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Preface

This volume contains the 43 papers written by close collaborators and friends of
Ugo Montanari in celebration of his 65th birthday. In some sense, the volume is a
reflection, with gratitude and admiration, on Ugo’s highly creative, remarkably
fruitful and intellectually generous life, which is thriving as strongly as ever.
It provides a snapshot of the manifold research ideas that have been deeply
influenced by Ugo’s work. In a sense the book gives a vantage point from which
to foresee further developments to come: by Ugo himself, and by many other
people encouraged and stimulated by his friendship and example.

The volume consists of seven sections, six of which are dedicated to the main
research areas to which Ugo has contributed. Each of these six sections starts
with a contribution by one of Ugo’s closer collaborators providing an account of
Ugo’s contribution to the area and briefly describing the papers in the section.
The six scientific sections and the respective editors are the following:

– Graph Transformation (Andrea Corradini)
– Constraint and Logic Programming (Francesca Rossi)
– Software Engineering (Stefania Gnesi)
– Concurrency (Roberto Gorrieri)
– Models of Computation (Roberto Bruni and Vladimiro Sassone)
– Software Verification (Gian-Luigi Ferrari)

The final section, edited by Fabio Gadducci, contains some laudatio or memories
of working experiences with Ugo, as well as three more technical contributions.

All papers have undergone the scrutiny of at least two reviewers. There is
one exception, the contribution by Angelo Raffaele Meo. Because of its highly
technical nature and the necessities of keeping the publication deadline, we have
not been able to obtain reports for it. For this reason we are not able to take
full editorial responsibility for the results in the paper, which are presented as a
preliminary report of work in progress to be fully developed in a later publication.
Besides the three book editors and the eight section editors, we were helped by
several reviewers who gave comments on the papers and made suggestions for
their improvement. We would like to thank all of them for their very professional
and reliable help.

This volume was presented to Ugo on the 12th of June 2008 during a one-
day symposium held in Pisa at the Department of Computer Science. There
were six invited talks from eminent scientists, whose friendships with Ugo date
back many years. We thank Rina Dechter, Hartmut Ehrig, Robin Milner, Martin
Wirsing, and Glynn Winskel for accepting our invitation.

We would also like to thank the Dipartimento di Informatica di Pisa for their
support in the organization of the symposium, and the following institutions for
their financial support:



VIII Preface

– AICA: Associazione Italiana per l’Informatica ed il Calcolo Automatico,
– CINI: Consorzio Interuniversitario Nazionale per l’Informatica,
– Dipartimento di Matematica Pura ed Applicata di Padova,
– ISTI: Institute of Information Science and Technologies “A. Faedo” of CNR,
– SENSORIA project – Software Engineering for Service-Oriented Overlay

Computers,
– University of Pisa.

We would like to conclude by saying that this editorial activity made us
further experience how much Ugo is appreciated all around the world, and the
great esteem he has in the scientific community. Congratulations Ugo!

June 2008 Rocco De Nicola
Pierpaolo Degano

José Meseguer
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Ugo Montanari in a Nutshell

Rocco De Nicola1, Pierpaolo Degano2, and José Meseguer3

1 Dipartimento di Sistemi e Informatica, Università di Firenze
denicola@dsi.unifi.it

2 Dipartimento di Informatica, Università di Pisa
degano@di.unipi.it

3 Department of Computer Science, University of Illinois, Urbana-Champaign
meseguer@uiuc.edu

1 Ugo’s Origins

Ugo was born in Besana Brianza in 1943 where his parents had moved to escape
from the Milan bombings during the Second World War. Immediately after the
war he went back to Milan were he completed all his studies. Ugo got his Laurea
degree in Electronic Engineering from the Politecnico di Milano in 1966, three
years before the first Laurea curriculum and seventeen years before the first PhD
curriculum in Computer Science started in Pisa.

At the Politecnico — el nöster Politècnik, as the great Milanese engineer and
writer Carlo Emilio Gadda used to say — there was no need to defend a thesis,
and for concluding his studies there Ugo designed and implemented (on an IBM

7040) an algorithm for tracing the root locus of dynamical systems with feedback,
and wrote a scientific note describing it.

We cannot easily trace back who was the professor of Ugo, although Antonio
Grasselli might be considered his “scientific father”. Indeed, Ugo could take
advantage of the lively cultural environment at the Politecnico, that included
at that time scientists like Roberto Galimberti, Luigi Dadda, Marco Cugiani
and others, who had a tremendous influence on the development of Computer
Science in Italy.

A couple of years after his graduation, Ugo followed professor Antonio Gras-
selli, who moved to Pisa where the Computer Science curriculum1 started in
1969. Professor Grasselli set up there an enthusiastic research group at Istituto
di Elaborazione dell’Informazione (IEI) of the Italian Research Council, where
in the 1950s the Calcolatrice Elettronica Pisana (CEP), the first computer de-
signed and constructed in Italy, had been created. In 1968 Antonio organised
an international school in image processing after which, following Antonio’s rec-
comendations, Ugo went to the University of Maryland. There he worked in one
1 Pierpaolo Degano: I was fascinated by his enthusiasm and clarity during the

first introductory course on computers, so to rank Antonio as my best professor,
immediately followed by Ugo, who thought me a mesmerising course at the third
year, cf. the contribution by Franco Turini in this volume. Also because of these
wonderful professors I had, those where my best years and I am very grateful to
them and to all the great people and friends that were in Pisa at that time, cf. the
contribution by Alberto Martelli in this volume.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 1–8, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 R. De Nicola, P. Degano, and J. Meseguer

of the leading groups in image processing, directed by professor Azriel Rosen-
feld. The American experience had a great influence on Ugo, and probably Azriel
Rosenfeld can be considered his second “scientific father”. After Maryland, Ugo
spent overall two years in the States working at Stanford, Berkeley and Carnegie
Mellon Universities in a period when Computer Science was being shaped and
this had a tremendous impact on his future research.

At the end of the 1970’s, Ugo went back to IEI, and in 1975 moved to the
Università di Pisa as a full professor. Ugo has been working there since then, but
has had other important experiences abroad. Particularly important has been
the one in Argentina, where together with his wife Norma Lijtmaer (a computer
scientist too, with a vast and exceptional cultural richness who recently passed
away) Ugo contributed to setting up ESLAI, a School for Postgraduate Studies
that has produced many bright students, now working in European and Amer-
ican Universities. In the academic year 1986–1987, Ugo went back to the USA,
this time to SRI and Stanford University, where he worked closely with Joseph
Goguen, contributing key graph rewriting ideas to the model of computation and
the compilation techniques of the Rewrite Rule Machine, a novel architecture
that Goguen, Meseguer, and other colleagues developed with Ugo’s help during
those and subsequent years.2

2 Ugo’s Research

Within the brief scope of this foreword, it would be impossible to do justice to
Ugo’s so rich and varied collection of seminal contributions. With around 300
scientific papers, two books, and 20 edited volumes or special journal issues on
his published record, the task would require a much lengthier treatment than
what is possible in this foreword. Perhaps the best we can do is to give a few,
impressionistic hints by mentioning just a few papers of a seminal nature that
exemplify entire areas where Ugo’s work has shaped and defined the correspond-
ing research field. It is always somewhat misleading to mention specific areas in
isolation. For example, Ugo’s seminal contributions to graph transformations
are of a piece with his contributions to concurrency. Similarly, his first work on
constraint programming was motivated by image processing applications. This
rich interplay between his work in different areas must of necessity remain as an
implicit subtext of the ineluctably brief text containing our explicit comments.
However, we will make a few of these connections somewhat more explicit by
mentioning some papers under more than one heading.

A general area encompassing a range of Ugo’s early contributions is image
processing and artificial intelligence. By way of example we may mention among

2 José Meseguer: This sabbatical visit was also the time when a long-term research
programme was started by Ugo and myself on categorical models of concurrency.
This research programme was further advanced by my subsequent visits to Pisa and
of Ugo to SRI, and was greatly boosted by a second sabbatical stay of Ugo at SRI
and Stanford during the 1996–1997 academic year, and, as we briefly discuss in what
follows, has contributed many important ideas to concurrency theory.



Ugo Montanari in a Nutshell 3

his contributions here: the first published paper on continuous skeletons in pic-
ture processing and recognition [1]; the first work on hidden line elimination
for three-dimensional graphics [2]; one of the first applications of dynamic pro-
gramming to picture processing [5]; and some fundamental papers on search in
artificial intelligence such as [4].

Another area where Ugo has made key contributions is that of logic and con-
straint programming. The Martelli-Montanari elegant treatment as an inference
systemof the unification algorithm [8] has deeply influenced the entire field not only
of logic programming, but also of unification theory. The paper [6] can be justly re-
garded as the first paper on constraint programming. The paper [14] provided a
deep theoretical connection, in category theory terms, between logic programming
and concurrency theory. The contributions [18,24,32,33] develop a new version of
soft constraint programming, that include optimizations and probabilities.

The area of graph transformations has also been shaped in fundamental ways
by Ugo’s contributions. The paper [3] is the first journal paper on web grammars,
one of the early formalisms for describing graphs. And [10] is the first paper on
synchronized graph rewriting. More recent work [17,19,34] has explored in depth
the use of graph transformation systems as fundamental models of concurrency.

Perhaps the broadest area where Ugo’s contributions have been both nu-
merous and seminal is concurrency theory. They are so many and varied, that
a schematization would risk missing the point. They include: the first paper
on metric spaces for fairness [9]; the already-mentioned work on synchronized
graph rewriting [10] modeling distributed systems; pioneering work on the partial
order and causal semantics of concurrent processes [11,12]; new categorical mod-
els of computation for concurrency in which concurrent transition systems are
modeled as structured categories [13,14]; fundamental studies on the categorical
semantics of Petri nets and their extensions [15,16,22,23]; the already-mentioned
work on graph transformation systems as fundamental models of concurrency
[17,19,34]; a new general concurrent model of computation (the tile model) based
on monoidal double categories that is compositional both statically and dynami-
cally [20,25,26]; the foundations and tool development of a finite-state verification
framework for mobile calculi [27,30,31]; and a framework for defining transac-
tions with commits and compensation for a variety of formalisms [21,28,29].

Selected Publications

1. Montanari, U.: Continuous Skeletons from Digitalized Images. Journal of the
ACM 16(4), 534–549 (1969)

2. Galimberti, R., Montanari, U.: An Algorithm for Hidden Line Elimination. Com-
munications of the ACM 12(4), 206–211 (1969)

3. Montanari, U.: Separable Graphs, Planar Graphs and Web Grammars. Information
and Control 16(3), 243–267 (1970)

4. Montanari, U.: Heuristically Guided Search and Chromosome Matching. Artificial
Intelligence 1, 227–245 (1970)

5. Montanari, U.: On the Optimal Detection of Curves in Noisy Pictures. Communi-
cations of the ACM 14(5) (1971)
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16. Degano, P., Meseguer, J., Montanari, U.: Axiomatizing the Algebra of Net Com-
putations and Processes. Acta Informatica 33(7), 641–667 (1996)

17. Corradini, A., Montanari, U., Rossi, F.: Graph Processes. Fundamenta Informati-
cae 26(3-4), 241–265 (1996)

18. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-Based Constraint Satisfaction and
Optimization. Journal of the ACM 44(2), 201–236 (1997)

19. Baldan, P., Corradini, A., Montanari, U.: Unfolding and Event Structure Semantics
for Graph Grammars. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp.
73–89. Springer, Heidelberg (1999)

20. Bruni, R., Montanari, U.: Cartesian Closed Double Categories, their Lambda-
Notation, and the π-Calculus. In: Proc. 14th Symposium on Logic in Computer
Science, pp. 246–265. IEEE Computer Society, Los Alamitos (1999)

21. Bruni, R., Montanari, U.: Zero-Safe Nets: Comparing the Collective and Individual
Token Approaches. Information and Computation 156(1-2), 46–89 (2000)

22. Bruni, R., Meseguer, J., Montanari, U., Sassone, V.: Functorial Models for Petri
Nets. Information and Computation 170, 207–236 (2001)

23. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, Asymmetric Event
Structures and Processes. Information and Computation 171, 1–49 (2001)

24. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-Based Constraint Logic Program-
ming: Syntax and Semantics. ACM Transactions on Programming Languages and
Systems 23(1), 1–29 (2001)

25. Bruni, R., Meseguer, J., Montanari, U.: Symmetric and Cartesian Double Cate-
gories as a Semantic Framework for Tile Logic. Mathematical Structures of Com-
puter Science 12, 53–90 (2002)

26. Gadducci, F., Montanari, U.: Comparing Logics for Rewriting: Rewriting Logic,
Action Calculi and Tile Logic. TCS 285(2), 319–358 (2002)
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27. Ferrari, G., Gnesi, S., Montanari, U., Pistore, M.: A Model Checking Verification
Environment for Mobile Processes. ACM Transactions on Software Engineering
and Methodology 12(4), 440–473 (2003)

28. Bruni, R., Montanari, U.: Concurrent Models for Linda with Transactions. Math-
ematical Structures of Computer Science 14(3), 421–468 (2004)

29. Bruni, R., Melgratti, H., Montanari, U.: Theoretical Foundations for Compensa-
tions in Flow Composition Languages. In: Abadi, M. (ed.) Proc. POPL 2005, pp.
209–220. ACM Press, New York (2005)

30. Ferrari, G., Montanari, U., Tuosto, E.: Coalgebraic Minimization of HD-Automata
for the π-Calculus Using Polymorphic Types. TCS 331(2-3), 325–365 (2005)

31. Montanari, U., Pistore, M.: Structured Coalgebras and Minimal HD-Automata for
the π-Calculus. TCS 340(3), 539–576 (2005)

32. Lluch Lafuente, A., Montanari, U.: Quantitative μ-Calculus and CTL Defined over
Constraint Semirings. TCS 346, 135–160 (2005)

33. Bistarelli, S., Montanari, U., Rossi, F.: Soft Concurrent Constraint Programming.
ACM Transactions on Computational Logic 7(3), 1–27 (2006)

34. Baldan, P., Corradini, A., Montanari, U., Ribeiro, L.: Unfolding Semantics of
Graph Transformation. Information and Computation 205, 733–782 (2007)

3 Ugo’s Students

Ugo Montanari has made seminal contributions to a wide range of areas in com-
puter science. Furthermore, he has shared his enthusiasm for research with a
large number of Ph.D. students, many of whom are now established researchers
in various countries. More generally, his leadership, his intellectual curiosity and
generosity, and his collaborative spirit have sparked very fruitful long-term col-
laborations with researchers and with entire research teams worldwide. Ugo’s
students are innumerable, if you consider also those who got their Laurea degree
under his supervision — recall that there were no PhD programmes in Italy till
1983, when the first one in Computer Science started in Pisa.

Ugo is always very busy and each of his students has the impression that his
work does not get sufficient attention, but when the time comes to write a paper
or to discuss about scientific directions, Ugo finds always the time to sketch the
work or to wisely advice the scholars3.

Indeed, Ugo is ranked among the very first nurturers in Computer Science by a
2004 study of the Indian Institute of Science, that considers a number of authors
and evaluates them both in terms of their scientific production and of the sci-
entific production of their young students and associates (see http://archive.
csa.iisc.ernet.in/TR/2004/10/).

Below we list those among Ugo’s students that are active in universities or
in research centers and have been supervised by Ugo for a Dottorato di Ricerca
3 Rocco De Nicola: Ugo has had an important role in my career, it was him who

convinced me to apply to Edinburgh for PhD studies when there was no PhD pro-
gram in Italy. I wanted to go to lively Paris but Ugo insisted I should go to rainy
Scotland. Only recently I learnt from a common friend that the reason was not only
scientific; Ugo was worried that, given my attitudes, I would have got lost in the
douceur de vivre of Paris and not concluded much. Thank you Ugo.

http://archive.
csa.iisc.ernet.in/TR/2004/10/
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or for a Laurea when the Ph.D. program was not yet well-established in Italy.
The list is ordered according to the period the degree was obtained. To give an
idea of how seminal Ugo has been, for each of his students we also list their
descendents. Students with joint supervision are mentioned only once and a
reference is provided to the other supervisor.

1. GianFranco Prini
(a) Luca Cardelli

2. Franco Turini
(a) Paolo Mancarella

i. Francesca Toni
- Gerhard Wetzel
- Yannis Xanthakos

iii. Maurizio Atzori
iv. Giacomo Terreni

(b) Dino Pedreschi
i. Laura Spinsanti
ii. Francesco Bonchi (with F. Giannotti)
iii. Mirco Nanni
iv. Salvatore Ruggieri
v. Mieke Massink

(c) Fosca Giannotti
i. Annalisa Di Deo
ii. Giuseppe Manco

(d) Alessandra Raffaetà (with P. Mancarella)
(e) Chiara Renso
(f) Andrea Bracciali (with A. Brogi)
(g) Miriam Baglioni
(h) Danilo Montesi
(i) Antonio Brogi

i. Sara Corfini
ii. Razvan-Andrei Popescu
iii. Simone Contiero

3. Pierpaolo Degano
(a) Corrado Priami

i. Linda Brodo
ii. Davide Prandi
iii. Claudio Eccher
iv. Radu Mardare
v. Paola Lecca
vi. Federica Ciocchetta
vii. Debora Schuch da Rosa Machado
viii. Maria Luisa Guerriero

(b) Chiara Bodei
(c) Jean-Vincent Loddo
(d) Stefano Basagni
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i. Luke Demoracski
ii. Rituparna Ghosh

(e) Massimo Bartoletti (with G.L. Ferrari)
(f) Roberto Zunino

4. Stefania Gnesi
(a) Gabriele Lenzini (with S. Etalle)
(b) Giuseppe Lami

5. Rocco De Nicola
(a) Luca Aceto
(b) Michele Boreale

i. Lucia Acciai
(c) Rosario Pugliese

i. Alessandro Lapadula
(d) Flavio Corradini

i. Diletta Romana Cacciagrano
ii. Maria Rita Di Berardini

(e) Roberto Segala
i. Augusto Parma
ii. Stefano Cattani

(f) Michele Loreti
(g) Lorenzo Bettini
(h) Daniele Gorla (with R. Pugliese)
(i) Daniele Falassi (with M. Loreti)

6. Ilaria Castellani
(a) Ana Almeida Matos (with G. Boudol)

7. Paola Inverardi
(a) Monica Nesi
(b) Henry Muccini
(c) Marco Castaldi
(d) Massimo Tivoli
(e) Antinisca Di Marco
(f) Patrizio Pelliccione
(g) Fabio Mancinelli
(h) Leonardo Mostarda
(i) Mauro Caporuscio
(j) Marco Autili
(k) Sharareh Afsharian

8. Franco Mazzanti
9. Andrea Corradini

(a) Leila Ribeiro (with H. Ehrig)
10. Gian Luigi Ferrari

(a) Emilio Tuosto
(b) Simone Semprini (with C. Montangero)
(c) Roberto Guanciale
(d) Daniele Strollo
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11. Roberto Gorrieri (with P. Degano)
(a) Nadia Busi
(b) Riccardo Focardi

i. Matteo Maffei
(c) Marco Bernardo

i. Edoardo Bontà
(d) Gianluigi Zavattaro
(e) Mario Bravetti
(f) Alessandro Aldini
(g) Roberto Lucchi
(h) Claudio Guidi

12. Paolo Ciancarini
(a) Cecilia Mascolo
(b) Davide Rossi

13. Francesca Rossi
(a) Kristen Brent Venable
(b) Maria Silvia Pini

14. Gioia Ristori
15. Cosimo Laneve

(a) Samuele Carpineti
(b) Manuel Mazzara

16. Vladimiro Sassone
(a) Pawel Sobocinki
(b) Damiano Macedonio (with A. Bossi)
(c) Marco Carbone (with M. Nielsen)

17. Daniel Yankelevich
18. Fabio Gadducci
19. Stefano Bistarelli
20. Marco Pistore
21. Paola Quaglia
22. Roberto Bruni
23. Dan Hirsch (with D. Yankelevich)
24. Paolo Baldan (with A. Corradini)
25. Marzia Buscemi
26. Ivan Lanese
27. Hernan Melgratti (with R. Bruni)
28. Filippo Bonchi
29. Vincenzo Ciancia
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Graphs are widely exploited in several fields of computer science (as well as in
other disciplines) to represent in a direct and adequate way the structure of
the states of a system, making it easily understandable also to a non-technical
audience. In many situations, the behaviour of such systems can be specified
faithfully with a rule-based approach. A graph rule describes how a state can
evolve into another state by replacing a sub-state matching the left-hand side of
the rule with its right-hand side.

The field of Graph Grammars (also known as Graph Rewriting Systems, or
Graph Transformation Systems (gts)) is concerned with the study of specifica-
tion formalisms based on the above idea, and with their use for modelling and
analysing a variety of systems emerging from several fields of computer science.

The first contributions to the field date back to the late 1960’s. At that time,
graph grammars were introduced as a generalization of string grammars, provid-
ing a finite description of a (possibly infinite) collection of graphs. Along these
lines, Ugo’s first paper on graph grammars ([48], published in 1970) proposed an
enrichment with applicability conditions of Web Grammars, a formalism intro-
duced shortly before by John Pfaltz and Azriel Rosenfeld in [53],1 and showed
that they can generate some interesting classes of graphs: this has been the first
paper on graph grammars ever published in a journal.

Since then, Ugo has always been very active in the area of Graph Transfor-
mation, not only with his rich scientific production, but also taking part to the
several initiatives of the “GRAGRA” research community. Ugo attended regu-
larly since 1979 the series of quadri-annual International Workshops on Graph
Grammars and Their Applications in Computer Science, and since 2002 the bi-
annual International Conferences on Graph Transformations: he was Program
Chair with Leila Ribeiro of the 2006 edition of the conference, a very success-
ful event which took place in Natal, on the brazilian northern coast. Ugo and
his research group participate since 1989 to a series of European projects on
Graph Transformation: COMPUGRAPH I (1989-92) and II (1992-96), GET-
GRATS (1997-2001, coordinated by Ugo’s group), APPLIGRAPH (1997-2002),
and SEGRAVIS (2002-06). Also, Ugo co-authored three chapters of the Hand-
books on Graph Transformations ([27,2,49]), and is co-editor of the third volume
[30] on Concurrency, Parallelism and Distribution.

In the 1980’s Ugo started using in a systematic way Graph Transformations for
the specification, modeling and analysis of concurrent and distributed systems.
In joint works with Ilaria Castellani first [16] and with Pierpaolo Degano later
[29] (and also with a little contribution by myself, summarized in [17], the first
1 For the curious reader, webs are directed, node-labeled simple graphs.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 9–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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paper of my carreer), Ugo developed a formalism called (Graph) Grammars
for Distributed Systems (gds), where a graph represents a distributed system
consisting of processes (represented by hyperedges) interacting through ports
(nodes), together with its past history, represented as a partial order of events.
The evolution of such a distributed system is described with an original three-
level approach, which became recurrent in Ugo’s work: first the evolution of each
single process is specified by context-free productions which may show actions
on connected ports; next a context dependent rewriting rule for a set of processes
can be derived by synchronizing one rule for each process and checking that the
actions shown on the same port by the connected processes are identical; finally
the rewriting rule can be applied locally to the global system.

The originality of the synchronization mechanism just described has been
highlighted more explicitly in recent years by the new name of the approach, Syn-
chronized Hyperedge Replacement (shr), which has been applied to the specifica-
tion of Software Architecture Styles [35,36,38,37,41,42], as well as to the modeling
of Wide Area Network applications [32] and Service Oriented Computing [31].
To this aim, the synchronization mechanism was extended with name-passing
features [40,39,46], allowing for richer topological reconfigurations of a systems,
and the use of different synchronization algebras was considered [47]. In order
to prove efficiently that certain reconfigurations of Software Architectures are
consistent with the corresponding style, i.e., that the resulting graphs are still
derivable in the given grammar, a λ-like notation for graph derivations was intro-
duced. A simplified and more effective approach, Architectural Design Rewriting
(adr) has been proposed recently [13,12], which is equipped with an implemen-
tation in the rewriting engine Maude, and where derivations are denoted by
first-order terms.

A more semantic-oriented research project on which Ugo worked constantly
since the early 1990’s has been the development of a rich concurrent semantics for
graph transformation systems. Preliminary results include the formalization in
a categorical framework of existing notions of equivalences among graph deriva-
tions [18,21], and the development of event structure or partial order semantics
for gtss [51,19,20]. But more interesting results have been obtained by general-
izing to gtss several constructions and results already developed for Petri nets,
an approach that perfectly fits with Ugo’s attitude to relate different models of
computations. The leading intuition here was the observation that P/T nets can
be seen as gtss acting on discrete graphs, a relationship that was elaborated
upon, for example, in [23,7]. A milestone in this research project has been the
definition of Graph Processes and the study of their properties [26,3], providing
a partial-order semantics for gtss in terms of gtss themselves. Graph processes,
in the non-deterministic version, were used in the unfolding semantics of gtss [5]
first, and later in the development of a functorial, coreflective semantics relating
a category of gts with a suitable category of event structures [4,8,9,15].

Other contributions by Ugo in the area include an axiomatization of graphs
and of their derivations [22,24,25], the study of the relationships among gtss
and other computational models, including Concurrent Constraint and Logic



Ugo Montanari and Graph Transformation 11

Programming [52,54,28,44] and the Tile Model [50], and the study of observa-
tional semantics for gtss [6,43].

Last but not least, graph transformation systems have been used recurrently by
Ugo for modeling process calculi with name passing, including the π-calculus, Mo-
bile Ambients, and the Fusion Calculus [33,44,32,45,34,14,10,11]. There are two
main advantages in providing a gts-based representation of a nominal calculus.
Firstly, in most situations the equivalence induced on agents by the graphical rep-
resentation coincides with the structural equivalence of the calculus. Secondly, the
graphical representation makes explicit the topology of the system and the concur-
rencywithin it, which is only implicit in the representation as process algebra term.

Papers on Graph Transformation in This Volume

Several contributions to this volume dedicated to Ugo address topics related to
graph transformation.

The paper Unfolding Graph Transformation Systems: Theory and Applica-
tions to Verification by Paolo Baldan, Barbara König and myself presents a
brief overview of the works co-authored with Ugo and other colleagues on the
unfolding semantics of graph transformation systems, and on its use in the defini-
tion of a functorial semantics for gtss and in the development of methodologies
for the verification of systems modeled as finite- or infinite-state gtss.

In the paper Graph-Based Design and Analysis of Dynamic Software Archi-
tectures by Roberto Bruni, Antonio Bucchiarone, Stefania Gnesi, Dan Hirsch
and Alberto Lluch Lafuente, the authors compare two graph-based approaches
to the specification and modeling of architectural design styles, which are aimed
at validating prototypical applications before their realisation and deployment.
The first approach is based on a set-theoretical variant of the standard double-
pushout rewriting, effectively implemented in the Alloy system, while the second
one is the adr approach mentioned above.

The paper Graph Transformation Units – An Overview by Hans-Jœrg Kre-
owski, Sabine Kuske and Grzegorz Rozenberg presents an overview of the work
done in the last decade on Graph Transformation Units, an abstract modularity
framework for gtss, independent of a specific graph transformation approach.
The framework allows to encapsulate in a unit both rules and control condi-
tions that regulate their applications, and it provides an importing mechanism
suitable to structure complex specifications. Both a sequential and a parallel
semantics is proposed for this composition mechanism of units.

The paper Synchronous Multiparty Synchronizations and Transactions by
Ivan Lanese and Hernán Melgratti relates two computational models for the
specification of atomic reconfigurations of complex software systems. The au-
thors show that, under mild assumptions, each one can be mapped into the
other and viceversa, preserving the operational behaviour. The first formalism is
shr, briefly mentioned above, where the distinguished feature is the multiparty
synchronization needed among several hyperedges before they can evolve. The
second one is a process calculus called Zero-Safe Fusion, obtained by enriching
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the fusion calculus, which allows for two-party synchronization, with transac-
tional prefixes, inspired to Zero-Safe nets, a generalization of Petri nets able to
describe transactions originally proposed by Ugo with Roberto Bruni.

In recent years, the definition of graph rewriting according to the algebraic,
double-pushout approach has been generalized to the more abstract framework of
adhesive categories, characterized by a suitable property of “well-behavedness”
of pushouts with respect to pullbacks. In such categories dpo rewriting enjoys
most of the results originally developed for dpo rewriting over graphs, includ-
ing theorems concerning parallelism, concurrency and Church-Rosser properties.
The paper Transformations in Reconfigurable Place/Transition Systems by Ul-
rike Prange, Hartmut Ehrig, Kathrin Hoffman and Julia Padberg shows that
such results hold for transformation systems made of a marked Place/Transition
Petri net and a set of rules describing how such nets can be transformed. This is
achieved by showing that such systems, called Reconfigurable Place/Transition
Systems, equipped with a suitable notion of morphism form a weakly adhesive
high-level replacement category.

Another field where gtss are successfully used is in the modeling of the evo-
lution of heap based structures, arising during the execution of object oriented
programs. The paper Explicit State Model Checking for Graph Grammars by
Arend Rensink presents an overview of the GROOVE project and tool, aimed
at model-checking object oriented programs through their modeling as gtss.
The paper describes a model-checking approach for graph grammars, including
the definition of graph transition systems, methods for symmetry reduction (via
isomorphism checking) and appropriate first-order and graph-based logics.

Linear-Ordered Graph Grammars were introduced by Ugo and Leila Ribeiro
in [50] as an approach to gts suitable for the modeling of distributed systems
with mobility and object-based systems. Interestingly, also an encoding of such
grammars in the Tile Model was proposed, making explicit the aspects of inter-
activity and compositionality of such systems. The paper Linear-Ordered Graph
Grammars: Applications to Distributed Systems Design by Leila Ribeiro and Fer-
nando Lúıs Dotti shows an application of such formalism to the description of the
behaviour of distributed systems made of interacting clients and servers, in pres-
ence of faults of servers and recovering policies. The encoding as tiles is exploited
to introduce a notion of open graphs which can be understood as graphs able to
interact with the environment through a distinguished set of open nodes.
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Abstract. The unfolding of a system represents in a single branching
structure all its possible computations: it is the cornerstone both of se-
mantical constructions and of efficient partial order verification tech-
niques. In this paper we survey the contributions we elaborated in the
last decade with Ugo Montanari and other colleagues, concerning the
unfolding of graph transformation systems, and its use in the defini-
tion of a Winskel style functorial semantics and in the development of
methodologies for the verification of finite and infinite state systems.

1 Introduction

Graph transformation systems (gtss) [31] are recognized as an expressive speci-
fication formalism, especially suited for concurrent and distributed systems [16]:
the (topo)logical distribution of a system can be represented naturally by using
a graphical structure and the dynamics of the system, including the reconfig-
urations of its topology, can be modelled by means of graph rewriting rules.
Moreover gtss can be seen as a proper generalisation of a classical model of
concurrency, i.e., Petri nets [29], since the latter are essentially rewriting sys-
tems on (multi)sets, the rewriting rules being the transitions.

In a research activity started under the guidance of Ugo Montanari the concur-
rent behaviour of gtss has been thoroughly studied and a consolidated theory
of concurrency for such systems is now available, including the generalisation
of several semantics of Petri nets, like process and unfolding semantics (see,
e.g., [13,30,7]). The unfolding construction, presented in [30] for the single-
pushout approach and in [7] for the double-pushout approach, has been the basis
of a functorial semantics, recently presented in [9], that generalizes to gtss the
one developed by Winskel for safe Petri nets [33]. Furthermore, building on these
semantical foundations and in particular on the unfolding construction, a frame-
work has been developed where behavioural properties of gtss can be expressed
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and verified. As witnessed, e.g., by the approaches in [25,17] for Petri nets, truly
concurrent semantics are potentially useful in the verification of finite state sys-
tems, in that they help to avoid the combinatorial explosion arising when one
explores all possible interleavings of events. Such techniques have been general-
ized to a framework for the verification of finite state gtss in [5]. Interestingly,
several formalisms for concurrency and mobility can be encoded as gtss, in
a way that verification techniques developed for gtss potentially carry over to
such formalisms. Concurrent and mobile systems are often infinite state: in these
cases we can resort to approximation techniques in order to analyze them, as
proposed in [4,10,11].

In this paper we summarize a number of contributions published by the au-
thors in collaboration with Ugo Montanari and other colleagues, developing a
theory of concurrency for gtss and a framework for the verification of systems
modeled as gtss based on such semantical foundations. We start by presenting
the unfolding construction for gtss in Section 2. Next we describe, in a succinct
way due to size limitation, three frameworks where the unfolding construction
plays a crucial role, namely the functorial semantics of [9] in Section 3, the
finite prefix approach of [5] in Section 4, and the verification framework for in-
finite state gtss based on finite over-approximations of the unfolding proposed
in [4,10,11] in Section 5. Finally in Section 6 we draw some conclusions.

2 Unfolding Semantics of Graph Transformation Systems

In this section we first introduce the notion of graph rewriting used in the paper:
rewriting takes place on so-called typed graphs, namely graphs labelled over a
structure that is itself a graph [13], and it is defined according to the classical
algebraic, single-pushout approach (see, e.g., [15]). Next we review the notion of
nondeterministic occurrence grammar : this will be instrumental in presenting
the unfolding of a gts [7,30] in Section 2.3.

2.1 Graph Transformation Systems

In the sequel, given a set A we denote by A∗ the set of finite strings of elements
of A. Given u ∈ A∗ we write |u| to indicate the length of u. If u = a1 . . . an and
1 ≤ i ≤ n, by [u]i we denote the i-th element ai of u. Furthermore, if f : A → B
is a function then we denote by f∗ : A∗ → B∗ its extension to strings. When f
is partial, the extension is strict, i.e., f∗(u) is undefined if f is undefined on [u]i
for some i ∈ {1, . . . , |u|}.

Given a partial function f : A ⇀ B we will denote by dom(f) its domain, i.e.,
the set {a ∈ A | f(a) is defined}. Let f, g : A ⇀ B be two partial functions. We
will write f ≤ g when dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f).

Definition 1 (graphs and graph morphisms). A (hyper)graph G is a tuple
(VG, EG, cG), where VG is a set of nodes, EG is a set of edges and cG : EG → V ∗G
is a connection function. A node v ∈ VG is called isolated if it is not connected
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to any edge. Given two graphs G, G′, a partial graph morphism f : G ⇀ G′ is a
pair of partial functions f = 〈fV : VG ⇀ VH , fE : EG ⇀ EH〉 such that:

cH ◦ fE ≤ f∗V ◦ cG. (1)

We denote by PGraph the category of (unlabelled hyper-)graphs and partial
graph morphisms. A morphism is called total if both components are total, and
the corresponding subcategory of PGraph is denoted by Graph.

Notice that, according to condition (1), if f is defined over an edge then it must
be defined on all its connected nodes: this ensures that the domain of f is a
well-formed graph. We will write G1 	 G2 if G1 and G2 are isomorphic.

Definition 2 (typed graphs). Given a graph T , a typed graph G over T is
a pair 〈|G|, tG〉, where |G| is a graph and tG : |G| → T is a total morphism.
A partial morphism between T -typed graphs f : G1 ⇀ G2 is a partial graph
morphisms f : |G1| ⇀ |G2| consistent with the typing, i.e., such that tG1 ≥
tG2 ◦ f . The category of T -typed graphs and partial typed graph morphisms is
denoted by T -PGraph.

A typed graph G is called injective if the typing morphism tG is injective.
More generally, given n ∈ N, the graph is called n-injective if for any item x in
T it holds that |t−1

G (x)| ≤ n, namely if the number of “instances of resources” of
any type x is bounded by n.

