
Modelling and Analysis of the INVITE

Transaction of the Session Initiation Protocol
Using Coloured Petri Nets

Lay G. Ding and Lin Liu

School of Computer and Information Science
University of South Australia

Mawson Lakes, SA 5095, Australia
dinlg001@students.unisa.edu.au, lin.liu@unisa.edu.au

Abstract. The Session Initiation Protocol (SIP) is a control protocol
developed by the Internet Engineering Task Force for initiating, mod-
ifying and terminating multimedia sessions over the Internet. SIP uses
an INVITE transaction to initiate a session. In this paper, we create a
Coloured Petri Net (CPN) model for the INVITE transaction. Then we
verify the general properties of the INVITE transaction by analysing the
state space of the CPN model. The analysis results show that in most
cases the INVITE transaction behaves as expected. However, in some
circumstances, the transaction may terminate in an undesirable state
while one communication party is still waiting for a response from its
peer. Hence, we propose a set of changes to the INVITE transaction to
correct the above problem. The result has shown that this revised IN-
VITE transaction satisfies the properties that we have specified, and the
undesirable terminal state has been eliminated.

Keywords: Session Initiation Protocol, Coloured Petri Nets, protocol
verification.

1 Introduction

The popularisation of the Internet has been changing the way of communication
in our daily life. A common example is the use of Voice over IP (VoIP). Before
a conversation can take place between participants, protocols must be employed
to establish a session, then to maintain and terminate the session. The Session
Initiation Protocol (SIP) [1] is one of the protocols being used for such purposes.

SIP is developed by the Internet Engineering Task Force (IETF) and pub-
lished as Request for Comments (RFC) 3261 in 2002 [1]. Besides its increasing
popularity and importance in VoIP applications, SIP has been recognised by
the 3rd Generation Partnership Project as a signalling protocol and permanent
element of the IP Multimedia Subsystem architecture [2]. Thus, it is important
to assure that the contents of RFC 3261 are correct, unambiguous, and easy
to understand. Modelling and analysing the specification using formal meth-
ods can help in achieving this goal. Moreover, from the perspective of protocol

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 132–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modelling and Analysis of the INVITE Transaction 133

engineering, verification is also an important step of the life-cycle of protocol de-
velopment [3,4], as a well-defined and verified specification will reduce the cost
for implementation and maintenance.

SIP is a transaction-oriented protocol that carries out tasks through different
transactions. Two main SIP transactions are defined [1], the INVITE transaction
and the non-INVITE transaction. In this paper, we aim to verify the INVITE
transaction, and consider only the operations over a reliable transport medium.
Additionally, this paper will focus on functional correctness of the protocol, thus
analysis of performance properties, such as session delay, is beyond its scope.
Coloured Petri Nets (CPNs), their state space analysis method and supporting
tools have been applied widely in verifying communication protocols, software,
military systems, business processes, and some other systems [5,6,7]. However, to
our best knowledge, very little work has been published on analysing SIP using
CPNs, and only the study of [9,10] have been found. Most of the publications
related to SIP are in the areas of interworking of SIP and H.323 [8], and SIP ser-
vices [9,10]. In [9], the authors have modelled a SIP-based discovery protocol for
the Multi-Channel Service Oriented Architecture, which uses the non-INVITE
transaction of SIP as one of its basic components for web services in a mobile
environment. However, no analysis results have been reported on this SIP-based
discovery protocol. In [10], the authors have modelled SIP with the purpose of
analysing SIP security mechanism, and have verified the CPN model in a typical
attack scenario using state space analysis.

The rest of the paper is organised as follows. Section 2 is an overview of SIP
layers and the INVITE transaction. Modelling and analysis of the SIP INVITE
transaction are described in Section 3. Section 4 proposes and verifies the re-
vised SIP INVITE transaction. Finally, we conclude the work and suggest future
research in Section 5.

2 The INVITE Transaction of SIP

2.1 The Layered Structure of SIP

SIP is a layered protocol, comprising the syntax and encoding layer, transport
layer, transaction layer, and transaction user (TU) layer, i.e. the four layers
within the top box of Fig. 1.

The syntax and encoding layer specifies the format and structure of a SIP
message, which can be either a request from a client to a server, or a response
from a server to a client. For each request, a method (such as INVITE or ACK)
must be carried to invoke a particular operation on a server. For each response,
a status code is declared to indicate the acceptance, rejection or redirection of a
SIP request, as shown in Table 1.

The SIP transport layer defines the behaviour of SIP entities in sending and
receiving messages over the network. All SIP entities must contain this layer to
send/receive messages to/from the underlying transport medium.

On top of SIP transport layer is the transaction layer, including the INVITE
transaction and the non-INVITE transaction. An INVITE transaction is initi-

134 L.G. Ding and L. Liu

Fig. 1. Layered structure of SIP

Table 1. SIP response messages [1]

Response Function

1xx (100-199) Provisional - the request was received but not yet accepted

2xx Success - the request was received successfully and accepted

3xx Redirection - a further action is required to complete the request

4xx Client Error - bad syntax found in the request

5xx Server Error - the server failed to answer the request

6xx Global Failure - no server can answer the request

ated when an INVITE request is sent; and a non-INVITE transaction is initiated
when a request other than INVITE or ACK is sent. Each of the INVITE and
non-INVITE transactions consists of a client transaction sending requests and a
server transaction responding to requests.

