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Abstract This chapter provides a birds-eye view of the methods used for literature-

based discovery (LBD). We study these methods with the help of a simple frame-

work that emphasizes objects, links, inference methods, and additional knowledge

sources. We consider methods from a domain independent perspective. Specifically,

we review LBD research on postulating gene–disease connections, LBD systems

designed for general purpose biomedical discovery goals, as well as LBD research

applied to the web. Opportunities for new methods, gaps in our knowledge, and crit-

ical differences between methods are recognized when the “literature on LBD” is

viewed through the scope of our framework. The main contributions of this chapter

are in presenting open problems in LBD and outlining avenues for further research.

1 Introduction

Literature based discovery (LBD), also known as text mining and knowledge discov-

ery from text (KDT), has garnered significant breadth and depth as a field of research

and development. The field is vibrant as seen for instance by the growing number
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of conferences, workshops, papers, commercial and free systems, and review papers

(e.g. Weeber et al. [27]). There is also a growing variety of LBD methods, orienta-

tions and applications. We observe that in general, LBD strategies are designed to fit

the problem at hand with methods selected or designed in a somewhat adhoc man-

ner. And since the space of text mining problems is broad (and growing), the range

of solutions proposed and applied is also broad. As a consequence, there is a bewil-

dering array of methods in text mining. While this situation offers almost free rein

to researchers, it also makes it challenging to determine what methods (or aspects

about methods) are most successful or most appropriate for a given problem in a

specific domain. Seemingly similar problems are sometimes addressed using signif-

icantly different approaches while certain LBD approaches exhibit broader appeal.

At this point, what is needed is a “meta-level” examination of the major milestones

in methods. Thus our goal is to begin such an examination by offering a bird’s eye

view of LBD research. In particular, we analyze methodologies in LBD papers using

a general framework. Some of the expected outcomes from such a framework-based

review are to be able to more effectively:

1. Compare and contrast research in LBD

2. Observe the gaps in research

3. Assess the prevalence of particular methods

4. Make comparisons across domains or type of text

5. Understand the relationship between LBD methods and problems being solved

6. Understand the evolution of ideas in LBD research

Although we select papers for review with a fairly broad brush, we do not claim

comprehensiveness in coverage. Likely the selections will reveal our own incli-

nations and preferences. Despite these built-in limitations, this framework-based

review, is to the best of our knowledge, a first attempt at domain-independent meta-

analysis of LBD research with a significant emphasis on methodology. We offer it

as a potentially useful starting point for discussion, extension and refinements by

others.

2 A Framework for Analyzing LBD Research and Development

LBD refers to automatic or semi-automatic efforts supporting end user exploration

of a text collection with the goal of generating or exploring new ideas. Specifi-

cally, LBD systems help form and/or explore hypotheses using large collections of

texts. LBD takes off from an age old process fundamental to fields of intellectual

endeavor such as the sciences, where ideas build upon prior published work. LBD

systems are of interest given their potential to consider very large sets of documents

as also documents from fields that a user would not normally study. Generating

or exploring hypotheses within such large-scale and heterogeneous document col-

lections typically implies effort well beyond human capacity. While offering these

advantages, LBD systems are far from reflecting the human acuity involved in the
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manual processes they try to emulate. In fact, LBD output is always tentative, re-

quiring end user decisions on suggestions to take forward and suggestions to reject.

The kinds of hypotheses of interest in LBD are those that somehow relate at least

a pair of entities. For example, an LBD system may suggest a financial connection

between two individuals, or a link between a gene and a disease, or indicate poten-

tial interest in a product from the view point of an organization, or find communi-

ties of people related in some novel way. LBD is clearly akin to data-mining from

structured data which also focuses on hypothesis formation and knowledge discov-

ery. The power of LBD is seen especially in its capacity to generate novel ideas

by bridging different areas of specializations represented in the text collection, thus

reflecting a multidisciplinary perspective.

LBD research has strong and early roots based in the research of Swanson and

Smalheiser (see chapter titled ‘Literature Based Discovery? The Very Idea’). Their

initial LBD efforts lead them to successfully postulate several hypotheses by linking

evidence extracted from different documents. However, these were accomplished

through significant manual effort. Since then a growing body of research, including

Swanson and Smalheiser’s own work with their ARROWSMITH systems,1,2 aims

at automating LBD. The overall approach is to try to automate as many of the key

steps in LBD as possible, thereby minimizing human intervention. LBD strategies

have been developed and applied to biomedicine in general and bioinformatics in

particular. These efforts typically involve the MEDLINE3 database with optionally

allied sources such as Entrez Gene4 and OMIM5 and vocabularies such as the Gene

Ontology [4]. LBD has also been applied to the humanities field as well as to knowl-

edge discovery problems on the web.

2.1 LBD Framework

Based upon our own experiences in LBD [22–24], including work on Manjal6, our

prototype biomedical LBD system, and our understanding of the literature, we pro-

pose a simple framework for analyzing LBD methods. The framework has the four

dimensions listed in Fig. 1. It allows us to understand and specify the key method-

ological choices made by the authors of the papers reviewed. It also allows us to

objectively compare studies and suggest instances where alternative methods may

also be beneficial.

Objects refer to the kinds of concepts (abstract or otherwise) that are the focus

of the LBD effort. In some cases these may refer to entities of a specific type such

as genes, perhaps even limited to genes of a specific species. Other studies may

1 University of Chicago version: http://kiwi.uchicago.edu/
2 University of Illinois – Chicago version: http://arrowsmith.psych.uic.edu
3 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed
4 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
5 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
6 http://sulu.info-science.uiowa.edu/Manjal.html
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Objects

Links

Inference methods

Additional data /knowledge sources

Fig. 1 LBD framework

involve multiple varieties of entity types such as persons, organizations and prod-

ucts. In still other cases, the LBD objects may be a collection of “topics” where top-

ics may refer to PubMed queries (e.g. (“hypertension” AND (“2001/01/01”[PDAT]:

“2006/12/31”[PDAT])). Given a particular kind of object (entity), say genes, studies

may differ on what information is used to derive representations for each gene. One

could use, for instance, MEDLINE records related to the gene as the representation,

or the gene’s sequence, or its MeSH profile, or the MEDLINE sentences in which

the gene name or its alias appears. Even with a given source, say MEDLINE records,

variations are possible. One may retrieve records from PubMed using the disjunc-

tion of the gene’s various names. Or, one may use only those documents that provide

evidence of GO based annotation for the gene. Additionally, weights are sometimes

allocated to the different features in the representation. One document (or a sentence

or a MeSH term) may be more central to the gene than another. And of course dif-

ferent studies may employ different weighting strategies, including none at all. Thus

while analyzing the success (or failure) of LBD methods for specific problems, one

has to pay careful attention to the kinds of objects and their representations used.

Links represent associations between objects of interest. Links may vary from

straightforward co-occurrence based connections to similarity-based assessments

to more semantically motivated relationships. These may be obtained in different

ways, e.g., from curated or automatically generated databases or extracted from texts

using pattern recognition or more advanced NLP methods. As with objects, links

may also be weighted. Additionally these may be directed and/or labeled. Multiple

links between objects may also be used. Each of these options and their various

combinations offer different capabilities to an LBD system.

