

Lecture Notes in Computer Science 5062
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kees M. van Hee Rüdiger Valk (Eds.)

Applications
and Theory
of Petri Nets

29th International Conference, PETRI NETS 2008
Xi’an, China, June 23-27, 2008
Proceedings

13

Volume Editors

Kees M. van Hee
Technische Universiteit Eindhoven
Dept. Mathematics and Computer Science
HG 7.74, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
E-mail: k.m.v.hee@tue.nl

Rüdiger Valk
University Hamburg
Department of Computer Science
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
E-mail: valk@informatik.uni-hamburg.de

Library of Congress Control Number: 2008928015

CR Subject Classification (1998): F.1-3, C.1-2, G.2.2, D.2, D.4, J.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-68745-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68745-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12277117 06/3180 5 4 3 2 1 0

Preface

This volume consists of the proceedings of the 29th International Conference
on Applications and Theory of Petri Nets and Other Models of Concurrency
(PETRI NETS 2008). The Petri Net conferences serve as annual meeting places
to discuss the progress in the field of Petri nets and related models of concur-
rency. They provide a forum for researchers to present and discuss both appli-
cations and theoretical developments in this area. Novel tools and substantial
enhancements to existing tools can also be presented. In addition, the confer-
ences always welcome a range of invited talks that survey related domains, as
well as satellite events such as tutorials and workshops. The 2008 conference
had six invited speakers, two advanced tutorials, and four workshops. Detailed
information about PETRI NETS 2008 and the related events can be found at
http://ictt.xidian.edu.cn/atpn-acsd2008.

The PETRI NETS 2008 conference was organized by the Institute of Com-
puting Theory and Technology at Xidian University, Xi’an, China, where it took
place during June 23-27, 2008. We would like to express our deep thanks to the
Organizing Committee, chaired by Zhenhua Duan, for the time and effort in-
vested in the conference and for all the help with local organization. We are also
grateful for the financial support of the National Natural Science Foundation
of China (NSFC) (Grant No. 60433010), Xidian University, and the Institute of
Computing Theory and Technology at Xidian University.

This year we received 75 submissions by authors from 21 different coun-
tries. We thank all the authors who submitted papers. Each paper was reviewed
by at least four referees. The Program Committee meeting took place in Eind-
hoven, The Netherlands, and was attended by 20 Program Committee members.
At the meeting, 23 papers were selected, classified as: theory papers (14 ac-
cepted), application papers (5 accepted), and tool papers (4 accepted). We wish
to thank the Program Committee members and other reviewers for their careful
and timely evaluation of the submissions before the meeting. Special thanks are
due to Martin Karusseit, University of Dortmund, for his friendly attitude and
technical support with the Online Conference Service. Finally, we wish to ex-
press our gratitude to the six invited speakers, Gustavo Alonso, Jifeng He, Mike
Kishinevsky, Huimin Lin, Carl Adam Petri (presented by Rüdiger Valk), and
Grzegorz Rozenberg for their contribution. As usual, the Springer LNCS team
provided high-quality support in the preparation of this volume.

April 2008 Kees van Hee
Rüdiger Valk

Organization

Steering Committee

Will van der Aalst, The Netherlands
Jonathan Billington, Australia
Gianfranco Ciardo, USA
Jörg Desel, Germany
Susanna Donatelli, Italy
Serge Haddad, France
Kurt Jensen, Denmark (Chair)
Jetty Kleijn, The Netherlands

Maciej Koutny, UK
Sadatoshi Kumagai, Japan
Carl Adam Petri (Honorary Member)
Lucia Pomello, Italy
Wolfgang Reisig, Germany
Grzegorz Rozenberg, The Netherlands
Manuel Silva, Spain
Alex Yakovlev, UK

Organizing Committee

Zhenhua Duan (Chair)
Xinbo Gao
Cong Tian

Haibin Zhang
Chenting Zhao
Yuanyuan Zuo

Tool Demonstration

Xiaobing Wang (Chair)

Program Committee

Kamel Barkaoui, France
Simona Bernardi, Italy
Luca Bernardinello, Italy
Eike Best, Germany
Didier Buchs, Switzerland
José Manuel Colom, Spain
Raymond Devillers, Belgium
Zhenhua Duan, China
Jorge de Figueiredo, Brazil
Giuliana Franceschinis, Italy
Luis Gomes, Portugal
Boudewijn Haverkort,

The Netherlands
Kees van Hee,

The Netherlands (Co-chair)
Claude Jard, France

ChangJun Jiang, China
Gabriel Juhas, Slovak Republic
Peter Kemper, USA
Ekkart Kindler, Denmark
Victor Khomenko, UK
Jetty Kleijn, The Netherlands
Fabrice Kordon, France
Lars Michael Kristensen, Denmark
Charles Lakos, Australia
ZhiWu Li, China
Johan Lilius, Finland
Chuang Lin, China
Robert Lorenz, Germany
Junzhou Luo, China
Toshiyuki Miyamoto, Japan
Patrice Moreaux, France

VIII Organization

Madhavan Mukund, India
Wojciech Penczek, Poland
Michele Pinna, Italy
Zhiguang Shan, China
Kohkichi Tsuji, Japan

Rüdiger Valk, Germany (Co-chair)
Hagen Völzer, Switzerland
Karsten Wolf, Germany
MengChu Zhou, USA

Referees

Ilham Alloui
Soheib Baarir
Gianfranco Balbo
Paolo Baldan
Paolo Ballarini
João Paulo Barros
Marco Beccuti
Matthias Becker
Marek Bednarczyk
Maurice ter Beek
Mehdi Ben Hmida
Béatrice Bérard
Robin Bergenthum
Filippo Bonchi
Marcello Bonsangue
Lawrence Cabac
Josep Carmona
Davide Cerotti
Prakash Chandrasekaran
Thomas Chatain
Ang Chen
Lucia Cloth
Flavio De Paoli
Jörg Desel
Boudewijn van Dongen
Mariagrazia Dotoli
Yuyue Du
Claude Dutheillet
Emmanuelle Encrenaz
Johan Ersfolk
Sami Evangelista
Eric Fabre
Dirk Fahland
Carlo Ferigato
João M. Fernandes
Hans Fleischhack
Jörn Freiheit

Fabio Gadducci
Michele Garetto
Thomas Gazagnaire
Qi-Wei Ge
Roberto Gorrieri
Luuk Groenewegen
Susumu Hashizume
Reiko Heckel
Monika Heiner
Kai-Steffen Hielscher
Lom Hillah
Kunihiko Hiraishi
Hendrik Jan Hoogeboom
Andras Horvath
Steve Hostettler
Matthias Jantzen
Alain Jean-Marie
YoungWoo Kim
Michael

Köhler-Bußmeier
Christian Kölbl
Matthias Kuntz
Miros�law Kurkowski
Kristian Bisgaard Lassen
Fedor Lehocki
Chen Li
Jianqiang Li
Didier Lime
Ding Liu
Kamal Lodaya
Niels Lohmann
Ricardo Machado
Agnes Madalinski
Thomas Mailund
Mourad Maouche
Marco Mascheroni
Peter Massuthe

Ilaria Matteucci
Sebastian Mauser
Antoni Mazurkiewicz
Agathe Merceron
Roland Meyer
Andrew S. Miner
Daniel Moldt
Arjan Mooij
Rémi Morin
Mourad Mourad
Wojciech Nabia�lek
Morikazu Nakamura
K. Narayan Kumar
Artur Niewiadomski
Olivia Oanea
Atsushi Ohta
Emmanuel Paviot-Adet
Laure Petrucci
Axel Poigné
Denis Poitrenaud
Agata Pó�lrola
Lucia Pomello
Ivan Porres
Jean-François

Pradat-Peyre
Astrid Rakow
Anne Remke
Pierre-Alain Reynier
Andrea Saba
Ramin Sadre
Nabila Salmi
Carla Seatzu
Matteo Sereno
Zuzana Sevcikova
Jeremy Sproston
Marielle Stoelinga
Ping Sun

Organization IX

S.P. Suresh
Koji Takahashi
Shigemasa Takai
Wei Tan
Xianfei Tang
P. S. Thiagarajan
Ferucio Laurentiu Tiplea
Simon Tjell
Toshimitsu Ushio

Laurent Van Begin
Eric Verbeek
Enrico Vicario
Valeria Vittorini
Marc Voorhoeve
Jean-Baptiste Voron
Jiacun Wang
Jan Martijn van der Werf
Michael Westergaard

Oskar Wibling
Elke Wilkeit
Harro Wimmel
Józef Winkowski
Keyi Xing
Shingo Yamaguchi
Satoshi Yamane
Tatsushi Yamasaki
Tadanao Zanma

Table of Contents

Invited Papers

Challenges and Opportunities for Formal Specifications in Service
Oriented Architectures . 1

Gustavo Alonso

Modeling Interactions between Biochemical Reactions (Abstract) 7
A. Ehrenfeucht and G. Rozenberg

Transaction Calculus (Abstract) . 8
He Jifeng

Stratifying Winning Positions in Parity Games . 9
Huimin Lin

On the Physical Basics of Information Flow: Results Obtained in
Cooperation with Konrad Zuse . 12

Carl Adam Petri

Regular Papers

Faster Unfolding of General Petri Nets Based on Token Flows 13
Robin Bergenthum, Robert Lorenz, and Sebastian Mauser

Decomposition Theorems for Bounded Persistent Petri Nets 33
Eike Best and Philippe Darondeau

Compositional Specification of Web Services Via Behavioural
Equivalence of Nets: A Case Study . 52

Filippo Bonchi, Antonio Brogi, Sara Corfini, and Fabio Gadducci

Modeling and Analysis of Security Protocols Using Role Based
Specifications and Petri Nets . 72

Roland Bouroulet, Raymond Devillers, Hanna Klaudel,
Elisabeth Pelz, and Franck Pommereau

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 92
J. Carmona, J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev

Synthesis of Nets with Step Firing Policies . 112
Philippe Darondeau, Maciej Koutny,
Marta Pietkiewicz-Koutny, and Alex Yakovlev

XII Table of Contents

Modelling and Analysis of the INVITE Transaction of the Session
Initiation Protocol Using Coloured Petri Nets . 132

Lay G. Ding and Lin Liu

Modelling and Initial Validation of the DYMO Routing Protocol for
Mobile Ad-Hoc Networks . 152

Kristian L. Espensen, Mads K. Kjeldsen, and Lars M. Kristensen

Formal Specification and Validation of Secure Connection Establishment
in a Generic Access Network Scenario . 171

Paul Fleischer and Lars M. Kristensen

Parametric Language Analysis of the Class of Stop-and-Wait
Protocols . 191

Guy Edward Gallasch and Jonathan Billington

Hierarchical Set Decision Diagrams and Automatic Saturation 211
Alexandre Hamez, Yann Thierry-Mieg, and Fabrice Kordon

Performance Evaluation of Workflows Using Continuous Petri Nets
with Interval Firing Speeds . 231

Kunihiko Hiraishi

Modelling Concurrency with Quotient Monoids . 251
Ryszard Janicki and Dai Tri Man Lê

Labeled Step Sequences in Petri Nets . 270
Matthias Jantzen and Georg Zetzsche

MC-SOG: An LTL Model Checker Based on Symbolic Observation
Graphs . 288

Kais Klai and Denis Poitrenaud

Symbolic State Space of Stopwatch Petri Nets with Discrete-Time
Semantics . 307

Morgan Magnin, Didier Lime, and Olivier (H.) Roux

A Practical Approach to Verification of Mobile Systems Using Net
Unfoldings . 327

Roland Meyer, Victor Khomenko, and Tim Strazny

Cooperative Arrival Management in Air Traffic Control - A Coloured
Petri Net Model of Sequence Planning . 348

Hendrik Oberheid and Dirk Söffker

Process Discovery Using Integer Linear Programming 368
J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and
A. Serebrenik

Table of Contents XIII

Tool Papers

Synthesis of Petri Nets from Scenarios with VipTool 388
Robin Bergenthum, Jörg Desel, Robert Lorenz, and Sebastian Mauser

A Monitoring Toolset for Paose . 399
Lawrence Cabac, Till Dörges, and Heiko Rölke

Animated Graphical User Interface Generator Framework for
Input-Output Place-Transition Petri Net Models . 409

João Lourenco and Lúıs Gomes

HYPENS: A Matlab Tool for Timed Discrete, Continuous and Hybrid
Petri Nets . 419

Fausto Sessego, Alessandro Giua, and Carla Seatzu

Author Index . 429

Challenges and Opportunities for Formal

Specifications in Service Oriented Architectures

Gustavo Alonso

Systems Group
Department of Computer Science

ETH Zurich, Switzerland
{alonso}@inf.ethz.ch

http://www.inf.ethz.ch/∼alonso

Abstract. Service Oriented Architectures (SOA) are currently attract-
ing a lot of attention in industry as the latest conceptual tool for manag-
ing large enterprise computing infrastructures. SOA is interesting from a
research perspective for a variety of reasons. From the software engineer-
ing side, because it shifts the focus away from conventional programming
to application integration, thereby challenging many of the premises
around improving development by improving programming languages.
From the middleware point of view, SOA emphasizes asynchronous in-
teraction, away from the RPC/RMI model, and thus brings to the fore
many of the inadequacies of existing software and hardware platforms.
From the formal specification perspective, however, SOA offers many op-
portunities as one of the key ideas behind SOA is the notion of capturing
the interactions at a high level and letting the underlying infrastructure
take care of the implementation details. For instance, the emphasis in
SOA is the main reason why workflow and business process technologies
are experiencing a new revival, as they are seen as a way to formally
specify complex interaction patterns. This presentation covers the main
ideas behind SOA and why they are an excellent basis to provide a more
formal basis for the development and evolution of complex systems.

Keywords: Multi-tier architectures, Service Oriented Architectures,
Web Services, Workflow, Business Processes, Declarative Languages.

1 Introduction

Service Oriented Architectures (SOA) are the latest approach to deliver a bet-
ter understanding and improved techniques to master the complexities of the
modern enterprise architectures. SOA differs form past attempts in several fun-
damental ways. First, it is language independent and makes no assumption about
the underlying programming model. Second, communication is no longer based
almost exclusively on request-response patterns (RPC/RMI) but the emphasis
is on asynchronous events and messages. Third, SOA sees the development of
new applications and services mainly as the integration and composition of large

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 1–6, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.inf.ethz.ch/~alonso

2 G. Alonso

scale services and applications rather than as a smaller scale programming prob-
lem. These differences arise from the lessons learned in the last two decades and
represent a significant step forward. These differences also create very interesting
opportunities and pose a wide range of challenges that will be discussed in this
presentation.

2 Background

2.1 Multi-tier Architectures

There is a general classification commonly used for multi-tier systems that is
useful for discussing enterprise architectures [ACKM03]. It is based on a number
of layers, each one build on top of the lower one and providing distinct function-
ality. The layers are logical entities and can be implemented in a variety of ways,
not necessarily always as separate entities. The lowest layer I the classification
is the Resource Manager layer, which provides all the data services necessary to
implement the upper layers. The resource manager is often implemented as a
database but it can also be simpler (e.g., a file system) or much more complex
(e.g., an entire sub-systems also implemented as a combination of layers). The
Application Logic is built directly on top and it contains the code that imple-
ments the functionality that defines the application. The application logic layer
can be as simple as a monolithic program or as complex as a fully distributed
application. The final layer is the Presentation Layer, or the part of the system
that deal with external interactions, regardless of whether they are with users
or with other applications. The presentation layer should not be confused with
a client, which is a particular form of distributing the presentation layer. The
presentation layer is not the final interface (e.g., a web browser) but the function-
ality that prepares the information to be sent outside the application (e.g., the
web server). The properties of an enterprise architecture can be studied based
on the integration patterns that arise as the different layers are combined and
distributed in different forms. There are four basic patterns: one tier, two-tier,
three tier, and multi-tier architectures.

One tier architectures arose historically from mainframes, where the applica-
tions where implemented in a monolithic manner without any true distinction
between the layers. Such design can be highly optimized to suit the underlying
hardware; the lack of context switches and network communication also removes
a great deal of overhead compared with other architectures. An important char-
acteristic of one tier architectures is that the presentation layer is part of the
architecture and the clients are passive in the sense that they only display the
information prepared before hand in the one tier architecture. Decades ago this
was the way dumb-terminals operated. Today, this is the way browser based
applications based on HTML work and the basis for the so called Software as a
Service (SaaS) approaches, where the client does not run any significant part of
the application. Although SaaS is not implemented as a one tier architecture on

Challenges and Opportunities for Formal Specifications in SOA 3

the server side, the properties it exhibits from the outside are similar to those
of a one tier architecture.

Two tier architectures take advantage of distribution by moving the presen-
tation layer to the so called client while leaving the application logic and the
resource manager in the so called server. The result is a system with two tier
that are generally tightly coupled as the client is developed for a particular
server, since the client is actually the presentation layer of the global applica-
tion. Two tier architectures represented historically a very important departure
in terms of technology as they appeared at the same time as RPC and led to the
definition of many different standard interfaces. Yet, they face important prac-
tical limitations: if a client needs to be connected to different servers, the client
becomes the point of integration. From an architectural point of view, this is
not scalable beyond a few servers and creates substantial problems maintaining
the software. On the server side, coping with an increasing number of clients is
complicated if the connections are stateful and the server monolithic as it then
becomes bottleneck.

In part to accommodate the drawbacks of client server architectures, and in
part to provide the necessary flexibility to adapt to the Internet, two tier architec-
tures eventually evolved into three tier architectures. The notion of middleware,
as the part of the infrastructure that resides between the client and the server,
characterizes three tier architectures quite well. The middleware provides a sin-
gle interface to all the clients and to all the servers; it serves as the intermediate
representation that removes the need for application specific representations;
and becomes as supporting infrastructure to implement useful functionality that
simplifies the development of the application logic. In its full generality, the mid-
dleware helps to connect a fully distributed infrastructure where not only every
tier is distributed. Each tier can in turn be distributed itself as it happens today
in large scale web server systems.

From three tier architectures, a variety of integration patterns have evolved in
the last two decades that range from RPC based infrastructures (e.g., CORBA)
to message oriented middleware (MOM) where the interactions are asynchronous
and implemented through message exchanges rather than request/response op-
erations. MOM was for a while a useful extension to conventional (RPC based)
middleware. Slowly, however, developers and architects started to realize the ad-
vantages of message based interaction over the tight coupling induced by RPC
systems. Today asynchronous interactions are a very important part of the over-
all architecture and, to a very large extent, have become a whole integration
layer by themselves.

From an architectural point of view, few real systems match one of those ar-
chitectural patterns exactly. In particular, complex systems are often referred to
a N-tier architectures to reflect the fact that they are a complex combination
of layered systems, distributed infrastructures, and legacy systems tied together
often with several layers of integration infrastructure. These complex architec-
tures are the target of this presentation as they form the basis of what is called
an enterprise architecture.

4 G. Alonso

2.2 Web Services and Service Oriented Architecture

Multi-tier architectures integrate a multitude of applications and systems into a
more or less seamless IT platform. The best way to construct such systems is still
more an art than a science although in the last years some structure has started
to appear in the discussion. During the 90’s middleware platforms proliferated,
with each one of them implementing a given functionality (transactions, mes-
saging, web interactions, persistence, etc.) [A04]. Most of these platforms had a
kernel that was functionally identical to all of them, plus extensions that gave
the system its individual characteristics. In many cases, these systems were used
because of the functionality to all of them (e.g., TP-monitors that were used
because they were some of the earliest and better multi-threading platforms).
The extensions were also the source of incompatibilities, accentuated by a lack
of standardization of the common aspects [S02].

The emphasis today has changed towards standardization and a far more
formal treatment of the problems of multi-tier architectures. The notion of ”en-
terprise architecture” is a direct result of these more formal approaches that
start distinguishing between aspects such as governance, integration, mainte-
nance, evolution, deployment, development, performance engineering, etc. Two
of the concepts that dominate the discourse these days are web services and ser-
vice oriented architectures. Although in principle they are independent of each
other and they are not entirely uncontroversial, they are very useful stepping
stones to understand the current state of the art.

Web services appeared for a wide variety of reasons, the most important ones
being the need to interact through the Internet and the failure of CORBA to
build the so called universal software bus [A04]. Once the hype and the ex-
aggerated critique around web services are removed, there remain a few very
useful concepts that are critical to enterprise architectures. The first of them
is SOAP, a protocol designed to encapsulate information within an ”envelope”
so that applications can interact regardless of the programming language they
use, the operating system they run on, or their location. SOAP is interesting in
that it avoids the pitfalls of previous approaches (e.g., RPC, CORBA, RMI) by
not making any assumptions about the sender and the receiver. It only assumes
that they can understand one of several intermediate representations (bindings).
The second important concept behind web services is WSDL, or the definition
of services as the interfaces to complex applications. WSDL describes not only
the abstract interface but also the concrete implementations that can be used to
contact that service. By doing so it introduces the possibility of having a service
that can be used over several protocols and through different representations,
the basis for adaptive integration and an autonomic integration infrastructure.
Web Services do not need to involve any web based communication. In fact,
they are extremely useful in multi-tier architectures as the interfaces and basic
communication mechanism across systems and tiers. Dynamic binding (such as
that implemented in the Web Services Invocation Framework of Apache) allows
to give a system a web service interface and lets the infrastructure choose the
best possible binding depending on the nature of the caller. A local piece of code

Challenges and Opportunities for Formal Specifications in SOA 5

will use a native protocol, a remote caller using the same language will use a lan-
guage specific binding, a remote a heterogeneous caller will use an XML/SOAP
binding. It is also possible to link request/response interfaces to message based
interfaces and vice-versa, a clear indication of the potential of the ideas.

The notion of service used in Web Services [ACKM03] has proven to be very
useful, more useful that the notions of components or objects used in the past.
Services are large, heterogeneous, and autonomous systems offering a well de-
fined interface for interacting with them. They might or might not be object
oriented, and it is irrelevant how they are implemented. The key to access them
is to support one of the bindings offered by the service. From this idea, it is
only a short step to the notion of Service Oriented Architectures, i.e., enterprise
architectures where the different elements are connected through service inter-
faces and where the interactions happen through the interfaces but preferably
using asynchronous exchanges like those used in MOM systems. Thus, SOA is a
new attempt at realizing the vision of the universal software bus that CORBA
started. This time, however, with a much wider understanding of the problems
and forcing the programming language concerns out of the picture. SOA is not
about programming, like CORBA was (or is). SOA is about integration and
about how to best implement architectures that are based on integrating soft-
ware systems.

Web Services and SOA have been around for just a few years but they have
brought with themselves enough interesting concepts that their ideas will become
part of the solution, regardless of what form this solution eventually takes. In
many ways, they are the first step towards eliminating ”spaghetti integration”
and moving towards more structured and modular approaches to application
integration. In the same way that it was a long way from the initial structured
programming languages to today’s modern object oriented languages, SOA and
Web Services are the first step towards better tools and a more sophisticated
understanding of application integration.

SOA has allowed system architects to formulate many problems in a clearer
manner than it was possible before. From the problem of defining services, to
the types of interactions between these services, including the organization of
services as well as the associated problems of ensuring quality of service from
design/development time, SOA has helped developers to define a proper frame-
work to tackle such problems in an orderly manner.

3 High Level Programming in SOA

This presentation argues that SOA provides an ideal starting point for a more
formal approach to the design, development, deployment, and maintenance of
complex, distributed, enterprise architectures. As mentioned in the abstract,
SOA is the reason why workflow management systems and business processes
are again in fashion. SOA proposes to work at the level of services: large scale
applications hidden behind a service interface that can support asynchronous
interactions. SOA is about how to build and connect those services into larger

6 G. Alonso

entities. This is very similar to what business processes aim to do: combine
a variety of applications into a coherent process that matches a given set of
business requirements. It is not surprising then that SOA and business processes
have by now become terms that are often mentioned together.

The presentation will provide a historical overview of how multi-tier architec-
tures have evolved and how their evolution led to SOA and Web services. The
discussion will include what are the significant differences between SOA and ap-
proaches like CORBA or general middleware. Based on this background (briefly
explained as well in this extended abstract), the presentation will then focus on
what are the advantages of SOA from a technical point of view as well as on
the challenges and opportunities for using formal specifications in the context of
SOA.

The opportunities SOA offers are cleaner interfaces, a wide range of techni-
cal solutions to solve the integration problem, and a cleaner architecture where
integration is the primary goal. The challenges to solve before we can take ad-
vantage of these opportunities are the embedding of these ideas into conventional
programming languages (or within more modern, more suitable languages), the
complexity of asynchronous systems, and the need to set reasonable goals for
the formal specifications.

References

[ACKM03] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts,
Architectures and Applications. Springer, Heidelberg (2003)

[A04] Alonso, G.: Myths around Web Services. In: Bulletin of the Technical
Committee on Data Engineering, December 2002, vol. 25(4) (2002)

[S02] Stonebraker, M.: Too much Middleware. Sigmod Record (March 2002)

Modeling Interactions between Biochemical

Reactions

A. Ehrenfeucht1 and G. Rozenberg1,2

1 Department of Computer Science, University of Colorado at Boulder,
Boulder, CO 80309, USA

2 Leiden Institute of Advanced Computer Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract. From the information processing point of view a living cell
consists of a (huge) number of biochemical reactions that interact with
each other. Two main mechanisms through which biochemical reactions
influence each other are facilitation and inhibition. Therefore it is reason-
able to base a formal model of interactions between biochemical reactions
on a suitable formalization of these two mechanisms. Recently introduc-
tion reaction systems is a formal model following this way of reasoning.

We have made a number of assumptions that hold for a great number
of biochemical reactions and therefore underlie the model of reaction
systems. The assumptions are:

– Reactions are primary, while structures are secondary.
– There is a “threshold supply” of elements: either an element is present

and then there is “enough” of it, or an element is not present. Thus
there is no counting in the basic model.

– There is no “permanency” of elements: if “nothing” happens to an
element, then it ceases to exist. Sustaining an element requires an
effort (“life/existence must be sustained”).

We will argue that assumptions underlying the functioning of biochem-
ical reactions are very different to the underlying axioms of standard
models in theoretical computer science (including the model of Petri
nets).

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, p. 7, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, p. 8, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Transaction Calculus

He Jifeng*

Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, China

Abstract. Transaction-based services are increasingly being applied in solving
many universal interoperability problems. Exception and failure are the typical
phenomena of the execution of long-running transactions. To accommodate
these new program features, we extend the Guarded Command Language by
addition of compensation and coordination combinators, and enrich the
standard design model with new healthiness conditions. The paper proposes a
mathematical framework for transactions where a transaction is treated as a
mapping from its environment to compensable programs. We provide a
transaction refinement calculus, and show that every transaction can be
converted to primitive one which simply consists of a forward activity and a
compensation module.

* This work was supported by the National Basic Research Program of China (Grant No.

2005CB321904) and Shanghai Leading Academic Discipline Project B412.

Stratifying Winning Positions in Parity Games�

Huimin Lin

Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

lhm@ios.ac.cn

Parity games have attracted considerable attentions for at least two reasons.
First, the problem of deciding wining positions in parity games is equivalent to
the problem of µ-calculus model checking. Second, parity games are the simplest
in a chain of two-player games which are known in NP ∩ co-NP but so far no
efficient algorithms have been found.

A parity game is played on a (finite) graph, referred to as game graph, by two
players, Ms. Even and Mr. Odd. Each node n in the graph is assigned a weight,
or depth, D(n) which is a natural number, and is labelled by either ∨ or ∧. The
∨-nodes are Mr. Odd’s positions, while the ∧-nodes are Ms. Even’s. Without loss
of generality we may assume a ∨-node has either one or two out-going edges,
and a ∧-node has exactly two out-going edges.

A play can be viewed as moving a token along the edges of the game graph. A
token can be moved from a node n to a node m if there is an edge from n to m. If
n is Mr. Odd’s position, then the move is made by him, i.e. he should choose an
out-going edge of n and move the token to the target node of the edge; Otherwise
the move is made by Ms. Even. The result of a play is an infinite path p : n0 →
n1 → . . . starting from a given initial node n0. We say a play p is dominated by
an odd/even number if max({D(n) | n occurs infinitely often in p }) is odd/even.
Mr. Odd wins the play if p is dominated by an odd number; Otherwise Ms. Even
wins. A position is a winning position of a player if the player can win every
play starting from the position regardless how his/her opponent moves. Parity
games are determinate in the sense that every node in a game graph is a winning
position of either Mr. Odd or Ms. Even.

In this talk, I will show that the set of the winning positions of each player in
a game graph can be stratified into a hierarchy of regions and spheres. A simplest
region is a cycle. A cycle is odd if the node with the largest weight in it is odd,
and is even otherwise. In general a region R is a strongly connected component
in the game graph consisting of cycles of the same polarity, i.e. the cycles in R
are either all odd or all even. In the former case R is an odd-region, and in the
later case it is an even-region. We shall call a node n an inner node of a region
R if n is in R and all its out-going edges are also in R, and n a border node of
R if n is in R and one out-going edge of n is not in R (thus a border node has
exactly two out-going edges, one being in the region while the other not). An
odd-region is closed if the source node of every edge going out of the region is
a ∨-node. An even-region is closed if the source node of every edge going out

� Supported by National Natural Science Foundation of China (Grant No. 60721061).

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 9–11, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

10 H. Lin

of the region is a ∧-node. Thus, any ∧-node in a closed odd-region must be an
inner node of the region, and any ∨-node in a closed even-region must be an
inner node of the region.

Intuitively, at any node in a closed odd-region R, Mr. Odd can steer a play
from the node in such a way that the play will always stay within R. To this end
he can use the following strategy, referred to as “odd-strategy” in the sequel.
Recall that Mr. Odd’s positions are ∨-nodes. If his current position n is an inner
node of R, he may move the token along any out-going edge of n, and the next
position will be in R; If n is a border node of R then he moves the token along
the out-going edge of n which is in R, and the next position will also be in R.
On the other hand, since R is ∧-closed, every position of Ms. Even in R is an
inner node of R, hence whatever edge she chooses to move the token the next
position will still be inside R. Therefore if Mr. Odd adopts the odd-strategy the
play will be entirely contained in R. Since every cycle in R is dominated by
an odd node, the play, which is an infinite path consists of nodes and edges in
R, will be dominated by some odd node in R, which means it is won by Mr.
Odd. Therefore every node in a closed odd-region is Mr. Odd’s wining position.
Dually, every node in a close even-region is Ms. Even’s wining position.

But not all nodes in any game graph fall into closed odd- or even-regions.
To investigate the behaviour of plays starting from nodes outside closed regions,
we need to introduce another notion. A fan is an acyclic subgraph with a root
such that every node in the subgraph is reachable from the root. Since a fan is
acyclic, it has some end-nodes all whose out-going edges are outside the fan. A
node is an inner node of a fan if all its out-going edges are in the fan. A node
is a border node of a fan if it has two out-going edges one of which is in the fan
while the other is not. Thus a border node of a fan cannot be an end-node of
the fan. A fan F is ∧-closed if the out-going edges of any inner ∧-node of F are
inside F . In other words, every border node of F must be a ∨-node. A node is in
the odd-sphere of a set of odd-regions if it is either in some odd-region of the set,
or is the root of a ∧-closed fan every whose end-node falls in some odd-region
in the set. Let us call closed odd-regions in a game graph rank-0 odd-regions,
and the odd-sphere of the set of rank-0 odd-regions the rank-0 odd-sphere of the
graph. The notions of the rank-0 even-regions and the rank-0 even-sphere can
be defined dually.

Let n be a node in the rank-0 odd-sphere. If n is in a closed odd-region then
we already know it is Mr. Odd’s wining position. Otherwise n is the root of
a ∧-closed fan. Then, using the odd-strategy as described above, Mr. Odd can
steer any play starting from n so that, after a finite number of moves, the play
will enter into some closed odd-region. From then on he can control the play to
stay within that odd-region. Since only nodes which occurs infinitely often in
a play are taken into account when deciding the winner of the play, the finite
prefix of the play before entering the region does not affect the outcome of the
play. Thus the play is also won by Mr. Odd. Therefore every node in the rank-0
odd-sphere of a game graph is Mr. Odd’s wining position. Dually, every node in
the rank-0 even-sphere of a game graph is Ms. Even’s wining position.

Stratifying Winning Positions in Parity Games 11

To further extend the territory of regions and spheres, let us call an odd-region
a rank-k odd-region, where k > 0, if every ∧-node lying on its border is the root
of a ∧-closed fan whose end-points are in rank less than k odd-regions. The rank-
k odd-sphere consists of the nodes in rank less than or equals to k odd-regions,
plus those which are roots of ∧-closed fans whose end-nodes fall in rank less
than or equals to k odd-regions. Thus, for any k′ < k, the rank-k′ odd-sphere
is contained in the rank-k odd-sphere, but a rank-k′ odd-region and a rank-k
odd-region do not intersect. Since a game graph is finite, the hierarchy of ranked
odd-regions/spheres is also finite, and we let the highest ranked odd-sphere be
the odd-sphere of the graph.

From a game-theoretical point of view, for any play starting from a node n in
the odd-sphere, if Mr. Odd applies the odd-strategy then, after a finite (could be
zero) number of moves, the play will enter into a rank-k odd-region R for some
k. At every ∨-node of R Mr. Odd can manage to let the next position inside R.
Only at a ∧-node m which lies on the border of R, it is possible for Ms. Even
to move along an out-edge of m going out of R. However, since m is the root
of a ∧-closed odd-fan whose end-nodes are in rank less than k odd-regions, Mr.
Odd can control the play to arrive at an odd-region of rank-k′ odd-region for
some k′ < k. Since the least rank is 0, in the end the play will stay inside some
odd-region (which will be of rank-0 if Ms. Even has done her best) forever. Thus
the play will be won by Mr. Odd. Therefore every node in the odd-sphere is a
wining position of Mr. Odd.

Dually, we can define ranked even-regions, ranked even-spheres, and the even-
sphere of a game graph. By duality, every node in the even-sphere is a wining
position of Ms. Even. Furthermore, the odd-sphere and even-sphere do not in-
tersect, and together they cover all the nodes in the graph. Thus the odd-sphere
corresponds exactly to the set of wining positions of Mr. Odd, and the even-
sphere corresponds exactly to the set of wining positions of Ms. Even. By this
correspondence, the wining positions in parity games can be stratified into the
hierarchies of ranked odd-/even-regions/spheres, as demonstrated above.

On the Physical Basics of Information Flow

- Results Obtained in Cooperation with Konrad Zuse -

Carl Adam Petri

St. Augustin, Germany
ca-petri@t-online.de

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri.html

For three years Konrad Zuse (1910 - 1995) and me, we collaborated on the idea of
a Computing Universe. We both agreed that some of the main tenets of modern
physics would have to be expressed, at least those of quantum mechanics and
of special relativity. Discussing which tenets should be tackled, Zuse said “those
which can be understood by an engineer”. But many years passed before the
deterministic approach of Gerard ’t Hooft (2002) made a complete elaboration of
the originally conceived ideas possible. We follow the principles of combinatorial
modelling, which is a proper synthesis of continuous and discrete modelling.

A revision of the order axioms of measurement turns out to incorporate the
uncertainty principle in a natural way. Besides this revision, the main innovations
are a synthesis of the notions “discrete” and “continuous” and the derivation of
computing primitives from smallest closed signal spaces. By means of NET mod-
elling, we translate the main tenets of modern physics into their combinatorial
form. In that form they are independent of scale, and relate to direct experience
as well as to the sub-microscopic level of quantum foam.

Measurement, in the classical sense, is related to the uncertainty principle.
While determinism excludes the creation of information, we go one tentative
step further and forbid the destruction of information, in order to establish a
law of conservation of information as a prototype of conservation laws in general.
Accordingly, we describe the physical universe in terms of Signal Flow and,
equivalently, of Information Flow. We derive the information operators from
the idea of space-time periodic movement of signals in an integer Minkowski
space. The derived loss free computing primitives have the same topology as the
simplest patterns of repetitive group behaviour.

We can fulfil several systematic principles of construction in one single step.
Each of those principles alone leads to the same result: the construction of loss-
free TRANSFERS, which permits, in the long view, a great simplification. It
follows that, if we base our models on the combinatorial concepts of signal flow
suggested by informatics, and insist on continuity (as Zuse did), we end up
inevitably with a model of a finite universe.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, p. 12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Faster Unfolding of General Petri Nets Based on Token
Flows

Robin Bergenthum, Robert Lorenz, and Sebastian Mauser�

Department of Applied Computer Science,
Catholic University of Eichstätt-Ingolstadt,

firstname.lastname@ku-eichstaett.de

Abstract. In this paper we propose two new unfolding semantics for general
Petri nets combining the concept of prime event structures with the idea of token
flows developed in [11]. In contrast to the standard unfolding based on branch-
ing processes, one of the presented unfolding models avoids to represent iso-
morphic processes while the other additionally reduces the number of (possibly
non-isomorphic) processes with isomorphic underlying runs. We show that both
proposed unfolding models still represent the complete partial order behavior.
We develop a construction algorithm for both unfolding models and present ex-
perimental results. These results show that the new unfolding models are much
smaller and can be constructed significantly faster than the standard unfolding.

1 Introduction

Non-sequential Petri net semantics can be classified into unfolding semantics, process
semantics, step semantics and algebraic semantics [17]. While the last three semantics
do not provide semantics of a net as a whole, but specify only single, deterministic com-
putations, unfolding models are a popular approach to describe the complete behavior
of nets accounting for the fine interplay between concurrency and nondeterminism.

A

2

B

C

22

3

Fig. 1. Example net N. Instead of place-
names we used different colors.

To study the behavior of Petri nets pri-
marily two models for unfolding semantics
were retained: labeled occurrence nets and
event structures. In this paper we consider
general Petri nets, also called place/transition
Petri nets or p/t-nets (Figure 1). The stan-
dard unfolding semantics for p/t-nets is based
on the developments in [19,5] (see [14] for
an overview) in terms of so called branching
processes, which are acyclic occurrence nets
having events representing transition occur-
rences and conditions representing tokens in
places. Branching processes allow events to
be in conflict through branching conditions. Therefore branching processes can rep-
resent alternative processes simultaneously (processes are finite branching processes
without conflict). Branching processes were originally introduced in [19] for safe nets,

� Supported by the project SYNOPS of the German research council.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 13–32, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 R. Bergenthum, R. Lorenz, and S. Mauser

and extended in [5] to initially one marked p/t-nets without arc weights, by viewing
the tokens as individualized entities. In contrast to [5], branching processes for p/t-nets
even individualize tokens having the same ”history”, i.e. several (concurrent) tokens
produced by some transition occurrence in the same place are distinguished through
different conditions (see [14]). Analogously as in [5] one can define a single maximal
branching process, called the unfolding of the system (in the rest of the paper we will
refer to this unfolding as the standard unfolding). The unfolding includes all possible
branching processes as prefixes, and thus captures the complete non-sequential branch-
ing behavior of the p/t-net. In the case of bounded nets, according to a construction by
McMillan [16] a complete finite prefix of the unfolding preserving full information on
reachable markings can always be constructed. This construction was generalized in [3]
to unbounded nets through building equivalence classes of reachable markings. In the
case of bounded nets, the construction of unfoldings and complete finite prefixes is well
analyzed and several algorithmic improvements are proposed in literature [7,15,13]. By
restricting the relations of causality and conflict of a branching process to events, one
obtains a labeled prime event structure [20] underlying the branching process, which
represents the causality between events of the branching process. An event structure
underlying a process, i.e. without conflict, is called a run. In the view of the develop-
ment of fast model-checking algorithms employing unfoldings resp. event structures [6]
there is still the important problem of efficiently building them.

BA A AB B

C …C C C

V

Fig. 2. Standard unfolding of N. The colors of
conditions refer to the place the corresponding
tokens belong to.

The p/t-net shown in Figure 1 has a fi-
nite standard unfolding (as defined for ex-
ample in [14]). A part of this unfolding
is shown in Figure 2. An unfolding has a
unique minimal event producing the ini-
tial conditions. Each condition in the un-
folding corresponds to a token in the net,
i.e. tokens are individualized. In the ini-
tial marking there are three possibilities
for transition B to consume two tokens
from the grey place (and for transition
A to consume one token from the grey
and one token from the white place).
All these possibilities define Goltz-Reisig
processes [8] of the net, are in conflict and
are reflected in the unfolding. That means,
individualized tokens cause the unfolding
to contain events with the same label, be-
ing in conflict and having the same num-
ber of equally labeled pre-conditions with

the same ”history” (for each place label), where two conditions have the same ”his-
tory” if they have the same pre-event. Such events are called strong identical. In Figure
2 all A-labeled and all B-labeled events are strong identical, since all grey conditions
have the same ”history”. Strong identical events produce isomorphic processes in the
unfolding and therefore are redundant.

Faster Unfolding of General Petri Nets Based on Token Flows 15

After the occurrence of transitions A and B there are four tokens in the black place
and there are four possibilities for transition C to consume three of these tokens (Fig-
ure 2). For each of those possibilities, a C-labeled event is appended to the branching
process. Two of these events consume two tokens produced by A and one token pro-
duced by B (these are strong identical), the other two consume one token produced
by A and two tokens produced by B (these are also strong identical). The first pair of
strong identical C-events is not strong identical to the second pair, but they all causally
depend on the same two events. Such events having the same label, being in conflict
and depending causally from the same events, are called weak identical. Weak identi-
cal events produce processes with isomorphic underlying runs and therefore also are
redundant. Note finally, that the described four weak identical C-labeled events are ap-
pended to each of the three consistent pairs of A- and B-labeled events. That means,
the individualized tokens in the worst case increase the number of events exponentially
for every step of depth of the unfolding.

�������������
�������������
�������������
�������������
�������������
�������������

B
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
A AB

C …CC C

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

A
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
B

�������������
�������������
�������������
�������������
�������������
�������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
AAAA B

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
A

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
B

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
A BA

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
A

�������������
�������������
�������������
�������������
�������������
�������������

BA

V

Fig. 3. Prime event structure of N. The colors of
the events refer to the consistency sets. Transi-
tive arcs are omitted.

Figure 3 illustrates the labeled prime
event structure underlying the unfolding
shown in Figure 2. Formally a prime
event structure is a partially ordered set
of events (transition occurrences) together
with a set of (so called) consistency sets
[20]. ”History-closed” (left-closed) con-
sistency sets represent partially ordered
runs. The labeled prime event structure
underlying an unfolding is obtained by
omitting the conditions and keeping the
causality and conflict relations between
events. Events not being in conflict define
consistency sets. Thus, left-closed consis-
tency sets correspond to processes and their underlying runs in the unfolding. Strong
and weak identical events lead to consistency sets corresponding to processes with iso-
morphic underlying runs in the prime event structure.

In this paper we are interested in algorithms to efficiently construct unfoldings. As
explained, the standard unfolding has the drawback, that it contains a lot of redundancy
in form of isomorphic processes and processes with isomorphic underlying runs. This is
caused by the individualization of tokens producing strong and weak identical events.
Unfolding models with less nodes could significantly decrease the construction time,
because a construction algorithm in some way always has to test all co-sets of events
or conditions of the so-far constructed model to append further events. In this paper
we propose two unfolding approaches reducing the number of events in contrast to the
standard unfolding by neglecting (strong resp. weak) identical events.

Instead of considering branching processes, we use labeled prime event structures
and assign so called token flows to its edges. Token flows were developed in [11] for
a compact representation of processes. Token flows abstract from the individuality of
conditions of a process and encode the flow relation of the process by natural numbers.
For each place natural numbers are assigned to the edges of the partially ordered run

16 R. Bergenthum, R. Lorenz, and S. Mauser

underlying a process. Such a natural number assigned to an edge (e, e′) represents the
number of tokens produced by the transition occurrence e and consumed by the tran-
sition occurrence e′ in the respective place. This principle is generalized to branching
processes/unfoldings and their underlying prime event structures in this paper.

V

A B

C

1 1 2

C

1 2 2 1

Fig. 4. Token flow unfolding of N. The color-
ing of the events illustrates the sets of consistent
events.

The idea is to annotate each edge of
the prime event structure underlying a
branching process by the numbers of con-
ditions between the corresponding pair of
events of the branching process and omit
isomorphic consistency sets having equal
annotated token flow. The resulting prime
event structure is shown in Figure 4. The
event v is the unique initial event produc-
ing the initial marking. The edges have
attached natural numbers, which are inter-
preted as token flows as described, where
the colors refer to the places the tokens
belong to. The assigned token flow spec-
ifies in particular that transition A con-

sumes one initial token from the white place and one initial token from the grey place,
while transition B consumes two initial tokens from the grey place. That means in this
model the different possibilities for transition A and B of consuming initial tokens are
not distinguished. Transition C either consumes one token produced by A and two to-
kens produced by B or vice versa in the black place. The respective two C-labeled
events having the same pre-events but a different token flow are distinguished. They are
in conflict yielding different consistency sets. In this approach strong identical events
are avoided, while weak identical events still exist. Figure 4 only contains one of the
three A and B events and two of the twelve C events. However, full information on
reachable markings is still available. For example, the sum of all token flows assigned
to edges from the initial event v to consistent events equals the initial marking. The ex-
ample shows that through abstracting from the individuality of conditions, it is possible
to generate an unfolding in form of a prime event structure with assigned token flow
information having significantly less events than the standard unfolding.

A prime event structure with assigned token flow information is called a token flow
unfolding if left-closed consistency sets represent processes and there are no strong
identical events which are in conflict. Observe that to represent all possible processes
we have to allow strong identical events which are not in conflict. For a given marked
p/t-net, it is possible to define a unique maximal token flow unfolding, in which each
process is represented through a consistency set with assigned token flows correspond-
ing to the process. Figure 4 shows the maximal token flow unfolding for the example net
N . We will show that the maximal token flow unfolding contains isomorphic processes
only in specific situations involving auto-concurrency.

The token flow unfolding from Figure 4 still contains processes (consistency sets)
which have isomorphic underlying runs, since token flow unfoldings still allow for
weak identical events. In Figure 5 a prime event structure with assigned token flow

Faster Unfolding of General Petri Nets Based on Token Flows 17

information is shown without weak identical events. Namely, the two weak identical
C-labeled events in Figure 4 do not occur in Figure 5. This causes that the token flow
information is not any more complete in contrast to token flow unfoldings, i.e. not each
possible token flow distribution resp. process is represented. Instead example token
flows are stored for each partially ordered run, i.e. each run is represented through one
possible process. Note that still in this reduced unfolding full information on reachable
markings is present, since markings reached through occurrence of a run do not depend
on the token flow distribution within this run.

V

A B

C

1 1 2

1 2

Fig. 5. Reduced token flow unfolding

If a prime event structure with as-
signed token flow information does not
contain weak identical events, this un-
folding model is called a reduced token
flow unfolding. We can define a unique
maximal reduced token flow unfolding, in
which each run is represented through a
left-closed consistency set with assigned
token flows corresponding to a process
having this underlying run. It can be seen
as a very compact unfolding model cap-
turing the complete behavior of a p/t-net.
Figure 5 shows the maximal reduced to-
ken flow unfolding for the example net N . We will show that the maximal reduced
token flow unfolding contains processes with isomorphic underlying runs only in spe-
cific situations involving auto-concurrency.

For both new unfolding approaches we develop a construction algorithm for finite
unfoldings and present an implementation together with experimental results. Token
flow unfoldings can be constructed in a similar way as branching processes. The main
difference is that processes are not implicitly given through events being in conflict, but
are explicitly stored in consistency sets. This implies that new events are appended to
consistency sets and not to co-sets of conditions. From the token flow information we
can compute, how many tokens in which place, produced by some event, are still not
consumed by subsequent events. These tokens can be used to append a new event. The
crucial advantage of token flow unfoldings is that much less events must be appended.
One disadvantage is that a possible exponential number of consistency sets must be
stored. Moreover, for the construction of the reduced token flow unfolding not the full
token flow information is available, since not each possible but only one example token
flow distribution is displayed. Therefore the procedure of appending a new event is
more complicated, because eventually an alternative token flow distribution has to be
calculated (there is an efficient method for this calculation based on the ideas in [11]).
Experimental results show that the two new unfolding models can be constructed much
faster and memory consumption is decreased. The bigger the markings and arc weights
are, the more efficient is the new construction compared to the standard one.

Altogether, the two new unfolding approaches on the one hand allow a much more
efficient construction, and on the other hand still offer full information on concurrency,
nondeterminism, causality and reachable markings. In particular, the assigned token

18 R. Bergenthum, R. Lorenz, and S. Mauser

flows allow to compute the reachable marking corresponding to a consistency set. This
allows to apply the theory of complete finite prefixes of the standard unfolding also to
the presented new models. Acceleration of model checking algorithms working on the
standard unfolding can be done by adapting them to the new smaller unfolding models.
Another benefit is, that the new methods may lead to a more efficient computation of
the set of all processes of a p/t-net.

There are also other attempts to extend the unfolding approach of [19] for safe nets
to p/t-nets, where in some of them tokens are individualized as in the standard unfold-
ing ([17,18]) and in some of them such an individualization of tokens is avoided as in
our approach ([10,9,2,12,1]). In [17,18] conditions are grouped into families (yielding
so called decorated occurrence nets) in order to establish desirable algebraic and order-
theoretic properties. In [10] so called local event structures instead of prime event struc-
tures are introduced as an unfolding semantics of p/t-nets without autoconcurrency. In
this approach, conflict and causality relations among events are not any more explicitly
given by the model structure. Algorithmic aspects are not considered. In [2] arbitrarily
valued and non-safe occurrence nets are used. Also here the direct link with prime event
structures is lost. In [9], general nets are translated into safe nets by introducing places
for reachable markings (which considerably increases the size of the structure) in or-
der to apply branching processes for safe nets. In [1] a swapping equivalence between
conditions introduces a collective token view.1 Finally, in [12] events and conditions
are merged according to appropriate rules yielding a more compact unfolding structure
which not longer needs to be acyclic. Nevertheless it can be used for model checking.
It cannot be directly computed from the p/t-net but only from its finite complete prefix
which needs to be computed first. In contrast to all these approaches we propose a com-
pact unfolding semantics avoiding individualized tokens while still explicitly reflecting
causal relations between events through prime event structures. Moreover, basic order
theoretic properties such as the existence of a unique maximal unfolding can be estab-
lished. Our main focus is the development of fast construction algorithms, established
so far for the finite case.

The remainder of the paper is organized as follows: In Section 2 we introduce basic
mathematical notations and briefly restate the standard unfolding approach for p/t-nets.
In Section 3 we develop the two new unfolding models. We prove that in both cases
there is a unique maximal unfolding representing all processes resp. runs and formalize
in which cases isomorphic processes resp. runs are avoided. Finally, in Section 4 we
present algorithms for the construction of the new unfolding models in the finite case
and provide experimental results in Section 5.

2 P/T-Nets and Standard Unfolding Semantics

In this section we recall the definitions of place/transition Petri nets and the standard
unfolding semantics based on branching processes. We begin with some basic mathe-
matical notations.

1 Note here that the token flow unfolding and the reduced token flow unfolding define an equiv-
alence on processes which is finer than the swapping equivalence, i.e. weak and strong equiv-
alent events always produce swapping equivalent processes.

Faster Unfolding of General Petri Nets Based on Token Flows 19

We use N to denote the nonnegative integers. A multi-set over a set A is a function
m : A → N ∈ N

A. For an element a ∈ A the number m(a) determines the number of
occurrences of a in m. Given a binary relation R ⊆ A × A over a set A, the symbol
R+ denotes the transitive closure of R and R∗ denotes the reflexive transitive closure
of R. A directed graph G is a tuple G = (V,→), where V is its set of nodes and
→⊆ V × V is a binary relation over V called its set of arcs. As usual, given a binary
relation→, we write a→ b to denote (a, b) ∈→. For v ∈ V and W ⊆ V we denote by
•v = {v′ ∈ V | v′ → v} the preset of v, and by v• = {v′ ∈ V | v → v′} the postset
of v, •W =

⋃
w∈W

•w is the preset of W and W • =
⋃

w∈W w• is the postset of W .
A partial order is a directed graph (V, <), where <⊆ V × V is an irreflexive and

transitive binary relation. In this case, we also call < a partial order. In the context of
this paper, a partial order is interpreted as ”earlier than”-relation between events. Two
nodes (events) v, v′ ∈ V are called independent if v �< v′ and v′ �< v. By co< ⊆ V ×V
we denote the set of all pairs of independent nodes of V . A co-set is a subset S ⊆ V
fulfilling ∀x, y ∈ S : x co< y. A cut is a maximal co-set. For a co-set S and a node
v ∈ V \ S we write v < S (v > S), if ∃s ∈ S : v < s (∃s ∈ S : v > s), and v co< S,
if ∀s ∈ S : v co< s. A node v is called maximal if v• = ∅, and minimal if •v = ∅. A
subset W ⊆ V is called left-closed if ∀v, v′ ∈ V : (v ∈ W ∧ v′ < v) =⇒ v′ ∈W. For
a left-closed subset W ⊆ V , the partial order (W, < |W×W) is called prefix of (V, <),
defined by W . The left-closure of a subset W is given by the set W ∪ {v ∈ V | ∃w ∈
W : v < w}. The node set of a finite prefix equals the left-closure of the set of its
maximal nodes. Given two partial orders po1 = (V, <1) and po2 = (V, <2), we say
that po2 is a sequentialization of po1 if <1⊆<2. By <s⊆< we denote the smallest
subset <′ of < which fulfils (<′)+ =<, called the skeleton of <.

A labeled partial order (LPO) is a triple (V, <, l), where (V, <) is a partial order,
and l is a labeling function on V . We use all notations defined for partial orders also
for LPOs. If V is a set and l : V → X is a labeling function on V , then for a finite
subset W ⊆ V , we define the multi-set l(W) ⊆ N

X by l(W)(x) = |{v ∈ W |
l(v) = x}|. LPOs are used to represent partially ordered runs of Petri nets. Such runs
are distinguished only up to isomorphism. Two LPOs (V1, <1, l2) and (V1, <1, l2) are
isomorphic if there is a bijective mapping ϕ : V1 → V2 satisfying ∀v1 ∈ V1 : l(v1) =
l(ϕ(v1)) and ∀v1, v

′
1 ∈ V1 : v1 <1 v′1 ⇐⇒ ϕ(v1) <2 ϕ(v′1).

A net is a triple N = (P, T, F), where P is a set of places, T is a set of transitions,
satisfying P ∩ T = ∅, and F ⊆ (P ∪ T) × (T ∪ P) is a flow relation. Places and
transitions are called the nodes of N . Presets and postsets of (sets of) nodes are defined
w.r.t. the directed graph (P ∪ T, F). We denote �N= F ∗ and ≺N= F+. If N is clear
from the context, we also write � instead of �N and ≺ instead of ≺N .

Assume now that ≺N=≺ is a partial order. Then two nodes x, y (places or transi-
tions) of N are in conflict, denoted by x#y, if there are distinct transitions t, t′ ∈ E
with •t ∩ •t′ �= ∅ such that t � x and t′ � y. Two nodes x, y are called independent if
x co≺y and ¬(x#y). Maximal and minimal nodes of N and prefixes of N are defined
w.r.t. (P ∪ T,≺).

Definition 1 (Place/transition net). A place/transition-net (shortly p/t-net) N is a qua-
druple (P, T, F, W), where (P, T, F) is a net with finite sets of places and transitions,
and W : F → N \ {0} is a weight function. A marking of a p/t-net N = (P, T, F, W)

20 R. Bergenthum, R. Lorenz, and S. Mauser

is a function m : P → N. A marked p/t-net is a pair (N, m0), where N is a p/t-net, and
m0 is a marking of N , called initial marking.

We extend the weight function W to pairs of net elements (x, y) ∈ (P × T)∪ (T ×P)
satisfying (x, y) �∈ F by W ((x, y)) = 0. A transition t ∈ N is enabled to occur
in a marking m of N if ∀p ∈ P : m(p) ≥ W ((p, t)). If t is enabled to occur in
a marking m, then its occurrence leads to the new marking m′ defined by m′(p) =
m(p)−W ((p, t)) + W ((t, p)) for p ∈ P .

Unfolding semantics of p/t-nets is given by so called branching processes which are
based on occurrence nets. A conflict relation between events distinguishes alternative
runs. Runs are given by conflict-free, left-closed sub-nets of branching processes.

Definition 2 (Occurrence net). An occurrence net is a net O = (B, E, G) satisfying

– O is acyclic, i.e. ≺O is a partial order.
– ∀b ∈ B : | •b| � 1.
– ∀x ∈ B ∪E : ¬(x#x).
– ∀x ∈ B ∪E : |{y | y ≺ x}| is finite.

Elements of B are called conditions and elements of E are called events. MIN(O)
denotes the set of minimal elements (w.r.t.≺O).

Definition 3 (Branching process). Let (N, m0), N = (P, T, F, W) be a marked p/t-
net. A branching process of (N, m0) is a pair π = (O, ρ) where O = (B, E, G) is an
occurrence net and ρ : B ∪ E → X with P ∪ T ⊂ X is a labeling function satisfying:

– There is einit ∈ E with MIN(O) = {einit} and ρ(einit) �∈ P ∪ T .
– ∀b ∈ B : ρ(b) ∈ P and ∀e ∈ E \ {einit} : ρ(e) ∈ T .
– ∀e ∈ E \ {einit}, ∀p ∈ P : |{b ∈ •e | ρ(b) = p}| = W ((p, ρ(e))) ∧ |{b ∈ e• |

ρ(b) = p}| = W ((ρ(e), p)).
– ∀p ∈ P : |{b ∈ e•init | ρ(b) = p}| = m0(p).
– ∀e, f ∈ E : (•e = •f ∧ ρ(e) = ρ(f)) =⇒ (e = f).

In a branching process, ≺ is interpreted as ”earlier than”-relation between transition
occurrences. A finite branching process with empty conflict relation is called a process.

Two branching processes π′ = (O′, ρ′), O′ = (B′, E′, G′), and π = (O, ρ), O =
(B, E, G), are isomorphic, if there is a bijection Iso : B ∪ E → B′ ∪ E′ satisfying
Iso(B) = B′, Iso(E) = E′, ρ′ ◦ Iso = ρ and (x, y) ∈ G ⇔ (Iso(x), Iso(y)) ∈ G′

for x, y ∈ B ∪E.
A branching process π = (O, ρ), O = (B, E, G), is a prefix of another branching

process π′ = (O′, ρ′), O′ = (B′, E′, G′), denoted by π � π′, if O is a prefix of O′

satisfying B = MIN(O) ∪ (
⋃

e∈E e•) and ρ is the restriction of ρ′ to B ∪ E. For
each marked p/t-net (N, m0) there exists a unique, w.r.t.�maximal, branching process
πmax(N, m0), called the unfolding of (N, m0).

Sometimes one is only interested in storing the causal dependencies of events of a
branching process. For this conditions are omitted and the ≺- and #-relation are kept
for events. Formally the resulting object is a so-called prime event structure.

Faster Unfolding of General Petri Nets Based on Token Flows 21

Definition 4 (Prime event structure). A prime events structure is a triple PES =
(E, Con,≺) consisting of a set E of events, a partial order ≺ on E and a set Con of
finite subsets of E satisfying:

– ∀e ∈ E : {e′ | e′ ≺ e} is finite.
– {e} ∈ Con.
– Y ⊆ X ∈ Con =⇒ Y ∈ Con.
– ((X ∈ Con) ∧ (∃e′ ∈ X : e ≺ e′)) =⇒ (X ∪ {e} ∈ Con).

A consistent subset of E is a subset X satisfying ∀Y ⊆ X, Y finite : Y ∈ Con. The
conflict relation # between events of PES is defined by e#e′ ⇔ {e, e′} �∈ Con.

A pair (PES, l), where PES is a prime events structure and l is a labeling function
on E, is called labeled prime event structure.

A (labeled) prime event structure with E consistent we interpret as an LPO, i.e. in this
case we omit the set of consistency sets Con.

If π = (O, ρ), O = (B, E, G) is a branching process, then PES(π) = (E, Con,
≺ |E×E), where X ∈ Con if and only if X ⊆ E is finite and fulfills ∀e, e′ ∈ X :
¬(e#e′), is a prime event structure. PES(π) is called corresponding to π. If π is a
process, then PES(π) is a finite LPO, called the run underlying π.

3 Unfoldings Based on Token Flows

One basic problem of the unfolding of a p/t-net is, that it contains a lot of redundancy.
This arises from the individuality of conditions in branching processes. When append-
ing a new transition occurrence to a branching process, each particular choice of a set
of conditions representing the preset of this transition yields a different process, where
some of these processes are isomorphic and others have isomorphic underlying runs
(see Figure 2 and the explanations in the introduction). In this section we propose two
new unfolding semantics of p/t-nets avoiding such redundancy. Both approaches are
based on the notion of token flows presented in [11]. In the following we restate this
notion and its role in the representation of single processes. In the next subsection, the
concepts will be transferred to unfoldings.

In the following, LPOs are considered to be finite. The edges of LPOs, representing
partially ordered runs of a p/t-net, are annotated by (tuples of) non-negative integers
interpreted as token flow between transition occurrences. Namely, for a process K =
(O, ρ), O = (B, E, G), of a marked p/t-net (N, m0), N = (P, T, F, W), we defined
a so called canonical token flow function xK :≺→ N

P assigned to the edges of the
run (E,≺, ρ) underlying K via xK((e, e′)) = ρ(e• ∩ •e′). That means xK((e, e′))
represents for each place the number of tokens which are produced by the occurrence
of the transition ρ(e) and then consumed by the occurrence of ρ(e′). Such a token flow
function abstracts away from the individuality of conditions in a process and encodes
the token flow by natural numbers for each place. It is easy to see that xK satisfies:

– (IN): ∀e ∈ E \ {einit}, ∀p ∈ P : (
∑

e′≺e xK(e′, e))(p) = W (p, ρ(e)).
– (OUT): ∀e ∈ E \ {einit}, ∀p ∈ P : (

∑
e≺e′ xK(e, e′))(p) � W (ρ(e), p).

22 R. Bergenthum, R. Lorenz, and S. Mauser

– (INIT): ∀p ∈ P : (
∑

einit≺e′ x(einit, e
′))(p) � m0(p).

– (MIN): ∀(e, e′) ∈≺s: (∃p ∈ P : xK(e, e′)(p) � 1).

(IN), (OUT) and (INIT) reflect the consistency of the token flow distribution given
by xK with the initial marking and the arc weights of the considered net. (MIN) holds
since skeleton arcs define the ”earlier than”-causality between transition occurrences
and this causality is produced by non-zero token flow. Non-skeleton edges may carry a
zero token flow, since they are induced by transitivity of the partial order. A zero flow
of tokens means, that there is no direct dependency between events. In particular, there
are no token flows between concurrent events.

In [11] we showed, that the other way round for an LPO (E,≺, ρ) with unique initial
event einit, a token flow function x :≺→ N

P satisfying (IN), (OUT), (INIT) and (MIN)
is a canonical token flow function of a process. That means processes are in one-to-one
correspondence with LPOs having token flow assigned to their edges fulfilling (IN),
(OUT), (INIT) and (MIN). Such LPOs yield an equivalent but more compact represen-
tation of partially ordered runs. In particular full information on reachable markings as
well as causal dependency and concurrency among events is preserved.

3.1 Token Flow Unfolding

In the following, we extend these ideas to branching processes by assigning token flows
to the edges of prime event structures. We will prove that in such a way one gets a
more compact representation of the branching behavior of p/t-nets while preserving
full information on markings, concurrency, causal dependency and conflict.

Let PES = (E, Con,≺) be a prime event structure. We denote the set of left-closed
consistency sets by Conpre ⊆ Con. For a token flow function x :≺→ N

P , a consistency
set C ∈ Conpre and an event e ∈ C we denote

– INC(e) =
∑

e′≺e, e′∈C x(e′, e) the intoken flow of e w.r.t. C.
– OUTC(e) =

∑
e≺e′, e′∈C x(e, e′) the outtoken flow of e w.r.t. C.

A prime token flow event structure is a labeled prime event structure together with
a token flow function. Since equally labeled events represent different occurrences of
the same transition, they are required to have equal intoken flow. Since not all tokens
which are produced by an event are consumed by further events, there is no analogous
requirement for the outtoken flow. It is assumed that there is a unique initial event
producing the initial marking.

Definition 5 (Prime token flow event structure). A prime token flow event structure
is a pair ((PES, l), x), where PES = (E, Con,≺) is a prime event structure, l is a
labeling function on E and x :≺→ N

P is a token flow function satisfying:

– There is a unique minimal event einit w.r.t.≺ with l(einit) �= l(e) for all e �= einit.
– ∀C, C′ ∈ Conpre, ∀e ∈ C, e′ ∈ C′ : l(e) = l(e′) =⇒ INC(e) = INC′(e′).

A token flow unfolding of a marked p/t-net is a prime token flow event structure, in
which intoken and outtoken flows are consistent with the arc weights resp. the initial

Faster Unfolding of General Petri Nets Based on Token Flows 23

marking of the net within each left-closed consistency set. Moreover, we neglect so-
called strong identical events in such unfoldings which turn out to produce isomorphic
process nets. 2

Definition 6 (Strong identical events). Let ((PES, l), x) be a prime token flow event
structure. Two events e, e′ ∈ E fulfilling

(l(e) = l(e′)) ∧ (•e = •e′) ∧ (∀f ∈ •e : x(f, e) = x(f, e′))

are called strong identical.

Definition 7 (Token flow unfolding). Let (N, m0), N = (P, T, F, W), be a marked
p/t-net. A token flow unfolding of (N, m0) is a prime token flow event structure ((PES,
l), x), l : E → X with T ⊂ X and ∀e ∈ E \ {einit} : l(e) ∈ T , satisfying:

– (IN): ∀C ∈ Conpre, ∀e ∈ C \ {einit}, ∀p ∈ P : INC(e)(p) = W (p, l(e)).
(OUT): ∀C ∈ Conpre, ∀e ∈ C \ {einit}, ∀p ∈ P : OUTC(e)(p) � W (l(e), p).
(INIT): ∀C ∈ Conpre, ∀p ∈ P : OUTC(einit)(p) � m0(p).
(MIN): ∀(e, e′) ∈≺s: (∃p ∈ P : x(e, e′)(p) � 1).

– There are no strong identical events e, e′ satisfying {e, e′} �∈ Con.

Two token flow unfoldings μ′ = ((PES′, l′), x′), PES′ = (E′, Con′,≺′), and
μ = ((PES, l), x), PES = (E, Con,≺), are isomorphic if there is a bijection I :
E → E′ satisfying ∀e ∈ E : l(e) = l′(I(e)) ∧ I(•e) = •I(e) ∧ I(e•) = I(e)• ,
∀C ⊆ E : C ∈ Con⇔ I(C) ∈ Con′ and ∀e ≺ f : x(e, f) = x′(I(e), I(f)).

Given a token flow unfolding μ = ((PES, l), x), PES = (E, Con,≺), each non-
empty left-closed subset E′ ⊆ E defines a token flow unfolding μ′ = ((PES′, l′), x′),
PES′ = (E′, Con′,≺′) by Con′ = {C ∈ Con | C ⊆ E′}, ≺′=≺ |E′×E′ , l′ =
l|E′ and x′ = x|≺′ . Each token flow unfolding μ′′ = ((PES′′, l′), x′), PES′′ =
(E′, Con′′,≺′), Con′′ ⊆ Con′ is called prefix of μ, denoted by μ′′ � μ. By �=� \id,
a partial order on the set of token flow unfoldings is given. We now want to prove
that up to isomorphism, there exists a unique maximal (in general infinite) token flow
unfolding w.r.t. �. The partial order � can be defined through appending new events to
(consistency sets of) existing token flow unfoldings starting with the initial event. There
is a unique maximal token flow unfolding (fix point) only if the order of appending
events does not matter, i.e. if events are appended in different orders, isomorphic token
flow unfoldings are constructed.

A new transition occurrence can be appended to a consistency set, if there are enough
remaining tokens produced by events in the consistency set (tokens which are not con-
sumed by subsequent events in the consistency set). For e ∈ E \ {einit} and C ∈
Conpre, the remaining tokens produces by e are formally given by the residual token
flow ResC(e) (of e w.r.t. C) defined by ResC(e)(p) = W (l(e), p) −∑

e≺e′, e′∈C x(e, e′)(p) for p ∈ P . Similarly, for each p ∈ P , ResC(einit)(p) =

2 Note that omitting strong identical events disables the possibility of applying prime event
structures having a set of consistency sets defined by a binary conflict relation, which is the
case for example for prime event structures corresponding to branching processes.

24 R. Bergenthum, R. Lorenz, and S. Mauser

m0(p)− ∑
einit≺e′, e′∈C x(einit, e

′)(p). Let Mar(C) =
∑

e∈C ResC(e) be the the
residual marking of C. If there are enough tokens in the residual marking to fire a tran-
sition t, there may be several choices which of the remaining tokens are used to append
a respective transition occurrence to the consistency set. Each such choice is formally
represented by an enabling function y : C → N

P satisfying ∀e ∈ C : ResC(e) � y(e)
and ∀p ∈ P : (

∑
e∈C y(e))(p) = W ((p, t)). Such an enabling function defines a new

event ey by l′(ey) = t, •ey = {e ∈ C | ∃e′ : y(e′) �= 0 ∧ (e = e′ ∨ e ≺ e′)} and
∀e ∈ •ey : x′(e, ey) = y(e). If there is already a strong identical event not belonging
to the consistency set, then this strong identical event is added to the consistency set.
Otherwise, the new event is added.

Definition 8 (Appending events). Let (N, m0), N = (P, T, F, W), be a marked p/t-
net and let μ = ((PES, l), x), PES = (E, Con,≺), be a token flow unfolding of
(N, m0).

Let t ∈ T and C ∈ Conpre be such that Mar(C)(p) � W ((p, t)) for each p. Let y
be an enabling function and ey be the associated new event.

If there is no event e �∈ C which is strong identical to ey, then we define a prime
token flow event structure Ext(μ, C, y, t) = ((PES′, l′), x′), PES′ = (E′, Con′,≺′),
through E′ = E ∪ {ey}, l′|E = l, x′|≺ = x, ≺′ |E×E =≺ and Con′ = Con ∪ {C′ ∪
{ey} | C′ ⊆ C}. We say that μ is extended by ey.

If there is an event eid �∈ C which is strong identical to ey , then we define a prime
token flow event structure Ext(μ, C, y, t) = ((PES′, l′), x′), PES′ = (E′, Con′,≺′),
through E′ = E, l′ = l, x′ = x, ≺′=≺ and Con′ = Con ∪ {C′ ∪ {eid} | C′ ⊆ C}.
We say that μ is updated by ey.

The following lemma ensures that we have defined an appropriate procedure to append
events:

Lemma 1. Ext(μ, C, y, t) fulfills:

(i) Ext(μ, C, y, t) is a token flow unfolding.
(ii) μ � Ext(μ, C, y, t).

(iii) Every finite token flow unfolding μ can be constructed by the procedure shown in
Definition 8: Given a token flow unfolding μ = ((PES, l), x), PES = (E, Con,
≺), there exists a sequence μ0, . . . , μn of token flow unfoldings with μ0 =
((({einit} , {{einit}}, ∅), id), ∅), μn = μ and μi+1 = Ext(μi, Ci, yi, ti) for
i = 0, . . . , n− 1.

Proof. The first and second statement follow by construction. The third one can be
shown as follows: Fix one ordering of E = {e1, . . . , en}, such that ei ≺ ej =⇒ i < j
and denote Ei = E \ {ei, . . . , en}. Then μ0 � μE2 � . . . � μEn � μE , where μE′

is the prefix of μ defined by a left-closed set E′ ⊆ E. By definition, there are triples
(Ci

1, y
i
1, l(ei)), . . . , (Ci

m, yi
m, l(ei)), such that μEi+1 can be constructed from μEi by

appending l(ei)-occurrences in arbitrary order to Ci
j via yi

j for j = 1, . . . , m. Namely,
Ci

1, . . . C
i
m are the sets arising by omitting ei from every left-closed consistency set in

μEi+1 which includes ei and all yi
j are defined according to the intoken flow of ei. That

means suppi = {yi
k > 0} = {yi

j > 0} and yi
k|suppi = yi

j|suppi for all k, j. Therefore,

Faster Unfolding of General Petri Nets Based on Token Flows 25

actually in the first appending step the event ei is appended and in the further m − 1
steps only consistency sets are updated.

In the construction of the above proof, the resulting token flow unfolding does not
depend on the used ordering of the events in E and also does not depend on the used or-
dering of the consistency sets enabling a fixed event e. This means that extending finite
token flow unfoldings by new events in different orders and w.r.t. different consistency
sets leads to isomorphic token flow unfoldings if after each extension all consistency
sets which enable the considered event are updated. Observe moreover that by defini-
tion also the extension by a new event and the update by another event can be mixed
up. This gives the following statement:

Lemma 2. Let (N, m0) be a marked p/t-net. There is a token flow unfolding Unfmax

(N, m0), which is maximal w.r.t. � (no more events can be appended to finite prefixes)
and unique up to isomorphism.

Unfmax(N, m0) can be defined as the limit of a sequence of finite token flow unfold-
ings (μn)n∈N with μn+1 = Ext(μn, C, y, t), since the order of appending events does
not matter. Each finite left-closed consistency set C of Unfmax(N, m0) represents a
process πC of (N, m0) in the sense that the LPO lpoC = (C,≺ |C×C , l|C) is the
run underlying πC and xC = x|C×C is the canonical token flow function of πC (this
follows from [11] since xC satisfies (INIT), (IN), (OUT) and (MIN) on lpoC). More-
over, in Unfmax(N, m0) all processes of (N, m0) are represented by finite left-closed
consistency sets. Namely, for each process, the underlying run with assigned canonical
token flow defines a token flow unfolding and without loss of generality we can assume
that this token flow unfolding equals μk of a defining sequence of Unfmax(N, m0) for
some k.

Theorem 1. Let (N, m0) be a marked p/t-net. Then for each process π of (N, m0)
there is a left-closed consistency set C of Unfmax(N, m0) such that πC is isomorphic
to π.

To show that Unfmax(N, m0) avoids the generation of isomorphic processes, we prove
that only in special auto-concurrency situations processes of (N, m0) are represented
more than once in Unfmax(N, m0).

Theorem 2. Let (N, m0) be a marked p/t-net and π be a finite process of (N, m0). If
in Unfmax(N, m0) = ((PES, l), x), PES = (E, Con,≺), there are two finite sets
C �= C′ ∈ Conpre representing π, then there exist events e ∈ C, e′ ∈ C′, e �= e′ such
that e and e′ are strong identical and fulfill {e, e′} ∈ Con.

Proof. Assume there are finite C, C′ ∈ Conpre such that the processes πC and πC′ are
isomorphic. Let e ∈ C \ C′ with •e ⊆ C ∩ C′. Such an event e exists since C ∩ C′

defines a prefix of PES containing einit and therefore e can be chosen as a minimal
element w.r.t.≺ in C \C′. Let e′ ∈ C′ be the image of e under the isomorphism relating
πC and πC′ . Since πC and πC′ are isomorphic, the left-closed consistency sets of all
pre-events of e resp. e′ define isomorphic processes. Thus, either e and e′ are strong
identical, or there are f ∈ •e \ •e′ and f ′ ∈ •e′ \ •e fulfilling the same property

26 R. Bergenthum, R. Lorenz, and S. Mauser

as e and e′ that the left-closed consistency sets of all pre-events of f resp. f ′ define
isomorphic processes. Since the number of pre-events of f and f ′ is smaller than the
number of pre-events of e and e′ (i.e. the procedure can only finitely often be iterated),
and einit is a common pre-event, there is some pair of events g and g′ being strong
identical. By definition we have g ∈ C, g′ ∈ C′ and g �= g′. The definition of token
flow unfoldings ensures {g, g′} ∈ Con (since g, g′ are strong identical).

Since e and e′ are strong identical, they in particular have the same label and {e, e′} ∈
Con shows that they can occur concurrently in some marking.

Corollary 1. If (N, m0) allows no auto-concurrency (i.e. there is no reachable mark-
ing m, such that there is a transition t fulfilling ∀p ∈ P : m(p) ≥ 2·W ((p, t))), there is
a one-to-one correspondence between left-closed consistency sets of Unfmax(N, m0)
and (isomorphism classes of) processes.

A

B

AA

B

1

1 1

V

B

1

1 1

Fig. 6. P/t-net with token flow unfolding con-
taining two isomorphic (maximal) processes

Although we have seen that the non-
existence of strong identical events is not
enough to avoid isomorphic processes in
general, the number of isomorphic pro-
cesses represented in token flow unfold-
ings is significantly smaller than in the
standard unfolding approach (see the ex-
perimental results). Figure 6 shows a sit-
uation as discussed in Theorem 2, where
the token flow unfolding as introduced so
far is not small enough to completely ne-
glect isomorphic processes. Namely, the
two B-labeled events produce two iso-
morphic processes, despite they are not strong identical (because they have no common
pre-events). Observe however, that the two A-labeled pre-events of the two B-labeled
events are themselves strong identical, but are not in conflict (they are concurrent). To
avoid such situation, we must generalize the notion of strong identical events in the
sense that two strong identical events have not necessarily common, but strong iden-
tical pre-events. This setting is formally described by the notion of isomorphic strong
identical events as follows:

Let ((PES, l), x) be a prime token flow event structure. Let ∼=⊆ E ×E be the least
equivalence relation satisfying for all e, e′ ∈ E:

– ((l(e) = l(e′)) ∧ (•e = •e′) ∧ (∀f ∈ • : x(f, e) = x(f, e′))) =⇒ (e ∼= e′).
– ((l(e) = l(e′)) ∧ (∃I : •e → •e′ bijective : (∀f ∈ •e : f ∼= I(f) ∧ x(f, e) =

x(I(f), e′))) =⇒ (e ∼= e′).

Two ∼=-equivalent events e, e′ are called isomorphic strong identical. Basically, omit-
ting isomorphic strong identical events yields a token flow unfolding representing no
isomorphic (maximal) processes at all (can be deduced similarly as Theorem 2). But
considering such an approach we encountered several intricate technical problems. In
particular, a test for the isomorphic strong identical property is complicated, such that
the algorithmic applicability is questionable.

Faster Unfolding of General Petri Nets Based on Token Flows 27

3.2 Reduced Token Flow Unfolding

In a token flow unfolding there is still redundancy w.r.t causality and concurrency, since
there are consistency sets which induce processes which have the same underlying run
(but a different token flow distribution). Such consistency sets are caused by so-called
weak identical events (compare the introduction). To avoid weak identical events, since
many different processes produce one run and token flow distributions correspond to
processes, we store for each consistency set an example token flow distribution.

That means, we need to extend our model of prime event structures PES = (E,
Con,≺) extended by token flows such that we can store for each consistency set C ∈
Conpre an individual token flow xC :≺ |C×C → N

P . For such xC and an event e ∈ C
we denote INC(e) =

∑
e′≺e xC(e′, e) and OUTC(e) =

∑
e≺e′ xC(e, e′). We intro-

duce generalized prime token flow event structures as pairs ((PES, l), (xC)C∈Conpre),
where PES = (E, Con,≺) is a prime event structure, l is a labeling function on E
and (xC)C∈Conpre is a family of token flow functions xC :≺ |C×C → N

P satisfying
analogous conditions as prime token flow event structures:

– There is a unique minimal event einit w.r.t.≺ with l(einit) �= l(e) for all e �= einit.
– ∀C, C′ ∈ Conpre, ∀e ∈ C, e′ ∈ C′ : l(e) = l(e′) =⇒ INC(e) = INC′(e′).

Two distinct events e ∈ C, e′ ∈ C′, fulfilling l(e) = l(e′) ∧ •e = •e′, are called weak
identical.

Definition 9 (Reduced token flow unfolding). Let (N, m0), N = (P, T, F, W), be a
marked p/t-net. A reduced token flow unfolding of (N, m0) is a generalized token flow
unfolding ((PES, l), (xC)C∈Conpre) satisfying (IN), (OUT), (INIT),

(MIN): ∀C ∈ Conpre, ∀e, e′ ∈ C, e ≺s e′ : (∃p ∈ P : xC(e, e′)(p) � 1)

and having no weak identical events e, e′ satisfying {e, e′} �∈ Con.

Similar as for token flow unfoldings, prefixes can be defined. Given a reduced token
flow unfolding μ = ((PES, l), (xC)C∈Conpre), PES = (E, Con,≺), each non-empty
left-closed subset E′ ⊆ E defines a reduced token flow unfolding μ′ = ((PES′, l′),
(x′

C)C∈Con′
pre

), PES′ = (E′, Con′,≺′) by Con′ = {C ∈ Con | C ⊆ E′}, ≺′=≺
|E′×E′ , l′ = l|E′ and x′

C = xC . Each token flow unfolding μ′′ = ((PES′′, l′), x′),
PES′′ = (E′, Con′′,≺′), Con′′ ⊆ Con′ is called prefix of μ, denoted by μ′′ � μ.

Events can be appended to reduced token flow unfoldings similar as to token flow
unfoldings. The residual token flow ResC(e) and the residual marking Mar(C) are
defined analogously as before, using xC instead of x. If there are enough tokens in the
residual marking to fire a transition t, in general a new token flow distribution for the
considered consistency set has to be stored in order to have the possibility to append
a respective transition occurrence to the consistency set via an enabling function y.
Formally, such a token flow redistribution is given by a redistribution flow function
x :≺ |C×C → N

P fulfilling (IN), (OUT), (INIT) and ∀(e, e′) ∈ ≺s ∩ C × C : (∃p ∈
P : x(e, e′)(p) > 0) such that there is an enabling function y : C → N

P satisfying
∀e ∈ C : W (l(e), p) −∑

e≺e′ x(e, e′)(p) � y(e) and ∀p ∈ P : (
∑

e∈C y(e))(p) =
W ((p, t)). The functions x and y define a new event ex,y through l′(ex,y) = t, •ex,y =

28 R. Bergenthum, R. Lorenz, and S. Mauser

{e ∈ C | ∃e′ : y(e′) �= 0 ∧ (e = e′ ∨ e ≺ e′)} and ∀e ∈ •ex,y : x′(e, ex,y) = y(e).
If there is already a weak identical event not belonging to the consistency set, then this
weak identical event is added to the consistency set. Otherwise, the new event is added.

Definition 10 (Appending events). Let (N, m0), N = (P, T, F, W), be a marked p/t-
net and let μ = ((PES, l), (xC)C∈Conpre), PES = (E, Con,≺), be a reduced token
flow unfolding of (N, m0).

Let t ∈ T and C ∈ Conpre, such that Mar(C)(p) � W ((p, t)) for each p. Let x
be a redistribution function with associated enabling function y and ex,y be the corre-
sponding new event.

If there is no event e �∈ C which is weak identical to ex,y, then we define a gener-
alized prime token flow event structure Ext(μ, C, x, y, t) = ((PES′, l′), x′), PES′ =
(E′, Con′,≺′), through E′ = E∪{ex,y}, l′|E = l, Con′ = Con∪{C′∪{ex,y} | C′ ⊆
C}, ∀C′ ∈ Con′

pre, ex,y ∈ C′ : x′
C′ |≺ = x ∧ x′

C′ |C′×{ex,y} = x′ and ≺′ |E×E =≺.
We say that μ is extended by ex,y.

If there is an event eid �∈ C which is weak identical to ex,y, then define a prime token
flow event structure Ext(μ, C, x, y, t) = ((PES′, l′), x′), PES′ = (E′, Con′,≺′),
updating Con by enew through E′ = E, l′ = l, ≺′=≺, Con′ = Con ∪ {C′ ∪ {eid} |
C′ ⊆ C} and ∀C′ ∈ Con′

pre \ Conpre, eid ∈ C′ : x′
C′ |≺ = x ∧ x′

C′ |C′×{eid} = x′.
We say the μ is updated by ex,y.

In the reduced token flow unfolding, only one event having a certain set of pre-events is
introduced (except for concurrent events in one run), although there are different pos-
sible distributions of the token flows on ingoing edges of the event. Only one example
distribution of these possible token flows is stored.

For the reduced token flow unfolding analogous results hold as for token flow un-
foldings. By construction Ext(μ, C, x, y, t) is a reduced token flow unfolding. Similar
as for token flow unfoldings, a prefix relation � between reduced token flow unfold-
ings can be defined. Since through appending events, the token flow on old consistency
sets is not changed, μ � Ext(μ, C, x, y, t) holds. Moreover, every finite reduced to-
ken flow unfolding μ can be constructed by a sequence of appending operations from
μ0 = ((({einit}, {{einit}}, ∅), id), ∅), where C, x, y and t are chosen according to μ.

Appending events to a token flow unfolding in different orders leads to reduced token
flow unfoldings with isomorphic underlying prime event structures. Isomorphic pre-
fixes (in different such reduced token flow unfoldings) may have different token flow
distributions, representing processes with isomorphic underlying runs. In this sense, the
order of appending events plays no role and we can define a maximal (w.r.t.�) reduced
token flow unfolding Unfred(N, m0) as the limit of a sequence of finite token flow
unfoldings (μn)n∈N with μn+1 = Ext(μn, C, x, y, t). Unfred(N, m0) is unique up to
isomorphism of the underlying prime event structure and up to the token flow stored for
a consistency set, where different possible token flows produce isomorphic runs.

Each left-closed consistency set C of Unfred(N, m0) represents a process πC of
(N, m0) in the sense that the LPO lpoC = (C,≺ |C×C , l|C) is the run underlying πC

and xC is the canonical token flow function of πC . Moreover, in Unfred(N, m0) all
runs underlying a process of (N, m0) are represented by consistency sets (without loss
of generality we can start the construction of Unfred(N, m0) with an arbitrary process
representing a specific run).

Faster Unfolding of General Petri Nets Based on Token Flows 29

Unfred(N, m0) avoids the generation of processes with isomorphic underlying runs.
Namely, only in special auto-concurrency situations runs of (N, m0) are represented
more than once in Unfred(N, m0). It can be seen similar as for token flow unfoldings
that, if there are two sets C �= C′ ∈ Conpre representing processes with isomorphic
underlying runs, then there exist events e ∈ C, e′ ∈ C′, e �= e′ such that e and e′

are weak identical and fulfill {e, e′} ∈ Con. That means, if (N, m0) allows no auto-
concurrency, there is a one-to-one correspondence between left-closed consistency sets
of Unfred(N, m0) and (isomorphism classes of) runs.

As a topic of future research, similar as for strong identical events and isomorphic
processes, to avoid isomorphic runs, we can generalize the notion of weak identical
events in the sense that two weak identical events have not necessarily common, but
weak identical pre-events. This leads to the notion of isomorphic weak identical events
analogously as for isomorphic strong identical events.

4 Algorithms

In this section we briefly describe two algorithms to construct unfolding models of a
marked p/t-net with finite behavior. The algorithms essentially follow the Definitions 8
and 10. We implemented both methods.

The first algorithm computes a token flow unfolding equal to the maximal token flow
unfolding, except that some isomorphic processes caused by auto-concurrency of tran-
sitions are omitted. Starting with the token flow unfolding consisting only of the initial
event einit and having the only consistency set {einit}, events are appended to maximal
left-closed consistency sets in a breadth-first way. In each iteration step, the algorithm
picks the next consistency set C and, for each transition t ∈ T , stores all enabling
functions for appending a t-occurrence. The enabling functions can be computed from
the residual token flows of events e ∈ C and the residual marking of C. Finding all
possible choices of enabling functions is a combinatorial problem. For each enabling
function, a new event is generated and the old token flow unfolding is either extended
or updated by the new event in a similar way as described in Definition 8. In contrast to
Definition 8, in each appending step only maximal left-closed consistency sets are con-
structed. Therefore, in some special cases of auto-concurrency the described algorithm
does not construct all possible isomorphic strong identical events. That is because not
all left-closures of subsets of strong identical events are considered as consistency sets
(if there are two concurrent strong identical events, one is appended first and the second
is only appended to consistency sets including the first appended event). Therefore, in
general the calculated token flow unfolding contains less events than the maximal token
flow unfolding. But calculating these events (which are isomorphic strong identical to
already appended events) would only lead to isomorphic processes (i.e. the unfolding
computed by the algorithm still represents all processes) and would worsen the runtime.

The second algorithm computes a reduced token flow unfolding equal to the max-
imal reduced token flow unfolding, except that only processes with minimal causality
are represented. Starting with the token flow unfolding consisting only of the initial
event einit and having the only consistency set {einit}, the algorithm essentially ap-
pends events to prefixes of left-closed consistency sets in a breadth-first way. In each

30 R. Bergenthum, R. Lorenz, and S. Mauser

iteration step, the algorithm picks the next consistency set C and tries to append each
transition t to prefixes of C. The aim is to find all minimal prefixes which allow to
append a t-occurrence. We say that a transition occurrence can be appended to a prefix
of a consistency set C, if there exists a token flow function fulfilling (IN), (OUT) and
(INIT) of the resulting LPO. In [11] a polynomial algorithm to check this and to con-
struct such a token flow function in the positive case was presented. For each computed
token flow function, a new event is generated and the old token flow unfolding is either
extended or updated by the new event in a similar way as described in Definition 8
(the computed token flow function defines the redistribution function and the enabling
function). Since the algorithm appends transition occurrences only to minimal prefixes
of C for which this is possible, the resulting reduced token flow unfolding contains all
runs with minimal causality of the given p/t-net. In this sense it represents the complete
partial order behavior. Observe that weak identical events are only constructed in cases
of auto-concurrency, and that only left-closed consistency sets are constructed (each
appending step leads a maximal left-closed consistency set). In contrast to the construc-
tion algorithm of the token flow unfolding, here all isomorphic runs appearing through
auto-concurrency of events are computed, because all left-closures of subsets of weak
identical events are considered as prefixes of consistency sets.

5 Experimental Results

In this section we experimentally test our implementation of the construction algorithms
having the standard unfolding algorithm as a benchmark.

To construct the standard unfolding, we use an adapted version of the unfolding al-
gorithm in [4]. When interpreting the results, one has to pay attention that this unfolding

Standard unfolding Token flow unfolding Reduced token flow
unfolding

n m x y E P time mem E P time mem E P time mem
1 3 2 3 19 12 82ms 1133kb 5 2 25ms 557kb 4 1 42ms 625kb
2 4 2 3 267 132 1406ms 2548kb 15 6 43ms 667kb 9 4 76ms 865kb
1 3 4 2 91 315 2721ms 2365kb 11 3 37ms 704kb 7 1 59ms 917kb
1 3 4 3 175 840 23622ms 4640kb 9 6 40ms 685kb 5 1 55ms 754kb
3 4 2 3 799 612 90665ms 5067kb 22 10 54ms 761kb 12 7 103ms 1160kb
3 4 4 3 - - - - 43 56 271ms 2440kb 13 3 102ms 1159kb
3 4 5 3 - - - - 45 104 672ms 6196kb 17 7 178ms 1149kb

n m k
1 1 1 41 22 133ms 1011kb 13 6 47ms 834kb 13 6 103ms 1135kb
1 2 1 47 28 180ms 1270kb 13 6 49ms 841kb 13 6 114ms 1185kb
2 1 1 71 58 469ms 1325kb 17 9 65ms 917kb 15 7 145ms 1211kb
2 2 1 77 67 694ms 1438kb 17 9 65ms 917kb 15 7 145ms 1235kb
1 1 2 - - - - 179 150 640ms 5200kb 71 68 8561ms 2580kb
2 2 2 - - - - 239 413 3498ms 16991kb 95 147 54371ms 5414kb

Fig. 7. Experimental results: E shows the number of events and P the number of maximal pro-
cesses in the constructed unfolding

Faster Unfolding of General Petri Nets Based on Token Flows 31

algorithm is not completely runtime optimized, but the remaining improvement poten-
tial should be limited. We compare the runtime, memory consumption as well as the
size and the number of maximal processes of the resulting event structures. The up-
per table in Figure 7 shows a test of the parameterized version of the example net of
Figure 1 shown in Figure 8. The lower table in Figure 7 shows a test of the net in
Figure 9 modeling for example a coffee automata.

A

2

B

C

n m

x

y

x

Fig. 8. Parameterized test net N1

A B

F

C D

E3

2

n

m

k

Fig. 9. Parameterized test net N2

The experimental results indicate that our new unfolding approaches are superior to the
standard approach. For the tested examples, the runtime, memory consumption and the
sizes of the resulting structure of our new algorithms are a lot better. It is clear that the
standard unfolding is least as big as the token flow unfolding and the reduced token flow
unfolding, but usually considerably bigger, if the net contains arc weights or a non-safe
initial marking. In these cases our new algorithms are significantly faster and use less
memory. Comparing the two new approaches shows that in almost every tested case the
calculated reduced token flow unfolding is actually smaller than the calculated token flow
unfolding, but the redistribution of token flows in each step worsens the runtime.

6 Conclusion

In this paper we propose two new unfolding semantics for p/t-nets based on the con-
cepts of prime event structures and token flows. The definitions of the two unfolding
models are motivated by algorithmic aspects. We develop a construction algorithm for
both unfolding models, if they are finite. We show that there are many cases in which
our implemented algorithms are significantly more efficient than standard unfolding
methods for p/t-nets.

We finally want to mention that the two presented unfolding models are a conserva-
tive extension of the unfolding model introduced in [5] for safe nets. That means, for
safe nets, the standard unfolding, the token flow unfolding and the reduced token flow
unfolding coincide.

Topic of further research is the application of isomorphic weak resp. strong identical
events toavoid isomorphicrunsresp. isomorphicprocessesatall, theadaptionofthe theory
of complete finite prefixes to ourapproach and theadaption of model checking algorithms.
Although there are complete finite prefixes which also avoid redundant events, we believe
that our approach yields faster construction algorithms since such complete finite prefixes
rely on complex adequate orders which cannot be implemented efficiently.

32 R. Bergenthum, R. Lorenz, and S. Mauser

References

1. Best, E., Devillers, R.: Sequential and concurrent behaviour in petri net theory. Theoretical
Computer Science 55(1), 87–136 (1987)

2. Couvreur, J.-M., Poitrenaud, D., Weil, P.: Unfoldings for general petri nets. University de
Bordeaux I (Talence, France), University Pierre et Marie Curie (Paris, France) (2004),
http://www.labri.fr/perso/weil/publications/depliage.pdf

3. Desel, J., G., Neumair, C.: Finite unfoldings of unbounded petri nets. In: Cortadella, J.,
Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 157–176. Springer, Heidelberg (2004)

4. Desel, J., Juhás, G., Lorenz, R.: Viptool-homepage (2003),
http://www.informatik.ku-eichstaett.de/projekte/vip/

5. Engelfriet, J.: Branching processes of petri nets. Acta Informatica 28(6), 575–591 (1991)
6. Esparza, J., Heljanko, K.: Implementing ltl model checking with net unfoldings. In: Dwyer,

M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 37–56. Springer, Heidelberg (2001)
7. Esparza, J., Römer, S., Vogler, W.: An improvement of mcmillan’s unfolding algorithm. For-

mal Methods in System Design 20(3), 285–310 (2002)
8. Goltz, U., Reisig, W.: The non-sequential behaviour of petri nets. Information and Con-

trol 57(2/3), 125–147 (1983)
9. Haar, S.: Branching processes of general s/t-systems and their properties. Electr. Notes Theor.

Comput. Sci. 18 (1998)
10. Hoogers, P., Kleijn, H., Thiagarajan, P.: An event structure semantics for general petri nets.

Theoretical Computer Science 153(1&2), 129–170 (1996)
11. Juhás, G., Lorenz, R., Desel, J.: Can i execute my scenario in your net? In: Ciardo, G.,

Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 289–308. Springer, Heidelberg
(2005)

12. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged processes: a new condensed
representation of petri net behaviour. Acta Inf. 43(5), 307–330 (2006)

13. Khomenko, V., Koutny, M.: Towards an efficient algorithm for unfolding petri nets. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 366–380. Springer,
Heidelberg (2001)

14. Khomenko, V., Koutny, M.: Branching processes of high-level petri nets. In: Garavel, H.,
Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 458–472. Springer, Heidelberg (2003)

15. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of petri net unfoldings. Acta
Inf. 40(2), 95–118 (2003)

16. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification
of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS,
vol. 663, pp. 164–177. Springer, Heidelberg (1993)

17. Meseguer, J., Montanari, U., Sassone, V.: On the model of computation of place/transition
petri nets. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 16–38. Springer, Heidel-
berg (1994)

18. Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition petri nets.
Mathematical Structures in Computer Science 7(4), 359–397 (1997)

19. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part i.
Theoretical Computer Science 13, 85–108 (1981)

20. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986.
LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

http://www.labri.fr/perso/weil/publications/depliage.pdf
http://www.informatik.ku-eichstaett.de/projekte/vip/

Decomposition Theorems for

Bounded Persistent Petri Nets

Eike Best1 and Philippe Darondeau2

1 Parallel Systems, Department of Computing Science
Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany

eike.best@informatik.uni-oldenburg.de
2 IRISA, campus de Beaulieu, F-35042 Rennes Cedex

darondeau@irisa.fr

Abstract. We show that the cycles of a finite, bounded, reversible, and
persistent Petri net can be decomposed in the following sense. There ex-
ists in the reachability graph a finite set of transition-disjoint cycles such
that any other cycle through a given marking is permutation equivalent
to a sequential composition of cycles from this set.

We show that Parikh images of cycles of a finite, bounded, and per-
sistent Petri net form an additive monoid with a finite set of transition-
disjoint generators (for any two distinct generators Ψ(γ) and Ψ(γ′),
Ψ(γ)(t) = 0 or Ψ(γ′)(t) = 0 for every transition t).

Persistent nets are a very general class of conflict-free nets. Bounded-
ness means, as usual, that the reachability graph is finite. Reversibility
means that the reachability graph is strongly connected.

1 Introduction

Petri nets have traditionally been motivated by their ability to express concur-
rency. The subclass of finite Petri nets without concurrency may still exhibit
conflict (choices, or nondeterministic alternatives) and much resembles the class
of finite automata. Subclasses of Petri nets without conflicts have also been stud-
ied extensively. Perhaps the best known – and comparatively restricted – such
class are the marked graphs [3].

There exists a well-known hierarchy of net classes encompassing marked
graphs, of which free-choice nets [5] are a prominent one. Petri net structure
theory has mainly been applied to this hierarchy. However, structure theory has
been applied to a lesser degree to the persistent nets [8], a class of nets that is
significantly larger than marked graphs since it contains all conflict-free nets. E.g., a
manufacturing process in which three operations A,B,C are performed according to
the cyclic workflow ABACABAC... may be described by a persistent net with three
transitions but not by any marked graph with three transitions. Persistent nets are
incomparable to free-choice nets – neither class is a subset of the other.

Some early results about persistent nets are Keller’s theorem [7], which will be
recalled in a later part of this paper, the famous semilinearity result of Landweber
and Robertson [8], which states that the set of reachable markings of a persistent

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 33–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

34 E. Best and P. Darondeau

net is semilinear, and Grabowski’s proof of the decidability of persistence of
vector addition systems [6]. Since then, however, some new open questions have
arisen in this context.

It is the purpose of this paper to go some way towards solving such questions
and, more generally, to help making structure theory more amenable to per-
sistent nets. In particular, we show that for bounded and reversible persistent
nets, a decomposition of the cycles of the reachability graph (and thus, of the
realisable T-invariants) into smaller, disjoint cycles can be found. We propose
a similar decomposition of the Parikh images of cycles for bounded persistent
nets. The motivation of these developments is to try reducing the gap between
the linear algebraic properties of nets (e.g. concerning T-invariants) and their
more combinatorial properties (e.g. which T-invariants are realised by cycles).

2 Definitions

A Petri net (S, T, F, M0) consists of two finite and disjoint sets S (places) and T
(transitions), a function F : ((S × T) ∪ (T × S))→ N (flow) and a marking M0

(the initial marking). A marking is a mapping M : S → N.
The incidence matrix C is an S × T -matrix of integers where the entry cor-

responding to a place s and a transition t is, by definition, equal to the number
F (t, s)−F (s, t). A T-invariant J is a vector of integers with index set T satisfying
C · J = 0 where · is the inner (scalar) product, and 0 is the vector of zeros with
index set S. J is called semipositive if J(t) ≥ 0, for all t ∈ T , and J is not the
null vector. Two semipositive T-invariants J and J ′ are called transition-disjoint
if ∀t ∈ T : J(t) = 0∨ J ′(t) = 0. For a sequence σ ∈ T ∗ of transitions, the Parikh
vector Ψ(σ) is a vector of natural numbers with index set T , where Ψ(σ)(t) is
equal to the number of occurrences of t in σ.

A transition t is enabled (or activated, or firable) in a marking M (denoted by
M [t〉) if, for all places s, M(s) ≥ F (s, t). If t is enabled in M , then t can occur (or
fire) in M , leading to the marking M ′ defined by M ′(s) = M(s)+F (t, s)−F (s, t)
(notation: M [t〉M ′). We apply definitions of enabledness and of the reachability
relation to transition (or firing) sequences σ ∈ T ∗, defined inductively: M [ε〉 and
M [ε〉M are always true; and M [σt〉 (or M [σt〉M ′) iff there is some M ′′ with
M [σ〉M ′′ and M ′′[t〉 (or M ′′[t〉M ′, respectively).

A marking M is reachable (from M0) if there exists a transition sequence
σ such that M0[σ〉M . The reachability graph of N , with initial marking M0,
is the graph whose vertices are the markings reachable from M0 and where
an edge labelled with t leads from M to M ′ iff M [t〉M ′. Figure 1 shows an
example where on the right-hand side, M0 denotes the marking shown in the
Petri net on the left-hand side. The marking equation states that if M [σ〉M ′,
then M ′ = M + C · Ψ(σ). Thus, if M [σ〉M then Ψ(σ) is a T-invariant.

A Petri net is k-bounded if in any reachable marking M , M(s) ≤ k holds for
every place s, and bounded if there is some k such that it is k-bounded. A finite
Petri net (and we consider only such nets in the sequel) is bounded if and only
if the set of its reachable markings is finite.

Decomposition Theorems for Bounded Persistent Petri Nets 35

a

c

b

d

M0

a

c

b

d

b

d

a

c

Fig. 1. A persistent Petri net (l.h.s.) and its reachability graph (r.h.s.)

A net N = (S, T, F, M0) is called output-nonbranching if
∑

t∈T F (s, t) ≤ 1 for
all places s, and a marked graph if

∑
t∈T F (s, t) ≤ 1 as well as

∑
t∈T F (t, s) ≤ 1,

for all places s.

3 Persistent Nets, and Related Notions

A net N , with some initial marking, will be called persistent, if whenever M [t1〉
and M [t2〉 for a reachable marking M and transitions t1
= t2, then M [t1t2〉. Note
that output-nonbranching nets, and a fortiori, marked graphs, are automatically
persistent, for any initial marking.

Two sequences M [σ〉 and M [σ′〉, firable from M , are said to arise from each
other by a transposition if they are the same, except for the order of an adjacent
pair of transitions, thus:

σ = t1 . . . tktt′ . . . tn and σ′ = t1 . . . tkt′t . . . tn.

Two sequences M [σ〉 and M [σ′〉 are said to be permutations of each other (from
M , written σ ≡M σ′) if they are both firable at M and arise out of each other
through a (possibly empty) sequence of transpositions.

Note that the permuted transitions t and t′ do not need to be concurrently en-
abled by the marking preceding them, i.e., the marking reached after M [t1 . . . tk〉.
For example, in a net with one single-token place s and two transitions t and
t′ that are both input and output transitions of s (with arc weight 1), firing
sequences tt′ and t′t are permutations of each other.

By τ−• σ, we mean the residue of τ left after cancelling successively in this
sequence the leftmost occurrences of all symbols from σ, read from left to right.
Formally, τ−• σ can be defined by induction on the length of σ:

τ−• ε = τ

τ−• t =
{

τ , if there is no transition t in τ
the sequence obtained by erasing the leftmost t in τ , otherwise

τ−• (tσ) = (τ−• t)−• σ.

36 E. Best and P. Darondeau

From this definition, it should be clear that τ−• σ and σ−• τ contain no common
transitions. It may be noted that the residual operation −• satisfies the following
two properties, reminiscent of the axiomatic properties of the residual operation
↑ in the concurrent transition systems studied in [9]:

τ−• (σσ′) = (τ−• σ)−• σ′

(ττ ′)−• σ = (τ−• σ)(τ ′−• (σ−• τ))

One may therefore expect that the set of firing sequences of a persistent net forms
a concurrent transition system with a residual operation of the form M [τ〉M1 ↑
M [σ〉M2 = M2[τ−• σ〉M3. This is essentially what the following theorem shows.

Theorem 1. Keller [7]
Let N be a persistent net and let τ and σ be two firing sequences starting from
some reachable marking M . Then

τ(σ−• τ) and σ(τ−• σ)

are also firing sequences from M , and what is more, they are permutations of
each other, i.e., τ(σ−• τ) ≡M σ(τ−• σ). In particular, the marking reached after
τ(σ−• τ) equals the marking reached after σ(τ−• σ).

As the above (Keller’s) theorem is the basis for our subsequent results, we include
a proof of this theorem in the Appendix. In the end of the present section, we
establish a series of consequences of Theorem 1.

Corollary 1. Directedness of persistent nets
Let N be a persistent net and let M1 and M2 be two reachable markings. Then
there is some marking M3 which is reachable from M1 and from M2.

Proof: By the definition of reachability, there are two sequences τ and σ leading
from the initial marking M0 to M1 and to M2, respectively. The claim follows
from Theorem 1, applied to M = M0. �
If two sequences are permutations of each other (from some marking), then they
have the same Parikh vector. In persistent nets, the converse is also true:

Lemma 1. Parikh-equivalence and ≡
Let N be a persistent net, M a reachable marking, and M [τ〉 and M [σ〉 two
transition sequences which are firable at M . If Ψ(τ) = Ψ(σ), then τ ≡M σ.

Proof: By the definitions of Parikh vector and −• , Ψ(τ) = Ψ(σ) if and only if
both τ−• σ = ε and σ−• τ = ε. The lemma follows by Theorem 1. �
Lemma 2. A permutation lemma

Let N be persistent and let M [γ〉 and M [κγ〉 be two firing sequences from M ,
with transition sequences γ and κ.

Then there is a firing sequence M [γκ′〉 such that Ψ(κ) = Ψ(κ′) and κγ ≡M

γκ′.

That is, κ can as a whole be permuted with γ, albeit, possibly, up to transition
re-orderings within κ.

Decomposition Theorems for Bounded Persistent Petri Nets 37

Proof: By Keller’s theorem, M [γ〉 and M [κγ〉 imply that M [γ(κγ−• γ)〉. Put
κ′ = κγ−• γ. Clearly, Ψ(κγ−• γ) = Ψ(κ), hence Ψ(γκ′) = Ψ(κγ). By Lemma 1,
κγ ≡M γκ′ follows since both sequences are firable from M . �
Lemma 3. Disjoint sequences contradict boundedness
Let N be bounded and persistent and let τ and σ be two firing sequences, both
firable at M and leading to the same marking M̃ . Further, suppose that M
= M̃ .
Then there is at least one transition which occurs both in τ and in σ.

Proof: We will prove the lemma by contradiction. First, note that by M
= M̃
and because τ and σ lead to M̃ , τ
= ε
= σ. Assume that τ and σ are transition-
disjoint. Then τ−• σ = τ and σ−• τ = σ. By (the proof of) Keller’s theorem, we
get a special case of the diamond in Figure 7, namely Diamond 1 in Figure 2.
By assumption, the markings reached after τ and σ are the same, so that the
West and East corners of Diamond 1 are the same marking M̃ . Because σ is
firable from the West corner, it is also firable from the East corner, and thus we
get Diamond 2, again from transition-disjointness. The West and East corners of
Diamond 2 are again the same, because both are the marking obtained by firing
σ from M̃ . In this way, we get an infinite sequence M [σ〉M̃ [σ〉M̂ [σ〉M [σ〉 . . .
along the Eastern ridge of the diamonds. Moreover, since M
= M̃ , there is some
place s with M(s)
= M̃(s). Since the effect of σ is monotonic, it must be the case
that both M̃(s)
= M̂(s) and M(s)
= M̂(s). Thus we also have that M̂ is not in
{M, M̃}, and that M is not in {M, M̃, M̂}, and so on. However, this contradicts
boundedness. Hence, our assumption was wrong, and instead, the claim of the
lemma is true. �

Diamond 1

Diamond 2

M

�M

�M

�M

�M

τ σ

σ τ σ

Fig. 2. Completing diamonds, starting from M

38 E. Best and P. Darondeau

The principle used in the proof of Lemma 3 is typical of bounded persistent nets
and it served also for proving Prop. 8 in [4].

In the sequel, we focus on cycles in reachability graphs of bounded persistent
nets. Section 4 provides a general analysis of cycles. Section 5 proposes a sequen-
tial decomposition of cycles in bounded persistent and reversible nets. Section 6
proposes an algebraic decomposition of cycles in bounded persistent nets.

4 Analysis of Cycles in the Reachability Graph

A transition sequence τ is called cyclic if C ·Ψ(τ) = 0, i.e. if Ψ(τ) is a T-invariant.
From the marking equation, τ is cyclic if and only if M [τ〉M , for all markings
M which activate τ .

Definition 1. Decomposability and simplicity
A cyclic transition sequence τ is called decomposable if τ = τ1τ2 such that τ1

and τ2 are cyclic and τ1
= ε
= τ2.
A firing sequence M [τ〉M ′ is called a cycle if τ is cyclic, i.e. if M = M ′.
A cycle M [τ〉M is called simple if there is no permutation τ ′ ≡M τ such that

τ ′ is decomposable.

In other words, a non-simple sequence can be permuted such that the permuted
sequence has a smaller cyclic subsequence leading from some marking back to
the same marking. In Figure 1, for example, we have that:

abcd is not decomposable
acbd is decomposable, namely by τ1 = ac and τ2 = bd
M0[ac〉M0 is simple
M0[abcd〉M0 is not simple, because of the permutation M0[acbd〉M0.

Figure 1 demonstrates that two simple cycles in the reachability graph can be
different, even if they start at the same marking. For example, there are two
transition-disjoint simple cycles through M0, viz. M0[ac〉M0 and M0[bd〉M0. We
now show that in general, if two such simple cycles start with the same transition,
then they have the same set and the same number of transitions, i.e., their Parikh
vectors are identical.

Lemma 4. Nondisjoint simple cycles are unique, up to permutation
Let N , with some initial marking, be bounded and persistent. Let M [aτ〉M and
M [aσ〉M , with some transition a and transition sequences τ and σ (see Figure
3). Suppose that both M [aτ〉M and M [aσ〉M are simple. Then aτ ≡M aσ.

Proof: First, we prove that τ−•σ = ε implies σ−• τ = ε. To see this, suppose that
we have τ−• σ = ε and σ−• τ
= ε; we derive a contradiction.

By Keller’s theorem, aτ(σ−• τ) is firable from M and permutes aσ(τ−•σ), from
M . Because aσ = aσ(τ−• σ) reproduces M , so does aτ(σ−• τ). But because aτ
reproduces M as well, we have

Decomposition Theorems for Bounded Persistent Petri Nets 39

M

M ′

M M

a

τ σ

Fig. 3. Two simple cycles with the same initial transition a

M [a τ︸︷︷︸
�=ε

〉M [σ−• τ︸︷︷︸
�=ε

〉M.

But this contradicts the simplicity of M [aσ〉M , since aσ ≡M aτ(σ−• τ).
By symmetry, the proof of the lemma can be split into two separate cases:

τ−• σ = ε = σ−• τ or τ−• σ
= ε
= σ−• τ.

Case 1: τ−• σ = ε = σ−• τ .
Then we have Ψ(τ) = Ψ(σ), whence also Ψ(aτ) = Ψ(aσ), and the desired result
a τ ≡M a σ follows directly from Lemma 1.
Case 2: τ−• σ
= ε
= σ−• τ .

We will derive a contradiction, showing that actually only Case 1 remains, and
thus proving the lemma.

Transition a cannot occur in both τ−•σ and σ−•τ , since the two sequences have
no common transitions. Without loss of generality, we may assume that a does
not occur in τ−• σ. Next, we prove the following in turn:

1. The sequences σ−• τ and τ−• σ are both firable from M , and when fired from
M , they lead to the same marking, say to M̃ .

2. M̃
= M .

When this is proved, we may use boundedness and apply Lemma 3, yielding
the result that σ−• τ and τ−• σ must have some transition in common. This is a
contradiction to their definition.

Proof of 1.: Both aτ and aσ are firable from M , leading to M . By Keller’s
theorem, aτ(aσ−• aτ) and aσ(aτ−• aσ) are firable from M and moreover, they
lead to the same marking, M̃ . Thus, aτ−• aσ and aσ−• aτ can both be fired from
M and they lead to M̃ . Clearly aσ−• aτ = σ−• τ and aτ−• aσ = τ−• σ, therefore
M [σ−• τ〉M̃ and M [τ−• σ〉M̃ .

Proof of 2.: By contradiction. Assume that M̃ = M .
First of all, we have the following reproducing firing sequence:

M [τ−• σ〉M, (1)

40 E. Best and P. Darondeau

simply by Part 1. above, and by M̃ = M . Note that τ−• σ is just the sequence of
transitions (in the correct order) from τ that are not matchable with transitions
in σ, in the sense of (our proof of) Keller’s theorem.

Next, we will show that the following is also a firing sequence:

M [a(τ−• (τ−• σ))〉M. (2)

Note that τ−•(τ−•σ) is exactly (again in the correct order) the remaining sequence
of transitions from τ , i.e. the ones that are matchable with transitions from σ.

We now prove (2). Let M [a〉M ′ (Figure 3). By M [a〉M ′ and M [τ−•σ〉M (Equa-
tion (1)), Keller’s theorem yields

M [a〉M ′ [(τ−• σ)−• a 〉. (3)

Because a is not contained in τ−• σ, we have ((τ−• σ)−• a) = (τ−• σ). Hence, τ−• σ is
firable from M ′. Moreover, because τ−•σ reproduces M , Ψ(τ−•σ) is a T-invariant,
and the second part of Equation (3) yields

M ′[τ−• σ〉M ′. (4)

By Equation (4) and M ′[τ〉M (cf. Figure 3), and by Keller’s theorem,

M ′[τ−• σ〉M ′[τ−• (τ−• σ)〉M. (5)

The final marking is indeed M , since by Keller’s theorem, it must coincide with
the marking reached by the firing sequence M ′[τ〉M [(τ−•σ)−•τ〉 and (τ−•σ)−•τ = ε.
Combining M [a〉M ′ (cf. Figure 3) and Equations (1) and (5), we have the firing
sequence

M [(τ−• σ)〉M [a(τ−• (τ−• σ))〉M. (6)

The second part of (6) proves (2). Moreover, the sequence (6) is decomposable,
because both parts are nonempty: τ−•σ
= ε by assumption, and a(τ−• (τ−•σ))
= ε
because a is contained in it. But because the sequence M [(τ−• σ)a(τ−• (τ−• σ))〉M
is a permutation of M [a(τ−•σ)(τ−• (τ−•σ))〉M and hence also of M [aτ〉M by con-
struction and by Lemma 1, we get a contradiction to the simplicity of M [aτ〉M .

Hence the assumption was wrong, and M̃
= M must hold true. This ends the
proof of 2., and thus also the proof of the lemma. �

5 Sequential Decomposition of Cycles

For a large class of persistent nets, Lemma 4 leads to a decomposition theorem.
Call a net with initial marking reversible if its reachability graph is strongly
connected, i.e., if its initial marking is reachable from every reachable marking.
First, we show a strengthened version of Lemma 4.

Lemma 5. Simple cycles with common transitions are Parikh-equivalent

Let N , with some initial marking, be bounded, reversible, and persistent. More-
over, let M, M ′ be two reachable markings and let M [aτ〉M and M ′[aσ〉M ′ be
two simple cycles (not necessarily M = M ′). Then Ψ(aτ) = Ψ(aσ).

Decomposition Theorems for Bounded Persistent Petri Nets 41

Proof: We have

1 M [aτ〉M [ξ〉M ′[aσ〉M ′[χ〉M
2 M [ξ〉M ′[ρ〉M ′[aσ〉M ′[χ〉M with Ψ(ρ) = Ψ(aτ)

Line 1 uses the assumptions, and sequences ξ and χ exist because of strong
connectedness. Line 2 follows by Lemma 2 from M , with κ = aτ and γ = ξ. We
use here the fact that aτ reproduces M , as the preconditions M [aτξ〉 and M [ξ〉
of Lemma 2 follow from the first M and the second M , respectively.

Now suppose that M ′[ρ〉M ′ is a simple cycle. Using the fact that M ′ enables
a we can move the first a in ρ to the front, getting a simple cycle of the form
M ′[aρ′〉M ′ with aρ′ ≡M ′ ρ. Then the claim of the lemma follows immediately
from Lemma 4, the fact that M ′[aσ〉M ′ is also a simple cycle, and the fact that
Ψ(aρ′) = Ψ(ρ) = Ψ(aτ).

Otherwise, M ′[ρ〉M ′ is not a simple cycle and can be split in this way:

M ′[ρ1〉M ′[ρ2〉M ′, with ρ ≡M ′ ρ1ρ2 and ρ1
= ε
= ρ2.

We derive a contradiction. Since a is in ρ, it is also in ρ1ρ2. W.l.o.g., we may
assume one occurrence of a to be in ρ2 (otherwise, we may just exchange the roles
of ρ1 and ρ2 because ρ1ρ2 ≡M ′ ρ2ρ1 by Lemma 2), and we may also assume that
M ′[ρ2〉M ′ is simple (otherwise we just keep splitting and move an appropriate
one of the simple cycles so obtained to the end). Then we may continue the
above sequence as follows:

3 M [ξ〉M ′[ρ1〉M ′[ρ2〉M ′[aσ〉M ′[χ〉M with ρ ≡M ′ ρ1ρ2

4 M [ξ〉M ′[ρ1〉M ′[aρ′2〉M ′[aσ〉M ′[χ〉M with Ψ(aρ′2) = Ψ(ρ2) = Ψ(aσ)

5 M [ξ〉M ′[ρ1〉M ′[aσ〉M ′[ρ̃2〉M ′[χ〉M with Ψ(ρ̃2) = Ψ(aρ′2)

6 M [ξ〉M ′[ρ1〉M ′[aσ〉M ′[χ〉M [ρ̃2
′〉M with Ψ(ρ̃2

′) = Ψ(ρ̃2) = Ψ(aρ′2)

Line 3 simply follows from line 2 by the definitions of ρ1 and ρ2. Line 4 comes from
line 3 by Lemma 2 from M ′, with κ being the initial a-free part of ρ2 and γ = a.
The fact that Ψ(aρ′2) = Ψ(aσ) comes from Lemma 4, since both M ′[aρ′2〉M ′ and
M ′[aσ〉M ′ are actually simple cycles. Line 5 is another application of Lemma 2
from M ′, with κ = aρ′2 and γ = aσ. Finally, line 6 stems from line 5 by Lemma
2 with κ = ρ̃2 and γ = χ.

Line 6 shows that M can be reproduced by ρ̃2
′. By assumption, M can also

be reproduced by aτ . By Keller’s theorem, both ρ̃2
′(aτ−• ρ̃2

′) and aτ(ρ̃2
′−• aτ)

are firable from M , and moreover, ρ̃2
′(aτ−• ρ̃2

′) ≡M aτ , since ρ̃2
′−• aτ = ε by the

definition of ρ̃2
′ (tracing back through the above, one sees that ρ̃2

′ permutes a
proper subsequence of ρ and hence of aτ). This is clearly a decomposition, since
ρ̃2

′ is nonempty and aτ−• ρ̃2
′ is nonempty as well, for it has the same Parikh

vector as ρ1. This contradicts the simplicity of M [aτ〉M . �
Next, we strengthen Lemma 5 to the case where the simple cycles under consid-
eration do not start with the same transition.

42 E. Best and P. Darondeau

Lemma 6. Advancing in a cycle preserves simpleness
Let N be a bounded, reversible, persistent net. Let M be a reachable marking

and M [t1 . . . tn〉M a simple cycle with n ≥ 1. Let M [t1〉M̂ .
Then the cycle M̂ [t2 . . . tn〉M [t1〉M̂ is also simple.

Proof: We prove the lemma by induction on n.
Base: n = 1. Then M = M̂ , and the claim is trivially true.
Step: n > 1. Assume that the claim holds for all m < n; we prove it by contra-
diction for n.

Assume that M̂ [t2 . . . tn〉M [t1〉M̂ is not simple. Then there exist τ1
= ε
= τ2

with t2 . . . tnt1 ≡�M τ1τ2 and M̂ [τ1〉M̂ [τ2〉M̂ . Because t2 . . . tnt1 ≡�M τ1τ2, transi-
tion t1 occurs somewhere in τ1τ2. Without loss of generality, we may assume that
it occurs in τ1 (otherwise the roles of τ1 and τ2 can be exchanged). Moreover, we
can assume that M̂ [τ1〉M̂ is simple, otherwise we continue splitting and move
one of the τ ’s so obtained to the front if it contains t1 (this is possible since all
intermediate markings equal M̂).

Thus, we get τ1 = αt1β with

M̂ [α〉M ′[t1β〉M̂
︸ ︷︷ ︸
simple cycle �M [τ1〉�M

[α〉M ′.

The cycle M̂ [τ1〉M̂ is shorter than the original cycle with n transitions, because
τ2
= ε. Applying the induction hypothesis |α| times to it, we get the result that

M ′ [t1 β α 〉M ′

is also a simple cycle. Combining this with the premise that M [t1 . . . tn〉M is a
simple cycle, Lemma 5 yields Ψ(t1 . . . tn) = Ψ(t1βα). However, since Ψ(t1βα) =
Ψ(τ1), we get Ψ(t1 . . . tn) = Ψ(τ1), and hence a contradiction to the fact that
t2 . . . tnt1 ≡�M τ1τ2 and τ2
= ε. �
Lemma 7. Simple cycles are either disjoint or Parikh-equivalent
Let N be bounded, reversible, and persistent, let M and M ′ be reachable mark-
ings, and let M [ρ〉M and M ′[ρ′〉M ′ be two simple cycles.

Then either ρ and ρ′ have no transition in common, or Ψ(ρ) = Ψ(ρ′).

Proof: If ρ and ρ′ have no transition in common, there is nothing more to prove.
Otherwise, suppose that ρ = ρ1tρ2 and ρ′ = ρ′1tρ

′
2. Then we have two firing

sequences

M [ρ1〉M̂ [tρ2〉M [ρ1〉M̂ and M ′[ρ′1〉M̂ ′[tρ′2〉M ′[ρ′1〉M̂ ′.

By Lemma 6 (possibly applied several times), M̂ [tρ2ρ1〉M̂ and M̂ ′[tρ′2ρ′1〉M̂ ′ are
simple cycles. By Lemma 5, Ψ(tρ2ρ1) = Ψ(tρ′2ρ

′
1). The claim follows immediately.

�
Lemma 7 allows us to formulate and prove the main result of this section.

Decomposition Theorems for Bounded Persistent Petri Nets 43

Theorem 2. First decomposition theorem
Let N , with some initial marking, be bounded, reversible, and persistent.
There is a finite set B of semipositive T-invariants such that any two of them

are transition-disjoint and every cycle M [ρ〉M in the reachability graph decom-
poses up to permutations to some sequence of cycles M [ρ1〉M [ρ2〉M . . . [ρn〉M
with all Parikh vectors Ψ(ρi) in B.

Proof: We construct B as follows: for each transition t occurring in the reach-
ability graph, we choose a simple cycle through t (such a cycle always exists by
strong connectedness) and we let the Parikh vector of this simple cycle be an
element of B. By Lemma 7, the vector is independent of the choice of where t
occurs in the reachability graph, and also of the cycle that was chosen.

The set B so constructed is finite since there are only finitely many transitions.
By Lemma 7, the Parikh vectors obtained for two different transitions are either
equal or disjoint. This guarantees the transition-disjointness of B.

Since every cycle in the reachability graph can be (permuted and then) de-
composed into simple cycles, the claim follows. �
We also establish a kind of converse of this theorem. First, we show that ev-
ery simple cycle can be realised (albeit perhaps in a different order) at every
reachable marking.

Lemma 8. Every simple cycle may be fired everywhere
Let N , with some initial marking, be bounded, reversible, and persistent. Let

M and M ′ be reachable markings and let M [α〉M be a simple cycle.
Then there is a cycle M ′[α′〉M ′ such that Ψ(α) = Ψ(α′).

Proof: The claim is trivially true if α = ε. So, let M [α〉M be a simple cycle
with α
= ε. By reversibility, M ′ is reachable from M . Let M [γ0〉M ′. By Keller’s
theorem, we have

M [γ0〉M ′[α−• γ0〉M̂. (7)

If α−• γ0
= ε, then M ′ enables some transition t contained in α. Let M ′[α′〉M ′

be any simple cycle such that α′ contains t. (Such a cycle exists by reversibility.)
Then Ψ(α) = Ψ(α′) by Theorem 2. Thus in this case, the assertion of the lemma
is proved.

Suppose, on the other hand, that α−• γ0 = ε. By Keller’s theorem, we also
have

M [α〉M [γ0−• α〉M̂ = M ′.

Indeed M̂ = M ′ by α−• γ0 = ε and by (7). Define γ1 = γ0−• α. By this definition
and by α−• γ0 = ε and α
= ε, γ1 is strictly shorter than γ0 and also leads from
M to M ′. Now we can repeat the argument with γ1 instead of γ0.

Eventually, we will have α−• γi
= ε for one of the γ’s so defined, proving the
result. �
We get the following immediate consequence from Lemma 8 and the construction
of B.

44 E. Best and P. Darondeau

Corollary 2. A converse of Theorem 2
Let N , with some initial marking, be bounded, reversible, and persistent. Let

M be a reachable marking. Let b1, . . . , bn be (not necessarily mutually distinct)
T-invariants from B, constructed in the proof of Theorem 2.

Then there is a cycle M [ρ〉M such that Ψ(ρ) =
∑n

i=1 bi.

6 Algebraic Decomposition of Cycles

Lemmas 5, 7 and 8, Theorem 2 and Corollary 2 do not apply to all bounded
persistent nets, but only to reversible ones.

p1 p2 p3 p4

a1 a2 a3 a4

b1 b2 b3 b4

c

Fig. 4. A bounded persistent net which is not reversible

To assess the role of reversibility, one may consider the net shown in Figure 4.
It is formed by connecting the two cyclic subnets spanned by a1, . . . , a4 and
b1, . . . , b4 by four places p1, . . . , p4. Initially (i.e. before firing transition c), these
places serve to synchronise the two cycles in a lock-step manner.

As long as transition c has not been fired, which may be done at any time
but only once, the behaviour of this net is cyclic, and the unique cycle start-
ing from the initial marking M0 is M0[a1 · b1 · b2 · a2 · a3 · b3 · b4 · a4〉M0.
All markings met in this cycle project along p1, p2, p3, p4 on vectors in the set
{0011, 1001, 1100, 0110}.

Suppose now that the transitions from the two cyclic net components to be
fired next are ai and bj but transition c is fired. Then the behaviour of the
net is decoupled: any shuffle of the sequences ai . . . a4 · a1 · a2 · a3 · a4 . . . and

Decomposition Theorems for Bounded Persistent Petri Nets 45

bj . . . b4·b1·b2·b3·b4 . . . may be fired from the marking reached by c. All markings
reached project along p1, p2, p3, p4 on vectors in the set {1122, 2112, 2211, 1221}.

Clearly, M0[a1 · b1 · b2 · a2 · a3 · b3 · b4 · a4〉M0 is a simple cycle. Now, if we
let M0[c〉M1, then M1[a1 · a2 · a3 · a4〉M1 and M1[b1 · b2 · b3 · b4〉M1 are also
simples cycles. Thus, simple cycles with common transitions may have different
Parikh vectors. The two simple cycles from M1 induce a basis of semipositive T-
invariants, but the unique cycle from M0 cannot be decomposed to a sequence of
two cycles with Parikh vectors in this basis. And of course, the cyclic sequences
a1 · a2 · a3 · a4 and b1 · b2 · b3 · b4 cannot be fired from M0.

However, bounded persistent nets are also amenable to some algebraic de-
composition of cycles or more exactly of Parikh vectors of cycles, as we show
now.

Lemma 9. Bounded persistent nets have home markings
Let N , with some initial marking, be bounded and persistent.
There exists a marking M̃ such that, for any reachable marking M , M [ξM 〉M̃

for some transition sequence ξM .

Proof: As a bounded net, N has a finite set of reachable markings
{M0, . . . , Mm}. Put M̃0 = M0. Proceeding inductively, select for each i from
1 up to m some marking M̃i reachable from M̃i−1 and Mi, which exists by
Corollary 1. Then put M̃ = M̃m. �
Lemma 10. Cycles may be pushed to home markings

Let N , with some initial marking, be bounded and persistent, and let M̃ be a
home marking.

For any cycle M [ρ〉M , there exists a cycle M̃ [ρ̃ 〉M̃ such that Ψ(ρ) = Ψ(ρ̃).

Proof: Let M [ξ〉M̃ . One applies Lemma 2 in M with γ = ξ and κ = ρ. �
Theorem 3. Second decomposition theorem
Let N , with some initial marking, be bounded and persistent. There exists a
reachable marking M̃ and a finite set of transition-disjoint cycles M̃ [ρi〉M̃ (1 ≤
i ≤ n) such that for any reachable marking M and for any cycle M [ρ〉M , the
Parikh vector of this cycle decomposes as Ψ(ρ) =

∑n
i=1 ni × Ψ(ρi) for some

non-negative integral numbers ni.

Proof: By Lemma 9, N has at least one home marking M̃ . By Lemma 10, the set
of Parikh vectors of cycles of N = (S, T, F, M0) coincides with the set of Parikh
vectors of cycles of the bounded persistent and reversible net Ñ = (S, T, F, M̃).
The theorem follows by direct application of Theorem 2 to the net Ñ . �
In the rest of the section, we propose an independent proof of Theorem 3, relying
on Keller’s theorem and on Lemmas 1, 2, 4 and 9, and entailing all results from
section 5, including Theorem 2. We first strengthen the notion of simplicity.

46 E. Best and P. Darondeau

Definition 2. Hypersimplicity
A cycle M [ρ〉M is called hypersimple if the Parikh vector Ψ(ρ) differs from
Ψ(ρ1) + Ψ(ρ2) for any two non-trivial cycles M1 [ρ1〉M1 and M2 [ρ2〉M2 from
reachable markings M1 and M2.

A hypersimple cycle is always simple, but the converse is not true (as shown by
the example presented at the beginning of the section).

Lemma 11. In the reversible case, every simple cycle is hypersimple
Let N , with some initial marking, be bounded, reversible, and persistent. Let

M be a reachable marking and let M [ρ〉M be a simple cycle.
Then M [ρ〉M is hypersimple.

Proof: Suppose for a contradiction that Ψ(ρ) = Ψ(ρ1) + Ψ(ρ2) for non-trivial
cycles M1 [ρ1〉M1 and M2 [ρ2〉M2 from reachable markings M1 and M2. By re-
versibility, M1[ξ〉M0 for some transition sequence ξ. Let M0[χ〉M . By Lemma 2
applied in M1 with κ = ρ1 and γ = ξχ, Ψ(ρ1) = Ψ(ρ′1) for some cycle M [ρ′1〉M .
By definition of the residual operation, ρ′1−• ρ = ε because Ψ(ρ′1) is smaller than
Ψ(ρ). By Keller’s theorem applied to M [ρ〉M and M [ρ′1〉M , M [ρ′1−• ρ〉M ′ and
M [ρ−• ρ′1〉M ′ for some M ′, with ρ(ρ′1−• ρ) ≡M ρ′1(ρ−• ρ′1). As ρ′1−• ρ = ε, M = M ′

and Ψ(ρ) = Ψ(ρ′1) + Ψ(ρ−• ρ′1). Recalling that Ψ(ρ) = Ψ(ρ1) + Ψ(ρ2), we have
that Ψ(ρ′1) = Ψ(ρ1) and Ψ(ρ−• ρ′1) = Ψ(ρ2) both differ from the null vector. Now
M [ρ′1〉M [ρ−• ρ′1〉M , and therefore M [ρ〉M is not a simple cycle. �
Lemma 12 below is an adaptation of Lemma 5 to the non-reversible case.

