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Abstract One of the most exciting goals of literature-based discovery is the in-

ference of new, previously undocumented relationships based upon an analysis of

known relationships. Human ability to read and assimilate scientific information

has long lagged the rate by which new information is produced, and the rapid ac-

cumulation of published literature has exacerbated this problem further. The idea

that a computer could begin to take over part of the hypothesis formation process

that has long been solely within the domain of human reason has been met with

both skepticism and excitement, both of which are fully merited. Conceptually, it

has already been demonstrated in several studies that a computational approach to

literature analysis can lead to the generation of novel and fruitful hypotheses. The

biggest barriers to progress in this field are technical in nature, dealing mostly with

the shortcomings that computers have relative to humans in understanding the na-

ture, importance and implications of relationships found in the literature. This chap-

ter will discuss where current efforts have brought us in solving the open-discovery

problem, and what barriers are limiting further progress.

1 Introduction

The amount of scientific literature is increasing exponentially,1 along with most

other databases in biomedicine, and there are far more papers published than any

individual could ever hope to read. Furthermore, within this vast literature are many
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areas of research interest, more than any individual could ever hope to be aware

of, leading to increasing specialization of research focus. This narrowing of rel-

ative awareness has not been a barrier to progress, but one could argue that it

limits progress. In an age where data is generated faster than knowledge [2], it be-

comes increasingly important to be able to compile diverse sets of facts to identify

high-impact hypotheses [3, 4]. The increasing emphasis on funding and conducting

cross-disciplinary research and collaboration is, in part, a consequence of this ex-

pansion of information and necessary restriction of individual research focus. Intel-

ligent tools are necessary to navigate, integrate and compile the diversity of available

information to better advance all fields of scientific research.

1.1 Text-Based Knowledge Discovery

In 1986 Don Swanson illustrated that two areas of research could be functionally

non-interactive, such that discoveries in one field could be relevant to studies in an-

other, yet nonetheless remain unknown by researchers in either field because the

fields have little or no overlap. Using a basic approach involving the pairing of key-

words between literatures, he demonstrated that regions of overlap could be iden-

tified and novel discoveries made [5–9]. Intuitively, we recognize the value of the

scientific literature in offering us insight into our own research. Who among us has

not, at least once, read an article or attended a talk on a field unrelated to our own

and subsequently left inspired with a new insight or direction for our own research?

A broad perspective can be extremely valuable.

By enabling a computer to identify potential relationships within the scientific

literature, it becomes possible to infer in an automated manner what is not known

based upon what is known. Computers are, after all, perfectly suited to read large

amounts of literature, catalog hundreds of thousands of names and synonyms, and

simultaneously manipulate and track hundreds of relevant variables. It seems rea-

sonable to stipulate that, for many areas of research with a significant body of

associated literature, only a computer could gain the broadest possible perspective.

Beyond the technical challenges associated with effective information retrieval (IR),

the main challenges to the discovery of new knowledge are enabling a computer to

identify what is of interest, why it is of interest and how the information will be

conveyed to a human user. The intent of literature based discovery (LBD) is not to

bypass the human researcher [10], but to provide a powerful supplement in assisting

observation, analysis and inference on a large scale.

Although the LBD approach could be applied to many domains, efforts have

thus far focused on the biomedical literature, specifically MEDLINE records. In

part this is because MEDLINE records are freely available in electronic format, but

also because most LBD efforts identify co-occurring terms as tentative relationships,

whether these terms are names or medical subheadings (MeSH). Thus the nature of

the association is usually non-specific and is best suited towards associations that

are more general in nature. For example, when a gene is mentioned in an abstract
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with a disease, there is a good probability that the gene is somehow related to the

disease (or suspected to be). Furthermore, if two diseases are frequently mentioned

with the same genes, then it not unreasonable to assume that the diseases are re-

lated in either their pathogenesis or phenotypic characteristics. The nature of each

relationship may not matter as much as the frequency of their association for such

inferences. When the nature of the relationship is critical to drawing inferences,

then more sophisticated methods will be necessary. For example, if mining a le-

gal/criminal database to find names frequently associated with crimes, the nature of

each association is critical to drawing any conclusions – is the person an ordinary

citizen, a lawyer prosecuting cases, a judge or a policeman?

