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  Abstract   The photosynthetic membranes of chloroplasts are characterized by a high 
abundance of glycolipids. The two galactolipids monogalactosyldiacylglycerol and 
digalactosyldiacylglycerol (DGDG) are the predominant constituents of thylakoid 
membranes, while phospholipids (phosphatidylcholine, phosphatidylglycerol) and 
a sulfolipid (sulfoquinovosyldiacylglycerol) are minor components. Galactolipids 
are synthesized in the envelope membranes from precursors originating from the 
chloroplast or from the endoplasmic reticulum (ER). Direct contact sites ( “ plastid-
associated membranes ” ) between the ER and the chloroplast may be involved in 
the transport of lipid precursors to the envelope membranes. During chloroplast 
development, thylakoids are established from invaginations of the inner envelope, 
whereas in mature chloroplasts, a vesicle-based transport system was suggested to 
supply galactolipids to the thylakoids. During phosphate limitation, phospholipids 
are replaced with glycolipids in plastidial and extraplastidial membranes. DGDG 
produced in the chloroplast was suggested to be transferred to the mitochondria via 
direct contact sites. The transport of DGDG to the plasma membrane and tonoplast 
is believed to be mediated via the ER and Golgi vesicle trafficking system.    

  1 Introduction  

 Oxygenic photosynthesis in its very essence is a membrane-bound process. The 
primary light absorption is mediated by membrane-bound protein – pigment complexes, 
the electron transport chain consists of membrane-bound components, and the proton 
gradient that drives ATP synthase is built across the thylakoid membrane. It is thus 
not surprising that the higher-plant chloroplast is a very membrane rich organelle. 
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The chloroplast internal thylakoid membranes are the site of the photosynthetic 
electron transport chain and constitute an extremely large surface area in green 
plant tissues. In fact, the bulk of the membrane lipids in a green leaf are situated in 
the thylakoid membranes. The chloroplast is delimited from the cytosol by the 
double-envelope membrane, and all molecules exchanged between the chloroplast 
and other cellular compartments must at some point pass across the envelope. The 
envelope is also the site for the final assembly of the major chloroplast lipids. 

 A consensus on the overall lipid composition of the different chloroplast membranes 
was reached in the mid-1980s. At the same time, many of the major membrane lipid 
biosynthetic pathways were worked out. The 1990s and the beginning of the 
postgenomic era marked the cloning of a number of important chloroplast lipid 
biosynthesis genes from the model plant  Arabidopsis thaliana  and other species. 
Membrane lipid biosynthesis mutants generated by forward or reverse genetic 
approaches shed more light on the in vivo function(s) of individual membrane lipid 
classes. In the last decade it has become clear that a particular chloroplast galactolipid, 
digalactosyldiacylglycerol (DGDG), can play a major role in extraplastidial 
membranes during phosphate-limited growth conditions. Thus, galactolipid synthesis 
under normal and phosphate-limited conditions requires the involvement of several 
cellular compartments. The remaining questions are concerned mainly with the 
regulation of the synthesis pathways and transport of chloroplast lipids and precursors. 
In the present chapter, we will first give a brief overview of the chloroplast lipids 
and their particular functions, and then summarize the current understanding of 
biosynthesis and transport of chloroplast membrane lipids. We have tried to include 
as many as possible of the primary literature sources, but owing to space limitations, 
it was impossible to cover all relevant aspects. We apologize to all whose excellent 
contributions we have not been able to refer to.  

  2 The Chloroplast Lipidome  

 The lipid composition of the chloroplast membranes differs in several ways from 
that of other membranes in the plant cell and seems to largely reflect the cyanobac-
terial origin of the organelle. Phosphoglycerolipids constitute only a minor proportion 
of the chloroplast membranes; instead the chloroplast membranes are highly 
enriched in galactoglycerolipids. Sterols and sphingolipids, which are important 
constituents of the plant plasma membrane, Golgi apparatus and tonoplast are 
completely absent from the chloroplast membranes. The chloroplasts are the only 
plant organelles that contain the anionic sulfur-containing lipid sulfoquinovosyldia-
cylglycerol (SQDG). The thylakoids, which constitute the bulk of the membrane 
surface in a mature chloroplast (approximately 90   mol% of the membrane lipids), 
are, in principle, composed of four different lipid classes, the galactolipids monoga-
lactosyldiacylglycerol (MGDG) and DGDG and the two anionic lipids phosphati-
dylglycerol (PG) and SQDG. The structures of the most common molecular species 
of the chloroplast membrane lipids are shown in Fig.    1  and the membrane lipid 
composition of chloroplasts and chloroplast subfractions is shown in Table    1 .         
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 The galactose head group in MGDG and DGDG is directly linked through a 
 β -glycosidic bond to the glycerol backbone, and the second galactose in the DGDG 
head group is linked by an  α -glycosidic bond to the first galactose (Fig.    1 ). The fatty 
acids found in the chloroplast membrane lipids are highly unsaturated. Trienoic acids 
usually constitute more than 80 – 90% of the acyl groups found in MGDG and DGDG. 
SQDG and PG, on the other hand, contain a relatively larger proportion of more satu-
rated fatty acids. The most common trienoic acid found in plants is linolenic acid 
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 Fig. 1      Glycerolipids found in chloroplast membranes. Chloroplasts contain large amounts of the 
two galactolipids monogalactosyldiacylglycerol ( MGDG ) and digalactosyldiacylglycerol ( DGDG ). 
Furthermore, two anionic lipids are found in chloroplasts, the sulfolipid sulfoquinovosyldiacyl-
glycerol ( SQDG ) and the phospholipid phosphatidylglycerol ( PG ). The zwitterionic phospholipid 
phosphatidylcholine ( PC ) is found primarily in the outer-envelope membrane  
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  Table 1      Lipid composition (mol%) of chloroplast membranes    

 Plant  Membrane  MGDG  DGDG  SQDG  PG  PC  PI  PE 

 Spinach (Block 
et al.,  1983b)  

 Total envelope  36  29  6  9  18  2  ND 
 Outer envelope  17  29  6  10  32  5  ND 
 Inner envelope  49  30  5  8  6  1  ND 
 Thylakoid  52  26  6.5  9.5  4.5  1.5  ND 

 Pea (Andersson 
et al.,  2001)  

 Intact chloro-
plasts 

 46  32  7  6  7  1  ND 

 Thylakoid  51  33  8  5  2  0  ND 
 Pea (Cline et al., 

 1981)  
 Outer envelope  6  33  3  6  44  5  2 
 Inner envelope  45  31  2  7  10  2  1 

 Wheat (Bahl 
et al.,  1976)  

 Total envelope  22  44  10  9  14  0  0 
 Lamellar thyla-

koid 
 42  37  9  10  2  0  0 

 Grana thylakoid  47  36  7  9  1  0  0 
 Broad bean 

(Mackender 
and Leech, 
 1974)  

 Total envelope  29  32  ND  9  30  ND  0 
 Thylakoid  65  26  ND  6  3  ND  0 

  Acer hippoc-
astanum  
(Chapman 
et al.,  1986)  

 Thylakoid  43  31  5  15   –  a    –  a    –  a  

 Pea (Chapman 
et al.,  1986)  

 Thylakoid  42  29  8  11   –  a    –  a    –  a  

 Dark grown 
wheat 
(Selstam and 
Sandelius, 
 1984)  

 Envelope  44  37  6  6  5  2  ND 
 Prothylakoid  45  40  8  7   –    –   ND 
 Prolamellar body  52  32  8  8   –    –   ND 

 Consensus  Outer envelope  6 – 17  30  3 – 6  6 – 10  32 –
 44 

 5  0 

 Inner envelope  45 – 49  30  2 – 5  6 – 8  6 – 10  1 – 2  0 
Thylakoid 42–65 26–33 5–8 5–15 2–4 0–1 0

    MGDG  monogalactosyldiacylglycerol,  DGDG  digalactosyldiacylglycerol,  SQDG  sulfoquinovo-
syldiacylglycerol,  PG  phosphatidylglycerol,  PC  phosphatidylcholine,  PI  phosphatidylinositol,  PE  
phosphatidylethanolamine
   ND  not detectable,  –  not reported   
a Not reported, but  “ minor phospholipids ”  present in low amounts of 6 – 8   mol%  

(18:3). Hexadecatrienoic acid (16:3) is restricted to the  sn -2 position of MGDG and 
occurs in significant amounts only in some plant species, the so-called 16:3 plants (for 
example  Arabidopsis  and spinach). The ratio of 18:3 to 16:3 fatty acids esterified to 
chloroplast galactolipids varies considerably among different plant species  (Mongrand 
et al., 1998) . The majority of plant species are devoid of 16:3 and are referred to as 
 “ 18:3 plants ” . Chloroplast PG in both 16:3 and 18:3 plants contains only molecular 
lipid species synthesized by the prokaryotic pathway (see Sect.    5 ) (Roughan,  1985 ; 
Dorne and Heinz,  1989) . Chloroplast PG contains approximately 20% of the unusual 
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monene fatty acid  trans -3-hexadecenoic acid, which is strictly associated with the  sn -2 
position (Dubacq and Tremolieres,  1983 ; Browse et al.,  1986) . 