Given a partial typed graph morphism f : G1 ⇀ G2, we denote by dom(f) the
domain of f typed in the obvious way.

Definition 3 (graph production and direct derivation). Given a graph
T of types, a (T -typed graph) production q is an injective partial typed graph
morphism Lq

rq
⇀ Rq. It is called consuming if the morphism is not total. A

production is node preserving if (i) rq is total on nodes, (ii) Lq does not contain
isolated nodes, and (iii) each isolated node in Rq belongs to rq(Lq). The typed
graphs Lq and Rq are called the left-hand side and the right-hand side of the
production, respectively.

A match of a production in a graph G is a total morphism g : Lq → G. A
match is valid when for any x, y ∈ |Lq|, if g(x) = g(y) then x, y ∈ dom(rq).

Given a production Lq
rq
⇀ Rq, a typed graph G and a

match g : Lq → G, we say that there is a direct deriva-
tion G ⇒q H, if the diagram to the right is a pushout
square in category T -PGraph.

Lq

g
��

rq � Rq

h�

G
d

�
H

Roughly speaking, the effect of the pushout construction in T -PGraph is the
following: graph H is obtained by first deleting from the graph G the image
of the items of the left-hand side which are not in the domain of rq, namely
g(Lq − dom(rq)), as well as all edges that would remain dangling, and then
adding the items of the right-hand side which are not in the image of rq, namely
Rq − rq(dom(rq)). The items in the image of dom(rq) are “preserved” by the
rewriting step (intuitively, they are accessed in a “read-only” manner).
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Fig. 1. The finite state gts CP

Definition 4 (typed gts and derivation). A (T -typed) spo gts G (some-
times also referred to as a (graph) grammar) is a tuple 〈T, Gs, P, π〉, where Gs

is the (typed) start graph, P is a set of production names, and π is a function
which associates a T -typed production to each name in P . We denote by Elem(G)
the set VT ∪ ET ∪ P .

A derivation in G is a sequence of direct derivations beginning from the start
graph ρ = {Gi−1 ⇒qi−1 Gi}i∈{1,...,n}, with G0 = Gs: in this case we write
Gs ⇒∗G Gn. A T -typed graph G is reachable in G if Gs ⇒∗G G.

We will consider only gtss where all productions are consuming, and derivations
where matches are valid. The restriction to consuming productions is standard
in the framework of semantics combining concurrency and nondeterminism (see,
e.g., [19,33]). On the other hand, considering valid matches only is needed to
have a computational interpretation which is resource-conscious, i.e., where a
resource can be consumed only once. In Sections 4 and 5 we shall further restrict
to node-preserving productions, for the reasons explained there.

Example 5. Consider the gts CP (a variation of the running example of [5]),
modeling a system where three processes of type P are connected to a com-
munication manager of type CM (see the start graph in Fig. 1, where edges
are represented as rectangles and nodes as small circles). Two processes may
establish a new connection with each other via the communication manager,
becoming processes engaged in communication (typed PE ). This transformation
is modelled by the production [engage] in Fig. 1: observe that a new node con-
necting the two processes is created. The second production [release] terminates
the communication between two partners. A typed graph G over TCP is drawn
by labeling each edge or node x of G with “: tG(x)”. Only when the same graph-
ical item x belongs to both the left- and the right-hand side of a production we
include its identity in the label (which becomes “x : tG(x)”): in this case we also
shade the item, to stress that it is preserved by the production.
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2.2 Nondeterministic Occurrence Grammars

Conceptually, a nondeterministic occurrence grammar O is a structure that can
be used to provide a static description of the computations of a given gts G: each
production of O represents an event, i.e., a specific application of a production
of G, while the items of the type graph of O represent items of graphs reachable
in derivations of G. Analogously to what happens for Petri nets, occurrence
grammars are “safe” gtss, where the dependency relations between productions
satisfy suitable acyclicity and well-foundedness requirements. The notion of safe
gts [13] generalizes the one for P/T nets which requires that each place contains
at most one token in any reachable marking.

Definition 6 (safe gts). A gts G = 〈T, Gs, P, π〉 is safe if, for all H such
that Gs ⇒∗ H, H is injective.

In a safe gts, each graph G reachable from the start graph is injectively typed,
and thus we can identify it with the corresponding subgraph tG(|G|) of the
type graph. With this identification, a production can be applied in G only to
the subgraph of the type graph which is the image via the typing morphism
of its left-hand side. Thus, according to its typing, we can safely think that a
production produces, preserves or consumes items of the type graph. Using a net-
like language, we speak of pre-set •q, context q and post-set q• of a production
q, defined in the obvious way. Clearly, the items of the type graph which are
used by more productions may induce certain dependencies among them: this is
formalized by the causality and asymmetric conflict relations introduced next,
which are pivotal for the definition of occurrence grammars.

Definition 7 (causal relation). The causal relation of a grammar G is the
binary relation < over Elem(G) defined as the least transitive relation satisfying:
for any node or edge x in the type graph T , and for productions q, q′ ∈ P

1. if x ∈ •q then x < q;
2. if x ∈ q• then q < x;
3. if q• ∩ q′ �= ∅ then q < q′.

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by �x� the set of causes of x in P , namely {q ∈ P : q ≤ x}.

Note that the fact that an item is preserved by q and consumed by q′, i.e.,
q ∩ •q′ �= ∅, does not imply q < q′. Instead, such productions are in asymmetric
conflict (see [8,28,23]): The application of q′ prevents q from being applied, so
that when both q and q′ occur in a derivation, then q must precede q′.

Definition 8 (asymmetric conflict). The asymmetric conflict relation of a
grammar G is the binary relation ↗ over the set of productions, defined by:

1. if q ∩ •q′ �= ∅ then q ↗ q′;
2. if •q ∩ •q′ �= ∅ and q �= q′ then q ↗ q′;
3. if q < q′ then q ↗ q′.
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Condition 1 is justified by the discussion above. Condition 2 essentially expresses
the fact that the ordinary symmetric conflict is encoded, in this setting, as an
asymmetric conflict in both directions. Finally, since < represents a global order
of execution, while ↗ determines an order of execution only locally to each
computation, it is natural to impose ↗ to be an extension of < (condition 3).

Definition 9 ((nondeterministic) occurrence grammar). A (nondeter-
ministic) occurrence grammar is a grammar O = 〈T, Gs, P, π〉 such that

1. its causal relation ≤ is a partial order, and, for any q ∈ P , the set �q� is
finite and the asymmetric conflict ↗ is acyclic on �q�;

2. the start graph Gs is the set Min(O) of minimal elements of 〈Elem(O), ≤〉
(with the graphical structure inherited from T and typed by the inclusion);

3. any item x in T is created by at most one production in P , namely | •x| ≤ 1;
4. for each q ∈ P , the typing tLq is injective on the “consumed part” |Lq| −

|dom(rq)|, and tRq is injective on the “produced part” |Rq| − rq(|dom(rq)|).

Since the start graph of an occurrence grammar O is determined by Min(O),
we often do not mention it explicitly. It is possible to show that, by the defining
conditions, each occurrence grammar is safe. Intuitively, conditions 1–3 recast
in the framework of graph grammars the analogous conditions of occurrence
nets (actually of occurrence contextual nets [8]). In particular, in condition 1,
the acyclicity of asymmetric conflict on �q� corresponds to the requirement of
irreflexivity for the conflict relation in occurrence nets. Condition 4, instead,
is closely related to safety and requires that each production consumes and
produces items with multiplicity one.

The finite computations of an occurrence grammar are characterized by spe-
cific subsets of productions.

Definition 10 (configuration). Let O = 〈T, P, π〉 be an occurrence grammar.
A configuration of O is a finite subset of productions C ⊆ P such that ↗ is
acyclic on C, and for any q ∈ C, �q� ⊆ C. Given two configurations C and C′

we write C � C′ if C ⊆ C′ and for any q ∈ C, q′ ∈ C′, if q′ ↗ q then q′ ∈ C.
The set of all configurations of O, ordered by �, is denoted by Conf (O).

The intuition that a configuration represents a computation from the start state
is formalised by the next result (see Proposition 6.11 of [1]), which also provides
a “static” characterisation of the graph reached by such a derivation.

Proposition 11 (reachability of graphs generated by configurations).
Let O be an occurrence grammar, let C ∈ Conf (O) be a configuration and let

gr (C) = (Min(O) ∪
⋃

q∈C q•) −
⋃

q∈C
•q.

Then gr(C) is reachable in O by applying all the productions of C in any order
compatible with ↗.

As in the case of Petri nets, reachable states can be characterized in terms of a
concurrency relation: this is an easy consequence of Proposition 11.
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Definition 12 (concurrent graph). Let O = 〈T, P, π〉 be an occurrence gram-
mar. A subgraph G of T is called concurrent if (1) the asymmetric conflict ↗
restricted to

⋃
x∈G�x� is acyclic and finitary; and (2) ¬(x < y) for all x, y ∈ G.

Proposition 13 (concurrency vs. reachability). Let O = 〈T, P, π〉 be an
occurrence grammar and G be a subgraph of T . Then G is concurrent iff it is a
subgraph of a graph reachable in O by applying all the productions in

⋃
x∈G�x�

in any order compatible with ↗.

2.3 Unfolding Construction

This section presents the unfolding construction which, applied to an spo gts G,
produces a nondeterministic occurrence grammar Us(G) describing its behaviour.
The idea is to begin with the start graph of the gts, and to apply in all possible
ways its productions to concurrent subgraphs, recording in the unfolding each
occurrence of a production and each new graph item generated.

A basic ingredient of the construction is the gluing operation. It can be seen
as a “partial application” of a production to a given match, in the sense that it
generates the new items as specified by the production, but items that should
have been deleted are not affected: intuitively, this is because such items may
still be used by another production in the nondeterministic unfolding.

Definition 14 (gluing). Let q = rq : Lq ⇀ Rq be a production, G a graph and
m : Lq → G a graph morphism. For any symbol z, we denote by gluez(q, m, G)
the graph 〈V, E, s, t〉, where V = VG ∪ mz(VRq ), E = EG ∪ mz(ERq ), and mz

is defined by: mz(x) = m(x) if x ∈ dom(rq) and mz(x) = 〈x, z〉 otherwise. The
connection function and the typing are inherited from G and Rq.

Therefore the gluing operation keeps unchanged the identity of the items already
in G, and records in each newly added item from Rq the given symbol z.

The unfolding of a gts is obtained as the union of a chain of occurrence
grammars, each approximating the unfolding up to a certain causal depth.

Definition 15 (unfolding). Let G = 〈T, Gs, P, π〉 be a gts. We inductively
define, for each n, an occurrence grammar Us(G)[n] = 〈T [n], P [n], π[n]〉 and a pair
of mappings ϕ[n] = 〈ϕT

[n] : T [n] → T, ϕP
[n] : P [n] → P 〉. Then the unfolding

Us(G) and the folding morphism ϕG : Us(G) → G are the occurrence grammar
and the morphism defined as the componentwise unions of Us(G)[n] and ϕ[n].

(n = 0) The components of the grammar Us(G)[0] are T [0] = |Gs|, P [0] = π[0] =
∅. Morphism ϕ[0] : Us(G)[0] → G is defined by ϕT

[0] = tGs , ϕP
[0] = ∅.

(n → n + 1) The occurrence grammar Us(G)[n+1] is obtained by extending
Us(G)[n] with all the possible production applications to concurrent subgraphs of
its type graph. More precisely, let M [n] be the set of pairs 〈q, m〉 such that q ∈ P
is a production in G, m : Lq → 〈T [n], ϕT

[n]〉 is an injective match and m(|Lq|)
is a concurrent subgraph of T [n]. Then Us(G)[n+1] is the occurrence grammar
resulting after performing the following steps for each 〈q, m〉 ∈ M [n].
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– Add to P [n] the pair 〈q, m〉 as a new production name and extend ϕP
[n]

so that ϕP
[n](〈q, m〉) = q. Intuitively, 〈q, m〉 represents an occurrence of q,

where the match m is needed to record the “history”.
– Extend the type graph T [n] by adding to it a copy of each item generated by

the application q, marked by 〈q, m〉 (in order to keep trace of the history).
The morphism ϕT

[n] is extended consequently. Formally, the T -typed graph
〈T [n], ϕT

[n]〉 is replaced by glue〈q,m〉(q, m, 〈T [n], ϕT
[n]〉).

– The production π[n](〈q, m〉) has the same untyped components as π(q). The
typing of the left-hand side is determined by m, and each item x in |Rq| −
rq(|dom(rq)|) is typed over the new item 〈x, 〈q, m〉〉 of the type graph.

The most relevant property of the unfolding is the fact that it provides a
compact representation of the behaviour of G, and in particular it represents
all the graphs reachable in G, in the following sense. If T ′ is the type graph of
the unfolding of G, ϕT : T ′ → T is the type graph component of the folding
morphism, and G is a subgraph of T ′, let us denote by ϕT (G) the same graph,
but typed over T by the restriction of the folding morphism, i.e., ϕT (G) =
〈G, ϕT |G〉. Then the next result is an easy consequence of the characterization
of the unfolding as a right adjoint, shown in [9].

Theorem 16 (completeness of the unfolding). Let G = 〈T, Gs, P, π〉 be a
gts. A T -typed graph G is reachable in G iff there exists a configuration C in
Conf (U(G)) such that G 	 ϕT (gr(C)).

3 Functorial Semantics: From Nets to spo Grammars

In this section we discuss the role played by the unfolding construction in the
development of a functorial semantics, first for Petri nets and then for gtss.

3.1 A Coreflective Semantics for Petri Nets

In the theory of Petri Nets, the unfolding construction, whose generalization to
spo grammars has been presented in the previous section, is the cornerstone
of a functorial semantics which has been developed by Winskel in [33], based
on previous works with Nielsen and Plotkin [27]. Winskel shows that there is a
chain of categorical coreflections (a special kind of adjunction), leading from the
category S-N, having safe (marked) P/T nets as objects and suitably defined
morphisms, to the category Dom of finitary prime algebraic domains, through
the categories O-N of occurrence nets and PES of prime event structures (pess).

S-N
U
⊥ �� O-N

E
⊥ ��

� �
IOcc��

PES
L
∼ ��

N��

Dom
P��

The first step is the construction unwinding a safe net N ∈ S-N into its
unfolding U(N) which, as in the case of grammars, records in its branching
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and acyclic structure all the possible computations of the original net N . Every
possible transition occurrence (event) is identified uniquely in the unfolding by
its history, i.e., by the finite set of events which caused it, and events are related
by the causality and symmetric conflict relations induced by the intersections
of the pre- and post-sets: differently from the case of gtss, in a (safe) Petri net
all conflicts are symmetric because transitions do not have a context. Functor
U(N) : S-N → O-N is the right adjoint to the inclusion functor O-N ↪→ S-N.

The subsequent step abstracts an occurrence net O to a pes E(O), which is
obtained from the unfolding simply by forgetting the places, and remembering
only the events and the causality and conflict relations among them. From a
prime event structure E it is possible to generate freely an occurrence net N (E)
which is the “most general” among those having E as underlying pes. Such a
net is obtained by considering the events of E as transition occurrences, and
introducing, among others, one fresh place for every pair of events related by
causality or conflict in E, in order to enforce the same relationships in N (E).
This construction defines a left adjoint to functor E : PES → O-N. The last
step, which establishes an equivalence between the categories PES and Dom,
maps any event structure to its domain of configurations.

3.2 Coreflective Semantics: From Nets to spo Grammars

During several years the first two authors cooperated with Ugo Montanari in a
project aimed at generalizing the coreflective semantics of nets to graph gram-
mars. At the beginning, most of the efforts were concentrated on the double-
pushout approach to graph transformation, and partial results were reported
in [1,7]. Only quite recently, however, a complete Winskel’s style coreflective se-
mantics has been developed successfully for the spo approach, as reported in [9],
and summarized by the following chain of adjunctions:

SPO-GG
Us

⊥ �� SPO-OG
Es

⊥ ��

� ���
AES

La

⊥ ��

N��
Dom

Pa��

Without delving into technical details, we summarize here the most challenging
problems we had to address during our project, and the way we faced them.

Obviously, the starting point is Definition 15, describing the unfolding con-
struction at the level of objects. To extend it to a functor Us providing a right
adjoint to the inclusion of the category SPO-OG of occurrence grammars into
the category SPO-GG of general grammars, we first had to identify a sen-
sible definition of grammar morphism. The chosen notion, discussed in [1], is
more general than others proposed in the literature, and, unlike others, it coin-
cides with the Petri net morphisms of [33] when restricted to graph grammars
which represent Petri nets. Furthermore, inspired by corresponding results for
nets in [26], we considered semi-weighted grammars, a class that strictly includes
safe grammars, with the additional advantage of being characterized by a “static
condition”, not involving the behaviour but just the structure of the grammar.

Concerning the next adjunction in the chain, it is worth stressing here the
presence of the category of asymmetric event structures (AES) in place of PES.
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The point is that prime event structures, which only include the causality and
symmetric conflict relations, are not sufficient to capture properly the dependen-
cies among events of systems where productions may have a context, modeling
the read-only access to resources. In these cases, which include spo grammars
and contextual Petri nets, asymmetric conflicts (see Definition 8) arise as a prim-
itive concept. This motivated the introduction of asymmetric event structures
(which are equipped with causality and asymmetric conflict), and the study of
their category AES, which is shown to contain PES as a coreflective subcate-
gory (see [8]). It is worth mentioning that, with the goal of providing an event
structure semantics for nominal calculi, in [12] a simpler functorial semantics is
presented for a restricted class of persistent grammars, for which category PES
turns out to be sufficient, because asymmetric conflicts cannot arise.

Given an occurrence grammar O, the aes Es(O) is obtained by considering
the productions as events, equipped with causality and asymmetric conflict as for
Definitions 7 and 8. Moreover, a construction inspired by the work on contextual
nets [8] allows one to build a canonical occurrence spo graph grammar N (A)
from a given asymmetric event structure A, providing a left-adjoint to functor
Es (technically, this works when dealing with injective matches only).

The chain of coreflection is completed by using the fact that the equivalence
between PES and Dom generalizes to a coreflection between AES and Dom [8].

4 Verification of Finite State gtss

In the approach originally proposed by McMillan for the analysis of Petri
nets [25] and further developed by many authors (see, e.g., [17,18,32]) the idea is
that given a finite state net, it is possible to identify a finite fragment of its un-
folding which is complete, i.e., which provides full information about the system
as far as reachability properties are concerned: this fragment can be character-
ized as the maximal prefix of the unfolding not including cut-off events, i.e.,
transitions which do not contribute to generating new markings.

In this section we summarize [5], where by exploiting the unfolding construc-
tion of Section 2.3, we have generalized McMillan’s approach to spo gtss by
introducing an original notion of “strong cut-off” (which takes into account the
fact that a production can have several different histories), and we have shown
how a finite complete prefix of the unfolding can be used to verify interesting
properties of the graphs reachable in the gts.

4.1 Rewriting up to Isolated Nodes

In the work on verification of graph transformation systems summarized in this
and in the next section, we consider only systems consisting of node-preserving
productions, as introduced in Definition 3, and rewriting up to isolated nodes
(graphs which are isomorphic after deleting all isolated nodes are considered
indistinguishable). As far as the expressive power is concerned, this is a mild
restriction, since the deletion of a node can usually be modelled by leaving it
isolated: Conditions (ii) and (iii) of Definition 3 guarantee that isolated nodes do



26 P. Baldan, A. Corradini, and B. König

not take part to the rewriting. Also, this is consistent with the fact that the logic
we shall use for verification purposes (see Definition 22) is not able to distinguish
graphs which are isomorphic up to isolated nodes.

In the rest of the paper, we will assume that all productions are node pre-
serving. Moreover, given any graph G and any subset of edges X ⊆ EG, we
denote by graph(X) the smallest subgraph of G having X as set of edges, and
we say that G and G′ are isomorphic up to isolated nodes, denoted G

...	G′, if
graph(EG) 	 graph(EG′). Finally, for a fixed n ∈ N, we say that a gts G is
n-bounded if for each graph H reachable in G there is an n-injective graph H ′

such that H ′
...	 H , and a gts is bounded or finite state if it is n-bounded for

some n ∈ N.

4.2 Finite Complete Prefix of Bounded gtss

A history of a production in a computation is the set of all the events which
must precede its application. Due to the presence of asymmetric conflicts, a
production q does not have a unique history in general, because depending on
the specific computation we consider, some of the productions in asymmetric
conflict with q might have been applied or not before q.

Definition 17 (history). Let O be an occurrence grammar, let C ∈ Conf (O)
be a configuration and let q ∈ C. The history of q in C is the set of events
C[[q]] = {q′ ∈ C : q′ ↗∗C q}, where ↗C is the restriction of ↗ to C. We denote
by Hist(q) the set of histories of q, i.e., Hist(q) = {C[[q]] : C ∈ Conf (O)}.

Now, let G = 〈T, Gs, P, π〉 denote a gts, fixed throughout the section, and let
Us(G) = 〈T ′, P ′, π′〉 be its unfolding with ϕ : Us(G) → G the folding morphism, as
in Definition 15. In order to identify a finite and complete prefix of the unfolding
of a bounded gts, the idea is to avoid useless productions in the unfolding, i.e.,
productions which do not contribute to generating new graphs. The definition of
“cut-off event” introduced by McMillan for Petri nets in order to formalize such
a notion has to be adapted to this context since, as explained above, for graph
grammars a production may have different histories.

Definition 18 (cut-off). A production q ∈ P ′ of the unfolding Us(G) is a cut-
off if there exists q′ ∈ P ′ such that ϕT (gr(�q�)) ...	ϕT (gr(�q′�)) and |�q′�| < |�q�|.

A production q is a strong cut-off if for all Cq ∈ Hist(q) there exist q′ ∈ P ′

and Cq′ ∈ Hist(q′) such that ϕT (gr (Cq))
...	 ϕT (gr (Cq′ )) and |Cq′ | < |Cq|. The

truncation of G is the greatest prefix T (G) of Us(G) not including strong cut-offs.

Theorem 19 (completeness and finiteness of the truncation). The trun-
cation T (G) is a complete prefix of the unfolding, i.e., for any reachable graph
G of G there is a configuration C in Conf (T (G)) such that ϕT (gr (C))

...	G. Fur-
thermore, if G is bounded then the truncation T (G) is finite.

Unfortunately, neither the statement of the above theorem nor its proof (see
Appendix B of the full version of [5]) suggest a way to modify the unfolding
construction of Definition 15 in order to obtain the truncation of a bounded
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gts: this is because the notion of strong cut-off refers to the set of histories
of a production, that in general could be infinite. Only recently the authors
proposed an algorithm (see [6]) which solves a similar problem in the simpler
case of contextual Petri nets: we are confident that this algorithm can be adapted
to gtss, but space constraints do not allow us to elaborate on that here.

Instead, a class of gtss can be identified for which an obvious adaptation of the
unfolding construction does produce a finite complete prefix. It is characterized
by a property called “read-persistence”, since it appears as the graph grammar
theoretical version of the notion introduced for contextual nets in [32].

Definition 20 (read-persistence). An occurrence grammar O = 〈T, P, π〉 is
called read-persistent if for any q1, q2 ∈ P , if q1 ↗ q2 then either q1 is a cause
of q2, or q1 and q2 are in conflict, i.e., they cannot fire in the same derivation.
A gts G is called read-persistent if its unfolding U(G) is read-persistent.

An adaptation of the algorithm originally proposed in [25] for ordinary nets and
extended in [32] to read-persistent contextual nets, works for read-persistent
gtss as well, because in this case every production has a single history, and thus
the notions of cut-off and of strong cut-off of Definition 18 coincide. Roughly,
for such gtss a complete finite prefix can be obtained by slightly modifying the
inductive step of the construction of Definition 15 as follows: the production
occurrences in the set M [n] have to be handled in increasing order according
to the size of the corresponding history, and a production occurrence has to be
added to the unfolding only if it is not a cut-off in the prefix computed so-far.

An obvious class of read-persistent systems consists of those gtss where any
edge preserved by productions is never consumed. For instance, the gts CP in
our running example is read-persistent, since CM , the only edge preserved by
productions, is never consumed. Its truncation is the grammar T (CP) depicted in
Fig. 2. Denote by TT its type graph. Note that applying the production [release]
to any subgraph of TT matching its left-hand side would result in a cut-off: this
is the reason why T (CP) does not include any instance of production [release].
The start graph of the truncation is isomorphic to the start graph of gts CP
and it is mapped injectively to the graph of types TT in the obvious way.

4.3 Checking Properties of Reachable Graphs

Given a finite state gts G, a complete prefix can be used to check whether
there exists at least one reachable graph satisfying a certain property F , or if a
property F is an “invariant” of G, i.e., it is satisfied by all reachable graphs. The
graph properties of interest will be expressed as formulae of a quite expressive
logic called L2 (introduced below), whose induced logical equivalence on finite
graphs is “isomorphism up to isolated nodes”. That is, two finite graphs G and
G′ satisfy exactly the same formulae of L2 if and only if G

...	G′.
Now, the usefulness of the truncation (or of any other finite complete pre-

fix) resides in the fact that since for each graph G reachable in G there is a G′

reachable in T (G) such that ϕT (G′)
...	G, it is sufficient to consider the graphs
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Fig. 2. The truncation T (CP) of the gts in Fig. 1

reachable in T (G), retyped over T via ϕT (·). But we know that T (G) is an occur-
rence grammar, and thus the reachable graphs can be identified with subgraphs
of its type graph, which in turn are uniquely identified by their sets of edges,
because we rewrite up to isolated nodes.

Therefore, we can verify if F holds for all (some) reachable graphs by checking
that ϕT (graph(m)) |= F for all (some) sets of edges m reachable in T (G). This
fact can be formalized in a convenient way by introducing a (safe) Petri net
“underlying” the truncation, and seeing a set of edges of T (G) as a marking of
such net. Furthermore, since this net is fixed and finite, it is possible to translate
every formula F ∈ L2 into a propositional formula over markings M [F ] such
that, for any reachable marking m,

ϕT (graph(m)) |= F iff m |= M [F ].

In this way the original problem is reduced to a verification problem of a formula
over a Petri net, for which existing tools could be used.

Given an occurrence grammar O, the underlying Petri net is an occurrence
contextual net (i.e., a Petri net with read arcs, see, e.g., [8,32]).

Definition 21 (Petri net underlying an occurrence grammar). The con-
textual Petri net underlying an occurrence grammar O = 〈T ′, P ′, π′〉, denoted
by Net(O), is the safe Petri net having the set of edges ET ′ as places and a
transition for every production q ∈ P ′, with pre-set •q ∩ ET ′ , post-set q• ∩ ET ′

and context q ∩ ET ′ .

For instance, the Petri net Net(T (CP)) underlying the truncation of CP (see
Fig. 2) is depicted in Fig. 3. Read arcs are represented as undirected lines.

Next we define the monadic second-order logic L2 used for specifying proper-
ties of graphs typed over a fixed graph T . Quantification is allowed over edges,
but not over nodes (as in [14]).
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Fig. 3. The Petri net underlying the truncation T (CP) in Fig. 2

Definition 22 (graph logic). Let X1 = {x, y, . . .} be a set of (first-order) edge
variables and let X2 = {X, Y, . . .} be a set of (second-order) variables represent-
ing edge sets. The set of graph formulae of the logic L2 is defined as follows,
where � ∈ ET , i, j ∈ N:

F ::= x = y | ci(x) = cj(y) | type(x) = � | x ∈ X (Predicates)
F ∨ F | ¬F | ∃x.F | ∃X.F (Connectives / Quantifiers)

We denote by free(F ) and Free(F ) the sets of first-order and second-order vari-
ables, respectively, occurring free in F , defined in the obvious way.

Given a T -typed graph G, a formula F in L2, and two valuations σ : free(F ) →
E|G| and Σ : Free(F ) → P(E|G|), the satisfaction relation G |=σ,Σ F is defined
inductively in the usual way; for instance G |=σ,Σ x = y iff σ(x) = σ(y), G |=σ,Σ

type(x) = � iff tG(σ(x)) = �, and G |=σ,Σ x ∈ X iff σ(x) ∈ Σ(X).
Interesting graph properties can be expressed in L2, such as the existence

or adjacency of edges with specific typing, and the absence of certain paths
or of certain cycles. Such properties may be used to represent in the graph
transformation model relevant properties of the system at hand, such as security
properties or deadlock-freedom.

Recall that a marking of a safe net is simply a subset of its places. The syntax
of the formulae over markings is

Q ::= e | ¬Q | Q ∧ Q | Q ∨ Q | true | false,

where e ∈ ET ′ . These formulae are interpreted over markings of Net(T (G)):
m |= e if e ∈ m, and logical connectives are treated as usual.

As mentioned above, given a gts G and the truncation T (G) (or any other
a finite complete prefix), any formula F ∈ L2 can be effectively translated to
a marking formula M [F ] such that G satisfies F iff the Petri net Net(T (G))
underlying the prefix satisfies M [F ]. We omit the details of the translation,
which can be found in [5], and we focus on the running example CP. Suppose,
e.g., that we want to check that all graphs reachable in our sample gts CP satisfy
Φ, where Φ is a L2 formula specifying that every engaged process is connected
through connection c2 to exactly one other engaged process, i.e.,

Φ ≡ ∀x.(type(x) = PE ⇒ ∃y.(x �= y ∧ type(y) = PE ∧ c2(x) = c2(y)
∧ ∀z.(type(z) = PE ∧ x �= z ∧ c2(x) = c2(z) ⇒ y = z))).
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The encoding procedure leads to the formula Q = M [Φ]

Q ≡ (5 : PE ⇐⇒ 6: PE ) ∧ (7 : PE ⇐⇒ 8: PE ) ∧ (9 : PE ⇐⇒ 10: PE )

which has to be checked for all reachable markings of the net of Fig. 3. An
efficient algorithm for checking if a marking formula is satisfied by at least one
reachable marking of an (occurrence) net Net(T (G)) is presented in [5]: it exploits
the mutual relationships between items expressed by the causality, (asymmetric)
conflict and concurrency relations.

5 Verification of Infinite State gtss

If a gts is not finite state, obviously no finite prefix of the unfolding can be
complete in the sense of Theorem 19. In this section we describe a framework,
developed in [4,10,11], where behavioural properties of systems described as
(possibly infinite state) gtss can be specified and verified. Here we consider
rewriting up to isolated nodes (see Section 4.1), and further we require matches
to be injective on edges.

Following the guidelines of the verification technique presented in the previous
section, the framework is based on finite approximations of the unfolding of a
given gts which have an underlying Petri net structure. On these structures,
formulae of a suitable temporal logic interpreted over derivations of a gts can
be verified, by first translating them to a simpler logic describing computations
of a fixed Petri net.

5.1 Approximating the Behaviour of gtss

A basic ingredient of our verification framework is a technique, proposed in [4,10],
for approximating the behaviour of gtss by means of finite Petri net-like struc-
tures. More precisely, an approximated unfolding construction allows to generate
from a given gts G (which can be infinite state) suitable finite structures, called
coverings, which provide (over-)approximations of the behaviour of G.

The coverings of a gts G are Petri graphs over G, i.e., (contextual) Petri nets
equipped with an additional graphical structure where the places play the role
of edges, while the transitions represent applications of the productions of G.

In the following, given a set A we denote by A⊕ the free commutative monoid
generated by A, whose elements are finite multisets of elements of A. If f : A → B
is a function, then we denote by f⊕ : A⊕ → B⊕ its extension to multisets.

Definition 23 (Petri graph). Let G = 〈T, G0, P, π〉 be a gts. A Petri graph
K (over G) is a tuple 〈G, N, m0〉 where G is a T -typed graph and

– N = 〈EG, TN , •( ), ( )•, ( ), pN 〉 is a place/transition Petri net, where the
set of places EG is the set of edges of G, TN is the set of transitions,
•( ), ( )•, ( ) : TN → E⊕G specify the pre-set, post-set and context of each tran-
sition and pN : TN → P is the labelling function, mapping each transition to
a corresponding production;
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– m0 ∈ E⊕G is the initial marking of the Petri graph, satisfying m0 = ι⊕(EG0)
for a suitable graph morphism ι : G0 → G (i.e., m0 must properly correspond
to the initial state of G).

We will write m [q〉m′ if a transition labelled by q ∈ P is enabled at marking m
and its firing produces m′. A marking is called reachable (coverable) in K if it
is reachable (coverable) from the initial marking in the Petri net underlying K.

As an example, let Us(G) = 〈T ′, P ′, π′〉 be the unfolding of a gts G =
〈T, Gs, P, π〉, and let 〈ϕT : T ′ → T, ϕP : P ′ → P 〉 be the folding morphism,
as presented in Definition 15. Then it is possible to see the unfolding as a Petri
graph 〈G, N, m0〉 for G: the net component N is as for Definition 21, the labeling
of transitions is given by ϕP , G is the T -typed graph 〈T ′, ϕT 〉, and m0 is the set
of minimal edges, with respect to causality, of G.

The coverings of a gts G can approximate its behaviour at different levels of
accuracy. For each k ∈ N, the k-covering of G, denoted Ck(G), over-approximates
the behaviour of G in the sense that every derivation sequence of G is mapped to
a valid firing sequence of (the Petri net component of) Ck(G), and every graph
reachable from the start graph of G can be mapped homomorphically to (the
graphical component of) Ck(G), and its image is reachable in the Petri graph.
Furthermore, this over-approximation is exact up to causal depth k, in the sense
that each graph reachable in G in at most k derivation steps can be mapped
injectively to Ck(G) (see Section 5.2).

The algorithm for the construction of the k-covering of a gts G works induc-
tively like the unfolding construction, but the classical unfolding steps, where
the application of a production to a given match is recorded by adding to the
type graph the newly generated items and to the set of productions the new
production occurrence, are interleaved with suitably defined folding steps, which
merge in the graphical part of the current Petri graph two occurrences of the
left-hand side of a production, if one causally depends on the other. The ter-
mination of the algorithm is ensured by giving higher priority to folding steps,
and the exactness of the approximation up to causal depth k by forbidding the
application of folding steps to items of smaller depth.

We define the depth of a transition t (an element of N ∪ {∞}) to be the
length of the longest sequence t0 < t1 < . . . < tn < t. The depth of an edge is
the maximum among the depths of transitions which contain the edge in their
post-set. The k-covering Ck(G) of a gts G = 〈T, G0, P, π〉 is produced by the
last step of the following (terminating) algorithm which generates a sequence
Ki = 〈Gi, Ni, mi〉 of Petri graphs over G.

1. K0 = 〈G0, N0, m0〉, where the net N0 contains no transitions and m0 = EG0 .
2. As long as one of the following steps is applicable, transform Ki into Ki+1,

giving precedence to folding steps.

Unfolding. Find a production q ∈ P with π(q) : Lq ⇀ Rq and a match
n : Lq → Gi such that n⊕(ELq) is coverable in Ki. Then extend Ki by
gluing Rq to Gi (as described in Definition 14) and add a new transition,
labelled by q, representing the application of production q.
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Folding. Find a production q ∈ P with π(q) : Lq ⇀ Rq and two matches
n, n′ : Lq → Gi, at depth greater than or equal to k, such that
– n⊕(EL) and n′⊕(EL) are coverable in Ni and
– the first match has been unfolded with the introduction of a transition

t and the second match causally depends on t.
Then merge the two matches, by setting n(e) ≡ n′(e) for each e ∈ ELq , and
factoring all components of Ki through the equivalence relation induced by
≡ on edges, nodes and transitions.