Residing in the top layer of SIP are the TUs, which can be any SIP entity
except a stateless proxy [1].

Among the four SIP layers, the transaction layer is the most important layer
since it is responsible for request-response matching, retransmission handling
with unreliable transport medium, and timeout handling when setting up or
tearing down a session.

2.2 The INVITE Transaction

Operations of the client and the server transactions are defined in RFC 3261
by state machines and narrative descriptions. In this section we describe these
in detail, where all states, timers, transport errors and responses are shown in
italics, and all requests are capitalised.

INVITE Client Transaction. Referring to Fig. 2(a), an INVITE client trans-
action is initiated by the TU with an INVITE request. Meanwhile the client

Modelling and Analysis of the INVITE Transaction 135

Fig. 2. INVITE client transaction (a) and INVITE server transaction (b)[1]

transaction enters its initial state, Calling1 . The INVITE request must be passed
by the client transaction to SIP transport layer to be sent to the server side.

Once the Calling state is entered, Timer B is started for all transports (reliable
or unreliable). For an unreliable transport medium, Timer A is also started, to
control retransmissions of INVITE requests. While Calling, if the client trans-
action receives a 1xx response (Table 1), it enters the Proceeding state. If a
Transport Err (Error) occurs or Timer B expires, the client transaction moves
to the Terminated state and informs its TU immediately. A Transport Err is
indicated by SIP transport layer when a request cannot be sent to the underlying
transport medium, which is generally caused by fatal ICMP errors in UDP or
connection failures in TCP.

When in its Proceeding state, the client transaction may receive any number
of provisional responses (1xx) before receiving a final response (2xx or 300-699).
While Calling or Proceeding, the reception of a final response by the client trans-
action will change its state to Completed or Terminated, depending on the type
of the final response. If a 2xx is received (indicating that the INVITE request is
accepted by the server), the client transaction must enter its Terminated state,
without sending any ACKs. If a 300-699 response is received (the call estab-
lishment was not successful), an ACK is generated by the client transaction and
passed to SIP transport layer to be sent to the server side, and the client trans-
action moves to the Completed state. The reason for sending an ACK is to cease
the retransmission of 300-699 responses by the server. All responses received by
the client transaction when it is Calling or Proceeding must be passed to the TU
except for retransmitted responses.

1 Fig. 2(a) shows that an INVITE is sent before the Calling state is entered. However,
based on the text description in RFC 3261, the Calling state is entered before the
INVITE is sent to SIP transport layer. Additionally, the client transaction has to be
in a state when sending a message. So we follow the text description in the RFC.

136 L.G. Ding and L. Liu

When the Completed state is entered, Timer D is started with a value of
at least 32 seconds for an unreliable transport medium and zero seconds for a
reliable medium. This timer is used to allow client transaction to absorb retrans-
mitted 300-699 responses, and to re-pass ACKs to SIP transport layer. When
the client transaction is in its Completed state, if a Transport Err occurs, it
changes to the Terminated state and informs the TU of the failure of sending
an ACK. If Timer D fires, the client transaction must also move to the Termi-
nated state. Once the Terminated state is entered, the client transaction must
be destroyed by its TU immediately.

INVITE Server Transaction. The server transaction is established by its
TU at the server side when the TU receives a new INVITE request from the
client side (Fig. 2 (b)). Once the server transaction is constructed, it enters the
Proceeding state and sends a 100 Trying response if the TU does not generate a
response within 200 milliseconds2, to cease retransmissions of INVITE requests
by the client transaction.

While Proceeding, the server transaction can pass any provisional responses
from its TU to SIP transport layer without changing state. If the response from
its TU is a 2xx response, or if it is informed of a transport error by SIP transport
layer, the server transaction moves to its Terminated state. Otherwise, it will
enter the Completed state, waiting for an acknowledgement from the client for
the 300-699 response that was sent while in the Proceeding state. A transport
error in the server transaction is indicated by SIP transport layer when a response
cannot be sent to the underlying transport medium.

If a retransmitted INVITE is received in the Proceeding state, the most
recent provisional response from TU must be passed to SIP transport layer
for retransmission. If a retransmitted INVITE is received in the Completed
state, the server transaction should pass a 300-699 response to SIP transport
layer.

Once the Completed state is entered, Timer H is started. It sets the maximum
time during which the server transaction can retransmit 300-699 responses. If
the transport is unreliable, Timer G should also be started to control the time for
each retransmission. If Timer H fires or a Transport Err occurs before an ACK is
received by the server transaction, the transaction moves to its Terminated state.
If an ACK is received before Timer H fires, the server transaction moves to its
Confirmed state and Timer I is started with a delay of 5 seconds for an unreliable
transport, and zero seconds for a reliable transport. Timer I is used to absorb
additional ACKs triggered by the retransmission of 300-699 responses. When
Timer I fires, Terminated state is entered. The server transaction is destroyed
once it enters the Terminated state.