 Methods to isolate the outer and inner chloroplast envelopes in purity and quantity 
sufficient for reliable biochemical characterization were developed in the early 1980s 
(Cline et al.,  1981 ; Block et al.,  1983a , b) . The inner envelope is in terms of lipid 
composition closely related to the thylakoids, whereas the outer-envelope 
lipid composition is more related to that of other extraplastidial membranes (Table    1 ). 
Notably, the outer-envelope membrane contains a substantial amount of the zwitterionic 
phospholipid phosphatidylcholine (PC; Fig.    1 ). The amount of PC in the inner 
envelope and the thylakoids is very low. A few reports indeed suggest that the 
occurrence of PC in all other chloroplast compartments except the outer leaflet 
of the outer envelope is entirely artefactual (Dorne et al.,  1985 ; Dorne et al.,  1990) . 
Nevertheless, the majority of studies report a PC content in thylakoids and inner 
envelope of 1 – 4   mol%. The ratio of DGDG to MGDG is much higher in the 
outer envelope than in the inner envelope and the thylakoids. The lipid-to-protein 
ratio changes from the outer envelope to the thylakoid. The outer envelope is lipid-rich, with 
a ratio of lipid to protein of about 2.5, whereas the inner envelope and the thylakoids have 
lipid-to-protein ratios of about 1 and 0.4, respectively (Block et al.,  1983b) .  

  3 Chloroplast Membrane Lipid Function  

 The primary function of the chloroplast membrane lipids is to provide a structural 
environment for the photosynthetic membrane protein complexes and a barrier for 
the different solutes present in the thylakoid lumen and chloroplast stroma, which 
is also a prerequisite for the establishment of the photosynthetic proton gradient. In 
addition, particular lipids are also found in very close association with or embedded 
into the photosynthetic membrane protein complexes and linked to specific 
biochemical functions. The major thylakoid lipid, polyunsaturated MGDG, has a 
small polar head group but at the same time bulky fatty acid chains. The other major 
chloroplast lipid, DGDG, has a much larger head group and thus an almost cylindrical 
geometry. DGDG by itself in excess water forms a stable bilayer, whereas MGDG 
favours the formation of inverted hexagonal or cubic phases. Pure lipid mixtures 
resembling the composition of the thylakoid membrane do not form stable bilayers on 
their own, but rather complex mixtures of inverted hexagonal and cubic phases 
(Brentel et al.,  1985) . The non-bilayer-forming tendency is highly dependent on the 
degree of desaturation of the membrane lipids (Gounaris et al.,  1983) . The reason 
why the non-bilayer lipid mixture still forms a stable thylakoid membrane is probably 
the very high content of bilayer-spanning proteins. In addition to the bilayer-spanning 
proteins, carotenoids may also contribute to the stabilization of the inner envelope 
and the thylakoid membrane. Several studies indicated that carotenoids contribute 
to membrane stability of lipid bilayers (Gruszecki and Sielewiesiuk,  1991 ; 
Gabrielska and Gruszecki,  1996 ; Wisniewska and Subczynski,  1998 ; Berglund 
et al.,  1999 ; Munn é -Bosch and Alegre,  2002 ; Szil á gyi et al.,  2008) . The exact 
amount of carotenoids freely dissolved in the thylakoid lipid bilayer is not known 
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and the contribution of the carotenoids to the thylakoid membrane stability remains 
an open question. It has, however, been suggested that the xanthophyll cycle 
participates in regulating thylakoid membrane stability (Gruszecki and Strzalka, 
 1991 ; Szil á gyi et al., 2008 ). 

 Mutations which cause a substantial loss of MGDG or DGDG lead to severely 
compromised chloroplast function in  Arabidopsis  (D ö rmann et al.,  1995 ; H ä rtel 
et al.,  1997 ; Jarvis et al.,  2000 ; Kelly et al.,  2003 ; Kobayashi et al.,  2007) ; however, 
the chonsequences of a loss of DGDG are not as strong as a loss of MGDG. DGDG 
deficiency has severe effects on photosynthetic performence and growth (Kelly et 
al., 2003), whereas the loss of MGDG in the mgd1 mutant leads to albino plants 
with a strong decrease in thylakoid membrane abundance and photosynthetic 
capacity (Kobayashi et al., 2007). A complete loss of chloroplast DGDG has severe 
effects on photosynthetic performance and growth (Kelly et al.,  2003) , whereas the 
loss of MGDG in the  mgd1  mutant leads to albino plants with a strong decrease in 
thylakoid membranes and photosynthetic capacity (Kobayashi et al.,  2007) . 
 Arabidopsis  is able to cope with a total loss of SQDG, at least under standard condi-
tions (Essigmann et al.,  1998 ; Yu et al.,  2002) . Although it seems that the two ani-
onic thylakoid lipids can compensate for each other to some extent, it is clear that 
any substantial loss of chloroplast PG strongly affects photosynthetic activity, 
growth and thylakoid development (Hagio et al.,  2002 ; Xu et al.,  2002 ; Babiychuk 
et al.,  2003) . 

 An important question is what the function of the very high content of trienoic 
acids in the chloroplast membrane lipids might be? In fact, an  Arabidopsis  fatty 
acid desaturase tripple mutant which completely lacks trienoic fatty acids has a 
very mild phenotype with regard to growth, photosynthesis and chloroplast 
ultrastructure under standard growth conditions (Routaboul et al.,  2000) ; however, 
the mutant reveals severe defects in growth and photosynthesis at low tempera-
tures. Thus, the high amount of trienoic fatty acids in chloroplast membrane lipids 
appears to be important for maintaining membrane functionality at low tempera-
tures. It was recently shown that the loss of trienoic fatty acids from chloroplast 
membrane lipids had a detrimental effect on one of the pathways for translocation 
of proteins across the thylakoid membrane to the thylakoid lumen (Ma and 
Browse,  2006) . Certain lipids also appear to have other more specific roles beside 
their general structural contribution to the chloroplast membranes. Several chloro-
plast lipids have been shown to be intrinsic components of the photosystems 
(Jordan et al.,  2001 ; Loll et al.,  2005 ,  2007) . MGDG in the outer envelope was 
suggested to be required for protein recognition and targeting to the chloroplast 
(Bruce,  1998) . The trienoic acids in the chloroplast lipids serve as substrates for 
the chloroplast lipoxygenase pathway (Feussner and Wasternack,  2002) . This 
pathway provides several potent signalling compounds to the plant; the best char-
acterized is jasmonic acid. The jasmonic acid which is responsible for anther 
dehiscence in  Arabidopsis  is synthesized from 18:3 released from PC by an enve-
lope-localized acyl hydrolase (Ishiguro et al.,  2001) , whereas wound-induced jas-
monic acid is predominantly produced from 18:3 released by a galactolipase  
(Hyun et al.,  2008)   .
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  4 Minor Chloroplast Lipids  

 In addition to the major lipid classes found in the chloroplast membranes, a number 
of minor lipid species have also been reported. The chloroplast membranes contain 
a small proportion of intermediates of the biosynthetic pathways for chloroplast 
lipids; these will be discussed in the context of the respective biosynthesis pathways. 
Other minor lipid classes reported in chloroplasts or chloroplast subfractions 
include inositol phospholipids (Siegenthaler et al.,  1997 ; Bovet et al.,  2001) , 
oligogalactolipids, phosphorylated galactolipids (M ü ller et al.,  2000)  and acylated 
galactolipids (Heinz,  1967 ; Heinz and Tulloch,  1969 ; Heinz et al.,  1978) . In addition, 
a number of oxygenated species of chloroplast galactolipids have been described in 
plant tissues, but never actually isolated from a purified chloroplast fraction. Triga-
lactosyldiacylglycerols (TGDG) and tetragalactosyldiacylglycerols are not nor-
mally found in plant lipid extracts, but have been described as minor constituents 
in isolated chloroplasts (Cline et al.,  1981 ; Wintermans et al.,  1981) . 

 In general, a small proportion of phosphatidylinositol (PI; Table    1 ) was reported 
to be present in chloroplast envelopes. In other cellular membranes, the mono-, di- 
and triphosphorylated analogues of PI provide important functions in intracellular 
signalling and cytoskeletal organization (Mueller-Roeber and Pical,  2002) . An 
ATP-dependent, wortmannin-sensitive PI kinase activity has been reported to occur 
in outer envelope from spinach chloroplasts (Siegenthaler et al.,  1997 ; Bovet et al., 
 2001) . Thus, it is possible that phosphatidylinositide-dependent signalling or cytoskel-
etal reorganization can also emanate from the chloroplast. In addition to phosphati-
dylinositolphosphates, Bovet and colleagues (M ü ller et al., 2000; Bovet et al., 
 2001)  reported CTP-dependent phosphorylation of MGDG and lyso-MGDG in 
spinach chloroplast envelopes. These phosphorylated lipids have so far only been 
reported as radiolabelled products after in vitro feeding with nucleotides. Steady-state 
concentrations and the physiological relevance of the phosphorylated chloroplast 
lipids remain open questions. 