For example, if we extend the gts CP of Example 5 with production [fork]
(see Fig. 4) that models the forking of a non-engaged process, we obtain an
infinite state system: in fact graphs with an unbounded number of processes
are reachable. If we compute the coarsest approximation, i.e., the 0-covering, we
obtain the Petri graph shown in Fig. 4 (edge and node identities are omitted):
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:w
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Fig. 4. Additional rule [fork] (left) and Petri graph over-approximating the gts (right)

Several structures have been merged, for instance all engaged and all non-
engaged processes. This happens because all three initial processes will be the
cause of another future process, causing the fusion of all of them.

Despite the fact that the graph underlying the Petri graph is not very different
from the type graph of the gts, there are still some interesting properties of the
system that can be proved by exploiting the 0-covering, using the techniques
described in the next section:

– There is always exactly one communication manager.
– There will always be at least three processes (engaged or non-engaged).
– The number of engaged processes is always even.
– No engaged process is ever connected to a non-engaged process.

Due to the simplicity of the running example, these properties could easily be
proved also as invariants of the transformation rules. For more complex examples
we refer the reader to [4,2].

5.2 Verifying Behavioural Properties of gtss

As mentioned above, the k-covering Ck(G) over-approximates the behaviour of
the original gts G. In order to formalize this fact, we will first generalize the
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notion of a subgraph generated by a set of edges (introduced at the end of
Section 4.1) to a graph generated by a marking: Let 〈G, N, m0〉 be a Petri graph
and let m ∈ E⊕G be a marking of N . The graph generated by m, denoted by
graph(m), is the T -typed graph H without isolated nodes (which is unique up
to isomorphism) such that there exists a T -typed morphism ψ : H → G injective
on nodes with ψ⊕(EH) = m.

Proposition 24 (simulation). Let G be the set of graphs reachable from G0
in G and let M be the set of reachable markings in Ck(G) = 〈G, N, m0〉. Then
there exists a simulation S ⊆ G × M with the following properties:

– (G0, m0) ∈ S;
– whenever (G′, m′) ∈ S and G′ ⇒q G′′, then there exists a marking m′′ with

m′ [q〉m′′ and (G′′, m′′) ∈ S;
– for every (G′, m′) ∈ S there exists an edge-bijective graph morphism

ϕ : G′ → graph(m′).

The simulation relation just described, whose existence can be proved fairly
easily by construction, allows one to exploit the finite k-covering Ck(G) to verify
certain properties of the reachable graphs of gts G. In fact, if a given property
over graphs F ∈ L2 is reflected by edge-bijective graph morphisms (i.e., if f :
G → G′ is edge-bijective and G′ |= F then G |= F ), then if F is satisfied by
graph graph(m) for all markings m reachable in Ck(G), it is also satisfied by all
graphs reachable in G.

A couple of considerations are in order here. First, unfortunately it is undecid-
able if a formula of L2 is reflected by edge-bijective morphisms, but a syntactic,
sufficient criterion based on a simple type system is presented in [11]. Second,
the Petri net underlying the k-covering is finite, but in general it is not finite
state. Nevertheless, several verification techniques and tools have been developed
for the analysis of nets, and thus the possibility of reducing the verification of
a property from reachable graphs of a gts to reachable markings of a net is of
high pragmatic value.

To this aim, following the guidelines we have described in Section 4.3 for fi-
nite state gtss, first we introduced multiset formulae which are evaluated on
markings of the k-coverings: their syntax is obtained by extending the one pre-
sented in Section 4.3 with the atomic formula #e ≤ c for e ∈ EG and c ∈ N,
meaning the number of tokens in e is smaller than or equal to c. Next we
have provided an encoding M2 of L2-formulae into multiset formulae, such that
graph(m) |= F ⇐⇒ m |= M2[F ] for every reachable marking of Ck(G). This
translation is a kind of quantifier elimination procedure, which is possible be-
cause the graph underlying Ck(G) is finite.

Finally, we enriched the verification framework with a temporal logic called
μL2, which is a propositional μ-calculus where atomic propositions are formulae
of L2. The formulae of μL2 are interpreted over a graph transition system, i.e., a
transition system where the states are graphs, and their syntax is the following:

M ::= F | X | �M | �M | ¬M | M1 ∨ M2 | M1 ∧ M2 | μX.M | νX.M
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where F ranges over closed formulae in L2 and X ∈ X are proposition variables.
Intuitively, an atomic proposition F ∈ L2 holds in any state (graph) satisfying F
according to the discussion after Definition 22. A formula �M / �M holds in a
state if some / any single step leads to a state where M holds. The connectives
¬,∨, ∧ are interpreted in the usual way, and the formulae μX.M and νX.M
represent the least and greatest fixed point over X , respectively.

Now, for suitable fragments of logic μL2, e.g., the fragment �μL2 without
negation and the “possibility operator” �, by Proposition 24 and exploiting
general results in [24], we can translate a temporal formula M over G where
the atomic propositions are reflected by edge-bijective morphisms to a temporal
formula M2[M ] over markings (using for atomic propositions the encoding men-
tioned above), ensuring that if Ck(G) |= M2[M ] then G |= M , i.e., M is valid
for the original gts. We conclude by recalling that temporal state-based logics
over Petri nets, i.e., logics where basic predicates have the form #s ≤ c, are not
decidable in general, but important fragments of such logics are [20].

6 Conclusions

We presented an overview of the work on the unfolding semantics of gtss, dis-
cussing its role for the development of a functorial concurrent semantics for gtss
and its possible applications to the verification of (infinite and finite state) sys-
tems modelled as gtss. We used the spo approach since due to the absence of
the dangling condition it provides us with a more elegant unfolding semantics,
but a large part of the theory can be equally developed for the dpo approach.
For the approaches to verification, which deal with node-preserving grammars,
the choice between spo and dpo is immaterial.

The framework can appear fairly abstract and theoretical in nature. However,
a prototype tool called Augur [21] has been implemented for computing the
k-covering of a given graph transformation system. The current implementation
is restricted to rules with discrete contexts. The tool can be downloaded at
http://www.ti.inf.uni-due.de/research/augur 1/. The input and output
of Augur is in GXL and GTXL, an XML standard for the exchange of graphs
and graph transformation systems. Suitable converters have been added in order
to visualize rules and Petri graphs and to extract the Petri net component of a
Petri graph, which can then be analyzed with standard algorithms for nets.

Concerning the verification of finite state systems, the approach based on the
construction of a finite complete prefix of the unfolding currently only applies
to a special class of gtss (read persistent gtss). The problem of generalising
the technique to the full class of gtss is still open. An algorithm solving a
similar problem in the simpler case of contextual Petri nets has been proposed
recently [6] and we are confident that this can be adapted to gtss.

A very stimulating direction of further research is the extension of the work
on unfolding to the setting of rewriting systems over adhesive categories. Adhe-
sive categories [22] have been recently introduced as an elegant and extremely
general framework where the algebraic approaches to rewriting can be developed,
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encompassing rewriting on (several brands of) graphs and more general graphical
structures like bigraphs or uml models. An unfolding theory for adhesive rewrit-
ing systems would thus apply uniformly to all these structures. Some promising
steps have been taken in [3], which develops a concurrent semantics for adhesive
rewriting systems based on deterministic processes.
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Abstract. We illustrate two ways to address the specification, modelling
and analysis of dynamic software architectures using: i) ordinary typed
graph transformation techniques implemented in Alloy; ii) a process al-
gebraic presentation of graph transformation implemented in Maude. The
two approaches are compared by showing how different aspects can be
tackled, including representation issues, modelling phases, property spec-
ification and analysis.

1 Introduction

It is about 30 years ago when Ugo Montanari started to promote the use of graphs
and graph grammars as a multifaceted, unifying framework for the specification,
modelling and analysis of concurrent and distributed systems [12,16,17].

Since then, the way in which software artifacts are conceived and their en-
gineering practices have evolved, but Ugo Montanari has always been able to
extend the foundations of the graph-based approach along innovative ideas so
to adapt it to emergent computational paradigms and software development
techniques.

In particular, Ugo Montanari is collaborating within the EU funded project
Sensoria [38] to the development of a novel, comprehensive approach to the en-
gineering of software systems for service-oriented computing. Within Sensoria,
many efforts are devoted to the proposal and validation of sound architectural
design [14,39] principles, that focus on architectural styles governing the overall
structure of software systems in terms of components, their logical interrelation-
ship and their spatial distribution. Architectural styles establish the rationale
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for certain classes of architectures, e.g. patterns that should be fulfilled also in
the presence of reconfigurations and that can even trigger and drive efficient
reconfigurations.

There are many typical questions that arise during the design and analysis of
software architectures. How do we represent architectures? How do we formalise
architectural styles? How do we construct style conformant architectures? How
do we model software architecture reconfigurations? How do we ensure style
consistency? How do we express and verify architectural properties?

In this paper we compare two graph-based approaches to the specification
and modelling of architectural designs. Both approaches are aimed to validate
prototypical applications before their realisation and deployment.

The first approach is inspired by the tradition of algebraic approaches to graph
transformation [19], an area of research in which Ugo Montanari has played a rel-
evant role. The approach follows [5] and models dynamic software architectures
using typed graph grammars (TGG).

The second approach is a recent proposal called Architectural Design Rewrit-
ing (ADR) [6,7,8]. ADR has been conceived by combining and reconciling appar-
ently different formalisms, very much in the spirit that pervade many other Ugo
Montanari’s contributions. In particular, ADR takes inspiration of research lines
in which Ugo Montanari has been deeply involved like graph-grammar based
approaches to architectural styles [26], graphical models of process algebras [21]
and rewriting formalisms [23].

We show the feasibility and effectiveness of TGG and ADR by implementing
them using high-performant, state-of-the art formal tools. The implementation of
TGG is based on Alloy [27] a light-weight approach to the modelling and analysis
of software models that is raising the interest of leading researchers in the area
of software architectures (see e.g. [32]). The implementation of ADR is based
on Maude [13], a high-performance tool implementing Rewriting Logic [36]. We
refer to the two implementations as TGGA and ADRM .

The main aspects on which we focus are concerned with:

Architectural Representation, i.e. convenient ways to represent a software ar-
chitecture, to build it, to browse it;

Architectural Styles , i.e. convenient ways to constrain architectures under con-
sideration to satisfy certain requirements;

Architectural Properties , i.e. convenient logical formalisms to express relevant
architectural properties;

Architectural Analysis , i.e. efficient techniques and tools for verification.

We show how to tackle these aspects with both approaches. The outcome of
our experience suggests that TGG is better suited for an early phase of the de-
velopment, where the architectural constraints imposed by the style are defined
in an iterative process of refinement of the model and style, assisted by model-
finding techniques. Instead, ADR is more convenient for a more advanced phase,
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Fig. 1. The road assistance scenario

where the style is well established and structured, thus enabling flexible and
powerful reconfigurations and efficient analysis via model checking.

This paper is structured as follows. Section 2 presents our running example.
Section 3 offers a brief background on our design and analysis setting. Section 4
and 5 describe TGGA and ADRM , respectively. Section 6 compares both ap-
proaches with a special focus on analysis issues. Section 7 gives some pointers
to related works. Section 8 concludes the paper and suggests future research
avenues. Along with the paper we present flashes of code. For a complete vision
we refer to [6,18].

2 Running Example: Road Assistance Scenario

We use as running example a simple bike scenario (see [8]), an ecological variant
of the automotive case study of Sensoria. A road assistance service platform
is supported by a wireless network of ad hoc stations that are situated along
a road. Bikes are equipped with electronic devices that can access services as
they move along the road, e.g. to request assistance in case of breakdowns. The
graph in Figure 1 depicts a simple architecture of such a system. Each bike (®)
is connected to the service access point (◦) of a station (H) which is possibly
shared with other bikes. A station and its accessing bikes form a cell. Stations,
in addition to the service access point, use two other communication points that
we call chaining point (•). Such points are used to link cells in larger cell-chains.
Bikes can move away from the range of the station of their current cell and enter
the range of another cell. A handover protocol supports the migration of bikes to
adjacent cells as in standard cellular networks. Stations can shut down, in which
case their orphan bikes call for a repairing reconfiguration. We shall consider two
shutting down situations: one in which the adjacent stations are able to bypass
the connection and adopt all orphan bikes and another in which the bypassing
is not possible and orphan bikes switch from their normal mode of operation to
a cell mode (E®E), in which they become standalone stations.

The style of our example is the set of all architectures made of a connected
chain of stations (or bikes in station mode) to which any bike is attached. This
is a simple but very comprehensive example since it mixes features of well-
known architectural styles. Indeed, the style underlying bikes and stations is
basically a client-server architecture, while chains of cells resemble pipes-and-
filters architectures.
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3 Design and Analysis of Dynamic Software Architectures

The architecture of a software system basically consists of the structure of com-
ponents and the way they are interconnected. Components are high-level com-
putational and data entities that can range from a distributed application to
a single thread, from databases to a simple data container. An architecture is
dynamic if it can change during run-time. Typical changes, which are called re-
configurations, include components joining and leaving the system or changing
their connections and are usually required for load balancing, fault-recovery and
redimensioning software systems.

3.1 The Design of Software Architectures

The first aspect to consider in the design of a software architecture is the
formalism used to describe it. Various formalisms exist ranging from the more
theoretical graph-based approaches to implementation-oriented architectural
programming languages (APLs) such as Java/A [28], passing through architec-
tural description languages (ADLs) [35].

When designing an architecture, it is desirable to consider the concept of an
architectural style [39], i.e. some set of rules or patterns indicating which compo-
nents can be part of the architecture and how they can be legally interconnected.
An architectural style can also be seen as a (typically infinite) set of valid ar-
chitectures. Typical architectural styles include client-server, pipes-and-filters,
layered, multi-tier and peer-to-peer.

There are basically two approaches to the definition of an architectural style.
The first approach consists in defining a grammar that allows to produce all the
instances of the style. This is the approach first proposed in [37] and subsequently
followed in [26], a piece of work which constitutes the main inspiration of ADR.
The second approach defines a set of architectural constraints that forbid or
require some structural properties. Various approaches, for instance [32], use the
Alloy language [27] to specify such constraints.

In this paper we adopt graphs as a suitable formalism to describe software ar-
chitectures. The use of graphs as both the specification and the execution model
combines the user-friendly visual representation with the formal theory for graph
rewriting. One of the advantages in the combined use relies on the fact that archi-
tectural information can be encoded itself as part of the graphs, allowing for the
uniform modelling of dynamic aspects such as computation, discovery, binding
and reconfiguration, as graph transformations. Particularly, each architecture is
represented by a hypergraph where components (resp. connectors) are modelled
using hyperedges and their ports (resp. roles) by the outgoing tentacles. Compo-
nents and connectors are attached together connecting the respective tentacles
to the same node. Through the paper, we shall omit the prefix ‘hyper’ for sim-
plicity. Ordinary directed graphs are a particular instance of hypergraph where
each edge has two tentacles.



Graph-Based Design and Analysis of Dynamic Software Architectures 41

3.2 The Analysis of Architectural Properties

We consider mechanisms to express and verify the properties that we expect to
be satisfied by software architectures.

Structural properties. Structural properties regard the topology of the architec-
ture, i.e. the way components are interconnected. Note that the style definition
can be considered as a special structural property. In the running example, we
could consider properties regarding the number of bikes present in a cell or the
effective existence of a path from the leftmost cell to the rightmost one.

Behavioural properties. Behavioural properties regard the dynamism of the ar-
chitecture, i.e. the state space given by an initial architecture and its possible
reconfigurations. In the running example, such properties might be the absence
of deadlocks or the fact that a migration is always possible.

Among the class of properties explained above we shall focus and emphasise
those that regard architectural styles. For instance, style conformance is a struc-
tural property that requires an architecture to be an instance of a style while
style preservation requires all reconfigurations to preserve the style, i.e. that any
reconfiguration of a style-conformant architecture results in a style-conformant
architecture.

We shall consider the following analysis techniques:

Model finding. We consider the problem of analysing the state space of all pos-
sible architectures. Such analysis can serve as a computer-aided design process
or as a debugging method to find out inconsistencies in the model or in its
specification

Model checking. We consider the problem of verifying that a given architecture
satisfies some structural or behavioural property expressed in a suitable logic.

Style matching. We consider the problem of determining whether an architecture
is conformant to a certain style or whether a reconfiguration is style preserving.

4 Typed Graph Grammars with Alloy

The approach described in this section follows what discussed in [5] and it is
based on the modelling of dynamic software architectures using typed graph
grammars. The tool that supports this approach is Alloy [27]. Alloy provides
a description language to represent software models, based on signatures and
relations, which is suited for a set-theoretic presentation of graphs. Alloy also
provides a logic, based on an extension of first-order logic with relational oper-
ators, to represent properties or constraints of models. We have used this logic
to implement concepts like architectural styles, graph transformation rules and
architectural properties. The Alloy Analyzer translates the model and the logical
predicates into a (usually large) Boolean formula, uses efficient SAT solvers to
decide satisfiability and provides a counterexample in negative case. We will show
how to use these capabilities to ensure style-consistency, perform model-finding
and validate architectural properties.
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4.1 Designing Software Architectures

Architectures. We model software architectures using typed graphs.The three
basic concepts in the implementation of graphs are nodes, labels and edges that
we represent as Alloy signatures:

abstract sig Node{}
abstract sig Label{}
abstract sig Edge
{
conn: Label->lone Node

}

According to the above definition, nodes and labels are atomic concepts, but
edges have a relation (field) conn that maps each label to nodes. The multiplicity
keyword lone in its declaration indicates that each label is mapped to at most
one node. The previous signatures are marked abstract, which means that
they have no element except those belonging to its signatures. Indeed we use
subsignatures of Node, Edge and Label to represent concrete graph elements.

The signature Graph is used to define a graph as a structure made of nodes,
edges and labels.

abstract sig Graph
{
he: set Edge,
n: set Node,
l: set Label

}

In order to forbid ill-formed graphs we have defined some constraints, requir-
ing for instance that the edges connect to nodes in the same graph. In Alloy
the constraints of a model are organised into paragraphs. Constraints that are
assumed always to hold are recorded as facts. In the following code we present
some facts that we have defined to ensure a clear and efficient presentation of
graphs, like requiring different graphs not to share items.

// two Edges must have different set of labels (ports)
all e1,e2:Edge | e1!=e2 => (first[e1.conn]&first[e2.conn]) = none

// two Graphs have different node sets
all g1,g2:Graph | g1!=g2 => #(g1.n & g2.n)=0

// two Graphs have different edge sets
all g1,g2:Graph | g1!=g2 => #(g1.he & g2.he)=0

// two Graphs have different label sets
all g1,g2:Graph | g1!=g2 => #(g1.l & g2.l)=0

Architectural Styles. We represent an architectural style as a set of basic elements
(modelled by a type graph plus a set of invariant constraints indicating how these
elements can be legally connected). We define an Alloy module called STYLE that
contains all these elements. It is subdivided in two parts, the first part defines
basic elements of the style and the second one defines useful constraints.

Below we see the definition of each basic element using singleton extensions
of Node, Label and Edge signatures. Note that some of them include facts in
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Fig. 2. Type Graph T of the running example

their body. For instance, a Bike component must have only one connection
using an Access label to the Access Point node. These definitions are enough
to represent the type graph.

// Bike-Style basic elements

abstract sig Access_Point, Chain_Point extends Node{}
abstract sig Access extends Label{}
abstract sig Left extends Label{}
abstract sig Right extends Label{}
abstract sig Bike extends Edge{}
{
#conn=1 and
conn.univ in Access and // Projection of first column in conn
univ.conn in Access_Point // Projection of second column in conn

}

abstract sig Bikestation extends Edge{}
{
#conn=2 and
conn.univ in Left+Right and
univ.conn in Chain_Point

}

abstract sig Station extends Edge{}
{
#conn=3 and
conn.univ in Left+Right+Access and
univ.conn in Chain_Point+Access_Point

}

The graphical representation in form of a type graph is depicted in Figure 2.
Basically, a type graph offers a suitable way to type the items of a graph in a
consistent manner. The idea is that the typing of a graph G over a type graph
T is modelled by a total graph morphism from G to T .

The code below presents an excerpt of the additional facts needed to define
our architectural style.

fact Style_constraints
{
...
// if two stations are connected, they share one unique node
all disj s1,s2: Station |
attached[s1,s2]=>#(last[s1.conn]&last[s2.conn]) = 1
// each Chain_Point node has at most two and at least one edge connected
all cp: Chain_Point | #(conn.cp)>0 and #(conn.cp)<=2
...

}

In order get an instance of the style, generated from the previous code, we
use a dummy predicate instance with empty parameters and body. A predicate
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Fig. 3. SPO-based graph rewriting diagram

in Alloy is a constraint used to characterise some models of interest. Command
run is used to find an instance of a predicate. For instance, we ask for a graph
to be generated with a scope of at most two edges, one node and two labels as
follows:

run instance for 1 Graph, 3 Station, 2 Bikestation, 4 Bike, ...

When we run the code above the Alloy Analyzer generates an instance and
we can ask for a different one. One such instance is depicted in Figure 1 with
our graphical notation.

Dynamism. The reconfiguration of a software architecture is described by a set of
rewriting productions that state the possible ways in which an architecture may
change. Each rule is defined as a partial, injective graph morphism p : L → R,
where L and R are graphs, called the left- and right-hand side. Given a graph G
and a production p, a rewriting of G using p is realised using a single-pushout
graph transformation approach [19] (see Fig. 3). Operationally, the rewrite is
applied by finding a suitable match m (i.e. an occurrence of L in G) and the
result is the graph obtained from G by removing that instance of L and releasing
a fresh instance of R. Moreover, there can be items shared by L and R that are
required to trigger the rewrite, but are just preserved by the transformation
(some sort of interface, needed to properly attach the fresh copy of R to the
existing items in G).

In order to implement what introduced above in the Alloy module called TGG
we have defined various signatures and predicates that are used to execute a
reconfiguration applying the SPO-based approach. First of all we have defined
an abstract signature called Fun that will be used to define partial and total
morphisms, matchings and productions. This signature has three fields that rep-
resent nodes, edges and labels functions mapping.

abstract sig Fun
{
fN: set Node -> set Node,
fE: set Edge -> set Edge,
fL: set Label -> set Label

}

This signature can be used, for example, to define a partial morphism among
two graphs. Moreover, in order to verify if a partial morphism among two graphs
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Fig. 4. Reconfiguration rule that connects a bike to a station

exists, we have defined the isPartialMorphism predicate that takes in input
two graphs (i.e. G and H), the respective typing functions (i.e. t1 and t2) and a
mapping function (i.e. f). The predicate tries to find a partial morphism from G
to H, executing the set of constraints defined in its body.

pred isPartialMorphism [G: Graph, H: Graph, f: Fun, t1, t2: Tau]
{
...
first[f.fE] = G.he
first[f.fN] = G.n
first[f.fL] = G.l
all e1:G.he | all n1: G.n |

all l1: G.l | (l1->n1) in e1.conn =>
f.fL[l1]->f.fN[n1] in f.fE[e1].conn &&
t1.tauL[l1]=t2.tauL[f.fL[l1]]

...
}

A production is defined using the signature Production that consists of a
left- and right-hand side graphs and the morphism indicating the items being
preserved.

abstract sig Production
{
lhs: Graph,
rhs: Graph,
p: Fun

}

Using Alloy, we declare the signature of the previous production as a singleton
extension of Prod and define facts that characterise the left- and right-hand side
graphs. The rule that specifies the connection of a bike to a station is shown
in Figure 4 and it is defined by the code below (where the obvious definition of
rhs1 is omitted for simplicity).

one sig lhs1 extends Graph{}
{
he = s2
n = cp3 + cp4 + ap2
l = l2 + r2 + a2
s2.conn = l2->cp3 + r2->cp4 + a2->ap2

}

one sig rhs1 extends Graph{} { ... }
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one sig p1 extends Fun{}
{
p.fN = cp3->cp5 + cp4->cp6 + ap2->ap3
p.fE = s2->S3
p.fL = l1->l3 + r2->r3 + a2->a3

}

one sig connect_bike extends Production{}
{
lhs = lhs1, rhs = rhs1, p = p1

}

A single reconfiguration step is implemented using two distinct predicates
(i.e., rwStepPre and rwStepPost. They are used to verify conditions that must
hold in the host and target graph. The predicate rwStepPre checks the well
formedness of the production Pr and the validity of matching m1 of the left-side
of the production (i.e., Pr.lhs) in the host graph G.

pred rwStepPre[G1:Graph, Pr: Production, m1: Fun, t1:Tau, t2:Tau, t3:Tau, t4: Tau ]
{
// t1 defines types for G1, t2 defines typed for Pr.lhs
isProd[Pr,Pr.p, t2,t3]
// a production rule is applicable to a graph G1 if there is a matching of lhs into G1
isMatch[Pr.lhs,G1,M1,t2,t1]

}

rwStepPost is responsible to execute a single SPO-based rewriting approach
generating two morphisms m2:Pr.rhs → G2 and r2:G1 → G2 and the target
graph G2.

pred rwStepPost[G1:Graph, G2:Graph, Pr: Production, m1:Fun, m2:Fun, r1:Fun,
r2:Fun,t1:Tau, t2:Tau,t3:Tau,t4:Tau]

{
// m1 : L->G1
isMatch[Pr.lhs,G1,m1,t2,t1]
//m2: R->G2
isTotalTGM[Pr.rhs,G2,m2]
// r2: G1->G2
isPartialMorphism[G1,G2,r2]

}

4.2 Analysis in Alloy

Structural Properties. In the Alloy language, assertions are constraints that
should follow from the facts and must be checked. Using the Alloy Analyzer, it is
possible to validate assertions, by searching for possible (finite) counterexamples
for them, under the constraints imposed in the specification of the system. It is
hence possible to specify that a given property P is invariant under sequences of
applications of some operations. In our case this operation is the rewriting step
that from an initial graph G and a production P generated a new graph G’. A
technique useful for stating the invariance of a property P consists of specify-
ing that P holds in the initial graph, and that for every non initial graph and
rewriting operation, the following holds: P(G) and rwStep(G,G’) → P(G’).

For this objective we have defined a set of properties that each architecture,
after a rewriting step must satisfy. This set is memorised in an Alloy module
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called PROPERTIES. Structural properties are specified in Alloy defining functions
and logical predicates. For instance, we have defined a predicate to express the
property that there exists an acyclic path formed by stations that connects the
left- and right-most stations. Functions leftmost and rightmost in the code
below identify the left- and right-most stations of an architecture. In order to
check this property we use the transitive closure of relation next.

fun leftmost[g:Graph,t:Tau]:one Edge {let e={e:g.he | t.tauE[e]=S and none= e.~next}| e }

pred Property1 [G:Graph,t:Tau]{ rightmost[G,t] in leftmost[G,t].^next }

Behavioural properties. Behavioural properties such as style preservation are
suitably specified using DynAlloy [22], an extension of the Alloy language with
syntactic sugar to define actions as a model of state changes. An action is the
means by which the Analyzer transforms the system state after its execution.
Regular expressions over actions and predicates can then be combined to express
to express complex behavioural properties [22]. This issue is ongoing work [9].

5 Architectural Design Rewriting with Maude

The approach presented in this section is based on ADR [8], a formal frame-
work for the development and reconfiguration of software architectures based on
term-rewriting. An architectural style in ADR consists of a set of architectural
elements and operations called design productions which define the well-formed
compositions of architectures. Roughly, a term built out of such ingredients con-
stitutes the proof that a design was constructed according to the style, and the
value of the term, called design, is the constructed software architecture.

The tool support for the approach is based on Maude [13]. Maude naturally
supports most of the features of ADR and also provides a powerful set of tools
in the same framework including a model checker and a theorem prover.

5.1 Designing Software Architectures with Maude

Architectures. Software architectures and their constituents are represented uni-
formly in ADR by suitable graphs that we call designs. One difference with the
TGGA approach is that designs add an interface to the graph representing the
architecture. The interface of a design is represented by an edge. The internal
structure (called body) of a design is the architecture graph.

We have implemented various modules named GRAPH-* with the necessary
machinery to construct graphs. Designs are implemented in a functional module
called DESIGN, which includes the definition of the sort Design, a constructor
operation design and an operation to replace a hole in a design (representing an
unspecified part of the architecture) by a design whose interface is compatible
with the hole.

Below we include an excerpt of module DESIGN. First, we see the declaration
of sort Design. In a next line, the type of operation design is defined: it builds a



48 R. Bruni et al.

cell − with − station : ®®→ n bike :→ ®® bikes : ®®×®®→ ®®
n

• �������� • H�� ��

��

• •�� �� ��

◦

®®

��

◦

��
��
��

®®

◦

®
��

◦

��
��
��

®®

◦

®®



®®

��

Fig. 5. Some design productions

design from a typed graph (here implemented as graph morphisms) representing
the interface, a typed graph representing the body, a mapping relating the nodes
in the interface with those in the body, and a list of edges representing holes.
Membership equations not shown here take care of the well formedness of the
design. Last, the type of operation apply is defined: it takes two arguments of
type Design (the first intended to have a hole and the second being the design
with proper interface to be placed in the hole) and returns the Design after
the replacement. This complex operation basically implements the concept of
type-consistent hyper-edge replacement [24].

sort Design .
op design : GraphMorphism GraphMorphism Map{Node,Node} List{Edge} -> Design .
op apply : Design Design -> Design .

Architectural Styles. The principle of ADR consists in defining an architectural
style as a suitable algebra over designs. This approach can be seen as an alge-
braic recasting of context-free graph grammar-based approaches to architectural
styles [37]. So, while in TGGs a style is given by logical predicates that forbid
illegal architectures, in ADR the style is given by a generative mechanism that
allows us to construct legal architectures only.

In Maude we define an architectural style as a set of sorts (the architectural
types) which are subsorts of Design, a set of operations, called design produc-
tions, on such sorts (the legal ways of composing designs) and an interpretation
of terms as designs.

Below we show an excerpt of module BIKE-STYLE which implements the ar-
chitectural style in an abstract manner (i.e. no interpretation over designs is yet
defined). Sorts Cells and Bikes are the types of the whole system (a chain of
cells) and the type of bikes allocated in the cells, respectively. We see construc-
tors nocell and bikestation, respectively representing an empty cell and a cell
formed by one bike in station mode. Operation cell-with-stationallows to con-
struct from a collection of bikes (the inclusion of a fresh station is embedded in
the operation), while chain builds a chain of cells by concatenating two chains of
cells. Observe that one can annotate operations with axioms such as the associa-
tivity of chain or the fact that it has nocell as identity. Some of these produc-
tions are graphically represented in Fig. 5. Roughly, double boxes correspond to
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the parameters, the dotted boxes enclose the result of the productions, with the
corresponding codomain type in its left corner, while waved lines indicate how in-
ternal nodes are exposed in the interface.

sort Cells . *** Chain of cells
sort Bikes . *** Collection of bikes
...
op nobike : -> Bikes .
op bike : -> Bike.
op bikes : Bikes Bikes -> Bikes [assoc comm id: nobike] .
op nocell : -> Cells .
op bikestation : -> Cells .
op cell-with-station : Bikes -> Cells .
op chain : Cells Cells -> Cells [assoc id: nocell] .

Dynamism. Contrary to TGG, reconfiguration rules in ADR are defined as
rewrite rules over design terms, instead of over plain graphs or designs. In addi-
tion, ADR rules can be conditional, labelled and inductively defined and can be
used to define complex behaviours and reconfigurations.

Below we see rule migrate-right (see Fig. 6). Note that because bikes is
associative, commutative and has nobike as identity element, the rule can be
matched to perform the migration of any number of bikes, while in TGGA we
have a rule able to migrate one bike at each step, only.

rl [migrate-right] : chain(cell-with-station(bikes(x1,x2)),cell-with-station(x3))
=> chain(cell-with-station(x1),cell-with-station(bikes(x2,x3))) .

The module also includes the more complex reconfiguration that deals with
shutdown by repairing the connection with an ad-hoc chain of bikes in station
mode. Rule bike2cell allows a bike to reconfigure itself into a bike in station
mode using label ’tocell. Rule bikes2cell allows to propagate such reconfig-
urations inside collections of bikes. Finally, rule cell2chain allows reconfigure
a station whenever the corresponding bikes are reconfigured into a chain of cells.

rl [bike2cell] : bike => {’tocell}bikestation .

crl [bikes2cell] : bikes(x1,x2) => {’tocell}chain(y1,y2)
if x1 =/= nobike /\ x2 =/= nobike /\ x1 => {’tocell}y1 /\ x2 => {’tocell}y2 .

crl [cell2chain] : cell-with-station(x1) => y1
if x1 => {’tocell}y1 .
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5.2 Analysis with Maude

The property specification mechanisms of our approach is based on the use
of suitable logics to reason about structural and dynamic aspects of software
architectures.

Structural Properties. Recall that contrary to TGGA, ADRM considers two
aspects of the structural information of a software architecture: the design term,
which can be seen as an abstraction, a proof of style conformance or an encoding
of the construction process, and the design itself. We use different logics to reason
about each aspect.

A natural and structured way to reason about design terms is the use of a
suitable spatial logic (e.g. [11,34]). Basically, for each design production f used
to compose designs the logic incorporates a spatial operator f-so to decompose
a design. For instance, formula chain-so(phi1,phi2) is satisfied by all those
designs of the form chain(x1,x2), where design x1 satisfies formula phi1 and
design x2 satisfies formula phi2.

As an example consider the property that states a collection of bikes has at
least n bikes. We see that this property can be inductively defined as below.
For n equal to zero the formula always holds. For n + 1 (we use the successor
constructor s below) the formula holds whenever the term is decomposable as
the composition via operation bikes of one bike (bike-so) and a term with at
least n bikes.

op at-least-k-bikes : Nat -> Prop .
vars n : Nat .
eq at-least-k-bikes(0) = True .
eq at-least-k-bikes( (s n )) = bikes-so(bike-so,at-least-k-bikes(n)) .

Our implementation also includes Courcelle’s Monadic Second-Order (MSO)
logic [15]. The rough idea is that the logic allows us to quantify over sets of nodes
and edges. This allows us to reason about the complex interpreted structure of
graphs that is hidden at the level of design terms.

Behavioural Properties. The dynamic aspects are expressed using the Linear-
time Temporal Logic (LTL) for which Maude provides a module where only the
state predicates have to be defined. Roughly, one is able to reason about infinite
sequences of reconfigurations, by expressing properties on the ordering of state
observations. Such observations are state predicates given by closed structural
formulae.

As an example we state that it is always true that a collection of bikes has
at least 2 bikes as the formula [] at-least-k-bikes(2), where [] denotes the
always temporal operator.

6 Comparison

We overview a brief comparison of the presented approaches w.r.t. the issues
discussed in Section 3. Figure 7 summarises the main aspects and advantages of
each approach.
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Fig. 7. Main aspects and advantages of each approach

6.1 Designing Software Architectures

Architectures. Both approaches represent architectures as suitable graphs. The
main differences are that TGG represents architectures by flat graphs while ADR
considers additional structural information. First, graphs have an interface which
supports the compositionality of architectures. Second, graphs are equipped with
a design term which serves various purposes: it is a proof of style consistency, it
is a witness of the design process, it can be used to offer a hierarchical view at
a suitable level of abstraction.

Architectural Styles. Each approach follows a different tradition. TGGA uses ex-
plicit structural constraints by means of logic predicates. This approach is more
suited to a reactive modelling process: the software architect constructs a model
and the system reacts reporting style inconsistencies. ADRM uses an implicit
generative mechanism inspired by context-free graph grammars. This approach
is more suited to a proactive modelling process: the software architect performs
a decision procedure (i.e. refinements and compositions) that is guaranteed to
be style consistent and not faulty.