Lemma 12. Hypersimple cycles sharing transitions are Parikh-equivalent

Let N , with some initial marking, be bounded and persistent. Moreover, let
M, M ′ be reachable markings and M [τ〉M and M ′[σ〉M ′ be two hypersimple
cycles. If some common transition t occurs in both cycles, i.e. Ψ(τ)(t)
= 0
=
Ψ(σ)(t), then Ψ(τ) = Ψ(σ).

Proof: By Corollary 1, there exists a marking M ′′ and two firing sequences ξ
and χ such that M [ξ〉M ′′ and M ′[χ〉M ′′.

By Lemma 2 applied in M with γ = ξ and κ = τ , there exists a transition
sequence τ ′ such that M ′′[τ ′〉M ′′ and Ψ(τ) = Ψ(τ ′).

By Lemma 2 applied in M ′ with γ = χ and κ = σ, there exists a transition
sequence σ′ such that M ′′[σ′〉M ′′ and Ψ(σ) = Ψ(σ′).

Let τ ′ = τ ′
1tτ

′
2 and σ′ = σ′

1tσ
′
2 such that t occurs neither in τ ′

1 nor in σ′
1, and let

m and m′ be the two markings such that M ′′[τ ′
1〉m and M ′′[σ′

1〉m′, respectively.
By Keller’s theorem, applied to M ′′[τ ′

1〉m and M ′′[σ′
1〉m′, there exists a mark-

ing m′′ such that m[σ′
1−• τ ′

1〉m′′ and m′[τ ′
1−• σ′

1〉m′′.
By Lemma 2 applied in m with γ = σ′

1−• τ ′
1 and κ = tτ ′

2τ
′
1, there exists a

transition sequence τ ′′ such that m′′[τ ′′〉m′′ and Ψ(τ ′′) = Ψ(tτ ′
2τ

′
1) = Ψ(τ).

By Lemma 2 applied in m′ with γ = τ ′
1−• σ′

1 and κ = tσ′
2σ

′
1, there exists a

transition sequence σ′′ such that m′′[σ′′〉m′′ and Ψ(σ′′) = Ψ(tσ′
2σ

′
1) = Ψ(σ).

Now m[t〉, m[σ′
1−•τ ′

1〉m′′, and transition t does not occur in σ′
1−•τ ′

1 since it does
not occur in σ′

1. By persistency, it follows that m′′[t〉m̃ for some marking m̃.

Decomposition Theorems for Bounded Persistent Petri Nets 47

As Ψ(t) is smaller than or equal to Ψ(τ ′′) = Ψ(τ), t−• τ ′′ = ε. By Keller’s
theorem, applied to m′′[τ ′′〉m′′ and m′′[t〉m̃, m̃[τ ′′−• t〉m′′. As the Parikh vector
of the cycle m′′[t〉m̃[τ ′′−•t〉m′′ is equal to Ψ(τ ′′) = Ψ(τ), this cycle is hypersimple.
By Keller’s theorem, applied to m′′[σ′′〉m′′ and m′′[t〉m̃, one can construct in a
similar way a hypersimple cycle m′′[t〉m̃[σ′′−• t〉m′′. As every hypersimple cycle
is simple, and both cycles start with t from m′′, Lemma 4 applies, entailing that
t(τ ′′−• t) ≡m′′ t(σ′′−• t) and hence that Ψ(τ) = Ψ(τ ′′) = Ψ(σ′′) = Ψ(σ). The claim
of the lemma has thus been established. �
Theorem 3 follows easily from Lemmas 9, 10 and 12. First, any cycle M [ρ〉M may
be pushed to the chosen home marking M̃ and then decomposed to a sequence of
simple cycles through M̃ . Second, any simple cycle M̃ [ρ〉M̃ is hypersimple: if it
was otherwise, i.e. Ψ(ρ) = Ψ(ρ1) + Ψ(ρ2) where M1[ρ1〉M1 and M2[ρ2〉M2, then
by pushing these two cycles to M̃ , one would get a decomposition of M̃ [ρ〉M̃
which is supposed to be simple. Third, two hypersimple cycles through M̃ are
either transition-disjoint or Parikh equivalent.

For bounded persistent and reversible nets, Lemma 5 follows from Lemmas
11 and 12. And since in a reversible net, every reachable marking is a home
marking, Theorem 2 and Corollary 2 follow from Lemma 10 and Theorem 3.

For non-reversible bounded and persistent nets, the set of T-invariants realised
at marking M , i.e. equal to Ψ(α) for some cycle M [α〉M , depends on M . By the
same reasoning as in the proof of Lemma 11 (with ρ = α and ρ′1 = β) one can
show that for any two cycles M [α〉M and M [β〉M from a reachable marking M ,
if Ψ(α) is greater than Ψ(β), then Ψ(α) = Ψ(β) + Ψ(γ) for some cycle M [γ〉M .
In view of Dickson’s lemma, it follows that the set of T-invariants realised at
M is generated by a unique minimal integral basis BM = {Ψ(ρ1), . . . , Ψ(ρn)}
where M [ρi〉M for i = 1, . . . , n and moreover, all these cycles are simple and
therefore transition disjoint (in view of Lemma 4). In the reversible case, the
unique minimal integral basis B is the same for all reachable markings.

7 Some Comments

In the special case of strongly connected marked graphs, Theorems 2 and 3
coincide and are well-known. In this case, there is only one vector in B, namely
the T-invariant 1, that is, the T-vector containing a 1 in each entry. Every
reproducing sequence is simply a multiple of this vector.

The boundedness condition on nets is essential in all our theorems. Consider
Figure 5. The net shown there is persistent, but not bounded. One of its cov-
erability graphs is shown on the right-hand side of the figure. There are two
simple cycles, ca and cb, which are not transition-disjoint and do not have the
same Parikh vector, and the conclusions of Theorems 2 and 3 are violated (for
the infinite reachability graph).

The condition of persistency can neither be omitted nor replaced by weak
persistency as defined in [10]. Consider Figure 6. The net shown there is bounded
and it is not persistent, but it is weakly persistent. The reachability graph has

48 E. Best and P. Darondeau

s

a b

c

M0

a

b

a

b

c
a, c, b

s=ω s=1 s=0

Fig. 5. A non-bounded Petri net (l.h.s.) and a coverability graph (r.h.s.)

a b c

M0

M1

a b c

Fig. 6. A non-persistent Petri net (l.h.s.) and its reachability graph (r.h.s.)

two simple cycles from M0, ac and bc, which are not transition-disjoint and do
not have the same Parikh vector. The conclusions of Lemma 4 and Theorems 2
and 3 are violated.

Theorem 2 indicates that, when N = (S, T, F, M) is bounded, persistent and
reversible, the language of this net may be written as a parallel composition
L(N) = ‖ni=1 (Li)ω where Li = [ρi]≡M is the equivalence class of a cycle M [ρi〉M
with ρi ∈ T ∗

i and Ti∩Tj = ∅ for i
= j. As N is persistent, L(N) does not change
when a place that connects different subsets Ti is replicated to as many places
as connected subsets and when the flow arcs are distributed accordingly. N
may therefore be decomposed to n disjoint, bounded, persistent and reversible
subnets generating altogether the same language. From the results in [4], they
also generate the same reachable state graph up to an isomorphism. Bounded,
persistent and reversible nets are therefore amenable to modular verification.
The authors hope that the results described in the present paper will also help
solving two challenging problems described in [1], one relating to the conflict-
freeness hierarchy defined in that paper, and another one relating to the concept
of separability, also described there and investigated more fully in [2].

The first challenge is to prove or to disprove that bounded and live persistent
nets can essentially be simplified to behaviourally conflict-free nets. The latter
means that any two enabled transitions do not share a common input place. For

Decomposition Theorems for Bounded Persistent Petri Nets 49

instance, the net shown in Figure 1 can trivially be simplified in this way, by
omitting the middle place with two tokens.

The second challenge is to prove or to disprove that bounded and live persis-
tent Petri nets are separable in the following sense: If the initial marking, say M ,
of such a net, say N , is a k-multiple of another one, then N with initial marking
M behaves as k disjoint copies of N with initial marking (1/k) ·M . It is shown
in [2] that general marked graphs enjoy this property, but that bounded and live
free-choice nets do not. Furthermore, [1] contains an example of a non-separable,
bounded, output-nonbranching net which is, however, not live.

Acknowledgments

The first author is indebted to Harro Wimmel for listening to several attempts at
formulating and/or proving these results and for providing insightful suggestions.
We would also like to thank Javier Esparza and Raymond Devillers for helpful
comments, and an anonymous reviewer for pointing out reference [10].

References

1. Best, E., Darondeau, P., Wimmel, H.: Making Petri Nets Safe and Free of Internal
Transitions. Fundamenta Informaticae 80, 75–90 (2007)

2. Best, E., Esparza, J., Wimmel, H., Wolf, K.: Separability in Conflict-free Petri
Nets. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 1–18.
Springer, Heidelberg (2007)

3. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J.
Comput. Syst. Sci. 5(5), 511–523 (1971)

4. Darondeau, P.: Equality of Languages Coincides with Isomorphism of Reachable
State Graphs for Bounded and Persistent Petri Nets. Information Processing Let-
ters 94, 241–245 (2005)

5. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, 242 pages (1995) ISBN:0-521-46519-2

6. Grabowski, J.: The Decidability of Persistence for Vector Addition Systems. Infor-
mation Processing Letter 11(1), 20–23 (1980)

7. Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation.
In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer,
Heidelberg (1975)

8. Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri
Nets. JACM 25(3), 352–364 (1978)

9. Stark, E.W.: Concurrent Transition Systems. TCS 64, 221–269 (1989)
10. Yamasaki, H.: On Weak Persistency of Petri Nets. Information Processing Let-

ters 13(3), 94–97 (1981)

A Proof of Theorem 1

Let N be a persistent net and let τ and σ be two firing sequences starting from
some reachable marking M . We show that τ(σ−• τ) and σ(τ−• σ) are also firing
sequences from M , and that they are permutations of each other from M . Let τ =

50 E. Best and P. Darondeau

t1 . . . tn and σ = x1 . . . xm. Persistency allows us to complete “small diamonds”.
For instance, if t1
= x1, then both M [t1x1〉 and M [x1t1〉. The proof proceeds
by “completing big diamonds”, such as the one shown in Figure 7. Special care
needs to be taken if one of the ti equals one of the xj . We proceed systematically
through t1, . . . , tn, in this order, trying to match as many transitions ti as possible
with transitions xj from σ.

...filling the diamond ...

(see text)

M

t1 x1

tn xm

σ−• τ τ−• σ

τ σ

Fig. 7. Outlining the proof of Keller’s theorem

The starting point are the North, West and East corners of the diamond shown
in Figure 7. For each ti, we will define an i’th line from Northwest to Southeast.
Formally, each line is of the form M̂ [σ̂〉, where M̂ is a marking reachable from
M by some subsequence of τ and σ̂ is some subsequence of σ. Line 0, i.e. the
starting line, is given by σ which leads from the North corner to the East corner;
formally, it is defined to be M [σ〉. We distinguish two cases:

– If ti does not have some transition xj = ti on the previous (the (i−1)’th) line,
we draw a new (i’th) line after ti which is an exact parallel to the previous
line, and we cut the resulting parallelogram by small ti-labelled arcs form
Northeast to Southwest. This is justified by the small-diamond completion
property of persistent nets.

– If, however, on the (i−1)’th line, there are some x-transitions that are the
same as ti, we choose the first j for which xj = ti holds and we draw an
exact parallel only up to the starting point of xj . The endpoint of this parallel
will be merged with the endpoint of xj , and from that point onwards, the
new line is the same as the previous line. Thus, the new line contains one arc
(namely, an arc labelled with xj) less than the previous line. If xj happens to
be the first x-transition on the previous line, this construction corresponds
to the special case of merging the endpoints of ti and xj . The resulting
parallelogramoid is again subdivided by small ti-arcs, but this time only up
to the arc before xj , if there is any.

Decomposition Theorems for Bounded Persistent Petri Nets 51

It is clear that the last line, from the West corner to the resulting South corner,
corresponds to the sequence σ−• τ of unmatched x-transitions, and it is also not
hard to see that the line from the East corner to the South corner corresponds
to the sequence τ−• σ of unmatched t-transitions. �
Figures 8 and 9 exhibit some examples with τ = t1t2t3 and σ = x1x2x3.

In Figure 8, we assume that the only common transition between t1t2t3 and
x1x2x3 is t2 = x3. If, additionally, t1 = x1, we get the diamond shown on the
left-hand side of Figure 9. If t3 = x2 holds further, then the three southmost
nodes are merged into a single node, and the t3- and x2-arcs leading into them
collapse into a single arc labelled t3 (or x2), and we arrive at the diamond shown
on the right-hand side of Figure 9.

M

M1

M2

M3

x1t1

t2

t3

x1

x2

x3

x1 t1

x2 t1

x3

t1

t2x1

x2
x1

x2

t3

t3

Line 0: M [x1x2x3〉
Line 1: M1[x1x2x3〉
Line 2: M2[x1x2〉
Line 3: M3[x1x2〉

Fig. 8. Diamond for t1t2t3 and x1x2x3, assuming t2=x3

M

M1

M2

M3

t1 x1

t2 x2

x3

x2

t3

x2 t3

Line 0: M [x1x2x3〉
Line 1: M1[x2x3〉
Line 2: M2[x2〉
Line 3: M3[x2〉

M

M1

M2

M3

t1 x1

t2 x2

t3
x2

x3

t2

Line 0: M [x1x2x3〉
Line 1: M1[x2x3〉
Line 2: M2[x2〉
Line 3: M3[ε〉

Fig. 9. Diamonds, assuming t1=x1∧t2=x3 (l.h.s.) and t1=x1∧t2=x3∧t3=x2 (r.h.s.)

Compositional Specification of Web Services Via

Behavioural Equivalence of Nets: A Case Study�

Filippo Bonchi, Antonio Brogi, Sara Corfini, and Fabio Gadducci

Department of Computer Science – University of Pisa, Italy
{fibonchi,brogi,corfini,gadducci}@di.unipi.it

Abstract. Web services represent a promising technology for the devel-
opment of distributed heterogeneous software systems. In this setting, a
major issue is to establish whether two services can be used interchange-
ably in any context. This paper illustrates — through a concrete scenario
from banking systems — how a suitable notion of behavioural equivalence
over Petri nets can be effectively employed for checking the correctness
of service specifications and the replaceability of (sub)services.

1 Introduction

Web services are emerging as a promising technology for the development of
next generation distributed heterogeneous software systems. Roughly, a Web
service is a self-describing software component universally accessible by means
of standard protocols (WSDL, UDDI, SOAP). Platform-independence and ubiq-
uity make Web services the building blocks for developing new complex applica-
tions [1]. In this scenario, a prominent issue is to establish whether two services
are behaviourally equivalent, i.e., such that an external observer can not tell them
apart. Yet, standard WSDL interfaces provide services with purely syntactic de-
scriptions: they do not include information on the possible interaction between
services, thus inhibiting the a priori verification of any behavioural property.

During the last years, various proposals have been put forward to feature more
expressive service descriptions that include semantics (viz., ontology-based) and
behaviour information about services. One of the major efforts in this direc-
tion is OWL-S [2], a high-level ontology-based language for describing services,
proposed by the OWL-S coalition. In particular, OWL-S service descriptions
include a declaration of the interaction behaviour of services (the so-called pro-
cess model), which provides the needed information for the a priori analysis and
verification of behavioural properties of (compositions of) services.

In this perspective we defined in [3] a suitable notion of behavioural equivalence
for OWL-S described Web services represented by means of OCPR nets. OCPR
nets (for Open Consume-Produce-Read nets) are a simple variant of the standard
Condition/Event Petri nets, designed to address data persistency. In particular,
an OCPR net is equipped with two disjoint sets of places, namely, control and
� Research partially supported by the EU FP6-IST IP 16004 SEnSOria and STREP

0333563 SMEPP, and the MIUR FIRB TOCAI.It and PRIN 2005015824 ART.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 52–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Compositional Specification of Web Services 53

data places, to naturally model the control flow and the data flow of a Web
service, and with an interface, which establishes those data places that can be
observed externally. The main features of the equivalence presented in [3], named
saturated bisimilarity, are weakness, as it equates externally indistinguishable
services by abstracting from the number of internal steps, and compositionality,
as it is also a congruence. Furthermore, the equivalence was proved there to
be decidable, by characterizing it in terms of an alternative, clearly decidable
behavioural equivalence, so-called semi-saturated bisimilarity.

This paper focuses on exploiting the behavioural equivalence introduced in [3]
in order to outline a methodology for addressing two specific issues related to ser-
vice specification. Namely, for checking whether a service specification is equiva-
lent to a service implementation, and whether a (sub)service may replace another
(sub)service without altering the behaviour of the whole application. In doing
so, a simpler decidable characterization of saturated bisimularity is introduced,
which is based on the standard notion of weak bisimilarity.

The methodology is presented by directly instantiating it on a concrete ex-
ample scenario, the finance case study of the SEnSOria project, consisting of
a banking service which grants loans to bank customers. In the first scenario
we present, we detail the complete behaviour of the banking service, and we
propose a possible specification to externally publish it. We employ weak bisimi-
larity to check whether the proposed specification properly describes the concrete
banking service implementation, i.e., to verify whether the externally observable
behaviour of the service implementation and of the banking service specification
are equivalent. In the second scenario, we consider the specific part of the bank-
ing service which evaluates the customer rating. We present two services with
different behaviour, yet both computing customer ratings. By applying weak
bisimilarity, we verify whether these two latter services are equivalent as well
as whether they can replace part of the banking service affecting neither the
internal behaviour of the banking service nor its public interface.

The rest of the paper is organized as follows. Section 2 illustrates the finance
case study together with a brief review of OWL-S. The first part of Section 3
briefly recalls the results of [3] by discussing OCPR nets and saturated bisim-
ilarity; the second part introduces weak bisimilarity, and it presents a formal
encoding of OWL-S service descriptions into OCPR nets, and a new composi-
tionality result for these nets. Section 4 exploits these results on compositional
specification for outlining a methodology addressing the issues on service speci-
fication mentioned above. In Section 5 the methodology is then instantiated on
the finance case study described in Section 2. Finally, we discuss related work
and we draw some concluding remarks in Section 6.

2 Case Study: A Credit Scenario for the Banking System

In order to provide a proper motivation for our proposals, this section illus-
trates an example scenario concerning banking systems. After an informal out-
line, the scenario is specified in the OWL-S description language. The section is

54 F. Bonchi et al.

then rounded up by discussing some issues concerning service replaceability (i.e.,
dynamic reconfigurations) and service publication (i.e., alternative user views).

First of all, though, we consider important to observe that the banking sce-
nario is inspired by the finance case study described by S&N AG netBank solutions
(http://www.s-und-n.de/) which is one of the enterprises involved in the SEn-
SOria project (http://www.sensoria-ist.eu/). In particular, CreditPortal is a
Web service that grants loans to bank customers. CreditPortal implements three
steps, namely, (1) authentication of the customer and upload of her/his personal
data, (2) evaluation of the customer credit request, and (3) formulation of the
loan offer. In the first step, after logging into the bank system, the customer has
to upload information regarding balance and offered guarantees. In the second
step, CreditPortal evaluates the customer reliability and computes a rating of the
credit request. Finally, in the last step CreditPortal either decides to grant the
loan to the customer and to build an offer, or it rejects the credit request.

A short recap on OWL-S
As anticipated in the Introduction, we consider Web services specified in OWL-
S [2], an ontology-based language for semantically describing services. In partic-
ular, an OWL-S service is advertised by three different files, namely the service
profile, describing the functional (i.e., inputs/outputs) and extra-functional at-
tributes of the service, the process model detailing the service behaviour in terms
of its component processes, and the service grounding, explaining how to access
the service by specifying protocol and message format information.

In the rest of the paper we point our attention to the OWL-S process model,
as we focus on service behaviour. The process model describes a service as a com-
posite or an atomic process. An atomic process can not be decomposed further
and it executes in a single step, while a composite process is built up by using
control constructs: sequence (sequential execution), if-then-else (conditional
execution), choice (non-deterministic execution), split (parallel execution),
split+join (parallel execution with synchronization), any-order (unordered
sequential execution), repeat-while and repeat-until (iterative execution).

Specifying the scenario using the OWL-S process model
The OWL-S specification of CreditPortal is available at [4]: for the convenience
of the reader, Fig. 1 shows a compact tree representation of the CreditPortal pro-
cess model. Each internal node is labelled with the type of the composite process
it represents, and, in case of conditional and iterative control constructs, also
with a condition. Each leaf is associated with the inputs and the outputs of the
corresponding atomic process. It is worth noting that in the OWL-S description
of CreditPortal each input and output parameter is annotated with a concept de-
fined in a shared ontology. As depicted in Fig. 1, the CreditPortal process model is
a sequence process whose left-most child is a repeat-until construct representing
the customer authentication phase. The customer may either log in with an ex-
isting account (login) or create a new account (createAccount) until either the log
in to the system is successful (validData = true), or the system rejects the login
definitively (rejectedLogin = true). Next, if the customer did not provide a valid
login, CreditPortal terminates (invalidLogin). Otherwise, it asks the customer for

Compositional Specification of Web Services 55

Fig. 1. The OWL-S process model of the CreditPortal service

the personal financial data (validateClientData) until either a valid information
is uploaded (validateResponse = true) or the system rejects the credit request
(changeClientData = false). Then, if the customer did not provide valid financial
data, CreditPortal terminates (rejectClientData), otherwise the customer credit
request evaluation phase starts. CreditPortal, taking into account the requested
amount of credit, evaluates the customer security (securityEvaluation), computes
the customer rating (computingRating) and decides whether or not to make an
offer to the customer (makeOffer). If so (makeOffer = true), it builds the offer
(buildOffer), formally confirms the offer (confirmOffer) and asks the customer for
a final confirmation (userConfirmation). If CreditPortal and the customer agree on
the offer (confirmation = true and userConfirmation = true), the offer is finalized
(finalizeCredit), otherwise CreditPortal rejects the credit request (rejectResponse).
Instead, if CreditPortal does not want to make an offer (makeOffer = false), it can
either reject the credit request (rejectCredit) or allow the customer to update the
financial data (changeAmountOfCredit and changeGuarantee). In the latter case,
the evaluation phase is repeated.

An outline of two issues in service composition
Let us now discuss two issues concerning service publication and service replace-
ability. The process model presented in Fig. 1 describes the full behaviour of the

56 F. Bonchi et al.

Fig. 2. Public specification of the CreditPortal service

CreditPortal service. Yet, it is reasonable that the CreditPortal provider wants
to publish a simpler specification of the service by hiding unnecessary and/or
confidential details of its implementation. For instance, Fig. 2 depicts a possible
public specification of CreditPortal, which hides several internal parameters and
operations. A methodology to check whether the public specification properly
advertises the internal behaviour of a service is hence required.

Consider now the dotted section of the service specification represented in
Fig. 1. It consists of a sequence of two atomic processes, i.e., securityEvaluation
and computingRating, that takes as input the requested amount of credit, the
balance and the provided guarantees of a customer, and then evaluates the relia-
bility and the rating. Let us now suppose that the CreditPortal provider (i.e., the
bank) wants to enhance its service and hence decides to externalize the Credit-
Portal section which computes customer rating, viz., the dotted area of Fig. 1. For
instance, suppose that two services which compute customer rating are available,
that is, RatingOne and RatingTwo whose OWL-S process models are illustrated
in Figs. 3 and 4, respectively. More precisely, RatingOne firstly computes three
separate evaluations of the customer and then it returns an average rating, Rat-
ingTwo computes the customer rating and only if necessary (e.g., if the first
rating exceeds a threshold value) it performs a second and possibly a third eval-
uation of the customer. RatingTwo may be more convenient for the bank, as it
does not always compute three separate and expensive customer evaluations,
yet, RatingOne provides a more accurate customer evaluation. In both cases, the
bank needs to verify whether the dotted area of CreditPortal in Fig. 1 can be

Compositional Specification of Web Services 57

Fig. 3. The OWL-S process model of the RatingOne service

Fig. 4. The OWL-S process model of the RatingTwo service

replaced with RatingOne or RatingTwo affecting neither the internal behaviour
of CreditPortal nor the correctness of its public specification.

3 Formal Reasoning on Service Behaviour

In [3] we introduced Open Consume-Produce-Read (OCPR) nets – a variant of
standard Petri nets [5] – to naturally model the behaviour of (OWL-S described)
services. In Section 3.1 we recall basic definitions and results on OCPR nets
from [3], Section 3.2 introduces the decidable weak bisimilarity, while Section 3.3
shows a formal encoding of OWL-S into OCPR nets, and presents a simple
characterisation result concerning place hiding.

3.1 Open Consume-Produce-Read Nets

We recall CPR and Open CPR nets, namely, CPR nets that can interact with
the environment (i.e., the contexts) through an interface; and we show the be-
havioural congruence introduced in [3] for discussing (sub)service replaceability.

58 F. Bonchi et al.

Fig. 5. Modelling atomic operations as CPR net transitions

Consume-Produce-Read nets
A CPR net is equipped with two disjoint sets of places: the control and the data
places which respectively model the control and the data flow of a Web service.
Besides the textual presentation, the graphical notation is depicted in Fig. 5.

Definition 1 (CPR net). A consume-produce-read net (simply, CPR net) N
is a five-tuple (CPN , DPN , TN , CFN , DFN) where

– CPN is a finite set of control places,
– DPN is a finite set of data places (disjoint from CPN),
– TN is a finite set of transitions,
– CFN ⊆ (CPN × TN) ∪ (TN × CPN) is the control flow relation,
– DFN ⊆ (DPN × TN) ∪ (TN ×DPN) is the data flow relation.

A marking M for N is a finite set of places in PN = CPN ∪DPN .

As for standard nets, we associate a pre-set and a post-set with each transition
t, together with two additional sets, called read-set and produce-set.

Definition 2 (pre-, post-, read-, and produce-set). Given a CPR net N ,
we define for each t ∈ TN the sets

�t = {s ∈ CPN | (s, t) ∈ CFN} t� = {s ∈ CPN | (t, s) ∈ CFN}
•t = {s ∈ DPN | (s, t) ∈ DFN} t• = {s ∈ DPN | (t, s) ∈ DFN}

which denote respectively the pre-set, post-set, read-set and produce-set of t.

Definition 3 (firing step). Let N be a CPR net. Given a transition t ∈ TN

and a marking M for N , a firing step is a triple M [t〉M ′ such that (�t∪ •t) ⊆M
and (M ∩ t�) ⊆ �t (M enables t), and moreover M ′ = (M \ �t) ∪ t� ∪ t•.

We write M [〉M ′ if there exists some t such that M [t〉M ′.

The enabling condition states that the tokens of the pre-/read-set of a transition
have to be contained in the marking, and that the marking does not contain any
token in the post-set of the transition, unless it is consumed and regenerated (as
for C/E nets). Note that data places act instead as sinks, that is, the occurrence
of a token may be checked (read), but the token is never consumed, nor it may
disable a transition. This is coherent with our underlying modelling choice with
respect to Web services, argued in [6], where the persistency of data is assumed:
once it is produced, a data remains always available.

Compositional Specification of Web Services 59

Open CPR nets and CPR contexts
The first step for defining compositionality is to equip nets with an interface.

Definition 4 (Open CPR net). Let N be a CPR net. An interface for N is
a triple 〈i, f, OD〉 such that i �= f and

– i is a control place (i.e., i ∈ CPN), the initial place;
– f is a control place (i.e., f ∈ CPN), the final place; and
– OD is a set of data places (i.e, OD ⊆ DPN), the open data places.

An interface is an outer interface O for N if there exists no transition t ∈ TN

such that either i ∈ t� or f ∈ �t. An open CPR net N (OCPR for short) is a
pair 〈N, O〉, for N a CPR net and O an outer interface for N .

Given an open net N , Op(N) denotes the set of open places, which consists of
those places occurring in the interface, initial and final places included. Further-
more, the places of N not belonging to Op(N) constitute the closed places.

The graphical notation used to represent OCPR nets can be observed, e.g., in
Fig. 9. The bounding box of the OCPR net there represents the outer interface
of the net: the initial and final control places are going to be used to compose
the control of services, and the open data places to share data.

Next, we symmetrically define an inner interface for N as an interface such
that there is no transition t ∈ TN satisfying either f ∈ t� or i ∈ �t.

Definition 5 (CPR context). A CPR context C[−] is a triple 〈N, O, I〉 such
that N is a CPR net, I and O are an inner and an outer interface for N ,
respectively, and iI �= fO, iO �= fI .

Contexts represent environments in which services can be plugged-in, i.e., pos-
sible ways they can be used by other services. Graphically speaking, as one can
note in Fig. 6, a context is an open net with an hole, represented by a gray
area. The border of the hole denotes the inner interface of the context, while the
bounding box is the outer interface. An OCPR net can be inserted in a context
if the net outer interface and the context inner interface coincide.

Definition 6 (CPR composition). Let N = 〈N, O〉 be an OCPR net and
C[−] = 〈NC , OC , IC〉 a CPR context, such that O = IC . Then, the composite
net C[N] is the OCPR net (CPN 	O CPNC , DPN 	O DPNC , TN 	 TNC , CFN 	
CFNC , DFN 	DFNC) with outer interface OC .

In other words, the disjoint union of the two nets is performed, except for those
places occurring in O, which are coalesced: this is denoted by the symbol 	O.
Moreover, OC becomes the set of open places of the resulting net.

Saturated bisimilarity for OCPR nets
Let P be the set of all OCPR nets with markings and let Obs(N , M) = Op(N)∩
M be the observation made on the net N with marking M . Let �N be the
reflexive and transitive closure of the firing relation [〉 of the net N of N .

Definition 7 (saturated bisimulation). A symmetric relation R ⊆ P ×P is
a saturated bisimulation if whenever (N , M) R (N ′, M ′) then

60 F. Bonchi et al.

– ON = ON ′ and Obs(N , M) = Obs(N ′, M ′), and
– ∀C[−] : M �C[N] M1 implies M ′ �C[N ′] M ′

1 and (C[N], M1)R(C[N ′], M ′
1).

The union of all saturated bisimulations is called saturated bisimilarity (≈S).

Proposition 1. ≈S is the largest bisimulation that is also a congruence.

The above proposition ensures the compositionality of the equivalence, hence,
the possibility of replacing one service by an equivalent one without changing the
behaviour of the whole composite service. Moreover, the equivalence is “weak” in
the sense that, differently from most of the current proposals, no explicit occur-
rence of a transition is observed. The previous definition leads to the following
notion of equivalence between OCPR nets, hence, between services.

Definition 8 (bisimilar nets). Let N , N ′ be OCPR nets. They are bisimilar,
denoted by N ≈ N ′, if (N , ∅) ≈S (N ′, ∅).
Note that the above definition implies that (N , M) ≈S (N ′, M) for all M mark-
ings over open places. The negative side of ≈S is that this equivalence seems
hard to be automatically decided, due to the quantification over all possible
contexts. Building upon the results in [7], the main contribution of [3] is the
introduction of a labeled transition system that finitely describes the interac-
tions of a net with the environment, and such that bisimilarity on this finite
transition system coincides with saturated bisimilarity, and thus it can be auto-
matically checked. The present work further adds an alternative characterization
of saturated bisimilarity via the standard notion of weak bisimilarity.

3.2 An Equivalent Decidable Bisimilarity

Saturated bisimulation seems conceptually the right notion, as it is argued in [3].
However, it also seems hard to analyze (or automatically verify), due to the uni-
versal quantification over contexts. In this section we introduce weak bisimilarity,
based on a simple labelled transition system (LTS) distilled from the firing se-
mantics of an OCPR net. This result improves on the characterization based on
semi-saturation proposed in [3], since it relies on a more standard notion.

The introduction of a LTS is inspired to the theory of reactive systems [8].
This meta-theory suggests guidelines for deriving a LTS from an unlabelled one,
choosing a set of labels with suitable requirements of minimality. In the setting
of OCPR nets, the reduction relation is given by [〉, and a firing is allowed if
all the preconditions of a transition are satisfied. Thus, intuitively, the minimal
context that allows a firing just adds the tokens needed for that firing.

Definition 9 (labelled transition system). Let N be an OCPR net and
Λ = {τ} ∪ ({+} × PN) ∪ ({−} × CPN) a set of labels, ranged over by l. The
transition relation for N is the relation RN inductively generated by the set of
inference rules below:

o ∈ Op(N) \ (M ∪ {f})
M

+o→N M ∪ {o}
f ∈ M

M
−f→N M \ {f}

M [〉M ′

M
τ→N M ′

Compositional Specification of Web Services 61

where M
l→N M ′ means that 〈M, l, M ′〉 ∈ RN , and i, f denote the initial and

final place of N , respectively.

Thus, a context may add tokens in open places, as represented by the transition
+o→N , in order to perform a firing. Similarly, a context may consume tokens from

the final place f . A context cannot interact with the net in other ways, since the
initial place i can be used by the context only as a post condition and the other
open places are data places whose tokens can be read but not consumed. Instead,
τ transitions represent internal firing steps, i.e., steps needing no additional token
from the environment.

The theory of reactive systems ensures that, for a suitable choice of labels,
the (strong) bisimilarity on the derived LTS is a congruence [8]. However, often
such a bisimilarity does not coincide with the saturated one. In the case at hand,
we introduce a notion of weak bisimilarity, abstracting away from the number
of steps performed by nets, that indeed coincides with the saturated one.

Hereafter we use τ→�

N to denote the reflexive and transitive closure of τ→N .

Definition 10 (weak bisimulation). A symmetric relation R ⊆ P × P is a
weak bisimulation if whenever (N , M) R (N ′, M ′) then

– ON = ON ′ and Obs(N , M) = Obs(N ′, M ′),
– M

+o→N M1 implies M ′ +o→N ′ M ′
1 & (N , M1) R (N ′, M ′

1),

– M
−f→N M1 implies M ′ −f→N ′ M ′

1 & (N , M1) R (N ′, M ′
1), and

– M
τ→N M1 implies M ′ τ→�

N ′ M ′
1 & (N , M1) R (N ′, M ′

1).

The union of all weak bisimulations is called weak bisimilarity (≈W).

Theorem 1. ≈S=≈W .

Thus, in order to prove that two OCPR nets are bisimilar, it suffices to exhibit
a weak bisimulation between the states of the two nets that includes the pair of
empty markings. Most importantly, though, this verification can be automati-
cally performed, since the set of possible states of an OCPR net are finite. Hence,
the result below immediately follows.

Corollary 1. ≈S is decidable.

3.3 A Compositional Encoding for OWL-S

This section presents the OCPR encoding for OWL-S service descriptions. To
this aim, it introduces the notion of binary contexts, and uses it for modelling
composite services. The section is rounded up by a simple result on hiding.

On binary contexts
As depicted in Fig. 5, an atomic process is encoded in a single transition net.
Instead, the encoding of a composite service requires to extend the notion of
interface, in order to accommodate the plugging of two nets into a context.

62 F. Bonchi et al.

Definition 11 (binary contexts). A CPR binary context C[−1,−2] is a 4-
tuple 〈N, O, I1, I2〉 such that the triples 〈N, O, I1〉, 〈N, O, I2〉 are CPR contexts,
and {iI1 , fI1} ∩ {iI2 , fI2} = ∅

Since it suffices for our purposes, we restrict our attention to binary contexts,
the general definition being easily retrieved. Note that the control places of the
inner interfaces are all different, while no condition is required for data places.

Definition 12 (binary composition). Let N1 = 〈N1, O1〉, N2 = 〈N2, O2〉
be OCPR nets, and C[−1, −2] a CPR binary context, such that O1 = I1 and
O2 = I2. Then, the composite net C[N1,N2] is the OCPR net (CPN1	U CPN2	U

CPN , DPN1 	U DPN2 	U DPN , TN1 	 TN2 	 TN , CFN1 	 CFN2 	 CFN , DFN1 	
DFN2 	DFN) with outer interface OC .

As for the unary contexts, the disjoint union of the three nets is performed,
except for coalescing those places occurring in either O1 or O2 (denoted by 	U).

Presenting the encoding
First we define the extension of a context for a set of data places.

Definition 13 (context extension). Let C[−] = 〈N, O, I〉 be a context. The
context extension CA[−] is the context with net NA=(CPN , DPN	U A, TN , CFN ,
DFN), with inner interface I ∪A and outer interface O ∪A.

Data places are obtained by disjoint union, except for coalescing those places
occurring in either O or I (denoted by 	U). An analogous operation is defined for
binary contexts. As an example, consider the context choiceA[−1,−2] illustrated
in Fig. 6 for A = {A1, . . . , An}. It is the extension of the choice[−1,−2] context
(not depicted here) that just contains four transitions and six control places.

In order to define the encoding, for each OWL-S operator op we define a
corresponding (possibly binary) context op[−]. Fig. 6 illustrates the encoding
for all the operators. In particular, the first row shows the encoding for the three
operators, namely choice, sequence and repeat-until, that are pivotal in the
implementation of our case study. Note that the contexts depicted in Fig. 6 are
the extensions opA[−] of contexts op[−] corresponding to op.

Now we can give the formal encoding. Let S be an OWL-S process model
and let A be a set of data places, containing all the data occurring in S. The
encoding of S with A open places is inductively defined as follows

‖S‖A =

⎧
⎨

⎩

NS,A if S is atomic,
opA[‖S1‖A] if S = op(S1),
opA[‖S1‖A, ‖S2‖A] if S = op(S1, S2),

where NS,A is the OCPR net with a single transition that reads all the input
data of the atomic service S, and produces all the output data of S (as illustrated
by Fig. 5), extended with all the data places of A and, as mentioned above, opA

denotes a (possibly binary) context corresponding to the OWL-S operator op
extended with A open data places.

Compositional Specification of Web Services 63

Fig. 6. Contexts corresponding to OWL-S operators extended for A = {A1, . . . An}

For the sake of simplicity, we left implicit the possible renaming of control
places, needed for the composition of nets and contexts to be well-defined.

Note that the translation can be made automatic: a prototypical tool, trans-
lating OWL-S service descriptions into OCPR nets (described by a XML file)
has been recently presented in [9].

With respect to our case study, it is worth noting that the encoding of
conditional execution, viz., if-then-else, coincides with the encoding of non-
deterministic execution, viz., choice, since our implementation of the process

64 F. Bonchi et al.

model abstracts away from boolean values, as tokens have no associated value.
Similar considerations hold for the operators repeat-until and repeat-while,
namely, for iterative executions.

Hiding data places
The encoding presented above maps an OWL-S service into an OCPR net, where
all the data places are open, i.e., they belong to the interface. As we are going
to see later, this choice roughly corresponds to an orchestration view of the
service, where all the available data are known. The proposition below will turn
out of use for those cases where it might be necessary to abstract away from
irrelevant/confidential data.

Definition 14 (hiding operator). Let O be an outer interface and A a set
of data places such that A ⊆ O. The hiding operator (with respect to A and
O) νA,O is the context with no transitions, with inner interface O and outer
interface O \A.

We round up the section with a simple result on disjoint compositionality, which
is needed later on when discussing about (sub)service replaceability. For the sake
of readability, in the following we omit the second index of an hiding operator,
whenever it is clear from the context.

Proposition 2. Let N be a net, A ⊆ Op(N) a set of data places, and C[−] a
context such that OC[−] ∩A = ∅. If the composite C[νA[N]] is well-defined (i.e.,
if IC[−] = Op(N) \A), then νA[CA[N]] = C[νA[N]].

In plain terms, removing the places in A from the interface of a net N , and then
inserting the resulting net in a context C[−], has the same effect as inserting N
in a slightly enlarged context CA[−], and later on removing those same places.

4 Net Bisimulation for Publication and Replaceability

Section 3 provide us with the tools which are needed for addressing the method-
ology concerning service publication and replaceability discussed in Section 2.

On service publication
Let us consider an OWL-S process description S, with DS the set of data occur-
ring in S. The associated OCPR nets ‖S‖DS gives a faithful, abstract represen-
tation of the whole behaviour of the service. To check if a service and its public
specification coincide, it would then suffice to simply check the equivalence of the
associated nets. However, it might well happen that the service provider does
not want to make all the details available to an external customer, and thus
wants to hide some of the data places. This is performed by simply providing
the set of data places X ⊆ DS , corresponding to the data occurring in S that
should be hidden, and consider νX [‖S‖DS]. Any net (even a much simpler one)
equivalent to νX [‖S‖DS] represents a public specification of the service.

Compositional Specification of Web Services 65

On service replaceability
Let us consider an OWL-S process description S and its public specification P
and suppose that we need to replace a subservice of S, called R, with a new
service T . We must verify that, after the replacement, the external behaviour of
the overall system remains the same.

Let DS, DP , DR and DT the sets of data occurring in, respectively, the
descriptions S, P , R and T . Formally, “being R a subservice of S” means that
DR ⊆ DS and that there exists a context C[−] such that C[‖R‖DR] = ‖S‖DS .
Since ≈S is a congruence, it would then suffice to check that ‖R‖DR ≈S ‖T ‖DT

in order to be sure that R and T are interchangeable.
However, this condition is too restrictive, since it would imply that DR = DT .

Suppose instead that T produces some data that neither R nor S produce. Or,
viceversa, suppose that R produces more data than T , but these additional data
are not used by the rest of S. So, even if (the encodings of) R and T are not
bisimilar, replacing R with T does not modify the external behaviour of the
overall system, so these two services should still be considered interchangeable.

In order to get a general condition for replaceability, take Y as the subset of
DR containing those data neither in DP nor used by the rest of the service S:
formally, “being Y not used by S” amounts to say that there exists an OCPR
context C[−] such that νY [‖S‖DS] = C[νY [‖R‖DR]]. Let us assume the existence
of a subset Z of data of T such that DT \ Z = DR \ Y . Thus, we say that the
replacement is sound (with respect to public specification P) if

νY [‖R‖DR] ≈S νZ [‖T ‖DT]

The above condition amounts to say that the external behaviour of S does not
change. Indeed, for X = DS \DP we have ‖P‖DP ≈S νX [‖S‖DS] (since P is the
public specification of S), and requiring that Y ⊆ X is not used in S implies

‖P‖DP ≈S νX [‖S‖DS] = ν(X\Y)[C[νY [‖R‖DR]]] ≈S ν(X\Y)C[νZ [‖T ‖DT]]

So, the replacement is indeed sound. Finally, note that we may safely assume
that the data in Z do not occur in S, possibly after some renaming, so that
Z ∩ (DS \ Y) = ∅. By Proposition 2 we then obtain

ν(X\Y)C[νZ [‖T ‖DT]] ≈S ν((X\Y)�Z)CZ [‖T ‖DT]

which corresponds to the encoding of the process description S′, obtained after
replacing R in S with T , and closing with respect to the data (X \ Y) 	 Z.

5 Case Study (Continued)

In the last section we sketched a general methodology for the use of the theo-
retical results given in Section 3 in addressing the issues of service publication
and service replaceability. The aim of this section is to directly instantiate the
methodology on our case study.

66 F. Bonchi et al.

Fig. 7. IMP : OCPR net representation of the CreditPortal service

On service publication
Let us continue the first example of Section 2. As previously anticipated, the
bank (i.e., the service provider) wants to verify whether the interface behaviour
description of CreditPortal (Fig. 2) that it wants to publish properly advertises
the full behaviour of the CreditPortal service (Fig. 1).

Firstly, we translate both the full process model and the interface behaviour
description of CreditPortal into OCPR nets, according to the OWL-S encoding
sketched in subsection 3.3. The resulting nets IMP and SPEC are illustrated in
Figs. 7 and 8, respectively. As one may note, all the data places of the two nets
are open. As a consequence, if we compare IMP with SPEC with respect to the
behavioural equivalence of subsection 3.1, the two nets have different interfaces
and they are hence externally distinguishable. As explained in Section 4, the cor-
rect way to proceed – before equating the nets – is to take a set X of data places
that we do not want to be observed by the client. In the net IMP we would
take X = {securityEvaluation, rating, makeOffer, confirmation}. After closing X ,
the two structurally different nets result to be externally indistinguishable, i.e.,
νX [IMP] ≈S SPEC. In other words, the simplified process model in Fig. 2 is a
correct interface behaviour description for the CreditPortal service.

On service replaceability
In the second example of Section 2, the bank needs to verify whether the sub-
service of CreditPortal which evaluates the customer reliability (the dotted area
of Fig. 1) can be replaced by RatingOne (Fig. 3) or RatingTwo (Fig. 4) affecting
neither the internal nor the external behaviour of CreditPortal.

Similarly to the previous example, we first translate the dotted area of Cred-
itPortal, RatingOne and RatingTwo into the OCPR nets SUB,R1,R2 depicted

Compositional Specification of Web Services 67

Fig. 8. SPEC: OCPR net representation of the CreditPortal public specification

Fig. 9. SUB: the subservice of CreditPortal to be externalized

in Figs. 9, 10 and 11, respectively. Clearly, these three nets are not equivalent,
since they expose different interfaces, and they are obviously externally distin-
guishable. This is not surprising: the bank describes which are the information
it needs for each customer (namely, its rating), while the additional information
(i.e., firstRating, secondRating and thirdRating) provided by the enterprises may
be used by the bank in order to choose a service according to some criteria.

However both RatingOne and RatingTwo can safely replace the dotted area
of CreditPortal. In particular, while such a (sub)service substitution affects the
internal behaviour of CreditPortal, it does not alter its externally observable
behaviour. Following the methodology sketched in Section 4, we take the set Y of
data places of SUB that do not occur in the public specification and that are not
used by the rest of the service. In our example, Y = {securityEvaluation}. Then
we take Z as the set of data places occurring in R1 (or R2) and not in νY [SUB].
Thus, for both R1 and R2, Z = {firstRating, secondRating, thirdRating}.

At this point, we just need to check that νY [SUB] ≈S νZ [R1] ≈S νZ [R2].
Since the equivalences hold, both RatingOne and RatingTwo can be employed to
replace the subservice of CreditPortal evaluating the customer reliability.

68 F. Bonchi et al.

Fig. 10. R1: OCPR net representation of the RatingOne service

Fig. 11. R2: OCPR net representation of the RatingTwo service

6 Concluding Remarks

This paper outlines a methodology for addressing two pivotal issues in Service-
Oriented Computing: publication of correct service specifications and replace-
ability of (sub)services. Given (the OWL-S process models of) a service S1, its
(verified correct) public specification and a service S2, we want to check whether
replacing a sub-component of S1 with S2 does not change the behaviour de-
scribed in the specification. We thus translate the sub-component of S1 and S2

into OCPR nets and we check whether such nets are equivalent by closing those
data places that do not occur in the public specification of S1. The key ingredi-
ents of the methodology are a compositional notion of saturated bisimilarity [3],
its characterization via a weak and decidable bisimulation equivalence, a formal
encoding from OWL-S to CPR nets (introduced here and implemented in [9]),
and the definition of an hiding operator. The work is presented through an ex-
ample scenario, inspired by the finance case study of the SEnSOria project.

In literature there are many approaches using Petri nets to model Web ser-
vices. We discussed the issue in [3], where, in particular, we highlighted the

Compositional Specification of Web Services 69

connection of OCPR nets to the workflow nets [10, 11], and we pointed out the
correspondence with the notion of simulation introduced by Martens in [12,13].

In the emerging world of Service-Oriented Computing – where applications are
built by combining existing services – the issue of service replaceability gained
a prominent role, and thus new approaches are often introduced. The discussion
below briefly sums up some of the most recent proposals that we are aware of.

A logic-based approach for service replaceability has been recently presented
in [14], where a context-specific definition of service equivalence is introduced.
According to [14], given a μ-calculus formula φ describing some property, a
service S, taking part in a specific context C[−], can be replaced by a service T
if φ holds also in C[T]. Intuitively, such a notion of context-specific replaceability
relaxes the requirements imposed by a notion of service (bi)simulation like [3].

Another relaxed replaceability relation on services is induced by the definition
of interaction soundness presented in [15]. Given an environment E, a service S
in an orchestration O[S] can be replaced by T if the interaction of O[T] and E is
lazy sound, that is, if the final node of the graph which represents the interaction
of O[T] and E can be reached from every initial node.

Although not presented in term of replaceability, the notion of operating guide-
lines, introduced in [16, 17] and employed in [18] to formally analyze the inter-
actional behaviour of BPEL processes, also implicitely induces a replaceability
relation on services — yet not compositional. An operating guideline is an au-
tomaton that concisely represents all the partners that properly interact with
a service. A service S interacting with C can be replaced with a service T if T
belongs to the operating guidelines of C.

A theory for checking the compatibility of service contracts based on a ccs-
like calculus is presented in [19, 20]. Using a simple finite syntax (featuring the
sequencing and external/internal choice constructors) to describe service con-
tracts, they define a notion of preorder on processes (based on must testing)
reflecting the ability of successfully interacting with clients. Such a notion in-
duces a replaceability relation that, informally, allows one to replace a service S1

with S2 only if all clients compliant with S1 are also compliant with S2. Such a
notion of replaceability is uncomparable with ours, as the former emerges from
a synchronous model while the latter emerges from an asynchronous model. It
is also worth noting that, in particular, [20] shows the existence of the principal
dual contract (reminiscent of operating guideline), i.e., the smallest (namely, the
most general) service contract that satisfies the client request.

Other interesting notions of service replaceability were introduced also in [21,
22]. The approach in [21] models service behaviour as deterministic automata and
defines substitutability with respect to three different notions of compatibility.
In particular, context dependent substitutability states that given a service made
of two sub-services S1 and S2, S1 can be replaced by S′

1 if S′
1 is compatible

with S2, while context independent substitutability states that a service S can
be replaced by a service S′ if S′ is compatible with all those services which
are compatible with S (analogously to [12, 20]). Our notion of substitutability
resembles the notion of context independent substitutability (w.r.t. definition of

70 F. Bonchi et al.

compatibility 1 of [21]) in an asynchronous and non-deterministic setting. The
approach in [22] copes with timed business protocols and defines a notion of time-
dependent compatibility/replaceability. Let P1, P2 be timed business protocols.
Then, P1 can replace P2 w.r.t. a client protocol PC if for each timed interaction
trace of P2 and PC there is a corresponding timed interaction trace of P1 and PC .
Yet, we do not consider time constraints in our notion of service replaceability.

Furthermore, our relying on the concept of bisimilarity allows us to benefit
from the wealth of tools and algorithms developed so far. Indeed, we can check
saturated bisimilarity by constructing a finite labelled transition system and then
verifying weak bisimilarity there, exploiting e.g. the classical algorithm proposed
in [23]. We are currently implementing such an solution. The expected worst-
case time complexity can be roughly estimated in O(S2), where S denotes the
number of the markings of an OCPR net. Indeed, given two OCPR nets, the
time needed to construct their transition systems is O(S), while the algorithm
in [23] takes O(S2) for checking the weak bisimilarity. We intend however to
develop a more efficient algorithm for checking saturated bisimilarity based on
normalized minimization [24].

Finally, it is important to note that – for the sake of simplicity – we used a
single range of names for identifying the parameters of the presented services, so
that the mapping among parameters of different services is obvious. Yet, it is of-
ten the case that different services employ different parameter names. In the case
of OWL-S descriptions, each functional parameter is annotated with a concept
defined in a shared ontology. Hence, we can (semi-)automatically determine the
mapping between parameters of separate services by employing suitable tools
for crossing ontologies. Otherwise, in the case of WS-BPEL [25], for example,
such a mapping has to be provided manually. In this perspective our approach
can be easily extended to WS-BPEL services, exploiting, e.g., a translation from
BPEL processes to workflow nets in [26].

References

1. Papazoglou, M., Georgakopoulos, D.: Service-Oriented Computing. Communica-
tions of the ACM 46(10), 24–28 (2003)

2. OWL-S Coalition: OWL-S: Semantic Markup for Web Service (2006),
http://www.ai.sri.com/daml/services/owl-s/1.2/overview/

3. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A Behavioural Congruence for
Web services. In: Arbab, F., Sarjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp.
240–256. Springer, Heidelberg (2007)

4. Corifini, S.: The CreditPortal service (2008), http://www.di.unipi.it/ corfini/

owls/processmodels/(economy) CreditPortal.owl.xml

5. Reisig, W.: Petri Nets: An Introduction. EACTS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1985)

6. Brogi, A., Corfini, S.: Behaviour-aware discovery of Web service compositions. In-
ternational Journal of Web Services Research 4(3), 1–25 (2007)

7. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems.
In: Logic in Computer Science, pp. 69–80. IEEE Computer Society, Los Alamitos
(2006)

http://www.ai.sri.com/daml/services/owl-s/1.2/overview/
http://www.di.unipi.it/~corfini/owls/processmodels/(economy)_CreditPortal.owl.xml
http://www.di.unipi.it/~corfini/owls/processmodels/(economy)_CreditPortal.owl.xml

Compositional Specification of Web Services 71

8. Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000)

9. Brogi, A., Corfini, S., Iardella, S.: From OWL-S descriptions to Petri nets. In: Nitto,
E.D., Ripeanu, M. (eds.) ICSOC 2007 Workshops. LNCS, Springer, Heidelberg (to
appear, 2008), http://www.di.unipi.it/∼corfini/paper/WESOA07.pdf

10. Verbeek, H., van der Aalst, W.: Analyzing BPEL processes using Petri nets. In:
Marinescu, D. (ed.) Applications of Petri Nets to Coordination, Workflow and
Business Process Management, pp. 59–78. Florida International University, Miami
(2005)

11. van der Aalst, W.: Pi calculus versus Petri nets: Let us eat “humble pie” rather
than further inflate the “Pi hype”. BPTrends 3(5), 1–11 (2005)

12. Martens, A.: On compatibility of Web services. Petri Net Newsletter 65, 12–20
(2003)

13. Martens, A.: Analyzing Web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

14. Pathak, J., Basu, S., Honavar, V.: On context-specific substitutability of Web Ser-
vices. In: Web Services, pp. 192–199. IEEE Computer Society, Los Alamitos (2007)

15. Puhlmann, F., Weske, M.: Interaction soundness for Service Orchestrations. In:
Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 302–313.
Springer, Heidelberg (2006)

16. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

17. Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for finite-state services.
In: Kleijn, Y., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

18. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

19. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
In: Ghelli, G. (ed.) Programming Language Technologies for XML, pp. 37–48 (2007)

20. Laneve, C., Padovani, L.: The must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007)

21. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are Two Web Services
Compatible? In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324,
pp. 15–28. Springer, Heidelberg (2005)

22. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: Compatibility and replaceability
analysis for timed web service protocols. In: Benzaken, V. (ed.) Bases de Données
Avancées (2005)

23. Fernandez, J.C., Mounier, L., Jard, C., Jeron, T.: On-the-fly verification of finite
transition systems. Formal Methods in System Design 1(2/3), 251–273 (1992)

24. Bonchi, F., Montanari, U.: Coalgebraic models for reactive systems. In: Caires, L.,
Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 364–379. Springer,
Heidelberg (2007)

25. BPEL Coalition: WS-BPEL 2.0 (2006),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

26. Ouyang, C., Verbeek, E., van der Aalst, W., Breutel, S., Dumas, M., ter Hofstede,
A.: Formal semantics and analysis of control flow in WS-BPEL. Technical Report
BPM-05-15, BPM Center (2005)

http://www.di.unipi.it/~corfini/paper/WESOA07.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Modeling and Analysis of Security Protocols

Using Role Based Specifications and Petri Nets

Roland Bouroulet1, Raymond Devillers2,
Hanna Klaudel3, Elisabeth Pelz1, and Franck Pommereau1

1 LACL, Université Paris Est, 61 av. du Gén. de Gaulle, F-94010 Créteil
2 Département d’Informatique, CP212, Université Libre de Bruxelles
3 IBISC, Université d’Evry, bd François Mitterrand, F-91025 Evry

Abstract. In this paper, we introduce a framework composed of a syn-
tax and its compositional Petri net semantics, for the specification and
verification of properties (like authentication) of security protocols. The
protocol agents (e.g., an initiator, a responder, a server, a trusted third
party, . . .) are formalized as roles, each of them having a predefined be-
havior depending on their global and also local knowledge (including for
instance public, private and shared keys), and may interact in a poten-
tially hostile environment.

The main characteristics of our framework, is that it makes explicit,
structured and formal, the usually implicit information necessary to anal-
yse the protocol, for instance the public and private context of execution.
The roles and the environment are expressed using SPL processes and
compositionally translated into high-level Petri nets, while the context
specifying the global and local knowledge of the participants in the pro-
tocol is used to generate the corresponding initial marking (with respect
to the studied property). Finally, this representation is used to analyse
the protocol properties, applying techniques of simulation and model-
checking on Petri nets. The complete approach is illustrated on the case
study of the Kao-Chow authentication protocol.

Keywords: security protocols, formal specification, process algebras,
Petri nets.

1 Introduction

In the last years, security protocols have become more and more studied for their
behaviours, causal dependencies and secrecy properties. Such protocols, where
messages are asynchronously exchanged via a network, assume an underlying in-
frastructure, composed of (asymmetric) public, private and (symmetric) shared
keys [30,31]. In order to specify more precisely security protocols, formal descrip-
tion languages have been proposed, like the Spi-Calculus in [3] or the Security
Protocol Language (SPL) in [14]. The latter is an economical process language in-
spired from process algebras like the asynchronous π-Calculus [26]: each process
is defined by a term of a specialized algebra which allows to represent sequences
and parallel compositions of (more or less complex) input and output actions

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 72–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modeling and Analysis of Security Protocols 73

which may contain messages. Thus, in contrast to other notations, sending and
receiving messages can and have to be explicitly specified. However, when used to
specify protocols with various agents, each of them playing a proper role with re-
spect to the (global, but also local) knowledge it may have, an SPL presentation
needs to be complemented in order to be verified. Usually, a number of implicit
information is added, concerning for instance the global context of the protocol
execution, the number and the identity of the participants, the knowledge about
encryption keys each of them has, and so on.

In this paper, we provide a solution allowing to take into account all this
important information in a structured way, making it explicit. We focus on the
specification and verification of properties (like authentication) of security pro-
tocols. The active elements of these protocols may be formalized as roles, like for
instance an initiator, a responder or a server, each of them having a predefined
behavior taking place in a given context. They should interact in some poten-
tially hostile environment in such a way that desired properties are preserved.
Thus, in our approach, we define a framework in which a protocol is specified as
a triple composed of a number of roles, an environment and a context. The roles
and the environment are expressed using SPL processes, while the context spec-
ifies the knowledge of the participants in the protocol (including public, private
and shared keys).

Next, this specification is translated into a class of composable high-level
Petri nets. In particular, the roles and the environment are translated into S-
nets [9,10]. All these nets are composed in parallel in order to get a single net.
The context serves to define its initial marking (with respect to the studied
property). Finally, this representation is used to analyse the protocol properties,
applying techniques of simulation and model-checking [19].

With respect to previous translations into Petri nets [9,10], the present paper
also introduces a way to use secret shared keys cryptography (while only public
key cryptography was available before), and to take into account information
about the past (like compromised old-session keys).

1.1 Case Study

The approach will be illustrated on the Kao-Chow (KC) authentication protocol
[21,12], chosen as running example, involving participants exchanging messages
using shared encryption keys. It implements three roles: those for an initiator, a
responder and a server. As usual in a cryptographic context, all the participants
make use of nonces, which are newly created values used by the participants to
sign their messages.

The KC protocol between an initiator A, a responder B and a server S, allows
A and B to mutually authenticate and to share a symmetric key Kab used for
secure communications after the agreement, i.e., at the end of the protocol A
and B are sure about the secrecy of their knowledge about Kab. Informally and
assuming that Kas and Kbs are symmetric keys initially known only by A and
S, and respectively by B and S, the KC protocol may be described as follows:

74 R. Bouroulet et al.

1. A → S : A, B, m
The initiator agent A sends to the server S its own agent name A, the name
of the agent B with which it would like to communicate, together with a
nonce m.

2. S → B : {A, B, Kab, m}Kas , {A, B, Kab, m}Kbs

Then, S sends to B a message containing the received names A and B and
the nonce m, together with the generated symmetric key Kab, first encrypted
with Kas, the symmetric key it shares with A, second with Kbs the one it
shares with B. This second part, B should decrypt after reception.

3. B → A : {A, B, Kab, m}Kas , {m}Kab
, n

Then, B sends to A the first part of the received message (that it cannot
decrypt because it is encrypted with Kas), together with the received nonce
m encrypted with the shared (newly obtained) key Kab, and its own nonce
n. After reception, A decrypts the first part of the message, gets the key Kab

and checks it by decrypting its own nonce m.
4. A → B : {n}Kab

Finally, A sends back to B the nonce n encrypted with Kab.

This protocol suffers a similar kind of attack as the Denning Sacco freshness
attack on the Needham Schroeder symmetric key protocol, when an older session
symmetric key Kab has been compromised.

1. A → S : A, B, m

2. A and B previously used the symmetric key Kab and we assume from now
on that Kab is compromised. So the following exchange has already occurred
and can be replayed: S → B : {A, B, m, Kab}Kas , {A, B, m, Kab}Kbs

. An
attacker I may now impersonate S and A to force B to reuse Kab in a
communication with what it believes to be A, while it is I.

3. I(S) → B : {A, B, m, Kab}Kas , {A, B, m, Kab}Kbs

Agent I behaves as S and replays the same message to B.
4. B → I(A) : {A, B, m, Kab}Kas , {m}Kab

, n′

B executes the next step of the protocol and sends a message with a nonce
n′ to I, believing it is A.

5. I(A) → B : {n′}Kab

I, knowing the symmetric key Kab, encrypts n′ and sends it back to B. Now
B believes to have authenticated A and pursues a secret communication with
I instead of A.

The corresponding role based specification of this protocol comprises three
roles (for one initiator, one server and one responder), each of them being for-
malized as an SPL process together with the knowledge about keys that it knows.
The environment is represented by a generic SPL process simulating a poten-
tially agressive attacker, and the global context is empty as the protocol does not
assume any public knowledge. This specification is the basis of the compositional
translation to high-level Petri nets for model-checking and simulation.

Modeling and Analysis of Security Protocols 75

1.2 Outline

The paper is structured as follows: The next section presents syntactical aspects
of our framework of role based specification, and their intuitive meaning. It
includes a short presentation of the SPL syntax and its intuitive semantics,
augmented by the explicit expression of keys, and the formal definition of a role
based specification which uses SPL. The three elements of such a specification
are described next, namely the initialized roles, the environment and the public
context. This syntactical part is illustrated by providing a role based specification
of the KC protocol, and its variants depending on the global context definition.

The next section introduces our Petri net (S-net) semantics of a role based
specification and its compositional construction. In particular, the translation
algorithm from SPL terms to S-nets for roles and for the environment is detailed
as well as the one giving to the nets their initial marking. Dealing with symmetric
keys, and possibly several of them between one pair of agents, needs a careful se-
mantical treatment, which is explained and illustrated on small examples. Also,
because of the modeling of a fully general environment, the translation poten-
tially leads to infinite nets. Various ways allowing to cope with this problem are
then presented and discussed.

Then, a section illustrates the use of the role based specification in order to
automatically obtain a Petri net representation of KC protocol, and relates our
verification experiences using existing model-checking tools.

Finally, we conclude by giving some indications about the directions of our
future work.

2 Role Based Specification with SPL

First, we briefly recall the syntax and the intuitive semantics of SPL agents,
inspired from [14].

2.1 Syntax and Intuitive Semantics of SPL

We assume countably infinite disjoint sets:

– of nonces (which are assumed to be numerical values) N = {n, n′, n′′, . . .};
– of agents G = {A, B, . . .};
– and of indexes for processes and keys I = {i, . . .}, containing in particular

the natural numbers N.

We distinguish also three disjoint sets of variables:

– VN = {u, v, w, x, y, z, . . .} for nonce variables;
– VG = {X, Y, Z, . . .} for agent variables;
– and VM = {Ψ, Ψ ′, Ψ1, . . .} for message variables.

We use the vector notation −→a which abbreviates some possibly empty list of
variables a1, . . . , al (in VN∪VG∪VM), usually written in SPL as {a1, . . . , al}. Also,

76 R. Bouroulet et al.

the notation [−→V /−→a] represents the componentwise sort-preserving substitutions
ai �→ Vi, for i ∈ {1, . . . , l}.

The syntax of SPL is given by the following grammar:

g ::= A, ... | X... agent expressions

e ::= n, ... | u... nonce expressions

k ::= 〈Pub, e, g〉 | 〈Priv , e, g〉 | 〈Sym, e, g1, g2〉 key expressions

M ::= g | e | k | M1, M2 | {M}k | Ψ messages

p ::= out new −→u M.p | in pat−→a M.p | ‖i∈I pi processes

where

(a) 〈Pub, e, g〉, 〈Priv , e, g〉, 〈Sym , e, g1, g2〉, where e is the actual value of the key,
are used respectively for the public key of g, the private key of g, and the
symmetric key shared by g1 and g2; we may also use indexes like 〈Pub, e, g, i〉,
〈Priv , e, g, i〉, 〈Sym , e, g1, g2, i〉, i ∈ I, if we need to manage several similar
keys simultaneously. We shall denote by K the set of all possible private,
public and symmetric keys without variables in the SPL format.

(b) A message may be a name, a nonce, a key, a composition of two messages
(M1, M2), an encrypted message M using a key k, which is written {M}k, or
a message variable. By convention, messages are always enclosed in brackets
{ }, thus allowing to distinguish between a nonce n and a message {n} only
containing it. Moreover, we denote by Msg the set of all messages without
variables formed with respect to the SPL grammar, and μ(Msg) the set of
all multi-sets over it.

(c) In the process out new −→u M.p, the out-action prefixing p chooses fresh dis-
tinct nonces −→n = {n1, · · · , nl}, binds them to variables −→u = {u1, . . . , ul}
and sends the message M [−→n /−→u] out to the network, then the process re-
sumes as p[−→n /−→u]. It is assumed that all the variables occurring in M also
occur in −→u . The new construct, like in [14], ensures the freshness of values
in −→n . Notice that communications are considered as asynchronous , which
means that output actions do not need to wait for inputs. By convention,
we may simply omit the keyword new in an out-action if the list −→u of ‘new’
variables is empty.

(d) In the process in pat −→a M.p, the in-action prefixing p awaits for an input
that matches the pattern M for some (sort-preserving) binding of the pat-
tern variables −→a , then the process resumes as p under this binding, i.e.,
as p[−→α /−→a], where −→α are the values in N ∪ G ∪Msg received in the input
message. It is required that −→a is an ordering of all the pattern variables
occurring in M . We may also omit the keyword pat in an in-action if the list−→a of ‘new’ variables is empty.

(e) The process ‖i∈J pi is the parallel composition of all processes pi with i ∈ J ⊆
I. The particular case where J is empty defines the process nil = ‖i∈∅ pi;
all processes should end with nil but, by convention, we usually omit it
in examples. Replication of a process p, denoted ! p, stands for an infinite
composition ‖i∈N p.

Modeling and Analysis of Security Protocols 77

We shall denote by var(p) the set of all the free variables occurring in the process
p, i.e., the variables used in p which are not bound by an in or out prefix. In order
to simplify the presentation, we assume that all the sets −→u and −→a of variables
occurring in the out and in prefixes of processes, as well as their sets of free
variables, are pairwise disjoint.

2.2 Role Based Specification

We can now introduce our approach which mostly relies on notions like “role”,
“environment”, and private and public “contexts”.

Given an SPL grammar as above, a role (i.e., a named process) is a definition
of the form δ(a1, . . . , amδ

) df= pδ, where pδ is an SPL process, such that var(pδ) ⊆
{a1, . . . , amδ

}. For short, such a role is often identified with its name δ. Its context
contextδ is defined as a pair (fδ, lδ), where

– fδ: {a1, . . . , amδ
} → G∪N ∪Msg is a sort-preserving mapping that associates

an agent to each agent variable, a nonce (value) to each nonce variable and
a message to each message variable;

– and lδ ⊆ K is a subset of keys known by the role δ.

Intuitively, δ is the name of an agent, pδ describes its behaviour, fδ defines
the instantiation of the process by fixing the values of the free variables and lδ
specifies the initial private knowledge of the agent (usually the agents initially
know some keys; during the execution of the protocol they will be able to learn
some more keys from the messages received through the network). We shall
denote by (δ(fδ), lδ) an initialised role δ together with its private context.

Besides agents, the system will also encompass some spies and the network
interconnecting all of them.

A role based specification is defined as a triple

(Initialized Roles , Environment , Public Context),

where

– Initialized Roles ⊂ {(δ(fδ), lδ) | δ is a role} is a (finite) non-empty set of
initialised roles with their private contexts;

– Environment ⊂ {s | s is a role} defines an environment, i.e., a set of proto-
type roles (spies) whose replication and composition will allow to form more
complex attackers; note that spies do not have a context, since they have no
free variable, nor private knowledge (in order to cooperate, they make public
all they know);

– Public Context ∈ μ(Msg) is the initial public context, i.e., a (multi-)set of
messages previously sent on the network and available to everyone (to spies
as well as to agents) when the protocol starts; it comprises usually the names
of the agents in presence, but also possibly compromised keys, etc.

Using a role based specification to express a security protocol hence consists
in defining the roles corresponding to all the participants (initiator, responder,

78 R. Bouroulet et al.

trusted third party, . . .) and the roles corresponding to the prototypes of the po-
tential attackers (environment). Potential attackers may be described using spy
processes. Such processes will have the possibility of composing eavesdropped
messages, decomposing messages and using cryptography whenever the appro-
priate keys are available. Below we present the six basic SPL spy processes,
which refer to the standard Dolev-Yao [17] model. They are inspired from [14].
By choosing various specifications for the attacker (i.e., various combinations of
spy processes) one can restrict or increase its power of aggressiveness.

The following six spy processes may be divided into three groups depending
on the action they perform. Thus, the first group deals with messages composi-
tion/decomposition: Spy1 reads two messages from the network and issues to the
network the message composed of the two read messages, while Spy2 decomposes
a message read on the network and issues its parts.

Spy1
df= in pat {Ψ1}{Ψ1}. in pat{Ψ2}{Ψ2}. out {Ψ1, Ψ2}

Spy2
df= in pat {Φ1, Φ2}{Φ1, Φ2}. out {Φ1}. out {Φ2}

The next group deals with encryption: Spy3 encrypts a message with the
public key of someone, and issues it to the network, while Spy4 encrypts a
message with a symmetric key, and issues it.

Spy3
df= in pat {u, g}{〈Pub, u, g〉}. in pat{Ψ}{Ψ}. out {Ψ}〈Pub,u,g〉

Spy4
df= in pat {u, g1, g2}{〈Sym, u, g1, g2〉}. in pat{Ψ ′}{Ψ ′}. out {Ψ ′}〈Sym,u,g1,g2〉

The last group deals with decryption thanks to some obtained keys: Spy5

decrypts a message with the private key of someone if it is available, and issues
it to the network, while Spy6 decrypts a message with a symmetric key if it is
available, and issues it.

Spy5
df= in pat {u, g}{〈Priv , u, g〉}. in pat{Φ}{Φ}〈Pub, u, g〉. out {Φ}

Spy6
df= in pat {u, g1, g2}{〈Sym, u, g1, g2〉}. in pat{Φ′}{Φ′}〈Sym,u,g1,g2〉. out {Φ′}

In case we need to manage more than one key of a kind per agent, the spy
definitions take this information into account, for example,

Spy3
df= in pat {u, g, i}{〈Pub, u, g, i〉}. in pat{Ψ}{Ψ}. out {Ψ}〈Pub,u,g,i〉

In this model, a general potentially very aggressive attacker is modeled by an
infinite set of spy processes running in parallel.

2.3 A Role Based Specification of the KC Protocol

The roles in our modeling of the KC protocol comprise the following SPL pro-
cess definitions, where X, X ′, X ′′, . . ., are agent variables in VG, u, u′, u′′, . . ., are
nonce variables in VN , and Ψ ∈ VM is a message variable:

Modeling and Analysis of Security Protocols 79

Init(X, Y, Z, u) df= out new {x} {X, Y, x}.
in pat{y, z} {{X, Y, 〈Sym, z, X, Y 〉, x}〈Sym,u,X,Z〉, {x}〈Sym,z,X,Y 〉, y}.
out {y}〈Sym,z,X,Y 〉}

Serv(Z ′, u′, v′) df= in pat {X ′, Y ′, x′} {X ′, Y ′, x′}.
out new{w′} {{X ′, Y ′, 〈Sym, w′, X ′, Y ′〉, x′}〈Sym,u′,X′,Z′〉,

{X ′, Y ′, 〈Sym , w′, X ′, Y ′〉, x′}〈Sym,v′,Y ′,Z′〉}

Resp(Y ′′, Z ′′, u′′) df=
in pat{X ′′, y′′, w′′, Ψ} {Ψ, {X ′′, Y ′′, 〈Sym , w′′, X ′′, Y ′′〉, y′′}〈Sym,u′′,Y ′′,Z′′〉.
out new {x′′} {Ψ, {y′′}〈Sym,w′′,X′′,Y ′′〉, x′′}.
in {x′′}〈Sym,w′′,X′′,Y ′′〉

A complete role based specification of the KC protocol comprising one initiator
A, one server S and one responder B is given by

({ (Init(A, B, S, n1), {〈Sym, n1, A, S〉}),
(Serv (S, n1, n2), {〈Sym, n1, A, S〉, 〈Sym , n2, B, S〉}),
(Resp(B, S, n2), {〈Sym, n2, B, S〉}) },
{ Spy1, Spy2, Spy4, Spy6 },
M∪{{A}, {B}, {S}}),

where the roles Init(X, Y, Z, u), Serv(Z ′, u′, v′), Resp(Y ′′, Z ′′, u′′) and Spy i are
defined as above, and M is a set of residual messages. Here we use only the
spy processes that make sense in the case of the KC protocol (for instance, Spy3

deals with public key cryptography that is not involved in KC).

2.4 Different Versions of the KC Protocol

We will consider in the following two versions of the KC protocol and its environ-
ment. The first one will be used to check the intrinsic resistance of the protocol,
and will start from an empty initial knowledge: M = ∅. But since the essence
of the KC protocol is to manage short term session keys, it could happen that a
key becomes compromised after some time. This may happen, for example, due
to more or less clever brute force attacks. So, we will consider a version where
M contains initially such a compromised key. Another KC variant would be a
system with various initiators and responders.

3 Petri Net Translation of a Role Based Specification

3.1 The General Picture

Given a role based specification, its Petri net semantics may be obtained com-
positionally using an algebra of high-level Petri nets, inspired from the S-nets

80 R. Bouroulet et al.

introduced in [9] and its optimised version defined in [10]. Basic (unmarked) nets
in this algebra allow to directly represent the SPL prefixes and are one-transition
nets, like those in Figures 1 and 2, where the places represent composition inter-
faces, which are either control-flow (entry, exit or internal) or buffer ones. The
labeling of the last ones (that are devoted to asynchronous communications)
may be either:

– SPL variable names (each such place storing the current value of the vari-
able);

– κδ (storing information about encryption/decryption keys privately known
by a role δ);

– or Ω (storing all the messages transferred through the public network).

These nets may be composed with various composition operations:

– sequentially (N1;N2, which means that the exit places of the first net and
the entry places of the second net are combined);

– in parallel (N1‖N2, which means that both nets are put side by side);
– or replicated (!N = ‖i∈NN).

All these operations include the merging of buffer places having the same label
in order to allow asynchronous communications.

Thus, if (δ(fδ), lδ) is an initialized role in a role based specification, the process
expression that describes the behavior of δ allows to compositionally construct
a corresponding unmarked S-net. Its initial marking is obtained by putting a
(black) token into its entry places while the tokens in the buffer places are put
accordingly to the context (fδ, lδ).

If Spy is a prototype role defining a kind of activity of the environment, we
proceed similarly but implicitly assume that the parallel composition of all such
roles may be replicated. Its finite structure representation is then obtained as
an unmarked S-net, as defined in [10]. Its initial marking is defined by putting
one token in each entry place and no token elsewhere. The complete Petri net
representation of a role based specification is then a parallel composition of all
the corresponding S-nets. Its initial marking includes the markings mentioned
above and the tokens (messages) coming from the public context in the place Ω.

3.2 Translation Scheme

Let us assume that

({(δ1(f1), l1), . . . , (δp(fp), lp)}, {s1, . . . , sr}, Public Context)

is a role based specification, where each role δi is defined as

δi(a1, . . . , amδi
) df= pδi .

Its translation into Petri nets is defined by the following phases, where the se-
mantic function Snet will be detailed later on:

Modeling and Analysis of Security Protocols 81

– Phase 1. Each role definition δi is translated first into an S-net Snet(δi), then
we construct a net R as the parallel composition Snet(δ1)‖ · · · ‖Snet(δm),
which merges in particular all the buffer places Ω and all the key places κδi

for the same δi;
– Phase 2. Each role definition sj (spy) is translated first into an optimized

transformed S-net Snet(sj). Then, we construct a net SPY as the parallel
composition Snet(s1)‖ · · · ‖Snet(sr), which encodes every possible execution
of the attackers. Note that this translation is similar for some class of speci-
fications and may be performed only once;

– Phase 3. The nets R and SPY are composed in parallel R‖SPY and marked
as follows:
• the place Ω receives all the tokens (messages) from Public Context ;
• each entry place receives a black token;
• for each initialized role δi:
∗ each key place κδi receives all the tokens from li;
∗ each place aj , for 0 ≤ j ≤ mδi receives the token fi(aj).

3.3 Petri Net Semantics of Roles

Each role definition δ(· · ·) df= pδ may be translated compositionally into a corre-
sponding S-net, as defined in [9], providing its high-level Petri net representa-
tion. S-nets, like other high-level Petri net models, carry the usual annotations
on places (types, i.e., sets of allowed tokens), arcs (multisets of net variables)
and transitions (guards, i.e., Boolean expressions that play the role of occur-
rence conditions). S-nets have also the feature of read-arcs, which are a Petri net
specific device allowing transitions to check concurrently for the presence of to-
kens stored in their adjacent places [11]. Like other box-like models [6,7], S-nets
are also provided with a set of operations giving them an algebraic structure.
In the version considered here, this is achieved through an additional labeling
of places which may have a status (entry, exit, internal or buffer) used for net
compositions.

The marking of an S-net associates to each place a multiset of values (tokens)
from the type of the place and the transition rule is the same as for other
high-level nets; namely, a transition t can be executed if the inscriptions of
its input arcs can be mapped to values which are present in the input places
of t and if the guard of t, γ(t), is true under this mapping. The execution of
t transforms the marking by removing values (accordingly to the mapping of
arc inscriptions) from the input places of t and by depositing values into its
output places. Read-arcs are only used to check the presence of tokens in the
adjacent places but do not modify the marking. They are represented in figures
as undirected arcs. Notice that given a transition t and a marking μ, there may
be several possible executions (firings), corresponding to different mappings of
variables in the inscriptions around t to values (called bindings and denoted σ).

More precisely, we distinguish the following sets of tokens as types for the
places in S-nets.

82 R. Bouroulet et al.

– {•} for the entry, internal and exit places;
– Msg for the buffer place labeled Ω intended to gather all the messages present

in the network, as well as for all buffer places labeled with SPL message vari-
ables (from VM), even if the latter are intended to carry at most one message.
For implementation or efficiency reasons, the set Msg may be restricted, for
instance to a given maximal message length;

– N ∪G ∪K ∪Msg for all the other buffer places.

The S-net transitions always have at least one input and at least one output
control-flow place; they may be of two sorts, corresponding to the two basic
SPL actions ‘in’ and ‘out’. Arcs are inscribed by sets of net variables (denoted
a, b, c, d . . .). In order to avoid too complex (hence difficult to read) transition
guards in some figures, we use a shorthand allowing to put complex terms as
arc inscriptions (which has no consequences on the behavior of the net): we may
thus replace an arc annotation c and a guard c = f(a, b, d) by the arc annotation
f(a, b, d) and the true (or empty) guard.

By analogy with the two basic SPL actions, there are two basic S-nets. Each
of them has a single transition, inscribed IN or OUT, one entry and one exit
place of type {•}, one buffer place labeled Ω of type Msg, a unique key place κδ

where δ is the role in which the modeled action occurs, and some other buffer
places, as shown in Figures 1 and 2.

For instance, the SPL output action

out new {x′′}{Ψ, {y′′}〈Sym,w′′,X′′,Y ′′), x
′′}

in the role Resp(Y ′′, Z ′′, u′′) gives rise to the S-net represented in Figure 1.
This net may be executed if there is a token • in the entry place (denoted by
an incoming ⇒), and if the buffer places labeled w′′, y′′, X ′′, Y ′′, Z ′′, Ψ and

⇐

OUT

⇒

Y ′′

X ′′

w′′

y′′ ψ

Ω

κResp(Y ′′,Z′′,u′′)

x′′

i

a

c

b

〈Sym, c, a, i〉
d

e {{d, {b}〈Sym,c,a,i〉, e}

Fig. 1. The S-net corresponding to outnew {x′′}{Ψ, {y′′}〈Sym,w′′,X′′,Y ′′), x
′′} in the role

Resp(Y ′′, Z′′, u′′)

Modeling and Analysis of Security Protocols 83

⇐

t2 IN

⇒

X

Y

Z

x

y

u

z
κInit(X,Y,Z,u)

Ωa
b

c g
d

fe〈Sym, f, a, b〉

{{a, b, 〈Sym, f, a, b〉, d}〈Sym,g,a,c〉, {d}〈Sym,f,a,b〉, e}
〈Sym, g, a, c〉

Fig. 2. The S-net for the ‘in’ action in the role Init(X, Y, Z, u)

κResp(Y ′′,Z′′,u′′), are marked (i.e., contain values). At the firing of the transition
under a binding σ, a nonce1 is generated and put in place x′′; the tokens existing
in places w′′, y′′, X ′′, Y ′′, Z ′′, Ψ and κResp(Y ′′,Z′′,u′′) are read (but not removed);
the token • is transferred from the entry place to the exit place (denoted by an
outgoing⇒); and the whole message {σ(d), {σ(b)}〈Sym ,σ(c),σ(a),σ(i)〉, σ(e)} is put
in the message buffer Ω.

The elementary SPL input action

in pat {y, z}{{X, Y, 〈Sym, z, X, Y 〉, x}〈Sym,u,X,Z〉, {x}〈Sym,z,X,Y 〉, y}
of the role Init(X, Y, Z; u) is obtained analogously and represented in Figure 2.
The message {{X, Y, 〈Sym, z, X, Y 〉, x}〈Sym ,u,X,Z〉, {x}〈Sym,z,X,Y 〉, y} has local
nonce variables y, z and u, global nonce variables x, X , Y , Z and no message
variable. At the firing of the transition, a message from Ω with the adequate pat-
tern is read, such that the existing values of x, X , Y and Z in the corresponding
places are checked (through the read-arcs) to be equal to the corresponding ele-
ments of the message, and the value of the variables y and z are decoded from
the message and put in the corresponding places.

The S-net representing a role δ is defined compositionally using S-net compo-
sition operations and is denoted Snet(δ).

We can observe, that the place Ω is part of each basic net and, through
merging, thus becomes global to each composed net, like in Figures 5, 6 and 7.

3.4 S-Net Semantics of the Environment

The most general environment of a protocol is the most aggressive attacker, thus
an unbounded number of all sorts of spies. Its role SPY can be described as a
1 We assume that σ is such that σ(e) is fresh. This can be implemented by using a

place initially marked by a set of nonce values that are consumed when a fresh one
has to be generated.

84 R. Bouroulet et al.

replication of all involved spies in parallel (for KC we have J = {1, 2, 4, 6}, 3 and
4 being irrelevant in this context).

SPY = ! (‖i∈JSpy i) or equivalently SPY = ‖i∈J ! Spy i.

The associated net Snet(SPY) is that obtained by the infinite parallel compo-
sition of the S-nets obtained via the standard translation of the various Spy i’s.

For instance, Figure 3 shows the standard translation of our first spy.

⇐

IN

IN

OUT

⇒

Ψ1 Ψ2

Ω

a

a

b

b

a

b

{a, b}

Fig. 3. One copy of the S-net of Spy1

This representation and translation of the environment presents some diffi-
culties with respect to verification: the process SPY representing all potential
attackers is infinite, as well as Snet(SPY). A way to cope with this problem
is to propose net transformations which do not essentially modify the net be-
haviour but lead to finite net and marking graph. This is possible, as shown in
[10], by proposing solutions to the following three problems, given by increasing
difficulty:

1. The composed messages do not have a bounded length.
2. The net is infinite (even for a bounded number of agents) because of repli-

cation in SPY.
3. The multiplicity of tokens in place Ω is not bounded.

The first and third ones induce infinite paths in the marking graph, the second
one infinite edge degrees. We just like to quote here the adopted solutions which
ensure finiteness.

1. The length of composed messages will be bounded by a (usually very small)
constant, which corresponds to the maximum length of valid messages in
the considered protocol; hence, the type Msg of buffer places will be a bit
restricted, but the messages not representable are useless for the protocol.

Modeling and Analysis of Security Protocols 85

2. Replication will be replaced by iteration, in the form of a loop. Thus we
have only to consider |I| transformed Spyi-nets which are cyclic, and where
at each cycle the buffer places which should initially be empty are emptied by
a “flush” transition. The resulting behaviour is not exactly the same as with
a true replication, since no two copies of a same spy may be simultaneously
in the middle of their work; but this has no impact on the messages they can
produce in Ω.

3. The place Ω will contain a multi-set with a very small bound of multiplicities.
This can be achieved by adding a place ami (for access-memory) to each
Spy i net, containing a local copy of Ω : its type is organized as a list without
repetition, ensuring (via the guard of the upper transition) that no multiple
copies are put in the global place Ω by this Spy . (Identical copies may be
still be produced by different spies, but there is a small number of them.)
Additional places (see ss1 in Figure 4) allow to force the next transitions to
use the same values as the first one when necessary.

This way, we obtain an optimized transformed spy-net for each Spy i, called
Snet(Spy i), as illustrated (for i = 1) in Figure 4. Via an adequate equivalence
relation on these nets, it has been shown in [10], that these transformations
preserve the (interesting part of the) original behaviour: Snet(Spy i) ≡ ! Spy i .

By taking Snet(SPY) = ‖i∈I Snet(Spy i) we have a finite net representation
of the complete SPY role.

⇐

INt1

IN

OUT

flush

Ψ1 Ψ2 Ω

am1

ss1
a

a

b

b

a

b

{a, b}

b

l′

l

b

b

b

a b

Fig. 4. The net Snet(Spy1), where the guard of t1 is ((a.b) /∈ l) ∧ l′ = l.(a, b)

86 R. Bouroulet et al.

4 Petri Net Model of the KC Protocol and Its Verification

4.1 S-Net Semantics of KC Agents

There are three agents involved in the KC protocol: the initiator, the server and
the responder. The first one is represented by the role Init(X, Y, Z, u), where X
denotes the name of the agent itself, Y the name of the responder and Z the
name of the server involved. The variable u denotes the value of the symmetrical
key that the initiator shares with the server. So we get for the initiator the S-net
depicted in Figure 5.

The second one is the server, represented by the role Serv(Z ′, u′, v′), whose
free variables are Z ′, u′, v′, denoting respectively the name of the server itself,
and two key values that the server will distribute on receiving the first message
from the initiator. The corresponding S-net is depicted in Figure 6.

Finally, the responder corresponds to the role Resp(Y ′′, Z ′′, u′′), where Y ′′

represents the name of the responder itself, Z ′′ to the server and u′′ is the value

⇐

OUT

t1

IN

t2

OUT

t3

⇒

X

Z Y

x

y

u

z

κInit(X,Y,Z,u)

Ω

a
b

{a, b, d}
d

a
b

c

gd

fe〈Sym, f, a, b〉

M〈Sym, g, a, c〉

a

b

f〈Sym, f, a, b〉 e

{l}〈Sym,f,a,b〉

Fig. 5. The S-net for Init(X, Y, Z, u), where the guard of t2 is the equality M =
{{a, b, 〈Sym, f, a, b〉, d}〈Sym,g,a,c〉, {d}〈Sym,f,a,b〉, e}

Modeling and Analysis of Security Protocols 87

⇐

⇒

IN

t1

OUT t2

X ′ Y ′ Z′ x′ u′

Ω

v′ w′

κServ(Z′,u′,v′)

a

a

d

d

b

b

{a, b, d}

M
c g

h
f

〈Sym, g, a, c〉
〈Sym, h, b, c〉
〈Sym, f, a, b〉

Fig. 6. The S-net for Serv(Z′, u′, v′), where the guard of t2 is M =
{{a, b, 〈Sym, f, a, b〉, d}〈Sym,g,a,c〉, {a, b, 〈Sym, f, a, b〉, d}〈Sym,h,b,c〉}

of the key that is shared between the Z ′′ and Y ′′. The corresponding S-net is
shown in Figure 7.

The S-net of the complete protocol is made of the agents and the environment
Snet(SPY), as explained above.

4.2 Automated Verification of KC

The next step of our approach is the automated verification of the authentication
property of KC using model-checking techniques. We used for that the Helena
analyzer [19], which is a general purpose high-level Petri net model-checker.

Starting from the role based specification, as described above, we implemented
in Helena the S-nets of the roles and of the environment.

We considered first the intrinsic resistance of the KC protocol, i.e., the variant
where the public context M is empty. In order to test the resistance of the
protocol in such an environment, we used a complete protocol with two agents
A, B and a server S, with the environment formed of Spy1, Spy2, Spy4 and
Spy6.

In the KC protocol, B authenticates A when it receives the last message {n}Kab

from A, while A authenticates B on receiving the message

{A, B, Kab, m}Kas , {m}Kab
, n.

That implies B authenticates after A does. In the net vocabulary, agents A
and B mutually authenticate when the exit places of Snet(Init(A, B, S, n1)) and
Snet(Resp(B, S, n2)) are marked. Therefore, a first property to check is that it
is not possible to reach a marking where the exit place of Snet(Resp(B, S, n2))

88 R. Bouroulet et al.

⇐

IN

t1

OUT

t2

IN t3

⇒

u′′

Z′′

Y ′′

X ′′

w′′

y′′ ψ Ω

κResp(Y ′′,Z′′,u′′)

x′′

f

g

i

i

i

a

a

a

c

c

c

b

b

〈Sym, c, a, i〉
〈Sym, f, i, g〉

〈Sym, c, a, i〉

〈Sym, c, a, i〉

d

d

e

e

M

M ′

M ′′

Fig. 7. The S-net for Resp(Y ′′, Z′′, u′′), where the guard of t1 is M =
{d, {a, i, 〈Sym, c, a, i〉, b}〈Sym,f,i,g〉}, the guard of t2 is M ′ = {{d, {b}〈Sym,c,a,i〉, e}, and
the guard of t3 is M ′′ = {e}〈Sym,c,a,i〉

is marked while the exit place of Snet(Init(A, B, S, n1)) is not. This verification
was successfully performed: no such violating marking is reached when the initial
knowledge is empty.

The second analysis was to check if the protocol still resists when the public
context is not initially empty. It means that agents A and B have already used
the KC protocol. So, some of the messages exchanged during previous sessions
are part of the public context and we can assume also that for some reason a
previous key session is compromised and was made public by some other (brute
force, for instance) attacker. Therefore, it means in terms of the net semantics,
that the place Ω contains the messages {〈Sym, n3, B, S〉} and

{{A, B, 〈Sym, n3, A, B〉, a}〈Sym,n1,A,Z〉, {A, B, 〈Sym, n3, A, B〉, a}〈Sym,n2,B,Z〉}
together with the messages containing the names of the agents involved in the
protocol {A}, {B}, {S}, as usual.

Modeling and Analysis of Security Protocols 89

In this case, violating markings are the same as previously: the exit place of
Snet(Resp(B, S, n2)) is marked and the exit place of Snet(Init(A, B, S, n1)) is
not. In that case we found that the violating marking was reached and therefore
this implies that the authentication property is violated. This corresponds to the
fact that the spies succeeded in convincing B that a successful new session has
been started with A, while this is not the case.

It took 29s using the Helena model-checker to compile and analyse the entire
system in both cases on an Intel R© CoreTMDuo 2.33GHz.

5 Conclusion and Future Work

Security protocols are a very delicate field. Since they imply concurrent agents
communicating through a generally public and insecure medium (allowing at-
tackers to add, suppress and forge messages), they are prone to numerous forms
of weaknesses, difficult to track and discover. And indeed, it is not uncommon
that a protocol seems (sometimes “trivially”) correct and is used for years before
a flaw is discovered. A famous example of this kind is for instance the Needham-
Schroeder protocol [28], broken 17 years after its introduction [23,24].

Hence it appears necessary to use more formal and systematic ways to assess
such protocols [25], like for instance [2,22,13,8]. Several approaches, like theorem
provers or model-checking, were applied and sometimes offered in integrated en-
vironments like CAPSL [15] or AVISPA [1]. Also, type-checking [20,2] has been
recently used, which like model-checking has the advantage to be completely au-
tomatic, but since security violations are defined in terms of type inconsistencies,
the security property to be proved has to be considered when the specification
is being written. Among various model-checking approaches, one may quote for
instance Murϕ [16,27] (based on condition/action rules and state space explo-
ration), Casper [18] (generating CSP specification for the FDR model-checker)
or Athena [32,33] (based on the strand space model, specialised logic and model-
checker). They are mostly not process but message transfer oriented, often con-
sider intruder implicitly and do not always explicitly express local and global
knowledge.

Since Petri nets were especially introduced to cope with concurrency problems
(the interleaving semantics is often enough to do so, but true concurrent se-
mantics are also available) and to model accesses to common resources (through
places of low-level or high-level nets), and since effective tools are now available to
analyse and model-check them, we felt appealing to use this approach, like [29,5].

We thus introduced, and illustrated on a concrete case study (the Kao-Chow
authentication protocol), a role based specification framework devoted to the
specification and verification of properties of security protocols. It is composed
of three uniformly defined parts describing the behaviour of the roles, the be-
haviour of the environment (representing a potentially aggressive attacker), and
the global and local knowledges (about agent names, messages, or public, private
and shared keys) the roles can have.

90 R. Bouroulet et al.

Unlike usual security protocol notations do, that is similar to what we used
in the introduction, the advantage of a role based specification is that it is fully
explicit and formal. The roles and the environment are expressed using SPL pro-
cesses provided with their private contexts, and a definition of a global context.
These SPL descriptions are then compositionally translated into high-level Petri
nets, while the context (depending on the studied property) is used to generate
the corresponding initial marking. An immediate advantage of the method is that
the obtained Petri net model can be analysed using standard model-checking or
simulation tools.

Compared to our previous approaches [9,10], the present paper introduce novel
features for the treatment of symmetric keys as well as asymmetric ones, together
with a uniform way to analyse various forms of attack contexts.

We already started to use this framework to analyse other kinds of protocols,
mixing both symmetric and asymmetric keys, and allowing other kinds of attack
contexts. This should be the subject of forthcoming papers.

References

1. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

2. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. Journal of the ACM 52(1) (2005)

3. Abadi, M., Gordon, A.: A calculus for cryptographic protocols. In: The Spi calculus.
ACM Conference on Computers and Communication Security. ACM Press, New
York (1997)

4. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2) (2002)

5. Al-Azzoni, I., Down, D.G., Khedri, R.: Modelling and verification of cryptographic
protocols using coloured Petri nets and Design/CPN. Nordic Journal of Comput-
ing 12(3) (2005)

6. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. In: EATCS Monographs on
TCS. Springer, Heidelberg (2001)

7. Best, E., Fra̧czak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: M-nets: an algebra of
high level Petri nets, with an application to the semantics of concurrent program-
ming languages. Acta Informatica 35 (1998)

8. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: IEEE Symposium on Security and Privacy (2006)

9. Bouroulet, R., Klaudel, H., Pelz, E.: A semantics of Security Protocol Language
(SPL) using a class of composable high-level Petri nets. In: ACSD 2004. IEEE
Computer Society, Los Alamitos (2004)

10. Bouroulet, R., Klaudel, H., Pelz, E.: Modelling and verification of authentication
using enhanced net semantics of SPL (Security Protocol Language). In: ACSD
2006. IEEE Computer Society, Los Alamitos (2006)

11. Christensen, S., Hansen, N.D.: Coloured Petri Nets Extended with Place Capac-
ities, Test Arcs and Inhibitor Arcs. In: Ajmone Marsan, M. (ed.) ICATPN 1993.
LNCS, vol. 691. Springer, Heidelberg (1993)

Modeling and Analysis of Security Protocols 91

12. Clark, J., Jacob, J.: A survey of authentication protocol literature: Version 1.0
(1997), http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz

13. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security
protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer,
Heidelberg (2005)

14. Crazzolara, F., Winskel, G.: Events in security protocols. In: ACM Conf on Com-
puter and Communications Security. ACM Press, New York (2001)

15. Denker, G., Millen, J.: CAPSL Integrated Protocol Environment. In: DISCEX
2000. IEEE Computer Society, Los Alamitos (2000)

16. Dill, D.L., Drexler, A.J., Hu, A.J., Han Yang, C.: Protocol Verification as a Hard-
ware Design Aid. In: IEEE International Conference on Computer Design: VLSI
in Computers and Processors (1992)

17. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory IT-29 12 (1983)

18. Donovan, B., Norris, P., Lowe, G.: Analyzing a library of security protocols using
Casper and FDR. In: Workshop on Formal Methods and Security Protocols (1999)

19. Evangelista, S.: High Level Petri Nets Analysis with Helena. In: Ciardo, G., Daron-
deau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg
(2005), http://helena.cnam.fr/

20. Gordon, A., Jeffrey, A.: Authenticity by Typing for Security Protocols. In: IEEE
Computer Security Foundations Workshop. IEEE Computer Society Press, Los
Alamitos (2001)

21. Kao, I.-L., Chow, R.: An efficient and secure authentication protocol using un-
certified keys. In: Operating Systems Review, vol. 29(3), ACM Press, New York
(1995)

22. Kremer, S., Raskin, J.-F.: A Game-Based Verification of Non-Repudiation and Fair
Exchange Protocols. Journal of Computer Security 11(3) (2003)

23. Lowe, G.: An attack on the Needham-Schroeder public key authentication protocol.
Information Processing Letters 56(3) (1995)

24. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
(FDR). In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055. Springer,
Heidelberg (1996)

25. Meadows, C.: Formal Methods for Cryptographic Protocol Analysis: Emerging Is-
sues and Trends. IEEE Journal on Selected Areas in Communication 21(1) (2003)

26. Milner, R.: Communicating and mobile systems: The π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

27. Mitchell, J.C., Mitchell, M., Stern, U.: Automated Analysis of Cryptographic Pro-
tocols Using Murϕ. In: IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, Los Alamitos (1997)

28. Needham, R.M., Schroeder, M.D.: Using Encrypton for Authentication in Large
Networks of Computers. Comm. of the ACM 21(12) (1978)

29. Nieh, B.B., Tavares, S.E.: Modelling and Analyzing Cryptographic Protocols Using
Petri Nets. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718.
Springer, Heidelberg (1993)

30. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystem. Comm. of the ACM 21(2) (1978)

31. Schneier, B.: Applied Cryptography. Wiley, Chichester (1996)
32. Thayer, F., Herzog, J.C., Guttman, J.D.: Strand Spaces: Why is a Security Protocol

Correct? In: IEEE Symposium on Security and Privacy (1998)
33. Song, D.: Athena: A new efficient automatic checker for security protocol analysis.

In: CSFW 1999. IEEE Computer Society Press, Los Alamitos (1999)

http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz
http://helena.cnam.fr/

A Symbolic Algorithm for the Synthesis of

Bounded Petri Nets�

J. Carmona1, J. Cortadella1, M. Kishinevsky2, A. Kondratyev3, L. Lavagno4,
and A. Yakovlev5

1 Universitat Politècnica de Catalunya, Spain
2 Intel Corporation, USA

3 Cadence Berkeley Laboratories, USA
4 Politecnico di Torino, Italy
5 Newcastle University, UK

Abstract. This paper presents an algorithm for the synthesis of
bounded Petri nets from transition systems. A bounded Petri net is
always provided in case it exists. Otherwise, the events are split into
several transitions to guarantee the synthesis of a Petri net with bisim-
ilar behavior. The algorithm uses symbolic representations of multisets
of states to efficiently generate all the minimal regions. The algorithm
has been implemented in a tool. Experimental results show a significant
net reduction when compared with approaches for the synthesis of safe
Petri nets.

1 Introduction

The problem of Petri net synthesis consists of building a Petri net that has a
behavior equivalent to a given transition system. The problem was first addressed
by Ehrenfeucht and Rozenberg [ER90] introducing regions to model the sets of
states that characterize marked places. Mukund [Muk92] extended the concept
of region to synthesize nets with weighted arcs.

Different variations of the synthesis problem have been studied in the
past [Dar07]. Most of the efforts have been devoted to the decidability prob-
lem, i.e. questioning about the existence of a Petri net with a specified behavior.
An exception is in [BBD95] where polynomial algorithms for the synthesis of
bounded nets were presented. These methods have been implemented in the
tool SYNET [Cai02].

Desel and Reisig [DR96] reduced the synthesis problem to the calculation of
the subset of minimal regions. In [HKT95, HKT96] the classical trace model by
Mazurkiewicz [Maz87] was extended to describe the behavior of general Petri
nets.

� Work of J. Carmona and J. Cortadella has been supported by the project FOR-
MALISM (TIN2007-66523), and a grant by Intel Corporation. Work of A. Yakovlev
was supported by EPSRC, Grants EP/D053064/1 and EP/E044662/1.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 92–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 93

a b

r1

r2 r1

r2
b a

ba
In most of the previous approaches, two ma-

jor constraints are imposed: (1) any event must
be represented by only one transition, and (2)
the reachability graph of the Petri net must be
isomorphic to the initially given transition sys-
tem. The approach presented in [CKLY98] relaxed
the previous conditions. The condition of isomor-
phism was replaced by bisimilarity [Mil89] and, as a result, the classical separa-
tion axioms did not have to hold for pairs of bisimilar states. Additionally, the
Petri net was allowed to have multiple transitions with the same label (event).
This approach was only applicable to safe Petri nets. The figure shows a tran-
sition system where the separation axioms do not hold, but a Petri net with
bisimilar behavior can be found with the methods described in [CKLY98].

1.1 Motivation and Contributions

There are several areas of interest for the synthesis of Petri nets. One of them is
visualization [VPWJ07]. Understanding the behavior of large concurrent systems
such as business processes [BDLS07] or asynchronous circuits [CKLY98] is a
complex task that can be facilitated by visualizing the causality and concurrency
relations of their events. In these cases, the non-existence of a Petri net should
not be the cause that prevents visualization.

Another interesting area of application is direct synthesis, which consists of
implementing concurrent systems by representing them as Petri nets and map-
ping the places and transitions into software of hardware realizations of these
objects (e.g. [SBY07]). Finding succinct representations of concurrent behaviors
contributes to derive efficient implementations.

On the other hand, the state spaces of such concurrent systems do not always
have an explicit representation. Instead, symbolic representations are often
used. This is the case of the transition relations used to verify temporal proper-
ties [CGP00] or the gate netlists used to represent circuits. The behavior is im-
plicitly represented by the reachable states obtained from these representations.

This paper provides an efficient synthesis approach for concurrent systems.
An algorithm for bounded Petri nets synthesis based on the theory of general
regions is presented. Starting from the algorithms for synthesizing safe Petri Nets
in [CKLY98], the theory and algorithms are extended by generalizing the notion
of excitation closure from sets of states to multisets of states. The extension
covers the case of the k-bounded Petri nets with weighted arcs. The paper also
proposes heuristics to handle transition systems which do not satisfy the notion
of excitation closure and hence cannot be modeled with general Petri nets with
uniquely labelled transitions. In this case, methods for splitting events allow
to generate Petri Nets with multiple occurrences of the same original label. In
summary, the main features of the approach are:

– The synthesis of weighted Petri nets.
– The use of symbolic methods based on BDDs to explore large state spaces.
– Efficient heuristics for event splitting.

94 J. Carmona et al.

1.2 Two Illustrative Examples

Figure 1 depicts a finite transition system with 9 states and 3 events. After
synthesis, the Petri net at the right is obtained. Each state has a 3-digit label that
corresponds to the marking of places p1, p2 and p3 of the Petri net, respectively.
The shadowed states represent the general region that characterizes place p2.
Each grey tone represents a different multiplicity of the state (4 for the darkest
and 1 for the lightest). Each event has a gradient with respect to the region (+2
for a, -1 for b and 0 for c). The gradient indicates how the event changes the
multiplicity of the state after firing. For the same example, the equivalent safe
Petri net generated by petrify [CKLY98] has 5 places and 10 transitions.

b

ca
22

p1

p2 p3

120 111 102

022 013 004031040

b b

b b b b

200
a

a a a
c

cc

c

Fig. 1. A transition system and an equivalent bounded Petri net

Another example is shown in Fig. 2. The transition system models a behavior
with OR-causality, i.e. the event c can be fire as soon as a or b have fired. The
net model is much simpler and intuitive if bounded nets are used. Instead, the
model with a safe Petri net needs to represent the events a and b with multiple
transitions.

a b

c

d

ba

b ac

d

a

a

b

b

ab

ccd

c

Fig. 2. (a) Transition system, (b) 2-bounded Petri net, (c) safe Petri net

The algorithm presented in this paper is based on an efficient manipulation
of multisets to explore the minimal general regions of a finite transition system.

2 Background

2.1 Petri Nets and Finite Transition Systems

Definition 1. A Petri net is a tuple (P, T, W, M0) where P and T represent fi-
nite sets of places and transitions, respectively, and W : (P × T) ∪ (T × P)→ N

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 95

is the weighted flow relation. The initial marking M0 ∈ N
|P | defines the initial

state of the system.

Definition 2 (Transition system). A transition system (or TS) is a tuple
(S, Σ, E, sin), where S is a set of states; Σ is an alphabet of actions, such that
S∩Σ = ∅; E ⊆ S×Σ×S is a set of (labelled) transitions; and sin is the initial
state.

Let TS = (S, Σ, E, sin) be a transition system. We consider connected TSs that
satisfy the following axioms:

– S and E are finite sets.
– Every event has an occurrence: ∀e ∈ Σ : ∃(s, e, s′) ∈ E;
– Every state is reachable from the initial state: ∀s ∈ S : sin

∗→ s.

A state without outgoing arcs is called deadlock state.

2.2 Multisets

The following definitions establish the necessary background to understand the
concept of region, introduced in Section 2.3. A region is a multiset where addi-
tional conditions hold. We start by introducing the multiset terminology.

Definition 3 (Multiset). Given a set S, a multiset r of S is a mapping
r : S −→ N.We will also use a set notation for multisets. For example, let
S = {s1, s2, s3, s4}, then a multiset r = {s3

1, s
2
2, s3} corresponds to the following

mapping r(s1) = 3, r(s2) = 2, r(s3) = 1, r(s4) = 0.

Henceforth we will assume r, r1 and r2 to be multisets of a set S.

Definition 4 (Support of a multiset). The support of a multiset r is defined
as

supp(r) = {s ∈ S | r(s) > 0}

Definition 5 (Power of a multiset). The power of a multiset r, denoted by
r�, is defined as

r� = max
s∈S

r(s)

For instance, for the multiset r = {s3
1, s

2
2, s3}, r� = 3.

Definition 6 (Trivial multisets). A multiset r is said to be trivial if
r(s) = r(s′) for all s, s′ ∈ S. The trivial multisets will be denoted by 0, 1, . . . ,
K when r(s) = 0, r(s) = 1, . . . , r(s) = k, for every s ∈ S, respectively.

Definition 7 (k-bounded multiset). A multiset r is k-bounded if for all s ∈
S : r(s) ≤ k.

96 J. Carmona et al.

Definition 8 (Union, intersection and difference of multisets). The
union, intersection and difference of two multisets r1 and r2 are defined as fol-
lows:

(r1 ∪ r2)(s) = max(r1(s), r2(s))
(r1 ∩ r2)(s) = min(r1(s), r2(s))
(r1 − r2)(s) = max(0, r1(s)− r2(s))

Definition 9 (Subset of a multiset). A multiset r1 is a subset of a multiset
r2 (r1 ⊆ r2) if

∀s ∈ S : r1(s) ≤ r2(s)

As usual, we will denote by r1 ⊂ r2 the fact that r1 ⊆ r2 and r1 �= r2.

Definition 10 (k-topset of a multiset). The k-topset of a multiset r, denoted
by k(r), is defined as follows:

k(r)(s) =
{

r(s) if r(s) ≥ k
0 otherwise

A multiset r1 is a topset of r2 if there exists some k for which r1 = k(r2).

Examples. The multiset {s3
1, s3} is a subset of {s3

1, s
2
2, s3}, but it is not a topset.

The multisets {s3
1, s

2
2} and {s3

1} are the 2- and 3-topsets of {s3
1, s

2
2, s3}, respec-

tively. As it will be shown in Section 4, k-topsets are the main objects to look
at when constructing the (weighted) flow relation for Petri net synthesis.

Property 1 (Partial order of multisets). The relation ⊆ (subset) on the set of
multisets of S is a partial order.

Property 2 (The lattice of k-bounded multisets). The set of k-bounded multisets
of a set S with the relation ⊆ is a lattice. The meet and join operations are the
intersection and union of multisets respectively. The least and greatest elements
are 0 and K respectively.

2.3 General Regions

Let TS = (S, Σ, E, sin) be a transition system. In this section, we will consider
multisets of the set S.

Definition 11 (Gradient of a transition). Given a multiset r, the gradient
of a transition (s, e, s′) is defined as

Δr(s, e, s′) = r(s′)− r(s)

An event e is said to have a non-constant gradient in r if there are two transitions
(s1, e, s

′
1) and (s2, e, s

′
2) such that

r(s′1)− r(s1) �= r(s′2)− r(s2)

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 97

Definition 12 (Region). A multiset r is a region if all events have a constant
gradient in r.

The original notion of region from [ER90] was restricted to subsets of S, i.e.
events could only have gradients in {−1, 0, +1}.

Definition 13 (Gradient of an event). Given a region r and an event e with
(s, e, s′) ∈ E, the gradient of e in r is defined as

Δr(e) = r(s′)− r(s)

Definition 14 (Minimal region). A region r is minimal if there is no other
region r′ �= 0 such that r′ ⊂ r.

Note that the trivial region 0 is not considered to be minimal.

Theorem 1. Let r be a region such that 1 ⊂ r. Then r is not a minimal region.

Proof. Trivial. A smaller region can be obtained by subtracting 1 from each
r(s). ��

Definition 15 (Excitation and switching regions1). The excitation region
of an event e, ER(e), is the set of states in which e is enabled, i.e.

ER(e) = {s | ∃s′ : (s, e, s′) ∈ E}

The switching region of an event e, SR(e), is the set of states reachable from
ER(e) after having fired e, i.e.

SR(e) = {s | ∃s′ : (s′, e, s) ∈ E}

For convenience, ER(e) and SR(e) will be also considered as multisets of states
when necessary.

Definition 16 (Pre- and post-regions). A region r is a pre-region of e if
ER(e) ⊆ r. A region r is a post-region of e if SR(e) ⊆ r. The sets of pre- and
post-regions of an event e are denoted by ◦e and e◦ respectively.

Note that a region r can be a pre-region and a post-region of the same event in
case ER(e)∪ SR(e) ⊆ r. The behavior modeled in this situation can be seen as a
self-loop in a Petri net.

1 Excitation and switching regions are not regions in the terms of Definition 12. They
correspond to the set of states in which an event is enabled or just fired, correspond-
ingly. The terms are used due to historical reasons.

98 J. Carmona et al.

Properties of regions

Property 3. Let TS = (S, Σ, E, sin) be a transition system without deadlock
states. Then, for any region r there is an event e for which Δr(e) ≤ 0.

Proof. By contradiction. Assume that Δr(e) > 0 for all events. Then for all arcs
(s, e, s′) we have that r(s′) > r(s). Since TS has no deadlock states and S is
finite, there is at least one cycle s0 → s1 → . . .→ sn → s0. This would result in
r(s0) > r(s0), which is a contradiction. �

Property 4. Let TS = (S, Σ, E, sin) be a transition system in which there is a
transition (s, e′, sin) ∈ E. Then, for any region r there is an event e for which
Δr(e) ≥ 0.

Proof. By contradiction. Assume that Δr(e) < 0 for all events. Then for all arcs
(s, e, s′) we have that r(s′) < r(s). Since there is (s, e′, sin) ∈ E, there is at least
one cycle sin → s1 → . . .→ sn = s→ sin. This would result in r(sin) < r(sin),
which is a contradiction. �

Property 5. Let TS = (S, Σ, E, sin) be a transition system without deadlock
states. Then, any region r �= ∅ is the pre-region of some event e.

Proof. Property 3 guarantees the existence of an event e such that Δr(e) ≤ 0. If
Δr(e) < 0, then every state in ER(e) must be in the support of r and the claim
holds. If every event e fulfilling Property 3 satisfies Δr(e) = 0, then supp(r) = S:
if the contrary is assumed, since the transition system is deadlock-free and r �= ∅,
the states in the support of r must be connected to some states out of r. However,
if every event has non-negative gradient in r, then in this situation r must contain
all the states. �

Property 6. Let TS = (S, Σ, E, sin) be a transition system. Then, any region
r �= ∅ is the pre-region or the post-region of some event e.

Proof. A similar reasoning of the proof of Property 5 can be applied here, but
using Properties 3 and 4. �

2.4 Excitation-Closed TSs

This section defines a specific class of transition systems, called excitation-closed,
for which the synthesis approach presented in this paper guarantees that the
Petri net obtained has a reachability graph bisimilar to the initial transition
system.

Definition 17 (Enabling topset). The set of smallest enabling topsets of an
event e is denoted by �e and defined as follows:

�e = {q | ∃r ∈ ◦e, k > 0 : q = k(r) ∧ ER(e) ⊆ k(r) ∧ ER(e) �⊆ k+1(r)}
Intuitively, q belongs to �e if it is the topset of a pre-region r of e and there is
no larger topset that includes ER(e).

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 99

Definition 18 (ECTS). A TS is excitation closed if it satisfies the following
two properties:

1. Excitation closure. For each event e
⋂

q∈�e

supp(q) = ER(e)

2. Event effectiveness. For each event e, ◦e �= ∅

3 Generation of Minimal Regions

Now we are ready to describe an algorithm to generate the set of all k-bounded
minimal regions from a given transition system. Informally, the generation of
minimal regions is based on Property 6, that states that any region is either
a pre-region or post-region of some event. Therefore the exploration of regions
starts by considering the ER and SR of every event, and expands those sets
that violate the region condition. Provided that only minimal expansions are
considered at each step of the algorithm, the generation of all the minimal regions
is guaranteed. Hence the notion of multiset expansion is crucial in this paper.

Multisets are expanded with the aim of ensuring constant gradient for every
event. Formally, given a multiset r and an event e with non-constant gradient,
the following definitions characterize the set of regions that include r.

Definition 19. Let r �= 0 be a multiset. We define

Rg(r, e) = {r′ ⊇ r|r′ is a region and Δr′(e) ≤ g}
Rg(r, e) = {r′ ⊇ r|r′ is a region and Δr′(e) ≥ g}

Rg(r, e) is the set of all regions larger than r in which the gradient of e is smaller
than or equal to g. Similar forRg(r, e) and the gradient of e greater than or equal
to g. Notice that in this definition a gradient g is used to partition the set of
regions including r into two classes. This binary partition is the basis for the
calculation of minimal k-bounded regions that will be presented at the end of
this section.

To expand a multiset in order to convert it into a region, it is necessary to
know the lower bound needed for the increase in each state in order to satisfy a
given gradient constraint. The next functions provide these lower bounds:

Definition 20. Given a multiset r, a state s and an event e, the following δ
functions are defined2:

δg(r, e, s) = max(0, max
(s,e,s′)∈E

(r(s′)− r(s) − g))

δg(r, e, s) = max(0, max
(s′,e,s)∈E

(r(s′)− r(s) + g))

2 For convenience, we consider maxx∈D P (x) = 0 when the domain D is empty.

100 J. Carmona et al.

e

e
2

s11 2

1 2

1

0 4 2

0

1 2 3

5

8 4

9

e

ee e

e e

e e

e e
s1 s2

1 2

4

3 3

1 2 3

5

74 8

10

e

1 2
s

e

e

s

s

e

s

e

s

e

2

8

6 66 8 7

10

4 5

2 3121 1 2 1 2 3

54

6 6 6 8 7

105

e e

ee

ee

e e

ee e

e e

ee e

ee

e e

e

e e

e e

e

e e

ee

Fig. 3. Successive calculations of �2(r, e)

Informally, δg denotes a lower bound for the increase of r(s), taking into account
the arcs leaving from s, to force Δr′(e) ≤ g in some region r′ larger than r.
Similarly, δg denotes a lower bound taking into account the arcs arriving at s,
to force Δr′(e) ≥ g. Let us use Figure 3 to illustrate this concept. In the figure
each state is labeled with r(s). For the states s1 and s2 in the top-left figure, we
have:

δ2(r, e, s1) = 3 δ2(r, e, s2) = 0

δ2(r, e, s1) is determined by the arc 2 e→ 1 and indicates that r′(s1) ≥ 4 in
case we seek a region r′ ⊃ r with Δr′(e) ≥ 2. Analogously, Figure 4 illustrates
the symmetrical concept. For the states s1 and s2 in the leftmost figure we have:

δ1(r, e, s1) = 2 δ1(r, e, s2) = 2

δ1(r, e, s1) is determined by the arc 1 e→ 4 , indicating that r′(s1) ≥ 3 for
Δr′(e) ≤ 1. Similarly, δ1(r, e, s2) is determined by the arc 5 e→ 8 .

Definition 21. Given a multiset r and an event e, the multisets �g(r, e) and
�g(r, e) are defined as follows:

�g(r, e)(s) = r(s) + δg(r, e, s)
�g(r, e)(s) = r(s) + δg(r, e, s)

Intuitively, �g(r, e) is a safe move towards growing r and obtaining all regions
r′ with Δr(e) ≤ g. Similarly, �g(r, e) for those regions with Δr(e) ≥ g. It is

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 101

1 2

1

0 4 2

0

1 2 3

5

8 4

9

1 2
e

e

s s

e e

e e

e

e

e e e

e

1 2

3

0 2

0

4 4 4

7

44 8

9

1 2
s

e
s

e

e

e e

e e

e e

e e

e

2 2

3

0 2

0

6 6 6

7

48

9

e

e

e

s1 s2

e e

e e

e

e e

e e

4

Fig. 4. Successive calculations of �1(r, e)

easy to see that �g(r, e) and �g(r, e) always derive multisets larger than r. The
successive calculations of �g(r, e) and �g(r, e) are illustrated in Figures 3 and 4,
respectively.

Theorem 2 (Expansion on events)

(a) Let r �= 0 be a multiset and e an event such that there exists some (s, e, s′)
with r(s′)− r(s) > g. The following hold:
1. r ⊂ �g(r, e)
2. Rg(r, e) = Rg(�g(r, e), e)

(b) Let r �= 0 be a multiset and e an event such that there exists some (s, e, s′)
with r(s′)− r(s) < g. The following hold:
1. r ⊂ �g(r, e)
2. Rg(r, e) = Rg(�g(r, e), e)

Proof (We prove item (a), item (b) is similar.)
(a.1) Given the event e, for all states s, s′ with (s, e, s′) either (i) r(s′)−r(s) ≤ g
or (ii) r(s′) − r(s) > g. In situation (i), the following equality holds: r(s) =
�g(r, e)(s) because δg(r, e, s) = 0 by Definition 20. In situation (ii), δg(r, e, s) > 0,
and therefore r(s) < �g(r, e)(s). Given that the rest of states without outgoing
arcs labeled e fulfill also r(s) = �g(r, e)(s), and because there exists at least one
transition satisfying (ii), the claim holds.

(a.2) To obtain Rg(r, e) it is necessary to guarantee Δr′(e) ≤ g for each
region r′ ⊇ r. Given (s, e, s′) with r(s′)− r(s) > g, two possibilities can induce a
gradient lower than g, e.g decreasing r(s′) or increasing r(s), but only the latter
leads to a multiset with r as a subset. �

Figure 5 presents an algorithm for the calculation of all minimal k-bounded
regions. It is based on a dynamic programming approach that, starting from
a multiset, generates an exploration tree in which an event with non-constant
gradient is chosen at each node. All possible gradients for that event are explored
by means of a binary search. Dynamic programming with memoization avoids
the exploration of multiple instances of the same node. The final step of the
algorithm (lines 16-17) removes all those multisets that are neither regions nor
minimal regions that have been generated during the exploration.

102 J. Carmona et al.

generate minimal regions (TS,k) {
1: R = ∅; /* set of explored multisets */

2: P = {ER(e) | e ∈ E} ∪ {SR(e) | e ∈ E};
3: while (P �= ∅) /* multisets pending for exploration */

4: r = remove one element (P);

5: if (r �∈ R) /* dynamic programming with memoization */

6: R = R ∪ {r};
7: if (r is not a region)

8: e = choose event with non constant gradient (r);
9: (gmin, gmax) = ‘‘minimum and maximum gradients of e in r’’;
10: g = �(gmin + gmax)/2�; /* gradient for binary search */;

11: r1 = �g(r, e); if ((r�1 ≤ k) ∧ (1 �⊂ r1)) P = P ∪ {r1} endif;
12: r2 = �g+1(r, e); if ((r�2 ≤ k) ∧ (1 �⊂ r2)) P = P ∪ {r2} endif;
13: endif
14: endif
15 endwhile;
16: R = R \ {r | r is not a region}; /* Keep only regions */

17: R = R \ {r | ∃r′ ∈ R : r′ ⊂ r}; /* Keep only minimal regions */

}

Fig. 5. Algorithm for the generation of all k-bounded minimal regions

Theorem 3. The algorithm generate minimal regions in Figure 5 calculates all
k-bounded minimal regions.

Proof. The proof is based on the following facts:

1. All minimal regions are a pre- or a post-region of some event (property 6).
Any pre- (post-) region of an event is larger than its ER (SR). Line 2 of the
algorithm puts all seeds for exploration in P . These seeds are the ERs and
SRs of all events.

2. Each r that is not a region is enlarged by �g(r, e) and �g+1(r, e) for some
event e with non-constant gradient. Given that g = �(gmin +gmax)/2�, there
is always some transition s1

e→ s2 such that r(s2) − r(s1) = gmax > g and
some transition s3

e→ s4 such that r(s4)− r(s3) = gmin < g + 1. Therefore,
the conditions for theorem 2 hold. By exploring �g(r, e) and �g+1(r, e), no
minimal regions are missed.

3. The algorithm halts since the set of k-bounded multisets with ⊆ is a lattice
and the multisets derived at each level of the tree are larger than their
predecessors. Thus, the exploration will halt at those nodes in which the
power of the multiset is larger than k (lines 11-12). The condition (1 �⊂ r′)
in lines 11-12 improves the efficiency of the search (see theorem 1). �

For the case of safe Petri nets, line 9 of the algorithm always gives g = gmin = 0
and gmax = 1. The calculation of �0(r, e) and �1(r, e) with the constraints
r�1 , r�2 ≤ 1 is equivalent to the expansion of sets of states presented in lemma 4.2
of [CKLY98].

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 103

a

a

a

a

b

b b

1

1

1

1

0

0 0

s1

s2

s3

s6s5

s4

s0

s1

s2

s3

s6s5

s4

s0
a

a

a

a

b

b b

6

4

2

3

0

1 0 ba

32

(a) (b) (c)

Fig. 6. Generation of minimal region: (a) ER(a), (b) final region after the exploration
shown in table 1, (c) equivalent Petri net

Table 1. Path in the exploration tree for the generation of the region in Figure 6(b)

ri(s) illegal chosen
ri s0 s1 s2 s3 s4 s5 s6 events event gmin gmax g

r1 = ER(a) 1 1 1 0 1 0 0 {a, b} a -1 0 -1
r2 = �−1(r1, a) 2 2 1 0 1 0 0 {a, b} b -2 -1 -2
r3 = �−2(r2, b) 3 2 1 0 2 0 0 {a, b} a -2 -1 -2
r4 = �−2(r3, a) 4 3 2 0 2 0 0 {a, b} b -3 -2 -3
r5 = �−3(r4, b) 5 3 2 0 3 0 0 {a, b} b -3 -2 -3
r6 = �−3(r5, b) 6 3 2 0 3 0 0 {a} a -3 -1 -2
r7 = �−2(r6, a) 6 4 2 0 3 1 0 ∅

Figure 6 presents an example of calculation of minimal regions. Starting from
ER(a), the multiset is iteratively enlarged until a minimal region is obtained.
Table 1 describes one of the paths of the exploration tree.

3.1 Symbolic Representation of Multisets

All the operations required in the algorithm of Figure 5 to manipulate the mul-
tisets can be efficiently implemented by using a symbolic representation. A mul-
tiset can be modeled as a vector of Boolean functions, where the function at
position i describes the characteristic function of the set of states having car-
dinality i. Hence, multiset operations (union, intersection and complement) can
be performed as logic operations (disjunction, conjunction and complement) on
Boolean functions. An array of Binary Decision Diagrams (BDDs) [Bry86] is
used to represent implicitly a multiset.

4 Synthesis of Petri Nets

The synthesis of Petri nets can be based on the generation of minimal regions
described by the algorithm in Figure 5.

For the sake of efficiency, different strategies can be sought for synthesis. They
can differ in the way the exploration tree is built. One of the possible strategies
would consist in defining upper bounds on the capacity of the regions (kmax)

104 J. Carmona et al.

and on the gradient of the events (wmax). The tree can then be explored without
surpassing these bounds. For example, one could start with kmax = gmax = 1
to check whether a safe Petri net can be derived. In case the excitation closure
does not hold, the bounds could be increased, etc. Splitting labels could be done
when the bounds go too high without finding the excitation closure.

By tuning the search algorithm with different parameters, the search for min-
imal regions can be pruned at the convenience of the user.

Once all minimal regions have been generated, excitation closure must be
verified (see Definition 18). In case excitation closure holds, a minimal saturated 3

PN can be generated as follows:

– For each event e, a transition labeled with e is generated.
– For each minimal region ri, a place pi is generated.
– Place pi contains k tokens in the initial marking if ri(sin) = k.
– For each event e and minimal region ri such that ri ∈ ◦e find q ∈� e such

that q = k(ri). Add an arc from place pi to transition e with weight k.
In case Δri(e) > −k add an arc from transition e to place pi with weight
k + Δri(e).

– For each event e and minimal region ri such that SR(e) ⊆ ri add an arc from
transition e to place pi with weight Δri(e)4.

Given that the approach presented in this paper is a generalization for the
case of safe Petri nets from [CKLY98], the following theorem can be proved:

Theorem 4. Let TS be an excitation closed transitions system. The synthesis
approach of this section derives a PN with reachability graph bisimilar to TS.

Proof. In [CKLY98], a proof for the case of safe Petri nets was given (Theorem
3.4). The proof for the bounded case is a simple extension, where only the defi-
nition of excitation closure must be adapted to deal with multisets. Due to the
lack of space we sketch the steps to attain the generalization.

The proof shows, by induction on the length of the traces leading to a state,
that there is a correspondence between the reachability graph of the synthesized
net and TS. The crucial idea is that non-minimal regions can be removed from
a state in TS to derive a state in the reachability graph of the synthesized net.
Moreover excitation closure ensures that this correspondence preserves the tran-
sitions in both transition systems. Based on this correspondence, a bisimulation
is defined between the states of TS and the states of the reachability graph of
the synthesized net. �

The algorithm described in this section is complete in the sense that if excitation
closure holds in the initial transition system and a bound large enough is used,
the computation of a set of minimal regions to derive a Petri net with bisimilar
behavior is guaranteed.
3 The net synthesized by the algorithm is called saturated since all regions are mapped

into the corresponding places [CKLY98].
4 If SR(e) ⊆ ri, then the Definition 13 makes Δri(e) ≥ 0.

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 105

4.1 Irredundant Petri Nets

A minimal saturated PN can be redundant. There are two types of redundancies
that can be considered in a minimal saturated PN:

1. A minimal region is not necessary to guarantee the excitation closure of any
of the events for which the ER is included in it. In this case, the corresponding
place can be simply removed from the PN.

2. Given a minimal region r, its corresponding place p and an event e such
that ER(e) ⊆ k(r) and Δr(e) = g, if the excitation closure can still be
ensured for e by considering k−1(r) instead of k(r), then the arcs p

k→ e

and e
k+g→ p in the PN can be substituted by the arcs p

k−1→ e and e
k+g−1→ p

respectively as long as k + g − 1 ≥ 0. In the case that k + g − 1 = 0, the arc
e→ p can be removed also.

In fact, the first case of redundancy can be considered as a particular case of
the second. If we consider that0(r) = S, we can say that a region r is redundant
when we can ensure the excitation closure of all events by using always 0(r)
instead of k(r) for some k > 0. Note that in this case, the region would be
represented by an isolated place (all arcs have weight 0) that could be simply
removed from the Petri net without changing its behavior.

5 Splitting Events

Splitting events is necessary when the excitation closure does not hold. When
an event is split into different copies this corresponds to different transitions in
the Petri net with the same label. This section presents some heuristics to split
events.

5.1 Splitting Disconnected ERs

Assume that we have a situation such as the one depicted in Figure 7 in which

ER3(e1)ER2(e2)ER1(e1)

ER1(e) ER2(e) ER3(e)

Fig. 7. Disconnected ERs

EC(e) =
⋂

q∈�e

supp(q) �= ER(e)

However, ER(e) has several disconnected com-
ponents ERi(e). In the figure, the white part in a
ERi(e) represents those states in EC(e)− ERi(e).
For some of those components, EC(e) has no
states adjacent to ERi(e) (ER2(e) in the Figure).
By splitting event e into two events e1 and e2 in
such a way that e2 corresponds to ERs with no
adjacent states in EC(e), we will ensure at least
the excitation closure of e2.

106 J. Carmona et al.

1

12

a

a a

b

b b

0

1

1

1

1 2

s1 s3

s0

(a)

b

b b

0

1

1

1

1 2

s1 s3

s0

(b)

a

a

a

s5s5s2 s2s4 s4

Fig. 8. Splitting on different gradients

5.2 Splitting on the Most Promising Expansion of an ER

The algorithm presented in Section 3 for generating minimal regions explores all
the expansions �k and �k of an ER. When excitation closure does not hold, all
these expansions are stored. Finally, given an event without excitation closure,
the expansion r containing the maximum number of events with constant gra-
dient (i.e. the expansion where less effort is needed to transform it into a region
by splitting) is selected as source of splitting.

Given the selected expansion r where some events have non-constant gradient,
let |�r (e)| represent the number of different gradients for event e in r. The event
a with minimal |�r (a)| is selected for splitting. Let g1, g2, . . . gn be the different
gradients for a in r. Event a is split into n different events, one for each gradient
gi. Let us use the expansion depicted in Figure 8(a) to illustrate this process. In
this multiset, events a and b have both non-constant gradient. The gradients for
event a are {0, +1} whereas the gradients for b are {−1, 0, +1}. Therefore event
a is selected for splitting. The new events created correspond to the following
ERs (shown in Figure 8(b)):

ER(a1) = {s0}
ER(a2) = {s1, s3}

Intuitively, the splitting of the event with minimal | �r (e)| represents the
minimal necessary legalization of some illegal event in r in order to convert it
into a region.

6 Synthesis Examples

This section contains some examples of synthesis, illustrating the power of the
synthesis algorithm developed in this paper. We show three examples, all them
with non-safe behavior, and describe intermidiate solutions that combine split-
ting with k-bounded synthesis.

6.1 Example 1

The example is depicted in Figure 9. If 2-bounded synthesis is applied, three
minimal regions are sufficient for the excitation closure of the transition system:

p0 = {s2
0, s1, s3}, p1 = {s0, s1, s2}, p2 = {s1, s

2
2, s4}

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 107

1

2

(a)

b

a b

a

s0

a
c s2 s3

s1

s4

a

b

c

(c)

p2

(b)

c

ba

p0 p1

2

2

p0

p1 p2

p3

a

Fig. 9. (a) transition system, (b) 2-bounded Petri net, (c) safe Petri net

In this example, the excitation closure of event c is guaranteed by the intersec-
tion of the multisets 1(p1) and 2(p2), both including ER(c). However, 1(p1)
is redundant and the self-loop arc between p1 and c can be omitted. The Petri
net obtained is shown in Figure 9(b). If safe synthesis is applied, event a must
be splitted. The four regions guaranteeing the excitation closure are:

p0 = {s0}, p1 = {s1, s2}, p2 = {s1, s3}, p3 = {s2, s4}
The safe Petri net synthesized is shown in Figure 9(c).