During LBD, identifying relationships that are known (Fig. 1(1.1)) enables one to

infer relationships that are not known, yet potentially implicit from the relationships

shared by two objects (Fig. 1(1.2)). These shared relationships provide a means to

both research and justify the existence of a potentially novel relationship not explic-

itly contained within the literature. By comparing shared relationship sets identified

within the MEDLINE relationship network against what could be expected from a

random network model with the same properties, we are able to assign a statistical

significance value to any given grouping of relationships (Fig. 1(1.3)).

The approach outlined in Fig. 1 is what has become known as the “open discov-

ery” model [11, 12]. It is also sometimes referred to as “Swanson’s ABC discovery

model”, named because the first input node (black) is referred to as the “A” node, the

direct relationships (gray) are referred to as the “B” nodes and the implicit relation-

ships (white) are referred to as the “C” nodes. These implicit relationships have also
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Fig. 1 Using literature-based relationships to engage in the discovery of new knowledge. (1.1)
Beginning with an object of interest (black node), tentative relationships are assigned to other
objects (gray nodes) when they are co-mentioned within MEDLINE records. (1.2) Each related
object is then analyzed for its relationships with other objects (white nodes). These nodes are not
directly related to the primary node, thus they are implicitly related. (1.3) These shared relation-
ships are ranked against a random network model to establish how many would be expected by
chance alone, given the connectivity of each object in the set. In this figure a hypothetical network
with 1,000 nodes is analyzed. The node with the most shared relationships (four) is itself a highly
connected node (connected to 95% of the network), and thus is less noteworthy from a statistical
perspective than another node that shares three relationships and is connected to only 5% of the
network (marked with an asterisk). A statistical score must be assigned in some manner to rank
each of these implicit relationships for their potential significance, such as an observed to expected
(Obs/Exp) ratio. Figure reproduced from [1]
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Fig. 2 Structure of the literature-based network. (a) The objects in a literature-based network have
a disproportionate number of relationships, following a scale-free distribution. (b) In the case of
the scientific literature, this leads to “extremely small world” network behavior by which most
objects in the network are related by at least one intermediate. Figure reproduced from [1]

been referred to as “indirect” and “transitive” relationships. Similarly, the relation-

ships themselves have also been referred to as “associations” and “connections”.

Swanson outlined the open-discovery approach conceptually [6], but did not ac-

tually engage in it for most of his research because of the problems it posed. Rather,

he usually began with the A and C nodes already known and focused upon explo-

ration of the B nodes. However, because the number of relationships per object fol-

lows a scale-free distribution (Fig. 2a), the number of implicit connections found by

an unbounded search increases rapidly for every direct connection. Figure 2b shows

how the number of implicit connections rapidly approaches the maximum number

possible (the upper asymptote) given a relatively small number of direct connec-

tions [1]. Thus, everything in the database quickly becomes related to the query

object and the problem quickly shifts from finding implicit connections to ranking
their potential relevance.

1.1.1 Evaluating Results

One means of quantifying performance when ranking implicit relationships is to

score known relationships as if they were not known. In Fig. 1(1.3), for example,

the A (black) and C (white) nodes are shown as unconnected. This is because direct

relationships (the B nodes) are deliberately screened out from this set. However, if

they are not screened out, they too will share relationships with the A node and can

be evaluated just as any other C node in the implicit list. A previous study showed

that weighting shared nodes (the B nodes) by how unlikely such a set would be

shared by chance between two nodes correlated with the probability a relationship

was known as well as with the strength of the relationship (Fig. 3).

This problem has been addressed by ranking implicit relationships by their con-

nectivity within a network [1], then by attempting to extend mutual information

measure (MIM) calculations from direct relationships to implicit relationships [13]

and also by using fuzzy set theory (FST) to identify conceptual domains shared by
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Fig. 3 The object “cardiac hypertrophy” was analyzed to identify all other objects in the database
that share literature relationships with it. When a relationship is known (i.e., it has appeared in a
MEDLINE title/abstract), a line is plotted on the y-axis, which corresponds to how many times the
relationship was mentioned in MEDLINE. When the relationship is not known, there is a gap (not
all gaps are visible due to x-axis compression). Note that frequently mentioned relationships tend
to receive high scores when comparing the number of observed relationships shared by two objects
to the number of relationships expected by chance (Obs/Exp). Figure reproduced from [1]

two objects [14]. Each approach had its strength and weaknesses in ranking infer-

ences. For example, the FST approach was superior at identifying general concepts

(e.g., migraines are associated with pain) whereas the MIM approach was superior

at identifying more specific, informative relationships (e.g., migraines are associated

with sumatriptan, a medication used to treat migraines). Regardless of the approach

used, however, one major problem persisted: The amount of time the user had to

spend to identify interesting implied relationships from within the set. This prob-

lem is not unique to just the studies mentioned, but rather is a general limitation of

LBD in general. Relationships are defined by association and can thus be vague in

their nature.