Representing dynamism. Each approach defines dynamism at different levels
of abstraction. TGG defines dynamism by means of local rewriting rules on flat
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graphs, while ADR defines rules on design terms. ADR rules are more abstract
and also more expressive, because conditional labelled rules are also allowed. In
addition, ADR rules guarantee style preservation by construction. On the other
hand, ADR has still no mechanism to keep trace of reconfigured items, while
this is done in TGG by the notion of trace morphism.

6.2 Specifying Architectural Properties

Structural properties. Structural properties are expressed in TGGA by means of
the same formalism used to define architectural styles, namely the Alloy logic.
Maude does not offer a built-in structural logic but spatial logics such as the
Verification Logic for Rewriting Logic [34] arise naturally and we can adjust
the property specification mechanism at will. Indeed, we implemented property
specification mechanisms tailored for the abstract view of design terms and the
more concrete view of designs.

Behavioural properties. Alloy does not offer a standard behavioural logic and
one has to rely on ad-hoc mechanisms or recent extensions such as DynAlloy.
Maude, instead, comes with a built-in implementation of a Linear-time Temporal
Logic (LTL) module, for which the user must provide just the state predicates.

6.3 Analysing Software Architectures

Style Matching. Checking style-consistency in TGGA is done via the same mech-
anism as the verification of structural properties, i.e. it amounts to verify whether
an architecture satisfies the predicate characterising the architectural style. In-
stead, in ADRM we need a parsing mechanism, able to determine for given graph
g, whether there is a design term d such that the design corresponding to d has
a body graph isomorphic to g. This mechanism is under implementation.

Model Finding. Model finding is the main analysis capability offered by Alloy.
The Alloy Analyzer basically explores (a bounded fragment) of the state space of
all possible models and is able to show example instances satisfying or violating
the desired properties. For instance, we can easily use the Alloy Analyzer to
construct initial architectures: we need to ask for an instance graph satisfying
the style predicates and having a certain number of bikes and stations. Model
finding can also serve to the purpose of analysis. For instance, to validate if
the style predicates really define what the software architect means. The use of
bounds is justified by Alloy’s small scope hypothesis that states that “most bugs
have small counterexamples” [27]. This means that examining small architectures
is often enough to detect possible major flaws.

Model finding is not provided by Maude directly. In order to perform model
finding with Maude we need basically two mechanisms: one to generate a state
space of models and one to explore it. We have defined a rewrite theory that
simulates a design-by-refinement process, roughly consisting of the context-free
graph grammar obtained by a left-to-right reading the design productions. An-
other generative mechanism that we can implement produces random graphs by
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adding items iteratively. The resulting graph could be used as the body of a
design. In order to explore such state spaces we can use the LTL model checker,
the search command or rewriting strategies.

Model Checking. Alloy does not have traditional model checking capabilities but
its model finding features can be used instead to encode some (bounded) model
checking problems. Basically, models and predicates are translated into a first-
order formula and solved with efficient SAT solvers. Instead, model checking in
Maude is supported by an efficient built-in LTL model checker. We have also
implemented the satisfaction relation for the above mentioned MSO and spatial
logics.

An alternative to model checking is the use of manual or computer-assisted
theorem proving, which is highly facilitated in ADR by the hierarchical nature
of design productions, which allows for proof based on structural induction. This
issue is currently being investigated.

7 Related Work

An exhaustive enumeration and a deep comparison with related work is out
of the scope of this paper. We mention, however some of the works that have
inspired or share concepts with our approaches.

Many research works are focusing on the design and analysis of dynamic
software architectures, applying formal methods such as graphs [37,25,3], log-
ics [20,1] and process algebras [2,10].

As a matter of fact ADR has taken inspiration from initiatives that promote
the conciliation of software architectures and process calculi by means of graph-
ical methods [33].TGG instead, follows the tradition of graph grammars and
applied to software architectures [37] and combines them with logical approach
of Alloy.

Our approaches also shares concepts with various approaches ranging from
process calculi that deal with reconfigurable component based architectures
(e.g. [1]) to graphical representation of concurrent systems such as those based
on Synchronized Hyperedge Replacement [21] or Bigraphs [29].

Maude and Alloy have been already used for the design and analysis of soft-
ware architectures or graph transformation systems. For instance, in [30] Maude
is used to model and verify software architectures given in LfP, a system de-
scription language with hierarchical behaviour. On the other hand, the work
presented in [4] proposes a methodology to analyse transformation systems by
means of Alloy and its supporting tool. They encode graph transformation sys-
tems into Alloy and verify properties such as reachability of given configurations
through a finite sequence of steps or whether given sequences of rules can be ob-
tained on an initial graph, and show all the configurations that can be obtained
by applying a bounded sequence of rule instances on a given initial graph.

Another source of related work regard Architectural Description Languages
(ADLs) to model and analyse software architectures [35] or UML-based ap-
proaches to model dynamic architectures [31].
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8 Conclusion

In our experience, TGGA and ADRM are both flexible formal methods for the
design and analysis of dynamic software architectures. Moreover, we promote
their synergic application as each of them can be focused on the development
phases where they are more effective.

In the early phase of the development, the architectural style is typically not
well understood and TGG looks more appealing since the software architect
can follow an incremental approach, adding, removing or refining architectural
constraints with the help of the inconsistencies shown by the Alloy Analyzer.

Later, when the architectural style is well understood and stable, the soft-
ware architect can define the style in a generative manner in the form of an
ADR style. The benefits of an ADR style arise then from its hierarchical and
structured nature. First, complex reconfigurations can be inductively defined on
the structure of designs. Second, properties can be defined again inductively and
at an abstract level. Last, but not least, model checking and theorem proving
can be applied to exploit the hierarchical structure.

This separation of phases also matches the choice of the tools. Indeed, TGG
could have been easily implemented in Maude, but Maude lacks of a built-in,
efficient mechanism to perform model finding. On the other hand, implementing
ADR in Alloy would have required a lot more efforts to encode all the mechanisms
that are native in Maude such as normal forms, memberships or conditional
rewrite rules, and built-in tools such as the LTL model checker.

Current work is devoted to validate our ideas by enriching our experience with
more realistic examples, taken from global computing areas like service oriented
computing and grid computing. In future work we plan to extend our compar-
ative analysis to further interesting aspects such as the ordinary behaviour of
software components, the analysis of architectural styles and run-time imple-
mentation. Another interesting perspective is to investigate other ADR suited
interpreted algebras, other than graphs. Constraints systems, for instance, seem
well suited and appealing to deal with non functional aspects like quality of
service.
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Abstract. In this paper, we give an overview of the framework of graph
transformation units which provides syntactic and semantic means for
analyzing, modeling, and structuring all kinds of graph processing and
graph transformation.

1 Introduction

Graphs are used in computer science in many forms and contexts, and for
many purposes. Well-known examples are Petri nets, entity-relationship dia-
grams, UML diagrams, and state graphs of finite automata. In many applica-
tions, graphs are not of interest as singular entities, but as members of graph and
diagram languages, as states of processes and systems, as structures underlying
algorithms, as networks underlying communication, tour planning, production
planning, etc. Therefore, there is genuine need to generate, recognize, process,
and transform graphs. The development and investigation of means and meth-
ods to achieve this goal is the focus of the area of graph transformation. (See
the Handbook of Graph Grammars and Computing by Graph Transformation
[1–3].)

In this paper, we give an overview of the framework of graph transformation
units which provides syntactic and semantic means for analyzing, modeling, and
structuring all kinds of graph processing and graph transformation. In particular,
graph transformation units can be used to generate graph languages, to specify
graph algorithms, to transform models whenever they are represented by graphs,
and to define the operational semantics of data processing systems whenever the
data and system states are given as graphs.

Graph transformation units encapsulate rules and control conditions that reg-
ulate the application of rules to graphs including the specification of initial and
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terminal graphs. To support the re-use and the stepwise development of graph
transformation units, also a structuring principle is introduced that allows the
import of units by units. The operational semantics of a unit transforms ini-
tial graphs into terminal graphs by interleaving rule applications and calls of
imported units so that the control condition is fulfilled.

An important aspect of this framework is its approach independence, meaning
that all introduced concepts work for all kinds of graphs, rules, rule applications,
and control conditions. In particular, one can build new approaches from given
ones through the product of approaches. In this way, graph transformation units
can be combined in such a way that tuples of graphs are transformed component-
wise. As a consequence, the interleaving semantics covers computable relations
on graphs with m input graphs and n output graphs for arbitrary numbers m, n
rather than binary relations between initial and terminal graphs.

This overview is organized in the following way. In Section 2, we recall the
basic notions of graphs and of rule-based graph transformation. In Section 3,
simple graph transformation units encompassing rules and control mechanisms
are introduced, while a structuring principle by means of import is added in
Section 4. Section 5 addresses the idea of approach independence and the product
type. In the last section we discuss some related work and point out some further
aspects such as the iterated interleaving semantics in case of cyclic import, the
interlinking semantics that supplements the sequential interleaving semantics
by parallel and concurrent elements, and autonomous units which interact in a
common graph environment.

2 Graphs and Rule-Based Graph Transformation

In this section, we recall the basic notion of graphs, matches, rules, and rule
application as they are needed to model the examples of this paper.

Graphs are quite generic structures which are encountered in the literature
in many variants: directed and undirected, labeled and unlabeled, simple and
multiple, with binary edges and hyperedges, etc. In this survey, we focus on
directed, edge-labeled, and multiple graphs with binary edges (see 2.1). As a
running example, we consider the generation of simple paths and related prob-
lems including the search for Hamiltonian paths. Please note that the search
for simple paths of certain lengths and in particular the search for Hamiltonian
paths are NP -complete problems.

Graphs are often considered as inputs of algorithms and processes so that
methods are needed to search and manipulate graphs. Graphs may also rep-
resent states of systems so that methods for updates and state transitions are
needed. Also, graphs may often be used to specify the structure of all the data
of interest, e.g., the set of all connected and planar graphs. Like in the case of
string languages, one needs then mechanisms to generate and recognize graph
languages. To meet all these needs, rule-based graph transformation is defined
in 2.4 to 2.6.
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2.1 Graphs

Let Σ be a set of labels. A graph over Σ is a system G = (V, E, s, t, l) where
V is a finite set of nodes, E is a finite set of edges, s, t : E → V are mappings
assigning a source s(e) and a target t(e) to every edge in E, and l : E → Σ is
a mapping assigning a label to every edge in E. An edge e with s(e) = t(e) is
also called a loop. The components V , E, s, t, and l of G are also denoted by
VG, EG, sG, tG, and lG, respectively. The set of all graphs over Σ is denoted by
GΣ . We reserve a specific label ∗ which is omitted in drawings of graphs. In this
way, graphs where all edges are labeled with ∗ may be seen as unlabeled graphs.

Example 1. Consider the graphs G0, G1, G12, G123, and G1234 in Figure 1.
A box � represents a node with an unlabeled loop. Therefore, G0 has four nodes,

four loops and five additional unlabeled edges. The other graphs are variants of G0.
We use to represent a begin-node which is a node with a loop labeled with begin.
Analogously, represents an end -node, and represents a node with a begin-loop
and an end -loop. If one starts in the begin-node and follows the p-labeled edges,
one reaches the end -node in the graphs G12, G123, and G1234. In each case, the
sequence of p-edges defines a simple path of G0, where the intermediate nodes
have no loops. In G1, the begin-node and the end -node are identical which means
that the corresponding simple path has length 0.

G0 = G1 = G12 =

p

G123 =

p

p G1234 =

p

p

p

Fig. 1. G0 with some of its simple paths

If one numbers the nodes of G0 clockwise by 1 to 4 starting in the upper left-
most corner, then the node sequences 1, 12, 123, and 1234 define simple paths
of G0 that correspond to the simple paths in G1, G12, G123, and G1234, resp. In
this way, every simple path s of G0 can be represented by a graph Gs. The set
of all those graphs is denoted by SP (G0). The next subsection describes paths
more formally.

2.2 Paths

One of the most important concepts concerning graphs is the notion of a path
that is the subject of many research problems and applications of graphs such
as connectivity, shortest paths, long simple paths, Eulerian paths, Hamiltonian
paths, traveling salesperson problem, etc.

Given a graph G = (V, E, s, t, l), a path from node v to node v′ is a sequence
of edges p = e1 . . . en with n ≥ 1, s(e1) = v, s(ei) = t(ei−1) for i = 2, . . . , n, and
t(en) = v′. The length of p is n. Moreover, the empty sequence λ is considered
to be a path from v to v of length 0 for each v ∈ V. A path p = e1 . . . en from v
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to v′ visits the nodes V (p) = {v} ∪ {t(ei) | i = 1, . . . , n}. A path p is simple if it
visits no node twice, i.e., #V (p) = length(p)+1. 1 A simple path is Hamiltonian
if it visits all nodes, i.e., #V (p) = #V.

2.3 Graph Morphisms, Subgraphs, and Matches

For graphs G, H ∈ GΣ , a graph morphism g : G → H is a pair of mappings
gV : VG → VH and gE : EG → EH that are structure-preserving, i.e., gV (sG(e)) =
sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all e ∈ EG.

If the mappings gV and gE are bijective, then g is an isomorphism, and G
and H are called isomorphic.

If the mappings gV and gE are inclusions, then G is called a subgraph of H,
denoted by G ⊆ H.

For a graph morphism g : G → H , the image of G in H is called a match of
G in H , i.e., the match of G with respect to the morphism g is the subgraph
g(G) ⊆ H . If the mappings gV and gE are injective, the match g(G) is also called
injective. In this case, G and g(G) are isomorphic.

Example 2. There is a graph morphism from the graph Lrun = into
some Gs ∈ SP (G0) whenever Gs has a subgraph isomorphic to Lrun. Hence,
there are two graph morphisms into G12, there is one graph morphism into G1
and one into G123, but no graph morphism into G1234.

Consider the injective match of Lrun in G12 given by the right-most vertical
edge. The removal of the edges of this match yields the subgraph

Z0 =

2.4 Graph Transformation Rule

The idea of a graph transformation rule is to express which part of a graph
is to be replaced by another graph. Unlike strings, a subgraph to be replaced
can be linked in many ways (i.e., by many edges) with the rest of the graph.
Consequently, a rule also has to specify which kind of links are allowed. This
is done with the help of a third graph that is common to the replaced and the
replacing graph.

Formally, a rule r = (L ⊇ K ⊆ R) consists of three graphs L, K, R ∈ GΣ such
that K is a subgraph of L and R. The components L, K, and R of r are called
left-hand side, gluing graph, and right-hand side, respectively.

Example 3. Consider the following two rules.

1 #X denotes the number of elements of a finite set X.
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start = ⊇ ⊆

run = ⊇ ⊆ p

The rule start describes the removal of an unlabeled loop and the addition of a
begin-loop and an end -loop at the same node. The rule run replaces an unlabeled
edge by a p-edge removing the two loops of the left-hand side and adding an
end -loop at the target node of the right-hand side. The identity of the nodes is
chosen in such a way that the direction of the edge is preserved, i.e., the two
sources are equal and the two targets are equal.

2.5 Application of a Graph Transformation Rule

The application of a graph transformation rule to a graph G consists of replacing
an injective match of the left-hand side in G by the right-hand side in such
a way that the match of the gluing graph is kept. Hence, the application of
r = (L ⊇ K ⊆ R) to a graph G = (V, E, s, t, l) consists of the following three
steps.

1. An injective match g(L) of L in G is chosen.
2. Now the nodes of gV (VL − VK) are removed, and the edges of gE(EL − EK)

as well as the edges incident to removed nodes are removed yielding the
intermediate graph Z ⊆ G.

3. Afterwards the right-hand side R is added to Z by gluing Z with R in
g(K) yielding the graph H = Z + (R − K) with VH = VZ + (VR − VK)
2 and EH = EZ + (ER − EK). The edges of Z keep their labels, sources,
and targets so that Z ⊆ H. The edges of R keep their labels. They keep
their sources and targets provided that those belong to VR −VK . Otherwise,
sH(e) = g(sR(e)) for e ∈ ER − EK with sR(e) ∈ VK , and tH(e) = g(tR(e))
for e ∈ ER − EK with tR(e) ∈ VK .

The application of a rule r to a graph G is denoted by G=⇒
r

H , where H is
the graph resulting from the application of r to G. A rule application is called a
direct derivation. The subscript r may be omitted if it is clear from the context.

Given a finite set of rules and a finite graph G, the number of injective matches
is bounded by a polynomial in the size of G because the sizes of left-hand sides of
rules are bounded by a constant. Given an injective match, the construction of
the directly derived graph is linear in the size of G. Therefore, it needs polynomial
time to find a match and to construct a direct derivation.

Example 4. The rule run of Example 3 can be applied to the graph G12 in two
ways. One injective match of Lrun is given by the right vertical edge of G12. The
intermediate graph is Z0 as constructed in Example 2. And the derived graph is
G123. Consequently, one gets a direct derivation G12 =⇒

run
G123.

2 Given sets X and Y, X + Y denotes the disjoint union of X and Y.
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Accordingly, the rule run can be applied to other graphs in SP (G0) yielding
a graph in SP (G0) in each case. Here is the complete list of direct derivations
by applying run:

G1 =⇒ G12, G2 =⇒ G23, G2 =⇒ G24, G3 =⇒ G34, G4 =⇒ G41,
G12 =⇒ G123, G12 =⇒ G124, G23 =⇒ G234, G24 =⇒ G241, G34 =⇒ G341,
G41 =⇒ G412, G123 =⇒ G1234, G234 =⇒ G2341, G341 =⇒ G3412, G412 =⇒ G4123.

Moreover, the rule start can be applied to G0 in four ways deriving G1, G2, G3
and G4.

2.6 Derivation and Application Sequence

The sequential composition of direct derivations d = G0 =⇒
r1

G1 =⇒
r2

· · · =⇒
rn

Gn

(n ∈ N) is called a derivation from G0 to Gn. As usual, the derivation from
G0 to Gn can also be denoted by G0

n=⇒
P

Gn where {r1, . . . , rn} ⊆ P , or just by

G0
∗=⇒
P

Gn. The string r1 · · · rn is the application sequence of the derivation d.

Example 5. The direct derivations in Example 3 can be composed into the fol-
lowing derivations:

G0 =⇒ G1 =⇒ G12 =⇒ G123 =⇒ G1234,
G0 =⇒ G1 =⇒ G12 =⇒ G124,
G0 =⇒ G2 =⇒ G23 =⇒ G234 =⇒ G2341,
G0 =⇒ G2 =⇒ G24 =⇒ G241,
G0 =⇒ G3 =⇒ G34 =⇒ G341 =⇒ G3412,
G0 =⇒ G4 =⇒ G41 =⇒ G412 =⇒ G4123.

Altogether, these derivations show that exactly the graphs in SP (G0) can be
derived from G0 by applying the rule start once and then the rule run k-times
for k ∈ {0, 1, 2, 3}.

It is not difficult to see that one can generate the set of all simple paths of
every unlabeled graph if each of its node has a simple unlabeled loop and if start
is only applied in the first derivation step. Moreover, the length of each such
derivation equals the number of nodes visited by the derived path. In particular,
the length is bounded by the size of the initial graph. The proof can be done by
induction on the lengths of derivations on one hand and on the lengths of simple
paths on the other hand.

The six derived graphs above correspond to the dead-ended simple paths of
G0 being those that cannot be prolonged by a further edge. The four graphs
G1234, G2341, G3421, and G4123 represent the Hamiltonian paths of G0.

3 Simple Graph Transformation Units

A rule yields a binary relation on graphs and a set of rules a set of derivations.
The example of simple paths shows (like many other examples would show)
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that more features are needed to model processes on graphs in a proper way,
in particular one needs initial graphs to start the derivation process, terminal
graphs to stop it, and some control conditions to regulate it. This leads to the
concept of a simple graph transformation unit. The well-known notion of a graph
grammar is an important special case.

Analogously to Chomsky grammars in formal language theory, graph trans-
formation can be used to generate graph languages. A graph grammar consists of
a set of rules, a start graph, and a terminal expression fixing the set of terminal
graphs. This terminal expression is a set Δ ⊆ Σ of terminal labels admitting all
graphs that are labeled over Δ.

3.1 Graph Grammar

A graph grammar is a system GG = (S, P, Δ), where S ∈ GΣ is the initial
graph of GG, P is a finite set of graph transformation rules, and Δ ⊆ Σ is a
set of terminal symbols. The generated language of GG consists of all graphs
G ∈ GΣ that are labeled over Δ and that are derivable from the initial graph S
via successive application of the rules in P , i.e., L(GG) = {G ∈ GΔ | S

∗=⇒
P

G}.

Example 6. The following graph grammar

unlabeled graphs
initial: empty
rules: new-node = empty ⊇ empty ⊆

new-edge = ⊇ ⊆
terminal: {∗}

generates the unlabeled graphs with a single unlabeled loop at each node. The
start graph is the empty graph. The rule new-node adds a node with an unlabeled
loop in each application. The rule new-edge adds an edge between two nodes. Due
to the fact that we consider only injective matches, no two nodes can be identified
in a match of the left-hand side of the rule new-edge. This guarantees that no new
loops are generated. The terminal expression {∗} specifies all unlabeled graphs.
Since the given rules transform unlabeled graphs into unlabeled ones, all derived
graphs belong to the generated language. It should be noted that the grammar
unlabeled graphs generates exactly the graphs that are used as initial graphs to
obtain their simple paths in Example 5.

As for formal string languages, one does not only want to generate languages, but
also to recognize them or to verify certain properties. Moreover, for modeling and
specification aspects one wants to have additional features like the possibility to
cut down the non-determinism inherent in rule-based graph transformation. This
can be achieved through the concept of transformation units (see, e.g., [4–6]),
which generalize standard graph grammars in the following ways:
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– Transformation units allow a set of initial graphs instead of a single one.
– The class of terminal graphs can be specified in a more general way.
– The derivation process can be controlled.

The first two points are achieved by replacing the initial graph and the terminal
alphabet of a graph grammar by a graph class expression specifying sets of initial
and terminal graphs. The regulation of rule application is obtained by means of
so-called control conditions.

3.2 Graph Class Expressions

A graph class expression may be any syntactic entity X that specifies a class of
graphs SEM (X) ⊆ GΣ . A typical example is the above-mentioned subset Δ ⊆ Σ
with SEM (Δ) = GΔ ⊆ GΣ . Forbidden structures are also frequently used. Let
F be a graph, then SEM (forbidden(F )) contains all graphs G such that there is
no graph morphism f : F → G. Another useful type of graph class expressions
is given by sets of rules. More precisely, for a set P of rules, SEM (reduced(P ))
contains all P -reduced graphs, i.e., graphs to which none of the rules in P can be
applied. Finally, it is worth noting that a graph grammar GG itself may serve
as a graph class expression with SEM (GG) = L(GG).

3.3 Control Conditions

A control condition is any syntactic entity that cuts down the non-determinism
of the derivation process. A typical example is a regular expression over a set of
rules (or any other string-language-defining device). Let C be a regular expres-
sion specifying the language L(C). Then a derivation with application sequence
s is permitted by C if s ∈ L(C). As a special case of this type of control con-
dition, the condition true allows every application sequence, i.e., L(C) = P ∗,
where P is the set of underlying graph transformation rules. Another useful
control condition is as long as possible, which requires that all rules be applied
as long as possible. More precisely, let P be the set of underlying rules. Then
SEM (as long as possible) allows all derivations G=⇒

P
G′ such that no rule of P

is applicable to G′. Hence, this control condition is similar to the graph class
expression reduced(P ) introduced above. Also similar to as long as possible are
priorities on rules, which are partial orders on rules such that if p1 > p2, then
p1 must be applied as long as possible before any application of p2. More details
on control conditions for transformation units can be found in [7].

By now, we have collected all components for defining simple graph transfor-
mation units.

3.4 Simple Graph Transformation Units

A simple graph transformation unit is a system tu = (I, P, C, T ), where I and
T are graph class expressions to specify the initial and the terminal graphs
respectively, P is a set of rules, and C is a control condition.



Graph Transformation Units – An Overview 65

Each such transformation unit tu specifies a binary relation SEM (tu) ⊆
SEM (I)×SEM (T ) that contains a pair (G, H) of graphs if and only if there is a
derivation G

∗=⇒
P

H permitted by C. The semantic relation SEM (tu) may also be

denoted by RA(tu) if the aspect is stressed that it is based on rule application.

Example 7. The constructions from Examples 1 through 6 can be summarized
by the following simple graph transformation unit:

simple paths
initial: unlabeled graphs
rules: start, run
control: start ; run*
terminal: all

The initial graphs are unlabeled graphs with a single loop at each node as
generated by the graph grammar unlabeled graphs in Example 6. The rules start
and run are given in Example 3, and the control condition is a regular expression
over the set of rules with the sequential composition ; and the Kleene star *
(specifying that a single application of start can be followed by an arbitrary
sequence of applications of run). All graphs derived in this way from initial
graphs are accepted as terminal. This is expressed by the graph class expression
all. As discussed in Example 5, this unit generates all simple paths of each initial
graph.

Analoguously, one can model dead-ended simple paths and Hamiltonian paths
by replacing the terminal graph expression all by the expressions reduced({run})
and forbidden(�), resp.

4 Graph Transformation Units with Structuring

Simple graph transformation units allow one to model computational processes
on graphs in the small. For modeling in the large, structuring concepts are needed
for several reasons:

(1) To describe and solve a practical problem, one may need hundreds, thou-
sands, or even millions of rules. Whereas a single set of rules of such a size
would be hard to understand, the division into small components could help.

(2) Many problems can be solved by using the solutions of other problems.
For example, most kinds of tour planning require a shortest path algorithm.
Therefore, it would be unreasonable to model everything from scratch rather
than to re-use available and working components.

(3) The modeling of a large system requires the subdivision into smaller pieces
and the distribution of subtasks. But then it is necessary to know how com-
ponents interact with each other.

Graph transformation units can be provided with a structuring principle by the
import and use concept. The basic observation behind this concept is that the
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semantics of a simple graph transformation unit is a binary relation on graphs,
like the rule application relation. Therefore, a unit (maybe with many rules) can
play the role of a single rule. Units may use or import entities that describe
binary relations on graphs. In particular, units may be used. This allows re-use
as well as the distribution of tasks. See, e.g., [6, 8] for more details.

4.1 Units with Import and Interleaving Semantics

A graph transformation unit with import is a system tu = (I, U, P, C, T ), where
(I, P, C, T ) is a simple graph transformation unit, and the use component U is
a set of identifiers (which is disjoint of P ).

If each u ∈ U defines a relation SEM (u) ∈ G × G, then tu specifies a binary
relation on graphs INTERSEM (tu) defined as follows:

(G, G′) ∈ INTERSEM (tu) if G ∈ SEM (I), G′ ∈ SEM (T ),

and there is a sequence G0, . . . , Gn with G = G0, Gn = G′, and, for i =
1, . . . , n, Gi−1 =⇒

r
Gi for some r ∈ P or (Gi−1, Gi) ∈ SEM (u) for some u ∈ U.

Moreover, (G, G′) must be accepted by the control condition C.
This relation is called interleaving semantics because the computation inter-

leaves rule applications and calls of the imported relations. It should be noted
that each choice of used relations defines an interleaving relation.

4.2 Networks of Units

The definition of structuring by import allows the use of any relation whenever
it has an identifier. There may be some library that offers standard relations.
Or one may use another framework that supports the modeling of relations of
graphs. But the most obvious choice is the import of units as use component.
This leads to sets of units that are closed under import:

Let V be a set of identifiers and tu(v) = (I(v), U(v), P (v), C(v), T (v)) a graph
transformation unit with import for each v ∈ V. Then the set {tu(v) | v ∈ V } is
closed under import if U(v) ⊆ V for all v ∈ V.

If one considers V as a set of nodes, the pairs (v, v′) for v′ ∈ U(v) as edges
with the projections as source and target, and the mapping tu as labeling, then
one gets a network (V, {(v, v′) | v′ ∈ U(v), v ∈ V }, tu).

If this network is finite and acyclic, then each of its units can be assigned with
an import level that is used to define the interleaving semantics of networks in
the next subsection:

level(v) =
{

0 if U(v) = ∅,
n + 1 if n = max{level(v′) | v′ ∈ U(v)}.

4.3 Interleaving Semantics of Acyclic Networks

The interleaving semantics of a unit with import requires that the used relations
are predefined. This can be guaranteed in finite and acyclic networks of units
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level-wise so that the semantics can be defined inductively. The units of level
0 are simple graph transformation units such that the rule application seman-
tics is defined. If the semantic relations up to level n are defined by induction
hypothesis, then the interleaving semantics of units on level n + 1 is defined.

Let (V, E, tu) be a finite and acyclic network of units. Then the interleaving
semantics INTER(tu(v)) for each v ∈ V is inductively defined by:

– INTER(tu(v)) = RA(tu(v)) for v ∈ V with level(v) = 0;
– assume that INTER(tu(v)) ⊆ G×G is defined for all v ∈ V with level(v) ≤ n

for some n ∈ N; then INTER(tu(v)) is equal to INTERSEM (tu(v)) with
SEM (v′) = INTER(tu(v′)) for v′ ∈ Utu(v) for v ∈ V with level(v) = n + 1.

Example 8. As shown in Example 7, the generation of dead-ended paths and
Hamiltonian paths coincides with the generation of simple paths except for
stronger terminal graph expressions. Hence, they can be modeled by the im-
port and re-use of simple paths.

dead-ended simple paths Hamiltonian paths
uses : simple paths uses : simple paths
control : simple paths control : simple paths
terminal reduced(run) terminal forbidden(�)

5 Approach Independence and Product Type

Graph class expressions and control conditions are introduced as generic concepts
that can be chosen out of a spectrum of possibilities. On the other hand, the
graphs, the rules and their application are fixed in a specific way in the preceding
sections. This is done to be able to illustrate the concepts by explicit examples.
The notions of graph transformation units and the interleaving semantics are
independent of the particular kind of graphs and rules one assumes. This is
made precise by the generic notion of a graph transformation approach.

5.1 Graph Transformation Approach

A graph transformation approach A = (G, R =⇒, X , C) consists of a class of
graphs G, a class of rules R, a rule application operator =⇒ that provides a
binary relation on graphs =⇒

r
⊆ G ×G for every r ∈ R, a class of graph class ex-

pressions X with SEM (x) ⊆ G for every x ∈ X , and a class of control conditions
C with SEM (c) ⊆ G × G for every c ∈ C.

All the notions of Sections 3 and 4 remain valid over such an approach A if
one replaces the class of graphs GΣ by G, the class of rules by R, and each rule
application by its abstract counterpart. In this sense, the modeling by graph
transformation units is approach-independent because it works independently of
a particular approach.
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The approach independence is meaningful in at least two ways. On the one
hand, it means that everybody can use and choose his or her favorite kinds of
graphs, rules, rule applications, graph class expressions, and control conditions.
On the other hand, it allows one to adapt given approaches to particular appli-
cations or to build new approaches out of given ones without the need to change
the modeling concepts.

5.2 Restriction

Given a graph transformation approach A = (G, R, =⇒, X , C), each subclass
G′ ⊆ G induces a restricted approach restrict(A, G′) = (G′, R, =⇒, X , C), where
the semantics of =⇒, X , and C are taken from A, but restricted to the graphs
of G′.

Similarly, all other components of A may be restricted – while this can be done
for X and C without side effects, the restriction of rules and rule application may
influence the semantics of X and C, because graph class expressions and control
conditions may refer to rules.

With respect to the class of graphs GΣ as considered in the preceding sec-
tions, various restrictions are possible: unlabeled graphs, connected graphs, pla-
nar graphs, etc. A rule application to such a sort of graph would only be accepted
if the derived graph is of the same type. An undirected graph can be represented
by a directed graph if each undirected edge is replaced by two directed edges in
opposite direction. In this way, undirected graphs can be handled in the given
framework as a restriction of the introduced approach.

An example of a restricted kind of rules is a rule the left-hand side of which
coincides with the gluing graph so that no removal takes place if the rule is
applied.

A typical restriction concerning the rule application is the requirement of
injective matching as used in our sample approach. This is requested in many
graph transformation approaches in the literature.

5.3 Product Type

Another approach-building operator is the product of approaches. The idea is
to consider tuples of graphs and rules where a tuple of rules is applied to a
tuple of graphs by applying the component rules to the component graphs si-
multaneously. It is not always convenient to apply a rule to each component
graph. Therefore, we add the symbol − to each class of rules. Whenever − is
a component of a tuple of rules, the corresponding component graph remains
unchanged.

Let Ai = (Gi, Ri, =⇒i, Xi, Ci) for i = 1, . . . , n for some n ∈ N be a graph
transformation approach. Then the product approach is defined by

n∏

i=1
Ai = (

n∏

i=1
Gi,

n∏

i=1
(Ri ∪ {−}), =⇒,

n∏

i=1
Xi,

n∏

i=1
Ci)
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where

– (G1, . . . , Gn) =⇒ (G′1, . . . , G′n) for (r1, . . . , rn) ∈
n∏

i=1
(Ri ∪ {−}) if, for i =

1, . . . , n, Gi =⇒
ri

G′i for ri ∈ Ri and Gi = G′i for ri = −,

– (G1, . . . , Gn) ∈ SEM (x1, . . . , xn) for (x1, . . . , xn) ∈
n∏

i=1
Xi if Gi ∈ SEM (xi)

for i = 1, . . . , n,

– ((G1, . . . , Gn), (G′1, . . . , G
′
n)) ∈ SEM (c1, . . . , cn) for (c1, . . . , cn) ∈

n∏

i=1
Ci if

(Gi, G
′
i) ∈ SEM (ci) for i = 1, . . . , n.

5.4 Tuples of Graph Transformation Units

Analoguously to the tupling of graphs, rules, rule applications, graph class ex-
pressions and control conditions in the product of graph transformation ap-
proaches, graph transformation units over the approaches can be tupled.

Let tui = (Ii, Ui, Pi, Ci, Ti), for each i = 1, . . . , n for some n ∈ N, be
a graph transformation unit over the graph transformation approach Ai =
(Gi, Ri, =⇒i, Xi, Ci). Then the tuple

(tu1, . . . , tun) = ((I1, . . . , In),
n∏

i=1
Ui,

n∏

i=1
Pi, (C1, . . . , Cn), (T1, . . . , Tn))

is a graph transformation unit over the product approach
n∏

i=1
Ai.

The important aspect of the tupling of units is that the choice of the compo-
nents of the single units induces automatically all the components of the tuple
of units by tupling the graph class expressions for initial and terminal graphs
resp. and the control conditions as well as by the products of the import and
rule sets.

As the tuple of units is defined component-wise, its semantics is the prod-
uct of the semantic relations of the components up to a reordering of com-
ponents. Let SEM i(u) ⊆ Gi × Gi be a binary relation on graphs for each

u ∈ Ui, i = 1, . . . , n. Let SEM i(u1, . . . , un) ⊆
n∏

i=1
Gi ×

n∏

i=1
Gi be defined for

(u1, . . . un) ∈
n∏

i=1
Ui by ((G1, . . . , Gn), (G′1, . . . , G′n)) ∈ SEM ((u1, . . . , un)) if and

only if (Gi, G
′
i) ∈ SEM i(ui) for i = 1, . . . , n. Then the following holds:

((G1, . . . , Gn), (G′1, . . . , G
′
n)) ∈ INTERSEM (tu) if and only if (Gi, G

′
i) ∈

INTERSEM i
(tui) for i = 1, . . . , n.