6.2 Example 2

The example is shown in Figure 10. In this case, two minimal regions are sufficient
to guarantee the excitation closure when the maximal bound allowed is three
(the corresponding Petri net is shown in Figure 10(b)):

p0 = {s3
0, s

2
1, s2, s3}, p1 = {s1, s

2
2, s3, s

3
4, s

2
5, s6}

The excitation closure of event b is guaranteed by 2(p1). However we also
have that Δb(p1) = −1, thus requiring an arc from p1 to b with weight 2 and
another arc from b to p1 with weight 1. The former is necessary to ensure that
b will not fire unless two tokens are held in p1. The latter is necessary to ensure
the gradient -1 of b with regard to p1. Figures 10(c)-(d) contain the synthesis for
bound 2 and 1, respectively.

6.3 Example 3

This example is depicted in Figure 11. Using bound 4, the minimal regions are
the following:

p0 = {s0}, p1 = {s4
1, s

3
2, s3, s

2
4, s6}, p2 = {s2, s

2
4, s5, s

3
6, s

4
7}

108 J. Carmona et al.

1

2

3

1

2

3 1

2b

a

p0

(a) (b) (d)(c)

p1

b

a

a

s2

s4

b

a

ab

2

s0

s1

s3

s5

s6

b

a

a

a

a

a

a b

b

Fig. 10. (a) transition system, (b) 3-bounded, (c) 2-bounded and (d) safe Petri net

1

1

2

2

3

4

p0

c

a b

2

a

a
b

b

s1

s2

s4

s3

s5

s6

s7

a

a

a

a

a

4

p1
2

p2

b

(a) (b) (c)

c

c

(d)

c s0

a

ba

a

a

Fig. 11. (a) transition system, (b) 4-bounded, (c) 3-bounded/2-bounded and (d) safe
Petri net

The synthesis with different bounds is shown in Figures 11(c)-(d). Notice that
the synthesis for bounds two and three derives the same Petri net.

7 Experimental Results

In this section a set of parameterizable benchmarks are synthesized using the
methods described in this paper. The following examples have been artificially
created:

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 109

P1 Pn........

m

(a)

P1

Pm

n

..........

n n

(b)

Pn

P2

P1

...
...
...
.

2

2 2

2 2

2

(c)

Fig. 12. Parameterized benchmarks: (a) n processes competing for m shared resources,
(b) m producers and n consumers, (c) a 2-bounded pipeline of n processes

Table 2. Synthesis of parameterized benchmarks

Petrify Genet

benchmark |S| |E| |P | |T | CPU |P | |T | CPU

SHAREDRESOURCE(3,2) 63 186 15 16 0s 13 12 0s

SHAREDRESOURCE(4,2) 243 936 20 24 5s 17 16 21s

SHAREDRESOURCE(5,2) 918 4320 48 197 180m 24 20 6m

SHAREDRESOURCE(4,3) 255 1016 21 26 2s 17 16 4m40s

PRODUCERCONSUMER(3,2) 24 68 9 10 0s 8 7 0s

PRODUCERCONSUMER(4,2) 48 176 11 13 0s 10 9 0s

PRODUCERCONSUMER(3,3) 32 92 10 13 0s 8 7 5s

PRODUCERCONSUMER(4,3) 64 240 12 17 1s 10 9 37s

PRODUCERCONSUMER(6,3) 256 1408 16 25 25s 14 13 16m

BOUNDEDPIPELINE(4) 81 135 14 9 0s 8 5 1s

BOUNDEDPIPELINE(5) 243 459 17 11 1s 10 6 19s

BOUNDEDPIPELINE(6) 729 1539 27 19 6s 12 7 5m

BOUNDEDPIPELINE(7) 2187 5103 83 68 110m 14 8 88m

1. A model for n processes competing for m shared resources, where n > m.
Figure 12(a) describes a Petri net for this model5,

2. A model for m producers and n consumers, where m > n. Figure 12(b)
describes a Petri net for this model.

3. A 2-bounded pipeline of n processes. Figure 12(c) describes a Petri net for
this model.

5 A simplified version of this model was also synthesized by SYNET [Cai02] in [BD98].

110 J. Carmona et al.

Table 2 contains a comparison between a synthesis algorithm of safe Petri
nets [CKLY98], implemented in the tool petrify, and the synthesis of general
Petri nets as described in this paper, implemented in the prototype tool Genet.
For each benchmark, the size of the transition system (states and arcs), number
of places and transitions and cpu time is shown for the two approaches. The
transition system has been initially generated from the Petri nets. Clearly, the
methods developed in this paper generalize those of the tool petrify, and par-
ticularly the generation of minimal regions for arbitrary bounds has significantly
more complexity than its safe counterpart. However, many of the implementa-
tion heuristics and optimizations included in petrify must also be extended
and adapted to Genet. Provided that this optimization stage is under develop-
ment in Genet, we concentrate on the synthesis of small examples. Hence, cpu
times are only preliminary and may be improved after the optimization of the
tool.

The main message from Table 2 is the expressive power of the approach de-
veloped in this paper to derive an event-based representation of a state-based
one, with minimal size. If the initial transition system is excitation closed, using
a bound large enough one can guarantee no splitting and therefore the num-
ber of events in the synthesized Petri net is equal to the number of different
events in the transition system. Note that the excitation closure holds for all the
benchmarks considered in Table 2, because the transition systems considered are
derived from the corresponding Petri nets shown in Figure 12.

Label splitting is a key method to ensure the excitation closure. However, its
application can degrade the solution significantly (both in terms of cpu time
required for the synthesis and the quality of the solution obtained), specially if
many splittings must be performed to achieve excitation closure, as it can be seen
in the benchmarks SHAREDRESOURCE(5,2) and BOUNDEDPIPELINE(7). In these
examples, the synthesis performed by petrify derives a safe Petri net with
one order of magnitude more transitions than the bounded synthesis method
presented in this paper. Hence label splitting might be relegated to situations
where the excitation closure does not hold (see the examples of Section 6), or
when the maximal bound is not known, or when constraints are imposed on the
bound of the resulting Petri net.

8 Conclusions

An algorithm for the synthesis of k-bounded Petri nets has been presented.
By heuristically splitting events into multiple transitions, the algorithm al-
ways guarantees a visualization object. Still, a minimal Petri net with bisim-
ilar behavior is obtained when the original transition systems is excitation
closed.

The theory presented in this paper is accompanied with a tool that provides
a practical visualization engine for concurrent behaviors.

A Symbolic Algorithm for the Synthesis of Bounded Petri Nets 111

References

[BBD95] Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms
for the synthesis of bounded nets. In: Mosses, P.D., Schwartzbach,
M.I., Nielsen, M. (eds.) TAPSOFT 1995. LNCS, vol. 915, pp. 364–383.
Springer, Heidelberg (1995)

[BD98] Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg,
G. (eds.) Lectures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp.
529–586. Springer, Heidelberg (1998)

[BDLS07] Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based
on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

[Bry86] Bryant, R.: Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computer-Aided Design 35(8), 677–691 (1986)

[Cai02] Caillaud, B.: Synet: A synthesizer of distributable bounded Petri-nets
from finite automata (2002), http://www.irisa.fr/s4/tools/synet/

[CGP00] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT
Press, Cambridge (2000)

[CKLY98] Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving
Petri nets from finite transition systems. IEEE Transactions on Com-
puters 47(8), 859–882 (1998)

[Dar07] Darondeau, P.: Synthesis and control of asynchronous and distributed
systems. In: Basten, T., Juhás, G., Shukla, S.K. (eds.) ACSD. IEEE
Computer Society, Los Alamitos (2007)

[DR96] Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Infor-
matica 33(4), 297–315 (1996)

[ER90] Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I, II.
Acta Informatica 27, 315–368 (1990)

[HKT95] Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: A trace semantics for
petri nets. Inf. Comput. 117(1), 98–114 (1995)

[HKT96] Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: An event structure
semantics for general petri nets. Theor. Comput. Sci. 153(1&2), 129–170
(1996)

[Maz87] Mazurkiewicz, A.W.: Trace theory. In: Brauer, W., Reisig, W., Rozen-
berg, G. (eds.) APN 1986. LNCS, vol. 255, pp. 279–324. Springer, Hei-
delberg (1987)

[Mil89] Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood
Cliffs (1989)

[Muk92] Mukund, M.: Petri nets and step transition systems. Int. Journal of Foun-
dations of Computer Science 3(4), 443–478 (1992)

[SBY07] Sokolov, D., Bystrov, A., Yakovlev, A.: Direct mapping of low-latency
asynchronous controllers from STGs. IEEE Transactions on Computer-
Aided Design 26(6), 993–1009 (2007)

[VPWJ07] Verbeek, H.M.W., Pretorius, A.J., van der Aalst, W.M.P., van Wijk,
J.J.: On Petri-net synthesis and attribute-based visualization. In: Proc.
Workshop on Petri Nets and Software Engineering (PNSE 2007), pp.
127–141 (June 2007)

http://www.irisa.fr/s4/tools/synet/

Synthesis of Nets with Step Firing Policies

Philippe Darondeau1, Maciej Koutny2, Marta Pietkiewicz-Koutny2,
and Alex Yakovlev3

1 IRISA, campus de Beaulieu
F-35042 Rennes Cedex, France

darondeau@irisa.fr
2 School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom
{maciej.koutny,marta.koutny}@newcastle.ac.uk

3 School of Electrical, Electronic and Computer Engineering, Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom

alex.yakovlev@newcastle.ac.uk

Abstract. The unconstrained step semantics of Petri nets is impractical
for simulating and modelling applications. In the past, this inadequacy
has been alleviated by introducing various flavours of maximally concur-
rent semantics, as well as priority orders. In this paper, we introduce a
general way of controlling step semantics of Petri nets through step firing
policies that restrict the concurrent behaviour of Petri nets and so im-
prove their execution and modelling features. In a nutshell, a step firing
policy disables at each marking a subset of enabled steps which could
otherwise be executed. We discuss various examples of step firing poli-
cies and then investigate the synthesis problem for Petri nets controlled
by such policies. Using generalised regions of step transition systems, we
provide an axiomatic characterisation of those transition systems which
can be realised as reachability graphs of Petri nets controlled by a given
step firing policy. We also provide a decision and synthesis algorithm
for PT-nets and step firing policies based on linear rewards of steps,
where fixing the reward of elementary transitions is part of the synthesis
problem. The simplicity of the algorithm supports our claim that the
proposed approach is practical.

Keywords: Petri nets, step firing policy, step transition system, regions,
synthesis problem.

1 Introduction

Concurrent behaviours of Petri nets appear when the sequential firing rule is
replaced with the step firing rule, according to which several transitions and
several instances of a transition may be fired in a single step. The sequential
reachability graph of a net is then replaced with its step reachability graph, a
particular case of the step transition systems studied in [17].

Step sequence semantics occupies a middle ground in the semantical spectrum
of models which have been investigated in the area of Petri nets and other mod-
els of concurrency. It is more realistic than the easy-to-define totally sequential

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 112–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Synthesis of Nets with Step Firing Policies 113

semantics by providing a record of concurrent execution of different actions,
but is less precise than the much more complicated (and often not entirely
clear) causality semantics. However, the unconstrained step semantics is both
impractical and coarse from the point of view of the simulation and modelling
applications. It is impractical because it suffers from an exponential explosion of
possible steps enabled at a given marking. It is coarse since it does not directly
capture many relevant behavioural features.

In the past, shortcomings of step semantics have in part been addressed by
introducing various flavours of the maximally concurrent semantics, as well as
priority orders. A typical example of taming the explosion of possible steps can
be found in tools like INA [12] where only single or maximal steps can be se-
lected for simulation. Moreover, the maximal step firing rule was used in [20]
to model the behaviour of timed nets, while the locally maximal step firing rule
was introduced in [13] (and the corresponding synthesis problem investigated
in [14,15]) to model membrane systems and, in particular, to capture a forced
synchronisation among the active reactions implied by the laws of biochemistry.
Another area where a modified step firing rule is relevant is the modelling of var-
ious features and capabilities of electronic devices (as well as feedback control
systems) stemming from, e.g., specific sampling time and rate. In fact, certain
subtleties of concurrent systems cannot be formulated just with nets; for exam-
ple, policies are indispensable to model and analyse priority arbiters (in general,
resource-based view is not enough to capture synchronous features).

In our view, Petri nets with step semantics are a useful modelling approach
as they are much more expressive and faithful (regarding actual concurrency) to
the actual behaviour than nets with purely sequential semantics. Step semantics
are also more practical than partial orders since the latter are complicated in
handling (for example, it is relatively straightforward to equip a process alge-
bra with a step sequence semantics, while doing the same for a partial order
semantics is much more difficult).

In a way, step semantics is a compromise between practicality of sequential
semantics and expressiveness of partial order semantics. Unfortunately, at the
present moment the compromise cannot be fully realised due to the combinatorial
explosion of possible steps and the lack of support for a fine tuning of behaviours.
The first concern of this paper is to address this problem by introducing a general
approach in which control is added to master the combinatorial explosion of
choices. This approach will be called step firing policies (there is here a similarity
with control policies). In short, we want to restrict the set of resource enabled
steps in a given marking of a Petri net (i.e., steps compatible with the contents
of places in this marking), using local criteria to select some steps and to control
disable the others. Moreover, we want to define in one go a general control
mechanism that applies to all possible net classes. Therefore, in the first part
of the paper, we present a generic concept of τ -nets where the parameter τ is a
(step) transition system whose states and labelled arcs encode all possible place
markings, all possible relationships between places and transitions, and step
enabledness (token free nets with a similar parametric definition were proposed

114 P. Darondeau et al.

in [16]). The firing rule of τ -nets captures resource enabledness of steps, and their
semantics is the unconstrained or ‘free’ step semantics. Step firing policies will
be defined on top of τ -nets, resulting in a step semantics more restrictive than
the free step semantics. A crucial property of the policies we consider is that
a step can be disabled only by concurent steps enabled at the same marking.
This reflects the idea that the choices made should not depend on the history,
nor on the possible futures. A particularly simple example of policies are those
induced by arbitrary preorders � on steps. Each such firing policy consists in
control disabling at each marking all steps that are not maximal w.r.t. � among
the resource enabled steps. Such policies take inspiration from and cover the
locally maximal firing rule from [13]. However, we shall also consider practically
relevant step firing policies which cannot be captured by preorders. It should be
said that policies impose in general a centralised control (particularly suited for
regulating synchronous aspects of concurrent behaviours), which goes against
the usual Petri net philosophy. Therefore, such policies should be defined and
used only when necessary, e.g., in the context of simulation and control or for
the modelling of electronic or biochemical systems. With this proviso, step firing
policies may bridge Petri nets and various fields of application in engineering.

The second concern of this paper is to show that nets with step firing poli-
cies are amenable to technical study. We do this by studying the synthesis of
τ -nets with step firing policies. In order to be able to state our contribution, let
us recall the context. The basic Petri net synthesis problem consists in finding
whether a given transition system may be realised by a Petri net with injec-
tively labeled transitions. According to classes of nets and to behaviours defined
for these nets, many versions of this problem have been dealt with, after sem-
inal work by Ehrenfeucht and Rozenberg [10,11]. If one considers sequential
behaviours of nets, a transition system is realised by a net iff it is isomorphic
to the sequential reachability graph (or case graph) of this net. Ehrenfeucht and
Rozenberg investigated the realisation of transition systems by elementary nets
and produced an axiomatic characterisation of the realisable transition systems
in terms of regions [10,11]. A region is a set of states which is uniformly entered
or exited by all transitions with an identical label. Two axioms characterize the
net realisable transition systems. The State Separation axiom requires that two
distinct states are distinguished by at least one region. The Forward Closure
axiom requires that for each action (i.e., transition label), a state at which the
considered action has no occurrence is separated by a common region from all
states where this action occurs. The realisation of transition systems by pure
bounded PT-nets, or by general PT-nets, was characterised by similar axioms
in [1,2], using extended regions inspired by [4,17]. Moreover, [1] showed that
the realisation problem for finite transition systems and PT-nets can be solved
in time polynomial in the size of the transition system. Regional axioms were
also proposed to characterize transition systems isomorphic to sequential case
graphs of elementary nets with inhibitor arcs in [5]. If one considers concurrent
behaviours of nets, a step transition system may be realised by a net iff it is iso-
morphic to the step reachability graph of this net. An axiomatic characterisation

Synthesis of Nets with Step Firing Policies 115

of the PT-net realisable step transition systems was given in [17], based on an
extension of the idea of regions. It was shown in [2] that this synthesis problem
can be solved in time polynomial in the size of the step transition system. A
similar characterisation of step transition systems realised by elementary nets
with inhibitor arcs was given in [18]. All characterisations recalled above may
be retrieved as instances of a general result established in [2] and [3]. Namely,
for each class of nets under consideration, the regions of a transition system T
may be identified with the morphisms from T to a (step) transition system τ
typical of this class. An axiomatic characterisation of τ -net realisable transition
systems in terms of τ -regions may be established once and for all, using τ as a
parameter.

The recent studies [14,15] investigated the realisation of step transition sys-
tems by elementary nets with context arcs and with the locally maximal firing
rule of [13]. The net realisable step transition systems are characterised by the
State Separation axiom, an adapted form of the Forward Closure axiom, and a
new Maximality axiom. We will extend this characterisation to arbitrary τ -nets,
with step firing policies induced by arbitrary preorders � on steps, using the
concept of regions defined as morphisms. For more general step firing policies,
we will also show that the net realisable step transition systems may be charac-
terised uniformly by two axioms, the usual State Separation axiom and a more
powerful Forward closure axiom, parametric on τ and the step firing policy. All
the earlier known results are then instances of the newly obtained characterisa-
tion. This study is followed by the definition of an algorithm for the realisation
of step transition systems by PT-nets with the policy of maximizing linear re-
wards of steps, where fixing the reward of elementary transitions is part of the
synthesis problem. The simplicity of the algorithm supports our claim that the
proposed approach is practical.

2 Background

In this section, we present some basic definitions and facts concerning Petri nets,
including a general notion of a type of nets defined by a transition system that
captures all possible relationships between places and transitions.

Abelian monoids and transition systems. An abelian monoid is a set S
with a commutative and associative binary (composition) operation + on S, and
a neutral element 0. The monoid element resulting from composing n copies of
s will be denoted by sn or n · s. In particular, 0 = 0 · s = s0. We will refer to
some specific abelian monoids: (i) the set of natural numbers N (including zero)
with the arithmetic addition and 0 = 0; (ii) SPT = N × N with the pointwise
addition operation and 0 = (0, 0); and (iii) SENC = N×N×{0, 1}× {0, 1} with
0 = (0, 0, 0, 0) and the composition operation:

(w, x, y, z) + (w′, x′, y′, z′) = (w + w′, x + x′, min{1, y + y′}, min{1, z + z′}) .

A transition system (Q, S, δ) over an abelian monoid S consists of a set of
states Q and a partial transition function δ : Q×S → Q such that δ(q,0) = q for

116 P. Darondeau et al.

every state q ∈ Q. An initialised transition system T = (Q, S, δ, q0) is a transition
system with an initial state q0 ∈ Q and such that each state q is reachable, i.e.,
there are s1, . . . , sn and q1, . . . , qn = q such that n ≥ 0 and δ(qi−1, si) = qi for
1 ≤ i ≤ n. For every state q of a (non-initialised or initialised) transition system
TS , we will denote by enbldTS (q) the set of all monoid elements s which are
enabled at q, i.e., δ(q, s) is defined. A transition system is finite if it has finitely
many states, and the set of enabled elements at any of its states is finite. In
the diagrams, an initial state will be represented by a small square and all the
remaining nodes by circles. The trivial 0-labelled transitions will be omitted.

In this paper, transition systems will be used for two rather different pur-
poses. First, initialised transition systems T over certain free abelian monoids
will represent concurrent behaviours of Petri nets. We will call them step transi-
tion systems or concurrent reachability graphs. Second, non-initialised transition
systems τ over arbitrary abelian monoids will provide ways to define various
classes of nets. We will call them net types.

Throughout the paper, we will assume that:
– T is a fixed finite set and 〈T 〉 is the free abelian monoid generated

by T , with α, β, . . . ranging over its elements.
– T = (Q, S, δ, q0) is a fixed initialised transition system over S = 〈T 〉.
– τ = (Q, S, Δ) is a fixed non-initialised transition system over an

abelian monoid S.

The set T will represent a set of Petri net transitions1 and so 〈T 〉— seen as the
set of all the multisets2 over T — comprises all potential steps of all Petri nets
over T . And transition systems over 〈T 〉 will be called step transition systems.

For all t ∈ T and α ∈ 〈T 〉, we will use α(t) to denote the multiplicity of t
in α, and so α =

∑
t∈T α(t) · t. Note that 〈T 〉 is isomorphic to the set of all

mappings from T to N with pointwise addition and the constant map 0 as a
neutral element.

PT-nets and net systems. A PT-net is a bi-partite graph N = (P, T, W),
where P and T are disjoint sets of vertices, respectively called places and transi-
tions, and W : (P×T)∪(T ×P)→ N is a set of directed edges with non-negative
integer weights. A marking of N is a mapping M : P → N, and a PT-net sys-
tem N = (P, T, W, M0) is a PT-net with an initial marking M0. We will use the
standard conventions concerning the graphical representation of PT-net systems.

Given a PT-net system N = (P, T, W, M0), a step α ∈ 〈T 〉 is enabled and may
be fired at a marking M if, for every place p ∈ P , M(p) ≥∑

t∈T α(t) ·W (p, t).
Firing such a step leads to the marking M ′, for every p ∈ P defined by:

M ′(p) = M(p) +
∑

t∈T

α(t) · (W (t, p)−W (p, t)) .

1 Transitions in nets differ totally from transitions in transition systems.
2 So that, for example, a3b = {a, a, a, b}.

Synthesis of Nets with Step Firing Policies 117

We denote this by M [α〉M ′. The concurrent reachability graph CRG(N) of N
is the step transition system CRG(N) = ([M0〉, 〈T 〉, δ, M0) where

[M0〉 = {Mn | ∃α1, . . . , αn ∃M1, . . .Mn−1 ∀1 ≤ i ≤ n : Mi−1[αi〉Mi}
is the set of reachable markings and δ(M, α) = M ′ iff M [α〉M ′.

Whenever M [α〉M ′ and α may be decomposed into smaller steps β and γ (i.e.,
α(t) = β(t) + γ(t) for all t ∈ T), according to the definition of step semantics,
there must exist an intermediate marking M ′′ such that M [β〉M ′′ and M ′′[γ〉M ′.
This specific property is not reflected in our definition of step transition systems
which extends Mukund’s original definition [17]. In fact, the sole purpose of some
step firing policies is to ban certain intermediate markings.

Classes of nets defined by transition systems. τ = (Q, S, Δ) may be used
as a parameter in the definition of a class of nets. Each net-type τ specifies
the values (markings) that can be stored within net places (Q), the operations
(inscriptions on flow arcs) that a net transition may perform on these values (S),
and the enabling condition for steps of transitions (Δ).

Definition 1 (τ-net). A τ -net is a bi-partite graph (P, T, F), where P and T
are respectively disjoint sets of places and transitions, and F : (P × T)→ S. A
marking of the τ-net is a map M : P → Q. A τ -net system N is a τ-net with
an initial marking M0.

There is a clear similarity between this definition and the definition of a PT-net
system. The only essential difference is that in τ -nets a single F (p, t) can be
used to encode one or two standard arcs between a place p and transition t. In
particular, if in a PT-net system W (p, t) = m and W (t, p) = n, then this is now
represented by setting F (p, t) = (m, n) ∈ SPT .

Definition 2 (step semantics). Given a τ-net system N = (P, T, F, M0), a
step α ∈ 〈T 〉 is (resource) enabled at a marking M of N if, for every p ∈ P ,∑

t∈T α(t) · F (p, t) ∈ enbld τ (M(p)). We denote this by α ∈ enbldN (M). The
firing of such a step produces the marking M ′ such that, for every p ∈ P :

M ′(p) = Δ
(
M(p),

∑

t∈T

α(t) · F (p, t)
)

We denote this by M [α〉M ′, and then define the concurrent reachability graph
CRG(N) of N as the step transition system formed by firing inductively from
M0 all possible (resource) enabled steps of N .

As in [3], PT-nets may be retrieved as τPT -nets where τPT = (N, SPT , ΔPT) is an
infinite transition system over the abelian monoid SPT such that ΔPT (n, (i, o))
is defined iff n ≥ i and is then equal to n− i + o (see Figure 1(a)). Intuitively,
F (p, t) = (i, o) means that i is the weight of the arc from p to t, and o the
weight of the arc in the opposite direction. To transform a PT-net into a τPT -
net with the same concurrent reachability graph all we need to do is to set
F (p, t) = (W (p, t), W (t, p)), for all places p and transitions t.

118 P. Darondeau et al.

(a)

4 10

(3, 9)

��������� ���������

(b)

0 1

���������

���������

���������

���������

Fig. 1. One of the transitions in τPT (a); and the finite net type τENC (b)

Elementary nets with context arcs under the a-priori step semantics defined
in [15] may be retrieved as τENC -nets, where τENC is a finite transition system
over the abelian monoid SENC shown in Figure 1(b). Intuitively, if F (p, t) =
(i, o, inh, act) then the meaning of i and o are the same as in the case of PT-nets
above, while inh = 1 indicates that there is an inhibitor arc between p and t,
and act = 1 indicates that there is an activator (or read) arc between p and t.

Synthesising τ -nets. The synthesis problem is both a feasability problem
and an effective construction problem. On the one hand, one asks for an exact
and hopefully effective (i.e., decidable) characterisation of the transition systems
that can be realised by Petri nets. On the other hand, one seeks a constructive
procedure for deriving Petri nets from transition systems. Typically, an algorithm
constructing such a net is a by-product of an effective solution to the feasability
problem. In the case of τ -nets, the synthesis problem combines the following two
sub-problems.

feasability
Provide necessary and sufficient conditions for a given T to be realised by
some τ -net system N (i.e., T ∼= CRG(N) where ∼= is transition system
isomorphism preserving the initial states and transition labels).

effective construction
Given a finite T , construct a finite τ -net system N with T ∼= CRG(N).

Note that the decision whether T can be realised by some τ -net system N is
an implicit sub-problem of the effective construction problem. Realisable
step transition systems have been characterised in [2,3] by two axioms parametric
on τ . The axioms require the presence of a sufficiently rich family of τ -regions,
defined as morphisms from T to τ .

Definition 3 (τ-region). A τ -region of T is a pair (σ, η), where σ : Q → Q

and η : 〈T 〉 → S is a morphism of monoids, such that for all q ∈ Q and α ∈ 〈T 〉:
η(enbldT (q)) ⊆ enbldτ (σ(q)) and Δ(σ(q), η(α)) = σ(δ(q, α)) .

For every state q of Q, we denote by enbldT ,τ (q) the set of all steps α such that
η(α) ∈ enbldτ (σ(q)), for all τ-regions (σ, η) of T .

Synthesis of Nets with Step Firing Policies 119

Note that from the definition of a τ -region it immediately follows that, for every
state q of T :

enbldT (q) ⊆ enbldT ,τ (q) . (1)

In the context of the synthesis problem, a τ -region represents a place p whose
local state (in τ) is consistent with the global state (in T).

It turns out that T can be realised by a τ -net system iff the following two
regional axioms hold:

state separation
For any pair of distinct states q and r of T , there is a τ -region (σ, η)
of T such that σ(q) �= σ(r).

forward closure
For every state q of T , enbldT ,τ (q) ⊆ enbldT (q).
In other words, for every state q of T and every step α in 〈T 〉\enbldT (q),
there is a τ -region (σ, η) of T such that η(α) /∈ enbld τ (σ(q)).

In this way, state separation and forward closure provide a solution
to the feasability problem. The next issue is to consider the effective con-
struction problem for a finite T . This can be non-trivial since in general, even
though T may be realized by a τ -net systemN , it may be impossible to construct
such finite N , as shown by the following example.

Example 1. Let T = {a} and T be a single-node transition system with one
0-loop at the initial state. Moreover, let τ = (N \ {0}, {xn | n ≥ 0}, Δ) be
a net type such that Δ(m, xn) is defined iff n �= m. Then there is a τ -net
with a concurrent reachability graph isomorphic to T . All we need to take is:
P = N \ {0}, T = {a}, and for all n ≥ 1, F (n, a) = x and M0(n) = n. However,
no finite τ -net can generate T as one place can disable at most one step an. ��
A solution to the effective construction problem is obtained if one can
compute a finite set WR of τ -regions of T witnessing the satisfaction of all
instances of the regional axioms [9]. A suitable τ -net system is then NWR =
(P, T, F, M0) where P = WR and, for any place p = (σ, η) in P , F (p, t) = η(t)
and M0(p) = σ(q0) (recall that q0 is the initial state of T , and T ⊆ 〈T 〉).

In the case of PT-nets, τPT -regions coincide with the regions defined in [17]
where a similar characterisation of PT-net realisable step transition systems is
established. The effective construction problem may be solved [2] using
time polynomial in |Q|, |T |, the maximal size of a step α such that δ(q, α) is
defined for an arbitrary q, and the maximal number of minimal steps α such
that δ(q, α) is undefined for fixed q.

In the case of elementary nets with context arcs, τENC -regions coincide with
the regions defined in [15], and the effective construction problem can be
solved because the number of τENC -regions of a finite T is also finite (but this
problem is NP-complete).

Note that any axiomatic solution to the feasability problem should entail
the equality enbldT (q) = enbldT ,τ (q). In view of the trivially holding inclusion
(1), forward closure is quite sufficient for this purpose. However, in the

120 P. Darondeau et al.

context of firing policies, no such ‘trivial’ inclusion holds, and the forward
closure axiom will be in terms of equality rather than inclusion between sets
of steps.

3 Step Firing Policies

We introduce formally step firing policies after several motivating examples.
Most examples show simple step firing policies induced by a pre-order � on
the steps in 〈T 〉, with the outcome that a resource enabled step α is (control)
disabled whenever there is another resource enabled step β such that α ≺ β (i.e.,
α � β and β �� α). However, the first example below demands more.

Example 2. In the context of an electronic system design, suppose that a and b
are transitions denoting requests served by an arbiter which maintains mutual
exclusion on a common non-shareable resource, and m is a transition representing
some testing action on this arbiter, e.g., its internal state sampling. The condition
for activating m is such that the testing procedure can only happen if the arbiter
logic is in a well-defined binary state. That is, we cannot reliably test the arbiter
if it is in the conflict resolution state, where both requests are present (although
only one can be served). In such a conflict state the arbiter may experience a
metastable or oscillatory condition, and therefore it cannot be tested reliably.

The above condition leads to the policy that, in a net model of the system,
transition m should not be allowed to fire in any marking where the requesting
transitions, a and b, are both enabled. Otherwise, m should be allowed. This
behaviour can be implemented using a safe (or 1-bounded) PT-net system to-
gether with a policy that prevents m from being fired whenever both a and b
are also enabled. Without such a policy, no safe PT-net system can realise this
behaviour, though there is a 2-bounded net realisation as well as a safe net re-
alisation with label splitting, constructed by the Petrify tool [7]. ��
The above example also shows that firing policies can sometimes be avoided by
resorting to more general types of nets, i.e., by changing the trade-off between
resource enabledness and control enabledness. However, as the next example
shows, allowing non-safe markings may not be enough for this purpose.

Example 3. Consider the step transition system in Figure 2(a). It is easy to see
that it cannot be realised by any PT-net nor by any standard Petri net executed
under the usual resource based enabling since, for example, it does not allow
the step a in the initial state. However, if we execute the PT-net in Figure 2(b)
under the maximal concurrency rule, then what we get is exactly the target
step transition system. (Note that maximal concurrency can be captured by the
preorder on 〈T 〉 corresponding to multiset inclusion.) ��

Example 4. Elementary nets in [14] and elementary nets with context arcs in [15]
have been supplied with a concurrency semantics more restrictive than Defini-
tion 2. In both papers, the set of transitions T is partitioned by a location equiv-
alence ≡, and the net is executed by firing the maximal enabled steps w.r.t. the

Synthesis of Nets with Step Firing Policies 121

(a)

aabbb

(b)

2

3

6

a

b

�

�
�

�

Fig. 2. Transition system which cannot be realised without a step firing policy (a) and
the underlying PT-net for its realisation (b)

following preorder (steps here are simply sets, or maps T → {0, 1}): α � β iff
for all t ∈ T , α(t) = 1⇒ β(t) = 1 and β(t) = 1⇒ (∃t′) (t ≡ t′ ∧ α(t′) = 1). ��
Example 5. To capture the behaviour of PT-nets with static priorities and the
interleaving semantics, it suffices to state that t � t′ if the priority of t is lower
than or equal to the priority of t′, and that t + α ≺ t for all α �= 0. ��
Example 6. To maximize an objective function one can take a reward map
$: T → Z and assume that: α �$ β iff

∑
t∈T α(t) · $(t) ≤ ∑

t∈T β(t) · $(t).
Figure 3 shows an interesting consequence of applying the reward based step
firing policy with $(a) = 1 and $(b) = −1 to the PT-net in Figure 3(a). The
resulting concurrent reachability graph, shown in Figure 3(b), has strictly se-
quential behaviour, yet in the purely resource based view the transitions a and
b are concurrent. We also show the resource based behaviour in Figure 3(c)
to illustrate the degree to which applying policies can trim down the original
executions. ��

Example 7. Consider a PT-net consisting of one transition a and no places,
executed under a policy induced by the preorder such that am � an iff m ≤ n.
In such a net, all steps over 〈T 〉 are resource enabled, yet they are all disabled
by the firing control policy. ��

(a)

a

b (b)

ab

ab

(c)
a

b b

a

aa

bb

Fig. 3. The effect of applying a reward based firing control policy

122 P. Darondeau et al.

To conclude the above discussion, we feel that step firing policies are a way of
capturing synchronous aspects of concurrent (or asynchronous) systems. More-
over, if one wants to realise a concurrent transition system, the right discipline
is to choose first a closely matching and suitable net-type, and then to use a step
firing policy only as a last resort for the fine tuning of the behaviour.

We will now properly define step firing policies and their effect on net be-
haviour. Throughout the rest of the section, Xτ is a family comprising all sets
enbldN (M) such that N is a τ -net system and M is a reachable marking of N .
In other words, Xτ contains any set of enabled steps in any reachable marking of
any τ -net with set of transitions T . In a sense, this is all we need to care about
for defining and enforcing control policies on τ -net systems.

Definition 4 (step firing policy). A step firing policy over 〈T 〉 is given by a
control disabled steps mapping cds : 2〈T 〉 → 2〈T 〉 such that, for all X ⊆ 〈T 〉 and
Y ⊆ X:

1. cds(X) ⊆ X;
2. cds(Y) ⊆ cds(X); and
3. X ∈ Xτ and X \ cds(X) ⊆ Y imply cds(X) ∩ Y ⊆ cds(Y).

In the above, X should be understood as the set of resource enabled steps at
some reachable marking of some τ -net system, and X \ cds(X) as the subset
of control enabled steps at this marking. The condition cds(X) ⊆ X has been
included only for intuitive reasons and could be dropped. To see the rationale
behind the other conditions, imagine that control disabling a step α ∈ Y is
due to the (resource) enabling of some set of steps DisSetα

1 or DisSetα
2 or

Then Definition 4(2) simply states that each set DisSetα
i that is present in Y is

also present in X and so disables α in X as well. Definition 4(3) is more subtle
and conveys the intuition that at least one disabling set DisSetα

k survives, i.e.,
DisSetα

k ⊆ X \cds(X), and is present in Y . So, if α ∈ Y and was control disabled
in X then it will also be control disabled in Y . Hence the last two conditions
capture different types of monotonicity.

Definition 5 (applying step firing policy). Let N be a τ-net system, and
cds be a step firing policy for N . Applying cds to N consists in control disabling
at each marking M all the resource enabled steps that belong to cds(enbldN (M)).
We will use CRGcds(N) to denote the induced reachable restriction of CRG(N).
(Note that CRGcds(N) may be finite even though CRG(N) is infinite.) More-
over,

enbldN ,cds(M) = enbldN (M) \ cds(enbldN (M))

will denote the set of steps enabled at reachable marking M under policy cds.

One salient feature of the classical net theory is that adding a place to a Petri
net can only reduce its behaviour and, in particular, can never turn a disabled
step into an enabled one. It is important to observe that when considering step
firing policies, this is no more the case : adding places can add new behaviours.

Synthesis of Nets with Step Firing Policies 123

For example, adding a place that disables a transition with high priority may
result in control enabling a transition with lower priority.

Example 7 shows a situation where there is an infinite chain of steps each one
control disabled by its successor. This dubious situation which raises implemen-
tation problems is ruled out by condition (3) in Definition 4(3). In order that a
preorder � on 〈T 〉 induces a step firing policy that can reasonably be applied to
a τ -net N , the considered preorder should be locally noetherian w.r.t. N , which
means that no infinite chain of steps α1 ≺ . . . ≺ αi ≺ . . . is ever (resource)
enabled at any marking in CRG(N).

The step firing policy induced by a preorder relation � on 〈T 〉 is given by:

cds�(X) = {α ∈ X | (∃β ∈ X) α ≺ β} .

Such a policy consists in control disabling all those resource enabled steps that
fail to be �-maximal.

Proposition 1. If a preorder � on 〈T 〉 is locally noetherian w.r.t. every τ-net
system, then cds� is a step firing policy.

Proof. Definition 4(1) is clearly satisfied. To show Definition 4(2), we take Y ⊆ X
and α ∈ cds�(Y). Then, by the definition of cds�, there is β ∈ Y ⊆ X such that
α ≺ β. Hence, by the definition of cds�, α ∈ cds�(X).

To show Definition 4(3), assume that X ∈ Xτ , Y ⊆ X , X \ cds�(X) ⊆ Y and
α ∈ cds�(X) ∩ Y . We need to show that α ∈ cds�(Y).

From α ∈ cds�(X) ∩ Y it follows that there is β ∈ X such that α ≺ β. We
now consider two cases.
Case 1: β ∈ Y . Then, by the definition of cds�, α ∈ cds�(Y).
Case 2: β ∈ X \ Y . Then, by X \ cds�(X) ⊆ Y , we have that β ∈ cds�(X).
Hence, there is γ ∈ X such that β ≺ γ. If γ ∈ Y we have Case 1 with β = γ
and obtain α ∈ cds�(Y) due to the transitivity of ≺. Otherwise, we have Case 2
with β = γ and so γ ∈ cds�(X). And then we repeat the same argument. Now,
because � is locally noetherian w.r.t. all τ -net systems and X ∈ Xτ , one must
find sooner or later in this iteration some φ ∈ Y such that Case 1 holds with
β = φ, and so α ∈ cds�(Y). ��
Not all practically relevant step firing policies can be defined by preorders. For
instance, the one described in Example 2 cannot be dealt with by any cds� (note
that the transitions a, b, m never occur all in the same step as the resource cannot
be shared). However, this example is easily rendered with the policy cds such
that μ ∈ cds(X) iff μ(m) ≥ 1 and there are α, β ∈ X such that α(a), β(b) ≥ 1.

We would like to add that Definition 4 came after the earlier and more intuitive
definition of step firing policies based on preorders. Net synthesis was studied first
for these preorder based policies. Definition 4 was found while trying to simplify
the technical development in this earlier attempt. Definition 4 supersedes the
earlier definition, has a built-in noetherian condition (3), and it allowed us to
give a more compact characterization of the net realisable transition systems
(without the maximality axiom).

124 P. Darondeau et al.

4 Characterisation of Net Realisable Transition Systems

We now enter the second, more technically oriented, part of this paper where
we will re-visit the net synthesis problem but this time taking into account step
firing policies. Throughout this section, we assume that cds is a fixed step firing
policy over 〈T 〉.
feasability with policies

Provide necessary and sufficient conditions for a given T to be realised
by some τ -net system N executed under the given step firing policy cds
over 〈T 〉, i.e., T ∼= CRGcds(N).

In this characterisation, we do not require that N is finite. If such a finite τ -net
system does exist, then we call T finitely realisable.

We first provide an auxiliary result showing that, when a τ -net realises a
transition system, every place of the τ -net determines a corresponding τ -region
of the transition system.

Proposition 2. Let T ∼= CRGcds(N) for a τ-net system N = (P, T, F, M0).
Then, for each place p ∈ P , there is exactly one τ-region (σ, η) of T such that
σ(q0) = M0(p) and, for all q ∈ Q and α ∈ enbldT (q):

η(α) =
∑

t∈T

α(t) · F (p, t) .

Proof. All step transition systems under consideration are deterministic (because
we use functions rather than relations to capture transitions in step transition
systems), and T is reachable. Therefore, σ(q0) and η : 〈T 〉 → S determine
at most one map σ : Q → Q such that Δ(σ(q), η(α)) = σ(δ(q, α)) whenever
α ∈ enbldT (q), and hence they determine at most one τ -region of T . It remains
to exhibit such a map σ.

Now T ∼= CRGcds(N) (by assumption) and CRGcds(N) ↪→ CRG(N) (by
definition) where the embedding is the inclusion of states and transitions. Let
σ : Q → Q be the map defined by σ(q) = f(q)(p), where f(q) is the image of q
through the isomorphism ∼= (thus f(q) is a marking of N). Let η : 〈T 〉 → S be as
stated in the proposition. In view of Definition 2, σ satisfies η(α) ∈ enbld τ (σ(q))
and Δ(σ(q), η(α)) = σ(δ(q, α)) whenever α ∈ enbldT (q), and it also satisfies
σ(q0) = M0(p) because ∼= is an isomorphism. The result therefore holds. ��

We now can present the central result of the paper, which is based on the fol-
lowing modification of the forward closure axiom:

forward closure with policies
For every state q of T , enbldT (q) = enbldT ,τ (q) \ cds(enbldT ,τ (q)).

Theorem 1 ([8]). T is realisable (T ∼= CRGcds(N) for some N) iff T satisfies
state separation and forward closure with policies.

Synthesis of Nets with Step Firing Policies 125

In many contexts of practical application, the general theory of step firing poli-
cies may be specialised to firing policies induced by preorders on steps. In this
particular case, the feasability problem may be restated as follows.

feasability with preorders
Given a preorder � on steps, provide necessary and sufficient conditions
for a given T to be realised by some τ -net system N such that � is
locally noetherian w.r.t.N andN is executed under the step firing policy
induced by �.

The following three axioms, in addition to state separation, provide a
solution to the above problem:

maximality
For every state q of T and all α, β in enbldT (q), if α � β then β � α.

local boundedness
For every state q of T and every infinite chain of steps α1 ≺ . . . ≺
αi ≺ . . . in 〈T 〉, there is a τ -region (σ, η) of T and i ≥ 1 such that
η(αi) /∈ enbldτ (σ(q)).

forward closure with preorders
For every state q of T and every step α in 〈T 〉 \ enbldT (q), there is
a τ -region (σ, η) of T such that η(α) /∈ enbld τ (σ(q)), or there is β ∈
enbldT (q) such that α ≺ β.

Let us make some remarks upon local boundedness. For many classes of
nets, including, e.g., the elementary nets, this axiom is superfluous since any
preorder on 〈T 〉 is locally noetherian w.r.t. any τ -net system. The role of local
boundedness is to preclude the resource enabling of an infinite chain of steps
α1 ≺ . . . ≺ αi ≺ . . . at some reachable marking of the synthesised net, because
this would result in control disabling all of them. Step firing policies would better
avoid this paradox!

5 Construction of Nets Realising Transition Systems

We finally consider the constructive part of the synthesis problem for τ -nets with
step firing policies:

effective construction with fixed policies
Given a finite T and a step firing policy cds over 〈T 〉, construct a finite
τ -net system N such that T ∼= CRGcds(N).

For a finite net-type τ , one can always proceed by exhaustive enumeration of
τ -regions, but this is very inefficient. For elementary nets with localities, an
algorithmic approach based on the axiomatic characterisation of Theorem 1 has
been initiated, but still some work needs to be done to improve the efficiency. For

126 P. Darondeau et al.

PT-nets with the maximal step firing policy (induced from multiset inclusion),
it suffices to check T for the maximality axiom and then to apply the synthesis
algorithm defined in [2] (for unconstrained step firing).

Now, instead of imposing a fixed firing policy cds , one may prefer to specify
a family CDS of step firing policies in view of solving the following problem:

effective construction with unknown policies
Given a finite T and a family CDS of step firing policies over 〈T 〉,
construct a finite τ -net system N and select cds in CDS such that
T ∼= CRGcds(N).

Again, for finite net-types τ and finite families of step firing policies CDS, one
can always proceed by exhaustive enumeration, but one can sometimes do much
better. In order to support this claim, we propose in the rest of this section a
decision and synthesis algorithm for PT-nets with step firing policies aiming at
maximizing linear rewards of steps, where fixing the reward of the elementary
transitions is part of the synthesis problem.

Synthesising PT-nets with linear rewards of steps. As already argued, PT-
nets may be seen as τPT -nets, and the concurrent reachability graph CRG(N) of
a PT-net systemN coincides then with CRGcds=(N) where cds= is the step firing
policy induced from the equality of steps. Our goal is to provide a solution to the
following specific instance of the net synthesis problem:

feasability with unknown rewards
Provide necessary and sufficient conditions for a given T to be realised
by some PT -net system N under the step firing policy induced by some
reward map $: T → Z as defined in Example 6, i.e., T ∼= CRGcds�$

(N).

effective construction with unknown rewards
Given a finite T , construct a finite PT -net system N and a reward map
$: T → Z such that T ∼= CRGcds�$

(N).

However, the statement of the above problems is not totally correct, for the
preorder relations defined from reward maps are generally not locally noetherian
for all PT-nets. This difficulty may be smoothed away by adapting Definition 4,
Proposition 1, and Theorem 1 as follows.

Definition 6 (bounded step firing policy). A bounded step firing policy for
τ-nets over 〈T 〉 is a mapping cds : 2〈T 〉 → 2〈T 〉 such that, for all X ⊆ 〈T 〉 and
Y ⊆ X:

1. cds(X) ⊆ X;
2. X infinite ⇒ cds(X) = ∅
3. X finite ⇒ cds(Y) ⊆ cds(X),
4. X ∈ Xτ and X \ cds(X) ⊆ Y imply cds(X) ∩ Y ⊆ cds(Y).

Definition 7. Given a preorder relation � on 〈T 〉, let cdsb
� : 2〈T 〉 → 2〈T 〉 be

the map such that cdsb
�(X) = ∅ if X is infinite and otherwise cdsb

�(X) = {α ∈
X | (∃β ∈ X) α ≺ β}.

Synthesis of Nets with Step Firing Policies 127

Proposition 3. If � is a preorder on 〈T 〉, then cdsb
� is a bounded step firing

policy over 〈T 〉.

Theorem 2. Let T be finite and cds be a bounded step firing policy for 〈T 〉.
Then T ∼= CRGcds(N) for some τ-net system N iff T satisfies state separa-
tion and forward closure with policies.

The exact problem we want to solve is the following: given a finite T , decide
whether there exists and construct a finite PT -net system N and a reward map
$: T → Z such that T ∼= CRGcds(N) for cds = cdsb

�$
. In order to derive a

decision and synthesis procedure from the axiomatic characterisation provided
by Theorem 2, one needs to compute an effective representation of the set of all
τPT -regions of T . This can be done as follows.

First, one constructs a spanning tree for T = (Q, S, δ, q0), i.e., a reachable
step transition system Tr = (Q, S, δ′, q0) such that, for all q ∈ Q and α ∈ 〈T 〉,
δ′(q, α) = δ(q, α) or it is undefined, and δ′(q, α) = δ′(q′, α′) entails q = q′ and
α = α′. The labelled arcs q

α−→ q′ in T \Tr (such that δ(q, α) = q′ and δ′(q, α) is
undefined) are called chords. Each chord q

α−→ q′ determines a basic cycle in T as
follows. Let q′′ be the nearest common ancestor of q and q′ in the spanning tree
Tr, then the path from q′′ to q, the chord q

α−→ q′, and the reverse path from q′ to
q′′ form a cycle in T . The label of this cycle is a sequence sign1(α1) . . . signn(αn)
where the αi are steps and the signs (+ or −) distinguish between the forward
and the reverse arcs.

From Definition 3 and by observing that T is reachable, a τ -region (σ, η) of T
is totally determined by σ(q0) and the map η, which is determined in turn by the
values η(t) for all t ∈ T . In the case of τPT -regions, σ(q0) ∈ N and η(t) ∈ N×N

for all t. Suppose that we have variables pinit and t•p and p•t for all t ∈ T . A
τPT -region (σ, η) of T may be represented as a non-negative integer valuation
of these variables, viz. σ(q0) = pinit and η(t) = (p•t, t•p) for all t. Conversely,
in order that a non-negative integer valuation of the variables pinit , t•p and p•t
would define a τPT -region of T , it is necessary and sufficient that: (i) for each
basic cycle sign1(α1) . . . signn(αn) we have:

∑

i

∑

t∈T

(signi(αi(t))) · (t•p− p•t) = 0 ;

and (ii) for each path from q0 to q labelled with α1 . . . αn in the spanning tree,
and for each β such that δ(q, β) is defined in T we have:

pinit +
∑

i

∑

t∈T

αi(t) · (t•p− p•t) ≥
∑

t∈T

β(t) · p•t .

Let R denote the finite system formed from these linear constraints. The
inequalities in R guarantee that η(enbldT (q)) ⊆ enbldτ (σ(q)) assuming that

σ(q) = pinit +
∑

i

∑

t∈T

αi(t) · (t•p− p•t) .

128 P. Darondeau et al.

The equations in R guarantee that the above definition of σ is compatible with
the implicit constraints induced from the chords q

α−→ q′ (i.e., δ(q, α) = q′):

σ(q′) = σ(q) +
∑

t∈T

α(t) · (t•p− p•t) .

Now checking state separation for two distinct states q and r reached from
q0 by paths with respective labels α1 . . . αn and β1 . . . βm in the spanning tree
Tr amounts to deciding whether there exists a place (region) p such that

∑

i

∑

t∈T

αi(t) · (t•p− p•t) �=
∑

j

∑

t∈T

βj(t) · (t•p− p•t) .

This can be decided within time polynomial in the size of R.
Checking forward closure with policies is somewhat more complicated

since on the one hand, the condition enbldT (q) = enbldT ,τ (q) \ cds(enbldT ,τ (q))
bears upon the infinite set of τPT -regions of T , and on the other hand, cds =
cdsb

�$
depends on an unknown map $: T → Z. Fortunately, all sets enbldT ,τ (q)

are finite, hence the constraint that cdsb
�$

(X) = ∅ for any infinite set X is not
a problem, and they may be computed from a finite set R of τPT -regions of T .

The first claim may be justified easily. For each t ∈ T , let degree(t) be the
maximum of α(t) for all steps α such that δ(q, α) is defined for some q ∈ Q
(such a maximum exists since T is finite). Then, for each t, pinit = degree(t),
t•p = p•t = 1, and t′•p = p•t′ = 0 for t′ �= t defines a τPT -region of T . Therefore,
no step α with α(t) > degree(t) belongs to enbldT ,τ (q) for any q ∈ Q.

We establish now the second claim. As all equations and inequalities in R
are linear and homogeneous (their constant term is always 0), the set of rational
solutions of this finite system forms a polyhedral cone in Q

2|T |+1. Any polyhedral
cone has a finite set of generating rays (see [19]), and this set can be computed [6].
Let {pj | j = 1 . . .m} be the set of generating rays of the cone defined by R,
where each ray pj is given by a non-negative integer value pinit

j and two non-
negative integer maps pj

•, •pj : T → N. Each ray pj represents a corresponding
τPT -region (σj , ηj) of T . Since the pj generate all solutions of R, any other
τPT -region of T is a linear combination (σ, η) =

∑m
j=1 rj · (σj , ηj) of generating

regions with non-negative rational coefficients rj .
Let q ∈ Q and let α1 . . . αn label the path from q0 to q in the spanning tree.

A step α does not belong to enbldT ,τ (q) iff

pinit +
∑

i

∑

t∈T

αi(t) · (t•p− p•t) <
∑

t∈T

α(t) · p•t

for some (non-negative) integer solution of the linear system R. Suppose this
inequality holds for

pinit =
m∑

j=1

rj · pinit
j and p•t =

m∑

j=1

rj · pj
•t and t•p =

m∑

j=1

rj · t•pj

where the rj are non-negative rational coefficients. Then necessarily,

Synthesis of Nets with Step Firing Policies 129

pinit
j +

∑

i

∑

t∈T

αi(t) · (t•pj − pj
•t) <

∑

t∈T

α(t) · pj
•t

for some j. Therefore, all finite sets of enabled steps enbldT ,τ (q) can be computed
from the finite set of τPT -regions R = {(σj , ηj) | 1 ≤ j ≤ m}.

The last problem we are facing is to check whether enbldT (q) = enbldT ,τ (q) \
cds(enbldT ,τ (q)) for all q and for some bounded step firing policy cdsb

�$
, in-

duced by a reward map $: T → Z yet to be determined. Recall that, for fi-
nite X , cdsb

�(X) = {α ∈ X | (∃β ∈ X) α ≺ β}, enbldT (q) ⊆ enbldT ,τ (q),
and enbldT ,τ (q) is finite for all q. Checking forward closure with policies
amounts therefore to deciding upon the existence of a map $: T → Z such that
for all q ∈ Q, α, β ∈ enbldT (q) and γ ∈ enbldT ,τ (q) \ enbldT (q):

∑

t∈T

α(t) · $(t) =
∑

t∈T

β(t) · $(t) and
∑

t∈T

γ(t) · $(t) <
∑

t∈T

β(t) · $(t) .

Since all sets enbldT ,τ (q) \ enbldT (q) are finite and effectively computable, the
set of all such linear homogeneous equations and inequalities in the variables
$(t) is finite and one can decide whether there exists and compute a solution
map $: T → Z. Altogether, we have established the following result.

Theorem 3. The problem of finding out whether for a given finite T there is a
finite PT -net system N and a map $: T → Z such that T ∼= CRGcdsb

�$
(N) is

decidable.

Moreover, when the problem is feasible, one can extract from the decision pro-
cedure a finite PT-net N = (P, T, F, M0) such that T ∼= CRGcdsb

�$
(N) where

$: T → Z is the solution map computed in the above. It suffices actually to let
P = {p1, . . . , pm} be the set of generating rays of the cone defined by R, and to
set M0(pj) = pinit

j , and F (pj , t) = (pj
•t, t•pj) for all t. The set of places P of

N represents the set of generating τPT -regions R = {(σj , ηj) | 1 ≤ j ≤ m}.
It is easily seen that two states q and r of T are separated by some τPT -
region of T iff they are separated by some region in R. Therefore, as T sat-
isfies state separation, the map φ that sends a state q to the marking de-
fined by M(pj) = σj(q) (1 ≤ j ≤ m) embeds T into CRG(N) in such a
way that enbldT (q) ⊆ enbldT ,τ (q) = enbldCRG(N)(φ(q)), for all q. As T sat-
isfies forward closure with policies, it follows from Definition 5 that
enbldCRG

cdsb
�$

(N)(φ(q)) = enbldT (q), for all q. Hence T ∼= CRGcdsb
�$

(N), as

required. Summing up, one can state the following result.

Theorem 4. The effective construction problem has a solution for PT-
nets with unknown rewards of steps.

6 Future Work

By posing and providing answers to some basic questions concerning Petri nets
with step firing policies, this paper has opened up a new, potentially fertile

130 P. Darondeau et al.

research direction of practical importance. Among immediate issues which we
have not yet addressed here, or just touched upon, are:

– A characterisation of the interplay between net types and step firing policies.
– A classification of step firing policies according to their practical imple-

mentability (one would presumably exclude the policy from Example 7).
– Synthesis from behavioural representations other than finite step transition

systems (e.g., from languages corresponding to infinite transition systems).
– Dynamic step firing policies where the policy applied depends on the cur-

rent net marking (we do know how to deal with these in the case of PT-net
systems and reward functions with marking dependent positive linear coef-
ficients). Note that dynamic policies could become an important analytical
tool for applications in the areas such as biochemistry and economics (for
example, priority relations can be functions of the current state).

– Lookahead step firing policies where one decides at the current marking on
the enabling of a step only after checking some possible future behaviours. We
feel that such policies need to be treated with care as an arbitrary lookahead
can be rather unrealistic (for example, deadlock prevention and enforced
liveness could be coded as a policy). However, bounded depth lookahead
policies could be interesting.

Finally, as we discovered while working on this paper, the notion of regions
induced by morphisms proves to be surprisingly robust since it still provides a
general characterisation of realisable transition systems in the case of Petri nets
with step firing policies.

Acknowledgements. We are grateful to the reviewer who pointed out inconsis-
tencies in the first version of this paper.

References

1. Badouel, E., Bernardinello, L., Darondeau, Ph.: Polynomial Algorithms for the
Synthesis of Bounded Nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I.
(eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–378.
Springer, Heidelberg (1995)

2. Badouel, E., Darondeau, P.: On the Synthesis of General Petri Nets. Report INRIA-
RR 3025 (1996)

3. Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.)
Lectures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp. 529–586. Springer,
Heidelberg (1998)

4. Bernardinello, L., De Michelis, G., Petruni, K., Vigna, S.: On the Synchronic Struc-
ture of Transition Systems. In: Desel, J. (ed.) Structures in Concurrency Theory,
pp. 11–31. Springer, Heidelberg (1996)

5. Busi, N., Pinna, G.M.: Synthesis of Nets with Inhibitor Arcs. In: Mazurkiewicz,
A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 151–165. Springer,
Heidelberg (1997)

6. Chernikova, N.: Algorithm for Finding a General Formula for the Non-negative
Solutions of a System of Linear Inequalities. USSR Computational Mathematics
and Mathematical Physics 5, 228–233 (1965)

Synthesis of Nets with Step Firing Policies 131

7. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. IEICE Trans. on Information and Systems E80-D, 315–325 (1997)

8. Darondeau, Ph., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of
Nets with Step Firing Policies. Report CS-TR-1080, Newcastle University (2008)

9. Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. Acta Informatica 33,
297–315 (1996)

10. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures; Part I: Basic Notions
and the Representation Problem. Acta Informatica 27, 315–342 (1990)

11. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures; Part II: State Spaces
of Concurrent Systems. Acta Informatica 27, 343–368 (1990)

12. INA, http://www2.informatik.hu-berlin.de/∼starke/ina.html
13. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Mem-

brane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

14. Koutny, M., Pietkiewicz-Koutny, M.: Transition Systems of Elementary Net Sys-
tems with Localities. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS,
vol. 4137, pp. 173–187. Springer, Heidelberg (2006)

15. Koutny, M., Pietkiewicz-Koutny, M.: Synthesis of Elementary Net Systems with
Context Arcs and Localities. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 281–300. Springer, Heidelberg (2007)

16. Mazurkiewicz, A.: Petri Nets Without Tokens. In: Kleijn, J., Yakovlev, A. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 20–23. Springer, Heidelberg (2007)

17. Mukund, M.: Petri Nets and Step Transition Systems. International Journal of
Foundations of Computer Science 3, 443–478 (1992)

18. Pietkiewicz-Koutny, M.: The Synthesis Problem for Elementary Nets with Inhibitor
Arcs. Fundamenta Informaticae 40, 251–283 (1999)

19. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley, Chichester
(1986)

20. Starke, P.: Some Properties of Timed Nets under the Earliest Firing Rule. In:
Rozenberg, G. (ed.) APN 1989. LNCS, vol. 424, pp. 418–432. Springer, Heidelberg
(1990)

http://www2.informatik.hu-berlin.de/~starke/ina.html

Modelling and Analysis of the INVITE

Transaction of the Session Initiation Protocol
Using Coloured Petri Nets

Lay G. Ding and Lin Liu

School of Computer and Information Science
University of South Australia

Mawson Lakes, SA 5095, Australia
dinlg001@students.unisa.edu.au, lin.liu@unisa.edu.au

Abstract. The Session Initiation Protocol (SIP) is a control protocol
developed by the Internet Engineering Task Force for initiating, mod-
ifying and terminating multimedia sessions over the Internet. SIP uses
an INVITE transaction to initiate a session. In this paper, we create a
Coloured Petri Net (CPN) model for the INVITE transaction. Then we
verify the general properties of the INVITE transaction by analysing the
state space of the CPN model. The analysis results show that in most
cases the INVITE transaction behaves as expected. However, in some
circumstances, the transaction may terminate in an undesirable state
while one communication party is still waiting for a response from its
peer. Hence, we propose a set of changes to the INVITE transaction to
correct the above problem. The result has shown that this revised IN-
VITE transaction satisfies the properties that we have specified, and the
undesirable terminal state has been eliminated.

Keywords: Session Initiation Protocol, Coloured Petri Nets, protocol
verification.

1 Introduction

The popularisation of the Internet has been changing the way of communication
in our daily life. A common example is the use of Voice over IP (VoIP). Before
a conversation can take place between participants, protocols must be employed
to establish a session, then to maintain and terminate the session. The Session
Initiation Protocol (SIP) [1] is one of the protocols being used for such purposes.

SIP is developed by the Internet Engineering Task Force (IETF) and pub-
lished as Request for Comments (RFC) 3261 in 2002 [1]. Besides its increasing
popularity and importance in VoIP applications, SIP has been recognised by
the 3rd Generation Partnership Project as a signalling protocol and permanent
element of the IP Multimedia Subsystem architecture [2]. Thus, it is important
to assure that the contents of RFC 3261 are correct, unambiguous, and easy
to understand. Modelling and analysing the specification using formal meth-
ods can help in achieving this goal. Moreover, from the perspective of protocol

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 132–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modelling and Analysis of the INVITE Transaction 133

engineering, verification is also an important step of the life-cycle of protocol de-
velopment [3,4], as a well-defined and verified specification will reduce the cost
for implementation and maintenance.

SIP is a transaction-oriented protocol that carries out tasks through different
transactions. Two main SIP transactions are defined [1], the INVITE transaction
and the non-INVITE transaction. In this paper, we aim to verify the INVITE
transaction, and consider only the operations over a reliable transport medium.
Additionally, this paper will focus on functional correctness of the protocol, thus
analysis of performance properties, such as session delay, is beyond its scope.
Coloured Petri Nets (CPNs), their state space analysis method and supporting
tools have been applied widely in verifying communication protocols, software,
military systems, business processes, and some other systems [5,6,7]. However, to
our best knowledge, very little work has been published on analysing SIP using
CPNs, and only the study of [9,10] have been found. Most of the publications
related to SIP are in the areas of interworking of SIP and H.323 [8], and SIP ser-
vices [9,10]. In [9], the authors have modelled a SIP-based discovery protocol for
the Multi-Channel Service Oriented Architecture, which uses the non-INVITE
transaction of SIP as one of its basic components for web services in a mobile
environment. However, no analysis results have been reported on this SIP-based
discovery protocol. In [10], the authors have modelled SIP with the purpose of
analysing SIP security mechanism, and have verified the CPN model in a typical
attack scenario using state space analysis.

The rest of the paper is organised as follows. Section 2 is an overview of SIP
layers and the INVITE transaction. Modelling and analysis of the SIP INVITE
transaction are described in Section 3. Section 4 proposes and verifies the re-
vised SIP INVITE transaction. Finally, we conclude the work and suggest future
research in Section 5.

2 The INVITE Transaction of SIP

2.1 The Layered Structure of SIP

SIP is a layered protocol, comprising the syntax and encoding layer, transport
layer, transaction layer, and transaction user (TU) layer, i.e. the four layers
within the top box of Fig. 1.

The syntax and encoding layer specifies the format and structure of a SIP
message, which can be either a request from a client to a server, or a response
from a server to a client. For each request, a method (such as INVITE or ACK)
must be carried to invoke a particular operation on a server. For each response,
a status code is declared to indicate the acceptance, rejection or redirection of a
SIP request, as shown in Table 1.

The SIP transport layer defines the behaviour of SIP entities in sending and
receiving messages over the network. All SIP entities must contain this layer to
send/receive messages to/from the underlying transport medium.

On top of SIP transport layer is the transaction layer, including the INVITE
transaction and the non-INVITE transaction. An INVITE transaction is initi-

134 L.G. Ding and L. Liu

Fig. 1. Layered structure of SIP

Table 1. SIP response messages [1]

Response Function

1xx (100-199) Provisional - the request was received but not yet accepted

2xx Success - the request was received successfully and accepted

3xx Redirection - a further action is required to complete the request

4xx Client Error - bad syntax found in the request

5xx Server Error - the server failed to answer the request

6xx Global Failure - no server can answer the request

ated when an INVITE request is sent; and a non-INVITE transaction is initiated
when a request other than INVITE or ACK is sent. Each of the INVITE and
non-INVITE transactions consists of a client transaction sending requests and a
server transaction responding to requests.

Residing in the top layer of SIP are the TUs, which can be any SIP entity
except a stateless proxy [1].

Among the four SIP layers, the transaction layer is the most important layer
since it is responsible for request-response matching, retransmission handling
with unreliable transport medium, and timeout handling when setting up or
tearing down a session.

2.2 The INVITE Transaction

Operations of the client and the server transactions are defined in RFC 3261
by state machines and narrative descriptions. In this section we describe these
in detail, where all states, timers, transport errors and responses are shown in
italics, and all requests are capitalised.

INVITE Client Transaction. Referring to Fig. 2(a), an INVITE client trans-
action is initiated by the TU with an INVITE request. Meanwhile the client

Modelling and Analysis of the INVITE Transaction 135

Fig. 2. INVITE client transaction (a) and INVITE server transaction (b)[1]

transaction enters its initial state, Calling1 . The INVITE request must be passed
by the client transaction to SIP transport layer to be sent to the server side.

Once the Calling state is entered, Timer B is started for all transports (reliable
or unreliable). For an unreliable transport medium, Timer A is also started, to
control retransmissions of INVITE requests. While Calling, if the client trans-
action receives a 1xx response (Table 1), it enters the Proceeding state. If a
Transport Err (Error) occurs or Timer B expires, the client transaction moves
to the Terminated state and informs its TU immediately. A Transport Err is
indicated by SIP transport layer when a request cannot be sent to the underlying
transport medium, which is generally caused by fatal ICMP errors in UDP or
connection failures in TCP.

When in its Proceeding state, the client transaction may receive any number
of provisional responses (1xx) before receiving a final response (2xx or 300-699).
While Calling or Proceeding, the reception of a final response by the client trans-
action will change its state to Completed or Terminated, depending on the type
of the final response. If a 2xx is received (indicating that the INVITE request is
accepted by the server), the client transaction must enter its Terminated state,
without sending any ACKs. If a 300-699 response is received (the call estab-
lishment was not successful), an ACK is generated by the client transaction and
passed to SIP transport layer to be sent to the server side, and the client trans-
action moves to the Completed state. The reason for sending an ACK is to cease
the retransmission of 300-699 responses by the server. All responses received by
the client transaction when it is Calling or Proceeding must be passed to the TU
except for retransmitted responses.

1 Fig. 2(a) shows that an INVITE is sent before the Calling state is entered. However,
based on the text description in RFC 3261, the Calling state is entered before the
INVITE is sent to SIP transport layer. Additionally, the client transaction has to be
in a state when sending a message. So we follow the text description in the RFC.

136 L.G. Ding and L. Liu

When the Completed state is entered, Timer D is started with a value of
at least 32 seconds for an unreliable transport medium and zero seconds for a
reliable medium. This timer is used to allow client transaction to absorb retrans-
mitted 300-699 responses, and to re-pass ACKs to SIP transport layer. When
the client transaction is in its Completed state, if a Transport Err occurs, it
changes to the Terminated state and informs the TU of the failure of sending
an ACK. If Timer D fires, the client transaction must also move to the Termi-
nated state. Once the Terminated state is entered, the client transaction must
be destroyed by its TU immediately.

INVITE Server Transaction. The server transaction is established by its
TU at the server side when the TU receives a new INVITE request from the
client side (Fig. 2 (b)). Once the server transaction is constructed, it enters the
Proceeding state and sends a 100 Trying response if the TU does not generate a
response within 200 milliseconds2, to cease retransmissions of INVITE requests
by the client transaction.

While Proceeding, the server transaction can pass any provisional responses
from its TU to SIP transport layer without changing state. If the response from
its TU is a 2xx response, or if it is informed of a transport error by SIP transport
layer, the server transaction moves to its Terminated state. Otherwise, it will
enter the Completed state, waiting for an acknowledgement from the client for
the 300-699 response that was sent while in the Proceeding state. A transport
error in the server transaction is indicated by SIP transport layer when a response
cannot be sent to the underlying transport medium.

If a retransmitted INVITE is received in the Proceeding state, the most
recent provisional response from TU must be passed to SIP transport layer
for retransmission. If a retransmitted INVITE is received in the Completed
state, the server transaction should pass a 300-699 response to SIP transport
layer.

Once the Completed state is entered, Timer H is started. It sets the maximum
time during which the server transaction can retransmit 300-699 responses. If
the transport is unreliable, Timer G should also be started to control the time for
each retransmission. If Timer H fires or a Transport Err occurs before an ACK is
received by the server transaction, the transaction moves to its Terminated state.
If an ACK is received before Timer H fires, the server transaction moves to its
Confirmed state and Timer I is started with a delay of 5 seconds for an unreliable
transport, and zero seconds for a reliable transport. Timer I is used to absorb
additional ACKs triggered by the retransmission of 300-699 responses. When
Timer I fires, Terminated state is entered. The server transaction is destroyed
once it enters the Terminated state.

2 Fig. 2(b) shows that if TU does not generate a response within 200ms, the server
transaction must send a 100 Trying response before the Proceeding state is entered.
In fact, the INVITE server transaction cannot send any message before it is cre-
ated (i.e. before entering the Proceeding state). This is inconsistent with the text
description in the RFC 3261. So we follow the text description in the RFC.

Modelling and Analysis of the INVITE Transaction 137

3 Modelling and Analysis of the SIP INVITE Transaction

3.1 Modelling Assumptions

According to [1], SIP INVITE transaction can operate over a reliable (e.g. TCP)
or an unreliable (e.g. UDP) transport medium. In this paper we assume a reliable
transport medium is used, because firstly TCP is made mandatory in [1] for
larger messages; secondly we use an incremental approach, checking whether the
protocol works correctly over a perfect medium before checking its operations
over an imperfect one. Furthermore, a lossy medium may mask some problems
that will only be detected with a perfect medium.

Referring to Fig. 2(b), once the INVITE server transaction is created by its
TU, if the transaction knows that the TU will not generate a response within
200 ms, it must generate and send a 100 Trying response. We assume that the
INVITE server transaction does not know that the TU will generate a response
within 200 ms after the server transaction is created, i.e. the server transaction
must generate and send a 100 Trying response after it is created.

We also assume that a request message carries only a method (such as INVITE
or ACK) and a response message carries only a status code (such as 200 OK),
without including any header fields (such as Call-ID) or message bodies, as they
are not related to the functional properties to be investigated.

3.2 INVITE Transaction State Machines with Reliable Medium

In Section 2 we have found some inconsistencies between the INVITE trans-
action state machines (Fig. 2) and the narrative descriptions given in Sections
17.1.1 and 17.2.1 of [1]. In this section, we present a revised version of the two
state machines obtained by considering the modelling assumptions stated in the
previous section and by eliminating the inconsistencies found in Section 2. We
call these state machines “the INVITE transaction state machines with reliable
transport medium” (Fig. 3), and the state machines provided in [1] (Fig. 2) “the
original state machines”.

Referring to Fig. 2, a number of timers are defined in the original state ma-
chines to deal with message loss or processing/transmission delays. When the
transport medium is reliable, the requests (INVITE and ACK) and the final re-
sponses (non-1xx) in the original INVITE server transaction are sent only once
[1]. As a result, Timer A of the INVITE client transaction and Timer G of the
INVITE server transaction are not applied (see Fig 3). Additionally, as Timer
I of the original INVITE server transaction is set to fire in zero seconds for
a reliable transport medium, the Confirmed state and Timer I are not consid-
ered. Hence, after an ACK for 300-699 response is received, the INVITE server
transaction is terminated immediately (Fig. 3(b)).

Because we have assumed that the server transaction must generate and send
a 100 Trying response after it is created, we remove the if clause “if TU won’t in
200ms” from the top of the original INVITE server transaction state machine.
Additionally as noted in Section 2 (footnote 2), the INVITE server transaction

138 L.G. Ding and L. Liu

Fig. 3. INVITE client transaction (a) and server transaction (b) with reliable medium

can not receive or send any messages before it is created (i.e. before the Proceed-
ing state is entered). So we firstly remove the action “pass INV to TU” from
the top of the original state machine. Then to specify the state of the server
transaction when it has just been created by its TU, we add a new state, Pro-
ceedingT. In the ProceedingT state, the only action to be carried out by the
server transaction is to generate and send a 100 Trying response (see Fig. 3(b)).

A further modification is made to the original state machine for the INVITE
client transaction based on the inconsistency mentioned in Section 2 (footnote
1). According to the narrative description provided in Section 17.1.1 of [1], the
INVITE client transaction must firstly enter its Calling state to pass an INVITE
received from its TU to SIP transport layer. However, the original state machine
(Fig. 2(a)) shows that sending an INVITE by the client transaction can occur
before it enters the Calling state (i.e. before the transaction is created), which is
impossible. Therefore, we modified the input arc at the top of the original client
state machine (refer to Fig. 2(a)) so that an INVITE request can be received from
its TU and passed to the SIP transport layer by the INVITE client transaction
only when the transaction is in its Calling state (see Fig. 3). Note that the event
and action that label this input arc (to the Calling state) can not occur more
than once due to the reason that the TU only passes one INVITE request to an
INVITE client transaction [1].

3.3 CPN Model of the INVITE Transaction

The CPN model for the INVITE transaction is shown in Fig. 4 (declarations)
and Fig. 5 (the CPN). This model is based on the state machines shown in
Fig. 3. In the following, names of places, transitions, and variables of the CPN
model are written in typewriter style. To distinguish a server transaction’s
state from a client transaction’s state with the same name, a capitalised S is

Modelling and Analysis of the INVITE Transaction 139

Fig. 4. Declarations of the CPN model of the INVITE transaction

appended to the name of the state of the server transaction (except for the
proceedingT state). For example, proceedingS represents the Proceeding state
of the server transaction while proceeding represents the Proceeding state of
the client transaction. SIP response messages (Table 1) are named as follows:
r100 represents a 100 Trying response; r101 is for a provisional response with a
status code between 101 and 199; r2xx for a response with a status code between
200 and 299; and r3xx for a response with a status code between 300 and 699.

Declarations. Referring to Fig. 4, a constant, n, is defined to represent the max-
imum length of the queue in place Responses (Fig. 5). Four colour sets, INT,
STATEC, REQUEST, and REQUESTQ, are declared for modelling the client trans-
action. INT is the set of integers between 0 and 1, typing place INVITE Sent
where the number of INVITE requests that have been sent is counted. STATEC
(typing place Client) models all the possible states of the INVITE client trans-
action. REQUEST models the two SIP methods specified for the INVITE transac-
tion, INVITE and ACK. REQUESTQ is a list of REQUEST (typing place Requests).
To model the server transaction, colour sets STATES, RESPONSE, Response, and
RESPONSEQ are declared. STATES is used to type place Server. It defines all the
possible states of the server transaction, and a temporary state, Idle (modelling
the existence of the INVITE server transaction). RESPONSE models the four dif-
ferent categories of responses from the server side, and Response is a subset of
RESPONSE, used in the inscriptions of the arcs associated with transition Send
Response (see Fig. 5). This subset is used for modelling that any response except
r100 can be sent when the server is in its proceedingS state, which can be im-
plemented using the variable re that runs over the subset. RESPONSEQ is a list of
responses sent by the server transaction, and it is used to type place Responses,
to model a First-In-First-Out queue. Variable a is of type INT, and sc and ss
can take values from the colour sets STATEC and STATES respectively. Variables
req and res are of types REQUEST and RESPONSE respectively. For dealing with
the lists that store requests and responses, we declare variables requestQ of type
REQUESTQ and responseQ of type RESPONSEQ.

140 L.G. Ding and L. Liu

Fig. 5. CPN model of the INVITE transaction

Modelling and Analysis of the INVITE Transaction 141

INVITE Client Transaction. The left part of the CPN model (Fig. 5), in-
cluding places Client and INVITE Sent, and the transitions connected to them,
models the client transaction state machine with reliable medium (Fig. 3(a)).

States of the client transaction are represented by place Client (typed with
colour set STATEC). The initial state of Client is calling, indicating that the
INVITE client transaction has been initiated by its TU, and an INVITE request
has been passed from its TU to the client transaction for transmission.

Five transitions are associated with Client, to model operations of the IN-
VITE client transaction. Send Request models how the transaction passes an
INVITE request received from its TU to SIP transport layer. It is enabled only
if there is a calling in Client and no INVITE request has been passed to SIP
transport layer (i.e. INVITE Sent contains an integer with value 0). Receive
Response models how the client transaction receives responses and sends ACKs.
It is enabled when a response is received (i.e. removed from the head of the queue
in place Responses) and the Client is not terminated. If the client transaction
receives a 300-699 response (r3xx), an ACK is passed to SIP transport layer,
and Client moves to its completed state. If the received response is r100, r101
or r2xx, no ACK is sent; when the response is r100 or r101, Client moves to
proceeding; and when the response is r2xx, the Client moves to terminated.

Timer B is modelled by transition Timer B. Since our focus is on the functional
correctness of SIP rather than its performance properties such as session delay,
values of timers are not modelled. To model that Timer B can not be started
before an INVITE request is sent, place INVITE Sent is set to an input place
of Timer B. Timer B is enabled only when an integer with value 1 is in INVITE
Sent (see the guard [a=1]) and the Client is calling. The initial marking of
INVITE Sent is 0 (no INVITE request has been sent to SIP transport layer),
when Send Request is fired (i.e. an INVITE request has been sent), the integer
value is incremented by 1.

Timer D (Fig. 3(a)) sets the maximum time for which the client transac-
tion can stay in its Completed state to wait for retransmitted 300-699 responses
from the server transaction. Since there are no retransmissions when the trans-
port medium is reliable, according to [1], Timer D is set to fire in zero seconds in
this case. Once it fires, the client transaction enters its Terminated state. This
seems to indicate that the client transaction would enter the Terminated state
immediately after it is in the Completed state, and nothing else can happen in
between the two states. Thus we might be able to fold the two states into one and
not to consider Timer D when the transport is reliable. However, from Fig. 3, a
Transport Err can occur when the client transaction is in its Completed state,
and the Completed state is entered after the client transaction has passed an
ACK to SIP transport layer. The transport layer may report an error immedi-
ately when it receives the ACK, thus a Transport Err occurs at the transaction
layer. According to Fig. 3, the transaction layer needs to inform its TU of this
error when it is in the Completed state. From this perspective, we can not fold
the Completed and Terminated states. Therefore, we create a transition, Timer

142 L.G. Ding and L. Liu

D. It is enabled once there is a completed in Client, and its occurrence brings
Client to terminated.

Transition Client Transport Err (modelling a Transport Err at the trans-
action layer) is enabled when the Client is completed, and its occurrence also
brings Client to terminated. When an error is reported by SIP transport layer,
the ACK that has been passed to it from the transaction layer will not be sent
to the server side, so when Client Transport Err occurs, the ACK that has
just been put in the queue in Requests is destroyed (see the inscription of the
arc from Client Transport Err to Requests). From Fig. 3(a), a Transport
Err can occur when the client transaction is Calling, so Client Transport Err
can be enabled as well when a calling is in Client (see the guard of Client
Transport Err).

INVITE Server Transaction. Referring to the right part of Fig. 5, place
Server and the four transitions connected to it model the INVITE server trans-
action specified in Fig. 3(b). Place Server models the states of the transaction,
proceedingT, proceedingS, completedS, terminatedS. Idle (see Fig. 4) is not
a state of the server transaction, it is the initial marking of Server, indicating
that it is ready for the TU to create a server transaction once the TU receives an
INVITE request. Transition Receive Request models the reception of a request
(INVITE or ACK). While there is an Idle in Server, if the request received
is an INVITE, a proceedingT is created in Server, modelling that the server
transaction is created (by the TU) and it is now in its proceedingT state (in this
case and only in this case, transition Receive Request models the operation of
the TU instead of the server transaction of receiving an INVITE request from the
client side). Once the Server enters its proceedingT state, Send Response is en-
abled, thus r100 can be placed into the queue in Responses, changing the state of
the Server to proceedingS. In the proceedingS state, Send Response is again
enabled. When it occurs, either a provisional response r101 or a final response
(r2xx or r3xx) is appended to the queue in Responses, and a proceedingS (if a
r101 is put in the queue), completedS (for r3xx) or terminatedS (for r2xx) is
put in Server (refer to the else clauses of the inscriptions of the outgoing arcs
of Send Response). While the Server is completedS, if an ACK is received, the
occurrence of Receive Request will generate a terminatedS in the Server. The
guard of Receive Request models that the server transaction can not receive
any requests after it enters the Terminated state because a server transaction is
destroyed immediately after the Terminated state [1].

Only one timer, Timer H, is used by the INVITE server transaction (Fig. 3(b))
when the transport medium is reliable, to control the transmission and retrans-
mission of 300-699 responses by the INVITE server transaction. It is modelled
by transition Timer H, which is enabled when the Server is completedS. When
it fires, Server moves to its terminatedS state, indicating that an ACK corre-
sponding to a 300-699 response is never received by the server transaction before
Timer H has expired. Server Transport Err models a transport error occurring
at the server side. It is enabled after a response has been sent to SIP transport
layer (i.e. when the server transaction is proceedingS or completedS). When it

Modelling and Analysis of the INVITE Transaction 143

fires, the response that has just been put into the queue in Responses is removed
(see the inscription of the arcs from Server Transport Err to Responses, the
List.take function returns the remained responses of list responseQ) and a
terminatedS is put into Server.

The Underlying Transport Medium. The middle part of the CPN model
(i.e. places Requests and Responses of Fig. 5) models SIP transport layer and
the underlying transport medium (see Fig. 1). Requests models the transmission
of requests from the client side to the server side; whereas Responses models
the transmission of responses in the reverse direction. The maximum number of
provisional responses (i.e. r101) that can be sent from the server transaction is
not given in [1], so there may be an arbitrarily large number of r101 to be put
into the queue in Responses. We use a positive integer parameter, n (Fig. 4)
to represent the maximum length of the queue in Responses and a guard for
transition Send Response ([length responseQ < n]) to limit the maximum
length of the queue in Responses.

3.4 State Space Analysis of the INVITE Transaction CPN Model

In this section, we firstly define the desired properties for the INVITE transac-
tion, then we analyse the state space of the CPN model described in the previous
section. In order to avoid state explosion problem with state space analysis, we
use 3 as the maximum length of the queue in place Responses (i.e. n=3).

The functional properties that we are interested in include absence of dead-
locks and absence of livelocks. According to [3] a protocol can fail if any of the
two properties are not satisfied. We also expect that the INVITE transaction
has no dead code (and action that is specified but never executed). A deadlock is
an undesired dead marking in the state space of a CPN model, and a marking is
dead if no transitions are enabled in it [11]. For the INVITE transaction, there is
only one desired dead marking, representing the desirable terminal state of the
INVITE transaction. In this state both the client and the server transactions are
in their Terminated state (see Fig. 3), and no messages remain in the commu-
nication channel. Any other dead marking is thus undesirable, i.e. a deadlock.
A livelock is a cycle of the state space that once entered, can never be left, and
within which no progress is made with respect to the purpose of the system.

To analyse the desired properties of the INVITE transaction, we firstly check
the state space report generated by CPN Tools [12]. The report shows that a
full state space with 52 nodes and 103 arcs is generated. There are 3 nodes fewer
in the Strongly Connected Components (SCC) graph than in the state space,
which means that the state space contains cycles (which needs to be further
investigated to see if they are livelocks). We also found ten dead markings in the
state space, which are nodes 5, 19, 25, 28, 29, 30, 36, 45, 46 and 50 (Table 2).
Additionally, there are no dead transitions in the state space, so the INVITE
transaction has no dead code.

From Table 2, we can see that node 25 is a desirable dead marking. The re-
quests and responses have been sent and received. Both the client and server

144 L.G. Ding and L. Liu

Table 2. List of dead markings

Node Client Requests Server Responses INVITE Sent

5 terminated [] Idle [] 1‘1

19 terminated [] terminatedS [r100, r2xx] 1‘1

25 terminated [] terminatedS [] 1‘1

28 proceeding [] terminatedS [] 1‘1

29 terminated [] terminatedS [r100, r3xx] 1‘1

30 terminated [] terminatedS [r100] 1‘1

36 terminated [] terminatedS [r100, r101, r2xx] 1‘1

45 terminated [] terminatedS [r100, r101, r3xx] 1‘1

46 terminated [] terminatedS [r100, r101] 1‘1

50 terminated [ACK] terminatedS [] 1‘1

transactions are in their Terminated states. Moreover, no messages remain in
the channel, i.e. places Requests and Responses each has an empty list. At
node 5 the server’s state is Idle, which is different from other dead markings
(i.e terminatedS). To find out whether this node is an undesirable dead mark-
ing, we use CPN Tools’ query ArcsInPath (1, 5) to generate the path to this
dead marking (Fig. 6). At the initial state, node 1, the client transaction sends
an INVITE request to SIP transport layer. However, a transport error occurs at
node 2 and no request is sent to the server side. Hence, the client transaction is
terminated and no corresponding INVITE server transaction is constructed at
the server side (node 5). This behaviour is expected [1]. Furthermore, for each of
the nodes 19, 29, 30, 36, 45, 46 and 50 in Table 2, there are still messages remain-
ing in the communication channel after both the client and server transactions
have been terminated. These dead markings are caused by either transport error
or timeout. Once a transport error or timeout occurs, the transaction will be
destroyed. Therefore a message left in the channel will find no matching trans-
action. However, these dead markings are acceptable, because if the message
is a response, according to [1], the response must be silently discarded by SIP
transport layer of the client. If the message is a request (i.e. node 50), according
to [1], the request (i.e. ACK) will be passed to the TU of the destroyed server
transaction to be handled.

Fig. 6. The path from Node 1 to Node 5

Modelling and Analysis of the INVITE Transaction 145

Fig. 7. Scenario of undesired behaviour

Fig. 8. State Space of the INVITE transaction CPN model

However, node 28 is an undesired dead marking (deadlock). Referring to Ta-
ble 2, with node 28, the state of the client transaction is proceeding, while
the server transaction is terminatedS due to a transport error (Fig. 7). This
behaviour is not expected since in this case the server transaction has been de-
stroyed (i.e. no responses can be received by the client transaction). No timer is
given in [1] to specify the maximum time the client transaction can wait for a
final response when it is in the proceeding state. Thus, when a transport error
occurs at the server side, the client transaction will have no way to come out
from the proceeding state.

To check if there are livelocks, we draw the state space of the INVITE trans-
action (Fig. 8). As indicated by the difference between the size of the state space
and the size of the SCC graph, there are cycles in the state space: the cycles
between nodes 11, 23, 37 and 49. However, because from any of the four nodes,

146 L.G. Ding and L. Liu

the transaction can move to a state which is not within a cycle, these cycles are
not livelocks. Therefore, the INVITE transaction is free of livelocks.

4 The Revised INVITE Transaction and Its Verification

4.1 Changes to the INVITE Transaction

In the previous section, we have found that the INVITE transaction can reach a
deadlock where the server transaction has terminated but the client transaction
is still in its Proceeding state. After discovering this using state space analysis
of CPNs, we noticed that this deadlock had been discussed and reported by SIP
implementers [13] . However, so far there is no solution published for fixing this
bug. In this section, we propose a modification to the INVITE transaction to
eliminate the deadlock.

In [1], it is recommended that, at the TU level, the TU at the client side
should destroy the original INVITE client transaction, if the TU does not receive
a final response within 64xT1 seconds (T1 = 500ms) after an INVITE request
is passed to the transaction layer. So for an application that implements this
recommendation, the INVITE client transaction will be destroyed eventually if
the transaction has reached the deadlock. However, with applications that do not
implement this recommendation, a caller will not receive any indications from
the system, thus may wait for a long time (listening to the ringing tone) before
giving up (i.e. hanging up the phone). Therefore we believe that it is necessary
to solve this problem at the transaction layer, i.e. to force the client transaction
to reach its Terminated state, instead of staying in the Proceeding state, so that
the TU can destroy the transaction and avoid an unnecessarily long wait.

From Fig. 3(a) we see that the client transaction can go from the Proceeding
state to the Completed state then the Terminated state only if it receives a final
response (300-699 or 2xx) from the server transaction. However, after having
reached the deadlock, no responses can be received by the client transaction since
the server transaction has been terminated. Therefore, in this case, to bring the
client transaction to its Terminated state, we need to use an event that occurs at
the client side to trigger this state change, i.e. a timer for the Proceeding state.
Referring to Fig. 9, before the client transaction enters the Proceeding state, it
now needs to reset Timer B (i.e. restarts it with value 64xT1 ms). Then in the
Proceeding state, once Timer B expires, the INVITE client transaction notifies
the TU about the timeout and moves to the Terminated state.

4.2 The Revised INVITE Transaction CPN and Its Analysis

Fig. 10 shows the CPN model for the revised INVITE transaction. It is ob-
tained from the CPN in Fig. 5 by modifying the arc inscription and the guard
of transition Timer B. The arc inscription from place Client to Timer B has
been changed from calling to a variable, sc, of colour set STATEC. This vari-
able can be bound to any value of STATEC, but Timer B should not be enabled
in states other than calling or proceeding. Therefore, the guard of Timer B

Modelling and Analysis of the INVITE Transaction 147

Fig. 9. Revised INVITE client transaction state machine

has also been changed. In Fig. 5, the guard Timer B ([a=1]), is used to set
the condition that Timer B can not be enabled before an INVITE request has
been sent in the calling state. Since proceeding is not associated with send-
ing the INVITE request, the guard for the revised CPN model is modified to
[(sc=calling andalso a=1) orelse sc=proceeding].

The same as with analysing the original CPN model shown in Fig. 5, we use
3 as the maximum length of the queue in place Responses (i.e. n=3) to avoid
state explosion. The state space of the CPN model is then generated. The state

Fig. 10. CPN model of the revised INVITE transaction

148 L.G. Ding and L. Liu

space report shows that there are more nodes and arcs generated for both the
state space and SCC graph. However, the differences between the state space
and SCC graph, i.e. 3 nodes and 6 arcs, have remained the same. Additionally,
the report shows that there are no dead transitions in the state space of the
INVITE transaction, so it has no dead code.

All the dead markings are shown in Table 3. We see that the deadlock in the
state space of the original model (node 28 of Table 2) has been removed. However,
the state space of the revised CPN model has more dead markings (i.e. nodes
59, 60, 64, 66 and 67). This is because in the Proceeding state of the INVITE
client transaction (refer to Fig. 10), when Timer B occurs, the Client moves to
terminated before the responses (i.e. r101, r2xx or r3xx) have been received
(queuing in Responses). Previously, we only had these responses queuing in the
Responses when Client was marked by proceeding. Since these dead markings
(nodes 59, 60, 64, 66 and 67) have similar behaviour to nodes 19, 26, 31, 32, 33,
39, 47, 51, 52, 53, 58 (see Table 3), i.e. messages are left in the channel, and
client and server transactions have each entered its Terminated state, they are
all acceptable. Furthermore, from Table 3, nodes 5 and 26 were discovered in
the state space of the original model, and they have already been identified as
desirable dead markings of the INVITE transaction.

To check if there are livelocks in the revised INVITE transaction, we draw the
state space (Fig. 11). There are cycles between nodes 11, 23, 40 and 56. However,
none of them are livelocks because from each of the four nodes the transaction
can move to a state that is not within a cycle. Therefore, the revised INVITE
transaction has no livelock.

Table 3. List of dead markings of the revised CPN model

Node Client Requests Server Responses INVITE Sent

5 terminated [] Idle [] 1‘1

19 terminated [] terminatedS [r100, r2xx] 1‘1

26 terminated [] terminatedS [] 1‘1

31 terminated [] terminatedS [r100, r3xx] 1‘1

32 terminated [] terminatedS [r100] 1‘1

33 terminated [] terminatedS [r2xx] 1‘1

39 terminated [] terminatedS [r100, r101, r2xx] 1‘1

47 terminated [] terminatedS [r3xx] 1‘1

51 terminated [] terminatedS [r100, r101, r3xx] 1‘1

52 terminated [] terminatedS [r100, r101] 1‘1

53 terminated [] terminatedS [r100, r2xx] 1‘1

58 terminated [ACK] terminatedS [] 1‘1

59 terminated [] terminatedS [r101, r3xx] 1‘1

60 terminated [] terminatedS [r101] 1‘1

64 terminated [] terminatedS [r101, r101, r2xx] 1‘1

66 terminated [] terminatedS [r101, r101, r3xx] 1‘1

67 terminated [] terminatedS [r101, r101] 1‘1

Modelling and Analysis of the INVITE Transaction 149

Fig. 11. Cycles in the state space of the revised INVITE transaction CPN model

5 Conclusions and Future Work

The INVITE transaction is one of the essential transactions of SIP. It has been
used in conjunction with other protocols to establish sessions and provide com-
munication services. Based on the state machines and narrative descriptions that
are provided in [1], we have modelled and analysed the SIP INVITE transaction
with reliable transport medium using CPNs. The contributions of the paper are
summarised below.

– Refinement to the definition of the INVITE transaction. We have found some
inconsistencies between the state machines and the narrative descriptions in
[1]. Modifications have been proposed to the state machines to remove the
inconsistencies. After omitting the states and actions which are defined for
SIP over an unreliable transport medium only, we have obtained the state
machines for the INVITE transaction over a reliable transport medium, and
have created a CPN model for it, which provides a formal specification for
the INVITE transaction.

– Verification of the INVITE transaction. By examining the state space of the
CPN model, we have found that the INVITE transaction has no livelock or
dead code. We have also found in the state space of the INVITE transaction
a sequence of events that lead to the desirable terminal state, however, the
INVITE transaction may terminate in an undesirable state, in which the
INVITE client transaction is still in its Proceeding state.

– Revision to the definition of the INVITE transaction and its verification. To
eliminate the undesirable behaviour, we have proposed a set of changes to
the INVITE client transaction. Using state space analysis, we have found
that the revised INVITE transaction has satisfied the desired properties.

150 L.G. Ding and L. Liu

In the future, we shall model and analyse the INVITE transaction with unre-
liable transport medium. We have noticed that, very recently, an Internet draft
(work in progress) has been published by IETF, to propose updates to the IN-
VITE transaction state machines [14]. The proposed updates have no impacts on
the behaviour of the INVITE transaction when the transport medium is reliable,
which means IETF may have not been aware of the incompleteness of [1] of the
specification of the INVITE transaction. On the other hand, the proposed up-
dates may have influence on the INVITE transaction when the transport medium
is unreliable. Therefore, the other possible future work can include modelling and
analysing the updated version of INVITE transaction proposed in the Internet
Draft [14]. In this way, the correctness of the proposed updates given in the
Internet Draft [14] can be checked and confirmed.

Acknowledgements. We would like to express our appreciation to the mem-
bers of Computer Systems Engineering Centre, University of South Australia, for
attending our presentation and providing useful comments on our research. Es-
pecially, we would like to thank Professor Jonathan Billington, Dr Guy Gallasch,
and Dr Somsak Vanit-Anunchai for all their helpful suggestions and invaluable
comments.

References

1. Rosenberg, J., et al.: RFC 3261: SIP: Session Initiation Protocol. Internet Engi-
neering Task Force (2002), http://www.faqs.org/rfcs/rfc3261.html

2. Sparks, R.: SIP: basics and beyond. Queue 5(2), 22–33 (2007)
3. Holzmann, G.J.: Design and validation of computer protocols. Prentice Hall, En-

glewood Cliffs, New Jersey (1991)
4. Sidhu, D., Chung, A., Blumer, T.P.: Experience with formal methods in protocol

development. In: ACM SIGCOMM Computer Communication Review, vol. 21(2),
pp. 81–101. ACM, New York (1991)

5. Examples of Industrial Use of CP-nets,
http://www.daimi.au.dk/CPnets/intro/example indu.html

6. Billington, J., Gallasch, G.E., Han, B.: Lectures on Concurrency and Petri Nets:
A Coloured Petri Net Approach to Protocol Verification. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 210–290. Springer,
Heidelberg (2004)

7. Kristensen, L.M., Jørgensen, J.B., Jensen, K.: Application of Coloured Petri Nets
in System Development. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003.
LNCS, vol. 3098, pp. 626–685. Springer, Heidelberg (2004)

8. Turner, K.J.: Modelling SIP Services Using CRESS. In: Peled, D.A., Vardi, M.Y.
(eds.) FORTE 2002. LNCS, vol. 2529, pp. 162–177. Springer, Heidelberg (2002)

9. Gehlot, V., Hayrapetyan, A.: A CPN Model of a SIP-Based Dynamic Discovery
Protocol for Webservices in a Mobile Environment. In: the 7th Workshop and
Tutorial on Practical Use of CPNs and the CPN Tools, University of Aarhus,
Denmark (2006)

10. Wan, H., Su, G., Ma, H.: SIP for Mobile Networks and Security Model. In: Wireless
Communications, Networking and Mobile Computing, pp. 1809–1812. IEEE, Los
Alamitos (2007)

http://www.faqs.org/rfcs/rfc3261.html
http://www.daimi.au.dk/CPnets/intro/example_indu.html

Modelling and Analysis of the INVITE Transaction 151

11. Jensen, K., Kristensen, L., Wells, L.: Coloured Petri Nets and CPN Tools for mod-
elling and validation of concurrent systems. Int. J. on Software Tools for Technology
Transfer (STTT) 9(3), 213–254 (2007)

12. Home Page of the CPN Tools,
http://wiki.daimi.au.dk/cpntools/cpntools.wiki

13. Rosenberg, J.: Bug 706 - Clarify lack of a timer for exiting proceeding state, Bugzilla
(2003), http://bugs.sipit.net/show bug.cgi?id=706

14. Sparks, R.: draft-sparks-sip-invfix-00: Correct transaction handling for 200 re-
sponses to Session Initiation Protocol INVITE requests. Internet Engineering Task
Force (2007), http://tools.ietf.org/id/draft-sparks-sip-invfix-00.txt

http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://bugs.sipit.net/show_bug.cgi?id=706
http://tools.ietf.org/id/draft-sparks-sip-invfix-00.txt

Modelling and Initial Validation of the DYMO

Routing Protocol for Mobile Ad-Hoc Networks�

Kristian L. Espensen, Mads K. Kjeldsen, and Lars M. Kristensen

Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

{espensen,keblov,kris}@daimi.au.dk

Abstract. A mobile ad-hoc network (MANET) is an infrastructureless
network established by a set of mobile devices using wireless communica-
tion. The Dynamic MANET On-demand (DYMO) protocol is a routing
protocol for multi-hop communication in MANETs currently under de-
velopment by the Internet Engineering Task Force (IETF). This paper
presents a Coloured Petri Net (CPN) model of the mandatory parts of
the DYMO protocol, and shows how scenario-based state space explo-
ration has been used to validate key properties of the protocol. Our CPN
modelling and verification work has spanned two revisions of the DYMO
protocol specification and have had direct impact on the most recent
version of the protocol specification.

Keywords: System design and verification using nets, experience with
using nets, case studies, higher-level net models, application of nets to
protocols and networks.

1 Introduction

Mobile ad-hoc networks (MANETs) [14] is a networking paradigm motivated
by the increased presence and use of mobile wireless networking devices such
as laptops, PDAs, and mobile phones. The basic idea of MANETs is that a set
of mobile nodes is able to autonomously establish a wireless network without
relying on a preexisting communication infrastructure (such as the Internet).
A typical application of MANETs is emergency search-and-rescue operations
in remote areas where no preexisting communication infrastructure is available.
The nodes in a MANET are characterised by having limited memory, processing
power, and battery capacity. Furthermore, the topology of a MANET changes
frequently due to the mobility of the nodes and the varying quality of the wire-
less links. These characteristics imply that communication protocols for conven-
tional infrastructured networks in most cases are not suited for MANETs. The
central communication service of a MANET is multi-hop routing which enables
the nodes to forward data packets, and several routing protocols [14,11]) are
currently under development.

� Supported by the Danish National Research Council for Technology and Production.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 152–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modelling and Initial Validation of the DYMO Routing Protocol 153

In this paper we consider the Dynamic MANET On-demand (DYMO) [2]
routing protocol being developed by the IETF MANET working group [11]. The
DYMO protocol specification [2] is currently an Internet-draft in its 11th revi-
sion and is expected to become a Request for Comments (RFC) document in
the near future. The recent discussions on the mailing list [12] of the MANET
working group have revealed several complicated issues in the DYMO protocol
specification, in particular related to the processing of routing messages and the
handling of sequence numbers. This, combined with the experiences of our re-
search group in implementing the DYMO protocol [15,16] and conducting initial
modelling [9], has motivated us to initiate a project [7] aiming at constructing a
Coloured Petri Net (CPN) model [10] of the DYMO protocol specification using
CPN Tools [5] with the goal of validating the correctness of the protocol using
state space exploration. Next, via a set of refinement steps we will use the CPN
model (preferably via automatic code generation) as a basis for implementing
the routing daemon of the DYMO protocol. This paper presents our modelling
and initial validation work in this project.

We present a CPN model of mandatory parts of the DYMO protocol. In
addition to modelling DYMO, the modelling of the wireless mobile network is
aimed at being generally applicable for modelling MANET protocols. Finally, we
present state space exploration results concerning the establishment of routes
and processing of routing messages. Our modelling and validation work has
spanned revision 10 [3] and revision 11 [2] of the DYMO specification. Our work
on revision 10 identified several ambiguities and possible improvements which
were submitted [12], acknowledged by the DYMO working group, and taken into
account in revision 11.

This paper is structured as follows. Section 2 gives a brief introduction to
the basic operation of the DYMO protocol. Section 3 presents the CPN model
and provides additional details about the DYMO protocol. In Sect. 4 we present
initial investigations of the behaviour of the DYMO protocol using state space
exploration. Finally, in Sect. 5 we summarise our conclusions and discuss related
and future work. The reader is assumed to be familiar with the basic ideas of
the CPN modelling language [10] and state space exploration. Because of space
limitations we cannot present the complete CPN model which has been made
available via [4].

2 Brief Overview of the DYMO Protocol

The operation of the DYMO protocol can be divided into two parts: route discov-
ery and route maintenance. The route discovery part is used to establish routes
between nodes in the network when required for communication between two
nodes. A route discovery begins with an originator node multicasting a Route
Request (RREQ) to all nodes in its immediate range. The RREQ has a sequence
number to enable other nodes in the network to judge the freshness of the route
request. The network is then flooded with RREQs until the request reaches its
target node (provided that there exists a path from the originating node to the

154 K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen

3 6

2 5

1

4

Node 2 Node 3 Node 4 Node 5 Node 6Node 1

RREQ

RREQ

RREQ

RREQ

RREQ

RREP

RREP

(1,1) (1,1) (1,2) (1,2) (1,3)
(6,3) (6,6)

Fig. 1. DYMO route discovery example

target node). The target node then replies with a Route Reply (RREP) unicas-
ted hop-by-hop back to the originating node. The route discovery procedure is
requested by the IP network layer on a node when it receives an IP packet for
transmission and does not have a route to the destination. An example scenario
consisting of six nodes numbered 1–6 is shown in Fig. 1.

Figure 1(top) depicts the topology where an edge between two nodes indicates
that the nodes are within direct transmission range of each other. As an example,
node 1 is within transmission range of nodes 2 and 3. The message sequence chart
(MSC) shown in Fig. 1 (bottom) depicts one possible exchange of messages in
the DYMO protocol when the originating node 1 establishes a route to target
node 6. Solid arcs represent multicast and dashed arcs represent unicast. In the
MSC, node 1 multicasts a RREQ which is received by nodes 2 and 3. When
receiving the RREQ from node 1, nodes 2 and 3 create an entry in their routing
table specifying a route back to the originator node 1. Since nodes 2 and 3 are
not the target of the RREQ they both multicast the received RREQ to their
neighbours (nodes 1, 4 and 5, and nodes 1 and 6, respectively). Node 1 discards
these messages as it was the originator of the RREQ. When nodes 4 and 5 receive
the RREQ they add an entry to their routing table specifying that the originator
node 1 can be reached via node 2. When node 6 receives the RREQ from node 3,
it discovers that it is the target node of the RREQ, adds an entry to its routing

Modelling and Initial Validation of the DYMO Routing Protocol 155

table specifying that node 1 can be reached via node 3, and unicasts a RREP
back to node 3. When node 3 receives the RREP it adds an entry to its routing
table stating that node 6 is within direct range, and use its entry in the routing
table that was created when the RREQ was received to unicast the RREP to
node 1. Upon receiving the RREP from node 3, node 1 adds an entry to its
routing table specifying that node 6 can be reached using node 3 as a next hop.
The RREQ is also multicasted by node 4, but when node 2 receives it it discards
it as it will be considered inferior. Node 5 also multicasts the RREQ, but nodes
2 and 6 also consider the RREQ to be inferior and therefore discard the RREQ
message. The two last lines in the MSC specifies the entries in the routing table
of the individual nodes as a pair (target , nexthop). The first line specifies the
entries that were created as a result of receiving the RREQ and the second line
specifies entries created as a result of receiving the corresponding RREP. It can
be seen that a bidirectional route has been discovered and established between
node 1 and node 6 using node 3 as an intermediate hop.

The topology of a MANET network changes over time because of the mobility
of the nodes. DYMO nodes therefore perform route maintenance where each
node monitors the links to the nodes it is directly connected to. The DYMO
protocol has a mechanism to notify nodes about a broken route. This is done by
sending a Route Error (RERR), thereby informing nodes using the broken route
that a new route discovery is needed.

The CPN model presented models the mandatory parts in revision 11 of the
DYMO specification except for the modelling of actions to be taken if a node
loses its sequence number, e.g., as a result of a reboot or crash ([2], Sect. 5.1.4).
As we have decided to focus on the mandatory parts, our CPN model does not
include the following optional DYMO operations: intermediate DYMO Router
RREP creation ([2], Sect. 5.3.3), adding additional routing information to rout-
ing messages ([2], Sect. 5.3.5) and Internet attachment and gatewaying ([2],
Sect. 5.8).

3 The DYMO CPN Model

The CPN model is a hierarchical model organised in 14 modules. Figure 2 shows
the module hierarchy of the CPN model. Each node in Fig. 2 corresponds to a
module and System represents the top-level module of the CPN model. An arc
leading from one module to another module means that the latter module is a
submodule of the former module. The model has been organised into two main
parts: a DYMOProtocol part and a MobileWirelessNetwork part. This has been
done to separate the parts of the model that are specific to DYMO which are all
submodules of the DYMOProtocol module and the parts that are independent
from the DYMO protocol which are all submodules of the MobileWirelessNetwork
module. This means that the parts modelling the mobile wireless network over
which DYMO operates can be reused for modelling other MANET protocols.
We have adopted the convention that a substitution transition and its associated
submodule have the same name. Furthermore, to the extent possible we have

156 K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen

System

DYMO Protocol Mobile Wireless Network

Wireless Packet Transmission

Mobility

Initiate Route Discovery

Receive Error Messages

Process Incoming Messages

Active Link Monitoring

Process RREQ

Process RERR

Process RREP

Receive Routing Messages

Route Table Timeouts

Fig. 2. Module hierarchy for the DYMO CPN model

structured the CPN model into modules such that it reflects the structure of
the DYMO specification [2]. This makes the relationship between the DYMO
specification and the CPN model more explicit, and it makes it easier to maintain
the CPN model as the DYMO specification is being revised.

The top-level module System is shown in Fig. 3 and is used to connect the
two main parts of the model. The DYMO protocol logic is modelled in the
submodules of the DYMOProtocol substitution transition. The submodules of
the MobileWirelessNetwork substitution transition is an abstract model of the
mobile wireless network over which DYMO operates. It models unreliable one-
hop wireless transmission of network packets over a network with mobile nodes.
It models the operation of the IP network layer down to the physical transmission
over the wireless medium.

The two socket places DYMOToNetwork and NetworkToDYMO are used to
model the interaction between the DYMO protocol and the underlying protocol
layers as represented by the submodules of the MobileWirelessNetwork substitu-
tion transition. The place LinkState is used to model the active link monitoring
that nodes perform to check which neighbour nodes are still reachable. When
the DYMO protocol module sends a message, it will appear as a token repre-
senting a network packet on place DYMOToNetwork. Similarly, a network packet
to be received by the DYMO protocol module will appear as a token on the
NetworkToDYMO place. The colour set NetworkPacket is defined as follows:

colset Node = int with 0 .. N;

colset IPAddr = union UNICAST : Node + LL_MANET_ROUTERS;

colset NetworkPacket = record src : IPAddr * dest : IPAddr *

data : DYMOMessage;

We have used a record colour set for representing the network packets trans-
mitted over the mobile wireless network. A network packet consists of a source,

Modelling and Initial Validation of the DYMO Routing Protocol 157

Link
State

NodexNode

Network
To DYMO

NetworkPacket

DYMO To
Network

NetworkPacket

DYMO
Response

DYMOResponse

DYMO
Request

DYMORequest

DYMO Protocol

DYMO ProtocolDYMO Protocol

Mobile Wireless
Network

Mobile Wireless NetworkMobile Wireless Network

Fig. 3. Top-level System module of the CPN model

a destination, and some data (payload). The DYMO messages are carried in
the data part and will be presented later. DYMO messages are designed to be
carried in UDP datagrams transmitted over IP networks. This means that our
network packets are abstract representations of IP/UDP datagrams. We have
abstracted from all fields in the IP and UDP datagrams (except source and des-
tination fields) as these do not impact the DYMO protocol logic. The source and
destination of a network packet are modelled by the IPAddr colour set. There
are two kinds of IP addresses: UNICAST addresses and the LL MANET ROUTERS
multicast address. The multicast address is used, e.g., in route discovery when
a node is sending a RREQ to all its neighbouring nodes. Unicast addresses are
used as source of network packets and, e.g., as destinations in RREP messages. A
unicast address is represented using an integer from the colour set Node. Hence,
the model abstracts from real IP addresses and identify nodes using integers in
the interval [1; N] where N is a model parameter specifying the number of nodes
in the MANET.

The two places DYMORequest and DYMOResponse are used to interact with
the service provided by the DYMO protocol. A route discovery for a specific
destination is requested via the DYMORequest place and a DYMO response to
a route discovery is then provided by DYMO via the DYMOResponse place. The
colour sets DYMORequest and DYMOResponse are defined as follows:

colset RouteRequest = record originator : Node * target : Node;

colset DYMORequest = union ROUTEREQUEST : RouteRequest;

colset RouteResponse = record originator : Node * target : Node *

status : BOOL;

colset DYMOResponse = union ROUTERESPONSE : RouteResponse;

A DYMORequest specifies the identity of the originator node requesting the route
and the identity of the target node to which a route is to be discovered. Similarly,

158 K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen

a DYMOResponse contains a specification of the originator, the target, and a
boolean status specifying whether the route discovery was successful. The colour
sets DYMORequest and DYMOResponse are defined as union types to make it
easy to later extend the model with additional requests and responses. This
will be needed when we later refine the CPN model to more explicitly specify
the interaction between the DYMO protocol module and the IP network layer
module. By setting the initial marking of the place DYMORequest, it can be
controlled which route requests are to be made. We have not modelled the actual
transmission of messages containing payload from applications as our focus is on
the route establishment and maintenance of the DYMO protocol. In the following
we present the submodules of the DYMOProtocol and MobileWirelessNetwork
substitution transitions in more detail.

3.1 The DYMO Protocol Module

The top-level module for the DYMO protocol part of the CPN model is the DY-
MOProtocol module shown in Fig. 4. The module has five substitution transitions
modelling the handling of route request from a user (InitiateRouteDiscovery),
reception of routing messages (ReceiveRoutingMessages) which are RREQ and
RREP messages, the reception of RERRs (ReceiveErrorMessages), processing of
incoming messages (ProcessIncomingMessages), and timer management associ-
ated with the routing table entries (RouteTableEntryTimeouts). All submodules
of the substitution transitions in Fig. 4 create and manipulate DYMO messages
which are represented by the colour set DYMOMessage defined as follows:

colset SeqNum = int with 0 .. 65535;

colset NodexSeqNum = product Node * SeqNum;

colset NodexSeqNumList = list NodexSeqNum;

colset RERRMessage = record HopLimit : INT *

UnreachableNodes : NodexSeqNumList;

colset RoutingMessage = record TargetAddr : Node * OrigAddr : Nodes *

OrigSeqNum : SeqNum * HopLimit : INT *

Dist : INT;

colset DYMOMessage = union RREQ : RoutingMessage + RREP : RoutingMessage +

RERR : RERRMessage;

The definition of the colour sets used for modelling the DYMO messages is
based on a direct translation of the description of DYMO messages as found in
Sect. 4.2.2 and Sect. 4.2.3 of the DYMO specification [2]. In particular we use
the same names of message fields as in [2]. In the modelling of DYMO message
packets, we have abstracted from the specific layout as specified by the packetbb
format [8]. This is done to ease the readability of the CPN model, and the packet
layout is not important when considering only the functional operation of the
DYMO protocol.

Modelling and Initial Validation of the DYMO Routing Protocol 159

Route Table
Entry Timeouts

Route Table Entry Timeouts

Initiate
Route Discovery

Initiate Route Discovery

Receive Error
Messages

Receive Error Messages

Process
Incoming
Messages

Process Incoming Messages

Receive Routing
Messages

Receive Routing Messages

NodexNode

initOwnSeqNum ()

NodexSeqNum

initRT ()

NodexRouteTable

Incoming
Messages

NodexDYMOMessage

Network
To DYMO

In NetworkPacket

DYMO To
Network

Out NetworkPacket

DYMO
Response

Out DYMOResponse

DYMO
Request

In DYMORequestIn Out

Out In

Receive Routing Messages

Process Incoming Messages

Receive Error Messages

Initiate Route Discovery

Route Table Entry Timeouts

Routing
Table

Routing Table

OwnSeqNum

OwnSeqNumOwnSeqNum

Link
Monitoring

Link MonotoringLink Monotoring
Link
State

InIn

Routing Table

Fig. 4. The DYMOProtocol module

The submodules of the DYMOProtocol module also access the routing table
and the sequence number maintained by each mobile node. To reflect this and
reduce the number of arcs in the modules, we decided to represent the routing
table and the node sequence numbers using fusion places. The place OwnSe-
qNum contains a token for each node specifying the current sequence number of
the node and the place RoutingTable contains a token for each node specifying
a routing table. The colour set SeqNum used to represent the unsigned 16-bit
sequence number of a node was defined above and the colour set RouteTable
used to represent the routing table of a node is defined as follows:

colset RouteTableEntry = record

Address : IPAddr * SeqNum : SeqNum *

NextHopAddress : IPAddr * Broken : BOOL *

Dist : INT;

colset RouteTable = list RouteTableEntry;

colset NodexRouteTable = product Node * RouteTable;

A routing table is represented as a list of RouteTableEntry. To allow each
node to have its own routing table, we use the colour set NodexRouteTable for
representing the set of routing tables. The first component of a pair specifies
the node to which the routing table in the second component is associated. The
definition of the colour RouteTableEntry is a direct translation of routing table
entries as described in Sect. 4.1 of [2]. In addition to the mandatory fields, we

160 K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen

have included the optional Dist field as this is used in non-trivial ways in the
reception of routing messages. We wanted to investigate this operation in more
detail as part of the state space exploration and we have therefore included it in
the modelling.

Initiate Route Discovery Module. Figure 5 shows the InitiateRouteDiscov-
ery module. When a route request arrives via the DYMORequest input port
the ProcessRouteRequest transition is enabled. When it occurs it will initialise
the processing of the route request by putting a token on place Processing.
A route request being processed is represented by a token over the colour set
NodexRCxRouteRequestwhich is a product type where the first component spec-
ifies the node processing the route request (i.e., the originator), the second com-
ponent specifies how many times the RREQ has been retransmitted, and the
third component specifies the route request. If the node does not have a route
to the target and the retransmit limit RREQ TRIESReached for RREQs has not
been reached (as specified by the guard of the CreateRREQ transition), then a
RREQ message can be transmitted with the current sequence number of the
node. Upon sending a RREQ, the sequence number of the node is incremented
and so is the counter specifying how many times the RREQ has been trans-
mitted. If a route becomes established (i.e., the originator receives a RREP on
the RREQ), the RouteEstablished transition becomes enabled and a token can
be put on place DYMOResponse indicating that the requested route has been
successfully established. If the retranmission limit for RREQs is reached (before
a RREP is received), the RREQ TRIES transition becomes enabled and a token
can be put on place DYMOResponse indicating that the requested route could
not be established.

Receive Routing Messages Module. When a routing message arrives at
the DYMO protocol module on the place NetworkToDYMO, the first task is to
compare the routing information in the received routing message with the infor-
mation contained in the routing table of the receiving node. Judging the routing
information contained in a message is handled by the ReceiveRoutingMessages
module shown in Fig. 6. The receiver is found in the dest field of the incom-
ing network packet bound to np. This way we know which node is the current
node and thereby which routing table to access. Section 5.2.1 of [2] specifies
how routing information is divided into four classes. Each class has a boolean
expression specifying when routing information falls into the given class. Each
class is represented by an accordingly named transition with a guard which is
true exactly when the boolean expression corresponding to that class is true.

The first class Stale is routing information which is considered outdated and
hence not suitable for updating the routing table. The function isStale is given
a network packet np and the routing table rt and returns true if and only if
the routing information in the packet is stale. The second class is LoopPossible
which is routing information where using it to update the routing table may
introduce routing loops. Routing information falls into the class Inferior if we
already have a better route to the node. The last of the four classes is Superior

Modelling and Initial Validation of the DYMO Routing Protocol 161

(n, rc + 1, rreq)

createRouteResponse
(rreq, false)

createRouteResponse
(rreq, true)

ROUTEREQUEST rreq

(n, rt)

(#originator rreq,
0, rreq)

(n, rt)

(n, rc, rreq)

(n, rc, rreq)

(n, rc, rreq) Route
Established

[hasRoute (#target rreq, rt)]

RREQ_TRIES
Reached

[rc = RREQ_TRIES]

Process
Route Request

Create RREQ

[not (hasRoute
 (#target rreq, rt)),
 rc < RREQ_TRIES]

DYMO
Response

OutDYMOResponse

DYMO
Request

In DYMORequest

DYMO To
Network

Out NetworkPacket

Routing
Table

Routing Table

initRT ()

NodexRouteTable

Processing

NodexRCxRouteRequest

NodexSeqNum

Routing Table

Out

In Out

initOwnSeqNum ()

OwnSeqNum

OwnSeqNumOwnSeqNum (n, seqnum)

(n, incSeqNum
(seqnum))

createRREQ (#target rreq, n, seqnum)

Fig. 5. The Initiate Route Discovery module

routing information. This is routing information which is considered better than
the information present in the routing table and is therefore used to update the
entry to the originating node using the function updateRouteEntry.

If there is no entry to the originating node, the transition NewRoute is enabled
and when it occurs a new entry is made by the function newRouteEntry which
conforms to Sect. 5.2.2 of [2]. Network packets originating from the current node
are discarded. Altogether this results in only network packets with superior or
new routing information being passed from the ReceiveRoutingMessage module
to the place IncomingMessages for further processing.

Process RREQ. As a representative example of a submodule at the most
detailed level of the CPN model, we consider the ProcessRREQ module shown
in Fig. 7 which specifies the processing of RREQ messages. The submodules
specifying the processing of RREP and RERR are similar.

There are two cases in processing a RREQ: either the receiving node is the
target for the RREQ or not. If the node is not the target node, the transition
RREQForward is enabled. The function forwardRREQ placed on the outgoing arc
conforms to Sect. 5.3.4 of [2], and works in the following way. If the HopLimit
is greater than or equal to one, the RREQ message has to be forwarded. This is
done by creating a new network packet with dest set to the LL MANET ROUTERS
multicast address and src set to the current node. The TargetAddr, OrigAddr,
and OrigSeqNum in the message is not changed, but HopLimit is decreased by

162 K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen

np

newRouteEntry (np, n, rt)

updateRouteEntry (np, n ,rt)

(n, rt)

(n ,rt)

np

np
(n, rt)

(n, rt)

np

np

(n, rt)

Discard own
messages

Stale

Loop
Possible

Inferior

Superior

NodexDYMOMessage

NetworkPacket

Incoming
MessagesOutOut

(n, #data np)

Routing
TableRouting TableRouting Table

initRT ()

[#dest np = UNICAST(n),
 isStale (np, rt)]

[#dest np = UNICAST(n),
 isLoopPossible (np, rt)]

[#dest np = UNICAST(n),
 isInferior (np, rt)]

np

[#dest np = UNICAST(n),
 isNewRoute (np, rt)]

[isOwnMessage np,
 isRM (#data np)]

New Route

(n, #data np)

[#dest np = UNICAST(n),
 isSuperior (np, rt)]

Network
To DYMOInIn

NodexRouteTable

Fig. 6. The Receive Routing Message module

one and Dist is increased by one. If the HopLimit is one, the function simply
returns the empty multi-set, i.e., the message is discarded.

If the current node is the target of the request the transition RREQTarget
is enabled. The function createRREP creates a RREP message where the dest
field is set to the nextHopAddress for the originating node given in the routing
table. The src is set to the current node, TargetAddr is set to the originator of
the RREQ, and OrigAddr is set to the current node.

3.2 Mobile Wireless Network

The MobileWirelessNetwork module shown in Fig. 8 is an abstract representation
of the MANET that DYMO is designed to operate over. It consists of two parts:
a part modelling the transmission of network packets represented by the substi-
tution transition WirelessPacketTransmission, and a part modelling the mobility
of the nodes represented by the Mobility substitution transition. The transmis-
sion of network packets is done relative to the current topology of the MANET
which are explicitly represented via the current marking of the Topology place.
The topology is represented using the colour set Topology defined as follows:

colset NodeList = list Node;

colset Topology = product Node * NodeList;

The idea is that each node has an adjacency list of nodes that it can reach in
one hop, i.e., its neighbouring nodes. This adjacency list is then consulted when

Modelling and Initial Validation of the DYMO Routing Protocol 163

(n, seqnum)

forwardRREQ (n, dm) (n, dm)

(n, incSeqNum(seqnum))

(n, rt)

(n, dm)createRREP(n, dm, rt, seqnum)

RREQ
Forward

[isRREQ dm,
 not (isTarget (n, dm))]

RREQ
Target

[isRREQ dm,
 isTarget (n, dm)]

OwnSeqNum OwnSeqNum

initOwnSeqNum ()

NodexSeqNum

Routing
Table

Routing Table

initRT ()

NodexRouteTable

Incoming
Messages In

DYMO To
Network

Out NetworkPacketOut

In

Routing Table

OwnSeqNum

NodexDYMOMessage

Fig. 7. The ProcessRREQ module

topologyScenario

Topology

Wireless Packet Transmission
Wireless Packet TransmissionWireless Packet Transmission

Topology

Link
State OutOutNetwork

To DYMOOutOutDYMO To
NetworkInIn

Mobility
MobilityMobility

NetworkPacket NetworkPacket NodexNode

Fig. 8. The Mobile Wireless Network

a network packet is being transmitted from a node to determine the set of nodes
that can receive the network packet. In this way, we can model a mobile network
where the topology is dynamic by simply adding or removing nodes from the
adjacency lists. The place LinkState models that a node can be informed about
reachability of its neighbouring nodes which is used in active link monitoring.

The WirelessPacketTransmission module models the actual transmission of
packets and is shown in Fig. 9. In this module, it is modelled how the net-
work packets are transmitted via the physical network. Packets are transmitted
over the network according to the function transmit on the arc from the transi-
tion Transmit to the place NetworkToDYMO. The transmit function starts out
by checking if the success argument is true and if not, the packet is discarded.
This corresponds to modelling a simple unreliable network. If the packet is to
be successfully sent and the destination address is the multicast address, the

164 K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen

Topology

DYMO To
NetworkIn

NetworkPacket

Network
To DYMO Out

NetworkPacket

BOOL

(n, adjlist)

np

transmit
(adjlist, np, success)

success

BOOL.all()

Topology I/O

[#src np = UNICAST(n)]

Reliability

Transmit

OutIn

I/O

Fig. 9. The Wireless Packet Transmission

packet is sent to each of the nodes in the adjacency list of the transmitting
node. If the destination address is a unicast address and the address exists in
the adjacency list of the transmitting node, i.e., the destination node is within
range, then the packet is forwarded. It should be noted that in reality a trans-
mission could be received by any subset of the neighbouring nodes, e.g., because
of signal interference. We only model that either all of the neighbouring nodes
receives the packet or none receives it. This is sufficient because our modelling
of the dynamic topology means that a node can move out of reach of the trans-
mitting node immediately before the transmission occurs which has exactly the
same effect as a signal interference in that the node does not receive the packet.
Hence, signal interference and similar phenomena implying that a node does not
receive a packet is in our model equivalent to the node moving out of reach of
the transmitting node.

The dynamic changes in the topology of the MANET is modelled in the
Mobility module (not shown). The basic idea in the modelling of the mobility
is to explicitly represent the mobility scenario considered, i.e., the sequences of
link changes that are possible in the scenario. The reason for having this explicit
topology control is that in a MANET with N nodes and symmetric links there
are N∗(N−1)

2 possible links between the nodes and therefore 2
N∗(N−1)

2 possible
topologies. Hence, this will make state space analysis impossible for dynamic
topologies because of state explosion. By having explicit topology control in the
model, we can limit the number of possible combinations and consider different
mobility scenarios one at a time. The model can capture a fully dynamic topology
by specifying a mobility scenario where any link can go up or down, and it can
also capture the static scenario with no topology changes.

3.3 Results from Modelling

Our modelling work started when version 10 [3] was the most recent DYMO
specification. In the process of constructing the CPN model and simulating it,

Modelling and Initial Validation of the DYMO Routing Protocol 165

we have discovered several issues and ambiguities in the specification. The most
important ones were:

1. When processing a routing message, a DYMO router may respond with a
RREQ flood, i.e., a RREQ addressed to the node itself, when it is target for a
RREQ message (cf. [3], Sect. 5.3.4). It was not clear which information to put in
the RREQ message, i.e., the originator address, hop limit, and sequence number
of the RREQ.

2. When judging the usefulness of routing information, the target node is not
considered. This means that a new request with a higher sequence number can
make an older request for another node stale since the sequence number in the
old message is smaller than the sequence number found in the routing table.

3. When creating a RREQ message the distance field in the message is set to
zero. This means that for a given node n an entry in the routing table of a
node n’ connected directly to n may have a distance to n which is 0. Distance
is a metric indicating the distance traversed before reaching n, and the distance
between two directly connected nodes should be one.

4. In the description of the data structure route table entry (cf. [3], Sect. 4.1) it
is suggested that the address field can contain more than one node. It was not
clear why this is the case.

5. When processing RERR messages (cf. [3], Sect. 5.5.4) it is not specified
whether hop limit shall be decremented.

6. When retransmitting a RREQ message (cf. [3], Sect. 5.4), it was not explicitly
stated whether the node sequence number is increased.

7. Version 10 of DYMO introduced the concept of distance instead of hop count.
The idea is that distance is a more general metric, but in the routing message
processing (cf. [2], Sect. 5.3.4) it is incremented by one. We believe it should
be up to the implementers how much distance is incremented depending on the
metric used.

These issues were submitted to the IETF MANET Working Group mailing
list [12] and issue 1 and 3-7 were acknowledged by the DYMO developers and
version 11 of the DYMO specification [2] has been modified to resolve the issues.
Issue 2 still remains to be resolved, but it is not truly critical as it only causes
route discovery to fail in scenarios which according to the experience of the
DYMO developers seldom occur in practice.

4 Initial State Space Exploration

In this section we present our initial state space exploration conducted on the
DYMO protocol model in a number of scenarios using the state space tool of

166 K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen

CPN Tools [5]. A scenario is defined by specifying the route discoveries to be
made, the initial topology, and the possible topology changes. In the initial
analysis we consider only scenarios with a static topology and with symmetric
links. Furthermore, we consider a reliable network, i.e., a network that cannot
lose network packets and we consider only scenarios with one route request.
These scenarios allows us to generate state spaces of a reasonable size.

When considering which scenarios to investigate, we observed that some sce-
narios can be considered equivalent (symmetric). As an example consider the
example scenario depicted in Fig. 10 (left). The figure shows a topology with
three nodes where node 1 is connected to node 2 via a symmetric link and
similar for node 2 and 3. The arrow represents a request for a route discovery
where the source node of the arrow is the originator node of the request and
the destination node of the arrow is the target node of the request. In this case
node 1 is requesting a route to node 3. But if we permute the identity of node
1 and 3, we have exactly the same scenario as in Fig. 10 (right). We will call
such scenarios equivalent and only explore one representative scenario from each
such equivalence class. It is important to notice that equivalence is both with
respect to topology and the originator and target of route requests. Hence, two
scenarios can be considered equivalent if one can be obtained from the other
by a permutation of node identities. In this way, we can reduce the number of
scenarios that needs to be considered.

For scenarios containing two nodes we only have a single equivalence class.
Looking at scenarios with three nodes we have four equivalence classes, and with
four nodes we have 19 equivalence classes. In the following we consider repre-
sentatives for each equivalence class in scenarios with two and three nodes. For
each representative scenario, we also explore the state space when RREQ TRIES
is increased from 1 to 2. Additionally, we look at two representative scenarios
for equivalence classes of scenarios with four nodes. All scenarios were anal-
ysed using state space exploration by first generating the full state space, then
generating the Strongly Connected Component Graph (SCC-graph), and finally
generating the state space report. The analysis focuses on the dead markings
which represents states where the protocol has terminated.

In addition to considering the dead markings, we also investigated the proper-
ties of the protocol with respect to classifying the incoming routing information
against the information in the routing table. Just by looking at the boolean ex-
pressions for the four classes (inferior, superior, loop possible, and stale) in the
DYMO specification it is hard to tell if it is always the case that new routing
information only falls into one of the classes. In the model this corresponds to
the enabling of the relevant transition in Fig. 6 being exclusive in the sense

21 3 21 3

Fig. 10. Example scenario with three nodes and one route request

Modelling and Initial Validation of the DYMO Routing Protocol 167

that only one of them is enabled for a given incoming network packet. Using
the state space, we investigated if there are cases where routing information
falls into more than one class. For this purpose we implemented a state predi-
cate CheckExclusive which is true in a given state if more than one of the five
transitions for judging routing information in Fig. 6 were enabled for a given
incoming packet.

Table 1 summaries the state space results for the scenarios considered. In the
first column is a graphical representation of the scenario considered. The second
column shows the value of RREQ TRIES, and the third and fourth column list
the number of nodes and arcs in the state space, respectively. The last column
shows the dead markings found in the state space. In the first four scenarios,
we can see that with RREQ TRIES set to 1 we get two dead markings. The first
dead marking is the state where RREQ TRIESReached (see Fig. 5) has occurred
before a RREP was received and the routing table updated. The second dead
marking is the state where RREQ TRIESReached did not occur and RouteEstab-
lished occurred after the routing table had been updated. By transferring the
dead marking into the simulator, we inspected the marking and observed that
these are desired terminal states of the protocol, i.e., states where the requested
route was established. The five dead markings we get when RREQ TRIES is set
to 2 is caused by the same sequence of occurrences as above, but here we also
have overtaking on the network causing routing information to become stale and
therefore a different sequence number is put in the routing table which results
in a different marking.

Table 1. Summary of state space exploration results

Scenario RREQ Nodes Arcs Dead markings
TRIES

1 18 24 [17,18]
2 145 307 [50,118,119,142,143]

1 18 24 [17,18]
2 145 307 [50,118,119,144,145]

1 50 90 [49,50]
2 1,260 3,875 [372,704,705,1219,1220]

1 74 156 [73,74]
2 2,785 10,203 [868,2435,2436,2758,2759]

1 446 1,172 [444,443,404,403,283,282]

2 166,411 804,394 [98796,98795,9856,97625,...] (23)

1 1,098 3,444 [852,851,551,550,1096,1095]

1 558 1,606 [555,556,557,558]

168 K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen

Common to all scenarios we have listed in Tab. 1 is that manual inspection
of the dead markings showed that the model had reached a state where the
requested route had actually been established. By a route being established we
mean that the originator of a request has a route entry to the target node of
the request and if we follow the NextHopAddress hop-by-hop we can get from
the originating node to the target node and vice versa. Another common result
for all scenarios is that the SCC graph has the same number of nodes and arcs
as the state space graph. This means that there are only trivial SSCs and this
implies that there are no cycles in the state space and the protocol will therefore
always terminate.