1.2 General Approach

MEDLINE abstracts contain a historical summary of biomedical discovery, and are

available in electronic format free of charge from the National Library of Medicine

(NLM). Abstracts are typically written without specific format or standardization

of content, but are intended to convey the most pertinent aspects of the study being
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published. Biomedical interests are broad, yet predominantly focused on several

areas of primary interest: Genetics, disease pathology and etiology, study of phe-

notypes, and the effects and interactions of chemical compounds and small mole-

cules. Recognizing relevant entities or “objects” within these databases such as gene

names, diseases, chemical or drug names, and so forth is a challenge in its own right.

Using MeSH terms, which are assigned by curators, can bypass nomenclature and

ambiguous acronym problems but MeSH terms are limited in their scope (e.g. do

not encompass most specific gene names).

As objects are co-cited within a record, LBD approaches assign a tentative rela-

tionship, and sometimes a confidence score that reflects some measured probability

the relationship is non-trivial. As objects are co-cited more frequently, and/or closer

together (e.g. the same sentence), confidence increases that this co-mentioning of

objects reflects a meaningful relationship (Fig. 4). All analyses are conducted using

this uncertainty measure. This use of co-citations has been adopted in a number of

experiments where an automated attempt is made at constructing networks of po-

tential interactions or relationships, mostly between genes or proteins [15–20]. The

best known is probably the creation of the PubGene genetic network via co-citation

of gene names within MEDLINE [15]. Once all MEDLINE records have been

processed, a network of tentative relationships between objects has been constructed

and can be analyzed. The method has been applied to MEDLINE, but is extensible

to any other domain where discussion is constrained to a focused summary (e.g. an
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Fig. 4 Analysis of the uncertainty function in assigning tentative “relationships” based upon co-
citation. Top line represents co-cited objects found within the first half of the 12 million MEDLINE
records, but not the second half. Immediately below is the probability the uncertainty function
(derived from sample-based error rates) assigns to co-cited relationships based upon the number
of co-citations observed. For comparison, the overall distribution in the number of co-citations is
shown at bottom. Figure reproduced from [1]
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abstract) and co-occurrence of terms correlates with the presence or potential pres-

ence of a relationship between them (e.g. companies and products, legal precedents

and key phrases such as ‘workers compensation’, etc.).

1.3 Previous LBD Applications

Open-discovery approaches have been applied to several different research prob-

lems, for example to identify compounds implicitly associated with cardiac hyper-

trophy, a clinically important disease that can develop in response to stress and high

blood pressure. By examining the relationships shared by cardiac hypertrophy and

one of the highest scoring implicitly associated compounds, chlorpromazine, it was

anticipated that chlorpromazine should reduce the development of cardiac hyper-

trophy. It was tested using a rodent model, by giving mice isoproterenol to induce

cardiac hypertrophy, with one group receiving saline injections and the other receiv-

ing chlorpromazine. Preliminary experiments suggested that chlorpromazine could

significantly reduce the amount of cardiac hypertrophy induced by isoproterenol [1].

1.3.1 Type 2 Diabetes

Another analysis example involved Type 2 Diabetes, also known as Non-Insulin

Dependant Diabetes Mellitus (NIDDM), and revealed a line of literature relation-

ships that suggest the pathogenesis of NIDDM is epigenetic (Fig. 5). The analy-

sis furthermore revealed the likely tissue of pathogenic origin (adipocytes), and

narrowed the set of potentially causal factors to a general class of compounds

(pro-inflammatory cytokines) implicated in the phenotype. Currently, the epigenetic

Late onset

NIDDM Methylation

Variable severity

Maternal influence

Homocysteine

Cytokines

Fatty Acids

MTHFR

Fig. 5 A program called IRIDESCENT identified critical relationships shared by loss of DNA
methylation and NIDDM (not all relationships shown), suggesting a relationship between the two
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hypothesis remains untested, but seems to be gaining traction as mutation-based

(e.g., single nucleotide polymorphism) models and the “complex disease” hypoth-

esis have difficulty explaining certain observations about the etiology of NIDDM

(e.g., why it is on the rise faster than population growth).