As the interleaving semantics of a tuple of units is given by the product of the
interleaving semantics, the tuple of units tu may also be denoted by tu1×· · ·×tun

to stress the meaning already on the syntactic level.

Example 9. Consider the tuple of units simple paths×nat×bool where the first
component is given in Example 7 and nat and bool are modeled as follows:
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nat
initial: nat0
rules: pred =

1
⊇

1
⊆

1

3

is 0 = ⊇ ⊆

bool
initial: empty
rules: set true = empty ⊇ empty ⊆ true

terminal:
true

= TRUE

nat0

initial: = 0
rules: succ =

1
⊇

1
⊆

1

The start graph of nat0 is a node with a begin-loop and an end -loop which
may be seen as the number 0. The application of succ adds an edge to the end -
node while the added target becomes the new end. Therefore, the derived graphs
are simple paths of the form

. . . = n

with n edges, for some n ∈ N, representing the number n. There is no control, and
all graphs are terminal. In other words, nat0 generates the natural numbers being
the initial graphs of nat. The rule pred is inverse to succ so that its application
transforms the graph n + 1 into the graph n. The rule is 0 is applicable to a
graph n if and only if n = 0 such that the rule provides a 0-test. Altogether, the
unit nat can count down a given number and test whether 0 is reached.

The unit bool is extremely simple. The start graph is empty. The only rule
adds a node with a true-loop whenever applied. But after one application, the
terminal graph is reached already. This graph can be seen as the truth value
TRUE .

According to the definitions of the components, an initial graph of the tu-
ple of units simple paths × nat × bool has the form (G, n, empty), where G
is an unlabeled graph with an unlabeled loop at each node. Consider, in par-
ticular, (G0, 3, empty). To such an initial graph, one may apply the triple rule
(start, −, −) replacing an unlabeled loop of G by a begin- and an end -loop and
keeping n and empty unchanged. For example, one can derive (G1, 3, empty)
from (G0, 3, empty). Now one may apply the triple rule (run, pred, −) repeat-
edly. This builds a simple path in G edge by edge while n is decreased 1 by 1.
If G has a simple path of length n, one can derive (G′, 0, empty) in this way.
For example, one can derive (G1234, 0, empty) from (G1, 3, empty). Finally, the
triple rule (−, is 0, set true) becomes applicable deriving (G′, 0,TRUE) and
(G1234, 0,TRUE) in particular.
3 The number 1 identifies the identical nodes to make the inclusions unambiguous.
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Altogether, this models a test whether a graph has a simple path of a certain
length.

simple paths of some lengths
initial: : simple paths × nat
uses : simple paths × nat × bool
control : (start, −, −); (run, pred, −)∗; (−, is 0, set true)
terminal : bool

Due to the import, this unit is based on the tuple of units considered above.
This provides the tuple rules in the control condition, which is just a regular ex-
pression over the set of rules. But the graph class expressions are of a new type
related to the product. The initial expression means that the first two compo-
nents can be chosen freely as inputs of the modeled test. The third component
is always the empty graph so that it can be added by default. The terminal
expression means the projection to the third component as output of the test.

The semantic analysis shows that the unit simple paths of some lengths relates
a graph G and a number n to the truth value TRUE if and only if G has a
simple path of length n. Moreover, the length of every derivation is bounded
by n + 2 because n can be decreased by 1 n times at most. It is also bounded
by the number m of nodes of G plus 1 because simple paths are shorter than
m. Because the number of matches for the rules is also bounded polynomially,
the unit proves that the test for simple paths of certain lengths is in the class
NP. This is a well-known fact in this case, but illustrates that the introduced
framework supports proofs like this.

If the input length is chosen as the number of nodes of the input graph minus
1, then the unit yields TRUE if and only if the input graph has a Hamiltonian
path. In this way, the test for simple paths of certain lengths turns out to be NP -
complete because the Hamiltonian-path problem is NP -complete and a special
case.

5.5 Typing of Units

A graph transformation unit models a relation between initial and terminal
graphs. Hence one may say that the type of a unit tu = (I, P, C, T ) is I → T.
The introduced product type allows a more sophisticated typing of the form
I1 × · · · × Im → T1 × · · · × Tn. This works as follows. Let tu1 × · · · × tup be a
tuple of units, let input : {1, . . . , m} → {1, . . . , p} be an injective mapping with
Ii = I(tuinput(i)) for i = 1, . . . , m, and let output : {1, . . . , n, } → {1, . . . , p} be a
mapping with Tj = T (tuoutput(j)). Moreover, there may be some extra control
condition c for the tuple of units. Then this defines a unit of type I1 ×· · ·×Im →
T1 × · · · × Tn by

typed unit
initial: input
uses: tu1 × · · · × tup

control: c
terminal: output
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This unit relates graph tuple (G1, . . . , Gm) ∈
m∏

i=1
SEM (Ii) with the graph tu-

ple (H1, . . . , Hn) ∈
n∏

i=1
SEM (Tj) if there are graphs ((G′1, . . . , G

′
p), (H

′
1, . . . , H

′
p))

belonging to the interleaving semantics of tu1×· · ·×tup, fulfilling in addition the
control condition c, and Gi = G′input(i) for i = 1, . . . , m as well as Hj = H ′output(j)
for j = 1, . . . , n, where the graphs Gi with i /∈ input({1, . . . , m}) can be cho-
sen arbitrarily. Some of the components of the product are inputs, some outputs,
some may be auxiliary. Initially, the input components are given. The other com-
ponents must be chosen which is meaningful if there are unique initial graphs
that can serve as defaults. Then the product is running component-wise accord-
ing to the component rules and control conditions reflecting its extra control
condition. If all components are terminal, the output components are taken as
results.

A more detailed investigation of the product type can be found in [9, 10].

6 Further Research and Related Work

In the preceding sections, we have given an overview of graph transformation
units as devices to model algorithms, processes, and relations on graphs. Such
units consist of rules together with specifications of initial and terminal graphs
as well as control conditions to cut down the nondeterminism of rule applica-
tions. Moreover, units can import other units (or other relations on graphs)
providing in this way possibilities of re-use and of structuring. The operational
semantics of graph transformation units is given by the interleavings of rule ap-
plications and calls of imported relations; it yields a relation between initial and
terminal graphs. This interleaving semantics is well-defined if the import struc-
ture is acyclic. All the considered concepts work for arbitrary graph transforma-
tion approaches, where an approach is the computational base underlying graph
transformation units. Such an approach consists of classes of graphs, rules, graph
class expressions, and of control conditions as well as a notion of rule application.
Every component of an approach can be chosen out of a wide spectrum of graph
transformation concepts one encounters in the literature. An interesting aspect
of this kind of approach independence is the possibility to construct new ap-
proaches from given ones. For example, this allows one to transform undirected
graphs as a restriction of an approach for directed graphs. This also includes
the product of approaches which handles tuples of graphs and provides a quite
general typing of semantic relations.

With respect to the modeling of graph algorithms, Plump’s and Steinert’s
concept of graph programs [11] is closely related to transformation units (cf.
also Mosbah and Ossamy [12]). The major difference is that graph programs
are based on a particular graph transformation approach. In contrast to this,
approach independence allows the modelers to choose their favorite approaches
of which the area of graph transformation offers quite a spectrum (see, e.g., [1] for
the most frequently used approaches and Corradini et al. [13], Drewes et al. [14],
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and Klempien-Hinrichs [15] as examples of newer approaches). In this context,
one may note that the categorial framework of adhesive categories provides a
kind of approach independence. While rules and rule application are fixed by
the use of pushouts, one can enjoy quite a variety of classes of graphs due to the
possible choices of the underlying category (see, e.g., [16, 17]).

As a structuring principle, transformation units are closely related to other
module concepts for graph transformation systems like the ones introduced by
Ehrig and Engels [18], by Taentzer and Schürr [19], by Große-Rhode, Parisi-
Presicce and Simeoni [20, 21] as well as Schürr’s and Winter’s package concept
[22]. Heckel et al. [23] classify and compare all these concepts including trans-
formation units in some detail.

We point out now some further possible directions of the investigation of graph
transformation units:

1. If one permits cyclic import, meaning that units can use and help each other
in a recursive way, then the interleaving semantics as defined in Section 4
is no longer meaningful because the imported relations cannot be assumed
to be defined already. In this case, the infinite iteration of the interleaving
construction works. (see, e.g.,[24]).

2. The interleaving semantics is based on the iterated sequential composition
of the relations given by rule application and the imported relations. There-
fore, it is a purely sequential semantics. But one may replace the sequential
composition by other operations on relations like, for example, parallel com-
position. Every choice of such operations defines an interlinking semantics of
graph transformation units that, in particular, covers modes of parallel and
concurrent processing (see, e.g.,[25]).

3. The semantic relations considered so far are associated to single units which
control the computations and call the service of other units. In this sense, a
graph transformation unit is a centralized computational entity. The concept
of autonomuous units (see, e.g.,[26–28]) is a generalization to a decentralized
processing of graphs. The autonomuous units in a community act, interact,
and communicate in a common environment, with each of them controling
its own activities autonomuously.

Acknowledgement. We are grateful to Andrea Corradini for valuable comments
on an earlier version of the overview.
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In this paper we analyze how a powerful synchronization mechanism such as
synchronous multiparty synchronizations, which is able to specify atomic recon-
figurations of large systems, can be implemented using binary synchronizations
combined with a transactional mechanism. To this aim we show a mapping from
SHR, a graph transformation framework allowing multiparty synchronizations,
to a generalization of Fusion Calculus featuring a transactional mechanism in-
spired by the Zero-Safe Petri nets. To complete the correspondence between the
two formalisms we also present a mapping in the opposite direction.

1 Introduction

A key aspect when specifying complex software systems is to find the right level
of abstraction, and in particular the kind of primitives to be used. On the one
side, one would expect to rely on very powerful primitives that enable for a
simple and compact specification of complex behaviours. On the other side, one
would prefer a small number of easily implementable primitives to shorten the
gap between modeling and implementation.

In this paper we concentrate on synchronous multiparty synchronizations,
which are a powerful tool for defining complex reconfigurations that allow the
propagation of synchronizations through a chain of pairwise synchronized com-
ponents. As an instance of this approach we have chosen Synchronized Hyperedge
Replacement (SHR) [1,2,3], a graph transformation framework in which complex
transformations are specified in terms of simple rules that define the behavior
of single edges (or, more precisely, hyperedges). Although this makes SHR spec-
ifications quite compact, relying on a synchronous multiparty synchronization
mechanism has always been considered as a drawback, mainly from the imple-
mentation point of view. We address this problem by showing how synchronous
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Prefixes:
α : : = u�x (Input) | u�x (Output) | φ (Fusion)

Agents:

S : : =
�

i αi.Pi (Guarded sum)

P : : = S (Sequential Agent) P1|P2 (Composition)
(x)P (Scope) C[�v] (Constant application)

Fig. 1. Fusion Calculus syntax

multiparty synchronizations can be implemented by using normal binary syn-
chronizations combined with a transactional mechanism. To this end we consider
Fusion Calculus [4], a variant of π-calculus [5] whose close relation with SHR has
been first shown in [6], and extend it with a transactional mechanism inspired by
Zero-Safe Petri nets [7]. We call the resulting calculus Zero-Safe Fusion. While it
is clear from [6] that Fusion Calculus is less expressive than SHR, we show that
Zero-Safe Fusion is able to model the full SHR. We also show how to extend the
mapping from Fusion to SHR in [6] to deal with Zero-Safe Fusion, thus proving
that the two frameworks have the same expressive power.

Structure of the paper: Sections 2 and 3 present the background on Fusion Calcu-
lus and SHR respectively. Section 4 introduces Zero-Safe Fusion Calculus. Then,
the mappings from SHR to Zero-Safe Fusion is presented in Section 5, while
Section 6 discusses the assumptions made to simplify the mapping. Section 7
shows the inverse mapping. Finally, Section 8 draws some conclusions. For space
limitation, we omit here the proofs of main results and we refer the interested
reader to the full version of this paper [8].

2 Fusion Calculus

Fusion [4,9] has been proposed as a calculus for modeling distributed and mobile
systems, and it is based on binary synchronization and name fusion. Interest-
ingly, it both simplifies and generalizes the π-calculus [5]. This paper will consider
Fusion Calculus with guarded summation, constant definitions to model infinite
behaviors, and without match and mismatch operators. This section reports on
its original syntax and structural congruence, while we refer to [9] for the orig-
inal presentation of its operational semantics. Section 4 defines the operational
semantics of a generalization of Fusion Calculus that accounts for transactions,
which subsumes the original calculus.

We rely on an infinite set N of channel names ranged over by u, v, . . . , z.
We write �x for indicating a vector of names, and φ for denoting an equivalence
relation over N that can be represented by a finite set of equalities (that is
always considered closed under reflexivity, symmetry and transitivity).
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Definition 1 (Fusion syntax). The sets of Fusion prefixes, ranged over by
α, and Fusion agents, ranged over by P, Q, . . . are defined in Figure 1. Con-
stants, ranged over by C are defined by equalities like C[�x] � P . We require the
occurrence of constants to be prefix-guarded inside constant definitions.

Note that we syntactically distinguish sequential agents S, i.e., agents whose
topmost operator is a summation, from general agents P . We define the inactive
process 0 as the empty summation, and we will omit trailing occurrences of 0.
We use + to denote binary summation.

The scope operator acts as a binder for names, thus x is bound in (x)P . Given
an agent P , fn(P ) denotes the set of all names occurring free in P . For constant
definitions C[�x] � P we require fn(P ) ⊆ �x. Processes are equivalence classes of
agents defined by the structural congruence introduced below.

Definition 2. The structural congruence ≡ between agents is the least congru-
ence satisfying the α-conversion law, the abelian monoid laws for summation
and composition (associativity, commutativity and 0 as identity), the scope laws
(x)0 ≡ 0, (x)(y)P ≡ (y)(x)P , the scope extension law P |(z)Q ≡ (z)(P |Q) when
z /∈ fn(P ), and the law for constants C[�v] ≡ P{�v/�x} if C[�x] � P .

Note that fn can be trivially extended from agents to processes.

3 Synchronized Hyperedge Replacement

Synchronized Hyperedge Replacement (SHR) is a graph transformation frame-
work in which the evolution of a whole graph is defined in terms of synchronizing
rules, called productions. Each production describes the evolution of a single
edge. SHR has been introduced in [10], and several variants studying alterna-
tive mechanisms for handling synchronization and mobility have been proposed
in the literature [11,12,13]. In this paper we concentrate on Milner SHR [11]
as presented in [12]: the synchronization model has been inspired by Milner’s
π-calculus [5], and the mobility model follows the Fusion style.

Our graphs (or, more precisely, hypergraphs) are composed by edges and
nodes. Each edge has a label L and it is attached to n nodes, where n is the rank
rank(L) of its label. A graph is connected to its environment by an interface,
which is a subset of the nodes of the graph. Nodes in the interface are free, while
the others are bound. We give an algebraic definition of graphs.

Definition 3 (Graphs). Let N be a fixed infinite set of nodes and LE a ranked
set of labels. A graph has the form Γ � G where:

1. Γ ⊆ N is a finite set of nodes (the free nodes of the graph);
2. G is a graph term generated by the grammar

G ::= L(�x) | G1|G2 | νy G | nil
where �x ∈ N ∗ is a vector of nodes, L ∈ LE is an edge label with rank(L) = |�x|
and y ∈ N is a node.
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Table 1. Structural congruence for graphs

(AG1) (G1|G2)|G3 ≡ G1|(G2|G3) (AG2) G1|G2 ≡ G2|G1 (AG3) G|nil ≡ G

(AG4) νx νy G ≡ νy νx G (AG5) νx G ≡ G if x /∈ fn(G)

(AG6) νx G ≡ νy G{y/x} if y /∈ fn(G)

(AG7) νx (G1|G2) ≡ G1|νx G2 if x /∈ fn(G1)

The restriction operator ν is a binder, and we denote with fn(G) the set of
free nodes in G. We demand that fn(G) ⊆ Γ .

Graph terms and graphs are considered up to the structural congruence ≡
given by the axioms in Table 1.

Example 1. A ring-shaped graph composed by three edges with label R of rank
2 can be written as:

x � νy, z R(x, y)|R(y, z)|R(z, x)

Notice that here nodes y and z are bound, while x is free.

Graphs interact by performing actions on nodes, thus we assume a set of actions
Act. Since we are interested in Milner synchronization, we assume that Act =
In�Out�{τ} where In is a set of input actions, Out a set of output actions, and
τ a special action denoting a complete (internal) synchronization. Each action a
has an arity arity(a), denoting the number of parameters. We assume a bijection
· between In and Out (and we use the same notation to denote the inverse) such
that arity(a) = arity(a). We also assume arity(τ) = 0. Then, the transitions
describing the evolution of a graph are as follows.

Definition 4 (SHR transitions). A SHR transition is a relation of the form:

Γ � G
Λ,π−−→ Φ � G′

where Γ � G and Φ � G′ are graphs, Λ : Γ → (Act×N ∗) is a partial function and
π : Γ → Γ is an idempotent renaming. Function Λ assigns to each node x the
action a and the vector �y of node references communicated to x. If Λ(x) = (a, �y)
then we define actΛ(x) = a and nΛ(x) = �y. We require that arity(actΛ(x)) =
| nΛ(x)|.

We define:

– n(Λ) = {z|∃x.z ∈ nΛ(x)} set of communicated nodes;
– ΓΛ = n(Λ) \ Γ set of communicated fresh nodes.

Renaming π allows to merge nodes. Since π is idempotent, it maps every node
into a standard representative of its equivalence class. We require that ∀x ∈
n(Λ).xπ = x, i.e., only references to representatives can be communicated. Fur-
thermore, we require Φ = Γπ ∪ ΓΛ, namely free nodes can be merged but never
erased (⊇) and new nodes are bound unless communicated (⊆).
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We will not write π when it is the identity.

Example 2 (Ring to star). The transition modeling the classical [1] ring-to-star
reconfiguration for the ring graph in Example 1 is:

x � νy, z R(x, y)|R(y, z)|R(z, x)
(x,τ,〈〉)−−−−−→ x � νy, z, w S(w, x)|S(w, y)|S(w, z)

The graph on the right-hand-side is composed by edges with label S of arity 2.
Notice that actions are only observed on the free nodes, i.e. on x.

We will use this example as running example throughout the paper.

Definition 5 (Productions). A production is an SHR transition of the form:

x1, . . . , xn � L(x1, . . . , xn)
Λ,π−−→ Φ � G

where x1, . . . , xn are all distinct.
For each edge label L of rank n we assume an idle production x1, . . . , xn �

L(x1, . . . , xn)
Λ⊥,id−−−−→ x1, . . . , xn � L(x1, . . . , xn) where Λ⊥ is always undefined.

Idle productions are included in all sets of productions.

Given a set Prod of productions, valid SHR transitions are derived from the
productions in Prod via the inference rules below.

Definition 6 (Inference rules for Milner SHR)

(prod-M)
x1, . . . , xn � L(x1, . . . , xn)

Λ,π−−→ Φ � G ∈ Prod
(
x1, . . . , xn � L(x1, . . . , xn)

Λ,π−−→ Φ � G
)

σ

where σ is a bijective renaming and it is applied to all the parts of the production.

(par-M)
Γ � G1

Λ,π−−→ Φ � G2 Γ ′ � G′1
Λ′,π′

−−−→ Φ′ � G′2

Γ, Γ ′ � G1|G′1
Λ∪Λ′,π∪π′
−−−−−−−→ Φ, Φ′ � G2|G′2

where (Γ ∪ Φ) ∩ (Γ ′ ∪ Φ′) = ∅.

(merge-M)
Γ � G1

Λ,π−−→ Φ � G2

Γσ � G1σ
Λ′,π′
−−−→ Φ′ � νU G2σρ

where σ = {x/y} is a renaming and:

1.a x, y ∈ dom(Λ) ⇒ actΛ(x) = a ∧ actΛ(y) = a ∧ a �= τ
1.b ρ = mgu({(nΛ(x))σ = (nΛ(y))σ} ∪ {zσ = wσ|zπ = wπ}) where ρ maps

names to representatives in Γσ whenever possible

1.c Λ′(z) =

⎧
⎨

⎩

(τ, 〈〉) if z = x ∧ x, y ∈ dom(Λ)
(Λ(w))σρ if ∃w ∈ dom(Λ).wσ = z
undefined otherwise

1.d π′ = ρ|Γσ
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1.e U = (Φσρ) \ Φ′

(res-M)
Γ, x � G1

Λ,π−−→ Φ � G2

Γ � νx G1
Λ|Γ ,π|Γ−−−−−→ Φ′ � νZ G2

where:

2.a (∃y ∈ Γ.xπ = yπ) ⇒ xπ �= x
2.b actΛ(x) undefined ∨ actΛ(x) = τ
2.c Z = {x} if x /∈ n(Λ|Γ ), Z = ∅ otherwise

(new-M)
Γ � G1

Λ,π−−→ Φ � G2

Γ, x � G1
Λ,π−−→ Φ, x � G2

where x /∈ Γ ∪ Φ.

Rule (prod-M) says that productions are the basic transitions, and it allows them
to be bijectively renamed. Rule (par-M) accounts for the parallel evolution of
two disjoint components of a graph. Rule (merge-M) deals with synchronization
and allows to merge two nodes x and y into a unique node x (represented by
the substitution σ = {x/y}) provided that actions performed on x and y are
complementary (if they are both defined). The result of such an interaction is
represented by the action τ over the node x (see the definition of Λ′ in side-
condition 1.c). The effect of merging two nodes is also reflected by the renaming
π′. Note that in addition to the original renaming π, π′ should reflect that (i)
x and y have been merged (second operand of the set union expression in side-
condition 1.b) and (ii) the names communicated by the action performed on x
are fused with the names communicated by the action on y (first operand of
the set union expression in side-condition 1.b). Then, the obtained ρ and π′ are
applied to the names in the transition label Λ, to the obtained graph G2, and
to the set Φ of free names of G2. Moreover, νU binds the names that occur free
in G2 but are not in Φ′. This is analogous to the rule close of π-calculus. Rule
(res-M) allows to bind a node x whenever no action is performed on it or a τ
action is performed. Finally, rule (new-M) allows to introduce a free isolated
node x to both the left- and right-hand-side graphs of the transition.

Example 3. The ring-to-star reconfiguration transition in Example 2 can be de-
rived from the production:

x, y � R(x, y)
(x,in1,〈w〉),(y,out1,〈w〉)−−−−−−−−−−−−−−−→ x, y, w � S(w, x)

using the inference rules assuming in1 = out1. For each node, we will have a
synchronization between the actions in1 and out1, which will also merge the
nodes w belonging to different productions (actually, nodes w are renamed by
(prod-M) in order to make rule (par-M) applicable).
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The following lemma shows that derivations of SHR transitions can be normal-
ized to some extent.

Lemma 1. Suppose to have a derivation for an SHR transition. Then the same
transition can be derived using a normalized derivation where no rule different
from (res-M) is applied after any application of rule (res-M), i.e. all applications
of (res-M) are at the end of the derivation.

Proof. This is a consequence of the fact that structurally equivalent graphs have
the same transitions, see e.g. [14].

4 Zero-Safe Fusion Calculus

In this section we introduce Zero-Safe Fusion (ZS Fusion), which extends Fu-
sion Calculus [4,9] with a transaction mechanism inspired by the Zero-Safe Petri
nets [7]. At the syntactic level we introduce a new form of prefixes, called trans-
actional prefixes, which are composed by several standard prefixes that are ex-
ecuted as a unique action. Transactional prefixes are a general version of the
join prefixes introduced by the Join calculus [15] and adopted by the General
Rendezvous Calculus (GRC) [16]. The main difference is that our proposal allows
for output and fusion actions inside join prefixes, while Join and GRC do not.
Moreover, all actions occurring in a transactional prefix can be executed concur-
rently. This is the main difference of ZS Fusion with respect to other proposals
appeared in the literature [17,18], in which transactional prefixes are sequences
of basic actions.

4.1 Syntax

ZS Fusion agents are analogous to Fusion agents introduced by Definition 1,
while sequential agents have the following form:

S : : =
∑

i

βi.Pi (Guarded sum) where β is β : : =∧iαi (Transaction)

The prefix ∧iαi stands for the transactional execution of several standard
prefixes αi. Normal prefixes are recovered as transactional prefixes containing
just one component. Thus, we use α1.P as a shorthand for ∧i∈{1}αi.P . We also
use ∧.P as a shorthand for ∧i∈∅αi.P .

In addition to the static syntax, we use the production below as run-time
syntax to provide the operational semantics of the calculus.

S : : =〈β〉.P (Partial transaction)

where the prefix 〈β〉 denotes a started transaction that has to execute β to
complete. We write 〈〉.P as a shorthand for 〈∧i∈∅αi〉.P .

Processes are agents up-to the structural congruence in Definition 2.
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A sequential process S is stable if it has the form
∑

i βi.Pi or 〈〉.P , i.e., all
partial transactional prefixes are empty. A sequential process S is static if it has
the form

∑
i βi.Pi. A process P is stable (resp. static) when all its sequential

subprocesses are stable (resp. static).
Given a stable process P , P̃ denotes the static process obtained from P by

removing all prefixes of the form 〈〉. Formally,

〈̃〉.P = P P̃1|P2 = P̃1|P̃2 (̃x)P = (x)P̃ P̃ = P otherwise

4.2 Operational Semantics

We define the operational semantics of the ZS Fusion Calculus in two steps: first,
we define a small-step behavior, and then we provide the transactional behavior
of the calculus in terms of the small-steps.

Transactions require a few constraints to be satisfied:

1. the starting and final processes of each transaction must be static: this en-
sures that each transactional prefix has been completely executed;

2. there can be at most one communication/synchronization on each channel
during each transaction: intuitively this means that channels are resources
that cannot be shared, thus during each transaction only one process or a
pair of interacting processes can use them;

3. fusions produced inside a transaction should be applied only when the trans-
action ends: on one side, this corresponds to the fact that tokens produced by
a Zero-Safe transaction are available only at the end of the transaction and,
on the other side, this ensures that the order in which elementary actions
are executed inside a transaction is irrelevant.

In order to satisfy conditions 2 and 3, we define the small-step semantics only
for processes without restriction, while we take restrictions into account when
computing transactions. This is necessary since restrictions force the application
of fusions, which is against condition 3. Notice also that α-conversion of bound
names would make the checking of condition 2 more complex.

The small-step semantics exploits the labels below:

γ : : =u�x | u�x | {�x = �y} | γ ∧ γ

We write ∅ for the empty substitution and we consider ∅ as the neutral element
for ∧.

The first three labels are standard Fusion labels for input, output and fusions,
while the last one is the label for transactions. Given an action γ, subj (γ) is the
set of channels over which the actions in γ are taking place. Similarly obj (γ) is
the set of objects. They are defined as follows, where Set(�x) is the set of names
in �x.

subj (u�x) = {u} subj (u�x) = {u}
subj ({�x = �y}) = ∅ subj (γ1 ∧ γ2) = subj (γ1) ∪ subj (γ2)

obj (u�x) = Set(�x) obj (u�x) = Set(�x)
obj ({�x = �y}) = ∅ obj (γ1 ∧ γ2) = obj (γ1) ∪ obj (γ2)
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(Start)

subj (αi) � α1 ∧ . . . ∧ αn.P
αi−→ 〈α1 ∧ . . . ∧ αi−1 ∧ αi+1 ∧ . . . ∧ αn〉.P

(Pref)

subj (αi) � 〈α1 ∧ . . . ∧ αn〉.P αi−→ 〈α1 ∧ . . . ∧ αi−1 ∧ αi+1 ∧ . . . ∧ αn〉.P

(Empty)

∅ � ∧.P
∅−→ 〈〉.P

(Sum)

Γ � P
γ−→ P ′

Γ � P + Q
γ−→ P ′

(Par)

Γ � P
γ−→ P ′

Γ � P |Q γ−→ P ′|Q
(Com)

Γ � P
u�x−−→ P ′ Γ � Q

u�y−−→ Q′ |�x| = |�y|

Γ � P |Q {�x=�y}−−−−→ P ′|Q′

(Seq)

Γ � P
γ1−→ P ′′ Γ ′ � P ′′ γ2−→ P ′ Γ ∩ Γ ′ = ∅

Γ ∪ Γ ′ � P
γ1∧γ2−−−−→ P ′

Fig. 2. Small-step semantics for Zero-Safe Fusion

We also define the following auxiliary functions to work with labels:

subst(u�x) = ∅ subst(u�x) = ∅
subst({�x = �y}) = {�x = �y} subst(γ1 ∧ γ2) = subst(γ1) ∪ subst(γ2)

comm(u�x) = {u�x} comm(u�x) = {u�x}
comm({�x = �y}) = ∅ comm(γ1 ∧ γ2) = comm(γ1) ∪ comm(γ2)

The small-step semantics is defined by the labeled transition system in Fig-
ure 2. Rules are quite standard. The key point is that the set Γ records channels
involved in the action γ. Note that sequential composition is allowed only when
the actions take place over different channels. Rule (Empty) allows to execute
empty transactions.

Labels for transactional semantics have the form (Y )S, φ where Y is the set
of extruded names, S is a set of input/output actions x�y or x�y and φ is a fusion.
We drop (Y ) if Y is empty.

Given a fusion φ we define φ \ z as (φ ∩ ((N \ {z}) × (N \ {z}))) ∪ {(z, z)}.
We extend to labels the notions of free and bound names (the names in a fusion
are those names belonging to non-singleton equivalence classes).

Transactional semantics is defined by the labeled transition system in Figure 3.
Rule (Cmt) states that a transactional step is a small-step among two stable
processes. Rule (Scope) allows to bind a name z belonging to a non-trivial
equivalence class induced by φ (and not occurring as a subject in S). Name z is
renamed by an equivalent name x both in the label and in the resulting process.
The remaining rules are the usual ones.

The following definition introduces a notion of decomposition of Fusion proc-
esses that will be used in the following sections.

Definition 7. The standard decomposition of a process P is defined as:

P = P̂ σP
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(Cmt)

Γ � P
γ−→ P ′ P and P ′ stable

P
(comm(γ),subst(γ))

=============⇒ �P ′

(Scope)

P
(Y )S,φ

=====⇒ P ′, zφx, z = x, z /∈ subj (S)

(z)P
(Y )S{x/z},φ\z

==========⇒ P ′{x/z}
(Pass)

P
λ

==⇒ P ′, z /∈ fn(λ)

(z)P
λ

==⇒ (z)P ′

(Open)

P
(Y )S,φ

=====⇒ P ′, z ∈ obj (S) \ Y, z /∈ subj (S), z /∈ fn(φ)

(z)P
(Y ∪{z})S,φ

========⇒ P ′

(Struct)

P
λ

==⇒ P ′ P ≡ Q P ′ ≡ Q′

Q
λ

==⇒ Q′

Fig. 3. Transactions for Zero-Safe Fusion

where σP is the standard substitution and P̂ is the standard process of P .
This decomposition satisfies:

P = Qσ implies P̂ = Q̂ ∧ σP = σQσ

We denote with fnarray(P ) the array of the free name occurrences in P , ordered
according to some fixed order dictated by the structure of (a suitable normal form
w.r.t ≡ of) P . In particular σP = {fnarray(P )/fnarray(P̂ )}.

The following propositions about small-steps will be used for studying prop-
erties of transactions in ZS Fusion.

Proposition 1. If Γ � P
γ1∧γ2−−−−→ P ′′ then there exists P ′ such that Γ ′ � P

γ1−→
P ′ and Γ ′′ � P ′

γ2−→ P ′′ with Γ ′ ∪ Γ ′′ = Γ .

Proposition 2. If Γ � P
γ1∧γ2−−−−→ P ′ then Γ � P

γ2∧γ1−−−−→ P ′.

Proposition 3. If Γ � P
γ1∧(γ2∧γ3)−−−−−−−→ P ′ then Γ � P

(γ1∧γ2)∧γ3−−−−−−−→ P ′.

Because of the propositions above from now on we will consider labels up to
associativity and commutativity of ∧.

Proposition 4. Given a process P = 〈β〉.Q or P = β.Q. If Γ � P
γ−→ P ′ with

P ′ stable, then

1. γ = β and P ′ = 〈〉.Q;
2. Γ = {subj(α)|α ∈ comm(γ)}.

Proposition 5. If Γ � P
γ−→ Q, then

1. subj (αi) �= subj (αj) for all αi, αj ∈ comm(γ) with i �= j.
2. {subj(α)|α ∈ comm(γ)} ⊆ Γ .
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Notice that in the proposition above we may have {subj(α)|α ∈ comm(γ)} � Γ
since names on which a synchronization is performed are in the right-hand-side
but not in the left-hand-side.

In order to state the proposition below we introduce the following notation:
Γ � P

γ−→ε P ′ stands for either Γ � P
γ−→ P ′ or P = P ′, with empty Γ and γ.

Proposition 6. If Γ � P1|P2
γ−→ε Q with Q stable, then Γ1 � P1

γ1−→ε Q1 and
Γ2 � P2

γ2−→ε Q2 with:

1. Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = subj (γ1) ∩ subj (γ2);
2. γ = γ1|D ∧ γ2|D ∧ Fγ1|γ2 where

D = Γ \ (subj (γ1) ∩ subj (γ2)), γ|D denotes the conjunction of all actions in
γ whose subjects are in D, and Fγ1|γ2 denotes the set of fusions �x = �y such
that a�x ∈ γ1 and a�y ∈ γ2;

3. Q ≡ Q1|Q2.

Proof. If follows by induction on the derivation Γ � P1|P2
γ−→ Q.

The following proposition shows that ZS Fusion transactions are fully deter-
mined by their set of consumed prefixes. We define prefixes βi consumed by a
transaction P

λ==⇒ P ′ as the ones occurring in P but not in P ′. To this end,
one needs to distinguish different occurrences of the same prefix. We will not
formalize this idea, but, roughly, given a process one can assign unique tags to
each prefix, and make transitions to preserve the tag of non-consumed prefixes.

Proposition 7. Let P be a process. If P
λ==⇒ Q and P

λ′
==⇒ Q′ are two transac-

tions consuming the same prefixes (i.e., prefixes with the same tags), then λ = λ′

and Q ≡ Q′.

The following lemma characterizes sets of compatible prefixes, i.e., prefixes that
can be consumed together in a transaction.

Lemma 2. Let P be a process, and consider a transaction that consumes a set
of prefixes S = {βi}i∈I in P . Then for each name x in subj (S) there are two
possibilities:

– x is not bound in P , and it is the subject of exactly one action in S;
– x is the subject of two complementary actions in S.

5 From SHR to Zero-Safe Fusion

This section presents a translation from SHR to ZS Fusion Calculus, i.e., given a
graph Γ � G and a set of productions Prod describing its behavior, we translate
them into a process �Γ � G�g2p together with a set of constant definitions
�Prod�p2c. We also provide an operational correspondence result relating the
original SHR model and its encoding into ZS Fusion.
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Table 2. Translations

Translation From To Section

�•�g2p Graphs Processes 5
�•�p2c Production sets Constant definitions 5
�•�a2p SHR actions Prefixes/labels 5
�•�p2p Productions Processes 5
�•�a2g Agents Graph terms 7
�•�p2a Prefixes SHR actions 7

In order to define the mapping above and the inverse mapping presented in
Section 7, we exploit different translation functions, denoted by �•�π, distin-
guished by their subscript π. To make the presentation clearer we summarize
the used translation functions in Table 2.

