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Abstract Literature-based discovery (LBD) is an emerging methodology for un-

covering nonovert relationships in the online research literature. Making such re-

lationships explicit supports hypothesis generation and discovery. Currently LBD

systems depend exclusively on co-occurrence of words or concepts in target docu-

ments, regardless of whether relations actually exist between the words or concepts.

We describe a method to enhance LBD through capture of semantic relations from

the literature via use of natural language processing (NLP). This paper reports on

an application of LBD that combines two NLP systems: BioMedLEE and SemRep,

which are coupled with an LBD system called BITOLA. The two NLP systems

complement each other to increase the types of information utilized by BITOLA.

We also discuss issues associated with combining heterogeneous systems. Initial

experiments suggest this approach can uncover new associations that were not pos-

sible using previous methods.

1 Introduction

Literature-based discovery (LBD) is a method for automatically generating hypothe-

ses for scientific research by finding overlooked implicit connections in the research
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literature. Discoveries have the form of relations between two primary concepts, for

example a drug as a treatment for a disease or a gene as the cause of a disease.

Swanson [1] introduced a paradigm in which such relations are discovered in bibli-

ographic databases by uncovering a third concept (such as a physiologic function)

that is related to both the drug and the disease. The discovery of the third concept

allows a relation between the primary concepts, which was latent in the literature,

to become explicit, thus constituting a potential discovery.

Current literature-based discovery systems (for example [2–12] use concept co-

occurrence as their primary mechanism. No semantic information about the nature

of the relation between concepts is provided. The use of co-occurrence has several

drawbacks, since not all co-occurrences underlie “interesting” relations: (a) users

must read large numbers of Medline citations when reviewing candidate relations;

(b) systems tend to produce large numbers of spurious relations; and, finally, (c)

there is no explicit explanation of the discovered relation.

In this chapter we address these deficiencies by enhancing the literature-based

paradigm with the use of semantic relations to augment co-occurrence processing.

We combine the output of two natural language processing systems to provide these

predications: SemRep [13] and BioMedLee [14]. On the basis of explicit semantic

predications, the user can ignore relations which are either uninteresting (thus reduc-

ing the amount of reading required) or wrong (eliminating false positives). Analysis

using predications can support an explanation of potential discoveries.

2 Background

2.1 Literature-Based Discovery

The methodology in literature-based discovery relies on the notion of concepts rel-

evant to three literature domains: X, Y, and Z. In a typical scenario, X concepts are

those associated with some disease and Z concepts relate to a drug that treats the dis-

ease. Y concepts might then be physiological or pathological functions, symptoms,

or body measurements. Concepts in X and Y are often discussed together, as are

those in Y and Z. However, concepts from X and Z may not appear together in the

same research paper. Discovery is facilitated by using particular Y concepts to draw

attention to a connection between X and Z that had not been previously noticed.

In implementation, all the Y concepts in a bibliographic database related to the

starting concept X are usually computed first. Then the Z concepts related to Y are

found. Those Y concepts that appear with both X and Z provide the link from X to Z.

The user then checks whether X and Z appear together in the research literature; if

they do not, a potentially useful relation has been discovered. This relation needs

to be confirmed or rejected using human judgment, laboratory methods, or clinical

investigations.
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In a discovery reported by Swanson [1], the X domain was Raynaud’s disease.

Of the many Y terms co-occurring with this disorder, blood viscosity and platelet

aggregation were found to co-occur with a Z term, fish oil (rich in eicosapentaenoic

acid). Fish oil (Z) reduces blood viscosity and platelet aggregation (Y), which are in-

creased in Raynaud’s disease (X), and thus fish oil was proposed as a new treatment

for Raynaud’s disease. Swanson has published several other medical discoveries

using this methodology. However, in his original work (and in all subsequent repli-

cations of this discovery), what is increased in relation to the disease and what can

be used to decrease it, must be determined by reading relevant Medline citations.

This is exactly where we want to improve the state-of-the-art in LBD.

Several methods are being pursued in current LBD systems (for a more detailed

review see [15]). Some systems extract concepts from the titles and abstracts of

Medline citations (often using MetaMap [16]), while others use the assigned MeSH

descriptors to represent concepts in citations. All systems use co-occurrence to de-

termine which concepts are in a relationship, although some augment co-occurrence

with other derived relation measures. Usually the semantic types of the concepts are

used to filter out unneeded relations and concepts.

Swanson and Smalheiser have developed a system called Arrowsmith [2], which

uses co-occurrence of words or phrases from the title of Medline citations. The

BITOLA system (Hristovski et al. [3,4]) uses association rules as a relation measure

between concepts. In general, association rule mining [17] finds interesting associ-

ations and/or correlation relationships among large set of data items. In BITOLA a

data item corresponds to a Medline citation and is represented as a set of concepts.

For each citation, the concepts are the assigned MeSH headings and additionally

gene symbols extracted from the titles and abstracts of Medline citations. For ex-

ample, the association rule Multiple Sclerosis → Optic Neuritis tells us that there is

probably some association between Multiple Sclerosis and Optic Neuritis, but does

not tell us the semantic nature of this association.