Inference methods refer to the reasoning strategies used to identify implicit con-

nections between objects. In the simplest case, one may use a transitive relationship

between two objects to infer a novel connection. Extensions of this idea lead to

the classic strategies of Open and Closed discovery (see chapter titled ‘Literature

Based Discovery? The Very Idea’). Other methods are also available. For example,
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connections may be inferred between two objects if their representations (retrieved

documents, MeSH profiles) are very similar even if they do not co-occur.

The final dimension refers to whether additional sources are used within the LBD

process. For example, sequence data or disease mapping to chromosomal regions

may be used to constrain the LBD hypotheses generated regarding putative links

between genes and diseases. Similarly, geographical co-location may be used to

limit the potential customers of products suggested by the LBD process.

To close this section on our framework, it may be that two studies with different

goals use methods that are quite similar. This would indicate the generalizability

of the methods. On the other hand two methods applied to the same goal could

look very different. This might imply flexibility in the problem. It may also call for

or lead to direct comparisons of the two methods. More generally, the framework

might also point to dimensions that are less well explored than others. Thus our goal

is also to identify open areas for research on LBD.

We now analyze select LBD research using our framework. Reviews of LBD

methods are done primarily based upon descriptions in published papers. We present

our analysis in three parts. In Sect. 3 we analyze a set of papers that directly target

the discovery of gene–disease connections. By focusing on this subset of LBD re-

search we will highlight the variability across methods even when they have the

same LBD goal. In Sect. 4 we study general purpose LBD systems in biomedicine.

Finally in Sect. 5 we examine LBD applications on the web. Each part includes an

analysis of methods covered. Following this, in Sect. 6 we present our conclusions.

3 LBD for Postulating Gene–Disease Connections

Postulating novel connections between genes and diseases is a major emphasis in

bioinformatics text mining. In all papers reviewed in this section, gene–disease links

are postulated without qualification as to the type of link. For each study reviewed

(throughout the paper) we identify its major features in terms of the key dimensions

of our framework. We present Objects, Links and Inference Methods in a table.

Additional knowledge sources are described in the discussions. By default, links are

considered weighted, symmetric and unlabeled. Otherwise, unweighted links are

marked with a U in the Notes column, asymmetric weights with an A and labeled

links with an L. These qualifications under Notes apply only to the links.

3.1 G2D (Perez-Iratxeta et al. 2002)

G2D [20] is a system that ranks candidate genes for genetically inherited diseases

for which no underlying gene has yet been assigned. The key objects and link

are shown in Table 1. Two types of links are core to their procedure. Although

both involve MEDLINE as the source, records supporting the links are extracted

in different ways. The first link type (L1) associates ‘pathological conditions’ and
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Table 1 G2D – Perez-Iratxeta et al. (2002)

Type ID Object type Object representation/link derivation Notes

O1 Disease Disease manifestations (category C MeSH terms) –
O2 Chemical Chemical (category D MeSH terms) –
O3 Annotation GO term –
O4 Gene sequence From RefSeq –
O5 Gene sequence From chromosome region of disease –
L1 O1, O2 Co-occurrence in MEDLINE records

about disease of interest
L2 O2, O3 Co-occurrence between O2 and O3 in MEDLINE

records used as evidence to annotate sequences
O4 with O3

L3 O1, O3 Inferred through L1 and L2
L4 O3, O4 O3 annotates sequence O4 L
L5 O4, O5 Homology U
L6 O1, O4 L3 and L4
L7 O1, O5 Inferred from L5 and L6
IM Average of fuzzy scores representing best paths between disease and GO terms

‘chemical terms’. Pathological conditions are represented by category ‘C’ MeSH

terms while chemical terms are category ‘D’ MeSH terms. L1 strength is a symmet-

ric weight and is calculated as the number of MEDLINE records with both terms

divided by the number of records having either term. The second link type (L2)

connects ‘chemical terms’ and GO terms describing protein function. L2 strength

is also symmetric and is calculated as the number of records having the chemical

term and also providing evidence supporting annotation by the GO term in RefSeq7

divided by the number of records with either feature.

L3 is inferred between the pathological condition and GO term pairs. Since sev-

eral chemical bridges are possible between a pair, the weight is a fuzzy score rep-

resenting the best possible chemical bridge. It is symmetric and is calculated as the

product of weights for the best chemical path. Given that a disease may be charac-

terized by several pathological conditions, the L3 weight between a disease and a

GO term is the highest weight calculated for any of its manifestations. They rank

candidate sequences using the homology between RefSeq annotated sequences in

the chromosomal region to which the disease is mapped (L5). Ranking of candidate

sequences to a disease is by the average of the scores calculated for each of their

GO terms and the disease.

Thus when we look closely at their methods at least five types of objects and

seven link types may be identified. Notice also for example, that their approach

looks for the best path connecting a GO term to a disease using disease patholog-

ical conditions and chemicals as bridges. However, the score for a candidate gene

is not the best offered through its annotations, but the average. This score is then

normalized as an R score to allow for standardized comparisons.

7 http://www.ncbi.nlm.nih.gov/RefSeq/
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3.2 eVOC (Tiffin et al. 2005)

The authors use the eVOC Anatomical System ontology8 as a bridging vocabulary

to select candidate disease genes [26]. (We refer to this system as the eVOC system.)

Specifically they exploit information on the genes’ expression profiles within tissues

affected by the disease of interest. As described by them, researchers may mine asso-

ciations between disease and affected tissues without having a clinical understand-

ing of the disease. This connection may then be applied to the selection of candidate

genes for the disease. The authors state that the eVOC anatomical terminology has

the advantage of being simple and purely descriptive, without the interpretational

bias that may be associated with functional annotation systems such as GO. Table 2

identifies the key objects and links in their approach.

The authors first identify the top ranked eVOC terms for a given disease

(through L3). This is done by calculating a score that depends upon how fre-

quently a term is associated with the disease in MEDLINE (L2), as well as upon

how often the term is used to annotate RefSeq genes (L1). The former is an asym-

metric weight calculated as the number of abstracts containing both the disease

name and the eVOC term divided by the number of abstracts with the disease name.