 The chloroplast lipids are rich in polyunsaturated fatty acids and thus sensitive 
to chemical or enzymatic oxidation. The higher-plant chloroplast contains lipoxy-
genases with specificity for the 13-position of C 

18
  fatty acids as well as several other 

enzymes which catalyse downstream reaction of oxygenated fatty acids (Feussner 
and Wasternack,  2002) . Several different chloroplast lipid species containing 
oxygenated fatty acids have been described in extracts from  Arabidopsis . 
Information on other plant species, however, remains very scarce. The oxygenated 
galactolipids described so far include MGDG and DGDG containing keto fatty 
acids (Buseman et al.,  2006)  or oxo-phytodienoic acid at the  sn -1 and/or the  sn -2 
position (Stelmach et al.,  2001 ; Hisamatsu et al.,  2003 ; Stenzel et al.,  2003 ; 
Hisamatsu et al.,  2005 ; Ohashi et al.,  2005 ; Buseman et al.,  2006 ; Nakajyo et al., 
 2006 ; B ö ttcher and Weiler,  2007) . MGDG esterified with oxo-phytodienoic acid 
has been demonstrated to be present in thylakoid and envelope fractions as well as 
detergent-solubilized thylakoid pigment protein complexes (B ö ttcher and Weiler, 
 2007) . In addition, MGDG carrying an extra oxo-phytodienoic acid on the glycerol 
backbone as well as on the C-6 position of the galactose head group has been found 
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in  Arabidopsis  (Andersson et al.,  2006 ; Kourtchenko et al.,  2007) . The latter 
substances were found to accumulate in response to wounding and in the hypersensitive 
response induced by avirulence peptides. The other oxo-phytodienoic acid containing 
galactolipids were also induced by wounding of  Arabidopsis  tissues (Buseman 
et al.,  2006 ; B ö ttcher and Weiler,  2007 ; Kourtchenko et al.,  2007) . Oxo-phytodienoic 
acid containing galactolipids have so far only been found in extracts from 
 Arabidopsis thaliana ,  Arabidopsis arenosa  (B ö ttcher and Weiler,  2007)  and 
 Ipomoea tricolor  (Ohashi et al.,  2005) . The evidence for a physiological function 
of these particular oxylipin-containing lipids remains rather scarce, but senescence-
promoting effects, antipathogenic properties, stomatal closing and a role as precursors 
for free oxylipins have been reported. In addition to these particular molecular lipid 
species, it seems likely that the everyday wear and tear of the photosynthesis 
machinery would cause some damage to unsaturated galactolipids. Thus, it seems 
likely that a steady-state concentration of oxygenated fatty acids is present in the 
thylakoid lipid pool and that these fatty acids are continuously removed from the 
complex lipid pool. However, this remains poorly explored territory.  

  5 Origin of Chloroplast Membrane Lipid Acyl Groups  

 The bulk of the fatty acid synthesis in plant cells takes place in the chloroplast 
stroma. Plant mitochondria also contribute to fatty acid synthesis, but only in a very 
minor way. The fatty acid synthesis machinery inside the plastid is related to that 
of bacteria rather than to cytosolic fatty acid synthesis in other eukaryotic organisms. 
The substrate for fatty acid synthesis in the stroma was traditionally thought to be 
acetate, but this has been questioned and the topic is not completely settled (Bao 
et al.,  2000 ; Rawsthorne,  2002) . Regardless of the actual identity of the fatty acid 
synthesis substrate, exogenous acetate is efficiently channelled into the pathway. 
This has been instrumental in many acyl labelling studies where radiolabelled acetate 
has been fed to isolated chloroplast or intact plant tissue. During the fatty acid 
synthesis cycle, the growing acyl chain is attached via a thioester bond to the small 
(approximately 9   kDa) acidic acyl carrier protein (ACP). For each turn of the cycle, 
the fatty acid grows by two carbon atoms. Two steps in the cycle require reducing 
power which is derived from NAD(P)H. A special stroma-localized desaturase 
accepts 18:0-ACP as a substrate and introduces a  cis  double bond at the Δ9-position, 
yielding oleic acid (18:1). Thus, 18:1 and hexadecanoic acid (16:0) are the major 
fatty acids synthesized in the stroma (Ohlrogge and Browse,  1995 ; Rawsthorne, 
 2002) . The fatty acids are then either used directly in the chloroplast for glycerolipid 
synthesis (prokaryotic pathway), or exported to the endoplasmic reticulum (ER) for 
lipid synthesis (eukaryotic pathway). In 18:3 plants all the fatty acids found in the 
chloroplast glycolipids take the detour through the ER, whereas in 16:3 plants a 
portion of the fatty acids are assembled into galactolipids without ever having to 
leave the chloroplast (Fig.    2 ). The reason for the difference between the fatty acid 
composition of chloroplast lipids in 18:3 and 16:3 plants is the different specifici-
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 Fig. 2      Dihydroxyacetonephosphate serves as precursor for the synthesis of glycerol-3-phosphate, 
which is sequentially acylated leading to lyso-phosphatidic acid and phosphatidic acid ( PA ) 
production in chloroplasts and at the endoplasmic reticulum (ER). Acyl editing represents an 
alternative pathway for the incorporation of plastid-derived acyl groups into the cytosolic PC pool. 
PA (or another PC-derived lipid metabolite, DAG, PC or lyso-PC) is transported from the ER to 
the chloroplast. While dephosphorylation of ER-derived PA results in the synthesis of glycerolipids 
with eukaryotic structure (C 

16
  and C 

18
  at  sn -1, C 

18
  at  sn -2,  light grey ), plastidial PA is the precursor 

for glycerolipids with prokaryotic structure (C 
18

  at  sn -1, C 
16

  and C 
18

  at  sn -2,  dark grey ). The distinct 
distribution of acyl groups to the glycerol backbone is based on the substrate specificity of ER-
localized, acylcoenzyme   A (acyl-CoA) dependent acyltransferases, and plastidial, acyl carrier 
protein ( ACP ) dependent acyltransferases  
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ties of the acyltransferases which assemble phosphatidic acid (PA) in the ER and 
the chloroplast (Roughan and Slack,  1982 ; Heinz and Roughan,  1983 ; Browse et al., 
 1986) . The basis for the loss of the prokaryotic pathway in 18:3 plants is not well 
understood, but the fact that several independent groups of plants are devoid of the 
prokaryotic pathway suggests that the loss of the capability to synthesize prokaryotic 
lipids has occurred several times during evolution  (Mongrand et al., 1998) . Fatty 
acids that are exported from the chloroplast are cleaved from ACP by stromal ACP 
thioesterases. The fatty acids are transported by some unknown mechanism to the 
outer envelope, where acylcoenzyme   A (acyl-CoA) synthases reactivate the fatty 
acids and render them soluble in the cytosol. There is experimental evidence for 
a direct channelling from the stromal fatty acid synthesis to the acyl-CoA synthesis 
(Koo et al.,  2004) . The acyl-CoAs are then utilized by acyltransferases for 
 phospholipid synthesis in the ER.         

  6 Lipid Transport from the ER to the Chloroplast  

 All plants rely on the import of diacylglycerol (DAG) backbones assembled in the 
ER to the chloroplast for galactolipid synthesis (Fig.    2 ). DAG units derived from 
the ER ( “ eukaryotic lipids ” ) are devoid of 16:3 and contain mostly C 

18
  fatty acids 

at the  sn -1 and  sn -2 positions (minor amounts of C 
16

  are also found at the  sn -1 posi-
tion). A large fraction of the lipid precursors assembled at the ER has to be trans-
ported back to the chloroplast for incorporation into galactolipids. In situ 
radiolabelling pulse chase studies on 18:3 plants have demonstrated that the radi-
olabel becomes transiently associated with PC prior to incorporation into MGDG 
(Slack et al.,  1977 ; Hellgren et al.,  1995 ; Hellgren and Sandelius, 2001). Thus, it 
seems likely that ER-localized PC is an important precursor for chloroplast lipids 
derived from the eukaryotic biosynthesis pathway. However, the exact identity of 
the lipid moiety that is transported from the ER to the chloroplast is still unclear. 
PC might seem to represent a likely candidate since it is present in the ER and the 
outer chloroplast envelope. In fact, since the chloroplast lacks the capacity for 
assembling the phosphorylcholine head group, some kind of transport mechanism 
for PC between the ER and the chloroplast must exist. In addition to PC (Oursel 
et al.,  1987 ; Andersson et al.,  2004) , lyso-PC (Mongrand et al.,  1997 ; Mongrand 
et al.,  2000) , DAG (Williams et al.,  2000)  and most recently PA (Xu 
et al.,  2005 ; Awai et al.,  2006 ; Lu et al.,  2007)  have been suggested to represent the 
lipid molecules transferred from the ER to the chloroplast. 