Weeber et al. [5] use MetaMap to identify UMLS concepts in titles and abstracts

and use concept co-occurrence as a relation measure. For filtering, they use UMLS

semantic types. For example, the semantic type of one of the co-occurring concepts

might be set to Disease or Syndrome and the other to Pharmacologic Substance, thus

only co-occurrences between a disease and a drug are found. Lindsay and Gordon

[6] use an approach similar to Arrowsmith but add various information retrieval

techniques to assign weight to the terms being manipulated. Gordon and Dumais [7]

employ a statistical method called latent semantic indexing to assist in LBD. Wren

[8] uses mutual information measures for ranking target terms based on their shared

associations. Srinivasan [12] developed a system, called Manjal, which uses MeSH

terms as concepts and term weights instead of simple term frequencies. For ranking,

the system uses an information retrieval measure based on term co-occurrence. Pratt

[9] uses MetaMap to extract UMLS concepts from the titles of Medline citations and

then uses association rules as a relationship measure between concepts.

The Telemakus system [10] is different from the rest of the systems mentioned in

so far as it uses manually extracted relationships to represent the research findings.

Each relationship is a pair of concepts from the article’s figure and title legends.



136 D. Hristovski et al.

The semantic relation between the concepts is not extracted. The manual relation

extraction method has two consequences: the positive one is that the method has

high precision and the negative one is that it is time consuming and thus currently

used in only two relatively narrow domains.

Recently Hu [11] presented a system called Bio-SbKDS where MeSH terms are

used as concepts. This system uses the relations between semantic types from the

UMLS Semantic Network for two purposes: to filter out uninteresting concepts, and

to guess the semantic relation between concepts. In other words, if two concepts

co-occur in a Medline citation, the relation between the corresponding semantic

types of these two concepts is used as the semantic relation between the concepts.

This is only an approximation because there is no guarantee that if the concepts

co-occur they are semantically related and also there is ambiguity in the UMLS

Semantic Network because often more then one semantic relation is present between

two semantic types. However, this approach seems to work quite well in replicating

Swanson’s Raynaud’s – fish oil discovery.

Our method differs from all the above methods because we use natural language

processing (NLP) techniques to augment co-occurrences with specific types of rela-

tions, which are obtained as a result of using two different NLP systems.

2.2 Natural Language Processing

2.2.1 BioMedLEE Natural Language Processing System

BioMedLEE captures genotypic and phenotypic information and relations from the

literature, and is a recent adaptation of MedLEE [18, 19], which was developed

to structure and encode telegraphic clinical information in the patient record. Bio-

MedLEE is based on a symbolic grammar formalism that combines syntax and se-

mantics, using a lexicon to specify semantic and syntactic classes for words and

phrases in the domain. The lexicon consists of a modified and augmented version of

MedLEE’s lexicon, which was derived from clinical documents, the UMLS (Unified

Medical Language System) [20], and other online biomedical knowledge sources,

but this work focuses on use of the concepts that correspond to UMLS Metathe-

saurus concepts only. BioMedLEE consists of a number of different text processing

modules, each of which aims to regularize specific aspects of text processing while

minimizing loss of information. The following is a brief summary of the primary

modules and the resources they use:

a. Abbreviation and Parenthesis Component: This module identifies abbreviations

explicitly defined in the article, and tags them so that the subsequent modules

will be able to substitute the full form in place of the abbreviation. For example,

HD, in Huntington Disease (HD) will be assumed to be Huntington Disease
throughout the article. Other parenthetical expressions may be tagged so that

they will be ignored during parsing.
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b. Biomolecular Named Entity Recognition and Normalization: This module uses

part of speech tagging to recognize the boundaries of noun phrases, and then

identifies ones that appear to be biomolecular entities, such as the names of

genes, gene products, and other substances. The terms that are biomolecular en-

tities are then matched against a database of biomolecular entities using regular

expressions that allow for certain variations (e.g. il-2, il 2, il2). When a match

is found, the term is tagged so that the tag includes the semantic category (e.g.

gene/gene product, substance), and the target output form. For example, after

tagging is performed (we assume here that the tagging module used a database of

UMLS genes and proteins to normalize biomolecular entities), the tagged output

for the sentence “Axonal transport of N-terminal huntingtin suggests pathol-
ogy of corticostriatal projections associated with HD” will be “Axonal
transport of N-terminal <phr sem=”gp“t=”UMLS: C1415504 hd gene”>
huntingtin</phr> suggests pathology of corticostriatal projections associated
with <phr sem=“disease” t=“Huntington’s disease”>HD</phr>”. The tag

around huntingtin has an attribute, which is a semantic category sem with value

gp representing the category gene/gene product and a target form attribute t,
which, in this case, is the UMLS code previously generated by the tagger. In

addition, there is a tag around, HD, with a semantic category disease and target

form Huntington’s disease, which is the full form that occurred previously in

the article along with the abbreviation HD.

c. Preprocessing Component: This module determines section and sentence bound-

aries, and performs lexical lookup for the remaining parts of the sentence that

were not tagged in b. above. This would include phenotypic entities, such as

anatomical locations, diseases, and processes, as well as functional English

words. For example, “corticostriatal” would be identified as an anatomical con-

cept, and “suggest” would be identified as a relation that could connect two bio-

medical entities. The relations are semantic relations that have been categorized

based on linguistic characteristics and are not necessarily UMLS relations.