The later weight is also asymmetric and is calculated as the number of RefSeq genes

annotated by the term divided by the number of annotated genes. Here annotation

counts for an eVOC term include counts for descendent terms in the eVOC hierar-

chy. Finally the L3 weight between each eVOC anatomy term and disease name is

calculated as [2 ∗ association weight + annotation weight]/2. They then select the

top scoring n eVOC terms as characterizing the disease. L5 which is the inferred

link to new genes considers expression based annotation obtained from the Ensembl

genomic database9. The final candidate gene list contains those annotated with at

Table 2 eVoC – Tiffin et al. (2005)

Type ID Object Type Object representation/link derivation Notes

O1 Disease Disease term (and retrieved MEDLINE set) –
O2 eVoc term eVoc term (and retrieved MEDLINE set) –
O3 Gene RefSeq entries –
O4 Gene Gene entries in Ensembl –
L1 O2, O3 Frequency based annotation weight A
L2 O1, O2 Frequency based association weight A
L3 O1, O3 Score from L1 and L2
L4 O1, O4 Expression of O3 in O2 tissues from Ensemble L
L5 O1, O4 Inferred from L3 and L4
IM Genes annotated with at least n−m of the n top ranked eVOC terms

characterizing the disease

8 http://www.sanbi.ac.za/evoc
9 http://www.ensembl.org/Homo sapiens/martview
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least n−m of the eVOC terms characterizing the disease. m functions as a slack

parameter on the degree of matching. Optimal values for n and m were determined

using training data and then evaluated on an independent test dataset.

3.3 BITOLA (Hristovski et al. 2001, 2003)

BIOTLA [13, 14] is a text mining system designed for the biomedical domain in

general. We include it here as it has also been extended to identify novel genes

for diseases. Using association rules with confidence and support scores, BITOLA

builds on Swanson and Smalheiser’s Open and Closed discovery strategies. In their

earlier work [14], objects of interest are represented only by MeSH concepts. In

later work [13], tailored to the gene–disease problem, they also consider gene names

(that are not necessarily MeSH terms). Links are derived from co-occurrence data

and are weighted by confidence and support scores. The confidence in a link be-

tween two MeSH concepts X and Y is an asymmetric weight which is the number

of records having both X and Y divided by the number of records with X alone (or

Y alone depending upon the perspective). Given a starting concept, X, associated

Y concepts are found. Z concepts that are in turn associated with Y are identified.

Each X–Z combination defines a novel relationship if they are not already directly

associated. Filters may be applied to constrain the nature of the bridging Y concepts

to those belonging to specific UMLS10 semantic types of interest. Similarly links

may be filtered based on threshold values for confidence or support. In the later ver-

sion, tailored to the gene–disease application, they also provide filters to constrain

the gene and disease to the same chromosomal region. They were able to postulate

FLNA as a candidate gene for Bilateral perisylvian PMG, a malformation of cor-

tical development in the brain [13]. More details about BITOLA are available in

the chapter titled ‘Literature-Based Knowledge Discovery using Natural Language

Processing’. In Table 3 we show the key objects and links in their approach when

Table 3 BITOLA – Hristovski et al. (2003)

Type ID Object type Object representation/link derivation Notes

O1 Disease Disease MeSH term (and corresponding MEDLINE –
records with this term)

O2 Cell function MeSH term of UMLS semantic type “cell function” –
(and corresponding MEDLINE records with this MeSH term)

O3 Gene Gene names or aliases (and corresponding –
MEDLINE set with any of these terms)

L1 O1, O2 Confidence in O2 given O1 A
L2 O2, O3 Confidence in O3 given O2 A
L2 O1, O3 Inferred from L1 and L2 with added chromosomal constraint A
IM Association rules exploiting transitivity with calculated confidence and support scores

10 http://www.nlm.nih.gov/research/umls/
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terms with the UMLS semantic type cell function are chosen as bridges between

diseases and genes.

One observation to make at this point is that final scores on suggestions do not

incorporate weights calculated for the intermediate links through the bridging Y

pathways. Thus although a suggested Z concept may have a high confidence con-

nection to its Y concept, this Y in turn may have a low confidence connection to the

starting X concept (relative to other Y terms on the list).

3.4 Adamic et al. (2002)

In this work [2] the authors identify gene symbol occurrences (official and alias

symbols) in MEDLINE records retrieved for a given disease. They then calculate

the strength of the relationship between the gene and the disease by comparing the

observed number of documents and the expected number of documents in which

the gene is mentioned. Expected frequencies are determined assuming a random

distribution of the gene term. They state that their work could be used to maintain a

list of known genes for a disease. They do not explicitly explore “new” connections.

However we include their research here as this approach of identifying genes that

exhibit a statistically significant occurrence pattern in the disease literature is at the

foundation of several papers and systems (Table 4).

One example is the newly formed Autoimmune Disease Database [16]. In it oc-

currences of gene names in document sets retrieved for diseases or disease names in

document sets retrieved for genes are assessed for significance. LitMiner [18] also

uses co-occurrence as the basis for relating two entities. Several types of entities

are considered including genes and diseases. Unlike the Adamic et al. effort their

link weight is symmetric and is calculated as the observed co-occurrence frequency

divided by that expected by chance alone. MedGene11 [15] is our last example of a

system that relies on co-occurrence data. After comparing several statistical meth-

ods such as chi-square and Fishers exact probabilities, the authors select a symmet-

ric measure called the natural log of the product of frequency. This is the product of

two ratios. One is the disease–gene co-occurrence frequency divided by the disease

frequency. The other is the disease–gene co-occurrence frequency divided by the

gene frequency.

Table 4 Adamic et al. (2002)

Type ID Object type Object representation/link derivation Notes

O1 Disease Disease search terms –
O2 Gene Names and aliases –
L1 O1, O2 Occurrence of O2 in MEDLINE records A

retrieved by O1
IM Comparison of observed and expected occurrences

of O2 in O1

11 http://hipseq.med.harvard.edu/MEDGENE/login.jsp
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3.5 Wilkinson and Huberman (2004)

Wilkinson and Huberman [28] take the notion of significant co-occurrences and ex-

pand it to get additional capabilities. Specifically they explore methods for finding

communities of genes that are likely to be functionally related in a given context

such as that defined by a particular disease. Given a set of documents for a disease,

they first identify occurrences of gene and protein names in each article. They then

limit the identified gene set to those that are statistically relevant to the topic (dis-

ease). This is again done by comparing the observed number of gene occurrences

with the expected number estimated, assuming no correlation between the gene and

the disease. Specifically, given that two uncorrelated terms co-occur according to

a binomial distribution, they consider observed gene-disease co-occurrences of at

least one standard deviation greater than the binomial expected value as statistically

relevant (Table 5).

They then create a co-occurrence network of the relevant genes and apply a

graph partitioning algorithm to identify communities. Links in the network are not

weighted and simply indicate that the genes co-occur. Their graph partitioning al-

gorithm is based on the concept of the “betweenness centrality” of an edge. The

betweenness of an edge AB is defined as the number of shortest paths between pairs

of other vertices that contain AB. The edge with the highest betweenness is likely

an intercommunity edge and is removed, thus breaking up the network into two or

more connected components. This process iterates till certain stopping conditions

are met. At each iteration the betweenness scores are recomputed. At the end, con-

nected gene sets are declared to form a “community”.

When applied to the disease topic ‘colon cancer’, the authors show that function-

ally unrelated genes tend to be placed in separate communities even if they exhibit

some co-occurrence. Their method is offered as an approach for summarizing avail-

able information. The communities also indicate new directions for research based

on connections among genes that may otherwise be overlooked or that would re-

quire much time and effort to be found manually. Their paper presents an analysis

of select gene communities found for colon cancer. For example, they show that

COX-1 and COX-2, isoforms of cyclooxygenases, are correctly placed in different

communities as they are involved in different mechanisms. They also suggest pos-

sible connections between a set of phospholipase A2 genes and the gene FACL4 in

the context of this disease.