Evaluating the function CheckExclusive on the CPN model corresponding to
version 10 of DYMO revealed that in the second last scenario in Tab. 1the judging of
routing information was not exclusive as it was possible for a routing message to be
judged as both loop-possible and inferior. Since network packets containing such
routing information are discarded this is not a major problem. This issue was
submittedto theMANETWorkingGroupaspartof the issuesdiscussed inSect. 3.3.
This prompted a modification of the boolean expressions for classifying routing
information in version 11 of DYMO and rerunning our analysis with the CPN model
for version 11 showed that the issue had been resolved.

5 Conclusion and Future Work

We have investigated the DYMO routing protocol and demonstrated how the
construction of executable formal models (such as a CPN model) can be a very
effective way of systematically reviewing an industrial-size protocol specification.
The DYMO protocol specification can be considered a fairly mature specification.
Even so, our modelling and validation work revealed several cases of ambiguity
and incompleteness, which were discovered through both modelling, simulation
and state space exploration. Our findings were subsequently provided to DYMO
developers and thereby contributed to the development of the DYMO protocol.
Altogether approximately 300 person-hours were used on the modelling and
validation work presented in this paper.

Modelling and validation of routing protocols for MANETs has also been
considered by other researchers. The AODV protocol was considered in [17,18],
the DSDV protocol was presented in [19], and the WARP Routing Protocol
was modelled and verified in [6]. The LUNAR routing protocol was modelled
and verified in [13], and the RIP and AODV protocols were verified in [1] using
a combination of model checking and theorem proving. Closest to our work is
the CPN modelling of the DYMO protocol presented in [20] which considered
the 5th revision of the DYMO specification. A main difference between our
modelling approach and [20] is that [20] presents a highly compact CPN model
of the DYMO protocol consisting of just a single module. Furthermore, [20] uses
simulation to investigate properties of the protocol whereas we presents some
initial state space analysis results. Our aim is to eventually use the CPN model
as a basis for implementing the DYMO protocol. We therefore decided on a

Modelling and Initial Validation of the DYMO Routing Protocol 169

more verbose modelling approach which includes organising the CPN model into
several modules to break up the complexity of modelling the complete DYMO
protocol, and make it easier to later refine parts of the CPN model as required.
The work of [20] appears to aim at state space analysis, which is why it is
beneficial to have a compact CPN model to reduce the effect of state explosion.
This is an often encountered trade-off between state space size and compactness
of the CPN model. On the other hand, [20] also models the optional appending
of information to the routing messages and report on several problematic issues
in the DYMO specification. Compared to [20], we have the current topology
explicitly represented in the marking and have explicit control of the possible
topology changes that can occur. The main motivation for this is to make a
scenario based state space analysis possible as illustrated in this paper. The
approach of [20] relies on an abstract and implicit modelling of the topology
where a transmitted network packet is either received by a single node or by no
nodes. As stated in [20], this should extended such that any number of nodes
can receive a transmitted message. It remains to be investigated which of the
two approaches to modelling dynamic topology is most suited in terms of state
space size and properties preserved.

We plan to continue our work by extending the state space exploration results
to cover more scenarios and properties. This will include the application of state
space reduction methods and exploiting the symmetry in the scenarios to reduce
the number of cases that needs to be considered. The next step in our modelling
work is to refine the CPN model such that the interaction between the DYMO
protocol and the surrounding IP network layer becomes explicit. This is required
in order to use the CPN model as a basis for implementing the DYMO routing
protocol daemon which is the long term goal of the project.

Acknowledgements. The authors wish to thank the anonymous reviewers for
their constructive comments and suggestions that have helped us to improve the
CPN model and paper.

References

1. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal Verification of Standards for
Distance Vector Routing Protocols. Journal of the ACM 49(4), 538–576 (2002)

2. Chakeres, I.D., Perkins, C.E.: Dynamic MANET On-demand (DYMO) Routing.
Internet-Draft. Work in Progress (November 2007),
http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-11.txt

3. Chakeres, I.D., Perkins, C.E.: Dynamic MANET On-demand (DYMO) Routing.
Internet-Draft. Work in Progress (July 2007),
http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-10.txt

4. CPN DYMO Model, http://www.daimi.au.dk/∼kris/cpndymo.cpn
5. CPN Tools Home page, http://www.daimi.au.dk/CPNTools
6. de Renesse, R., Aghvami, A.H.: Formal Verification of Ad-Hoc Routing Protocols

using SPIN Model Checker. In: Proc. of IEEE MELECON, pp. 1177–1182 (2005)

http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-10.txt
http://www.daimi.au.dk/~kris/cpndymo.cpn
http://www.daimi.au.dk/CPNTools

170 K.L. Espensen, M.K. Kjeldsen, and L.M. Kristensen

7. Espensen, K.L., Kjeldsen, M.K., Kristensen, L.M.: Towards Modelling and Verifi-
cation of the DYMO Routing Protocol for Mobile Ad-hoc Networks. In: Proc. of
CPN 2007, pp. 243–262 (2007)

8. Clausen, T., et al.: Generalized MANET Packet/Message Format. Internet-draft
(2007) (work in progress)

9. Hansen, S.: Modelling and Validation of the Dynamic On-Demand Routing
(DYMO) Protocol. Master’s thesis, Department of Computer Science, University
of Aarhus (in danish) (February 2007)

10. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Soft-
ware Tools for Technology Transfer (STTT) 9(3-4), 213–254 (2007)

11. IETF MANET Working Group,
http://www.ietf.org/html.charters/manet-charter.html

12. IETF Mobile Ad-hoc Networks Discussion Archive,
http://www1.ietf.org/mail-archive/web/manet/current/index.html

13. Wibling, O., Parrow, J., Pears, A.: Automatized Verification of Ad Hoc Rout-
ing Protocols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS,
vol. 3235, pp. 343–358. Springer, Heidelberg (2004)

14. Perkins, C.E.: Ad Hoc Networking. Addison-Wesley, Reading (2001)
15. Thorup, R.: Implementation and Evaluation of the Dynamic On-Demand Routing

(DYMO) Protocol. Master’s thesis, Department of Computer Science, University
of Aarhus (February 2007)

16. Thouvenin, R.: Implementation of the Dynamic MANET On-Demand Routing
Protocol on the TinyOS Platform. Master’s thesis, Department of Computer Sci-
ence, University of Aarhus (July 2007)

17. Xiong, C., Murata, T., Leigh, J.: An Approach to Verifying Routing Protocols in
Mobile Ad Hoc Networks Using Petri Nets. In: Proceedings. of IEEE 6th CAS
Symposium on Emerging Technologies, pp. 537–540 (2004)

18. Xiong, C., Murata, T., Tsai, J.: Modeling and Simulation of Routing Protocol
for Mobile Ad Hoc networks Using Colored Petri Nets. Research and Practice in
Information Technology 12, 145–153 (2002)

19. Yuan, C., Billington, J.: An Abstract Model of Routing in Mobile Ad Hoc Networks.
In: Proc. of CPN 2005, pp. 137–156. DAIMI PB-576 (2005)

20. Yuan, C., Billington, J.: A Coloured Petri Net Model of the Dynamic MANET
On-demand Routing Protocol. In: Proc. of Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, pp. 37–56 (2006)

http://www.ietf.org/html.charters/manet-charter.html
http://www1.ietf.org/mail-archive/web/manet/current/index.html

Formal Specification and Validation of Secure

Connection Establishment in a
Generic Access Network Scenario�

Paul Fleischer and Lars M. Kristensen

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{pf,kris}@daimi.au.dk

Abstract. The Generic Access Network (GAN) architecture is defined
by the 3rd Generation Partnership Project (3GPP), and allows telephone
services, such as SMS and voice-calls, to be accessed via generic IP net-
works. The main usage of this is to allow mobile phones to use WiFi
in addition to the usual GSM network. The GAN specification relies on
the Internet Protocol Security layer (IPSec) and the Internet Key Ex-
change protocol (IKEv2) to provide encryption across IP networks, and
thus avoid compromising the security of the telephone networks. The
detailed usage of these two Internet protocols (IPSec and IKEv2) is only
roughly sketched in the GAN specification. As part of the process to de-
velop solutions to support the GAN architecture, TietoEnator Denmark
has developed a detailed GAN scenario which describes how IPsec and
IKEv2 are to be used during the connection establishment procedure.
This paper presents a CPN model developed to formally specify and
validate the detailed GAN scenario considered by TietoEnator.

1 Introduction

The Generic Access Network (GAN) [1] architecture specified by the 3rd Genera-
tion Partnership Project (3GPP) [2] allows access to common telephone services
such as SMS and voice-calls via generic Internet Protocol (IP) networks. The op-
eration of GAN is based on a Mobile Station (e.g., a cellular phone) opening an
encrypted tunnel to a Security Gateway via an IP network. A GAN Controller
is responsible for relaying the commands sent via this tunnel to the telephone
network, which in turn allows mobile stations to access the services on the tele-
phone network. The Security Gateway and the GAN Controller can either reside
on the same physical machine or on two separate machines. The encrypted tun-
nel is provided by the Encapsulating Security Payload (ESP) mode of the IP
security layer (IPSec) [14]. To provide such an encrypted tunnel, both ends have
to authenticate each other, and agree on both encryption algorithm and keys.
This is achieved using the Internet Key Exchange v2 (IKEv2) protocol [7]. The
� Supported by the Danish Research Council for Technology and Production and

TietoEnator Denmark.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 171–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 P. Fleischer and L.M. Kristensen

GAN specification [1] merely states that IKEv2 and IPSec are to be used, and
in which operating modes. However, what that means for the message exchange
is not specified, and is left to the IKEv2 and IPSec standards. As such, there
is no clear specification of the IKEv2 message exchange and the states that the
protocol entities are to be in when establishing a GAN connection.

TietoEnator Denmark [5] is working on providing solutions to support the
GAN architecture. Prior to the implementation, a textual usage scenario was
formulated [11] which constitutes a specific instantiation of the full GAN archi-
tecture. The purpose of this scenario was two-fold. First, it defines the scope
of the software to be developed, i.e., which parts of the full GAN specification
are to be supported. Secondly, the scenario describes thoughts about the initial
design of both the software and the usage of it. The scenario describes the details
of how a mobile station is configured with an IP address using DHCP [6] and
then establishes an ESP-tunnel [13] to the Security Gateway using IKEv2 [7] and
IPSec [14]. At this point, the mobile station is ready to communicate securely
with the GAN Controller. The focus of the scenario is the establishment of the
secure tunnel and initial GAN message exchanges which are the detailed parts
omitted in the full GAN specification. Throughout this paper the term GAN sce-
nario refers to the detailed scenario [11] described by TietoEnator, while GAN
architecture refers to the generic architecture as specified in [1].

The contribution of this paper is to describe the results of an industrial project
at TietoEnator, where Coloured Petri Nets (CPNs) [12] were used as a supple-
ment to a textual description of the GAN scenario to be implemented. The
model has been constructed from the material available from TietoEnator [11],
the GAN specification [1], and the IKEv2 specification [7]. The CPN model deals
only with the connection establishing aspect of the GAN architecture, as this
is the main focus of the TietoEnator project. As the scenario from TietoEnator
deals with the aspect of configuring the mobile station with an initial IP ad-
dress, the model does not only cover the communication of the GAN protocol,
but also of the DHCP messages and actual IP-packet flow. The CPN model
includes a generic IP-stack model, which supports packet forwarding and ESP-
tunnelling. This modelling approach was chosen to allow the model to be very
close to the scenario description used by TietoEnator, with the aim of easing
the understanding of the model for TietoEnator engineers which will eventually
implement the GAN scenario. The model was presented to the engineers at two
meetings. Each meeting resulted in minor changes of the model. Even though the
TietoEnator engineers did not have any previous experience with CPNs, they
quickly accepted the level of abstraction and agreed that the model reflected the
scenario they had described in the textual specification.

Coloured Petri Nets have been widely used to model and validate Internet
protocols. Recent examples include the ERDP [15], TCP [3], and DCCP [16]
protocols. The general approach of modelling Internet protocols is to abstract
as much of the environment away, and only deal with the core operation of the
protocol. The advantage of this approach is that the model gets simpler and the
analysis becomes easier due to restricted state space size. The approach presented

Formal Specification and Validation of Secure Connection Establishment 173

in this paper also makes use of abstraction. However, the chosen abstraction level
is based on a protocol architecture, rather than a single protocol specification.
This gives a complete picture of the architecture, rather than a single protocol.
This is an advantage when working with the design of actual protocol implemen-
tations as it gives an overview of the needed features and component interaction.
In particular this means that our model is aimed at validating the interaction
between several protocol components instead of a single protocol as done in, e.g.,
[3,15,16]. To the best of our knowledge, the GAN architecture has not previously
been exposed to formal modelling. Preliminary reports on the project presented
in this paper have appeared in [8,9].

This paper is organised as follows. Sect. 2 gives an introduction to the GAN
scenario as defined by TietoEnator and presents the top-level of the constructed
CPN model. Sect. 3 and Sect. 4 present selected parts of the constructed CPN
model including a discussion of the modelling choices we made. In Sect. 5, we
explain how the model of the GAN specification was validated using simulation
and state space analysis. Finally, Sect. 6 sums up the conclusions and discusses
future work. The reader is assumed to be familiar with the basic ideas of the
CPN modelling language [12] as supported by CPN Tools [4].

2 The GAN Scenario

This section gives an introduction to the GAN scenario [11] as defined by TietoE-
nator and the constructed CPN model. Fig. 1 shows the top-level module of the
constructed CPN model. The top-level module has been organised such that it
reflects the network architecture of the GAN scenario. The six substitution tran-
sitions represent the six network nodes in the scenario and the four places with
thick lines represent networks connected to the network nodes. The places with
thin lines connected to the substitution transitions Provisioning Security Gate-
way, Default Security Gateway, Provisioning GAN Controller, and Default GAN
Controller are used to provide configuration information to the corresponding

iface 0:
13.1.1.1

iface 1:
13.0.0.1

iface 0:
172.1.1.2

13.0.0.0/8

iface 0:
190.1.1.1

190.0.0.0/8

iface 0:
190.1.1.254

iface 1:
172.1.1.254

172.0.0.0/8

iface 0:
172.1.1.1

iface 0:
12.1.1.1

iface 1:
12.0.0.1

12.0.0.0/8

Default
GAN

Controller

GANController

Default
Security
Gateway

SecurityGateway

Provisioning
GAN

Controller

GANController

Provisioning
Security
Gateway

SecurityGateway

Wireless
Router

WirelessRouter

Mobile
Station

MobileStation

Default
SGConfig

ConfigDefaultSG

NODE_CONFIG

SG Config

ConfigProvSG

NODE_CONFIG

Default
GANCConfig

ConfigDefaultGANC

NODE_CONFIG

Prov.
GANCConfig

ConfigProvGANC

NODE_CONFIG

Network
D

NET_PACKET

Network
C

NET_PACKET

Network
B

NET_PACKET

Wireless
Network

NET_PACKET

MobileStation WirelessRouter

SecurityGateway GANController

SecurityGateway GANController

Fig. 1. Top-level module of the CPN model

174 P. Fleischer and L.M. Kristensen

network nodes. The module has been annotated with network and interface IP
addresses to provide that information at the topmost level.

The substitution transition Mobile Station represents the mobile station which
is connecting to the telephone network via a generic IP network. The place Wire-
less Network connected to MobileStation represents the wireless network which
connects the mobile station to a wireless router represented by the substitu-
tion transition Wireless Router. The wireless router is an arbitrary access point
with routing functionality, and is connected to the ProvisioningSecurityGateway,
through Network B. The provisioning security gateway is connected to the Pro-
visioningGANController via Network C. There is a second pair of security gateway
(DefaultSeurityGateway) and GAN controller (DefaultGANController). The pro-
visioning GAN controller is responsible for authenticating any connection, and
redirecting them to another GAN controller in order to balance the load over a
number of GAN controllers. In the GAN scenario, the default GAN controller
represents the GAN controller which everything is redirected to. It is worth
mentioning, that the generic GAN architecture sees the security gateway as a
component within the GAN controller. However, TietoEnator decided to sep-
arate the two to make the message exchange more clear. Neither the Wireless
Router nor Network B are required to be owned or operated by the telephone
operator. However, all security gateways, GAN controllers, and Network C and
Network D are assumed to be under the control of the telephone operator, as
non-encrypted messages will be exchanged across them.

The basic exchange of messages in the GAN scenario consists of a number of
steps as depicted in the Message Sequence Charts (MSCs) in Figs. 2-4. The MSCs
have been automatically generated from the constructed CPN model using the
BritNeY tool [17]. The scenario assumes that the Mobile Station is completely
off-line to begin with. It then goes through 5 steps: Acquire an IP address using
DHCP, create a secure tunnel to the provisioning security gateway, use the GAN
protocol to acquire the addresses of the security gateway and GAN controller
to use for further communication, create a secure tunnel to the new security
gateway, and finally initiate a GAN connection with the new GAN controller.

The first step is to create a connection to an IP network which is connected
to the Provisioning Security Gateway of the service provider. It is assumed that
a physical connection to the network is present. This step is depicted in Fig. 2
where the Mobile Station sends a DHCP Request to the Wireless Router and
receives a DHCP Answer containing the IP address. The mobile station is assumed
to be equipped with either the domain name or IP address of the provisioning
security gateway and the provisioning GAN controller.

Having obtained an IP address via DHCP, the mobile station can now start
negotiating the parameters for the secure tunnel with the provisioning security
gateway using IKEv2. This is illustrated in the MSC shown in Fig. 3. This is
done in three phases. The first phase is the initial IKEv2 exchange, where the
two parties agree on the cryptographic algorithms to use, and exchange Diffie-
Hellman values in order to establish a shared key for the rest of the message ex-
changes. The second phase is the exchange of Extensible Authentication Protocol

Formal Specification and Validation of Secure Connection Establishment 175

Fig. 2. MSC showing DHCP step of connection establishment

Fig. 3. MSC showing IKE step of connection establishment

(EAP) messages. The idea of EAP is that it is possible to use any kind of au-
thentication protocol with IKEv2. In this situation, a protocol called EAP-SIM
is used. As can be seen in Fig. 3, the Provisioning Security Gateway initiates the
EAP message exchange by returning an EAP Request to the Mobile Station’s
authentication request. The actual EAP-SIM protocol exchanges 4 messages (2
requests and 2 responses) before it succeeds. As a result of the EAP-phase, the
two parties have a shared secret key. In the third phase the Mobile Station uses
this shared key to perform final authentication. The last packet sent by the
Provisioning Security Gateway contains the network configuration for the Mobile
Station needed to establish a secure tunnel.

Having established the secure tunnel, the Mobile Station opens a secure con-
nection to the Provisioning GAN Controller and registers itself. This is shown in

176 P. Fleischer and L.M. Kristensen

Fig. 4. MSC showing GAN step of connection establishment

the MSC in Fig. 4. If the provisioning GAN controller accepts the mobile station,
it sends a redirect message, stating a pair of security gateway and GAN controller
to use for any further communication. The Mobile Station closes the connection
to the Provisioning GAN Controller and the Provisioning Security Gateway. The
final two steps of establishing a connection are to negotiate new IPSec tunnel
parameters with the new security gateway, and establish a connection to the
GAN controller. Having established the connection, the scenario ends. Fig. 4
only shows the registration with the Provisioning Security Gateway.

The scenario modelled involves multiple layers of the IP network stack. DHCP,
used to configure the mobile station, is a layer 2 protocol, while IKE is a layer 4
protocol, and GAN is a layer 5 protocol. In order to accommodate all these layers
in the model, a rather detailed model of the IP components has been made. How-
ever, where simplifications were possible they have been made. For instance, the
GAN protocol uses TCP, but TCP has not been modelled. Instead the network
is currently loss-less, but may reorder packets. This is not a problem, as GAN
messages can be received out of order without problems. This is due to the fact,
that the GAN client only receives exactly the message it expects. The IP model
contains routing which behaves similarly to the routing procedures implemented
in real IP stacks. Some simplifications have been made to the routing algorithm,
but the behaviour is the same. Each network node connected to an IP network
has a routing table which contains information on how to deliver IP packets. In
its simplest form, the entries in a routing table are pairs of destination network
address and next hop, describing what the next hop is for IP packets matching
the network address.

In the CPN model, IP addresses assigned to local interfaces have entries in
the routing table as well, with a special next hop value. This is usually not the
case for IP stacks, but simplifies the routing model as ingoing routing can be
performed without inspecting the list of interfaces. The ESP tunnel, which is
used to secure the communication between the mobile station and the security
gateway, is a part of the IPSec protocol suite, which is an extension to the IP
stack. Only enough of IPSec is modelled to support this tunnelling, and as such
IPSec is not modelled. There are two components that are related to IPSec in the
model: Routing and the Security Policy Database (SPD). The routing system
ensures that packets are put into the ESP tunnel, and extracted again at the
other end. The SPD describes what packets are allowed to be sent and received
by the IP stack, and is also responsible for identifying which packets are to be
tunnelled. Each entry in the SPD contains the source and destination addresses

Formal Specification and Validation of Secure Connection Establishment 177

to use for matching packets, and an action to perform. Modelled actions are
bypass, which means allow, and tunnel, which means that the matched packet is
to be sent through an ESP tunnel.

3 Modelling the GAN Network Nodes

The CPN module is organised in 31 modules, with the top-level module being
depicted in Fig. 1. The top module has four submodules: MobileStation, Wire-
lessRouter, SecurityGateway and GANController. In this section we present these
modules in further detail. It can be seen that the provisioning and default GAN
controller is represented using the same module and the same is the case with
the provisioning and default security gateways. Each of the modules has one or
more protocol modules and an IP layer module. The modelling of the protocol
entities and the IP layer will be discussed in Sect. 4.

3.1 Mobile Station

Figure 5 shows the MobileStation module. The IP Layer substitution transition
represents the IP layer of the mobile station and the Physical Layer substitution
transition represents the interface to the underlying physical network. To the left
are the three places which configure the IP layer module with a Security Policy
Database, a Routing Table, and IP and MAC Addresses of the mobile station.
These are also accessed in the DHCP, IKE, and GAN modules, as the configura-
tion places are fusion places. This has been done to reduce the number of arcs in
the module and since the security policy database, routing table, and addresses
are globally accessible in the mobile station. The remaining substitution transi-
tions model the steps that the mobile station goes through when establishing a
GAN connection. The mobile station is initially in a Down state represented by
a unit token on the place Down.

There are two tokens on the Addresses place representing the MAC and IP
addresses assigned to the interfaces of the mobile station. The ADDR colour set
is defined as follows:

colset IP_ADDR = product INT * INT * INT * INT;
colset MAC_ADDR = INT;
colset IFACE = INT;
colset IFACExIP_ADDR = product IFACE * IP_ADDR;
colset IFACExMAC_ADDR = product IFACE * MAC_ADDR;
colset ADDR = union IpAddr : IFACExIP_ADDR +

MacAddr : IFACExMAC_ADDR;

IP addresses are represented as a product of four integers, one for each octet of
the address it represents. So, the IP address 192.0.0.1 becomes (192,0,0,1).
MAC addresses and interfaces are represented as integers. As examples, in Fig. 5,
IpAddr((0,(0,0,0,0))) means that interface 0 is assigned the all-zero IP ad-
dress ((0,0,0,0)) and MacAddr((0,2)) means that interface 0 has the MAC
address 2.

178 P. Fleischer and L.M. Kristensen

Connect to
Default SG

IKEInitiator

Physical Layer

MS Interfaces

GANC
Communication

GANClient

Connect to
Provisioning SG

IKEInitiator

DHCP

DHCP Client

IP Layer

IP-Layer

VIF open to
Def-SG

IP_ADDR
Send
Buffer

IP_PACKET

Receive
Buffer

IP_PACKET

VIF
Closed

IP_ADDR

VIF open
to P-SG

IP_ADDR

Network
Buffer IFACEBUFxNET_PACKET

Ready

IP_ADDR

Security
Policy

Database

MS SPD

MSInitSPD

SPD_ENTRY_LIST

Routing
Table

MS Routing Table

ROUTING_TABLE

Addresses

MS Addresses

1`MacAddr((0,2))++
1`IpAddr((0, (0,0,0,0)))

ADDR

Down

()

UNIT

Network A
I/O NET_PACKETI/O

MS Addresses

MS Routing Table

MS SPD

IP-Layer

DHCP Client

IKEInitiator

GANClient

MS Interfaces

IKEInitiator

1

1`[{src=((0,0,0,0),0),dest=((0,0,0,0),
0),nl_info=PayloadList([PAYLOAD_DH
CP]),policy=SpdBypass}]

2

1`IpAddr((0,(0,0,0,0)))++
1`MacAddr((0,2))

1 1`()

Fig. 5. The MobileStation module

Initially, the SPD is configured to allow DHCP messages to pass in and
out of the mobile station. The single token on the Security Policy Database
place represents a single rule, matching packets with any source and any des-
tination (src=((0,0,0,0),0) and dest=((0,0,0,0),0)) and DHCP payload
(nl info=PayloadList([PAYLOAD DCHP])). The policy for this rule is bypass,
meaning that packets matching this rule are allowed. As the routing table is
initially empty (no IP configured), there are no tokens on place Routing Table.

The first step is to perform DHCP configuration as was previously illustrated
in Fig. 2. This is done in the submodule of the DHCP substitution transition in
Fig. 5. The DHCP module accesses all three configuration places. After having
configured the mobile station with DHCP, a token is placed on the Ready place,
representing that the mobile station is now ready to start to communicate with
the provisioning security gateway. The Connect to provisioning SG substitution

Formal Specification and Validation of Secure Connection Establishment 179

transition takes care of establishing the ESP tunnel to the provisioning security
gateway, as shown in the MSC on Fig. 3. After having connected to the provi-
sioning security gateway, the GAN Communication transition is responsible for
sending a GAN discovery message to the provisioning GAN controller and re-
ceiving the answer, which will be either reject or accept. In the first case, the
mobile station keeps sending discovery messages until one is accepted. When an
accept message is received, the ESP tunnel to the provisioning security gateway
is closed, and the IP address of the security gateway in the accept packet is
placed on the VIF Closed place. Finally, the Connect to Default SG transition is
responsible for establishing a new ESP tunnel to the default security gateway
(which was the one received with the GAN accept message).

3.2 Wireless Router

Figure 6 shows the WirelessRouter module. The wireless router has an IP layer, a
physical layer, a security policy database, a routing table, and a set of associated
addresses similar to the mobile station. The SPD is setup to allow any packets
to bypass it. The wireless router has two interfaces, the Addresses place assigns
MAC address 1 and IP address 190.1.1.254 to interface 0, and MAC address
3 and IP address 172.1.1.254 to interface 1.

The routing table contains a single token of the colour set ROUTING TABLE
which represents the complete routing table. This colour set is defined as:

colset NETWORK_ADDR = product IP_ADDR * INT;
colset ROUTING_ENTRY = product NETWORK_ADDR * IP_NEXTHOP;
colset ROUTING_TABLE = list ROUTING_ENTRY;

The colour set is a list of ROUTING ENTRY. The NETWORK ADDR colour set
represents a network address in an IP network. It consists of an IP address

Network A
I/O
NET_PACKET
I/O

Addresses

ADDR

Receive
Buffer

IP_PACKET

Send
Buffer

IP_PACKET

Security
Policy

Database

SPD_ENTRY_LIST

Routing
Table

ROUTING_TABLE

Network
Buffer

IFACEBUFxNET_PACKET

Network B
I/O
NET_PACKET
I/O

IP Layer

IP-LayerIP-Layer

DHCP
Server

DHCPServerDHCPServer

Physical Layer

WR InterfacesWR Interfaces

1`(((190,1,1,1),0),Direct(0))++
1`(((172,1,1,0),24),Direct(1))++
1`(((190,1,1,254),0),Terminate(0))

1`MacAddr(0,1)++
1`MacAddr(1,3)++
1`IpAddr((0,(190,1,1,254)))++
1`IpAddr((1,(172,1,1,254)))

1`{src=(ip_any_addr,0),
dest=(ip_any_addr,0),nl_info =
AnyNextLayer,policy=SpdBypass}

41`IpAddr((0,(190,1,1,254)))++
1`IpAddr((1,(172,1,1,254)))++
1`MacAddr((0,1))++
1`MacAddr((1,3))

1

1`[{src=((0,0,0,0),0),dest=((0,0,0,0),
0),nl_info=AnyNextLayer,policy=SpdB
ypass}]

1

1`[(((190,1,1,1),0),Direct(0)),(((172,1,
1,0),24),Direct(1)),(((190,1,1,254),0),
Terminate(0))]

Fig. 6. The WirelessRouter module

180 P. Fleischer and L.M. Kristensen

and a prefix, which selects how much of the IP address to use for the network
address. For instance, a prefix of 24 means that the first 24 bits of the IP address
constitute the network address, which corresponds to using the first 3 octets
(3 ∗ 8 = 24). Usually, this is written as 192.2.0.0/24, but in our model it
becomes ((192,2,0,0),24). The IP NEXTHOP field is explained in Sect. 4.4.

In the Wireless Router module, the routing table is set up such that packets to
the host with IP address 190.1.1.1 are to be delivered directly via interface 0
(Direct(0)), packets to the network 172.1.1.0/24 are to be delivered directly
through interface 1 (Direct(1)), and finally packets destined for 190.1.1.254
(the Wireless Router itself) are terminated at interface 0 (Terminate(0)).

The wireless router implements the DHCP Server which is used initially by the
mobile station to obtain an IP address. It can be seen that the wireless router
has a physical connection to both the Wireless Network and Network B.

3.3 Security Gateway

Figure 7 shows the SecurityGateway module. The security gateway has an IP
layer, a physical layer, a security policy database, routing table, and a set of
associated addresses similar to the mobile station and the wireless router. The
configuration places are initialised via the Init transition which obtains the con-
figuration parameters from the input port place Config. The security gateway
implements the IKE Responder protocol module which communicates with the
IKE Initiator of the mobile station as described by the MSC shown in Fig. 3.

The Config place is associated with the SG Config socket place of the top-level
module (see Fig. 1) for the instance of the SecurityGateway module that corre-

Network
B

I/O NET_PACKETI/O

Network
Buffer

IFACEBUFxNET_PACKET

Addresses

ADDR

Receive
Buffer

IP_PACKET

Send
Buffer

IP_PACKET

Routing
Table

ROUTING_TABLE

SPD

SPD_ENTRY_LIST

Network
C

I/O NET_PACKETI/O

Config
In NODE_CONFIGIn

IP Layer

IP-LayerIP-Layer

IKE
Responder

IKEResponderIKEResponder

Physical Layer

SG InterfacesSG Interfaces

Init

p
p

(spe_list,
 rt,
 addrList)

spe_list

rt

addrList

Fig. 7. The SecurityGateway module

Formal Specification and Validation of Secure Connection Establishment 181

sponds to the Provisioning Security Gateway substitution transition (see Fig. 1).
The initial marking of the SG Config configures the provisioning security gateway
with two physical interfaces and a virtual interface for use with the ESP-tunnel.
Interface 0 is configured with MAC address 4 and IP address 172.1.1.1, while
interface 1 is configured with MAC address 5 and IP address 12.0.0.1. The
third interface, interface 2, does not have any MAC address assigned to it, but
only the IP address 80.0.0.1. The reason for this is that it is a virtual interface.
The security policy database is set up such that packets sent via interface 2 are
put into an ESP-tunnel. The default security gateway is configured similarly.

3.4 GAN Controller

Figure 8 shows the GAN Controller module which is the common submodule of
the substitution transitions Provisioning GAN Controller and Default GAN Con-
troller in Fig. 1. Besides the IP and physical network layers, the GAN Controller
implements the GANServer module to be presented in the next section. The GAN
controllers are configured in a similar way as the security gateways.

addrList

rt

spe_list

(spe_list,
 rt,
 addrList)

GAN Server

GANServer

Init

Physical Layer

GANC Interfaces

IP Layer

IP-Layer

Config
In

NODE_CONFIG

Receive
Buffer

IP_PACKET

Send
Buffer

IP_PACKET

Security
Policy

Database

SPD_ENTRY_LIST

Routing
Table

ROUTING_TABLE

Addresses

ADDR

Network
Buffer

IFACEBUFxNET_PACKET

Network
C

I/O NET_PACKETI/O

In
IP-Layer

GANC Interfaces

GANServer

Fig. 8. The GAN Controller module

4 Modelling the Protocol Entities

This section describes the modelling of the protocol entities in the mobile station,
wireless router, security gateways, and GAN controllers. The description of the
protocol entities has been organised such that it reflects how we have decided
to organise the protocol entities in the CPN model. This means that we always
describe peer protocol entities, i.e., when describing the DHCP client of the
mobile station, we simultaneously describe its peer protocol entity which is the
DHCP server of the wireless router.

182 P. Fleischer and L.M. Kristensen

4.1 Dynamic Host Configuration Protocol

Figure 9 (top) shows the DHCP Client module of the mobile station and Fig. 9
(bottom) shows the DHCP Server module of the wireless router. The two modules
model the part of GAN connection establishment which was shown in Fig. 2.

The DHCP client starts by broadcasting a request for an IP address and
then awaits a response from the DHCP server. When the DHCP server re-
ceives a request it selects one of its FreeAddresses and sends an answer back
to the DHCP client. When the client receives the answer it configures itself
with the IP address and updates it routing table and security policy database
accordingly. Three entries are added to the routing table: 1‘((#ip(da),32),
Terminate(0))means that the IP address received in the DHCP answer belongs
to interface 0, while 1‘(calcNetwork(#ip(da), #netmask(da)), Direct(0))
specifies that the network from which the IP address has been assigned, is

Wait for DHCP
Response

UNIT

Down
In UNIT

()

In

Send
Buffer

Out IP_PACKETOut

Node
Configured

Out IP_ADDROut
Receive
Buffer

In IP_PACKETIn

Addresses

MS Addresses
ADDR

1`MacAddr((0,2))++
1`IpAddr((0, (0,0,0,0)))

MS Addresses

Routing
Table

MS Routing Table

ROUTING_TABLE

MS Routing Table

SPD

MS SPD

SPD_ENTRY_LIST

MSInitSPD

MS SPD

Send
DHCP

Request

Receive
DHCP

Answer

[#payload(p) = DhcpAnswer(da)]

()

()

{src=ip_any_addr,
dest=(255,255,255,255),
payload=DhcpRequest(mac)}

MacAddr(iface, mac)

1`((#ip(da),32), Terminate(0))++
1`(calcNetwork(#ip(da), #netmask(da)),Direct(0))++
1`(((0,0,0,0),0), Via(#default_gw(da)))

spe_list

1`{src=(#ip(da),0),
dest=(ip_any_addr,0),
nl_info=AnyNextLayer,
policy=SpdBypass}

p

(172,1,1,1)

()

IpAddr(iface,ip_any_addr)

IpAddr(iface, #ip(da))

Receive
Buffer

In IP_PACKETIn

Send
Buffer

Out IP_PACKETOut

Free
Addresses

IP_ADDR

1`(190,1,1,1)

Assigned
Addresses

MACXIP_ADDR

Receive
DHCP

Request

{src=src_ip,
dest=dest_ip,
payload=DhcpRequest(mac)
}

ip_addr(mac,ip_addr)

{src=ip_any_addr,
dest=(255,255,255,255),
payload=DhcpAnswer(
{ip = ip_addr,
out_iface = 0,
target=mac,
netmask=(255,255,255,0),
default_gw=(190,1,1,254),
dns_servers=[(190,1,1,250)]}
)}

Fig. 9. DHCP client (top) and DHCP server (bottom) modules

Formal Specification and Validation of Secure Connection Establishment 183

reachable via interface 0. Finally, a default route is installed with 1‘(((0,0,0,
0),0), Via(#default gw(da))), such that packets which no other routing en-
try matches, are sent to the default gateway specified in the DHCP answer. The
SPD is modified so that the previous rule (which allowed all DHCP traffic) is re-
moved and replaced with a new rule, which states that all packets sent from the
assigned IP address are allowed to pass out, and all packets sent to the assigned
IP address are allowed to pass in.

4.2 IKEv2 Modules

Figure 10 (left) shows the IKEInitiator module of the mobile station and Fig. 10
(right) shows the IKEResponder module of the security gateways. The mod-
ules model the second step of the GAN connection establishment illustrated
in Fig. 3. Each module describes the states that the protocol entities go through

Ready

In IP_ADDRIn

Send
Buffer

Out IP_PACKETOut

Receive
BufferIn

IP_PACKET

In

Await
IKE_SA_INIT

UNIT

Await IKE_AUTH
ongoing EAP

UNIT

IKE
Packets
Initiator

IPxIP_PAYLOAD

Wait
for EAP Reply

UNIT

Wait for
IKE_AUTH Reply

UNIT

IKE_AUTH
Done

Out IP_ADDROut

Wait
for EAP Reply 2

UNIT

Append
IP Header

Receive
IKE_AUTH

Reply
Setup vifSetup vif

Send
IKE_SA_INIT

Packet
Send IKE_SA_INIT PacketSend IKE_SA_INIT Packet

Send
IKE_AUTH

Packet
Send IKE_AUTH PacketSend IKE_AUTH Packet

Send
EAP Data

Send EAP DataSend EAP Data

Send
EAP Data 2

Send EAP Data 2Send EAP Data 2

Receive
EAP Reply

Receive EAP ReplyReceive EAP Reply

{src=(190,1,1,1), dest=dest_ip,
payload=ip_payload}

(dest_ip, ip_payload)

Send
Buffer

Out IP_PACKETOut

Receive
Buffer

In IP_PACKETIn

Outgoing
IKE Replies

IPxIP_PAYLOAD

Incoming
IKE Requests

IPxIKE_PACKET

Wait
for EAP AUTH

IP_ADDR

Wait for
EAP

IP_ADDR

Wait for
EAP 2

IP_ADDR

Wait for
AUTH

IP_ADDR

Addresses

I/O
ADDR

I/O

Append
IP Header

Receive
IKE Request

[#payload(p) =
 IkeInitiator(ike_packet)]

Handle
SA_INIT Request

Handle SA_INIT RequestHandle SA_INIT Request

Handle
EAP AUTH
Request

Handle EAP AUTH RequestHandle EAP AUTH Request

Handle
EAP

Request
Handle EAP RequestHandle EAP Request

Handle
EAP Data

Handle EAP DataHandle EAP Data

Handle
AUTH

Request
Handle AUTH RequestHandle AUTH Request

(dest_ip, ip_payload)

{src=src_ip,
dest=dest_ip,
payload=ip_payload}

p

(#src(p), ike_packet)

IpAddr(0,src_ip)

Fig. 10. IKE initiator (left) and IKE responder (right) modules

184 P. Fleischer and L.M. Kristensen

Await
IKE_SA_INIT

Out UNITOut

Ready

In IP_ADDRIn

IKE
Packets
Initiator

Out IPxIP_PAYLOADOut

Send
IKE_SA_INIT

Packet

()

dest_ip

(dest_ip,
IkeInitiator({
exch = IKE_SA_INIT({
 SAi=[sa_proposal1],
 KEi=2,
 SAr=[],
 KEr=0}),
msg_id = 0}))

Wait
for EAP AUTH

Out IP_ADDROut

Outgoing
IKE Replies

Out IPxIP_PAYLOADOut

Incoming
IKE Requests

In IPxIKE_PACKETIn

Handle
SA_INIT Request

[#exch(ike_packet)=
 IKE_SA_INIT(sa_init)]

src_ip

(src_ip,
IkeResponder({
msg_id=(#msg_id(ike_packet)),
exch=IKE_SA_INIT({SAr = [hd(#SAi(sa_init))],
 KEr = (#KEi(sa_init)),
 SAi=[], KEi=0
 })
 }))

(src_ip, ike_packet)

Fig. 11. Example of IKE initiator (top) and IKE responder (bottom) submodules

during the IKE message exchange. The state changes are represented by sub-
stitution transitions and Fig. 11 shows the Send IKE SA INIT Packet and Han-
dle SA INIT Request modules.

The Send IKE SA INIT Packet transition on Fig. 11 (top) takes the IKE Ini-
tiator from the state Ready to Await IKE SA INIT and sends an IKE message to
the security gateway initialising the communication. The IP address of the se-
curity gateway is retrieved from the Ready place. Figure 11 (bottom) shows how
the IKE SA INIT packet is handled by the IKE Responder module (which the
security gateway implements). Upon receiving an IKE SA INIT packet it sends a
response and moves the responder to the Wait for EAP Auth state. The submod-
ules of the other substitution transitions of the IKE modules are similar. Neither
initiator nor responder will receive packets that are not expected. They remain
in the network buffer forever.

4.3 GAN Modules

Figure 12 (top) shows the GANClient module of the mobile station and Fig. 12
(bottom) shows the GANServer module of the GAN controller. In the Tunnel
Configured state, a secure tunnel to the security gateway has been established.
The mobile station initiates the GAN communication by sending a GA-RC dis-
covery message. The Send GA RC Discovery Message transition does just that,
and places the mobile station in the Wait for GA RC Response state, where the
mobile station will wait until a response is received from the GAN controller. As
can be seen in Fig. 12(bottom), the GAN controller can answer a request with

Formal Specification and Validation of Secure Connection Establishment 185

Tunnel
Configured

In IP_ADDRIn

Send
Buffer

Out IP_PACKETOut

Receive
Buffer

In IP_PACKETIn

Wait for GA RC
Response

IP_ADDR

GA RC Accept
Received

Out IP_ADDROut

Addresses

MS Addresses

ADDR

MS Addresses

Routing
Table

MS Routing Table

ROUTING_TABLE

MS Routing Table

SPD

MS SPD

SPD_ENTRY_LIST

MSInitSPD

MS SPD

Send
GA RC Discovery

Message

Handle
GA RC Reject

[#payload(p) =
 GANPayload(GARCReject)]

Handle
GA RC Accept

[#payload(p) =
 GANPayload(GARCAccept(ip_addr2, ip_addr3))]

ip_addr

ip_addr

pip_addr

ip_addr

{src=ip_addr,
dest=(12,1,1,1),
payload=GANPayload(GARCDiscovery)}

IpAddr(1,ip_addr)

rt

rt_remove_iface(1, ip_addr, rt)

spe_list

spd_remove_iface
(1, ip_addr, spe_list)

p

ip_addr

ip_addr2

1`MacAddr((0,2))++
1`IpAddr((0, (0,0,0,0)))

2

1`IpAddr((0,(0,0,0,0)))++
1`MacAddr((0,2))

1

1`[{src=((0,0,0,0),0),dest=((0,0,0,0),
0),nl_info=PayloadList([PAYLOAD_DH
CP]),policy=SpdBypass}]

Send
Buffer

Out IP_PACKETOut

Receive
Buffer

In IP_PACKETIn

Reject
Discovery
Request

[#payload(p) =
 GANPayload(GARCDiscovery)]

Accept
Discovery
Request

[#payload(p) =
 GANPayload(GARCDiscovery)]

{src=(12,1,1,1),
dest=(#src(p)),
payload=GANPayload(
 GARCReject)}

p

{src=(12,1,1,1),
dest=(#src(p)),
payload=GANPayload(
 GARCAccept((172,1,1,2),(13,1,1,1)))}

p

Fig. 12. GAN controller modules mobile station (top) and controller (bottom)

either an accept or reject message. If the GANClient receives a reject response,
the Handle GA RC Reject transition will put the client back into the Tunnel Con-
figured state, and another discovery message will be sent. This will continue until
an accept message is received, in which case the Handle GA RC Accept transition
puts the client in the GA RC Accept Received state, and closes the secure tunnel.
This is done by removing the address associated with the tunnel from the Ad-
dresses place, and removing any entries in the SPD and routing table containing
references to the interface.

4.4 IP Network Layer

Figure 13 shows the IPLayer module which is used to model the IP network
layer in the mobile station, wireless router, security gateways, and the GAN
controllers. As mentioned in Sect. 2, many details of the IP stack have been

186 P. Fleischer and L.M. Kristensen

Addresses

I/O ADDRI/O

Send
Buffer

In IP_PACKETIn

Network

I/O IFACEBUFxNET_PACKETI/O

Receive
Buffer

Out IP_PACKETOut

SPD

I/O
SPD_ENTRY_LIST

I/O

Allowed
Packets

IP_PACKET

Routing
Table

I/O
ROUTING_TABLE

I/O

Received
Packets

IP_PACKET

Allowed
Incoming
Packets

IP_PACKET

Receive
Network
Packet

[(dest_mac = 0 andalso src_mac <> mac)
orelse dest_mac = mac]

Check SPD
Out

Check SPD OutCheck SPD Out

Outgoing
Routing

Outgoing RoutingOutgoing Routing

Ingoing
Routing

Ingoing RoutingIngoing Routing

Check SPD
In

Check SPD InCheck SPD In

(NetIn iface,(src_mac, dest_mac, p))

MacAddr(iface,mac)

p

Fig. 13. The IP-Layer module with ingoing and outgoing packet flow

modelled, such as the routing system and the security policy database. Transport
protocols (e.g., TCP) are, however, not modelled.

The access to the underlying physical network is modelled via the input/output
port place Network which has the colour set NET PACKET defined as:

colset NET_PACKET = product MAC_ADDR * MAC_ADDR * IP_PACKET;

The first component of the product is the source MAC address, while the second
is the destination MAC address. The final component is the payload, which
currently can only be an IP packet. MAC addresses are represented by integers.
The actual physical network layer has been abstracted away, as we do not care
whether the physical network is, e.g., an Ethernet or an ATM network.

The chosen representation of a network cannot lose packets but can reorder
them, as tokens are picked non-deterministically from the Network place. A real
network does occasionally drop packets, and considering losing packets is espe-
cially important when building fault-tolerant systems. Both IKE and TCP use
timeouts and sequence numbers to retransmit packets, such that the protocols
deal with lossy networks. Rather than modelling the retransmission schemes, we
have chosen to have a loss-less network.

Receiving packets from the network is modelled as a transition which con-
sumes a NET PACKET-token, with the destination MAC address corresponding to
the MAC address of the network node. Sending packets is a matter of producing

Formal Specification and Validation of Secure Connection Establishment 187

a NET PACKET-token with the correct source and destination addresses and the
intended IP packet. The IP layer is completely generic and configured with three
places for network addresses, routing table, and Security Policy Database (SPD).
The Routing Table place corresponds to the routing table found in real IP im-
plementations. It consists of a number of entries, each of a pair (NETWORK ADDR,
IP NEXTHOP), where IP NEXTHOP is as defined as:

colset IP_NEXTHOP = union Direct : IFACE +
Via : IP_ADDR +
Terminate : IFACE;

The colour set defines which action is to be taken for packets going to the
specified IP network. There are three possible actions: Direct (the packet can be
delivered directly via the local physical network via IFACE), Via (the packet can
get closer to its destination by being delivered to the IP ADDR), and Terminate
(the destination network address is a local interface address of IFACE).

The SPD place is the SPD database, and describes which packets are allowed
to be sent and received by the IP layer. An entry in the SPD database can
also specify that certain packets are to be tunnelled through a secure tunnel.
Finally, the Addresses place contains a token for each address known to the IP
Layer. These addresses are both physical (MAC) addresses and IP addresses.
Each ADDR token contains an interface number and a MAC or IP address.

Packets to be sent are put on the Send Buffer place by upper-layers. The
first step done by the IP layer, is to check the SPD database, which is done by
the Check SPD Out transition. The Check SPD Out module inspects the SPD
database to find an entry which matches the source and destination addresses
of the packet. If no entry is found, the packet is dropped. If an entry is found,
the action of the entry is applied. Either the action is bypass, meaning that the
packet can be sent further down the IP-stack, or the action is tunnel, meaning
that the packet is to be sent through a secure tunnel. In the latter case, a new
IP-packet is constructed according to the tunnel information associated with the
tunnel action. If the packet is allowed to be sent, it is put on the Allowed Packets
place. In order to be able to construct a NET PACKET token, the destination
MAC needs to be found. This is done by the Outgoing Routing transition. As
can be seen in Fig. 13, it needs to know both about the routing table and the
addresses. If a next-hop has been found, a token is placed on the Network place
with information about which interface to send on and the MAC address of the
next-hop.

Ingoing packets are retrieved from the Network place by the Receive Network
Packet transition. Destination MAC and interface number of the network packet
have to match one of the MAC addresses configured in the Addresses place. The
IP PACKET inside the NET PACKET is placed on the Received Packets place. Check
SPD In performs incoming SPD check, while Ingoing Routing decides if the packet
is to be delivered locally, forwarded, or is a tunnelled packet which has to be
de-tunnelled. In the latter case, the packet is put on the Received Packets place,
and goes through SPD checking and routing again. If the packet has its final

188 P. Fleischer and L.M. Kristensen

destination at the local node, it is put in the Receive Buffer. The IP PACKET
colour set models IP packets and is defined as:

colset IP_PACKET = record dest : IP_ADDR *
src : IP_ADDR *
payload : IP_PAYLOAD;

It has a source and destination IP address and a payload. The IP PAYLOAD
colour set is a union of all possible payloads. The colour set is never used by any
of the generic network components, and is as such defined accordingly to the rest
of the model. In the GAN scenario, the IP PAYLOAD colour set has constructors
for DHCP, IKEv2, and GAN packets.

5 Validation of the GAN Scenario

During the construction of the model, simulation was used to check that the
model behaviour was as desired. Even though simulation does not guarantee
correct behaviour, it was very useful in finding modelling errors. For instance,
simulation was a valuable tool in validating the packet forwarding capabilities
of the IP layer modules. By placing tokens that represent packets to be for-
warded on a network node’s input buffer and starting the simulation, it is easy
to see if the packet is being placed in the output buffer as expected. If not,
then single-stepping through the simulation helps to understand the behaviour
of the model, and modify it so that it behaves as intended. Simulation was also
effective in making explicit where further specification of the message exchanges
were required, i.e., where the GAN specification was not sufficiently detailed.
Furthermore, simulation was heavily used to show engineers at TietoEnator,
how the model and especially how the IP-packet flow worked and thereby en-
abling discussions of the specification. The advantage of simulation over state
space verification is that the simulation has immediate visual feedback, and as
such is much easier to understand.

A formal validation was performed on the state space generated from the
model. The generated state space consists of 3,854 nodes, while the Strongly
Connected Component (SCC) graph consists of 3,514 nodes of which 1 is non-
trivial, i.e., consists of more than a single state space node. The state space has
a single home marking which is also a dead marking. Hence, this marking can
always be reached and it has no enabled transitions.

The most interesting property to check is that the mobile station can always
end up being configured properly, i.e., that it has both gotten an IP address,
has successfully communicated with the provisioning GAN controller, and re-
ceived addresses of the default security gateway and GAN controller. For this,
we checked that in the single home and dead marking identified, there is a token
in the VIF open to Def-SG place of the mobile station (see Fig. 5). Furthermore,
we checked that there were no tokens in any of the other places of the mobile sta-
tion state machine. This would indicate an error in the model, as we do not want
the mobile station to be able to be in two states at the same time. To do this we

Formal Specification and Validation of Secure Connection Establishment 189

defined a predicate, which checks that only the VIF open to Def-SG contains to-
kens. Checking all nodes in the state space for this predicate, shows that it holds
only for the single home and dead marking. It is also interesting to investigate
whether the routing table and security policy database look as expected. Rather
than defining predicates, we displayed the dead marking in the simulator tool of
CPN Tools and inspected the configuration of the mobile station. This showed
that both routing tables, address assignments, and security policy database were
as expected. The state space report generated by CPN Tools also showed that
the transitions RejectDiscoveryRequest and HandleGARCReject (see Fig. 12) both
were impartial. This means that if the system does not terminate in the home
and dead marking discussed above, then it is because the GAN controller keeps
rejecting the connection.

6 Conclusion and Future Work

The overall goal of the project was to construct a CPN model and obtain a more
complete specification of the GAN scenario to be implemented by TietoEna-
tor. The CPN model presented in this paper matches the GAN scenario closely,
meaning that every entity in the scenario has been represented in the model, and
every action in the scenario has a model counterpart. The act of constructing the
CPN model helped to specify the details of the message exchanges that were not
explicit in the textual scenario description. Including a detailed modelling of the
IP stack in the CPN model was necessary in order to capture the details of send-
ing GAN packets from the mobile station to the GAN controller. Furthermore,
it was required in order to validate correctness of the the routing table contents,
SPD entries, and IP address distribution. The CPN model was discussed with
TietoEnator engineers, and jointly validated using the simulation capabilities of
CPN Tools. Further application of simulation and state space analysis has helped
to obtain further confidence in the constructed model, and more importantly it
has provided valuable information about the properties of the scenario.

In near future, TietoEnator is going to implement the GAN controller. Based
on the experience from the project presented in this paper, it has been decided
that CPNs will be used to model the initial controller design. Besides the ad-
vantages of having a formal model which can be validated by means of state
space analysis, the goal is to generate template code for the GAN controller di-
rectly from a CPN model of the controller. This will ease the work of the initial
implementation and help ensure that the implementation is consistent with the
design as specified by the CPN model. Initial work in this direction is presented
in [10].

References

1. 3GPP. Digital cellular telecommunications system (Phase 2+); Generic access to
the A/Gb interface; Stage 2. 3GPP TS 43.318 version 6.9.0 Release 6 (March 2007)

2. 3GPP. Website of 3GPP (May 2007), http://www.3gpp.org

http://www.3gpp.org

190 P. Fleischer and L.M. Kristensen

3. Billington, J., Han, B.: Modelling and Analysing the Functional Behaviour of TCP
Connection Management Procedures. International Journal on Software Tools for
Technology Transfer 9(3-4), 269–304 (2007)

4. CPN Tools, http://www.daimi.au.dk/CPNTools
5. TietoEnator Denmark, http://www.tietoenator.dk
6. Droms, R.: Dynamic Host Configuration Protocol. RFC2131 (March 1997)
7. Kaufman, C. (ed.): Internet Key Exchange Protocol. RFC4306 (December 2005)
8. Fleischer, P.: Towards a Formal Specification of a Generic Access Network Archite-

ture using Coloured Petri Nets. In: Proc. of Workshop on Petri Nets and Software
Engineering (PNSE 2007), pp. 231–232 (2007)

9. Fleischer, P., Kristensen, L.M.: Towards Formal Specification and Validation of
Secure Connection Establishment in a Generic Access Network Scenario. In: Fleis-
cher, P., Kristensen, L.M. (eds.) Eighth Workshop and Tutorial on Practical Use
of Coloured Petri Nets and the CPN Tools, October 2007. DAIMI PB, vol. 584,
pp. 9–28 (2007)

10. Fleischer, P., Kristensen, L.M.: Modelling of the Configuration/Management API
Middleware using Coloured Petri Nets. In: Proc. of PNTAP 2008 (2008)

11. Grimstrup, P.: Interworking Description for IKEv2 Library. Ericsson Internal. Doc-
ument No. 155 10-FCP 101 4328 Uen (September 2006)

12. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Soft-
ware Tools for Technology Transfer 9(3-4), 213–254 (2007)

13. Kent, S.: IP Encapsulating Security Payload (ESP). RFC4303 (December 2005)
14. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC4301 (De-

cember 2005)
15. Kristensen, L.M., Jensen, K.: Specification and Validation of an Edge Router Dis-

covery Protocol for Mobile Ad Hoc Networks. In: Ehrig, H., Damm, W., Desel,
J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) INT 2004.
LNCS, vol. 3147, pp. 248–269. Springer, Heidelberg (2004)

16. Vanit-Anunchai, S., Billington, J.: Modelling the Datagram Congestion Control
Protocol’s Connection Management and Synchronization Procedures. In: Kleijn,
J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 423–444. Springer,
Heidelberg (2007)

17. Westergaard, M., Lassen, K.B.: The BRITNeY Suite Animation Tool. In: Donatelli,
S., Thiagarajan, P.S. (eds.) Petri Nets and Other Models of Concurrency - ICATPN
2006. LNCS, vol. 4024, pp. 431–440. Springer, Heidelberg (2006)

http://www.daimi.au.dk/CPNTools
http://www.tietoenator.dk

Parametric Language Analysis of the Class of

Stop-and-Wait Protocols

Guy Edward Gallasch and Jonathan Billington

Computer Systems Engineering Centre
University of South Australia

Mawson Lakes Campus, SA, 5095, Australia
{guy.gallasch,jonathan.billington}@unisa.edu.au

Abstract. Model checking a parametric system when one or more of
its parameters is unbounded requires considering an infinite family of
models. The Stop-and-Wait Protocol (SWP) has two (unbounded) pa-
rameters: the maximum sequence number and the maximum number of
retransmissions. Previously, we presented a novel method for the para-
metric analysis of the SWP by developing algebraic formulas in the two
parameters that symbolically represent the corresponding infinite class
of reachability graphs. Properties were then verified directly from these
expressions. This paper extends this analysis to the verification of the
SWP using language equivalence. From the algebraic expressions devel-
oped previously, a parametric Finite State Automaton (FSA) represent-
ing all sequences of user-observable events (i.e. the protocol language) is
derived. We then perform determinisation and minimisation directly on
the parametric FSA. The result is a simple, non-parametric FSA that
is isomorphic to the service language of alternating send and receive
events. This result is significant as it verifies conformance of the SWP to
its service for all values of the two unbounded parameters.

1 Introduction

In [6] we presented a parametric analysis of the class of Stop-and-Wait pro-
tocols in two parameters: the Maximum Sequence Number (MaxSeqNo), and
the Maximum Number of Retransmissions (MaxRetrans). From a Coloured Petri
Net [10, 11] model of the Stop-and-Wait Protocol, parameterised by MaxSeqNo
and MaxRetrans, algebraic expressions representing the infinite class of reachabil-
ity graphs were developed and proved correct. From these algebraic expressions
a number of properties were verified directly, including the absence of deadlock,
absence of livelock, and absence of dead transitions. The channel bounds and
size of the parametric reachability graph in terms of the two parameters were
also determined.

This paper continues the work in [6] by considering the next step in protocol
verification [2], that of language analysis . A protocol will exhibit certain be-
haviour to the users of that protocol and this should conform to the expected
behaviour of the protocol. This expected behaviour is called the service specifi-
cation, which includes the service language, the set of all allowable sequences of

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 191–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 G.E. Gallasch and J. Billington

service primitives (user-observable actions). The sequences of service primitives
exhibited by the protocol is known as the protocol language. If the protocol ex-
hibits behaviour that is not in the service language, then this indicates an error
in the protocol (assuming the service is correct).

In [2] the concrete reachability graph for a particular instantiation of the
protocol is mapped to a Finite State Automaton (FSA) that represents the pro-
tocol language. In this paper we generalise this step by mapping the parametric
reachability graph to a parametric FSA. We then apply FSA reduction tech-
niques [1, 9, 12] through direct manipulation of the algebraic expressions of the
parametric FSA. We find that the epsilon-removal and determinisation proce-
dure removes MaxRetrans, and the minimisation procedure removes MaxSeqNo.
The result is a single, simple non-parametric FSA of the protocol language, which
conforms to the service language. Previously [5] we had only been able to obtain
this result for one parameter, the case when MaxRetrans=0.

The paper provides two main contributions. Firstly, we extend the paramet-
ric verification approach to parametric language analysis in both parameters.
Secondly, we verify that the Stop-and-Wait Protocol conforms to its service of
alternating send and receive events for all values of the two unbounded param-
eters. The authors are not aware of any previous attempts to obtain an explicit
algebraic representation for the infinite family of FSAs representing the proto-
col language of the Stop-and-Wait Protocol in both parameters, or to perform
automata reduction on such an algebraic representation.

2 Parametric Reachability Graph

In [5, 6] we presented a parameterised Coloured Petri Net (CPN) model of the
Stop-and-Wait Protocol (SWP) and in [6] derived notation for the markings and
arcs of its reachability graph (RG). We then stated and proved correct a set of
algebraic expressions representing the parametric reachability graph (PRG) in
both parameters.

In this section we recall our parametric SWP CPN model, notation for mark-
ings and arcs, and then the parametric reachability graph itself. In this paper
we do not describe the SWP CPN model in detail, nor the derivation of the
marking and arc notation. Full details can be found in [4, 7, 8].

2.1 Stop-and-Wait Protocol CPN Model

The SWP CPN model, shown in Fig. 1, consists of 7 places and 8 transitions and
is self explanatory to those familiar with CPNs. The model in its current form
was first presented and described in [5], with the exception of the model of loss,
which was generalised in [6] to allow loss of messages and acknowledgements
from anywhere in the in-order channels.

The initial marking is given above each place, to the left or right as room
permits. The notation 1‘x is used to represent the multiset containing one in-
stance of the single element, x. Intuitively, both the sender and receiver start

Parametric Language Analysis of the Class of Stop-and-Wait Protocols 193

receiver_state

Receiver

1‘r_ready

send_mess receive_mess

receive_ack

[rn = NextSeq(sn)]

send_ack

send_seq_no

Seq

1‘0

mess_channel

MessList

1‘[]

ack_channel

MessList

1‘[]

mess_loss

[Contains(queue,sn)]

ack_loss

[Contains(queue,rn)]

timeout_retrans

[rc < MaxRetrans]

retrans_counter

RetransCounter

1‘0

sender_state

Sender

1‘s_ready

receive_dup_ack

[rn <> NextSeq(sn)]

Sender Network Receiver

recv_seq_no

Seq

1‘0

sn

queue^^[sn] sn::queue r_ready

if(sn = rn)
then NextSeq(rn)
else rn

r_ready

queue^^[sn]

rc rc+1

rc

0

wait_ack

s_ready

wait_ack

queue

Loss(queue,sn)

rn::queue queue^^[rn]

sn

NextSeq(sn)

rn::queue

sn

sn

queue

queue
queue

queue

queuequeue

queue

Loss(queue,rn)

s_ready

wait_ack

rn

rnrn

process

process

val MaxRetrans = 0;
val MaxSeqNo = 1; fun NextSeq(n) =

if(n = MaxSeqNo)
color Sender = with s ready | wait ack; then 0 else n+1;
color Receiver = with r ready | process;
color Seq = int with 0..MaxSeqNo; fun Contains([],sn) = false
color RetransCounter = int with 0..MaxRetrans; | Contains(m::queue,sn) =
color Message = Seq; if (sn=m)
color MessList = list Message; then true else Contains(queue,sn);

var sn,rn : Seq; fun Loss(m::queue,sn) =
var rc : RetransCounter; if(sn=m) then queue
var queue : MessList; else m::Loss(queue,sn);

Fig. 1. The CPN Diagram and Declarations of our SWP CPN Model

in their respective ready states, with sequence numbers of 0. The message and
acknowledgement channels are both empty, and the retransmission counter at
the sender is initially 0.

2.2 Notational Conventions

In CPNs, a transition coupled with a binding of its variables to values is known as
a binding element or transition mode. We use the notation [M〉 to represent the
set of markings (states) reachable from M (note that M ∈ [M〉). The notation
M [(t, b)〉 indicates that the binding element, (t, b), is enabled in M , where t is
the name of the transition and b is a binding of the variables of the transition
to values. In addition, we use the following notation:

– MS ∈ N
+ and MR ∈ N are used as shorthand for MaxSeqNo and MaxRetrans

respectively;
– ij is used to represent j repetitions of sequence number i;

194 G.E. Gallasch and J. Billington

– ⊕MS is used to represent modulo MS + 1 addition; and
– �MS is used to represent modulo MS + 1 subtraction.

Definition 1 (Reachability Graph). The RG of a CPN with initial marking
M0 and a set of binding elements BE, is a labelled directed graph RG = (V,A)
where

1. V = [M0〉 is the set of reachable markings of the CPN; and
2. A = {(M, (t, b), M ′) ∈ V ×BE×V |M [(t, b)〉M ′} is the set of labelled directed

arcs, where M [(t, b)〉M ′ denotes that the marking of the CPN changes from
M to M ′ on the occurrence of binding element (t, b) ∈ BE, where t is the
name of a transition and b is a binding of the variables of the transition.

The parameterised SWP CPN and its RG are denoted by CPN(MS,MR) and
RG(MS,MR) = (V(MS,MR), A(MS,MR)) respectively.

2.3 Marking and Arc Notation

A notation for markings, derived in [6,7], is as follows. For CPN(MS,MR) a mark-
ing M ∈ V(MS,MR) is denoted by M

(MS,MR)
(class,i),(mo,ao,mn,an,ret) where the superscript

contains the parameter values of the SWP CPN and the subscript contains the
marking description, where:

– (class, i) encodes the marking of the sender state and receiver state places
(sender and receiver ‘major’ state), and the receiver sequence number for
sender sequence number, i, as defined in Table 1;

– mo, mn ∈ N encode the number of instances of the previously acknowledged
(old) message (with sequence number i�MS 1) and the currently outstand-
ing (new) message (with sequence number i), respectively, in the message
channel;

– ao, an ∈ N encode the number of instances of the acknowledgement of the
previous (old) message and of the currently outstanding (new) message, re-
spectively, in the acknowledgement channel; and

– ret ∈ RetransCounter is the number of times the currently outstanding
(unacknowledged) message has been retransmitted.

Thus for a given M ∈ V(MS,MR) represented by M
(MS,MR)
(class,i),(mo,ao,mn,an,ret) the

marking of places sender state, receiver state, send seq no and recv seq no is de-
fined by Table 1 and:

M(mess channel) = 1‘[(i�MS 1)mo imn]
M(ack channel) = 1‘[iao (i⊕MS 1)an]
M(retrans counter) = 1‘ret

Similar notation is defined for arcs in [8] but it suffices for this paper to iden-
tify arcs by their source marking and enabled binding element. The destination
marking can be obtained by applying the transition rule for CPNs [10].

Parametric Language Analysis of the Class of Stop-and-Wait Protocols 195

Table 1. Classification of markings into Classes

M(sender state) M(receiver state) M(send seq no) M(recv seq no) ClassMS(M)

1‘s ready 1‘r ready 1‘i 1‘i 1
1‘wait ack 1‘r ready 1‘i 1‘i 2a
1‘wait ack 1‘r ready 1‘i 1‘(i ⊕MS 1) 2b
1‘wait ack 1‘process 1‘i 1‘i 3a
1‘wait ack 1‘process 1‘i 1‘(i ⊕MS 1) 3b
1‘s ready 1‘process 1‘i 1‘i 4

Sets of markings and sets of arcs are defined as follows:

Definition 2 (Sets of Markings). Sets of markings are given by:

1. V
(MS,MR)
(class,i) ={M ∈ V(MS,MR) | ClassMS(M) = class, M(send seq no) = 1‘i}

2. V
(MS,MR)
i =

⋃
class∈{1,2a,2b,3a,3b,4} V

(MS,MR)
(class,i) represents the set of markings

in which the sender sequence number is given by i.

Definition 3 (Sets of Arcs). Sets of arcs are given by:

1. A
(MS,MR)
(class,i) = {(M, (t, b), M ′) ∈ A(MS,MR) | ClassMS(M) = class,

M(send seq no) = 1‘i}
2. A

(MS,MR)
i =

⋃
class∈{1,2a,2b,3a,3b,4} A

(MS,MR)
(class,i)

2.4 Algebraic Expressions for the SWP CPN PRG

Algebraic expressions for the sets of markings and arcs of RG(MS,MR) are defined
using the notation above by specifying allowable ranges of the five variables,
mo, ao, mn, an and ret, in terms of the parameters. All variables are assumed to
only take values that are greater than or equal to 0, unless otherwise indicated.
The parametric reachability graph over both parameters is given in the following
theorem (from [4,6]):

Theorem 1 (Parametric Reachability Graph of the SWP CPN).
For MS ∈ N

+, MR ∈ N, RG(MS,MR) = (V(MS,MR), A(MS,MR))

where V(MS,MR) =
⋃

0≤i≤MS

V
(MS,MR)
i and A(MS,MR) =

⋃

0≤i≤MS

A
(MS,MR)
i

where all nodes and arcs are defined in Tables 2 to 8.

All of the markings of RG(MS,MR) are described in Table 2 by evaluating the
expressions in this table for 0 ≤ i ≤MS. Each row defines a new set of markings.
The first column gives the name of the set of markings according to its class.
Column 2 defines the set of markings by specifying the allowed ranges of variable
values.

196 G.E. Gallasch and J. Billington

Table 2. V
(MS,MR)

i for 0 ≤ i ≤ MS and Class = {1, 2a, 2b, 3a, 3b, 4}
Name Set Definition

V
(MS,MR)
(1,i) {M

(MS,MR)
(1,i),(mo,ao,0,0,0) | 0 ≤ mo + ao ≤ MR}

V
(MS,MR)
(2a,i) {M

(MS,MR)
(2a,i),(mo,ao,mn,0,ret) | 0 ≤ mo + ao ≤ MR, 0 ≤ ret ≤ MR, 0 ≤ mn ≤ ret + 1}

V
(MS,MR)
(2b,i) {M

(MS,MR)
(2b,i),(0,ao,mn,an,ret) | 0 ≤ ao ≤ MR, 0 ≤ ret ≤ MR, 0 ≤ mn ≤ ret,

0 ≤ mn + an ≤ ret + 1}
V

(MS,MR)
(3a,i) {}, for MR = 0; or

{M
(MS,MR)
(3a,i),(mo,ao,mn,0,ret) | 0 ≤ mo + ao ≤ MR − 1, 0 ≤ ret ≤ MR,

0 ≤ mn ≤ ret + 1}, for MR > 0.

V
(MS,MR)
(3b,i) {M

(MS,MR)
(3b,i),(0,ao,mn,an,ret) | 0 ≤ ao ≤ MR, 0 ≤ ret ≤ MR, 0 ≤ mn + an ≤ ret}

V
(MS,MR)
(4,i) {}, for MR = 0; or

{M
(MS,MR)
(4,i),(mo,ao,0,0,0) | 0 ≤ mo + ao ≤ MR − 1}, for MR > 0.

Table 3. The set of arcs A
(MS,MR)

(1,i) with source markings in V
(MS,MR)

(1,i)

Condition Source Marking Binding Element Destination Marking

none M
(MS,MR)
(1,i),(mo,ao,0,0,0) send mess<sn=i, queue = [(i �MS 1)mo]> M

(MS,MR)
(2a,i),(mo,ao,1,0,0)

mo ≥ 1 M
(MS,MR)
(1,i),(mo,ao,0,0,0) mess loss<sn=i �MS 1, M

(MS,MR)
(1,i),(mo−1,ao,0,0,0)

queue = [(i �MS 1)mo]>

mo ≥ 1 M
(MS,MR)
(1,i),(mo,ao,0,0,0) receive mess<sn=i �MS 1, rn=i, M

(MS,MR)
(4,i),(mo−1,ao,0,0,0)

queue = [(i �MS 1)mo−1]>

ao ≥ 1 M
(MS,MR)
(1,i),(mo,ao,0,0,0) ack loss<rn=i, queue = [iao]> M

(MS,MR)
(1,i),(mo,ao−1,0,0,0)

ao ≥ 1 M
(MS,MR)
(1,i),(mo,ao,0,0,0) receive dup ack<sn=i, rn=i, queue = [iao−1]> M

(MS,MR)
(1,i),(mo,ao−1,0,0,0)

Table 4. The set of arcs A
(MS,MR)

(2a,i)
with source markings in V

(MS,MR)

(2a,i)

Condition Source Marking Binding Element Destination Marking

ret<MR M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret) timeout retrans<sn=i, rc=ret, M

(MS,MR)
(2a,i),(mo,ao,mn+1,0,ret+1)

queue=[(i �MS 1)mo imn]>

mo ≥ 1 M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret) mess loss<sn=i �MS 1, M

(MS,MR)
(2a,i),(mo−1,ao,mn,0,ret)

queue=[(i �MS 1)mo imn]>

mn ≥ 1 M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret) mess loss<sn=i, M

(MS,MR)
(2a,i),(mo,ao,mn−1,0,ret)

queue = [(i �MS 1)mo imn]>

mo ≥ 1 M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret) receive mess<sn=i �MS 1, rn=i, M

(MS,MR)
(3a,i),(mo−1,ao,mn,0,ret)

queue = [(i �MS 1)mo−1 imn]>

mn ≥ 1 M
(MS,MR)
(2a,i),(0,ao,mn,0,ret) receive mess<sn=i, rn=i, M

(MS,MR)
(3b,i),(0,ao,mn−1,0,ret)

queue = [imn−1]>

ao ≥ 1 M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret) ack loss<rn=i, queue = [iao]> M

(MS,MR)
(2a,i),(mo,ao−1,mn,0,ret)

ao ≥ 1 M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret) receive dup ack<sn=i, rn=i, M

(MS,MR)
(2a,i),(mo,ao−1,mn,0,ret)

queue = [iao−1]>

All of the arcs of RG(MS,MR) are described in a similar way in Tables 3 to 8
by evaluating each table for 0 ≤ i ≤MS. There is one table of arcs for every row
of Table 2, describing the set of arcs with a source marking from that set. Thus

Parametric Language Analysis of the Class of Stop-and-Wait Protocols 197

Table 5. The set of arcs A
(MS,MR)

(2b,i) with source markings in V
(MS,MR)

(2b,i)

Condition Source Marking Binding Element Destination Marking

ret<MR M
(MS,MR)
(2b,i),(0,ao,mn,an,ret) timeout retrans<sn=i,rc=ret, M

(MS,MR)
(2b,i),(0,ao,mn+1,an,ret+1)

queue = [imn]>

mn ≥ 1 M
(MS,MR)
(2b,i),(0,ao,mn,an,ret) mess loss<sn=i, queue = [imn]> M

(MS,MR)
(2b,i),(0,ao,mn−1,an,ret)

mn ≥ 1 M
(MS,MR)
(2b,i),(0,ao,mn,an,ret) receive mess<sn=i, rn=i ⊕MS 1, M

(MS,MR)
(3b,i),(0,ao,mn−1,an,ret)

queue = [imn−1]>

ao ≥ 1 M
(MS,MR)
(2b,i),(0,ao,mn,an,ret) ack loss<rn=i, M

(MS,MR)
(2b,i),(0,ao−1,mn,an,ret)

queue = [iao (i ⊕MS 1)an]>

an ≥ 1 M
(MS,MR)
(2b,i),(0,ao,mn,an,ret) ack loss<rn=i ⊕MS 1, M

(MS,MR)
(2b,i),(0,ao,mn,an−1,ret)

queue = [iao (i ⊕MS 1)an]>

ao ≥ 1 M
(MS,MR)
(2b,i),(0,ao,mn,an,ret) receive dup ack<sn=i, rn=i, M

(MS,MR)
(2b,i),(0,ao−1,mn,an,ret)

queue = [iao−1 (i ⊕MS 1)an]>

an ≥ 1 M
(MS,MR)
(2b,i),(0,0,mn,an,ret) receive ack<sn=i, rn=i ⊕MS 1, M

(MS,MR)
(1,i⊕MS1),(mn,an−1,0,0,0)

rc = ret, queue =

[(i ⊕MS 1)an−1]>

Table 6. The set of arcs A
(MS,MR)

(3a,i) with source markings in V
(MS,MR)

(3a,i) , for MR > 0

Condition Source Marking Binding Element Destination Marking

ret<MR M
(MS,MR)
(3a,i),(mo,ao,mn,0,ret) timeout retrans<sn=i,rc=ret, M

(MS,MR)
(3a,i),(mo,ao,mn+1,0,ret+1)

queue = [(i �MS 1)mo imn]>

mo ≥ 1 M
(MS,MR)
(3a,i),(mo,ao,mn,0,ret) mess loss<sn=i �MS 1, M

(MS,MR)
(3a,i),(mo−1,ao,mn,0,ret)

queue = [(i �MS 1)mo imn]>

mn ≥ 1 M
(MS,MR)
(3a,i),(mo,ao,mn,0,ret) mess loss<sn=i, M

(MS,MR)
(3a,i),(mo,ao,mn−1,0,ret)

queue = [(i �MS 1)mo imn]>

ao ≥ 1 M
(MS,MR)
(3a,i),(mo,ao,mn,0,ret) ack loss<rn=i, queue = [iao]> M

(MS,MR)
(3a,i),(mo,ao−1,mn,0,ret)

ao ≥ 1 M
(MS,MR)
(3a,i),(mo,ao,mn,0,ret) receive dup ack<sn=i, rn=i, M

(MS,MR)
(3a,i),(mo,ao−1,mn,0,ret)

queue = [iao−1]>

none M
(MS,MR)
(3a,i),(mo,ao,mn,0,ret) send ack<rn=i, queue = [iao]> M

(MS,MR)
(2a,i),(mo,ao+1,mn,0,ret)

Table 7. The set of arcs A
(MS,MR)
(3b,i) with source markings in V

(MS,MR)
(3b,i)

Condition Source Marking Binding Element Destination Marking

ret<MR M
(MS,MR)
(3b,i),(0,ao,mn,an,ret) timeout retrans<sn=i, rc=ret, M

(MS,MR)
(3b,i),(0,ao,mn+1,an,ret+1)

queue = [imn]>

mn ≥ 1 M
(MS,MR)
(3b,i),(0,ao,mn,an,ret) mess loss<sn=i, queue = [imn]> M

(MS,MR)
(3b,i),(0,ao,mn−1,an,ret)

ao ≥ 1 M
(MS,MR)
(3b,i),(0,ao,mn,an,ret) ack loss<rn=i, M

(MS,MR)
(3b,i),(0,ao−1,mn,an,ret)

queue = [iao (i ⊕MS 1)an]>

an ≥ 1 M
(MS,MR)
(3b,i),(0,ao,mn,an,ret) ack loss<rn=i ⊕MS 1, M

(MS,MR)
(3b,i),(0,ao,mn,an−1,ret)

queue = [iao (i ⊕MS 1)an]>

ao ≥ 1 M
(MS,MR)
(3b,i),(0,ao,mn,an,ret) receive dup ack<sn=i,rn=i, M

(MS,MR)
(3b,i),(0,ao−1,mn,an,ret)

queue = [iao−1 (i ⊕MS 1)an]>

an ≥ 1 M
(MS,MR)
(3b,i),(0,0,mn,an,ret) receive ack<sn=i,rn=i ⊕MS 1, M

(MS,MR)
(4,i⊕MS1),(mn,an−1,0,0,0)

rc = ret, queue =
[(i ⊕MS 1)an−1]>

none M
(MS,MR)
(3b,i),(0,ao,mn,an,ret) send ack<rn=i ⊕MS 1, M

(MS,MR)
(2b,i),(0,ao,mn,an+1,ret)

queue = [iao (i ⊕MS 1)an]>

198 G.E. Gallasch and J. Billington

Table 8. The set of arcs A
(MS,MR)
(4,i) with source markings in V

(MS,MR)
(4,i)

Condition Source Marking Binding Element Destination Marking

none M
(MS,MR)
(4,i),(mo,ao,0,0,0) send mess<queue = [(i �MS 1)mo], sn=i> M

(MS,MR)
(3a,i),(mo,ao,1,0,0)

mo ≥ 1 M
(MS,MR)
(4,i),(mo,ao,0,0,0) mess loss<queue = [(i �MS 1)mo], M

(MS,MR)
(4,i),(mo−1,ao,0,0,0)

sn=i �MS 1>

ao ≥ 1 M
(MS,MR)
(4,i),(mo,ao,0,0,0) ack loss<queue = [iao], rn=i> M

(MS,MR)
(4,i),(mo,ao−1,0,0,0)

ao ≥ 1 M
(MS,MR)
(4,i),(mo,ao,0,0,0) receive dup ack<queue = [iao−1], sn=i, rn=i> M

(MS,MR)
(4,i),(mo,ao−1,0,0,0)

none M
(MS,MR)
(4,i),(mo,ao,0,0,0) send ack<queue = [iao], rn=i> M

(MS,MR)
(1,i),(mo,ao+1,0,0,0)

A
(MS,0)
(3a,i) and A

(MS,0)
(4,i) = ∅ when MR = 0. The first column of each arc table gives

any additional restrictions that must be placed on the variables mo, ao, mn, an
and ret. For example, loss of an old message cannot occur when mo = 0.

3 Parametric Language Analysis

In this section we use language equivalence to verify conformance of the SWP
to the Stop-and-Wait property of alternating Send and Receive events, i.e. to
its service language. The work presented in this section is based on [4,8], which
includes the full proofs.

3.1 The Stop-and-Wait Service Language

The Stop-and-Wait service is only concerned with events visible to the users of
the SWP, i.e. sending data at one end and receiving it at the other. Internal
protocol mechanisms, such as the use of sequence numbers, acknowledgements
and retransmissions are not visible to users. The service language is defined as
sequences of the two service primitives, Send and Receive, as follows:

Definition 4 (Service Language). The Stop-and-Wait Service Language, LS,
of alternating send and receive events is given by the regular expression
(Send Receive)∗ Send † where Send † represents 0 or 1 repetitions of Send.

The service language specifies sequences of alternating send and receive events,
which may end with a Send or a Receive event. When the Stop-and-Wait protocol
is operating correctly, one message will be received for every original message
sent. Sequences ending with Send correspond to the situation (given a lossy
medium) where a sender reaches its retransmission limit and gives up. Dealing
with this situation is the job of a management entity and so is not reflected in
the service language - the sender simply stops.

Recall from the introduction that the protocol language, denoted here as LP ,
is all sequences of service primitives exhibited by the protocol. We wish to verify
that LP conforms to the service language for all values of the MaxSeqNo and
MaxRetrans parameters, which we state in the following theorem.

Parametric Language Analysis of the Class of Stop-and-Wait Protocols 199

Theorem 2. The Stop-and-Wait protocol, defined by CPN(MS,MR), conforms
to the Stop-and-Wait service, i.e. LP = LS = (Send, Receive)∗ Send †, for all
values of MS ≥ 1 and MR ≥ 0.

A proof of this theorem is sketched in the rest of this section.

3.2 Obtaining the Parametric Protocol Language

An RG can be interpreted as a Finite State Automaton (FSA) by relabelling
arcs with service primitives (or the empty label, ε) and defining initial and halt
states.

Definition 5 (Mapping Binding Elements to Service Primitives).
Let Prim : BE(MS,MR) → SP ∪ {ε} be a mapping from the set of binding
elements of CPN(MS,MR) to either a service primitive name or to ε, where

– BE(MS,MR) is the set of binding elements that occur in CPN(MS,MR); and
– SP = {Send, Receive} is the set of service primitive names;

such that, for all (t, b) ∈ BE(MS,MR):

Prim((t, b)) =

⎧
⎪⎨

⎪⎩

Send, if t = send mess,

Receive, if t = receive mess and sn = rn holds in b,

ε, otherwise.

Note that receive mess is only mapped to Receive when it corresponds to recep-
tion of a new message (i.e. sn = rn in the binding).

The initial state of our parametric FSA is defined as the initial marking of
CPN(MS,MR), i.e. M0 = M

(MS,MR)
(1,0),(0,0,0,0,0). Because we have an arbitrary number

of messages to send from the sender to the receiver, we define a legitimate halt
state as any state in which l ∈ N messages have been transmitted and successfully
acknowledged, so that both the sender and receiver are in their ready states and
there are no messages or acknowledgements in the channel. This corresponds
to the markings M

(MS,MR)
(1,i),(0,0,0,0,0) for all 0 ≤ i ≤ MS (incorporating the initial

marking). We also include the dead markings of RG(MS,MR) (identified in [6])
in the set of halt states.

Definition 6 (FSA of RG(MS,MR)). The FSA associated with RG(MS,MR) =
(V(MS,MR), A(MS,MR)) of CPN(MS,MR), with initial marking M0, is
FSARG(MS,MR) = (V(MS,MR), SP, Δ(MS,MR), M0, F(MS,MR)) where

– SP = {Send, Receive} is the alphabet;
– Δ(MS,MR) = {M, Prim((t, b)), M ′ | (M, (t, b), M ′) ∈ A(MS,MR)} is the set

of transitions labelled by service primitives or epsilons for internal events
(the transition relation of the FSA); and

– F(MS,MR) = {M (MS,MR)
(1,i),(0,0,0,0,0), M

(MS,MR)
(2a,i),(0,0,0,0,MR), M

(MS,MR)
(2b,i),(0,0,0,0,MR) | 0 ≤

i ≤MS} is the set of final states.

200 G.E. Gallasch and J. Billington

The states of FSARG(MS,MR) are the nodes of RG(MS,MR), given by Table 2.
The arcs of FSARG(MS,MR) are given by Tables 3 to 8 by applying Prim to
each binding element (arc label). In the remainder of this section, we will of-
ten refer to nodes and edges in FSARG(MS,MR) by the corresponding markings
and arcs in RG(MS,MR). This provides a way of easily identifying the nodes of
FSARG(MS,MR) and the edges whose labels are mapped to ε by Prim.

3.3 Epsilon Closures

Before proceeding with FSA reduction we calculate symbolically the ε-closure [9]
of any (arbitrary) marking in V

(MS,MR)
(2a,i) and V

(MS,MR)
(3b,i) of Table 2. Symbolic

expressions for the ε-closure of class 1, 2b, 3a or 4 markings are not needed, due
to the lazy subset evaluation technique for determinisation [9] used in Section 3.4.
In addition, we develop expressions that specify the set of non-ε-labelled outgoing
edges from the markings in these ε-closures. These expressions are useful in
the determinisation procedure. We define the ε-closure operation based on the
narrative description in [9].

Definition 7 (ε-closure)
For FSA = (S, Σ, Δ, s0, F) the ε-closure of s ∈ S is given by Closure : S → 2S,

where Closure(s) = {s′ | s ε∗→ s′} and s
ε∗→ s′ indicates that s′ can be reached

from s via a contiguous sequence of 0 or more ε moves.

Note that s ∈ Closure(s).

The ε-closure of Class 2a nodes

Lemma 1. The ε-closure of a marking, M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret) ∈ V

(MS,MR)
(2a,i) , is

given by:

Closure(M
(MS,MR)

(2a,i),(mo,ao,mn,0,ret)
)

= {M (MS,MR)
(2a,i),(mo′,ao′,mn′,0,ret′) | mo′ + ao′ ≤ mo + ao, 0 ≤ mo′ ≤ mo,

mn′ ≤ mn + ret′ − ret, ret ≤ ret′ ≤ MR}
∪ {M (MS,MR)

(3a,i),(mo′,ao′,mn′,0,ret′) | mo′ + ao′ ≤ mo + ao − 1, 0 ≤ mo′ ≤ mo − 1,

mn′ ≤ mn + ret′ − ret, ret ≤ ret′ ≤ MR, mo > 0} (1)

Proof Sketch. In [8] this result is presented as a corollary to a longer derivation.
In this paper we present only the intuition behind its correctness. For full details
of the derivation see [8].

The class 2a markings in the above closure come about in the following way.
If old messages exist (i.e. mo > 0) an old message can be received by the receiver
(an ε-transition, row 4 of Table 4) and acknowledged (also an ε-transition, row 6
of Table 6). The result is one fewer old messages and one additional old acknowl-
edgement. This can occur for all of the old messages, so that 0 ≤ mo′ ≤ mo and
mo′+ao′ = mo+ao describe the number of old messages and acknowledgements

Parametric Language Analysis of the Class of Stop-and-Wait Protocols 201

and captures the relationship between them. Given the arbitrary loss property
of the channels, any of the old messages or acknowledgements can be lost (also
an ε-transition), resulting in mo′ + ao′ ≤ mo + ao, 0 ≤ mo′ ≤ mo.

In terms of the new messages, mn′, row 1 of Table 4 (the timeout retrans
ε-transition) indicates that the new message can be retransmitted until the re-
transmission limit is reached (i.e. until ret = MR). This allows at most MR−ret
further retransmissions, each time incrementing the number of new messages,
mn′, and the retransmission counter, ret′. Given that we started with mn new
messages, the result is mn′ = mn+(ret′−ret), ret ≤ ret′ ≤MR, where ret′−ret
is the number of additional retransmissions of the new message that have oc-
curred. Again, due to the arbitrary loss property of our channel, the resulting
expression is mn′ ≤ mn + ret′ − ret, ret ≤ ret′ ≤MR.

The class 3a markings in the above closure have a very similar form to the
class 2a markings. The only differences in the inequalities are the two additional
restrictions: mo′ ≤ mo − 1 and mo > 0. This is because class 3a markings are
reached from class 2a markings by an old message being received by the receiver.
Hence, to reach a class 3a marking, at least one old message must exist (i.e.
mo > 0) and consequently there will be one fewer old messages in the message
channel when it is received (i.e. 0 ≤ mo′ ≤ mo− 1).

The fact that the closure given above covers all markings reachable from
M

(MS,MR)
(2a,i),(mo,ao,mn,0,ret) via zero or more ε-transitions is evident from the arc ta-

bles. All rows in Tables 4 and 6 except for row 5 of Table 4 correspond to
transitions that result in either a class 2a or 3a marking. Detailed analysis of
each [8] reveals that all of these destination markings fall within the closure de-
fined in the lemma. M

(MS,MR)
(2a,i),(mo,ao,mn,0,ret) itself is included in the closure, hence

precisely those markings reachable from M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret) via 0 or more ε-

transitions are specified in the closure and the lemma is proved. ��
Row 5 of Table 4 maps to the Receive service primitive, not to ε. From row

5 of Table 4, the only non-ε-labelled outgoing edges from the closure given in
Lemma 1 are given by:

OutEdges(Closure(M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret)))

= {(M (MS,MR)
(2a,i),(0,ao′,mn′,0,ret′), Receive, M

(MS,MR)
(3b,i),(0,ao′,mn′−1,0,ret′)) | M

(MS,MR)
(2a,i),(0,ao′,mn′,0,ret′)

∈ Closure(M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret)), mn′ > 0} (2)

Substituting the relevant part of the closure (the class 2a markings) from
Equation (1) into Equation (2) we obtain:

OutEdges(Closure(M
(MS,MR)
(2a,i),(mo,ao,mn,0,ret)))

= {(M (MS,MR)

(2a,i),(0,ao′,mn′,0,ret′), Receive, M
(MS,MR)

(3b,i),(0,ao′,mn′−1,0,ret′)) | ao′ ≤ mo + ao,

0 < mn′ ≤ mn + ret′ − ret, ret ≤ ret′ ≤ MR} (3)

202 G.E. Gallasch and J. Billington

The ε-closure of Nodes in V
(MS,MR)
(3b,i)

Lemma 2. The ε-closure of a marking, M
(MS,MR)
(3b,i),(0,ao,mn,an,ret) ∈ V

(MS,MR)
(3b,i) , is

given by:

Closure(M
(MS,MR)

(3b,i),(0,ao,mn,an,ret))

= {M (MS,MR)
(3b,i),(0,ao′,mn′,an′,ret′) | ao′ ≤ ao, mn′ + an′ ≤ mn + an + ret′ − ret,

0 ≤ mn′ ≤ mn + ret′ − ret, ret ≤ ret′ ≤ MR}
∪ {M (MS,MR)

(2b,i),(0,ao′,mn′,an′,ret′) | ao′ ≤ ao, mn′ + an′′ ≤ mn + an + ret′ − ret + 1,

0 ≤ mn′ ≤ mn + ret′ − ret, ret ≤ ret′ ≤ MR}
∪ {M (MS,MR)

(4,i⊕MS1),(mo′,ao′,0,0,0) | mo′ + ao′ ≤ mn + an + ret′ − ret − 1,

0 ≤ mo′ ≤ mn + ret′ − ret, ret ≤ ret′ ≤ MR}
∪ {M (MS,MR)

(1,⊕MS1),(mo′,ao′,0,0,0) | mo′ + ao′ ≤ mn + an + ret′ − ret,

0 ≤ mo′ ≤ mn + ret′ − ret, ret ≤ ret′ ≤ MR} (4)

Proof Sketch. The proof follows a similar procedure to that of Lemma 1. It is
complicated by the fact that, from a class 3b marking, it is possible to reach
markings of class 3b, class 2b, class 1 and class 4, via 0 or more ε-transitions.
Furthermore, the sender sequence number for the class 1 and 4 markings has
been incremented, i.e. is one greater (modulo MaxSeqNo + 1) than the class 3b
marking to whose ε-closure they belong. For brevity, we omit the details of this
proof here, and refer the reader to [8]. ��
Row 1 of both Table 3 and Table 8 define arcs that map to the Send primitive,
leading from a class 1 or 4 marking to a class 2a or 3a marking respectively.
Omitting the details (see [8]), the set of non-ε-labelled outgoing edges is obtained
in a similar way to those in Equation (3), giving:

OutEdges(Closure(M
(MS,MR)
(3b,i),(0,ao,mn,an,ret)))

= {(M (MS,MR)

(4,i⊕MS1),(mn′ ,an′,0,0,0), Send, M
(MS,MR)

(3a,i⊕MS1),(mn′ ,an′,1,0,0)) |
mn′ +an′ ≤ mn+an+ret′−ret−1,0 ≤ mn′ ≤ mn+ret′−ret, ret ≤ ret′ ≤ MR}

∪ {(M (MS,MR)

(1,i⊕MS1),(mn′,an′,0,0,0), Send, M
(MS,MR)

(2a,i⊕MS1),(mn′ ,an′,1,0,0)) |
mn′ + an′ ≤ mn + an + ret′ − ret, 0 ≤ mn′ ≤ mn + ret′ − ret, ret ≤ ret′ ≤ MR}

(5)

3.4 Determinisation

Now that we have expressions for the ε-closures we require, determinisation of
FSARG(MS,MR) , using lazy subset construction, proceeds as described in [9].

We define a deterministic FSA as DFSA = (Sdet, Σ, Δdet, sdet
0 , F det). The

initial state of DFSARG(MS,MR) , which we denote C0, is the ε-closure of the
initial state of FSARG(MS,MR) . From inspection of Table 3:

C0 = sdet
0 = Closure(s0) = Closure(M

(MS,MR)

(1,0),(0,0,0,0,0)
) = {M (MS,MR)

(1,0),(0,0,0,0,0)
} (6)

Parametric Language Analysis of the Class of Stop-and-Wait Protocols 203

as there are no outgoing ε edges from the initial state of FSARG(MS,MR) regard-
less of the values of MS and MR. Furthermore, C0 ∈ Sdet.

The only transition that is enabled by the single state in C0 (i.e. the initial
marking of the CPN) is send mess (row 1 of Table 3 where i = 0) which maps to
the Send service primitive. The destination marking is M

(MS,MR)
(2a,0),(0,0,1,0,0). The ε-

closure of M
(MS,MR)
(2a,0),(0,0,1,0,0), which we denote C1, is given by evaluating Equation

(1) for M
(MS,MR)
(2a,0),(0,0,1,0,0):

C1 = Closure(M
(MS,MR)
(2a,0),(0,0,1,0,0))

= {M (MS,MR)

(2a,0),(mo,ao,mn,0,ret) | mo+ao ≤ 0, 0 ≤ mo ≤ 0, 0 ≤ mn ≤ 1+ret, 0 ≤ ret ≤ MR}
= {M (MS,MR)

(2a,0),(0,0,mn,0,ret) | 0 ≤ mn ≤ 1 + ret, 0 ≤ ret ≤ MR} (7)

Thus C1 ∈ Sdet and (sdet
0 , Send, C1) ∈ Δdet.

C0 and C1 are illustrated in Fig. 2. C0 is shown as a large red circle within
V

(MS,MR)
(1,0) , which leads to the successor C1 ∈ V

(MS,MR)
(2a,0) via the Send primitive.

There are no class 3a markings in C1 and only some of the markings in V
(MS,MR)
(2a,0)

are covered, hence C1 has been depicted to reflect this.
To obtain the successors of nodes in the closure, C1, reachable via non-ε moves,

we substitute C1 into Equation (3) to obtain the set of outgoing non-ε arcs:

OutEdges(C1) = OutEdges(Closure(M
(MS,MR)
(2a,0),(0,0,1,0,0))) = {(M (MS,MR)

(2a,0),(0,ao,mn,0,ret),

Receive, M
(MS,MR)
(3b,0),(0,ao,mn−1,0,ret)) | ao ≤ 0, 0 < mn ≤ 1 + ret, 0 ≤ ret ≤ MR} (8)

Thus the direct successors of markings in C1, via the Receive primitive, are
the destination nodes from Equation (8):

DirectSuccC1 = {M (MS,MR)
(3b,0),(0,0,mn−1,0,ret) | 0 < mn ≤ 1 + ret, 0 ≤ ret ≤ MR} (9)

The successor of C1 is the union of the ε-closure of all nodes in DirectSuccC1 .
However, rather than calculate the ε-closure of every node in DirectSuccC1, let
us consider the ε-closure of just one, M

(MS,MR)
(3b,0),(0,0,0,0,0), where mn− 1 = ret = 0.

Substituting this into Equation (4) and simplifying to remove redundant inequal-
ities (see [8]) gives:

C2 = {M (MS,MR)

(3b,0),(0,0,mn,an,ret) | 0 ≤ mn + an ≤ ret, 0 ≤ ret ≤ MR}
∪ {M (MS,MR)

(2b,0),(0,0,mn,an,ret) | 0 ≤ mn + an ≤ ret + 1, 0 ≤ mn ≤ ret, 0 ≤ ret ≤ MR}
∪ {M (MS,MR)

(4,1),(mo,ao,0,0,0) | 0 ≤ mo + ao ≤ MR − 1}
∪ {M (MS,MR)

(1,1),(mo,ao,0,0,0) | 0 ≤ mo + ao ≤ MR} (10)

In [8] we show that C2 =
⋃

M∈DirectSuccC1
Closure(M), i.e. that C2 is actually

the union of the ε-closure of all markings in DirectSuccC1.

204 G.E. Gallasch and J. Billington

V
(MS,MR)
(3a,0) V

(MS,MR)
(3b,0) V

(MS,MR)
(2b,0) V

(MS,MR)
(4,0)

C2

Send

C(3,1)

V
(MS,MR)
(1,1) V

(MS,MR)
(4,1)

Receive

V
(M

S
,
M

R
)

0
V

(M
S

,
M

R
)

1
V

(M
S

,
M

R
)

2

C1

Send
Receive

V
(MS,MR)
(2a,0)V

(MS,MR)
(1,0)

C0 = {M
(MS,MR)
(1,0),(MR,0,0,0,0)}

C(4,1)

V
(MS,MR)
(1,2) V

(MS,MR)
(2a,2)

C(5,1)

V
(MS,MR)
(3a,2)

Send

C(5,1)

C2C(4,1) C(4,1)

V
(MS,MR)
(3b,1) V

(MS,MR)
(2b,1)

C(4,1)

V
(MS,MR)
(3b,2) V

(MS,MR)
(2b,2) V

(MS,MR)
(4,2)

V
(MS,MR)
(2a,1)

C(3,1)

V
(MS,MR)
(3a,1)

C2
C2

Fig. 2. Construction of a deterministic FSA showing the closures, C0, C1, C2, C(3,1),
C(4,1) and C(5,1), and the arcs between them

Lemma 3. C2 =
⋃

M∈DirectSuccC1
Closure(M).

Proof. See [8] for details. ��
Corollary 1. C2 ∈ Sdet and (C1, Receive, C2) ∈ Δdet

This result is also illustrated in Fig. 2. Note that although the set C2 comprises
states from V

(MS,MR)
(2b,0) , V

(MS,MR)
(3b,0) , V

(MS,MR)
(1,1) and V

(MS,MR)
(4,1) , the states in all

four of these subsets in Fig. 2 are part of the single successor state of C1. Hence,
in Fig. 2, the four shaded subsets representing C2 are connected via solid lines
with no arrowheads.

The destination markings of non-ε edges originating in C2 are obtained by
following the same procedure as previously used. Omitting details (see [8]) we
obtain:

DirectSuccC2 = {M (MS,MR)
(3a,1),(mn,an,1,0,0) | 0 ≤ mn + an ≤ MR − 1}

∪ {M (MS,MR)

(2a,1),(mn,an,1,0,0)
| 0 ≤ mn + an ≤ MR} (11)

Note that MR > 0 is implicit in the set defining class 3a markings above.

Parametric Language Analysis of the Class of Stop-and-Wait Protocols 205

Now, the successor of C2 is the union of the ε-closure of each marking in
DirectSuccC2. Let us leave the concrete domain at this point. We know from
Equation (10) that C2 spans all markings in V

(MS,MR)
(1,1) and V

(MS,MR)
(4,1) . Consider

the set of states obtained by replacing the sender sequence number, 1, with i, in
Equation (11):

DirectSucc(C2,i) = {M (MS,MR)

(3a,i),(mo,ao,1,0,0) | 0 ≤ mo + ao ≤ MR − 1}
∪ {M (MS,MR)

(2a,i),(mo,ao,1,0,0) | 0 ≤ mo + ao ≤ MR} (12)

for each i, 0 ≤ i ≤ MS. This gives a family of sets of markings, each identical
to DirectSuccC2 apart from a uniform translation of sequence numbers. When
i = 1 we have DirectSucc(C2,1) = DirectSuccC2.

To compute the union of the ε-closure of all nodes in DirectSucc(C2,i) we em-
ploy a similar procedure to that for discovering C2. We select M

(MS,MR)
(2a,i),(MR,0,1,0,0)

∈ DirectSucc(C2,i) and represent its ε-closure by C(3,i), where the appearance
of i in the subscript shows that C(3,i) is parametric. Omitting details of its
derivation (see [8]) C(3,i) is given by:

C(3,i) = {M (MS,MR)
(2a,i),(mo,ao,mn,0,ret) |0 ≤ mo+ao ≤ MR, 0 ≤ mn ≤ 1+ret, 0 ≤ ret ≤ MR}

∪{M (MS,MR)

(3a,i),(mo,ao,mn,0,ret) | 0 ≤ mo+ao ≤ MR−1, 0 ≤ mn ≤ 1+ret, 0 ≤ ret ≤ MR}
(13)

By inspection of Table 2, C(3,i) equals exactly the set of all class 2a and 3a nodes
for a given i, i.e.

C(3,i) = V
(MS,MR)
(2a,i) ∪ V

(MS,MR)
(3a,i) (14)

C(3,i) is equal to the union of the ε-closure of all markings in DirectSucc(C2,i):

Lemma 4. C(3,i) =
⋃

M∈DirectSucc(C2,i)
Closure(M).

Proof. See [8] for details. ��
Corollary 2. When i = 1, C(3,1) ∈ Sdet and (C2, Send, C(3,1)) ∈ Δdet.

We illustrate this result in Fig. 2, which shows C(3,1) covering all markings in
V

(MS,MR)
(2a,1) and V

(MS,MR)
(3a,1) , and the arc from C2 to C(3,1) labelled with the Send

service primitive.
To obtain the destination markings of non-ε edges originating in C(3,i) we

follow the same procedure as for discovering the outgoing non-ε edges originating
in C2. We denote this set of destination markings by DirectSucc(C3,i). We then
obtain the union of the ε-closure of all of these destination markings in the
same way as above, by finding the ε-closure of a carefully selected marking
and proving that it equals the union of the ε-closures of all of the destination
markings. Omitting details (see [8]) we obtain:

C(4,i) = V
(MS,MR)
(2b,i) ∪ V

(MS,MR)
(3b,i) ∪ V

(MS,MR)
(1,i⊕MS1) ∪ V

(MS,MR)
(4,i⊕MS1) (15)

206 G.E. Gallasch and J. Billington

Lemma 5. C(4,i) =
⋃

M∈DirectSucc(C3,i)
Closure(M).

Proof. See [8] for details. ��
Corollary 3. When i = 1, C(4,1) ∈ Sdet and hence (C(3,1), Receive, C(4,1)) ∈
Δdet.

This is also illustrated in Fig. 2. Unlike C2, C(4,1) covers all class 2b and class 3b
markings in V

(MS,MR)
1 , whereas C2 only covers some of the class 2b and class

3b markings in V
(MS,MR)
0 . It is important to note, for when we construct our

parametric deterministic FSA, that C(4,0) (obtained by substituting i = 0 into
Equation (15)) and C2 are not equal.

We repeat the process to find the destination markings of the outgoing non-
ε-labelled edges from the markings in C(4,i), which we denote DirectSucc(C4,i)).
From this, we obtain the successor state of C(4,i), which we denote C(5,i), and
which is given by:

C(5,i) = V
(MS,MR)
(2a,i⊕MS1) ∪ V

(MS,MR)
(3a,i⊕MS1) (16)

By inspection of Equations (13) and (16), we find that C(5,i) is equal to
C(3,i⊕MS1).

Lemma 6. C(3,i⊕MS1) =
⋃

M∈DirectSucc(C4 ,i)
Closure(M).

Proof. See [8] for details. ��
Corollary 4. When i = 1, C(3,2) ∈ Sdet and hence (C(4,1), Send, C(3,2)) ∈ Δdet.

This result is also illustrated in Fig. 2 for C(5,1). Note that C(5,1) (C(3,2)) covers
all class 2a and class 3a markings in V

(MS,MR)
2 , and that C(3,1) covers all class

2a and class 3a markings in V
(MS,MR)
1 . We can now state and prove a lemma

that builds the rest of the structure of our deterministic parametric FSA through
lazy subset evaluation:

Lemma 7. ∀i ∈ {0, 1, ..., MS}, C(3,i) ∈ Sdet, C(4,i) ∈ Sdet, (C(3,i), Receive,

C(4,i)) ∈ Δdet, and (C(4,i), Send, C(3,i⊕MS1)) ∈ Δdet.

Proof. We know from direct construction and Corollary 1 that C2 ∈ Sdet and
from Corollary 2 that when i = 1 is substituted into Equation (13), we get
C(3,1) ∈ Sdet and (C2, Send, C(3,1)) ∈ Δdet. From Corollary 3, we know that when
substituting i = 1 into Equation (15), we get C(4,1) ∈ Sdet and (C(3,1), Receive,

C(4,1)) ∈ Δdet. We know that when substituting i = 1 into Equation (16) and
i = 2 into Equation (13) we get C(5,1) = C(3,2). Hence, from Corollary 4, C(3,2) ∈
Sdet and (C(4,1), Send, C(3,2)) ∈ Δdet. Repeating the application of Corollaries 3
and 4 for i = 2, 3, ..., MS we get {C(4,i), C(3,i⊕MS1) | 2 ≤ i ≤ MS} ⊂ Sdet and
{(C(3,i), Receive, C(4,i)), (C(4,i), Send, C(3,i⊕MS1)) | 2 ≤ i ≤MS} ⊂ Δdet. Finally,
from Corollary 3 when i = 0 we obtain C(4,0) ∈ Sdet and (C(3,0), Receive, C(4,0)) ∈
Δdet, and from Corollary 4 when i = 0, (C(4,0), Receive, C(3,1)) ∈ Δdet. ��

Parametric Language Analysis of the Class of Stop-and-Wait Protocols 207

Lemma 7, along with C0 and C1 ∈ Sdet and (C0, Send, C1), (C1, Receive, C2) ∈
Δdet, means we have explored all states in Sdet and all outgoing arcs of states
in Sdet, starting from the initial state, using lazy evaluation. All that remains
to complete DFSARG(MS,MR) is identification of halt states.

According to [9], halt states of DFSARG(MS,MR) are those subsets of states
of FSARG(MS,MR) that contain halt states of FSARG(MS,MR) . The halt states of
FSARG(MS,MR) are given in Definition 6. From Equation (6) sdet

0 is trivially a halt
state. From Equations (7) and (13) C1 and C(3,i) (for each i ∈ {0, 1, ..., MS})
are halt states because they contain M

(MS,MR)
(2a,0),(0,0,0,0,MR). From Equations (10)

and (15) C2 and C(4,i) (for each i ∈ {0, 1, ..., MS}) are halt states because they
contain M

(MS,MR)
(2b,0),(0,0,0,0,MR). Thus all states of DFSARG(MS,MR) are halt states.

DFSARG(MS,MR) is thus given by

DFSARG(MS,MR) = (Sdet
(MS,MR), SP, Δdet

(MS,MR), s
det
0 , F det

(MS,MR))

where:

– Sdet
(MS,MR) = {C0, C1, C2} ∪ {C(3,i), C(4,i) | 0 ≤ i ≤MS};

– Δdet
(MS,MR) = {(C0, Send, C1), (C1, Receive, C2), (C2, Send, C(3,1))}
∪{(C(3,i), Receive, C(4,i)), (C(4,i), Send, C(3,i⊕MS1)) | 0 ≤ i ≤MS};

– sdet
0 = Closure(M (MS,MR)

(1,0),(0,0,0,0,0)) = C0; and
– F det

(MS,MR) = Sdet
(MS,MR).

DFSARG(MS,MR) is represented in tabular form in Table 9 and graphically
in Fig. 3. By convention, the initial state is shown highlighted in bold and the
halt states (all states) are shown as double circles in Fig. 3. The main loop in
the lower half of the figure illustrates the repeated behaviour over all values of
i, 0 ≤ i ≤ MS, of alternating Send and Receive events, moving from C(3,i) to
C(4,i) on a Receive event and from C(4,i) to C(3,i⊕MS1) on a Send event.

3.5 Minimisation and Conformance to the SWP Service Language

Determinisation has removed the effect of the MaxRetrans parameter on the
parametric FSA. However, the deterministic FSA representing the protocol lan-
guage is not minimal. This is evident from Fig. 3, which represents the language
generated by the regular expression (Send, Receive)∗ Send †, but which could be
represented by a FSA with fewer states.

Table 9. DFSARG(MS,MR) , where rows 4 and 5 are evaluated for 0 ≤ i ≤ MS

Source node Arc Label Dest. node Dest. = Halt?

C0 Send C1 true

C1 Receive C2 true

C2 Send C(3,1) true

C(3,i) Receive C(4,i) true

C(4,i) Send C(3,i⊕MS1) true

208 G.E. Gallasch and J. Billington

represents a sequence of alternating
Send and Receive actions

C(4,MS) C(3,i)C(4,i)C(3,i⊕MS1) C(4,2)

C(3,2)C(4,1)C(3,0)C(4,0)

Receive Send Send

ReceiveSend

ReceiveSend

C(3,1)

Receive

C0 C1 C2

ReceiveSend

Send

Fig. 3. An abstract visualisation of the parametric deterministic FSA,
DFSARG(MS,MR)

Following the minimisation procedure described in [1], from DFSARG(MS,MR)

(and Table 9) it can be seen that all states are halt states, so we begin with all
states placed in the same subset, i.e. {C0, C1, C2, C(3,i), C(4,i) | 0 ≤ i ≤ MS}.
States are now separated into disjoint subsets based on the input symbols they
accept and the subset to which the resulting successor states belong. This results
in the subset Set1 = {C0, C2, C(4,i) | 0 ≤ i ≤ MS} of states accepting only the
input symbol Send, and the subset Set2 = {C1, C(3,i) | 0 ≤ i ≤ MS} of states
accepting only the input symbol Receive. These subsets cannot be further divided
in this way, as all states in Set1 accept only Send, leading to a successor in Set2,
and all states in Set2 accept only Receive, leading to a successor in Set1. These
two subsets become, essentially, the states of the minimised FSA. We choose the
representative ‘1’ to represent Set1 in the minimal FSA and the representative
‘2’ to represent Set2. Both are halt states and ‘1’ is the initial state, as Set1
contains the initial state of the deterministic FSA, C0. Send and Receive edges
are defined accordingly. The resulting minimised deterministic FSA is given by
MFSARG(MS,MR) = (Smin

(MS,MR), SP, Δmin
(MS,MR), 1, Fmin

(MS,MR)) where:

– Smin
(MS,MR) = {1, 2};

– Δmin
(MS,MR) = {(1, Send, 2), (2, Receive, 1)}; and

– Fmin
(MS,MR) = Smin

(MS,MR) = {1, 2}.
Note that this FSA is completely independent of the values of the parameters

MS and MR. Determinisation removes events that are invisible to the user, such
as retransmissions. Hence, it is not unexpected that determinisation has removed
the effect of MR. Minimisation collapses repeated behaviour, such as the (Send
Receive) event sequence that is repeated for each sequence number. Thus, it
makes sense intuitively that the effect of MS is removed by minimisation.

Parametric Language Analysis of the Class of Stop-and-Wait Protocols 209

MFSARG(MS,MR) thus represents the protocol language for all of the members
of the infinite family of Stop-and-Wait protocol models, i.e. all positive values
of MS and all non-negative values of MR. The language of MFSARG(MS,MR)

is identical to the Stop-and-Wait service of (Send, Receive)∗ Send †. This verifies
that the SWP does indeed satisfy the Stop-and-Wait property for all allowable
values of the parameters, and thus Theorem 2 is proved.

4 Conclusions and Future Work

In this paper we have presented a further step in the parametric verification of
the infinite class of Stop-and-Wait Protocols, that of language analysis. We have
successfully verified that all instantiations of the Stop-and-Wait Protocol (ab-
stracting from data) operating over an in-order but lossy medium, parameterised
with the maximum sequence number and maximum number of retransmissions,
conform to the Stop-and-Wait service language. This was accomplished by de-
riving a parametric FSA directly from the parametric reachability graph, then
applying automata reduction techniques directly to the parametric FSA to reveal
a simple, non-parametric FSA describing the service language.

The Stop-and-Wait Protocol class is important because it represents an in-
finite class of transport protocols in two parameters. Its verification provides
the first step in generalising the approach to credit-based flow control protocols,
which include widely used protocols such as the Internet’s Transmission Control
Protocol. Credit-based flow control protocols have three parameters (the third
is the maximum size of a credit-based window). We have taken the first steps in
extending this work to credit-based flow control protocols by considering both
batch and first-only retransmission schemes and in-order and in-window accept
policies of the receiver in [3], where we derive expressions in the parameters for
the number of terminal markings and the channel bounds. We would also like
to extend this work to complete the verification of the Stop-and-Wait class over
lossy in-order channels, by incorporating data independence principles [13, 14]
so that data properties (such as data is never lost or duplicated) can be verified.
Finally we would like to consider if a similar approach can be used to verify
the Stop-and-Wait class operating over a re-ordering and lossy medium, as is
possible over the Internet.

References

1. Barrett, W.A., Bates, R.M., Gustafson, D.A., Couch, J.D.: Compiler Construction:
Theory and Practice. 2nd edn. Science Research Associates (1986)

2. Billington, J., Gallasch, G.E., Han, B.: A Coloured Petri Net Approach to Protocol
Verification. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency
and Petri Nets. LNCS, vol. 3098, pp. 210–290. Springer, Heidelberg (2004)

3. Billington, J., Saboo, S.: An investigation of credit-based flow control protocols.
In: Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems (SIMUTools 2008), Marseille,
France, 3-7 March 2008, 10 pages (2008) (CD ROM), ACM International Confer-
ence Proceedings series (to appear)

210 G.E. Gallasch and J. Billington

4. Gallasch, G.E.: Parametric Verification of the Class of Stop-and-Wait Protocols.
PhD thesis, Computer Systems Engineering Centre, School of Electrical and In-
formation Engineering, University of South Australia, Adelaide, Australia (May
2007)

5. Gallasch, G.E., Billington, J.: Using Parametric Automata for the Verification of
the Stop-and-Wait Class of Protocols. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA
2005. LNCS, vol. 3707, pp. 457–473. Springer, Heidelberg (2005)

6. Gallasch, G.E., Billington, J.: A Parametric State Space for the Analysis of the
Infinite Class of Stop-and-Wait Protocols. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 201–218. Springer, Heidelberg (2006)

7. Gallasch, G.E., Billington, J.: Parametric Verification of the Class of Stop-and-Wait
Protocols over Ordered Channels. Technical Report CSEC-23, Computer Systems
Engineering Centre Report Series, University of South Australia (2006)

8. Gallasch, G.E., Billington, J.: Language Analysis of the Class of Stop-and-Wait
Protocols. Technical Report CSEC-31, Computer Systems Engineering Centre Re-
port Series, University of South Australia (2008)

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. 2nd edn. Addison-Wesley, Reading (2001)

10. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, Volume 1: Basic Concepts. 2nd edn. Monographs in Theoretical Computer
Science, Springer, Heidelberg (1997)

11. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer 9(3-4), 213–254 (2007)

12. Mohri, M.: Generic Epsilon-Removal and Input Epsilon-Normalisation Algorithms
for Weighted Transducers. Internation Journal of Foundations of Computer Sci-
ence 13(1), 129–143 (2002)

13. Sabnani, K.: An Algorithmic Technique for Protocol Verification. IEEE Transac-
tions on Communications 36(8), 924–931 (1988)

14. Wolper, P.: Expressing Interesting Properties of Programs in Propositional Tem-
poral Logic. In: Proceedings of the 13th Annual ACM Symposium on Principles of
Programming Languages (POPL), pp. 184–193. ACM Press, New York (1986)

Hierarchical Set Decision Diagrams
and Automatic Saturation�

Alexandre Hamez1,2, Yann Thierry-Mieg1, and Fabrice Kordon1

1 Université P. & M. Curie
LIP6 - CNRS UMR 7606

4 Place Jussieu, 75252 Paris cedex 05, France
2 EPITA

Research and Development Laboratory
F-94276 Le Kremlin-Bicetre cedex, France

Alexandre.Hamez@lip6.fr, Yann.Thierry-Mieg@lip6.fr,

Fabrice.Kordon@lip6.fr

Abstract. Shared decision diagram representations of a state-space have been
shown to provide efficient solutions for model-checking of large systems. How-
ever, decision diagram manipulation is tricky, as the construction procedure is
liable to produce intractable intermediate structures (a.k.a peak effect). The def-
inition of the so-called saturation method has empirically been shown to mostly
avoid this peak effect, and allows verification of much larger systems. However,
applying this algorithm currently requires deep knowledge of the decision di-
agram data-structures, of the model or formalism manipulated, and a level of
interaction that is not offered by the API of public DD packages.

Hierarchical Set Decision Diagrams (SDD) are decision diagrams in which
arcs of the structure are labeled with sets, themselves stored as SDD. This data
structure offers an elegant and very efficient way of encoding structured speci-
fications using decision diagram technology. It also offers, through the concept
of inductive homomorphisms, unprecedented freedom to the user when defining
the transition relation. Finally, with very limited user input, the SDD library is
able to optimize evaluation of a transition relation to produce a saturation effect
at runtime. We further show that using recursive folding, SDD are able to offer
solutions in logarithmic complexity with respect to other DD. We conclude with
some performances on well known examples.

Keywords: Hierarchical Decision Diagrams, Model Checking, Saturation.

1 Introduction

Parallel systems are notably difficult to verify due to their complexity. Non-determinism
of the interleaving of elementary actions in particular is a source of errors difficult to
detect through testing. Model-checking of finite systems or exhaustive exploration of
the state-space is very simple in its principle, entirely automatic, and provides useful
counter-examples when the desired property is not verified.

� This work has been partially supported by the ModelPlex European integrated project FP6-IP
034081 (Modeling Solutions for Complex Systems).

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 211–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 A. Hamez, Y. Thierry-Mieg, and F. Kordon

However model-checking suffers from the combinatorial state-space explosion pro-
blem, that severely limits the size of systems that can be checked automatically. One
solution which has shown its strength to tackle very large state spaces is the use of
shared decision diagrams like BDD [1,2].

But decision diagram technology also suffers from two main drawbacks. First, the
order of variables has a huge impact on performance and defining an appropriate order
is non-trivial [3]. Second, the way the transition relation is defined and applied may
have a huge impact on performance [4,5].

The objective of this paper is to present novel optimization techniques for hierar-
chical decision diagrams called Set Decision Diagrams (SDD), suitable to master the
complexity of very large systems. Although SDD are a general all-purpose compact
data-structure, a design goal has been to provide easy to use off the shelf constructs
(such as a fixpoint) to develop a model-checker using SDD. These constructs allow
the library to control operation application, and harness the power of state of the art
saturation algorithms [5] with low user expertise in DD.

No specific hypothesis is made on the input language, although we focus here on a
system described as a composition of labeled transition systems. This simple formal-
ism captures most transition-based representations (such as automata, communicating
processes like in Promela [6], Harel state charts, or bounded Petri nets).

Our hierarchical Set Decision Diagrams (section 2) offer the following capabilities:

– Using the structure of a specification to introduce hierarchy in the state space, it en-
ables more possibilities for exploiting pattern similarities in the system (section 3),

– Automatic activation of saturation ; the algorithms described in this paper allow the
library to enact saturation with minimal user input (sections 4 and 5),

– A recursive folding technique that is suitable for very symmetric systems (sec-
tion 7).

We also show that our openly distributed implementation: libDDD [7], is efficient in
terms of memory consumption and enables the verification of bigger state spaces.

2 Definitions

We define in this section Data Decision Diagrams (based on [8]) and Set Decision
Diagrams (based on [9]).

2.1 Data Decision Diagrams

Data Decision Diagrams (DDD) [8] are a data structure for representing finite sets of
assignments sequences of the form (e1 := x1) · (e2 := x2) · · · (en := xn) where ei are vari-
ables and xi are the assigned integer values. When an ordering on the variables is fixed
and the values are booleans, DDD coincides with the well-known Binary Decision Di-
agrams. When the ordering on the variables is the only assumption, DDD correspond
closely to Multi-valued Decision Diagrams (MDD)[5].

However DDD assume no variable ordering and, even more, the same variable may
occur many times in a same assignment sequence. Moreover, variables are not assumed

Hierarchical Set Decision Diagrams and Automatic Saturation 213

to be part of all paths. Therefore, the maximal length of a sequence is not fixed, and
sequences of different lengths can coexist in a DDD. This feature is very useful when
dealing with dynamic structures like queues.

DDD have two terminals : as usual for decision diagram, 1-leaves stand for accepting
terminators and 0-leaves for non-accepting ones. Since there is no assumption on the
variable domains, the non-accepted sequences are suppressed from the structure. 0 is
considered as the default value and is only used to denote the empty set of sequences.
This characteristic of DDD is important as it allows the use of variables of finite domain
with a priori unknown bounds. In the following, E denotes a set of variables, and for
any e in E, Dom(e) ⊆N represents the domain of e.

Definition 1 (Data Decision Diagram). The set � of DDD is inductively defined by
d ∈� if:

– d ∈ {0,1} or
– d = 〈e,α〉 with:
• e ∈ E
• α : Dom(e)→�, such that {x ∈ Dom(e) |α(x) � 0} is finite.

We denote e
x−→ d, the DDD (e,α) with α(x) = d and for all y � x, α(y) = 0.

Although no ordering constraints are given, to ensure existence of a canonic represen-
tation, DDD only represent sets of compatible DDD sequences. Note that the DDD
0 represents the empty set and is therefore compatible with any DDD sequence. The
symmetric compatibility relation ≈ is defined inductively for two DDD sequences:

Definition 2 (Compatible DDD sequences). We call DDD sequence a DDD of the

form e1
x1−−→ e2

x2−−→ . . .1. Let s1, s2 be two sequences, s1 is compatible with s2, noted
s1 ≈ s2 iff.:

– s1 = 1∧ s2 = 1 or

– s1 = e
x−→ d∧ s2 = e′

x′−→ d′ such that

{
e = e′∧
x = x′ ⇒ d ≈ d′

As usual, DDD are encoded as (shared) decision trees (see Fig. 1 for an example).
Hence, a DDD of the form 〈e,α〉 is encoded by a node labeled e and for each x ∈Dom(e)
such that α(x) � 0, there is an arc from this node to the root of α(x). By the definition
1, from a node 〈e,α〉 there can be at most one arc labeled by x ∈ Dom(e) and leading to
α(x). This may cause conflicts when computing the union of two DDD, if the sequences
they contain are incompatible, so care must be taken on the operations performed.

DDD are equipped with the classical set-theoretic operations (union, intersection, set
difference). They also offer a concatenation operation d1 ·d2 which replaces 1 terminals
of d1 by d2. It corresponds to a cartesian product. In addition, homomorphisms are
defined to allow flexibility in the definition of application specific operations.

A basic homomorphism is a mapping Φ from � to � such that Φ(0) = 0 and Φ(d+
d′)=Φ(d)+Φ(d′),∀d,d′ ∈�. The sum+ and the composition ◦ of two homomorphisms
are homomorphisms. Some basic homomorphisms are hard-coded. For instance, the

214 A. Hamez, Y. Thierry-Mieg, and F. Kordon

homomorphism d ∗ Id where d ∈�, ∗ stands for the intersection and Id for the identity,
allows to select the sequences belonging to d : it is a homomorphism that can be applied
to any d′ yielding d ∗ Id(d′) = d ∗d′. The homomorphisms d · Id and Id ·d permit to left
or right concatenate sequences. We widely use the left concatenation that adds a single

assignment (e := x), noted e
x−→ Id.

We also have a transitive closure � unary operator that allows to
a

a

b c

1

1

1

11

2

4

Fig. 1. DDD for

a
1−→ a

1−→ b
1−→ 1

+a
4−→ c

1−→ 1

+a
1−→ a

2−→ c
1−→ 1

perform a fixpoint computation. For any homomorphism h, h�(d),
d ∈� is evaluated by repeating d← h(d) until a fixpoint is reached.
In other words, h�(d) = hn(d) where n is the smallest integer such
that hn(d) = hn−1(d). This computation may not terminate (e.g. h in-
crements a variable). However, if it does, then h� = hn with n fi-
nite. Thus, h� is itself an inductive homomorphism. This operator is
usually applied to Id + h instead of h, allowing to cumulate newly
reached paths in the result.

Furthermore, application-specific mappings can be defined by in-
ductive homomorphisms. An inductive homomorphismΦ is defined
by its evaluation on the 1 terminal Φ(1) ∈�, and its evaluationΦ′ =
Φ(e, x) for any e ∈ E and any x ∈ Dom(e). Φ′ is itself a (possibly in-
ductive) homomorphism, that will be applied on the successor node
d. The result ofΦ(〈e,α〉) is then defined as

∑
(x,d)∈αΦ(e, x)(d), where∑

represents a union. We give examples of inductive homomorphisms in section 3
which introduces a simple labeled P/T net formalism.

2.2 Set Decision Diagrams

Set Decision Diagrams (SDD) [9], are shared decision diagrams in which arcs of the
structure are labeled by a set of values, instead of a single valuation. This set may itself
be represented by an SDD or DDD, thus when labels are SDD, we think of them as
hierarchical decision diagrams. This section presents the definition of SDD, which has
been modified from [9] for more clarity (although it is identical in effects).

Set Decision Diagrams (SDD) are data structures for representing sequences of as-
signments of the form e1 ∈ a1;e2 ∈ a2; · · ·en ∈ an where ei are variables and ai are sets
of values.

SDD can also be seen as a different representation of the DDD defined as:⋃
x1∈a1

· · ·⋃xn∈an e1
x1−−→ ·· ·en

xn−−→ 1, however since ai are not required to be finite, SDD
are more expressive than DDD.

We assume no variable ordering, and the same variable can occur several times in an
assignment sequence. We define the usual terminal 1 to represent accepting sequences.
The terminal 0 is also introduced and represents the empty set of assignment sequences.
In the following, E denotes a set of variables, and for any e in E, Dom(e) represents the
domain of e which may be infinite.

Definition 3 (Set Decision Diagram). The set � of SDD is inductively defined by s ∈ � if:

– s ∈ {0,1} or
– s = 〈e,π,α〉 with:

Hierarchical Set Decision Diagrams and Automatic Saturation 215

• e ∈ E.
• π = {a0, . . . ,an} is a finite partition of Dom(e), i.e. Dom(e) = a0�· · ·�an where
� is the disjunctive union. We further assume ∀i,ai � ∅, and n finite.

• α : π→ �, such that ∀i � j,α(ai) � α(a j).

We will simply note s = 〈e,α〉 the node 〈e,π,α〉 as α implicitly defines π. We denote

e
a−→ d, the SDD (e,α) with α(a) = d,α(Dom(e) \ a) = 0. By convention, when it exists,

the element of the partition π that maps to the SDD 0 is not represented.

SDD are canonized by construction through the union operator. This definition ensures
canonicity of SDD, as π is a partition and that no two arcs from a node may lead to the
same SDD. Therefore any value x of Dom(e) is represented on at most one arc, and any

time we are about to construct e
a−→ d+e

a′−→ d, we will construct an arc e
a∪a′−−−→ d instead.

This ensures that any set of assignment sequences has a unique SDD representation.
The finite size of the partition π ensures we can store α as a finite set of pairs (ai,di),

and let π be implictly defined by α.
Although simple, this definition allows to construct rich and complex data :

– The definition supports domains of infinite size (e.g. Dom(e) = R), provided that
the partition size remains finite (e.g.]0..3],]3..+∞]). This feature could be used to
model clocks for instance (as in [10]).

– � or � can be used as the domain of variables, introducing hierarchy in the data
structure. In the rest of the paper we will focus on this use case, and consider that
the SDD variables we manipulate are exclusively of domain � or�.

Like DDD, to handle paths of variable lengths, SDD are required to represent a set
of compatible assignment sequences. An operation over SDD is said partially defined
if it may produce incompatible sequences in the result.

Definition 4 (Compatible SDD sequences). An SDD sequence is an SDD of the form

e0
a0−−→ ·· ·en

an−−→ 1. Let s1, s2 be two sequences, s1 ≈ s2 iff.:

– s1 = 1∧ s2 = 1

– s1 = e
a−→ d∧ s2 = e′ a′−→ d′ such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e = e′
∧a ≈ a′
∧a∩a′ � ∅ ⇒ d ≈ d′

Compatibility is a symmetric property. The a ≈ a′ is defined as SDD compatibility if
a,a′ ∈ � or DDD compatibility if a,a′ ∈ �. DDD and SDD are incompatible. Other
possible referenced types should define their own notion of compatibility.

2.3 SDD Operations

SDD support standard set theoretic operations (union, intersection, set difference) for
compatible SDD. Like DDD they also support concatenation, as well as a variant of
inductive homomorphisms. Some built-in basic homomorphisms (e.g. d ∗ Id) are also
provided similarly to DDD.

216 A. Hamez, Y. Thierry-Mieg, and F. Kordon

To define a family of inductive homomorphismsΦ, one has just to set the homomor-
phisms for the symbolic expression Φ(e, x) for any variable e and set x ⊆ Dom(e) and
the SDD Φ(1). The application of an inductive homomorphismΦ to a node s = 〈e,α〉 is
then obtained by Φ(s) =

∑
(x,d)∈αΦ(e, x)(d).

It should be noted that this definition differs from the DDD inductive homomorphism
in that Φ(e, x) is defined over the sets x ⊆ Dom(e). This is a fundamental difference as
it requires Φ to be defined in an ensemblist way: we cannot define the evaluation of Φ
over a single value of e. However Φ must be defined for the set containing any single
value. If the user only defined Φ(e, x) with x ∈ Dom(e), since the ai may be infinite,
evaluation could be impossible. Even when Dom(e) = �, a element-wise definition
would force to use an explicit evaluation mechanism, which is not viable when ai is
large (e.g. |ai| > 107).

Furthermore, let Φ1, Φ2 be two homomorphisms. Then Φ1 +Φ2, Φ1 ◦Φ2 and Φ�1
(transitive closure) are homomorphisms.

We also now define a local construction, as an inductive homomorphism. Let var ∈ E
designate a target variable, and h be a SDD or DDD homomorphism (depending on
Dom(var)) that can be applied to any x ⊆ Dom(var),

local(h,var)(e, x)=⎧⎪⎪⎨⎪⎪⎩ e
h(x)−−−→ Id if e = var

e
x−→ local(h,var) otherwise

local(h,var)(1)= 0

This construction is built-in, and gives a lot of structural information on the opera-
tion. As we will see in section 5, specific rewriting rules will allow to optimize evalua-
tion of local constructions.

3 Model Checking with Set Decision Diagrams

To build a model checker for a given formalism using SDD, one needs to perform the
following steps:

1. Define the formalism,
2. Define a representation of states,
3. Define a transition relation using homomorphisms,
4. Define a verification goal.

We exhibit these steps in this section using a simple formalism, labeled P/T nets.
Most of what is presented here is valid for other LTS.

1. Defining the Formalism. A unitary Labeled P/T-Net is a tuple 〈P, T , Pre, Post, L ,
label, m0〉 where

– P is a finite set of places,
– T is a finite set of transitions (with P∩T = ∅),
– Pre and Post : P×T → IN are the pre and post functions labeling the arcs.