2 Fig. 2(b) shows that if TU does not generate a response within 200ms, the server
transaction must send a 100 Trying response before the Proceeding state is entered.
In fact, the INVITE server transaction cannot send any message before it is cre-
ated (i.e. before entering the Proceeding state). This is inconsistent with the text
description in the RFC 3261. So we follow the text description in the RFC.

Modelling and Analysis of the INVITE Transaction 137

3 Modelling and Analysis of the SIP INVITE Transaction

3.1 Modelling Assumptions

According to [1], SIP INVITE transaction can operate over a reliable (e.g. TCP)
or an unreliable (e.g. UDP) transport medium. In this paper we assume a reliable
transport medium is used, because firstly TCP is made mandatory in [1] for
larger messages; secondly we use an incremental approach, checking whether the
protocol works correctly over a perfect medium before checking its operations
over an imperfect one. Furthermore, a lossy medium may mask some problems
that will only be detected with a perfect medium.

Referring to Fig. 2(b), once the INVITE server transaction is created by its
TU, if the transaction knows that the TU will not generate a response within
200 ms, it must generate and send a 100 Trying response. We assume that the
INVITE server transaction does not know that the TU will generate a response
within 200 ms after the server transaction is created, i.e. the server transaction
must generate and send a 100 Trying response after it is created.

We also assume that a request message carries only a method (such as INVITE
or ACK) and a response message carries only a status code (such as 200 OK),
without including any header fields (such as Call-ID) or message bodies, as they
are not related to the functional properties to be investigated.

3.2 INVITE Transaction State Machines with Reliable Medium

In Section 2 we have found some inconsistencies between the INVITE trans-
action state machines (Fig. 2) and the narrative descriptions given in Sections
17.1.1 and 17.2.1 of [1]. In this section, we present a revised version of the two
state machines obtained by considering the modelling assumptions stated in the
previous section and by eliminating the inconsistencies found in Section 2. We
call these state machines “the INVITE transaction state machines with reliable
transport medium” (Fig. 3), and the state machines provided in [1] (Fig. 2) “the
original state machines”.

Referring to Fig. 2, a number of timers are defined in the original state ma-
chines to deal with message loss or processing/transmission delays. When the
transport medium is reliable, the requests (INVITE and ACK) and the final re-
sponses (non-1xx) in the original INVITE server transaction are sent only once
[1]. As a result, Timer A of the INVITE client transaction and Timer G of the
INVITE server transaction are not applied (see Fig 3). Additionally, as Timer
I of the original INVITE server transaction is set to fire in zero seconds for
a reliable transport medium, the Confirmed state and Timer I are not consid-
ered. Hence, after an ACK for 300-699 response is received, the INVITE server
transaction is terminated immediately (Fig. 3(b)).

Because we have assumed that the server transaction must generate and send
a 100 Trying response after it is created, we remove the if clause “if TU won’t in
200ms” from the top of the original INVITE server transaction state machine.
Additionally as noted in Section 2 (footnote 2), the INVITE server transaction

138 L.G. Ding and L. Liu

Fig. 3. INVITE client transaction (a) and server transaction (b) with reliable medium

can not receive or send any messages before it is created (i.e. before the Proceed-
ing state is entered). So we firstly remove the action “pass INV to TU” from
the top of the original state machine. Then to specify the state of the server
transaction when it has just been created by its TU, we add a new state, Pro-
ceedingT. In the ProceedingT state, the only action to be carried out by the
server transaction is to generate and send a 100 Trying response (see Fig. 3(b)).

A further modification is made to the original state machine for the INVITE
client transaction based on the inconsistency mentioned in Section 2 (footnote
1). According to the narrative description provided in Section 17.1.1 of [1], the
INVITE client transaction must firstly enter its Calling state to pass an INVITE
received from its TU to SIP transport layer. However, the original state machine
(Fig. 2(a)) shows that sending an INVITE by the client transaction can occur
before it enters the Calling state (i.e. before the transaction is created), which is
impossible. Therefore, we modified the input arc at the top of the original client
state machine (refer to Fig. 2(a)) so that an INVITE request can be received from
its TU and passed to the SIP transport layer by the INVITE client transaction
only when the transaction is in its Calling state (see Fig. 3). Note that the event
and action that label this input arc (to the Calling state) can not occur more
than once due to the reason that the TU only passes one INVITE request to an
INVITE client transaction [1].

3.3 CPN Model of the INVITE Transaction

The CPN model for the INVITE transaction is shown in Fig. 4 (declarations)
and Fig. 5 (the CPN). This model is based on the state machines shown in
Fig. 3. In the following, names of places, transitions, and variables of the CPN
model are written in typewriter style. To distinguish a server transaction’s
state from a client transaction’s state with the same name, a capitalised S is

Modelling and Analysis of the INVITE Transaction 139

Fig. 4. Declarations of the CPN model of the INVITE transaction

appended to the name of the state of the server transaction (except for the
proceedingT state). For example, proceedingS represents the Proceeding state
of the server transaction while proceeding represents the Proceeding state of
the client transaction. SIP response messages (Table 1) are named as follows:
r100 represents a 100 Trying response; r101 is for a provisional response with a
status code between 101 and 199; r2xx for a response with a status code between
200 and 299; and r3xx for a response with a status code between 300 and 699.