Table 5 Wilkinson and Huberman (2004)

Type ID Object type Object representation/link derivation Notes

O1 Disease Disease terms (and corresponding MEDLINE –
records with these terms)

O2 Gene Occurrences of names and aliases in O1 documents –
L1 Set of O2 Membership in a common community
IM Identify connected components by splitting the network

using criteria based on “betweenness”
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3.6 Analysis of Gene-Disease LBD Approaches

Objects: Given our selection of papers, the key objects are in all cases genes and

diseases. However, we observe differences in representation across the studies.

Representing a disease by its MeSH term or by its free-text terms can make a signif-

icant difference. For example, alopecia areata retrieves 1,768 records when limited

to MeSH whereas it retrieves 17% more records (2,069) when searched without

any limits. Also diseases are sometimes represented by their document set and

sometimes by the documents sets corresponding to their pathological conditions.

With genes we see an even greater variety in representation – from the occurrences

of gene names and aliases in MEDLINE to gene sequence and gene expression

data. Note also that the set of genes considered itself may vary. For example, G2D

considers only those sequences that map to the disease chromosomal region while

BITOLA allows this as an option.

Links: Even greater variability is seen in the types of links utilized. First, it is

not surprising to see co-occurrence used for predicting disease–gene connections

(Perez-Iratxeta et al., Adamic et al.) as co-occurrence is widely used in informa-

tion extraction and text mining research. Examples include the efforts on predicting

gene–gene relationships [18], transcription factor associations [19], and protein–

protein interactions [7]. In each of the studies reviewed here some statistical assess-

ment is undertaken to gauge significance of the proposed relationship. Typically

this is some comparison of the observed co-occurrence frequency and the frequency

expected assuming that the two objects are randomly paired.

Consider now the approach that takes advantage of intermediate conceptual

bridges (links) such as through chemical terms (G2D), through eVOC (anatomi-

cal) terms and through terms representing cellular functions (BITOLA). In effect,

these methods require particular varieties of semantics to tie the disease and the

gene. An open question is how to determine the advantages gained by these se-

mantic constraints when compared with co-occurrence based efforts. Likely false

positives drop due to these requirements. However, is it the case that text mining,

designed to moor on the fringe of the known, is better served by less constrained

methods? Possibly this question can only be answered empirically.

Comparing the studies that use intermediate links also begs the question as to

which type of connector is more effective. A point to note in this regard is that in

G2D the disease and gene are at least four steps apart as its logic takes one from a

disease to its pathological conditions to chemicals to GO annotations to RefSeq se-

quences to homologous sequences in a chromosomal region. Whereas in the eVOC

approach only three steps are involved. Now is it the case that with every additional

step there is an added risk of error? More fundamentally how do these different

connectors, chemical and functional links as in G2D and anatomical links as in the

eVOC system, compare? Could the GO cellular component vocabulary be used as

effectively in G2D? Note that one could also use genes themselves as connectors be-

tween diseases and other genes. For example, in Chilibot [8] this strategy has been

used to discover connections between phenomenon (such as long-term potentiation)
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and other genes. Genes as connectors are also implicit in the research by (Wilkinson

and Huberman) on finding gene communities for diseases.

Clearly one direction of research is to explore more vocabularies as potential

connectors. A related research direction is also to use vocabularies in combination

which would require the study of evidence combination models. The choice of

connector(s) could also be problem specific, i.e., depending on what is know about

the particular disease. In that case a more general approach leaving the choice of

conceptual bridge to the user as in BITOLA might be the best. This is another area

where more research could be done. Moreover, as we accumulate experience with

vocabularies for connectors, we might even begin to identify preferred characteris-

tics (in addition to semantics). For instance, it may be that the more specific term

subsets of a GO vocabulary are of greater value. Or, perhaps terms with high usage

are more important. Observe that weights in the eVOC system are directly related

to frequency of annotation with the term.

Inference methods: Differences in how measures exploit co-occurrence data are ob-

vious but probably not as significant as other differences that may be observed. For

example, inference methods that rely on a single path (BITOLA and G2D for links

between GO terms and diseases) are categorically different from those that favour

multiple paths. The eVOC system expects to find at least m−n bridging anatomical

concepts out of the n characterizing a disease. That is a tighter constraint. In a sense

an extension of this notion is found in the research of Wilkinson and Huberman

where the level of interest in a gene depends upon the ‘community’ to which it

belongs.

A second major aspect to consider is one that is almost never addressed in text

mining sytems. This aspect arises in the context of symmetric versus asymmetric

methods. Given a system, can one expect to get consistent results whether we start

from a disease seeking genes or we start from a gene seeking diseases? Take for

example BITOLA that uses an asymmetric measure. Given the way in which con-

fidence scores are computed, it is not clear if compatible results will be obtained.

These scores are conditional probabilities that rely on the starting condition and

the condition at each node of the path leading to the target. Thus directionality will

matter. Of course, there is a natural perspective on a given problem, namely, the

perspective of the user. However, it may be the case that for a given disease D, a

gene G is identified as most interesting. Whereas from the perspective of the same

gene, D may not be the most interesting disease. Perhaps one possible approach

with asymmetric strategies would be to traverse both directions for a given problem

and take the intersection of the top ranking suggestions.

Additional Knowledge Sources: While making explicit the additional sources used,

our framework also suggests alternative designs. For example, the genes (O3 in

Table 2) in the eVOC study could be represented by MEDLINE searches and L1

could be the co-occurrence in MEDLINE of eVOC terms and gene names. Assess-

ing this strategy would at least tell us about the added value of using expression data

from Ensemble. Alternatively, diseases could be represented by their description in
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OMIM (and optionally also the linked documents) and the eVOC terms could be

identified in these descriptions. As a final example, one could perhaps extend both

the G2D system and the eVOC study to consider communities of genes where the

edges between genes are drawn as a function of their common tissue expression

patterns or their sequence similarities.

4 General Purpose Biomedical LBD Systems

We now consider LBD systems designed as general purpose biomedical text mining

systems. Such systems are not tied to specific applications such as the discovery

of gene–disease associations or protein–protein interactions. ARROWSMITH,

BITOLA, IRIDESCENT, LitLinker and Manjal are some of the key domain inde-

pendent systems available for use on the Web. In addition there are the research

efforts of Weeber et al. [27] and Gordon and Lindsay [10], among others, which

have extended and explored LBD strategies. Except for Manjal, the LBD systems

listed above are (likely to be) described in detailed in other chapters of this book.

Hence they will only be briefly reviewed here. In addition we present Manjal, a

general purpose LBD system that we have developed at the University of Iowa.

BITOLA [13, 14] has also been described in the context of gene–disease links.

As shown in Table 6 the objects of interest in BITOLA are topics represented by

MeSH terms. The later version (2003) expands this to include genes as represented

by their names and aliases. Open and Closed discovery are offered but the greater

emphasis appears to be on using Open discovery to identify indirect relationships.