In this section we only consider SHR models whose set Act of SHR actions
is such that In contains at most one action for each arity. Consequently, we
use inn to denote the input action of arity n, and outn for the corresponding
output action. In addition, we consider only productions Γ � G

Λ,π−−→ Φ � G′

where π = id and action τ is never used in Λ. We also assume that each SHR
edge is attached to any chosen node at most once. Section 6 shows that these
assumptions are not restrictive.

We assume two bijective mappings: one between SHR nodes and ZS Fusion
names, and the other between SHR edge labels and Fusion constant names. For
simplicity, we will not write these mappings explicitly.

Definition 8 (Translation from graphs to processes). We define the trans-
lation �Γ � G�g2p of a graph Γ � G by induction on the structure of G (we drop
Γ because it is not relevant):

�L(�x)�g2p = L[�x] �G1|G2�g2p = �G1�g2p|�G2�g2p

�νy G�g2p = (y)�G�g2p �nil�g2p = 0

Lemma 3. If G ≡ G′ then �G�g2p ≡ �G′�g2p.

We also need a translation from SHR actions to ZS Fusion prefixes. We overload
the notation using the same translation function also from SHR synchronization
functions Λ to ZS Fusion labels, since it is a straightforward generalization of
the previous one.

Definition 9 (Translation for actions). Basic actions are translated as fol-
lows:
�(x, inn, �y)�a2p = x�y
�(x, outn, �y)�a2p = x�y

The translation of a synchronization function Λ is the set S obtained by trans-
lating all the basic actions in Λ but the ones of the form (x, τ, 〈〉), which are
deleted. With �Λ�a2p we also denote

∧
α∈S α.
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As already mentioned, constant definitions are obtained from productions. In
particular, we produce a constant definition for each edge label L.

Definition 10 (Translation from productions to constants). Let L be a
label and let ProdL be the set of non-idle productions for L. We can assume
that all the productions in ProdL have the same left-hand-side L(x1, . . . , xn)
(this can be guaranteed up to α-conversion). Then, the translation of ProdL

gives the following definition:

L[x1, . . . , xn] �
∑

Pr∈ProdL

�Pr�p2p

where the translation of a single production is:

�Γ � L(x1, . . . , xn) Λ−→ Γ ′ � G�p2p = (Y ′)(
∧

l∈Λ

�l�a2p).�Γ ′ � G�g2p

where Y ′ = Γ ′ \ Γ . To be precise the translation above does not produce ZS
Fusion processes, since one can have restrictions just below sums, but one can
easily move them outside to have guarded sums.

Example 4. The production

x, y � R(x, y)
(x,in1,〈w〉),(y,out1,〈w〉)−−−−−−−−−−−−−−−→ x, y, w � S(w, x)

from Example 3 gives rise to the following constant definition:

R[x, y] � νw (xw ∧ yw).S[w, x]

If we consider also a production:

x, y � R(x, y) −→ x, y � νz R(x, z)|R(z, y)

then the constant definition becomes:

R[x, y] � νw, z (xw ∧ yw).S[w, x] + ∧.(R(x, z)|R(z, y))

We describe now the relation between the possible evolutions of a graph Γ � G
and the computations of �Γ � G�g2p. Roughly, there is a bijective correspondence
between transitions of Γ � G and transactions of �Γ � G�g2p. Nevertheless,
the two models handle fusions differently: transactions in ZS Fusion apply the
computed fusion φ to restricted names only, and propagate the remaining part,
while SHR transitions apply the substitution π (i.e., an mgu of φ) immediately
to both the obtained graph and the objects of performed actions. We introduce
the notation S � π to indicate that the substitution π is applied only to the
objects of the actions in S. We also write open(P ) to denote the set of processes
obtained from P by removing all restrictions (this is a set since bound names
are α-convertible; we assume however that distinct names are kept distinct).

We start the proof of operational correspondence by stating the following
lemma that deals with small-step transitions.
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Lemma 4. For each graph Γ � G without restriction operator and each set of
productions Prod, if there is an SHR transition Γ � G

Λ,π−−→ Φ � G′ then for
each P ′ ∈ open(�G�g2p) there is a small-step P ′

γ−→ P such that π is an mgu of
subst(γ), �Λ�a2p = comm(γ)�π and P̃ π ∈ open(�G′�g2p).

Proof. The proof is by induction on the derivation of the SHR transition.

Theorem 1. For each graph Γ � G and each set of productions Prod, there
is an SHR transition Γ � G

Λ,π−−→ Φ � G′ iff there is a ZS Fusion transaction

�G�g2p
(Y )S,φ

=====⇒ P such that π is an mgu of φ, S �π = �Λ�a2p, �G′�g2p = Pπ
and Y = (Φ \ Γ ).

Proof. The only if part is by induction on the derivation of the SHR transition
exploiting Lemma 4. The if part exploits Lemma 2 and Lemma 7.

Example 5 (Ring to star). We can now apply the translation to the ring-to-star
reconfiguration in Example 2. We remember that the final transition is:

x � νy, z R(x, y)|R(y, z)|R(z, x)
(x,τ,〈〉)−−−−−→ x � νx, y, w S(w, x)|S(w, y)|S(w, z)

In the ZS Fusion setting we have:

�x � νy, z R(x, y)|R(y, z)|R(z, x)�g2p = (yz) R[x, y]|R[y, z]|R[z, x]

We also have the following constant definition:

R[x, y] � νw (xw ∧ yw).S[w, x]

Thus, the starting process is structural congruent to:

(w1w2w3yz) (xw1 ∧ yw1).S[w1, x]|(yw2 ∧ zw2).S[w2, y]|(zw3 ∧ xw3).S[w3, z]

The only small step that can be lifted to a transaction is:

(xw1 ∧ yw1).S[w1, x]|(yw2 ∧ zw2).S[w2, y]|(zw3 ∧ xw3).S[w3, z]
{w1=w2=w3}−−−−−−−−−→ 〈〉.S[w1, x]|〈〉.S[w2, y]|〈〉.S[w3, z]

By applying rule (Cmt) and rule (Pass) twice, we derive:

(yz)(xw1 ∧ yw1).S[w1, x]|(yw2 ∧ zw2).S[w2, y]|(zw3 ∧ xw3).S[w3, z]
{w1=w2=w3}=========⇒ (yz)S[w1, x]|S[w2, y]|S[w3, z]

Finally, we can apply rule (Scope) twice and rule (Pass) for deriving:

(w1w2w3yz)(xw1 ∧ yw1).S[w1, x]|(yw2 ∧ zw2).S[w2, y]|(zw3 ∧ xw3).S[w3, z]
∅==⇒ (w1yz)S[w1, x]|S[w1, y]|S[w1, z]

which is the desired transaction.



90 I. Lanese and H. Melgratti

6 About Assumptions

This section is devoted to discuss the assumptions made in the previous section,
in particular:

1. there is at most one SHR input action for each arity;
2. each edge is attached to any chosen node at most once;
3. in all SHR productions, the substitution π is the identity and action τ is

never used.

The discussions below, and the first one in particular, besides justifying the
assumptions made to simplify the mapping, highlight some properties of SHR.

6.1 Simulating Multiple Actions

SHR, contrary to common nominal calculi that have prefixes of the form x�y,
featuring only the subject and the objects, has prefixes of the form xa�y including
also an action a. We show below that while having actions is very handy from the
specification point of view since it allows for much more compact specifications, it
does not change the expressive power. Notice that the simulation of many actions
exploits multiparty synchronizations, and could not be done in such a way e.g. in
Fusion Calculus. Notice also that prefixes of different arities behave in different
ways also in Fusion Calculus, thus having no actions actually corresponds in
SHR to have at most one action for each arity.

To show that the introduction of multiple actions does not change the expres-
sive power, we show that any Milner SHR model can be mapped into a Milner
SHR model where any two input actions have different arities preserving the
original behavior.

The mapping works as follows. Suppose we have n input actions denoted by ai

with i ∈ {1, . . . , n}, and their corresponding output actions. We consider a map-
ping that translates any node x into a tuple of n+1 nodes written x, x1, . . . , xn.
For instance, if we have two input actions a1 and a2 with arity 1 then the graph
x, y � L(x, y) is translated into x, x1, x2, y, y1, y2 � L(x, x1, x2, y, y1, y2). Then,
performing an action an over the node x is translated as the execution of the
unique action a on both xn and x, where x is used for mutual exclusion. The
same parameters, that are the translation of the original ones, are sent on both
channels.

We denote the translation function defined above by �•�n21, and we consider
its trivial extension to SHR productions.

Example 6. The transition x, y � L(x, y)
(x,a1,〈y〉)−−−−−−→ x, y � L(x, x) is translated

into:

x, x1, x2, y, y1, y2 � L(x, x1, x2, y, y1, y2)
(x,a,〈y,y1,y2〉),(x1,a,〈y,y1,y2〉)−−−−−−−−−−−−−−−−−−−→

x, x1, x2, y, y1, y2 � L(x, x1, x2, x, x1, x2)
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The following theorem states the behavioral correspondence between the two
models.

Theorem 2. The transition Γ � G
Λ,π−−→ Φ � G′ can be derived using produc-

tions in Prod iff �Γ � G�n21
�Λ�n21,�π�n21−−−−−−−−−→ �Φ � G′�n21 can be derived using

productions in �Prod�n21.

Proof. By induction on the derivation Γ � G
Λ,π−−→ Φ � G′.

6.2 Each Edge is Attached to Any Chosen Node at Most Once

This is the most important assumption that we have made. Notice that such a
restriction is not preserved by general SHR transitions. Nevertheless, we require
this condition in order to simplify the definition of the encoding presented in
Section 5. This restriction avoids the following mismatch: actions belonging to
the same prefix in a ZS Fusion process are executed sequentially and, hence,
they cannot interact with each other, while two actions in the same SHR pro-

duction can interact. For instance, the production x, y � L(x, y)
(x,a,〈〉),(y,a,〈〉)−−−−−−−−−−→

x, y � L(x, y) may be applied to the edge L(x, x) for deriving the transition

x � L(x, x)
(x,τ,〈〉)−−−−−→ x � L(x, x).

Nevertheless, we can model the above system by avoiding non linear attach-
ments as follows. We represent the edge L(x, y) by using two different edges
L1(x, w) and L2(y, w), whose corresponding productions are:

x, w � L1(x, w)
(x,a,〈〉),(w,b,〈〉)−−−−−−−−−−→ x, y � L1(x, w)

y, w � L2(y, w)
(y,a,〈〉),(w,b,〈〉)−−−−−−−−−−→ x, y � L2(y, w)

Note that we use a new auxiliary action b for synchronizing the rewritings of
L1 and L2. Then, the initial graph x, y � L(x, y) can be simulated by the graph
x, y � νw (L1(x, w)|L2(y, w)). Consequently, we can simulate the transition x �
L(x, x)

(x,τ,〈〉)−−−−−→ x � L(x, x) with the following one:

x � νw (L1(x, w)|L2(x, w))
(x,τ,〈〉)−−−−−→ x � νw (L1(x, w)|L2(x, w))

6.3 No Non-trivial Renamings Nor τ Actions in SHR Productions

Requiring substitutions appearing in SHR productions to be the identity does
not affect the expressive power, since it is almost folklore that in SHR arbitrary
idempotent substitutions can be generated by adding a synchronization on a
private node z. Analogously, a τ action on a node can be generated by perform-
ing two complementary actions on the node itself. Thus one can use a simple
encoding to map SHR models with arbitrary substitutions and τ actions onto
models without them.
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7 From Zero-Safe Fusion to SHR

We extend the approach followed in [6] for translating Fusion processes into SHR
graphs. Basically, every sequential agent is encoded as a graph containing exactly
one edge, whose label corresponds to the sequential agent renamed so to use only
standard names. To this end, we exploit the notion of standard decomposition
introduced by Definition 7.

Definition 11 (Translation of ZS Fusion agents). The translation � �a2g

from Fusion agents to graph terms is defined as follows:

– �0�a2g = nil
– �S�a2g = LP̂ (fnarray(P )), where P is the process corresponding to the se-

quential agent S.
– �P1|P2�a2g = �P1�a2g |�P2�a2g

– �(x)P �a2g = νx �P �a2g

– �C[�v]�a2g = �P{�v/�x}�a2g, if C[�x] �P

Lemma 5. P1 ≡ P2 ⇒ �P1�a2g ≡ �P2�a2g.

Note that a sequential agent
∑

i βi.Pi is translated as a graph �
∑

i βi.Pi�a2g, con-
taining just one edge. Then, we define the set of SHR productions corresponding
to a ZS Fusion process by defining the behavior of each edge. The following
auxiliary definition provides a mapping for communication actions.

Definition 12 (Translation of communication actions). Communication
actions are translated as follows:

– �u�x�p2a = (inn, �x) where n = |�x|
– �u�x�p2a = (outn, �x) where n = |�x|

The productions corresponding to a particular sequential agent are defined as
follows.

Definition 13 (Productions for a ZS Fusion agent). Let S =
∑

i βi.Pi be a
sequential agent and Γ = fn(S) the set of free names in S. The set of productions
PS associated with S contains the following rules (one for each possible i).

Γ � �
∑

i

βi.Pi�a2g

Λβi
� πβi

,πβi−−−−−−−−−→ Γπβi � �Piπβi�a2g

where

Λβi(x) =
{

�α�p2a if α ∈ comm(βi) and subj (α) = x
undefined otherwise

and πβi is an mgu of subst(βi).

Lemma 6. Let P be a ZS Fusion process and σ a renaming. Then �P �a2gσ =
�Pσ�a2g.
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The remaining of this section is devoted to show the completeness and soundness
of the encoding. The following lemma states the completeness of the encoding
for small-steps.

Lemma 7. Let P be a static ZS Fusion process. If Δ � P
γ1−→ P ′′ and Δ′ �

P ′′
γ2−→ε P ′ where P ′ is stable and Δ ∩ Δ′ = ∅, then for each Γ ⊇ fn(P ) and for

each mgu π of subst(γ1 ∧ γ2):

Γ � �P �a2g
Λ � π,π−−−−−→ Γπ � �P̃ ′π�a2g

where

Λ(x) =

{ �α�p2a if α ∈ comm(γ1 ∧ γ2) and subj (α) = x
(τ, 〈〉) if x ∈ Δ ∪ Δ′ and � ∃α ∈ comm(γ1 ∧ γ2) with subj (α) = x
undefined otherwise

Proof. By induction on the derivation Δ � P
γ1−→ P ′′.

The completeness of the encoding considering ZS transactions and SHR transi-
tions is stated by the following theorem.

Theorem 3. Let P be a static ZS Fusion process. If P
(Y )S,φ

=====⇒ P ′, then for
each Γ ⊇ fn(P ) and for each π mgu of φ:

Γ � �P �a2g
Λ � π,π−−−−−→ Γπ � �P̃ ′π�a2g

where

Λ(x) =

{
�α�p2a if α ∈ S and subj (α) = x
undefined or (τ, 〈〉) otherwise

Proof. By induction on the derivation P
(Y )S,φ

=====⇒ P ′, using Lemma 7.

The following results show the soundness of the encoding.

Lemma 8. Let P be a static ZS Fusion process without restrictions. If Γ �
�P �a2g

Λ,π−−→ Φ � G with fn(P ) ⊆ Γ , then Δ � P
γ−→ P ′, with G = �P̃ ′π�a2g,

Φ = Γπ, π is an mgu of subst(γ), and Λ = Λ′�π where

Λ′(x) =

{
�α�p2a if α ∈ comm(γ) and subj (α) = x
(τ, 〈〉) if x ∈ Δ and � ∃α ∈ comm(γ) with subj (α) = x
undefined otherwise

Proof. By induction on the derivation Γ � �P �a2g
Λ,π−−→ Φ � G.
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Theorem 4. Let P be a static ZS Fusion process. If Γ � �P �a2g
Λ,π−−→ Φ � G

with fn(P ) ⊆ Γ , then P
(Y )S,φ

=====⇒ P ′, with G = �P̃ ′π�a2g, Φ = (Γπ ∪ {Y }), π is
an mgu of φ, and Λ = Λ′�π where

Λ′(x) =

{
�α�p2a if α ∈ S and subj (α) = x
undefined or (τ, 〈〉) otherwise

Proof. By induction on Γ � �P �a2g
Λ,π−−→ Φ � G, using Lemma 8.

8 Conclusion

We have shown the strict relationship between SHR and ZS Fusion Calculus, in
particular highlighting how synchronous multiparty synchronizations can be im-
plemented using binary synchronizations and a transactional mechanism. This
can be used as a starting point to provide a distributed implementation of SHR.
We leave for future work the analysis of the relationships between SHR and ZS
Fusion from an observational point of view, instead of the operational one con-
sidered here. Actually, there are some differences between the observations that
can be done on SHR and on ZS Fusion, e.g. because of the different treatment of
substitutions and because of τ actions, thus the observational relation between
the two models is not straightforward.

Other possible lines for future work are the analysis of the expressive power
and usability of ZS Fusion calculus, and its comparison with other transactional
frameworks such as, e.g., CJoin [19], πt [20], and Webπ [21]. The transactional
mechanism of ZS Fusion is quite minimal and more in the ACID transactions
style, thus it would be interesting to compare it with the calculi above that
exploit the compensation approach.
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Abstract. Reconfigurable place/transition systems are Petri nets with initial
markings and a set of rules which allow the modification of the net during runtime
in order to adapt the net to new requirements. For the transformation of Petri nets
in the double pushout approach, the categorical framework of adhesive high-level
replacement systems has been instantiated to Petri nets. In this paper, we show
that also place/transition systems form a weak adhesive high-level replacement
category. This allows us to apply the developed theory also to tranformations
within reconfigurable place/transition systems.

1 Introduction

Petri nets are an important modeling technique to describe discrete distributed systems.
Their nondeterministic firing steps are well-suited for modeling the concurrent behavior
of such systems. The formal treatment of Petri nets as monoids by Meseguer and Mon-
tanari in [1] has been an important step for a rigorous algebraic treatment and analysis
of Petri nets which is also used in this paper.

As the adaptation of a system to a changing environment gets more and more impor-
tant, Petri nets that can be transformed during runtime have become a significant topic in
recent years. Application areas cover e.g. computer supported cooperative work, multi
agent systems, dynamic process mining and mobile networks. Moreover, this approach
increases the expressiveness of Petri nets and allows for a formal description of dynamic
changes.

In [2], the concept of reconfigurable place/transition (P/T) systems was introduced
for modeling changes of the net structure while the system is kept running. In detail, a
reconfigurable P/T system consists of a P/T system and a set of rules, so that not only
the follower marking can be computed but also the net structure can be changed by rule
application. So, a new P/T system is obtained that is more appropriate with respect to
some requirements of the environment. Moreover, these activities can be interleaved. In
[3], the conflict situation of transformation and token firing has been dealt with. In this
paper, we give the formal foundation for transformations of P/T systems.

For rule-based transformations of P/T systems we use the framework of adhesive
high-level replacement (HLR) systems [4, 5] that is inspired by graph transformation
systems [6]. Adhesive HLR systems have been recently introduced as a new categor-
ical framework for graph transformation in the double pushout approach [4, 5]. They

� This work has been partly funded by the research project ��� MA�NET of the German Research
Council (see http://tfs.cs.tu-berlin.de/formalnet/).

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 96–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Transformations in Reconfigurable Place/Transition Systems 97

combine the well-known framework of HLR systems with the framework of adhesive
categories introduced by Lack and Sobociński [7]. The main concept behind adhesive
categories are the so-called van Kampen squares. These ensure that pushouts along
monomorphisms are stable under pullbacks and, vice versa, that pullbacks are stable
under combined pushouts and pullbacks. In the case of weak adhesive HLR categories,
the class of all monomorphisms is replaced by a subclass M of monomorphisms closed
under composition and decomposition, and for the van Kampen properties certain mor-
phisms have to be additionally M-morphisms.

In this paper, we present the formal foundations for transformations of nets with
markings. We show that the category of P/T systems is a weak adhesive HLR cate-
gory which allows the application of the developed theory also to tranformations within
reconfigurable P/T systems. This theory comprises many results concerning the applica-
bility of rules, the embedding and extension of transformations, parallel and sequential
dependence and independence, and concurrency of rule applications, and hence gives
precise notions for concurrent or conflicting situations in reconfigurable P/T systems.
Our work is illustrated by an example in the area of mobile emergency scenarios.

This paper is organized as follows. In Section 2, we introduce weak adhesive HLR
categories and adhesive HLR systems. The notion of reconfigurable P/T systems is
presented in Section 3. In Section 4, we show that the category PTSys used for recon-
figurable P/T systems is a weak adhesive HLR category. Finally, we give a conclusion
and outline related and future work in Section 5.

2 Adhesive HLR Categories and Systems

In this section, we give a short introduction to weak adhesive HLR categories and sum-
marize some important results for adhesive HLR systems (see [4]) which are based on
adhesive categories introduced in [7].

The intuitive idea of an adhesive or (weak) adhesive HLR category is a category with
suitable pushouts and pullbacks which are compatible with each other. More precisely,
the definition is based on so-called van Kampen squares.

The idea of a van Kampen (VK) square is that of a pushout which is stable under pull-
backs, and vice versa that pullbacks are stable under combined pushouts and pullbacks.

Definition 1 (van Kampen square). A pushout (1) is a van Kampen square if for any
commutative cube (2) with (1) in the bottom and the back faces being pullbacks it holds
that: the top face is a pushout if and only if the front faces are pullbacks.
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A B

C D
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Not even in the category Sets of sets and functions each pushout is a van Kampen
square. Therefore, in (weak) adhesive HLR categories only those VK squares of Def.
1 are considered where m is in a class M of monomorphisms. A pushout (1) with
m ∈ M and arbitrary f is called a pushout along M.

The main difference between (weak) adhesive HLR categories as described in [4, 5]
and adhesive categories introduced in [7] is that a distinguished class M of
monomorphisms is considered instead of all monomorphisms, so that only pushouts
along M-morphisms have to be VK squares. In the weak case, only special cubes are
considered for the VK square property.

Definition 2 ((weak) adhesive HLR category). A category C with a morphism class
M is a (weak) adhesive HLR category, if

1. M is a class of monomorphisms closed under isomorphisms, composition (f :
A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M) and decomposition (g ◦ f ∈
M, g ∈ M ⇒ f ∈ M),

2. C has pushouts and pullbacks along M-morphisms and M-morphisms are closed
under pushouts and pullbacks,

3. pushouts in C along M-morphisms are (weak) VK squares.

For a weak VK square, the VK square property holds for all commutative cubes with
m ∈ M and (f ∈ M or b, c, d ∈ M) (see Def. 1).

Remark 1. M-morphisms closed under pushouts means that given a pushout (1) in
Def. 1 with m ∈ M it follows that n ∈ M. Analogously, n ∈ M implies m ∈ M for
pullbacks.

The categories Sets of sets and functions and Graphs of graphs and graph morphisms
are adhesive HLR categories for the class M of all monomorphisms. The categories
ElemNets of elementary nets and PTNet of place/transition nets with the class
M of all corresponding monomorphisms fail to be adhesive HLR categories, but they
are weak adhesive HLR categories (see [8]). Elementary Petri nets, also called condi-
tion/event nets, have a weight restricted to one, while place/transition nets allow arbi-
trary finite arc weights. Instead of the original set theoretical notations used in [9, 10] we
have used in [4] a more algebraic version based on power set or monoid constructions
as introduced in [1].

Now we are able to generalize graph transformation systems, grammars and lan-
guages in the sense of [11, 4].

In general, an adhesive HLR system is based on rules (or productions) that describe
in an abstract way how objects in this system can be transformed. An application of a
rule is called a direct transformation and describes how an object is actually changed
by the rule. A sequence of these applications yields a transformation.

Definition 3 (rule and transformation). Given a (weak) adhesive HLR category

(C, M), a rule prod = (L l← K
r→ R) consists of three objects L, K and R called left

hand side, gluing object and right hand side, respectively, and morphisms l : K → L,
r : K → R with l, r ∈ M.
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Given a rule prod = (L l← K
r→ R) and an object G with a morphism m : L → G,

called match, a direct transformation G
prod,m
=⇒ H from G to an object H is given by the

following diagram, where (1) and (2) are pushouts. A sequence G0 =⇒ G1 =⇒ ... =⇒
Gn of direct transformations is called a transformation and is denoted as G0

∗=⇒ Gn.

L K R

G D H

l r

f g

m k n(1) (2)

An adhesive HLR system AHS = (C, M, RULES) consists of a (weak) adhesive
HLR category (C, M) and a set of rules RULES.

Remark 2. Note that given a rule prod and a match m pushout (1) is constructed as the
pushout complement, which requires a certain gluing condition to be fulfilled.

3 Reconfigurable P/T Systems

In this section, we formalize reconfigurable P/T systems as introduced in [2]. As net
formalism we use P/T systems following the notation of “Petri nets are Monoids”
in [1].

Definition 4 (P/T system). A P/T net is given by PN = (P, T, pre, post) with places
P , transitions T , and pre and post domain functions pre, post : T → P⊕.

A P/T system PS = (PN, M) is a P/T net PN with marking M ∈ P⊕.

P⊕ is the free commutative monoid over P . The binary operation ⊕ leads to the monoid
notation, e.g. M = 2p1 ⊕ 3p2 means that we have two tokens on place p1 and three
tokens on p2. Note that M can also be considered as a function M : P → N, where
only for a finite set P ′ ⊆ P we have M(p) ≥ 1 with p ∈ P ′. We can switch between
these notations by defining

∑
p∈P M(p) · p = M ∈ P⊕. Moreover, for M1, M2 ∈ P⊕

we have M1 ≤ M2 if M1(p) ≤ M2(p) for all p ∈ P . A transition t ∈ T is M -enabled
for a marking M ∈ P⊕ if we have pre(t) ≤ M , and in this case the follower marking

M ′ is given by M ′ = M � pre(t) ⊕ post(t) and (PN, M) t−→ (PN, M ′) is called
a firing step. Note that � is the inverse of ⊕, and M1 � M2 is only defined if we have
M2 ≤ M1.

In order to define rules and transformations of P/T systems we introduce P/T mor-
phisms which preserve firing steps by Condition (1) below. Additionally they require
that the initial marking at corresponding places is increasing (Condition (2)) or equal
(Condition (3)).

Definition 5 (P/T Morphism). Given P/T systems PSi = (PNi, Mi) with PNi =
(Pi, Ti, prei, posti) for i = 1, 2, a P/T morphism f : (PN1, M1) → (PN2, M2) is
given by f = (fP , fT ) with functions fP : P1 → P2 and fT : T1 → T2 satisfying
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(1) f⊕
P ◦ pre1 = pre2 ◦ fT and f⊕

P ◦ post1 = post2 ◦ fT ,
(2) M1(p) ≤ M2(fP (p)) for all p ∈ P1.

Note that the extension f⊕
P : P⊕

1 → P⊕
2 of fP : P1 → P2 is defined by f⊕

P (
∑n

i=1 ki ·
pi) =

∑n
i=1 ki · fP (pi). (1) means that f is compatible with pre and post domains, and

(2) that the initial marking of PN1 at place p is smaller or equal to that of PN2 at
fP (p).

Moreover, the P/T morphism f is called strict if fP and fT are injective and

(3) M1(p) = M2(fP (p)) for all p ∈ P1.

P/T systems and P/T morphisms form the category PTSys, where the composition
of P/T morphisms is defined componentwise for places and transitions.

Remark 3. For our morphisms we do not always have f⊕
P (M1) ≤ M2. E.g., M1 =

p1 ⊕ p2, M2 = p and fP (p1) = fP (p2) = p implies f⊕
P (M1) = 2p > p = M2, but

M1(p1) = M1(p2) = 1 = M2(p).
P/T Nets and morphisms satisfying (1) form the category PTNet.

Based on the category PTSys and the morphism class Mstrict of all strict P/T mor-
phisms we are now able to define reconfigurable P/T systems. They allow the modifica-
tion of the net structure using rules and net transformations of P/T systems, which are
instantiations of the corresponding categorical concepts defined in Section 2.

Definition 6 (Reconfigurable P/T System). Given a P/T system (PN, M) and a set
RULES of rules, a reconfigurable P/T system is defined by ((PN, M), RULES).

Example 1. We will illustrate the main idea of reconfigurable P/T systems in the area
of a mobile scenario. This work is part of a collaboration with some research projects
where the main focus is on an adaptive workflow management system for mobile ad-hoc
networks, specifically targeted to emergency scenarios 1.

Our scenario takes place in an archaeological disaster/recovery mission: after an
earthquake, a team (led by a team leader) is equipped with mobile devices (laptops
and PDAs) and sent to the affected area to evaluate the state of archaeological sites and
the state of precarious buildings. The goal is to draw a situation map in order to sched-
ule restructuring jobs. The team is considered as an overall mobile ad-hoc network in
which the team leader’s device coordinates the other team members’ devices by provid-
ing suitable information (e.g. maps, sensible objects, etc.) and assigning activities. For
our example, we assume a team consisting of a team leader as picture store device and
two team members as camera device and bridge device, respectively. A typical coop-
erative process to be enacted by a team is shown in Fig. 1 as P/T system (PN1, M1),
where only the team leader and one of the team members are yet involved in activities.

The work of the team is modeled by firing steps. So to start the activities of the camera
device the follower marking of the P/T system (PN1, M1) is computed by firing the
transition Select Building, then the task Go to Destination can be executed etc.

As a reaction to changing requirements, rules can be applied to the net. A rule prod =
((L, ML) l← (K, MK) r→ (R, MR)) is given by three P/T systems and a span of two

1 IST FP6 WORKPAD: http://www.workpad-project.eu

http://www.workpad-project.eu
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Go to Destination

Make Photo

Team Member 1
(camera device)

Team Leader
(picture store device)

Select Building

Matching

(P N1, M1)

Fig. 1. Cooperative process of the team

strict P/T morphisms l and r (see Def. 3). For the application of the rule to the P/T
system (PN1, M1), we additionally need a match morphism m that identifies the left-
hand side L in PN1.

The activity of taking a picture can be refined into single steps by the rule prodphoto,
which is depicted in the top row of Fig. 2. The application of this rule to the net

(PN1, M1) leading to the transformation (PN1, M1)
prodphoto,m

=⇒ (PN2, M2) is shown
in Fig. 2.

To predict a situation of disconnection, a movement activity of the bridge device
has to be introduced in our system. In more detail, the workflow has to be extended by
a task to follow the camera device. For this reason we provide the rule prodfollow de-

picted in the upper row in Fig. 3. Then the transformation step (PN2, M2)
prodfollow,m′

=⇒
(PN3, M3) is shown in Fig. 3.

Summarizing, our reconfigurable P/T system ((PN1, M1), {prodphoto,
prodfollow}) consists of the P/T system (PN1, M1) and the set of rules {prodphoto,
prodfollow} as described above.

Conflicts in Reconfigurable P/T Systems

The traditional concurrency situation in P/T systems without capacities is that two tran-
sitions with overlapping pre domain are both enabled and together require more tokens
than available in the current marking. As the P/T system can evolve in two different ways,
the notions of conflict and concurrency become more complex. We illustrate the situ-
ation in Fig. 4, where we have a P/T system (PN0, M0) and two transitions that are
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Make Photo

Zoom on
damaged part

Capture Scene

Send Photos

Go to DestinationGo to Destination

Zoom on
damaged part

Capture Scene

Send Photos

Make Photo

Select Building

Matching

Go to Destination

Select Building

Matching

Select Building

Matching

(P N1, M1) (P N, M) (P N2, M2)

(R1, MR1
)(K1 , MK1

)(L1, ML1
)

l1

m

r1

Fig. 2. Transformation step (PN1, M1)
prodphoto,m

=⇒ (PN2, M2)

both enabled leading to firing steps (PN0, M0)
t1−→ (PN0, M

′
0) and (PN0, M0)

t2−→
(PN0, M

′′
0 ), and two transformations (PN0, M0)

prod1,m1=⇒ (PN1, M1) and (PN0, M0)
prod2,m2=⇒ (PN2, M2) via the corresponding rules and matches.

The squares (1) . . . (4) can be obtained under the following conditions:

For square (1), we have the usual condition for P/T systems that t1 and t2 need to be
conflict free, so that both can fire in arbitrary order or in parallel yielding the same
marking.

For squares (2) and (3), we require parallel independence as introduced in [3]. Paral-
lel independence allows the execution of the transformation step and the firing step
in arbitrary order leading to the same P/T system. Parallel independence of a transi-
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(P N2, M2) (P N′, M′) (P N3, M3)
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)

l2

m′

r2

Fig. 3. Transformation step (PN2, M2)
prodfollow,m′

=⇒ (PN3, M3)

tion and a transformation is given – roughly stated – if the corresponding transition
is not deleted by the transformation and the follower marking is still sufficient for
the match of the transformation. A detailed formal presentation and analysis of this
case is given in [3].

For square (4), we have up to now no conditions to ensure parallel or sequential ap-
plication of both rules. In this paper, we give these conditions by using results for
adhesive HLR systems (see Section 2).

Note that in our framework it is not possible to reduce the conflicts to the case of
square (4) by implementing the firing steps by rules. This is due to the fact that the rule
morphisms have to be marking strict. Moreover, not only rules but rule schemas would
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Fig. 4. Concurrency in reconfigurable P/T systems

be needed leading to one rule for each kind of transition with n ingoing and m outgoing
arcs.

In [4], the following main results for adhesive HLR systems are shown for weak
adhesive HLR categories:

1. Local Church-Rosser Theorem,
2. Parallelism Theorem,
3. Concurrency Theorem.

The Local Church-Rosser Theorem allows one to apply two graph transformations
G =⇒ H1 via prod1 and G =⇒ H2 via prod2 in an arbitrary order leading to the
same result H , provided that they are parallel independent. In this case, both rules can
also be applied in parallel, leading to a parallel graph transformation G =⇒ H via the
parallel rule prod1 + prod2. This second main result is called the Parallelism Theorem
and requires binary coproducts together with compatibility with M (i.e. f, g ∈ M ⇒
f + g ∈ M). The Concurrency Theorem is concerned with the simultaneous execution
of causally dependent transformations, where a concurrent rule prod1 ∗ prod2 can be
constructed leading to a direct transformation G =⇒ H via prod1 ∗ prod2 (see Ex. 2
in Section 4).

4 P/T Systems as Weak Adhesive HLR Category

In this section, we show that the category PTSys used for reconfigurable P/T sys-
tems together with the class Mstrict of strict P/T morphisms is a weak adhesive HLR
category. Therefore, we have to verify the properties of Def. 2.

First we shall show that pushouts along Mstrict-morphisms exist and preserve
Mstrict-morphisms.

Theorem 1. Pushouts in PTSys along Mstrict exist and preserve Mstrict-
morphisms, i.e. given P/T morphisms f and m with m strict, then the pushout (PO)
exists and n is also a strict P/T morphism.
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PS0 PS1

PS2 PS3

m

n

f g(PO)

Construction. Given P/T systems PSi = (PNi, Mi) for i = 0, 1, 2 and f, m ∈
PTSys with m ∈ Mstrict we construct PN3 as pushout in PTNet, i.e. componen-
twise in Sets on places and transitions. The marking M3 leading to the P/T system
PS3 = (PN3, M3) is defined by

(1) ∀p1 ∈ P1\m(P0): M3(g(p1)) = M1(p1)
(2) ∀p2 ∈ P2\f(P0): M3(n(p2)) = M2(p2)
(3) ∀p0 ∈ P0: M3(n ◦ f(p0)) = M2(f(p0))

Remark 4. Actually, we have M3 = g⊕(M1 � m⊕(M0)) ⊕ n⊕(M2). (2) and (3) can
be integrated, i.e. it is sufficient to define ∀p2 ∈ P2: M3(n(p2)) = M2(p2).