d. Parser: This module extracts, structures, and encodes phenotypic and genotypic

entities and relations for tagged text from the previous module using a grammar

and a lexicon to parse and structure the output, and a coding table to map the

normalized output to ontological codes. The output is in an XML form based on

a representational schema of the domain, called PGschema [21], which repre-

sents genotypic and phenotypic entities, their ontological codes, modifiers, and

relations between the entities. Figure 1 shows an example of a simplified output

form generated by BioMedLEE for the above tagged sentence, where some of

the nested tags have been manually indented to facilitate readability of the out-

put structure. This output differs from output generated by systems that use

co-occurrence of terms because BioMedLEE found actual relations “suggest”

and “associated with” in the text. The relation “suggest” connects “axonal trans-

port of hd gene” with a second nested relation “associated with”, whose first ar-

gument is “pathology” with an anatomical modifier “corticostriatal” and whose

second argument is “Huntington’s disease”.
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<relation v = "suggest"> 
    <bodyfunc v = "transport"><arg v = "1"></arg> 
        <bodyloc v="axon"></bodyloc><cellcomp v ="N-terminal"></cellcomp> 
        <gene_gproduct v = "UMLS: C1415504_hd gene" idref="p126">                 
        </gene_gproduct> 
        <code v ="UMLS:C0004462_axonal transport"</code> 
    </bodyfunc> 
    <relation v = "associated with"><arg v = "2"></arg> 
        <problem v = "pathology"><arg v = "1"></arg> 
        <bodyloc v = "corticostriatal"></bodyloc> 
        </problem> 
        <problem v = "Huntington's disease"><arg v = "2"></arg> 
             <code v = "UMLS:C0020179_huntington disease"></code> 
        </problem> 
    </relation> 
</relation> 

Fig. 1 Simplified XML output generated by BioMedLee for a sample sentence

2.2.2 SemRep Natural Language Processing System

SemRep [13] is a symbolic natural language processing system for identifying se-

mantic predications in biomedical text. The current focus is on Medline citations.

Linguistic processing is based on an underspecified (shallow) parse structure sup-

ported by the SPECIALIST Lexicon [22] and the MedPost part-of-speech tagger

[23]. Medical domain knowledge is provided by the UMLS. Predications produced

by SemRep consist of Metathesaurus concepts as arguments of a Semantic Network

relation.

For this project, the most important relation is TREATS; however, SemRep

identifies additional semantic predications representing various aspects of bio-

medicine. The core relations addressed refer to clinical actions (e.g. TREATS,

PREVENTS, ADMINISTERED TO, MANIFESTATION OF) and organism characteris-

tics (LOCATION OF, PART OF, PROCESS OF). SemRep has recently been enhanced

to address pharmacogenomics text [24]. Relations in this semantic area refer to

substance interactions and pharmacologic effects (AFFECTS, CO-EXISTS WITH,

DISRUPTS, AUGMENTS, INTERACTS WITH, INHIBITS, STIMULATES), as well as

genetic etiology (ASSOCIATED WITH, PREDISPOSES, CAUSES). The majority of

SemRep’s relations are drawn from the Semantic Network; however, several have

been defined to extend the coverage of that ontology, including ADMINISTERED TO,

CO-EXISTS WITH, and PREDISPOSES.

Each semantic relation serves as the predicate of an ontological predication that

controls SemRep processing. The arguments in these predications are UMLS se-

mantic types, such as ‘Human’ or ‘Anatomical Structure’, which can, for example,

appear in the predication “Anatomical Structure PART OF Human.” All predications

extracted from text by SemRep must conform to an ontological predication.

Semantic interpretation is based on the underspecified parse structure, in which

simple noun phrases are enhanced with corresponding Metathesaurus concepts by
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1) [[head(noun(treatment)), metaconc(‘Treatment’:[topp]))], 
[prep(of)], [head(noun([huntington’s disease)), metaconc(‘Huntington 
Disease’:[dsyn]))], [prep(with)], [head(noun([amantadine)), 
metaconc(‘Amantadine’:[orch,phsu]))]] 

    2) ‘Pharmacological Substance’ TREATS ‘Disease or Syndrome’ 

    3)   Amantadine TREATS Huntington Disease 

Fig. 2 SemRep processing of treatment of Huntington’s disease with amantadine

MetaMap [16]. For example, processing of the phrase treatment of Huntington’s dis-
ease with amantadine produces the structure seen in (1) in Fig. 2. The noun phrase

Huntington’s disease has been mapped to the concept “Huntington’s disease,” with

semantic type ‘Disease or Syndrome’ (dsyn).

The parse structure enhanced with Metathesaurus concepts serves as the basis for

the final phase in constructing a semantic predication. During this phase, SemRep

applies “indicator” rules which map syntactic elements (such as verbs and nomi-

nalizations) to the predicate of an ontological predication. Argument identification

rules (which take into account coordination, relativization, and negation) then find

syntactically allowable noun phrases to serve as arguments for indicators. If an in-

dicator and the noun phrases serving as its syntactic arguments can be interpreted

as a semantic predication, the following condition must be met: The semantic types

of the Metathesaurus concepts for the noun phrases must match the semantic types

serving as arguments of the indicated ontological semantic predication. For exam-

ple, in Fig. 2 treatment is an indicator for TREATS, with the corresponding onto-

logical predication seen in (2) in Fig. 2. The concepts corresponding to the noun

phrases amantadine and Huntington’s disease can serve as arguments of TREATS

because their semantic types (‘Pharmacological Substance’ (phsu) and ‘Disease or

Syndrome’ (dsyn)) match those in the ontological predication. In the final interpreta-

tion, (3) in Fig. 2, the Metathesaurus concepts from the noun phrases are substituted

for the semantic types in the ontological predication.