BITOLA computes support and confidence from the association rules formalism to

gauge the association strength between concept pairs. ARROWSMITH is likely the

oldest general purpose LBD system implemented. There are presently two versions

of ARROWSMITH, viz., University of Chicago version and University of Illinois –

Chicago version. Both implement Closed discovery. The University of Chicago ver-

sion allows one to upload two sets of retrieved MEDLINE records corresponding to

two topics. These sets are then compared to find the list of intersecting title words,

phrases and MeSH terms. These intersections are presented to the user as a ranked

list where the ranking strategy also considers the common MeSH terms between the

two starting query topics. The key difference in the University of Illinois – Chicago

version is that the literature search step is integrated into the discovery system.

As described on their web site, LitLinker12, considers objects represented by

MeSH terms and implements Open discovery. According to the description in

[21], they exploit correlations between terms calculated using the Apriori algo-

rithm [3]. Finally there is the commercial system IRIDESCENT [29, 30]. It in-

cludes genes; diseases, disorders, syndromes or phenotypes; chemical compounds

and small molecules; and drug names as objects. Although not truly a general pur-

pose system, we include it here given its variety of objects and, we believe, its exten-

sibility. Across a few papers they experiment with different probabilistic measures

12 http://litlinker.ischool.washington.edu/
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Table 6 General purpose biomedical LBD systems

Type ID Object type Object representation/link derivation Notes

BITOLA
O1 Topic MeSH concept and retrieved MEDLINE records –
L1 Pairs of topics Co-occurrence A
L2 Pairs of topics Implicit: connections through intermediate MeSH A

terms of specified semantic type
IM Open discovery with confidence and support weights

ARROWSMITH (U. Chicago and U. Illinois – Chicago)
O1 Topic PubMed search and retrieved MEDLINE records –
L1 Pairs of topics Co-occurrence
L2 Pairs of topics Implicit: connections through shared title words,

phrases, MeSH terms
IM Closed discovery with frequency based weights

LitLinker
O1 Topic MeSH term and retrieved MEDLINE records –
L1 Pairs of topics Co-occurrence A
L2 Pairs of topics Implicit: connections through intermediate MeSH A

terms of specified semantic type
IM Open discovery with weights calculated using support

IRIDESCENT
O1 Disease OMIM entries and retrieved MEDLINE records –
O2 Genes Entrez Gene entries and retrieved MEDLINE records –
O3 Chemicals MeSH concepts and retrieved MEDLINE records –
O4 Drugs (from FDA) and retrieved MEDLINE records –
O5 GO terms (from GO) and retrieved MEDLINE records –
L1 Pairs of objects Co-occurrence
L2 Pairs of objects Implicit: connections through other objects
IM Open discovery with probabilistic weights

Manjal
O1 Topic PubMed search and topic profile from retrieved

MEDLINE records
–

O2 Topic MeSH concept and topic profile from retrieved MED-
LINE records

–

L1 Pairs of topics Co-occurrence
L1 Pairs of topics Profile similarity
L3 Pairs of topics Implicit: related through other topics A
IM Open discovery, closed discovery, multi-topic analysis, bipartite topic analysis

TFIDF weights

of association that may be used to gauge the relatedness between a pair. In [30],

for example, they study mutual information and extend these in two ways to as-

sess the value of implicit relationships identified using an Open discovery model.

The extensions consider the different pathways connecting the two objects. Using

IRIDESCENT they found, for example, that the drug chlorpromazine, which is nor-

mally used to treat problems such as psychotic disorders and also severe hiccups,

would also reduce the progression of cardiac hypertrophy.
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4.1 Manjal

Manjal, available on the Web13 offers a variety of LBD options for mining MED-

LINE. In each option a user specifies one or more topics, where a topic is any valid

PubMed search. For each input topic provided, Manjal first retrieves records from

MEDLINE after which it builds its profile, which is simply a weighted vector of

terms. Terms are from the MeSH or/and RN fields of the records. Profile terms are

assigned TF*IDF weights with cosine normalization. All the text mining functions

offered in Manjal operate on top of these profiles. In essence, these functions can

make use of similarities calculated between topic profiles, employ MeSH terms and

their profiles as bridges between topics and relate topics based on shared MeSH

terms. In addition Manjal also offers co-occurrence based analysis.

Manjal users may conduct Open discovery runs starting with a single topic. The

end result is a ranked list of MeSH terms, organized by semantic type. Each ranked

MeSH term represents a topic that might have an interesting (and implicit) connec-

tion to the starting topic. Bridging topics are also presented. In the Closed discovery

option two topics are provided as input and their MeSH profiles are created. The

MeSH terms they share and their combined weights provide the tentative bridges

between the two starting topics. A third function extends the notion of the two-

topic Closed discovery function to work with larger sets of topics. Profiles are built

for each topic and the neighborhood of any given topic may be explored. Neigh-

borhoods may be selected on the basis of profile similarity or on the basis of co-

occurrence frequency. Manjal’s user interface is graphical and interactive. Both

nodes and links may be clicked to obtain further details including for example, the

corresponding set of PubMed documents.

An upgraded beta version of Manjal (not public, access available by request)

offers additional functions. For example, it allows analysis of bipartite topic sets.

This is appropriate when the problem naturally breaks down into two groups of

topics. For example, the two sets of topics could be a set of diseases and a set of

genes, or a set of environmental toxins and a set of diseases etc. Using this function

one may for example, rank members of one set in terms of their association with

members of the other set.

In all of the above functions the user may constrain the text mining process by

specifying the types of connections desired. Indeed it is desirable to do so as oth-

erwise the process could generate an overwhelming amount of information. This is

done by allowing only terms from certain UMLS semantic types to participate in the

process. For example, in Open discovery the intermediate terms may be restricted

to those of type Cell Function or Gene or Genome.

Manjal has tested successfully on a set of “benchmark” LBD problems that de-

rive from the research of Swanson and Smalheiser [23]. This replication study is the

most extensive performed thus far. Manjal has also been used to propose a beneficial

relationship between the dietary substance Curcumin Longa also known as turmeric

and disorders such as retinal diseases, Crohn’s disease and problems of the spinal

13 Manjal: http://sulu.info-science.uiowa.edu/Manjal.html
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cord [24]. The postulated connections were through biochemical pathways involv-

ing several genes such as inflammatory genes. Interestingly, a recent pilot study [12]

has been published where a pure curcumin preparation was administered to patients

with ulcerative proctitis and patients with Crohn’s disease. The authors conclude

that the results encourage follow-up double-blind placebo-controlled studies.