Proof. Since PN3 is a pushout in PTNet with g, n jointly surjective we construct a
marking for all places p3 ∈ P3. (1) and (2) are well-defined because g and n are injective
on P1\m(P0) and P2\f(P0), respectively. (3) is well-defined because for n(f(p0)) =
n(f(p′0)), n being injective implies f(p0) = f(p′0) and hence M2(f(p0)) =
M2(f(p′0)).

First we shall show that g, n are P/T morphisms and n is strict.

1. ∀p1 ∈ P1 we have:

1. p1 ∈ P1\m(P0) and M1(p1)
(1)
= M3(g(p1)) or

2. ∃p0 ∈ P0 with p1 = m(p0) and M1(p1) = M1(m(p0))
m strict=

M0(p0)
f∈PTSys

≤ M2(f(p0))
(3)
= M3(n(f(p0))) = M3(g(m(p0))) = M3(g(p1)).

This means g ∈ PTSys.

2. ∀p2 ∈ P2 we have:

1. p2 ∈ P2\f(P0) and M2(p2)
(2)
= M3(n(p2)) or

2. ∃p0 ∈ P0 with p2 = f(p0) and M2(p2) = M2(f(p0))
(3)
= M3(n(f(p0))) =

M3(n(p2)).
This means n ∈ PTSys and n is strict.

It remains to show the universal property of the pushout.
Given morphisms h, k ∈ PTSys with h ◦ f = k ◦ m, we have a unique induced

morphism x in PTNet with x◦n = h and x◦g = k. We shall show that x ∈ PTSys,
i.e. M3(p3) ≤ M4(x(p3)) for all p3 ∈ P3.
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PS0 PS1

PS2 PS3

PS4

m

n

f g

h
x

k

(PO)

1. For p3 = g(p1) with p1 ∈ P1\m(P0) we have M3(p3) = M3(g(p1))
(1)
=

M1(p1)
k∈PTSys

≤ M4(k(p1)) = M4(x(g(p1))) = M4(x(p3)).

2. For p3 = n(p2) with p2 ∈ P2 we have M3(p3) = M3(n(p2))
(2) or (3)

=

M2(p2)
h∈PTSys

≤ M4(h(p2)) = M4(x(n(p2))) = M4(x(p3)). �

As next property, we shall show that pullbacks along Mstrict-morphisms exist and
preserve Mstrict-morphisms.

Theorem 2. Pullbacks in PTSys along Mstrict exist and preserve Mstrict-
morphisms, i.e. given P/T morphisms g and n with n strict, then the pullback (PB)
exists and m is also a strict P/T morphism.

PS0 PS1

PS2 PS3

m

n

f g(PB)

Construction. Given P/T systems PSi = (PNi, Mi) for i = 1, 2, 3 and g, n ∈
PTSys with n ∈ Mstrict we construct PN0 as pullback in PTNet, i.e. compo-
nentwise in Sets on places and transitions. The marking M0 leading to the P/T system
PS0 = (PN0, M0) is defined by

(∗) ∀p0 ∈ P0 : M0(p0) = M1(m(p0)).

Proof. Obviously, M0 is a well-defined marking. We have to show that f, m are P/T
morphisms and m is strict.

1. ∀p0 ∈ P0 we have: M0(p0)
(∗)
= M1(m(p0))

g∈PTSys
≤ M3(g(m(p0))) =

M3(n(f(p0)))
n strict= M2(f(p0)). This means f ∈ PTSys.

2. ∀p0 ∈ P0 we have: M0(p0)
(∗)
= M1(m(p0)), this means m ∈ PTSys and m is

strict.

It remains to show the universal property of the pullback.
Given morphisms h, k ∈ PTSys with n ◦ h = g ◦ k, we have a unique induced

morphism x in PTNet with f ◦x = h and m◦x = k. We shall show that x ∈ PTSys,
i.e. M4(p4) ≤ M0(x(p4)) for all p4 ∈ P4.
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PS0 PS1

PS2 PS3

PS4

m

n

f g

h

x
k

(PB)

For p4 ∈ P4 we have M4(p4)
k∈PTSys

≤ M1(k(p4)) = M1(m(x(p4)))
m strict=

M0(x(p4)). �
It remains to show the weak VK property for P/T systems. We know that
(PTNet, M) is a weak adhesive HLR category for the class M of injective mor-
phisms [4, 8], hence pushouts in PTNet along injective morphisms are van Kampen
squares. But we have to give an explicit proof for the markings in PTSys, because
diagrams in PTSys as in Thm. 1 with m, n ∈ Mstrict, which are componentwise
pushouts in the P - and T -component, are not necessarily pushouts in PTSys, since
we may have M3(g(p1)) > M1(p1) for some p1 ∈ P1\m(P0).

Theorem 3. Pushouts in PTSys along Mstrict-morphisms are weak van Kampen
squares.

Proof. Given the following commutative cube (C) with m ∈ Mstrict and (f ∈ Mstrict

or b, c, d ∈ Mstrict), where the bottom face is a pushout and the back faces are pull-
backs, we have to show that the top face is a pushout if and only if the front faces are
pullbacks.

PS′
0

PS′
1

PS0

PS1

PS′
2

PS′
3

PS2

PS3

m′

a

f ′

g′

b

m
f

n′

c

d

n
g(C)

”⇒” If the top face is a pushout then the front faces are pullbacks in PTNet, since
all squares are pushouts or pullbacks in PTNet, respectively, where the weak VK
property holds. For pullbacks as in Thm. 2 with m, n ∈ Mstrict, the marking M0
of PN0 is completely determined by the fact that m ∈ Mstrict. Hence a diagram in
PTSys with m, n ∈ Mstrict is a pullback in PTSys if and only if it is a pullback in
PTNet if and only if it is a componentwise pullback in Sets. This means, the front
faces are also pullbacks in PTSys.

”⇐” If the front faces are pullbacks we know that the top face is a pushout in
PTNet. To show that it is also a pushout in PTSys we have to verify the conditions
(1)-(3) from the construction in Thm. 1.
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(1) For p′1 ∈ P ′
1\m′(P ′

0) we have to show that M ′
3(g

′(p′1)) = M ′
1(p

′
1).

If f is strict then also g and g′ are strict, since the bottom face is a pushout and
the right front face is a pullback, and Mstrict is preserved by both pushouts and
pullbacks. This means that M ′

1(p
′
1) = M ′

3(g
′(p′1)).

Otherwise b and d are strict. Since the right back face is a pullback we have b(p′1) ∈
P1\m(P0). With the bottom face being a pushout we have

(a) M3(g(b(p′1)))
(1)
= M1(b(p′1)).

It follows that M ′
3(g

′(p′1))
d strict= M3(d(g′(p′1))) = M3(g(b(p′1)))

(a)
=

M1(b(p′1))
b strict= M ′

1(p
′
1).

(2) and (3) For p′2 ∈ P ′
2 we have to show that M ′

3(n
′(p′2)) = M ′

2(p
′
2).

With m being strict also n and n′ are strict, since the bottom face is a pushout and
the left front face is a pullback, and Mstrict is preserved by both pushouts and
pullbacks. This means that M ′

2(p
′
2) = M ′

3(n
′(p′2)).

�

We are now ready to show that the category of P/T systems with the class Mstrict of
strict P/T morphisms is a weak adhesive HLR category.

Theorem 4. The category (PTSys, Mstrict) is a weak adhesive HLR category.

Proof. By Thm. 1 and Thm. 2, we have pushouts and pullbacks along Mstrict-mor-
phisms in PTSys, and Mstrict is closed under pushouts and pullbacks. Moreover,
Mstrict is closed under composition and decomposition, because for strict morphisms
f : PS1 → PS2, g : PS2 → PS3 we have M1(p) = M2(f(p)) = M3(g ◦ f(p))
and M1(p) = M3(g ◦ f(p)) implies M1(p) = M2(f(p)) = M3(g ◦ f(p)). By
Thm. 3, pushouts along strict P/T morphisms are weak van Kampen squares, hence
(PTSys, Mstrict) is a weak adhesive HLR category. �

Since (PTSys, Mstrict) is a weak adhesive HLR category, we can apply the results
for adhesive HLR systems given in [4] to reconfigurable P/T systems. Especially, the
Local Church-Rosser, Parallelism and Concurrency Theorems as discussed in Section
2 are valid in PTSys, where only for the Parallelism Theorem we need as additional
property binary coproducts compatible with Mstrict, which can be easily verified.

Example 2. If we analyze the two transformations from Ex. 1 in Section 3 depicted
in Figs. 2 and 3 we find out that they are sequentially dependent, since prodphoto

creates the transition Send Photos which is used in the match of the transformation

(PN2, M2)
prodfollow,m′

=⇒ (PN3, M3). In this case, we can apply the Concurrency The-
orem and construct a concurrent rule prodconc = prodphoto ∗ prodfollow that describes
the concurrent changes of the net done by the transformations. This rule is depicted

in the top row of Fig. 5 and leads to the direct transformation (PN1, M1)
prodconc,m′′

=⇒
(PN3, M3), integrating the effects of the two single transformations into one direct one.



Transformations in Reconfigurable Place/Transition Systems 109

Go to Destination

Make Photo

Go to Destination

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

Select Building

Matching

Select Building

Matching

Select Building

Matching

Make Photo

(P N1, M1) (P N′′, M′′) (P N3, M3)

l3

m′′

r3

(L3, ML3
) (K3, MK3

) (R3, MR3
)

Fig. 5. Direct transformation of (PN1, M1) via the concurrent rule prodconc

5 Conclusion

In this paper, we have shown that the category PTSys of P/T systems, i.e. place/tran-
sition nets with markings, is a weak adhesive HLR category for the class Mstrict of
strict P/T morphisms. This allows the application of the rich theory for adhesive HLR
systems like the Local Church-Rosser, Parallelismus and Concurrency Theorems to net
transformations within reconfigurable P/T systems.
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Related Work

Transformations of nets can be considered in various ways. Transformations of Petri
nets to a different Petri net class (e.g. in [12, 13, 14]), to another modeling formalism
or vice versa (e.g in [15, 16, 17, 18, 19, 20]) are well examined and have yielded many
important results. Transformation of one net into another without changing the net class
is often used for purposes of forming a hierarchy in terms of reductions or abstraction
(e.g. in [21, 22, 23, 24, 25]), or transformations are used to detect specific properties of
nets (e.g. in [26, 27, 28, 29]). For the relationship of Petri nets with process algebras
and applications to workflow management we refer to [30] and [31], respectively.

Net transformations that aim directly at changing the net in arbitrary ways as known
from graph transformations were developed as a special case of HLR systems e.g. in [4].
The general approach can be restricted to transformations that preserve specific prop-
erties as safety or liveness (see [14, 32, 33]). Closely related are those approaches that
propose changing nets in specific ways in order to preserve specific semantic properties,
as behaviour-preserving reconfigurations of open Petri nets (e.g. in [34]), equivalent
(I/O-) behavior (e.g in [35, 36]), invariants (e.g. in [37]) or liveness (e.g. in [38, 31]).

In [2], the concept of ”nets and rules as tokens” has been introduced that is most
important to model changes of the net structure while the system is kept running, while
[3] continues our work by transferring the results of local Church-Rosser, which are
well known for term rewriting and graph transformations, to the consecutive evolution
of a P/T system by token firing and rule applications. The concept of ”nets and rules
as tokens” has been used in [39] for a layered architecture for modeling workflows in
mobile ad-hoc networks, so that changes given by net transformation are taken into
account and the way consistency is maintained is realized by the way rules are applied.

In [40], rewriting of Petri nets in terms of graph grammars are used for the reconfig-
uration of nets as well, but this approach lacks the ”nets as tokens”-paradigm.

Future Work

Ongoing work concerns a prototype system for the editing and simulation of such dis-
tributed workflows. For the application of net transformation rules, this tool will provide
an export to AGG [41], a graph transformation engine as well as a tool for the analy-
sis of graph transformation properties like termination and rule independence. Further-
more, the token net properties could be analyzed using the Petri Net Kernel [42], a tool
infrastructure for Petri nets of different net classes.

On the theoretical side, there are other relevant results in the context of adhesive HLR
systems which could be interesting to apply within reconfigurable P/T systems. One of
them is the Embedding and Extension Theorem, which deals with the embedding of a
transformation into a larger context. Another one is the Local Confluence Theorem, also
called Critical Pair Lemma, which gives a criterion when two direct transformations are
locally confluent. Moreover, it would be interesting to integrate these aspects with those
of property preserving transformations, like lifeness and safety, studied in [14, 32, 33].
As future work, it would be important to verify the additional properties necessary for
these results.

Another extension will be to consider rules with negative application conditions,
which restrict the applicability of a rule by defining structures that are not allowed to
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exist. In [43], a theory of adhesive HLR systems with negative application conditions is
developed, which should be applied and extended to reconfigurable P/T systems.

For the modeling of complex systems, often not only low-level but also high-level
Petri nets are used, that combine Petri nets with some data specification [44]. In [8, 45],
it is shown that different kinds of algebraic high-level (AHL) nets and systems form
weak adhesive HLR categories. More theory for reconfigurable Petri systems based on
high-level nets is needed, since the integration of data and data dependencies leads to
more appropriate models for many practical problems.
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Abstract. In this paper we present the philosophy behind the GROOVE project,
in which graph transformation is used as a modelling formalism on top of which
a model checking approach to software verification is being built. We describe
the basic formalism, the current state of the project, and (current and future)
challenges.

1 Introduction

Our primary interest in this paper is software model checking, in particular of object-
oriented programs. Model checking has been quite successful as a hardware verification
technique and its potential application to software is receiving wide research interest.
Indeed, software model checkers are being developed and applied at several research
institutes; we mention Bogor [32] and Java Pathfinder [17] as two well-known examples
of model checkers for Java.

Despite these developments, we claim that there is an aspect of software that does
not occur in this form in hardware, and which is only poorly covered by existing model
checking theory: dynamic (de)allocation, both on the heap (due to object creation and
garbage collection) and on the stack (due to mutual and recursive method calls and
returns). Classical model checking approaches are based on propositional logic with a
fixed number of propositions; this does not allow a straightforward representation of
systems that may involve variable, possibly unbounded numbers of objects. Although
there exist workarounds for this (as evidenced by the fact that, as we have already seen,
there are working model checkers for Java) we strongly feel that a better theoretical
understanding of the issues involved is needed.

Graphs are an obvious choice for modelling the structures involved, at least informally;
direct evidence of this can be found in the fact that any textbook of object-oriented pro-
gramming uses graphs (of some form) for illustrative purposes. Indeed, a graph model
is a very straightforward way to visualise and reason about heap and stack structures, at
least when they are of restricted size. In fact, there is no a priori reason why this con-
nection cannot be exploited beyond the informal, given the existence of a rich theory of
(in particular) graph transformation — see for instance the handbook [33], or the more
recent textbook [8]. By adopting graph transformation, one can model the computation
steps of object-oriented systems through rules working directly on the graphs, rather than
through some intermediate modelling language, such as a process algebra.

This insight has been the inspiration for the GROOVE project and tool.1 Though
the idea is in itself not revolutionary or unique, the approach we have followed differs

1 GROOVE stands for “GRaphs for Object-Oriented VErification.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 114–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Explicit State Model Checking for Graph Grammars 115

from others in the fact that it is based on state space generation directly from graph
grammars; hence, neither do we use the input language of an existing model checker
to translate the graph rules to, like in [35,12], nor do we attempt to prove properties on
the level of graph grammars, like in [22,14,21]. In this paper, we present the elements
of this approach, as well as the current state of the research. It is thus essentially the
successor [25], where we first outlined the approach.

The paper is structured as follows: in Sect. 2 we introduce the formal notion of
graphs and transformations, in a constructive way rather than relying on category the-
oretical notions. In Sect. 3 we define automata, so-called graph transition systems, on
top of graph grammars; we also define bisimilarity and show that there exist minimal
(reduced) automata. (This is a new result, achieved by abstracting away from symme-
tries in a somewhat different way than by Montanari and Pistore in [24].) In Sect. 4 we
define first-order temporal logic on top of graph transition systems; we also present an
equivalent temporal logic based on graph morphisms as core elements, along the lines
of [28,6]. Finally, in Sect. 5 we give an evaluation and outlook.

2 Transformation of Simple Graphs

We model system states as graphs. Immediately, we are faced with the choice of graph
formalism. In order to make optimal use of the existing theory on graph transformation,
in particular the algebraic approach [8], it is preferable to select a definition that gives
rise to a (weakly) adhesive HLR category (see [20,10]), such as multi-sorted graphs
(with separate sorts for nodes and edges, and explicit source and target functions), or
attributed graphs [7] built on top of those. On the other hand, in the GROOVE project
and tool [27], in which the approach described in this paper was developed, we have
chosen to use simple graphs, which do not fulfill these criteria (unless one also re-
stricts the rules to regular left morphisms, which we have not done), and single-pushout
transformation, as first defined by Löwe in [23]. There were two main reasons for this
choice:

– In the envisaged domain of application (operational semantics of object-oriented
systems) there is little use for edges with identities (see, e.g., [18]);

– The most straightforward connection to first-order logic is to interpret edges as
binary predicates (see, e.g., [28]); again, this ignores edge identities.

In this paper, we stick to this choice and present the approach based on simple graphs;
in Sect. 5 we will come back to this issue.

Throughout this paper we will assume the existence of a universe of labels Label, and a
universe of node identities Node.

Definition 1 (simple graph)

– A simple graph is a tuple 〈V, E〉, where V ⊆ Node is a set of nodes and E ⊆
V × Label × V a set of edges. Given e = (v, a, w) ∈ EG, we denote src(e) = v,
lab(e) = a and tgt(e) = w for its source, label and target, respectively.
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– Given two simple graphs G, H , a (partial) graph morphism f : G → H is a pair
of partial functions fV : VG ⇀ VH and fE : EG ⇀ EH , such that for all e ∈
dom(fE), fE(e) = (fV (src(e)), lab(e), fV (tgt(e))).

Some notation and terminology.

– A morphism f is called total if fV and fE are total functions, injective if they are
injective functions, and an isomorphism if they are bijective functions. The total,
injective morphisms are sometimes called monos.2

– For f : G → H , we call G and H the source and target of f , denoted src(f) and
tgt(f), respectively. A pair of morphisms with a common source is called a span;
with a common target, a co-span.

– We write G ∼= H to denote that there is an isomorphism from G to H , and φ: G ∼=
H to denote that φ is such an isomorphism. This is extended to the individual
morphisms of spans ←f−−g→: we write f ∼= g for such morphisms if there is an
isomorphism φ: tgt(f) → tgt(g) such that g = φ ◦ f .

– We use Morph to denote the set of all (partial) graph morphisms.

Some example graphs will follow below. As a further convention, in figures we will use
node labels to represent self-edges; for instance, in Fig. 1, the labels Buffer, Cell and
Object are used in this way.

Graph morphisms are used for many different purposes, but the following uses stand
out in the context of graph transformation:

– Isomorphisms are used to capture the fact that two graphs are essentially the same.
The whole theory of graph transformation is set up to be insensitive to isomorphism,
meaning that it is all right to pick the most convenient isomorphic representative.

– Total morphisms describe an embedding of one graph into another, possibly while
merging nodes. If a total morphism is also injective, then there is no merging, and
the source graph is sometimes called an (isomorphic) subgraph of the target.

– Arbitrary (partial) morphisms are used to capture the difference between graphs, in
terms of the exact change from the source graph to the target graph. To be precise,
the change consists of deletion of those source graph elements on which the mor-
phism is not defined, merging of those elements on which it is not injective, and
addition of those target graph elements that are not in the image of the morphism.

A core construction in graph transformation is the so-called pushout. This is used as a
way to combine, or glue together, different changes to the same graph; or in particular,
an embedding on the one hand and a change on the other — where both the embedding
and the change are captured by morphisms, as in the second and third items above. In
the following, we define pushouts constructively.

Definition 2 (pushout). For i = 1, 2, let fi: G→ Hi be morphisms in Morph such that
Hi = 〈Vi, Ei〉 with V1 ∩ V2 = ∅; let ∗ be arbitrary such that ∗ /∈ V1 ∪ V2.

2 This name stems from category theory, where monos are arrows satisfying a particular decom-
position property. We do not elaborate on this issue here.
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1. For i = 1, 2, let f̄i: G → H̄i be a total extension of fi, defined by adding a distinct
fresh node v′ to Hi and setting f̄i(v) = v′ for each v ∈ VG \ dom(fV,i). Hence,
H̄i = 〈V̄i, Ēi〉 such that V̄i extends Vi with the fresh nodes, and Ēi extends Ei with
the fresh edges implied by the totality of f̄i.

2. Let V̄ = V̄1 ∪ V̄2 be the union of the extended node sets, and Ē = E1 ∪ E2 that of
the extended edge sets. Let � ⊆ V̄ × V̄ be the smallest equivalence relation such
that f̄V,1(v) � f̄V,2(v) for all v ∈ VG; and likewise for edges.

3. Let W = {X ∈ V̄ /� | X ⊆ V1 ∪ V2}, and for i = 1, 2, define gV,i: Vi → W̄ such
that for all v ∈ Vi

gV,i: v �→ [v]� if [v]� ⊆ V1 ∪ V2 .

Let F = {([v]�, a, [w]�) | [(v, a, w)]� ⊆ E1 ∪ E2}; moreover, for i = 1, 2, define
gE,i: Ei → F such that for all (v, a, w) ∈ Ei

gE,i: (v, a, w) �→ ([v]�, a, [w]�) if [(v, a, w)]� ⊆ E1 ∪ E2 .

4. Let K = 〈W, F 〉; then gi: Hi → K are morphisms for i = 1, 2.

K together with the morphisms gi is called the pushout of the span f1, f2; together they
form the following pushout diagram.

G
f1 ��

f2

��

H1

g1

��
H2

g2 �� K

The intuition behind the construction is as follows: first (step 1) we (essentially) con-
struct the disjoint union of the two target graphs H1 and H2, augmented with images
for those elements of G for which the morphisms f1 resp. f2 were originally unde-
fined. These fresh images later work like little “time bombs” that obliterate themselves,
together with all associated (i.e., equivalent) elements. In the resulting extended dis-
joint union, we call two elements equivalent (step 2) if they have a common source in
G, under the (extended) morphisms f̄1 or f̄2. Then (step 3), we construct the quotient
with respect to this equivalence, omitting however the (equivalence classes of the) fresh
nodes and edges added earlier — in other words, this is when the bombs go off.

The name “pushout” for the object constructed in the previous definition is justified
by the fact that it satisfies a particular co-limit property, stated formally in the following
proposition.

Proposition 1 (pushout property). Given morphisms fi as in Def. 2, the pushout is a
co-limit of the diagram consisting of the span f1, f2, meaning that

– g1 ◦ f1 = g2 ◦ f2;
– Given any hi: Hi → L for i = 1, 2 such that h1 ◦ f1 = h2 ◦ f2, there is a unique

morphism k: K → L such that h1 = k ◦ g1 and h2 = k ◦ g2; in other words, such
that the following diagram commutes
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G
f1 ��

f2

��

H1

g1

�� h1

��

H2
g2 ��

h2 ��

K
k

���
��

��
��

�

L

Proof (sketch). We construct k. For a given W ∈ VK , let i be such that W ∩ Vi �= ∅;
let kV (W ) = hi(w) for w ∈ W ∩ Vi. This is well-defined due to the fact that W
is a �-equivalence class, in combination with the confluence of the f1g1/f2g2- and
f1k1/f2k2-squares of the diagram. kE is defined likewise. k satisfies the necessary
commutation properties by construction. Its uniqueness in this regard can be established
by observing that no other image for any of the nodes or edges of K will make the
pushout diagram commute.

The mechanism we use for generating state spaces is based on graph grammars, con-
sisting of a set of graph production rules and a start graph. The necessary ingredients
are given by the following definition.

Definition 3 (graph grammar)

– A graph production rule is a tuple r = 〈p: L → R, ac〉, where p ∈ Morph, and ac
is an application condition on total graph morphisms m: L → G (for arbitrary G)
that is well-defined up to isomorphism of G. We write m |= ac to denote that m
satisfies ac. (Well-definedness up to isomorphism of G means that m |= ac if and
only if φ ◦ m |= ac for all graph isomorphisms φ: G → H .)

A graph grammar is a tuple G = 〈R, I〉, where R is a set of production rules and
I is an initial graph.

– Given a graph production rule r, an r-derivation is a four-tuple (G, r, m, H), typi-
cally denoted G =r,m

==⇒ H , such that m: Lr → G |= acr and H is isomorphic to the
pushout graph; i.e., the following square is a pushout:

Lr
pr ��

m

��

Rr

m′

��
G

f �� K ∼= H

A G-derivation (G a graph grammar) is an r-derivation for some r ∈ RG .

The definition is slightly sloppy in that our pushout construction is only defined if
the right hand side Rr and the host graph G have disjoint node sets. This is in practice
not a problem because we are free to take isomorphic representatives where required;
in particular, we can make sure that the derived graphs have nodes that are distinct from
all right hand side graphs.
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Fig. 1. Graph production rules for a circular buffer
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Fig. 2. Example derivation using the rule get from Fig. 1

As a running example, we use the graph grammar consisting of the two rules in
Fig. 1, which retrieve, resp. insert, objects in a circular buffer. The rule put has a so-
called negative application condition (see [13]), in the form of a morphism n: L → N
from the left hand side of the rule; the satisfaction of such a condition is defined by

m: L → G |= n :⇔ �f : N → G : f ◦ n = m � dom(n)
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(where dom(n) is the sub-graph of L on which n is defined, and m � H stands for
the restriction of the morphism m to the graph H). The morphisms are indicated by
the numbers in the figure: nodes are mapped to equally labelled nodes in the target
graph (if such a target node exists, elsewhere the morphism is undefined), and edges
are mapped accordingly. An example derivation is shown in Fig. 2, given a match m =
{(1, 5), (2, 6), (3, 7)}. In terms of Def. 2, this gives rise to

V̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9}
W = {{1, 5}, {2, 6}, {3, 7}, {4}, {8}, {9}} .

3 Graph Transition Systems

As related in the introduction above, the core of our approach is explicit state space
generation, where the states are essentially graphs. Rather than completely identifying
states with graphs (like we did in the original [25]), in this paper we follow [2] by
merely requiring that every state has an associated graph. This leaves room for cases
where there is more information in a state than just the underlying graph.

Definition 4 (graph transition system). A graph transition system (GTS) is a tuple
S = 〈Q, T, q0〉 where

– Q is a set of states with, for every q ∈ Q, an associated graph Gq ∈ Graph;
– T ⊆ Q×Morph×Q is a set of transitions, such that src(α) = Gq and tgt(α) ∼= Gq′

for all (q, α, q′) ∈ T . As usual, we write q −α→ q′ as equivalent to (q, α, q′) ∈ T .
– q0 ∈ Q is the initial state.

S is called symmetric if (q, α, q′) ∈ T implies (q, α ◦ φ, q′) ∈ T for all φ: Gq
∼= Gq .

We write qt, αt, q
′
t for the source state, morphism and target state of a transition t, and

qi etc. for the components of ti. Note that the target graphs of the morphisms associated
with the transitions are only required to be isomorphic, rather than identical, to the
graphs associated with their target states. Obviously, this only makes a difference for
graphs having non-trivial symmetries, since otherwise the isomorphisms are unique and
might as well be appended to the transition morphisms. Using the definition given here,
we avoid to distinguish between symmetric cases, and hence it is possible to minimise
with respect to bisimilarity — see below.

An example symmetric GTS is shown in Fig. 3. The morphisms associated with
the transitions are indicated by node mappings at the arrows; all the morphisms have
empty edge mappings. The two left-to-right transitions are essentially the same, since
their associated morphisms are “isomorphic;” that is, there is an isomorphism between
their target graphs that equalises them —namely, based on node mapping (3, 4), (4, 3).
On the other hand, this is not true for the right-to-left transitions: the node mapping
(1, 2), (2, 1) is not an isomorphism of the left hand side graph. Indeed, by symmetry,
the presence of each of the right-to-left transition implies the presence of the other.

We can now understand a GTS as being generated by a graph grammar G, if the start
state’s associated graph is isomorphic to the start graph of G, and there are transitions
corresponding to all the derivations of G (modulo isomorphism). That is, we call a GTS
S generated by G if the following conditions hold:
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(1,3),(2,4)

(3,2),(4,1)

(3,1),(4,2)

(1,4),(2,3)

2

1 3

4

Fig. 3. Example symmetric GTS, removing and re-adding an edge

– Gq0 is isomorphic to I;
– For any q ∈ Q and any G-derivation Gq =r,m

==⇒ H , S has a transition q −α→ q′ such
that α ∼= pr ↑ m.

– Likewise, for any transition q −α→ q′, there is a G-derivation Gq =
r,m
==⇒ H such that

α ∼= pr ↑ m.
For instance, Fig. 4 shows a GTS generated using the rules in Fig. 1, taking G from

Fig. 2 as a start graph.
Grammar-generated GTSs are close to the history-dependent automaton (HDA) of

Montanari and Pistore (see [24]). There, states have associated sets of names, which are
“published” through labelled transitions, the labels also having names and the transi-
tions carrying triple co-spans of total injective name functions, from the source state,
target state and label to a common set of names associated with the transition.

If we limit our rules to injective morphisms, then the derivation morphisms will be
injective, too. Injective partial morphisms α: G → H are in fact equivalent to

getget

put

get

put

put

get

put

Fig. 4. GTS generated from the circular buffer rules
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co-spans of monos αL: G → U, αR: H → U , where U is the “union” of G and H while
gluing together the elements mapped onto each other by α. If, furthermore, we require
all matchings to be injective as well (through the application condition ac), any G-
generated GTS gives rise to a HDA, where the names are given by node identities. The
only catch is that, as mentioned before, the actual isomorphism from tgt(α) to Gq′ in
a transition q −α→ q′ is not part of the GTS, whereas in HDA the name mappings are
precise. On the other hand, this information is abstracted away in HDA with symmetries
(see [24]). We conclude:

Proposition 2. If G is such that all rules in R are injective, and m |= ac only if m is
injective, then every G-generated GTS uniquely gives rise to a HDA with symmetries,
in which the transition labels are tuples of rules and matchings.

In contrast to HDAs, however, GTS transitions are reductions and not reactions. In
other words, they do not reflect communications with the “outside world”. In fact, the
behaviour modelled by a GTS is not primarily captured by the transition labels but by
the structure of the states; as we will see, the logic we use to express GTS properties
can look inside the states. For that reason, although we can indeed define a notion of
bisimilarity —inspired by HDA bisimilarity— which abstracts away to some degree
from the branching structure, the relation needs to be very discriminating on states.3

Definition 5 (bisimilarity). Given two GTSs S1, S2, a bisimulation between S1 and S2
is an isomorphism-indexed relation (ρφ)φ ⊆ (Q1 × Q2) ∪ (T1 × T2) such that

– For all q1 ρφ q2, the following hold:
• φ: Gq1

∼= Gq2 ;
• For all q1 −α1−→ q′1, there is a q2 −α2−→ q′2 such that (q1, α1, q

′
1) ρφ (q2, α2, q

′
2);

• For all q2 −α2−→ q′2, there is a q1 −α1−→ q′1 such that (q1, α1, q
′
1) ρφ (q2, α2, q

′
2);

– For all t1 ρφ t2: q1 ρφ q2, α1 ∼= α2 ◦ φ, and there is a ψ such that q′1 ρψ q′2;
– q0,1 ρφ q0,2 for some φ.

S1 and S2 are said to be bisimilar, denoted S1 ∼ S2, if there exists a bisimulation
between them.

For instance, although the GTS generated by a graph grammar is not unique, it is unique
modulo bisimilarity.

Theorem 1. If S1 and S2 are both generated by a graph grammar G, then S1 ∼ S2.

Thus, bisimulation establishes binary relations between the states and transitions of two
GTSs. As usual, this can be used to reduce GTSs, as follows:

– Between any pair of GTSs there exists a largest bisimulation, which can be defined
as the union of all bisimulations (pointwise along the φ). (The proof that this is
indeed again a bisimulation is straightforward.)

– If S1 and S2 are the same GTS (call it S), then the largest bisimulation gives rise
to an equivalence relation ρ over the states and transitions of S.

3 In this paper, we use bisimilarity only to minimise GTSs, not so much to establish a theory of
equivalence.
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– Given the equivalence ρ, pick a representative from every equivalence class of states
Q/ρ. For any q ∈ Q, let q̂ denote the representative from [q]ρ.

– Similarly, for every equivalence class of transitions U ∈ T/ρ, pick a representative
with as source the (uniquely defined) state q̂t for t ∈ U . For any t, let t̂ denote the
selected representative from [t]ρ. (Note that this means qt̂ is the representative state
selected from [qt]ρ, but q′

t̂
is not necessarily the representative for [q′t]ρ.)

– Define Ŝ = 〈Q̂, T̂ , q̂0〉 where

Q̂ = {q̂ | q ∈ Q}
T̂ = {(qt̂, αt̂, q̂

′
t) | t ∈ T } .

Thus, this construction collapses states with isomorphic graphs and transitions with
isomorphic graph changes. For instance, in Fig. 3, only one of the two left-to-right tran-
sitions remains in the reduced transition system. The transition system in Fig. 4 cannot
be reduced further (there are no non-trivial isomorphisms); in fact, it has already been
reduced up to symmetry, since (for instance) the precise graph reached after applying
put · get from the initial state is not identical to the start graph; rather, it can be thought
of as isomorphically rotated clockwise by 90◦. Indeed, reduction with respect to bisim-
ilarity exactly corresponds to symmetry reduction for model checking (see, e.g., [11]).

It may actually not be clear that Ŝ is well-defined, since it relies on the choice of
representatives from the equivalence classes Q/ρ and T/ρ. To show well-definedness
we must first define isomorphism of GTSs.

Definition 6 (GTS isomorphism). Two GTSs S1, S2 are isomorphic if there exists a
pair of mappings φQ: Q1 → (Morph × Q2) and φT : T1 → T2 such that

– For all q1 ∈ Q1, φQ(q1) = (ψ, q2) such that ψ: Gq1
∼= Gq2 ;

– For all t1 ∈ T1, if φQ(q1) = (ψ, q2) and φQ(q′1) = (ψ′, q′2) then φT (t1) =
(q2, α2, q

′
2) such that α2 ◦ ψ ∼= α1;

– φQ(q1,0) = (ψ, q2,0) for some ψ.

The following theorem states the crucial properties of the GTS reduction.

Theorem 2. Given any GTS S, the reduced GTS Ŝ is well-defined up to isomorphism
and satisfies Ŝ ∼ S. Furthermore, for any bisimulation (ρ̂φ)φ between Ŝ and itself,
q̂1 ρ̂φ q̂2 implies q̂1 = q̂2 for all q̂1, q̂2 ∈ Q̂.

Proof (sketch).

– It is straightforward to check that any choice of representatives from the ρ-induced
equivalence classes of states and transitions gives rise to an isomorphic GTS. For
instance, in Fig. 3 it is not important which of the two left-to-right transition is
chosen. (This indifference crucially depends on the condition α2 ◦ ψ ∼= α1 in the
isomorphism condition for transitions; if we would require α2 ◦ ψ = ψ′ ◦ α1 then
the uniqueness up to isomorphism would break down.)