Declarations. Referring to Fig. 4, a constant, n, is defined to represent the max-
imum length of the queue in place Responses (Fig. 5). Four colour sets, INT,
STATEC, REQUEST, and REQUESTQ, are declared for modelling the client trans-
action. INT is the set of integers between 0 and 1, typing place INVITE Sent
where the number of INVITE requests that have been sent is counted. STATEC
(typing place Client) models all the possible states of the INVITE client trans-
action. REQUEST models the two SIP methods specified for the INVITE transac-
tion, INVITE and ACK. REQUESTQ is a list of REQUEST (typing place Requests).
To model the server transaction, colour sets STATES, RESPONSE, Response, and
RESPONSEQ are declared. STATES is used to type place Server. It defines all the
possible states of the server transaction, and a temporary state, Idle (modelling
the existence of the INVITE server transaction). RESPONSE models the four dif-
ferent categories of responses from the server side, and Response is a subset of
RESPONSE, used in the inscriptions of the arcs associated with transition Send
Response (see Fig. 5). This subset is used for modelling that any response except
r100 can be sent when the server is in its proceedingS state, which can be im-
plemented using the variable re that runs over the subset. RESPONSEQ is a list of
responses sent by the server transaction, and it is used to type place Responses,
to model a First-In-First-Out queue. Variable a is of type INT, and sc and ss
can take values from the colour sets STATEC and STATES respectively. Variables
req and res are of types REQUEST and RESPONSE respectively. For dealing with
the lists that store requests and responses, we declare variables requestQ of type
REQUESTQ and responseQ of type RESPONSEQ.

140 L.G. Ding and L. Liu

Fig. 5. CPN model of the INVITE transaction

Modelling and Analysis of the INVITE Transaction 141

INVITE Client Transaction. The left part of the CPN model (Fig. 5), in-
cluding places Client and INVITE Sent, and the transitions connected to them,
models the client transaction state machine with reliable medium (Fig. 3(a)).

States of the client transaction are represented by place Client (typed with
colour set STATEC). The initial state of Client is calling, indicating that the
INVITE client transaction has been initiated by its TU, and an INVITE request
has been passed from its TU to the client transaction for transmission.

Five transitions are associated with Client, to model operations of the IN-
VITE client transaction. Send Request models how the transaction passes an
INVITE request received from its TU to SIP transport layer. It is enabled only
if there is a calling in Client and no INVITE request has been passed to SIP
transport layer (i.e. INVITE Sent contains an integer with value 0). Receive
Response models how the client transaction receives responses and sends ACKs.
It is enabled when a response is received (i.e. removed from the head of the queue
in place Responses) and the Client is not terminated. If the client transaction
receives a 300-699 response (r3xx), an ACK is passed to SIP transport layer,
and Client moves to its completed state. If the received response is r100, r101
or r2xx, no ACK is sent; when the response is r100 or r101, Client moves to
proceeding; and when the response is r2xx, the Client moves to terminated.

Timer B is modelled by transition Timer B. Since our focus is on the functional
correctness of SIP rather than its performance properties such as session delay,
values of timers are not modelled. To model that Timer B can not be started
before an INVITE request is sent, place INVITE Sent is set to an input place
of Timer B. Timer B is enabled only when an integer with value 1 is in INVITE
Sent (see the guard [a=1]) and the Client is calling. The initial marking of
INVITE Sent is 0 (no INVITE request has been sent to SIP transport layer),
when Send Request is fired (i.e. an INVITE request has been sent), the integer
value is incremented by 1.

Timer D (Fig. 3(a)) sets the maximum time for which the client transac-
tion can stay in its Completed state to wait for retransmitted 300-699 responses
from the server transaction. Since there are no retransmissions when the trans-
port medium is reliable, according to [1], Timer D is set to fire in zero seconds in
this case. Once it fires, the client transaction enters its Terminated state. This
seems to indicate that the client transaction would enter the Terminated state
immediately after it is in the Completed state, and nothing else can happen in
between the two states. Thus we might be able to fold the two states into one and
not to consider Timer D when the transport is reliable. However, from Fig. 3, a
Transport Err can occur when the client transaction is in its Completed state,
and the Completed state is entered after the client transaction has passed an
ACK to SIP transport layer. The transport layer may report an error immedi-
ately when it receives the ACK, thus a Transport Err occurs at the transaction
layer. According to Fig. 3, the transaction layer needs to inform its TU of this
error when it is in the Completed state. From this perspective, we can not fold
the Completed and Terminated states. Therefore, we create a transition, Timer

142 L.G. Ding and L. Liu

D. It is enabled once there is a completed in Client, and its occurrence brings
Client to terminated.

Transition Client Transport Err (modelling a Transport Err at the trans-
action layer) is enabled when the Client is completed, and its occurrence also
brings Client to terminated. When an error is reported by SIP transport layer,
the ACK that has been passed to it from the transaction layer will not be sent
to the server side, so when Client Transport Err occurs, the ACK that has
just been put in the queue in Requests is destroyed (see the inscription of the
arc from Client Transport Err to Requests). From Fig. 3(a), a Transport
Err can occur when the client transaction is Calling, so Client Transport Err
can be enabled as well when a calling is in Client (see the guard of Client
Transport Err).