3 Methods

3.1 Discovery Patterns

3.1.1 The Relations Maybe Treats1 and Maybe Treats2

In order to exploit semantic predications in literature-based discovery, we introduce

the notion of a discovery pattern, which contains a set of conditions to be satis-

fied for the discovery of new relations between concepts. The conditions are com-

binations of relations between concepts extracted from Medline citations. In this
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paper we deal with the Maybe Treats pattern, which has two forms: Maybe Treats1
and Maybe Treats2 (Fig. 4). In both forms the goal is to propose potential new

treatments, and the two can work in concert: proposing either two different new

treatments (complementarity) or the same treatment by using different discovery

reasoning (reinforcement). The following reasoning is used as a novelty check for

the proposed new treatments (stated informally in terms of the X, Y, Z paradigm):

It is a discovery that drug Z maybe treats disease X if there is currently no evidence

in the medical literature that drug Z is already used to treat disease X.

The two discovery patterns are different in the way they generate new candidate

treatments Z. The first form Maybe Treats1 is satisfied when there is a change in

a substance, body function, or body measurement (concept Y) associated with the

starting disease X, and there is also an opposite change in concept Y associated

with concept Z. In other words, we first try to find the characteristics of a disease

X with regard to a change in the level of substance or measurement Y in patients

with this disease. Then we look for a drug or chemical Z that can cause an opposite

change in the same substance or measurement Y. That is, if the Y concept decreases

in association with the X disease, we expect it to increase in association with the Z

drug, or vice versa. An example of the first form is the reasoning used by Swanson

to propose fish oil (Z) as a new treatment for Raynaud’s disease (X). Fish oil (Z) was

proposed because it reduces blood viscosity (Y) which was reported in the literature

to be increased in patients with Raynaud’s.

In using Maybe Treats2 to find a potential new treatment for a starting disease

X we first search for another disease X2 that has characteristics similar to X (Y2

substance or function is either increased or decreased in both X and X2). Then we

propose as a new treatment for disease X the drug (Z2) already used to treat disease

X2, if there is no evidence in the literature that Z2 is already used to treat X. An

example of this might be what we have observed while performing this research. In

patients with Huntington disease (HD) the level of insulin is often decreased. The

level of insulin is also decreased in diabetes mellitus (type 1). Therefore, treatments

for diabetes might also be used for HD.

We can formally define the two forms of the Maybe Treats discovery pattern

using the predications in Figs. 3 and 4.

3.1.2 The Relations Associated with change and Treats

The relations Associated with change and Treats are used to extract known facts

from the biomedical literature. The relations Maybe Treats1 and Maybe Treats2
predict potentially new treatments based on the known facts extracted by Associ-
ated with change and Treats. Associated with change is used to extract a relation

in which one concept is associated with a change in another concept (e.g. a disease

associated with an increase in the level of a substance). For the extraction of Asso-
ciated with change we use BioMedLee. The relation Treats is used to extract drugs

known to treat a disease according to the literature. The major purpose of this rela-

tion in our approach is to eliminate the drugs already known to be used for treatment
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Maybe_Treats(Drug_Z, Disease_X)   IF 
Maybe_Treats1(Drug_Z, Disease_X)   OR 
Maybe_Treats2(Drug_Z, Disease_X).   

Maybe_Treats1(Drug_Z, Disease_X) IF 
Associated_with_change(Disease_X,Subst_Y,Change_Y11) AND  
Associated_with_change (Drug_Z, Subst_Y,Change_Y12)     AND 
Opposite_Change(Change_Y11, Change_Y12)       AND 
NOT Treats(Drug_Z, Disease_X).  

Opposite_Change("Increase", "Decrease"). 
Opposite_Change("Decrease", "Increase"). 

Maybe_Treats2(Drug_Z2, Disease_X) IF 
Associated_with_change (Disease_X,Subst_Y2,Change_Y21)  AND 
Associated_with_change (Disease_X2,Subst_Y2,Change_Y22) AND 
Same_Change(Change_Y21,Change_Y22)  AND 
Treats(Drug_Z2, Disease_X2) AND 
NOT Treats(Drug_Z2, Disease_X). 

Same_Change(“Increase”, “Increase”). 
Same_Change(“Decrease”, “Decrease”). 

Fig. 3 Formal definition of the discovery pattern Maybe Treats

from the list of drugs or chemicals that have not been used, but seem promising.

Additionally, in the Maybe Treats2 form, the Treats relation is used to find existing

treatments to similar diseases. Treats relations are identified by SemRep.

The relation Associated with change is a higher level relation and is based on

basic BioMedLee relations. In this research, we used three methods to derive Asso-
ciated with change where the first two are the most credible. The first is based on

the binary Increase or Decrease relations. For example, for the sentence “Speech
production increases cerebral blood flow in HD patients”, BioMedLEE extracts In-
crease(Speech production, cerebral blood flow). In this example, although the binary

relation associated with “increase” was extracted, the relation “in HD patients” was

lost because BioMedLEE did not recognize that the abbreviation HD referred to

Huntington’s disease.

The second method is to use binary relations in which one of the arguments

has a change such as Increase or Decrease associated directly with the argument.

