for PCMB and IPC-MB, its 

efficiency will directly influence the overall performance of algorithm. Experiment 
results of algorithms comparison are reported and discussed in Section 5. 
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3   Local Learning Algorithm of Markov Blanket: IPC-MB 

3.1   Overall Design 

As discussed in Section 1 and 2, the IPC-MB algorithm is based on two assumptions, 
faithfulness and correct conditional test, from which the introduction and proof of this 
algorithm will be given.  

Table 1. IPC-MB Algorithm 

 

On a BN over variables U , the ( )MB T contains parents and children of T , i.e. 

those nodes directly connected to T , and its spouses, i.e. parents of T ’s children. We 
denote these two sets as ( )PC T  and ( )SP T respectively. With these considerations in 

mind, learning ( )MB T amounts to deciding which nodes are directly connected 
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to T and which directly connect to those nodes adjacent to T  (connect to T with an 
arc by ignoring the orientation).   

As outline above, local learning of ( )MB T  amounts to (1) which nodes are 

adjacent to T among \{ }U T , i.e. ( )PC T here, and (2) which are adjacent to ( )PC T  

and point to children of T in the remaining attributes \{ } \U PCT , i.e. ( )SP T . This 

process is actually a breadth-first search procedure.  
We need not care about the relations among ( )PC T , ( )SP T  and between ( )PC T  

and ( )SP T , considering that we are only interested in which attributes belong 

to ( )MB T . Therefore, this strategy will allow us to learn ( )MB T  solely through local 

learning, reducing the search space greatly.  

3.2   Theoretical Basis 

In this section, we provide the theoretical background for the correctness of our 
algorithm. 

Theorem 1. If a Bayesian network G  is faithful to a probability distribution P , then 

for each pair of nodes X and Y in G , X and Y are adjacent in G iff. | ZX Y⊥ for 

all Z such that X and Y ∉ Z . [12] 

Lemma 1. If a Bayesian network G  is faithful to a probability distribution P , then 
for each pair of nodes X and Y in G , if there exists Z such that X and Y ∉ Z , 
X Y⊥ |Z , then X and Y are NOT adjacent in G .  

We get Lemma 1 from Theorem 1, and its proof is trivial. The first phase of IPC-
MB, RecognizePC (Table 1), relies upon this basis. In fact, the classical structure 
learning algorithm PC [12, 13] is the first one designed on this basis.  

Theorem 2. If a Bayesian network G  is faithful to a probability distribution P , then 
for each triplet of nodes X ,Y  and  W in G such that X and Y  are adjacent to W , 

but X and Y are not adjacent, X W Y→ ← is a sub-graph of G iff | ZX Y⊥ for all 

Z such that X and Y ∉ Z , and W ∉ Z . [12] 
Theorem 2 combined with Theorem 1 form the basis of IPC-MB’s second phase, 

the discovery of T ’s spouses (Table 1). Given each X ∈ ( )PC T  learned via 

RecognizePC, we can learn ( )PC X in a similar way as we learn ( )PC T . For each 

Y ∈ ( )PC X , if we known T ⊥ |Y Z for all Z such that T , Y ∉ Z  and X ∈ Z , 

T X Y→ ← is a sub-graph of G ; therefore Y is a parent of X ; since X is the 
common child between Y and T , Y is known as one spouse of T . This inference 
brings us Lemma 2.  

Lemma 2. In a Bayesian network G  faithful to a probability distribution P , given 

X ∈ ( )PC T , and Y ∈ ( )PC X , if T ⊥ |Y Z for all Z such that T , Y ∉ Z  and 

X ∈ Z , then Y is a spouse of T .  
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3.3   Iterative Parent-Child Based Search of Markov Blanket 

Learn parents/children 
 

As the name of this algorithm indicates, the discovery of parent-child is the critical to 
the locality nature of this algorithm.  

RecognizePC procedure (Table 1) is responsible for the search of parent/child 
candidates. It starts by connecting the current active target T (its first parameter) to all 
other nodes not visited by RecognizePC before, with non-oriented edges. Then, it 
deletes the edge ),( iXT  if there is any subset of }{\ iT XADJ conditioning on which 

T and iX is independent based on the significance of a conditional independence test, 

DI (line 5-12). iX  is removed finally at line 15. 