Hierarchical Set Decision Diagrams and Automatic Saturation 217

– L is a set of labels
– label : T → 2L is a function labeling the transitions
– m0 ∈NP is the initial marking of the net.

For a transition t, •t (resp. t•) denotes the set of places {p ∈ P | Pre(p, t) � 0} (resp.
{p ∈ P | Post(p, t) � 0}). A marking m is an element of NP. A transition t is enabled
in a marking m if for each place p, the condition Pre(p, t) ≤ m(p) holds. The firing
of an enabled transition t from a marking m leads to a new marking m′ defined by
∀p ∈ P,m′(p) = m(p)−Pre(p, t)+Post(p, t).

Labeled P/T nets may be composed by synchronization on the transitions that bear
the same label. This is a parallel composition noted �, with event-based synchro-
nizations that can be interpreted as yielding a new (composite) labeled P/T net. Let
M = M0 � · · ·� Mn be such a composite labeled Petri net. Each label of M common to
the composed nets Mi gives rise to a synchronization transition tl of M.

Let τl = {ti|ti ∈ Mi.T ∧ l ∈ Mi.label(ti)} represent parts of the synchronization, i.e. the
set of transitions that bear this label in the subnets Mi. tl is enabled iff. ∀ti ∈ τl , ti is
enabled. The effect firing of tl is obtained by firing all the parts ti ∈ τl. In the rest of this
paper, we will call labeled Petri net a unitary or composite net.

Figure 2 presents an example labeled Petri net, for the classical dining philosophers
problem. The composite net P0 � P1 synchronizes transition P0.eat with P1.putFork
through label R0 for instance. This transition corresponds to philosopher P0 synchro-
nously eating and returning philosopher P1 his fork.

This is a general compositional framework, adapted to the composition of arbitrary
labeled transition systems (LTS).

2. Defining the State Representation. Let us consider a representation of a state space
of a unitary P/T net in which we use one DDD variable for each place of the system. The
domain of place variables is the set of natural numbers. The initial marking for a single

place is represented by: dp = p
m0(p)−−−−→ 1. For a given total order on the places of the

net, the DDD representing the initial marking is the concatenation of DDD dp1 · · ·dpn .

label(getLi) = {Li}

label(putForki) = {Ri+1modN}

label(eati) = {Ri}

label(getForki) = {Li+1modN}

Transition eati is synchronized with putForki+1modN , thus the labels

Transition getLi is synchronized with getForki+1modN , thus the labels

Idle

WaitL

HasL

WaitR

HasR

Fork

eati

getRigetLi

getForki

hungryi

putForki

Fig. 2. Labeled P/T net Pi of ith philosopher in the N dining philosophers problem

218 A. Hamez, Y. Thierry-Mieg, and F. Kordon

For instance, the initial state of a philosopher can be represented by : Fork
1−→ HasR

0−→
WaitR

0−→ HasL
0−→WaitL

0−→ Idle
1−→ 1.

To introduce structure in the representation, we introduce the role of parenthesis in
the definition of a composite net. We will thus exploit the fact the model is defined as
a composition of (relatively independent) parts in our encoding. If we disregard any
parenthesizing of the composition we obtain an equivalent “flat” composite net, how-
ever using different parenthesizing(s) yields a more hierarchical vision (nested submod-
ules), that can be accurately represented and exploited in our framework.

Definition 5 (Structured state representation). Let M be a labeled P/T net, we induc-
tively define its initial state representation r(M) by :

– If M is a unitary net, we use the encoding r(M) = dp1 · · ·dpn, with dp = p
m0(p)−−−−→ 1.

– If M = M1 � M2, r(M) = r(M1) · r(M2). Thus the parallel composition of two nets
will give rise to the concatenation of their representations.

– If M = (M1), r(M) = m(M1)
r(M1)−−−−→ 1, where m(M1) is an SDD variable. Thus paren-

thesizing an expression gives rise to a new level of hierarchy in the representation.

A state is thus encoded hierarchically in accordance with the parenthesized composition
definition. If we disregard parenthesizing, we obtain a flat representation using only
DDD. We use in our benchmark set many models taken from literature that are defined
using “modules”, that is a net N = (M1)� · · ·�(Mn) where each Mi is a unitary net called
a module (yielding a single level of hierarchy in the SDD). Figure 3 shows an example
of this type of encoding, where figure 3(a) is an SDD representing the full composite
net, and labels of the SDD arcs refer to DDD nodes of figure 3(b).

3. Defining the Transition encoding. The symbolic transition relation is defined arc
by arc in a modular way well-adapted to the further combination of arcs of different

1

(P0)

(P1)

m0

(P1)

m1

(P1)

m2

(P1)

m3

(P2)

m0

(P2)

m2

m0 m1

(P2)

m0

(P2)

m2

m2 m3

m1 m3 m1 m3

(a) SDD: (P0)� (P1)� (P2)

Fork

HasR

WaitR

HasL

WaitL

Idle

1

0

1

0

0

1

HasR

WaitR

HasL

WaitL

Idle

1

0

0

01

0

0 1

Fork

HasR

WaitR

HasL

WaitL
0

1

0

1

HasR

WaitR

1

0

0 1

Fork

0

Fork

0

m0 m2 m1 m3

(b) DDD: Pi unitary net

Fig. 3. Hierarchical encoding of the full state-space for 3 philosophers

Hierarchical Set Decision Diagrams and Automatic Saturation 219

net sub-classes (e.g. inhibitor arcs, reset arcs, capacity places, queues. . .). Homomor-
phisms allowing to represent these extensions were previously defined in [8], and are
not presented here for sake of simplicity. The two following homomorphisms are de-
fined to deal respectively with the pre (noted h−) and post (noted h+) conditions. Both
are parameterized by the connected place (p) as well as the valuation (v) labeling the
arc entering or outing p .

h−(p,v)(e, x) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e

x−v−−−→ Id if e = p∧ x ≥ v
0 if e = p∧ x < v

e
x−→ h−(p,v) otherwise

h−(p,v)(1) = 0

h+(p,v)(e, x) =⎧⎪⎪⎨⎪⎪⎩ e
x+v−−−→ Id if e = p

e
x−→ h+(p,v) otherwise

h+(p,v)(1) = 0

These basic homomorphisms are composed to form a transition relation. We use
©h∈H to denote the composition by ◦ of the elements h in the set H.

Definition 6 (Inductive homomorphism transition representation). Let t be a tran-
sition of labeled P/T net M. We inductively define its representation as a homomor-
phisms hTrans(t) by :

– If M is a unitary net, we use the encoding

hTrans(t) =©p∈t•h+(p,Post(p, t))◦©p∈•th−(p,Pre(p, t))

– If M = (M1)� · · ·�(Mn), and t represents a synchronization of transitions on a label
l ∈ L. The homomorphism representing t is written :

hTrans(t) =©ti∈τl local(hTrans(ti),m(Mi))

For instance the transition hungryi in the model of Fig. 2, would have as homomor-
phism : hTrans(hungry) = h+(WaitL,1) ◦ h+(WaitR,1) ◦ h−(Idle,1). When on a path a
precondition is unsatisfied, the h− homomorphism will return 0, pruning the path from
the structure. Thus the h+ are only applied on the paths such that all preconditions are
satisfied.

To handle synchronization of transitions bearing the same label in different nets of
a compositional net definition we use the local application construction of SDD homo-
morphisms. The fact that this definition as a composition of local actions is possible
stems from the simple nature of the synchronization schema considered. A transition
relation that is decomposable under this form has been called Kronecker-consistent in
various papers on MDD by Ciardo et al like [5].

For instance, let us consider the dining philosophers example for N = 3, M = (P0) �
(P1) � (P2). The transition tR0 is written :

hTrans(tR0) = local(hTrans(eat),m(P0))
◦local(hTrans(putFork),m(P1))
= local(h+(Idle,1)◦h+(Fork,1)◦h−(HasL,1)◦h−(HasR,1),m(P0))
◦local(h+(Fork,1),m(P1))

220 A. Hamez, Y. Thierry-Mieg, and F. Kordon

4. Defining the Verification Goal. The last task remaining is to define a set of tar-
get (usually undesired) states, and check whether they are reachable, which involves
generating the set of reachable states using a fixpoint over the transition relation. The
user is then free to define a selection inductive homomorphism that only keeps states
that verify an atomic property. This is quite simple, using homomorphisms similar to
the pre condition (h−) that do not modify the states they are applied to. Any boolean
combination of atomic properties is easily expressed using union, intersection and set
difference.

A more complex CTL logic model-checker can then be constructed using nested fix-
point constructions over the transition relation or its reverse [2]. Algorithms to produce
witness (counter-example) traces also exist [11] and can be implemented using SDD.

4 Transitive Closure : State of the Art

The previous section has allowed us to obtain an encoding of states using SDD and of
transitions using homomorphisms. We have concluded with the importance of having
an efficient algorithm to obtain the transitive closure or fixpoint of the transition relation
over a set of (initial) states, as this procedure is central to the model-checking problem.

Such a transitive closure can be obtained using various algorithms, some of which are
presented in algorithm 1. Variant a is a naive algorithm, b [2] and c [4] are algorithms
from the literature. Variant d, together with automatic optimizations, is our contribution
and will be presented in the next section.

Symbolic transitive closure (’91)[2]. Variation a is adaptated from the natural way of
writing a fixpoint with explicit data structures: it uses a set todo exclusively containing
unexplored states. Notice the slight notation abuse: we note T (todo) when we should
note (

∑
t∈T t)(todo).

Variant b instead applies the transition relation to the full set of currently reached
states. Variant b is actually much more efficient than variant a in practice. This is due to
the fact that the size of DD is not directly linked to the number of states encoded, thus
the todo of variant a may actually be much larger in memory. Variant a also requires
more computations (to get the difference) which are of limited use to produce the final
result. Finally, applying the transition relation to states that have been already explored
in b may actually not be very costly due to the existence of a cache.

Variant b is similar to the original way of writing a fixpoint as found in [2]. Note that
the standard encoding of a transition relation uses a DD with two DD variables (before
and after the transition) for each DD variable of the state. Keeping each transition DD
isolated induces a high time overhead, as different transitions then cannot share traver-
sal. Thus the union of transitions T is stored as a DD, in other approaches than our
DDD/SDD. However, simply computing this union T has been shown in some cases to
be intractable.

Chaining (’95)[4]. An intermediate approach is to use clusters. Transition clusters are
defined and a DD representing each cluster is computed using union. This produces
smaller DD, that represent the transition relation in parts. The transitive closure is then

Hierarchical Set Decision Diagrams and Automatic Saturation 221

Algorithm 1. Four variants of a transitive closure loop

Data: {Hom} T : the set of transitions encoded as hTrans homomorphisms
� m0 : initial state encoded as r(M) SDD
� todo : new states to explore
� reach : reachable states
a) Explicit reachability style
begin

todo := m0
reach := m0
while todo � 0 do
� tmp := T (todo)
todo := tmp\ reach
reach := reach+ tmp

end

b) Standard symbolic BFS loop
begin

todo := m0
reach := 0
while todo � reach do

reach := todo
todo := todo+T (todo) ≡ (T + Id)(todo)

end

c) Chaining loop
begin

todo := m0
reach := 0
while todo � reach do

reach := todo
for t ∈ T do

todo := (t+ Id)(todo)

end

d) Saturation enabled
begin

reach := (T + Id)�(m0)
end

obtained by algorithm c, where each t represents a cluster. Note that this algorithm
no longer explores states in a strict BFS order, as when t2 is applied after t1, it may
discover successors of states obtained by the application of t1. The clusters are defined
in [4] using structural heuristics that rely on the Petri net definition of the model, and
try to maximize independence of clusters. This may allow to converge faster than in a
or b which will need as many iterations as the state-space is deep. While this variant
relies on a heuristic, it has empirically been shown to be much better than b.

Saturation (’01)[5]. Finally the saturation method is empirically an order of magni-
tude better than c. Saturation consists in constructing clusters based on the highest DD
variable that is used by a transition. Any time a DD node of the state space representa-
tion is modified by a transition it is (re)saturated, that is the cluster that corresponds to
this variable is applied to the node until a fixpoint is reached. When saturating a node,
if lower nodes in the data structure are modified they will themselves be (re)saturated.
This recursive algorithm can be seen as particular application order of the transition
clusters that is adapted to the DD representation of state space, instead of exploring in
BFS order the states.

The saturation algorithm is not represented in the algorithm variants figure because it
is described (in [5])on a full page that defines complex mutually recursive procedures,
and would not fit here. Furthermore, DD packages such as cudd or Buddy [12,13] do not
provide in their public API the possibility of such fine manipulation of the evaluation
procedure, so the algorithm of [5] cannot be easily implemented using those packages.

222 A. Hamez, Y. Thierry-Mieg, and F. Kordon

Our Contribution. All these algorithm variants, including saturation (see [9]), can
be implemented using SDD. However we introduce in this paper a more natural way
of expressing a fixpoint through the h� unary operator, presented in variant d. The
application order of transitions is not specified by the user in this version, leaving it up
to the library to decide how to best compute the result. By default, the library will thus
apply the most efficient algorithm curently available: saturation. We thus overcome the
limits of other DD packages, by implementing saturation inside the library.

5 Automating Saturation

This section presents how using simple rewriting rules we automatically create a satu-
ration effect. This allows to embed the complex logic of this algorithm in the library,
offering the power of this technique at no additional cost to users. At the heart of this
optimization is the property of local invariance.

5.1 Local Invariance

A minimal structural information is needed for saturation to be possible: the highest
variable operations need to be applied to must be known. To this end we define :

Definition 7 (Locally invariant homomorphism). An homomorphism h is locally in-
variant on variable e iff

∀s = 〈e,α〉 ∈�∪�, h(s) =
∑

(x,d)∈α e
x−→ h(d)

Concretely, this means that the application of h doesn’t modify the structure of nodes
of variable e, and h is not modified by traversing these nodes. The variable e is a “don’t
care” w.r.t. operation h, it is neither written nor read by h. A standard DD encoding [5]
of h applied to this variable would produce the identity. The identity homomorphism Id
is locally invariant on all variables.

For an inductive homomorphism h locally invariant on e, it means that h(e, x)= e
x−→ h.

A user defining an inductive homomorphism h should provide a predicate Skip(e) that
returns true if h is locally invariant on variable e. This minimal information will be
used to reorder the application of homomorphisms to produce a saturation effect. It is
not difficult when writing a homomorphism to define this Skip predicate since the useful
variables are known, it actually reduces the number of tests that need to be written.

For example, the h+ and h− homomorphisms of section 3 can exhibit the locality of
their effect on the state signature by defining Skip, which removes the test e = p w.r.t.
the previous definition since p is the only variable that is not skipped:

h−(p,v)(e, x) =⎧⎪⎨⎪⎩ e
x−v−−−→ Id if x ≥ v

0 if x < v
h−.Skip(e) = (e � p)
h−(p,v)(1) = 0

h+(p,v)(e, x) = e
x+v−−−→ Id

h+.Skip(e) = (e � p)
h+(p,v)(1) = 0

Hierarchical Set Decision Diagrams and Automatic Saturation 223

An inductive homomorphism Φ’s application to s = 〈e,α〉 is defined by Φ(s) =∑
(x,d)∈αΦ(e, x)(d). But when Φ is invariant on e, computation of this union produces

the expression
∑

(x,d)∈α e
x−→ Φ(d). This result is known beforehand thanks to the predi-

cate Skip.
From an implementation point of view this allows us to create a new node directly

by copying the structure of the original node and modifying it in place. Indeed the
application of Φ will at worst remove some arcs. If a Φ(d) produces the 0 terminal, we
prune the arc. Else, if two Φ(d) applications return the same value in SDD setting, we
need to fuse the arcs into an arc labeled by the union of the arc values. We thus avoid
computing the expression

∑
(x,d)∈αΦ(e, x)(d), which involves creation of intermediate

single arc nodes e
x−→ ·· · and their subsequent union. The impact on performances of

this “in place” evaluation is already measurable, but more importantly it enables the
next step of rewriting rules.

5.2 Union and Composition

For built-in homomorphisms the value of the Skip predicate can be computed by query-
ing their operands: homomorphisms constructed using union, composition and fixpoint
of other homomorphisms, are locally invariant on variable e if their operands are them-
selves invariant on e.

This property derives from the definition (given in [8,9]) of the basic set theory op-
erations on DDD and SDD. Indeed for two homomorphisms h and h′ locally invariant
on variable e we have: ∀s = 〈e,α〉 ∈�∪�,

(h+h′)(s) = h(s)+h′(s)

=
∑

(x,d)∈α e
x−→ h(d)+

∑
(x,d)∈α e

x−→ h′(d)

=
∑

(x,d)∈α e
x−→ h(d)+h′(d)

=
∑

(x,d)∈α e
x−→ (h+h′)(d)

A similar reasoning can be used to prove the property for composition.
It allows homomorphisms nested in a union to share traversal of the nodes at the top

of the structure as long as they are locally invariant. When they no longer Skip variables,
the usual evaluation definition h(s)+h′(s) is used to affect the current node. Until then,
the shared traversal implies better time complexity and better memory complexity as
they also share cache entries.

We further support natively the n-ary union of homomorphisms. This allows to dy-
namically create clusters by top application level as the union evaluation travels down-
wards on nodes. When evaluating an nary union H(s) =

∑
i hi(s) on a node s = 〈e,α〉 we

partition its operands into F = {hi|hi.Skip(e)} and G = {hi|¬hi.Skip(e)}. We then rewrite
the union H(s) = (

∑
h∈F h)(s)+ (

∑
h∈G h)(s), or more simply H(s) = F(s)+G(s). The F

union is thus locally invariant on e and will continue evaluation as a block. The G part
is evaluated using the standard definition G(s) =

∑
h∈G h(s).

Thus the minimal Skip predicate allows to automatically create clusters of operations
by adapting to the structure of the SDD it is applied to. We still have no requirements

224 A. Hamez, Y. Thierry-Mieg, and F. Kordon

on the order of variables, as the clusters can be created dynamically. To obtain effi-
ciency, the partitions F+G are cached, as the structure of the SDD typically has limited
variation during construction. Thus the partitions for an nary union are computed at
most once per variable instead of once per node.

The computation using the definition of H(s)=
∑

i hi(s) requires each hi to separately
traverse s, and forces to fully rebuild all the hi(s). In contrast, applying a union H allows
sharing of traversals of the SDD for its elements, as operations are carried to their
application level in clusters before being applied. Thus, when a strict BFS progression
(like algorithm 1.b) is required this new evaluation mechanism has a significant effect
on performance.

5.3 Fixpoint

With the rewriting rule of a union H = F+G we have defined, we can now examine the
rewriting of an expression (H+ Id)�(d) as found in algorithm 1.d :

(H+ Id)�(s) = (F+G+ Id)�(s)
= (G+ Id+ (F+ Id)�)�(s)

The (F + Id)� block by definition is locally invariant on the current variable. Thus
it is directly propagated to the successor nodes, where it will recursively be evaluated
using the same definition as (H+ Id)�.

The remaining fixpoint over G homomorphisms can be evaluated using the chaining
operation order (see algorithm 1.c), which is reported empirically more effective than
other approaches [14], a result also confirmed in our experiments.

The chaining application order algorithm 1.c can be written compactly in SDD as :

reach = (©t∈T (t+ Id))�(s0)

We thus finally rewrite:

(H+ Id)�(s) = (©g∈G(g+ Id)◦ (F+ Id)�)�(s)

5.4 Local Applications

We have additional rewriting rules specific to SDD homomorphisms and the local con-
struction (see section 2.3):

local(h,var)(e, x) = e
h(x)−−−→ Id

local(h,var).Skip(e) = (r � var)
local(h,var)(1)= 0

Note that h is a homomorphism, and its application is thus linear to the values in
x. Further a local operation can only affect a single level of the structure (defined by
var). We can thus define the following rewriting rules, exploiting the locality of the
operation:

(1) local(h,v)◦ local(h′,v) = local(h ◦h′,v)
(2) local(h,v)+ local(h′,v) = local(h+h′,v)

Hierarchical Set Decision Diagrams and Automatic Saturation 225

(3) v � v′ =⇒ local(h,v)◦ local(h′,v′) = local(h′,v′)◦ local(h,v)
(4) (local(h,v)+ Id)� = local((h+ Id)�,v)

Expressions (1) and (2) come from the fact that a local operation is locally invariant
on all variables except v. Expression (3) asserts commutativity of composition of local
operations, when they do not concern the same variable. Indeed, the effect of applying
local(h,v) is only to modify the state of variable v, so modifying v then v′ or modifying
v′ then v has the same overall effect. Thus two local applications that do not concern the
same variable are independent. We exploit this rewriting rule when considering a com-
position of local to maximize applications of the rule (1), by sorting the composition
by application variable. A final rewriting rule (4) is used to allow nested propagation of
the fixpoint. It derives directly from rules (1) and (2).

With these additional rewriting rules defined, we slightly change the rewriting of
(H+ Id)�(s) for node s= 〈e,α〉: we consider H(s) = F(s)+L(s)+G(s) where F contains
the locally invariant part, L = local(l,e) represents the operations purely local to the
current variable e (if any), and G contains operations which affect the value of e (and
possibly also other variables below). Thanks to rule (4) above, we can write :

(H+ Id)�(s) = (F + L+G+ Id)�(s)
= (G+ Id+ (L+ Id)�+ (F+ Id)�)�(s)
= (©g∈G(g+ Id)◦ local((l+ Id)�,e)◦ (F+ Id)�)�(s)

As the next section presenting performance evaluations will show, this saturation
style application order heuristically allows to gain an order of magnitude in the size of
models that can be treated.

6 Performances of Automatic Saturation

Impact of Propagation. We have first measured how the propagation alone impacts
on memory size, that is without automatic saturation. We have thus measured the mem-
ory footprint when using a chaining loop with propagation enabled or not. We have
observed a gain from 15% to 50%, with an average of about 40%. This is due to the
shared traversal of homomorphisms when they are propagated, thus inducing much less
creation of intermediary nodes.

Impact of Hierarchy and Automatic Saturation. Table 1 shows the results obtained
(on a Xeon @ 1.83GHz with 4GB of memory) when generating the state spaces of
several models with automatic saturation (Algo. 1.d) compared to those obtained using
a standard chaining loop (Algo. 1.c). Moreover, we measured how hierarchical encoding
of state spaces perform compared to flat encoding (DDD).

We have run the benchmarks on 4 parametrized models, with different sizes: the
well-known Dining Philosophers and Kanban models; a model of the slotted ring pro-
tocol; a model of a flexible manufacturing system. We have also benchmarked a LOTOS
specification obtained from a true industrial case-study (it was generated automatically
from a LOTOS specification – 8,500 lines of LOTOS code + 3,000 lines of C code – by
Hubert Garavel from INRIA).

226 A. Hamez, Y. Thierry-Mieg, and F. Kordon

Table 1. Impact of hierarchical decision diagrams and automatic saturation

Final Hierarchical Flat Hierarchical
Chaining Loop Automatic Sat. Automatic Sat.

Model States DDD SDD T. Mem. Peak T. Mem. Peak T. Mem. Peak
Size # (s) (MB) # (s) (MB) # (s) (MB) #

LOTOS Specification
9.8e+21 – 1085 – – – – – – 1.47 74.0 110e+3

Dining Philosophers
100 4.9e+62 2792 419 1.9 112 276e+3 0.2 20 18040 0.07 5.2 4614
200 2.5e+125 5589 819 7.9 446 1.1e+6 0.7 58.1 36241 0.2 10.6 9216

1000 9.2e+626 27989 4019 – – – 14 1108 182e+3 4.3 115 46015
4000 7e+2507 – 16019 – – – – – – 77 1488 184e+3

Slotted Ring Protocol
10 8.3e+09 1283 105 1.1 48 90043 0.2 16 31501 0.03 3.5 3743
50 1.7e+52 29403 1345 – – – 22 1054 2.4e+6 5.1 209 461e+3

100 2.6e+105 – 5145 – – – – – – 22 816 1.7e+6
150 4.5e+158 – 11445 – – – – – – 60 2466 5.6e+6

Kanban
100 1.7e+19 11419 511 12 145 264e+3 2.9 132 309e+3 0.4 11 14817
200 3.2e+22 42819 1011 96 563 1e+6 19 809 1.9e+6 2.2 37 46617
300 2.6e+24 94219 1511 – – – 60 2482 5.7e+6 7 78 104e+3
700 2.8+28 – 3511 – – – – – – 95 397 523e+3

Flexible Manufacturing System
50 4.2e+17 8822 917 13 430 530e+3 2.7 105 222e+3 0.4 16 23287

100 2.7e+21 32622 1817 – – – 19 627 1.3e+6 1.9 50 76587
150 4.8e+23 71422 2717 – – – 62 1875 3.8e+6 5.3 105 160e+3
300 3.6e+27 – 5417 – – – – – – 33 386 590e+3

All1 “–” entries indicate that the state space’s generation did not finish because of
the exhaustion of the computer’s main memory.

The “Final” grey columns show the final number of decision diagram nodes needed
to encode the state spaces for hierarchical (SDD) and flat (DDD) encoding. Clearly, flat
DD need an order of magnitude of more nodes to store a state space. This shows how
well hierarchy factorizes state spaces. The good performances of hierarchy also show
that using a structured specification can help detect similarity of behavior in parts of a
model, enabling sharing of their state space representation (see figure 3).

But the gains from enabling saturation are even more important than the gains from
using hierarchy on this example set. Indeed, saturation allows to mostly overcome the
“peak effect” problem. Thus “Flat Automatic Saturation” performs better (in both time
and memory) than “Hierarchical Chaining Loop”.

1 We haven’t reported results for flat DDs with a chaining loop generation algorithm as they
were nearly always unable to handle models of big size.

Hierarchical Set Decision Diagrams and Automatic Saturation 227

As expected, mixing hierarchical encoding and saturation brings the best results:
this combination enables the generation of much larger models than other methods on
a smaller memory footprint and in less time.

7 Recursive Folding

In this section we show how SDD allow in some cases to gain an order of complexity:
we define a solution to the state-space generation of the philosophers problem which
has complexity in time and memory logarithmic to the number of philosophers. The
philosophers system is highly symmetric, and is thus well-adapted to techniques that
exploit this symmetry. We show how SDD allow to capture this symmetry by an adapted
hierarchical encoding of the state-space. The crucial idea is to use a recursive folding
of the model with n levels of depth for 2n philosophers 2.

7.1 Initial State

Instead of (P0) � (P1) � (P2) � (P3) which is the parenthesizing that is assumed by de-
fault, we parenthesize our composition (((P0) � (P1)) � ((P2) � (P3))). We will thus in-
troduce n+2 levels of hierarchy to represent 2n philosophers, each level corresponding
to a parenthesis group. Since each parenthesis group ((X)� (Y)) only contains one com-
position �, its SDD will contain two variables that correspond to the states of (X) and
(Y).

The innermost level (level 0, corresponding to the most nested parenthesis of the
composition) contains a variable of domain the states of a single philosopher. The most
external parenthesis group will be used to close the loop, i.e. connect the first and last
philosophers. Hence level 0 represents a single philosopher, level 1 represents the states
of two philosophers, and level i represents the states of 2i philosophers.

The magic in this representation is that each half of the philosophers at any level
behaves in the same way as the other half : it’s really (((P0) � (P0)) � ((P0) � (P0))).
Thus sharing is extremely high : the initial state of the system for 2n philosophers only
requires 2n+ k (k ∈N) nodes to be represented.

Let P0 = Fork
1−→HasR

0−→WaitR
0−→ HasL

0−→WaitL
0−→ Idle

1−→ 1 represent the states
of a single philosopher as a DDD (as in section 3). Let Mk represent the states of 2k

philosophers using the recursive parenthesizing scheme. Following our definitions of
the previous section, Mk is defined inductively by :

Mk = h0
Mk−1−−−−→ h1

Mk−1−−−−→ 1 M0 = p
P0−−→ 1

The most external parenthesis group yields a last variable noted h(Mn) such that

r((Mn)) = h(Mn)
Mn−−→ 1. We have thus defined 4 variables: h(Mn) for the external paren-

thesis, h0 and h1 for intermediate levels, and p for the last level (Dom(p) ⊆�).

7.2 Transition Relation

We define the SDD homomorphisms f and l to work respectively on the first and
last philosopher modules of a submodule, as they communicate by a synchronization
transition.

2 We thank Jean-Michel Couvreur for fruitful input on this idea.

228 A. Hamez, Y. Thierry-Mieg, and F. Kordon

f (h)(e, x) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
e

h(x)−−−→ Id if e = p

e
f (h)(x)−−−−−→ Id if e = h0

f .Skip(e) = (e � p)∧ (e � h0)
f (h)(1) = 0

l(h)(e, x) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
e

h(x)−−−→ Id if e = p

e
l(h)(x)−−−−−→ Id if e = h1

l.Skip(e) = (e � p)∧ (e � h1)
l(h)(1) = 0

We then need to take into account that all modules have the same transitions. Tran-
sitions that are purely local to a philosopher module are unioned and stored in a homo-
morphism which will be noted L (in fact only hungry is purely local). We note Πi(s)
the part of a synchronization transition sL created for label L that concerns the current
philosopher module Pi and Πi+1(s) the part of sL that concerns Pi+1modN the right hand
neighbor of Pi. We note S the set of synchronization transitions, induced by the labels
Li and Ri.

Let τloop = Id+
∑

s∈S l(Πi(s))◦ f (Πi+1(s))

τloop is an SDD homomorphism operation defined to “close the loop”, that materializes
that the last philosophers right hand neighbor is the first philosopher. Our main firing
operation that controls the saturation is τ defined as follows :

τ(e, x) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
(τ◦τloop)�(x)−−−−−−−−−−→ Id if e = h(Mn)

e
τ�(x)−−−−→ τ+∑s∈S e

τ�◦l(Πi(s))−−−−−−−−→ τ◦ f (Πi+1(s)) if e = h0

e
τ�(x)−−−−→ Id if e = h1

e
L�(x)−−−−→ Id if e = p

τ(t)(1) = 0

We can easily adapt this encoding to treat an arbitrary number n of philosophers
instead of powers of 2, by decomposing n into it’s binary encoding. For instance, for
5 = 20+22 philosophers ((P0)� ((P1� P2)� (P3� P4))) Such unbalanced depth in the
data structure is gracefully handled by the homogeneity of our operation definitions,
and does not increase computational complexity.

7.3 Experimentation

We show in table 2 how SDD provide an elegant solution to the state-space generation
of the philosophers problem, for up to 220000 philosophers. The complexity both in time
and space is roughly linear to n, with empirically 8n nodes and 12n arcs required to
represent the final state-space of 2n philos.

The solution presented here is specific to the philosphers problem, though it can
be adapted to other symmetric problems. Its efficiency here is essentially due to the
inherent properties of the model under study. In particular the strong locality, symmetry
and the fact that even in a BDD/DDD representation, adding philosophers does not
increase the “width” of the DDD representation – only it’s height –, are the key factors.

Hierarchical Set Decision Diagrams and Automatic Saturation 229

Table 2. Performances of recursive folding with 2n philosophers . The states count is noted N/A
when the large number library GNU Multiple Precision (GMP) we use reports an overflow.

Final Peak
Nb. Philosophers States Time (s) SDD DDD SDD DDD

210 1.02337e+642 0.0 83 31 717 97
231 1.63233e+1346392620 0.02 251 31 2250 97

21000 N/A 0.81 8003 31 72987 97
210000 N/A 9.85 80003 31 729987 97
220000 N/A 20.61 160003 31 1459987 97

The difficulty in generalizing the results of this example, is that we exploit in the def-
inition of the transition relation the fact that all philosophers have the same behavior,
and the circular way they are synchronized. In other words, our formalism is not well
adapted to scaling to 2n, because it lacks an inductive definition of the problem that
we could capture automatically. While a simple use of the parenthesizing scheme de-
scribed in section 3 would produce overall the same effects, the recursive homogeneity
captured by τ would be lost. We would then have linear complexity w.r.t. to the number
of philosophers, when computing our rewriting rules, which is not viable to scale up to
220000 as we no longer can have overall logarithmic complexity.

Thus our current research direction consists in defining a formalism (e.g. a particular
family of Petri nets) such that we could recognize this pattern and obtain the recursive
encoding naturally.

However, this example reveals that SDD are potentially exponentially more powerful
than other decision diagram variants.

8 Conclusion

In this paper, we have presented the latest evolutions of hierarchical Set Decision Di-
agrams (SDD), that are suitable to master the complexity of very large systems. We
think that such diagrams are well-adapted to process hierarchical high-level specifica-
tions such as Net-within-Nets [15] or CO-OPN [16].

We have presented how we optimize evaluation of user homomorphisms to automat-
ically producing a saturation effect. Moreover, this automation is done at a low cost for
users since it uses a Skip predicate that is easy to define. We thus generalize extremely
efficient saturation approach of Ciardo et al. [5] by giving a definition that is entirely
based on the structure of the decision diagram and the operations encoded, instead of
involving a given formalism. Furthermore, the automatic activation of saturation allows
users to concentrate on defining the state and transition encoding.

Also, we have shown how recursive folding allows in very efficient and elegant man-
ner to generate state spaces of regular and symmetric models, with up to 220000 philoso-
phers in our example. Although generalization of this application example is left to
further research, it exhibits the potentially exponentially better encoding SDD provide
over other DD variants for regular examples.

230 A. Hamez, Y. Thierry-Mieg, and F. Kordon

SDD and the optimizations described are implemented in libddd, a C++ library
freely available under the terms of GNU LGPL. With growing maturity since the initial
prototype developed in 2001 and described in [8], libddd is today a viable alternative
to Buddy [13] or CUDD [12] for developers wishing to take advantage of symbolic
encodings to build a model-checker.

References

1. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers 35(8), 677–691 (1986)

2. Burch, J., Clarke, E., McMillan, K.: Symbolic model checking: 1020 states and beyond. (Spe-
cial issue for best papers from LICS90) Information and Computation 98(2), 153–181 (1992)

3. Bollig, B., Wegener, I.: Improving the Variable Ordering of OBDDs Is NP-Complete. IEEE
Trans. Comput. 45(9), 993–1002 (1996)

4. Roig, O., Cortadella, J., Pastor, E.: Verification of asynchronous circuits by BDD-based
model checking of Petri nets. In: DeMichelis, G., Dı́az, M. (eds.) ICATPN 1995. LNCS,
vol. 935, pp. 374–391. Springer, Heidelberg (1995)

5. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H., Hatcliff,
J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg (2003)

6. Holzmann, G., Smith, M.: A practical method for verifying event-driven software. In: ICSE
1999: Proceedings of the 21st international conference on Software engineering, Los Alami-
tos, CA, USA, pp. 597–607. IEEE Computer Society Press, Los Alamitos (1999)

7. LIP6/Move: the libDDD environment (2007), http://www.lip6.fr/libddd
8. Couvreur, J.M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.A.: Data De-

cision Diagrams for Petri Net Analysis. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002.
LNCS, vol. 2360, pp. 1–101. Springer, Heidelberg (2002)

9. Couvreur, J.M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit Model Struc-
ture. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg
(2005)

10. Wang, F.: Formal verification of timed systems: A survey and perspective. IEEE 92(8) (2004)
11. Ciardo, G., Siminiceanu, R.: Using edge-valued decision diagrams for symbolic generation

of shortest paths. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517,
pp. 256–273. Springer, Heidelberg (2002)

12. Somenzi, F.: CUDD: CU Decision Diagram Package (release 2.4.1) (2005),
http://vlsi.colorado.edu/fabio/CUDD/cuddIntro.html

13. Lind-Nielsen, J., Mishchenko, A., Behrmann, G., Hulgaard, H., Andersen, H.R., Lichten-
berg, J., Larsen, K., Soranzo, N., Bjorner, N., Duret-Lutz, A., Cohen, H.a.: buddy - library for
binary decision diagrams (release 2.4) (2004), http://buddy.wiki.sourceforge.net/

14. Ciardo, G.: Reachability Set Generation for Petri Nets: Can Brute Force Be Smart? Applica-
tions and Theory of Petri Nets 2004, pp. 17–34 (2004)

15. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H.: Modeling Dynamic Architectures Using
Nets-within-Nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
148–167. Springer, Heidelberg (2005)

16. Biberstein, O., Buchs, D., Guelfi, N.: Object-oriented nets with algebraic specifications: The
CO-OPN/2 formalism (2001)

http://www.lip6.fr/libddd
http://vlsi.colorado.edu/fabio/CUDD/cuddIntro.html
http://buddy.wiki.sourceforge.net/

Performance Evaluation of Workflows

Using Continuous Petri Nets
with Interval Firing Speeds

Kunihiko Hiraishi

School of Information Science,
Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Nomi-shi, Ishikawa, 923-1292, Japan

hira@jaist.ac.jp

Abstract. In this paper, we study performance evaluation of workflow-
based information systems. Because of state space explosion, analysis by
stochastic models, such as stochastic Petri nets and queuing models, is
not suitable for workflow systems in which a large number of flow in-
stances run concurrently. We use fluid-flow approximation technique to
overcome this difficulty. In the proposed method, GSPN (Generalized
Stochastic Petri Nets) models representing workflows are approximated
by a class of timed continuous Petri nets, called routing timed continu-
ous Petri nets (RTCPN). In RTCPN models, each discrete set is approxi-
mated by a continuous region on a real-valued vector space, and variance
in probability distribution is replaced with a real-valued interval. Next
we derive piecewise linear systems from RTCPN models, and use inter-
val methods to compute guaranteed enclosures for state variables. As a
case study, we solve an optimal resource assignment problem for a paper
review process.

1 Introduction

How to make information systems safe, dependable and trustworthy is one of
central concerns in the development of e-Society and e-Government. There are
two kinds of correctnesses, qualitative correctness and quantitative correctness,
where the former means that the system is proved to be logically correct, and the
latter means that the system has sufficient performance for an expected amount
of transactions. In this paper, we focus on quantitative correctness, and study
performance evaluation of workflow-based information systems, particularly for
those in which many instances of flows run concurrently. Such a situation often
arises in web-based information systems for enterprises and local governments.

There are various results on modeling and verification of workflows (e.g.,
[21,8]). In most of previous researches, some specific formalism, such as Petri
nets, UML activity diagrams, and business process modeling languages (e.g.,
BPMN [22]), are used for describing workflows, and properties such as liveness,
soundness and more general properties described by logical formulas are verified
by using verification techniques developed for each formalism.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 231–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

232 K. Hiraishi

On the other hand, quantitative correctness was also studied as an impor-
tant issue [5,1,15]. In actual workflow-based information systems, each workflow
is nothing but a template, and many instances of the same workflow run con-
currently. Therefore, guaranteeing correctness of an individual instance is in-
sufficient for guaranteeing quantitative correctness of the entire system. In this
paper, we study an optimal resource assignment problem as one of problems
that particularly arise in workflow-based information systems. Recent workflow
systems are often used for integrating various resources (software subsystems,
databases, workers, machines, other organizations, etc.) that exist in enterprises.
Therefore, we need to take care of quantity of resources necessary for performing
workflows. Otherwise, many tasks may be assigned to the same resource, and as
a result, the resource becomes a bottleneck of the system. To analyze this prob-
lem, we can use performance models such as stochastic Petri nets and queuing
networks. However, state space explosion prevents us from dealing with a large
number of flow instances.

Fluidification (or continuization) is a relaxation technique that tackles the
state space explosion by removing the integrality constraints [20]. This idea is
not new, and is found in various formalisms such as queuing networks (e.g.,
[14,17]) and Petri nets. For Petri nets, fluidification was firstly introduced into
the model called continuous Petri nets, and the formalism was extended to hybrid
Petri nets [4]. Similar idea was also introduced into stochastic models such as
fluid stochastic Petri nets [12]. Fluidification was also applied to analysis of a
performance model based on process algebra [10].

In this paper, we introduce a class of timed continuous Petri nets, called
routing timed continuous Petri nets (RTCPN), in order to approximate discrete
state spaces of generalized stochastic Petri nets (GSPN). To deal with variance
in probability distribution of each firing delay, interval firing speeds are intro-
duced to timed transitions of RTCPN. In this sense, approximated models have
uncertainty in their parameters.

There are several results on analysis of timed continuous Petri nets. In [9,13],
linear programming is used for computing performance measures at steady state.
In contrast with previous works, we focus on transient analysis. Moreover, since
our aim is to prove quantitative correctness, we would like to give some amount
of guarantee to obtained results. It is known that the behavior of a timed con-
tinuous Petri net is represented by a piecewise linear (PWL) system. Based on
interval methods for ordinary differential equations [18,7], we derive a procedure
to compute a guaranteed enclosure for state variables at each time step, where
the guaranteed enclosure means that true value is surely in the enclosure. All
the computation can be performed by linear programming solver and interval
arithmetic.

As a case study, we consider the paper review process in an academic journal.
The problem is to compute the minimum number of associate editors sufficient
for handling an expected amount of submitted papers. We first show a result
by GSPN. Next we compute transient behavior of the approximated RTCPN

Performance Evaluation of Workflows Using Continuous Petri Nets 233

model, and compare the two results. Consequently, we claim that the proposed
approach is scalable for the number of flow instances.

The paper is organized as follows. In Section 2, analysis by GSPN is presented.
In Section 3, RTCPN is introduced, and the GSPN model built in Section 2 is
approximated by RTCPN. Moreover, we derive a PWL system from the RTCPN
model. In Section 4, an interval approximation algorithm for computing transient
behavior of PWL systems is described. Numerical results of the algorithm are
also shown. Section 5 is the concluding remarks.

2 Modeling of Workflows by Stochastic Petri Nets

2.1 Example: Paper Review Process

We study the following workflow as an example. It is a workflow of the review
process of an academic journal. The initial fragment of the workflow is shown in
Fig. 1. By the editor in chief, each submitted paper is firstly assigned to one of
associate editors responsible for research categories suitable for the paper. Then
the associate editor finds two reviewers through some negotiation processes.
There are three cases at the first review: acceptance, rejection, and conditional
acceptance. If the decision is conditional acceptance, then the associate editor
requests the authors to submit a revised manuscript toward the second review.
The decision at the second review is the final one, and is either acceptance or
rejection.

All the processes are supported by a web-based information system including
electronic submission and automatic notification of due dates. Then the problem
is how to decide the appropriate number of associate editors in each research
category, considering load balancing.

The problem is formally stated as follows:
Given

– A description of workflow,
– Statistics on paper submission,
– An upper bound of the number of papers each associate editor can handle,

Find

– The minimum number of associate editors such that the workflow runs stably.
(The number of papers waiting for being processed should not become too
large.)
The statistics on paper submission/handling is given as follows:

– Duration between submission and final judgment:
• Acceptance at the first review: 2.4 months
• Rejection at the first review: 3.9 months
• Acceptance at the second review: 5.9 months
• Rejection at the second review: 6.8 months

– Probabilities of acceptance and rejection:
• Acceptance at the first review: 0.065

234 K. Hiraishi

• Rejection at the first review: 0.687
• Acceptance at the second review: 0.238
• Rejection at the second review: 0.010

– Average number of paper submissions: 16.9/month.

(This statistics is obtained from actual data of some academic journal.)

paper
submission

Author Editor Assoc. Editor Reviewer1 Reviewer2

accept

receive
receipt

send receipt

assign an
assoc. editor

accept

assign
reviewers

accept
accept

Fig. 1. The paper review process of an academic journal

2.2 Stochastic Petri Nets

A generalized stochastic Petri net (GSPN) [Ajmone Marsan95] is a 6-tuple
GSPN = (P, T, A, m0, λ, w), where P is a set of places, T is a set of transi-
tions, A : P ×T ∪T ×P → N is the incidence function that specifies the weights
of the arcs between places and transitions, and m0 : P → N is the initial marking.
The incidence function is equivalently represented by two nonnegative integer
matrices A+ = [a+

ij],A− = [a−
ij] ∈ N

|P |×|T | by a+
ij = A(tj , pi) and a−

ij = A(pi, tj).
Let A = A+ −A− be called the incidence matrix.

Transitions of GSPN are partitioned into two different classes: immediate
transitions and timed transitions. Immediate transitions fire in zero time, and
timed transitions fire after a random, exponentially distributed, enabling time.
The function λ : Texp → R

+ assigns a firing rate to each timed transition, where
R

+ is the set of nonnegative real numbers. The function w : Tim → R
+ assigns

a firing weight to each immediate transition.
Firing semantics is described as follows. If the set of enabled transitions H

comprises only timed transitions, then each transition tj ∈ H fires with proba-
bility λ(tj)/

∑
tk∈H λ(tk). If H comprises both immediate and timed transitions,

then only immediate transitions can fire. If H has several conflicting immedi-
ate transitions, then the firing weights determine probability that a particular
immediate transition will fire. Let C ⊆ H be the set of conflicting immediate
transitions. Then the probability, called switching probability, that each transi-
tion tj ∈ C will fire is w(tj)/

∑
tk∈C w(tk).

Performance Evaluation of Workflows Using Continuous Petri Nets 235

The firing semantics described above is called finite-server semantics. There
is another firing semantics, called infinite-server semantics. In infinite-server
semantics, the same transition fires simultaneously. The multiplicity in the firing
depends on the number of tokens in input places of each transition. As usual,
we use the notation •x := {y ∈ P ∪ T | A(y, x) > 0} and x• := {y ∈ P ∪
T |A(x, y) > 0}. For an infinite-server timed transition tj and a marking m, let
enab(tj, m) := minpi∈•tj{m(pi)/A(pi, tj)}. Then the marking-dependent firing
rate of tj at marking m is λ(tj) · enab(tj, m). We will allow both types of timed
transitions to exist in a model.

We first use GSPN to compute performance measures such as the average
number of papers waiting for being processed. One of advantages of using Petri
net models is that each instance of workflows is modeled by a token. Increas-
ing the number of workflow instances corresponds to increasing the number of
tokens. This means that modeling by GSPN is scalable in the number of work-
flow instances. Using analysis techniques on GSPN, we can compute stationary
probability distribution of reachable states.

Fig. 2 is the GSPN model of the workflow, where research categories of asso-
ciate editors are not considered for simplicity. The number associated with each
transition is the firing delay (if the transition is timed) or the firing weight (if
the transition is immediate). These numbers are determined from the statistics
on paper submission/handling.

Once a paper is submitted, i.e., transition ‘submit’ fires, the paper is waiting
for being processed. If an associate editor is available, then the result of the first
review is decided according to the given probability. If the result is conditional
acceptance, then the paper proceeds to the second review, and the final result
is decided according to the given probability. These probabilities are specified
by weights of immediate transitions. In the GSPN model, there are two sets of
potentially conflicting immediate transitions: one corresponds to the decision at
the first review, and the other corresponds to the decision at the second review.

Each delay τ in the paper review workflow is given as a firing rate 1/τ of
the corresponding timed transition. Since papers are processed in parallel by
associate editors, these timed transitions are defined to be infinite-server (as in-
dicated by symbol ∞ in the figure). Only transition ‘submit’ is a single-server
timed transition. The firing rate ‘1’ of transition ‘submit’ specifies the aver-
age number of papers added to place ‘waiting papers’ per one unit of time (=
month). Since the average number of paper submissions is 16.9/month, one token
corresponds to 16.9 papers.

The place ’paper pool’ is necessary for the state space to be finite, and needs
to be nonempty in order to get a correct result. Otherwise, transition ‘submit’
does not fire with the defined rate. As long as ‘paper pool’ is nonempty, we do not
have to care about the number of tokens in it. The return arc to place ‘submit’
is introduced just for keeping the number of papers in the system constant. At
the initial marking, we put a sufficient number of tokens in place ‘paper pool’. In
computer experiments, we check probability that the number of tokens in ‘paper
pool’ is 0.

236 K. Hiraishi

submit

accept1

reject1

conditional acc.
accept2

reject2

paper pool

editor pool

timed transition immediate transition

∞

∞

0.248

0.065

0.687

0.96

0.04

1

1/3.5

1/2.4

1/3.9

1/4.4

waiting papers

M

N

∞

1/2.4

∞

∞

Fig. 2. GSPN model

2.3 Computation Results: GSPN Model

We compute the expected number of waiting papers at steady state by a com-
puter tool DSPNexpress-NG [16,23]. Since exponential distribution is not appro-
priate for the delay of each transition, we use Erlangian distribution of order 2 as
the probability distribution of each timed transition. It is known that Erlangian
distribution of order n with average rate λ is simulated by a serial connection
of n exponentially-distributed timed transitions with average rate nλ [6]. Using
this technique, we introduce Erlangian-distributed timed transitions in GSPN
models. The drawback to using this technique is that it increases the size of
the state space. Considering the actual probability distribution, order 2 may be
insufficient. In computer experiments, however, it was hard to compute solutions
for models with Erlangian distribution of order more than 2, because of state
space explosion.

The computation result is shown in Table 1. In the initial state, we put N
tokens in place ‘editor pool’. For each value of N , the number of tangible states,
CPU time, the expected number of waiting papers at steady state, and proba-
bility that the paper pool is empty are shown in Table 1. The computer envi-
ronment used for the computation is a Linux high-performance computer with
Intel Itanium2, 1.6GHz / 9MB Cache CPU, 16GB main memory. It is observed
that N ≥ 6 gives a desirable level. The amount of resources N = 6 means that
6× 16.9 = 101.4 papers can be processed in parallel.

A high probability of p(#paperpool = 0) means that the amount of resources
is insufficient for handling papers. If the probability is high, most of tokens
initially given in the place ’paper pool’ are stuck in place ‘waiting papers’. We
also observe that CPU time and the size of the state space increase very rapidly.

Performance Evaluation of Workflows Using Continuous Petri Nets 237

Table 1. Numerical results of GSPN analysis

N #states CPU Time #waiting p(#paperpool = 0)
(sec.) papers

3 2926 0.31 0.18 0.30
4 8866 0.7 5.94 0.094
5 23023 2.3 1.99 0.013
6 53053 6.2 0.63 0.0021
7 110968 15 0.21 0.00049
8 213928 29 0.08 0.00020
9 384098 58 0.03 0.00010

3 Modeling by a Class of Timed Continuous Petri Nets

In the GSPN model (Fig. 2), the number of reachable states increases exponen-
tially in the number N . As a result, we will not be able to compute the steady
state for larger models. We will use fluidification technique to overcome this dif-
ficulty. For this purpose, we introduce a class of timed continuous Petri nets as
formalism to deal with continuous dynamics.

3.1 Routing Timed Continuous Petri Nets

We define a class of timed continuous Petri nets that will be used for approxi-
mating the GSPN model. A routing timed continuous Petri nets (RTCPN) is a
6-tuple RTCPN = (P, T, A, m0, λ, w), where P , T , and A are the same as those
in GSPN except that the range of A is the set of real numbers, and m0 : P → R

+

is the initial marking.
Transitions of RTCPN are partitioned into timed transitions and routing

transitions. Timed transitions correspond to infinite-server timed transitions of
GSPN, and routing transitions correspond to immediate transitions of GSPN.

In RTCPN, we put the following restriction on the Petri net structure. RTCPN
still can represent FORK-JOIN type structure of workflows under these restric-
tions.

– If a place pi has an output routing transition, then every output transition
of pi is a routing transition.

– For any two routing transition ti and tj , if •ti∩• tj 	= ∅ then |•ti| = |•tj | = 1,
i.e., every potentially conflicting routing transition has a free-choice struc-
ture.

– There is no cycle consisting only of routing transitions.

The function λ : Ttime → R
+, where Ttime is the set of timed transitions,

assigns a firing speed to each timed transition. A timed transition tj fires at
speed λ(tj)·enab(tj, m), similarly to an infinite-server timed transition of GSPN.

Routing transitions together with the routing rate function w : Troute → R
+,

where Troute is the set of routing transitions, are used for determining static
routing of flows. This idea is similar to one in STAR-CPN [Gaujal04].

238 K. Hiraishi

Let tj be a non-conflicting routing transition. There are two types in firing:

(i) When enab(tj, m) > 0, a quantity A(pi, tj) · enab(tj, m) is removed from
each input place pi of tj , and a quantity A(tj , pi) · enab(tj, m) is added to
each output place pi of tj . These actions are instantaneous, and as a result,
at least one of input transitions of tj becomes empty (see Fig. 3). This case
may occur only at the initial marking, or at the time when external quantity
is put on a place.

(ii) Suppose that enab(tj, m) = 0 and every empty input place pi is fed, i.e., a
positive quantity V +

i flows into pi. Let E be the set of empty input places of
pi, and we define the firing degree by deg(tj , m) := minpi∈E{V +

i /A(pi, tj)}.
Then a quantity A(pi, tj) · deg(tj , m) flows from each input place pi of tj ,
and a quantity A(tj , pk) ·deg(tj , m) flows into each output place pk of tj (see
Fig. 4). We remark that nonempty input places are irrelevant to the firing
degree.

For simplicity, we assume that in the initial marking m0, enab(tj, m0) = 0
holds for every routing transition tj , and ignore the type (i) firing. In the type
(ii) firing, which one of input places determines the firing degree may be switched
during execution.

The firing rule for conflicting routing transitions is as follows. Let C be the
set of routing transitions that have a common input place pi. Then a fraction
r(tj) := w(tj)/

∑
tk∈C w(tk) of flow V +

i is used exclusively for firing of each tj ∈
C. Let deg(tj, m) := r(tj) · V +

i /A(pi, tj). Then, similarly to the non-conflicting
case, a quantity A(pi, tj) · deg(tj , m) flows from each input place pi of tj , and a
quantity A(tj , pk) · deg(tj , m) flows into each output place pk of tj (see Fig. 5).

3.2 Approximating Probability Distributions

From the GSPN model, we build an approximated RTCPN model based on the
following idea:

– An infinite-server timed transition tj of GSPN (with mean firing rate λj) is
approximated by a timed transition with a marking dependent firing speed
λj · enab(tj , m).

2
3

1

5

4

2
3

1

0

1.5

7.5

tj

enab(tj, m) = min{ 5/2, 4/1 } = 2.5

Fig. 3. Type (i) firing of a routing transition

Performance Evaluation of Workflows Using Continuous Petri Nets 239

2

31

Vr
+

Vs
+

3⋅deg(tj, m)1

0

0

5

tj

deg(tj, m) = min{ Vr
+ / 2, Vs

+ }

Fig. 4. Type (ii) firing of a routing transition (non-conflicting case)

w(ti)

w(tj)

w(tk)

1

2

1

Vr
+

r(tj) = w(tj) / (w(ti) + w(tj) + w(tk))

2⋅r(tj)⋅Vr
+

1

Fig. 5. Type (ii) firing of a routing transition (conflicting case)

– The variance of the probability distribution for firing rate λj is approximated
by an interval firing speed [λj] = [λj , λj]. We assume that the actual firing
delay is within the interval with a high probability.

– Switching probability among conflicting immediate transitions is approxi-
mated by routing rates of routing transitions.

Remark 1. (1) Approximation by mean firing rates preserves the expected num-
ber of tokens in each place of GSPN. We consider the following simple situation.
Let tj be an infinite-server timed transition with firing rate λj in GSPN. Suppose
that tj is non-conflicting and has a unique input place pi with arc weight 1. Let
Wi denote the random variable representing firing delay of tj . Suppose that at
time 0, there are k tokens in pi. Some amount of time t > 0 has elapsed and the
remaining tokens has decreased to k′ < k by firing of tj . Then the expected value
of k′ is E[m(pi)] = kP [Wj > t] = ke−λjt since tj is exponentially distributed
in GSPN. In the RTCPN model, the firing speed of the corresponding transi-
tion is λjxi, where xi is the variable representing m(pi). Solving the differential
equation with initial condition xi(0) = k, we obtain xi(t) = ke−λjt. Both values
coincide. This holds in general cases by the linearity of the system.

240 K. Hiraishi

(2) For “congested” systems, this approximation is valid for any probabilis-
tic distribution [20]. This is a result of the central limit theorem. Suppose that
in some stochastic Petri net, delay for single firing has any probabilistic density
function with mean τ and variance σ2. Then mean delay for firing with multiplic-
ity n is approximately normally distributed with the same mean τ and variance
σ2/n, provided that the time instant at which each of n firings becomes en-
abled is randomly selected. Considering this fact, the size of the interval [λj , λj]
can be narrowed to one proportional to 1/

√
enab(tj , m), when the system is

approaching to a steady state.

From the GSPN model in Fig. 2, we obtain an RTCPN model shown in Fig. 6.
There is no ‘paper pool’ in the RTCPN model since we do not have to make the
state space finite any more. Since RTCPN has no timed transitions corresponding
to single-server transitions, a single-server transition ‘submit’ is simulated by a
timed transition with a self-loop.

3.3 From RTCPN Model to Differential Equations

We can derive a set of differential equations from the RTCPN model. We first
define the flow for arc A(pi, tj) by V (pi, tj) := A(pi, tj) ·λ(tj) ·enab(tj , m) if tj is
a timed transition; V (pi, tj) := A(pi, tj) · deg(tj , m) if tj is a routing transition
(type (ii) firing). Similarly, the flow of arc A(tj , pi) is V (tj , pi) := A(tj , pi)·λ(tj)·
enab(tj, m) if tj is a timed transition; V (tj , pi) := A(tj , pi) · deg(tj , m) if tj is a
routing transition (type (ii) firing).

If pi has no output routing transitions, then the differential equation with
respect to place pi is

ṁ(pi) = V +
i − V −

i (1)

where
V +

i =
∑

tj∈•pi

V (tj , pi), V −
i =

∑

tj∈p•
i

V (pi, tj) (2)

The differential equation (1) is not linear in general because enab(tj , m) and
deg(tj , m) contain ‘min’ operator. However, we can rewrite the set of differential
equations as a piecewise linear (PWL) system.

Theorem 1. For the set of differential equations (1) derived from RTCPN,
there exists an equivalent PWL system.

Proof. We first remark that each marking m : P → R can be identified with a
real vector m ∈ R

|P |. For enab(tj, m), where tj is a timed transition, we define
a polytope

ξtime[tj , pk] := {m ∈ R
|P | | ∀pi ∈• tj − {pk}. m(pk)/A(pk, tj) ≤ m(pi)/A(pi, tj)}.

Then enab(tj, m) is replaced with m(pk)/A(pk, tj) under the condition m ∈
ξtime[tj , pk].

Performance Evaluation of Workflows Using Continuous Petri Nets 241

submit

accept1

reject1

conditional

accept2

reject2
wca

wa1

wr1

wa2

wr2

rs

[λa2]

[λca]

[λa1]

[λr1]

[λr2]

xr1

xa1

x
ca

xr2

xa2

xs

x
p

routing transition timed transition

start end
1

N

Fig. 6. RTCPN model

Similarly for a non-conflicting routing transition tj , we define the following
set, which is not necessarily a polytope:

ξroute[tj , pk, E] :={m ∈ R
|P | | [∀pi ∈ E. m(pi) = 0] ∧ [∀pi ∈• tj − E. m(pi) > 0]

∧ [∀pi ∈ E − {pk}. V +
k (m)/A(pk, tj) ≤ V +

i (m)/A(pi, tj)
]},

where E ⊆• tj and V +
i (m) is the total flow to place pi determined by the current

marking m. Suppose that all transitions in •pi are timed transitions. Note that
if at least one of input transitions is a routing transition, then all other input
transitions are also routing transitions as we have assumed. Then V +

i (m) is
represented by a piecewise linear function of m. This is a result of the partition
by ξtime[]’s. Therefore, there exists a finite set of polytopes {ξl

route[tj , pk, E]}
such that we can replace deg(tj, m) with V +

k /A(pk, tj) when m ∈ ξl
route[tj , pk, E].

Moreover, if such a finite set of polytopes are obtained for every input transition,
which is not necessarily a timed transition, of place pi, then V +

i (m) is represented
by a piecewise linear function. Since there is no cycle consisting only of routing
transitions as we have assumed, we can obtain such polytopes for all transitions.

Using the finite partition of R
|P | obtained by the above polytopes, we can

have an equivalent PWL system. ��
In the RTCPN model in Fig. 6, we assign a state variable xi to each place, as
indicated in the figure. Then we obtain a PWL system with two regions shown
in Fig. 7. There are two modes in the PWL system. At lease one of xp and xs is
empty at every time instant.

4 Guaranteed Transient Analysis by Interval Method

In this section, we show a method for transient analysis of PWL systems de-
rived from RTCPN models. The result includes guaranteed enclosures of state

242 K. Hiraishi

Mode I:{xp = 0, xs > 0} Mode II:{xp > 0, xs = 0}

ẋs = rs − R(x) ẋs = 0
ẋp = 0 ẋp = R(x) − rs

ẋca = pcaR(x) − [λca]xca ẋca = pcars − [λca]xca

ẋa1 = pa1R(x) − [λa1]xa1 ẋa1 = pa1rs − [λa1]xa1

ẋr1 = pr1R(x) − [λr1]xr1 ẋr1 = pr1rs − [λr1]xr1

ẋa2 = pa2[λca]xca − [λa2]xa2 ẋa2 = pa2[λca]xca − [λa2]xa2

ẋr2 = pr2[λca]xca − [λr2]xr2 ẋr2 = pr2[λca]xca − [λr2]xr2

R(x) = [λa1]xa1 + [λr1]xr1 + [λa2]xa2 + [λr2]xr2.

Fig. 7. The PWL system derived from the RTCPN model

variables. The method is based on interval methods for ordinary differential
equations. All the computation can be performed by interval arithmetic and
linear programming.

4.1 Interval Method

Interval methods for ordinary differential equation (ODE) systems were intro-
duced by Moore [18]. These methods provide numerically reliable enclosures of
the exact solution at discrete time points t0, t1, · · · , tk.

We consider the following nonlinear continuous-time system:

ẋ(t) = f(x(t), θ), x(t0) = x0 (3)

where x ∈ R
n and θ is the vector of uncertain system parameters. Each param-

eter θi is assumed to be bonded by an interval [θi, θi]. In what follows, we will
write [v] to denote a vector of intervals that give the range of each component of
a vector v. First the continuous-time state equation (3) is discretized by Taylor
series expansion with respect to time:

x(tk+1) = x(tk) +
r∑

r=1

hr

r!
f (r−1)(x(tk), θ) + e(x(η), θ) (4)

with h = tk+1 − tk and tk ≤ η ≤ tk+1. The guaranteed bound for the time
discretization error is calculated by

e(x(η), θ) ⊆ [ek] =
hτ+1

(τ + 1)!
F (τ)([Bk], [θ]) (5)

where F (τ) is the interval extension of the τ -th order derivative f(τ) of f , and
[Bk] is the bounding box for the range of state variables x(t) ∈ [Bk], ∀t ∈
[tk, tk+1]. The bounding box [Bk] is computed by applying the Picard operator

Φ([Bk]) := [xk] + [0, h] · F ([Bk], [θ]) ⊆ [Bk] (6)

Performance Evaluation of Workflows Using Continuous Petri Nets 243

where F is the interval extension of the function f . Calculation is usually per-
formed by interval arithmetic. The bounding box [Bk] is initialized with the
state vector [x(tk)]. If Φ([Bk]) 	⊂ [Bk], then the bounding box [Bk] has to be
enlarged. If Φ([Bk]) ⊆ [Bk], then (6) is evaluated recursively until the deviation
between Φ([Bk]) and [Bk] is smaller than a specified value. In the case that this
algorithm does not converge or that the interval of the discretization error [ek]
is unacceptably large, the step size h has to be reduced.

There are several ways to compute a guaranteed bound [x(tk+1)] by equations
(4) and (5) [7]. The direct interval technique is to compute [x(tk+1)] by interval
arithmetic, i.e.,

[x(tk+1)] = [x(tk)] +
τ∑

r=1

hr

r!
F (r−1)([x(tk)], [θ]) + [ek] (7)

The direct interval techniques propagate entire boxes through interval solu-
tions. As a consequence errors may tend to accumulate as computations proceed.
Let v|i denote the i-th component of a vector v. In the piecewise interval tech-
nique, the solution is computed by

[x(tk+1)]|i =

[

inf
x∈[x(tk)],θ∈[θ]

ψ(x, θ)|i, sup
x∈[x(tk)],θ∈[θ]

ψ(x, θ)|i
]

+ [ek]|i (8)

where ψ(x, θ) := x +
∑τ

r=1(hr/r!)f (r−1)(x, θ), i.e., intervals are computed by
solving optimization problems for each component. The main idea of the piece-
wise interval technique is to propagate small boxes, and works effectively for
reducing the accumulation of error.

4.2 Piecewise Interval Method for Systems with Multiple Modes

For systems with multiple modes like PWL systems, we need to take account of
mode changes during time interval [tk, tk+1]. Such systems with switching are
studied in [19]. We briefly describe the interval method for a PWL system

ẋ(t) = fj(x(t), θ) if x ∈ ξj (9)

where x ∈ R
n, each fj represents a linear continuous-time dynamic with a vector

of interval parameters θ, and each ξj is a polytope in R
n. The idea is to replace

function f in equation (3) with the following function fa that represents the
union of fj ’s for all active modes during time interval [tk, tk+1], i.e.,

Ffa ⊇
⋃

j∈M([Bk])

Ffj (10)

where [Bk] is a bounding box for time interval [tk, tk+1], M([Bk]) denote the set
of all mode j such that ξj ∩ [Bk] 	= ∅, and Ff represents the exact value set

Ff := {y | y = f([Bk], [θ])} (11)

244 K. Hiraishi

of function f under consideration of all interval arguments. Since the bounding
box [Bk] and function fa are mutually dependent, we need to perform an iterative
procedure to compute them.

We use here a piecewise interval technique which was not used in [19]. This
is possible because we are considering only linear systems. Considering that the
system is piecewise linear, we will use τ = 1 in equations (4) and (5).

The result by applying Picard operator is computed by the following piecewise
computation:

Φ(Bk)|i =

[

inf
(j,x,y,d,θ)∈Sk

1

φj(x, θ)|i, sup
(j,x,y,d,θ)∈Sk

1

φj(x, θ)|i
]

(12)

where
Sk

1 := {(j, x, y, d, θ) | j ∈M([Bk]), x ∈ [x(tk)] ∩Θ,
y ∈ [Bk] ∩Θ, d ∈ [0, h], θ ∈ [θ]} (13)

and φj(x, y, d, θ) := x + d · fj(y, θ) for each region ξj . Θ is the additional lin-
ear constraints that we can assume on the state space. As the constraints Θ,
we will use P-invariants derived from RTCPN models later. Let BoundingBox
([x(tk)], [θ], Θ, h) denote the above procedure to compute the bounding box.

The piecewise interval method to compute guaranteed bounds for x(tk), k =
0, 1, · · · , kf is shown in Fig. 8, where piecewise computation is used at the step
(*) for computing [x(tk+1)]|i.

solve([x(t0)], [θ], Θ, t0, h, kf)::

for k = 0 to kf − 1 do

[Bk] := BoundingBox([x(tk)], [θ], Θ, h);

[ek] :=
h2

2!
F (1)([Bk], [θ]);

[x(tk+1)]|i :=

�
inf

(j,x,d)∈Sk
2

ψj(x, θ)|i, sup
(j,x,d)∈Sk

2

ψj(x, θ)|i
�

+ [ek]|i (*)

where

Sk
2 := {(j, x, θ) | j ∈ M([Bk]), x ∈ [x(tk)] ∩ Θ, θ ∈ [θ]} and

ψj(x, θ) := x + h · fj(x, θ);

endfor.

Fig. 8. Procedure to compute guaranteed enclosures

Performance Evaluation of Workflows Using Continuous Petri Nets 245

Theorem 2. Suppose that the PWL system (9) satisfies the following condition:
for any bounded set X ⊆ R

n, the number of regions ξj such that X ∩ ξj 	= ∅ is
finite. Then the computation of (12) and step (*) in procedure solve() can be
performed by solving a finite number of linear programming (LP) problems.

Proof. We first prove the theorem for (12). Constraints for x ∈ [x(tk)] ∩ Θ, y ∈
[Bk] ∩Θ, and θ ∈ [θ] are all linear. Let x = [x1, · · · , xn]T and y = [y1, · · · , yn]T .
Each component of φj(x, y, d, θ) = [φj,1, · · · , φj,n]T has the form φj,l = xl +
d ·∑i αiyi, where d ∈ [0, h] and α1 ∈ [αi, αi]. By introducing new variables
zi, i = 1, · · · , n, φj,l can be rewritten as φj,l = xl+d·∑i zi with linear constraints
αiyi ≤ zi ≤ αiyi if αi ≥ 0 and yi ≥ 0, and constraints for other cases are similarly
obtained. Since scalar variable d is constrained only by interval [0, h], φj,l gives
its optimal value when d = 0 or d = 1. Therefore, we can compute the interval of
φj,l by solving LP problems for all j ∈ M([Bk]) and d ∈ {0, h}, where M([Bk])
is finite by the assumption. The situation is the same in optimization problems
of (*) except that d is fixed to h. ��

The PWL system obtained from RTCPN satisfies the condition in the above
theorem, because the system consists of a finite number of regions. Therefore,
the procedures for computing (12) and (*) in solve() can be implemented on
a constraint solver that can solve liner programming problems. On the other
hand, the computation [ek] includes Jacobian f (1), and we need solve nonlinear
constraints in order to compute piecewise interval solutions. By this reason,
interval arithmetic is used for computing [ek].

4.3 Using P-Invariants as Constraints of LP Problems

A P-invariant is a nonnegative integer solution y ∈ N
|P | of a linear homogeneous

equation yTA = 0, where A is the incidence matrix of the Petri net structure.
As well known, yT m = yT m0 holds for any marking m reachable from the initial
marking m0. Since the marking of RTCPN is defined in a real vector space, we
define a P-invariant of RTCPN as any real-valued solution y ∈ R

|P | of equation
yTA = 0. When we solve optimization problems in (12) and (*), we can add
an equation yT x = yT x0, where y is a P-invariant and x0 is the initial state, as
one of linear constraints Θ. This will works effectively in reducing the sizes of
intervals. In the RTCPN model in Fig. 6, the following P-invariant is obtained:

xp + xca + xa1 + xr1 + xa2 + xr2 = N.

Moreover, the following inequalities also hold in all reachable states. We can add
these (in)equalities as constraints of the LP problems:

xs ≥ 0, xp ≥ 0, xca ≥ 0, xa1 ≥ 0, xr1 ≥ 0, xa2 ≥ 0, xr2 ≥ 0.

246 K. Hiraishi

4.4 Computation Results: RTCPN Model

As shown in Theorem 2, we need to solve LP problems a number of times.
Moreover, interval arithmetic is used in the computation of [ek]. All processes
of the algorithm are implemented on a single constraint solver called KCLP-HS,
which is a rapid prototyping tool for algorithms on hybrid systems developed
by the author’s group [11]. KCLP-HS is a constraint logic programming lan-
guage equipped with a linear constraint solver, quadratic programming solver,
manipulation of convex polyhedra, and interval arithmetic. Disjunctions of linear
constraints are handled by backtracking mechanism. We compute at each time
step guaranteed intervals for state variables under the following parameters:

– Initial state: xp = N, (N = 50, 60, · · · , 150). Values of other state variables
are all 0.

– Interval of firing speeds: [(1−δ)·λ(tj), (1+δ)·λ(tj)] for each timed transition
tj , where δ is a parameter determining the width of intervals.

Table 2. CPU times and the upper bound of xs after 12 months (δ = 0.2)

N CPU Time upper bound
(sec.) of xs

50 24.0 73.8
60 22.6 49.6
70 19.9 29.3
80 16.4 12.2
90 11.2 1.1

100 7.7 0
110 6.2 0
120 6.2 0
130 6.2 0
140 6.2 0
150 6.2 0

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12

month

pa
pe

rs

50
60

70
80

90
100

Fig. 9. Upper bounds of xs (δ = 0.2)

Performance Evaluation of Workflows Using Continuous Petri Nets 247

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12

month

pa
pe

rs

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12

month

pa
pe

rs

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12

month

pa
pe

rs

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12

month

pa
pe

rs

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12

month

pa
pe

rs

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12

month

pa
pe

rs

(i) xp (ii) xca

(iii) xa1 (iv) xr1

(v) xa2 (vi) xr2

Fig. 10. Guaranteed enclosures of state variables (N = 100). (Gray area: δ = 0.2,
Light gray area: δ = 0.2/

�
enab(tj , m).

– Step size: h = 0.1 month.
– Duration: 12 months. This means that the number of iterations is 120.

Fig. 9 shows the upper bound of xs, i.e., the number of waiting papers, for
each N , when δ = 0.2. Fig. 10 shows the guaranteed enclosures of state variables
in case of N = 100, where two enclosures are depicted for each state variable, one
is obtained by a fixed δ = 0.2, and the other is obtained by δ = 0.2/

√
enab(tj , m)

248 K. Hiraishi

as discussed in Remark 1. Table 2 shows CPU times and upper bounds of xs

after 12 months. CPU times are measured by the same computer environment
as that used for the GSPN analysis. Note that the value of N does not depend
on the computation time. This shows that the method is scalable for the amount
of resources.

From these results, we observe that N > 100 is sufficient to keep the number
of waiting papers at a low level. Looking at the transient behavior in Fig. 10,
the quantity xp, which corresponds to the residual resource, is nearly converged
after 12 months. Notice that the number N = 100 is almost the same as the
number computed by the GSPN model.

5 Concluding Remarks

For performance evaluation of workflows, we have tried two approaches, analysis
by GSPN and approximation by a class of timed continuous Petri nets, called
RTCPN. A PWL system is derived from the RTCPN model. Using piecewise
interval method, guaranteed enclosures for state variables at each time step have
been computed. The difference between two approaches is in scalability for the
number of workflow instances. Computation times in RTCPN analysis do not
depend on the number of workflow instances. Moreover, since state variables in
RTCPN are almost decoupled, we expect that interval methods can be applied
to larger models including hundreds of variables. Experiments for larger models
remain as future work.

From the theoretical point of view, contribution of this paper is summarized
as follows. Firstly, we have proposed a new class of continuous Petri net RTCPN,
which can be used for fluidification of GSPN models. Secondly, we have proposed
to use interval methods for transient analysis of RTCPN models. The method
is based on piecewise interval methods for multi-mode systems, and computes
guaranteed enclosures of state variables. All computations can be performed by
solving a finite number of linear programming problems together with interval
arithmetic. Using place invariants in the computation of intervals is also an
original idea.

Transient analysis may correspond to bounded model checking for discrete-
state systems [3], where the objective of bounded model checking is to find errors
by simulation for finite time steps. The models we have studied in this paper are
autonomous. We expect that the proposed approach is applicable to performance
models with external logical control. Hybrid system models such as hybrid Petri
nets can be used for the modeling. In addition, the proposed method is able to
check properties of systems with uncertainty in their parameters. Such systems
are often found in medical and biological systems. These are also targets of our
approach.

Acknowledgments. The research is partly supported by the Grant-in-Aid for
Scientific Research of the Ministry of Education, Science, Sports and Culture of
Japan, under Grant No. 17560386, and also 21st Century COE program “Verifi-
able and Evolvable E-Society” at JAIST. The author thanks to Prof. Hofer and

Performance Evaluation of Workflows Using Continuous Petri Nets 249

Mr. Rauh, University of Ulm, Germany, for valuable suggestion about interval
methods. The author also thanks to Prof. Lindemann, University of Dortmund,
for allowing us to use DSPNexpress-NG.

References

1. Abate, A.F., Esposito, A., Grieco, N., Nota, G.: Workflow Performance Evaluation
through WPQL. In: Proc. SEKE 2002, pp. 489–495 (2002)

2. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
eling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing.
John Wiley and Sons, Chichester (1995)

3. Biere, A., et al.: Bounded Model Checking. Book chapter: Advances in Computers,
vol. 58. Academic Press, London (2003)

4. David, R., Alla, H.: On Hybrid Petri Nets. Discrete Event Dynamic Systems: The-
ory and Applications 11, 9–40 (2001)

5. Dehnert, J., Freiheit, J., Zimmermann, A.: Modeling and Performance Evaluation
of Workflow Systems. In: Proc. 4th. World Multiconference on Systems, Cybernet-
ics and Informatics, vol. VIII, pp. 632–637 (2000)

6. Desrochers, A.A., Al-Jaar, R.Y.: Applications of Petri Nets in Manufacturing Sys-
tems. IEEE Press, Los Alamitos (1995)

7. Deville, Y., Janssen, M., Hentenryck, P.V.: Consistency Techniques in Ordinary
Differential Equations. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS,
vol. 1520, pp. 162–176. Springer, Heidelberg (1998)

8. Eshuis, R., Wieringa, R.: Verification Support for Workflow Design with UML
Activity Graphs. In: Proc. ICSE 2002, pp. 166–176 (2002)

9. Gaujal, B., Guia, A.: Optimal Stationary Behavior for a Class of Timed Continuous
Petri Nets. Automatica 40, 1505–1516 (2004)

10. Hillston, J.: Fluid Flow Approximation of PEPA Models. In: Proc. 2nd Int. Conf.
Quantitative Evaluation Systems, pp. 33–42 (2005)

11. Hiraishi, K.: KCLP-HS: A Rapid Prototyping Tool for Implementing Algorithms
on Hybrid Systems, JAIST Research Report IS-RR-2006-012 (August 2006)

12. Horton, G., Kulkarni, V.G., Nicol, D.M., Trivedi, K.S.: Fluid Stochastic Petri
Nets: Theory, Applications, and Solution Techniques, NASA Contractor Report,
no. 198274 (1996)

13. Júlvez, J., Recald, L., Silva, M.: Steady-state Performance Evaluation of Continu-
ous Mono-t-semiflow Petri Nets. Automatica 41, 605–616 (2005)

14. Kleinrock, L.: Queuing Systems, Volume II: Computer Applications. vol. 2. Wiley,
Chichester (1976)

15. Li, J., Fan, Y.S., Zhou, M.C.: Performance Modeling and Analysis of Workflow.
IEEE Trans. on Systems, Man, and Cybernetics: Part A 34(2), 229–242 (2004)

16. Lindermann, C.: Performance Modeling with Deterministic and Stochastic Petri
Nets. Wiley, Chichester (1998)

17. Mandelbaum, A., Chen, H.: Discrete Flow Networks: Bottlenecks Analysis and
Fluid Approximations. Mathematics of Operations Research 16, 408–446 (1991)

18. Moore, R.: Methods and Applications of Interval Analysis. Philadelphia: SIAM
(1979)

19. Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Interval Methods for Simu-
lation of Dynamical Systems with State-Dependent Switching Charactaristics. In:
Proc. IEEE Int. Conf. Control Applications, pp. 355–360 (2006)

250 K. Hiraishi

20. Silva, M., Recade, L.: Continuization of Timed Petri Nets: From Performance Eval-
uation to Observation and Control. In: Ciardo, G., Darondeau, P. (eds.) ICATPN
2005. LNCS, vol. 3536, pp. 26–47. Springer, Heidelberg (2005)

21. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

22. http://www.bpmn.org/

23. http://rvs.informatik.uni-leipzig.de/de/software/index.php

http://www.bpmn.org/
http://rvs.informatik.uni-leipzig.de/de/software/index.php

Modelling Concurrency with Quotient Monoids

Ryszard Janicki� and Dai Tri Man Lê��

Department of Computing and Software,
McMaster University,

Hamilton, ON, L8S 4K1 Canada
{janicki,ledt}@mcmaster.ca

Abstract. Four quotient monoids over step sequences and one with
compound generators are introduced and discussed. They all can be re-
garded as extensions (of various degrees) of Mazurkiewicz traces [14] and
comtraces of [10].

Keywords: quotient monoids, traces, comtraces, step sequences, strati-
fied partial orders, stratified order structures, canonical representations.

1 Introduction

Mazurkiewicz traces or partially commutative monoids [1,5] are quotient
monoids over sequences (or words). They have been used to model various as-
pects of concurrency theory since the late seventies and their theory is substan-
tially developed [5]. As a language representation of partial orders, they can
nicely model “true concurrency.”

For Mazurkiewicz traces, the basic monoid (whose elements are used in the
equations that define the trace congruence) is just a free monoid of sequences. It
is assumed that generators, i.e. elements of trace alphabet, have no visible inter-
nal structure, so they could be interpreted as just names, symbols, letters, etc.
This can be a limitation, as when the generators have some internal structure,
for example if they are sets, this internal structure may be used when defining
the set of equations that generate the quotient monoid. In this paper we will
assume that the monoid generators have some internal structure. We refer to
such generators as ‘compound’, and we will use the properties of that internal
structure to define an appropriate quotient congruence.

One of the limitations of traces and the partial orders they generate is that
neither traces nor partial orders can model the “not later than” relationship [9]. If
an event a is performed “not later than” an event b, and let the step {a, b} model
the simultaneous performance of a and b, then this “not later than” relationship
can be modelled by the following set of two step sequences s = {{a}{b}, {a, b}}.
But the set s cannot be represented by any trace. The problem is that the trace
independency relation is symmetric, while the “not later than” relationship is
not, in general, symmetric.
� Partially supported by NSERC grant of Canada.

�� Partially supported by Ontario Graduate Scholarship.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 251–269, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

252 R. Janicki and D.T. Man Lê

To overcome those limitations the concept of a comtrace (combined trace) was
introduced in [10]. Comtraces are finite sets of equivalent step sequences and the
congruence is determined by a relation ser, which is called serialisability and is,
in general, not symmetric. Monoid generators are ‘steps’, i.e. finite sets, so they
have internal structure. The set union is used to define comtrace congruence.
Comtraces provide a formal language counterpart to stratified order structures
and were used to provide a semantic of Petri nets with inhibitor arcs. How-
ever [10] contains very little theory of comtraces, and only their relationship to
stratified order structures has been substantially developed.

Stratified order structures [6,8,10,11] are triples (X,≺, �), where ≺ and �
are binary relations on X . They were invented to model both “earlier than”
(the relation ≺) and “not later than” (the relation �) relationships, under the
assumption that all system runs are modelled by stratified partial orders, i.e. step
sequences. They have been successfully applied to model inhibitor and priority
systems, asynchronous races, synthesis problems, etc. (see for example [10,12,13]
and others). It was shown in [10] that each comtrace defines a finite stratified
order structure. However, thus far, comtraces have been used much less often
than stratified order structures, even though in many cases they appear to be
more natural than stratified order structures. Perhaps this is due to the lack
of substantial theory development of quotient monoids different from that of
Mazurkiewicz traces.

It appears that comtraces are a special case of a more general class of quo-
tient monoids, which will be called absorbing monoids. For absorbing monoids,
generators are still steps, i.e. sets. When sets are replaced by arbitrary com-
pound generators (together with appropriate rules for the generating equations),
a new model, called absorbing monoids with compound generators, is created.
This model allows us to describe formally asymmetric synchrony.

Both comtraces and stratified order structures can adequately model concur-
rent histories only when the paradigm π3 of [9,11] is satisfied. For the general
case, we need generalised stratified order structures, which were introduced and
analysed in [7]. Generalised stratified order structures are triples (X, <>, �),
where <> and � are binary relations on X modelling “earlier than or later
than” and “not later than” relationships respectively under the assumption that
all system runs are modelled by stratified partial orders.

In this paper a sequence counterpart of generalised stratified order structures,
called generalised comtraces, and their equational generalisation, called partially
commutative absorbing monoids, are introduced and their properties are dis-
cussed.

In the next section we recall the basic concepts of partial orders and the
theory of monoids. Section 3 introduces equational monoids with compound gen-
erators and other types of monoids that are discussed in this paper. In Sec-
tion 4 the concept of canonical representations of traces is reviewed; while
Section 5 proves the uniqueness of canonical representations for comtraces. In
Section 6 the notion of generalised comtraces is introduced and the relationship
between comtraces, generalised comtraces and their respective order structures is

Modelling Concurrency with Quotient Monoids 253

thoroughly discussed. Section 7 briefly describes the relationship between com-
traces and different paradigms of concurrent histories, and Section 8 contains
some final comments.

2 Orders, Monoids, Sequences and Step Sequences

Let X be a set. A relation ≺ ⊆ X×X is a (strict) partial order if it is irreflexive
and transitive, i.e. if ¬(a ≺ a) and a ≺ b ≺ c ⇒ a ≺ c, for all a, b, c ∈ X .

We write a �≺ b if ¬(a ≺ b) ∧ ¬(b ≺ a), that is if a and b are either distinct
incomparable (w.r.t. ≺) or identical elements of X ; and a �≺ b if a �≺ b∧a �= b.

We will also write a ≺� b if a ≺ b ∨ a �≺ b.
The partial order ≺ is total (or linear) if �≺ is empty, and stratified (or weak)

if �≺ is an equivalence relation.
The partial order ≺2 is an extension of ≺1 iff ≺1⊆≺2. Every partial order is

uniquely represented by the intersection of all its total extensions.
A triple (X, ◦, 1), where X is a set, ◦ is a total binary operation on X , and

1 ∈ X , is called a monoid, if (a ◦ b) ◦ c = a ◦ (b ◦ c) and a ◦ 1 = 1 ◦ a = a, for all
a, b, c ∈ X .

A relation ∼ ⊆ X ×X is a congruence in the monoid (X, ◦, 1) if
a1 ∼ b1 ∧ a2 ∼ b2 ⇒ (a1 ◦ a2) ∼ (b1 ◦ b2),

for all a1, a2, b1, b2 ∈ X . Every congruence is an equivalence relation; standardly
X/ ∼ denotes the set of all equivalence classes of ∼ and [a]∼ (or simply [a])
denotes the equivalence class of ∼ containing the element a ∈ X . The triple
(X/ ∼, ◦̂, [1]), where [a]◦̂[b] = [a ◦ b], is called the quotient monoid of (X, ◦, 1)
under the congruence ∼. The mapping φ : X → X/ ∼ defined as φ(a) = [a]
is called the natural homomorphism generated by the congruence ∼ (for more
details see for example [2]). The symbols ◦ and ◦̂ are often omitted if this does
not lead to any discrepancy.

By an alphabet we shall understand any finite set. For an alphabet Σ, Σ∗

denotes the set of all finite sequences of elements of Σ, λ denotes the empty
sequence, and any subset of Σ∗ is called a language. In this paper all sequences
are finite. Each sequence can be interpreted as a total order and each finite total
order can be represented by a sequence. The triple (Σ∗, ·, λ), where · is sequence
concatenation (usually omitted), is a monoid (of sequences).

For each set X , let P(X) denote the set of all subsets of X and P∅(X) denote
the set of all non-empty subsets of X . Consider an alphabet Σstep ⊆P∅(X) for
some finite X . The elements of Σstep are called steps and the elements of Σ∗

step

are called step sequences. For example if Σstep = {{a}, {a, b}, {c}, {a, b, c}} then
{a, b}{c}{a, b, c} ∈ Σ∗

step is a step sequence. The triple (Σ∗
step, •, λ), where • is

step sequence concatenation (usually omitted), is a monoid (of step sequences)
(see for example [10] for details).

3 Equational Monoids with Compound Generators

In this section we will define all types of monoids that are discussed in this paper.

254 R. Janicki and D.T. Man Lê

3.1 Equational Monoids and Mazurkiewicz Traces

Let M = (X, ◦, 1) be a monoid and let EQ = { x1 = y1 , ... , xn = yn }, where
xi, yi ∈ X , i = 1, ..., n, be a finite set of equations. Define ≡EQ (or just ≡) as
the least congruence on M satisfying, xi = yi =⇒ xi ≡EQ yi, for each equation
xi = yi ∈ EQ. We will call the relation ≡EQ the congruence defined by EQ, or
EQ-congruence.

The quotient monoid M≡ = (X/≡, ◦̂, [1]≡), where [x]◦̂[y] = [x ◦ y], will be
called an equational monoid (see for example [15]).

The following folklore result shows that the relation ≡EQ can also be defined
explicitly.

Proposition 1. For equational monoids the EQ-congruence ≡ can be defined
explicitly as the reflexive and transitive closure of the relation ≈ ∪ ≈−1, i.e.
≡ = (≈ ∪ ≈−1)∗, where ≈ ⊆ X ×X, and

x ≈ y ⇐⇒ ∃ x1, x2 ∈ X. ∃ (u = w) ∈ EQ. x = x1◦u◦x2 ∧ y = x1◦v◦x2.

Proof. Define ≈̇ = ≈ ∪ ≈−1. Clearly (≈̇)∗ is an equivalence relation. Let x1 ≡ y1

and x2 ≡ y2. This means x1(≈̇)ky1 and x2(≈̇)ly2 for some k, l ≥ 0. Hence
x1◦x2 (≈̇)k y1◦x2 (≈̇)l y1◦y2, i.e. x1◦x2 ≡ y1◦y2. Therefore ≡ is a congruence.
Let ∼ be a congruence that satisfies (u = w) ∈ EQ =⇒ u ∼ w for each u = w
from EQ. Clearly x≈̇y =⇒ x ∼ y. Hence x ≡ y ⇐⇒ x(≈̇)my =⇒ x ∼m y ⇒
x ∼ y. Thus ≡ is the least. �

If M = (E∗, ◦, λ) is a free monoid generated by E, ind ⊆ E ×E is an irreflexive
and symmetric relation (called independency or commutation), and EQ = {ab =
ba | (a, b) ∈ ind}, then the quotient monoid M≡ = (E∗/≡, ◦̂, [λ]) is a partially
commutative free monoid or monoid of Mazurkiewicz traces [5,14]. The tuple
(E, ind) is often called concurrent alphabet.

Example 1. Let E = {a, b, c}, ind = {(b, c), (c, b)}, i.e. EQ = { bc = cb }. For ex-
ample abcbca ≡ accbba (since abcbca ≈ acbbca ≈ acbcba ≈ accbba), t1 = [abc] =
{abc, acb}, t2 = [bca] = {bca, cba} and t3 = [abcbca] = {abcbca, abccba, acbbca,
acbcba, abbcca, accbba} are traces, and t3 = t1◦̂t2 (as [abcbca] = [abc]◦̂[bca]). For
more details the reader is referred to [5,14] (and [15] for equational representa-
tions). �

3.2 Absorbing Monoids and Comtraces

The standard definition of a free monoid (E∗, ◦, λ) assumes the elements of
E have no internal structure (or their internal structure does not affect any
monoidal properties), and they are often called ‘letters’, ‘symbols’, ‘names’, etc.
When we assume the elements of E have some internal structure, for instance
they are sets, this internal structure may be used when defining the set of equa-
tions EQ.

Let E be a finite set and S ⊆P∅(E) be a non-empty set of non-empty subsets
of E satisfying

⋃
A∈S A = E. The free monoid (S∗, ◦, λ) is called a free monoid

Modelling Concurrency with Quotient Monoids 255

of step sequences over E, with the elements of S called steps and the elements of
S∗ called step sequences. We assume additionally that the set S is subset closed
i.e. for all A ∈ S, B ⊆ A and B is not empty, implies B ∈ S.

Let EQ be the following set of equations:

EQ = { C1 = A1B1 , ... , Cn = AnBn },

where Ai, Bi, Ci ∈ S, Ci = Ai∪Bi, Ai∩Bi = ∅, for i = 1, ..., n, and let ≡ be EQ-
congruence (i.e. the least congruence satisfying Ci = AiBi implies Ci ≡ AiBi).

The quotient monoid (S∗/≡, ◦̂, [λ]) will be called an absorbing monoid over
step sequences.

Example 2. Let E = {a, b, c}, S = {{a, b, c}, {a, b}, {b, c}, {a, c}, {a}, {b}, {c}},
and EQ be the following set of equations:

{a, b, c} = {a, b}{c} and {a, b, c} = {a}{b, c}.
In this case, for example, {a, b}{c}{a}{b, c} ≡ {a}{b, c}{a, b}{c} (as we have
{a, b}{c}{a}{b, c} ≈ {a, b, c}{a}{b, c} ≈ {a, b, c}{a, b, c} ≈ {a}{b, c}{a, b, c} ≈
{a}{b, c}{a, b}{c}), x = [{a, b, c}] and y = [{a, b}{c}{a}{b, c}] belong to S∗/≡,
and

x = {{a, b, c}, {a, b}{c}, {a}{b, c}},
y = {{a, b, c}{a, b, c}, {a, b, c}{a, b}{c}, {a, b, c}{a}{b, c}, {a, b}{c}{a, b, c},
{a, b}{c}{a, b}{c}, {a, b}{c}{a}{b, c}, {a}{b, c}{a, b, c},
{a}{b, c}{a, b}{c}, {a}{b, c}{a}{b, c}}.

Note that y = x◦̂x as {a, b}{c}{a}{b, c} ≡ {a, b, c}{a, b, c}. �

Comtraces, introduced in [10] as an extension of Mazurkiewicz traces to dis-
tinguish between “earlier than” and “not later than” phenomena, are a special
case of absorbing monoids of step sequences. The equations EQ are in this case
defined implicitly via two relations simultaneity and serialisability.

Let E be a finite set (of events), ser ⊆ sim ⊂ E × E be two relations called
serialisability and simultaneity respectively. The triple (E, sim, ser) is called
comtrace alphabet. We assume that sim is irreflexive and symmetric. Intuitively,
if (a, b) ∈ sim then a and b can occur simultaneously (or be a part of a syn-
chronous occurrence in the sense of [12]), while (a, b) ∈ ser means that a and b
may occur simultaneously and a may occur before b (and both happenings are
equivalent). We define S, the set of all (potential) steps, as the set of all cliques
of the graph (E, sim), i.e.

S = {A | A �= ∅ ∧ (∀a, b ∈ A. a = b ∨ (a, b) ∈ sim)}.
The set of equations EQ can now be defined as:

EQ = {C = AB | C = A ∪B ∈ S ∧A ∩B = ∅ ∧A×B ⊆ ser}.
Let ≡ be the EQ-congruence defined by the above set of equations. The ab-

sorbing monoid (S/≡, ◦̂, [λ]) is called a monoid of comtraces.

Example 3. Let E = {a, b, c}where a, b and c are three atomic operations defined
as follows (we assume simultaneous reading is allowed):

a : y ← x + y, b : x← y + 2, c : y ← y + 1.

256 R. Janicki and D.T. Man Lê

Only b and c can be performed simultaneously, and the simultaneous execution of
b and c gives the same outcome as executing b followed by c. We can then define
sim = {(b, c), (c, b)} and ser = {(b, c)}, and we have S = {{a}, {b}, {c}, {b, c}},
EQ = {{b, c} = {b}{c}}. For example x = [{a}{b, c}] = {{a}{b, c}, {a}{b}{c}}
is a comtrace. Note that {a}{c}{b} /∈ x. �

Even though Mazurkiewicz traces are quotient monoids over sequences and
comtraces are quotient monoids over step sequences, Mazurkiewicz traces can
be regarded as a special case of comtraces. In principle, each trace commu-
tativity equation ab = ba corresponds to two comtrace absorbing equations
{a, b} = {a}{b} and {a, b} = {b}{a}. This relationship can formally be for-
mulated as follows.

Proposition 2. If ser = sim then for each comtrace t ∈ S∗/ ≡ser there is a
step sequence x = {a1} . . . {ak} ∈ S∗, where ai ∈ E, i = 1, ..., k such that t = [x].

Proof. Let t = [A1...Am], where Ai ∈ S, i = 1, ..., m. Hence t = [A1]...[Am].
Let Ai = {ai

1, ..., a
i
ki
}. Since ser = sim, we have [Ai] = [{ai

1}]...[{ai
ki
}], for

i = 1, . . . , m, which ends the proof. �

This means that if ser = sim, then each comtrace t ∈ S∗/ ≡ser can be rep-
resented by a Mazurkiewicz trace [a1 . . . ak] ∈ E∗/≡ind, where ind = ser and
{a1} . . . {ak} is a step sequence such that t = [{a1} . . . {ak}]. Proposition 2 guar-
antees the existence of a1 . . . ak.

While every comtrace monoid is an absorbing monoid, not every absorbing
monoid can be defined as a comtrace. For example the absorbing monoid anal-
ysed in Example 2 cannot be represented by any comtrace monoid.

It appears the concept of the comtrace can be very useful to formally define the
concept of synchrony (in the sense of [12]). In principle the events are synchronous
if they can be executed in one step {a1, ..., ak} but this execution cannot be
modelled by any sequence of proper subsets of {a1, ..., ak}. In general ‘synchrony’
is not necessarily ‘simultaneity’ as it does not include the concept of time [4].
However, it appears that the mathematics used to deal with synchrony is very
close to that to deal with simultaneity.

Let (E, sim, ser) be a given comtrace alphabet. We define the relations ind,
syn and the set Ssyn as follows:

– ind ⊆ E × E, called independency and defined as ind = ser ∩ ser−1,
– syn ⊆ E × E, called synchrony and defined as:

(a, b) ∈ syn ⇐⇒ (a, b) ∈ sim ∧ (a, b) /∈ ser ∪ ser−1,
– Ssyn ⊆ S, called synchronous steps, and defined as:

A ∈ Ssyn ⇐⇒ A �= ∅ ∧ (∀a, b ∈ A. (a, b) ∈ syn).

If (a, b) ∈ ind then a and b are independent, i.e. they may be executed either
simultaneously, or a followed by b, or b followed by a, with exactly the same
result. If (a, b) ∈ syn then a and b are synchronous, which means they might
be executed in one step, either {a, b} or as a part of bigger step, but such an
execution is not equivalent to neither a followed by b, nor b followed by a. In

Modelling Concurrency with Quotient Monoids 257

principle, the relation syn is a counterpart of ‘synchrony’ as understood in [12].
If A ∈ Ssyn then the set of events A can be executed as one step, but it cannot
be simulated by any sequence of its subsets.

Example 4. Let E = {a, b, c, d, e}, sim = {(a, b), (b, a), (a, c), (c, a), (a, d), (d, a)},
and ser = {(a, b), (b, a), (a, c)}. Hence
S = {{a, b}, {a, c}, {a, d}, {a}, {b}, {c}, {e}}, ind = {(a, b), (b, a)},
syn = {(a, d), (d, a)}, Ssyn = {{a, d}}.

Since {a, d} ∈ Ssyn the step {a, d} cannot be split. For example the comtraces
x1 = [{a, b}{c}{a}], x2 = [{e}{a, d}{a, c}], x3 = [{a, b}{c}{a}{e}{a, d}{a, c}],
are the following sets of step sequences:

x1 = {{a, b}{c}{a}, {a}{b}{c}{a}, {b}{a}{c}{a}, {b}{a, c}{a}},
x2 = {{e}{a, d}{a, c}, {e}{a, d}{a}{c}},
x3 = {{a, b}{c}{a}{e}{a, d}{a, c}, {a}{b}{c}{a}{e}{a, d}{a, c},

{b}{a}{c}{a}{e}{a, d}{a, c}, {b}{a, c}{a}{e}{a, d}{a, c},
{a, b}{c}{a}{e}{a, d}{a}{c}, {a}{b}{c}{a}{e}{a, d}{a}{c},
{b}{a}{c}{a}{e}{a, d}{a}{c}, {b}{a, c}{a}{e}{a, d}{a}{c}}.

Notice that we have {a, c} ≡ser {a}{c} �≡ser {c}{a}, since (c, a) /∈ ser. We also
have x3 = x1◦̂x2. �

3.3 Partially Commutative Absorbing Monoids and Generalised
Comtraces

There are reasonable concurrent histories that cannot be modelled by any ab-
sorbing monoid. In fact, absorbing monoids can only model concurrent histories
conforming to the paradigm π3 of [9] (see the Section 7 of this paper). Let us
analyse the following example.

Example 5. Let E = {a, b, c} where a, b and c are three atomic operations de-
fined as follows (we assume simultaneous reading is allowed):

a : x← x + 1, b : x← x + 2, c : y ← y + 1.
It is reasonable to consider them all as ‘concurrent’ as any order of their execu-
tions yields exactly the same results (see [9,11] for more motivation and formal
considerations). Note that while simultaneous execution of {a, c} and {b, c} are
allowed, the step {a, b} is not!

Let us consider set of all equivalent executions (or runs) involving one occur-
rence of a, b and c

x = {{a}{b}{c}, {a}{c}{b}, {b}{a}{c}, {b}{c}{a}, {c}{a}{b}, {c}{b}{a},
{a, c}{b}, {b, c}{a}, {b}{a, c}, {a}{b, c}}.

Although x is a valid concurrent history or behaviour [9,11], it is not a comtrace.
The problem is that we have here {a}{b} = {b}{a} but {a, b} is not a valid step,
so no absorbing monoid can represent this situation. �

The concurrent behaviour described by x from Example 5 can easily be modelled
by a generalised order structure of [7]. In this subsection we will introduce the
concept of generalised comtraces, quotient monoids representations of generalised

258 R. Janicki and D.T. Man Lê

order structures. But we start with a slightly more general concept of partially
commutative absorbing monoid over step sequences.

Let E be a finite set and let (S∗, ◦, λ) be a free monoid of step sequences over
E. Assume also that S is subset closed.

Let EQ, EQ′, EQ′′ be the following sets of equations:

EQ′ = { C′
1 = A′

1B
′
1 , ... , C′

n = A′
nB′

n },
where A′

i, B
′
i, C

′
i ∈ S, C′

i = A′
i ∪B′

i, A′
i ∩B′

i = ∅, for i = 1, ..., n,

EQ′′ = { B′′
1 A′′

1 = A′′
1B′′

1 , ... , B′′
k A′′

k = A′′
kB′′

k },
where A′′

i , B′′
i ∈ S, A′′

i ∩B′′
i = ∅, A′′

i ∪B′′
i /∈ S, for i = 1, ..., k, and

EQ = EQ′ ∪ EQ′′.

Let ≡ be the EQ-congruence defined by the above set of equations EQ (i.e. the
least congruence such that C′

i = A′
iB

′
i =⇒ C′

i ≡ A′
iB

′
i, for i = 1, ..., n and

B′′
i A′′

i = A′′
i B′′

i =⇒ B′′
i A′′

i ≡ A′′
i B′′

i , for i = 1, ..., k). The quotient monoid
(S/≡, ◦̂, [λ]) will be called aa partially commutative absorbing monoid
over step sequences.

There is a substantial difference between ab = ba for Mazurkiewicz traces, and
{a}{b} = {b}{a} for partially commutative absorbing monoids. For traces, the
equation ab = ba when translated into step sequences corresponds to {a, b} =
{a}{b}, {a, b} = {b}{a}, and implies {a}{b} ≡ {b}{a}. For partially commu-
tative absorbing monoids, the equation {a}{b} = {b}{a} implies that {a, b}
is not a step, i.e. neither {a, b} = {a}{b} nor {a, b} = {b}{a} does exist. For
Mazurkiewicz traces the equation ab = ba means ‘independency’, i.e. any order
or simultaneous execution are allowed and are equivalent. For partially commu-
tative absorbing monoids, the equation {a}{b} = {b}{a}means that both orders
are equivalent but simultaneous execution does not exist.

We will now extend the concept of a comtrace by adding a relation that
generates the set of equations EQ′′.

Let E be a finite set (of events), ser, sim, inl ⊂ E×E be three relations called
serialisability, simultaneity and interleaving respectively. The triple (E, sim,
ser, inl) is called generalised comtrace alphabet. We assume that both sim and
inl are irreflexive and symmetric, and

ser ⊆ sim, sim ∩ inl = ∅.
Intuitively, if (a, b) ∈ sim then a and b can occur simultaneously (or be a part
of a synchronous occurrence), (a, b) ∈ ser means that a and b may occur simul-
taneously and a may occur before b (and both happenings are equivalent), and
(a, b) ∈ inl means a and b cannot occur simultaneously, but their occurrence in
any order is equivalent. As for comtraces, we define S, the set of all (potential)
steps, as the set of all cliques of the graph (E, sim).

The set of equations EQ can now be defined as EQ = EQ′ ∪ EQ′′, where:
EQ′ = {C = AB | C = A ∪B ∈ S ∧A ∩B = ∅ ∧A×B ⊆ ser}, and
EQ′′ = {BA = AB | A ∪B /∈ S ∧A ∩B = ∅ ∧A×B ⊆ inl}.

Modelling Concurrency with Quotient Monoids 259

Let ≡ be the EQ-congruence defined by the above set of equations. The
quotient monoid (S∗/≡, ◦̂, [λ]) is called a monoid of generalised comtraces. If
inl is empty we have a monoid of comtraces.

Example 6. The set x from Example 5 is an element of the generalised comtrace
with E = {a, b, c}, ser = sim = {(a, c), (c, a), (b, c), (c, a)}, inl = {(a, b), (b, a)},
and S = {{a, c}, {b, c}, {a}, {b}, {c}}, and for example x = [{a, c}{b}]. �

3.4 Absorbing Monoids with Compound Generators

One of the concepts that cannot easily be modelled by quotient monoids over
step sequences, is asymmetric synchrony. Consider the following example.

Example 7. Let a and b be atomic and potentially simultaneous events, and c1,
c2 be two synchronous compound events built entirely from a and b. Assume
that c1 is equivalent to the sequence a ◦ b, c2 is equivalent to the sequence b ◦ a,
but c1 in not equivalent to c2. This situation cannot be modelled by steps as
from a and b we can built only one step {a, b} = {b, a}. To provide more intuition
consider the following simple problem.

Assume we have a buffer of 8 bits. Each event a and b consecutively fills 4
bits. The buffer is initially empty and whoever starts first fills the bits 1–4 and
whoever starts second fills the bits 5–8. Suppose that the simultaneous start is
impossible (begins and ends are instantaneous events after all), filling the buffer
takes time, and simultaneous (i.e. time overlapping in this case) executions are
allowed. We clearly have two synchronous events c1 = ‘a starts first but overlaps
with b’, and c2 = ‘b starts first but overlaps with a’. We now have c1 = a ◦ b, and
c2 = b ◦ a, but obviously c1 �= c2 and c1 �≡ c2. �

To adequately model situations like that in Example 7 we will introduce the
concept of absorbing monoid with compound generators.

Let (G∗, ◦, λ) be a free monoid generated by G, where G = E ∪ C, E ∩ C =
∅. The set E is the set of elementary generators, while the set C is the set
of compound generators. We will call (G∗, ◦, λ) a free monoid with compound
generators.

Assume we have a function comp : G → P∅(E), called composition that
satisfies: for all a ∈ E, comp(a) = {a} and for all a /∈ E, |comp(a)| ≥ 2.

For each a ∈ G, comp(a) gives the set of all elementary elements from which
a is composed. It may happen that comp(a) = comp(b) and a �= b.

The set of absorbing equations is defined as follows:
EQ = {ci = ai ◦ b1 | i = 1, ..., n}

where for each i = 1, ..., n, we have:

– ai, bi, ci ∈ G,
– comp(ci) = comp(ai) ∪ comp(bi),
– comp(ai) ∩ comp(bi) = ∅.

Let ≡ be the EQ-congruence defined by the above set of equations EQ. The
quotient monoid (G∗/≡, ◦̂, [λ]) is called an absorbing monoid with compound
generators.

260 R. Janicki and D.T. Man Lê

Example 8. Consider the absorbing monoid with compound generators where:
E = {a, b, c1, c2}, comp(c1) = comp(c2) = {a, b}, comp(a) = {a}, comp(b) = {b},
and EQ = { c1 = a◦b, c2 = b◦a }. Now we have [c1] = {c1, a◦b} and
[c2] = {c2, b◦a}, which models the case from Example 7. �

4 Canonical Representations

We will show that all of the kinds of monoids discussed in previous sections
have some kind of canonical representation, which intuitively corresponds to a
maximally concurrent execution of concurrent histories [3].

Let (E, ind) be a concurrent alphabet and (E∗/≡, ◦̂, [λ]) be a monoid of
Mazurkiewicz traces. A sequence x = a1...ak ∈ E∗ is called fully commutative if
(ai, aj) ∈ ind for all i �= j and i, j = 1, ..., k.

A sequence x ∈ E∗ is in the canonical form if x = λ or x = x1...xn such that

– each xi if fully commutative, for i = 1, ..., n,
– for each 1 ≤ i ≤ n−1 and for each element a of xi+1 there exists an element

b of xi such that a �= b and (a, b) /∈ ind.

If x is in the canonical form, then x is a canonical representation of [x].

Theorem 1 ([1,3]). For every trace t ∈ E∗/≡, there exists x ∈ E∗ such that
t = [x] and x is in the canonical form. �

With the canonical form as defined above, a trace may have more than one
canonical representations. For instance the trace t3 = [abcbca] from Example
1 has four canonical representations: abcbca, acbbca, abccba, acbcba. Intuitively,
x in the canonical form represents the maximally concurrent execution of a
concurrent history represented by [x]. In this representation fully commutative
sequences built from the same elements can be considered equivalent (this is
better seen when vector firing sequences of [16] are used to represent traces, see
[3] for more details). To get the uniqueness it suffices to order fully commutative
sequences. For example we may introduce an arbitrary total order on E, extend
it lexicographically to E∗ and add the condition that in the representation x =
x1...xn, each xi is minimal with the lexicographic ordering. The canonical form
with this additional condition is called Foata canonical form.

Theorem 2 ([1]). Every trace has a unique representation in the Foata canon-
ical form. �

A canonical form as defined at the beginning of this Section can easily be adapted
to step sequences and various equational monoids over step sequences, as well
as to monoids with compound generators. In fact, step sequences better repre-
sent the intuition that canonical representation corresponds to the maximally
concurrent execution [3].

Let (S∗, ◦, λ) be a free monoid of step sequences over E, and let
EQ = { C1 = A1B1 , ... , Cn = AnBn }

be an appropriate set of absorbing equations. Let Mabsorb = (S∗/≡, ◦̂, [λ]).

Modelling Concurrency with Quotient Monoids 261

A step sequence t = A1...Ak ∈ S∗ is canonical (w.r.t. Mabsorb) if for all i ≥ 2
there is no B ∈ S satisfying:

(Ai−1 ∪B = Ai−1B) ∈ EQ
(Ai = B(Ai −B)) ∈ EQ

When Mabsorb is a monoid of comtraces, the above definition is equivalent to the
definition of canonical step sequence proposed in [10].

Let (S∗, ◦, λ) be a free monoid of step sequences over E, and let
EQ′ = { C′

1 = A′
1B

′
1 , ... , C′

n = A′
nB′

n },
EQ′′ = { B′′

1 A′′
1 = A′′

1B′′
1 , ... , B′′

k A′′
k = A′′

kB′′
k }

be an appropriate set of partially commutative absorbing equations. Then let
Mabs&pc = (S∗/≡, ◦̂, [λ]).

A step sequence t = A1...Ak ∈ S∗ is canonical (w.r.t. Mabs&pc) if for all i ≥ 2
there is no B ∈ S satisfying:

(Ai−1 ∪B = Ai−1B) ∈ EQ′

(Ai = B(Ai −B)) ∈ EQ′

Note that the set of equations EQ′′ does not appear in the above definition.
Clearly the above definition also applies to generalised comtraces.

Let (G∗, ◦, λ) be a free monoid with compound generators, and let
EQ = { c1 = a1b1 , ... , cn = anbn }

be an appropriate set of absorbing equations. Let Mcg&absorb = (G∗/≡, ◦̂, [λ]).
Finally, a sequence t = a1...ak ∈ G∗ is canonical (w.r.t. Mcg&absorb) if for all

i ≥ 2 there is no b, d ∈ G satisfying:

(c = ai−1b) ∈ EQ
(ai = bd) ∈ EQ

For all above definitions, if x is in the canonical form, then x is a canonical
representation of [x].

Theorem 3. Let Mabsorb be an absorbing monoid over step sequences, S its set
of steps, and EQ its set of absorbing equations. For every step sequence t ∈ S∗
there is a canonical step sequence u such that t ≡ u.

Proof. For every step sequence x = B1...Br, let μ(x) = 1 · |B1| + ... + r · |Br|.
There is (at least one) u ∈ [t] such that μ(u) ≤ μ(x) for all x ∈ [t]. Suppose
u = A1...Ak is not canonical. Then there is i ≥ 2 and a step B ∈ S satisfying:

(Ai−1 ∪B = Ai−1B) ∈ EQ
(Ai = B(Ai −B)) ∈ EQ

If B = Ai then w ≈ u and μ(w) < μ(u), where

w = A1...Ai−2(Ai−1 ∪Ai)Ai+1...Ak.

262 R. Janicki and D.T. Man Lê

If B �= Ai, then w ≈ z and u ≈ z and μ(w) < μ(u), where

z = A1...Ai−2Ai−1B(Ai −B)Ai+1...Ak

w = A1...Ai−2(Ai−1 ∪B)(Ai −B)Ai+1...Ak.

In both cases it contradicts the minimality of μ(u). Hence u is canonical. �

For partially commutative absorbing monoids over step sequences the proof is
virtually identical, the only change is to replace EQ with EQ′. The proof can
also be adapted (some ‘notational’ changes only) to absorbing monoids with
compound generators.

Corollary 1. Let M = (X, ◦̂, [λ]) be an absorbing monoid over step sequences,
or partially commutative absorbing monoid over step sequences, or absorbing
monoid with compound generators. For every x ∈ X there is a canonical sequence
u such that x = [u]. �

Unless additional properties are assumed, the canonical representation is not
unique for all three kinds of monoids mentioned in Corollary 1. To prove this,
it suffices to show that this is not true for the absorbing monoids over step
sequences. Consider the following example.

Example 9. Let E = {a, b, c}, S = {{a, b}, {a, c}, {b, c}, {a}, {b}, {c}} and EQ
be the the following set of equations:

{a, b} = {a}{b}, {a, c} = {a}{c}, {b, c} = {b}{c}, {b, c} = {c}{b}.
Note that {a, b}{c} and {a, c}{b} are canonical step sequences, and {a, b}{c} ≈
{a}{b}{c} ≈ {a}{b, c} ≈ {a}{c}{b} ≈ {a, c}{b}, i.e. {a, b}{c} ≡ {a, c}{b}. Hence
[{a, b}{c}] = {{a, b}{c}, {a}{b}{c}, {a}{c}{b}, {a, c}{b}}, has two canonical rep-
resentations {a, b}{c} and {a, c}{b}. One can easily check that this absorbing
monoid is not a monoid of comtraces. �

The canonical representation is also not unique for generalised comtraces if inl �=
∅. For any generalised comtrace, if {a, b} ⊆ E, (a, b) ∈ inl, then x = [{a}{b}] =
{{a}{b}, {b}{a}} and x has two canonical representations {a}{b} and {b}{a}.

All the canonical representations discussed above can be extended to unique
canonical representations by simply introducing some total order on step se-
quences, and adding a minimality requirement with respect to this total order
to the definition of a canonical form. The technique used in the definition of
Foata normal form is one possibility. However this has nothing to do with any
property of concurrency and hence will not be discussed in this paper.

However the comtraces have a unique canonical representation as defined
above. This was not proved in [10] and will be proved in the next section.

5 Canonical Representations of Comtraces

In principle the uniqueness of canonical representation for comtraces follows the
fact that all equations can be derived from the properties of pairs of events. This

Modelling Concurrency with Quotient Monoids 263

results in very strong cancellation and projection properties, and very regular
structure of the set of all steps S.

Let a ∈ E and w ∈ S∗. We can define a right cancellation operator ÷R as

λ÷R a = λ, wA ÷R a =

⎧
⎨

⎩

(w ÷R a)A if a �∈ A
w if A = {a}

w(A \ {a}) otherwise.

Symmetrically, a left cancellation operator ÷L is defined as

λ÷L a = λ, Aw ÷L a =

⎧
⎨

⎩

A(w ÷L a) if a �∈ A
w if A = {a}

(A \ {a})w otherwise.

Finally, for each D ⊆ E, we define the function πD : S∗ → S∗, step sequence
projection onto D, as follows:

πD(λ) = λ, πD(wA) =
{

πD(w) if A ∩D = ∅
πD(w)(A ∩D) otherwise.

Proposition 3.

1. u ≡ v =⇒ u÷R a ≡ v ÷R a. (right cancellation)
2. u ≡ v =⇒ u÷L a ≡ v ÷L a. (left cancellation)
3. u ≡ v =⇒ πD(u) ≡ πD(v). (projection rule)

Proof. For each step sequence t = A1 . . . Ak ∈ S∗ let Σ(t) =
⋃k

i=1 Ai. Note that
for comtraces u ≈ v means u = xAy, v = xBCy, where A = B ∪ C, B ∩ C = ∅,
B × C ⊆ ser.

1. It suffices to show that u ≈ v =⇒ u÷R a ≈ v ÷R a. There are four cases:
(a) a ∈ Σ(y). Let z = y ÷R a. Then u÷R a = xAz ≈ xBCz = v ÷R a.
(b) a /∈ Σ(y), a ∈ A∩C. Then u÷Ra = x(A\{a})y ≈ xB(C\{a})y = v÷Ra.
(c) a /∈ Σ(y), a ∈ A∩B. Then u÷Ra = x(A\{a})y ≈ x(B\{a})Cy = v÷Ra.
(d) a /∈ Σ(Ay). Let z = x÷R a. Then u÷R a = zAy ≈ zBCy = v ÷R a.

2. Dually to (1).
3. It suffices to show that u ≈ v =⇒ πD(u) ≈ πD(v). Note that πD(A) =

πD(B)∪πD(C), πD(B)∩πD(C) = ∅ and πD(B)×πD(C) ⊆ ser, so πD(u) =
πD(x)πD(A)πD(y) ≈ πD(x)πD(B)πD(C)πD(y) = πD(v). �

Proposition 3 does not hold for an arbitrary absorbing monoid. For the absorb-
ing monoid from Example 2 we have u = {a, b, c} ≡ v = {a}{b, c}, u ÷R b =
u÷L b = π{a,c}(u) = {a, c} �≡ {a}{c} = v ÷R b = v ÷L b = π{a,c}(v).

Note that (w ÷R a)÷R b = (w ÷R b)÷R a, so we can define

w ÷R {a1, ..., ak} df
= (...((w ÷R a1)÷R a2)...÷R ak, and

w ÷R A1...Ak
df
= (...((c ÷R Ak)÷R Ak−1)...÷R A1.

We define dually for ÷L.

264 R. Janicki and D.T. Man Lê

Corollary 2. For all u, v, x ∈ S, we have

1. u ≡ v =⇒ u÷R x ≡ v ÷R x.
2. u ≡ v =⇒ u÷L x ≡ v ÷L x. �

The uniqueness of canonical representation for comtraces follows directly from
the following result.

Lemma 1. For each canonical step sequence u = A1 . . . Ak, we have

A1 = {a | ∃w ∈ [u]. w = C1 . . . Cm ∧ a ∈ C1}.

Proof. Let A = {a | ∃w ∈ [u]. w = C1 . . . Cm ∧ a ∈ C1}. Since u ∈ [u],
A1 ⊆ A. We need to prove that A ⊆ A1. Definitely A = A1 if k = 1, so as-
sume k > 1. Suppose that a ∈ A \ A1, a ∈ Aj , 1 < j ≤ k and a /∈ Ai for
i < j. Since a ∈ A, there is v = Bx ∈ [u] such that a ∈ B. Note that Aj−1Aj

is also canonical and u′ = Aj−1Aj = (u ÷R (Aj+1...Ak)) ÷L (A1...Aj−2). Let
v′ = (v ÷R (Aj+1...Ak)) ÷L (A1...Aj−2). We have v′ = B′x′ where a ∈ B′. By
Corollary 2, u′ ≡ v′. Since u′ = Aj−1Aj is canonical then ∃c ∈ Aj−1. (c, a) /∈
ser or ∃b ∈ Aj . (a, b) /∈ ser. For the former case: π{a,c}(u′) = {c}{a} (if
c /∈ Aj) or π{a,c}(u′) = {c}{a, c} (if c ∈ Aj). If π{a,c}(u′) = {c}{a} then
π{a,c}(v′) equals either {a, c} (if c ∈ B′) or {a}{c} (if c /∈ B′), i.e. in both
cases π{a,c}(u′) �≡ π{a,c}(v′), contradicting Proposition 3(3). If π{a,c}(u′) =
{c}{a, c} then π{a,c}(v′) equals either {a, c}{c} (if c ∈ B′) or {a}{c}{c} (if
c /∈ B′). However in both cases π{a,c}(u′) �≡ π{a,c}(v′), contradicting Proposi-
tion 3(3). For the latter case, let d ∈ Aj−1. Then π{a,b,d}(u′) = {d}{a, b} (if
d /∈ Aj), or π{a,b,d}(u′) = {d}{a, b, d} (if d ∈ Aj). If π{a,b,d}(u′) = {d}{a, b}
then π{a,b,d}(v′) is one of the following {a, b, d}, {a, b}{d}, {a, d}{b}, {a}{b}{d}
or {a}{d}{b}, and in either case π{a,b,d}(u′) �≡ π{a,b,d}(v′), again contradict-
ing Proposition 3(3). If π{a,b,d}(u′) = {d}{a, b, d} then π{a,b,d}(v′) is one of
the following {a, b, d}{d}, {a, b}{d}{d}, {a, d}{b, d}, {a, d}{b}{d}, {a, d}{d}{b},
{a}{b}{d}{d}, {a}{d}{b}{d}, or {a}{d}{d}{b}. However in either case we have
π{a,b,d}(u′) �≡ π{a,b,d}(v′), contradicting Proposition 3(3) as well. �

The above lemma does not hold for an arbitrary absorbing monoid. For both
canonical representations of [{a, b}{c}] from Example 9, namely {a, b}{c} and
{a, c}{b}, we have A = {a | ∃w ∈ [u]. w = C1 . . . Cm ∧ a ∈ C1} = {a, b, c} /∈ S.
Adding A to S does not help as we still have A �= {a, b} and A �= {a, c}.
Theorem 4. For every comtrace t ∈ S∗/≡ there exists exactly one canonical
step sequence u such that t = [u].

Proof. The existence follows from Theorem 3. Suppose that u = A1 . . . Ak and
v = B1 . . . Bm are both canonical step sequences and u ≡ v. By Lemma 1, we
have B1 = A1. If k = 1, this ends the proof. Otherwise, let u′ = A2 . . . Ak and
v′ = B2 . . . Bm. By Corollary 2(2) we have u′ ≡ v′. Since u′ and v′ are also
canonical, by Lemma 1, we have A2 = B2, etc. Hence u = v. �

Modelling Concurrency with Quotient Monoids 265

6 Relational Representation of Traces, Comtraces and
Generalised Comtraces

It is widely known that Mazurkiewicz traces can represent partial orders. We
show the similar relational relational equivalence for both comtraces and gener-
alised comtraces.

6.1 Partial Orders and Mazurkiewicz Traces

Each trace can be interpreted as a partial order and each finite partial order can
be represented by a trace. Let t = {x1, ..., xk} be a trace, and let ≺xi be a total
order defined by a sequence xi, i = 1, ..., k. The partial order generated by the
trace t can then be defined as: ≺t=

⋂k
i=1 ≺xi . Moreover, the set {≺x1, ...,≺xn} is

the set of all total extensions of ≺t. Let X be a finite set, ≺ ⊂ X×X be a partial
order, {≺1, ...,≺k} be the set of all total extensions of ≺, and let x≺i ∈ X∗ be
a sequence that represents ≺i, for i = 1, ..., k. The set {x≺1 , ..., x≺k

} is a trace
over the concurrent alphabet (X, �≺).

6.2 Stratified Order Structures and Comtraces

Mazurkiewicz traces can be interpreted as a formal language representation of
finite partial orders. In the same sense comtraces can be interpreted as a formal
language representation of finite stratified order structures. Partial orders can
adequately model “earlier than” relationship but cannot model “not later than”
relationship [9]. Stratified order structures are pairs of relations and can model
“earlier than” and “not later than” relationships.

A stratified order structure is a triple Sos = (X,≺, �), where X is a set, and
≺, � are binary relations on X that satisfy the following conditions:

C1: a �� a C3: a � b � c ∧ a �= c =⇒ a � c

C2: a ≺ b =⇒ a � b C4: a � b ≺ c ∨ a ≺ b � c =⇒ a ≺ c

C1–C4 imply that ≺ is a partial order and a ≺ b ⇒ b �� a. The relation ≺
is called “causality” and represents the “earlier than” relationship while � is
called “weak causality” and represents the “not later than” relationship. The
axioms C1–C4 model the mutual relationship between “earlier than” and “not
later than” provided the system runs are defined as stratified orders.

Stratified order structures were independently introduced in [6] and [8] (the
defining axioms are slightly different from C1–C4, although equivalent). Their
comprehensive theory has been presented in [11]. It was shown in [10] that each
comtrace defines a finite stratified order structure. The construction from [10]
did not use the results of [11]. In this paper we present a construction based on
the results of [11], which will be intuitively closer to the one used to show the
relationship between traces and partial orders in Section 6.1.

Let Sos = (X,≺, �) be a stratified order structure. A stratified order � on X
is an extension of Sos if for all a, b ∈ X , a ≺ b =⇒ a�b and a � b =⇒ a�� b.
Let ext(Sos) denote the set of all extensions of Sos.

266 R. Janicki and D.T. Man Lê

Let u = A1 . . . Ak be a step sequence. By u = A1 . . . Ak be the event enumer-
ated representation of t. We will skip a lengthy but intuitively obvious formal
definition (see for example [10]), but for instance if u = {a, b}{b, c}{c, a}{a},
then u = {a(1), b(1)}{b(2), c(1)}{a(2), c(2)}{a(3)}. Let Σu =

⋃k
i=1 Ai denote the

set of all enumerated events occurring in u, for u = {a, b}{b, c}{c, a}{a}, Σu =
{a(1), a(2), a(3), b(1), b(2), c(1), c(2)}. For each α ∈ Σu, let posu(α) denote the con-
secutive number of a step where α belongs, i.e. if α ∈ Aj then posu(α) = j. For
our example example posu(a(2)) = 3, posu(b(2)) = 2, etc. For each enumerated
even α = e(i), let l(α) denote the label of α, i.e. l(α) = l(e(i)) = e. One can easily
show ([10]) that u ≡ v =⇒ Σu = Σv, so we can define Σ[u] = Σu.

Given a step sequence u, we define a stratified order �u on Σu by: α�uβ ⇐⇒
posu(α) < posu(β). Conversely, let � be a stratified order on a set X . The set
X can be partitioned onto a unique sequence of non-empty sets Ω� = B1 . . . Bk

(k ≥ 0) such that

� =
⋃

i<j

(Bi ×Bj) and ��=
⋃

i

(Bi ×Bi).

Unfortunately the proofs of two theorems below require introducing additional
concepts and results, so we only provide sketches.

Theorem 5. Let t be a comtrace over (S, sim, ser) and let ≺t, �t be two binary
relations on Σt defined as:

α ≺t β ⇐⇒ ∀u ∈ t. α �u β,
α �t β ⇐⇒ ∀u ∈ t. α ��

u β.
We have:
1. Sost = (Σt,≺t, �t) is a stratified order structure,
2. ext(Sost) = {�u | u ∈ t}.

Proof. (sketch) The main part is to show that each stratified order � on Σt that
satisfies: α ≺t β =⇒ α � β and α �t β =⇒ α �� β belongs to {�u | u ∈ t}.
This can be done by induction on the number of steps of w, where w is the
canonical step sequence such that [w] = t. The rest is a consequence of the re-
sults of [9,11]. �

Theorem 6. Let Sos = (X,≺, �) be a stratified order structure, Δ = {Ω� |
� ∈ ext(Sos)}, S be the set of all steps of the step sequences in Δ, and let
relations sim, ser ⊆ l(X)× l(X) be defined as follows:
– (l(α), l(β)) ∈ sim ⇐⇒ l(α) �= l(β) ∧ ∃A ∈ S. {l(α), l(β)} ⊆ A,
– (l(α), l(β)) ∈ ser ⇐⇒ (l(α), l(β)) ∈ sim ∧ ((α � β∧β �� α) ∨ (α �≺ β)).

Then we have:
1. (S, sim, ser) is a comtrace concurrent alphabet,
2. for each u, v ∈ Δ we have u ≡ v, i.e. Δ ∈ S∗/≡ is a comtrace.

Proof. (sketch) (1) is straightforward. To prove (2) we first take the canonical
stratified extension of ≺ (see [10]), show that it belongs to ext(Sos), and then
show that it represents a canonical step sequence. Next we prove (2) by induc-
tion on the number of steps of this canonical step sequence. �

Modelling Concurrency with Quotient Monoids 267

6.3 Generalised Stratified Order Structures and Generalised
Comtraces

A generalised stratified order structure is a triple GSos = (X, <>, �), where X is
a non-empty set, and <>, � are two irreflexive relations on X , <> is symmetric,
and the triple (X,≺G, �), where ≺G = <> ∩ �, is a stratified order structure
(i.e. it satisfies C1–C4 from the previous subsection).

The relation <> is called “commutativity” and represents the “earlier than or
later than” relationship, while �, called “weak causality” represents “not later
than” relationship.

Generalised stratified order structures were introduced and their comprehen-
sive theory has been presented in [7]. They can model any concurrent history
when runs or observations are modelled by stratified orders (see [7]). We will
show that each generalised comtrace defines a finite generalised stratified or-
der structure and that each finite generalised stratified order structure can be
represented by a generalised comtrace.

Let GSos = (X, <>, �) be a generalised stratified order structure. A stratified
order � on X is an extension of GSos if for all a, b ∈ X , a <> b =⇒ a � b or
b � a, and a � b =⇒ a �� b. Let ext(GSos) denote the set of all extensions of
Sos.

Again the proofs of two theorems below require introducing additional con-
cepts and results, so we only provide sketches.

Theorem 7. Let t be a generalised comtrace over (S, sim, ser, inl) and let <>t,
�t be two binary relations on Σt defined as:

α <>t β ⇐⇒ ∀u ∈ t. (α �u β ∨ β �u α) ,
α �t β ⇐⇒ ∀u ∈ t. α ��

u β.
We have:
1. GSost = (Σt, <>t, �t) is a generalised stratified order structure,
2. ext(GSost) = {�u | u ∈ t}.

Proof. (sketch) The main part is to show that each stratified order � on Σt that
satisfies: α <>t β =⇒ α � β ∨ β � α and α �t β =⇒ α �� β belongs to
{�u | u ∈ t}. This can be done by induction on the number of steps of w, where
w is the canonical step sequence such that [w] = t (we do not need a canonical
representation to be unique here). The rest follows from the results of [7,11]. �

Theorem 8. Let Sos = (X, <>, �) be a generalised stratified order structure,
Δ = {Ω� | � ∈ ext(GSos)}, S be the set of all steps of the step sequences in Δ,
and let relations sim, ser, inl ⊆ l(X)× l(X) be defined as follows:
– (l(α), l(β)) ∈ sim ⇐⇒ l(α) �= l(β) ∧ ∃A ∈ S. {l(α), l(β)} ⊆ A,
– (l(α), l(β)) ∈ ser ⇐⇒ (l(α), l(β)) ∈ sim ∧ ((α � β∧β �� α) ∨ (α �≺ β)),
– (l(α), l(β)) ∈ inl ⇐⇒ (∀A ∈ S. l(α) /∈ A ∨ l(β) /∈ A) ∧ (α <> β).

Then we have:
1. (S, sim, ser, inl) is a generalised comtrace concurrent alphabet,
2. for each u, v ∈ Δ we have u ≡ v, i.e. Δ ∈ S∗/≡ is a generalised comtrace.

268 R. Janicki and D.T. Man Lê

Proof. (sketch) (1) is straightforward. The proof of (2) is more complex than
the proof of (2) of Theorem 6, as we need to show that there is a stratified order
in ext(GSos) which can be represented as as an appropriate canonical step se-
quence (no uniqueness needed). Next we prove (2) by induction on the number
of steps of this canonical step sequence. �

7 Paradigms of Concurrency

The general theory of concurrency developed in [9] provides a hierarchy of models
of concurrency, where each model corresponds to a so called “paradigm”, or
a general rule about the structure of concurrent histories, where concurrent
histories are defined as sets of equivalent partial orders representing particular
system runs. In principle, a paradigm describes how simultaneity is handled in
concurrent histories. The paradigms are denoted by π1 through π8. It appears
that only paradigms π1, π3, π6 and π8 are interesting from the point of view of
concurrency theory. The paradigms were formulated in terms of partial orders.
Comtraces are sets of step sequences, each step sequence uniquely defines a
stratified order, so the comtraces can be interpreted as sets of equivalent partial
orders, i.e. concurrent histories (see [10] for details). The most general paradigm,
π1, assumes no additional restrictions for concurrent histories, so each comtrace
conforms trivially to π1. The paradigms π3, π6 and π8, when translated into the
comtrace formalism, impose the following restrictions.