The relation can be any of those that indicate some kind of an association between

its arguments, such as associated with, exhibited, due to, suggest, results from. For

example, from the sentence “Huntington’s disease brains all exhibited a marked

decrease in substance P fiber density in the substantia nigra and globus pallidus”

BioMedLee extracts Exibit(Huntington disease, Substance P/decrease).
The third way to derive Associated with change relations is to exploit phrase or

sentence level co-occurrence of concepts with which a change is associated with

one of the concepts. In other words, we extract all the concepts from a phrase or

sentence and if there is at least one concept with a change directly associated with

it, we then assume that that concept is related to the other concepts in the same

phrase or sentence. Obviously, this is the least credible way of deriving Associ-
ated with change relations; however, it significantly improves recall. For example,
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from the sentence “In Huntington’s disease, there is a decrease of the neuropeptides,

substance P, enkephalins, and cholecystokinin in the striatonigral system, whereas in

Parkinson’s disease an increase of substance P is found in the substantia nigra”, Bio-

MedLee extracts co occurs(Huntington’s disease, Neuropeptides/decrease) which

is correct, but from the same sentence the system also extracts co occurs (Parkin-
son’s disease/increase, Huntington’s disease), which is not correct.

It is possible to use the Maybe Treats pattern (both forms) for several discovery

tasks depending on what input is provided. If a drug Z is provided as input, the pat-

tern will try to generate diseases X that might be treated. If a disease X is provided

as input, the pattern will try to generate drug Z that might be used to treat the dis-

ease X. If both a disease X and a drug Z are provided as input, the pattern will test

whether the drug might be used to treat the disease. If it can, the pattern can generate

an explanation through the intermediate concepts Y. For example, the drug Z might

be used to treat X because Y is increased in disease X, and Z has been reported to

decrease the level of Y.

3.2 Integrated BioMedLEE and SemRep Output Format

The output formats normally provided by BioMedLee and SemRep are different

from each other, and therefore it was not straightforward to combine the use of

both systems. To enable the integration of the output of the two systems for the

purpose of this research, we developed a common output format, the specification of

which is still evolving. Currently, the common format contains three types of lines:

text, entity and relation. Each type of line is a delimited list of fields. The input to

both systems is a set of Medline citations. Each Medline citation is broken into a

sequence of sentences and each sentence is processed separately. For each sentence,

a line of type text is first generated to present the actual text of the current sentence.

Then a line of type entity is generated for each biomedical entity (concept) extracted

from the current sentence regardless of whether the entity is part of a relation or not.

Finally, all the relations between the entities from the current sentence are generated

as lines of type relation.

Table 1 shows the fields used in the common format. All three types of lines start

with fields 1–6. The first field is the system identification to indicate which system

generated the line, the second is the PubMed identification number, followed by

the subsection abbreviation, which indicates whether the sentence comes from the

methods, conclusions, results or some other subsection of a structured abstract. The

fourth field specifies whether the sentence is from the title or the abstract. The fifth

field specifies the sentence identification, which is slightly different for each system

because different methods are used to recognize sentence boundaries. The sixth field

identifies the row type, which is one of text, entity or relation. This field determines

the format of the rest of the line.

For a line of type text, the next field is the actual text of the sentence, which

for BioMedLee is in a tagged text format where the tags are linked to the entities,
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Table 1 The common format used to represent BioMedLee and SemRep output. There are three
types of lines: text, entity and relation. The first six fields are used by all three types of lines. The
next fields are specific for each line type

Field number Description (example value)

1 BL (BioMedLEE) or SE (SemRep)
2 PubMed ID
3 Subsection of abstract (objective, results)
4 Section of abstract ti(title) or ab (abstract)
5 Sentence id
6 Line type, one of: ‘text’, ‘entity’, ‘relation’
7. Text Sentence text
If line type is ‘entity’ then next fields
7. Entity Entity type (T047 or disease)
8. Entity CUI
9. Entity Preferred name
10. Entity Change term (increase)
11. Entity Degree term (low)
12. Entity Negation (not)
13. Entity MetaMap score
14. Entity Begin character or phrase position
15. Entity End character position of matched phrase
If line type is ‘relation’ then next fields
7–15. Relation Argument1 related fields
16. Relation Name of relation (treat, increase)
17. Relation Negation of explicit relation or empty
18. Relation Begin character or phrase position of relation indicator
19. Relation End character position of relation indicator
20–28. Relation Argument2 related fields

relations, and modifiers, and for SemRep is plain text. For an entity type of line,

there are fields specifying the type of entity, UMLS CUI (Concept Unique Identi-

fier), preferred entity name, change and degree of associated change, location of the

entity, MetaMap score, and location of the entity in the actual text (start and end

position).

For a line of type relation, fields 7–15 describe the first argument of the relation

in the same format as entity line; subsequent fields describe the semantic relation,

including the name of the relation, whether it is negated or not, and the start and end

positions of the relation in the text. Finally, the second argument of the relation is

described in the same way as the first argument in fields 20–28. The specification of

the arguments of the relations is currently redundant for ease of experimentation. At

a subsequent stage the entities and relations will be associated with identifiers and

then arguments of the relations will just be identifiers.