In IPC-MB (discussed in the next section), RecognizePC appears at two different 
locations, line 2 and 6 respectively. This is designed to ensure that for each 
pair ),( YX , both RecognizePC(X) and RecognizePC(Y) will be called, and YX − is 

true only when )(XPCY ∈ and )(YPCX ∈ , avoiding that any false nodes enter 

into )(TMB . Overall, this is similar to the conventional PC structure learning 

algorithm, but it limits the search to the neighbors of the target node. This is  
why local learning, instead of global learning, is possible and considerable  
time can be saved especially in applications with a large number of variables.  

The correctness of our approach to find the parents and children of a specific 
node T is the basis for the whole algorithm, so the following theorem is defined.  

Theorem 3. All parents and children of the node T of interest can be correctly 
recognized given the faithfulness assumption.  

Proof. (i) A potential link between ( , )T X , where X is a candidate of ( )PC T , is kept 

only when there is no set S such thatT and X S∉ , and |X T⊥ S , i.e. T and X is 

conditional independent given S . This is the direct application of Theorem 1, and 
this result guarantees that no false parent/child will be added into ( )PC T  given a 

sufficiently low ε ; (ii) It is trivial to see that algorithm xxx above [provide a name or 
a reference because “our” is ambiguous] is exhaustive and covers all possible 
conditioning sets S . (iii) Since algorithm RecognizePC always start by connecting 
T with all non-scanned nodes, it follows that no true positive that should be included 
will be missed by the algorithm. Therefore, all parents and children of T can be 
identified.  

Learn spouses 

Learning of T ’s spouses involves two steps. For each candidate parent/child of 
T (line 4), RecognizePC ( X ) is called to collect X ’s parents and children, ( )XPC , 

as shown in lines 4-6 of IPC-MB procedure. If )(XT PC∉ , then we just ignore the 

remaining part of current loop. If )(XT PC∈ , we know it is a true parent/child of T , 

and )(XPC contains the spouse candidates of T . Secondly, we begin to discover 

those true spouse candidates given Theorem 2 (lines 10-12).  
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Theorem 4. The result induced by IPC-MB is the complete Markov blanket ofT .  

Proof.(i) True parents/children can be returned by RecognizePC( T ) if we use it 
correctly, as supported by Theorem 3 and our discussion above; (ii)Although some 
false spouses will be returned when we call Recognize( X ), only true spouses that can 
satisfy the test of line 12 in IPC-MB, based on Theorem 2 and the underlying 
topology. Therefore, only true spouses will enter into MB finally.  

4   All Dimension-Tree (AD-Tree) 

Being a CI test-based algorithm, IPC-MB depends intensively on the tabulation of a 
joint frequency distributions, e.g. 1 1 3 3( )C X x X x= ∧ = . At one extreme, we can look 

through the dataset to collect a specific co-occurrence table on demand, and another 
data pass for another a new query. This can be terribly time consuming considering 
thousands of CI tests are required (see our experiment example in Section 4), and it 
becomes worse quickly when the number of attributes increases, or the dataset 
becomes larger. In the implementation of IPC-MB, we try to cache as much statistics 
that can be expected given the current cutset size (see Table 1) as possible, aiming at 
reducing the data passes. It indeed works, but dozens of data passes still are necessary 
in our testing, which prohibits IPC-MB from being an economic candidate in large 
applications. An ideal solution we are looking for should be efficient not only in time, 
allowing all sufficient statistics to be collected in single data pass, but also in 
memory, at least scaling relative to the complexity of problems (i.e. number of 
attributes).  

All Dimensions tree (AD-tree), proposed by Moore and Lee [18,19], represents 
such a solution. It is introduced for representing the cached joint frequency counting 
statistics for a categorical data set, from which we can query any co-occurrence table 
we need without having to go through the data repeatedly. Fig 1 is an example from 
[19], where attributes 1 2,X X and 3X have 2, 4 and 2 categories respectively. Each 
rectangular node in the tree stores the value of one conjunctive counting query, and 
they are called AD-nodes. The children of AD-node are called Vary nodes, displayed 
as ovals. Each corresponds to an attribute with index greater than that of its parent 
node.  