Let (E, sim, ser, inl) be a generalised comtrace alphabet. The monoid of gen-
eralised comtraces (comtraces when inl = ∅) (S∗/≡, ◦̂, [λ]) conforms to:

paradigm π3 ⇐⇒ ∀a, b ∈ E. ({a}{b} ≡ {b}{a} ⇒ {a, b} ∈ S).
paradigm π6 ⇐⇒ ∀a, b ∈ E. ({a, b} ∈ S ⇒ {a}{b} ≡ {b}{a}).
paradigm π8 ⇐⇒ ∀a, b ∈ E. ({a}{b} ≡ {b}{a} ⇔ {a, b} ∈ S).

Proposition 4. 1. Every monoid of comtraces conforms to π3.
2. If π8 is satisfied then ind = ser = sim.

Proof. 1. Let {a}{b} ≡ {b}{a} for some a, b ∈ E. This means {a}{b} ≈−1

{a, b} ≈ {b}{a}, i.e. {a, b} ∈ S.
2. Clearly ind ⊆ ser ⊆ sim. Let (a, b) ∈ sim. This means {a, b} ∈ S, which, by

π8, implies {a}{b} ≡ {b}{a}, i.e. (a, b) ∈ ind. �

From Proposition 4 it follows that comtraces cannot model any concurrent be-
haviour (history) that does not conform to the paradigm π3. Generalised com-
traces conform only to π1, so they can model any concurrent history that is
represented by a set of equivalent step sequences.

If a monoid of comtraces conforms to π6 it also conforms to π8. Proposition 4 says
all comtraces conforming to π8 can be reduced to equivalent Mazurkiewicz traces.

8 Conclusion

The concepts of absorbing monoids over step sequences, partially commuta-
tive absorbing monoids over step sequences, absorbing monoids with compound
generators, and monoids of generalised comtraces have been introduced and

Modelling Concurrency with Quotient Monoids 269

analysed. They all are generalisations of Mazurkiewicz traces [5] and comtraces
[10]. Some new properties of comtraces and their relationship to stratified or-
der structures [11] have been discussed. The relationship between generalised
comtraces and generalised stratified order structures [7] was also analysed.

Despite some obvious advantages, for instance, very handy composition and
no need to use labels, quotient monoids (perhaps with the exception of
Mazurkiewicz traces) are much less popular in dealing with issues of concurrency
than their relational counterparts partial orders, stratified order structures, oc-
currence graphs, etc. We believe that in many cases, quotient monoids could
provide simpler and more adequate models of concurrent histories than their
relational equivalences.

Acknowledgement. The authors thanks all four referees for a number of very
detailed and helpful comments.

References

1. Cartier, P., Foata, D.: Problèmes combinatoires de commutation et ré-
arrangements. Lecture Notes in Mathematics, vol. 85. Springer, Heidelberg (1969)

2. Cohn, P.M., Reidel, D.: Universal Algebra (1981)
3. Davillers, R., Janicki, R., Koutny, M., Lauer, P.E.: Concurrent and Maximally Con-

current Evolution of Non-sequential Systems. Theoretical Computer Science 43,
213–238 (1986)

4. Desel, J.: Private Information, Communicated to the authors by G. Juhás (2007)
5. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore

(1995)
6. Gaifman, H., Pratt, V.: Partial Order Models of Concurrency and the Computation

of Function. In: Proc. of LICS 1987, pp. 72–85. IEEE, Los Alamitos (1987)
7. Guo, G., Janicki, R.: Modelling Concurrent Behaviours by Commutativity and

Weak Causality Relations. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002.
LNCS, vol. 2422, pp. 178–191. Springer, Heidelberg (2002)

8. Janicki, R., Koutny, M.: Invariants and Paradigms of Concurrency Theory. In:
Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 506, pp.
59–74. Springer, Heidelberg (1991)

9. Janicki, R., Koutny, M.: Structure of Concurrency. Theoretical Compututer Sci-
ence 112(1), 5–52 (1993)

10. Janicki, R., Koutny, M.: Semantics of Inhibitor Nets. Information and Computa-
tion 123(1), 1–16 (1995)

11. Janicki, R., Koutny, M.: Fundamentals of Modelling Concurrency Using Discrete
Relational Structures. Acta Informatica 34, 367–388 (1997)

12. Juhás, G., Lorenz, R., Mauser, S.: Synchronous + Concurrent + Sequential = Ear-
lier Than + Not Later Than. In: Proc. of ACSD 2006 (Application of Concurrency
to System Design), Turku, Finland, pp. 261–272. IEEE Press, Los Alamitos (2006)

13. Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. Infor-
mation and Computation 190, 18–69 (2004)

14. Mazurkiewicz, A.: Introduction to Trace Theory, in [5], pp. 3–42
15. Ochmański, E.: Recognizable Trace Languages, in [5], pp. 167–204
16. Shields, M.W.: Adequate Path Expressions. In: Kahn, G. (ed.) Semantics of Con-

current Computation. LNCS, vol. 70, pp. 249–265. Springer, Heidelberg (1979)

Labeled Step Sequences in Petri Nets

Matthias Jantzen and Georg Zetzsche

University of Hamburg, Faculty of Mathematics, Informatics, and Natural Sciences,
Deptartment of Informatics

Vogt-Kölln-Straße 30, 22527 Hamburg
jantzen@informatik.uni-hamburg.de, 3zetzsch@informatik.uni-hamburg.de

Abstract. We compare various modes of firing transitions in Petri nets
and investigate classes of languages specified by them. We define lan-
guages through steps, (i. e., sets of transitions), maximal steps, multi-
steps, (i. e., multisets of transitions), and maximal multi-steps of
transitions in Petri nets. However, by considering labeled transitions,
we do this in a different manner than in [Burk 81a, Burk 83]. Namely,
we allow only sets and multisets of transitions to form a (multi-)step,
if they all share the same label. In a sequence of (multi-)steps, each of
them contributes its label once to the generated word. Through different
firing modes that allow multiple use of transitions in a single multi-step,
we obtain a hierarchy of families of languages. Except for the maximal
multi-steps all classes can be simulated by sequential firing of transitions.

1 Introduction

Classes of languages that reflect an interleaving semantics are usually defined
by Petri nets as sets of sequences of labeled or unlabeled transitions. These
classes, which have been studied since 1972 by Baker, [Bake 72], have also been
extensively investigated by [Hack 76], [Grei 78], [Jant 79a],[Pete 81] and others.
Steps as a description of concurrent application of transitions have been studied
already in the beginning of the development of Petri nets by H. Genrich, K. Laut-
enbach and C.A. Petri. In connection with computation the concept of maximal
parallelity was suggested by Salwicki and Müldner [SaMu 81] and apparently
was first studied by Burkhard in [Burk 80, Burk 81a, Burk 83].

A completely different viewpoint on the parallel firing of transitions in Petri
nets was taken by Farwer, Kudlek and Rölke in [FaKR 06], where each token
within a marking is associated with an individual read/write head on a tape
of a so-called Concurrent Turing Machine (CTM). The variant of a Concurrent
Finite Automaton (CFA) has been defined and studied in [JaKZ 07a], [JaKZ 07b,
JaKZ 08] and [FJKRZ 07]. Step transition systems in connection with Petri nets
have also been studied under a categorial view in [Muku 92]. Steps are studied
in connection with bisimulation in [NiPS 95].

We distinguish two kinds of multi-steps: steps, which contain every transition
at most once, and general multi-steps, which are arbitrary multisets of transi-
tions. Completely new here, is the way we denote labeled steps and sequences

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 270–287, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Labeled Step Sequences in Petri Nets 271

of steps: We allow only sets and multisets of transitions to form a (multi-)step,
if all transition share the same label and then use this label just once for each
(multi-)step, when creating a sequence of them.

Another structure that describes the behaviour of Petri nets is given by
Mazurkiewicz traces, [DiRo 95]. The concurrent application of transitions is
thereby represented by commuting symbols in the generated language. We, how-
ever, do not propagate the number of concurrently applicated transitions. In-
stead, any (multi-)set of concurrently firing transitions, all of which carry the
same label, results in one symbol in the generated word.

In [Kudl 05], Kudlek has used several different strategies of sequential, con-
current or parallel usage of transition firings to define classes of reachability
sets, including those obtainable by the maximal firing discipline from Burkhard,
[Burk 80]. The maximum strategy for multi-steps, which appear as the multiset
sum of several steps, is related to maximal steps in condition event systems and
was suggested by the MAX-semantics for concurrent computations by Salwicki
and Müldner, [SaMu 81]. These considerations lead to an extended computa-
tional power and showed the existence of parallel programs, which cannot be
faithfully represented by single processor computations. Burkhard has also de-
fined languages using Petri net steps by writing down all permutations of the
transitions that form such a step. He thereby defines the Petri net language in
an interleaving semantics, which does not directly reflect the parallel use of tran-
sition firings. In [Kudl 05], the focus was put on reachability sets and languages
were not considered at all.

In this paper, we will show that parallel firings of equally labeled transition
add more power to Petri nets while still keeping decidability for many, though not
all, questions. Also, it was now possible to compare these (multi-)step sequences
directly with the well known families in the Chomsky hierarchy. In short, we add
a number of missing aspects of languages defined by labeled Petri net steps.

2 Preliminaries

In describing and using Petri nets, there are two common variants to denote
markings in Petri nets: In Place/Transition nets (P/T-nets), having black tokens
only, a marking m is usually an element of INk, where k is the number of places in
the P/T-net under consideratiom. In colored Petri nets, tokens can have different
colors and a marking of a single place is denoted by a multiset over the color
domain. We use multisets of places to denote a marking of a P/T-net.

Definition 1. A set M with an operation + : M ×M → M is a monoid, if
the operation is associative and there is a neutral element 0 ∈ M for which
0 + x = x + 0 = x for every x ∈M . M is called commutative, if x + y = y + x
for all x, y ∈M . For x, y ∈M , let x � y iff there is a z ∈M with y = x + z.

For every set A, we have the set A⊕ of mappings μ : A→ IN . The elements of
A⊕ are called multisets over A. The multiset μ is a set, iff ∀a ∈ A : μ(a) ≤ 1.

272 M. Jantzen and G. Zetzsche

With the operation ⊕, defined by (μ ⊕ ν)(a) = μ(a) + ν(a), A⊕ becomes a
commutative monoid with elements written in additive notation. The neutral
element is the empty multiset and will be denoted by ∅, with ∅(a) := 0 for every
a ∈ A.

The concrete multiset ν ∈ {a, b, c}⊕ with ν(a) = 3, ν(b) = 0, and ν(c) = 1
will be written as 3a ⊕ c, so that singletons are denoted by the elements alone,
omitting the factor 1.

Whether an element a ∈ A has to be considered as a singleton multiset a ∈ A⊕

or as the mere element of the set A, will become clear from the context. Other
known notions for the multiset 3a⊕ c, as for instance {a, a, a, c} or a3c will not
be used in this work.

We also use the nonnegative integers IN as factors of multisets ν ∈ A⊕ (usu-
ally from the left) and define ∀x ∈ A : ∀i ∈ IN : (i · ν)(x) := i · (ν(x)). Together
with the factors from the semiring [IN, +, ·, 0, 1] the structure of multisets A⊕ is
a IN-semimodule, see [KuSa 86].

For finite sets A, we observe an important property of monoids of the form
A⊕: For every mapping f : A→ B, there is an induced mapping f∗ : A⊕ → B⊕,
defined by

f∗(μ)(b) :=
⊕

a∈A, f(a)=b

μ(a),

for every μ ∈ A⊕ and b ∈ B.
We define (ν	μ)(a) := max(0, ν(a)−μ(a)) for all a ∈ A which is equivalent

to set difference, in case the multisets μ, ν describe sets.
A multiset ν is called finite, iff {a ∈ A | ν(a)
= 0} is finite, and then let

|ν| := ∑
a∈A ν(a). These definitions are carried over to INk by noting that INk ∼=

{a1, . . . , ak}⊕. The summation
∑

i∈I νi is interpreted component-wise, in case
the elements νi are vectors from INk, and uses the multiset addition ⊕, if the
elements νi are arbitrary multisets.

If Σ is an alphabet, then Σ+ denotes the set of all non-empty strings over Σ
and Σ∗ := Σ+ ∪ {λ} is the free monoid generated by Σ with the empty string
λ as neutral element. Since we will often use it, we define Σλ := Σ ∪ {λ}. For
any a ∈ Σ and each w ∈ Σ∗, let |w|a denote the number of occurrences of the
symbol a within w so that |w| :=

∑

a∈Σ

|w|a i denotes the length of w.

Definition 2. A labeled Petri net is a 5-tuple K = (Σ, N, σ, m0,F), where

– Σ is an alphabet.
– N = (P, T, ∂0, ∂1) is a Petri net, where P and T are the finite, non-empty

sets of places and transitions, respectively. ∂0, ∂1 : T⊕ → P⊕ are homomor-
phisms that specify the pre- and post-multisets. We require ∀t ∈ T : ∂0(t)
= ∅,
since otherwise maximal multi-steps (see Def. 4) cannot be defined. The ba-
sic elements ∂0(t) and ∂1(t) are specified by the graphical representation of
the Petri net: ∀p ∈ P : ∂0(t)(p) gives the number of directed arcs that exist
from p to t, while ∀p ∈ P : ∂1(t)(p) is the number of directed arcs that point
from t to p.

Labeled Step Sequences in Petri Nets 273

– σ : T → Σλ defines the symbol-wise labeling for every transition. A transi-
tion t ∈ T is called λ-transition, if σ(t) = λ.

– m0 ∈ P⊕ is the initial marking and F ⊆ P⊕ is a finite set of final markings.

In order to use Petri nets as specification of formal languages, the first definitions
were given by [Bake 72], [Hack 76], [Grei 78], [Jant 79a], [Pete 81] who consid-
ered the labeled firing sequences. In the following, we adapt these definitions to
various types of step sequences.

Definition 3. Let K = (Σ, N, σ, m0,F), N = (P, T, ∂0, ∂1), be a labeled Petri
net.

– For any two markings m1, m2 ∈ P⊕ and transition t ∈ T , write m1 =⇒
σ(t)

m2

if ∂0(t) � m1 and m2 = m1 	 ∂0(t) ⊕ ∂1(t). This is recursively general-
ized to (labeled) firing sequences: Let w ∈ Σ∗, t ∈ T and m1, m3 ∈ P⊕ then
m1

∗=⇒
wσ(t)

m3 iff ∃m2 ∈ P⊕ : m1
∗=⇒
w

m2 =⇒
σ(t)

m3. In addition, let m
∗=⇒
λ

m

for any marking m ∈ P⊕.

– According to Hack, the (terminal) Petri net language is
L(K) := {w ∈ Σ∗ | ∃mf ∈ F : m0

∗=⇒
w

mf}.
L(K) is called λ-free labeled, iff σ(t)
= λ for each t ∈ T .

– The family of arbitrarily labeled (resp. λ-free labeled) Petri net languages is
denoted by Lλ

0 (L0, resp.).

An important Petri net language is the semi-Dyck language over one pair of
brackets D1 := {w ∈ {x, x̄}∗ | |w|x = |w|x̄ ∧ w = uv =⇒|u|x ≥ |u|x̄}, which
generates the families Lλ

0 and L0 as least intersection-closed (full) trio: L0 =
M∩(D1) and Lλ

0 = M̂∩(D1), see [Jant 79a, Grei 78].

3 Definitions

Steps in Petri nets are sets of transitions that fire independently and parallel at
the same time, even parallel to themselves.

We, however, distinguish the class of classical steps into those which are sets of
transitions and those which are multisets of transitions (that are not necessarily
sets).

If every transition occurs only once, like in elementary net systems, thus
having single usage within the step, then we use the naming step. A multiset
of transition, on the other hand, may contain more than one occurence of a
transition. Since such multisets of transitions can be seen as the sum of several
single steps, they will shortly be called multi-steps.

In both cases, we only consider (multi-)steps of transitions having the same
label. The labeled step sequences, multi-step sequences and maximal multi-step
sequences are then defined accordingly:

274 M. Jantzen and G. Zetzsche

Definition 4. Let K = (Σ, N, σ, m0,F), N = (P, T, ∂0, ∂1), be a labeled Petri
net.

– For x ∈ Σλ let Tx := {t ∈ T | σ(t) = x}.
– For any two markings m1, m2 ∈ P⊕, x ∈ Σλ, we write m1 =⇒m

x
m2 iff

∃ν ∈ (Tx)⊕, ν
= ∅, such that ∂0(ν) � m1 and m2 = m1 	 ∂0(ν) ⊕ ∂1(ν).
Such a multi-step is called maximal, iff
∀μ ∈ (Tx)⊕ : ν � μ and ∂0(μ) � m1 imply ν = μ.

If ν ∈ (Tx)⊕ is actually a set, that is ν ⊆ Tx, we will only name it a
’step’ and signalize this by writing m1 =⇒s

x
m2. A step is called maximal,

iff ∀μ ⊆ Tx : ν � μ and ∂0(μ) � m1 imply ν = μ.
In case ν ∈ (Tx)⊕ is a maximal multi-step, we write m1 =⇒

�m
x

m2, and

m1 =⇒ŝ
x

m2, in case we consider maximal steps. Note, maximality is defined

for steps wrt. steps and for multi-steps wrt. multi-steps, so that a step may
be maximal with respect to all steps but not maximal with respect to all multi-
steps! All four notions are recursively generalized to (labeled) step sequences,
multi-step sequences, maximal step sequences, and maximal multi-step se-
quences:

– Let w ∈ Σ∗, x ∈ Σλ, ν ∈ (Tx)⊕, α ∈ {s, m, ŝ, m̂}, and m1, m3 ∈ P⊕.
Then m1

∗=⇒α
wx

m3 iff ∃m2 ∈ P⊕ : m1
∗=⇒α
w

m2 =⇒α
x

m3. In addition, let

m
∗=⇒α
λ

m for any marking m ∈ P⊕ and α ∈ {s, m, ŝ, m̂}.

If a multi-step μ is maximal, then it means, that no strictly larger multi-step is
enabled in that marking. A maximal multi-step need not be unique: there may
well be other maximal multi-steps enabled. However, there are only finitely many
of them and they are all incomparable to μ with respect to multiset inclusion
� .

Definition 5. Let K = (Σ, N, σ, m0,F), N = (P, T, ∂0, ∂1), be a labeled Petri
net.

– The terminal languages of arbitrarily labeled steps, of arbitrarily labeled
multi-steps, of arbitraryly labeled maximal steps, and of arbitraryly labeled
maximal multi-steps are:

Lα(K) := {w ∈ Σ∗ | ∃mf ∈ F : m0
∗=⇒α
w

mf}, for α ∈ {s, m, ŝ, m̂}.

A language Lα(K), α ∈ {s, m, ŝ, m̂}, is called λ-free labeled, iff σ(t)
= λ for
each t ∈ T .

– For each α ∈ {s, m, ŝ, m̂} we denote the family of arbitraryly labeled (resp.
λ-free labeled) terminal multi-step sequence language of the corresponding
type by Lλ

α (Lα, resp.).

Labeled Step Sequences in Petri Nets 275

From the definitions and and a simple construction, one easily gets the following
inclusions:

Lemma 1. L0 ⊆ Lλ
0 , Ls ⊆ Lλ

s , Lm ⊆ Lλ
m, Lŝ ⊆ Lλ

ŝ , L
�m ⊆ Lλ

�m,
L0 ⊆ Ls, L0 ⊆ Lm, Lλ

0 ⊆ Lλ
s , and Lλ

0 ⊆ Lλ
m.

Proof. The first five inclusions follow immediately from the definition. The re-
maining inclusions can be shown as follows:

Let K = (Σ, N, σ, m0,F) be a labeled Petri net. In order to obtain L(K) as a
set Ls(K ′) of labeled step (or multi-step) sequences for a Petri net K ′ we modify
the Petri net N = (P, T, ∂0, ∂1) by adding a so-called run-place r /∈ P to yield
N ′ := (P ′, T, ∂′

0, ∂
′
1), where P ′ := P ∪ {r} and the pre- and post mappings ∂′

0

and ∂′
1 are modified as follows: ∀t ∈ T : ∂′

0(t) := ∂0(t)⊕{r}∧∂′
1(t) := ∂1(t)⊕{r}.

Finally, the initial and final markings have to be extended by one token on the
place r. The labeling mapping σ remains unaltered. Since the run-place has
exactly one token and self-loops with each transition, any possible step (and
multi-step) occurring in N ′ consists of exactly one transition. Hence, the labeled
step and multi-step sequences in K ′ are precisely the labeled transition sequences
of K, i.e., Ls(K ′) = Lm(K ′) = L(K). �

The technique used by Kudlek, [Kudl 05], to show that the family of reachability
sets of ordinary Petri nets with single usage of the transitions coincides with the
family of reachability sets of Petri nets under the steps firing mode, can be used
to show a similar result for the language classes. Labeled step sequence languages
of Petri nets coincide with ordinary Petri net languages. We show this here only
for languages defined by final markings to be reached. The classes of covering or
deadlock languages defined by Peterson, [Pete 81], will not be considered here,
but may be defined for step sequences, as well.

Lemma 2.
L0 = Ls ⊆/ Lλ

0 = Lλ
s

Proof. L0 ⊆ Ls and Lλ
0 ⊆ Lλ

s is known from Lemma 1. To show the con-
verse, we begin with a labeled Petri net K = (Σ, N, σ, m0,F) with its lan-
guage of labeled step sequences Ls(K) and construct a new labeled Petri net
K ′ = (Σ, N ′, σ′, m0,F) with N ′ := (P, T ′, ∂′

0, ∂
′
1) by adding new transitions tν

for all possible steps ν ⊆ Tx getting the labeling σ′(tν) := x. The pre- and post
mappings of tν are defined by ∂′

0(tν) :=
∑

t∈ν
∂0(t) and ∂′

1(tν) :=
∑

t∈ν
∂1(t).

It is now obvious, that L(K ′) = Ls(K) for any labeling mapping σ. Hence we
obtain L0 = Ls and Lλ

0 = Lλ
s .

The strict inclusion L0 ⊆/ Lλ
0 was shown in [Grei 78] and independently in

[Jant 79a]. �

We can simulate a (maximal) step by a (maximal) multi-step, if we restrict each
transition to a single firing. This can be guaranteed by adding a marked place rt

to each transition, which self-loops with that transition, i.e., pt is added to ∂0(t),

276 M. Jantzen and G. Zetzsche

as well as to ∂1(t). Also, the multiset sum
∑

t∈T

rt has to be added to the initial

and to the final marking of the labeled Petri net. Without giving a rigorous proof
we see:

Lemma 3.
Ls ⊆ Lm and Lŝ ⊆ L�m

If we use exactly one and the same run-place for all transitions, i.e. add a place r
which self-loops with each transition, then any maximal step consists of a single
transition only, and we have:

Lemma 4.
L0 = Ls ⊆ Lŝ

Lemma 5.
Lm ⊆ L

�m,

Proof. Let K = (Σ, N, σ, m0,F) with N = (P, T, ∂0, ∂1) be a labeled Petri
net. We construct a new labeled Petri net K ′ = (Σ, N ′, σ′, m′

0,F ′) with N ′ =
(P ′, T ′, ∂′

0, ∂
′
1) as follows: First we add two places r and q, where q is a failure

place which will never be emptied. This place q is not contained in any other,
especially final, marking. The place r is initially marked and will be added to
the initial and final markings, hence P ′ := P ∪ {r, q}.

The new transitions tx, x ∈ Σλ, labeled σ′(tx) := x are added to T , and may
transfer the token from r to q: ∀x ∈ Σλ : ∂′

0(tx) := r, ∂′
1(tx) := q. This will

guarantee, that any maximal step must avoid these transitions and has to use
exactly one of those in T̃ , defined next:

T̃ := {t′ | t ∈ T }, with ∂′
i(t

′) := r ⊕ ∂i(t), for i ∈ {0, 1}, and σ′(t′) := σ(t).
In order to extend any multi-step to a maximal step we add for each place, and
each x ∈ Σλ, simple transitions that do not change the markings and only loop
with its corresponding places:

T̄ := {tx,p | x ∈ Σλ∧ p ∈ P}, with ∂′
0(tx,p) := ∂′

1(tx,p) := p, and σ′(tx,p) :=
x. Finally: T ′ := T ∪ {tx | x ∈ Σλ} ∪ T̃ ∪ T̄ . It can be seen, that any maximal
step in K ′ that does not mark the failure place q, corresponds to some multi-step
in K. Conversely, to any multi-step in K there is an equally labeled maximal
multi-step in K ′. �

However, if we compare steps with multi-steps we recognize a big difference:

Theorem 1.
Ls ⊆/ Lm

Proof. The inclusion has been shown in Lemma 3, so only the inequality has to
be proved:

Let Nbin be the following labeled Petri net (Fig.1) with initial marking p1,
final marking p3 and the identity as the labeling function. Consider only labeled
multi-step sequences from the set

R := ({0, 1}{a})∗{0, 1}{b}{c}∗, (1)

Labeled Step Sequences in Petri Nets 277

0 1
p1 p2

a

c
p3

b

Fig. 1. Nbin

where each use of the transition labeled a is a single (up to the largest) possible
multi-step in the marking reached. Among many other multi-step sequences
outside the set R, the following are the only ones possible within R: p1

∗=⇒m
w

p3, w = inain−1a · · ·ai0bc
k, where the symbols ij ∈ {0, 1} are interpreted as

binary digits, [in · · · i0]2 denotes the integer represented by in · · · i0 as binary
number, and |w|1 ≤ k = |w|c ≤ [in · · · i0]2. If Lm(Nbin) ∈ Ls, then Lbin :=
R ∩ Lm(Nbin) ∈ L0 = Ls since L0 = M∩(D1), [Jant 79a], is closed w.r.t.
intersection by regular sets.

However, Lbin /∈ L0 can be shown by almost the same technique that was used
to show L0 ⊆/ Lλ

0 in [Jant 79a], Theorem 3 or in [Grei 78], by observing, that
there are only polynomially many different reachable markings when reading a
string from Lbin up to the symbol b, while O(2n) are necessary. This technique
is used and explained also in the proof of Theorem 2.

Hence, Lbin = {w ∈ R | w = inain−1a · · · ai0bc
k ∧ |w|1 ≤ k ≤ [in · · · i0]2} /∈ Ls

implies Lm(Nbin) /∈ Ls = L0, and Ls ⊆/ Lm follows. �

The polynomial bound on the number of different reachable markings in tran-
sition sequences of length n can also be observed if sequences of length n with
maximal steps are used. This yields a similar result by a variation of the well
known proof technique.

Theorem 2.
Lŝ ⊆/ L�m

Proof. We already know the inclusion Lŝ ⊆ L
�m from Lemma 3, so we have

to prove its strictness. Let Nbin be the labeled Petri net used in the proof of
Theorem 1 (see Fig. 1). Further, define R as in (1). It is easy to see, that the
class L

�m is closed against regular intersection. Therefore, Lŝ = L
�m would imply

L
�m � L

�m(Nbin) ∩R = Lbin ∈ Lŝ.
Assume that Lbin = Lŝ(K) for some labeled Petri net K = (Σ, N, σ, m0,F),

N = (P, T, ∂0, ∂1). Then, in each single step of a step-sequence in N at most |T |
transitions may fire concurrently. Let ks := |T | ·max {|∂1(t)| | t ∈ T }. We see,
that in a computation starting at m0

m0
∗=⇒s

i1a
m1

∗=⇒s
i2a

m2 · · · ∗=⇒s
in−1a

mn−1
∗=⇒s

inb
mn,

278 M. Jantzen and G. Zetzsche

with ij ∈ {0, 1}, we have ∀i ≤ n : |mi| ≤ k2i
s · |m0|. The maximal number of

different markings obtainable within a maximal step-sequence of length 2n that
ends in firing the b-transition is

(|m0|+ ks · 2n + |P |
|P |

)

≤ (|m0|+ ks · 2n + 1)|P | ,

a polynomial in n. But as in the proof of L0
= Lλ
0 in [Grei 78, Jant 79a], see

Theorem 1, there should be at least O(2n) markings, since there are that many
different maximal step-sequences of length 2n that end in firing the b-transition.
For large n this is impossible.

�

This technique of proof can also be used to show that certain context-free lan-
guages cannot be elements of the class Lŝ :

Lemma 6.
Ls ⊆ Lŝ
⊆ Cf and Cf
⊆ Lŝ

Proof. Let Ldcopy := {wcwrev | w ∈ {a, b}∗} ∈ Cf . There are 2n different
prefixes wc for strings in Ldcopy of length 2n + 1. Hence, if this language should
be created by a labeled Petri net K as Ls(K) or as Lŝ(K) then the number of
possible different markings reached after reading words of length n + 1 in K is
polynomial in n, thus Ldcopy /∈ Lŝ.

Conversely, it is easily observed, that there are Petri net languages in the class
Ls = L0 that are not context free. Hence the classes Lŝ and Cf are incomparable.
For the classes Cf and Ls = L0 incomparability is already known from [Grei 78,
Jant 79a]. �

Lemma 7.

Ls ⊆/ Lŝ, Lm ⊆/ L�m, and Lŝ
⊆ Lλ
0 , Lλ

0
⊆ Lŝ

Proof. Since the inclusions in the first two pairs have been shown before in
Lemma 4 and Lemma 5, we have to verify their strictness. To do this, we define
a labeled Petri net, K∗, see Fig. 2, for which Lŝ(K∗) = L

�m(K∗) = (D1{$}∗)∗,
if the initial and final marking is r. In K∗ the places p and q, together, have
exactly one token. Since the final marking is r, and there is no arc leaving the
failure place q, the only interesting maximal step (multi-step, resp.) is the one
with label $. If it fires, and p is marked, then the final marking will never be
reached. In order to return to the initial marking r, the maximal $-step (multi-
step, resp.) can be fired only, if p is unmarked and then the transitions for x and
x̄ spell out some word from the semi-Dyck set D1.

Now, if (D1{$}∗)∗ would be contained in Ls or in Lm then it would also
be contained in M̂∩(D1) = Lλ

0 ⊇ Lm ⊇ Ls = L0. However, then (D1{$})∗ =
(D1{$}∗)∗∩({x, x̄}∗{$})∗ were contained in Lλ

0 , but the least intersection-closed

Labeled Step Sequences in Petri Nets 279

x
p

rq
x̄

$

$

Fig. 2. Petri net K∗

full trio containing (D1{$})∗ equals the family of recursively enumerable sets
Re, as follows from AFL-theory and is reported in [Grei 78, Jant 79a]. This
then, would contradict the strict inclusion M̂∩(D1) ⊆/ Re that follows from
the decidability of the reachability problem, see [Mayr 81, Mayr 84, Kosa 82,
Lamb 92]. From this one also gets Lŝ
⊆ Lλ

0 and L
�m
⊆ Lλ

0 . Furthermore, the
proof of Theorem 2 shows that the language Lbin is not an element of Lŝ, while
it is known (see [Jant 79a, Grei 78]) to be an element of Lλ

0 (after having applied
some trio operations to the similar language used there). �

It is not known, whether it is possible to simulate λ-transitions in arbitrary Petri
nets by using λ-free, maximal (multi-)steps. It is, however, possible to simulate
a single multi-step by using λ-transitions:

Theorem 3.
Lλ

m ⊆ Lλ
0

Proof. Let K = (Σ, N, σ, m0,F) be a labeled Petri net, where N = (P, T, ∂0, ∂1).
Then define

P ′ := (P × {0, 1}) ∪ {px, p′x | x ∈ Σλ} ∪ {q},
T ′ := {t, t′, t′′ | t ∈ T } ∪ {tx, t′x | x ∈ Σλ} ∪ {tp | p ∈ P},

where q and the px, p′x (x ∈ Σλ) are new places and the tx, t′x (x ∈ Σλ) and tp
(p ∈ P) and t′, t′′ (t ∈ T) are new transitions. In the new net, in every reachable
marking precisely one place in S := {q} ∪ {px, p′x | x ∈ Σλ} will contain exactly
one token. Therefore, the place in this set containing a token is called the state.
For the mappings ιi : P → P × {0, 1}, p �→ (p, i), i = 0, 1, we now consider the
induced homomorphisms ι∗i : P⊕ → (P × {0, 1})⊕. With these, we define

∂′
i(t) := ι∗i (∂i(t))⊕ pσ(t), ∂′

i(t
′′) := ι∗i (∂i(t))⊕ p′σ(t), i = 0, 1,

∂′
0(t′) := ι∗0(∂0(t)) ⊕ pσ(t),

∂′
1(t′) := ι∗1(∂1(t)) ⊕ p′σ(t),

280 M. Jantzen and G. Zetzsche

for all t ∈ T . It is easily seen that in the new net, the transitions t, t′, t′′ (t ∈ T)
work similar to t from the old net. Thereby, the pre-multiset of t is taken from
P × {0} and the post-multiset is put to P × {1}. Note further, that each such
firing requires the presence of a token on the place pσ(t) or p′σ(t) and that the
difference between t, t′, t′′ lies in the treatment of the state: t fires in state pσ(t),
t′ changes the state from pσ(t) to p′σ(t) and t′′ fires in state p′σ(t). So if the place
px holds a token, a sequence of firings of such transitions t, t′, t′′ with σ(t) = x
in the new net simulates the parallel firing of the corresponding transitions in
the old net. It is also clear, that the state p′x in the new net can be reached iff
the multi-step in the old net contained at least one transition.

In the states px and p′x, a parallel firing of the old net is simulated, as explained
above. If there is a token on q, there are two possible actions. On the one hand,
the transitions tp (p ∈ P) can be used to transfer tokens from P × {1} back to
P × {0}:

∂′
i(tp) := (p, 1− i)⊕ q, i = 0, 1,

for all p ∈ P . On the other hand, a state px (x ∈ Σλ) can be entered using the
transition tx and p′x can be left using t′x:

∂′
0(tx) := q, ∂′

1(tx) := px,

∂′
0(t′x) := p′x, ∂′

1(t′x) := q.

Thus, it is guaranteed that the state q can only be reentered, if the simulated
multi-step from the old net contained at least one transition.

When one of the states px is reached, the transition used to enter it carries
the symbol of the simulated multi-step:

σ′(tx) := x for every x ∈ Σλ.

For every transition t ∈ T ′ \ {tx | x ∈ Σλ}, let σ′(t) := λ. To complete the
construction, let m′

0 := ι∗0(m0) ⊕ q and F ′ := {ι∗0(m) ⊕ q | m ∈ F} and K ′ =
(Σ, N ′, σ′, m′

0,F ′), where N ′ = (P ′, T ′, ∂′
0, ∂

′
1). �

Combining Theorem 3 with Lemma 1 and the known characterization of Lλ
0 =

M̂∩(D1) (see [Grei 78, Jant 79a]) we get:

Corollary 1.
M̂∩(D1) = Lλ

0 = Lλ
s = Lλ

m

From this we already deduce Lm ∧ Lm := {L1 ∩ L2 | L1, L2 ∈ Lm} ⊆ Lλ
0 ,

which describes direct synchronization of different Petri nets using interleaving
semantics. Moreover, we can show that equally labeled multi-steps in different
Petri nets can be synchronized in a hand-shake manner:

Theorem 4. The families Lŝ and L
�m are both closed with respect to intersec-

tion, that is:
Lŝ ∧ Lŝ = Lŝ and L

�m ∧ L�m = L
�m

Labeled Step Sequences in Petri Nets 281

Proof. Since Σ∗ ∈ Lŝ implies Lŝ ⊆ Lŝ ∧ Lŝ, we only show Lŝ ∧ Lŝ ⊆ Lŝ and
L
�m ∧ L�m ⊆ L�m. Let K1, K2 be two disjoint, labeled, Petri nets denoted by

Ki = (Σ, Ni, σi, mi,0,F i) with Ni = (Pi, Ti, ∂i,0, ∂i,1) (i ∈ {1, 2}, P1 ∩ P2 = ∅,
and T1 ∩ T2 = ∅).

The labeled Petri net K ′ with Lŝ(K ′) = Lŝ(K1)∩Lŝ(K2) (as well as L
�m(K ′) =

L
�m(K1) ∩ L

�m(K2)) is defined as follows,

K ′ = (Σ, N ′, σ′, m′
0,F ′) with N ′ = (P ′, T ′, ∂′

0, ∂
′
1) with components described

below:

As in the proof of Lemma 5 we add a failure place q and two places r1, r2,
thus P ′ := P ∪ {q, r1, r2}. The places r1 and r2 are marked through the firing
of the transitions and will take care, that in each step (resp. multi-step) at least
one transition of T̃1 and one of T̃2 (to be defined next) is used. These places
are added to the initial and the final markings of the respective nets yielding
m′

0 := m1,0⊕r1⊕m2,0⊕r2 and F ′ := {m1⊕r1⊕m2⊕r2 | ∀i = 1, 2 : mi ∈ F i}.
In addition to the transitions T1 ∪ T2, T ′ contains transitions ti,x, x ∈ Σλ, i ∈

{1, 2}, labeled σ′(ti,x) := x to Ti, which may transfer the token from ri to q,
that is, ∀i ∈ {1, 2} : ∀x ∈ Σλ : ∂′

0(ti,x) := ri, ∂
′
1(ti,x) := q. This takes care, that

any maximal step (leading to a final marking) avoids these transitions and has
to use at least one of those in T̃ := T̃1 ∪ T̃2, defined next, and other transitions
from the underlying nets N1, N2.

For each i = 1, 2 let T̃i := {t′ | t ∈ Ti}, with ∂′
0(t′) := ri ⊕ ∂i,0(t), ∂′

1(t′) :=
ri ⊕ ∂1(t), and σ′(t′) := σ(t).

Any reachable marking of the new Petri net K ′ is of the form m1⊕r1⊕m2⊕r2,
where mi is a reachable marking in Ki, i = 1, 2.

The initial marking consists of the initial markings of old nets and in any max-
imal step (resp. maximal multi-step) exactly one transition from T̃1 and exactly
one from T̃2 has to be used. The effect of this and any other transition with the
same label is the same as if there had been multi-steps in the components m1

and m2 in the old nets. Hence, even without a more formal proof, the statement
of the theorem follows. �

When we compare the classes Lm and L
�m with families from the Chomsky

hierarchy, especially with Cs = NSpace(n), we observe a similar result as in the
investigation of the CFA-Languages from [JaKZ 07a] and [FJKRZ 07]:

Theorem 5.
Lm ⊆/ Cs and L

�m ⊆/ Cs
Proof. We will describe and analyse two algorithms: Algorithm 1, by which a
multi-step language is accepted and its variation, Algorithm 2, by which the
acceptance of the maximal multi-step language defined by a labeled Petri net
K = (Σ, N, σ, m0,F), with N = (P, T, ∂0, ∂1) is guaranteed.

282 M. Jantzen and G. Zetzsche

Algorithm 1

BEGIN

1. k := max
{

|∂1(t)|
|∂0(t)|

∣
∣
∣t ∈ T

}
;

2. Input w = a1 · · ·an ∈ Σ+, a1, . . . , an ∈ Σ;
3. m := m0;
4. FOR i = 1, 2, . . . , n DO

5. Choose a multiset ν ∈ T⊕
ai

with |ν| ≤ kn |m0|;
6. IF ∂0(ν)
 � m THEN

7. Exit without accepting.
8. m := m	 ∂0(ν)⊕ ∂1(ν);
9. END FOR

10. IF m ∈ F THEN

11. Accept and exit.
12. ELSE

13. Exit without accepting.
14. END IF

END

Algorithm 2 is defined from Algorithm 1 by replacing the inner of the for-loop,
i.e., lines 6. and 7. by the following:

Replace lines 6. and 7. in Algorithm 1 to get Algorithm 2 by:

6. IF ∂0(ν) � m THEN

7a. FOR ALL t ∈ T DO

7b. IF ∂0(ν ⊕ t) � m THEN (test of maximality)
7c. Exit without accepting. (ν is not maximal)
7d. END FOR

7e. ELSE

7f. Exit without accepting.
7g. END IF (ν is maximal for m)

We will verify that both algorithms work in NTimeSpace(p(n), n), where p is
a polynomial of low degree. Actually, these algorithms are only a minor modi-
fication of Algorithm 1 in [JaKZ 07b, JaKZ 08], where it was shown, that the
languages accepted by Concurrent Finite Automata are in NTimeSpace(n2, n).

Labeled Step Sequences in Petri Nets 283

In the lines 4. to 9. of Algorithm 1, and of Algorithm 2, every cycle of the
loop simulates one multi-step (maximal multi-step, resp.) in a computation

m0 =⇒m
a1

m1 =⇒m
a2

m2 · · · =⇒m
an

mn.

In each single multi-step mi−1 =⇒m
ai

mi, 1 ≤ i ≤ n, we know that |mi−1| ≤
k · |mi|, hence ∀i ≤ n : |mi| ≤ ki · |m0|. Each marking mi can be stored as a
|P |-tuple of binary encodings of mi(p).

Since ∀p ∈ P : mi(p) ≤ ki ·m0(p) ≤ kn ·m0(p) their binary encodings have
a length that is bounded by an O(n) function. Likewise, if mi−1 =⇒m

ai

mi, 1 ≤
i ≤ n, with mi = mi−1 	 ∂0(νi) ⊕ ∂1(νi) for some νi ∈ T⊕

ai
, then |νi| ≤ |mi−1|

since at most each single token in mi−1 is replaced using one transition from the
multiset νi. Hence, ∀i ≤ n : |νi| ≤ kn ·m0 and also these multisets can be stored
in Space(O(n)). In Algorithm 1, the multisets chosen in line 5. are bounded by
exactly this size, and the algorithm finds each multi-step sequence in linear space,
and already Lm ⊆ Cs follows. If we consider the time needed by Algorithm 1, we
see Lm ⊆ NTimeSpace(n2, n) ⊆ Cs: Each line in Algorithm 1 can be performed,
non-deterministically because of line 5., within time NTime(O(n)), thus a single
multi-step can be checked within NTime(O(n)) and the whole input of length n
thereby in NTime(O(n2)).

For Algorithm 2, the same space bound suffices. The newly replaced lines 6.
to 7g. take again time in NTime(O(n)), since line 7b. is taken only the constant
number |T | of times, so that Algorithm 2 works in NTimeSpace(n2, n), too.

The proof for strict inclusion is based on the Time Hierarchy Theorem (The-
orem 3.4.6 and Theorem 3.2.2 in [Reis 99], see the original papers [SeFM 78]
and [Zak 83]), and will appear in the final journal publication [JaKZ 08] of
[JaKZ 07b]. The proof in [JaKZ 07b] is only a reference to [Reis 99] which does
not apply without a little more work. It is shown in [JaKZ 08], how one can
adapt this result to our context and use it for proving NTimeSpace(n2, n) ⊆/ Cs.
It follows, that in Theorem 5 actually strict incusions Lm ⊆/ Cs and L

�m ⊆/ Cs
are valid. �

We can adapt the technique of Burkhard, [Burk 80, Burk 83], to prove univer-
sality of the maximum strategie in connection with λ-labeled transitions:

Theorem 6.
Lλ

ŝ = Lλ
�m = Re.

Proof. We define a labeled Petri net KA that simulates a computation of some
non-deterministic counter automaton A by a λ-labeled, maximal step sequence,
which – at the same time – is a maximal multi-step sequence:

For each counter ci of the counter automaton, there will be a place pci in KA,
and for each state qi of the finite control of A, a place pqi . KA will have pz0 as
initial marking, where z0 is the initial state of the counter automaton, and ∅ as
final marking. This can be achieved by adding λ-transitions to empty the places
that correspond to final states of the finite control.

284 M. Jantzen and G. Zetzsche

We use the following subnets as building blocks for a labeled Petri net:

x
pqi pqj

pck

x
pqi

pqk

pck

¬

¬
pqj

¬

¬

t1

t0

t'0t0

t'1

Fig. 3.

The smaller subnet on the left will be used for instructions of the type: From
state qi go to state qj when reading x and add 1 to counter ck. The other net
can be used as encoding of the instruction: From state qi go to state qj when the
counter ck is 0 while reading x, else go to state qk when reading x and subtract
1 from counter ck. The labels of the transitions are written inside the boxes that
represent the transitions. �

4 Concluding Remarks

We study the effect of synchronized behaviour in Petri nets through steps and
multi-steps. Thereby, we distiguish steps, as created by sets of parallel transitions
from multi-steps, which can be seen as multiset sums of several steps. Only
transitions having the same label from Σλ = Σ ∪ {λ} can form a (multi-)step.
The label of a (multi)-step is used only once and the sequence of firable (multi)-
steps defines the string used for the language created.

We compare various modes to fire transitions, including those with invisible
(λ-labeled) transitions. Lemma 1 and Theorem 3 yield Corollary 1, showing that
synchronization through labeled steps and multi-steps do not add more power to
the sequential, unsynchronized firing of transitions, at least with respect to the
languages definable this way. The disciplin of maximality in firing (multi-)steps
yields Turing equivalence, once invisible transitions are allowed (Theorem 6),
which enriches the class of ordinary Petri net languages considerably. Without
λ-transitions not more than context-sensitive languages are obtainable (Theo-
rem 5).

From Lemma 3, Theorem 2, Theorem 6 and Lemma 7, we know incompara-
bility of the families Lŝ and Lλ

s , and conjecture the same for the families L
�m

and Lλ
m = Lλ

0 .
Since L

�m and Lŝ contain languages that are not context-free, the best we
might get is the inclusion Cf ⊆/ L�m. Yet, we conjecture incomparability of these
two classes. The families Cf and Lŝ have been proved to be incomparable in
Lemma 6.

Labeled Step Sequences in Petri Nets 285

By adapting the technique in the proof of Theorem 3.2 in [JaKZ 08], it is
possible to show Cf ⊆/ Hcod(L

�m). However, we will use a more algebraic technique
to prove this in an upcoming paper.

In this upcoming paper, we will also discuss in detail the distinction between
the multi-step approach of this paper with that of the Petri net controlled finite
automata from [JaKZ 08, FJKRZ 07]. In particular, we will compare the differ-
ent usages of λ-transitions. In the firing mode of a CFA, the invisible λ-transitions
are not synchronized at all, thus giving more and different possibilities than in
the fully synchronized λ-labeled multi-steps.

Combining the results gained so far, we obtain the picture of Fig. 4.

Reg

Cf

Cs

Lŝ

Lm

=M̂∩(D1)
Lλ

0 Lλ
s Lλ

m
= =

L
bm

Re Lλ
ŝ= = Lλ

bm

L0 Ls=
M∩(D1)=

means ⊆/
means ⊆

Fig. 4. Overview

References

[Bake 72] Baker, H.: Petri nets and languages. C.S.G Memo 68, Project MAC.
MIT, Cambridge (1972)

[Burk 80] Burkhard, H.-D.: The Maximum Firing Strategie in Petri nets gives
more power. ICS-PAS Report no. 411, Warschau, pp. 24–26 (1980)

[Burk 81a] Burkhard, H.-D.: Ordered Firing in Petri Nets. EIK 17(2/3), 71–86
(1981)

[Burk 81b] Burkhard, H.-D.: Two Pumping Lemmata for Petri Nets. EIK 17(2/3),
349–362 (1981)

[Burk 83] Burkhard, H.-D.: On priorities of parallelism: Petri nets under the maxi-
mum firing strategy. In: Salwicki, A. (ed.) Logics of Programs and Their
Applications. LNCS, vol. 148, pp. 86–97. Springer, Heidelberg (1983)

286 M. Jantzen and G. Zetzsche

[DiRo 95] Diekert, V., Rozenberg, G.: The book of traces. World Scientific Pub-
lishing, Singapore (1995)

[FaKR 06] Farwer, B., Kudlek, M., Rölke, H.: Concurrent turing machines. Funda-
menta Informaticae 79(3-4), 303–317 (2007)

[FJKRZ 07] Farwer, B., Jantzen, M., Kudlek, M., Rölke, H., Zetzsche, G.: On con-
current finite automata. In: Czaja, L. (ed.) Proceedings of the workshop
Concurrency, Specification and Programming (CS&P 2007), �Lagów,
Poland, September 2007, vol. 1, pp. 180–190 (2007)

[Grei 78] Greibach, S.: Remarks on blind and partially blind one-way multicounter
machines. Theoretical Computer Science 7, 311–324 (1978)

[Hack 76] Hack, M.: Petri Net Languages, TR-159. MIT, Laboratory Computer
Science, Cambridge, Mass (1976)

[HaJa 94] Hauschildt, D., Jantzen, M.: Petri net algorithms in the theory of ma-
trixgrammars. Acta Informatica 31, 719–728 (1994)

[Jant 79a] Jantzen, M.: On the hierarchy of Petri net languages. R.A.I.R.O., Infor-
matique Théorique 13, 19–30 (1979)

[JaKZ 07a] Jantzen, M., Kudlek, M., Rölke, H., Zetzsche, G.: Finite automata con-
trolled by Petri nets. In: Proceedings of the 14th workshop; Algorithmen
und Werkzeuge für Petrinetze (S.Philippi, A.Pini eds.) technical report
Nr. 25/2007, Univ. Koblenz-Landau, pp. 57–62 (2007)

[JaKZ 07b] Jantzen, M., Kudlek, M., Zetzsche, G.: On languages accepted by con-
current finite automata. In: Czaja, L. (ed.) Proceedings of the workshop
Concurrency, Specification and Programming (CS&P 2007), �Lagów,
Poland, September 2007, vol. 2, pp. 321–332 (2007)

[JaKZ 08] Jantzen, M., Kudlek, M., Zetzsche, G.: Language classes defined by con-
current finite automata. Fundamenta Informaticae 85, 1–14 (2008)

[Kosa 82] Kosaraju, S.R.: Decidability of reachability of vector addition systems.
In: 14th Annual ACM Symp. on Theory of Computing, San Francisco,
pp. 267–281 (1982)

[KuSa 86] Kuich, W., Salomaa, A.: Semirings, Automata, Languages. In: EATCS-
Monographs on Theoretical Computer Science, vol. 5. Springer, Heidel-
berg, Berlin (1986)

[Kudl 05] Kudlek, M.: Sequentiality, Parallelism, and Maximality in Petri Nets. In:
Farwer, B., Moldt, D. (eds.) Object Petri Nets, Processes, and Object
Calculi, pp. 43–50 (2005); techn. report FBI-HH-B-265/05

[Lamb 92] Lambert, J.L.: A structure to decide reachability in Petri nets. Theoret-
ical Computer Science 99, 79–104 (1992)

[Mayr 81] Mayr, E.W.: An algorithm for the general Petri net reachability problem.
In: Proceedings of the 13th Annual ACM Symposium on Theory of
Computing, pp. 238–246 (1981)

[Mayr 84] Mayr, E.W.: An algorithm for the general Petri net reachability problem.
SIAM J. of Computing 13, 441–459 (1984)

[Muku 92] Mukund, M.: Petri nets and step transition systems. Internat. J. of Foun-
dations of Computer Science 3(4), 443–478 (1992)

[NiPS 95] Nielsen, M., Priese, L., Sassone, V.: Characterizing Behavioural Con-
gruences for Petri Nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995.
LNCS, vol. 962, pp. 175–189. Springer, Heidelberg (1995)

[Papa 94] Papadimitriou, C.H.: Computational complexity. Addison-Wesley,
Reading (1949)

[Pete 81] Peterson, J.L.: Petri Nets and the Modelling of Systems. MIT Press
Series in Computer Science (1981)

Labeled Step Sequences in Petri Nets 287

[Reis 99] Reischuk, K.R.: Komplexitätstheorie. In: Teubner, B.G. (ed.) Band I:
Grundlagen, Stuttgart, Leipzig (1999)

[SaMu 81] Salwicki, A., Müldner, T.: On the algorithmic properties of concurrent
programs. In: Engeler, E. (ed.) Proceedings of the internat. Workshop:
Logic of Programs, 1979, Zürich. LNCS, vol. 125, pp. 169–197. Springer,
Heidelberg (1981)

[SeFM 78] Seiferas, J., Fischer, M., Meyer, A.: Separating Nondeterministic Time
Complexity Classes. J. ACM 25, 146–167 (1978)

[Zak 83] Zak, S.: A TM Time Hierarchy. Theoretical Computer Science 26, 327–
333 (1983)

MC-SOG: An LTL Model Checker Based on

Symbolic Observation Graphs�

Kais Klai1 and Denis Poitrenaud2

1 LIPN, CNRS UMR 7030
Université Paris 13

99 avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France

kais.klai@lipn.univ-paris13.fr
2 LIP6, CNRS UMR 7606
Université P. et M. Curie

104, avenue du Président Kennedy
75016 Paris, France

Denis.Poitrenaud@lip6.fr

Abstract. Model checking is a powerful and widespread technique for
the verification of finite distributed systems. However, the main hin-
drance for wider application of this technique is the well-known state
explosion problem. During the last two decades, numerous techniques
have been proposed to cope with the state explosion problem in or-
der to get a manageable state space. Among them, on-the-fly model-
checking allows for generating only the ”interesting” part of the model
while symbolic model-checking aims at checking the property on a com-
pact representation of the system by using Binary Decision Diagram
(BDD) techniques. In this paper, we propose a technique which com-
bines these two approaches to check LTL\X state-based properties over
finite systems. During the model checking process, only an abstraction
of the state space of the system, namely the symbolic observation graph,
is (possibly partially) explored. The building of such an abstraction is
guided by the property to be checked and is equivalent to the original
state space graph of the system w.r.t. LTL\X logic (i.e. the abstraction
satisfies a given formula ϕ iff the system satisfies ϕ). Our technique was
implemented for systems modeled by Petri nets and compared to an
explicit model-checker as well as to a symbolic one (NuSMV) and the
obtained results are very competitive.

1 Introduction

Model checking is a powerful and widespread technique for the verification of
finite distributed systems. Given a Linear-time Temporal Logic (LTL) property
and a formal model of the system, it is usually based on converting the negation

� The work presented in this paper is partially supported by the FME3 ANR Project:
Enhancing the Evaluation of Error consequences using Formal Methods.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 288–306, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs 289

of the property in a Büchi automaton (or tableau), composing the automaton and
the model, and finally checking for the emptiness of the synchronized product.
The last step is the crucial stage of the verification process because of the state
explosion problem. In fact, the number of reachable states of a distributed system
grows exponentially with the number of its components. Numerous techniques
have been proposed to cope with the state explosion problem during the last
two decades. Among them the symbolic model checking (e.g. [6,10,12,4]) aims at
checking the property on a compact representation of the system using binary
decision diagrams (BDD) techniques [1], while the On-the-fly model checking
(e.g., [13,8]) allows for generating only the ”interesting” part of the state space.
The exploration of the synchronized product is stopped as soon as the property is
proved unsatisfied by the model. An execution scenario of the system illustrating
the violation of the property (counter-example) can then be supplied in order to
correct the model.

In this paper, we present a hybrid approach for checking linear time temporal
logic properties of finite systems combining on-the-fly and symbolic approaches.
Instead of composing the whole system with the Büchi automaton representing
the negation of the formula to be checked, we propose to make the synchro-
nization of the automaton with an abstraction of the original reachability graph
of the system, namely a state-based symbolic observation graph. An event-based
variant of the symbolic observation graph has already been introduced in [12]. Its
construction is guided by the set of events occurring in the formula to be checked.
Such events are said to be observed while the other events are unobserved. The
event-based symbolic observation graph is then presented as a hybrid structure
where nodes are sets of states (reachable by firing unobserved events) encoded
symbolically and edges (corresponding to the firings of observed events) are rep-
resented explicitly. It supports on-the-fly model-checking and is equivalent to
the reachability graph of the system with respect to event-based LTL semantic.
Once built, the observation graph can be analyzed by any standard LTL \ X
model-checker. In [12], the evaluation of the method is only based on the size
of the observation graph which is, in general, very moderate due to the small
number of visible events occurring in a typical formula.

The event-based and state-based formalisms are interchangeable: an event can
be encoded as a change in state variables, and likewise one can equip a state with
different events to reflect different values of its internal variables. However, con-
verting from one representation to the other often leads to a significant enlarge-
ment of the state space. Typically, event-based semantic is adopted to compare
systems according to some equivalence or pre-order relation (e.g. [20,7,14]), while
state-based semantic is more suitable to model-checking approaches [10,19].

The main contributions of this paper are, first the formal definition of a gen-
eralized state-based symbolic observation graph and the design and evaluation
of an on-the-fly LTL \X (LTL minus the next operator) model-checker instan-
tiating the approach for Petri net models.

The paper is structured as follows: In section 2, we introduce some preliminary
definitions as well as some useful notations. In section 3, we formally define the

290 K. Klai and D. Poitrenaud

state-based symbolic observation graph and establish some preservation results.
Then, section 4 describes the on-the-fly model checker tool implementation and
gives a brief presentation of the way the spot library has been used for that
purpose. The different algorithms were implemented in a software tool and ex-
periments comparing our approach to both explicit on-the-fly and symbolic LTL
model checkers are discussed in section 5. Finally, Section 6 concludes the paper
and gives some perspectives.

2 Preliminaries

This section is dedicated to the definition of some relevant concepts and to the
presentation of useful notations. The technique we present in this paper applies
to different kinds of models, that can map to finite labeled transition systems,
e.g. high-level bounded Petri nets. For the sake of simplicity and generality, we
chose to present it for Kripke structures, since the formalism is rather simple
and well adapted to state-based semantics.

Definition 1 (Kripke structure). Let AP be a finite set of atomic propo-
sitions. A Kripke structure (KS for short) over AP is a 4-tuple 〈Γ, L,→, s0〉
where:

– Γ is a finite set of states ;
– L : Γ → 2AP is a labeling (or interpretation) function;
– →⊆ Γ × Γ is a transition relation ;
– s0 ∈ Γ is the initial state.

Notations

– Let s, s′ ∈ Γ . We denote by s→ s′ that (s, s′) ∈→,
– Let s ∈ Γ . s �→ denotes that s is a dead state (i.e. � ∃s′ ∈ Γ such that s→ s′),
– π = s1 → s2 → · · · is used to denote paths of a Kripke structure and π

denotes the set of states occurring in π,
– A finite path π = s1 → · · · → sn is said to be a circuit if sn → s1. If π is a

subset of a set of states S then π is said to be a circuit of S.
– Let π = s1 → · · · → sn and π′ = sn+1 → · · · → sn+m be two paths such that

sn → sn+1. Then, ππ′ denotes the path s1 → · · · → sn → sn+1 → · · · →
sn+m.

– ∀s, s′ ∈ Γ , s ∗−→s′ denotes that s′ is reachable from s (i.e. ∃s1, · · · , sn ∈ Γ

such that s1 → · · · → sn ∧ s = s1 ∧ s′ = sn). s +−→s′ denotes the case where
n > 1 and s ∗−→Ss′ (resp. s +−→Ss′) stands when the states s1, · · · , sn belong
to some subset of states S.

Definition 2 (maximal paths). Let T be Kripke structure and let π = s1 →
s2 → · · · → sn be a path of T . Then, π is said to be a maximal path if one of
the two following properties holds:

MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs 291

– sn �→,
– π = s1 → · · · → sm → · · · → sn and sm → · · · → sn is a circuit.

Since LTL is interpreted on infinite paths, a usual solution in automata theoretic
approach to check LTL formulae on a KS is to convert each of its finite maximal
paths to an infinite one by adding a loop on its dead states. From now on, the
KS obtained by such a transformation is called extended Kripke structure (EKS
for short).

Moreover, it is well known that LTL formulae without the ‘next‘ operator are
invariant under the so-called stuttering equivalence [5]. We will use this equiva-
lence relation to prove that observation graphs can be used for model checking.
Stuttering occurs when the same atomic propositions (label) hold on two or
more consecutive states of a given path. We recall the definition of stuttering
equivalence between two paths.

Definition 3 (Stuttering equivalence). Let T and T ′ be two Kripke struc-
tures over an atomic proposition set AP and let π = s0 → s1 → · · · and
π′ = r0 → r1 → · · · be respectively paths of T and T ′. π and π′ are said to
be stuttering equivalent, written as π ∼st π′, if there are two sequences of in-
tegers i0 = 0 < i1 < i2 < · · · and j0 = 0 < j1 < j2 < · · · s.t. for every
k ≥ 0, L(sik

) = L(sik+1) = · · · = L(sik+1−1) = L′(rjk
) = L′(rjk+1) = · · · =

L′(rjk+1−1).

3 Symbolic Observation Graph

Two motivations are behind the idea of the state-based Symbolic Observation
Graph (SOG). First, state-based logics are more intuitive and more suitable for
model-checking approaches than event-based ones. Second, we wanted to give a
flexible definition of the SOG allowing several possible implementation which,
as we will see in section 5, could improve the performances. In fact, thanks to
the flexibility of the formal definition of the state-based SOG, the construction
algorithm of [12] can be viewed as a specialization of our technique by observing
events altering the truth values of the induced atomic propositions.

From now on, SOG will denote the state-based variant.

3.1 Definitions

We first define formally what is an aggregate.

Definition 4 (Aggregate). Let T = 〈Γ, L,→, s0〉 be a KS over an atomic
proposition set AP. An aggregate a of T is a non empty subset of Γ satisfying
∀s, s′ ∈ a, L(s) = L(s′).

We introduce three particular sets of states and two predicates. Let a and a′ be
two aggregates of T .

– Out(a) = {s ∈ a | ∃s′ ∈ Γ \ a, s→ s′}
– Ext(a) = {s′ ∈ Γ \ a | ∃s ∈ a, s→ s′}

292 K. Klai and D. Poitrenaud

– In(a, a′) = {s′ ∈ a′ \ a | ∃s ∈ a, s→ s′} (i.e. In(a, a′) = Ext(a) ∩ a′)
– Dead(a) = (∃s ∈ a s.t. s �→)
– Live(a) = (∃π a circuit of a)

Let us describe informally, for an aggregate a, the meaning of the above nota-
tions: Out(a) denotes the set of output states of a i.e. any state of a having a
successor outside of a. Ext(a) contains any state, outside of a, having a prede-
cessor in a. Given an aggregate a′, In(a, a′) denotes the set of input states of a′

according to the predecessor a, notice that In(a, a′) = Ext(a) ∩ a′. Finally the
predicate Dead(a) (resp. Live(a)) holds when there exists a dead state (resp. a
circuit) in a.

We first introduce the compatibility relation between an aggregate and a set
of states.

Definition 5 (Compatibility). An aggregate a is said compatible with a set
of states S if and only if:

– S ⊆ a
– ∀s ∈ Out(a), ∃s′ ∈ S such that s′ ∗−→as
– Dead(a)⇒ ∃s′ ∈ S, ∃d ∈ a such that d �→ ∧s′ ∗−→ad
– Live(a)⇒ ∃s′ ∈ S, ∃π a circuit of a, ∃c ∈ π such that s′ ∗−→ac

Now, we are able to define the symbolic observation graph structure according
to a given KS .

Definition 6 (Symbolic Observation Graph). Let T = 〈Γ, L,→, s0〉 be a
KS over an atomic proposition set AP. A symbolic observation graph of T is a
4-tuple G = 〈Γ ′, L′,→′, a0〉 where:

1. Γ ′ ⊆ 2Γ is a finite set of aggregates
2. L′ : Γ ′ → 2AP is a labeling function satisfying ∀a ∈ Γ ′, let s ∈ a, L′(a) =

L(s).
3. →′⊆ Γ ′ × Γ ′ is a transition relation satisfying:

(a) ∀a, a′ ∈ Γ ′ such that a→′ a′,
i. a′ �= a⇒ In(a, a′) �= ∅ and a′ is compatible with In(a, a′)

ii. a′ = a ⇒ there exists a circuit π of a such that a is compatible
with π and ∀E ∈ InG(a), there exists a circuit πE of a such that a
is compatible with πE and ∃e ∈ E, c ∈ πE satisfying e ∗−→ac
where InG(a) = {E ⊆ a | E = {s0} ∨ ∃a′ ∈ Γ ′ \ {a}, a′ →′ a ∧ E =
In(a′, a)}

(b) ∀a ∈ Γ ′, Ext(a) =
⋃

a′∈Γ ′,a→′a′ In(a, a′).
4. a0 ∈ Γ ′ is the initial aggregate and is compatible with {s0}

While points (1), (2) and (4) are trivial, the transition relation (3) of the SOG
requires explanation: Given two aggregates a and a′ such that a→′ a′, then we
distinguish two cases:

(3(a)i) stands for a′ is different from a. In this case, we impose a′ to be
compatible with In(a, a′). This means that entering in a′ by following the arc

MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs 293

between a and a′, all the output states of a′, as well as a dead state (if Dead(a′)
holds) and a circuit (if Live(a′) holds) must be reachable.

(3(a)ii) treats the non trivial case of a loop on a (i.e. a→′ a). Notice first that
such a condition can be removed without changing the validity of our theoretical
results. In this case, no loop will be authorized on a single aggregate a but it does
not matter since Live(a) holds and the stuttering implied by the loop will be
captured by this predicate. However, this point appears to allow more flexibility
for the SOG construction. A loop a→′ a is authorized if for any subset E such
that E = {s0} (if s0 ∈ a) or E = In(a′, a) for some predecessor a′ of a (in G),
there exists a cycle πE reachable from E and a is compatible with πE . If such a
subset E does not exist (i.e. InG(a) = ∅) then the aggregate a has no predecessor
in G (and is not the initial aggregate) and we authorize a loop on a if and only
if there exists a circuit π of a such that a is compatible with π.

Finally, point (3b) implies that all the successors of the states present in an
aggregate a are represented in Γ ′.

Notice that Definition 6 does not guarantee the uniqueness of a SOG for
a given KS . In fact, it supplies a certain flexibility for its implementation. In
particular, an aggregate can be labeled by the same atomic proposition set than
one of its successors and two successors of an aggregate may also have the same
labels. We will see in the section 5 that the implementation can take advantage
of this flexibility.

Example:
Figure 1 illustrates an example of KS (Figure 1(a)) and a corresponding SOG
(Figure 1(b)). The set of atomic propositions contains two elements {a, b} and
each state of the KS is labeled with the values of these propositions. The pre-
sented SOG consists of 5 aggregates {a0, a1, a2, a3, a4} and 6 edges. Aggre-
gates a1 and a2 contain circuits but no dead states, whereas a3 and a4 have
each a dead state but no circuit. Each aggregate a is indexed with a triplet
(Dead(a), Live(a), L′(a)). The symbol d (resp. d) is used when Dead(a) holds
(resp. does not hold) and the symbol l (resp. l) is used when Live(a) holds
(resp. does not hold). Notice that states of the KS are partitioned into aggre-
gates which is not necessary the case in general (i.e. a single state may belong
to two different aggregates). Moreover, one can merge a3 and a4 within a single
aggregate and still respect Definition 6.

The following definition characterizes the paths of a SOG which must be
considered for model checking.

Definition 7 (maximal paths of a SOG). Let G be a SOG and π = a1 →
a2 → · · · → an be a path of G. Then π is said to be a maximal path if one of
the three following properties holds:

– Dead(an) holds,
– Live(an) holds,
– π = a1 → · · · → am → · · · → an and am → · · · → an is a circuit (i.e.

an → am).

294 K. Klai and D. Poitrenaud

(a) Example of Kripke structure

(b) ThecorrespondingSOGwith
AP = {a, b}

Fig. 1. A Kripke structure and its SOG

Our ultimate goal is to check LTL\X properties on a SOG G associated with
a KS T . Thus, in order to capture all the maximal paths of G under the form
of infinite sequences, we transform its finite maximal paths into infinite ones.
The following definition formalizes such a transformation and by analogy to
extended Kripke structure, the obtained transformed graph is called extended
symbolic observation graph (ESOG for short).

Definition 8 (Extended SOG). Let 〈Γ ′, L′,→′, a0〉 be a SOG over an atomic
proposition set AP . The associated ESOG is a KS 〈Γ, L,→, s0〉 where:

1. Γ = Γ ′ ∪ {v ∈ 2AP |∃a ∈ Γ ′, L′(a) = v ∧ (Dead(a) ∨ Live(a))}
2. ∀a ∈ Γ ′, L(a) = L′(a) and ∀v ∈ Γ \ Γ ′, L(v) = v

3. →⊆ Γ × Γ is the transition relation satisfying:
(a) ∀a, a′ ∈ Γ ′, a→′ a′ ⇒ a→ a′

(b) ∀a ∈ Γ ′, Dead(a) ∨ Live(a)⇒ a→ L′(a)
(c) ∀v ∈ Γ \ Γ ′, v → v

4. s0 = s′0

Example:
The extended SOG of Figure 1(b) is obtained by adding three nodes a.b, a.b
(corresponding to a1 and a2 respectively because Live(a1) and Live(a2) hold and
a.b (corresponding to both aggregates a3 and a4 because Dead(a3) and Dead(a4)
hold). These three added states are labeled with a.b, a.b and a.b respectively and
have each a looping arc. We also add the following 4 arcs: one from a1 to a.b,
one from a2 to a.b, one from a3 to a.b and one from a4 to a.b.

MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs 295

3.2 LTL\X Model Checking and SOG

The equivalence between checking a given LTL \X property on the observation
graph and checking it on the original labeled transition system is ensured by
the preservation of maximal paths. This corresponds to the CFFD semantic [14]
which is exactly the weakest equivalence preserving next time-less linear tempo-
ral logic. Thus, the symbolic observation graph preserves the validity of formulae
written in classical Manna-Pnueli linear time logic [15] (LTL) from which the
“next operator” has been removed (because of the abstraction of the immediate
successors) (see for instance [18,11]).

In the following, we give the main result of the paper: checking an LTL \X
formula on a Kripke structure can be reduced to check it on a corresponding
SOG. Due to the complexity of the proof of this result, it will be deduced from
a set of intermediate lemmas and one proposition.

Theorem 1. Let G be an ESOG over an atomic proposition set AP and corre-
sponding to an extended KS T . Let ϕ be a formula from LTL\X on AP. Then
the following holds:

T |= ϕ⇔ G |= ϕ

Proof. The proof of Theorem 1 is direct from Proposition 1 (ensuring the preser-
vation of maximal paths) and Definition 8. ��

Given a KS T = 〈Γ, L,→, s0〉 over an atomic proposition set AP and G =
〈Γ ′, L′,→′, a0〉 a SOG associated with T according to Definition 6, we present
four lemmas about the correspondence between paths of T and those of G. These
lemmas are followed by Proposition 1. The first lemma demonstrates that each
finite path in T has (at least) a corresponding path in G.

Lemma 1. Let π = s1 → s2 → · · · → sn be a path of T and a1 be an aggregate
of G such that s1 ∈ a1. Then, there exists a path a1 →′ a2 →′ · · · →′ am of G
and a strictly increasing sequence of integers i1 = 1 < i2 < · · · < im+1 = n + 1
satisfying {sik

, sik+1, · · · , sik+1−1} ⊆ ak for all 1 ≤ k ≤ m.

Proof. We proceed by induction on the length of π. If n = 1, knowing that
s1 ∈ a1 concludes the proof. Let n > 1 and assume that a1 →′ a2 →′ · · · →′ am−1

and i1, · · · , im correspond to the terms of the lemma for the path s1 → s2 →
· · · → sn−1. Then, sn−1 ∈ am−1. Let us distinguish two cases.

(i) If sn ∈ am−1 then the path a1 →′ a2 →′ · · · →′ am−1 and the sequence
i1, · · · , im + 1 satisfy the proposition.

(ii) If sn �∈ am−1 then sn ∈ Ext(am−1) and, by def. 6 (item 3b), there exists an
aggregate am such that am−1 →′ am and sn ∈ In(am−1, am). As a consequence,
the path a1 →′ a2 →′ · · · →′ am−1 →′ am and the sequence i1, · · · , im, im + 1
satisfy the proposition. ��

296 K. Klai and D. Poitrenaud

The next lemma shows that the converse also holds.

Lemma 2. Let π = a1 →′ a2 →′ · · · →′ an be a path of G. Then, there exists a
path e1 → (b2

∗−→a2e2)→ · · · → bn of T satisfying e1 ∈ a1 and bn ∈ an.

Proof. We consider π in reverse order and proceed by induction on its length.
If n = 1, it is sufficient to choose a state s1 ∈ a1. If n = 2, we have to distinguish
two cases.

(i) If a1 �= a2 then, by def. 6 (item 3(a)i), In(a1, a2) �= ∅ and, by definition of
In, there exist e1 ∈ Out(a1) and b2 ∈ In(a1, a2) such that e1 → b2. This path
verifies the proposition.

(ii) If a1 = a2 then, by def. 6 (item 3(a)ii), we know that there exists a circuit
σ of a1. Let b2 ∈ σ. The path b2

+−→a1b2 satisfies the proposition.
Let n > 2 and assume that e2 → · · · → bn corresponds to the terms of the

proposition for the path a2 →′ · · · →′ an. We know that e2 ∈ a2. Here four cases
have to be considered.

(iii) If a1 �= a2 ∧ e2 ∈ Out(a2) then, using def. 6 (item 3(a)i), we know
that there exists a state b2 ∈ In(a1, a2) such that b2

∗−→a2e2 and a state e1 ∈
Out(a1) such that e1 → b2. The path e1 → (b2

∗−→a2e2)→ · · · → bn verifies the
proposition.

(iv) If a1 = a2 ∧ e2 ∈ Out(a2) then, by def. 6 (item 3(a)ii), we know that a1

contains a circuit σ such that a1 is compatible with σ. Let e1, b2 ∈ σ such that
e1 → b2. Since a1 is compatible with σ and e2 ∈ Out(a1) then e2 is reachable
from b2 in a1. In consequence, the path e1 → (b2

∗−→a2e2) → · · · → bn satisfies
the proposition.

(v) a1 �= a2 ∧ e2 �∈ Out(a2) then (a2, a2) ∈→′. Since In(a1, a2) �= ∅ and due
to def. 6 (item 3(a)ii), there exists a circuit σ of a2 reachable from some state
b2 ∈ In(a1, a2) and such that a2 is compatible with σ. Moreover, there exists
e1 ∈ Out(a1) such that e1 → b2. Let c ∈ σ. Let us distinguish the two following
subcases:

(a) If there exists i > 2 such that ei ∈ Out(ai) then, let j be the smallest such
an i. Then, since aj is compatible with σ, ej is reachable in aj from c. Hence,
the path e1 → b2

∗−→a2c(+−→a2c)j−1 ∗−→aj
ej · · · → bn verifies the proposition.

(b) If for all i > 2, ei �∈ Out(ai) then the path e1 → b2
∗−→a2c(+−→a2c)n−1

satisfies the proposition.
(vi) a1 = a2 ∧ e2 �∈ Out(a2) then, by def. 6 (item 3(a)ii), we know that

a1 contains a circuit σ such that a1 is compatible with σ. We also know that
e2 ∈ σ by construction. Let e1 ∈ σ such that e1 → e2. Then the path e1 →
(e2

∗−→a2e2)→ · · · → bn satisfies the proposition. ��

We are now in position to study the correspondence between maximal paths.

Lemma 3. Let π = s0 → · · · → sn be a maximal path of T . Then, there exists
a maximal path π′ = a0 →′ · · · →′ am of G such that there exists a sequence of
integers i0 = 0 < i1 < · · · < im+1 = n + 1 satisfying {sik

, sik+1, · · · , sik+1−1} ⊆
ak for all 0 ≤ k ≤ m.

MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs 297

Proof. If sn is a dead state then knowing that s0 ∈ a0 (Definition 6 (item 4) and
using Lemma 1, we can construct a path π′ = a0 → a2 · · · am and the associated
integer sequence corresponding to π. Because the last visited state of π belongs
to am, Dead(am) necessarily holds and π′ is then a maximal path in the sense
of Definition 7.

Now, if sn is not a dead state then, one can decompose π as follows: π = π1π2

s.t. π1 = s0 → s1 → · · · → sn−1 and π2 = sn → sn+1 → · · · → sn+m (where π2

is a circuit). Once again, applying Lemma 1 from a0, one can construct a path
π′

1 = a0 →′ a1 →′ · · · ak corresponding to π1. The corresponding path of π′
2

can be also constructed applying the same lemma. However, this path must be
constructed from ak if sn ∈ ak or from a successor of ak containing sn otherwise
(Definition 6 ensures its existence). Let π′

2 = ab1 →′ ab1+1 →′ · · · ae1 be this
path.

Then, let us distinguish the following four cases:

1. if π′
2 is reduced to a single aggregate a then π2 ⊆ a and, because π2 is a

circuit of T , Live(a) holds. Then, the path π′
1π

′
2 is maximal in G.

2. else if ae1 →′ ab1 ∧ sn ∈ In(ae1 , ab1) then π′
2 is a circuit of G and π′

1π
′
2 is a

maximal path of G satisfying the proposition.
3. else if sn ∈ ae1 (i.e ab1 = ae1) then the path ab1+1 →′ · · · ae2 is a circuit of
G and π′

1 →′ ab1 →′ ab1+1 →′ · · · ae2 is a maximal path of G satisfying the
proposition.

4. else, by Definition 6, there exists a successor of ae1 containing sn. Applying
again Lemma 1 from this aggregate, we can construct a new path in G
corresponding to π2. Let ab2 →′ ab2+1 →′ · · · ae2 be this path. If we can
deduce a circuit of G from this path applying one of the three above points,
this concludes the proof. Otherwise, it is also possible to construct a circuit
of G by linking ae2 to ab1 similarly to the point 2 and 3 above and deduce
a circuit. If this is not the case, we can construct a new path corresponding
to π2 starting from a successor of ae2 . Because the number of aggregates in
G is finite, a circuit will be necessarily obtained.

Notice that for all the previous cases above, a sequence of integers can be
easily constructed from the ones produced by Lemma 1. ��

Lemma 4. Let π′ = a0 →′ · · · →′ an be a maximal path of G. Then, there exists
a maximal path π = (s0

∗−→a0e0)→ · · · → (bn
∗−→an

en) of T .

Proof. Let π′ be a maximal path reaching an aggregate an such that Dead(an)
or Live(an) hold. First, let us notice that the proof is trivial if the path π′ is
reduced to a single aggregate because of the compatibility of a0 with {s0} which
implies that a dead state (resp. a state of a circuit of a0) is reachable from s0.

Otherwise, using Lemma 2, there exists a path π = e0 → (b1
∗−→a1e1)→ · · · →

bn of T satisfying e0 ∈ a0 and bn ∈ an. If e0 ∈ Out(a0), we have s0
∗−→a0e0 since

a0 is compatible with {s0}. Otherwise, e0 belongs to a circuit of a0 and there
exists in G an arc from a0 to itself. Definition 6 (item 3(a)ii) ensures that this cir-
cuit can be chosen to be reachable from s0 (and compatible with a0) during the

298 K. Klai and D. Poitrenaud

construction of π. Finally, there exists a state en ∈ an such that bn
∗−→an

en,
where en is a dead state (if Dead(an) holds) or a state of a circuit of an

(if Live(an) holds), because an is compatible with In(an−1, an). Thus, the path
(s0

∗−→a0e0)→ (b1
∗−→a1e1)→ · · · → (bn

∗−→an
en) satisfies the lemma.

Now, if neither Dead(an) nor Live(an) hold, then by Definition 7, π′ = a0 →
· · · → am → · · · → an with am → · · · → an a circuit of G. We distinguish the
two following cases:

1. If ∀m ≤ i ≤ n, ai = am. Using Lemma 2, we can construct a path of T ,
namely π = e0 → (b1

∗−→a1e1)→ · · · → bm corresponding to a0 → · · · → am

such that e0 is chosen to be reachable from s0 (similarly to the above case).
Because am → am, am contains a circuit and bm can be chosen such that
this circuit is reachable from bm. This leads to the construction of a maximal
path of T .

2. Otherwise, m can be chosen such that am �= an and an →′ am. From this
decomposition of π′, Lemma 2 can be used to construct a maximal path of
T satisfying the current lemma.

��

The following proposition is a direct consequence of the two previous lemmas.

Proposition 1. Let G = 〈Γ ′, L′,→′, a0〉 be a SOG over an atomic proposition
set AP and corresponding to a KS T = 〈Γ, L,→, s0〉. Then the following holds:

1. ∀π = s0 → s1 → · · · , a maximal path of T , ∃π′ = a0 →′ a1 →′ · · · , a
maximal path of G s.t. π ∼st π′.

2. ∀π′ = a0 →′ a1 →′ · · · , a maximal path of G, ∃π = s0 → s1 → · · · , a
maximal path of T s.t. π ∼st π′.

Proof. The proof of Proposition 1 is direct by considering Lemmas 3 and 4 as
well as Definitions 3 and 4. ��

4 Construction of a SOG Model-Checker for Petri Nets

This section presents the model-checker (named MC-SOG) we have implemented
to verify state based LTL\X formulae on bounded Petri nets [17] (i.e. nets hav-
ing a finite reachability graph) . The implementation of MC-SOG is based on
Spot [9], an object-oriented model checking library written in C++. Spot of-
fers a set of building blocks to experiment with and develop your own model
checker. It is based on the automata theoretic approach to LTL model checking.
In this approach, the checking algorithm visits the synchronized product of the
ω-automaton corresponding to the negation of the formula and of the one corre-
sponding to the system. Spot proposes a module for the translation of an LTL
formula into an ω-automaton but is not dedicated to a specific formalism for the
representation of the system to be checked. Then, many of the algorithms are
based on a set of three abstract classes representing ω-automata and which must

MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs 299

be specialized depending on your own needs. The first abstract class defines a
state, the second allows to iterate on the successors of a given state and the last
one represents the whole ω-automaton. In our context, we have derived these
classes for implementing ESOG of bounded Petri nets. It is important to notice
that the effective construction of the ESOG is driven by the emptiness check
algorithm of Spot and therefore, will be managed on-the-fly.

Spot is freely distributed under the terms of the GNU GPL (spot.lip6.fr)
and has been recently qualified as one of the best explicit LTL model check-
ers [19].

We assume that the bound of the considered net is known a priori. Each set
of markings corresponding to an aggregate is represented by a BDD using the
encoding presented by Pastor & al in [16]. For a k-bounded place, this encoding
uses �log2(k)� BDD variables. The representation of the transition relation is
achieved using two sets of variables. The first one allows to specify the enabling
condition on the current state while the second represents the effect of the firing
(see [16] for a more precise description).

The atomic propositions that we accept are place names. In a given marking,
an atomic proposition associated to a place is satisfied if the place contains at
least a token.

The construction of aggregates depends on places appearing as atomic propo-
sition in the checked formula. In the following, we denote by AP this subset of
places. The construction starts from a set of initial markings M , all of them sat-
isfying exactly the same atomic propositions. To compute the initial aggregate of
the ESOG, we state M = {m0}. Then, the complete set of markings correspond-
ing to an aggregate is obtained by applying until saturation (i.e. no new states
can be reached any more) the transition relation limited to the transitions which
do not modify the truth value of atomic propositions. Instead of checking this
constraint explicitly, we statically restrict the set of Petri net transitions to be
considered to the ones which do not modify the marking of places used as atomic
propositions (i.e. the set Local = {t ∈ T | ∀p ∈ AP, Pre(p, t) = Post(p, t)}). We
denote by Sat(M) the set of markings reachable from at least a marking of M
by the firings of transitions in Local only. In other terms, Sat(M) is defined by
induction as follows:

– ∀m ∈M, m ∈ Sat(M),
– ∀m ∈ Sat(M), (∃t ∈ Local s.t. m[t > m′) ⇒ m′ ∈ Sat(M) (where m[t > m′

denotes that t is firable from m and its firing leads to m′).

The successors of an aggregate are obtained by considering one by one the
transitions excluded during the computation of aggregates (of the set Extern =
T \Local). For each of these transitions, we compute the set of markings directly
reachable by firing it from the markings composing the aggregate. Then, these
reached markings are the seed for the construction of the successor aggregate.
For a transition t ∈ Extern, we define Out(M, t) = {m ∈ Sat(M) | m[t >} and
Ext(M, t) = {m′ | ∃m ∈ Sat(M) s.t. m[t > m′}. Notice that the definition of
the set Extern and the fact that the construction is started from {m0} ensure

spot.lip6.fr

300 K. Klai and D. Poitrenaud

that ∀t ∈ Extern, ∀m, m′ ∈ Sat(Ext(M, t)) and ∀p ∈ AP , we have m(p) = m′(p)
and therefore, that all the markings of an aggregate satisfy the same atomic
propositions.

We also note Out(M) =
⋃

t∈Extern Out(M, t). Finally, we define two predi-
cates: Dead(M) holds if Sat(M) contains at least a dead marking and Live(M)
if Sat(M) contains at least a circuit.

Starting from M = {m0}, we construct on-the-fly an ESOG where aggregates
are Sat(M) and successors of such a node are Sat(Ext(M, t)) for each t of Extern
(satisfying Ext(M, t) �= ∅). However, two aggregates Sat(M) and Sat(M ′) can
be merged (i.e. identify as equal in the hash table of the emptiness check) if
Out(M) = Out(M ′) ∧ Dead(M) = Dead(M ′) ∧ Live(M) = Live(M ′) without
contradicting the definition 6. This situation is illustrated in fig.2.

Fig. 2. The aggregates Sat(Ext(M, t)) and Sat(Ext(M ′, t′)) can be merged

This has an important consequence on the implementation. An aggregate, con-
structed from a set M , is only identified by the markings composing Out(M) (one
BDD) associated to the truth value of Dead(M) and Live(M) (two booleans).
Then, the hash table is only composed by such triplets. This explains for an im-
portant part why the SOG construction obtains good results in terms of memory
consumption. Indeed, when Extern contains a limited number of transitions, the
sets Out(M) are generally small as well as the number of aggregates.

To determine if an aggregate contains a dead marking or a circuit, we use the
algorithms presented in [12]. Moreover, when an aggregate contains one or the
other, an artificial successor is added to the existing ones. This new aggregate
is only characterized by the truth value of the atomic propositions (encoded by
a BDD) and has itself as unique successor.

This computation is illustrated on the net of Figure 3 when considering
two dining philosophers and the formula �(wl1 ∧ wr1 ⇒ ♦(e1)). This formula

MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs 301

Fig. 3. A Petri net modeling the nth dining philosopher

expresses that when the first philosopher wants to eat (wl1 ∧wr1) then he must
eat (e1) eventually in the future. All the transitions connected to the three places
wl1, wr1 and e1 are excluded during the computation of the markings compos-
ing an aggregate. Notice that these are all the transitions associated to the first
philosopher. For instance, the initial aggregate, presented at the left of Figure 4,
groups all the markings reachable from the initial marking when only the second
philosopher runs. The transition h1 is enabled from all these markings. Because
this transition has been excluded during the computation and no other transi-
tion of Extern is enabled from any of these markings, the initial aggregate has
only one successor whose construction begins with all the markings immediately
reached after the firing of h1.

Notice that the initial aggregate contains no deadlock (d is false) but a circuit (l
is true). Moreover, no atomic proposition is satisfied (wl1, wr1 and e1 are negated).
Notice that the two dead markings of the net are represented in the two aggregates
in the middle of the Figure 4. The artificial aggregates corresponding to the
presence of dead markings or circuits have not been represented in the figure.

5 Evaluation

The performance of three LTL model checkers are compared. The first one,
NuSMV [3], allows for the representation of synchronous and asynchronous finite
state systems, and for the analysis of specifications expressed in Computation
Tree Logic (CTL) and Linear Temporal Logic (LTL), using BDD-based and
SAT-based model checking techniques. Only BDD-based LTL components have
been used for our experiments. They implement the algorithms presented in [4].
This method consists in: (1) construct the transition relation of the system ;

302 K. Klai and D. Poitrenaud

Fig. 4. The constructed SOG for two philosophers and the formula �(wl1 ∧ wr1 ⇒
♦(e1))

(2) translate the LTL formula into an equivalent ω-automaton and construct its
transition relation ; (3) construct the synchronized product of the two relations.
The decision procedure is then reduced to the verification of a CTL formula
with fairness constraints. For our experiments, we have submitted to NuSMV,
the encoding of Petri nets by the transition relation as defined by Pastor & al
in [16]. On each dead marking, a transition looping on itself has been added to
take into account all the maximal sequences.

The second model checker is MC-SOG presented in the previous section and
mixing symbolic and explicit algorithms. Notice that the BDD representations
of the transition relations used by this tool and NuSMV as well as the order of
BDD variables are the same. Notice also that better encodings of considered nets
may exist. In particular, the distribution of NuSMV proposes an example for the
dining philosophers. This model encodes each philosopher and each fork by an
automaton. This allows to significantly decrease the number of BDD variables
comparing to the encoding we have chosen. However, a better encoding will be
favorable for both tools (MC-SOG and NuSMV). In MC-SOG, the construction
of aggregates is realized using this transition relation and the LTL verification
is delegated to Spot [9].

The third model checker is also based on Spot (it is distributed with the
library as a tutorial under the name CheckPN) but visits the reachability graph
instead of a symbolic observation graph. Each state of the reachability graph
is encoded by an integer vector. For this model checker also, we have added a
transition looping on each dead marking.

The measurements presented in Table 1 concern 4 families of Petri nets. The
Petri nets of a given family are obtained by instantiating a parameter (e.g. the
number of philosophers). All these examples are taken from [2]. On each of these
nets, 100 randomized formulae have been checked. Each formula is of size 8 and
takes its atomic propositions randomly among the places of the considered net.

MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs 303

Table 1. Experiments on 4 families of Petri nets

model Symbolic Symbolic & Explicit Explicit
(1) (2) (3) (4) (3) (5) (6) (4) (5) (6) (4)

fms 2 3444 26 801536 4.0 23207 762 1249 0.9 15522 50037 0.2
fms 3 48590 24 803790 9.2 23328 1359 2897 6.8 92942 346783 1.8
fms 4 438600 24 849616 25.7 51282 2617 7074 93.2 641853 2665186 15.2
fms 5 2.8 × 106 24 863802 48.6 91254 4917 15652 677.7 3391134 14956669 98.5

kanban 2 4600 31 772640 2.9 16715 871 1450 0.4 19014 108284 0.4
kanban 3 58400 30 770249 6.3 19185 1473 3183 0.7 196986 1437346 5.8
kanban 4 454475 30 783286 19.1 51451 2686 7121 2.9 1405537 11603892 328.0
kanban 5 2.5 × 106 30 810446 47.0 94913 4721 14317 7.5 not treated
kanban 6 1.1 × 107 30 825585 124.4 178021 7911 26247 18.9

philo 4 466 26 735463 4.2 11946 527 631 0.5 4709 12736 0.1
philo 6 10054 25 745489 11.6 18119 521 683 1.1 62250 293668 2.1
philo 8 216994 22 792613 32.3 24180 552 730 2.2
philo 10 4.7 × 106 23 845180 98.7 30316 546 724 4.0 not treated
philo 20 2.2 × 1013 23 4743606 2585.5 59689 587 916 41.5

ring 3 504 43 828719 10.8 11450 1621 4388 1.3 7541 24421 0.2
ring 4 5136 40 910641 66.6 18027 1922 4066 15.2 59145 295414 1.5
ring 5 53856 39 983840 438.0 69680 9682 29638 612.8 807737 4946514 181.2

(1) Number of reachable markings (4) Verification time in seconds
(2) Number of verified formulae (5) Number of visited states
(3) Peak number of live BDD nodes (6) Number of visited transitions

(only an estimation for MC-SOG)

For each net, we give its number of reachable markings (column numbered (1))
as well as the number of satisfied formulae (2). For each tool, we have measured
the time in seconds (4) consumed by the verification of the 100 formulae.

For each tool using the symbolic approach (NuSMV and MC-SOG), we also
give the peak number of live BDD nodes (3) (i.e. peak even if aggressive garbage
collection is used). Notice that the numbers given for MC-SOG are an estimation.
Our implementation is based on the BDD package Buddy which delays the
freeing of dead nodes to take advantage of its caches. Then, we have forced
frequent garbage collections to estimate the peak. NuSMV is based on the BDD
package CUDD which measures the exact memory peak in terms of live BDD
nodes if only its immediate freeing function is used. NuSMV exclusively uses
this function of CUDD.

For each tool using the explicit approach (MC-SOG and CheckPN) is indi-
cated the number of states (5) and transitions (6) of the 100 ω-automata visited
by the LTL emptiness check algorithm. These automata correspond to the syn-
chronized products of the ESOG or reachability graph and the ω-automaton of
each formula. Among all the emptiness check algorithms proposed by Spot, we
have used the Couvreur’s one [8]. The visited states are constructed (and stored)
on-the-fly during the LTL verification. Then the number of states corresponds
to the memory used and the number of transitions to the time consumed by the
emptiness check.

304 K. Klai and D. Poitrenaud

A first remark concerning the obtained results in terms of time is that no
model checker has the advantage on the others for all the experiments. NuSMV
is the faster for the net fms and MC-SOG performs well for the nets kanban
and philo while CheckPN obtains the best results for the net ring. The good
results of NuSMV on fms are interesting. Only the number of tokens in the initial
marking depends on the parameter of this net and, in particular, the number of
places remains constant. Since the number of BDD variables is logarithmic with
respect to the bound of the net when it is linear with respect to the number of
places, we can deduce that NuSMV is more sensitive than MC-SOG to a great
number of variables. We suspect that the bad results of MC-SOG for the net
fms are essentially due to the way we construct aggregates and exclude some
transitions for the saturation. This technique is particulary efficient when the
bound of the places remains reasonable.

If we compare the memory peaks of NuSMV against the ones of MC-SOG,
it is clear that NuSMV consumes more. This is due to the fact that MC-SOG
only stores a forest of BDD (one by aggregate) corresponding to Out(M) while
NuSMV has to store the set of all reachable states. However, when the parame-
ters of nets grow, the exponential increase of MC-SOG is more marked than the
one of NuSMV (with the exception of the net philo).

Table 2. Experiments with limited expansion of aggregats

model Symbolic Symbolic & Explicit Explicit
(1) (2) (3) (4) (3) (5) (6) (4) (5) (6) (4)

fms 5 2.8 × 106 24 863802 48.6 91254 10882 25989 52.1 3391134 14956669 98.5
fms 6 1.5 × 107 24 885576 147.6 293518 17104 45246 182.2 not treated

ring 5 53856 39 983840 438.0 102668 56187 329075 239.3 807737 4946514 181.2

Finally, the size of the ω-automata visited by the explicit part (the empti-
ness checks) of MC-SOG is extremely reduced compared to the one required
by CheckPN. It is clear that the computation time (which could be important)
of MC-SOG is essentially used for the construction of the aggregates. However,
we have seen in the section 3 that the definition of SOG allows some freedom
degrees. In particular, the expansion of an aggregate can be stopped at any mo-
ment. Doing that, we limit the times required by the computation of aggregate
but increase the size of the SOG. In table 2, we present some results for three
nets. The expansion of aggregates has been limited by forbidding the firing of
arbitrary chosen Petri net transitions during their construction (i.e. these transi-
tions have been added to Extern). We can notice that the construction presented
in the previous section does not allows the presence of self loop on aggregates.
Adding some not needed transitions in Extern can lead to such loops but without
contradicting the definition of SOG.

In table 2, we can remark that even if the size of visited ω-automata has been
increased importantly, the complete checking time has decreased drastically and
that, by using this simple heuristic, MC-SOG is now comparable with the two
other model checkers on these examples.

MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs 305

6 Conclusion

In this paper, we designed and analyzed a new on-the-fly model-checker for
LTL \X logic based on state-based symbolic observation graphs. Our approach
is hybrid in the sense that the explored state space is represented by a hybrid
graph: nodes are encoded symbolically while edges are encoded explicitly. In fact
symbolic model-checker is rather common when dealing with computational tree
logics (e.g. CTL), however checking LTL properties symbolically is not trivial.
To the best of our knowledge the unique symbolic algorithm for LTL logic is the
one proposed in [4] (implemented for instance in NuSMV [3]).The advantages
of our technique in comparison to this approach is that the computation of a
SOG can be done on-the-fly during the emptiness check. Moreover, when the
SOG is visited entirely during the model checking (i.e. the property holds), it
can be reused for the verification of another formula (at the condition that the
set of atomic propositions is included in the one used by the SOG). Experiments
show that our approach can outperform both explicit model-checkers and sym-
bolic ones, especially when the freedom degrees related to the SOG building are
exploited. However, it would be interesting to try different heuristics to limit
more the computation time of aggregates. For instance, one can adapt the BDD
variable ordering such that those used to encode the atomic propositions of the
formula are consecutive. This could reduce drastically the time used for com-
puting the successors of an aggregate since their values do not change within an
aggregate. Other perspectives are to be considered in the near future. For ex-
ample, it would be interesting to experiment our tool against realistic examples
and not only toy ones.

References

1. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24(3), 293–318 (1992)

2. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Efficient symbolic state-space construc-
tion for asynchronous systems. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000.
LNCS, vol. 1825, pp. 103–122. Springer, Heidelberg (2000)

3. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic
model checker. International Journal on Software Tools for Technology Trans-
fer 2(4), 410–425 (2000)

4. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
Formal Methods in System Design 10(1), 47–71 (1997)

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

6. Clarke, E.M., McMillan, K.L., Campos, S.V.A., Hartonas-Garmhausen, V.: Sym-
bolic model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS,
vol. 1102, pp. 419–427. Springer, Heidelberg (1996)

7. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence.
In: Proceedings of the international workshop on Automatic verification methods
for finite state systems, pp. 11–23. Springer, New York (1990)

306 K. Klai and D. Poitrenaud

8. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Woodcock,
J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 253–271.
Springer, Heidelberg (1999)

9. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library us-
ing transition-based generalized Büchi automata. In: Proceedings of the 12th
IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS 2004), Volendam, The
Netherlands, pp. 76–83. IEEE Computer Society Press, Los Alamitos (2004)

10. Geldenhuys, J., Valmari, A.: Techniques for smaller intermediary BDDs. In: Larsen,
K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 233–247. Springer,
Heidelberg (2001)

11. Goltz, U., Kuiper, R., Penczek, W.: Propositional temporal logics and equivalences.
In: CONCUR, pp. 222–236 (1992)

12. Haddad, S., Ilié, J.-M., Klai, K.: Design and evaluation of a symbolic and
abstraction-based model checker. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299,
pp. 196–210. Springer, Heidelberg (2004)

13. Henzinger, T.A., Kupferman, O., Vardi, M.Y.: A space-efficient on-the-fly algo-
rithm for real-time model checking. In: Sassone, V., Montanari, U. (eds.) CONCUR
1996. LNCS, vol. 1119, pp. 514–529. Springer, Heidelberg (1996)

14. Kaivola, R., Valmari, A.: The weakest compositional semantic equivalence preserv-
ing nexttime-less linear temporal logic. In: Cleaveland, W.R. (ed.) CONCUR 1992.
LNCS, vol. 630, pp. 207–221. Springer, Heidelberg (1992)

15. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Springer, New York (1992)

16. Pastor, E., Roig, O., Cortadella, J., Badia, R.: Petri net analysis using boolean
manipulation. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 416–435.
Springer, Heidelberg (1994)

17. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
Upper Saddle River, NJ, USA (1981)

18. Puhakka, A., Valmari, A.: Weakest-congruence results for livelock-preserving equiv-
alences. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp.
510–524. Springer, Heidelberg (1999)

19. Rozier, K., Vardi, M.: LTL satisfiability checking. In: Bošnački, D., Edelkamp, S.
(eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)

20. Tao, Z.P., von Bochmann, G., Dssouli, R.: Verification and diagnosis of testing
equivalence and reduction relation. In: ICNP 1995: Proceedings of the 1995 Inter-
national Conference on Network Protocols, Washington, DC, USA, p. 14. IEEE
Computer Society, Los Alamitos (1995)

Symbolic State Space of Stopwatch Petri Nets

with Discrete-Time Semantics (Theory Paper)

Morgan Magnin, Didier Lime, and Olivier (H.) Roux

IRCCyN, CNRS UMR 6597, Nantes, France
{Morgan.Magnin,Didier Lime,Olivier-h.Roux}@irccyn.ec-nantes.fr

Abstract. In this paper, we address the class of bounded Petri nets
with stopwatches (SwPNs), which is an extension of T-time Petri nets
(TPNs) where time is associated with transitions. Contrary to TPNs,
SwPNs encompass the notion of actions that can be reset, stopped and
started. Models can be defined either with discrete-time or dense-time
semantics. Unlike dense-time, discrete-time leads to combinatorial explo-
sion (state space is computed by an exhaustive enumeration of states).
We can however take advantage from discrete-time, especially when it
comes to SwPNs: state and marking reachability problems, undecidable
even for bounded nets, become decidable once discrete-time is consid-
ered. Thus, to mitigate the issue of combinatorial explosion, we now aim
to extend the well-known symbolic handling of time (using convex poly-
hedra) to the discrete-time setting. This is basically done by computing
the state space of discrete-time nets as the discretization of the state
space of the corresponding dense-time model. First, we prove that this
technique is correct for TPNs but not for SwPNs in general: in fact, for
the latter, it may add behaviors that do not really belong to the evo-
lution of the discrete-time net. To overcome this problem, we propose
a splitting of the general polyhedron that encompasses the temporal in-
formation of the net into an union of simpler polyhedra which are safe
with respect to the symbolic successor computation. We then give an
algorithm that computes symbolically the state space of discrete-time
SwPNs and finally exhibit a way to perform TCTL model-checking on
this model.

Keywords: Verification using nets, Time Petri nets, symbolic state
space, stopwatches, dense-time, discrete-time.

Introduction

The ever-growing development of embedded informatics requires efficient meth-
ods for the verification a priori of real-time systems. That is why researches
on formalisms that allow engineers to write and check the interactions between
CPUs and the communication networks appear as a hot topic. Time Petri Nets
[1] are one of such formalisms. They model the temporal specifications of differ-
ent actions under the form of time intervals. They can be enriched to represent
tasks that may be suspended then resumed.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 307–326, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

308 M. Magnin, D. Lime, and O.(H.) Roux

When modeling a system, either dense-time or discrete-time semantics may
be considered. In the first one, time is considered as a dense quantity (i.e. the
state of the system can change at any moment) and, in the second one, as a dis-
crete variable (time progress is ensured by clock ticks and the global system may
evolve only at these peculiar time steps). The physical systems (the processes)
follow a dense-time evolution. The observation of the process is however usually
performed through an IT command system which pilots it only at some pecu-
liar instants (digitalization or periodic observations). In addition, the command
system is composed of tasks that are executed on one (or many) processor(s) for
which physical time is discrete. Dense-time is thus an over-approximation of the
real system. The major advantage of dense-time lies in the symbolic abstractions
it offers: they are easy to put into application and they avoid the combinato-
rial explosion of states. In this paper, we aim to propose a symbolic method to
compute the state space of discrete-time Time Petri Nets (with stopwatches) by
adapting the techniques usually dedicated to dense-time.

Time Petri Nets with Stopwatches

The two main time extensions of Petri nets are Time Petri nets [1] and Timed
Petri nets [2]. In this paper, we focus on Time Petri nets (TPNs) in which
transitions can be fired within a time interval.

In order to take into account the global complexity of systems, models now
encompass the notion of actions that can be suspended and resumed. This implies
extending traditional clock variables by ”stopwatches”. Several extensions of
TPNs that address the modeling of stopwatches have been proposed: Scheduling-
TPNs [3] , Preemptive-TPNs [4] (these two models add resources and priorities
attributes to the TPN formalism) and Inhibitor Hyperarc TPNs (ITPNs) [5].
ITPNs introduce special inhibitor arcs that control the progress of transitions.
These three models belong to the class of TPNs extended with stopwatches
(SwPNs) [6]. They have been studied in dense-time semantics.

In [6], state reachability for SwPNs has been proven undecidable, even when
the net is bounded. As long as dense-time semantics is considered, the state space
is generally infinite. Instead of enumerating each reachable state, verification al-
gorithms compute finite abstractions of the state space, e.g. state class graph,
that preserve the properties to be verified. But, as a consequence of the undecid-
ability of the reachability problem, the finiteness of the state class graph cannot
be guaranteed. In order to ensure termination on a subclass of bounded SwPNs,
Berthomieu et al. propose an overapproximation method based on a quantiza-
tion of the polyhedra representing temporal information [6]. Nevertheless the
methods are quite costly in terms of computation time.

Relations between Discrete-Time and Dense-Time Semantics

In [7], Henzinger et al. compared the respective merits of dense-time and discrete-
time approaches. They discussed the correctness of major model-checking prob-
lems according to the considered semantics. In other words, given a specification

Symbolic State Space of Stopwatch Petri Nets 309

Φ (that may be expressed correctly in both dense-time and discrete-time), what
can be concluded for a system such that the discrete-time model satisfies Φ: does
this mean Φ is also satisfied when dense-time semantics is considered? In this
paper, we draw new links between dense-time and discrete-time semantics for
models encompassing the notion of stopwatches.

In the case of SwPNs, the undecidability of major model-checking problems
results from dense-time. The use of discrete-time instead (transitions are then no
longer fired at any time but at integer dates) change these results, as we proved
in [8]. In this paper, we established the following results:

– The state reachability problem - undecidable with dense-time semantics - is
decidable when discrete-time is considered;

– The state space of discrete-time bounded SwPNs can be computed directly
by using existing tools for classical Petri nets.

In the case of TPNs (without stopwatches), main works related to discrete-
time are due to Popova. Her method consists in analyzing the behavior only
at its so-called ”integer-states” (i.e. states where the current local time for all
enabled transitions are integers), which is sufficient to know the whole behavior
of the net [9]. She defines a state as the conjunction of a marking and a time
vector of the current local time for each of the enabled transitions and a special
symbol for disabled transitions. Then she builds a reachability graph that is only
based on the so-called ”integer states”. These are the states where the current
local time of all enabled transitions are integers. She proves that the knowledge
of the net behavior in these integer states is sufficient to determine the entire
behavior of the net. This result, firstly proven for TPNs with finite latest firing
times, has been later extended to nets with infinite latest firing times [10].

Following this work, Popova et al. presented, in [11], a parametric description
of a firing sequence of a TPN that is based on the notion of integer states.

In the specific context of a comparison between dense and discrete-time,
Popova’s results establish the following assertion: a discrete-time analysis is suf-
ficient to study a dense-time TPN. In this section, we propose the opposite result
(for the state class graph, but our proof can easily be extended to zone graph),
that is: the state space of a discrete-time TPN can be directly computed by
discretizing its dense-time state space. In fact, this result does not only apply to
TPNs.

In both cases, discrete-time based approaches suffer from a combinatorial
explosion of the state space size. As efficient as the implementation (see [12]
for data-structures dedicated to Petri nets and inspired by the Binary Decision
Diagrams (BDDs)) could be, it reaches its limits as soon as there are transitions
with a large time interval (e.g. [1, 10000]) in the model.

That is why we propose here to work out a method that would allow to
compute symbolically the state space of discrete-time TPNs with stopwatches.
The most natural idea consists in extending the method applied in dense-time to
discrete-time, that means: compute the whole state space by the means of state
classes that bring together all the equivalent discrete-time behaviors (the notion
of equivalence will be precisely defined in section 3). Our approach consists

310 M. Magnin, D. Lime, and O.(H.) Roux

in computing the dense-time state-space as long as it is significant and then
discretize it to get the discrete-time behavior.

State Space Computation of Dense-Time TPNs

For bounded dense-time TPNs, the state reachability problem is decidable. Al-
though the state space of the model is infinite (as the clocks associated to tran-
sitions take their values in R), it can be represented by a finite partition under
the form of a state class graph [13] or a region graph [14]. The state class graph
computes the whole set of reachable markings of a bounded TPN ; the resulting
graph preserves the untimed language of the net (i.e. properties of linear tem-
poral logics). However, it does not preserve branching temporal properties ; for
this class of properties, we have to consider refinements of the state class graph,
e.g. atomic state classes [15]. The zone graph can be used to check quantitative
properties based on a subset of TPN-TCTL [16]. At the moment, only the first
method has however been extended to TPNs with stopwatches [6]. Thus this is
the approach we consider in this paper.

Our Contribution

In this paper, we address the general class of bounded Petri nets with stopwatches
(SwPNs) with strict or weak temporal constraints and a single-server dense-
time or discrete-time semantics. Our goal is to prove that, in certain cases, it is
possible to compute the state space and the untimed language of a discrete-time
net by simply discretizing the state space of the associated dense-time net. We
exhibit an example showing however that, in the general case, this approach
can lead to a false analysis. We conclude by giving a method that allies the
efficiency of dense-time symbolic approaches with the specificities of discrete-
time enumerative methods in order to compute a finite partition of the state
space of TPNs with stopwatches. For the sake of simplicity, our results (based
on mathematical considerations common to all TPNs extended with stopwatches
models) are explained on a model whose high-level functions make them very
convenient to understand: ITPNs.

Outline of the paper

Our aim is to compute efficiently the state space of a bounded discrete-time
SwPN in order to verify quantitative timing properties. The paper is organized
as follows: section 2 introduces TPNs with stopwatches (by the means of ITPNs)
and the related semi-algorithm that computes their state space. In section 3, we
show that, for classical TPNs, the discretization of the dense-time state space is
sufficient to get the discrete-time state space. Section 4 extends the result to some
subclasses of SwPNs but shows it is not valid for the general class of SwPNs. We
exhibit a SwPN such that the discrete-time behaviors do not encompass all the
dense-time behaviors in terms of untimed language and marking reachability.

Symbolic State Space of Stopwatch Petri Nets 311

In section 5, we propose a method, for computing the state space of SwPNs:
this method combines the advantages of symbolic computations with dense-time
specificities.

1 Time Petri Nets with Inhibitor Arcs

1.1 Notations

The sets IN, Q
+ and R

+ are respectively the sets of natural, non-negative rational
and non-negative real numbers. An interval I of R

+ is a N-interval iff its left
endpoint belongs to N and its right endpoint belongs to N ∪ {∞}. We set I↓ =
{x|x ≤ y for some y ∈ I}, the downward closure of I and I↑ = {x|x ≥ y for
some y ∈ I}, the upward closure of I. We denote by I(N) the set of N-intervals
of R

+.

1.2 Formal Definitions and Semantics of Time Petri Nets with
Inhibitor Arcs

Definition 1. A Time Petri net with Inhibitor Arcs (ITPN) is a n-tuple N =
(P, T,•(.), (.)•, ◦(.), M0, I), where

– P = {p1, p2, . . . , pm} is a non-empty finite set of places,
– T = {t1, t2, . . . , tn} is a non-empty finite set of transitions,
– •(.) ∈ (INP)T is the backward incidence function,
– (.)• ∈ (INP)T is the forward incidence function,
– ◦(.) ∈ (INP)T is the inhibition function,
– M0 ∈ INP is the initial marking of the net,
– Is ∈ (I(N))T is the function that associates a firing interval to each transi-

tion.

In [5], the authors extend inhibitor arcs with the notion of hyperarc. Inhibitor
hyperarcs make it easier to model systems with priority relations between transi-
tions, but they do not increase the theoretical expressivity of the model compared
to inhibitor arcs. That is why we can equivalently work on Time Petri Nets with
inhibitor arcs or inhibitor hyperarcs. For the sake of simplicity, we focus on nets
with inhibitor arcs (ITPNs) in this paper.

A marking M of the net is an element of N
P such that ∀p ∈ P, M(p) is the

number of tokens in the place p.
A transition t is said to be enabled by the marking M if M ≥• t, (i.e. if the

number of tokens in M in each input place of t is greater or equal to the value on
the arc between this place and the transition). We denote it by t ∈ enabled(M).

A transition t is said to be inhibited by the marking M if the place connected
to one of its inhibitor arc is marked with at least as many tokens than the weight
of the considered inhibitor arc between this place and t: 0 < ◦t ≤M . We denote
it by t ∈ inhibited(M). Practically, inhibitor arcs are used to stop the elapsing
of time for some transitions: an inhibitor arc between a place p and a transition t

312 M. Magnin, D. Lime, and O.(H.) Roux

means that the stopwatch associated to t is stopped as long as place p is marked
with enough tokens.

A transition t is said to be active in the marking M if it is enabled and not
inhibited by M .

A transition t is said to be firable when it has been enabled and not inhibited
for at least I(t)↓ time units.

A transition tk is said to be newly enabled by the firing of the transition ti
from the marking M , and we denote it by ↑ enabled(tk, M, ti), if the transition
is enabled by the new marking M −• ti + t•i but was not by M −• ti, where M
is the marking of the net before the firing of ti. Formally:

↑ enabled(tk, M, ti) = (•tk ≤M −• ti + t•i)
∧((tk = ti) ∨ (•tk > M −• ti))

By extension, we will denote by ↑ enabled(M, ti) the set of transitions newly
enabled by firing the transition ti from the marking M .

Let T be a generic time domain: it may be IN, Q+ or IR+.

Definition 2. A state of a TPN is a pair q = (M, I) in which M is a marking
and I is a function called the interval function. Function I ∈ (I(N))T associates
a temporal interval with every transition enabled at M .

We define the semantics of an ITPN as a time transition system. In this model,
two kinds of transitions may occur: time transitions when time passes and dis-
crete transitions when a transition of the net is fired.

Definition 3 (Semantics of an ITPN). Given a time domain T, the seman-
tics of a Time Petri Net with Inhibitor Arcs N is defined as a Timed Transition
System ST

N = (Q, q0,→) such that:

– Q = N
P × T

T ;
– q0 = (M0, Is)
– →∈ Q × (T ∪ T) × Q is the transition relation including a time transition

relation and a discrete transition relation. The time transition relation is
defined ∀d ∈ T by:

(M, I) d−→ (M, I ′) iff ∀ti ∈ T,⎧
⎪⎪⎨

⎪⎪⎩

I ′(ti) =

⎧
⎨

⎩

I(ti) if ti ∈ enabled(M)
and ti ∈ inhibited(M)

I ′(ti)↑ =max(0, I(ti)↑ − d), and I ′(ti)↓=I(ti)↓ − d otherwise,
M ≥• ti ⇒ I ′(ti)↓ ≥ 0

The discrete transition relation is defined ∀ti ∈ T by:

(M, I) ti−→ (M ′, I ′) iff ,⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ti ∈ enabled(M) and ti ∈ inhibited(M),
M ′ = M −• ti + t•i ,
I(ti) = 0,

∀tk ∈ T, I ′(tk) =
{

Is(tk) if ↑ enabled(tk, M, ti)
I(tk) otherwise

Symbolic State Space of Stopwatch Petri Nets 313

In the dense-time approach, time is considered as a continuous variable whose
evolution goes at rate 1. The dense-time semantics of the net N is thus Sdense

N =
SIR+

N .
By contrast, in the discrete-time approach, time is seen as ”jumping” from one

integer to the other, with no care of what may happen in between. The latter
is an under-approximation of the former. The discrete-time semantics of N is
Sdiscrete
N = SIN

N .
Note that Sdiscrete

N can be straightforwardly reduced to a simple transition
system. As long as discrete-time semantics is considered, any open interval with
integer bounds may be turned into a closed interval. That is why, in the following,
we only consider closed intervals (that may however be open on ∞).

Note also that for transitions which are not enabled, the time transition re-
lation of the semantics lets the firing intervals evolve. They could as well have
been stopped.

A run ρ of length n ≥ 0 in a TTS is a finite or infinite sequence of alternating
time and discrete transitions of the form

ρ = q0
d0−−→ q′0

a0−−−→ q1
d1−−→ q′1

a1−−−→ · · · qn
dn−−−→ · · ·

We write first(ρ) the first state of a run ρ. A run is initial if first(ρ) = q0. A run ρ
of N is an initial run of ST

N . The timed language accepted by N with dense-time
semantics (respectively with discrete-time semantics) is Ldense(N) = L(Sdense

N)
(resp. Ldiscrete(N) = L(Sdiscrete

N)).
In the following, we denote by Qdense (resp. Qdiscrete) the set of reachable

states of Sdense
N (resp. Sdiscrete

N).
To every TPN (possibly extended with stopwatches) structure N , we can as-

sociate either a dense-time or a discrete-time semantics. We then obtain two
different models. In the following, we say that two TPNs are associated if, what-
ever the choice on their semantics has been, they share the same underlying
structure N .

Definition 4. Given an integer n ∈ IN and a set D ⊆ R
n. We define the

discretization operator of domain D by: Disc(D) = D ∩ N
n

Definition 5. Given an integer n ∈ IN and a set D ∈ R
n. A point θ =

(θ1, θ2, . . . , θn) ∈ D is an integer point of D if all its coordinates are integers,
i.e. ∀i, θi ∈ IN.

In this paper, we restrict ourselves to the class of bounded TPNs and ITPNs.
This does not imply that the underlying net is bounded! The converse assertion
is however true: the boundedness of the underlying PN ensures the boundedness
of a TPN (or ITPN).

1.3 State Space Computation of Dense-Time Models

In order to analyze a Time Petri Net, the computation of its reachable state
space is required. However, the reachable state space of a TPN is obviously
infinite.

314 M. Magnin, D. Lime, and O.(H.) Roux

For models expressed with dense-time semantics, one of the approaches to
partition the state space in a finite set of infinite state classes is the state class
graph proposed by Berthomieu and Diaz [13]. It has been extended for TPNs
with stopwatches [17].

A state class contains all the states of the net between the firing of two suc-
cessive transitions.

Definition 6. A state class C of a dense-time ITPN is a pair (M, D) where M
is a marking of the net and D a (convex) polyhedron with m constraints (m ∈ IN)
involving up to n variables, with n being the number of transitions enabled by
the marking of the class:

AΘ ≤ B

with A and B being rational matrices of respective dimensions (m, n) and (m, 1)
and Θ = (θ1, θ2, . . . , θn) being a vector of dimension n (θi represents the firing
time associated to transition ti). D constrains the firing times θi of transitions.

In the case of TPNs, the firing domain is simpler than a general polyhedron:
the authors of [18,19] have proved it can be encoded into the efficient Difference
Bound Matrix (DBM) datastructure).

We extend the definition of the discretization operator of a point in IRn to
state classes by the following definition:

Definition 7. Let C = (M, D) be a state class of a TPN (with or without
inhibitor arcs). We define the discretization operator of the state class C by :
Disc(C) = (M,Disc(D))

In the case of ITPNs, the only firable transitions are the active ones. So we need
to define properly the firability of a transition from a class:

Definition 8 (Firability). Let C = (M, D) be a state class of a ITPN. A
transition ti is said to be firable from C iff there exists a set (θ∗0 , . . . , θ∗n−1) of
D, such that ∀j ∈ {0, . . . , n− 1} − {i}, s.t. tj is active , θ∗i ≤ θ∗j .

Now, given a class C = (M, D) and a firable transition tf , the class C′ = (M ′, D′)
obtained from C by the firing of tf is given by

– M ′ = M −• tf + t•f
– D′ is computed along the following steps, and noted next(D, tf)

1. intersection with the firability constraints : ∀j s.t. tj is active, θf ≤ θj

2. variable substitutions for all enabled transitions that are active tj : θj =
θf + θ′j ,

3. elimination (using for instance the Fourier-Motzkin method) of all vari-
ables relative to transitions disabled by the firing of tf ,

4. addition of inequations relative to newly enabled transitions

∀tk ∈↑ enabled(M, tf), I(tk)↓ ≤ θ′k ≤ I(tk)↑

Symbolic State Space of Stopwatch Petri Nets 315

The variable substitutions correspond to a shift of time origin for active tran-
sitions: the new time origin is the firing time of tf . tf is supposed to be firable
so the polyhedron constrained by the inequalities θf ≤ θj is non empty.

The state class graph is generated by iteratively applying the function that
computes the successors of a state class. The computation starts from the initial
state class given by C0 = (M0, D0) with D0 = {θk ∈ Is(tk) | tk ∈ enabled (M0)}.
Definition 9 (Next). Let C = (M, D) be a state class of a ITPN, let Θ
be a point of D and tf be a transition firable from (M, {Θ}). The successor
(M ′, nextdense

tf
({Θ})) of (M, {Θ}) by firing tf is given by M ′ = M −• tf + t•f

and :

nextdense
tf

({Θ}) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀i ∈ [1..n][θ′1 . . . θ′n]�

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ′i ∈ Is(ti) if ↑ enabled(ti, M, tf)
θ′i = θi if ti ∈ enabled(M)
and ti ∈ inhibited(M)
and not ↑ enabled(ti, M, tf)

θ′i = θi − θf otherwise

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The nextdense
tf

operator straightforwardly extends to finite or infinite unions of
points.

1.4 State Space Computation of Discrete-Time Models

To our knowledge, the only existing methods for computing the state space of
discrete-time TPNs (with or without stopwatches) are based on an enumeration
of states. The computation does not necessarily finish (for example, if the net
contains a transition with a latest firing time equal to infinity). It suffers from
the combinatorial explosion of the state space size. A way to mitigate this issue
consists in working with data-structured inspired from the well-known Binary
Decision Diagrams (BDDs) [12]. This approach however reveals its limits when
large timing constraints are implicated in the model.

In this paper, we propose a new way to deal with combinatorial explosions.
It consists in extending the symbolic methods usually applied to dense-time to
discrete-time. We thus define the notion of state classes in the specific context
of discrete-time.

The underlying idea is the same as in dense-time: a state class contains all
the states of the net between the firing of two successive transitions.

Definition 10. A state class C of a discrete-time ITPN is a pair (M, D) where
M is a marking of the net and D a set (potentially empty) of points of INn, with
n being the number of transitions enabled by the marking of the class.

The definition of firability remains the same is the discrete case.
Now, given a class C = (M, D) and a firable transition tf , the successor class

C′ = (M ′, D′) obtained from C by the firing of tf is denoted by C′ = (M ′, D′) =
(M ′, nextdiscrete

tf
(D)) where nextdiscrete

tf
is defined for all integer points Θ by

nextdiscrete
tf

({Θ}) = Disc(nextdense
tf

({Θ}))

316 M. Magnin, D. Lime, and O.(H.) Roux

Note that the operator Disc is necessary here because of the interval of the newly
enabled transitions.

The purpose of this paper is to extend symbolic methods of dense-time to
discrete-time according to the following approach:

– Describe the set of points of a temporal domain D not by an enumeration,
but by a convex polyhedron Poly such that D = Disc(Poly)

– Compute Csymb′ = (M ′, Poly′), successor of Csymb = (M, Poly) by the
firing of tf (denoted (M,nextdense

tf
(D))) by the classical symbolic method

and then link the symbolic classes Csymb, Csymb′ , . . . to the state space of
N considered with its discrete-time semantics Sdiscrete

N

2 Relations between Dense-Time and Discrete-Time for
Time Petri Nets with Stopwatches

2.1 Relations between Dense-Time and Discrete-Time Semantics in
the Specific Case of Time Petri Nets

Theorem 1. Let N be a TPN. Let C be one of the state classes of its dense-
time semantics Sdense

N C = (M, DBM). Let tf be a firable transition from C.
Then nextdiscrete

tf
(Disc(DBM)) = Disc(nextdense

tf
(DBM))

Let us omit the proof of this theorem, since it actually is a special case of
theorem 3, which will be proved in the next paragraph.

Theorem 1 leads to the following major and immediate corollary:

Corollary 1. For all TPN N , let Sdense
N = (Qdense, q0,→dense) (resp. Sdiscrete

N
= (Qdiscrete, q0,→discrete)) be its dense-time (resp. discrete-time) semantics.
Then, Qdiscrete = Disc(Qdense).

2.2 Differences between Dense-Time and Discrete-Time Semantics
in Terms of Marking Reachability and Untimed Language

We prove here that, in the general case of ITPNs, the state space of a discrete-
time ITPN and the discretization of the state space of the associated dense-time
net are not equal.

Theorem 2. There exists a ITPN N , with Sdense
N = (Qdense, q0,→dense) (resp.

Sdiscrete
N = (Qdiscrete, q0,→discrete)) being its dense-time (resp. discrete-time)

semantics such that Qdiscrete
� Disc(Qdense).

Proof. Let us now exhibit an ITPN that proves this theorem. Consider the net
N = (P, T,•(.), (.)•, ◦(.), M0, I) in figure 1.

Let us analyze its behavior. The state space of the dense-time semantics (lead-
ing to 31 different state classes) and of the discrete-time semantics can be com-
puted.

Symbolic State Space of Stopwatch Petri Nets 317

In dense-time semantics, the following run is valid:

{p1, p8}
θ(guess) = 0
θ(r) = 0

0.5−→
{p1, p8}
θ(guess) = 0.5
θ(r) = 0.5

guess−→
{p2, p5, p8}
θ(c) = 0
θ(s) = 0
θ(r) = 0.5

3.5−→
{p2, p5, p8}
θ(c) = 3.5
θ(s) = 3.5
θ(r) = 4

r−→

{p2, p5, p7, p9}
θ(c) = 3.5
θ(s) = 3.5
θ(t) = 0

0.5−→
{p2, p5, p7, p9}
θ(c) = 3.5
θ(s) = 4
θ(t) = 0.5

s−→
{p2, p6, p7, p9}
θ(c) = 3.5
θ(t) = 0.5
θ(flush) = 0

flush−→
{p2, p9}
θ(c) = 3.5
θ(t) = 0.5

0.5−→

{p2, p9}
θ(c) = 4
θ(t) = 1

c−→
{p3, p9}
θ(u) = 0
θ(t) = 1

3−→
{p3, p9}
θ(u) = 3
θ(t) = 4

t−→
{p3, p10}
θ(u) = 3
θ(test) = 0

1−→
{p3, p10}
θ(u) = 4
θ(test) = 1

u−→

{p4, p10}
θ(test) = 1
θ(too early) = 0

test−→
{p4, p11}
θ(too early) = 0
θ(too late) = 0
θ(in time) = 0

in time−→ {pgoal}

We aim to prove that, contrary to the dense-time behavior, the analysis of
the discrete-time net never leads to the firing of in time. To achieve this goal,
we just have to enumerate all the possible runs of the discrete-time net. This is
quite easy:

– When guess is fired at 0, all the resulting runs end by the firing of too early;
– A contrario, when guess is fired at 1, all the resulting runs end by the firing

of too late.

The specificity of the net we propose lies in the inhibitor arc that stops the
stopwatch associated to transition c as long as transition flush (thus s, as flush
fires in 0 time) does not fire. This inhibition causes the temporal shift between the
upper part of the net and the bottom one (they both have a similar structure):
if guess fires at 0, then we can say that the upper part is in advance compared
to the bottom one. On the contrary, when guess fires at 1, the upper part is
delayed. The only way to ensure that the two parts evolve in phase is that guess
fires at 0.5 : the structure of the net then guarantees a parallel and synchronous
evolution of the two branches so that p4 and p11 are marked simultaneously, thus
allowing the firing of in time.

2.3 A Sufficient Condition on ITPNs Such That the Discretization
of the State Space of the Dense-Time Net and the State Space
of the Discrete-Time Associated Net Coincide

For θ ∈ IR+, we denote by frac(θ) the fractional part of θ. Let Θ = [θ1 · · · θn]�

be a point of (IR+)n, we denote by �Θ� the point [�θ1� · · · �θn�]� and �Θ� the
point [�θ1� · · · �θn�]�.

318 M. Magnin, D. Lime, and O.(H.) Roux

guess
[0,1]

c
[4,4]

u
[4,4]

too_early
[0,0]

too_late
[0,0]

test
[1,1]

t
[4,4]

r
[4,4]

flush
[0,0]

s
[4,4]

in_time
[0,0]

P1 P2 P3

P4

P5

P6

P7

Pgoal

P8 P9 P10

P11

Fig. 1. ITPN showing the problems with regard to discrete-time TPNs with stop-
watches

Definition 11 (t-thickness). A class C = (M, D) of an ITPN N is said to be
t-thick if for all transitions tf that are firable from C, for all Θ = [θ1 . . . θn]� ∈
D s.t. for all active transitions ti, frac(θi) = frac(θf) and for all inactive
transitions tj, frac(θj) = 0,we have: either �Θ� ∈ D or �Θ� ∈ D.

Theorem 3. Let N be a ITPN. Let C = (M, D) be one of the state classes of
its dense-time semantics Sdense

N . Let tf be a firable transition from C. If (C, D)
is t-thick, then nextdiscrete

tf
(Disc(D)) = Disc(nextdense

tf
(D))

Proof. The inclusion nextdiscrete
tf

(Disc(D)) ⊆ Disc(nextdense
tf

(D)) is straightfor-
ward. We shall now prove the reverse inclusion.

Let C′ = (M ′, D′) be a state class of the TPN with stopwatches N . Let
C = (M, D) be its parent class by the firing of transition tf .

Let Θ = [θ1 . . . θm]� be a point of D such that some transition tf (f ≤ m) is
firable from Θ (i.e. ∀i ≤ m, st ti is active, θf ≤ θi).

To keep the notations simple, let us assume, without loss of generality, that
transitions t1, . . . , tm are enabled by M (corresponding to variables θ1 . . . θm in
D) and that the firing of tf disables transitions t1 . . . tp−1 and newly enables
transitions tm+1 . . . tn. We also suppose that transitions tp+1, . . . , tk with k ≤ n
are inhibited by M and transitions tk+1, . . . , tm are not.

Then,

nextdense
tf

({Θ})=

⎧
⎨

⎩
[θ′1 . . . θ′n−p+1]� =

∣
∣
∣
∣
∣
∣

∀i ∈ [1..k], θ′i = θp+i

∀i ∈ [k + 1..m− p], θ′i = θp+i − θf

∀i ∈ [m− p + 1..n− p + 1], θ′i ∈ I(ti)}

⎫
⎬

⎭

Let Θ′ be an integer point of D′: Θ′ ∈ Disc(nextdense
tf

({Θ})) for some Θ ∈ D.
Then, ∀i, θ′i ∈ IN, which implies frac(θf) = frac(θi), ∀i s.t. ti is active in C

Symbolic State Space of Stopwatch Petri Nets 319

(i ∈ [k + 1..m− p]), and frac(θi) = 0 otherwise. As a consequence, since (C, D)
is t-thick, either �Θ� or �Θ� is in D. Let us assume, as both cases are symmetric,
that �Θ� ∈ D.

Since tf is firable from Θ, we have ∀i ∈ [1..m], st ti is active, θf ≤ θi and then
θf + δ ≤ θi + δ for any δ, in particular for δ = 1 − frac(θf) = 1 − frac(θi). So
tf is firable from �Θ�.

We have then:

nextdense
tf

({�Θ�})=

⎧
⎨

⎩
[θ′1 . . . θ′n−p+1]� =

∣
∣
∣
∣
∣
∣

∀i ∈ [1..k], �θ′i� = �θp+i�
∀i ∈ [k + 1..m− p], θ′i = �θp+i� − �θf�
∀i ∈ [m− p + 1..n− p + 1], θ′i ∈ I(ti)}

⎫
⎬

⎭

For i ∈ [k + 1..m − p], frac(θf) = frac(θp+i). So we have �θp+i� − �θf� =
θp+i − θf .

For i ∈ [1..k], frac(θi) = 0. So we have �θi� = θi.
Finally, nextdense

tf
({�Θ�}) = nextdense

tf
({Θ}). As �Θ� is an integer point

of D, we have Disc(nextdense
tf

({�Θ�})) = nextdiscrete
tf

({�Θ�}). Therefore,
Disc(nextdense

tf
({Θ})) ∈ nextdiscrete

tf
(Disc(D)). ��

Theorem 4. Let C = (M, D) be a class of an ITPN such that D is a DBM. C
is t-thick.

Proof. All constraints in a DBM are either of the form θ ≤ d or of the form θ−
θ′ ≤ d, with d being an integer. Let C = (M, D) be a class of an ITPN such that
D is a DBM. Let tf be a transition firable from C. Let Θ = [θ1 . . . θn]� ∈ D s.t.
for all active transitions ti, frac(θi) = frac(θf) and for all inactive transitions
tj , frac(θj) = 0.

Due to the particular form of constraints in DBM, it is sufficient to consider
the two-dimensional projections of D for our reasoning. So, let us consider any
two-dimensional plane corresponding to variables θi and θj . An example of the
projection of a DBM on such a plane is given in Fig 2.

1. If both θi and θj correspond to inhibited transitions, then due to the above
constraints the projection of Θ must be an integer point.

2. If only θj corresponds to an inhibited transition, then the projection of Θ
must be on one of the verticals (Fig 2(b)).

3. If both variables correspond to active transitions, then the projection of Θ
must be on one of the diagonals (Fig 2(a)).

In the first case, the projection of �Θ� is the same as the projection of Θ so
it is inside the projection of the DBM. So let us consider the other two cases.

Suppose that some constraint θi − θj ≤ d intersects the segment formed by
the projections of Θ and �Θ�. In case 3, the constraint must be parallel to
the segment. Since the constraints are weak, this constraint is not excluding
the projection of �Θ�. In case 2, the intersections of all verticals with diagonal
constraints are obviously integer points, so again the constraint cannot exclude
�Θ�.