INVITE Server Transaction. Referring to the right part of Fig. 5, place
Server and the four transitions connected to it model the INVITE server trans-
action specified in Fig. 3(b). Place Server models the states of the transaction,
proceedingT, proceedingS, completedS, terminatedS. Idle (see Fig. 4) is not
a state of the server transaction, it is the initial marking of Server, indicating
that it is ready for the TU to create a server transaction once the TU receives an
INVITE request. Transition Receive Request models the reception of a request
(INVITE or ACK). While there is an Idle in Server, if the request received
is an INVITE, a proceedingT is created in Server, modelling that the server
transaction is created (by the TU) and it is now in its proceedingT state (in this
case and only in this case, transition Receive Request models the operation of
the TU instead of the server transaction of receiving an INVITE request from the
client side). Once the Server enters its proceedingT state, Send Response is en-
abled, thus r100 can be placed into the queue in Responses, changing the state of
the Server to proceedingS. In the proceedingS state, Send Response is again
enabled. When it occurs, either a provisional response r101 or a final response
(r2xx or r3xx) is appended to the queue in Responses, and a proceedingS (if a
r101 is put in the queue), completedS (for r3xx) or terminatedS (for r2xx) is
put in Server (refer to the else clauses of the inscriptions of the outgoing arcs
of Send Response). While the Server is completedS, if an ACK is received, the
occurrence of Receive Request will generate a terminatedS in the Server. The
guard of Receive Request models that the server transaction can not receive
any requests after it enters the Terminated state because a server transaction is
destroyed immediately after the Terminated state [1].

Only one timer, Timer H, is used by the INVITE server transaction (Fig. 3(b))
when the transport medium is reliable, to control the transmission and retrans-
mission of 300-699 responses by the INVITE server transaction. It is modelled
by transition Timer H, which is enabled when the Server is completedS. When
it fires, Server moves to its terminatedS state, indicating that an ACK corre-
sponding to a 300-699 response is never received by the server transaction before
Timer H has expired. Server Transport Errmodels a transport error occurring
at the server side. It is enabled after a response has been sent to SIP transport
layer (i.e. when the server transaction is proceedingS or completedS). When it

Modelling and Analysis of the INVITE Transaction 143

fires, the response that has just been put into the queue in Responses is removed
(see the inscription of the arcs from Server Transport Err to Responses, the
List.take function returns the remained responses of list responseQ) and a
terminatedS is put into Server.

The Underlying Transport Medium. The middle part of the CPN model
(i.e. places Requests and Responses of Fig. 5) models SIP transport layer and
the underlying transport medium (see Fig. 1). Requestsmodels the transmission
of requests from the client side to the server side; whereas Responses models
the transmission of responses in the reverse direction. The maximum number of
provisional responses (i.e. r101) that can be sent from the server transaction is
not given in [1], so there may be an arbitrarily large number of r101 to be put
into the queue in Responses. We use a positive integer parameter, n (Fig. 4)
to represent the maximum length of the queue in Responses and a guard for
transition Send Response ([length responseQ < n]) to limit the maximum
length of the queue in Responses.

3.4 State Space Analysis of the INVITE Transaction CPN Model

In this section, we firstly define the desired properties for the INVITE transac-
tion, then we analyse the state space of the CPN model described in the previous
section. In order to avoid state explosion problem with state space analysis, we
use 3 as the maximum length of the queue in place Responses (i.e. n=3).

The functional properties that we are interested in include absence of dead-
locks and absence of livelocks. According to [3] a protocol can fail if any of the
two properties are not satisfied. We also expect that the INVITE transaction
has no dead code (and action that is specified but never executed). A deadlock is
an undesired dead marking in the state space of a CPN model, and a marking is
dead if no transitions are enabled in it [11]. For the INVITE transaction, there is
only one desired dead marking, representing the desirable terminal state of the
INVITE transaction. In this state both the client and the server transactions are
in their Terminated state (see Fig. 3), and no messages remain in the commu-
nication channel. Any other dead marking is thus undesirable, i.e. a deadlock.
A livelock is a cycle of the state space that once entered, can never be left, and
within which no progress is made with respect to the purpose of the system.

To analyse the desired properties of the INVITE transaction, we firstly check
the state space report generated by CPN Tools [12]. The report shows that a
full state space with 52 nodes and 103 arcs is generated. There are 3 nodes fewer
in the Strongly Connected Components (SCC) graph than in the state space,
which means that the state space contains cycles (which needs to be further
investigated to see if they are livelocks). We also found ten dead markings in the
state space, which are nodes 5, 19, 25, 28, 29, 30, 36, 45, 46 and 50 (Table 2).
Additionally, there are no dead transitions in the state space, so the INVITE
transaction has no dead code.