4.2 Analysis of the General Purpose LBD Systems

Objects: We observe significant differences in how topics are conceptualized

in these systems. With ARROWSMITH and Manjal users may start with any

search that is legitimate in the PubMed system. However, the difference between

these two is that in Manjal intermediate topics are defined by MeSH terms whereas

with ARROWSMITH these are terms from the free-text fields. The remaining sys-

tems either limit themselves to MeSH for topic specification or to predefined objects

whose names (or aliases) appear somewhere in the MEDLINE records. These dif-

ferences are fundamental. For example, when the user is constrained to MeSH as

input, complex queries such as erythromycin AND antihistamines AND hyperten-
sion cannot be considered. More generally, the space of input topics is unbounded

with ARROWSMITH and Manjal. Whereas, with BITOLA and LitLinker, these

are bounded by the MeSH vocabulary. A possible extension that remains consistent

with the parameters of these systems is to allow for combinations of MeSH concepts

as input topics. This would certainly remove some of the constraints, albeit at the

cost of having to calculate various frequency based statistics at run time.

Links: As seen in LBD systems exploring gene–disease connections, there are dif-

ferences in the way co-occurrence is used (or not) to define links. However, what

is more interesting is the remarkable absence of “semantic” links. For example, al-

though IRIDESCENT identifies disease sets, gene sets etc. from curated resources, it

appears to ignore the links between the two object types available from say OMIM.

The larger question to address concerns the extent to which these LBD systems may

benefit from the inclusion of expert acknowledged relationships as available in cu-

rated databases. One option may be to utilize known relationships harvested from

sources such as Entrez Gene and OMIM to build a network of associated objects.

This could then be the basis of Open and Closed discovery algorithms. A second

option could be to use a hybrid approach that allows one to smoothly incorporate

both semantic relationships along with co-occurrence based information. Exploring

evidence combination models is then an important research direction.

Points raised earlier about identifying implicit relationships from single paths

versus multiple paths also apply here. IRIDESCENT, for example, probabilisti-

cally assesses the strength of the association between the target topic (in Open

discovery) and the collection of intermediate topics connecting to the starting topic.

Manjal also calculates a weight that is a function of the number and importance

rating of intermediate paths. In contrast BITOLA, for example, offer single link
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paths. Their relative merits remain unknown though at the intuitive level strategies

favouring multiple paths may be more reliable.

Inference Methods: The final aspect to (re-)consider is that of symmetric versus

asymmetric inferencing strategies. Again, it is not clear as to the role of direction in

all of these systems. Whether one starts with a gene topic looking for novel diseases

or vice versa, it is unclear if compatible results are obtained. This too remains an

open research area in the context of these general purpose LBD systems.

5 Predicting Relationships from the Web

We now turn our attention to efforts on discovering novel links from the Web.

The main emphasis has been on discovering connections between people. How-

ever, some effort has been devoted to finding connections involving companies and

industries as also between web pages.

5.1 Adamic and Adar (2003)

Adamic and Adar [1] aim to predict relationships between students at MIT and

Stanford based on the similarity in characteristics extracted from their home pages.

Specifically, the authors use the text, hyperlinks (inlinks and outlinks), and mailing

list subscriptions on the web pages to “profile” students. Each individual feature is

weighted by the inverse log of its frequency. Profile similarity is computed as the

sum of the weights of the features in common. The authors also analyze predictions

based on the individual feature types and find that the text of the home pages acts

as the best predictor of a relationship. Table 7 represents the key objects and links.

Table 7 Adamic and Adar (2003)

Type ID Object type Object representation/link derivation Notes

O1 Students at Stanford (i) Text words in Home Page –
(ii) Inlinks in Home Page
(iii) Outlinks in Home Page
(iv) Mailing lists in Home Page
(v) Composite of above

O2 Students at MIT (i) Text words in Home Page –
(ii) Inlinks in Home Page
(iii) Outlinks in Home Page
(iv) Mailing lists in Home Page
(v) Composite of above

L1 O1, O2 Sum of weights of features in common
IM Similarity in profiles
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Table 8 BenDov et al. (2004)

Type ID Object type Object representation/link derivation Notes

O1 Person Name and retrieved news items –
as identified by ClearForest software

L1 Pairs of people Co-occurrence in sentence U
L2 Pairs of people (from L1) Implicitly via other people U
IM Transitive relationships

Further analysis of the predictions made for the Stanford students can be found

online14. Note that this research does not rely on co-occurrence as the home pages

of two individuals are unlikely to overlap. We regard this research as LBD albeit

working off non-traditional “documents”.

5.2 Ben-Dov et al. (2004)

Working off approximately 9,100 documents from four news sites: CNN, BBC, CBS

and Yahoo, the authors of this paper [5] identify novel relationships between person

entities. Two entities are explicitly connected if they co-occur in a sentence. Two

entities are implicitly connected if they form part of a transitive structure with an

intermediate entity. For example they connect Osama Bin Laden and Pope John Paul

via Ramzi Yousef. Bin Laden is connected to Yousef in several ways. For example

one document mentions that Yousef stayed in Bin Laden’s house. Two documents

mention a book by Simon Reeve called “The New Jackals: Ramzi Yousef, Osama

bin Laden and Future of Terrorism”. Yousef is connected to the Pope by reports on

an attempted assassination. They identify entities in the news articles using an in-

formation extraction tool (ClearForest15). They also extract semantic links between

entities using NLP-based methods such as by identifying patterns involving noun

phrases, verbs, etc. However, they do not use semantic links for knowledge discov-

ery. Table 8 shows the details.

5.3 Cory (1997)

Although the research described in this paper [9] addresses the humanities domain in

general, the author also focuses on relationships between people. This work is a di-

rect application of Swanson’s Open discovery approach to humanities data obtained

14 http://www.hpl.hp.com/research/idl/papers/web10/frequency.html
15 http://www.clearforest.com/
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Table 9 Cory (1997)

Type ID Object type Object representation/link derivation Notes

O1 Writer Name and retrieved records from humanities index –
L1 Pairs of writers Co-occurrence U
L2 Pairs of writers (from L1) Implicitly linked via other writers U
IM Transitive relationships

from the humanities index (under the WILS database)16. The aim here is to identify

new analogies. The author says that this application domain is difficult because the

language of humanities articles is not as structured and formal as that of medical ar-

ticles. The author notes that person names fits the bill and uses those. Starting from

a person (A) Cory retrieves documents from the humanities index and then identi-

fies people names (Bs) in the titles other than A itself. Semantics for the relations

between the Bs and A are manually established from the documents and interest-

ing Bs identified. For each of these Bs, Cory conducts fresh searches and identifies

names (Cs) in the titles of the new articles retrieved and again relation semantics

are manually established. Then via a transitive analysis the author connects A with

interesting Cs. A relationship is novel if a query containing both A and C does not

retrieve any documents (Table 9). Cory finds a novel analogy for the twentieth cen-

tury writer Robert Frost in the form of a classical second century BCE Greek writer,

Carneades, via a nineteenth century writer, William James (1842–1910).

5.4 Kumar et al. (1999)

In this paper [17] the authors describe an approach to identify online communities.

They concentrate on “new” communities that are not yet established or are implic-

itly defined. By this they mean communities at a finer level of detail such as the

community of turkish student organizations in the US. These communities are typ-

ically not yet listed on any web portal. Their operational definition of a community

is a densely connected bipartite subgraph known as a ‘core’. A core consists of fans

that are pages with outlinks and centers that are pages with inlinks. Fans can be

thought of as specialized hubs and centers are the pages with the required informa-

tion. The authors define an iterative procedure that consists of many pruning steps.