 Possible modes of transport include the diffusion of water-soluble molecules 
(e.g. lyso-PC), protein-mediated transport, vesicle transport or lipid transfer via 
ER – chloroplast contact sites (Moreau et al.,  1998) . Transport of proteins and 
membrane material synthesized at the ER and destined for the secretory pathway 
is known to be mediated via vesicles. The vesicles are derived from ER mem-
branes and after budding off the ER system they fuse with the  cis  Golgi membranes, 
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and their cargo is subsequently sorted to the vacuole or plasma membrane. 
A detailed overview of the vesicle-mediated lipid transport system in plants was 
recently included in Jouhet et al.  (2007) . However, the existence of an analogous, 
vesicle-based transport system for the transfer of proteins or lipids to the plastids 
is unclear. Specific contact sites of the ER with other cellular membranes have 
previously been described (Staehelin,  1997) . In yeast, special regions of the ER 
are believed to be involved in lipid and protein transfer to the mitochondria 
(mitochondria-associated membranes, MAM) (Gaigg et al.,  1995 ; Achleitner et 
al.,  1999)  or the plasma membrane (plasma-membrane-associated membranes, 
PAM) (Pichler et al.,  2001) . These specialized regions were found to be closely 
associated with their respective organelles and could be co-isolated with these. 
Contact sites between the ER and the plastid outer envelopes have previously been 
observed by electron microscopy of various tissues (Wooding and Northcote, 
 1965 ; Schl ö tz,  1975 ; Whatley et al.,  1991 ; Kaneko and Keegstra,  1996) . Apparent 
contacts between the ER and chloroplasts were also observed by confocal micros-
copy in  Arabidopsis  expressing green fluorescent protein (GFP) targeted to the ER 
lumen (Hanson and Kohler,  2001 ; Andersson et al.,  2007) . Fluorescent pieces of ER 
remained associated with chloroplasts isolated from GFP-expressing protoplasts 
(Andersson et al.,  2007) . Furthermore, use of optical tweezers demonstrated that 
chloroplast-associated ER was firmly attached to the chloroplast surface, indicat-
ing that tight connections, possibly based on protein – protein interactions, exist 
between the outer envelope of chloroplasts and the ER (Andersson et al.,  2007) . 
An ER-derived fraction could also be isolated from intact pea chloroplast 
(Andersson et al.,  2007) . This fraction was by analogy to MAM and PAM dubbed 
PLAM for plastid-associated membranes. Although direct evidence for lipid trans-
fer between the PLAM and the chloroplast has not yet been obtained, further 
characterization of this fraction seems promising. The contact sites between ER 
and chloroplast envelopes could also be related to the so-called stromules, tubular 
stroma-containing extensions of the envelope membranes that interconnect plastids 
in plants (Kwok and Hanson,  2003) . Interestingly, such tubular connections of 
plastid envelopes were also observed with nuclear and cell membranes, suggesting 
that they could in general be involved in connecting the plastids with the cellular 
membrane system (Kwok and Hanson,  2004) . In conclusion, the current understand-
ing points towards a scenario where the transfer of eukaryotic lipid precursors to the 
chloroplasts is mediated via ER – outer envelope contact sites. Similarly, such con-
tact sites could be involved in the export of galactolipids observed during phos-
phate deprivation (see below). 

 Protein factors involved in ER to chloroplast lipid transfer have for a long time 
remained enigmatic. Analysis of  Arabidopsis  mutants affected in galactolipid 
metabolism suggested that lipid transport is mediated via an ATP-binding cas-
sette (ABC) transporter complex in the envelope membranes (Xu et al.,  2003) . 
ABC transporters are membrane proteins that in general transport small mole-
cules, i.e. phytohormones, peptides or sugars, across membranes, accompanied by 
the hydrolysis of ATP. The  Arabidopsis  genome contains more than 100 genes 
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with sequence similarities to ABC transporters (S á nchez-Fern á ndez et al., 
 2001) . In addition to the nuclear binding fold domain, ABC transporters are char-
acterized by the presence of one or more transmembrane domains. ABC transport-
ers can be encoded by one multifunctional protein, or by several genes encoding 
polypeptides that assemble into a functional transporter complex. With employ-
ment of a genetic screening strategy,  Arabidopsis  mutants were isolated with altera-
tions in regulation and transport of galactolipids (Xu et al.,  2003) . The  tgd1  mutant 
(trigalactosyldiacylglycerol 1) is characterized by the accumulation of triacylglyc-
erol and the unusual oligogalactolipid TGDG.  TGD1  encodes a permease-like pro-
tein which constitutes one of the subunits of an ABC transporter. The TGD  
transporter represented the first ABC transport complex for lipid molecules dis-
covered in higher plants. Biochemical and radioactive labelling  experiments sug-
gest that PA is the lipid molecule that is transported through the TGD transporter 
complex (Xu et al.,  2005) .  TGD1  localizes to the inner chloroplast envelope 
membrane. The  tgd2  (Awai et al.,  2006)  and  tgd3  (Lu et al.,  2007)  mutants of 
 Arabidopsis  show the same biochemical phenotype as  tgd1 , e.g. they also accu-
mulate triacylglycerol and TGDG.  TGD2  encodes a substrate binding domain 
subunit of the lipid ABC transporter which binds PA with high affinity, and  TGD3  
encodes a small ATPase associated with the transporter complex. Taken together, 
this suggests that the three TGD proteins form a lipid transport complex in the 
envelope membrane (Lu et al.,  2007) . These data imply that the TGD lipid trans-
porter is involved in the transfer of PA from the ER to the envelopes, where it is 
hydrolyzed by a PA phosphatase (PAP), yielding DAG, the substrate for galactoli-
pid synthesis. However, there is clearly much less PAP activity in the chloroplast 
envelope in 18:3 plants than 16:3 plants (see further below). Thus, PA transfer 
from the ER to the chloroplast might be favoured in 16:3 plants. However, there 
must be additional ER – chloroplast transport mechanisms at least for PC given the 
fact that PC is present in both the chloroplast envelope and the ER, and the chlo-
roplast envelope is devoid of PC synthases. The published data regarding 18:3 
plants do seem to favour the hypothesis that PC and/or lyso-PC are the chloroplast 
galactolipid precursors that are transported from the ER to the chloroplast 
envelope (Oursel et al.,  1987 ; Andersson et al.,  2004 ; Mongrand et al.,  1997 ; 
Mongrand et al.,  2000) . On the other hand, sequences with high similarity to  TGD  
genes from  Arabidopsis  are present in the genome of rice, suggesting that a TGD/
PA-mediated transport mechanism is also operating in 18:3 plants. Further 
research is clearly needed to completely resolve the issue of which lipid(s) is 
transported from the ER to the chloroplast. The  Arabidopsis  inventory of putative 
lipid ABC transporters (Jouhet et al.,  2007)  is certainly large enough to provide 
more than one chloroplast-localized transporter. Still, the TGD complex must be 
of high importance for chloroplast biogenesis, since effective silencing of the 
 TGD1  gene leads to embryo lethality (Xu et al.,  2005) . One interesting feature of 
the TGD proteins is that GFP fusions of all three proteins seem to be localized in 
dense patches on the chloroplast surface (Xu et al.,  2005 ; Awai et al.,  2006 ; Lu 
et al.,  2007) . It is extremely tempting to speculate that these patches might cor-
respond to the sites on the chloroplast surface interacting with the PLAM.  
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  7 Phospholipid Metabolism in the Chloroplast Envelope  

 The higher-plant chloroplast contains a complete glycerolipid synthesis machinery, 
the prokaryotic pathway; however, only in the so-called 16:3 plants does this pathway 
contribute DAG backbones for galactolipid synthesis (Fig.    2 ). In all plants, the 
plastidial pathway contributes to PG synthesis in the chloroplast. A soluble, 
stroma-localized enzyme transfers fatty acids from ACP to glycerol-3-phosphate to 
yield inner-envelope-localized lyso-PA (Douce and Joyard,  1977) . The lyso-PA is 
then acylated at the  sn -2 position by an inner-envelope-localized enzyme to yield 
PA (Andrews et al.,  1985) . The chloroplast acyltransferases specifically transfer C 

18
  

fatty acids to the  sn -1 position of the glycerol; the  sn -2 acyltransferase is less specific 
and also accepts C 

16
  fatty acids (Frentzen et al.,  1983) . This pathway seems to be 

essentially conserved between cyanobacteria and higher-plant chloroplasts (Murata 
and Nishida,  1987) . The genes encoding the two acyltransferases required for PA 
synthesis in the inner chloroplast envelope have been identified in  Arabidopsis  and 
knockout mutations have been investigated. Surprisingly, the two different muta-
tions were reported to cause rather different phenotypes. Mutations in the first 
acyltransferase gene cause a rather subtle phenotype (Kunst et al.,  1988 ,  1989) , 
whereas a knockout mutation of the other enzyme is embryo-lethal (Bin et al., 
 2004 ; Kim and Huang,  2004) . These conflicting data were recently resolved by the 
demonstration that the previously described mutants in the first acyltransferase 
were leaky alleles and therefore could sustain a low rate of prokaryotic lipid syn-
thesis in the chloroplast (Xu et al.,  2006) . The important products of the prokaryotic 
lipid pathway are probably not the galactolipids, but rather PG. Apparently the 
small amount of plastidially produced PA is more efficiently directed into PG syn-
thesis than into galactolipid synthesis (Xu et al.,  2006) . The recently described 
transgenic approach of channelling ER-derived lipid backbones into plastidial PG 
(Fritz et al.,  2007)  might be a suitable way to rescue a complete knockout mutation 
of the prokaryotic pathway. 