A tree built in this way would be enormous for non-trivially sized problems, and its 
complexity increases quickly as the number of attributes and number of categories per 
attribute increase. However, considering that normally only a small percent of the all 
possible instances happens given attributes { iX }, the actual tree will be sparse very 

often, with many zero counts [18,19]. This characteristic allows a great reduction in 
memory consumption, and it is implemented in the IPC-MB algorithm. Readers can 
also consult the original references by the authors of AD-tree for alternative and 
potentially interesting techniques which we do not investigate here. 

In this project, we refer IPC-MB with AD-tree as IPC-MB++, indicating that it is 
an enhanced version. Its algorithm specification is just same as IPC-MB (see Table 1)  
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Fig. 1. Sample data with tree attributes and six records (Left), and its corresponding AD-tree 
(Right) 

since we hide the details of tree construction and query, allowing readers focusing on 
the primary architecture.  

5   Experiment and Analysis 

5.1   Experiment Design 

We only compare our algorithm with PCMB since interested readers can find the 
comparison of PCMB and IAMB in [8]. In the experiment, we use synthetic data 
sampled from known Alarm BN [7] which is composed of 37 nodes. The Alarm 
network is well-known as it has been used in a large number of studies on probabili-
stic reasoning. The network modeling situations arise from the medicine world. We 
run PCMB and IPC-MB with each node in the BN as the target variable T iteratively 
and, then, report the average performance when different size of data is given, 
including accuracy, data efficiency, time efficiency, scalability, and usefulness of 
information found.  

5.2   Evaluation and Analysis 

One of the basic assumptions of these three algorithms is that the independence tests 
are valid. To make them PCMB and IPC-MB, feasible in practice, we perform a test 
to check if the conditional test to do is reliable, and skip the result if not. As indicated 
in [15], IAMB considers a test to be reliable when the number of instances in D is at 
least five times the number of degrees of freedom in the test. PCMB follows this 
standard in [8], and so does our algorithm IPC-MB to maintain a comparable 
experiment result.  
 
Accuracy and data efficiency  
 

We measure the accuracy of induction through the precision and recall over all the 
nodes for the BN. Precision is the number of true positives in the returned output 
divided by the number of nodes in the output. Recall is the number of true positives in 
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the output divided by the number of true positives known in the true BN model. We 
also combine precision and recall as  

2 2Distance (1 ) (1 )precision recall= − + −  

to measure the Euclidean distance from precision and recall[8]. 

Table 2. Accuracy comparison of PCMB and IPC-MB over Alarm network 

Instances Algorithm Precision Recall Distance 
1000 PCMB .76±.04 .83±.07 .30±.06 
1000 IPC-MB .92±.03 .84±.03 .18±.04 
2000 PCMB .79±.04 .91±.04 .23±.05 
2000 IPC-MB .94±.02 .91±.03 .11±.02 
5000 PCMB .80±.05 .95±.01 .21±.04 
5000 IPC-MB .94±.03 .95±.01 .08±.02 
10000 PCMB .81±.03 .95±.01 .20±.03 
10000 IPC-MB .93±.02 .96±.00 .08±.02 
20000 PCMB .81±.02 .96±.00 .20±.01 
20000 IPC-MB .93±.03 .96±.00 .08±.02 

 
Table 2 shows the average precision, recall and distance performance about PCMB 

and IPC-MB given different size of data sampled from the Alarm network. From 
which, we notice that PCMB is worse than IPC-MB, which can be explained by its 
search strategy of minimum conditioning set. It needs to go through conditioning sets 
with size ranging from small to large, so PCMB has the similar problem like IAMB 
when conditioned on large set. However, IPC-MB’s strategy, always conditioning on 
smallest conditioning set and removing as many as possible true negative ones first, 
prevents it from this weakness. Therefore, IPC-MB has higher accuracy rate 
compared with PCMB given the same size training data, and this also reflects IPC-
MB’s advantage on data efficiency.  
 