From Table 2, we can see that node 25 is a desirable dead marking. The re-
quests and responses have been sent and received. Both the client and server

144 L.G. Ding and L. Liu

Table 2. List of dead markings

Node Client Requests Server Responses INVITE Sent

5 terminated [] Idle [] 1‘1

19 terminated [] terminatedS [r100, r2xx] 1‘1

25 terminated [] terminatedS [] 1‘1

28 proceeding [] terminatedS [] 1‘1

29 terminated [] terminatedS [r100, r3xx] 1‘1

30 terminated [] terminatedS [r100] 1‘1

36 terminated [] terminatedS [r100, r101, r2xx] 1‘1

45 terminated [] terminatedS [r100, r101, r3xx] 1‘1

46 terminated [] terminatedS [r100, r101] 1‘1

50 terminated [ACK] terminatedS [] 1‘1

transactions are in their Terminated states. Moreover, no messages remain in
the channel, i.e. places Requests and Responses each has an empty list. At
node 5 the server’s state is Idle, which is different from other dead markings
(i.e terminatedS). To find out whether this node is an undesirable dead mark-
ing, we use CPN Tools’ query ArcsInPath (1, 5) to generate the path to this
dead marking (Fig. 6). At the initial state, node 1, the client transaction sends
an INVITE request to SIP transport layer. However, a transport error occurs at
node 2 and no request is sent to the server side. Hence, the client transaction is
terminated and no corresponding INVITE server transaction is constructed at
the server side (node 5). This behaviour is expected [1]. Furthermore, for each of
the nodes 19, 29, 30, 36, 45, 46 and 50 in Table 2, there are still messages remain-
ing in the communication channel after both the client and server transactions
have been terminated. These dead markings are caused by either transport error
or timeout. Once a transport error or timeout occurs, the transaction will be
destroyed. Therefore a message left in the channel will find no matching trans-
action. However, these dead markings are acceptable, because if the message
is a response, according to [1], the response must be silently discarded by SIP
transport layer of the client. If the message is a request (i.e. node 50), according
to [1], the request (i.e. ACK) will be passed to the TU of the destroyed server
transaction to be handled.

Fig. 6. The path from Node 1 to Node 5

Modelling and Analysis of the INVITE Transaction 145

Fig. 7. Scenario of undesired behaviour

Fig. 8. State Space of the INVITE transaction CPN model

However, node 28 is an undesired dead marking (deadlock). Referring to Ta-
ble 2, with node 28, the state of the client transaction is proceeding, while
the server transaction is terminatedS due to a transport error (Fig. 7). This
behaviour is not expected since in this case the server transaction has been de-
stroyed (i.e. no responses can be received by the client transaction). No timer is
given in [1] to specify the maximum time the client transaction can wait for a
final response when it is in the proceeding state. Thus, when a transport error
occurs at the server side, the client transaction will have no way to come out
from the proceeding state.

To check if there are livelocks, we draw the state space of the INVITE trans-
action (Fig. 8). As indicated by the difference between the size of the state space
and the size of the SCC graph, there are cycles in the state space: the cycles
between nodes 11, 23, 37 and 49. However, because from any of the four nodes,

146 L.G. Ding and L. Liu

the transaction can move to a state which is not within a cycle, these cycles are
not livelocks. Therefore, the INVITE transaction is free of livelocks.

4 The Revised INVITE Transaction and Its Verification

4.1 Changes to the INVITE Transaction

In the previous section, we have found that the INVITE transaction can reach a
deadlock where the server transaction has terminated but the client transaction
is still in its Proceeding state. After discovering this using state space analysis
of CPNs, we noticed that this deadlock had been discussed and reported by SIP
implementers [13] . However, so far there is no solution published for fixing this
bug. In this section, we propose a modification to the INVITE transaction to
eliminate the deadlock.

In [1], it is recommended that, at the TU level, the TU at the client side
should destroy the original INVITE client transaction, if the TU does not receive
a final response within 64xT1 seconds (T1 = 500ms) after an INVITE request
is passed to the transaction layer. So for an application that implements this
recommendation, the INVITE client transaction will be destroyed eventually if
the transaction has reached the deadlock. However, with applications that do not
implement this recommendation, a caller will not receive any indications from
the system, thus may wait for a long time (listening to the ringing tone) before
giving up (i.e. hanging up the phone). Therefore we believe that it is necessary
to solve this problem at the transaction layer, i.e. to force the client transaction
to reach its Terminated state, instead of staying in the Proceeding state, so that
the TU can destroy the transaction and avoid an unnecessarily long wait.

From Fig. 3(a) we see that the client transaction can go from the Proceeding
state to the Completed state then the Terminated state only if it receives a final
response (300-699 or 2xx) from the server transaction. However, after having
reached the deadlock, no responses can be received by the client transaction since
the server transaction has been terminated. Therefore, in this case, to bring the
client transaction to its Terminated state, we need to use an event that occurs at
the client side to trigger this state change, i.e. a timer for the Proceeding state.
Referring to Fig. 9, before the client transaction enters the Proceeding state, it
now needs to reset Timer B (i.e. restarts it with value 64xT1 ms). Then in the
Proceeding state, once Timer B expires, the INVITE client transaction notifies
the TU about the timeout and moves to the Terminated state.