Based upon past developments and current research, it seems reasonable to pre-

sume that the ultimate goal of LBD research is the development of an intelligent

system able to assimilate information in an automated manner, analyze facts and

relations therein, and return to the user a set of logical conclusions and suggested

courses of action based upon the current state of knowledge.

1.4 Improving on Co-Occurrences

Eventually, to provide a more targeted means of analysis, it will be necessary to

expand the open-ended knowledge discovery model to include the nature of rela-

tionships in some manner. The general associative model is unfortunately too cum-

bersome to use, and it is difficult to rigorously test because it makes no predictions

as to the nature of relationships. Thus, it is possible that every predicted implicit

relationship would be true if one adopted a very lenient definition of the term “re-

lationships”. Natural language processing (NLP) provides a means of pinpointing

the possible nature of the relationship between co-occurring terms (e.g. A upregu-

lates B, B binds C). Thus it is possible that NLP could be used for the prediction of

complementary and antagonistic relationships between unrelated terms.

The current LBD approaches can be summarized as general associative ones –

“guilt by association” approaches. Despite their initial successes, there is still room

for improvement. Figure 6 shows a general overview of the process assisted by

IRIDESCENT as a generic example of how a user would explore potentially novel

relationships identified by LBD approaches. First, the user selects an object for

analysis. Here, the disease fibromyalgia is chosen. The literature-derived network

of relationships is then queried to compile a set of terms related to fibromyal-

gia and then another set of relationships to each of these related terms (the im-

plicit set). The terms are then displayed to the user for examination. Here, they are

sorted in descending order of their observed to expected ratio. Gray rows represent

known relationships while white rows represent unknown, implicit relationships.

The user then examines the implicit relationships, looking for those that appear in-

teresting – a quality that is highly subjective and usually a function of the examiner

(e.g. oncologists would be more interested in cancer-related terms). Once an im-

plicit relationship is chosen for analysis, such as the first implicit relationship on

this list, “Parkinson’s disease”, another window would be opened so that the user

could examine what relationships both Parkinson’s disease and fibromyalgia share.

The user can then examine these shared relationships, once again searching for one

or more that look “interesting”, and then examining either side of the shared rela-

tionship. Here, for example, the user could examine the A–B relationship, which

in the window shown would be the relationship between fibromyalgia and females.
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Fig. 6 Using an open-discovery approach to identify implicit relationships and explore shared
relationships identified within the literature

The literature associated with this relationship is not shown here, but the nature

of this relationship is that approximately 90% of fibromyalgia sufferers are fe-

male. Then, examining the corresponding B–C relationships, between females and

Parkinson’s, shown here in window #2 would pull up something like the next in-

set window. Examining the literature, with keywords highlighted for convenience,

it is apparent that males disproportionately suffer from Parkinson’s. Thus, at this

point, the user understands one of the aspects of the implied relationship between

fibromyalgia and Parkinson’s. Users would then examine each of these shared re-

lationships, one by one, to get a better idea of the overall nature of the implied

relationship. This last step is the hardest since each individual relationship (e.g., of

a disease to gender) may or may not paint a cohesive picture for any overall implied

relationship between the two terms. It is entirely possible, if not likely, that many

of the bridging B terms may be simple, isolated relationships that do not contribute

at all towards an overall relationship between A and C. Thus, it could be confusing

for users to try to iteratively construct a picture of a general relationship piece by

piece since some of those pieces may only make sense after further analysis while

others may not contribute at all towards a general A–C relationship. Subjective in-

terpretation and a limited understanding of the nature of implied relationships are

the biggest current barriers to LBD.
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In the example shown in Fig. 6, the threshold to declare a relationship as “known”

was set to a minimum of four co-mentions. Searching PubMed for “parkinson’s and

fibromyalgia” in the title or abstract yields two papers, one of which suggests the

relationship between the two in terms of the neurotransmitters that are affected in

each and the overlap in phenotypes [21]. So, in this case, a relationship is known

between the two and was not detected because of the threshold. This also illus-

trates one of the limitations of the approach – in some cases several abstracts may

co-mention two objects, yet examining the text of each one reveals no specific re-

lation between the two. In other cases such as this one, one abstract co-mention

may define a relationship. Lower or higher thresholds can be set depending upon

user preference for virtually all of these approaches, but this is a persistent caveat.