Some of the fields in the common format are specific for only one system, in

which case the other system leaves these fields empty. Sometimes the two sys-

tems fill a particular field in a different way or format. For example, SemRep uses

UMLS semantic types as entity type and BioMedLee uses its own types. BioMedLee
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identifies the part of the actual text as a phrase identifier within a tagged text format

while SemRep uses start and end character positions within a plain text string.

Some of the results presented here were obtained by directly processing the

common output format by Unix shell scripts and Perl scripts. Some of the results

were produced using SQL statements after the common format output generated

by BioMedLee and SemRep was postprocessed with Perl scripts and loaded into a

relational database management system.

4 Results

In this section we first replicate Swanson’s Raynaud’s discovery using the

Maybe Treats1 discovery pattern. Then we present two hypothetically new ther-

apeutic approaches: one for Huntington disease, based on the Maybe Treats1 dis-

covery pattern and one for Parkinson’s disease, based on Maybe Treats2. Although

we have not done a formal evaluation of our approach, at the end of this section

we show evaluation results for the two important components of our methodology,

BioMedLee and SemRep.

4.1 Rediscovering Fish Oil for Raynaud’s Disease

To illustrate the Maybe Treats1 discovery pattern, we show how Swanson’s

Raynaud’s discovery [1] could be replicated. This example also illustrates inte-

gration of semantic relation extraction with an existing (co-occurrence based) LBD

system. We used the BITOLA [3, 4] LBD system (available at http://www.mf.uni-

lj.si/bitola/) and searched for Raynaud’s as the starting concept X. Then, among

the related concepts Y limited to the semantic group Physiology, we found Blood
Viscosity in the eighth place and Platelet Aggregation in the seventeenth place out

of 230 concepts from the Physiology group that co-occur with Raynaud’s. We then

submitted the citations in which Raynaud’s co-occurs with either Blood Viscosity
or Platelet Aggregation to BioMedLee, which produced five relations in which

Raynaud’s was associated with an increase in blood viscosity (examples 3 and 4 in

Table 2) and one in which Raynaud’s was associated with platelet aggregation.

In the next step we used BITOLA to search for concepts co-occurring with blood

viscosity or platelet aggregation. Among others, we found Eicosapentaenoic acid,

which can be found in large quantities in fish oil. After processing the relevant Med-

line citations with BioMedLee, we obtained several relations in which eicosapen-

tainoic acid was associated with a reduction in blood viscosity (examples 5 and 6

in Table 2). By combining examples 3 and 4 with 5 and 6 we can conclude that

eicosapentainoic acid (Z) (and consequently food rich it this acid such as fish oil)

might be used to treat Raynaud’s (X) because blood viscosity (Y) is increased in

Raynaud’s and eicosapentainoic acid reduces blood viscosity.
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Table 2 Examples of extracted relations by BioMedLee (BL) or SemRep (SR). The relation Asso-
ciated with shown in column 3, represented a shortened form of Associated with change

Number System Extracted relations Sentence (or fragment)

1 BL Associated with (oxidative
stress, iron, increase)

Reducing the oxidative stress associated
with increased iron levels

2 SR Treats(coenzyme
Q10,Huntington Disease)

Oral administration of CoQ10
significantly decreased elevated lactate
levels in patients with Huntington’s
disease

3 BL Associated with (Raynaud’s,
blood viscosity, increase)

Local increase of blood viscosity during
cold-induced Raynaud’s phenomenon

4 BL Associated with (Raynaud’s,
viscosity, increase)

Increased viscosity might be a causal
factor in secondary forms of Raynaud’s
disease, . . .

5 BL Associated with
(eicosapentaenoic acid, blood
viscosity, decrease)

We recently reported that
eicosapentaenoic acid (EPA) also reduces
whole blood viscosity

6 BL Associated with
(eicosapentaenoic acid, blood
viscosity, decrease)

A statistically significant reduction in
whole blood viscosity was observed at
seven weeks in those patients receiving
the eicosapentaenoic acid rich oil

7 BL Associated with (Huntington’s
disease, insulin, decrease)

Huntington’s disease transgenic mice
develop an age-dependent reduction of
insulin mRNA expression and diminished
expression of key regulators of insulin
gene transcription, . . .

4.2 Insulin for Huntington Disease

To illustrate the Maybe Treats2 form of the Maybe Treats discovery pattern, we se-

lected Huntington disease as a test case. Huntington disease (HD) is an autosomal-

dominant inherited neurodegenerative disorder that is characterized by the insidious

progressive development of mood disturbances, behavioral changes, involuntary

choreiform movements and cognitive impairments. Onset is most common in adult-

hood, with a typical duration of 15–20 years before premature death. No successful

treatment is currently available. We constructed the set of all 5,511 Medline citations

(in January, 2006) in which Huntington Disease occurs as a MeSH heading. We first

submitted this set to SemRep, which extracted 30,103 relations, out of which 2,139

were Treats relations. Of these, 740 Treats relations contained Huntington disease

as an argument. These represent current treatments for Huntington (example 2 in

Table 2).

Our strategy then was to find relations between HD and changes in substances

or body functions which could be potential therapeutic targets for HD. For this

we submitted the Huntington citations to BioMedLee, which extracted 18,360 re-

lations, of which 1,912 contained a change, 310 of which were associated with

Huntington disease. From the 310 relations, a clinician who is an expert in HD,
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selected 35 interesting concepts representing neurotransmitters, their receptors or

other biologic substances changed in HD. The next step was to find diseases in

which these concepts were changed in the same way as in HD. We than assumed

that drugs and treatments which are successfully used to treat diseases associated

with the same changes in substances and body functions as in HD would be poten-

tial new treatments for HD.