The case of the constraint θi ≤ d is similar. ��

320 M. Magnin, D. Lime, and O.(H.) Roux

θi

θj

(a) (b)

Fig. 2. Projection on a plane of a DBM: (a) θi and θj both correspond to active
transitions (b) θj corresponds to an inhibited transition

An immediate corollary of theorems 3 and 4 is the following generalization of
theorem 1:

Corollary 2. Let N be a ITPN. Let C = (M, D) be one of the state classes
of its dense-time semantics Sdense

N such that D is a DBM. Let tf be a firable
transition from C. Then, nextdiscrete

tf
(Disc(D)) = Disc(nextdense

tf
(D))

In [20], we exhibited a proper TPN with stopwatches such that the firing domain
of all its dense-time state classes are simple DBMs. So the class of ITPNs for
which the discretization of the dense classes is exact is non-empty.

3 Symbolic Approach for the Computation of the
State Space of Discrete-Time Time Petri Nets with
Stopwatches

In order to build a symbolic method for state space computation in discrete-
time, we need to define the notion of symbolic state classes for discrete-time
TPNs (with stopwatches):

Definition 12. Let N = (P, T,•(.), (.)•, ◦(.), M0, I) be a TPN (with or without
inhibitor arcs), n ∈ IN and Csymb = (M, Poly) where M ∈ INP and Poly is
a convex polyhedron of IRn. C = (M, Poly) is a symbolic state class of the
discrete-time semantics Sdiscrete

N of the net if, for all ν ∈ Disc(Poly), (M, ν) is
a state of Sdiscrete

N .

We are going to symbolically compute the state space of discrete-time nets by
using these symbolic state classes. At the end of the computation process, we
get a set of symbolic state classes: the discretization of this set gives the state
space of the discrete-time net.

Symbolic State Space of Stopwatch Petri Nets 321

3.1 The Case of Discrete-Time TPNs

Let N be a TPN. We first compute the state space of N with its dense-time
semantics Sdense

N . The discretization of each class identified during the compu-
tation leads to the state space of Sdiscrete

N . This results from the theorems we
give in section 2.1.

3.2 The Case of Discrete-Time TPNs with Stopwatches

Let N be a ITPN. We aim to compute the state space of its discrete-time se-
mantics Sdiscrete

N . Let us consider (M0, D0) the initial state class of N with its
discrete-time semantics Sdiscrete

N . It is obviously a symbolic state class of Sdiscrete
N

that we denote Csymb
0 . We compute the successors of this class the same way we

would compute its successors for the associated dense-time model. We repeat the
process as long as the on-the-fly computed state space do not need general non-
DBM polyhedra to be described. As soon as a non-DBM polyhedron appears in
the firing domain Poly of a state class Cpoly = (Mpoly, Poly), then we decom-
pose it into a union of DBMs DBM split(Poly) =

⋃
Dsplit

i . In fact, in [20], we
identified a necessary and sufficient condition (this condition is quite long; so, in
the following, we denote it simply by condition 3.2 of [20]) that establishes the
cases when a non-DBM polyhedron appears in the state space computation for
a dense-time model. So we use this condition to know when we have to split the
polyhedron into a union of DBMs.

The splitting procedure DBM split(.) of a polyhedron into a union of DBMs
(with preservation of the property Disc(Poly) =

⋃Disc(Dsplit
i)) is not unique.

1

2
Notation

Poly

DBM split(Poly)

Fig. 3. Illustration of the effects of a splitting procedure. Poly represents the temporal
domain associated to a symbolic class of a discrete-time ITPN. DBM split(Poly)
corresponds to a potential decomposition of this polyhedron into a union of DBMs
such that Disc(Poly) = Disc(DBM split(Poly)).

322 M. Magnin, D. Lime, and O.(H.) Roux

A rather obvious (but really not efficient) algorithm consists in decomposing the
polyhedron Poly into the union of all its integer points Disc(Poly). A more sub-
tle approach consists in decomposing the polyhedron according to the variables
that are part of non-DBM constraints of the polyhedron. In figure 3, we illustrate
the issues related to DBM split(.): the problem is to split the polyhedron Poly
into a union of DBMs with preservation of discrete-time points. The solution
to this solution is not unique; the one we propose appears with dashed lines.
Many other solutions may be considered but this study is out of the scope of
this paper.

Passed = ∅
Waiting = {(M0, D0)}
While (Waiting �= ∅) do

(M,D) = pop(Waiting)
Passed = Passed ∪ (M, D)
For tf firable from (M, D) do

M ′ = M − •tf + t•f
If (condition 3.2 of [20] is not satisfied) then

D′ = nextdense(D, tf) [5]
If ((M ′, D′) /∈ passed) then

Waiting = Waiting ∪ {(M ′, D′)}
end If

else�
(D′

i)i∈[1,...,n] = DBM split(nextdense(D, tf) [5])
For i ∈ [1, . . . , n] do

If ((M ′, D′
i) /∈ Passed) then

Waiting = Waiting ∪ {(M ′, D′
i)}

end If
end For

end If

end For

done

Algorithm 1: Symbolic algorithm for the computation of the state space of
discrete-time TPNs with stopwatches

This method is summarized by the formal algorithm 1.

Theorem 5. For discrete-time ITPNs, the algorithm 1 is correct w.r.t. marking
and state reachability and language. The termination is ensured for discrete-time
bounded ITPNs.

To prove this algorithm, we first have to introduce a corollary of theorem 3.
In [20], we studied the conditions such that general polyhedra (that cannot

be written under the form of simple DBMs) appear in the state class graph of
dense-time TPNs with stopwatches. We then deduce the following corollary:

Symbolic State Space of Stopwatch Petri Nets 323

Corollary 3. Let N be a ITPN. We aim to determine the state space of the
discrete-time semantics Sdiscrete

N of the net by linking it to the on-the-fly com-
putation of the state space of Sdense

N . As long as no class of Sdense
N satisfies the

necessary and sufficient condition (condition 3.2) exhibited in [20], we have the
following properties:

– The discretization of the resulting state space of Sdense
N gives states that all

belong to the state space of Sdiscrete
N .

– Every untimed run of Sdense
N that is identified is included in the set of all

untimed runs of Sdiscrete
N .

Then we deduce the correctness of the algorithm:

Proof. The correctness of algorithm 1 follows from the previous theorems of
our paper, especially from theorem 3 and corollary 3. The convergence of the
algorithm is a consequence of the decidability of the reachability problem for
discrete-time bounded ITPNs.

Such an abstraction has many practical implications: it enables us to use al-
gorithms and tools based on DBMs developed for TPNs to check properties
on ITPNs with discrete time semantics. We use the tool Roméo [21] that has
been developed for the analysis of TPN (state space computation and ”on the
fly” model-checking of reachability properties and TCTL properties) . For in-
stance, it is possible to check real-time properties expressed in TCTL on bounded
discrete-time ITPNs by a very simple adaptation of this tool.

On the one hand, in [22], the authors consider TCTL model-checking on
TPNs. In fact, their algorithms apply on all Petri nets extended with time such
that the firing domains of all state classes are DBMs. On the other hand, algo-
rithm 1 states how to compute the state space of discrete-time ITPNs by using
only DBMs. The combination of the two procedures leads to an elegant way
to model-check TCTL formulae on discrete-time ITPNs. The implementation in
Roméo leads to quite nice results. To illustrate the merits of our work, we pro-
vide a benchmark that compares the efficiency, in terms of computation speed,
of the state space computation using the enumerative technique we introduced
in [8] with the symbolic algorithm we propose in this paper.

All examples depict bounded nets. These nets correspond to academical cases
relevant to the matter of our studies. When the intervals associated to tran-
sitions are small (example 2), the enumerative method is more efficient than
the symbolic algorithm. This is due to the power of BDDs based techniques
available on the enumerative approach. Nevertheless, when the net contains one
(or more) transitions with a wide range between earliest and latest firing times
(all examples, except the second one, contain a transition whose firing inter-
val is [0, 1000]), the enumerative method suffers from combinatorial explosion,
while our symbolic algorithm leads to good results. While the magnitude of tim-
ing delays affects the enumerative approach, the use of numerous inhibitor arcs
may decrease the efficiency of the symbolic algorithm and make it preferable
to perform enumerative algorithms. If a net contains various transitions that

324 M. Magnin, D. Lime, and O.(H.) Roux

Table 1. Comparison between symbolic algorithm (with Roméo) and enumerative
techniques (with Markg) to compute the state space of discrete-time nets (Pentium ;
2 GHz; 2GB RAM)

Net Symbolic algorithm - Roméo Enumerative algorithm - Markg
Time Memory Time Memory

Ex 1 0.12 s 1 320 KB 1.03 s 96 032 KB

Ex 2 34.42 s 1 320 KB 2.95 s 111 700 KB

Ex 3 45.12 s 20 012 KB NA NA

Ex 4 0.52 s 2 940 KB 1.07 s 95 796 KB

Ex 5 0.15 s 1 320 KB 1 148.18 s 139 800 KB

may be successively inhibited while other transitions are enabled and active, it
is necessary to often split polyhedra into unions of DBMs. This results in a loss
of efficiency of the symbolic method. Such cases become significant when the
number of simultaneously enabled transitions is greater than 10. Further work
encompasses tests on true case studies taken out from litterature about real-time
systems.

4 Conclusion

In this paper, we have considered an extension of T-time Petri nets with stop-
watches (SwPNs). In this model, stopwatches are associated with transitions: a
stopwatch can be reset, stopped and started by using inhibitor arcs. This allows
the memorisation of the progress status of an action that is stopped and re-
sumed. Our methods and results have been illustrated on Time Petri Nets with
Inhibitor arcs (ITPNs). They are however general enough to be applied on the
whole class of SwPNs.

We aimed to extend to discrete-time semantics the symbolic methods usually
applied for the computation of the state space of a dense-time TPN (with stop-
watches) and then perform TCTL model-checking. The approach we introduce
consists in linking the state space of a discrete-time net to the discretization of
the state space of the associated dense-time model. This method is correct for a
subclass of SwPNs (including TPNs), but not for the general class of SwPNs. We
thus propose a more general method for computing symbolically the state space
of discrete-time nets. It is based on the decomposition of the general polyhe-
dra that encompass the temporal information of the net into a union of simpler
polyhedra. The subtlety of the symbolic algorithm depends on the function that
splits the polyhedra into a union of DBMs: shall the polyhedron be split in a
minimum number of DBMs? Are some splitting procedure more efficient than
others for a long-term computation? What is the cost of such algorithms? These
questions are the basis of our current investigations.

Further work consist in investigating the efficiency of several algorithms that
split a general polyhedra in unions of DBMs.

Symbolic State Space of Stopwatch Petri Nets 325

References

1. Merlin, P.: A study of the recoverability of computing systems. PhD thesis, De-
partment of Information and Computer Science, University of California, Irvine,
CA (1974)

2. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA Project
MAC Report MAC-TR-120 (1974)

3. Roux, O., Déplanche, A.M.: A t-time Petri net extension for real time-task schedul-
ing modeling. European Journal of Automation (JESA) 36, 973–987 (2002)

4. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Time state space analysis of real-time
preemptive systems. IEEE transactions on software engineering 30, 97–111 (2004)

5. Roux, O.H., Lime, D.: Time Petri nets with inhibitor hyperarcs. Formal semantics
and state space computation. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 371–390. Springer, Heidelberg (2004)

6. Berthomieu, B., Lime, D., Roux, O.H., Vernadat, F.: Reachability problems and
abstract state spaces for time petri nets with stopwatches. Journal of Discrete
Event Dynamic Systems (DEDS) (to appear, 2007)

7. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Au-
tomata, Languages and Programming, pp. 545–558 (1992)

8. Magnin, M., Molinaro, P., Roux, O.H.: Decidability, expressivity and state-space
computation of stopwatch petri nets with discrete-time semantics. In: 8th Inter-
national Workshop on Discrete Event Systems (WODES 2006), Ann Arbor, USA
(2006)

9. Popova, L.: On time petri nets. Journal Inform. Process. Cybern, EIK (formerly:
Elektron. Inform. verarb. Kybern) 27, 227–244 (1991)

10. Popova-Zeugmann, L.: Essential states in time petri nets (1998)
11. Popova-Zeugmann, L., Schlatter, D.: Analyzing paths in time petri nets. Funda-

menta Informaticae 37, 311–327 (1999)
12. Molinaro, P., Delfieu, D., Roux, O.H.: Improving the calculus of the marking graph

of Petri net with bdd like structure. In: 2002 IEEE international conference on
systems, man and cybernetics (SMC 2002), Hammamet, Tunisia (2002)

13. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE transactions on software engineering 17, 259–273 (1991)

14. Gardey, G., Roux, O.H., Roux, O.F.: State space computation and analysis of time
Petri nets. Theory and Practice of Logic Programming (TPLP) (to appear, 2006);
Special Issue on Specification Analysis and Verification of Reactive Systems

15. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of
time petri nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 442–457. Springer, Heidelberg (2003)

16. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets.
Technical Report IRCCyN number RI2006-14 (2006)

17. Lime, D., Roux, O.: Expressiveness and analysis of scheduling extended time Petri
nets. In: 5th IFAC International Conference on Fieldbus Systems and their Appli-
cations (FET 2003), Aveiro, Portugal. Elsevier Science, Amsterdam (2003)

18. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. IFIP Congress Series 9, 41–46 (1983)

19. Dill, D.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

326 M. Magnin, D. Lime, and O.(H.) Roux

20. Magnin, M., Lime, D., Roux, O.: An efficient method for computing exact state
space of Petri nets with stopwatches. In: Third International Workshop on Software
Model-Checking (SoftMC 2005), Edinburgh, Scotland, UK. Electronic Notes in
Theoretical Computer Science, Elsevier, Amsterdam (2005)

21. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Roméo: A tool for analyzing time
Petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005)

22. Hadjidj, R., Boucheneb, H.: On-the-fly tctl model checking for time petri nets using
state class graphs. In: ACSD, pp. 111–122. IEEE Computer Society, Los Alamitos
(2006)

A Practical Approach to Verification of

Mobile Systems Using Net Unfoldings

Roland Meyer1, Victor Khomenko2, and Tim Strazny1

1 Department of Computing Science, University of Oldenburg
D-26129 Oldenburg, Germany

{Roland.Meyer, Tim.Strazny}@informatik.uni-oldenburg.de
2 School of Computing Science, University of Newcastle

Newcastle upon Tyne, NE1 7RU, U.K.
Victor.Khomenko@ncl.ac.uk

Abstract. In this paper we propose a technique for verification of mo-
bile systems. We translate finite control processes, which are a well-known
subset of π-Calculus, into Petri nets, which are subsequently used for
model checking. This translation always yields bounded Petri nets with
a small bound, and we develop a technique for computing a non-trivial
bound by static analysis. Moreover, we introduce the notion of safe pro-
cesses, which are a subset of finite control processes, for which our trans-
lation yields safe Petri nets, and show that every finite control process can
be translated into a safe one of at most quadratic size. This gives a pos-
sibility to translate every finite control process into a safe Petri net, for
which efficient unfolding-based verification is possible. Our experiments
show that this approach has a significant advantage over other existing
tools for verification of mobile systems in terms of memory consumption
and runtime.

Keywords: finite control processes, safe processes, π-Calculus, mobile
systems, model checking, Petri net unfoldings.

1 Introduction

Mobile systems permeate our lives and are becoming ever more important. Ad-
hoc networks, where devices like mobile phones, PDAs and laptops form dynamic
connections are common nowadays, and the vision of pervasive (ubiquitous) com-
puting, where several devices are simultaneously engaged in interaction with the
user and each other, forming dynamic links, is quickly becoming a reality. This
leads to the increasing dependency of people on the correct functionality of mo-
bile systems, and to the increasing cost incurred by design errors in such systems.
However, even the conventional concurrent systems are notoriously difficult to
design correctly because of the complexity of their behaviour, and mobile sys-
tems add another layer of complexity due to their dynamical nature. Hence for-
mal methods, especially computer-aided verification tools implementing model
checking (see, e.g., [CGP99]), have to be employed in the design process to ensure
correct behaviour.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 327–347, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

328 R. Meyer, V. Khomenko, and T. Strazny

The π-Calculus is a well-established formalism for modelling mobile systems
[Mil99, SW01]. It has an impressive modelling power, but, unfortunately, is dif-
ficult to verify. The full π-Calculus is Turing complete, and hence, in general,
intractable for automatic techniques. A common approach is to sacrifice a part
of the modelling power of π-Calculus in exchange for the possibility of fully au-
tomatic verification. Expressive fragments of π-Calculus have been proposed in
the literature. In particular finite control processes (FCPs) [Dam96] combine an
acceptably high modelling power with the possibility of automatic verification.

In this paper, we propose an efficient model checking technique for FCPs.
We translate general FCPs into their syntactic subclass, called safe processes. In
turn, safe processes admit an efficient translation into safe Petri nets — a well-
investigated model for concurrent systems, for which efficient model checking
techniques have been developed.

This approach has a number of advantages, in particular it does not depend on
a concrete model checking technique, and can adapt any model checker for safe
Petri nets. Moreover, Petri nets are a true concurrency formalism, and so one
can efficiently utilise partial-order techniques. This alleviates the main drawback
of model checking — the state explosion problem [Val98]; that is, even a small
system specification can (and often does) yield a huge state space.

Among partial-order techniques, a prominent one is McMillan’s (finite pre-
fixes of) Petri Net unfoldings (see, e.g., [ERV02, Kho03, McM92]). They rely on
the partial-order view of concurrent computation, and represent system states
implicitly, using an acyclic net, called a prefix. Many important properties of
Petri nets can be reformulated as properties of the prefix, and then efficiently
checked, e.g., by translating them to SAT. Our experiments show that this ap-
proach has a significant advantage over other existing tools for verification of
mobile systems in terms of memory consumption and runtime. The proofs of the
results and other technical details can be found in the technical report [MKS08].

2 Basic Notions

In this section, we recall the basic notions concerning π-Calculus and Petri nets.

The π-Calculus. We use a π-Calculus with parameterised recursion as pro-
posed in [SW01]. Let the set N df= {a, b, x, y . . .} of names contain the channels
(which are also the possible messages) that occur in communications. During a
process execution the prefixes π are successively consumed (removed) from the
process to communicate with other processes or to perform silent actions:

π ::= a〈b〉 � a(x) � τ.

The output action a〈b〉 sends the name b along channel a. The input action a(x)
receives a name that replaces x on a. The τ prefix stands for a silent action.

To denote recursive processes, we use process identifiers from the set PIDS df=
{H, K, L, . . .}. A process identifier is defined by an equation K(x̃) := P , where
x̃ is a short-hand notation for x1, . . . , xk. When the identifier is called, K�ã�, it
is replaced by the process obtained from P by replacing the names x̃ by ã. More

A Practical Approach to Verification of Mobile Systems 329

precisely, a substitution σ = {ã/x̃} is a function that maps the names in x̃ to
ã, and is the identity for all the names not in x̃. The application of substitution,
Pσ, is defined in the standard way [SW01]. A π-Calculus process is either a call
to an identifier, K�ã�, a choice process deciding between prefixes,

∑
i∈I πi.Pi,

a parallel composition of processes, P1 | P2, or the restriction of a name in a
process, νa.P :

P ::= K�ã� �
∑

i∈I πi.Pi � P1 | P2 � νa.P .

The set of all processes is denoted by P . We abbreviate empty sums (i.e., those
with I = ∅) by 0 and use M or N to denote arbitrary sums. We also use the
notation Πn

i=1Pi for iterated parallel composition. Processes that do not contain
the parallel composition operator are called sequential. We denote sequential
processes by PS , QS and the identifiers they use by KS . An identifier KS is de-
fined by KS(x̃) := PS where PS is a sequential process. W.l.o.g., we assume that
every process either is 0 or does not contain 0. To see that this is no restriction
consider the process a〈b〉.0. We transform it to a〈b〉.K�−� with K(−) := 0.

The input action a(b) and the restriction νc.P bind the names b and c, respec-
tively. The set of bound names in a process P is bn (P). A name which is not
bound is free, and the set of free names in P is fn (P). We permit α-conversion
of bound names. Therefore, w.l.o.g., we assume that a name is bound at most
once in a process and bn (P)∩ fn (P) = ∅. Moreover, if a substitution σ = {ã/x̃}
is applied to a process P , we assume bn (P) ∩ (ã ∪ x̃) = ∅.

We use the structural congruence relation in the definition of the behaviour
of a process term. It is the smallest congruence where α-conversion of bound
names is allowed, + and | are commutative and associative with 0 as the neutral
element, and the following laws for restriction hold:

νx.0 ≡ 0 νx.νy.P ≡ νy.νx.P νx.(P | Q) ≡ P | (νx.Q), if x /∈ fn (P).
The last rule is called scope extrusion. The behaviour of π-Calculus processes is
then determined by the reaction relation → ⊆ P ×P defined by:

(Par)
P → P ′

P | Q→ P ′ | Q (Tau) τ.P + M → P (Res)
P → P ′

νa.P → νa.P ′

(React) (x(y).P + M) | (x〈z〉.Q + N)→ P{z/y} | Q
(Const) K�ã� → P{ã/x̃}, if K(x̃) := P

(Struct)
P → P ′

Q→ Q′ , if P ≡ Q and P ′ ≡ Q′.

By Reach (P) we denote the set of all processes reachable from P by the reaction
relation. We use a client-server system to illustrate the behaviour of a π-Calculus
process. It will serve us as a running example throughout the paper.

Example 1. Consider the process C �url� | C �url� | S�url� modelling two clients
and a sequential server, with the corresponding process identifiers defined as

C (url) := νip.url〈ip〉.ip(s).s(x).C �url�
S (url) := url(y).νses .y〈ses〉.ses〈ses〉.S�url�.

330 R. Meyer, V. Khomenko, and T. Strazny

The server is located at some URL, S�url�. To contact it, a client sends its
ip address on the channel url , url〈ip〉. This ip address is different for every
client, therefore it is restricted. The server receives the IP address of the client
and stores it in the variable y, url(y). To establish a private connection with
the client, the server creates a temporary session, νses , which it passes to the
client, y〈ses〉. Note that by rule (React), y is replaced by ip during the system
execution. Thus, the client receives this session, ip(s). Client and server then
continue to interact, which is not modelled explicitly. At some point, the server
decides that the session should be ended. It sends the session object itself to
the client, ses〈ses〉, and becomes a server again, S�url�. The client receives the
message, s(x), and calls its recursive definition to be able to contact the server
once more, C �url�. The model can contain several clients (two in our case), but
the server is engaged with one client at a time. ♦
Our theory employs a standard form of process terms, the so-called restricted
form [Mey07]. It minimises the scopes of all restricted names νa not under
a prefix π. Then processes congruent with 0 are removed. For example, the
restricted form of P = νa.νd.(a〈b〉.Q | b〈c〉.R) is νa.a〈b〉.Q | b〈c〉.R, but the
restricted form of a〈b〉.P is a〈b〉.P itself. A fragment is a process of the form

F ::= K�ã� �
∑

i∈I �=∅ πi.Pi � νa.(F1 | . . . | Fn),

where Pi ∈ P and a ∈ fn (Fi) for all i. We denote fragments by F or G. A
process Pν is in the restricted form, if it is a parallel composition of fragments,
Pν = Πi∈IGi. The set of fragments in Pν is denoted by Frag (Pν) df= {Gi | i ∈ I}.
The set of all processes in restricted form is denoted by Pν .

For every process P , the function (−)ν computes a structurally congruent
process (P)ν in the restricted form [Mey07]. For a choice composition and a
call to a process identifier (−)ν is defined to be the identity, and (P | Q)ν

df=
(P)ν | (Q)ν . In the case of restriction, νa.P , we first compute the restricted
form of P , which is a parallel composition of fragments, (P)ν = Πi∈IFi. We
then restrict the scope of a to the fragments Fi where a is a free name (i.e.,
i ∈ Ia ⊆ I): (νa.P)ν

df= νa.(Πi∈IaFi) | Πi∈I\Ia
Fi.

Lemma 1. For every process P ∈ P it holds (P)ν ∈ Pν and P ≡ (P)ν . For
Pν ∈ Pν we have (Pν)ν = Pν .

If we restrict structural congruence to processes in restricted form, we get the
restricted equivalence relation ≡̂ . It is the smallest equivalence on processes
in restricted form that permits (1) associativity and commutativity of parallel
composition and (2) replacing fragments by structurally congruent ones, i.e.,
F | Pν ≡̂G | Pν if F ≡ G. It characterises structural congruence [Mey07]:

Lemma 2. P ≡ Q iff (P)ν ≡̂ (Q)ν .

Petri Nets. A net is a triple N
df= (P, T, W) such that P and T are disjoint

sets of respectively places and transitions, and W : (P × T) ∪ (T × P) → N
df=

{0, 1, 2, . . .} is a weight function. A marking of N is a multiset M of places,
i.e., M : P → N. The standard rules about drawing nets are adopted in this

A Practical Approach to Verification of Mobile Systems 331

paper, viz. places are represented as circles, transitions as boxes, the weight
function by arcs with numbers (the absence of an arc means that the corre-
sponding weight is 0, and an arc with no number means that the corresponding
weight is 1), and the marking is shown by placing tokens within circles. As usual,
•z df= {y | W (y, z) > 0} and z• df= {y | W (z, y) > 0} denote the pre- and postset
of z ∈ P ∪ T , and •Z df=

⋃
z∈Z

•z and Z• df=
⋃

z∈Z z•, for all Z ⊆ P ∪ T . In this
paper, the presets of transitions are restricted to be non-empty, •t = ∅ for every
t ∈ T . A net system is a pair Υ

df= (N, M0) comprising a finite net N and an
initial marking M0.

A transition t ∈ T is enabled at a marking M , denoted M [t〉, if M(p) ≥W (p, t)
for every p ∈ •t. Such a transition can be fired, leading to the marking M ′ with
M ′(p) df= M(p)−W (p, t) + W (t, p), for every p ∈ P . We denote this by M [t〉M ′

or M [〉M ′ if the identity of the transition is irrelevant. The set of reachable
markings of Υ is the smallest (w.r.t. ⊆) set [M0〉 containing M0 and such that
if M ∈ [M0〉 and M [〉M ′ then M ′ ∈ [M0〉.

A net system Υ is k-bounded if, for every reachable marking M and every
place p ∈ P , M(p) ≤ k, and safe if it is 1-bounded. Moreover, Υ is bounded if it
is k-bounded for some k ∈ N. One can show that the set [M0〉 is finite iff Υ is
bounded. W.l.o.g., we assume that for net systems known to be safe the range
of the weight function is {0, 1}.

3 A Petri Net Translation of the π-Calculus

We recall the translation of π-Calculus processes into Petri nets defined in
[Mey07]. The translation is based on the observation that processes are con-
nected by restricted names they share. Consider the fragment νa.(K�a� | L�a�).
As the scope of a cannot be shrunk using the scope extrusion rule, the restricted
name a ‘connects’ the processes K�a� and L�a�. The idea of the translation is
to have a separate place in the Petri net for each reachable ‘bunch’ of processes
connected by restricted names, i.e., the notion of fragments plays a crucial role
in the proposed translation. The algorithm takes a π-Calculus process P and
computes a Petri net PN [[P]] as follows:

– The places in the Petri net are all the fragments of every reachable process
(more precisely, the congruence classes of fragments w.r.t. ≡).

– The transitions consist of three disjoint subsets:
• Transitions t = ([F] , [Q]) model reactions inside a fragment F , where Q

is such that F → Q and [F] is a place (i.e., F is a reachable fragment).
These reactions are communications of processes within F , τ actions,
or calls to process identifiers, K�ã�. There is an arc weighted one from
place [F] to t.
• Transitions t = ([F | F] , [Q]) model reactions between two structurally

congruent reachable fragments along public channels, i.e., F | F → Q
and [F] is a place. There is an arc weighted two from [F] to t. If this
transition is fired, F contains a sequential process sending on a public

332 R. Meyer, V. Khomenko, and T. Strazny

channel and another one receiving on that channel, and there are two
copies (up to ≡) of F in the current process.
• Transitions t = ([F1 | F2] , [Q]) model reactions between reachable frag-

ments F1 ≡ F2 along public channels: F1 | F2 → Q and [F1] and [F2] are
places. There are two arcs each weighted one from [F1] and [F2] to t.

The postsets of each kind of transitions are the reachable fragments in the
restricted form of Q. If the fragment G occurs (up to ≡) k ∈ N times in
(Q)ν , then there is an arc weighted k from ([F] , [Q]) to [G]. For example,
from the transition (

[
τ.Π3

i=1K�a�
]
,
[
Π3

i=1K�a�
]
) there is an arc weighted

three to the place [K�a�].
– The initial marking of place [F] in PN [[P]] equals to the number of fragments

in the restricted form of P that are congruent with F .

Note that if it is known in advance that the resulting Petri net will be safe, then
no transition incident to an arc of weight more than one can fire, and so they can
be dropped by the translation (in particular, the second kind of transitions will
never appear). This fact can be used to optimise the translation of safe processes
defined in Section 5.

It turns out that a π-Calculus process and the corresponding Petri net ob-
tained by this translation have isomorphic transition systems [Mey07]. Hence,
one can verify properties specified for a process P using PN [[P]]. Returning to
our running example, this translation yields the Petri net in Figure 1(a) for the
process in Example 1.

Our translation is particularly suitable for verification because it represents
an expressive class of processes (viz. FCPs) with potentially unbounded creation
of restricted names as bounded Petri nets.

4 Boundedness of FCP Nets

For general π-Calculus processes, the translation presented in the previous sec-
tion may result in infinite Petri nets, and even when the result is finite, it can
be unbounded, which is bad for model checking. (Model checking of even sim-
plest properties of unbounded Petri nets is ExpSpace-hard.) To make verifica-
tion feasible in practice, we need bounded nets, preferably even safe ones (the
unfolding-based verification is especially efficient for safe nets), and so we have
to choose an expressive subclass of π-Calculus which admits efficient verification.

In this section, we investigate the translation of the well-known finite control
processes (FCPs), a syntactic subclass of the π-Calculus [Dam96]. FCPs are
parallel compositions of a finite number of sequential processes PS i, PFC =
νã.(PS1 | . . . | PSn), and so new threads are never created and the degree of
concurrency is bounded by n. The main result in this section states that the Petri
net PN [[PFC]] is bounded, and a non-trivial bound can be derived syntactically
from the structure of PFC . The intuitive idea is that k tokens on a place [F]
require at least k processes PS i in PFC = νã.(PS1 | . . . | PSn) that share some
process identifiers.

A Practical Approach to Verification of Mobile Systems 333

p1

p2

t1

t2

p3

p4

t3 p5 t4 p6 t5

p1 = [C �url�] p2 = [S�url�]
p3 =

�
νip.url〈ip〉.ip(s).s(x).C �url��

p4 = [url(y).νses.y〈ses〉.ses〈ses〉.S�url�]
p5 =

�
νip.(ip(s).s(x).C �url� | νses.ip〈ses〉.ses〈ses〉.S�url�)�

p6 = [νses .(ses(x).C �url� | ses〈ses〉.S�url�)]
(a)

p1

p2

p3

t1

t2

t3

p4

p5

p6

t4

t5

p7

p8

t6

t7

p9

p10

t8

t9

p1 =
�
C 1�url�� p2 =

�
S3�url�� p3 =

�
C 2�url��

p4 =
�
νip.url 〈ip〉.ip(s).s(x).C 1�url��

p5 =
�
url(y).νses.y〈ses〉.ses〈ses〉.S3�url��

p6 =
�
νip.url 〈ip〉.ip(s).s(x).C 2�url��

p7 =
�
νip.(ip(s).s(x).C 1�url� | νses .ip〈ses〉.ses〈ses〉.S3�url�)�

p8 =
�
νip.(ip(s).s(x).C 2�url� | νses .ip〈ses〉.ses〈ses〉.S3�url�)�

p9 =
�
νses .(ses(x).C 1�url� | ses〈ses〉.S3�url�)�

p10 =
�
νses .(ses(x).C 2�url� | ses〈ses〉.S3�url�)�

(b)

Fig. 1. The Petri nets corresponding to the FCP in Example 1 (a) and to the corre-
sponding safe process in Example 3 (b)

334 R. Meyer, V. Khomenko, and T. Strazny

To make the notion of sharing process identifiers precise we define orbits. The
orbit of a sequential process PS i consists of the identifiers PS i calls (directly or
indirectly). With this idea, we rephrase our result: if there are at most k orbits
in PFC whose intersection is non-empty then the net PN [[PFC]] is k-bounded.

Generally, the result states that the bound of PN [[PFC]] is small. If PFC =
νã.(PS1 | . . . | PSn) then PN [[PFC]] is trivially n-bounded, as the total number
of orbits is n. Often, our method yields bounds which are better than n. This
should be viewed in the light of the fact that for general bounded Petri nets the
bound is double-exponential in the size of the net [Esp98]. This limits the state
space in our translation and makes such nets relatively easy to model check.

The intuitive idea of the orbit function is to collect all process identifiers
syntactically reachable from a given process. We employ the function ident :
P → P(PIDS) which gives the set of process identifiers ident(P) that are in the
process P ∈ P :

ident(K�ã�) df= {K} ident(
∑

i∈I πi.Pi)
df=

⋃
i∈I ident(Pi)

ident(νa.P) df= ident(P) ident(P | Q) df= ident(P) ∪ ident(Q).

The orbit of a process P , orb(P), is the smallest (w.r.t. ⊆) set such that
ident(P) ⊆ orb(P) and if a process identifier K with a defining equation K(x̃) :=
Q is in orb(P) then ident(Q) ⊆ orb(P). The maximal number of intersecting or-
bits of a process PFC = νã.(PS1 | . . . | PSn) is

#∩(PFC) df= max
{|I| | I ⊆ {1, . . . , n} and

⋂
i∈Iorb(PS i) = ∅

}
.

The main result of this section can now be stated as follows.

Theorem 1. PN [[PFC]] is #∩(PFC)-bounded.

Example 2. Consider PFC = C �url� | C �url� | S�url� in Example 1. We have
orb(S�url�) = {S} and orb(C �url�) = {C} for both clients. Thus, #∩(PFC) = 2,
and so the corresponding Petri net PN [[PFC]] in Figure 1(a) is 2-bounded. This
is an improvement on the trivial bound of 3 (i.e., the number of concurrent
processes in the system). ♦

We spend the rest of the section sketching the proof of this result. The Petri
net PN [[PFC]] is k-bounded iff in every reachable process Q ∈ Reach (PFC)
there are at most k fragments that are structurally congruent. Thus, we need
to show that the number of structurally congruent fragments is bounded by
#∩(PFC) in every reachable process Q. To do so, we assume there are k fragments
F1 ≡ . . . ≡ Fk in Q and conclude that there are at least k intersecting orbits
in PFC , i.e., #∩(PFC) ≥ k. We argue as follows. From structural congruence we
know that the identifiers in all Fi are equal. We now show that the identifiers
of the Fi are already contained in the orbits of different PS i in PFC . Thus, the
intersection orb(PS1) ∩ . . . ∩ orb(PSk) is not empty. This means that we have
found k intersecting orbits, i.e., #∩(PFC) ≥ k.

To show ident(Fi) ⊆ orb(PS i) we need to relate the processes in every reach-
able fragment with the initial process PFC = νã.(PS1 | . . . | PSn). To achieve

A Practical Approach to Verification of Mobile Systems 335

this, we prove that every reachable process is a parallel composition of subpro-
cesses of PS i. These subprocesses are in the set of derivatives of PS i, which are
defined by removing prefixes from PS i as if those prefixes were consumed.

Definition 1. The function der : P → P(P) assigns to every process P the set
der(P) as follows:

der(0) df= ∅ der(K�ã�) df= {K�ã�}
der(

∑
i∈I �=∅ πi.Pi)

df= {∑i∈I �=∅ πi.Pi} ∪
⋃

i∈Ider(Pi)

der (νa.P) df= der (P) der(P | Q) df= der (P) ∪ der(Q).

Consider an FCP PFC = νã.(PS1 | . . . | PSn). We assign to every PS i the
set of derivatives, derivatives(PS i). It is the smallest (w.r.t. ⊆) set such that
der(PS i) ⊆ derivatives(PS i) and if KS�ã� ∈ derivatives(PS i) then der(PS) ⊆
derivatives(PS i), where KS(x̃) := PS . ♦

Using structural congruence, every process reachable from PFC can be rewritten
as a parallel composition of derivatives of the processes in PFC. This technical
lemma relates every reachable process with the processes in PFC.

Lemma 3. Let PFC = νã.(PS1 | . . . | PSn). Then every Q ∈ Reach (PFC)
is structurally congruent with νc̃.(Q1σ1 | . . . | Qmσm) such that there is an
injective function inj : {1, . . . , m} → {1, . . . , n} with Qi ∈ derivatives(PS inj (i))
and σi : fn (Qi)→ c̃ ∪ fn (PFC).

For the derivatives Q of PS it holds that the identifiers in Q are in the orbit of
PS . Combined with the previous lemma, this relates the identifiers in a reachable
fragment and the orbits in the initial process.

Lemma 4. If Q ∈ derivatives(PS) then ident(Q) ⊆ orb(PS).

By an induction along the structure of processes we show that for all P ∈ P the
following holds: if Q ∈ der (P) then ident(Q) ⊆ ident(P). With this observation,
Lemma 4 follows by an induction on the structure of derivatives(PS).

We return to the argumentation on Theorem 1. Consider a reachable process
Q ≡ ΠkF | Q′ for some Q′. By Lemma 3, Q ≡ νc̃.(Q1σ1 | . . . | Qmσm) with
Qi ∈ derivatives(PS inj (i)). By transitivity, ΠkF |Q′ ≡ νc̃.(Q1σ1 | . . . |Qmσm).
By Lemmata 1 and 2, ΠkF | (Q′)ν ≡̂Πi∈IGi = (νc̃.(Q1σ1 | . . . | Qmσm))ν for
some fragments Gi.

By definition of ≡̂ , k of the Gis are structurally congruent. As identifiers
are preserved by ≡, these Gis have the same identifiers. Each Gi is a parallel
composition of some Qiσis. With Lemma 4, Qi ∈ derivatives(PS inj (i)) implies
ident(Qi) ⊆ orb(PS inj (i)). Since every Gi consists of different Qis and inj is
injective, we have k processes PS inj (i) sharing identifiers, i.e., Theorem 1 holds.

In the case the orbits of all PS i in PFC = νã.(PS1 | . . . | PSn) are pairwise
disjoint, Theorem 1 implies the safeness of the Petri net PN [[PFC]]. In the fol-
lowing section we show that every FCP can be translated into a bisimilar process
with disjoint orbits.

336 R. Meyer, V. Khomenko, and T. Strazny

5 From FCPs to Safe Processes

Safe nets are a prerequisite to apply efficient unfolding-based verification tech-
niques. According to Theorem 1, the reason for non-safeness of the nets of
arbitrary FCPs is the intersection of orbits. In this section we investigate a
translation of FCPs into their syntactic subclass called safe processes, where the
sequential processes comprising an FCP have pairwise disjoint orbits. The idea
of translating PFC = νã.(PS1 | . . . | PSn) to the safe process Safe(PFC) is to
create copies of the process identifiers that are shared among several PS i, i.e.,
of those that belong to several orbits. (The corresponding defining equations are
duplicated as well.) The intuition is that every PS i gets its own set of process
identifiers (together with the corresponding defining equations) which it can call
during system execution. Hence, due to Theorem 1, safe processes are mapped
to safe Petri nets.

The main result in this section states that the processes PFC and Safe(PFC)
are bisimilar, and, moreover, that the fragments are preserved in some sense.
Furthermore, the size of the specification Safe(PFC) is at most quadratic in the
size of PFC , and this translation is optimal.

Definition 2. An FCP PFC = νã.(PS1 | . . . | PSn) is a safe process if the
orbits of all PS i are pairwise disjoint, i.e., for all i, j ∈ {1, . . . , n} : if i = j then
orb(PS i) ∩ orb(PSj) = ∅. ♦

To translate an FCP PFC = νã.(PS1 | . . . | PSn) into a safe process Safe(PFC),
we choose unique numbers for every sequential process, say i for PS i. We then
rename every process identifier K in the orbit of PS i to a fresh identifier Ki

using the unique number i. We use the functions renk : P → P , defined for
every k ∈ N by

renk(K) df= Kk renk(K�ã�) df= renk(K)�ã�
renk(

∑
i∈I πi.Pi)

df=
∑

i∈I πi.renk(Pi) renk(P | Q) df= renk(P) | renk(Q)

renk(νa.P) df= νa.renk(P).

Employing the renk function, the FCP PFC = νã.(PS1 | . . . | PSn) is translated
into a safe process as follows:

Safe(PFC) df= νã.(ren1(PS1) | . . . | renn(PSn)),

where the defining equation of Kk
S is Kk

S(x̃) := renk(PS) if KS(x̃) := PS . The
original defining equations KS(x̃) := PS are then removed. We demonstrate this
translation on our running example.

Example 3. Consider the FCP PFC = C �url� | C �url� | S�url� in Example 1.
The translation is Safe(PFC) = C 1�url� | C 2�url� | S 3�url�, where

C i(url) := νip.url〈ip〉.ip(s).s(x).C i�url�, i = 1, 2

S 3(url) := url(y).νses .y〈ses〉.ses〈ses〉.S 3�url�.
The equations for C and S are removed. ♦

A Practical Approach to Verification of Mobile Systems 337

In the example, we just created another copy of the equation defining a client.
In fact, the following result shows that the size of the translated system is at
most quadratic in the size of the original specification. We measure the size of
a π-Calculus process as the sum of the sizes of all the defining equations and
the size of the main process. The size of a process is the number of prefixes,
operators, and identifiers (with parameters) it uses. So the size of 0 is 1, the size
of K�ã� is 1 + |ã|, the size of

∑
i∈I �=∅ πi.Pi is 2|I| − 1 +

∑
i∈I size (Pi) (as there

are |I| prefixes and |I| − 1 pluses), the size of P | Q is 1 + size (P) + size (Q),
and the size of νa.P is 1 + size (P).

Proposition 1 (Size). Let PFC = νã.(PS1 | . . . | PSn) be an FCP. Then
size(Safe(PFC)) ≤ n · size(PFC).

Note that since n ≤ size(PFC), this result shows that the size of Safe(PFC) is at
most quadratic in the size of PFC .

Safe(PFC) is a safe process; this follows from the compatibility of the renaming
function with the function orb: orb(renk(P)) = renk(orb(P)).

Proposition 2 (Safeness). Let PFC = νã.(PS1 | . . . | PSn) be an FCP. Then
Safe(PFC) is a safe process.

The translation of PFC into Safe(PFC) does not alter the behaviour of the pro-
cess: both processes are bisimilar with a meaningful bisimulation relation. This
relation shows that the processes reachable from PFC and Safe(PFC) coincide
up to the renaming of process identifiers. Thus, not only the behaviour of PFC is
preserved by Safe(PFC), but also the structure of the reachable process terms, in
particular their fragments. Technically, we define the relation Ri by (P, Q) ∈ Ri

iff there are names ã and sequential processes PS1, . . . , PSn, where the topmost
operator of every PS i is different from ν, such that

P ≡ νã.(PS1 | . . . | PSn) and Q ≡ νã.(PS1 | . . . | reni(PS i) | . . . | PSn).
Note that it is obvious from this definition that νã.(PS1 | . . . | PSn) and
νã.(PS1 | . . . | reni(PS i) | . . . | PSn) are related by Ri.

Theorem 2. For any i ∈ {1, . . . , n}, the relation Ri is a bisimulation that
relates the FCPs νã.(PS1 | . . . | PSn) and νã.(PS1 | . . . | reni(PS i) | . . . | PSn).

By transitivity of bisimulation, Theorem 2 allows for renaming several PS i and
still gaining a bisimilar process. In particular, renaming all n processes in PFC =
νã.(PS1 | . . . | PSn) yields the result for the safe system Safe(PFC).

Consider a process Q which is reachable from PFC . We argue that the struc-
ture of Q is essentially preserved (1) by the translation of PFC to the safe pro-
cess Safe(PFC) and then (2) by the translation of Safe(PFC) to the safe Petri
net PN [[Safe(PFC)]]. With this result we can reason about the structure of all
processes reachable from PFC using PN [[Safe(PFC)]].

According to Theorem 2, PFC and Safe(PFC) are bisimilar via the rela-
tion R1 ◦ · · · ◦ Rn, e.g., a process Q=νa.νb.(H�a� | K�a� | L�b�) reachable
from PFC corresponds to Q′=νa.νb.(H1�a� | K2�a� | L3�b�) reachable from
Safe(PFC). Hence, one can reconstruct the fragments of Q form those of Q′.

338 R. Meyer, V. Khomenko, and T. Strazny

Indeed, compute the restricted forms: (Q)ν =νa.(H�a� | K�a�) | νb.L�b� and
(Q′)ν =νa.(H1�a� |K2�a�) | νb.L3�b�. Dropping the superscripts in (Q′)ν yields
the fragments in (Q)ν , since only the restricted names influence the restricted
form of a process, not the process identifiers. The transition systems of Safe(PFC)
and PN [[Safe(PFC)]] are isomorphic, e.g., Q′ corresponds to the marking M =
{[νa.(H1�a� | K2�a�)] ,

[
νb.L3�b�]} [Mey07, Theorem 1]. Thus, from a marking

of PN [[Safe(PFC)]] one can obtain the restricted form of a reachable process
in Safe(PFC), which in turn corresponds to the restricted form in PFC (when
the superscripts of process identifiers are dropped). Furthermore, the bisimula-
tion between PFC and PN [[Safe(PFC)]] allows one to reason about the behaviour
of PFC using PN [[Safe(PFC)]]. (This bisimulation follows from the bisimulation
between PFC and Safe(PFC) and the isomorphism of the transition systems of
Safe(PFC) and PN [[Safe(PFC)]]).

We discuss our choice to rename all PS i in νã.(PS1 | . . . | PSn) to gain a safe
process. One might be tempted to improve our translation by renaming only a
subset of processes PS i whose orbits intersect with many others, in hope to get
a smaller specification than Safe(PFC). We show that this idea does not work,
and the resulting specification will be of the same size, i.e., our definition of
Safe(PFC) is optimal. First, we illustrate this issue with an example.

Example 4. Let P = τ.K�ã� + τ.L�ã�, R = τ.K�ã� and S = τ.L�ã�, where
K(x̃) := Def 1 and L(x̃) := Def 2. Consider the process P | R | S. The orbits of
P and R as well as the orbits of P and S intersect.

The renaming of P yields ren1(P) | R | S = τ.K1�ã�+ τ.L1�ã� | R | S, where
K and L are defined above and K1(x̃) := ren1(Def 1), L1(x̃) := ren1(Def 2). This
means we create additional copies of the shared identifiers K and L.

The renaming of R and S yields the process P | ren1(R) | ren2(S) =
P | τ.K1�ã� | τ.L2�ã�, where we create new defining equations for the iden-
tifiers K1 and L2. The size of our translation is the same. ♦

This illustrates that any renaming of processes PS i where the orbits overlap
results in a specification of the same size. To render this intuition precisely, we
call Kk

S(x̃) := renk(PS) a copy of the equation KS(x̃) := PS , for any k ∈ N. We
also count KS(x̃) := PS as a copy of itself.

Proposition 3 (Necessary condition for safeness). The number of copies
of an equation KS(x̃) := PS necessary to get a safe process from PFC equals to
the number of orbits that contain KS .

Now we show that our translation provides precisely this minimal number of
copies of defining equations for every identifier, i.e., that it is optimal.

Proposition 4 (Optimality of our translation). Our translation Safe(PFC)
provides as many copies of a defining equation KS(x̃) := PS as there are orbits
containing KS .

Remark 1. Note that one can, in general, optimise the translation by performing
some dynamic (rather than syntactic) analysis, and produce a smaller process

A Practical Approach to Verification of Mobile Systems 339

c1p1

c2p2

c3p3

e1

t1

e2

t2

e3

t3

c4

p4

c5

p5

c6

p6

e4

t4

e5

t5

c7

p7

c8

p8

e6

t6

e7

t7

c9

p9

c10

p10

e8

t8

e9

t9

c11 p1

c10 p2

c13 p2

c14 p3

(a)

(¬confe4∨confe1)∧(¬confe4∨confe2)∧(¬confe5∨confe2)∧(¬confe5∨confe3)∧
(¬confe6∨confe4)∧(¬confe7∨confe5)∧(¬confe4∨¬confe5) .

(b)

confe1∧confe2∧confe3∧(¬confe1∨¬confe2∨confe4∨confe5)∧(¬confe2∨¬confe3∨
confe4∨confe5)∧(¬confe4∨confe6)∧(¬confe5∨confe7)∧¬confe6∧¬confe7 .

(c)

Fig. 2. A finite and complete unfolding prefix of the Petri net in Figure 1(b) (a), the
corresponding configuration constraint CONF (b), and the corresponding violation
constraint VIOL expressing the deadlock condition (c).

whose corresponding Petri net is safe; however, our notion of a safe process is
syntactic rather than dynamic, and so the resulting process will not be safe
according to our definition. ♦

6 Net Unfoldings

A finite and complete unfolding prefix of a bounded Petri net Υ is a finite acyclic
net which implicitly represents all the reachable states of Υ together with transi-
tions enabled at those states. Intuitively, it can be obtained through unfolding Υ ,
by successive firing of transitions, under the following assumptions: (i) for each
new firing a fresh transition (called an event) is generated; (ii) for each newly
produced token a fresh place (called a condition) is generated. For example, a
finite and complete prefix of the Petri net in Figure 1(b) is shown in Figure 2(a).
Due to its structural properties (such as acyclicity), the reachable states of Υ
can be represented using configurations of its unfolding. A configuration C is
a downward-closed set of events (being downward-closed means that if e ∈ C
and f is a causal predecessor of e then f ∈ C) without choices (i.e., for all
distinct events e, f ∈ C, •e ∩ •f = ∅). For example, in the prefix in Figure 2(a),
{e1, e2, e4} is a configuration, whereas {e1, e2, e6} and {e1, e2, e3, e4, e5} are not
(the former does not include e4, which is a predecessor of e6, while the latter

340 R. Meyer, V. Khomenko, and T. Strazny

contains a choice between e4 and e5). Intuitively, a configuration is a partially
ordered execution, i.e., an execution where the order of firing some of its events
(viz. concurrent ones) is not important; e.g., the configuration {e1, e2, e4} corre-
sponds to two totally ordered executions reaching the same final marking: e1e2e4

and e2e1e4. Since a configuration can correspond to multiple executions, it is of-
ten much more efficient in model checking to explore configurations rather than
executions. We will denote by [e] the local configuration of an event e, i.e., the
smallest (w.r.t. ⊆) configuration containing e (it is comprised of e and its causal
predecessors).

The unfolding is infinite whenever the original Υ has an infinite run; however,
since Υ is bounded and hence has only finitely many reachable states, the un-
folding eventually starts to repeat itself and can be truncated (by identifying a
set of cut-off events) without loss of information, yielding a finite and complete
prefix. Intuitively, an event e can be declared cut-off if the already built part
of the prefix contains a configuration Ce (called the corresponding configuration
of e) such that its final marking coincides with that of [e] and Ce is smaller than
[e] w.r.t. some well-founded partial order on the configurations of the unfolding,
called an adequate order [ERV02].

Efficient algorithms exist for building such prefixes [ERV02, Kho03], which
ensure that the number of non-cut-off events in a complete prefix never exceeds
the number of reachable states of the original Petri net. Moreover, complete
prefixes are often exponentially smaller than the corresponding state graphs,
especially for highly concurrent Petri nets, because they represent concurrency
directly rather than by multidimensional interleaving ‘diamonds’ as it is done
in state graphs. For example, if the original Petri net consists of 100 transitions
which can fire once in parallel, the state graph will be a 100-dimensional hyper-
cube with 2100 vertices, whereas the complete prefix will coincide with the net
itself. Also, if the example in Figure 1(b) is scaled up (by increasing the number
of clients), the size of the prefix is linear in the number of clients, even though
the number of reachable states grows exponentially. Thus, unfolding prefixes
significantly alleviate the state explosion in many practical cases.

A fundamental property of a finite and complete prefix is that each reachable
marking of Υ is a final marking of some configuration C (without cut-offs) of the
prefix, and, conversely, the final marking of each configuration C of the prefix is a
reachable marking in Υ . Thus various reachability properties of Υ (e.g., marking
and sub-marking reachability, fireability of a transition, mutual exclusion of a
set of places, deadlock, and many others) can be restated as the corresponding
properties of the prefix, and then checked, often much more efficiently.

Most of ‘interesting’ computation problems for safe Petri nets are PSpace-
complete [Esp98], but the same problems for prefixes are often in NP or even
P. (Though the size of a finite and complete unfolding prefix can be exponential
in the size of the original Petri net, in practice it is often relatively small, as
explained above.) A reachability property of Υ can easily be reformulated for
a prefix, and then translated into some canonical problem, e.g., Boolean satis-
fiability (SAT). Then an off-the-shelf solver can be used for efficiently solving

A Practical Approach to Verification of Mobile Systems 341

it. Such a combination ‘unfolder & solver’ turns out to be quite powerful in
practice [KKY04].

Unfolding-Based Model Checking. This paper concentrates on the following
approach to model checking. First, a finite and complete prefix of the Petri net
unfolding is built. It is then used for constructing a Boolean formula encoding
the model checking problem at hand. (It is assumed that the property being
checked is the unreachability of some ‘bad’ states, e.g., deadlocks.) This formula
is unsatisfiable iff the property holds, and such that any satisfying assignment
to its variables yields a trace violating the property being checked.

Typically such a formula would have for each non-cut-off event e of the prefix
a variable confe (the formula might also contain other variables). For every
satisfying assignment A, the set of events C

df= {e | confe = 1} is a configuration
whose final marking violates the property being checked. The formula often has
the form CONF ∧ VIOL. The role of the property-independent configuration
constraint CONF is to ensure that C is a configuration of the prefix (not just
an arbitrary set of events). CONF can be defined as the conjunction of the
formulae

∧

e∈E\Ecut

∧

f∈••e

(¬confe ∨ conff) and
∧

e∈E\Ecut

∧

f∈Che

(¬confe ∨ ¬conff) ,

where Che
df= {((•e)•\{e})\Ecut} is the set of non-cut-off events which are in the

direct choice relation with e. The former formula is basically a set of implications
ensuring that if e ∈ C then its immediate predecessors are also in C, i.e., C is
downward closed. The latter one ensures that C contains no choices. CONF is
given in the conjunctive normal form (CNF) as required by most SAT solvers.
For example, the configuration constraint for the prefix in Figure 2(a) is shown
in part (b) of this figure. The size of this formula is quadratic in the size of the
prefix, but can be reduced down to linear by introducing auxiliary variables.

The role of the property-dependent violation constraint VIOL is to express
the property violation condition for a configuration C, so that if a configuration C
satisfying this constraint is found then the property does not hold, and C can be
translated into a violation trace. For example, for the deadlock condition VIOL
can be defined as

∧

e∈E

(∨

f∈••e

¬conff ∨
∨

f∈(•e)•\Ecut

conff

)
.

This formula requires for each event e (including cut-off events) that some event
in ••e has not fired or some of the non-cut-off events (including e unless it is cut-
off) consuming tokens from •e has fired, and thus e is not enabled. This formula
is given in the CNF. For example, the violation constraint for the deadlock
checking problem formulated for the prefix in Figure 2(a) is shown in part (c) of
this figure. The size of this formula is linear in the size of the prefix.

If VIOL is a formula of polynomial size (in the size of the prefix) then one can
check CONF ∧VIOL for satisfiability in non-deterministic polynomial time. In
particular, every polynomial size (w.r.t. the prefix) formula F over the places
of the net can be translated into a VIOL formula that is polynomial in the

342 R. Meyer, V. Khomenko, and T. Strazny

size of the prefix. Here, an atomic proposition p of F holds iff place p carries a
token (we deal with safe nets). This covers reachability of markings and submar-
kings, deadlocks, mutual exclusion, and many other properties. Furthermore,
an unfolding technique for model checking state-based LTL-X is presented in
[EH01]. State-based means that the atomic propositions in the logic are again
the places of the Petri net.

7 Experimental Results

To demonstrate the practicality of our approach, we implemented the translation
of π-Calculus to Petri nets discussed in Section 3 and the translation of FCPs
to safe processes presented in Section 5. In this section, we apply our tool chain
to check three series of benchmarks for deadlocks. We compare the results with
other well-known approaches and tools for π-Calculus verification.

The NESS (Newcastle E-Learning Support System) example models an elec-
tronic coursework submission system. This series of benchmarks is taken from
[KKN06], where the only other unfolding-based verification technique for the π-
Calculus is presented. The approach described in [KKN06] is limited to the finite
π-Calculus, a subset of π-Calculus allowing to express only finite behaviours. It
translates finite π-Calculus terms into high-level Petri nets and model checks the
latter. The translation into Petri nets used in [KKN06] is very different from our
approach, and a high-level net unfolder is used there for verification, while our
technique uses the standard unfolding procedure for safe low-level nets. More-
over, our technique is not limited to the finite π-Calculus.

The model consists of a teacher process T composed in parallel with k stu-
dents S (the system can be scaled up by increasing the number of students)
and an environment process ENV . Every student has its own local channel for
communication, hi, and all students share the channel h:

νh.νh1. . . . νhk.(T�nessc, h1, . . . , hk� | Πk
i=1S�h, hi� | ENV �nessc�) .

The idea is that the students are supposed to submit their work for assessment
to NESS . The teacher passes the channel nessc of the system to all students,
hi〈nessc〉, and then waits for the confirmation that they have finished working
on the assignment, hi(x). After receiving the ness channel, hi(nsc), students
organise themselves in pairs. To do so, they send their local channel hi on h and
at the same time listen on h to receive a partner, h〈hi〉 . . .+ h(x) When they
finish, exactly one student of each pair sends two channels to the support system,
nsc〈hi〉.nsc〈x〉, which give access to their completed joint work. These channels
are received by the ENV process. The students finally notify the teacher about
the completion of their work, hi〈fin〉. Thus, the system is modelled by:

T (nessc, h1, . . . , hk) :=Πk
i=1hi〈nessc〉.hi(xi).0

S (h, hi) :=hi(nsc).(h〈hi〉.hi〈fin〉.0 + h(x).nsc〈hi〉.nsc〈x〉.hi〈fin〉.0)
ENV (nessc) :=nessc(y1).nessc(yk).0

A Practical Approach to Verification of Mobile Systems 343

Table 1. Experimental results I

FCP HLNet Model Checking mwb hal Struct Safe Struct Model Checking
Mod. Size |P| |T| unf |B| |E∗| sat dl π2fc |P| |T| B Size |P| |T| unf |B| |E∗| sat

dns4 84 1433 511 6 10429 181 < 1 10 93 22 47 8 98 32 50 < 1 113 38 < 1
dns6 123 3083 1257 46 28166 342 < 1 - - 32 94 12 145 48 99 < 1 632 159 < 1
dns8 162 5357 2475 354 58863 551 < 1 - - 42 157 16 192 64 164 < 1 3763 745 < 1
dns10 201 8255 4273 - - - 52 236 20 271 80 239 1 22202 3656 2
dns12 240 11777 6791 - - - 62 331 24 324 96 286 56 128295 18192 62
ns2 61 157 200 1 5553 127 < 1 < 1 < 1 18 28 4 67 26 40 < 1 61 27 < 1
ns3 88 319 415 7 22222 366 < 1 1 8 37 91 6 98 56 141 < 1 446 153 < 1
ns4 115 537 724 69 101005 1299 1 577 382 68 229 8 129 102 364 < 1 5480 1656 < 1
ns5 142 811 1139 532 388818 4078 58 - - 119 511 10 160 172 815 17 36865 7832 3
ns6 169 1141 1672 - - - 206 1087 12 191 282 1722 1518 377920 65008 84
ns7 196 1527 2335 - - - 361 2297 14 222 646 3605 -
ns2-r 61 n/a n/a 16 24 4 67 24 36 < 1 51 22 < 1
ns3-r 88 n/a n/a 29 70 6 98 48 117 < 1 292 99 < 1
ns4-r 113 n/a n/a 45 123 8 127 79 216 < 1 1257 392 < 1
ns5-r 140 n/a n/a 66 241 10 158 119 435 2 10890 2635 1
ns6-r 167 n/a n/a 91 418 12 189 167 768 123 107507 19892 31
ns7-r 194 n/a n/a 120 666 14 220 223 1239 -

In the following Table 1, the row nsk gives the verification results for the NESS
system with k ∈ N students. The property we verified was whether all processes
successfully terminate by reaching the end of their individual code (as distin-
guished from a deadlock where some processes are stuck in the middle of their
intended behaviour, waiting for a communication to occur). Obviously, the sys-
tem successfully terminates iff the number of students is even, i.e., they can be
organised into pairs. The dnsk entries refer to a refined NESS model where the
pairing of students is deterministic; thus the number of students is even, and
these benchmarks are deadlock-free.

The second example is the client-server system similar to our running example.
For a more realistic model, we extend the server to spawn separate sessions that
handle the clients’ requests. We change the server process in Section 2 to a more
concurrent CONCS and add separate session processes:

CONCS(url , getses) := url(y).getses(s).y〈s〉.CONCS�url , getses�
SES (getses) := νses .getses〈ses〉.ses〈ses〉.SES�getses�

On a client’s request, the server creates a new session object using the getses
channel, getses(s). A session object is modelled by a SES process. It sends its
private channel νses along the getses channel to the server. The server forwards
the session to the client, y〈s〉, which establishes the private session, and becomes
available for further requests. This case study uses recursion and is scalable in
the number of clients and the number of sessions. In Table 2, e.g., the entry
5s5c gives the verification results for the system with five SES processes, five C
processes and one server. All these benchmarks are deadlock-free.

The last example is the well-known specification of the handover procedure in
the GSM Public Land Mobile Network. We use the standard π-Calculus model
with one mobile station, two base stations, and one mobile switching center
presented in [OP92].

We compare our results with three other techniques for π-Calculus verifica-
tion: the mentioned approach in [KKN06], the verification kit HAL [FGMP03],
and the mobility workbench (MWB) [VM94]. HAL translates a π-Calculus pro-
cess into a history dependent automaton (HDA) [Pis99]. This in turn is

344 R. Meyer, V. Khomenko, and T. Strazny

Table 2. Experimental results II

FCP mwb hal Struct Safe Struct Model Checking
Model Size dl π2fc |P| |T| B Size |P| |T| unf |B| |E∗| sat

gsm 194 - 18 374 138 1 194 148 344 < 1 345 147 < 1
gsm-r 194 n/a n/a 60 72 1 194 75 110 < 1 150 72 < 1
1s1c 44 - < 1 11 13 1 44 12 15 < 1 17 9 < 1
1s2c 47 - 6 12 15 2 58 22 30 < 1 35 17 < 1
2s1c 47 - 2 20 31 2 56 22 35 < 1 37 18 < 1
2s2c 50 - 138 31 59 2 70 40 66 < 1 73 33 < 1
3s2c 53 - - 68 159 3 82 66 128 < 1 137 57 < 1
3s3c 56 - - 85 217 3 96 100 194 < 1 216 87 < 1
4s4c 63 - - 362 1202 4 122 216 484 < 1 537 195 < 1
5s5c 68 - - 980 3818 5 148 434 1132 < 1 1238 403 < 1

translated into a finite automaton which is checked using standard tools. The
MWB does not use any automata translation, but builds the state space on the
fly. These tools can verify various properties, but we perform our experiments
for deadlock checking only, as it is the common denominator of all these tools.

We briefly comment on the role of the models with the suffix −r in Table 1.
One can observe that parallel compositions inside a fragment lead to interleav-
ing ‘diamonds’ in our Petri net representation. Thus, restricted names that are
known to a large number of processes can make the size of our Petri net trans-
lation grow exponentially. We demonstrate this effect by verifying some of the
NESS benchmarks with and without (suffix −r in the table) the restrictions
on such critical names. Even with the critical restrictions our approach outper-
forms the other tools; but when such restrictions are removed, it becomes orders
of magnitude faster. (Removing such critical restrictions does not alter the pro-
cess behaviour: νa.P can evolve into νa.P ′ iff P can evolve into P ′; thus, one
can replace νa.P by P for model checking purposes.)

The columns in Tables 1 and 2 are organised as follows. FCP Size gives the
size of the process as defined in Section 5. The following two columns, HLNet
and Model Checking (present only in Table 1), are the verification results when
the approach in [KKN06] is applied. In the former column, |P | and |T | state the
number of places and transitions in the high-level Petri net. The following column
unf gives the time to compute the unfolding prefix of this net. (We measure all
runtimes in seconds.) For this prefix, |B| is the number of conditions, and |E∗|
is the number of events (excluding cut-offs). Like our technique, the [KKN06]
employs a SAT solver whose runtime is given by sat. The following two columns,
mwb dl and hal π2fc, give the runtimes for the deadlock checking algorithm
in MWB and for converting a π-Calculus process into a finite automaton (via
HDA). This time includes the translation of a π-Calculus process into an HDA,
minimisation of this HDA, and the conversion of the minimised HDA into a finite
automaton [FGMP03]. The remaining entries are the results of applying our
model checking procedure. The column Struct gives the numbers of places and
transitions and the bounds of the Petri nets corresponding to a direct translation
of the FCPs. These nets are given only for comparison, and are not used for
model checking. Safe Size gives the size of the safe process computed by the
function Safe in Section 5, and the next column gives the numbers of places
and transitions of the corresponding safe Petri nets. Note that these nets, unlike
those in [KKN06], are the usual low-level Petri nets. The following columns give

A Practical Approach to Verification of Mobile Systems 345

the unfolding times, the prefix sizes, and the times for checking deadlocks on the
prefixes using a SAT solver. A ‘−’ in the tables indicates the corresponding tool
did not produce an output within 30 minutes, and an ‘n/a’ means the technique
was not applicable to the example.

Table 1 illustrates the results for checking the NESS example with the differ-
ent techniques. As the MWB requires processes where all names are restricted,
we cannot check the −r versions of the case studies. Our runtimes are by orders
of magnitude smaller in comparison with HAL and MWB , and are much bet-
ter compared with the approach in [KKN06]. Furthermore, they dramatically
improve when the critical names are removed (the −r models).

The approach in [KKN06] only applies to the finite π-Calculus, so one cannot
check the client-server or the GSM benchmarks with that technique. Table 2
shows that the proposed technique dramatically outperforms both MWB and
HAL, and handles the benchmark with five sessions and clients within a second.

8 Conclusions and Future Work

In this paper, we have proposed a practical approach for verification of finite
control processes. It works by first translating the given FCP into a safe process,
and then translating the latter into a safe Petri net for which unfolding-based
model checking is performed. Our translation to safe processes exploits a general
boundedness result for FCP nets based on the theory of orbits. Our experiments
show that this approach has significant advantages over other existing tools for
verification of mobile systems in terms of memory consumption and runtime. We
plan to further develop this approach, and below we identify potential directions
for future research.

It would be useful to extend some temporal logic so that it could express
interesting properties of π-Calculus. (The usual LTL does not capture, at least in
a natural way, the communication in dynamically created channels and dynamic
connectivity properties.) Due to our fragment-preserving (i.e., preserving the
local connections of processes) bisimulation result, one should be able to translate
such properties into Petri net properties for verification. The hope is that since
this Petri net has a rich structure (e.g., the connectivity information can be
retrieved from place annotations), the resulting properties can be expressed in
some standard logic such as state-based LTL and then efficiently model checked
with existing techniques.

One can observe that after the translation into a safe process, some fragments
differ only by the replicated process identifiers. Such fragments are equivalent in
the sense that they react in the same way and generate equivalent places in the
postsets of the transitions. Hence, it should be possible to optimise our transla-
tion procedure, because many structural congruence checks can be omitted and
several computations of enabled reactions become unnecessary. Moreover, this
observation allows one to use in the unfolding procedure a weaker (compared
with the equality of final markings) equivalence on configurations, as explained

346 R. Meyer, V. Khomenko, and T. Strazny

in [Kho03, Section 2.5]. This would produce cut-off events more often and hence
reduce the size of the unfolding prefix.

It seems to be possible to generalise our translation to a wider subclass of π-
Calculus. For example, consider the process S�url� | C �url� | C �url� modelling
a concurrent server and two clients, with the corresponding process identifiers
defined as

S (url) := url(y).(νses .y〈ses〉.ses〈ses〉.0 | S�url�)
C (url) := νip.url〈ip〉.ip(s).s(x).C �url�

Intuitively, when contacted by a client, the server spawns a new session and
is ready to serve another client, i.e., several clients can be served in parallel.
Though this specification is not an FCP, it still results in a 2-bounded Petri net
very similar to the one in Figure 1(a). Our method can still be used to convert
it into a safe Petri net for subsequent verification.

Acknowledgements. The authors would like to thank Maciej Koutny, Eike
Best and Ernst-Rüdiger Olderog for helpful comments and for arranging the
visit of the first author to Newcastle.

This research was supported by the German Research Council (DFG) as part
of the Graduate School GRK 1076/1 (TrustSoft) and by the Royal Academy of
Engineering/Epsrc post-doctoral research fellowship EP/C53400X/1 (Davac).

References

[CGP99] Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cam-
bridge (1999)

[Dam96] Dam, M.: Model checking mobile processes. Information and Computa-
tion 129(1), 35–51 (1996)

[EH01] Esparza, J., Heljanko, K.: Implementing LTL model checking with net
unfoldings. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 37–56.
Springer, Heidelberg (2001)

[ERV02] Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfold-
ing Algorithm. Formal Methods in System Design 20(3), 285–310 (2002)

[Esp98] Esparza, J.: Decidability and complexity of Petri net problems — an intro-
duction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491,
pp. 374–428. Springer, Heidelberg (1998)

[FGMP03] Ferrari, G.-L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking
verification environment for mobile processes. ACM Transactions on Soft-
ware Engineering and Methodology 12(4), 440–473 (2003)

[Kho03] Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings.
PhD thesis, School of Computing Science, Newcastle University (2003)

[KKN06] Khomenko, V., Koutny, M., Niaouris, A.: Applying Petri net unfoldings
for verification of mobile systems. In: Proc. Workshop on Modelling of Ob-
jects, Components and Agents (MOCA 2006), Bericht FBI-HH-B-267/06,
pp. 161–178. University of Hamburg (2006)

[KKY04] Khomenko, V., Koutny, M., Yakovlev, A.: Detecting state coding con-
flicts in STG unfoldings using SAT. Fundamenta Informaticae 62(2), 1–21
(2004)

A Practical Approach to Verification of Mobile Systems 347

[McM92] McMillan, K.: Using unfoldings to avoid state explosion problem in the
verification of asynchronous circuits. In: Probst, D.K., von Bochmann, G.
(eds.) CAV 1992. LNCS, vol. 663, pp. 164–174. Springer, Heidelberg (1993)

[Mey07] Meyer, R.: A theory of structural stationarity in the π-Calculus (under
revision) (2007)

[Mil99] Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cam-
bridge University Press, Cambridge (1999)

[MKS08] Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verifica-
tion of mobile systems using net unfoldings. Technical Report CS-TR-
1064, School of Computing Science, Newcastle University (2008), URL:
http://www.cs.ncl.ac.uk/research/pubs/trs/abstract.php?number=

1064

[OP92] Orava, F., Parrow, J.: An algebraic verification of a mobile network. For-
mal Aspects of Computing 4(6), 497–543 (1992)

[Pis99] Pistore, M.: History Dependent Automata. PhD thesis, Dipartimento di
Informatica, Università di Pisa (1999)

[SW01] Sangiorgi, D., Walker, D.: The π-Calculus: a Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

[Val98] Valmari, A.: Lectures on Petri Nets I: Basic Models. In: Reisig, W., Rozen-
berg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Hei-
delberg (1998)

[VM94] Victor, B., Moller, F.: The mobility workbench: A tool for the π-Calculus.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer,
Heidelberg (1994)

http://www.cs.ncl.ac.uk/research/pubs/trs/abstract.php?number=1064
http://www.cs.ncl.ac.uk/research/pubs/trs/abstract.php?number=1064

Cooperative Arrival Management in

Air Traffic Control -
A Coloured Petri Net Model of

Sequence Planning

Hendrik Oberheid1 and Dirk Söffker2

1 German Aerospace Center (DLR), Institute of Flight Guidance,
Braunschweig, Germany

2 University of Duisburg-Essen, Chair of Dynamics and Control,
Duisburg, Germany

Abstract. A Coloured Petri Net model implemented in CPN Tools is
presented which simulates a potential future arrival planning process in
air traffic control. The planning process includes a cooperation between
airborne and ground side in which the aircraft involved provide informa-
tion e.g. with regard to their estimated earliest and latest times of arrival
at the airport. This information is then used by a planning system on
the ground to establish a favorable sequence in which aircraft will be led
to the runway. The model has been built in order to acquire a better un-
derstanding of how the behavior of individual actors (i.e. aircraft) within
the cooperation influences the outcome of the overall sequence planning
process. A peculiarity of the CP-net from a modeling point of view lies
in the fact that state space analysis is used repeatedly during each cycle
of the planning process to generate and evaluate the potential solutions
to the sequence planning problem. The results gained through queries on
the state space are then re-fed into the simulation and analysis for the
next planning cycle. The results from the model will in future be used
to build realistic scenarios and assumptions on how different actors will
interact with the system from a human factors point of view.

Keywords: air traffic management, arrival management, sequence plan-
ning, coloured Petri nets, state space analysis.

1 Introduction

One of the most challenging tasks of air traffic control consists in managing
the arrival traffic at a highly frequented airport. For an increasing number of
large airports this task is therefore supported by automated controller assistance
tools, so called AMANs (Arrival Managers) [1]. Depending on the capabilities of
the specific AMAN the tool will nowadays support the human controller in one
or both of the following tasks: 1. sequencing, i.e. establishing a favorable arrival
sequence (sequence of aircraft) according to a number of optimization criteria
2. metering that is to calculate for each individual aircraft the target times over

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 348–367, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Cooperative Arrival Management in Air Traffic Control 349

(TTO) certain geographic points of the respective arrival route appropriate for
the aircraft‘s position in the sequence and the runway assigned.

Apart from sequencing and metering future AMANs will additionally be able
to support the controller in finding an efficient and conflict free route for each
aircraft from its current position to the runway threshold (trajectory genera-
tion) [2]. The AMAN could also generate guidance instructions to the controller
with regard to individual clearances1 he should give to an aircraft in order to
lead the aircraft along that route as planned (clearance generation). A simplified
view of the arrival planning process including the main processes and information
flow is illustrated in Fig. 1.

Physical Traffic
(Real World)

Clearance
Generation

Trajectory
Generation

&
Metering

Sequence
Planning

Traffic
Situation

Controller
Clearances

Aircraft
Trajectories

&
TTOs

Aircraft
Sequence

Plan

Fig. 1. Simplified view of arrival planning process

A critical determinant for the quality of the arrival planning process is gener-
ally the type and accuracy of information on which the planning is based. Most
AMANs currently in operation rely on a combination of radar data and flight
plan information as their main input to the planning process. As an enhance-
ment to that the DLR Institute of Flight Guidance is developing an Arrival
Manager named 4D-CARMA (4D Cooperative Arrival Manager) [3,4] which
makes use of data received directly via datalink from individual aircraft to feed
the planning process. This data includes components such as estimated earliest
and latest times over certain geographic points as well as information on the
planned descent profile and speed which are computed by the aircraft‘s own
flight management system.

The tighter cooperation of airborne and groundside envisioned with 4D-
CARMA and the higher accuracy of data received directly from the airborne
side is expected to increase both the capacity of the airspace, the economic
efficiency (e.g. lower fuel consumption) of individual flights, and facilitate en-
vironmental improvements with regard to noise abatement. It is also expected
that greater flexibility in the planning process will be reached and chances will
improve to deliver user-preferred trajectories (i.e. “aircraft/airline-preferred tra-
jectories”) and accommodate airlines’ wishes with regard to the prioritization of
specific flights in the sequence. However, as the enhanced system will base its
planning on information received from external actors it is important to develop

1 A clearance is an authorization or permission given by air traffic control for an
aircraft to proceed along a certain route segment or to execute some other action
specified in the body of the clearance.

350 H. Oberheid and D. Söffker

a thorough understanding on how each piece of information submitted affects the
overall system behavior. Not only is it necessary to consider the consequences
on the overall outcome arising from submitting certain data, it is also essential
to consider the incentives the system provides for each individual actor to fully
comprehend his role and behavior while interacting with the system. The CPN
model of cooperative arrival planning presented in this paper and the analysis
and visualization functions developed in this context are designed to contribute
to acquiring the necessary understanding.

Petri Nets and other formal techniques have been successfully applied to the
analysis of air traffic control concepts and avionics systems before. Notably,
NASA (US National Aeronautics and Space Administration) runs a dedicated
formal methods research group [5] in order to support the traditional system val-
idation methods applied in the ATM domain such as testing, flight experiments
and human in the loop (HIL) simulations with rigorous mathematical methods.

From the application point of view the systems and concepts which have
been analyzed in literature comprise such diverse themes as conflict resolution
and recovery methods for aircraft encounters [6], verification of novel arrival
and departure procedures inside SCA (Self Controlled Areas) at small regional
airports [7],and the analysis of pilot interaction with flight control systems with
regard to mode confusion potential [8]. In the majority of cases a strong focus
has been laid on the analysis and proof of systems’ safety properties [6,7,9,8]
In fewer instances the objective has also been to analyze and improve system
efficiency and optimize performance (e.g. [10,11]). With regard to tools and
modeling techniques NASA’s work [6,7,9] relies largely on the specification and
verification system PVS (Prototype Verification system). Examples of Petri net
modeling of ATM applications can be found in [11] which uses Design/CPN
and in [10] uses CPN Tools as is done in this work.

This work for the first time presents an approach to the formal modeling
of cooperative arrival management processes, thus it substantially differs from
the above work in particular with regard to the examined ATM application.
Coloured Petri Nets are chosen as a the modelling approach here because they
offer an intuitive means to modeling and analyzing the combinatorial aspects
of the sequence planning problem. A novel method is presented here to handle
with CPN Tools [12] the iterative calculation of the large state spaces caused by
the application. From an application point of view our current interest is mainly
in investigating different dynamic properties of the planning system in order to
better understand the incentives the system sets for the different actors. In a
further step, this understanding is considered vital to achieve optimal overall
system performance and system safety in the future.

2 Sequence Planning

The CPN model [12] introduced in this paper is focused on the sequence plan-
ning aspects of arrival management. The sequence planning phase is the natural
starting point for the modeling of an AMANs behavior, as it precedes the other

Cooperative Arrival Management in Air Traffic Control 351

planning phases (trajectory generation and metering) whose planning is based on
the assumed sequence (see Fig. 1). Important decisions about the outcome of the
overall process (particularly in terms of punctuality, costs and fuel consumption)
are made during the sequence planning stage when the position of an aircraft
in the sequence is determined because these decisions can later only be altered
under certain circumstances and with considerable effort. Besides these opera-
tional aspects, the sequence planning process is also the most straightforward
to model and analyze in the form of a Coloured Petri Net since Sequence Plan-
ning is inherently a graph theoretic problem with discrete results (a sequence).
By contrast the later stages of arrival management (i.e. trajectory generation)
contain comparably larger shares of continuous-time computations which may
more adequately be described by other modeling approaches.

The task of sequence planning itself can be further divided into the following
four subtasks, which form the different parts of the CPN model presented below
(Fig. 2):

Aircraft
Sequence

Plan

Traffic
Situation

Aircraft
Sequence

Plan

Traffic
Situation

Sequence
Implementation

Sequence
Selection

Sequence
Evaluation

Sequence
Generation

Sequence
Planning

Fig. 2. Four-step scheme of sequence planning

The four subtasks will first be described with regard to the general problem
statement of each step before the concrete modelling of the different planning
stages in the form of a Coloured Petri Net model is presented in the following
section.

2.1 Sequence Generation

The general function of the sequence generation step consists in creating a set of
candidate sequences for a number of aircraft within a defined timeframe. Basi-
cally this is achieved by calculating all possible permutations of aircraft within a
certain timeframe (using a “sliding window” technique) and then computing the
respective arrival times for each aircraft of a candidate sequence while maintain-
ing the required temporal and spatial separation between consecutive aircraft.
Note however that for set of NoOfAc aircraft one will get

NoOfCseq = NoOfAc! (1)

candidate sequences. This means 720 candidates for a moderate set of 6 aircraft
and 40320 candidates for a operationally more relevant set of 8 aircraft.

352 H. Oberheid and D. Söffker

2.2 Sequence Evaluation

Given the set of candidate sequences the task of the evaluation step is to compute
for each candidate a quality value which reflects the desirability/feasibility of
practically realizing that candidate sequence from an operational point of view.
In order to compute that quality value the evaluation step makes use of a number
of evaluation functions which rate among other things (i) if an aircraft in the
sequence is able to reach its submitted earliest time of arrival, (ii) if an aircraft
is able to land before its submitted latest time of arrival and thus without the
need for entering a holding, or (iii) if an aircraft would leave a potential holding
pattern according to its relative position in the holding etc.. Another important
aspect which is also rated by the evaluation step is if (iv) the “new” candidate
sequence is stable with regard to the “old” sequence which has been implemented
in the preceding planning cycle. In the ideal case the old and the new sequence are
identical, meaning that all aircraft maintain their exact position in the sequence
and their target time of arrival (TTA). But if the TTA of an aircraft is changed
according to the candidate sequence this would be rated negatively as it would
generally mean additional workload for the controller and pilot to rearrange the
sequence and might also hamper flight efficiency. The operational requirement for
a stability criterion and the associated need to base the selection of a candidate
sequence by some means or another on the results of the preceding planning
cycle make the whole sequence planning a recursive process.

Mathematically this can be formulated as follows:

si = f(xi, si−1) (2)
si = Sequence implemented in step i
xi = Traffic situation and planning input in step i

si−1 = Sequence implemented in step i-1

The recursive nature of the function adds significantly to the complexity of the
planning process because it makes the consequences of modifying/adding certain
rating functions or adjusting the weighting between these functions harder to
predict. The recursion also makes it more difficult to foresee the effects of certain
behavior of individual actors (e.g. content of submitted data, estimates provided,
time of data submission from airborne side) on the system behavior. The ability
to examine these effects in a controlled fashion is one of the main purposes of
the CPN model introduced below.

2.3 Sequence Selection

Given the set of candidate sequences together with the ratings computed in
the evaluation step, the task of the sequence selection step is to pick the one
sequence which will finally be implemented in practice. It is unlikely (mainly
for human factors reasons) that the selection task will be totally automated
in the near future and that the selection will be executed without the chance
for human intervention. This is because the final responsibility for the decision

Cooperative Arrival Management in Air Traffic Control 353

will for a long time remain with the human controller, thus the controller will
also have to be in control. A more realistic scenario might therefore consist
in an automated support system pre-selecting a favorable candidate sequence
under nominal conditions but allowing the human controller to either intervene
and impose constraints on that sequence or even ignore the proposal altogether
where necessary.

2.4 Sequence Implementation

The practical implementation of the sequence is to a large degree a manual con-
troller task. The controller gives instructions and clearances to the flightcrew
with regard to the aircraft arrival routing, flight profile and speed. The cock-
pit crew acknowledges the clearances and configures the aircraft to follow the
instructed flight path. Nowadays nearly all communication between air traffic
control and cockpit crew is still carried out via voice radio. In future this verbal
communication might more and more be substituted by a datalink connection.

As mentioned above when discussing the recursive nature of the planning
process, as soon as a sequence is implemented it becomes an important input
for the next planning cycle executed thereafter.

3 The CPN Model of Cooperative Sequence Planning

This section presents the CPN Tools model [12] developed to analyze the behav-
ior of the cooperative sequence planning process as outlined above. The entire
model consists of 16 pages arranged in 5 hierarchical layers. All 16 pages form a
tree structure departing from the toplevel page named SeqPlanning. An overview
of the structure of the model is depicted in Fig. 3.

A special simulation and analysis approach was developed for the model,
which also impacts the model structure. To realize that approach, the pages are
organized into three different modules (M1, M2, M3) as indicated in Fig. 3. The
approach includes alternating and iterative use of state space analysis techniques
and simulation for the three different modules. The results of the simulation
or analysis phase of one module serve as an initialization for the next phase,
realizing a cyclic process (see Fig. 5).

As an outline, Module M1 represents variations of aircraft submitted arrival
times, the generation of potential candidate sequences and the evaluation of
these candidates. A state space based approach is most suitable for this task
since it allows that only the constraints with regard to time changes and for
sequence building are modeled in M1. The computation of the full set of possible
combinations is solved through automated state space generation. Module M2
performs a selection of candidate sequences generated in M1. In order to do that
it queries the state space of module M1 and compares the candidate sequences
with each other. M2 is executed in simulation mode. Module M3 integrates the
results from the iteration between M1 and M2 and is executed in state space
mode.

354 H. Oberheid and D. Söffker

SeqPlanning

SeqGeneration

SeqEvaluation

RateETA

RateStable

RateLTA

SeqSelection

Select

New

Equal

Worse

Better

Remove

SaveResults

ProgressionGraph

Level 1 Level 3 Level 4Level 2 Level 5

ArrivalEstimate

Variation M1

M2

M3

Fig. 3. Page hierarchy of the CPN model

The description starts with the toplevel page SeqPlanning in section 3.1, com-
bined with an overview over the special analysis and simulation approach. Sec-
tions 3.2 to 3.7 contain detailed descriptions of the subpages of the SeqPlanning
page.

3.1 SeqPlanning Page and Alternating State Space Analysis and
Simulation Approach

The SeqPlanning page is depicted in Fig. 4. It features five main substitution
transitions and two regular transitions.

The substitution transitions SequenceGeneration, SequenceEvaluation, Se-
quenceSelection and the regular transition SequenceImplementation together im-
plement the behavior of the automated sequence planning system as introduced
in section 2, subsection 2.1 to 2.4 respectively. Regarding the purpose of the four
transitions, the model thereby closely corresponds with the four-step scheme of
sequence planning shown in Fig. 2. Together the four transitions map a perceived
traffic situation as planning input to an implemented sequence plan as an output
of the planning system.

The substitution transition ArrivalEstimateVariation in the lower part of the
picture represents the behavior of aircraft. These aircraft may vary their submit-
ted arrival time estimates at certain points of the arrival procedure. Note that
these variations are external to the planning system and represent changes of
the traffic situation that the planning system has to react to.

Cooperative Arrival Management in Air Traffic Control 355

2

3

(#1(hd(!globPlanOutp)))

hd(!globPlanOutp)

!globModuleSwitch

()

1

Sequence
Selection

SeqSelection

Progression
Graph

ProgressionGraph

Module
Switch

Sequence
Implementation

Sequence
Generation

SeqGeneration

Sequence
Evaluation

SeqEvaluation

Arrival
Estimate
Variation

(Traffic Process)

ArrivalEstimateVariation

ini

()

UNIT

Module
Switch

INT

Planning
Input

(Traffic Situation)

Aircraft

New
Sequence

AircraftList

Old
Sequence

AircraftList

Planning
Output

(Sequence Plan)

Plan

ArrivalEstimateVariation

SeqEvaluationSeqGeneration

ProgressionGraph

SeqSelection

Fig. 4. SeqPlanning Page

While the transitions discussed so far are geometrically arranged as a closed
control loop, there appear to be missing links in the net topology of the SeqPlan-
ning page, because not all the transitions are actually connected by places and
arcs. Concretely, there is no connection between the SequenceEvaluation transi-
tion and the SequenceSelection transition, and also no connection between the
SequenceSelection transition and the SequenceImplementation transition. This
would generally be expected in order to close the loop and allow a flow of tokens
between these transitions.

The reason for not having the SequenceSelection transition connected with
arcs as expected is related to the special simulation and analysis approach ap-
plied for the exploration of the CPN model. The key points of the approach are
here described briefly. For the details on the technical implementation of the
developed modelling approach in CPN tools the reader is referred to [13].

A core feature of the approach is the structuring of the overall model into a
number of different modules as indicated in Fig. 3. During the execution of the
overall model only one module is ‘executable’ at each point in time, meaning that
it is only possible for transitions of this executable module to become enabled.
The different modules are executed alternately in a controlled order, either in
the mode of state space calculation or simulation. This permits to treat specific
problems modeled in the different modules in the mode (simulation or state
space based) that suits them best and is most efficiently modeled. Information
is exchanged between the different modules either via reference variables or by
one module making a query on other modules’ previously calculated state space.
The resulting control flow for the presented model is illustrated in the activity
chart in Fig. 5.

The control flow for the execution of the different modules is defined outside
the CPN Model itself through a function in a dedicated SML structure ClSimSsa.
The structure is loaded into the CPN Tools simulator and the function is then
executed via the CPN Tools GUI. To realize the switching between the exe-
cution of the different modules and to make a single module executable while
deactivating the other modules, the method makes use of a reference variable

356 H. Oberheid and D. Söffker

Listing 1.1. Non-standard colorsets

colset Signature=STRING;
colset Index=INT;
colset SignatureIndex=product Signature*Index;
colset Configuration=STRING;
colset SigConfig=product Signature*Configuration;
colset SigConfigList=list SigConfig;
colset Callsign =STRING;
colset Callsigns= list Callsign ;
colset TTA=INT;
colset LTA=INT;
colset ETA=INT;
colset POS=INT;
colset Aircraft =product Callsign *ETA*LTA*TTA*POS;
colset ResPosTTA=STRING;
colset AircraftList= list Aircraft ;
colset QUAL=INT;
colset QualVec =product QUAL*QUAL*QUAL;
colset WinLos=product CONFIG*QUAL*QualVec *ResPosTTA* AC_list *Signature;
colset WinLosList=list WinLos;
colset WinLosInt=product WinLos*INT;
colset WinLosIntList=list WinLosInt;
colset Plan=product AC_list * Signature;

B

Set ref. var.

globModuleSwitch:=1

Get next unprocessed

winner from ref. var.

globWinnerQueue

Set ref. var.

globPlanOutp

Calculate

statespace

module M1

Reset simulator
Set ref. var.

globModuleSwitch:=2

Simulate

module M2

Get ref. Var.

globWinnerSelected

Append winners to

ref. var.

globWinnerQueue

Set ref. var

globModuleSwitch:=3

Calculate

statespace

module M3

Save results

to files

Module M1

active/enabled

Module M2

active/enabled

Module M3

active/enabled

Unprocessed

winner

exists

No unprocessed

winners left

Legend:

ref. var. = Reference Variable

Reset simulator

Model Pages/Transitions:

SeqImplementation

ArrivalEstimateVariation

SeqGeneration

SeqEvaluation

Model Pages/Transitions:

SeqSelection

Model Pages/Transitions:

ProgressionGraph

M1/S1

M1/S2

M1/S3

M1/S4

M1/S5

M2/S5 M3/S1

M3/S2

M3/S3

M2/S4

M2/S3

M2/S2

M2/S1

Fig. 5. Activity chart for alternating state space analysis and simulation

globModuleSwitch of type integer. This reference variable is read out on the out-
put arc of the transition ModuleSwitch (see SeqPlanning page Fig. 4 to determine
the marking of the place ModuleSwitch. According to the value of the integer
token (1, 2 or 3), only one of the three transitions (SequenceImplementation, Se-
quenceSelection or ProgressionGraph) connected to this place can fire and thus
only one of the three modules will become executable. On the output arc of the
SequenceImplementation transition the reference variable globPlanOutp is used
to initialize the state of the sequence plan for each cycle.

Cooperative Arrival Management in Air Traffic Control 357

As a convention for the following model description, places in one module
(concerns M1) whose marking is queried by other modules are shaded in black.
Also transitions in one module (concerns M2) which trigger queries on another
module’s state space are shaded in black. All non-standard colorset declarations
for the model are given in listing 1.1.

3.2 ArrivalEstimateVariation (M1)

The ArrivalEstimateVariation page is depicted in Fig. 6. The page models po-
tential changes in the submitted ETAs and LTAs of controlled aircraft. It thereby
computes the input configurations which describe the potential evolvement of the
traffic situation between one iteration and the next. Each input configuration de-
fines a potential traffic situation by specifying the ETAs and LTAs of all involved
aircraft at a certain point in time. As part of Module M1, the ArrivalEstimat-
eVariation page is executed in state space mode. The page specifies essentially
the physical constraints and rules for potential changes of ETA and LTA, the
state space computation takes care of computing all possible combinations of
their occurrence in the sequence.

The page receives via the input port PlanningOutput the output of the last
planning cycle. This is a token of colorset PLAN consisting of a planned se-
quence of aircraft with their respective ETAs, LTAs and TTAs and a unique
signature (identifier) for this sequence. It returns via the output port on the
place PlanningInput the input for the next planning cycle. In order to calculate
it, two operations are realized.

First, the transition SplitAircraft, via the function filterAircraft on the output
arcs, divides the complete sequence into two subsets of aircraft. The first subset
encompasses all aircraft which will not change their submitted ETAs and LTAs
during that planning cycle. The tokens representing these aircraft flow directly
to the PlanningInput (Fixed Aircraft) place. The second subset encompasses all
aircraft which may change their ETAs and LTAs for the next iteration. These
tokens flow to the place VariableAircraft. The splitting is defined by the user
through the lists of callsigns on places variableCallsigns and fixedCallsigns.

(#1ac,#2ac+DeltaEta,#3ac+DeltaLta,0,0)

DeltaLtaDeltaEtaac_seq

ac::ac_seq(ac_seq,sign)

variableCallsigns
filterAircrafts
variableCallsigns (ac_seq)

filterAircrafts
fixedCallsigns (ac_seq)

Vary
Arrival Time
Estimates

Split
Aircraft

Signature

Signature

Delta
LTA

Delta
ETA

ETA

1`["A"]

Callsigns

fixed
Callsigns

1`["B","C"]

Callsigns

Variable
Aircraft

AircraftList

Planning
Input

(Fixed Aircraft)

Out Aircraft

Planning
Output

(Sequence Plan)

In PlanIn

Out

LTA

1`(30)++
1`(60)++
1`(0)++
1`(~30)++
1`(~60)

1`(30)++
1`(60)++
1`(0)++
1`(~30)++
1`(~60)

sign
fixedCallsigns

variable
Callsigns

Fig. 6. ArrivalEstimateVariation Page

358 H. Oberheid and D. Söffker

Second, for the variable aircraft the transition VaryArrivalTimeEstimates
varies the ETA and LTA by a certain DeltaEta and DeltaLta. The possible
values for DeltaEta and DeltaLta are defined on the respective places. Aircraft
which have received variation of ETA or LTA through the VaryArrivalEstimate
transition are also deposited on the PlanningInput(Fixed Aircraft) place. This
leads eventually to a situation where the complete input configuration for all
aircraft is fixed on this place.

On the place Signature one token of colorset Signature is placed which uniquely
identifies the parent sequence which the varied input configuration was derived
from. This value is queried by a state space query in module M2 (see section 3.6)
and is used in module M3 to keep track of the planning behavior over various
planning cycles.

3.3 SeqGeneration Page (M1)

The SeqGeneration page (Fig. 7) generates (through state space calculation) the
full set of candidate sequences by computing all different permutations for a set
of aircraft assuming the different input configurations. The number of candidate
sequences is

NoOfCseq = NoOfInputConfigurations ∗NoOfAircraft! (3)

The page receives a multiset of Aircraft with fixed ETAs and LTAs via the
input port place PlanningInput. The permutation is realized through the tran-
sition GenerateSequence. The transition may bind the tokens of the received
aircraft multiset in an arbitrary order and assembles them to a fixed sequence
on the place PartialSequence. A counter realized through place EarliestTTA sets
the aircrafts target times of arrival (TTA) so that a minimum time interval of
75 time units is maintained between TTAs of two consecutive aircraft. Since the
SeqGeneration page is part of module M1 and executed in state space mode, the
resulting state space will contain all possible permutations of the sequence. Once
the sequence length of the PartialSequence equals a constant named numb ac
the transition finished fires and transfers the PartialSequence to the output place
NewSequence.

(cs,eta,lta,tta,pos)

ac_seqac_seq

ac_seq^^[(cs,eta,lta,
if e>eta then e else eta,length ac_seq+1)]

ac_seq
finished

[length ac_seq=numb_ac]

Generate
Sequence

Planning Input
(FixedAircraft)

In

Aircraft

New
Sequence

Out

Partial
Sequence

[]

AircraftList

EarliestTTA

1`(0)

OutIn
if e>eta then e+75
 else eta+75 e

TTA

AircraftList

Fig. 7. SeqGeneration page

3.4 SeqEvaluation Page (M1)

The SeqEvaluation page is shown in Fig. 8. The purpose of the page is to assign
a quality value to each candidate sequence. In order to do so, its first function is

Cooperative Arrival Management in Air Traffic Control 359

(qETA,qStable,qLTA)qStable

qLTA
ac_seq

ac_seq

merge(qETA,qStable,qLTA)

qETA

Rate
SeqStable

RateStable

Rate
BeforeLTA
RateLTA

Merge

Rate
ReachingETA

RateETA

c1

()

UNIT

Individual
Quality
Vector

QualVec

Quality
SeqStable

QUAL

c3

UNIT

Old
Sequence

In

AircraftList

Quality
BeforeLTA

QUAL

Aircraft
Sequence

AircraftList

Quality
ReachingETA

QUAL

c2

UNIT

Total
Sequence
Quality

QUAL

New
Sequence

In AircraftListIn

In

RateETA

RateLTA

RateStable

Fig. 8. SeqEvaluation page

to call the different rating functions (substitution transitions RateReachingETA,
RateSeqStable, RateBeforeLTA) used to evaluate the candidate sequences. It then
merges (transition Merge) the individual quality values calculated by those rat-
ing functions to one total quality value on place TotalSequenceQuality. This value
will later decide which candidate sequence is actually selected and implemented.

As the evaluation of stability criterion RateSeqStable depends on the sequence
implemented in the preceding planning cycle, the SeqEvaluation page has two
main input places, the NewSeq place, which receives the candidate sequence to
be evaluated, and the OldSeq place with the sequence implemented before. The
control flow over places c1-c3 serves to avoid unnecessary concurrency between
the different rating functions.

After the firing of the Merge transition there will be no more enabled transi-
tion in module M1, leading to a dead marking. All dead markings of M1s state
space will subsequently be investigated by module M2. For the places TotalSe-
quenceQuality, IndividualQualityVector and AircraftSequence the marking will
be queried to find and select the candidate sequence with the highest quality
value.

3.5 Pages RateETA, RateStable, RateLTA (M1)

Pages RateETA, RateStable, RateLTA implement the individual rating functions
used to evaluate the candidate sequences. No detailed description of the exact
mathematical formulation of the individual functions can be given here for con-
fidentiality reasons. However, in general criterion RateETA will rate whether an
aircraft in the sequence is able to reach its submitted earliest time of arrival,
while RateLTA will rate if an aircraft is able to land before its submitted lat-
est time of arrival and thus without the need for entering a holding pattern.
The stability criterion responsible for the recursive nature of the sequence plan-
ning process is implemented on page RateStable (see also section 2.2 sequence
evaluation).

360 H. Oberheid and D. Söffker

3.6 SeqSelection Page (M2)

The SeqSelection page (Fig. 9) is a direct subpage of the SeqPlanning page and
a part of module M2. In contrast to M1, Module M2 is executed in simulation
mode. Module M1 (presented above) has previously generated and evaluated all
candidate sequences through state space generation. The task of the SeqSelection
page is to select from all candidate sequences the sequence(s) with the best total
quality values for each possible input configuration (Fig. 2, step three). These
are the sequences which would in practice be implemented by the system (Fig. 2,
step four), assuming that the system is not overruled by a differing decision of
the air traffic controller.

In Fig. 9 it can be seen that the SeqSelection page receives as its only direct
input an integer token from the above SeqPlanning page via the input port place
ModuleSwitch. If the value of the token equals 2, it makes the SeqSelection page
executable by enabling the init transition. All other data regarding the set of
candidate sequences generated in module M1 is gained by making queries on
module M1 ’s previously generated state space. No further data is received via
input arcs.

qv

[]

()

des

(par_sig,length dm_list)

ac_l

act_config

t_q

tl dm_list

dm_list

2

Save
Results

Save Results

Select

Select

Query
StateSpace&

extract candidates

[dm_list<>[]]

init QualVec

QualVec

next
dead

 marking

()

UNIT

Loser

WinLos

Known
Config
Space

[]

SigConfigList

Winner
WinLos

Aircraft
Order &

TTAs

ResPosTTA

Signature
Data

SignatureIndex

Aircraft
Sequence

AircraftList

Active
Configuration

SigConfig

Total
Sequence
Quality

INT

dead
markings

list

INT_list

Module
Switch

In INTIn

Select Save Results

(*Query Statespace Transition code*)
input (dm_list);
output (t_q,qv,act_config,ac_l,par_sig,des);
action
let
val (t_q,qv,des,act_config,ac_l,par_sig)=
ClSimSsa. query_state_space_one_dm(hd dm_list);
in
(t_q,qv,act_config,ac_l,par_sig,des)
end

!ClSimSsa.
ListDeadMarkings()

Fig. 9. SeqSelection Page

The output arc of the init transition evaluates a function ListDeadMarkings
defined within the ClSimSsa structure. This function returns a list with node
numbers of all dead markings of module M1’s state space. Each dead marking
within the list represents a state where a candidate sequence has been gener-
ated and assigned a quality value on the page SeqEvaluation. With each firing
of the QueryStateSpace&ExtractCandidates, the associated code segment subse-
quently queries one single node of the list and thereby retrieves the marking of
the places TotalSequenceQuality, IndividualQualityVector and AircraftSequence
page SeqEvaluation and place Signature (page ArrivalEstimateVariation). For
the node, the resulting information characterizing the candidate sequence and
its quality is deposited as tokens on the output places of the QueryStateS-
pace&ExtractCandidates.

Cooperative Arrival Management in Air Traffic Control 361

The job of the Select transition is to find among all candidate sequences
and for each input configuration the “winner(s)”, that is the sequence(s) with
the highest quality value. Thus, it runs one by one through all the candidates
while always storing the best known candidate(s) for each input configuration on
the Winner place and dumping the tokens representing candidates with lower
quality values on the Loser Place. In detail, this comparison and data handling
is realized by the nets on the subpages new, equal, worse, better, and remove of
Select transition, which will not be further explained here.

Once all dead markings (or candidate sequences respectively) of the state
space have been inspected and the optimal sequence for each input configuration
has been found, the transition and its associated subpage SaveResults writes
the results of the analysis to different text files. Three different write-in-file
monitors are thereby used to save the winning candidates, the losing candidates
and a description of the examined input configurations in three separate files.
Some preliminary results of such an analysis and possible ways of visualizing the
results are discussed in section 4.1.

3.7 ProgressionGraph Page (M3)

The ProgressionGraph page implements module M3. It is executed in state space
mode. In addition to the write-in-file monitors of the SaveResults page, the Pro-
gressionGraph page (Fig. 10) provides a second means to access and process the
results of the simulation. While the monitor-based solution of the SaveResults
page considers the behavior of one single sequence planning cycle in isolation,
the ProgressionGraph serves to integrate the results of a number of consecutive
planning cycles. In order to do that, the ProgressionGraph relies on a string
signature which is saved with every sequence (every “winning sequence” in par-
ticular). This signature makes it possible to identify from which parent sequence
(implemented in the preceding planning cycle) this particular winning sequence
derived.

The transitions on the ProgressionGraph page implement three different
actions:

– The page is enabled via the single input port ModuleSwitch. The transition
init reads out the reference variable globWinnerQueue, which represents a
list of all winning sequences recorded over time during the cyclic execution
of modules M1 and M2. The init transition deposits the very first element in
the list (the parent sequence of all other sequences) on the place Predecessor.
All other sequences are deposited as a mulitset of sequences on the place
Sucessor.

– The transition progress to Sucessor can bind and interchange two tokens from
places predecessor and sucessor under the condition (guard) that, according
to their signatures, the predecessor sequence represents the parent sequence
of the sucessor sequence. This traces the possible evolvement of the sequence
over time.

– The transition interchange with equally configured sequence can bind and
interchange two tokens if they describe sequences with identical input con-

362 H. Oberheid and D. Söffker

figurations (identical ETAs and LTAs as input to the planning system) but
with different results for the order of the sequence (different response of
the planning system). This detects situations with different planning system
responses to the same input data due to the time-dependent behavior and
recursivity of the process.

A result for a state space created with the ProgressionGraph page visualized
with a modified version of the OGtoGraphViz interface of CPN Tools is presented
and discussed in section 4.2.

left

right

left

right

predecessor

sucessorsucessor

predecessor

init

interchange
with

equally configured
sequence

[(#2(#1left))=(#2(#1right)) andalso((#5left)<>(#5right))]

progress
to

sucessor

Module
Switch

In
INT

Sucessor

WinLos

Predecessor

WinLos

In

map WinLosInt2WinLos
 (tl(!globWinnerQueue))

WinLosInt2WinLos
 (hd(!globWinnerQueue))

3

[(String.isPrefix (#6predecessor) (#6sucessor)) andalso
 ((node_order (#6predecessor))=(node_order(#6sucessor)-1))]

Fig. 10. ProgressionGraph page

4 Preliminary Simulation and Analysis Results

The section presents some preliminary results achieved through simulations and
analysis of the above model. The results contain both output produced with the
monitor-based analysis to examine one single planning cycle as well as with the
second approach realized on the ProgressionGraph page to examine the behavior
of the system over a number of consecutive planning cycles.

For the purpose of this paper a very small example sequence has been chosen,
which contains only three aircraft (“A”,“B”,“C”). It is assumed that the initial
state of the sequence planning process is as shown in Table 1.

Table 1. Initial state of example sequence

Aircraft ETA 2 LTA 3 TTA 4 POS 5

A 110 240 110 1
B 120 250 185 2
C 123 207 260 3

2 ETA=Submitted Earliest Time of Arrival, that is earliest time the aircraft could
reach the airport according to its own estimation.

3 LTA=Submitted Latest Time of Arrival, that is latest time the aircraft could reach
the airport according to its own estimation (without entering a holding).

4 TTA=Target Time of Arrival planned by sequence planner.
5 P0S=Position of aircraft in the sequence planned by sequence planner.

Cooperative Arrival Management in Air Traffic Control 363

All time values for ETA, LTA and TTA are assumed to be in seconds, only
the relative differences between those numbers are practically relevant, however,
the absolute values are arbitrary.

4.1 Monitor-Based Analysis of a Single Planning Cycle

For the monitor-based analysis it is assumed that aircraft “A” and “B” are
free to vary their ETAs before the next planning cycle for one of the following
values: DeltaEta ∈ {−90,−60,−30, 0, 30, 60, 90}. Meanwhile the ETA of “C” as
well as the LTAs of all three aircraft “A”,“B”,“C” remains constant. Choosing
a negative DeltaEta (earlier ETA) in practice represents a situation in which
either an aircraft experiences tailwinds or in which it chooses a slightly higher
speed signifying higher fuel consumption but a potentially shorter flight time
(assuming there is no delay at the airport). In contrast, choosing a positive
DeltaEta (later ETA) could mean that an aircraft experiences headwinds or
chooses a more economic cruising speed paying the price of a potentially delayed
arrival time.

The purpose of the simulation is then to examine how the revised ETA influ-
ences the aircrafts’ position in the sequence as planned by the AMAN, as well
as the target time of arrival the sequence planner calculates for each aircraft on
the basis of the new input configuration.

Fig. 11 shows the planned target time of arrival of aircraft “A”,“B” and “C”
plotted against the submitted earliest time of arrival of “A” and “B”. The TTAs
actually simulated with the CPN models are represented by the triangles, squares
and circles for “A”, “B” and “C” respectively. The mesh surface was fitted to the
measured data afterwards in order to grasp their position in three-dimensional
space more easily. It has to be noted with regard to the interpretation of the

Fig. 11. Planned target time of arrival (TTA) as a function of submitted earliest time
of arrival (ETA) of “A” and “B” (ETA of “C” constant)

364 H. Oberheid and D. Söffker

interpolated surfaces in Fig. 11 that the intersections between surfaces are not
valid in a strict sense (since that would mean more than one aircraft with the
same target time of arrival, which would necessarily violate separation criteria)
and are due to the characteristics of the interpolation function. The order of
the surface layers in Fig. 11 also allows to read off the order of aircraft in the
sequence. From the perspective of the individual aircraft the gradient of the sur-
face can be interpreted as an incentive to adjust its behavior (speed/estimates)
in one way or the other [14,15]. From the perspective of the air traffic control (or
the perspective of the AMAN alternatively) the most upper surface of the three
is generally the most interesting, as it reveals the time when the last aircraft in
the considered sequence will be landed.

4.2 Analysis of System Behavior over Consecutive
Planning Cycles

Fig. 12 shows a fragment of a graph describing the system behavior of the se-
quence planner over two consecutive planning cycles in reaction to variations
of the ETAs and LTAs. The same initial state of the example sequence is as-
sumed as in section 4.1. The range of potential values for DeltaEta was further
constrained to be DeltaEta ∈ {−60, 0, +60} in the first planning cycle and
DeltaEta ∈ {0, +60} in the second planning cycle. As in section 4.1 it is as-
sumed that aircraft “A” and “B” are free to vary their earliest time of arrival
while aircraft “C” is obliged to keep its ETA constant. The latest time of arrival
(LTAs) of all three aircraft is also held constant in both planning cycles.

ABC

ABC

ACB

B-> eta:60
A-> eta:(~60)

B-> eta:(~60)

B-> eta:60

ABC
A-> eta:(~60)

ABC

B-> eta:60

ABC ACB

ACB

ABC

BCA

CAB

ABC

ACB

ACB

ACB

B-> eta:60

A-> eta:60

B-> eta:60
A-> eta:60

ABC

ACB

ABC

CAB

ACB

CAB

A-> eta:60

B-> eta:60

B-> eta:60
A-> eta:60

A-> eta:60

B-> eta:60

B-> eta:60
A-> eta:60

A-> eta:60

B-> eta:60

B-> eta:60
A-> eta:60

Fig. 12. Planned sequence as a function of submitted earliest time of arrival over two
consecutive planning cycles

Cooperative Arrival Management in Air Traffic Control 365

The ProgressionGraph is generated through state space calculation of module
M3. The visualization of the Graph is realized using the GraphViz software [16]
with a modified version of the OGtoGraphViz interface supplied with CPN Tools.

The graph (Fig. 12) depicts in its nodelables the description of the sequences
itself,(thus indicating the position of each aircraft in the sequence). The edgela-
bels contain the value DeltaEta by which the ETA is varied between one planning
step and the next. The linewidth of arcs is used to code branches and nodes of a
tree which are favorable from the perspective of a certain aircraft. In Fig. 12, the
more favourable the position for aircraft “B”, the broader the line surrounding
the label of the node is drawn. A second type of edge drawn in dotted lines is
used to connect nodes which are “equally configured”, that is which contain se-
quences with identical input configuration, but with a different order of aircraft
implemented by the sequence planner. The edges between equally configured
nodes are caused by the transition SameConfig on the ProgressionGraph page.
Where such edges exist between two nodes, they naturally run in both directions.
In Fig. 12 it can be seen that dotted edges exist between the first-order node
where aircraft “B” has revised the ETA by DeltaEta=+60 and second-order
node where “A” in the first planning cycle has revised its ETA by DeltaEta=-60
and then in the second planning cycle both “A” and “B” have revised their ETA
by DeltaEta=+60. The addition of the revision values over the two consecutive
cycles in both cases leads to the same configuration (thus the two nodes are
“equally configured”), the resulting sequence, however, is “ABC” for the first-
order node and “ACB” for the second order node. Thus by switching “A”s ETA
back and forth, and then ending up with the same configuration, we have come
to result different from that achieved by keeping “A’s” ETA constant.

5 Conclusions

The paper introduces a CPN model of a potential future sequence planning
process for cooperative arrival planning in air traffic control. The basis of the
cooperation consists in that the airborne side, that is the involved aircraft, pro-
vide information for example with regard to their estimated earliest and latest
times of arrival at the airport. This information is then used by the sequence
planner (on the ground) to establish a favourable sequence in which the aircraft
will be led to the runway. The model was built in order to achieve a better under-
standing of how the sequence planning responds to certain behavior of individual
actors/aircraft involved in the process. The basic sequence planning procedure
assumed and modeled in this paper (i.e. the core sequence planning algorithm)
was developed at DLR and has also been implemented in a prototype system us-
ing conventional programming languages [17,2]. It can be argued that the model
duplicates some functionality of the existing prototype. The duplication is jus-
tified by the effective and intuitive means of analyzing the model provided with
CPN Tools. Some of the benefits with respect to analysis have been pointed
out in section 4. For example nodes have been detected in the state space which
represented identical input configurations of all aircraft, but have led to differing

366 H. Oberheid and D. Söffker

responses of the planning system due to the time-dependent nature of the
planning process. The extensive possibilities and flexible manner of analysing
the system behavior of the CP-net appear as a strong argument in favor of the
CPN model. To be able to more easily analyze the planning system’s behavior
over a number of consecutive planning cycles a novel simulation and analyisis
method has been developed for this work. The method allows the automated and
repetitive (re)entering of the CPN-Tools state space tool and implementation of
a closed loop process between state space analysis and simulation. Through this
method it will in future be possible to analyze and discuss more complex effects
on longer sequences of aircraft and over an extensive number of planning cycles.

References

1. Fairclough, I.: Phare Advanced Tools Arrival Manager Final Report. Technical
report, Eurocontrol, European Organisation for Safety of Air Navigation (1999)

2. Zielinsky, T.: Erkennung und Lösung von Konflikten bei Anflug-Trajektorien. Tech-
nical report, German Aerospace Center (DLR) (2003)

3. Büchner, U., Czerlitzki, B., Hansen, H., Helmke, H., Pahner, S., Pfeil, A., Schnell,
M., Schnieder, H., Theis, P., Uebbing-Rumke, M.: KOPIM-AIRCRAFT - Entwick-
lungsstatus von boden- und bordseitigen Systemen und von operationellen ATM-
Verfahren und Konzepten für ein kooperatives ATM. Technical report, German
Aerospace Center (DLR), Airbus Deutschland GmbH, TU Darmstadt (2005)

4. Korn, B., Helmke, H., Kuenz, A.: 4D Trajectory Managment in the Extended
TMA: Coupling AMAN and 4D FMS for Optimized Approach Trajectories. In:
ICAS 2006 - 25th International Congress of the Aeronautical Sciences, Hamburg,
Germany (2006)

5. Butler, R., Carreno, V., Di Vito, B., Hayhurst, K., Holloway, C., Miner, P., Munoz,
C., Geser, A., Gottliebsen, H.: NASA Langley’s Research and Technology-Transfer
Program in Formal Methods. Technical report, NASA Langley (2002)

6. Butler, R., Geser, A., Maddalon, J., Munoz, C.: Formal Analysis of Air Traffic
Management Systems: The Case of Conflict Resolution and Recovery. In: Winter
Simulation Conference (WSC 2003), New Orleans (2003)

7. Munoz, C., Dowek, G., Carreno, V.: Modelling and Verification of an Air Traf-
fic Concept of Operations. In: International Symposium on Software Testing and
Analysis, Boston, Massachusetts, pp. 175–182 (2004)

8. Degani, A., Heymann, M.: Formal Verification of Human-Automation Interaction.
Human Factors 44(1), 28–43 (2002)

9. Carreno, V., Munoz, C.: Formal Analysis of Parallel Landing Scenarios. In: Digital
Avionics System Conferences, Philadelphia, USA, vol. 1, pp. 175–182 (2000)

10. Werther, B., Moehlenbrink, C., Rudolph, M.: Coloured Petri Net based Formal
Airport Control Model for Simulation and Analysis of Airport Control Processes.
In: Duffy, V.G. (ed.) HCII 2007 and DHM 2007. LNCS, vol. 4561. Springer, Hei-
delberg (2007)

11. Kovacs, A., Nemeth, E., Hangos, K.: Modeling and Optimization of Runway Traf-
fic Flow Using Coloured Petri Nets. In: International Conference on Control and
Automation (ICCA), Budapest, Hungary, vol. 2, pp. 881–886 (2005)

12. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. Software Tools for Technology
Transfer (STTT) 9(3-4), 213–254 (2007)

Cooperative Arrival Management in Air Traffic Control 367

13. Oberheid, H., Gamrad, D., Söffker, D.: Closed Loop State Space Analysis and
Simulation for Cognitive Systems. In: 8th International Conference on Application
of Concurrency to System Design (submitted, 2008)

14. Günther, T., Fricke, H.: Potential of Speed Control on Flight Efficiency. In: ICRAT -
Second International Conference on Research in Air Transportation, pp. 197–201
(2006)

15. Günther, T.: Validierung der Interdependenzen eines Systems zur Ankunftszeitop-
timierung von Flugzeugen in Ergänzung zu einem Arrival Management an einem
Verkehrsflughafen. Diploma thesis, Technical University Dresden (2004)

16. AT&T-Research: GraphViz Manual (2006),
http://www.graphviz.org/Documentation.php

17. Schwarz, D.: Anflugsequenzplanung mit dem A* Algorithmus zur Beschleuni-
gung der Sequenzsuche. Technical Report 112-2005/02, German Aerospace Center
(DLR) (2005)

http://www.graphviz.org/Documentation.php

Process Discovery Using

Integer Linear Programming

J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{j.m.e.m.v.d.werf,b.f.v.dongen,c.a.j.hurkens,a.serebrenik}@tue.nl

Abstract. The research domain of process discovery aims at construct-
ing a process model (e.g. a Petri net) which is an abstract representation
of an execution log. Such a Petri net should (1) be able to reproduce the
log under consideration and (2) be independent of the number of cases
in the log. In this paper, we present a process discovery algorithm where
we use concepts taken from the language-based theory of regions, a well-
known Petri net research area. We identify a number of shortcomings
of this theory from the process discovery perspective, and we provide
solutions based on integer linear programming.

1 Introduction

Enterprise information systems typically log information on the steps performed
by the users of the system. For legacy information systems, such execution logs
are often the only means for gaining insight into ongoing processes. Especially,
since system documentation is usually missing or obsolete and nobody is confi-
dent enough to provide such documentation. Hence, in this paper we consider
the problem of process discovery [7], i.e. we construct a process model describing
the processes controlled by the information system by simply using the execution
log. We restrict our attention to the control flow, i.e., we focus on the ordering
of activities executed, rather than on the data recorded.

Table 1 illustrates our notion of an event log, where it is important to realize
that we assume that every event recorded is related to a single execution of a
process, also referred to as a case.

A process model (in our case a Petri net) discovered from a given execution
log should satisfy a number of requirements. First of all, such a Petri net should
be capable of reproducing the log, i.e. every sequence of events recorded in the
log should correspond to a firing sequence of the Petri net. Second, the size of the
Petri net should be independent of the number of cases in the log. Finally, the
Petri net should be such that the places in the net are as expressive as possible
in terms of the dependencies between transitions they express.

A problem similar to process discovery arises in areas such as hardware design
and control of manufacturing systems. There, the so called theory of regions is
used to construct a Petri net from a behavioral specification (e.g., a language),

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 368–387, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Process Discovery Using Integer Linear Programming 369

Table 1. An event log

case id activity id originator case id activity id originator

case 1 activity A John case 5 activity A Sue
case 2 activity A John case 4 activity C Carol
case 3 activity A Sue case 1 activity D Pete
case 3 activity B Carol case 3 activity C Sue
case 1 activity B Mike case 3 activity D Pete
case 1 activity C John case 4 activity B Sue
case 2 activity C Mike case 5 activity E Claire
case 4 activity A Sue case 5 activity D Claire
case 2 activity B John case 4 activity D Pete
case 2 activity D Pete

such that the behavior of this net corresponds with the specified behavior (if
such a net exists).

In this paper we investigate the application of the theory of regions in the
field of process discovery. It should be noted that we are not interested in Petri
nets whose behavior corresponds completely with the given execution log, i.e.
logs cannot be assumed to exhibit all behavior possible. Instead, they merely
provide insights into “common practice” within a company.

In Section 3, we show that a straightforward application of the theory of re-
gions to process discovery would lead to Petri nets of which the number of places
depends on size of the log. Therefore, in Section 4, we discuss how ideas from
the theory of regions can be combined with generally accepted concepts from
the field of process discovery to generate Petri nets that satisfy the requirements
given above. Furthermore, using the log of Table 1 as an illustrative example, we
show how our approach can lead to Petri nets having certain structural proper-
ties, such as marked graphs, state machines and free-choice nets [14]. Finally, in
Section 5 we present the implementation of our approach in ProM [4], followed
by a brief discussion on its usability on logs taken from practice. In Section 6,
we provide some conclusions.

2 Preliminaries

Let S be a set. The powerset of S is denoted by P(S) = {S′|S′ ⊆ S}. A bag
(multiset) m over S is a function S → IN, where IN = {0, 1, 2, . . .} denotes the set
of natural numbers. The set of all bags over S is denoted by INS . We identify a
bag with all elements occurring only once with the set containing these elements,
and vice versa. We use + and − for the sum and difference of two bags, and
=, <, >,≤,≥ for the comparison of two bags, which are defined in a standard
way. We use ∅ for the empty bag, and ∈ for the element inclusion. We write
e.g. m = 2[p] + [q] for a bag m with m(p) = 2, m(q) = 1 and m(x) = 0, for
all x �∈ {p, q}. We use the standard notation |m| and |S| to denote the number
of elements in bags and sets. Let n ∈ IN. A sequence over S of length n is a

370 J.M.E.M. van der Werf et al.

function σ : {1, . . . , n} → S. If n > 0 and σ(1) = a1, . . . , σ(n) = an, we write
σ = 〈a1, . . . , an〉, and σi for σ(i). The length of a sequence is denoted by |σ|.
The sequence of length 0 is called the empty sequence, and is denoted by ε. The
set of finite sequences over S is denoted by S∗. Let υ, τ ∈ S∗ be two sequences.
Concatenation, denoted by σ = υ · τ is defined as σ : {1, . . . , |υ|+ |τ |} → S, such
that for 1 ≤ i ≤ |υ|, σ(i) = υ(i), and for |υ| + 1 ≤ i ≤ |σ|, σ(i) = τ(i − |υ|).
Further, we define the prefix ≤ on sequences by υ ≤ τ if and only if there exists a
sequence ρ ∈ S∗ such that τ = υ ·ρ. We use x to denote column vectors and for a
sequence σ ∈ S∗, the Parikh vector σ : S → IN defines the number of occurrences
of each element of S in the sequence, i.e. σ(s) = |{i|1 ≤ i ≤ |σ|, σ(i) = s}|, for
all s ∈ S. A subset L ⊆ S∗ is called a language over S. It is prefix-closed if and
only if for all sequences σ = σ′ · a ∈ L holds σ′ ∈ L, for any a ∈ S.

Definition 2.1. (Petri net) A Petri net N is a 3-tuple N = (P, T, F), where
(1) P and T are two disjoint sets of places and transitions respectively; we call
the elements of the set P ∪ T nodes of N ; (2) F ⊆ (P × T) ∪ (T × P) is a flow
relation; an element of F is called an arc.

Let N = (P, T, F) be a Petri net. Given a node n ∈ P ∪ T , we define its preset
•
Nn = {n′|(n′, n) ∈ F}, and its postset n•

N = {n′|(n, n′) ∈ F}. If the context is
clear, we omit the N in the subscript.

To describe the execution semantics of a net, we use markings. A marking
m of a net N = (P, T, F) is a bag over P . Markings are states (configurations)
of a net. A pair (N, m) is called a marked Petri net. A transition t ∈ T is
enabled in a marking m ∈ INP , denoted by (N, m)[t〉 if and only if •t ≤ m.
Enabled transitions may fire. A transition firing results in a new marking m′

with m′ = m− •t + t•, denoted by (N, m) [t〉 (N, m′).

Definition 2.2. (Firing sequence) Let N = (P, T, F) be a Petri net, and
(N, m) be a marked Petri net. A sequence σ ∈ T ∗ is called a firing sequence
of (N, m) if and only if for n = |σ|, there exist markings m1, . . . , mn−1 ∈
INP and transitions t1, . . . , tn ∈ T such that σ = 〈t1, . . . , tn〉, and, (N, m) [t1〉
(N, m1) . . . (N, mn−1)[tn〉. We lift the notations for being enabled and firing to
firing sequences, i.e. if σ ∈ T ∗ be a firing sequence, then for all 1 ≤ k ≤ |σ| and
for all places p ∈ P it holds that m(p) +

∑k−1
i=1 (σi

•(p)− •σi(p)) ≥ •σk(p).

As we stated before, a single execution of a model is called a case. If the model
is a Petri net, then a single firing sequence that results in a dead marking (a
marking where no transition is enabled) is a case. Since most information systems
log all kinds of events during execution of a process, we establish a link between
an execution log of an information system and firing sequences of Petri nets. The
basic assumption is that the log contains information about specific transitions
executed for specific cases.

Definition 2.3. (Case, Log) Let T be a set of transitions, σ ∈ T ∗ is a case,
and L ∈ P(T ∗) is an execution log if and only if for all t ∈ T holds that there
is a σ ∈ L, such that t ∈ σ. In other words, an execution log is a set of firing
sequences of some marked Petri net (N, m) = ((P, T, F), m), where P , F and m
are unknown and where no transition is dead.

Process Discovery Using Integer Linear Programming 371

In Definition 2.3, we define a log as a set of cases. Note that in real life, logs are
bags of cases, i.e. a case with a specific order in which transitions are executed
may occur more than once, as shown in our example. However, in this paper, we
do not have to consider occurrence frequencies of cases and therefore sets suffice.

Recall that the goal of process discovery is to obtain a Petri net that can
reproduce the execution log under consideration. In [11], Lemma 1 states the
conditions under which this is the case. Here, we repeat that Lemma and we
adapt it to our own notation.

Definition 2.4. (Replayable log) Let L ∈ P(T ∗) be an execution log, and
σ ∈ L a case. Furthermore, let N = ((P, T, F), m) be a marked Petri net. If the
log L is a subset of all possible cases of (N, m), i.e. each case in L is a firing
sequence in (N, m) ((N, m)[σ〉), we say that L can be replayed by (N, m).

In order to construct a Petri net that can indeed reproduce a given log, the
theory of regions can be used. In Section 3, we present this theory in detail and
we argue why the classical algorithms in existence are not directly applicable in
the context of process discovery. In Section 4, we show how to extend the theory
of regions to be more applicable in a process discovery context.

3 Theory of Regions

The general question answered by the theory of regions is: given the specified
behavior of a system, what is the Petri net that represents this behavior? Both
the form in which the behavior is specified as well as the “represents” statement
can be expressed in different ways. Mainly, we distinguish two types, the first of
which is state-based region theory [9,12,16]. This theory focusses on the synthesis
of Petri nets from state-based models, where the statespace of the Petri net is
branching bisimilar to the given state-based model. Although state-based region
theory can be applied in the process discovery context [6], the main problem is
that execution logs rarely carry state information and the construction of this
state information from a log is far from trivial [6].

In this paper, we consider language-based region theory [8,13,17], of which [17]
presents a nice overview. In [17], the authors show how for different classes of
languages (step languages, regular languages and partial languages) a Petri net
can be derived such that the resulting net is the smallest Petri net in which the
words in the language are possible firing sequences.

In this section, we introduce the language-based regions, we briefly show how
the authors of [11,17] used these regions in the context of process discovery and
why we feel that this application is not a suitable one.

3.1 Language-Based Theory of Regions

Given a prefix-closed language L over some non-empty, finite set T , the language-
based theory of regions tries to find a finite Petri net N(L) in which the tran-
sitions correspond to the elements in the set T and of which all sequences in

372 J.M.E.M. van der Werf et al.

t1 t2

t4t3

x1

x2

x3

x4

y1

y2

y3

y2

c

Fig. 1. Region for a log with four events

the language are firing sequences. Furthermore, the Petri net should have only
minimal firing sequences not in the language.

The Petri net N(L) = (∅, T, ∅) is a finite Petri net in which all sequences
are firing sequences. However, its behavior not minimal. Therefore, the behavior
of this Petri net needs to be reduced, such that the Petri net still allows to
reproduce all sequences in the language, but does not allow for more behavior.
This is achieved by adding places to the Petri net. The theory of regions provides
a method to calculate these places, using regions.

Definition 3.1. (Region) A region of a prefix-closed language L over T is a
triple (x, y, c) with x, y ∈ {0, 1}T and c ∈ {0, 1}, such that for each non-empty
sequence w = w′ · a ∈ L, w′ ∈ L, a ∈ T :

c +
∑

t∈T

(w′(t) · x(t)−w(t) · y(t)) ≥ 0

This can be rewritten into the inequation system:

c · 1 + A′ · x−A · y ≥ 0

where A and A′ are two |L| × |T | matrices with A(w, t) = w(t), and A′(w, t) =
w′(t), with w = w′ · a. The set of all regions of a language is denoted by �(L)
and the region (0,0, 0) is called the trivial region.1

Figure 1 shows a region for a log with four events, i.e. each solution (x, y, c) of
the inequation system can be regarded in the context of a Petri net, where the
region corresponds to a feasible place with preset {t|t ∈ T, x(t) = 1} and postset
{t|t ∈ T, y(t) = 1}, and initially marked with c tokens. Note that we do not
assume arc-weights, where the authors of [8, 11, 13, 17] do. However, in process
modelling languages, such arc weights typically do not exist, hence we decided
to ignore them. Our approach can however easily be extended to incorporate
them.

Since the place represented by a region is a place which can be added to a
Petri net, without disturbing the fact that the net can reproduce the language
under consideration, such a place is called a feasible place.

1 To reduce calculation time, the inequation system can be rewritten to the form
[1; A′;−A] · r ≥ 0 which can be simplified by eliminating duplicate rows.

Process Discovery Using Integer Linear Programming 373

Definition 3.2. (Feasible place) Let L be a prefix-closed language over T and
let N = ((P, T, F), m) be a marked Petri net. A place p ∈ P is called feasible
if and only if there exists a corresponding region (x, y, c) ∈ �(L) such that
m(p) = c, and x(t) = 1 if and only if t ∈ •p, and y(t) = 1 if and only if t ∈ p•.

In [11, 17] it was shown that any solution of the inequation system of Defini-
tion 3.1 can be added to a Petri net without influencing the ability of that
Petri net to replay the log. However, since there are infinitely many solutions of
that inequation system, there are infinite many feasible places and the authors
of [11, 17] present two ways of finitely representing these places.

Basis representation. In the basis representation, the set of places is chosen
such that it is a basis for the non-negative integer solution space of the linear
inequation system. Although such a basis always exists for homogeneous inequa-
tion systems, it is worst-case exponential in the number of equations [17]. By
construction of the inequation system, the number of equations is linear in the
number of traces, and thus, the basis representation is worst-case exponential
in the number of events in the log. Hence, an event log containing ten thou-
sand events, referring to 40 transitions, might result in a Petri net containing a
hundred million places connected to those 40 transitions. Although [11] provides
some ideas on how to remove redundant places from the basis, these procedures
still require the basis to be constructed fully. Furthermore, the implementation of
the work in [11] is not publicly available for testing and no analysis is presented
of this approach on realistically sized logs.

Separating representation. To reduce the theoretical size of the resulting
Petri net, the authors of [11,17] propose a separating representation. In this rep-
resentation, places that separate the allowed behavior (specified by the system)
using words not in the language are added to the resulting Petri net. Although
this representation is no longer exponential in the size of the language, but poly-
nomial, it requires the user to specify undesired behavior, which can hardly be
expected in the setting of process discovery, i.e. nothing is known about the be-
havior, except the behavior seen in the event log. Furthermore, again no analysis
is presented of this approach on realistically sized logs.

In [11, 17] the authors propose the separating representation for regular and
step languages and by this, they maximize the number of places generated by
the number of events in the log times the number of transitions. As we stated in
the introduction, the size of the Petri net should not depend on the size of the
log for the approach to be applicable in the context of process discovery.

4 Integer Linear Programming Formulation

In [17, 11] it was shown that any solution of the inequation system of Defini-
tion 3.1 can be added to a Petri net without influencing the ability of that Petri
net to replay the log. Both the basis and the separating representation are pre-
sented to select which places to indeed add to the Petri net. However, as shown

374 J.M.E.M. van der Werf et al.

in Section 3, we argue that the theoretical upper bound on the number of places
selected is high. Therefore, we take a different selection mechanism for adding
places that:

– Explicitly express certain causal dependencies between transitions that can
be discovered from the log, and

– Favors places which are more expressive than others (i.e. the added places
restrict the behavior as much as possible).