In this specific case, because the co-mentioning article was a review and somewhat

speculative in nature, this would tell to the experimentalist interested in validating

this connection that empirical work remains to be done. It also provides the experi-

mentalist with many more shared relationships for him/her to better understand the

implied relationship prior to experimentation. These shared relationships can be ex-

tremely valuable because, aside of these two papers, there is no further research that

could be obtained via traditional query methods that would explain how the two

diseases are connected.

The first step in better elucidating the nature of relationships might be to enable

information extraction (IE) routines to classify directionality in relationships, which

could lead to inference of complementary and antagonistic relationships. Figure 7

examines a hypothetical implicit relationship identified by an IE-based open dis-

covery approach, with Fig. 7a showing the current approaches: Commonalities (B1

through B6) are identified between two objects (A and C). It is not known what type

of relationship is implied by these common relationships until the user examines

the text the relationships were identified in (as shown in Fig. 6). This examination

can take a significant amount of time. For example, when a tentative relationship

between Type 2 Diabetes and Methylation [22] in a previous analysis, although the

initial implication was suggested relatively quickly, it took about 2 weeks worth

of exploring the connecting relationships to better understand and identify the key

components of the implied relationship. Much of this analysis is weaving a grow-

ing set of facts into a cohesive summary of what they mean collectively, which in-

cludes a willingness to look for both positive and negative evidence as well as judge

what weight should be assigned to any observations that appear contradictory given

all the other compiled observations. This would not be as much of a problem if it

weren’t for the fact that many implicit relationships are often examined before one

of potential interest is found. A means of summarizing the nature of each implied

relationship would be of great assistance.

Where possible, an IE-based approach to LBD would extract the nature of the re-

lationship between objects (e.g., A affects B, but not the other way around). This di-

rectionality combined with regulatory information provides a means of inferring the

general nature of relationships prior to their examination. For example, in Fig. 7c,

we see that A positively affects the intermediates B1, B2, and B5. In turn, these same

objects positively affect C. The other intermediate relationships do not immediately
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Fig. 7 Relationships identified within text and how IE would change the nature of analysis. (a)
Current methods of ranking potentially interesting discoveries (i.e., undocumented relationships)
rely upon statistical methods that suggest more relationships are shared than would be expected
by chance. Here, it is unclear what the nature of the proposed relationship between objects A and
C is until a user examines all the A–B and B–C intermediates. (b) By incorporating directional
information (e.g., A affects B), greater information content is provided to the researcher. Here, for
example, A appears to be affecting C through intermediates. (c) When information is extracted
regarding the nature of relationships (e.g., A increases B), this enables inferences to be made
regarding complementary and antagonistic relationships (e.g. A should increase C). (d) Multiple
types of inferences can be made with this new model, here neither A nor C is predicted to affect
the other, but rather they are anticipated to have opposing effects upon their intermediates. Notice
that not all relationships necessarily have directionality or information concerning effects

provide information on how A affects C through them, if at all, but neither do they

provide any contradictory information. Using this information, and without having

to examine the underlying relationships beforehand, we can infer that A positively

affects C.

Such a system could potentially be quite an improvement over previous meth-

ods, provided certain issues could be resolved. It would provide several ways that
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more generalized information could be obtained. In Fig. 7d, for example, A and C

are related, but the implied relationship is not between A and C but rather their

intermediates. A and C apparently have antagonistic relationships with five out of

six of their intermediates. A affects B1, B2, B5 and B6 positively while C affects

them negatively. It also affects B3 negatively whereas C affects B3 positively. This

type of information would be highly useful for inferring physiological interactions

caused by chemicals or pharmaceuticals. B1, B2, B5 and B5, for example, could be

heart rate, sweating, blood pressure and vasoconstriction. A could be a drug that

increases them (e.g., isoproterenol) and C could be a drug that reduces them (e.g.,

valium). This type of system could be very useful for detecting potential drug in-

teractions. If the antagonistic relationships here were positive instead (e.g., C was

ephedrine instead of valium), then this would suggest these two drugs should not

be given together. Except in a case where neither one alone had sufficient effect or

some enhanced effect was deliberately being sought.