 PA produced by the plastidial pathway is converted to PG by three inner-envelope-
localized enzymes (Fig.    2 ) (Andrews and Mudd,  1985) . PA is activated to CDP-DAG 
by CDP-DAG synthase, and a PG-phosphate synthase transfers glycerol-3-phosphate 
to the lipid. The resulting PG-phosphate is finally dephosphorylated to PG by 
PG-phosphate phosphatase. Interestingly, the PG-phosphate synthase protein is 
targeted to both the plastid and the mitochondria (Muller and Frentzen,  2001 ; 
Babiychuk et al.,  2003) . The protein was found to be essential for chloroplast func-
tion, but dispensable for mitochondrial function, indicating that mitochondria but not 
chloroplasts can import PG from the ER (Babiychuk et al.,  2003) . There are three 
candidate genes in the  Arabidopsis  genome for the plastid CDP-DAG synthase, but 
experimental data regarding this activity are missing. No genes have been identified 
for the plastidial PG-phosphate phosphatase, although candidate genes have been 
suggested on the basis of sequence similarity and phylogeny (Lykidis,  2007) . 

 PA of eukaryotic fatty acid composition in the inner envelope seems to be capa-
ble of entering the PG biosynthesis pathway (Fritz et al.,  2007) . Therefore, there 
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is currently no good explanation for the question how eukaryotic lipid species are 
kept out of the chloroplast PG pool, given the finding that PA might be a major 
lipid precursor transported from the ER to the inner envelope (Xu et al.,  2005 ; 
Awai et al.,  2006 ; Lu et al.,  2007) . A possible solution for this dilemma would be 
a very tight channelling of different PA pools in the inner envelope. One sugges-
tion is that the TGD transporter complex binds PA in the inner envelope and 
shields the imported PA from the CDP-DAG synthase activity (Fritz et al., 
 2007) . 

 In 16:3 plants, the PA produced in the chloroplast envelope is utilized for 
 galactolipid synthesis. This requires PAP activity to form DAG. This activity was 
demonstrated in envelope preparations from spinach more than 30   years ago 
(Douce and Joyard,  1977) . The PAP activity in pea chloroplasts is localized to the 
inner envelope (Andrews et al.,  1985) . Only very recently, a small gene family that 
might encode the chloroplast-localized PAPs was identified in  Arabidopsis  
(Nakamura et al.,  2007) . A knockout mutation of one of the particular isoforms in 
 Arabidopsis  caused reduced pollen fertility, but no definite link could be made to 
plastidial galactolipid synthesis. The envelope PAP activity has been proposed to be 
the metabolic point of divergence between 16:3 and 18:3 plants (Heinz and 
Roughan,  1983 ; Gardiner et al.,  1984) . This is also supported by the observation 
that chloroplast PAP activity is much lower (more than 10   times lower) in 18:3 than 
in 16:3 plants (Gardiner et al.,  1984) . However, this suggestion fits poorly with the 
hypothesis that direct import of PA from the ER to the inner envelope is the basis 
for formation of eukaryotic chloroplast lipids (Xu et al.,  2005 ; Awai et al.,  2006) . 
Again, channelling and/or regulation of chloroplast PAP activity might resolve this 
apparent discrepancy. 

 A chloroplast-envelope-localized activity which transfers fatty acids from 
acyl-CoA to lyso-PC has been described in leek and pea seedlings (Bessoule et al., 
 1995 ; Kjellberg et al.,  2000 ; Mongrand et al.,  2000) . This has led to the suggestion 
that lyso-PC might be the precursor translocated from the ER to the chloroplast 
(Bessoule et al.,  1995 ; Mongrand et al.,  1997 ; Mongrand et al.,  2000) . The chloro-
plast-localized lyso-PC acyltransferase was found to be protected from the pro-
tease thermolysine and co-fractionated with the inner envelope in pea (Kjellberg et 
al.,  2000) . In general, very little is known about the roles of similar acyltransferase 
activities in plant membranes. It was, however, recently reported that acyl editing of 
PC in the ER might be more important than previously recognized for de novo syn-
thesis of phospholipids in the ER (Bates et al.,  2007) . 

 If PC delivered directly from the ER or assembled from lyso-PC in the envelope 
represents a precursor for galactolipid synthesis in the chloroplast, the phosphoryl-
choline head group needs first to be cleaved off to generate DAG required for 
galactolipid synthesis. This could be accomplished in two ways. The phosphoryl-
choline could be cleaved in one piece by the action of a phospholipase C (PLC). 
Alternatively, the head group could be cleaved off in two steps. First a phospholipase 
D (PLD) could cleave choline, and then PAP activity could remove the phosphate 
group. In vitro experiments clearly demonstrated that eukaryotic PC in the chloroplast 
envelope can serve as a precursor for galactolipid synthesis, provided that the PC is 
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degraded by exogenously added PLC (Miquel et al.,  1988) . However, no PLC or 
PLD activity has ever been demonstrated to be present in an isolated chloroplast 
fraction. Thus, if PC in the envelope is a precursor for galactolipid synthesis in 
the chloroplast, the required phospholipase(s) must be a soluble cytosolic enzyme 
which only transiently associates with the chloroplast. In vitro experiments with 
isolated pea chloroplasts and envelopes demonstrated that PC synthesized in the 
chloroplast envelope from lyso-PC and acyl-CoA could be used as a substrate for 
galactolipid synthesis provided that cytosolic proteins were added to the reaction 
mixture (Andersson et al.,  2004) . Furthermore, the sensitivity to specific inhibitors 
suggested that the cytosolic enzymes required were PLD and PAP. The same set of 
enzyme activities could also be involved if PA is the major eukaryotic precursor 
transported from the ER to the chloroplast. In this case, the PLD activity could 
produce PA in the ER and a soluble PAP would provide the activity required for 
DAG production in the envelope. This was also supported by in vitro transfer 
experiments of PA from liposomes to chloroplasts isolated from wild-type 
 Arabidopsis  and the  tgd1  mutant (Xu et al.,  2005) . Information on soluble PAP 
activities in plants is rather scarce and most of the attention has focused on the 
envelope-localized PAP and the plasma-membrane-bound PAPs most probably 
involved in signalling rather than bulk lipid metabolism. Soluble PAP activity has 
been described in  Vicia faba  leaves (K ö nigs and Heinz,  1974)  and developing seeds 
of  Brassica napus  (Kocsis et al.,  1996 ; Furukawa-Stoffer et al.,  1998) . No candidate 
genes have been identified, but the data presented by Andersson et al.  (2004)  
suggest that the sought-after activity is a soluble PAP that is insensitive to  N -
 ethylmaleimide and has a native size exceeding 100   kDa.  

  8 Glycolipid Biosynthesis in the Chloroplast Envelope  

 Glycolipids are assembled from DAG and UDP-sugars in the envelope membranes 
of chloroplasts (Fig.    3 ) (Neufeld and Hall,  1964) .  Arabidopsis  contains three 
MGDG synthases: MGD1, which localizes to the inner envelope, is involved in the 
synthesis of the largest proportion of MGDG. MGD2 and MGD3, which are found 
in the outer envelope, are only active in some tissues or under specific conditions, 
e.g. phosphate deprivation (Awai et al.,  2001) . The MGDG synthase transfers a 
galactose moiety from UDP-galactose onto DAG under inversion of the anomeric 
configuration. Therefore, the galactose is linked in  β -anomeric configuration to 
DAG. Two DGDG synthases are present in  Arabidopsis , DGD1 and DGD2 that 
galactosylate the C-6 position of the galactose moiety in MGDG (D ö rmann et al., 
 1999 ; Kelly et al.,  2003) . Since the reaction follows a retaining mechanism, the 
outermost galactose residue in DGDG has  α -configuration. DGD1 is responsible 
for the production of the largest proportion of DGDG in leaves, while both enzymes 
contribute to DGDG production under phosphate deprivation (Kelly et al.,  2003) . 
The two DGDG synthases localize to the outer envelope of chloroplasts (Froehlich 
et al.,  2001 ; Kelly et al.,  2003) .        