Time efficiency  

 

To measure time efficiency, we refer to the number of data pass and CI test occurring 
in PCMB, IPC-MB and the enhanced version, IPC-MB++ (IPC-MB plus AD-tree). 
One data pass corresponds to the scanning of the whole data for one time. In PCMB 
and IPC-MB, we only collect all the related statistics information (consumed by CI 
tests) that can be expected currently. However, in IPC-MB++, we collect the full 
statistics before the learning begins. In Table 3, “# rounds” refers to the total number 
of data passes we need to finish the MB induction on all the 37 nodes of Alarm BN. 
“# CI test” is defined similarly. Generally, the larger are these two numbers, the 
slower is the algorithm.  

As Table 3 shows, in this study, IPC-MB requires less than 10% and 60% of the 
total amount of data passes and CI tests done by PCMB respectively. Compared with 
IPC-MB, IPC-MB++ needs only one data pass during the whole running procedure, 
but same CI tests. This is quite an attractive merit if we recognize the time spent in 
data scanning is quite consuming, especially when we have large observations and it 
is impossible to store them all in memory.  
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Table 3. Comparison of time complexity required by different MB induction algorithms, in 
terms of number of data pass and CI test 

Instances Algorithm #rounds #CI test 
5000 PCMB 46702±6875 114295±28401 
5000 IPC-MB 446±15 34073±1996 
5000 IPC-MB++ 1±0 34073±1996 
10000 PCMB 46891±3123 108622±13182 
10000 IPC-MB 452±12 37462±1502 
10000 IPC-MB++ 1±0 37462±1502 
20000 PCMB 48173±2167 111100±9345 
20000 IPC-MB 460±9 40374±1803 
20000 IPC-MB++ 1±0 40374±1803 

Scalability  
 

IAMB and its variants are proposed to do feature selection in microarray research  
[14, 15]. From our study, it is indeed a fast algorithm even when the number of 
features and number of cases become large. Reliable results are expected when there 
are enough data. PCMB is also shown scalable by its author in [8], where it is applied 
to a KDD-Cup’2001 competition problem with 139351 features. Due to the short of 
such large scale observation, we haven’t tried IPC-MB(++) in the similar scenario yet. 
However, our empirical study, though there are only 37 variables, have shown that 
IPC-MB(++) runs faster than PCMB in terms of the amount of CI test and data pass. 
Therefore, we have confidence to do this inference that IPC-MB(++) can also scale to 
thousands of features as IAMB and PCMB claim. Besides, due to the relative 
advantage on data efficiency among the three algorithms, IPC-MB(++) is supposed to 
work with best results in challenging applications where there is large number of 
features but small amount of samples.  

 
Usefulness of information found 
 

Markov blanket contains the target’s parents, children and spouses. IAMB and its 
variants only recognize that variables of MB render the rest of variables on the BN 
independent of target, which can be a solution to the feature subset selection. 
Therefore, IAMB only discovers which variables should fall into the Markov blanket, 
without further distinguishing among spouse/parents/children. PCMB and IPC-
MB(++) goes further by discovering more topology knowledge. They not only learn 
MB, but also distinguish the parents/children from the spouses of target. Among 
parents/children, those children shared by found spouses and the target are also 
separated (the v-structures found).  

6   Conclusion 

In this paper, we propose a new Markov blanket discovery algorithm, called IPC-MB. 
It is based on two assumptions, DAG-faithful distribution and correct independence 
test. Like IAMB and PCMB, IPC-MB belongs to the family of local learning of MB, 
so it is scalable to applications with thousands of variables but few instances. It is 
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shown correct, and much more data-efficient than IAMB and PCMB, which allows it 
perform much better in learning accuracy than IAMB given the same amount of 
instances in practice. Compared with PCMB, IPC-MB(++) provides a more efficient 
approach for learning, requiring much fewer number of CI tests and data passes than 
PCMB. Therefore, we can state that IPC-MB(++) shows a high potential as a practical 
MB discovery algorithm, and is a good tradeoff between IAMB and PCMB.  
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