In this section, we first show how to express a log as a prefix-closed language,
which is a trivial, but necessary step and we quantify the expressiveness of places,
in order to provide a target function, necessary to translate the inequation system
of Definition 3.1 into a integer linear programming problem in Subsection 4.2. In
Section 4.3, we show a first algorithm to generate a Petri net. In Subsection 4.4,
we then provide insights into the causal dependencies found in a log and how
these can be used for finding places. We conclude this section with a description
of different algorithms for different classes of Petri nets.

4.1 Log to Language

To apply the language-based theory of regions in the field of process discovery,
we need to represent the process log as a prefix-closed language, i.e. by all the
traces present in the process log, and their prefixes. Recall from Definition 2.3
that a process log is a finite set of traces.

Definition 4.1. (Language of a process log) Let T be a set of activities, L ∈
P(T ∗) a process log over this set of transitions. The language L that represents
this process log, uses alphabet T , and is defined by:

L = {l ∈ T ∗|∃l′ ∈ L : l ≤ l′}

As mentioned before, a trivial Petri net capable of reproducing a language is a
net with only transitions. To restrict the behavior allowed by the Petri net, but
not observed in the log, we start adding places to that Petri net. However, the
places that we add to the Petri net should be as expressive as possible, which
can be expressed using the following observation. If we remove the arc (p, t) from
F in a Petri net N = (P, T, F) (assuming p ∈ P, t ∈ T, (p, t) ∈ F), the resulting
net still can replay the log (as we only weakened the pre-condition of transition
t). Also if we would add a non-existing arc (t, p) to F , with t ∈ T and p ∈ P , the
resulting net still can replay the log as it strengthens the post-condition of t.

Lemma 4.2. (Adding an incoming arc to a place retains behavior)
Let N = ((P, T, F), m) be a marked Petri net that can replay the process log
L ∈ P(T ∗). Let p ∈ P and t ∈ T such that (t, p) �∈ F . The marked Petri net
N ′ = ((P, T, F ′), m) with F ′ = F ∪ {(t, p)} can replay the log L.

Proof. Let σ = σ1 · t · σ2 ∈ T ∗, such that t �∈ σ1 be a firing sequence of (N, m).
Let m′ ∈ INP such that (N, m) [σ1 · t〉 (N, m′) and (N, m′)[σ2〉 We know that
for all p′ ∈ t•N holds that m′(p′) > 0, since t just fired. Assume t �∈ σ1. Then

Process Discovery Using Integer Linear Programming 375

(N ′, m)[σ1 · t〉(N ′, m′′) with m′′ = m′+[p]. Furthermore, since m′+[p] > m′, we
know that (N ′, m′′)[σ2〉. By induction on the occurrences of t, we get (N ′, m)[σ〉.

�

Lemma 4.3. (Removing an outgoing arc from a place retains behavior)
Let N = ((P, T, F), m) be a marked Petri net that can replay the process log
L ∈ P(T ∗). Let p ∈ P and t ∈ T such that (p, t) ∈ F . The marked Petri net
N ′ = ((P, T, F ′), m) with F ′ = F \ {(p, t)} can replay the log L.

Proof. Let σ = σ1 · t · σ2 ∈ T ∗, such that t �∈ σ1 be a firing sequence of (N, m).
Let m′ ∈ INP such that (N, m) [σ1〉 (N, m′). We know that for all p′ ∈•N t
holds that m′(p′) > 0, since t is enabled. This implies that for all p′ ∈•N ′ t
also holds that m′(p′) > 0, since •

N ′t =•
N t \ {p}. Hence, (N ′, m) [σ1〉 (N ′, m′)

and (N ′, m′) [t〉 (N ′, m′′). Due to monotonicity, we have (N ′, m′′)[σ2〉. Hence
(N ′, m)[σ〉. �

Besides searching for regions that lead to places with maximum expressiveness,
i.e. a place with a maximum number of input arcs and a minimal number of
output arcs, we are also searching for “minimal regions”. As in the region theory
for synthesizing Petri nets with arc weights, minimal regions are regions that are
not the sum of two other regions.

Definition 4.4. (Minimal region) Let L ∈ P(T ∗) be a log, let r = (x, y, c) be
a region. We say that r is minimal, if there do not exist two other, non trivial,
regions r1, r2 with r1 = (x1, y1, c1) and r2 = (x2, y2, c2), such that x = x1 +x2

and y = y1 + y2 and c = c1 + c2.

Using the inequation system of Definition 3.1, the expressiveness of a place and
the partial order on regions, we can define an integer linear programming problem
(ILP formulation [20]) to construct the places of a Petri net in a logical order.

4.2 ILP Formulation

In order to transform the linear inequation system introduced in Section 3 to an
ILP problem, we need a target function. Since we have shown that places are
most expressive if their input is minimal and their output is maximal, we could
minimize the value of a target function f((x, y, c)) = c + 1T · x − 1T · y, i.e.
adding an input arc from the corresponding feasible place increases the value of
1T · x, as does removing an output arc from the corresponding feasible place.

However, it is easy to show that this function does not favor minimal regions,
i.e. regions that are no sum of two other regions. Therefore, we need a target
function f ′, such that for any three regions r1, r2 and r3 with r3 = r1 + r2

holds that f ′(r1) < f ′(r3) and f ′(r2) < f ′(r3), while preserving the property
that regions corresponding to more expressive feasible places have a lower target
value. We propose the function c + 1T(1 · c + A · (x − y)), which is derived as
follows. From Definition 3.1, we have c+

∑
t∈T w(t)(x(t)−y(t)) ≥ 0 for all non-

empty sequences w ∈ L, and since c ≥ 0, this also holds for the empty sequence

376 J.M.E.M. van der Werf et al.

ε ∈ L. Therefore,
∑

w∈L(c +
∑

t∈T (w(t)(x(t) − y(t)))) ≥ 02. Rewriting gives:∑
w∈L(c +

∑
t∈T (w(t)(x(t) − y(t)))) = c +

∑
w∈(L\{ε})(c +

∑
t∈T (w(t)(x(t) −

y(t)))), which we can reformulate to c + 1T(1 · c + A · (x− y)).

Definition 4.5. (Target function) Let L ∈ P(T ∗) be a log, let r = (x, y, c) be
a region and let A be the matrix as in definition 3.1. We define a target function
τ : �(L)→ IN, such that τ(r) = c + 1T(1 · c + A · (x− y)).

We show that the target function of Definition 4.5 indeed satisfies all criteria.

Lemma 4.6. (Target function favors minimal regions) Let L ∈ P(T ∗) be
a log, let r1 = (x1, y1, c1), r2 = (x2, y2, c2) and r3 = (x1 + x2, y1 + y2, c1 + c2)
be three non-trivial regions (i.e. with r3 = r1 + r2). Furthermore, let A be
the matrix defined in Definition 3.1. Let τ : �(L) → IN, such that τ(r) =
c + 1T(1 · c + A · (x− y)). Then τ(r1) < τ(r3) and τ(r2) < τ(r3).

Proof. We proof this lemma by showing that τ(r) > 0 holds for any non-trivial
region r ∈ �(L).

Let r = (x, y, c) ∈ �(L) be a non-trivial region. By Definition 3.1, we have
τ(r) ≥ 0, since A(σ, t) ≥ A′(σ, t) for any σ ∈ L and t ∈ T . If x = y = 0,
then c = 1, and hence τ(r) > 0. If there is a transition t0 ∈ T such that
x(t0) > 0, then there are sequences w, w′ ∈ L such that w = w′ · t0, and
hence w(t0) > w′(t0). Since

∑
t∈T w(t)(x(t) − y(t)) = w(t0)(x(t0) − y(t0)) +∑

t∈T,t�=t0
w(t)(x(t)−y(t)) and w(t0)(x(t0)−y(t0)) > w′(t0)x(t0)−w(t0)y(t0),

we know
∑

w∈L
∑

t∈T w(t)(x(t) − y(t)) >
∑

w∈L
∑

t∈T (w′(t)x(t) − w(t)y(t)).
Therefore,

∑
w∈L(c +

∑
t∈T w(t)(x(t) − y(t))) >

∑
w∈L(c +

∑
t∈T (w′(t)x(t) −

w(t)y(t))) ≥ 0. If x = 0, then there is a transition t0 ∈ T such that y(t0) > 0,
and a sequence w ∈ L such that w(t0) > 0. Furthermore, c +

∑
t∈T w(t)(x(t)−

y(t)) = c−∑
t∈T w(t)y(t). Then c−∑

t∈T w(t)y(t) = c−w(t0)−∑
t∈T,t�=t0

w(t)
y(t). Since w(t0) ≥ 1, and

∑
t∈T,t�=t0

w(t)y(t) ≥ 0, we have c > 0. Since 1T(1 ·
c + A · (x− y)) ≥ 0, we have by definition of τ , τ(r) ≥ c > 0.

Hence τ(r) > 0 for any non trivial r ∈ �(L). �

Lemma 4.6 shows that this target function satisfies our requirements for non-
trivial regions. This does not restrict the generality of our approach, since places
without arcs attached to them are of no interest for the behavior of a Petri net.

Combining Definition 3.1 with the condition set by Lemma 4.6 and the tar-
get function of Definition 4.5, we get the following integer linear programming
problem.

Definition 4.7. (ILP formulation) Let L ∈ P(T ∗) be a log, and let A and A′

be the matrices defined in Definition 3.1. We define the ILP ILPL corresponding
with this log as:

2 We cannot rewrite this to the matrix notation as in Definition 3.1, since matrix A
uses only non-empty sequences, while the empty sequence is in L.

Process Discovery Using Integer Linear Programming 377

Minimize c + 1T · A · (x− y) Defintion 4.5
such that c + A′ · x−A · y ≥ 0 Definition 3.1

1T · x + 1T · y ≥ 1 There should be at least one edge
0 ≤ x ≤ 1 x ∈ {0, 1}|T |

0 ≤ y ≤ 1 y ∈ {0, 1}|T |

0 ≤ c ≤ 1 c ∈ {0, 1}
The ILP problem presented in Definition 4.7 provides the basis for our process

discovery problem. However, an optimal solution to this ILP only provides a
single feasible place with a minimal value for the target function. Therefore, in
the next subsection, we show how this ILP problem can be used as a basis for
constructing a Petri net from a log.

4.3 Constructing Petri Nets Using ILP

In the previous subsection, we provided the basis for constructing a Petri net
from a log. In fact, the target function of Definition 4.5 provides a partial order
on all elements of the set �(L), i.e. the set of all regions of a language. In this
subsection, we show how to generate the first n places of a Petri net, that is (1)
able to reproduce a log under consideration and (2) of which the places are as
expressive as possible.

A trivial approach would be to add each found solution as a negative example
to the ILP problem, i.e. explicitly forbidding this solution. However, it is clear
that once a region r has been found and the corresponding feasible place is
added to the Petri net, we are no longer interested in regions r′ for which the
corresponding feasible place has less tokens, less outgoing arcs or more incoming
arcs, i.e. we are only interested in unrelated regions.

Definition 4.8. (Refining the ILP after each solution) Let L ∈ P(T ∗) be
a log, let A and A′ be the matrices defined in Definition 3.1 and let ILP(L,0)

be the corresponding ILP. Furthermore, let region r0 = (x0, y0, c0) be a mini-
mal solution of ILP(L,0). We define the refined ILP as ILP(L,1), with the extra
constraint specifying that:

−c0 · c + yT · (1− y0)− xT · x0 ≥ −c0 + 1− 1T · x0

Lemma 4.9. (Refining yields unrelated regions) Let L ∈ P(T ∗) be a
log, let A and A′ be the matrices defined in Definition 3.1 and let ILP(L,0) be
the corresponding ILP. Furthermore, let region r0 = (x0, y0, c0) be a minimal
solution of ILP(L,0) and let r1 = (x1, y1, c1) be a minimal solution of ILP(L,1),
where ILP(L,1) is the refinement of ILP(L,0) following Definition 4.8. Then,
c1 < c0 or there exists a t ∈ T , such that x1(t) < x0(t) ∨ y1(t) > y0(t).

Proof. Assume that c1 ≥ c0 and for all t ∈ T holds that x1(t) ≥ x0(t), and
y1(t) ≤ y0(t). Then since c0, c1 ∈ {0, 1} we know that c0 · c1 = c0. Similarily,
y1

T ·(1−y0) = 0 and x0
T ·x1 = x0

T ·1. Hence −c0 ·c1+y1
T ·(1−y0)−x0

T ·x1 =
−c0 − x0

T · 1 and since −c0 − x0
T · 1 < −c0 + 1 − 1T · x0, we know that r1 is

not a solution of ILP(l,0). This is a contradiction. �

378 J.M.E.M. van der Werf et al.

The refinement operator presented above, basically defines an algorithm for con-
structing the places of a Petri net that is capable of reproducing a given log. The
places are generated in an order which ensures that the most expressive places
are found first and that only places are added that have less tokens, less outgo-
ing arcs, or more incoming arcs. Furthermore, it is easy to see that the solutions
of each refined ILP are also solutions of the original ILP, hence all places con-
structed using this procedure are feasible places.

The procedure, however, still has the downside that the total number of places
introduced is worst-case exponential in the number of transitions. Furthermore,
the first n places might be introduced linking a small number of transitions,
whereas other transitions in the net are only linked after the first n places are
found. Since there is no way to provide insights into the value of n for a given
Petri net, we propose a more suitable approach, not using the refinement step
of Definition 4.8. Instead, we propose to guide the search for solutions (i.e. for
places) by metrics from the field of process discovery [5, 7, 15, 21].

4.4 Using Log-Based Properties

Recall from the beginning of this section, that we are specifically interested
in places expressing explicit causal dependencies between transitions. In this
subsection, we first introduce how these causal dependencies are usually derived
from a log file. Then we use these relations in combination with the ILP of
Definition 4.7 to construct a Petri net.

Definition 4.10. (Causal dependency [7]) Let T be a set of transitions and
L ∈ P(T ∗) an execution log. If for two activities a, b ∈ T , there are traces
σ1, σ2 ∈ T ∗ such that σ1 · a · b · σ2 ∈ L, we write a >L b. If in a log L we have
a >L b and not b >L a, there is a causal dependency between a and b, denoted
by a→L b.

In [7], it was shown that if a log L satisfies a certain completeness criterion and
if there exists a Petri net of a certain class [7] that can reproduce this log, then
the >L relation is enough to reconstruct this Petri net from the log. However,
the completeness criterion assumes knowledge of the Petri net used to generate
the log and hence it is undecidable whether an arbitrary log is complete or not.
Nonetheless, we provide the formal definition of the notion of completeness, and
we prove that for complete logs, causal dependencies directly relate to places
and hence provide a good guide for finding these places.

Definition 4.11. (Complete log [7]) Let N = ((P, T, F), m) be a marked
Petri net. Let L ∈ P(T ∗) be a process log. The log L is called complete if and
only if there are traces σ1, σ2 ∈ T ∗ such that (N, m)[σ1 · a · b · σ2〉 implies a >L b.

In [7], the proof that a causal dependency corresponds to a place is only given
for safe Petri nets (where each place will never contain more than one token
during execution). This can however be generalized for non-safe Petri nets.

Process Discovery Using Integer Linear Programming 379

Lemma 4.12. (Causality implies a place) Let N = ((P, T, F), m) be a
marked Petri net. Let L be a complete log of N . For all a, b ∈ T , it holds that if
a �= b and a→L b then a• ∩ •b �= ∅.
Proof. Assume a →L b and a• ∩ •b = ∅. By the definition of >L, there exist
sequences σ1, σ2 ∈ T ∗ such that (N, m)[σ1 · a · b · σ2〉. Let s = m + Nσ1, then
(N, s)[a〉, but also (N, s) [b〉 (N, s′), for some s′ ∈ INP , since a• ∩ •b = ∅. Further
we have ¬(N, s′)[a〉, since otherwise a �→L b. Therefore, (•b \ b•) ∩ •a �= ∅. Let
p ∈ (•b\b•)∩•a. Then, s(p) = 1, since if s(p) > 1, a would be enabled in (N, s′).
Therefore, b is not enabled after firing (σ · a). This is a contradiction, since now
¬(N, s)[a · b〉. �
Causal dependencies between transitions are used by many process discovery
algorithms [5,7,15,21] and generally provide a good indication as to which tran-
sitions should be connected through places. Furthermore, extensive techniques
are available to derive causal dependencies between transitions using heuristic
approaches [7, 15]. In order to find a place expressing a specific causal depen-
dency, we extend the ILP presented in Definition 4.7.

Definition 4.13. (ILP for causal dependency) Let L ∈ P(T ∗) be a log,
let A and A′ be the matrices defined in Definition 3.1 and let ILPL be the
corresponding ILP. Furthermore, let t1, t2 ∈ T and assume t1 →L t2. We define
the refined ILP, ILP(L,t1→t2) as ILPL, with two extra bounds specifying that:

x(t1) = y(t2) = 1

A solution of the optimization problem expresses the causal dependency
t1 →L t2, and restricts the behavior as much as possible. However, such a
solution does not have to exist, i.e. the ILP might be infeasible, in which case no
place is added to the Petri net being constructed. Nonetheless, by considering
a separate ILP for each causal dependency in the log, a Petri net can be con-
structed, in which each place is as expressive as possible and expresses at least
one dependency derived from the log. With this approach at most one place is
generated for each dependency and thus the upper bound of places in N(L) is
the number of causal dependencies, which is worst-case quadratic in the number
of transitions and hence independent of the size of the log.

4.5 Net Types

So far, we presented two algorithms for constructing a Petri net able to replay
a log, using an ILP formulation. The two algorithms presented are generic and
can easily be extended to different log types or to different net classes. In this
subsection, we present possible extensions. For all of these extensions, we briefly
sketch how they affect the ILP, and what the result is in terms of computational
complexity.

Workflow nets. Workflow nets [3] are a special class of Petri nets with a single
marked input place and a single output place which are often used for modelling

380 J.M.E.M. van der Werf et al.

business processes. To search for workflow nets using our ILP approach, we do
not allow for places to be marked, unless they have no incoming arcs. In terms of
the ILP, this simply translates into saying that c = 0 when searching a place for
a causal dependency and to separately search for initial places for each transition
t not expressing a causal dependency, but with c = 1 and 1T · x = 0.

Figure 2 shows a Petri net constructed from the log of Table 1. This Petri net
is almost what we consider to be a workflow net, i.e. it has a clear initial marking
and the initially marked place does not have incoming arcs. When replaying the
log of Table 1 in this net, it is obvious that the net is empty (i.e. no places contain
tokens) after completion of each case, whereas workflow nets should contain a
clearly marked final place when a case is complete. This property can also be
expressed in terms of constraints, by demanding that the Petri net should have
an empty marking after the completion of a case (in most cases, it is then rather
easy to extend such a net to a net with a single output place).

Empty after case completion. Another property which is desirable in process
discovery, is the ability to identify the final marking. Using the ILP formulation
we presented in this paper, this can easily be achieved, by adding constraints

A

B

D

C

E

Fig. 2. Workflow net (without output
place)

A

B

D

C

E

Fig. 3. Marked graph

A

B

D

C

E

Fig. 4. Marked graph, empty after case
completion

A

B(C)

D

C(B)

E

Fig. 5. State machine

A

B(C)

D

C(B)

E

Fig. 6. Free choice

A

B(C)

D

C(B)

E

Fig. 7. Free choice, empty after case com-
pletion

Process Discovery Using Integer Linear Programming 381

ensuring that for all cases in the log which are no prefix of any other case in the
log (or maximum cases), the net is empty when all transitions are fired. These
constraints have the form c + σT · x− aT · y = 0, where σ is the Parikh vector
corresponding to a maximum case σ.

The requirement that the net has to be empty after case completion sometimes
leads to a reduction of the number of feasible places. Consider for example a class
of Petri nets called “marked graphs”.

Marked Graphs. In a marked graph [19], places have at most one input place
and one output place, i.e. 1T · x ≤ 1 and 1T · y ≤ 1. The influence of these con-
straints on the computation time is again negligible, however, these constraints
do introduce a problem, since it is no longer possible to maximize the number
of output arcs of a place (as it is at most 1). However, the procedure will find as
many places with single input single output as possible.

In Figure 3, a marked graph is presented that was constructed from the log
of Table 1. This net is clearly capable of replaying the log. However, after com-
pletion of a case, tokens remain in the net, either in the place before “E” or in
the places before “B” and “C”. When looking for a marked graph that is empty
after case completion, the result is the net of Figure 4.

State machines. State machines [19] are the counterpart of Marked graphs,
i.e. transitions have at most one input place and one output place. It is easy
to see that this cannot be captured by an extension of the ILP directly. The
property is not dealing with a single solution of the ILP (i.e. a single place), but
it is dealing with the collection of all places found.

Nonetheless, our implementation in ProM [4], which we present in Section 5
does contain a naive algorithm for generating state machines. The algorithm
implemented in ProM proceeds as follows. First, the ILP is constructed and
solved, thus yielding a place p to be added to the Petri net. Then, this place is
added and from that point on, for all transitions t ∈ •p, we say that x(t) = 0
and for all transitions t ∈ p•, we say that y(t) = 0. Currently, the order in which
places are found is undeterministic: the first place satisfying the conditions is
chosen, and from that moment on no other places are connected to the transitions
in its pre- and post-set.

Figure 5 shows a possible state machine that can be constructed using the log
of Table 1. Note that transitions “B” and “C” are symmetrical, i.e. the figure
actually shows 2 possible state machines, of which one will be provided by the
implementation.

Free-Choice nets. Similar to state machines, free choice nets [14] impose re-
strictions on the net as a whole, rather than on a single place. A Petri net is
called free choice, if for all of its transitions t1, t2 holds that if there exists a
place p ∈ •t1 ∩ •t2 then •t1 = •t2.

Our implementation allows for the construction of free-choice nets and the
algorithm used works as follows. First, all causal dependencies are placed on
a stack. Then, for the first dependency on the stack, the ILP is solved, thus

382 J.M.E.M. van der Werf et al.

yielding a region (x0, y0, c0) with 1T · y0 > 1 corresponding to a place p with
multiple outgoing arcs to be added to the Petri net. Then, this place is added
and from that point on, constraints are added, saying for all t1, t2 ∈ T with
y0(t1) = y0(t2) = 1 holds that y(t1) = y(t2), i.e all outgoing edges of the place
added to the Petri net appear together, or none of them appears. If after this a
place p1 is found with even more outgoing edges than p, then p1 is added to the
Petri net, p is removed, the constraints are updated and the causal dependencies
expressed by p, but not by p1 are placed back on the stack. This procedure is
repeated until the stack is empty.

It is easy to see that the algorithm presented above indeed terminates, i.e.
places added to a Petri net that call for the removal of existing places always
have more outgoing arcs than the removed places. Since the number of outgoing
arcs is limited by the number of transitions, there is an upper bound to the
number of removals and hence to the number of constraints placed back on
the stack. The algorithm does however put a strain on the computation time,
since each causal dependency is investigated as most as often as the number of
transitions in the log, and hence instead of solving the ILP |T |2 times, it might
be solved |T |3 times. However, since the added constraints have a specific form,
solving the ILP gets quicker with each iteration (due to reduced complexity of
the Branch-and-Bound part) [20].

Figure 6 shows a possible free-choice net that can be constructed using the log
of Table 1. Note that transitions “B” and “C” are again symmetrical. Further-
more, the only difference between this net and the net of Figure 2 is that there
is no arc from the place between “A” and “C” to “E”. Adding this arc would
violate the free-choice property. The fact that this arc is not there however does
violate the property that the net is empty after case completion. Figure 7 shows
a free-choice net that is empty after case completion. However, this net is no
longer a so-called elementary net.

Pure nets. Before introducing elementary nets, we first define pure nets [18],
since elementary nets are pure. In a pure net, no self-loops occur. By adding
a constraint x(t) + y(t) ≤ 1, for each transition t ∈ T , each transition either
consumes or produces tokens in a place, but not both at the same time. This pro-
cedure slightly increases the size of the ILP problem (with as many constraints
as transitions found in the log), thus resulting in a slight increase in computation
time. However, since most logs have far more prefixes than actual transitions,
the overall effect is negligible.

Elementary nets. Elementary Petri nets [17] are nets in which transitions can
only fire when their output places are empty. This can easily be worked into
the ILP, as shown in [17]. Two sets of constraints are required. First, self-loops
are explicitly forbidden since elementary nets are pure and then, by adding the
constraints c+1T ·A ·x−1T ·A ·y ≤ 1 it is ensured that after firing a transition
each of its output places should contain at most one token. State machines,
marked graphs and free-choice nets can all be made elementary this way. When
requiring an elementary net however, the problem size doubles (there are twice

Process Discovery Using Integer Linear Programming 383

as many constraints) and since the execution time is exponential in the size of
the problem, the worst-case execution time is squared.

In this section, we presented a way of constructing a Petri net from an exe-
cution log using an ILP formulation. We presented a large number of net types
and extensions to get a Petri net satisfying criteria set by a user. The figures on
page 380 nicely show that with different sets of constraints, different models can
be produced.

Although we used a toy example to illustrate the different concepts, we intro-
duce our implementation embedded in the process discovery framework ProM,
which is capable of constructing nets for logs with thousands of cases referring
to dozens of transitions.

5 Implementation in ProM

The (Pro)cess (M)ining framework ProM [4] has been developed as a completely
plugable environment for process discovery and related topics. It can be extended
by simply adding plug-ins, and currently, more than 200 plug-ins have been
added. The ProM framework can be downloaded from www.processmining.org.

In the context of this paper, the “Parikh language-based region miner” was
developed, that implements the algorithms presented in Section 4. The Petri nets
on Page 380 were all constructed using our plugin. For solving ILP problems, the
open-source solver LpSolve [1] is used. Although experiments with CPlex [2] have
been conducted, we feel that the use of the open-source alternative is essential: it
allows for distribution of ProM, as well as reproducibility of the results presented
in this paper.

Note that the plugin is also capable of dealing with partially ordered logs,
i.e. logs where all cases are represented by partial orders on its events. The
construction of the ILP in that case is largely the same as for the totally ordered
cases as presented in [17, 11] and as included in VIPtool [10].

5.1 Numerical Analysis

Using the implementation in ProM, we performed some performance analysis
on our approach. We tested our algorithm on a collection of logs with varying
numbers of transitions and varying numbers of cases, using the default settings
of our plugin, which include the constraints for elementary nets and empty nets
after case completion. Furthermore, we used logs that are distributed with the
release of ProM and causal dependencies are used for guiding the solver.

Note that solving an ILP problem consists of two stages. The first stage uses
the Simplex algorithm, which is worst-case exponential, but generally outper-
forms polynomial algorithms, and the second phase, which is an exponential
search.

The results presented in Table 2 show that adding cases to a log referring
to a given number of transitions increases the necessary calculation time in a

www.processmining.org

384 J.M.E.M. van der Werf et al.

F
ig

.
8
.
P

ro
M

Process Discovery Using Integer Linear Programming 385

Table 2. Numerical analysis results

log # transitions # variables # cases # events # constraints time (hh:mm:ss.sss)
a12f0n00 1 12 25 200 618 54 0.406
a12f0n00 1 600 1848 54 0.922
a12f0n00 3 1000 3077 54 1.120
a12f0n00 4 1400 4333 54 1.201
a12f0n00 5 1800 5573 54 1.234
a22f0n00 1 22 45 100 1833 1894 1:40.063
a22f0n00 2 300 5698 4350 5:07.344
a22f0n00 3 500 9463 5863 7:50.875
a22f0n00 4 700 13215 7238 10:24.219
a22f0n00 5 900 16952 8405 12:29.313
a32f0n00 1 32 65 100 2549 3352 32:14.047
a32f0n00 2 300 7657 7779 1:06:24.735
a32f0n00 3 500 12717 10927 1:46:34:469
a32f0n00 4 700 17977 13680 2:43:40.641
a32f0n00 5 900 23195 15978 2:54:01.765

seemingly sub-linear fashion3, however this might not be the case in general.
Figure 8 shows a screenshot of ProM, showing the Petri nets discovered for the
log “a22” with 300 cases in the bottom right corner. The settings dialog for our
plugin is shown in the top-left corner.

Since for the log “a12” the number of constraints remains constant for different
log sizes, the increase in processing time is only due to the overhead of calculating
the causal dependencies, which is polynomial in the size of the log. For the other
logs however, the increase in processing time is due to the fact that adding
constraints influences the first phase of solving an ILP problem, but not the
second phase which is far more complex. Furthermore, our experiments so-far
show an almost linear dependency between the number of cases in the log and
the execution time, although this might not be the case in general.

On the other hand, when increasing the number of transitions (i.e. the number
of variables) instead of the number of cases, the branch-and-bound phase is
heavily influenced. Hence the computation time increases exponentially, since the
branch-and-bound algorithm is worst-case exponential. However, these results
show that the execution time is still feasible, i.e. results for a large log can be
generated overnight.

6 Conclusion and Future Work

In this paper we presented a new method for process discovery using integer
linear programming (ILP). The main idea is that places restrict the possible
firing sequences of a Petri net. Hence, we search for as many places as possible,
such that the resulting Petri net is consistent with the log, i.e. such that the
Petri net is able to replay the log.

The well-known theory of regions solves a similar problem, but for finite lan-
guages. Finite languages can be considered as prefix closures of a log and the

3 These calculations were performed on a 3 GHz Pentium 4, using ProM 4.2 and
LpSolve 5.5.0.10 running Java 1.5. The memory consumption never exceeded 256MB.

386 J.M.E.M. van der Werf et al.

theory of regions tries to synthesize a Petri net which can reproduce the language
as precisely as possible. In [11,17] this idea is elaborated and the problem is for-
malized using a linear inequation system. However, the Petri nets synthesized
using the approach of [11, 17] scale in the number of events in the log, which is
undesirable in process discovery.

In this paper, we build on the methods proposed in [11, 17]. First of all we
have defined an optimality criterion transforming the inequation system into an
ILP. This ILP is than solved under different conditions, such that the places of
a Petri net capable of replaying the log are constructed.

The optimality criterion we defined is such that it guarantees that more ex-
pressive places are found first, i.e. places with less input arcs and more output
arcs are favored. Furthermore, using the causality relation that is used in the
alpha algorithm [7], we are able to specifically target the search to places ex-
pressing this relation. This causality relation is generally accepted in the field
of process discovery and, under the assumption the log is complete, is shown to
directly relate to places. Furthermore, the size of the constructed Petri net is
shown to be independent on the number of events in the log, which makes this
approach applicable in more practical situations.

Using additional constraints, we can enforce structural net properties of the
discovered Petri net, such as the freedom of choice. It is clear that not all these
constraints for structural properties lead to feasible solutions, but nonetheless,
we always find a Petri net that is consistent with the log. For all our constraints
we provide lemmas motivating these constraints.

The numerical quality of our approach is promising: we can discover nets with
about 25 transitions and a log with about 1000 cases in about 15 minutes on a
standard desktop PC. Moreover, while the execution time of our method appears
to scale sub-linear in the size of the log, although this needs to be validated more
thoroughly.

Since each place can be discovered in isolation, it seems to be easy to parallelize
the algorithm and to use grid computing techniques to speed up the computa-
tion time. Other open questions concern the expression of more structural and
behavioral properties into linear constraints and the use of this algorithms in a
post-processing phase of other algorithms.

References

1. LP Solve Reference guide, http://lpsolve.sourceforge.net/5.5/
2. ILOG CPLEX, ILOG, Inc. (2006), http://www.ilog.com/products/cplex/
3. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.

(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)
4. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., et al.: ProM 4.0: Com-

prehensive Support for Real Process Analysis. In: Kleijn, J., Yakovlev, A. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)

5. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering 47(2), 237–267 (2003)

http://lpsolve.sourceforge.net/5.5/
http://www.ilog.com/products/cplex/

Process Discovery Using Integer Linear Programming 387

6. van der Aalst, W.M.P., Rubin, V., van Dongen, B.F., Kindler, E., Günther, C.W.:
Process Mining: A Two-Step Approach using Transition Systems and Regions.
Acta Informatica (submitted, 2007)

7. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Dis-
covering Process Models from Event Logs. Knowledge and Data Engineering 16(9),
1128–1142 (2004)

8. Badouel, E., Bernardinello, L., Darondeau, Ph.: Polynomial Algorithms for the
Synthesis of Bounded Nets. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M.
(eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–378.
Springer, Heidelberg (1995)

9. Badouel, E., Darondeau, Ph.: Theory of regions. In: Reisig, W., Rozenberg, G.
(eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

10. Bergenthum, R., Desel, J., Juhás, G., Lorenz, R.: Can I Execute My Scenario in
Your Net? VipTool Tells You! In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN
2006. LNCS, vol. 4024, pp. 381–390. Springer, Heidelberg (2006)

11. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

12. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
from Finite Transition Systems. IEEE Transactions on Computers 47(8), 859–882
(1998)

13. Darondeau, P.: Deriving Unbounded Petri Nets from Formal Languages. In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–548.
Springer, Heidelberg (1998)

14. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

15. van Dongen, B.F.: Process Mining and Verification. PhD thesis, Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands (2007)

16. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica 27(4), 315–368 (1989)

17. Lorenz, R., Juhás, R.: How to Synthesize Nets from Languages - a Survey. In:
Proceedings of the Wintersimulation Conference (WSC) 2007 (2007)

18. Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall, En-
glewood Cliffs (1981)

19. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer
Science: An EATCS Series, vol. 4. Springer, Berlin (1985)

20. Schrijver, A.: Theory of Linear and Integer programming. Wiley-Interscience,
Chichester (1986)

21. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineer-
ing 10(2), 151–162 (2003)

Synthesis of Petri Nets from Scenarios with VipTool

Robin Bergenthum, Jörg Desel, Robert Lorenz, and Sebastian Mauser�

Department of Applied Computer Science,
Catholic University of Eichstätt-Ingolstadt

firstname.lastname@ku-eichstaett.de

Abstract. The aim of this tool paper is twofold: First we show that VipTool [9,2]
can now synthesize Petri nets from partially ordered runs. To integrate this exten-
sion and further new functionalities, we changed the architecture of VipTool to a
flexible plug-in technology. Second we explain how VipTool including the syn-
thesis feature can be used for a stepwise and iterative formalization and validation
procedure for business process Petri net models. The synthesis functionalities fill
a gap in a previously defined procedure [9,7] where the first definition of an initial
process model had to be done ”by hand”, i.e. without any tool support.

1 Introduction

Automatic generation of a system model from a specification of its behaviour in terms of
single scenarios is an important challenge in many application areas. Examples of such
specifications occurring in practice are workflow descriptions, software specifications,
hardware and controller specifications or event logs recorded by information systems.

In the field of Petri net theory, algorithmic construction of a Petri net model from
a behavioural specification is known as synthesis. Synthesis of Petri nets has been a
successful line of research since the 1990s. There is a rich body of nontrivial theoretical
results, and there are important applications in industry, in particular in hardware system
design, in control of manufacturing systems and recently also in workflow design.

The classical synthesis problem is the problem to decide whether, for a given be-
havioural specification, there exists an unlabelled Petri net, such that the behaviour of
this net coincides with the specified behaviour. In the positive case, a synthesis algo-
rithm constructs a witness net. For practical applications, the main focus is the compu-
tation of a system model from a given specification, not the decision of the synthesis
problem. Moreover, applications require the computation of a net, whether or not the
synthesis problem has a positive answer. To guarantee a reasonable system model also
in the negative case, in this paper, the synthesized model is demanded to be the best
(a good) upper approximation, i.e. a net including the specified behaviour and having
minimal (few) additional behaviour (for details see [12,1]).

Theoretical results on synthesis mainly differ w.r.t. the considered Petri net class and
w.r.t. the considered model for the behavioral specification. Synthesis can be applied
to various classes of Petri nets, including elementary nets [10,11], place/transition nets
(p/t-nets) [1] and inhibitor nets [13]. The behavioural specification can be given by a

� Supported by the project ”SYNOPS” of the German Research Council.

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 388–398, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Synthesis of Petri Nets from Scenarios with VipTool 389

transition system representing the sequential behaviour of a system or by a step transi-
tion system additionally considering steps of concurrent events [1]. Synthesis can also
be based on a language. Languages can be finite or infinite sets of occurrence sequences,
step sequences [1] or partially ordered runs [12]. Despite of this variety, the synthesis
methods follow one common theoretical concept, the so called theory of regions.

Although there is a wide application field, there is only few tool support for Petri net
synthesis so far. Synthesis of labelled elementary nets from transition systems is imple-
mented in the tool Petrify [6]. Petrify is tailored to support hardware system design by
synthesizing asynchronous controllers from signal transition graphs (both modelled as
Petri nets). The process mining tool ProM [15] uses synthesis methods to automatically
generate a process model (given by a Petri net) from so called event logs. Event logs
specify a set of occurrence sequences. But ProM does not offer pure Petri net synthesis
algorithms. Synet [5] is a software package synthesizing bounded p/t-nets from transi-
tion systems. Synet supports methods for the synthesis of so called distributable Petri
nets (consisting of distributed components which communicate by asynchronous mes-
sage passing). It was applied in the area of communication protocol design. However,
the authors point out that the tool should be considered as a preliminary prototype rather
than a stable and robust tool.

This paper presents a new synthesis tool. The tool supports for the first time syn-
thesis of place/transition-nets from a set of partially ordered runs. The set of partially
ordered runs models alternative executions of a place/transition-net. The tool is imple-
mented as an extension of VipTool [9,2], which was originally designed at the Univer-
sity of Karlsruhe within the research project VIP (Verification of Information systems
by evaluation of Partially ordered runs) as a tool for modelling, simulation, validation
and verification of business processes using (partially ordered runs of) Petri nets. With
this new synthesis package all aspects concerned with partially ordered runs of Petri
nets – namely synthesis, unfolding (combined with respective validation) and testing
of executability (see Figure 1) – are covered by VipTool. So far, the synthesis package
is restricted to synthesis from finite sets of partially ordered runs as described in [12].
Typical applications of synthesis only have to deal with finite specifications. Since oc-
currence sequences and step sequences are special cases of partially ordered runs, the
synthesis algorithms are applicable for all kinds of finite languages. Two conceptually
different synthesis methods are implemented, covering the major language based syn-
thesis approaches described in the literature [13]. The main approaches to deal with
finite representations of infinite languages will be implemented in the near future.

Due to the growth of the number of functionalities of VipTool, we redesigned Vip-
Tool in a flexible open plug-in architecture. Algorithms are implemented as plug-ins.

There are many Petri net tools for modelling and analysis, but VipTool occupies a
special niche: VipTool is the only tool offering a comprehensive bundle of methods (see
Figure 1 for an overview) concerned with causality and concurrency modelled by par-
tially ordered runs of Petri nets (other tools concerned with partial order behaviour of
Petri nets focus on model checking techniques employing unfoldings, but not on causal-
ity and concurrency). In contrast to occurrence and step sequences, partially ordered
runs allow to represent arbitrary concurrency relations between events. Therefore, they
are very well suited for the modelling of scenarios of concurrent systems. Advantages

390 R. Bergenthum et al.

Synthesis

Unfolding

Executability
Test

Validation on
Unfolding

A B
2

Petri Net

B
A

B A

„Computation of all
partially ordered runs

(or process nets)“

„Computation of a net
having the specified

behaviour“

„Implementation of
specifications and
computation which

partially ordered runs
satisfy the

specifications“

„Check whether a
partially ordered run is

executable in a net“

Partially Ordered Runs

Fig. 1. Sketch of the key functionalities of VipTool

over sequential scenarios are in intuition, efficiency and expressiveness [7,9]. In partic-
ular, to specify system behaviour, instead of considering sequential scenarios and trying
to detect possible concurrency relations from a set of sequential scenarios, it is much
easier and intuitive to work with partially ordered runs.

Starting with a specification of a distributed system in terms of partially ordered runs,
the synthesis package of VipTool is used for the generation of prototypes, to uncover
system faults or additional requirements using Petri net analysis, to evaluate design
alternatives, to visualize a specification or even for the automatic generation of final
system models (see [7,8,9,14] for the significance of scenarios in requirements engi-
neering and system design). In the remainder of this section, we explain how to apply
the synthesis package in business process design and how the new functionalities work
together with the existing validation and verification concepts of VipTool.

One of the main issues of modelling a business process is analysis. Obviously, anal-
ysis requires a high degree of validity of the model with respect to the actual business
process in the sense that the model faithfully represents the process. For complex busi-
ness processes, a step-wise design procedure, employing validation of specifications
and verification of the model in each step, was suggested in [7,9]. As shown in [2,9],
so far VipTool supported most steps of this approach (see also Figure 1). It generates
occurrence nets representing partially ordered runs of Petri net models. Specifications
can be expressed on the system level by graphical means. Occurrence nets are analyzed
w.r.t. these specified properties. Runs that satisfy a behavioural specification are distin-
guished from runs that do not agree with the specification. The algorithms of VipTool
for testing executability of scenarios offer functionalities for detailed validation and ver-
ification of the model or a specification w.r.t. single runs. A complicated step that is not
supported by previous VipTool versions is the creation of an initial Petri net model for
the design procedure. The classical approach to develop a process model is identifying

Synthesis of Petri Nets from Scenarios with VipTool 391

tasks and resources of the process and then directly designing the control-flow. The
validity of the model is afterwards checked by examining its behaviour in comparison
to the behaviour of the business process. Using synthesis algorithms (as supported by
VipTool) the procedure changes [8]. The desired behaviour of the model constitutes
the initial point. First scenarios (in some contexts also called use cases) of the business
process are collected. Then the process model is automatically created. In this approach
the main task for the user is to design appropriate scenarios of the process (exploiting
descriptions of known scenarios that have to be supported by the business process).
Usually, it is less complicated to develop and model single scenarios of a process than
directly modelling the process as a whole. In particular, in contrast to a complete pro-
cess model, scenarios need not be designed by some modelling expert, but they may
also be designed independently by domain experts.

In Section 2 we survey the new architecture and the features of VipTool. In Section 3
the new synthesis functionalities are illustrated with a small case study.

2 Architecture and Functional Features of VipTool

In this section we provide a detailed description of the functionalities and the architec-
ture of VipTool. VipTool is a platform independent software tool developed in Java. Its
previous versions [9,2] were standalone applications providing functionalities for the
analysis of partially ordered runs of Petri nets based upon a Java Swing GUI. Due to
the growth of functionalities and to increase feature extensibility we redesigned Vip-
Tool as an open plug-in architecture. The focus is still on algorithms concerned with
partially ordered runs. VipTool uses only standard Java libraries and a GUI developed
with the Java swing widget toolkit. It is implemented strictly following advanced ob-
ject oriented paradigms. In the development of VipTool, we accounted for professional
standards such as design patterns, coding conventions, a bug-tracking system and an
extensive documentation. The following paragraph gives an overview of the new archi-
tecture of VipTool.

The VipTool core platform offers a flexible plug-in technology. The so-called exten-
sion manager serves as the foundation for the integration of plug-ins. More precisely,
it provides functions to load plug-ins into VipTool. Additionally, the core platform pro-
vides definition and implementation of basic GUI elements and related actions, project
management functionalities, job scheduling organization as well as system-wide con-
figurations. Development of plug-ins is supported by the VipTool SDK library. VipTool
SDK provides appropriate interfaces that can be implemented by plug-ins as well as
interfaces arranging the connection to the VipTool core platform. VipTool SDK also in-
cludes some key support classes. Embedding of plug-ins into the GUI of the core plat-
form is managed via xml-specifications supporting easy extensibility and scalability.
That means, xml-files are used to configure the GUI of VipTool by adequately adding
and extending menus, buttons, etc. relating to respective plug-ins. The functional com-
ponents of VipTool are arranged in an open plug-in architecture connectable to the
core platform by the extension manager. Figure 2 depicts this architecture, where the
functional component plug-ins are bundled to packages including homogeneous func-
tionalities. Component dependencies are indicated by arrows.

392 R. Bergenthum et al.

VipTool Core Platform

GUI
Project
Management

Job
Scheduling

Configurations

Extension
Manager

VipTool SDK

Plug-Ins
Synthesis Package

GUI

SynTokenFlowBasisSynTokenFlowBasis

SynTransitionSeparSynTransitionSepar

PostProcessing

SynTokenFlowBasisSynTokenFlowBasis

PostProcessing

SynTokenFlowBasis

PostProcessing

SynTokenFlowBasis

OptimisticEqualityTest

Unfolding Package

SynTokenFlowBasisSynTokenFlowBasis

SynTransitionSeparValidationOfOccNets

SynTokenFlowBasisSynTokenFlowBasisSynTokenFlowBasisUnfoldingOccNetDepth

UnfoldingRunTokenFlow

PostProcessing

Executability
Package

SynTransitionSeparExecutabilityTest

PostProcessingPostProcessingPostProcessingMinExecutabilityTest

Graph Package

GeneralLayoutAcyclicLayoutProcessNet

LPartialOrderPetriNetGraphne
w

ne
w

ne
w

ne
w

ne
w

ne
w

ne
w

Fig. 2. Architecture of VipTool

The key functionalities of previous VipTool versions have been extracted and reim-
plemented in independent plug-ins. In Figure 2, new components of VipTool are dis-
tinguished from reimplemented functionalities by a ”new”-label. Since the number of
supported graph and Petri net classes grew, we decided to define graph classes as gen-
eral as possible in a special plug-in and to implement editing and user interaction func-
tionalities for certain graph classes as additional plug-ins (”Graph Package”). Plug-ins
providing algorithmic functionalities (”Synthesis Package”, ”Unfolding Package”, ”Ex-
ecutability Package”) can be executed in different threads using the job system of the
core platform. Plug-ins may communicate with the core platform according to arbi-
trary communication patterns. The implementation of useful standard communication
patterns for algorithmic plug-ins such as status messages, progress bars and logging
information is supported by special interfaces of VipTool SDK. Algorithms can ma-
nipulate data by using common datastructures defined in Java classes and interfaces
of certain plug-ins. To simplify integration of components developed independently or
cooperatively by different teams, VipTool also supports easy data exchange between
plug-ins and the core platform using xml-files, e.g. pnml-files in the case of Petri nets
(pnml is a widely acknowledged standard exchange format for Petri nets) and lpo-files
in the case of partially ordered runs (lpo is an xml-file format in the style of pnml). Thus,
common datastructures among plug-ins are not required, facilitating extensibility, scal-
ability, composability and reusability of VipTool functionalities. Respective xml-files
are arranged by the core platform in workspaces and projects, allowing an arbitrary
subfolder structure. The core platform supports a project tree window to offer easy file

Synthesis of Petri Nets from Scenarios with VipTool 393

management. This is important for flexible and easy invocation of algorithms because
the various functionalities have different and partly complex input and output types.

Short descriptions of the VipTool plug-ins shown in Figure 2:

Graph Package
Graph: Provides basic graph classes and interfaces. This plug-in forms the foundation
of the ”PetriNet”, ”LPartialOrder” and ”ProcessNet” plug-in.
PetriNet: Includes Petri net visualization and editing functionalities as well as simple
interactive features such as playing the token game and showing pre- and post-sets.
LPartialOrder: Supports visualization and design of partially ordered runs by labelled
partial orders and offers some related functionalities such as computing the transitive
closure of a binary relation or the skeleton of a partial order.
ProcessNet: Provides visualization functionalities for occurrence nets.
Acyclic Layout: Offers automatic layout functionalities for directed acyclic graphs such
as labelled partial orders and occurrence nets (based on the Sugiyama algorithm).
General Layout: Offers automatic layout functionalities for general graphs such as Petri
nets (based on the spring embedder algorithm by Fruchterman and Reingold).

Synthesis Package
SynTokenFlowBasis: Implements the constructive part of the synthesis algorithm for
place/transition Petri nets from a finite set of partially ordered runs as described in
[4,12]. So called token flow regions and a finite representation by basis regions are ap-
plied [13] (employing the algorithm of Chernikova). The result of the algorithm is a net
representing a best upper approximation to the specified behaviour.
SynTransitionSepar: Implements the constructive part of a synthesis algorithm for place/
transition Petri nets from a finite set of partially ordered runs using a translation to step
sequences (based on methods described in [1]). So called transition regions and a finite
representation by separating regions are applied [13] (employing the Simplex method).
The result of the algorithm is either a negative answer to the synthesis problem com-
bined with a net, illustrating the reason for the negative answer, or a net representing a
best upper approximation to the specified behaviour. In the first case the computed net
is a good upper approximation but not necessarily a best upper approximation to the
specified behaviour (although a best upper approximation exists).
OptimisticEqualityTest: Implements the optimistic equality test described in [4,12] using
the newly developed unfolding plug-in ”UnfoldingRunTokenFlow” (employs a graph
isomorphism test between single partially ordered runs by a branch-and-bound proce-
dure optimized for partially ordered runs [4]). It shows if the behaviour of a net synthe-
sized by the ”SynTokenFlowBasis” or the ”SynTransitionSepar” plug-in matches the
specified behaviour. In the positive case the synthesis problem has a positive answer,
otherwise a negative answer.
PostProcessing: Contains a simple and very fast method to delete implicit places
from a net. This reduces the size of nets synthesized with the ”SynTokenFlowBa-
sis” or the ”SynTransitionSepar” plug-in. More advanced post-processing methods are
planned.

394 R. Bergenthum et al.

Unfolding Package
UnfoldingOccNetDepth: Unfolds a Petri net to its occurrence nets (following standard
techniques). Occurrence nets are constructed on the fly in a depth first order. Also con-
struction of the branching process including cut-off criteria is supported. See also [9].
ValidationOfOccNets: Allows to specify graphically certain properties of a Petri net,
like specific forms of forbidden and desired behaviour. The set of runs, computed by
the ”UnfoldingOccNetDepth” plug-in, is divided into these runs, which fulfill the spec-
ifications, and runs, which do not fulfill at least one of the specifications. See also [9].
UnfoldingRunTokenFlow: Implements the unfolding algorithm to construct the set of all
partially ordered runs of a Petri net described in [3]. The algorithm applies an innovative
unfolding concept based on token flows, which in the case of general place/transition-
nets is considerably superior to standard unfolding algorithms in time and memory
consumption. This is in particular important to improve the runtime of the ”OptimisticE-
qualityTest”, which depends on an unfolding algorithm. The algorithm does not regard
cut-off criteria.

Executability Package
ExecutabilityTest: Supports the polynomial test, whether a given partially ordered run
is executable in a given Petri net, explained in [2] (employing methods from the theory
of flow networks). The plug-in facilitates failure analysis and constructs an occurrence
net corresponding to a checked partially ordered run. See also [2].
MinExecutabilityTest: Offers an algorithm to compute whether a partially ordered run,
executable in a Petri net, is minimal executable (based on the plug-in ”Executabili-
tyTest”). See also [2].

3 Case Study

We briefly illustrate the new synthesis functionalities of VipTool by a simple case study.
We consider the workflow caused by a damage report in an insurance company, i.e.
how a claim is processed. The workflow is described by possible (alternative) scenarios
of the business process represented by partially ordered runs (note that it is enough
to consider maximal runs with minimal causality). A Petri net model of the business
process is automatically generated either by the ”SynTokenFlowBasis” plug-in or the
”SynTransitionSepar” plug-in.

Figure 3 shows the partially ordered runs modelled in VipTool and the nets com-
puted with the synthesis plug-ins. There are three possible scenarios: All start with the
registration of the loss form submitted by the client (task ”Register”), followed by two
concurrent tasks ”Check Damage” and ”Check Insurance”. The latter models checking
validity of the clients insurance, the former represents checking of the damage itself.
Scenario 1 models the situation that both checks are evaluated positively, meaning that
the damage is payed (task ”Pay Damage”) after the two checks. If one evaluation is neg-
ative, the company sends a refusal letter. Thus the task ”Send Refusal Letter” is either
performed after a negative evaluation of the task ”Check Damage” (scenario 2) or after
a negative evaluation of the task ”Check Insurance” (scenario 3).

Combining these three scenarios to a Petri net by synthesis algorithms yields the net
damageReportTF in the case of the ”SynTokenFlowBasis” plug-in (and the ”PostPro-

Synthesis of Petri Nets from Scenarios with VipTool 395

Fig. 3. Screenshot of VipTool showing the standard user interface

cessing” plug-in) and the net damageReportSSS in the case of the ”SynTransitionSepar”
plug-in. Both nets faithfully represent the considered business process. The test by the
”OptimisticEqualityTest” plug-in is positive in both cases. While the net damageRe-
portSSS is nearly the simplest Petri net implementation of the considered business
process, the net damageReportTF is complicated. This shows that the ”SynTokenFlow-
Basis” plug-in requires advanced post-processing methods for better readable results.

Figure 4 depicts the scenarios of a more complex variant of the above workflow.
The refusal letter can still be sent after the completion of both parallel ”Check” tasks
if one is evaluated negatively (scenario 1). But if a negative evaluation of one ”Check”
task already causes sending a refusal letter, while the other ”Check” task has not been
performed yet, this second ”Check” task has to be disabled (i.e. it does not occur in a
respective scenario), since it is no longer necessary (scenario 2 and 3). If both ”Check”
tasks are evaluated positively, an acceptance letter is sent (scenario 4-6). Then either the
damage is immediately payed (scenario 4) or additional queries to improve estimation
of the loss are asked one (scenario 5) or two (scenario 6) times before the damage is
payed. Additionally all six scenarios include the task ”Set Aside Reserves”. This task is
performed after the ”Register” task in a subprocess concurrent to all other tasks except
for ”Pay Damage”. Since the damage is payed from the respective reserves, the reserves

396 R. Bergenthum et al.

Fig. 4. Screenshot of VipTool showing the user interface of the editor for partially ordered runs

Fig. 5. Screenshot of VipTool showing the user interface of the editor for Petri nets

have to be built up first. Reserves are set aside in any situation, since, in the case the
insurance company rejects paying, the reserves have to cover the risk of a lawsuit.

Figure 5 shows the net damageReportComplexSSS synthesized with the ”SynTran-
sitionSepar” plug-in from the set of partially ordered runs depicted in Figure 4. The
net represents a very compact model of the described complex business process. The
”OptimisticEqualityTest” yields a positive answer.

The example gives an intuition for our assumption that directly designing a Petri
net model of a business process is often challenging, while modelling scenarios and

Synthesis of Petri Nets from Scenarios with VipTool 397

synthesizing a net is easy. Manually developing a complex Petri net such as the net
damageReportComplexSSS for the described business process is an error-prone task,
but the design of the six scenarios 1-6 is straightforward, yielding automatically a Petri
net by synthesis algorithms.

4 Conclusion

In this paper we surveyed the new synthesis package of VipTool and its applicability
in business process design. Discussion of the computational complexity of the imple-
mented synthesis algorithms and experimental results (showing the limitations of the
algorithms) can be found in [4] and in a journal version of [12] accepted for Funda-
menta Informaticae. The current version of VipTool can freely be downloaded from
”http://www.ku-eichstaett.de/Fakultaeten/MGF/Informatik/Projekte/Viptool”.

Next steps in the development of VipTool are the implementation of functionalities
tuning VipTool to better practical applicability. This includes methods to

– improve the performance of the algorithms of the ”Unfolding”, ”Synthesis” and
”Executability” package,

– improve the ”PostProcessing” plug-in,
– include further synthesis variants,
– further improve editing functionalities of the ”Graph” package,
– deal with high-level nets.

We acknowledge the work of all other members of the VipTool development team:
Thomas Irgang, Leopold von Klenze, Andreas Klett, Christian Kölbl, Robin Löscher.

References

1. Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN
1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

2. Bergenthum, R., Desel, J., Juhás, G., Lorenz, R.: Can I Execute My Scenario in Your Net?
Viptool Tells You! In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024,
pp. 381–390. Springer, Heidelberg (2006)

3. Bergenthum, R., Lorenz, R., Mauser, S.: Faster Unfolding of General Petri Nets. In: AWPN
2007, pp. 63–68 (2007)

4. Bergenthum, R., Mauser, S.: Experimental Results on the Synthesis of Petri Nets from Partial
Languages. In: Petri Net Newsletter, vol. 73, pp. 3–10 (2007)

5. Caillaud, B.: Synet, http://www.irisa.fr/s4/tools/synet/
6. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: A Tool

for Manipulating Concurrent Specifications and Synthesis of Asynchronous Controllers. IE-
ICE Trans. of Informations and Systems E80-D(3), 315–325 (1997)

7. Desel, J.: Model Validation - A Theoretical Issue? In: Esparza, J., Lakos, C.A. (eds.) ICATPN
2002. LNCS, vol. 2360, pp. 23–43. Springer, Heidelberg (2002)

8. Desel, J.: From Human Knowledge to Process Models. In: Kaschek, R., et al. (eds.) UNIS-
CON 2008. LNBIP, vol. 5, Springer, Heidelberg (2008)

9. Desel, J., Juhás, G., Lorenz, R., Neumair, C.: Modelling and Validation with Viptool. In: van
der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp.
380–389. Springer, Heidelberg (2003)

http://www.irisa.fr/s4/tools/synet/

398 R. Bergenthum et al.

10. Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. Acta Inf. 33(4), 297–315 (1996)
11. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-Structures: Part I + II. Acta Inf. 27(4), 315–

368 (1989)
12. Lorenz, R., Bergenthum, R., Desel, J., Mauser, S.: Synthesis of Petri Nets from Finite Partial

Languages. In: ACSD 2007, pp. 157–166. IEEE Computer Society, Los Alamitos (2007)
13. Lorenz, R., Juhás, G., Mauser, S.: How to Synthesize Nets from Languages - a Survey. In:

Proceedings of the Wintersimulation Conference (WSC) (2007)
14. Seybold, C., Meier, S., Glinz, M.: Scenario-Driven Modeling and Validation of Requirements

Models. In: SCESM 2006, pp. 83–89. ACM, New York (2006)
15. van der Aalst, W.M.P., et al.: ProM 4.0: Comprehensive Support for real Process Analysis.

In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer,
Heidelberg (2007)

A Monitoring Toolset for Paose

Lawrence Cabac, Till Dörges, and Heiko Rölke

University of Hamburg, Department of Computer Science,
Vogt-Kölln-Str. 30, D-22527 Hamburg

http://www.informatik.uni-hamburg.de/TGI

Abstract. Paose (Petri net-based Agent-Oriented Software Engineer-
ing) combines the paradigm of AOSE (Agent-Oriented Software Engi-
neering, see [10]) with the expressive power of Petri nets – reference nets
[12] to be more precise. While AOSE is a powerful approach when it
comes to designing and developing distributed (agent) applications, it
does not address the problems specific to debugging, monitoring, and
testing of these applications, i.e. no global state of the system and very
dynamic operating conditions. To tackle these problems, two tools have
been developed in the context of Paose, which are presented in this
work.

Firstly, this paper will give a short overview over the interrelated
set of tools, which exists already and supports Petri net-based AOSE.
The tools are centered around the Petri net-based multi-agent system
development and runtime environment Renew / Mulan /Capa.

Secondly, Mulan-Viewer and Mulan-Sniffer will be presented in more
detail – two tools to address the issues encountered during debugging,
monitoring, and testing agent applications. Both tools are first class mem-
bers of the aforementioned family. The first tool, Mulan-Viewer, deals
with the introspection of agents and agent behaviors, while it also offers
rudimentary features for controlling the agent-system. The Mulan-Sniffer
as the second tool places emphasis on tracing, visualizing, and analyzing
communication between all parts of the multi-agent application and offers
interfaces for more advanced methods of analysis, such as process mining.
Both Mulan-Viewer and Mulan-Sniffer are realized as Renew plugins
that can also be extended by other plugins.

Keywords: reference nets, Renew, monitoring, testing, debugging, in-
spection, analysis, multi-agent systems, Paose.

1 Introduction

Developers of multi-agent applications – or distributed systems in general – have
to cope with many aspects of such systems that increase the difficulty of activities
like debugging, monitoring, and testing. Particularly multi-agent applications
sport decentralized control, very dynamic operating conditions, and they are
inherently complex. Therefore these tasks are hard [17,19].

The main underlying problem is that distributed systems do not allow for a
simple definition of their global state, as the state depends for example on the

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 399–408, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

400 L. Cabac, T. Dörges, and H. Rölke

location of the observing agent. And even if the definition succeeds, gathering
the state of a distributed system is far from trivial – leave alone single-stepping
through a sequence of states – because it is hard to freeze the system. In addition
to this, system access permissions have to be taken into account, e.g. a developer
may not have access to all parts of the system even though these very parts
trigger problems with the sub-system being developed by him. Concurrency can
also lead to errors that only occur in special settings or are not reproducible.

First of all this paper will give a brief overview over the family of interrelated
tools that are used for Petri net-based AOSE (for other approaches compare [1]
or [16]). Apart from the base set there are tools for designing and creating, as
well as tools for debugging, monitoring, and testing1 multi-agent applications.
From the latter set of tools for inspecting the Mulan-Viewer focuses on the
inspection of individual agents, their behavior, and the platforms. The Mulan-
Sniffer focuses on the communication between agents. Here communication is
traced directly at the transport service layer. A third inspection mechanism
actually is based on the inspection of Petri net instances at runtime provided by
the virtual machine Renew as explained in Section 2.

Mulan-Viewer and Mulan-Sniffer are implemented as extensible Renew
plugins. Both are able to connect to remote platforms using TCP/IP connections.
By this means they support distributed and independent system inspection.

Section 2 will present the interrelated set of tools crucial for our Petri net-
based AOSE process. Sections 3 and 4 will introduce the Mulan-Viewer and
the Mulan-Sniffer respectively.

2 A Family of Tools to Support Petri Net-Based AOSE

This section will briefly describe the “relatives” of the inspecting tools, which
constitute the main focus of this paper. All tools are under constant development
and key for the research activities conducted in our group.

2.1 Tool Basis

Renew [13,14], Mulan [11,18], and Capa [7] are the condicio sine qua non for
the entire Petri net-based AOSE process. Renew can be thought of as both the
virtual machine (VM) and the integrated development environment (IDE) for all
our Petri net-based development. It features an extensible plugin architecture,
which helps in hooking all the members of our tool family together.

Apart from being the VM it also provides an inspection mechanism for
Petri net instances at runtime. The simulator allows to view the token game, run
in continuous or single-step mode, allows to set locally or globally and statically
or dynamically defined breakpoints and has been enhanced to inspect token ob-
jects in a UML-like viewer in version 2.1. In the context of testing and debugging
of control-flow and data, handling this kind of inspection on a very low level is
of great advantage when it comes to agent behavior (protocol nets).
1 We regard all activities (debugging, monitoring, testing) as forms of inspection.

A Monitoring Toolset for Paose 401

Fig. 1. The IDE part of Renew showing menu, two palettes (drawing tools and
Petri net tools), a part of the simulation log in the log view, and a fragment of a
protocol net instance with a highlighted figure (compare with context menu)

add
re pro

platforms

communication
 structure

p3

p2

p1

a

pi

kb

p

send msgreceive msg

in

external
communication

internal
communication

remove

agents

protocols in
conversations

knowledge base

outremove

p4

O
MO

Z
start

subcall

stop

process

out

in

agent platform protocolmulti agent system

43
21

(infrastructure)

protocols

agent

Fig. 2. The Mulan architecture; from infrastructure to agent protocol

Figure 1 shows the graphical interface of Renew together with a net instance
during execution. On the left one can also see the simulation log which permits
going through all simulation steps and inspecting the transitions or places.

Mulan describes the reference architecture for multi-agent nets. Strictly
speaking an executable conceptual framework. It is heavily based on reference
nets and was designed with the corresponding FIPA [8] standards in mind. Fig-
ure 2 shows the key architectural approach. Capa finally is the current reference
implementation for Mulan. It is FIPA-compliant and uses Java as well as refer-
ence nets (via Renew) to implement an infrastructure for multi-agent systems.

2.2 Tools for Design and Code Generation

The tools introduced in Section 2.1 have been used numerous times to de-
sign large Petri net-based multi-agent applications (MAA). Throughout these

402 L. Cabac, T. Dörges, and H. Rölke

processes several tools were spawned that greatly facilitate the creation of
applications, e.g. by automatic code generation (see [6]).

Use Cases. model the relations between actors and their interactions. With
the corresponding tool for Paose we model agents of the system and their
interactions. Thus the diagram provides an overview of the system and we
can generate the necessary directory structure for sources of the MAA as
well as the file stubs (build files, ontology and knowledge base files). The
corresponding palette can be seen in the upper right corner of Figure 3.

Agent Interaction Protocol Diagrams. (AIP) [6] detail the interactions
identified during use case (coarse system) design. Tool support consists of
rapid modeling support and generation of protocol nets (see menu in Figure 3)
to be executed by the agents. The resulting protocol code is made up of di-
rectly runnable Petri nets, i.e. reference nets. Figure 3 shows an AIP fragment
on the left and a generated agent protocol net (Petri net code) on the right.

Fig. 3. Renew menu for generating protocols nets from AIP diagrams

Knowledge Base Editor. [3] is somewhat misleading as a name since it can
not only be used to generate agents’ knowledge bases. It can also model roles
to be assumed by agents, services provided and required by agents as well as
the necessary messages. Figure 4 shows the tool with a fragment of the roles
and services dependencies modeled in the center. The outline on the right
permits selection of specific entries which are displayed on the bottom.

Ontology Generation. [4] provides tool support for creating Java classes that
contain the ontology. These classes can then be easily used across the entire
multi-agent application.

A Monitoring Toolset for Paose 403

Fig. 4. KBE tool showing modeling of roles and service dependencies

The following sections will present two tools for inspection: Mulan-Viewer
and Mulan-Sniffer. It is important to note that both tools have been realized
as Renew plugins and their functionality can be extended by other plugins.

3 Mulan-Viewer

The Mulan-Viewer allows to inspect the state of a multi-agent system (MAS)
or several multi-agent systems and its agents, their knowledge bases, and their
active protocols and decision components (internal protocols missing external
communication features). The main components of the Mulan-Viewer are the
platform inspector and the graphical user interface. An arbitrary number of
platforms can be inspected both locally and remotely at the same time.

The user interface consists of two views: a MAS overview on the left and
the detail view on the right (see Figure 5). The hierarchical structure of the
multi-agent system is represented as a tree view. The levels of the tree view
correspond directly to three of the four levels known from the Mulan model
(see Figure 2): agent platform, agent, and internal agent components (knowledge
base, protocols, decision components2). The message transport system agent
(MTS) associated with each platform can be seen on the bottom left. If desired,
the messages can be listed. All elements can be inspected in the detail view.

2 Decision components are omitted in the model, as they are special types of protocols.

404 L. Cabac, T. Dörges, and H. Rölke

Fig. 5. Mulan-Viewer depicting several agents and their protocols. A net instance
(opened from the Mulan-Viewer) can be seen in the background. On the right bottom
the content of the place from the top is inspected.

Additionally, underlying Petri nets (as well as Petri net instances) of agents,
protocols, decision components and knowledge bases can be directly accessed.

In Figure 5 the running instance of the net Bank DC Account from agent
bank#7 on platform poire has been opened in the detail view (right hand side
of the Mulan-Viewer) and can be seen in the background. The superimposed
rectangles3 indicate which elements from the detail view correspond to those in
the inspected nets. In this case the string addResources shown in the detail view
of the Mulan-Viewer is contained by the place in question. The parts marked
by superimposed ellipses3 show how inspection levels can be nested: First the
Mulan-Viewer allows for navigation (left hand side of the Mulan-Viewer) to
the desired agent and its protocols. Then the Petri nets can be inspected using
Renew. In the example the place on the top contains one token of type Account,
which is inspected as UML object hierarchy (token bag). The Mulan-Viewer also
allows for simple means of control like launching or stopping an agent.

The interaction between the Mulan-Viewer and the agent platform that is
being inspected works according to a server/client architecture, with the Mulan-
Viewer being the client. The server is realized by an observation module in the
platform. More precisely the observation module registers with the underlying
simulation engine provided by Renew. The simulation engine keeps a model of
the simulated platform, that can be accessed by modules like the observation

3 Note that the original color of superimposed elements is red.

A Monitoring Toolset for Paose 405

module. Changes in simulation state are directly updated in the model and
propagated through events. The entire communication is based on Java Remote
Method Invocation (RMI).

4 Mulan-Sniffer

In every distributed system coordination between the involved sub-systems is
important. Coordination usually is accomplished through the exchange of mes-
sages. From the developers’ points of view it is therefore crucial that they are
able to analyze this exchange and inspect the corresponding messages.

For the Petri net-based multi-agent system Mulan / Capa a suitable tool,
the Mulan-Sniffer, has been developed. It was inspired by the JADE sniffer [9];
other related tools and approaches are the ACLAnalyser [2] and the sniffer in
MadKit [15]. It uses (agent) interaction protocols (AIP) for visualization and
debugging [6,17]. The Mulan-Sniffer focuses on analyzing messages sent by
agents in a multi-agent system. The key features are:

portability. The current implementation – realized in Java – has been tested
with the Petri net-based multi-agent system Mulan / Capa, but adaption to
other FIPA compliant multi-agent systems is easily possible. Theoretically
nothing about the target multi-agent system needs to be known, as SL0
content could be directly read from the wire4 via libpcap 5 or comparable
means.

modular architecture. Not only the input system is extensible but filtering,
analysis and presentation of the messages can be adapted through a powerful
plugin system as well. Extensions can even be realized using Petri nets.

distribution. The Mulan-Sniffer is able to gather messages from both local
and remote platforms.

filtering. Messages can be selected using stateful or stateless filters. Basic fil-
tering primitives (from, to, . . .) are provided. More sophisticated filters are
to be added via the plugin system. Apart from online filtering offline filtering
is also possible.

analysis. Mining-chains can be used to apply arbitrary analysis algorithms to
the messages. Examples are given in [5].

visualization. Apart from showing elementary statistics (total number of mes-
sages sent, . . .) each message can thoroughly be inspected. Moreover se-
quence diagrams are auto-generated (in function of the filters applied) on
the fly. More complex visualizations can – of course – be realized as plugins.
It is interesting to note that the sequence diagrams are actually Agent In-
teraction Protocol Diagrams. From these AIP Petri net code stubs for agent
protocols can be generated again [6]. Thus, agent behavior can be defined by
observing a running system turning user interaction (manually) into agent
behavior or even allowing the agents to use these observations to adapt their
own behaviors.

4 Unless cryptography is employed.
5 http://www.tcpdump.org/, http://sourceforge.net/projects/libpcap/

http://www.tcpdump.org/
http://sourceforge.net/projects/libpcap/

406 L. Cabac, T. Dörges, and H. Rölke

Fig. 6. Mulan-Sniffer main window with generated sequence diagram

Figure 6 shows the Mulan-Sniffer’s main window, while sniffing the messages
from a teaching project. The main window is divided in three major areas. The
top-left one displays the agents known from sniffing the messages. Here, agents
can be selected for simple filtering. The right area shows the Message list. The
currently selected message is displayed in detail in the bottom left area of the
main window. Next to the Message list tab one can select from a couple of viewer
plugins loaded already. Online SocialNetwork (accessible via the arrow next to
Offline SocialNetwork) for example allows to visualize the frequency of message
exchange by pairs of agents. Additionally a part of the on-the-fly auto-generated
sequence diagram is shown. Selecting a message arrow in the diagram will high-
light the corresponding message in the message list and display the content in
the message detail view (tabs: AclMessage and Envelope) and vice versa.

The Mulan-Sniffer uses the same interface of the platform as the Mulan-
Viewer for the collection of messages.

5 Conclusion

In this paper we presented two tools for debugging, monitoring, and testing
multi-agent applications. The tools are related with an entire family of tools
that form the key elements of our Petri net-based AOSE process. The Mulan-
Viewer provides a hierarchical overview of all agents in the system. It also permits

A Monitoring Toolset for Paose 407

inspecting the state of all elements in the system, whereas the Mulan-Sniffer
focuses on the communication of agents and its graphical visualization. Both
have been used and enhanced extensively in our teaching projects.

Further possible improvements of the tools are more and better representation
of element details in the Mulan-Viewer’s interface and increasing the ease of
debugging multi-agent applications by adding features for the manipulation of
communications (injecting messages), conversations (starting protocols), states
(changing knowledge base content), and organizations (migrating agents). To
improve the handling of very large scale message logs the integration of an ef-
ficient data base is desirable for the Mulan-Sniffer. An interesting topic is the
log analysis through advanced techniques such as process mining, for which a
prototypical plugin already exists. Further areas of research are ad-hoc systems,
support for other platforms, dynamic reconfiguration, and the integration of a
security model in the overall architecture as well as the supporting tools.

Acknowledgments

Several authors have contributed to the development of the presented tools.
Among these are Timo Carl, Michael Duvigneau, Frank Heitmann, Dr. Daniel
Moldt, Florian Plähn, and Jörn Schumacher.

References

1. Al-Shabibi, A., Buchs, D., Buffo, M., Chachkov, S., Chen, A., Hurzeler, D.: Pro-
totyping object oriented specifications. In: van der Aalst, W.M.P., Best, E. (eds.)
ICATPN 2003. LNCS, vol. 2679, pp. 473–482. Springer, Heidelberg (2003)

2. Bot́ıa, J.A., Hernansaez, J.M., Skarmeta, F.G.: Towards an approach for debug-
ging mas through the analysis of acl messages. In: Lindemann, G., Denzinger, J.,
Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS (LNAI), vol. 3187, pp. 301–312.
Springer, Heidelberg (2004)

3. Cabac, L., Dirkner, R., Rölke, H.: Modelling service dependencies for the analy-
sis and design of multi-agent applications. In: Moldt, D. (ed.) Proceedings of the
Fourth International Workshop on Modelling of Objects, Components, and Agents.
MOCA 2006, number FBI-HH-B-272/06 in Reports of the Department of Infor-
matics, Vogt-Kölln Str. 30, D-22527 Hamburg, Germany, June 2006, pp. 291–298.
University of Hamburg, Department of Informatics (2006)

4. Cabac, L., Dörges, T., Duvigneau, M., Reese, C., Wester-Ebbinghaus, M.: Appli-
cation development with Mulan. In: Moldt, D., Kordon, F., van Hee, K., Colom,
J.-M., Bastide, R. (eds.) Proceedings of the International Workshop on Petri Nets
and Software Engineering (PNSE 2007), Siedlce, Poland, June 2007, pp. 145–159.
Akademia Podlaska (2007)

5. Cabac, L., Knaak, N., Moldt, D., Rölke, H.: Analysis of multi-agent interactions
with process mining techniques. In: Fischer, K., Timm, I.J., André, E., Zhong,
N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196, pp. 12–23. Springer, Heidelberg
(2006)

6. Cabac, L., Moldt, D.: Formal semantics for AUML agent interaction protocol dia-
grams. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382,
pp. 47–61. Springer, Heidelberg (2005)

408 L. Cabac, T. Dörges, and H. Rölke

7. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent architecture for a multi-agent
platform. In: Giunchiglia, F., Odell, J., Weiß, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 59–72. Springer, Heidelberg (2003)

8. Foundation for Intelligent Physical Agents (FIPA) – homepage. Foundation for
Intelligent Physical Agents, http://www.fipa.org/

9. The Sniffer for JADE. Online documentation (January 2008),
http://jade.cselt.it/doc/tools/sniffer/index.html

10. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2),
277–296 (2000)

11. Köhler, M., Moldt, D., Rölke, H.: Modelling the structure and behaviour of Petri
net agents. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075,
pp. 224–241. Springer, Heidelberg (2001)

12. Kummer, O.: Introduction to Petri nets and reference nets. Sozionik Aktuell 1, 1–9
(2001)

13. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – the Reference Net Workshop.
Release 2.1 (May 2006), http://www.renew.de/

14. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
484–493. Springer, Heidelberg (2004)

15. MadKit (January 2008), http://www.madkit.org
16. Mans, R.S., van der Aalst, W.M.P., Bakker, P.J.M., Moleman, A.J., Lassen, K.B.,

Jørgensen, J.B.: From requirements via colored workflow nets to an implementation
in several workflow systems. In: Proceedings of the International Workshop on
Coloured Petri Nets (CPN 2007), October 2007, Computer Science Department,
Aarhus University (2007)

17. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using
design artifacts: the case of interaction protocols. In: AAMAS, pp. 960–967. ACM,
New York (2002)

18. Rölke, H.: Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen. Agent Technology – Theory and Applications, vol. 2. Logos
Verlag, Berlin (2004) (German)

19. Van Liedekerke, M.H., Avouris, N.M.: Debugging multi-agent systems. Information
and Software Technology 37, 103–112 (1995)

http://www.fipa.org/
http://jade.cselt.it/doc/tools/sniffer/index.html
http://www.renew.de/
http://www.madkit.org

Animated Graphical User Interface Generator

Framework for Input-Output Place-Transition
Petri Net Models

João Lourenco and Lúıs Gomes

Universidade Nova de Lisboa / UNINOVA, Portugal
jpl14084@fct.unl.pt, lugo@uninova.pt

Abstract. The paper presents a development framework allowing the
automatic generation of animated graphical user interface associated
with specific embedded system controllers, and allowing the association
of the characteristics of its behavioral model with specific character-
istics of the graphical user interface through a set of dedicated rules.
The behavioral model of the system is specified by means of an IOPT
(Input-Output Place-Transition) Petri net model, which is represented
using a PNML (Petri Net Markup Language) notation. Two main tools
are described: the ”Animator”, and the ”Synoptic”. The first one is the
development environment and allows the definition of the graphical char-
acteristics of the synoptic, and their association with dynamic and static
characteristics of the Petri net model (the ”Animator”); this tool also
supports hierarchical structuring of the synoptic and definition of plat-
form dependent code to link the physical world to the Petri net model
signals and events. The second one is responsible for the execution part
including embedded control and on-line animation of the graphical user
interface (the ”Synoptic”). Current main usage of the tool is to support
teaching of Petri nets and their application to automation and embedded
systems design; yet, application as a SCADA (Supervisory, Control, and
Data Acquisition) system is envisaged. The application of the tools to a
Petri net model of a parking lot controller is briefly presented.

1 Introduction

Several models of computation have been widely accepted for embedded systems
behavioral modeling. When facing the implementation of that kind of systems,
very often one needs to produce a graphical user interface that could present
in a comprehensive way the status of the process under control. For that end,
we often need a graphical user interface to present the synoptic of the process
under control (for synoptic we mean the graphical representation of the status
of a system). Several frameworks have been widely accepted for that purpose
based on a dataflow modeling and a visual programming interface; this is the
case for LabView and MatLab/Simulink frameworks. Also, a plenty of SCADA
(Supervisory, Control, and Data Acquisition) systems are available to manage

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 409–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

410 J. Lourenco and L. Gomes

the monitoring of distributed processes. When coming to discrete-event mod-
eling, and in particular to Petri nets modeling, it is common to find a lack of
tools to fully support all phases of the engineering development process, namely
code generation and integration with animated and/or interactive graphical user
interface and SCADA systems.

The goal of this paper is to present a design automation tool amenable to
generate a graphical user interface application associated with the monitoring
of a specific process. The behavioral model of the process controller is expressed
through a Petri net model and is also executed by the graphical user interface
application. In other words, the design automation tool described in this paper
automatically generates a (centralized) SCADA system that implements the
supervision and control of a local graphical user interface based on the execution
of a Petri net model.

The paper is structured as follows. The next section presents the proposed ar-
chitecture and main characteristics for the developed design automation tool. In
the following sections a brief description on tool usage and application to a spe-
cific example are presented. Before concluding, a brief comparison with related
works is produced and the main challenges for future extensions are presented.

2 Proposed Architecture

The goal of the design automation tool to be described is to generate an animated
and interactive graphical user interface associated with a specific process, to
which one already has available the behavioral model expressed through a Petri
net model.

In general terms, the graphical user interface should support the creation of
one or more layouts, hierarchically organized if adequate, adding background
images and animated images into the respective child windows. The background
image reflects whole or partial view of the simulated environment (for instance,
the whole perspective of a parking lot, or of a building plant). This functionality
allows monitoring different parts of the process and associated Petri net model
dependencies in different windows (or monitors). Other key functionality allows
the addition to the layouts of images and animated images as well (superimposed
to the background). These images and animated images can be resized and moved
into different locations, and can also be chosen if the designer of the graphical
interface wants transparency around the image or not, so the pictures can have
arbitrary shapes (not only squares and rectangles). Finally, the interaction with
the world, at current stage of developments, is accomplished through common
in- and output devices, as mouse, keyboard and monitor.

Fig. 1 presents the proposed architecture for the development framework,
showing the interaction of the tool, named ”Animator”, with other key appli-
cations, namely a Petri net graphical editor, an automatic code generator from
PNML to C, and the generated graphical user interface.

The flow starts at the bottom left of the figure, when a graphical Petri net
editor is used to produce the behavioral model of the system [1], named as

Animated Graphical User Interface Generator Framework 411

.h.c

Graphical Editor
for IOPT Petri

nets

PNML2C
Code

Generator

.NET C++
Compiler

Environment

Rules

.h.cpp

Hierarchies

Animator

PNML

Synoptic

XML

XML

XML

XML

Output Variables

XML

Platform Dependent Code

Fig. 1. System architecture

Snoopy-IOPT. This graphical editor is built upon the core code of Snoopy [2],
which was kindly provided by the Group of Data Structures and Software De-
pendability at Brandenburg University of Technology Cottbus, Germany. The
Snoopy-IOPT graphical editor is developed supporting a specific Petri net exten-
sion, named as IOPT nets (Input-Output Place-Transition Petri nets models),
and is able to produce a PNML representation of the model (PNML is an XML-
based interchange format for all Petri net classes [3,4]). The IOPT nets were
proposed elsewhere [5], and are based on Place-Transition nets, augmented with
signals and events modeling. The events and signals allow the specification of
interactions between the controller model (the net) and the environment, as in
interpreted and synchronized nets. Additionally, IOPT nets also allow the spec-
ification of priorities in transitions, and the use of test arcs. Both contribute
to integrate conflict resolution arbiters into the models, allowing deterministic
execution of the model, which is a key feature whenever controller modeling is
concerned.

A PNML to C translator tool is used to produce implementation code in ANSI
C language [6] associated with the specific model at hand. Afterwards this code
is linked with a set of classes coded in C++ (prepared to implement the de-
sired presentation and interaction with the graphical user interface application),
using the .NET C++ compiler framework, and producing as final result the
”Synoptic” application. The .NET C++ framework proved to be adequate for
the construction of this ”proof-of-concept” application, as far as it provides basic
infrastructure for development of the type of envisaged graphical interfaces.

412 J. Lourenco and L. Gomes

The role of the ”Animator” tool is to prepare the configuration files to be read
at run-time by the ”Synoptic” application. These files contain information on all
relevant aspects of the interface, including the graphical characteristics and in-
teractivity support, taking into account the information about the IOPT model
stored in the PNML file. The ”Animator” application has five main outcomes,
which will be briefly presented in the following sub-sections and are associated
with the five key characteristics of the ”Synoptic” application: the set of rules
associating Petri net model characteristics and graphical features (”Rules”), the
definition of the overall graphical layout of the graphical user interface (”Environ-
ment”), the dependency between different graphical layers (”Hierarchies”), the
way how to connect input signals and events from the physical world (”Platform
Dependent Code”), and finally the way how to present output variables (signals,
events, transition firing or place marking) (”Output Variables”). These configu-
ration files are stored using XML format (in order to allow easy interoperability
with other tools). In the following subsections, associated main characteristics
of the five referred aspects are briefly described.

Animation rules characterization. One central conceptual aspect of the tool
relies on the association of characteristics of the Petri net model with specific
graphical attributes of the graphical user interface. This is accomplished using
a set of rules, as presented in Fig. 2, where the antecedents of the rules re-
flects dependencies on static characteristics (marking and signals) and dynamic
characteristics (transitions and events) of the Petri net model.

In this sense, the graphical user interface can be automatically updated on
the occurrence of a change on the model state (place marking, transition firing,
signals and events). Consequents of the rules can accommodate several actions,
namely showing/hiding of an image, showing/hiding of an animated image, apply
a zooming to an image/animated image, define a path where an image should
move along (with or without a timer), and present an output variable.

IOPT model
Static characteristics

Dynamic characteristics
GUI

Graphical items

Graphical attributes

Rule set

IF THEN
Antecedent Consequent

Petri net model
charateristics

Graphical User Interface
charateristics

Fig. 2. Associating Petri net model characteristics with specific graphical user interface
characteristics

Animated Graphical User Interface Generator Framework 413

Fig. 3. Defining a rule

Fig. 3 presents a snapshot of the rule editor where the antecedents are ”tran-
sition T1 fires and place P3 holding three or more tokens” and the consequents
specify moving of the graphical object ”object” from current position to position
{10,10} in 5 seconds, followed by a second movement to position {50,50} in 10
seconds.

Environment characterization. The environment characterization accom-
modates representation of general characteristics of the graphical user interface,
namely number of type of child windows, background images, associated images
and animated images.

GUI hierarchical structuring. In order to manage graphical user interface
complexity, namely different windows to show or to hide at a specific point in
time, some basic navigation capabilities are available. This includes three types of
navigation: Hierarchical relation (allowing navigation from the parent window to
any of the child windows); Unidirectional functional relation (allowing navigation
from one window to another one); and Bidirectional functional relation (allowing
navigation between both windows).

Platform dependent characteristics. The platform dependent characteris-
tics specifies the way an external signal or event is represented inside the graph-
ical user interface. As the Windows OS based PC implementation platform was
selected, these characteristics include association of external signals and events
to keyboard strokes and interface button activated through mouse clicks. The
activation/deactivation of a signal can be made impulsive (only on change), or
stable (like a switch).

Output variables definition. Finally, the characterization of the output vari-
ables allows the creation of variables that are linked to an output of the Petri
net. Those output variables can be shown in a sidebar or inside a child window.

3 Motivating Example and Development Flow

This section briefly presents application to a simple example where one wants
to produce a graphical user interface for a controller of a parking lot composed
by three floors, two entrances, two exits and four ramps, as shown in Fig. 4.

At each entry zone exists a car entry detector that generates an arrival signal.
This signal can generate two input events, one associated with arrival signal’s

414 J. Lourenco and L. Gomes

Parking lot

Area 1

Area 2

Area 3

Entry 1

Entry 2 Out 2

Out 1

Ramp 23
Ramp 32

Ramp 12
Ramp 21

Fig. 4. Layout for a parking lot with three floors, two entrances, two exits, and four
ramps between floors

rising edge, and the other one associated with its falling edge. After a car stops
at the entry zone and the driver picks up the ticket, the entry gate will open
(if some parking place is free) till the car is present at the entrance; afterwards,
the gate will close. The same behavior applies to the parking lot exit (with a
different set of signals).

This motivating example will also be used to introduce main steps of the
development flow allowing a user to start from his/her IOPT Petri net model
and end up with the graphical user interface animated by the on-line execution
of that IOPT model.

The first step of the development flow is to edit the IOPT model of the
system using the Snoopy-IOPT graphical editor. For the motivating example,
due to system complexity, an hierarchical representation of the IOPT model
was produced, as presented in Fig. 5. Yet, in order to generate the associated
C code for execution, the flat PNML file was produced by the Snoopy-IOPT
graphical editor. Afterwards, a tool for automatic C code generation from PNML
representation will be used.

In this sense, the first group of steps will assure that one will have a PNML
representation of the IOPT model of the controller, and the associated C code
for execution.

At this point in time, the ”Animator” tool will be used to produce configu-
ration files to be ready to be used by the ”Synoptic” application. Roughly, the
different steps that the designer has to follow will assure the definition of differ-
ent graphical user interface characteristics, as presented in previous section, and
including files for defining ”Rules”, ”Environment”, ”Hierarchies”, ”Platform
Dependent Code”, and ”Output Variables”.

After this second group of steps, one will be in position to compile the ”Syn-
optic” application and start the simulation of the system through the animated
graphical user interface. For our parking lot application, the ”Synoptic” looks
like in Fig. 6, where several areas can be identified:

– Top-level window presenting an overall graphical user interface of the parking
lot, showing the number of cars presented in each floor, as well as the cars

Animated Graphical User Interface Generator Framework 415

Fig. 5. Hierarchical (partial) representation of the model of the parking lot controller:
top-level model (top left), one entrance model (top right), and one ramp model (bot-
tom)

moving in and out, and between floors as well (the definitions of the graphical
characteristics of the window are stored in the ”Environment” file, while the
rules governing the animation of the model are stored in the ”Rules” file);

– Bottom window presenting a specific synoptic for area number 3;
– Sidebar (at right hand side) composed by three groups:

Top group – identifying the windows where the user can navigate from the
current situation (stored in the ”Hierarchies” file); this will allow the
user to change the views of the system under control, enabling to change
from seeing area 3 to area 2 or area 1, for instance;

Middle group – allowing activation of input signals and events through
mouse clicking (stored in the ”Platform Dependent Code” file); this
area, complemented by keyboard, will allow user to interact with the
application;

Bottom group – presenting several output variables actual values (stored
in the ”Output Variables” file); this area will give visibility to some
characteristics of the Petri net model that are not directly visualized in
other parts of the synoptic.

The ”Synoptic” architecture relies in three main timers. The first one ad-
dresses rule execution (rules for animated images and output variables). This
timer is also responsible to call functions to manage the queues for animated
images that contain multiple paths to go. The second timer is related with what
was concluded on the previous timer: executes the rules that have images associ-
ated with journeys, producing movements and changes in the images that were
defined in the functions related to the previous timer. Finally, the third timer is

416 J. Lourenco and L. Gomes

Fig. 6. Generated Graphical user interface for a three floors, 2-entrances, 2-exits park-
ing lot

responsible for updating all images present in all windows, so the user can see
the changes made in the procedures called by the second timer.

Files and executable associated with the presented example (as well other
examples) are available from the tool webpages at FORDESIGN project website
[7].

4 Related Work

Interactive animations based on Petri net models are the goal of several tools
already available from the community. Among them, the BRITNeY suite [8,9]
is probably the most widely known. It is strongly linked with CPN Tools envi-
ronment [10], and is based on the addition of code segments to the CPN model
transitions, which when fired trigger some actions on the animated application.
It has been used worldwide; of special interest, one can refer to one specific
application to workflow requirements validation [11].

Several other tools could be considered whenever one needs to face model
animation, namely ExSpect [12] (also based on CP-nets), LTSA [13], and PNVis
[14] (linked with Petri Net Kernel [15]).

However, one key difference between those solutions (except PNVis) and the
”Animator” tool needs to be stressed: the ”Animator” tool is able to produce
an animated graphical user interface associated with a Petri net model without
writing actual code, as the user is guided through a set of interactive dialogues

Animated Graphical User Interface Generator Framework 417

in order to produce configuration files (design automation tool). In this sense,
the ”Animator” tool was thought as a ”closed” tool (although, it is also possible
to include additional code to the animated graphical user interface, of course),
supporting an easy and quick solution to set up an animated graphical user
interface. So, it is not necessary to have specific programming skills in order to
get the animated graphical user interface ready.

5 Conclusion

The ”Animator” tool, as well as a set of examples and related documentation
are freely available through the FORDESIGN project website [7]. Also the other
tools used in cooperation with the ”Animator” tool (the Petri net graphical
editor and the translator to C) are freely available through the same website.

The potential innovative contributions of the tool described in this paper at
current stage of development (as available at the FORDESIGN website [7]) can
be summarized as follows: Supporting the validation of the correctness of a model
through an interactive simulation based on a synoptic; Being used to support
Petri nets teaching, either inside lab classes, or when students are learning on
their owns.

Having in mind the usage of the tool by students, it is important to emphasize
that the tool can adequately complement other types of simulation (namely the
token-player simulation, and simulations of model evolution over time), giving
to the student an integrated view on the net model status and its relationship
to the process under control. Having in mind the usage of the tool by engineers
in order to automatically generate SCADA graphical user interface, it is impor-
tant to consider new developments on the referred extensions on in- and output
connectivity, in order to allow full exploitation of the tool.

Acknowledgment

The authors acknowledge the comments received from anonymous reviewers of
the initial version of the paper, and also the comments received from Ekkart
Kindler, from Technical University of Denmark. The authors also acknowledge
the collaboration received from other members of the group, also tool devel-
opers, namely Ricardo Nunes (Snoopy-IOPT Petri net editor) and Tiago Ro-
drigues (PNML2C tool). This work is supported by the FORDESIGN project
(http://www.uninova.pt/fordesign), sponsored by Portuguese FCT and POS
Conhecimento (FEDER), ref. POSC/EIA/61364/2004.

References

1. Nunes, R., Gomes, L., Barros, J.: A Graphical Editor for the Input-Output Place-
Transition Petri Net Class. In: Proceedings of the 2007 IEEE Conference on Emerg-
ing Technologies and Factory Automation (ETFA 2007). IEEE, Los Alamitos
(2007)

418 J. Lourenco and L. Gomes

2. S N O O P Y ’ s home page: Data Structures and Software Dependability – Bran-
denburg University of Technology Cottbus (2007),
http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html

3. Billington, J., Christensen, S., van Hee, K., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)

4. PNML: Petri Net Markup Language (PNML) (2004),
http://www.informatik.hu-berlin.de/top/pnml/about.html

5. Gomes, L., Barros, J., Costa, A., Nunes, R.: The Input-Output Place-Transition
Petri Net Class and Associated Tools. In: 5th IEEE International Conference on
Industrial Informatics (INDIN 2007) (2007)

6. Gomes, L., Barros, J.P., Costa, A.: Petri Nets Tools and Embedded Systems De-
sign. In: Proceedings of the International Workshop on Petri Nets and Software
Engineering (PNSE 2007) (2007)

7. FORDESIGN project: FORDESIGN project home page (2007),
http://www.uninova.pt/fordesign

8. Westergaard, M., Lassen, K.B.: The BRITNeY Suite Animation Tool. In: Donatelli,
S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 431–440. Springer,
Heidelberg (2006)

9. Westergaard, M.: BRITNeY suite website, http://wiki.daimi.au.dk/tincpn/
10. CPN-Tools: CPN Tools homepage, http://wiki.daimi.au.dk/cpntools/
11. Machado, R.J., Lassen, K.B., Oliveira, S., Couto, M., Pinto, P.: Execution of UML

models with CPN Tools for workflow requirements validation. In: Proceedings of
Sixth CPN Workshop, DAIMI, vol. PB-576, pp. 231–250 (2005)

12. ExSpect tool: The ExSpect tool website, http://www.exspect.com/
13. Magee, J., Kramer, J.: Concurrency - State Models and Java Programs. John Wiley

& Sons, Chichester (1999)
14. Kindler, E., Pales, C.: 3d-visualization of Petri net models: Concepts and visual-

ization. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
464–473. Springer, Heidelberg (2004)

15. Weber, M., Kindler, E.: The Petri net kernel. In: Ehrig, H., Reisig, W., Rozenberg,
G., Weber, H. (eds.) Petri Net Technology for Communication-Based Systems.
LNCS, vol. 2472, pp. 109–123. Springer, Heidelberg (2003)

http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html
http://www.informatik.hu-berlin.de/top/pnml/about.html
http://www.uninova.pt/fordesign
http://wiki.daimi.au.dk/tincpn/
http://wiki.daimi.au.dk/cpntools/
http://www.exspect.com/

HYPENS: A Matlab Tool for Timed Discrete,

Continuous and Hybrid Petri Nets

Fausto Sessego, Alessandro Giua, and Carla Seatzu

Dip. Ingegneria Elettrica ed Elettronica, Università di Cagliari, Italy
{fausto.sessego,giua,seatzu}@diee.unica.it

Abstract. HYPENS is an open source tool to simulate timed discrete,
continuous and hybrid Petri nets. It has been developed in Matlab to
allow designer and user to take advantage of several functions and struc-
tures already defined in Matlab, such as optimization routines, stochastic
functions, matrices and arrays, etc. The tool can also be easily interfaced
with other Matlab programs and be used for analysis and optimization
via simulation. The large set of plot functions available in Matlab allow
one to represent the results of the simulation in a clear and intuitive way.

Keywords: Computer tools for nets, Timed and stochastic nets, Hybrid
nets.

1 Introduction

In this paper we present a Matlab tool for the simulation of timed Petri nets
(PN), called HYPENS (HYbrid PEtri Nets Simulator) to emphasize that it deals
not only with discrete nets, but with continuous and hybrid nets as well.

In many applications dealing with complex systems, a plant has a discrete
event dynamics whose number of reachable states is typically very large, and
problems of realistic scale quickly become analytically and computationally un-
tractable. To cope with this problem it is possible to give a continuous approxi-
mation of the ”fast” discrete event dynamics by means of continuous Petri nets,
i.e., nets obtained from discrete nets by ”fluidification” [1,2].

In general, different fluid approximations are necessary to describe the same
system, depending on its discrete state. Thus, the resulting models can be bet-
ter described as hybrid Petri nets (HPN) that combine discrete and continuous
dynamics [1,3]. Several HPN models have been defined (see [3]). The model
considered in HYPENS is called First–Order Hybrid Petri nets (FOHPN) be-
cause its continuous dynamics are piece-wise constant. FOHPN were originally
presented in [4] and have been successfully used to model and analyze manufac-
turing systems [5].

In the last years several tools for the simulation of timed discrete PN have
been proposed. Very few tools on the contrary, also deal with hybrid PN: we are
aware of HISim [6] and SIRPHYCO [7].

SIRPHYCO is the most complete in terms of modeling power and performance
analysis, but still it presents the following limitations. (a) It has a limited number

K.M. van Hee and R. Valk (Eds.): PETRI NETS 2008, LNCS 5062, pp. 419–428, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

420 F. Sessego, A. Giua, and C. Seatzu

of modeling primitive. As an example: only stochastic discrete transitions with
exponential firing delays are considered; it only assumes infinite-server semantics,
thus if we want to consider a finite server semantics we have to add dummy places
that complicate the model. (b) It uses a ”reserved marking policy” ([1]), i.e., as
soon as a discrete transition is enabled, the tokens necessary for its firing are
reserved and cannot be used to enable other transitions. In other words, conflicts
are solved at the enabling time not at the firing time. (c) Conflict resolution,
both between discrete and continuous transitions, are only solved by priorities.
(d) The input graphical interface is not practical for large nets, and only a few
statistics can be be computed from the simulation run. (e) It is not an open
source software and cannot be easily interfaced with other programs.

HYPENS overcomes the above limitations, and presents several other advan-
tages. (a) It has many useful modeling primitives such as: finite/infinite server
semantics, general stochastic firing delays for discrete transitions. (b) It does not
use reserved marking but the tokens in a place can concurrently enable several
transitions. In other words, conflicts are solved at the firing time: this policy can
be shown to be more general that based on reserved marking. (c) It offers several
conflict resolution policies as we will discuss later. (d) It uses a textual input
interface but provides several statistical data both numerically and graphically.
(e) It is an open source software written in Matlab, to allow designer and user
to take advantage of several functions and structures already defined in Matlab
and to easily interface it with other programs.

A final remark concerns the issue of conflict resolution that is fundamental
in any PN simulator [8]. For discrete transitions we use a general approach that
combines both priorities and random weighted choices as in [8]: this is coded in
the structure of the net. In the case of continuous transitions, on the contrary,
we assume that the choice of the firing speed vector v is made at run-time
and represents a control input. Thus, for solving conflicts among continuous
transitions we use a more general optimization rule: at each step the net evolves
so as to (myopically) optimize a linear performance index J(v).

The software, manual and demos of HYPENS can be downloaded from [9].

2 Hybrid Petri Nets

We recall the FOHPN formalism used by HYPENS, following [4].

Net structure: A FOHPN is a structure N = (P, T, Pre, Post,D, C).
The set of places P = Pd ∪ Pc is partitioned into a set of discrete places Pd

(represented as circles) and a set of continuous places Pc (represented as double
circles). The cardinality of P , Pd and Pc is denoted n, nd and nc.

The set of transitions T = Td ∪ Tc is partitioned into a set of discrete tran-
sitions Td and a set of continuous transitions Tc (represented as double boxes).
The cardinality of T , Td and Tc is denoted q, qd and qc.

The pre- and post-incidence functions that specify the arcs are (here R
+
0 =

R
+∪{0}): Pre, Post : Pc × T → R

+
0 , Pd × T → N. We require that ∀t ∈ Tc and

HYPENS: A Matlab Tool 421

∀p ∈ Pd, Pre(p, t) = Post(p, t), so that the firing of continuous transitions does
not change the marking of discrete places.

Transitions in Td may either be deterministic or stochastic. In the case of de-
terministic transitions the function D : Td → R

+
0 specifies the timing associated

to timed discrete transitions. In the case of stochastic transitions D defines the
parameter(s) of the distribution function corresponding to the timing delay. The
function C : Tc → R

+
0 × R

+
∞ specifies the firing speeds associated to continuous

transitions (here R
+∞ = R

+ ∪{∞}). For any continuous transition tj ∈ Tc we let
C(tj) = [V ′

j , Vj], with V ′
j ≤ Vj : V ′

j represents the minimum firing speed (mfs), Vj

represents the maximum firing speed (MFS).
The incidence matrix of the net is defined as C(p, t) = Post(p, t)− Pre(p, t).

The restriction of C (Pre, Post, resp.) to Px and Ty, with x, y ∈ {c, d}, is
denoted Cxy (Prexy, Postxy, resp.).

A marking is a function that assigns to each discrete place a non-negative
number of tokens, and to each continuous place a fluid volume. Therefore, M :
Pc → R

+
0 , Pd → N. The marking of place pi is denoted Mi, while the value of

the marking at time τ is denoted M(τ). The restriction of M to Pd and Pc are
denoted with Md and M c, resp.

A system 〈N, M(τ0)〉 is an FOHPN N with an initial marking M(τ0).

Net dynamics: The enabling of a discrete transition depends on the marking
of all its input places, both discrete and continuous. More precisely, a discrete
transition t is enabled at M if for all pi ∈ •t, Mi ≥ Pre(pi, t), where •t denotes
the preset of transition t. The enabling degree of t at M is equal to enab(M, t) =
max{k ∈ N | M ≥ k · Pre(·,)}.

If t is infinite-server semantics, we associate to it a number of clocks that is
equal to enab(M, t). Each clock is initialized to a value that is equal to the time
delay of t, if t is deterministic, or to a random value depending on the distribution
function of t, if t is stochastic. If a discrete transition is k-server semantics, then
the number of clocks that are associated to t is equal to min{k, enab(M, t)}. The
values of clocks associated to t decrease linearly with time, and t fires when the
value of one of its clocks is null (if k̄ clocks reach simultaneously a null value, then
t fires k̄ times). Note that here we are considering enabling memory policy, not
total memory policy. This means that if a transition enabling degree is reduced
by the firing of a different transition, then the disabled clocks have no memory
of this in future enabling [8,1].

If a discrete transition tj fires k times at time τ , then its firing at M(τ−)
yields a new marking M(τ) such that M c(τ) = M c(τ−) + Ccdσ, and Md(τ) =
Md(τ−) + Cddσ, where σ = k · ej is the firing count vector associated to the
firing of transition tj k times.

Every continuous transition tj is associated with an instantaneous firing speed
(IFS) vj(τ). For all τ it should be V ′

j ≤ vj(τ) ≤ Vj , and the IFS of each contin-
uous transition is piecewise constant between events.

A continuous transition is enabled only by the marking of its input discrete
places. The marking of its input continuous places, however, is used to distinguish

422 F. Sessego, A. Giua, and C. Seatzu

between strong and weakly enabled: if all input continuous places of tj have a not
null marking, then tj is called strongly enabled, else tj is called weakly enabled 1.

We can write the equation which governs the evolution in time of the marking
of a place pi ∈ Pc as ṁi(τ) =

∑
tj∈Tc

C(pi, tj)vj(τ) where v(τ) = [v1(τ), . . . , vnc

(τ)]T is the IFS vector at time τ .
The enabling state of a continuous transition tj defines its admissible IFS

vj . If tj is not enabled then vj = 0. If tj is strongly enabled, then it may fire
with any firing speed vj ∈ [V ′

j , Vj]. If tj is weakly enabled, then it may fire
with any firing speed vj ∈ [V ′

j , V j], where V j ≤ Vj since tj cannot remove more
fluid from any empty input continuous place p than the quantity entered in p
by other transitions. Linear inequalities can be used to characterize the set of
all admissible firing speed vectors S. Each vector v ∈ S represents a particular
mode of operation of the system described by the net, and among all possible
modes of operation, the system operator may choose the best, i.e., the one that
maximize a given performance index J(v) [5].

We say that a macro–event (ME) occurs when: (a) a discrete transition fires,
thus changing the discrete marking and enabling/disabling a continuous tran-
sition; (b) a continuous place becomes empty, thus changing the enabling state
of a continuous transition from strong to weak; (c) a continuous place, whose
marking is increasing (decreasing), reaches a flow level that increases (decreases)
the enabling degree of discrete transitions.

Let τk and τk+1 be the occurrence times of two consecutive ME as defined
above; we assume that within the interval of time [τk, τk+1), denoted as a macro–
period (MP), the IFS vector is constant and we denote it v(τk). Then, the con-
tinuous behavior of an FOHPN for τ ∈ [τk, τk+1) is described by M c(τ) =
M c(τk) + Cccv(τk)(τ − τk), Md(τ) = Md(τk).

Example 1. Consider the net system in Fig. 1(a). Place p1 is a continuous place,
while all other places are discrete. Continuous transitions t1, t2 have MFS V1 = 1,
V2 = 2 and null mfs. Deterministic timed discrete transitions t3, t5 have timing
delays 2 and 1.5, resp. Exponential stochastic discrete transitions t4, t6 have
average firing rates are λ4 = 2 and λ6 = 1.5.

The continuous transitions represent two unreliable machines; parts produced
by the first machine (t1) are put in a buffer (p1) before being processed by the
second machine (t2). The discrete subnet represents the failure model of the
machines. When p3 is marked, t1 is enabled, i.e. the first machine is operational;
when p2 is marked, transition t1 is not enabled, i.e. the first machine is down. A
similar interpretation applies to the second machine.

Assume that we want to maximize the production rates of machines. In such
a case, during any MP continuous transitions fire at their highest speed. This
means that we want to maximize J(v) = v1 + v2 under the constraints v1 ≤ V1,
v2 ≤ V2, and — when p1 is empty — v2 ≤ v1.

1 We are using an enabling policy for continuous transitions slightly different from the
one proposed by David and Alla [1]. See [5] for a detailed discussion.

HYPENS: A Matlab Tool 423

The resulting evolution graph and the time evolution of M1, v1 and v2 are
shown in Fig. 1(b) and (c). During the first MP (of length 1) both continuous
transitions are strongly enabled and fire at their MFS. After one time unit, p1

gets empty, thus t2 becomes weakly enabled fires at the same speed of t1. At
time τ = 1.5, transition t5 fires, disabling t2. �

p2 p3 t3

t4

2

t1 [0,1]

1.5
p1 1

p4 p5 t5

t6

t2 [0,2]

 []TdM 10100 = []T
cM

21

1)0(

0 =

=

v

 []TdM 10101 = []T
cM

11

0)1(

1 =

=

v

 []TdM 01102 = []T

cM

01

0)5.1(

1 =

=

v

Discrete part Continuous part

Δ0

Δ1

Δ2

p1

t5

v1

τ 0
0
M1

τ 0

v2

τ 0

1 1.5

1

1

2
1

Δ0 Δ1 Δ2

 (a) (b) (c)

Fig. 1. (a) An FOHPN, (b) its evolution graph, and (c) its evolution in time

3 The HYPENS Tool

HYPENS has been developed in Matlab (Version 7.1). It is composed of 4 main
files. The first two files, make HPN.m and enter HPN.m create the net to be
simulated: the former requires input data from the workspace while the latter is
a guided procedure.

The file simulator HPN.m computes the timing evolution of the net that is
summarized in an array of cells called Evol. Based on this array, the file analy-
sis HPN.m computes useful statistics and plots the simulation results.

Function make HPN. [Pre, Post, M0, vel, v, D, s, alpha] = make HPN
(Precc, Precd, Predc, Predd, Postcc, Postcd, Postdd, M0c, M0d, vel, v, D, s,
alpha).

Input arguments
– Matrices Precc, Precd, Predc, Predd, Postcc, Postcd, Postdd;
– The initial marking M0c and M0d of continuous/discrete places.
– Matrix vel ∈ (R+

0)qc×2 specifies, for each continuous transition, the mfs and
the MFS.

– Vector v ∈ N
1×qd specifies the timing structure of each discrete transi-

tion. The entries of this vector may take the following values: 1 - deterministic;
2 - exponential distribution; 3 - uniform distribution; 4 - Poisson distribution;
5 - Rayleigh distribution; 6 - Weibull distribution; etc.

424 F. Sessego, A. Giua, and C. Seatzu

– Matrix D ∈ (R+
0)qd×3 associates to each discrete transition a row vector of

length 3. If the transition is deterministic, the first element of the row is equal
to the time delay of transition. If the transition is stochastic, the elements of
the row specify the parameters of the corresponding distribution function (up
to three, given the available distribution functions).

– Vector s ∈ N
1×qd keeps track of the number of servers associated to discrete

transitions. The entries take any value in N: 0 if the corresponding transition
has infinite servers; k > 0 if the corresponding transition has k servers.

– Vector alpha specifies the conflict resolution policy among discrete transi-
tions.

• If alpha ∈ N
1×qd two cases are possible. If all its entries are zero, conflict

resolution is solved by priorities that depend on the indices of transitions
(the smallest the index, the highest the priority). Otherwise, all its entries
are greater than zero and specify the weight of the corresponding transition,
i.e., if Te is the set of enabled transitions, the probability of firing transition
t ∈ Te is π(t) = alpha(t)/

(∑
t′∈Te

alpha(t′)
)
.

• If alpha ∈ N
2×qd the first row specifies the weights associated to transitions

(as in the previous case) while the second row specifies the priorities asso-
ciated to transitions. During simulation, when a conflict arises, priority are
first considered; in the case of equal priority, weights are used to solve the
conflict. See [1] for details.

Output arguments. (They are nothing else than input data, appropriately
rewritten to be passed to function simulator HPN).

– Matrices Pre and Post are defined as:

Pre =

[
Precc NaN Precd

NaN NaN NaN
Predc NaN Predd

]

, Post =

[
Postcc NaN Postcd

NaN NaN NaN
Postdc NaN Postdd

]

where a row and a column of NaN (not a number) have been introduced to
better visualize the continuous and/or discrete sub-matrices.

– The initial marking is denoted as M0 and is defined as a column vector.
– All other output data are identical to the input data.

Function enter HPN: [Pre, Post, M0, vel, v, D, s, alpha] = enter HPN.
This function creates the net following a guided procedure. The parameters

are identical to those defined for the previous function make HPN.m.

Function simulator HPN: Evol = simulator HPN(Pre, Post, M, vel, v, D, s,
alpha, time stop, simulation type, J).

Input arguments. They coincide with the output argument of the previous
interface functions, plus three additional parameters.

– time stop is equal to the time length of simulation.
– simulation type ∈ {2, 1, 0} specifies the simulation mode. Mode 0: no in-

termediate result is shown but only array Evol is created to be later analyzed

HYPENS: A Matlab Tool 425

analysis HPN. Modes 1 and 2 generate on screen the evolution graph: in the fist
case the simulation proceeds without interruptions until time stop is reached; in
the second case the simulation is carried out step-by-step.

– J ∈ R
1×qc is a row vector that associates to each continuous transition a

weight: J · v is the linear cost function that should be maximized at each MP
to compute the IFS vector v. This optimization problem is solved using the
subroutine glpkmex.m of Matlab.

Output arguments. The output is an array of cells called Evol, with the fol-
lowing entries (here K is the number of ME that occur during the simulation
run).

– Type ∈ {1, 2, 3}: 1 (2, 3) if the net is continuous (discrete, hybrid).
– M Evol ∈ (R+

0)n×(K+1) keeps track of the marking of the net during all
the evolution: an n–dimensional column vector is associated to the initial time
instant and to all the time instants in which a different ME occurs, each one
representing the corresponding value of the marking at that time instant.

– IFS Evol ∈ (R+
0)qc×(K+1) keeps track of the IFS vectors during all the

evolution. In particular, a qc–dimensional column vector is associated to the
initial configuration and to the end of each ME.

– P macro and Event macro Evol are (K + 1)-dimensional row vectors and
keep track of the ME caused by continuous places. If the generic r-th ME is
due to continuous place pj , then the (r+1)–th entry of P macro is equal to j;
if it is due to the firing of a discrete transition, then the (r+1)–th entry of
P macro is equal to NaN . The entries of Event macro Evol may take values in
{0, 1,−1, NaN}: 0 means that the corresponding continuous place gets empty;
1 means that the the continuous place enables a new discrete transition; −1
means that the continuous place disables a discrete transition. If the generic
r-th ME is due to the firing of a discrete transition, then the (r+1)-th entry of
Event macro Evol is equal to NaN as well. The first entries of both P macro
and Event macro Evol are always equal to NaN .

– firing transition is a (K + 1)–dimensional row vector that keeps track of
the discrete transitions that have fired during all the evolution. If the r-th ME
is caused by the firing of discrete transition tk, then the (r + 1)–th entry of
firing transition is equal to k; if it is caused by a continuous place, then the
(r + 1)–th entry of firing transition is equal to 0. Note that the first entry of
firing transition is always equal to NaN .

– timer macro event is a (K + 1)–dimensional row vector that keeps into
memory the length of ME. The first entry is always equal to NaN .

– τ is equal to the total time of simulation.
– Q Evol is a ((K+1)×qd)–dimension array of cells, whose generic (r+1, j)-th

entry specifies the clocks of transition tj at the end of the r-th MP.
– Pc Pd Tc Td ∈ N

4 is a 4-dimensional row vector equal to [nc nd qc qd].

Function analysis HPN: [P ave, P max, Pd ave t, IFS ave, Td ave, Pd freq,
Md freq] = analysis HPN (Evol, static plot, graph, marking plot, Td firing plot,

426 F. Sessego, A. Giua, and C. Seatzu

up marking plot, Pd prob plot, Pd ave t plot, IFS plot, up IFS plot, IFS ave plot,
Td freq plot).

This function computes useful statistics and plots the results of the simulation
run contained in Evol.

Input arguments. – statistic plot ∈ {0, 1}: if 1 two histograms are created
showing for each place, the maximum and the average marking during the sim-
ulation.

– graph ∈ {0, 1}: when set to 1 the evolution graph is printed on screen.
– marking plot: is a vector used to plot the marking evolution of selected

places in separate figures. As an example, if we set marking plot= [x y z], the
marking evolution of places px, py and pz is plotted. If marking plot= [−1], then
the marking evolution of all places is plotted.

– Td firing plot ∈ {0, 1}: when set to 1 a graph is created showing the time
instants at which discrete transitions have fired.

– up marking plot is a vector used to plot the marking evolution of selected
places in a single figure. The syntax is the same as that of marking plot.

– Pd prob plot ∈ {0, 1}: 1 means that as many plots as the number of discrete
places will be visualized, each one representing the frequency of having a given
number of tokens during the simulation run.

– Pd ave t plot is a vector used to plot the average marking in discrete places
with respect to time. A different figure is associated to each place, and the syntax
to select places is the same as that of marking plot.

– IFS plot (resp., up IFS plot): is a vector used to plot the IFS of selected
transitions in separate figures (resp., in a single figure). The syntax is the same
as that of marking plot and up marking plot.

– IFS ave plot ∈ {0, 1}: if 1 an histogram is created showing the average firing
speed of continuous transitions.

– Td freq plot ∈ {0, 1}: if 1 an histogram is created showing the firing fre-
quency of discrete transitions during the simulation run.

Output arguments
– P ave (P max) ∈ R

1×n: each entry is equal to the average (maximum)
marking of the corresponding place during the simulation run.

– Pd ave t ∈ R
nd×K : column k specifies the average marking of discrete places

from time τ0 = 0 to time τk when the k-th ME occurs.
– IFS ave ∈ R

1×qc : each entry is equal to the average IFS of the corresponding
continuous transition.

– Td ave ∈ R
1×qd : each entry is equal to the average enabling time of the

corresponding discrete transition.
– Pd freq ∈ R

nd×(z+1) specifies for each discrete place the frequency of a given
number of tokens during the simulation run. Here z is the maximum number of
tokens in any discrete place during the simulation run.

– Md freq ∈ R
(nd+1)×K̃ where K̃ denotes the number of different discrete

markings that are reached during the simulation run. Each column of Md freq
contains one of such markings and its corresponding frequency as a last entry.

HYPENS: A Matlab Tool 427

4 A Numerical Example

Let us consider again the FOHPN system in Fig. 1(a) with performance index
to be maximized J = v1 + v2 and a simulation time of 20 time units. The
most significant results of the simulation run are shown in Fig. 2: the marking
evolution of continuous place p1, of discrete places p3 and p5, the IFS v1 and v2,
and the occurrence of ME. In particular, the bottom right figure specifies if the
ME is due to a discrete transition (the index i of transition is shown in the y
axis) or to a continuous place (the value of the y axis is equal to zero).

The main results of function analysis HPN.m are:

p1 p2 p3 p4 p5

P ave = [0.127 0.600 0.400 0.475 0.525] ,
p1 p2 p3 p4 p5

P max = [1.321 1 1 1 1] ,
0 1

Pd freq =

p2

p3

p4

p5

�
���

0.400
0.600
0.525
0.475

0.600
0.400
0.475
0.525

�
��� ,

t1 t2
IFS ave = [0.400 0.450] ,

t3 t4 t5 t6
Td ave = [0.200 0.150 0.350 0.300] .

The evolution graph created by simulator HPN, and matrices Md ave t,
Md freq are not reported here, but can be downloaded from the web site [9].

In this paper we only present a very simple numerical example but we proved
the efficiency of HYPENS via real dimensional cases examples in [10]. Here
we considered both timed nets, modeling a family of queueing networks, and a
hybrid net modeling a job shop system with finite capacity buffers and unreliable
multi-class machines.

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

Evolution of M(p
1
) wrt time

M
1

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

Evolution of M(p
3
) wrt time

M
3

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

Evolution of M(p
5
) wrt time

M
5

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

IFS of t
 1

 wrt time

v 1

0 2 4 6
0

0.5

1

1.5

2

time

IFS of t
 2

 wrt time

v 2

0 1 2 3 4 5 6 7
0

3

4

5

6

time

ME: disc. trans. t
 i
 (i) or cont. place (0)

Fig. 2. Simulations carried out on the FOHPN system in Fig. 1(a) using HYPENS

428 F. Sessego, A. Giua, and C. Seatzu

5 Conclusions

We presented a Matlab tool for the simulation and analysis of timed discrete, con-
tinuous and hybrid PNs. Very general distribution functions can be considered,
and the analysis of simulation may be efficiently carried out both graphically and
numerically. The optimization of the net with respect to a given performance
index may be easily carried out, and different conflict resolution policies may
be considered. We plan to extend the tool adding the primitive ”total memory
policy”.

References

1. David, R., Alla, H.: Discrete, Continuous and Hybrid Petri Nets. Springer, Heidel-
berg (2004)

2. Silva, M., Recalde, L.: On fluidification of Petri net models: from discrete to hybrid
and continuous models. Annual Reviews in Control 28, 253–266 (2004)

3. Di Febbraro, A., Giua, A., Menga, G. (eds.): Special issue on Hybrid Petri nets.
Discrete Event Dynamic Systems (2001)

4. Balduzzi, F., Menga, G., Giua, A.: First-order hybrid Petri nets: a model for op-
timization and control. IEEE Trans. on Robotics and Automation 16, 382–399
(2000)

5. Balduzzi, F., Giua, A., Seatzu, C.: Modelling and simulation of manufacturing
systems with first-order hybrid Petri nets. Int. J. of Production Research 39, 255–
282 (2001)

6. http://sourceforge.net/projects/hisim

7. http://www.lag.ensieg.inpg.fr/sirphyco

8. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. Wiley, Chichester (1995)

9. http://www.diee.unica.it/automatica/hypens

10. Giua, A., Seatzu, C., Sessego, F.: Simulation and analysis of hybrid Petri nets using
the Matlab tool HYPENS. In: Proc. 2008 IEEE Int. Conf. on Systems, Man and
Cybernetics, Singapore (submitted, 2008)

http://sourceforge.net/projects/hisim
http://www.lag.ensieg.inpg.fr/sirphyco
http://www.diee.unica.it/automatica/hypens

Author Index

Alonso, Gustavo 1

Bergenthum, Robin 13, 388
Best, Eike 33
Billington, Jonathan 191
Bonchi, Filippo 52
Bouroulet, Roland 72
Brogi, Antonio 52

Cabac, Lawrence 399
Carmona, J. 92
Corfini, Sara 52
Cortadella, J. 92

Darondeau, Philippe 33, 112
Desel, Jörg 388
Devillers, Raymond 72
Ding, Lay G. 132
Dongen, B.F. van 368
Dörges, Till 399

Ehrenfeucht, A. 7
Espensen, Kristian L. 152

Fleischer, Paul 171

Gadducci, Fabio 52
Gallasch, Guy Edward 191
Giua, Alessandro 419
Gomes, Lúıs 409

Hamez, Alexandre 211
Hiraishi, Kunihiko 231
Hurkens, C.A.J. 368

Janicki, Ryszard 251
Jantzen, Matthias 270
Jifeng, He 8

Khomenko, Victor 327
Kishinevsky, M. 92
Kjeldsen, Mads K. 152
Klai, Kais 288

Klaudel, Hanna 72
Kondratyev, A. 92
Kordon, Fabrice 211
Koutny, Maciej 112
Kristensen, Lars M. 152, 171

Lavagno, L. 92
Lê, Dai Tri Man 251
Lime, Didier 307
Lin, Huimin 9
Liu, Lin 132
Lorenz, Robert 13, 388
Lourenco, João 409

Magnin, Morgan 307
Mauser, Sebastian 13, 388
Meyer, Roland 327

Oberheid, Hendrik 348

Pelz, Elisabeth 72
Petri, Carl Adam 12
Pietkiewicz-Koutny, Marta 112
Poitrenaud, Denis 288
Pommereau, Franck 72

Rölke, Heiko 399
Roux, Olivier (H.) 307
Rozenberg, G. 7

Seatzu, Carla 419
Serebrenik, A. 368
Sessego, Fausto 419
Söffker, Dirk 348
Strazny, Tim 327

Thierry-Mieg, Yann 211

Werf, J.M.E.M. van der 368

Yakovlev, Alex 92, 112

Zetzsche, Georg 270

	Title Page
	Preface
	Organization
	Table of Contents
	Challenges and Opportunities for Formal Specifications in Service Oriented Architectures
	Introduction
	Background
	Multi-tier Architectures
	Web Services and Service Oriented Architecture

	High Level Programming in SOA

	Modeling Interactions between Biochemical Reactions
	Transaction Calculus
	Stratifying Winning Positions in Parity Games
	On the Physical Basics of Information Flow - Results Obtained in Cooperation with Konrad Zuse -
	Faster Unfolding of General Petri Nets Based on Token Flows
	Introduction
	P/T-Nets and Standard Unfolding Semantics
	Unfoldings Based on Token Flows
	Token Flow Unfolding
	Reduced Token Flow Unfolding

	Algorithms
	Experimental Results
	Conclusion

	Decomposition Theorems for Bounded Persistent Petri Nets
	Introduction
	Definitions
	Persistent Nets, and Related Notions
	Analysis of Cycles in the Reachability Graph
	 Sequential Decomposition of Cycles
	Algebraic Decomposition of Cycles
	Some Comments
	Proof of Theorem 1

	Compositional Specification of Web Services Via Behavioural Equivalence of Nets: A Case Study
	Introduction
	Case Study: A Credit Scenario for the Banking System
	Formal Reasoning on Service Behaviour
	Open Consume-Produce-Read Nets
	An Equivalent Decidable Bisimilarity
	A Compositional Encoding for OWL-S

	Net Bisimulation for Publication and Replaceability
	Case Study (Continued)
	Concluding Remarks

	Modeling and Analysis of Security Protocols Using Role Based Specifications and Petri Nets
	Introduction
	Case Study
	Outline

	Role Based Specification with SPL
	Syntax and Intuitive Semantics of SPL
	Role Based Specification
	A Role Based Specification of the KC Protocol
	Different Versions of the KC Protocol

	Petri Net Translation of a Role Based Specification
	The General Picture
	Translation Scheme
	Petri Net Semantics of Roles
	S-Net Semantics of the Environment

	Petri Net Model of the KC Protocol and Its Verification
	S-Net Semantics of KC Agents
	Automated Verification of KC

	Conclusion and Future Work

	A Symbolic Algorithm for the Synthesis of Bounded Petri Nets
	Introduction
	Motivation and Contributions
	Two Illustrative Examples

	Background
	Petri Nets and Finite Transition Systems
	Multisets
	General Regions
	Excitation-Closed TSs

	Generation of Minimal Regions
	Symbolic Representation of Multisets

	Synthesis of Petri Nets
	Irredundant Petri Nets

	Splitting Events
	Splitting Disconnected ERs
	Splitting on the Most Promising Expansion of an ER

	Synthesis Examples
	Example 1
	Example 2
	Example 3

	Experimental Results
	Conclusions

	Synthesis of Nets with Step Firing Policies
	Introduction
	Background
	Step Firing Policies
	Characterisation of Net Realisable Transition Systems
	Construction of Nets Realising Transition Systems
	Future Work

	Modelling and Analysis of the INVITETransaction of the Session Initiation Protocol Using Coloured Petri Nets
	Introduction
	The INVITE Transaction of SIP
	The Layered Structure of SIP
	The INVITE Transaction

	Modelling and Analysis of the SIP INVITE Transaction
	Modelling Assumptions
	INVITE Transaction State Machines with Reliable Medium
	CPN Model of the INVITE Transaction
	State Space Analysis of the INVITE Transaction CPN Model

	The Revised INVITE Transaction and Its Verification
	Changes to the INVITE Transaction
	The Revised INVITE Transaction CPN and Its Analysis

	Conclusions and Future Work

	Modelling and Initial Validation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks
	Introduction
	Brief Overview of the DYMO Protocol
	The DYMO CPN Model
	The DYMO Protocol Module
	Mobile Wireless Network
	Results from Modelling

	Initial State Space Exploration
	Conclusion and Future Work

	Formal Specification and Validation of Secure Connection Establishment in a Generic Access Network Scenario
	Introduction
	The GAN Scenario
	Modelling the GAN Network Nodes
	Mobile Station
	Wireless Router
	Security Gateway
	GAN Controller

	Modelling the Protocol Entities
	Dynamic Host Configuration Protocol
	IKEv2 Modules
	GAN Modules
	IP Network Layer

	Validation of the GAN Scenario
	Conclusion and Future Work

	Parametric Language Analysis of the Class of Stop-and-Wait Protocols
	Introduction
	Parametric Reachability Graph
	Stop-and-Wait Protocol CPN Model
	Notational Conventions
	Marking and Arc Notation
	Algebraic Expressions for the SWP CPN PRG

	Parametric Language Analysis
	The Stop-and-Wait Service Language
	Obtaining the Parametric Protocol Language
	Epsilon Closures
	Determinisation
	Minimisation and Conformance to the SWP Service Language

	Conclusions and Future Work

	Hierarchical Set Decision Diagrams and Automatic Saturation
	Introduction
	Definitions
	Data Decision Diagrams
	Set Decision Diagrams
	SDD Operations

	Model Checking with Set Decision Diagrams
	Transitive Closure : State of the Art
	Automating Saturation
	Local Invariance
	Union and Composition
	Fixpoint
	Local Applications

	Performances of Automatic Saturation
	Recursive Folding
	Initial State
	Transition Relation
	Experimentation

	Conclusion

	Performance Evaluation of Workflows Using Continuous Petri Nets with Interval Firing Speeds
	Introduction
	Modeling of Workflows by Stochastic Petri Nets
	Example: Paper Review Process
	Stochastic Petri Nets
	Computation Results: GSPN Model

	Modeling by a Class of Timed Continuous Petri Nets
	Routing Timed Continuous Petri Nets
	Approximating Probability Distributions
	From RTCPN Model to Differential Equations

	Guaranteed Transient Analysis by Interval Method
	Interval Method
	Piecewise Interval Method for Systems with Multiple Modes
	Using P-Invariants as Constraints of LP Problems
	Computation Results: RTCPN Model

	Concluding Remarks

	Modelling Concurrency with Quotient Monoids
	Introduction
	Orders, Monoids, Sequences and Step Sequences
	Equational Monoids with Compound Generators
	Equational Monoids and Mazurkiewicz Traces
	Absorbing Monoids and Comtraces
	Partially Commutative Absorbing Monoids and Generalised Comtraces
	Absorbing Monoids with Compound Generators

	Canonical Representations
	Canonical Representations of Comtraces
	Relational Representation of Traces, Comtraces and Generalised Comtraces
	Partial Orders and Mazurkiewicz Traces
	Stratified Order Structures and Comtraces
	Generalised Stratified Order Structures and Generalised Comtraces

	Paradigms of Concurrency
	Conclusion

	Labeled Step Sequences in Petri Nets
	Introduction
	Preliminaries
	Definitions
	Concluding Remarks

	MC-SOG: An LTL Model Checker Based on Symbolic Observation Graphs
	Introduction
	Preliminaries
	Symbolic Observation Graph
	Definitions
	LTL\X Model Checking and SOG

	Construction of a SOG Model-Checker for Petri Nets
	Evaluation
	Conclusion

	Symbolic State Space of Stopwatch Petri Nets with Discrete-Time Semantics (Theory Paper)
	Time Petri Nets with Inhibitor Arcs
	Notations
	Formal Definitions and Semantics of Time Petri Nets with Inhibitor Arcs
	State Space Computation of Dense-Time Models
	State Space Computation of Discrete-Time Models

	Relations between Dense-Time and Discrete-Time for Time Petri Nets with Stopwatches
	Relations between Dense-Time and Discrete-Time Semantics in the Specific Case of Time Petri Nets
	Differences between Dense-Time and Discrete-Time Semantics in Terms of Marking Reachability and Untimed Language
	A Sufficient Condition on ITPNs Such That the Discretization of the State Space of the Dense-Time Net and the State Space of the Discrete-Time Associated Net Coincide

	Symbolic Approach for the Computation of the State Space of Discrete-Time Time Petri Nets with Stopwatches
	The Case of Discrete-Time TPNs
	The Case of Discrete-Time TPNs with Stopwatches

	Conclusion

	A Practical Approach to Verification of Mobile Systems Using Net Unfoldings
	Introduction
	Basic Notions
	A Petri Net Translation of the π-Calculus
	Boundedness of FCP Nets
	From FCPs to Safe Processes
	Net Unfoldings
	Experimental Results
	Conclusions and Future Work

	Cooperative Arrival Management in Air Traffic Control - A Coloured Petri Net Model of Sequence Planning
	Introduction
	Sequence Planning
	Sequence Generation
	Sequence Evaluation
	Sequence Selection
	Sequence Implementation

	The CPN Model of Cooperative Sequence Planning
	SeqPlanning Page and Alternating State Space Analysis and Simulation Approach
	ArrivalEstimateVariation (M1)
	SeqGeneration Page (M1)
	SeqEvaluation Page (M1)
	Pages RateETA, RateStable, RateLTA (M1)
	SeqSelection Page (M2)
	ProgressionGraph Page (M3)

	Preliminary Simulation and Analysis Results
	Monitor-Based Analysis of a Single Planning Cycle
	Analysis of System Behavior over Consecutive Planning Cycles

	Conclusions

	Process Discovery Using Integer Linear Programming
	Introduction
	Preliminaries
	Theory of Regions
	Language-Based Theory of Regions

	Integer Linear Programming Formulation
	Log to Language
	ILP Formulation
	Constructing Petri Nets Using ILP
	Using Log-Based Properties
	Net Types

	Implementation in ProM
	Numerical Analysis

	Conclusion and Future Work

	Synthesis of Petri Nets from Scenarios with VipTool
	Introduction
	Architecture and Functional Features of VipTool
	Case Study
	Conclusion

	A Monitoring Toolset for Paose
	Introduction
	A Family of Tools to Support Petri Net-Based AOSE
	Tool Basis
	Tools for Design and Code Generation

	Mulan-Viewer
	Mulan-Sniffer
	Conclusion

	Animated Graphical User Interface Generator Framework for Input-Output Place-Transition Petri Net Models
	Introduction
	Proposed Architecture
	Motivating Example and Development Flow
	Related Work
	Conclusion

	HYPENS: A Matlab Tool for Timed Discrete, Continuous and Hybrid Petri Nets
	Introduction
	Hybrid Petri Nets
	The HYPENS Tool
	A Numerical Example
	Conclusions

	Author Index