140 M.X. Andersson, P. Dörmann

 Fig. 3      Synthesis of glycoglycerolipids in plants. UDP-sulfoquinovose, the donor for the head 
group of sulfolipid (SQDG), is synthesized from UDP-glucose and sulfite by SQD1 ( top part ). 
Subsequently, SQD2 produces SQDG from diacylglycerol and UDP-sulfoquinovose. The bottom 
part shows galactolipid synthesis. UDP-glucose is converted into UDP-galactose by one of the five 
UDP-glucose epimerases present in  Arabidopsis . UDP-galactose is the head group donor for 
MGDG and DGDG synthesis by one of the MGDG synthases (MGD1, MGD2 and MGD3) or 
DGDG synthases (DGD1 and DGD2). The galactolipid:galactolipid galactosyltransferase 
( GGGT ), a processive oligogalactolipid synthase with unknown identity and unknown function, 
produces small amounts of trigalactosyldiacylglycerol ( TGDG ). Note that the glycosidic linkages 
derived from the MGDG synthase reaction and from the GGGT reaction are  β , while DGDG 
synthases produce  α -glycosidic bonds  
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 In addition to the two DGDG synthases described above,  Arabidopsis  contains 
a third activity, the galactolipid:galactolipid galactosyltransferase (GGGT), capable 
of synthesizing DGDG and oligogalactolipids with three (TGDG) or more galactose 
units in the head group (van Besouw and Wintermans,  1978 ; Heemskerk et al., 
 1990) . The GGGT activity localizes to the outer chloroplast envelope (Douce, 
 1974 ; Cline and Keegstra,  1983) . The amount of oligogalactolipids, including 
TGDG, in leaves is usually very low, but it can increase to high amounts in stressed 
leaves (Sakaki et al.,  1990) . The GGGT activity was described as an enzyme trans-
ferring a galactose unit from one MGDG to the other, thereby producing DAG and 
DGDG (van Besouw and Wintermans,  1978) . GGGT is independent of the DGDG 
synthases DGD1 and DGD2 since GGGT activity is still detectable in the  dgd1 
dgd2  double mutant (Kelly et al.,  2003) . As indicated above, TGDG accumulates 
in the mutants  tgd1 ,  tgd2  and  tgd3  (Xu et al.,  2003) . The reason why mutations in 
the TGD lipid transporter complex stimulate TGDG synthesis in  Arabidopsis  
remains unknown. It is possible that the TGDG-synthesizing activity from  tgd1  is 
identical or related to the GGGT activity described above. The fact that the galactose 
moieties in TGDG of the  tgd1  mutant are all in  β -linkage indicates that this enzyme 
is specific for  β -anomeric bonds, in contrast to the two DGDG synthases DGD1 and 
DGD2, which are specific for  α -glycosidic bonds (Xu et al.,  2003) . However, the 
identity of GGGT or the TGDG-synthesizing activity in the  tgd  mutants, the function 
of TGDG synthesis and the relation to the known enzymatic steps of galactolipid 
synthesis remain enigmatic. 

 The sulfolipid SQDG contains a modified glucose head group carrying a 
sulfonic acid moiety at the C-6 position (Benson et al.,  1959) . The head group 
for SQDG synthesis, UDP-sulfoquinovose, is produced from UDP-glucose and 
sulfite (SO 

3
  2  - ) in the stroma by the SQD1 gene product in  Arabidopsis . SQD1 

shows sequence similarity to UDP-sugar epimerases (Essigmann et al.,  1998) . 
Crystallization of the protein revealed that SQD1 binds NADH as a cofactor 
(Mulichak et al.,  1999) . The reaction mechanism for the conversion of UDP-glucose 
into UDP-sulfoquinovose proceeds through a reduced  “ glucosene ”  form which 
serves as the acceptor for sulfite addition. Subsequently, the sulfoquinovose is 
transferred onto DAG in the outer-envelope membrane of chloroplasts by SQDG 
synthase (SQD2) (Yu et al.,  2002) . The reaction follows a retaining mechanism 
resulting in  α -glycosidic linkage between the sugar and the glycerol backbone.  

  9 Chloroplast Lipid Fatty Acid Desaturation  

 The introduction of further double bonds beyond the Δ9-double bond in 18:1 in 
chloroplast membrane lipids is dependent on membrane-bound desaturases which 
accept intact glycerolipids as substrates (Schmidt and Heinz,  1990a , b ,  1993 ; 
Sperling et al.,  1993) . Two ER-localized membrane lipid desaturases were cloned by 
forward genetic screens for  Arabidopsis  mutants with deficiencies in unsaturated fatty 
acids (Arondel et al.,  1992 ; Yadav et al.,  1993 ; Okuley et al.,  1994) . The sequences 
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for the two ER desaturases FAD2 and FAD3 were then used to identify three chlo-
roplast-localized lipid desaturases FAD6, FAD7 and FAD8 (Iba et al.,  1993 ; Falcone 
et al.,  1994 ; Gibson et al.,  1994 ; Hitz et al.,  1994) . The ER- localized desaturases 
FAD2 and FAD3 produce linoleic acid (18:2) and 18:3, which are esterified to 
phospholipids in the ER. Thus, these two enzymes contribute to desaturation of 
chloroplast lipid species assembled through the eukaryotic pathway. A specific 
envelope-localized desaturase introduces the Δ7-double bond in 16:0 esterified to 
MGDG assembled by the prokaryote pathway. This activity is encoded by a single 
nuclear gene,  FAD5 , in  Arabidopsis  (Mekhedov et al.,  2000 ; Heilmann et al.,  2004) . 
No candidate gene for the FAD4 desaturase which introduces the  trans -3 double 
bond in palmitic acid esterified to chloroplast PG has yet been found. In  Arabidopsis , 
three chloroplast-localized desaturases catalyse the production of dienoic and 
trienoic acids on galactolipids. FAD6 introduces a second double bond in palmito-
leic acid (16:1) and 18:1 and FAD7 and FAD8 introduce the third. The ER- localized 
lipid desaturases use cytochrome  b  

5
  as an electron donor, whereas the chloroplast-

localized desaturases use reduced ferredoxin.  

  10 Lipid Transport from the Envelope to the Thylakoids  

 Glycolipids (MGDG, DGDG and SQDG) are synthesized in the envelope mem-
branes, but accumulate in the thylakoid membranes in high amounts. Similarly, PG 
and other lipids of the photosynthetic membranes (phylloquinone, plastoquinone, 
tocopherol, carotenoids) are also derived from the envelope membranes. Thus, massive 
transport of membrane material from the envelope to the thylakoids is required 
for the establishment of thylakoid membranes during chloroplast development 
(Fig.    4 ). Contact sites between the inner envelope and the thylakoid are quite 
frequently observed in developing chloroplasts (Carde et al.,  1982) . It has thus been 
proposed that the thylakoid membranes originate from invaginations of the inner-
envelope membrane (M ü hlethaler and Frey-Wyssling,  1959 ; Vothknecht and 
Westhoff,  2001) . Recent data obtained from the analysis of an  Arabidopsis mgd1  
mutant support this hypothesis (Kobayashi et al.,  2007) . This mutant, which is 
completely devoid of MGDG, develops large invaginations from the chloroplast 
envelope, suggesting that the loss of MGDG prevents the separation of regular 
thylakoids derived from the inner envelope.        

 In mature chloroplasts, contacts between the inner envelope and the thylakoid 
are only very rarely observed. The inner envelope and the thylakoids are usually 
separated by at least 50 – 100   nm of aqueous stroma (Morr é  et al.,  1991b ; Ryberg 
et al.,  1993) . Even though mature chloroplasts in comparison to developing chloroplasts 
do not require extensive transport of lipids from the envelope to the thylakoids, 
there is still a certain turnover of thylakoid lipids in a mature chloroplast. Thus, there 
is always a need for a certain flow of membrane material from the inner envelope to the 
thylakoid. A vesicle transport system has been proposed as a model for lipid transfer 
from the inner envelope to the thylakoids. Electron microscopy of leaves exposed 
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to low temperature revealed the accumulation of vesicles in the stroma close to the 
envelope membranes (Morr é  et al.,  1991b) . While vesicles are usually absent from 
 Arabidopsis  chloroplasts raised at normal growth conditions, vesicle formation and 
fusion can be blocked by inhibitors that affect cytosolic vesicle transport systems 
(Westphal et al.,  2001b) . Furthermore, contact sites between the two envelope 
membranes, and vesicles originating from the envelope have been observed in 
osmotically stressed chloroplasts, indicating that lipids and proteins might move 
between the two envelope membranes via contact sites, and that vesicles might be 
involved in the transfer to the thylakoids (Cremers et al.,  1988) . Finally,  in organello  
assays also demonstrate that the transport of newly formed galactolipids to the 
thylakoid in intact chloroplasts is inhibited at the same temperature that results in 
the accumulation of vesicles in the stroma (Andersson et al.,  2001) . 