Starting from a large set of nodes they keep pruning until they identify a commu-

nity (or core) in which both the fans and centers have a minimum number of out-

links and inlinks respectively. Using data crawled by Alexa, consisting of over 200

million web pages, they identify communities such as the Australian Fire Brigade

Services. They also explore temporal analysis to verify how many communities,

16 We acknowledge that we have stretched our definition of Web based LBD works to include this
WILS database research. We do this given the innovativeness of the work and its direct use of LBD.
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out of a random sample of 400 communities identified, survive for more than 18

months. Interestingly they found that approximately 70% of the communities were

still alive (Table 10).

5.5 Tan and Kumar (2001)

Tan and Kumar [25] propose an approach to identify novel links between web pages

from sequences in user session data. The aim is to help in restructuring web sites

so as to better conform to the navigational behavior of users. They do this by iden-

tifying sequential and non-sequential indirect associations from user session data.

They first identify all the frequent itemsets from the data (using algorithms such as

the Apriori algorithm [3]). In the non-sequential case they postulate indirect associa-

tions between pairs of unrelated pages if they share intermediate sets of pages, called

Mediator sets, that are frequently associated with them. In the sequential case they

identify intermediate sequences, called mediator sequences, and infer indirect con-

nections between pairs of unrelated pages that share mediator sequences via three

kinds of inference mechanisms, viz., convergence, divergence and transitivity. These

indirect connections suggest more optimal ways to structure web sites (Table 11).

5.6 Bernstein et al. (2002)

Bernstein et al. [6] address the goal of identifying relationships between companies,

more specifically similarities, using a large corpus of business news. They combine

information extraction techniques with network analysis and statistical approaches

Table 10 Kumar et al. (1999)

Type ID Object type Object representation/link derivation Notes

O1 Web pages URL address –
L1 Pair of O1 objects URL based connections U
L2 Community of O1 objects (from L1) ‘Cores’ with particular features U
IM Presence in ‘core’ after pruning

Table 11 Tan and Kumar (2001)

Type ID Object type Object representation/link derivation Notes

O1 Web page URL –
L1 Pair of O1 objects Support based on co-occurrence frequency
L2 Pair of O1 objects Implicit: through intermediate sets
L3 Pair of O1 objects Implicit: through intermediate sequences A
IM Convergence, divergence, and transitivity
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Table 12 Bernstein et al. (2002)

Type ID Object type Object representation/link derivation Notes

O1 Company Company name and vector of co-occurring companies –
O2 Industry Average of company vectors –
L1 Pairs of O1 objects Similarity of vectors
L2 O1, O2 Similarity of vectors
L3 Pairs of O2 objects Similarity of vectors
IM Cosine similarity

to extract knowledge of company interrelationships. Distinct company names are

identified in a news collection from a 4-month period. Companies, represented as

nodes, are displayed in a co-occurrence network to provide a visual overview of

their distribution and connectivity. Going further, they represent each company by a

vector of its co-occurring companies and calculate cosine similarities between vec-

tors. Note that in this approach two companies may not co-occur and yet show high

similarity. They also use the same principles to explore the relationship between

individual companies and different industries as well as between industries. An in-

dustry is regarded as a cluster of companies. An industry vector is defined as the

average of the vectors of the companies that belong to it. Table 12 abstracts from

their work the key features of their methods.

5.7 Analysis of Web Based LBD

The key objects considered are students, web pages, companies and industries. Stu-

dents for example, were represented by their home pages optionally augmented with

their inlinks and/or their outlinks. Several alternative representations may be con-

sidered. One could use their entries in blogs, the set of papers presented as seen in

conference web sites or the web pages of related individuals such as professors and

co-authors. Each variety of representation provides a different perspective on the

individual student that may be useful in determining novel relationships.

With links we see an interesting variety, indicative of the broad potential with the

Web. For example, in addition to exploiting URL-based links, we see relationships

inferred from user-access data for Web sites. Similarly, one can imagine search logs

being a good source of implicit relations between pages, web sites, products, orga-

nizations and possibly also between web users. However, the anonymous nature of

search logs makes the detection of user connections difficult. With companies we

see that in addition to generating a co-occurrence based network Bernstein et al. uses

a second-order strategy that groups companies by calculating similarities based on

company co-occurrence feature vectors. This allows for two companies to be very

similar without co-occurring.
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Beyond these object and link specific points, several general observations may

be made. The first is that there is little research on the web involving methods that

are the same or analogous to LBD. This is particularly striking when compared to

the level of activity in the biomedical domain. There are several potential expla-

nations for this discrepancy. First, the kinds of goals that may be targeted are not

as easily specifiable on the web as in biomedicine. In biomedicine, especially in

bioinformatics, the key entities are widely understood to include genes, diseases,

proteins, chemicals etc. This understanding is reflected in the kinds of curated re-

sources that have been created. Thus to look for novel associations, such as those

between diseases and genes, or drugs and genes follows naturally from the set of

key entities. Despite the heterogeneity of the Web, very few key entity types have

been explored for LBD.

A second possible reason for the paucity of LBD research in the web domain is

the ambiguity challenge. For example, a straightforward application of Open dis-

covery would involve starting with a search on an input topic. Even when focussed

on a person as the input topic, we will need to filter the retrieved set in order to

disambiguate between the multiple individuals likely to share the same name. We

note that this sub-problem is itself being directly addressed (e.g., [11]). Although

ambiguity resolution is also required in biomedical LBD, the problem is far more

pronounced on the Web, given its heterogeneity and especially given its much faster

pace of growth.

A third possible explanation for the lack of LBD research on the Web is a very

practical one, which is the non-availability of appropriate datasets. Researchers in

the biomedical domain may easily avail of the MEDLINE database, PubMed APIs

and the UMLS vocabularies. This has created an incredibly hospitable environment

for LBD research. Added to this are the many curated resources such as Entrez

Gene and OMIM, typically with an option for data downloads. In contrast, the Web

is close to being inhospitable to LBD research. For example, API’s to search systems

such as Google or Yahoo! limit users to only 1,000 and 5,000 daily searches, respec-

tively. Moreover, each search is limited to the top few results. Also these APIs do

not provide all the search options that are implemented on the respective web sites.

For example, the Google API does not allow blog search. Avoiding these search

systems implies the need to crawl the web and develop ones own Web datasets. Col-

lections such as Alexa crawls17, available at a fairly low cost, are certainly in the

right direction. But the real power of LBD is in identifying novel hypotheses which

implies working with information that is current. Thus although working off pre-

defined collections may help in refining methods, it is unlikely to be of real value to

end users.