Using IE to identify the nature of relationships entails identifying regulatory and

associative keywords within text and assigning the appropriate relationship. Sev-

eral efforts have demonstrated the feasibility and efficacy of this, mostly in terms of

protein–protein regulatory interactions [23, 24] but also in more generic terms [16].

The potential for advances in open discovery LBD methods is truly exciting. Even-

tually, if enough of these intermediate analysis steps could be automated, we may

be witnessing the creation of an in silico scientist [25] – software that is able to an-

alyze all electronically available information, draw logical conclusions about what

is both possible and plausible and then propose the most logical and efficient course

of action to empirically validate hypothesized relationships derived purely in silico.

Of course, we are far from that day, but it is not unreasonable to presume it is both

possible and perhaps even realizable within a generation or so.

1.5 Using History as a Guide to the Future

The historical discovery of new relationships within MEDLINE abstracts and pro-

vides a benchmark dataset for knowledge discovery. It could be argued that any

individual experimental validations of relationships predicted by any knowledge

discovery method are somewhat anecdotal. That is, a significant amount of user-

based decision goes into ascertaining what novel relationships are worth pursuing.

Currently, it is not at all clear which LBD approaches are most efficient due to a lack

of quantitative methods and gold standard test sets for analysis. One possible way

of addressing this might be to turn to a historical analysis. If historical relationship

networks could be created, we could study how they have evolved over time, ask-

ing the critical question: How many scientific discoveries known today would have

been highly ranked inferences in the past – based solely upon what was known at

the time? More specifically it can be asked how well any particular approach would

have performed historically in predicting the probability an implicit relationship will

be of future scientific relevance.
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In general, scientific discovery falls roughly into one of two categories: Fortu-

itous and logic-based. Fortuitous discoveries are those that arise unexpectedly or by

accident. Some might argue that, given the benefit of retrospective hindsight, some

fortuitous discoveries might have been anticipated. However, the way this term will

be used here is to denote discoveries that could not have been reasonably antici-

pated given the state of knowledge at the time of discovery. Viagra (sildenafil) is an

example of a fortuitous discovery, having been originally developed as a potential

treatment for angina, but instead had blockbuster success in treating erectile dys-

function (ED) [26]. The new application for ED was originally observed as a side

effect during clinical trials, and while it may now make sense in terms of what is

now known about sildenafil’s physiological/molecular actions, it is not amenable to

computational analysis because the alternative use was published before the origi-

nal, intended use [26]. Rogaine (minoxidil) shares a similar history with Viagra in

that it was originally developed to combat high blood pressure [27], but was discov-

ered later to be a successful treatment for baldness [28]. Between its initial reporting

in the literature in 1973 and its later use discovered around 1980, studies were pub-

lished concerning its pharmacological/molecular actions that might have suggested

an alternative use was possible.

Logic-based discoveries occur when an expert postulates that a new relationship

can be identified (or ruled out) based upon what is currently known. Whether the

expert anticipates the exact answer or not, there is a rationale for both choosing and

designing the experiment such that more information can be obtained about the sys-

tem in question. Conceptually, this is what most knowledge discovery approaches

attempt to do: To better understand an area of research (Fig. 1(1.3), black node), un-

known variables (Fig. 1(1.3), white nodes) are studied in the context of known vari-

ables (Fig. 1(1.3), gray nodes). Logic-based discoveries are those that are thought

out and justified, at least to an extent, prior to the commitment of time and resources

to further investigation. Preliminary results for a proposed research project typically

confer a competitive advantage upon it because they imply a greater chance of suc-

cess. In the absence of such results, researchers typically justify the proposed com-

mitment of resources by extensive citing of research results obtained from others.

In either case, future research is predicated upon current understanding.

It is reasonable to postulate that this latter type of scientific discovery, logic-

based, is amenable to computational analysis and that there are numerous relation-

ships published in the literature, shared by two unrelated objects, which suggest

the existence of a relationship long before one is recognized. If it can be demon-

strated that large-scale computational analysis of scientific information can identify

important discoveries prior to their experimental validation, this has very important

implications for scientific research in general. It would suggest that, to an extent, hu-

man awareness of relationships is a limiting factor in discovery and computational

assistance would be of broad benefit to the scientific community.