 The  Arabidopsis  genome codes for a number of proteins with putative chloroplast 
localization signals and that show sequence similarity to factors of the yeast 
cytosolic/ER-localized vesicle transport system, e.g. COPII coat proteins and small 
GTPases (Andersson and Sandelius,  2004) . This suggests that a transport mecha-
nism related to ER – Golgi transport in the cytosol might also operate within the 
plastid. It is known that galactolipids can be released from isolated envelopes in an 

 Fig. 4      Intraplastidial and extraplastidial lipid transport in  Arabidopsis.  Thylakoid lipids are 
derived from the inner-envelope membrane by invagination or from vesicle transport. Eukaryotic 
lipid precursors assembled at the ER are transported to the chloroplast, presumably via the TGD 
transporter complex. During phosphate deprivation, DGDG is exported from chloroplasts to 
extraplastidial membranes, i.e. plasma membrane and mitochondria  
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ATP- and stroma-dependent fashion (R ä ntfors et al.,  2000) . In vitro transfer of 
galactolipids from envelope to thylakoid seems to depend on similar factors (Morr é  
et al.,  1991a) . A stromal protein, plastid fusion/transformation factor (Pftf ), showing 
sequence similarity to yeast and mammalian NSF and bacterial FtsH proteins is 
required for fusion of vesicles derived from chromoplasts of pepper (Hugueney 
et al.,  1995) . The  Arabidopsis  dynamin-like 1 (ADL1) protein shows sequence 
similarity to mammalian dynamin proteins (Park et al.,  1998) .  Arabidopsis  lines 
deficient in ADL1 expression show yellowish leaves and contain fewer chloroplasts 
with strongly reduced thylakoids. Dynamin-like proteins harbour an N-terminal 
GTPase activity and are known to be involved in vesicle trafficking in the eukaryotic 
cells. The fact that ADL1 localizes to the chloroplasts suggests that this protein 
might participate in vesicle trafficking in the plastid. 

 A vesicle-based mechanism for lipid transport from the envelope to the thylakoids 
is also supported by data obtained from additional  Arabidopsis  mutant analysis. 
The thylakoid formation 1 ( THF1 ) gene controls thylakoid development in 
 Arabidopsis  (Wang et al.,  2004) . THF1 localizes to the chloroplast, and the corre-
sponding mutant shows disturbed thylakoid development and the accumulation of 
vesicles in the stroma. The gene is present in all organisms performing oxidative 
photosynthesis, but shows no sequence similarity to other genes in the databases. 
A mutant in vesicle inducing in plastid protein 1 (VIPP1) shows the accumulation 
of vesicles and a strongly reduced thylakoid system in the chloroplasts of 
 Arabidopsis  and also in cyanobacteria (Kroll et al.,  2001 ; Westphal et al.,  2001a) . 
VIPP1 was previously discovered as a protein associated with thylakoids and the 
inner envelope (Li et al.,  1994) . VIPP1 shows sequence similarity with the phage 
shock protein A (PspA) from bacteria (Westphal et al.,  2001a) . VIPP1, similar to 
its ancestor protein PspA, forms large homo-oligomeric rings which localize to the 
inner envelope of chloroplasts (Aseeva et al.,  2004) . VIPP1 rings assemble into larger, 
rod-like filaments which could be the basis for the microtubule-like structures 
observed previously in chloroplasts (Liu et al.,  2007) . Plastidial chaperons and co-
chaperons (CDJ2, CGE2 and the heat shock protein HSP70B) are involved in the 
ATP-dependent assembly and disassembly of VIPP1-containing complexes, 
thereby modulating thylakoid development (Liu et al.,  2007) . Thus, while thylakoid 
biogenesis in developing chloroplasts seems to be based on invaginations of the inner 
envelope, lipid transfer to thylakoids in mature leaves might be mediated via vesicle 
transport. This vesicle transport system appears to have features and components 
derived from both the endosymbiont cyanobacteria and the host eukaryote.  

  11  Chloroplast Lipid Metabolism and Galactolipid Export 
During Phosphate-Limited Growth  

 Approximately one third of all organically bound phosphate in an  Arabidopsis  leaf 
is bound to phospholipids (Poirier et al.,  1991) . Since galactolipids are phosphate-
free, they largely contribute to phosphate homeostasis in the plant. Under normal 
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growth conditions, galactolipids accumulate predominately in chloroplast membranes. 
The amount of galactolipids detected in extraplastidial membranes is in general very 
low, and it is has been a matter of debate as to whether they are authentic compo-
nents or mere contaminations derived from plastidial membranes during isolation. 
The first indication that growth under phosphate limitation results in the accumula-
tion of glycolipids as surrogates for phospholipids came from the analysis of bacte-
rial lipid metabolism (Minnikin et al.,  1974) . In  Rhodobacter  and in cyanobacteria, 
the amount of sulfolipid increases strongly at the expense of phospholipids during 
phosphate-limited conditions (Benning et al.,  1993 ; G ü ler et al.,  1996) . Similarly, 
the sulfolipid content in chloroplasts of  Arabidopsis  increases upon phosphate dep-
rivation at the expense of phospholipids (Essigmann et al.,  1998) . Furthermore, the 
non-ionic galactolipid DGDG also accumulates in cyanobacteria and in  Arabidopsis  
under phosphate limitation (G ü ler et al.,  1996 ; H ä rtel et al.,  2000) . In contrast to 
SQDG, which remains localized to the chloroplast membranes, DGDG accumulates 
in the chloroplast as well as in extraplastidial membranes (H ä rtel et al.,  2000) . 

 The increase in SQDG and DGDG observed during phosphate deprivation 
represents an active process involving the induction of gene expression. Under 
phosphate limitation, the expression of the  SQD1  and  SQD2  messenger RNAs is 
induced, resulting in increased SQDG production (Essigmann et al.,  1998 ; Yu et al., 
 2002) . Furthermore, the expression of MGD2 and MGD3, but not of MGD1, is 
induced upon phosphate deprivation (Awai et al.,  2001) . Therefore, it is believed 
that MGD2 and MGD3 provide the substrate for the extra amount of DGDG 
synthesized during phosphate deprivation. Induction of DGD1 and DGD2 expression 
during phosphate limitation provides the means for increased DGDG production 
(Kelly and D ö rmann,  2002 ; Kelly et al.,  2003) . While DGD1 is believed to synthesize 
DGDG for the chloroplasts, DGD2, which is only induced during phosphate 
deprivation, produces DGDG exported to extraplastidial membranes. 

 The first indication that DGDG might substitute for phospholipids in extraplas-
tidial membranes during phosphate-limited growth was provided by H ä rtel et al. 
 (2000) . Phosphate limitation was shown to cause accumulation of DGDG in micro-
some fractions isolated from  Arabidopsis . The first unambiguous demonstration of 
extraplastidial phospholipid replacement by DGDG was based on the isolation of 
plasma membranes in very high purity from roots and shoots of phosphate-starved oat 
(Andersson et al.,  2003) . Subsequently, the same phenomenon was shown to occur in 
oat root tonoplasts (Andersson et al.,  2005)  and in mitochondria in  Arabidopsis  cell 
suspension (Jouhet et al.,  2004) . The degree of phospholipid replacement by DGDG 
is quite impressive. In plasma membranes isolated from oat roots cultivated without 
phosphate for 4   weeks, the phospholipid content decreased by about 70% (Andersson 
et al.,  2003 ; Andersson et al.,  2005) . Most of the phospholipids were replaced by 
DGDG, albeit there was also a minor contribution from glucosylceramide and 
sterolglucosides (Andersson et al.,  2005) . The phospholipid to DGDG replacement 
has been shown to occur in  Arabidopsis  (H ä rtel et al.,  2000 ,  2001) , oat (Andersson 
et al.,  2003) , sycamore maple (Jouhet et al.,  2003) , soybean (Gaude et al.,  2004) , rice, 
maize, radish, garden nasturtium and sunflower (H. Tjellstr ö m, M.A. Andersson, 
K.E. Larsson and A.S. Sandelius, unpublished results). 
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 Since the phosphate-starvation-induced DGDG synthase machinery is clearly 
localized to the chloroplast envelope, a mechanism for the export of DGDG from 
the chloroplast must exist. Jouhet et al.  (2004)  suggested that DGDG is directly 
transferred from the chloroplast to the mitochondria. This is supported by electron 
micrographs showing that phosphate limitation causes an increase in close contacts 
between chloroplasts and mitochondria. For export of DGDG to the plasma membrane 
and the tonoplast, it seems reasonable to assume that the lipid is exported to the ER 
and from there sorted into the secretory pathway towards the tonoplast or the 
plasma membrane. In the  Arabidopsis fad2  mutant, which lacks ER localized 
oleoyl-PC desaturase, 18:2 and 18:3 fatty acids are still found in the extraplastidial 
phospholipids (Miquel and Browse,  1992) ; thus, lipid-bound fatty acids are 
exported from the chloroplast under other conditions as well. However, the export 
of DGDG so far is the only certain example for the export of intact glycerolipids 
from the chloroplast. The molecular details of the export of DGDG to mitochondria 
or the ER are at this point obscure. 