To counter these challenges, the web, with information on almost every type

of entity, offers excellent opportunities for existing LBD methods. Consider the

kinds of problems addressed in the papers reviewed. A key emphasis is on find-

ing implicit relations between people: students from two universities (Adamic and

Adar), authors across time (Cory), and individuals mentioned in news articles

17 http://www.amazon.com/b/ref=sc fe c 0 239513011 1/103-4334540-2295806ie=UTF8&
node=12782661& no=239513011&me=A36L942TSJ2AJA
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(Ben-Dov et al.). There is also some emphasis on individual pages as key enti-

ties in terms of defining emerging communities of web pages and toward reshaping

websites. There is surprisingly little work on companies. However, these are just

the beginnings in terms of LBD on the Web. For example, even within the space of

individuals, we have an open research forum given the different classifications of

professions, affiliations etc.

The Web also offers excellent opportunities for developing new LBD methods.

In fact, the development of new methods is almost inevitable given that each doc-

ument (web page) is readily characterized not only by its content but also by its

inlinks and outlinks. Interestingly the methods proposed by Tan and Kumar and by

Kumar et al. consider mainly the URLs and links. It may be the case, for example,

that by considering page content based similarities as well, more cohesive cores are

identified by the latter’s method. This is also somewhat indicated by the Adamic

and Adar research, where the text of the home page is determined to be the best

predictor of a relationship. LBD methods exploiting URLs may also contribute to

biomedical LBD given the availability of fast growing full-text collections such as

PubMed Central. Thus citations to and from biomedical articles may eventually be

exploited for LBD.

6 Conclusions

We presented an overview of literature-based discovery methods using a common

framework for analysis. The framework focusses on the key objects, links, inference

methods and knowledge sources used. The analysis was presented in three parts. The

first part was constrained to a single theme of finding novel gene–disease connec-

tions. In the second part we analyzed general purpose LBD systems in biomedi-

cine. The third part analyzed the few papers that use LBD or analogous methods on

the Web.

The framework allowed us to perform a focussed comparison and analysis of

LBD methods. In the process several open questions and directions for research

were identified. For example, in the gene–disease context an important question

is on the relative merits of single link discovery paths versus multilink paths. An-

other important angle for research is on the design of evidence-combination models

that consider multiple intermediate vocabularies. With general-purpose biomedical

LBD systems an example open research direction is on incorporating semantic links

from curated databases into the process. Links of interest include not only those ex-

tracted from texts but also those readily available in curated resources. Despite the

prevalence of LBD research in biomedicine we still do not know the relative mer-

its of implicit connections that are co-occurrence based versus those derived from

more semantic/conceptual links. Also needed is research studying the implications

of symmetric versus asymmetric LBD strategies. We believe that this question has

been given little or no attention in the literature. As a consequence, there is the risk

of underrating or overrating a hypothesis given the chosen direction of the LBD
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analysis. This chapter also compares LBD on the web with LBD in biomedicine. It

is clear that LBD on the web is at a very early stage. However, LBD opportunities

are abundant, especially if we can cross a few of the key hurdles. Moreover, meth-

ods such as URL-based LBD strategies, developed on the Web have the potential to

influence methods for biomedicine.

There are several limitations of the analysis presented in this chapter. As said

initially this chapter is not a comprehensive review of LBD research. Thus for

example, we ignored interesting problems such as identifying implicit drug–disease,

protein–protein interactions. In the general-purpose LBD research, we reviewed

only LBD systems as opposed to papers that presented strategies without having

a freely accessible system. Also we did not focus on the types of experiments and

the results obtained in each paper. Instead we considered primarily the key method-

ological details.

To conclude, our framework-based review provides a better understanding of

the similarities and differences across LBD systems and methods. Through this en-

deavor, our own knowledge on the evolution of LBD research in different domains

and some of the key hurdles has greatly improved. This chapter also raises several

questions and identifies avenues for extending LBD research. Hopefully these will

guide the efforts of the LBD research and development community.

Acknowledgements This material is partly based upon work supported by the National Science
Foundation under Grant No. 0312356 award to Srinivasan. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

References

1. Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Social Networks,
25(3):211–230, 2003

2. Lada A. Adamic, Dennis Wilkinson, Bernardo A. Huberman, and Eytan Adar. A Literature
Based Method for Identifying Gene-Disease Connections. In Proceedings of the IEEE Com-
puter Society Bioinformatics Conference (CSB 2002), pp. 109–117, 2002

3. Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In Proceedings of
the Eleventh International Conference on Data Engineering, pp. 3–14, 1995

4. Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler,
J Micheal Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Midori A.
Harris, David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese,
Joel E. Richardson, Martin Ringwald, Gerald M. Rubin, and Gavin Sherlock. Gene ontology:
tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25:2529,
2000

5. Moty Ben-Dov, Wendy Wu, Ronan Feldman, and Paul A. Cairns. Improving Knowledge
Discovery by Combining Text-Mining and Link-Analysis Techniques. In Proceedings of the
SIAM International Conference on Data Mining, 2004

6. Abraham Bernstein, Scott Clearwater, Shawndra Hill, Claudia Perlich, and Foster Provost.
Discovering Knowledge from Relational Data Extracted from Business News. In Proceedings
of Workshop on Multi-Relational Data Mining (MRDM 2002), 2002



Analyzing LBD Methods using a General Framework 99

7. Peter M. Bowers, Matteo Pellegrini, Mike J. Thompson, Joe Fierro, Todd O. Yeates, and
David Eisenberg. Prolinks: a database of protein functional linkages derived from coevolu-
tion. Genome Biology, 5(R35), 2004

8. Hao Chen and Burt M. Sharp. Content-rich biological network constructed by mining PubMed
abstracts. BMC Bioinformatics, 5(147), 2004

9. Kenneth A. Cory. Discovering hidden analogies in an online humanities database. Computers
and the Humanities, 31:1–12, 1997

10. Michael D. Gordon, Robert K. Lindsay, and Weiguo Fan. Literature-based discovery on the
World Wide Web. ACM Transactions on Internet Technologies (TOIT), 2(4):261–275, 2002

11. Ramanathan V. Guha and A. Garg. Disambiguating People in Search. Technical Report,
Stanford University, 2004

12. Peter R. Holt, Seymour Katz, and Robert Kirshoff. Curcumin therapy in inflammatory bowel
disease: a pilot study. Digestive Diseases and Sciences, 50(11):2191–2193, 2005

13. Dimitar Hristovski, Borut Peterlin, Joyce A. Mitchell, and Susanne M. Humphrey. Improv-
ing literature based discovery support by genetic knowledge integration. Studies in Health
Technology and Informatics, 95:68–73, 2003

14. Dimitar Hristovski, Janez Stare, Borut Peterlin, and Saso Dzeroski. Supporting discovery in
medicine by association rule mining in medline and UMLS. Medinfo, 10(Pt 2):1344–1348,
2001

15. Yanhui Hu, Lisa M. Hines, Haifeng Weng, Dongmei Zuo, Miguel Rivera, Andrea Richardson,
and Joshua LaBaer. Analysis of genomic and proteomic data using advanced literature mining.
Journal of Proteome Research, 2:405–12, 2003

16. Thomas Karopka, Juliane Fluck, Heinz-Theodor Mevissen, and Änne Glass. The Autoimmune
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