Due to their relative simplicity and lack of reliance upon proprietary and com-

putationally expensive NLP software, construction of co-citation networks have be-

come an increasingly common way of ascertaining relationships among different
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Fig. 8 Entry of objects (below timeline) and relationships (above timeline) into MEDLINE

types of objects within literature-based sources [15–20]. By this method, a relation-

ship is “discovered” when two objects have been co-mentioned in the same abstract.

However, this alone does not mean that a relationship has truly been elucidated,

proposed, or understood. One could imagine a historical perspective analyzing a

co-citation network of random words – one would certainly be able to identify co-

citation patterns such as “red↔bird” and “bird↔house” that would predict the even-

tual “discovery” of the relationship “red↔house”, but we can easily recognize that

the nature of this relationship and prediction are trivial. This example helps in il-

lustrating the fundamental problem in using co-citation as a metric for identifying

a relationship, even when the co-citation has occurred many times: Related objects

are almost unavoidably co-mentioned together, but co-mentions do not necessarily

reflect a meaningful relationship.

Figure 8 illustrates graphically the variables being analyzed, with MEDLINE

depicted as a time-dependant progression of published papers from the first entry to

the most recent. At given points in time, the primary object of analysis, A, will first

appear within the literature as will other objects such as C which will eventually be

discovered to have a relationship with A. A number of intermediate factors such as

B (only one is shown here for simplicity) will be related to both A and C prior to the

publication of their relationship. Essentially, literature-based discovery methods are

predicated upon the assumption that cases such as this exist – that at least a subset

of all discoveries could have been predicted prior to their publication.

1.6 Literature Limitations

Electronically available MEDLINE records lack full experimental detail – much

sequence information is not published directly in the primary literature but rather

deposited into databases. Therefore knowledge discovery methods lack the ability

to draw correlations between literature relationships and information contained in

genomic and transcriptional (microarray) databases. Integrating experimental data

with literature associations should be able to provide experimental insight in sev-

eral areas.

In Fig. 9, for example, three genes within a genomic region are found to have

literature correlations with a disease or phenotype. Once this is known, nearby

genomic features such as CpG islands (gray square) or highly repetitive regions
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Disease / phenotype

Gene 1 Gene 2 Gene 3

Fig. 9 Correlating literature commonalities with genomic data

(gray X) might offer a hypothesis about how recombination or silencing might con-

tribute towards the etiology of this disease. A similar approach was conducted to

identify candidate genes for diseases [29] by association of MeSH phenotypic terms

with Gene Ontology (GO) terms through MeSH D terms.

1.7 Integrating Gene Expression Measurements

Within microarray experiments there are groups of genes that respond transcrip-

tionally to changes in experimental conditions. Space limitations prevent more than

a few of these genes from being mentioned within MEDLINE abstracts, so this is

information that would not be obtainable the way most LBD approaches are cur-

rently implemented. However, many microarray datasets are cataloged in NCBI’s

Gene Expression Omnibus (GEO) [30]. A number of methods are available to clus-

ter transcriptional responders into groups, which could then be cataloged and inte-

grated into the literature-based network. This confers the additional advantage that

implicit analyses might point directly to experimental results.

Perhaps the most difficult part of microarray analysis is not so much the cleaning,

normalization and clustering of data, but ascertaining the biological relevance of

the response. To do this, the researcher must first identify what is already known

about the response observed within the experiment to gain confidence that aspects

of their experiment correspond with previous observations. Second, and perhaps

most important, they must ascertain what their experiment has told them that is not

already known. The purpose of integrating microarray response datasets is to be able

to answer both these questions.

2 Summary

Natural human limitations of time, expertise, speed of understanding and personal

interests prevent researchers from being aware of more than a fraction of the cu-

mulative scientific knowledge gained to date. Computers cannot yet substitute for
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human understanding, but can act as a mental “prosthesis” in examining and analyz-

ing this body of knowledge. Vast amounts of time and resources have already been

spent to gain this knowledge, but it has not yet been exploited for all the value it

holds. Observation and perspective have always been key components in advancing

science and medicine, thus we must recognize that limitations in these areas also

limit the rate of progress. LBD research will help reduce these barriers and provide

a broader perspective. The ability to examine networks of biomedical interactions

and infer novel hypotheses holds exciting promise for health-related research.
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