By using this approach we discovered an interesting potential new treatment

for HD – insulin, which was one of the substances found to be decreased in HD

(example 7 in Table 2). Although insulin has been attempted for immediate relief of

one of the symptoms (chorea) of HD [25], we have not found research on insulin as

a general treatment for this disease.

It is known that HD patients develop diabetes mellitus about seven times more

often than matched healthy control individuals [26]. The reason for this is unclear,

although inappropriate insulin secretion is a potential reason. The transgenic HD

mouse model also develops an age-dependent reduction of insulin mRNA expres-

sion and diminished expression of key regulators of insulin gene transcription [27].

Strong evidence from studies in humans and animal models suggests the involve-

ment of energy metabolism defects, which may contribute to excitotoxic processes,

oxidative damage, and altered gene regulation in the pathogenetic mechanism of

HD. Reduced glucose metabolism in affected brain areas of HD patients is a well

documented fact used for diagnostic purposes.

We then searched for diseases other than HD with reduced levels of insulin. Ex-

pectedly the system identified diabetes mellitus. We thus concluded that insulin

treatment, used for diabetes mellitus, might be an interesting drug for HD. In-

sulin might improve glucose metabolism in the brains of HD patients and thus slow

down the pathogenetic process.

4.3 Gabapentin for Parkinson’s Disease

This example illustrating the Maybe Treats1 pattern for Parkinson’s disease uses

the same set of articles used for Maybe Treats2 above. We selected Parkinson’s

disease as a starting concept in a modified version of Bitola which integrates co-

occurrence based association rules with semantic relations extracted by BioMedLee

and SemRep. This version of Bitola is in early development phase and is not yet

publicly available.

In order to find potential therapies for the disease, our discovery strategy was first

to identify Y concepts (Neuroreactive Substance or Biogenic Amine or Biologically

Active Substance), characterized by a “decrease” of some substance in Parkinson’s

disease and in the second step to find all Z concepts (pharmacological substances)

with the opposite change. We limited Y concepts by “change” and got five differ-

ent concepts. Two of them, levodopa and dopamine are the mainstream of therapy

for decades. The next two of the concepts, Hommovanilic acid and Substance P,

were not selected due to inappropriate context of the relations. A relevant relation
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was identified in the following sentence: “Postmortem brain studies indicate that pa-

tients with Parkinson’s disease have decreased basal ganglia gamma-aminobutyric
acid function in addition to profound striatal dopamine deficiencies.” for gamma-
aminobutyric acid (GABA).

In the second step we searched for all Z concepts (pharmacological sub-

stance) characterized by an “opposite change”. Six substances, all antiepileptics,

were identified which were related to GABA in an appropriate way: gabapentin,

Vigabatrin, Tiagabine and Topiramate, methamphetamine and milacemide through

the following sentences: “Gabapentin, probably through the activation of glutamic

acid decarboxylase, leads to the increase in synaptic GABA”, “GVG (Vigabatrin)
caused a significant increase in GABA release, even at concentrations as low as

25μM”, “Tiagabine is an antiepileptic drug, which increases GABA via selective

blockade of GABA reuptake”, “Topiramate increased brain GABA, homocarnosine,

and pyrrolidinone to levels that could contribute to its potent antiepileptic action in

patients with complex partial seizures.” “These results support the hypothesis that

long-term administration of methamphetamine increases the activity of the stria-

tonigral GABA system and thereby reduces the sensitivity of postsynaptic GABA

receptors in the SNR.” And “The results show that milacemide increases the GABA
content in the GABA pool which is associated with the striatonigral neurons.”

GABA is ubiquitous in the nervous system and regarded widely as the principal

inhibitory neurotransmitter of the brain. It is also considered as one of the principal

vehicles for inhibition in Parkinson’s disease. Furthermore, production of inhibitory

transmitter GABA in the subthalamic nucleus (STN), suppressing the hyperactive

STN, is considered as one of the strategies for gene therapy in the treatment of

Parkinson’s disease.

In this way we identified selected antiepileptics as a possible therapy for

Parkinson’s disease. Indeed, some potential benefit of Gabapentin and Toprimate

in treatment of Parkinson’s disease has been already mentioned in the literature

[32, 33].

4.4 Evaluation of BioMedLee and SemRep

Although BioMedLEE has not yet been evaluation for use in LBD, it has been evalu-

ated for two different applications. In Lussier [14], BioMedLEE was combined with

a phenotypic ontological organizing system, PhenOS, to create a new system called

PhenoGO. PhenoGO associates contextual information with GOA annotations [28]

by adding phenotypic information to the protein and GO pairs specified in GOA.

The overall PhenoGO system was evaluated for extracting and coding anatomical

and cellular information associated with the pairs and for assigning the code to the

correct pairs. The results of the evaluation demonstrated that PhenoGO has a pre-

cision of 91% and a recall of 92%. Although the results have been computed for

the entire PhenoGO system and not for BioMedLEE separately, the high perfor-

mance of PhenoGO is an indicator of the performance of BioMedLEE because the
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relations among the genes, GO terms, and phenotypes were determined based on

BioMedLEE.