4.2 The Revised INVITE Transaction CPN and Its Analysis

Fig. 10 shows the CPN model for the revised INVITE transaction. It is ob-
tained from the CPN in Fig. 5 by modifying the arc inscription and the guard
of transition Timer B. The arc inscription from place Client to Timer B has
been changed from calling to a variable, sc, of colour set STATEC. This vari-
able can be bound to any value of STATEC, but Timer B should not be enabled
in states other than calling or proceeding. Therefore, the guard of Timer B

Modelling and Analysis of the INVITE Transaction 147

Fig. 9. Revised INVITE client transaction state machine

has also been changed. In Fig. 5, the guard Timer B ([a=1]), is used to set
the condition that Timer B can not be enabled before an INVITE request has
been sent in the calling state. Since proceeding is not associated with send-
ing the INVITE request, the guard for the revised CPN model is modified to
[(sc=calling andalso a=1) orelse sc=proceeding].

The same as with analysing the original CPN model shown in Fig. 5, we use
3 as the maximum length of the queue in place Responses (i.e. n=3) to avoid
state explosion. The state space of the CPN model is then generated. The state

Fig. 10. CPN model of the revised INVITE transaction

148 L.G. Ding and L. Liu

space report shows that there are more nodes and arcs generated for both the
state space and SCC graph. However, the differences between the state space
and SCC graph, i.e. 3 nodes and 6 arcs, have remained the same. Additionally,
the report shows that there are no dead transitions in the state space of the
INVITE transaction, so it has no dead code.

All the dead markings are shown in Table 3. We see that the deadlock in the
state space of the original model (node 28 of Table 2) has been removed. However,
the state space of the revised CPN model has more dead markings (i.e. nodes
59, 60, 64, 66 and 67). This is because in the Proceeding state of the INVITE
client transaction (refer to Fig. 10), when Timer B occurs, the Client moves to
terminated before the responses (i.e. r101, r2xx or r3xx) have been received
(queuing in Responses). Previously, we only had these responses queuing in the
Responses when Client was marked by proceeding. Since these dead markings
(nodes 59, 60, 64, 66 and 67) have similar behaviour to nodes 19, 26, 31, 32, 33,
39, 47, 51, 52, 53, 58 (see Table 3), i.e. messages are left in the channel, and
client and server transactions have each entered its Terminated state, they are
all acceptable. Furthermore, from Table 3, nodes 5 and 26 were discovered in
the state space of the original model, and they have already been identified as
desirable dead markings of the INVITE transaction.

To check if there are livelocks in the revised INVITE transaction, we draw the
state space (Fig. 11). There are cycles between nodes 11, 23, 40 and 56. However,
none of them are livelocks because from each of the four nodes the transaction
can move to a state that is not within a cycle. Therefore, the revised INVITE
transaction has no livelock.

Table 3. List of dead markings of the revised CPN model

Node Client Requests Server Responses INVITE Sent

5 terminated [] Idle [] 1‘1

19 terminated [] terminatedS [r100, r2xx] 1‘1

26 terminated [] terminatedS [] 1‘1

31 terminated [] terminatedS [r100, r3xx] 1‘1

32 terminated [] terminatedS [r100] 1‘1

33 terminated [] terminatedS [r2xx] 1‘1

39 terminated [] terminatedS [r100, r101, r2xx] 1‘1

47 terminated [] terminatedS [r3xx] 1‘1

51 terminated [] terminatedS [r100, r101, r3xx] 1‘1

52 terminated [] terminatedS [r100, r101] 1‘1

53 terminated [] terminatedS [r100, r2xx] 1‘1

58 terminated [ACK] terminatedS [] 1‘1

59 terminated [] terminatedS [r101, r3xx] 1‘1

60 terminated [] terminatedS [r101] 1‘1

64 terminated [] terminatedS [r101, r101, r2xx] 1‘1

66 terminated [] terminatedS [r101, r101, r3xx] 1‘1

67 terminated [] terminatedS [r101, r101] 1‘1

Modelling and Analysis of the INVITE Transaction 149

Fig. 11. Cycles in the state space of the revised INVITE transaction CPN model

5 Conclusions and Future Work

The INVITE transaction is one of the essential transactions of SIP. It has been
used in conjunction with other protocols to establish sessions and provide com-
munication services. Based on the state machines and narrative descriptions that
are provided in [1], we have modelled and analysed the SIP INVITE transaction
with reliable transport medium using CPNs. The contributions of the paper are
summarised below.

– Refinement to the definition of the INVITE transaction. We have found some
inconsistencies between the state machines and the narrative descriptions in
[1]. Modifications have been proposed to the state machines to remove the
inconsistencies. After omitting the states and actions which are defined for
SIP over an unreliable transport medium only, we have obtained the state
machines for the INVITE transaction over a reliable transport medium, and
have created a CPN model for it, which provides a formal specification for
the INVITE transaction.

– Verification of the INVITE transaction. By examining the state space of the
CPN model, we have found that the INVITE transaction has no livelock or
dead code. We have also found in the state space of the INVITE transaction
a sequence of events that lead to the desirable terminal state, however, the
INVITE transaction may terminate in an undesirable state, in which the
INVITE client transaction is still in its Proceeding state.