 If the replacement of phospholipids with DGDG takes place in fully expanded 
cells, the phospholipids first have to be degraded. In rapidly expanding tissues, on 
the other hand, phospholipid degradation would be less important than de novo 
synthesis of DGDG, which would quickly dilute the pre-existing phospholipids. 
In either case, DAG must be made available for galactolipid synthesis in the chloro-
plast envelope.  Arabidopsis  and  Acer pseudoplatanus  suspension cells respond 
to removal of phosphate from the medium with a transient increase in PC prior to 
accumulation of DGDG (Jouhet et al.,  2003) . While the PC content increased, there 
was a sharp decline in the content of other phospholipids. This underlines the role 
of PC as a precursor for galactolipid synthesis. It was suggested that hydrolysis of 
phospholipids plays a major role for the liberation of phosphate and the rerouting 
of DAG backbones from phospholipids to galactolipids. The current knowledge of 
phospholipase activities involved in these processes is very limited. A small family 
of genes with similarities to bacterial PC-specific PLC was identified in the 
 Arabidopsis  genome. One of the phospholipase genes,  NPC4 , was also found to 
be upregulated by phosphate starvation and the protein accumulated in the plasma 
membrane (Nakamura et al.,  2005) . The recombinant NPC4 protein exhibits a 
calcium-independent PLC activity towards PC, phosphatidylethanolamine and PA. 
However, inactivation of the  NPC4  gene in the  npc4  mutant had no effect on the 
phospholipid to DGDG exchange during phosphate starvation. The NPC4 protein 
was also found to accumulate in plasma membranes isolated from phosphate-
starved oat roots (Andersson et al.,  2005) ; however, in the latter case the major 
lipase activity detected in the isolated plasma membranes was PLD rather than 
PLC. The two  Arabidopsis  PLD isoforms PLDζ1 and PLDζ2 were also found to be 
induced by phosphate starvation (Cruz-Ramirez et al.,  2006 ; Li et al.,  2006a) . 
A knockout mutation of PLDζ2 caused a reduction in phospholipid replacement in 
phosphate-starved roots, and the simultaneous knockout of both isoforms caused a 
change in the morphological response of the roots to low phosphate levels (Li et al., 
 2006b) . It is thus clear that the phospholipid to DGDG replacement is accompanied 
by induction of phospholipase genes. However, an alternative function of these 
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phospholipases could be the production of intracellular signals for phosphate 
homeostasis or for bulk phospholipid degradation as a prerequisite for DGDG 
production.  

  12 Chloroplast Galactolipid Degradation Pathways  

 Chloroplast lipids are subject to constant degradation and resynthesis. Thus, 
glycerolipids in the membranes are hydrolysed by phospholipases, glycolipases 
and glycosidases, and replaced with newly assembled lipids. The identity of the 
enzymes involved in this process, however, is to a large extent unknown. 

 Two galactosidase activities were described with specificities for a and b glycosidic 
bonds (Sastry and Kates,  1964 ; Helmsing,  1967) . While  α -galactosidase activity is 
required for the hydrolysis of the outermost galactose residue in DGDG, the inner 
galactose of DGDG and that of MGDG are cleaved by  β -galactolipase activity. 
Furthermore, an  α -glycosidase activity is involved in sulfolipid breakdown. The 
identities of the genes involved remain unknown.  Arabidopsis  contains almost 400 
glycosylhydrolase sequences (Henrissat et al.,  2001)  which can be organized into 
 α  and  β  specific enzymes. However, the large number of candidate genes prevents 
a straightforward sequence-homology-based approach of identifying lipid glyco-
sylhydrolase genes. Furthermore, it is still unclear whether galactolipids are first 
cleaved by galactolipases (i.e. removing the acyl groups), and the remaining diga-
lactosylglycerol or galactosylglycerol moieties cleaved by galactosidases, or 
whether galactosidases directly act on the two galactolipids MGDG and DGDG. 

 Fatty acids are cleaved from glycolipids by the action of glycolipases, in analogy 
to the phospholipases A1 and A2 which are well known from the animal and yeast 
field. Galactolipases have been characterized in plant extracts (Sastry and Kates, 
 1964 ; Helmsing,  1967) . The enzymes are specific for hydrolysis of acyl groups 
from  sn -1 and  sn -2 positions of MGDG and DGDG. Two genes encoding chloroplast-
localized galactolipases and phospholipases involved in releasing 18:3 destined for 
the oxylipin pathway (i.e. jasmonate production) have been identified in  Arabidopsis  
(Ishiguro et al.,  2001 ; Hyun et al.,  2008) . A sulfolipase activity was described for 
 Scenedesmus , but similar to the galactolipases, the identity of the corresponding 
gene remains unknown (Yagi and Benson,  1962) . Labelling experiments with H 

2
  18 O 

suggested that the rate of lipid deacylation/acylation ( “ retailoring ” ) reactions in 
non-stressed leaves is quite high, similar to the de novo fatty acid synthesis rate 
(Pollard and Ohlrogge,  1999) . Bao et al.  (2000)  showed that the rate of fatty acid 
breakdown amounts to about 4% of total leaf fatty acid per day; therefore, the entire 
acyl matrix in membranes is turned over in about 25   days. It is possible that acyl 
retailoring is involved in channelling different fatty acids to specific membrane lipids. 
For example, some of the ER-derived fatty acids bound to PC seem to be the 
precursors for galactolipids in the chloroplast (Roughan,  1970) . Removal of poly-
unsaturated fatty acids damaged by reactive oxygen species might be essential for 
maintaining a functional thylakoid lipid matrix. 



148 M.X. Andersson, P. Dörmann

 The amount of free fatty acids in leaves is generally very low. During senescence or 
abiotic stress, large amounts of lipids are broken down, resulting in the release of 
free fatty acids (Conconi et al.,  1996) . A certain proportion of the fatty acids 
derived from galactolipid breakdown are exported from the plastid. Free fatty acids 
in  Arabidopsis  are converted into their acyl-CoA derivatives by one of the nine 
long-chain acyl-CoA synthetases (Fulda et al.,  2002 ; Hayashi et al.,  2002 ; Schnurr 
et al.,  2002 ; Shockey et al.,  2002) . Acyl-CoA esters serve as substrates for the 
further degradation via  β -oxidation in the peroxisome. Furthermore, ACP synthases 
were identified in  Arabidopsis  which are possibly involved in plastidial fatty acid 
remodelling (Koo et al.,  2005) . 

 In addition to galactolipid-derived free fatty acids, free phytol and chlorophyllide 
from chlorophyll are released by action of chlorophyllases in photosynthetic mem-
branes during stress or senescence. While the pathway of chlorophyllide degradation 
has been studied in detail, not much is known about the fate of phytol in plant 
metabolism. Phytol represents a C 

20
  alcohol derived from the isoprenoid pathway. 

It is known that phytol and free fatty acids have detergent-like characteristics and, 
therefore, their accumulation is toxic for the membranes. During senescence or 
nitrogen deprivation, large amounts of fatty acid phytyl esters accumulate in the 
chloroplasts (Ischebeck et al.,  2006 ; Gaude et al.,  2007) . The phytyl esters are 
mostly localized to plastoglobules, small lipid protein particles in the chloroplasts. 
Phytyl esters have previously been identified in algae, mosses and in higher plants 
subjected to abiotic stress or senescence (Csupor,  1971 ; Gellerman et al.,  1975 ; 
Cranwell et al.,  1985 ; Patterson et al.,  1993) . The identity of the protein involved in 
fatty acid phytyl ester synthesis and its role during senescence remains enigmatic. 
It is possible that phytyl esters represent a transient sink for free fatty acids and 
phytol released from galactolipids and chlorophyll, respectively, and that they are 
finally channelled into degradation by  β -oxidation in the peroxisome. In this regard 
it is interesting to note that plastoglobules contain a number of additional non-polar 
lipids that accumulate during stress or senescence, including phylloquinone, fatty 
acid phytyl ester and tocopherol (Lohmann et al.,  2006 ; Vidi et al.,  2006) .  

  13 Outlook  

 The last 30 years has seen tremendous advances in our understanding of the 
biosynthesis and function of the chloroplast membrane lipids. Nearly all the important 
genes involved in synthesis of the major chloroplast lipids have been cloned from 
 Arabidopsis . Taking advantage of the emerging plant genome projects, one can now 
employ these sequences to identify orthologues in other plants, including the major 
crop species. Figures    2  –  4  show tentative models for the different biochemical path-
ways presented here. Glycerolipids are synthesized in only a few membranes of the 
plant cells, in particular the chloroplast envelopes, the ER and, to a lesser extent, 
the mitochondrion. Therefore, lipid trafficking is required to transfer precursors or 
entire lipid molecules to other organelles. Direct contact sites seem to be involved 
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in the transport of membrane material between the ER and the envelope. The first 
genes encoding an ABC transporter presumably involved in the transfer of PA from 
the ER to the chloroplast have been cloned. The molecular basis for DGDG export 
from the plastids during phosphate deprivation is not understood. Within young 
chloroplasts, thylakoids seem to be derived from inner-envelope invaginations, 
while a vesicle-based system seems to be operating in older chloroplasts. However, 
the molecular basis for intraplastidial lipid trafficking is unclear. Future research 
will have to focus on the missing factors involved in intra- and extraplastidial lipid 
homeostastis and lipid trafficking.      
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