In Borlawsky [29], BioMedLEE was used for a clinical application geared to

facilitating clinical practice using Evidence-Based Medicine (EBM). This involved

extracting and coding disease, therapy, and drug concepts and their relations from

textual sections of Cochrane Reviews, the best standard for obtaining evidence-

based medicine. Although BioMedLEE was designed for capturing phenotypic

and genotypic relations and not designed for clinical applications or processing of

Cochrane Reviews, the study showed that the pertinent information could be ex-

tracted and correlated with an overall recall of 80.3% and precision of 75.2%. The

most frequent cause of error was due to differences in the semantic classification

assigned by BioMedLEE and by the expert, who manually coded the information.

For example, the expert manually parsed ‘hearing loss’ as a problem, but the NLP

engine alternatively parsed the phrase as a compositional phrase consisting of a

process hearing with a change modifier loss, which is also correct. Thus, it is likely

that performance can be increased by expanding the guidelines to permit certain

variations in semantic categorization between the expert and system and by refining

the system specifically for the clinical domain, which is not as broad as the complete

biomedical domain.

The effectiveness of SemRep in extracting semantic predications from biomed-

ical text has been evaluated in several contexts [24, 30, 31]. In two of these [30, 31],

accuracy was assessed after the predications had been subjected to an automatic

summarization algorithm. In [30], 306 predications (for predicates ISA, CAUSES,

CO-OCCURS WITH, LOCATION OF, OCCURS IN, TREATS) extracted from 1,200

Medline citations were evaluated. Of these, 203 predications were determined to

be correct (66% precision). In [eval2], for predicates AFFECTS, CAUSES, COMPLI-

CATES, DISRUPTS, INTERACTS WITH, ISA, PREVENTS, and TREATS, 148 of 189

predications extracted from 130 Medline citations were judged as correct (78% pre-

cision). SemRep was tested for both recall and precision in [24], using a gold stan-

dard of 300 sentences randomly generated from 36,577 sentences drawn from a set

of Medline citations containing drug and gene co-occurrences. In addition to the

predicates addressed in the first two evaluations, predications having such predi-

cates as INHIBITS, STIMULATES, and DISRUPTS were also assessed. SemRep ex-

tracted 623 predications from the 300 sentences in the test collection. Of these, 455

were true positives, 168 were false positives, and 375 were false negatives, reflect-

ing recall of 55% (95% confidence interval 49–61%) and precision of 73% (95%

confidence interval 65–81%).

5 Discussion and Further Work

Although there are clear advantages in using semantic relation extraction for LBD,

there are also some issues that have to be addressed. One is scalability. Ideally all of

Medline needs to be processed to support the system we propose. The other issue is
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accuracy in semantic relation extraction. We presented some general performance

evaluation of semantic relation extraction, but in further work we plan to evaluate

specifically the extraction of Associated with change and Treats, which are the most

important relations in our method. We also plan to evaluate the performance of the

overall LDB method. Because of these issues, we believe that for the near future,

the best approach would be the integration of semantic relation extraction with co-

occurrence-based LBD. In further work we plan to better integrate the BITOLA

LBD system with SemRep and BioMedLee. Currently, the user has to run the three

systems separately and the output is combined with various scripts in a way which

is not very user-friendly.

Another research contribution is the use of two natural language processing sys-

tems, namely SemRep and BioMedLee, to extract the kind of relations they are best

at capturing. This entailed developing a common format for each system’s output.

To our knowledge this is the first time two different natural language processing sys-

tems have been utilized together to capture different types of semantic relations. We

plan to combine BioMedLee’s change detection with SemRep’s relations in order to

obtain a larger number of binary relations with a change. Namely, SemRep may find

a binary relation whereas BioMedLEE may not, but BioMedLEE may have found

a change in one of the arguments of the relation that SemRep found. Currently we

have a large number of unary change relations which are not associated directly

with another concept. Another way to improve the extraction of change relations

is by analyzing the cases in which the change was not captured and creating better

extraction rules.

Yet another research contribution is the notion of a discovery pattern which is

based on semantic relations and allows more precise hypothesis generation. Here

we have presented one such pattern, Maybe Treats, but we plan to develop other

discovery patterns as well.

We plan to develop a user-friendly web-based interface which will allow public

access to our methodology. It should allow among other things ranking of potentially

new discoveries based on a heuristic ranking procedure not yet developed.

6 Conclusions

Literature-based discovery (LBD) is a method for automatically generating hypothe-

ses from the research literature. Currently LBD systems depend exclusively on co-

occurrence based methods for finding relations between concepts. We presented a

new method aimed at improving LBD. It is based on semantic predications, which

are extracted from text using the combined results of two natural language process-

ing systems. Additionally, the change associated with the arguments of the predica-

tions, is also extracted. We also introduced the notion of a discovery pattern. The

proposed system has the potential to produce a smaller number of false positive

discoveries while, at the same time, facilitating user evaluation and review of poten-

tially new relations. Finally, it can support explanation of the discovery produced.



Literature-Based Knowledge Discovery using Natural Language Processing 151

Using our methodology we successfully replicated Swanson’s Raynaud’s – fish

oil discovery. Furthermore, we generated some interesting potentially new therapeu-

tic approaches for Huntington disease and for Parkinson’s disease.

We believe that the future of literature-based discovery lies in developing specific

discovery patterns for particular discovery tasks based on semantic relations further

integrated with co-occurrence-based approaches.
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