– Revision to the definition of the INVITE transaction and its verification. To
eliminate the undesirable behaviour, we have proposed a set of changes to
the INVITE client transaction. Using state space analysis, we have found
that the revised INVITE transaction has satisfied the desired properties.

150 L.G. Ding and L. Liu

In the future, we shall model and analyse the INVITE transaction with unre-
liable transport medium. We have noticed that, very recently, an Internet draft
(work in progress) has been published by IETF, to propose updates to the IN-
VITE transaction state machines [14]. The proposed updates have no impacts on
the behaviour of the INVITE transaction when the transport medium is reliable,
which means IETF may have not been aware of the incompleteness of [1] of the
specification of the INVITE transaction. On the other hand, the proposed up-
dates may have influence on the INVITE transaction when the transport medium
is unreliable. Therefore, the other possible future work can include modelling and
analysing the updated version of INVITE transaction proposed in the Internet
Draft [14]. In this way, the correctness of the proposed updates given in the
Internet Draft [14] can be checked and confirmed.

Acknowledgements. We would like to express our appreciation to the mem-
bers of Computer Systems Engineering Centre, University of South Australia, for
attending our presentation and providing useful comments on our research. Es-
pecially, we would like to thank Professor Jonathan Billington, Dr Guy Gallasch,
and Dr Somsak Vanit-Anunchai for all their helpful suggestions and invaluable
comments.

References

1. Rosenberg, J., et al.: RFC 3261: SIP: Session Initiation Protocol. Internet Engi-
neering Task Force (2002), http://www.faqs.org/rfcs/rfc3261.html

2. Sparks, R.: SIP: basics and beyond. Queue 5(2), 22–33 (2007)
3. Holzmann, G.J.: Design and validation of computer protocols. Prentice Hall, En-

glewood Cliffs, New Jersey (1991)
4. Sidhu, D., Chung, A., Blumer, T.P.: Experience with formal methods in protocol

development. In: ACM SIGCOMM Computer Communication Review, vol. 21(2),
pp. 81–101. ACM, New York (1991)

5. Examples of Industrial Use of CP-nets,
http://www.daimi.au.dk/CPnets/intro/example indu.html

6. Billington, J., Gallasch, G.E., Han, B.: Lectures on Concurrency and Petri Nets:
A Coloured Petri Net Approach to Protocol Verification. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 210–290. Springer,
Heidelberg (2004)

7. Kristensen, L.M., Jørgensen, J.B., Jensen, K.: Application of Coloured Petri Nets
in System Development. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003.
LNCS, vol. 3098, pp. 626–685. Springer, Heidelberg (2004)

8. Turner, K.J.: Modelling SIP Services Using CRESS. In: Peled, D.A., Vardi, M.Y.
(eds.) FORTE 2002. LNCS, vol. 2529, pp. 162–177. Springer, Heidelberg (2002)

9. Gehlot, V., Hayrapetyan, A.: A CPN Model of a SIP-Based Dynamic Discovery
Protocol for Webservices in a Mobile Environment. In: the 7th Workshop and
Tutorial on Practical Use of CPNs and the CPN Tools, University of Aarhus,
Denmark (2006)

10. Wan, H., Su, G., Ma, H.: SIP for Mobile Networks and Security Model. In: Wireless
Communications, Networking and Mobile Computing, pp. 1809–1812. IEEE, Los
Alamitos (2007)

http://www.faqs.org/rfcs/rfc3261.html
http://www.daimi.au.dk/CPnets/intro/example_indu.html

Modelling and Analysis of the INVITE Transaction 151

11. Jensen, K., Kristensen, L., Wells, L.: Coloured Petri Nets and CPN Tools for mod-
elling and validation of concurrent systems. Int. J. on Software Tools for Technology
Transfer (STTT) 9(3), 213–254 (2007)

12. Home Page of the CPN Tools,
http://wiki.daimi.au.dk/cpntools/cpntools.wiki

13. Rosenberg, J.: Bug 706 - Clarify lack of a timer for exiting proceeding state, Bugzilla
(2003), http://bugs.sipit.net/show bug.cgi?id=706

14. Sparks, R.: draft-sparks-sip-invfix-00: Correct transaction handling for 200 re-
sponses to Session Initiation Protocol INVITE requests. Internet Engineering Task
Force (2007), http://tools.ietf.org/id/draft-sparks-sip-invfix-00.txt

http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://bugs.sipit.net/show_bug.cgi?id=706
http://tools.ietf.org/id/draft-sparks-sip-invfix-00.txt

	Modelling and Analysis of the INVITETransaction of the Session Initiation Protocol Using Coloured Petri Nets
	Introduction
	The INVITE Transaction of SIP
	The Layered Structure of SIP
	The INVITE Transaction

	Modelling and Analysis of the SIP INVITE Transaction
	Modelling Assumptions
	INVITE Transaction State Machines with Reliable Medium
	CPN Model of the INVITE Transaction
	State Space Analysis of the INVITE Transaction CPN Model

	The Revised INVITE Transaction and Its Verification
	Changes to the INVITE Transaction
	The Revised INVITE Transaction CPN and Its Analysis

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