– Let (ρφ)φ be the largest bisimulation over S, used in the construction of Ŝ. Ŝ ∼ S
is then immediate, using as bisimilarity the restriction of (ρφ)φ on the left hand side
to states of Ŝ.
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– It can be proved that q̂1 ρ̂φ q̂2 implies that also q̂1 ρφ q̂2 in the original GTS S. But
then q̂1 and q̂2 are both representatives of the same ρ-equivalence class of states in
S, implying they are the same.

(Note that it is not the case that Ŝ has only trivial bisimulations, i.e., such that q ρφ q
implies that φ is the identity, since in contrast to [24] we are not abstracting graphs up
to symmetry.) The following is immediate.

Corollary 1 (canonical GTS). Given a graph grammar G, there is a smallest GTS
(unique up to isomorphism) generated by G. We call this the canonical GTS of G, and
denote it SG .

The following property of the canonical GTS is a consequence of the definition of
derivations and the assumption that ac is well-defined up to isomorphism.

Proposition 3 (symmetry of canonical GTSs). For any graph grammar G, the canon-
ical GTS SG is symmetric.

4 First-Order Temporal Logic

Besides providing a notion of symmetry, the transition morphisms of GTSs also keep
track of the identity of entities. For instance, Fig. 4 contains all the information neces-
sary to check that entities are retrieved in the order they are inserted and that no entity
is inserted without eventually being retrieved. All this is established through the node
identities of the val-labelled nodes; no data values need be introduced. Such properties
can be expressed formally as formulae generated in a special temporal logic.

4.1 First-Order Linear Temporal Logic

The usual temporal logics are propositional, meaning that their smallest building blocks
are “atomic” propositions, whose truth is a priori known for every state.4 For express-
ing properties that trace the evolution of entities over transitions, however, we need
variables that exist, and remain bound to the same value, outside the temporal modal-
ities. An example of a logic that has this feature is first-order linear temporal logic
(FOLTL), generated by the following grammar:

Φ ::= x | a(x, y) | tt | ¬Φ | Φ ∨ Ψ | ∃x.Φ | XΦ | Φ U Ψ .

The meaning of the predicates is:

– x expresses that the first-order variable x has a definite value (which is taken from
Node). As we will see, this is not always the case: x may be undefined.

– a(x, y) expresses that there is an a-labelled edge from node x to node y.
– tt (true), ¬Φ and Φ ∨ Ψ have their standard meaning.

4 In practice, such propositions may themselves well be (closed) first-order formulae, evaluated
over each state.
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– XΦ and Φ U Ψ are the usual linear temporal logic operators: XΦ expresses that Φ
is true in the next state, whereas Φ U Ψ expresses that Ψ is true at some state in the
future, and until that time, Φ is true.

In addition, we use the common auxiliary propositional operators ∧, ⇒ etc., as well
as the temporal operators G (for “Globally”) and F (for “in the Future”). Furthermore,
we use ∃x : a.Φ with a ∈ Label as abbreviation for ∃x.a(x, x) ⇒ Φ. Some example
formulae which can be interpreted over the circular buffer system of Fig. 4 are:

1. ∀c : Cell.�v.val(c, v) is a non-temporal formula expressing that in the current state
there is no val-edge.

2. ∀c : Cell. F ∃v.val(c, v) is a temporal formula expressing that all currently existing
cells will eventually be filled (though maybe not all at the same time).

3. F ∀c : Cell.∃v.val(c, v) expresses that eventually all cells will be filled (at the same
time).

4. ∃o : Object.X ¬o expresses that there exists an Object-node that will be gone in
the next state.

5. ∀b : Buffer.(∃c, o.first(b, c)∧val(c, o)) U (�c, o.val(c, o)) expresses that eventually
the buffer is empty, and until that time, the first cell has a value.

6. (X∃o.val(c, o))∧(�o.Xval(c, o)) expresses that, although in the next state the cell c
will have a value, that value does not already exist in the current state. This implies
that that value is freshly created in the next state.

Formulae are interpreted over infinite sequences of graph morphisms, in combination
with a valuation of the free variables. The definition requires some auxiliary concepts
and notation.

– A path is an infinite sequence of consecutive morphisms m1 m2 · · ·, i.e., such that
tgt(mi) = src(mi+1) for all i ≥ 1. We let σ range over paths. For all 1 ≤ i ≤ |σ|,
σi denotes the i’th element of σ (i.e., mi), and, σi the tail of σ starting at the i’th
element (i.e., mi mi+1 · · ·).

– A run of a GTS S is an infinite sequence of pairs ρ = (t1, φ1)(t2, φ2) · · · such that
q1 = q0, and for all i ≥ 1

• q′i = qi+1;
• Either ti ∈ T or ti = (q, idGq , q) where �t ∈ T : qt = q (so we stutter upon

reaching a final state);
• φi: tgt(αi) ∼= src(αi+1).

Given a run ρ, the path σρ generated by ρ is the sequence of morphisms (φ1 ◦
α1)(φ2 ◦ α2) · · ·.

– θ is a partial valuation of variables to elements of Node. If f is a graph morphism,
then f ◦ θ is a new valuation defined by concatenating fV with θ. We use θ{v/x}
(with v ∈ Node) to denote a derived valuation that maps x to v and all other
variables to their θ-images.

Satisfaction of a formula is expressed through a predicate of the form G, σ, θ |= φ,
where G = src(σ1). The following set of rules defines this predicate inductively. The
main point to notice is the modification of the valuation θ in the rule for Xφ. Here the
effect of the transformation morphism is brought to bear. For one thing, it is possible
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that a variable becomes undefined, if the node that it was referring to is deleted by the
transformation.

G, σ, θ |= x iff θ(x) is defined
G, σ, θ |= a(x, y) iff (θ(x), a, θ(y)) ∈ EG

G, σ, θ |= tt always
G, σ, θ |= ¬Φ iff not G, σ, θ |= Φ
G, σ, θ |= Φ1 ∨ Φ2 iff G, σ, θ |= Φ1 or G, σ, θ |= Φ2
G, σ, θ |= ∃x : Φ iff G, σ, θ{v/x} |= Φ for some v ∈ NG

G, σ, θ |= XΦ iff src(σ2), σ2, σ1 ◦ θ � Φ
G, σ, θ |= Φ1 U Φ2 iff ∃i ≥ 0 : G, σ, θ |= XiΦ2 and ∀0 ≤ j < i : G, σ, θ |= XjΦ1

We define the validity of a formula on a GTS S as follows:

S |= Φ if for all runs ρ of S and all valuations θ: Gq0 , σρ, θ |= Φ

For instance, of the example formulae presented above, nrs. 1, 2, 5 and 6 (provided c
is mapped to the cell pointed to by first) are valid on the GTS of Fig. 4, whereas the
others are not. Property 2, for instance, holds because the morphisms associated with
the transitions are such that after a finite number of transitions, each cell is mapped onto
a cell with an outgoing val-edge. Property 5, on the other hand, is trivially valid since
the start state is already empty; however, when another state is picked as start state it
becomes invalid, since although it would hold for some paths of that modified GTS,
there are runs that never enter the state where the buffer is empty.

The following is an important property, since it shows that bisimilarity minimisation
does not change the validity of FOLTL properties.

Theorem 3. If S1, S2 are GTSs, then S1 ∼ S2 implies S1 |= Φ iff S2 |= Φ for all
Φ ∈ FOLTL.

We can now finally formulate the model checking question:

Model checking problem: Given a graph grammar G and a formula Φ, does SG |= Φ
hold?

In general, this question is certainly undecidable. In cases where SG is finite, however,
we can use the following (which can be shown for instance by a variation on [29]):

Theorem 4. Given a finite GTS S and a formula Φ, the property S |= Φ is decidable,
with worst-case time complexity exponential in the number of variables in Φ.

4.2 Graph-Based Linear Temporal Logic

We now present an alternative logic, which we call GLTL, based only on graphs (rather
than predicates and variables) but equivalent (for simple graphs) to FOLTL as presented
above. The ideas are based on our own work in [28], originally conceived as an exten-
sion to negative application conditions [13]; the same basic ideas were later worked out
in a slightly different form in [6]. The extension of this principle to temporal logic is
new here.
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1 ∃f.¬g

4 ∃f.X¬id

5 ∃f.(g U ¬h)

gf

g
h

f

f
id

Fig. 5. Formulae in GLTL, corresponding to FOLTL nrs. 1, 4 and 5

The basic idea is to use morphisms as core elements of formulae. Thus, a GLTL for-
mula is generated by the following grammar:

Ω ::= tt | ¬Ω | Ω ∨ Ω | ∃f.Ω | XΩ | Ω U Ω .

As a convenient notation we use the morphism f on its own as equivalent to ∃f.tt.
A formula of the form ∃f.Ω is evaluated under an existing total matching θ of src(f)

to the current graph; the formula is satisfied if θ can be factored through f , i.e., there
exists an η from tgt(f) such that θ = η◦f . In fact, src(f) acts as a “type” of ∃f.Ω, and
the sub-formula Ω is typed by tgt(f), meaning that its evaluation can assume the exis-
tence of η. This notion of “type” replaces the notion of free variables of a (traditional)
first-order formula. Types can be computed as follows:

type(tt) = 〈∅, ∅〉
type(¬Ω) = type(Ω)

type(Ω1 ∨ Ω2) = type(Ω1) ∪ type(Ω2)
type(∃f.Ω) = src(f) if type(Ω) ⊆ tgt(f)
type(XΩ) = type(Ω)

type(Ω1 U Ω2) = type(Ω1) ∪ type(Ω2) .

Here, the union of two graphs is the (ordinary, not disjoint) union of the node and
edge sets, and the sub-graph relation is likewise defined pointwise. (In fact, the types
Ωi of the operands of ∨ and U are regarded as sub-types of the type of the composed
formula.) The side condition in the type definition for ∃f.Ω implies that the type can
be undefined, namely if the type of Ω is not a sub-graph of tgt(f). We only consider
typable formulae.

For example, Fig. 5 shows some GLTL formulae that are equivalent to FOLTL for-
mulae given earlier.

The semantics of GLTL is a relatively straightforward modification of FOLTL. The
valuation θ is now a total graph morphism from the type of the formula to the graph. Due
to the type definition, this means that in the evaluation we sometimes have to restrict
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θ to sub-types. The rules that are different from FOLTL are given below; for the other
operators, the semantics is precisely as defined above.

G, σ, θ |= Ω1 ∨ Ω2 iff G, σ, θ � type(Ω1) |= Ω1 or G, σ, θ � type(Ω2) |= Ω2
G, σ, θ |= ∃f : Ω iff there is a η: tgt(f) → G such that θ = η ◦ f and G, σ, η |= Ω
G, σ, θ |= Ω1 U Ω2 iff ∃i ≥ 0 : G, σ, θ � type(Ω2) |= XiΩ2

and ∀0 ≤ j < i : G, σ, θ � type(Ω1) |= XjΩ1

There exists a relatively straightforward translation back and forth between FOLTL and
GLTL. We explain the principles here on an intuitive level; see Fig. 5 for some concrete
examples.

– From FOLTL to GLTL, formulae of the form a(x, y) are translated to morphisms f
with src(f) = 〈{x, y}, ∅〉 and tgt(f) = 〈{x, y}, {(x, a, y)}〉; formulae x = y to
non-injective morphisms mapping a two-node discrete graph to a one-node discrete
graph while merging the nodes; and formulae ∃x.Φ to ∃f.Ω where f adds a single,
unconnected node to its source.

– From GLTL to FOLTL, ∃f.Ω is translated to

∃z1, . . . , zn.
∧

i ai(xi, yi) ∧
∧

j(xj = yj) ∧ Φ ,

where the zk are variables representing the nodes that are new in tgt(f) (i.e., not
used as images by f ), the ai(xi, yi) are edges that are new in tgt(f), the xi = yi

equate nodes on which f is non-injective (in both cases, the xi and yi correspond
to some zj), and Φ is the translation of Ω.

We state the following result without proof.

Theorem 5. There exist translations gltl : FOLTL → GLTL and foltl : GLTL → FOLTL
such that for all GTSs S:

S |= Φ ⇐⇒ S |= gltl(Φ)
S |= Ω ⇐⇒ S |= foltl(Ω) .

5 Evaluation and Future Work

In this section we evaluate some issues regarding choices made in the approach, as well
as possible extensions and future challenges. In the course of this we will also touch
upon related work, insofar not already discussed.

Graph formalism. In Sect. 3, we have discussed our choice of graph formalism, in the
light of the existing algebraic theory surrounding DPO rewriting, only little of which
has been successfully transferred to SPO. Let us briefly investigate what has to be done
to lift our approach to a general DPO setting; that is, to a category of graphs that is an
adhesive HLR category, with a set M of monos.

– In Sect. 3, our graph transitions carry partial morphisms. In a DPO setting, this
should be turned into a span of arrows, of which the left arrow (pointing to the
source graph of the transition) should be in M. The corresponding notions of bisim-
ilarity and isomorphism will become slightly more complicated, but we expect that
the same results will still hold.
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– In Sect. 4, it is not clear how to interpret FOLTL in an arbitrary HLR category. On
the other hand, GLTL as defined in Sect. 4.2 can easily be generalised. For this pur-
pose, the construction of the type of a formula (which now relies on subgraphs and
graph union, neither of which can be generalised directly to categorical construc-
tions) should be revised.
A straightforward solution is to provide explicit monos with the binary operators
to generalise the sub-graph relation; i.e., the formulae become Ω1 ∨ι,κ Ω2 and
Ω1 Uι,κ Ω2, where ι, κ is a co-span of monos (in M) such that src(ι) = type(Ω1),
src(κ) = type(Ω2) and tgt(ι) = tgt(κ) equals the type of the formula as a whole.
Furthermore, the morphism f in ∃f.Ω should be replaced by a span ←ι−−f→, where
type(Ω) = tgt(f) and tgt(ι) is the type of the whole formula.

Existing model checkers. In the last decades, model checking has given rise to a large
number of successful academic and commercial tools, such as SPIN [16], BLAST [4],
JPF [17], Murphi [5] or Bogor [32]. Many of these tools share the aims of the GROOVE
project, viz., verifying actual (object-oriented) code. It is, therefore, justified to ask
what we can hope to add to this field, given the inherent complexities of the graph
transformation approach. In fact, there are two distinct issues involved:

– Graph transformation as a specification paradigm. In our approach, we essentially
propose to use graph transformations as a language to specify the semantics of
programming languages. Existing tools use textual modelling languages for this
purpose, such as Promela for SPIN or BIR for Bogor, or rely on the available com-
pilation to byte code, as in the case of JPF.
We believe graph transformations to be a viable alternative, for the following
reasons:

• Graphs provide a syntax which is very close to, if not coincides with, the intu-
itive understanding of object-oriented data structures (or even heap structures
in general). Thus, graph-based operational semantics is easy to understand (see
also [18]).

• Graphs are also very close to diagram models as used in visual languages, and
so provide an integrated view along the software engineering process.

• As numerous case studies have shown, graph transformation can alternatively
be used as a specification formalism in its own right. Verification techniques
based on this paradigm can therefore also be used outside the context of soft-
ware model checking.

– Graph transition systems as verification models. Even if one accepts the arguments
given above in favour of graph transformation as a specification paradigm, this does
not immediately imply creating a new model checker. Instead, it is perfectly think-
able to encode graph derivations in terms of the input languages of one of the ex-
isting tools, and so avoid re-inventing (or re-implementing) the wheel. Verification
approaches based on this idea are, for instance, [35,12].

We believe that it is nevertheless worthwhile to implement model checking di-
rectly on top of graph transition systems, for the following reasons:
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• Symmetry reduction. In graphs, symmetry is equivalent to isomorphism, and
collapsing the state space modulo isomorphism is an immediate method for
(non-trivial) symmetry reduction (see also [30]). This connection is lost when
graphs are encoded in some other language, since such an encoding invariably
involves breaking symmetries.

• Unboundedness. Many of the existing model checkers rely on fixed-size bit
vectors to represent states. Graphs, however, are not a priori bounded. In order
to perform the encoding, it is therefore necessary to choose an upper bound for
the state size, and to increase this if it turns out to have been set too low —
which involves repeating the encoding step.

• Encoding. The complexity of finding acceptable matchings for rules does not
suddenly disappear when the problem is encoded in another language. In-
stead, the encoding itself typically involves predicting or checking all possible
matches; so the complexity of the graph transformation paradigm is (partially)
shifted from the actual model checking to the encoding process.

Alternative approaches. The explicit state model checking approach presented here is
probably the most straightforward way to define and implement verification for graph
grammars. A promising alternative is the Petri graph method proposed by König et al.;
see, e.g., [3,1,19]. This approach uses unfolding techniques developed originally for
Petri nets, and offers good abstractions (identified below as one of the more important
future work items in our approach); thus, the aproach can yield answers for arbitrary
graph grammars. On the other hand, the logic supported is more limited, and it is not
clear if symmetry reduction is possible.

Future work. Finally, we identify the following major challenges to be addressed before
explicit-state model checking for graph grammars can really take off.

– Partial order reduction. This refers to a technique for only generating part of the
state space, on which nevertheless a given fragment of the logic (typically, X-free
LTL) can still be checked. Traditional techniques for partial order reduction do not
apply directly to the setting of graph grammars, since the number of entities is not
a priori known. (Note that the unfolding approach of [3,1] is in fact also a partial
order reduction.)

– Abstraction. Instead of taking concrete graphs, which can grow unboundedly large,
one may define graph abstractions, which collapse and combine parts of the graphs
that are sufficiently similar. Inspired by shape analysis [34], we have investigated
possible abstractions in [26,31]. This is still ongoing research; no implementation
is yet available.

– Compositionality. In Sect. 3 we have pointed out the analogy of GTSs with History-
Dependent automata, a long-established model for communicating systems, shar-
ing some of the dynamic nature of graphs. This analogy can be turned around to
inspire a notion of communication between graph transition systems where (parts
of) graphs are echanged, leading to a theory of compositionality for graph gram-
mars. The only work we know of in this direction is König and Ehrig’s borrowed
context [9], and the synchronised hyperedge replacement by Hirsch, Montanari and
others [15].
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Porto Alegre, Brazil

fldotti@inf.pucrs.br

Abstract. Linear-ordered graph grammars (LOGGs) are a special kind
of graph grammars that were inspired by the general definitions of graph
grammars and by tile systems. In this paper we show that this kind of
grammar is particularly suited for the specification of distributed sys-
tems. Moreover, we discuss a simple extension of LOGGs inspired by the
representation using tiles, leading to a notion of open graphs that can
be very useful in a wider range of applications.

1 Introduction

Distributed systems may be spread over several computational nodes and cross
different communication links, may have mobile components, and engage in com-
munication with a priori unknown other components. In this scenario, it becomes
even more important to be able to specify the systems behavior without ambi-
guity as well as to assure functional and non-functional properties of the system
as early as possible during system construction. Abstractions that capture the
appropriate aspects of the system under construction are thus highly desirable.

Graph grammars [Roz97] is a formalism that has been used to model many
features of computational systems. Systems that involve concurrency and distri-
bution can take advandage from the modeling of states as graphs, and of state
changes as rule applications (that can be performed in parallel in many parts of
the graph representing the state). A large part of the theory developed in the
algebraic approach to graph grammars [Ehr79] explains the behavior of concur-
rent systems (see [EKMR99] for an overview of main results). However, most
of this theory was developed for restricted kinds of graph grammars. One of
the most used restrictions is that rules are not allowed to glue nodes (or arcs).
Although in many applications this restriction might be adequate, in some of
them this poses a severe restriction on the specification language. For instance,
whenever we want to express the fact that two servers, known by many client
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processes, will be joined, such a glue operation would be needed to allows a
natural representation.

Linear-ordered graph grammars were proposed in [MR02], and the definition
raised as a collaboration between the University of Pisa and the Federal Univer-
sity of Rio Grande do Sul. The topic was mainly developed during the visits of
Ugo Montanari to Brazil within the scope of the cooperation project IQ-Mobile.
We were searching for a way to describe graph grammars (in particular, alge-
braic graph grammars), and their concurrent behavior as tile rewriting systems
[GM00, GM02, FM00]. One of the goals we had in mind was that the resulting
formalism would be suited for the description of mobile and distributed sys-
tems. The intuitive idea was to model persistent components of a system (like
objects, communication channels or places) as graph nodes, and resources that
are generated/consumed as arcs. Persistent items may not be deleted in com-
putations, but may be glued (if this is interesting from the application point of
view). Resources may not be glued, and the approach is resource conscious (the
number of resources necessary to perform a computation is important and may
not be abstracted). In [MR02], LOGGs were introduced, but there was no more
pratical example to illustrate their features. Here we recall these definitions and
illustrate them using an example of fault recovery of distributed systems.

The description of graphs introduced in [MR02] gave a hint on other classes
of graphs that could be used to describe distributed systems. Although LOGGs
were developed only for usual graphs, a more general class of graphs called open
graphs was defined. Here we explore this definition, discussing the advantages of
this concept for specification, and also the modifications that would be necessary
in the theory to suitably describe computations using open graphs. One of the
most interesting features of this approach is the possibility to model the interplay
between the horizontal composition of graphs (viewed as tiles) and the vertical
composition (used to model derivations).

The structure of this paper is as follows: Section 2 describes Linear-Ordered
Graph Grammars; Section 3 presents an example application of a distributed
system using LOGGs; Section 4 describes LOGGs as Tile Systems; Section 5
presents an extension of LOGGs using Open Graphs and Section 6 concludes
the paper.

2 Linear-Ordered Graph Grammars

In this section we recall the basic concepts of graph rewriting in the single
pushout (SPO) approach [Low93, EHK+97] for a special kind of graph and rules.
This kind of grammars, called linear-ordered graph grammars, short LOGGs,
were introduced in [MR02] to enable a natural description of some features
of distributed systems that were difficult to describe using other approaches.
Section 3 illustrates the definitions of this section with an application. Instead
of the standard definitions of partial morphisms based on total morphisms from
subgraphs, we will explicitly use partial functions and a weak commutativity
requirement. In [Kor95] it was shown that the two definitions are equivalent.
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Definition 1 (Weak Commutativity). For a (partial) function f : A →
B with domain dom(f), let f? : A ← dom(f) and f ! : dom(f) → B denote
the corresponding domain inclusion and the domain restriction. Given functions
a : A → A′, b : B → B′ and f ′ : A′ → B′, where a and b are total, we write
f ′ ◦a ≥ b◦f and say that the diagram commutes weakly iff f ′ ◦a◦f? = b◦f !.

If f and f ′ are total, weak commutativity coincides with commutativity. The
commutativity condition introduced above means that the partial functions b◦f
and f ′ ◦ a must agree on all the elements of A on which f is defined. The
term “weak” is used because on elements of A on which f is undefined, the two
functions can behave differently, i.e., f ′ ◦ a can be defined.

In this paper we use undirected hypergraphs, and therefore we will only define
a source function connecting each arc with the list of nodes it is connected to.
We use the notation S∗ to denote the set of all (finite) lists of elements of S.

Definition 2 ((Hyper)Graph, (Hyper)Graph Morphism). A (hyper)
graph G = (NG, AG, sourceG) consists of a set of nodes NG, a set of arcs AG

and a total function sourceG : AG → N∗G, assigning to each arc a list of nodes.
A (partial) graph morphism g : G → H from a graph G to a graph H

is a pair of partial functions gN : NG → NH and gA : AG → AH which are
weakly homomorphic, i.e., g∗N ◦ sourceG ≥ sourceH ◦ gA (g∗N is the extension of
gN to lists of nodes). A morphism is called total if both components are total.
The category of hypergraphs and partial hypergraph morphisms is denoted by
HGraphP (identities and composition are defined componentwise).

To distinguish different kinds of nodes and arcs, we will use a notion of typed
hypergraphs, analogous to typed graphs [CMR96]1.

Definition 3 (Typed Hypergraphs). A typed hypergraph is a tuple HGTG =
(HG, typeHG, TG) where HG and TG are hypergraphs, called instance and type
graph, respectively, and typeHG : HG → TG is a total hypergraph morphism,
called typing morphism.

A morphism between typed hypergraphs HG1TG and HG2TG is a partial graph
morphism f : HG1 → HG2 such that type1HG1 ≥ type2HG2 ◦ f . The category
of all hypergraphs typed over a type graph TG, denoted by THGraphP(TG),
consists of all hypergraphs over TG as objects and all morphisms between typed
hypergraphs (identities and composition are the identities and composition of
partial functions).

For the well-definedness of the categories above and the proof that these cate-
gories have pushouts we refer to [Kor95] (these categories can be constructed as
generalized graph structures categories). The construction of pushouts in such
categories is done componentwise, followed by a free construction to make the
1 Note that, due to the use of partial morphisms, this is not just a comma category

construction: the morphism type is total whereas morphisms among graphs are par-
tial, and we need weak commutativity instead of commutativity. In [Kor95] a way
to construct such categories was defined.
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source and type components total (actually, as types are never changed by mor-
phisms, this free construction is not needed in the case of typed graphs). In the
rest of the paper, we will usually denote typed hypergraphs just by graphs.

Now we recall the definition of linear-ordered graph grammar as defined in
[MR02]: the nodes and arcs of each graph are ordered, the rules do not delete
nodes and do not collapse arcs, and the matches do not collapse arcs. With this
kind of restriction, the derivation steps can be obtained componentwise as a
pushout of nodes and pushout of arcs (because no node is deleted).

Definition 4 (Linear Ordered Graph Grammars (LOGGs)). A linear
ordered graph over a type graph TG = ({s}, ATG, sourceTG) is a graph
HT TG = (HG, typeHG, TG) with HG = (N, AHG, sourceHG) where N =
{0, . . . , n}, with n ∈ IlN, and AHG =

⋃
a∈AT G

Aa
HG, with Aa

HG = {ai | i ∈
{0, . . . , m− 1}}, where m is the cardinality of {ha ∈ AHG | typeHG(ha) = a}. A
morphism between linear ordered graphs is simply a typed graph morphism: no
additional requirements are imposed.

A linear ordered graph grammar is a grammar GG = (TG, IG, Rules)
where TG is a type graph having a single node, IG is a graph typed over TG
called the start graph, Rules is a set of typed graph morphisms and for each
rule r = (rN , rA) : L → R of Rules, rA is injective and rN is total. A linear
ordered match m = (mN , mA) : L → G is a total typed graph morphism where
the mA component is injective.

The semantics of a linear ordered graph grammar is defined as for a usual graph
grammars, taking into account that only linear ordered matches are allowed,
that is, a match is resource conscious on arcs, but may identify nodes.

Definition 5 (Derivation Step, Sequential Semantics of a LO-Graph
Grammar). Given a linear-ordered graph grammar GG = (TG, IG, Rules), a
rule r : L → R ∈ Rules, and a graph G1 typed over TG, and a linear ordered
match m : L → G1, a derivation step G1

r,m
=⇒ G2 using rule r and match m

is a pushout in the category THGraphP(TG).

L R

G1 G2

r ��
�

m

��
m′

��

r′
��

(PO)

A derivation sequence of GG is a sequence of derivation steps
Gi

ri,mi=⇒ Gi+1, i ∈ {0, . . . , n}, n ∈ IlN, where G0 = IG, ri ∈
Rules. The sequential semantics of GG is the set of all
sequential derivations of GG.

3 Example: Distributed Systems in Presence of Faults

Distributed systems may be spread over several computational nodes connected
through wide area networks, where reliability and availability levels may vary.
Therefore, while modeling distributed systems one important aspect to take into
consideration is the possibility of fault occurrences. In [DRS04, DMS05] Graph
Transformation Systems where employed to model and analyze distributed sys-
tems in presence of some kinds of faults.
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There are several kinds of faults in distributed systems. Here we concentrate
on “crash” faults, which are very often considered while developing distributed
systems. According to the crash fault, a process fails by halting and the processes
that communicate with the halted process are not warned about the fault. If a
process that offers a service crashes, it has to be replaced by another process
and the service continued. This may be performed in several ways, depending
on the kind of system. Very often, a server process has one or more backup
processes which are kept synchronized and in case the server crashes, the primary
backup process assumes the service. In this situation, the other processes have to
update references to the new server. With the appropriate usage of an underlying
communication platform, the communication is kept consistent from the point
of view of the user processes, even if the server is replaced.
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Fig. 1. Fault/Recovery System

This abstraction is well captured using linear-ordered graph grammars. The
corresponding grammar is shown in Figure 1. Arcs are drawn as squares and
nodes as bullets. The tentacles of the arcs describe the source function and are
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numbered to indicate their order. Indices on nodes and arcs here just indicate
different instances of items with same types (when there is only one instance,
we may omit the index 1). Nodes and arcs with same indices in left- and rigth-
hand sides of rules denote preserved items, unless explicitly stated otherwise by
connecting left- and right-hand side items by a dashed arrow. The type graph has
one kind of node (to represent communication channels), and many kinds of arcs:
S and C arcs mark which nodes represent server and client processes, respectively;
A and F arcs represent that servers are active or crashed, respectively; K arcs are
used to model that a process knows a server; Req and Resp arcs describe requests
and responses; BackUp arcs relate servers that are synchronized (one is backup
of the other) and GenBackup arcs are used to warn that a new backup server
shall be created (because one server has crashed). A client process C may use
the service of an active (A) server S through requests Req (rule Request). In
normal operation, the service answers the requisitions back to the process via
Resp (rule Response). However, a server process may crash (or fail), switching
to F mode (rule Crash). As discussed above, the detection of a failed server will
fire the server replacement behavior which, in this case, means that a back-up
server will be activated and resume the operation assuming the same state as
the crashed server before the fault arises. This is represented by collapsing the
communication channels of the involved servers in rule Recover. In addition, this
rule generated a warning in the system to inform that a new backup server is
needed. The new back-up server process is created in rule BackUp. Note that
collapsing nodes in this case provides a very useful abstraction for several aspects:
(i) the state of the service is not lost; (ii) references (from user processes) are
updated consistently; (iii) ongoing messages in communication channels are not
lost. This effect is very difficult to achieve (if not impossible at all) in approaches
that do not allow non injective rules.

An example of rule application is shown in Figure 2, in which a crashed server
known by two processes is replaced by its backup. All requests were moved to
the new server, and it is transparent for the client processes that this change of
servers has taken place (as required by an adequate recovery procedure).

4 Tile Semantics of LOGG

Here we will reproduce the main ideas presented in [MR02], showing that the
semantics of LOGGs can be suitably described by tile systems. First, we review
the main concepts of tile systems and theories that are relevant to model graph
grammars (sect. 4.1) and then discuss how LOGGs and their semantics can be
defined in terms of tile systems (sect. 4.2).

4.1 Tile Systems for Graph Grammars

A tile can be seen as a square consisting of four arrows: the horizontal ones de-
scribe states, and the vertical ones observations [GM02, FM00]. Tile systems ex-
hibit an algebraic flavor (tiles have a straightforward axiomatization as monoidal
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double categories) which may allow for universal constructions, compositional-
ity and refinement in the classical style of algebraic semantics [MM98]. The first
step to model graph grammars as tile system is to describe how to model graphs
and graph morphisms as tiles. Actually, graphs will be modeled as arrows of a
suitable theory and graph morphisms as tiles.

Definition 6 (One-sorted (hyper-)signatures). A hyper-signature Σ =
(S, OP ) consists of a singleton S = {s} and a family OP = {OPn}n∈IlN of sets of
operators with n arguments and no result (no target sort), where n is a natural
number. Given an operation op ∈ OPn, n is the arity of op, and the domain of
op is denoted by sn.

Now we define an extension of a signature Σ that will add as sorts all operation
names in Σ and as target of each operation the corresponding sort.

Definition 7 (Extended (hyper-)signatures). Given a signature Σ = (S,
OP ), its extension is a signature ΣE = (SE , OPE), where SE = {s}∪{op | op :
sn → 0 ∈ OPn, n ∈ IlN} and OPE = {opE : sn → op | op : sn → 0 ∈ OP, n ∈ IlN}.

An extended version of the gs-monoidal theory defined in [CG99] is used to model
(linear-ordered hyper) graphs, and a theory called pgm was defined in [MR02]
to model partial graph morphisms. We now review the necessary concepts to
define these theories.

Definition 8 (Connection diagrams). A connection diagram G is a 4-tuple
〈OG, AG, δ0, δ1〉: OG, AG are sets whose elements are called respectively objects
and arrows, and δ0, δ1 : AG → OG are functions, called respectively source and
target. A connection diagram G is reflexive if there exists an identity function
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id− : OG → AG such that δ0(ida) = δ1(ida) = a for all a ∈ OG; it is with
pairing if its class OG of objects forms a monoid; it is monoidal if it is reflexive
with pairing and also its class of arrows forms a monoid, such that id, δ0 and
δ1 respect the neutral element and the monoidal operation.

In the following we will use the free commutative monoid construction over a
set S, denoted by (S⊗, ⊗, 0). The elements of S⊗ can be seen as finite multisets
of elements of S, and will be referred to using underlined variables. If S is a
singleton set, we will denote elements of S⊗ by underlined natural numbers
(indicating the number of times the only element of S appears in the list, for
example s ⊗ s ⊗ s will be denoted by 3).

Gs-moniodal theories define a set of arrows that can be used to characterize
(linear-ordered) graphs. The following inductive definition describes the basic
arrows and composition operators, together with a set of axioms that arrows have
to satisfy. Given a (hyper)signature Σ = (S, OP ), basic arrows are created by the
axioms identities (identities on nodes/arcs are gs-monoidal arrows), generators
(for each hyperarc op : Sn → 0 of the signature, an arrow with exaclty n nodes
as source and op as target is in the theory), duplicators (arrows that duplicate
the number of nodes are allowed), permutations (arrows may change the order of
nodes/arcs), and dischargers (arrows may delete nodes). To build further arrows,
composition operators are defined by the inference rules sum (the parallel -
monoidal - composition of arrows is an arrow), and composition (arrows may
be sequentially composed to generate new arrows). Graphs will be modeled by
special gs-monoidal arrows.

Definition 9 (gs-monoidal theories). Given a (hyper)signature Σ = (S, OP )
and its extension ΣE = (SE , OPE), the associated gs-monoidal theory GS(Σ)
is the monoidal connection diagram with objects the elements of the free com-
mutative monoid over SE ((SE)⊗, ⊗, 0) and arrows generated by the following
inference rules: generators, sum, identities, composition, duplicators, discharg-
ers and permutations in Table 1.

Table 1. Inference Rules for gs-monoidal Theories

(identities)
x ∈ S⊗

E

idx : x → x ∈ GS(Σ)
(generators)

f ∈ Σn

f : n → f ∈ GS(Σ)

(duplicators)
n ∈ S⊗

∇n : n → n ⊗ n ∈ GS(Σ)
(dischargers)

n ∈ S⊗

!n : n → 0 ∈ GS(Σ)

(permutations)
x, y ∈ S⊗

E

ρx,y : x ⊗ y → y ⊗ x ∈ GS(Σ)

(sum)
s : x → y, t : x′

→ y′

s ⊗ t : x ⊗ x′ → y ⊗ y′ ∈ GS(Σ)
(composition)

s : x → y, t : y → z

s; t : x → z ∈ GS(Σ)
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The composition operator ; is associative, and the monoid of arrows satisfies

(i) the functoriality axiom: for all arrows s, s′t, t′ ∈ GS(Σ)

(s ⊗ t); (s′ ⊗ t′) = (s; s′) ⊗ (t; t′) (whenever both sides are defined)

(ii) the identity axiom: for all s : x → y

idx; s = s = s; idy

(iii) the monoidality axioms: for all n, m ∈ S⊗ and x, y, z ∈ S⊗E
ρx⊗y,z = (idx⊗ρy,z); (ρx,z⊗idy) !0 = ∇0 = ρ0,0 = id0 ρ0,x = ρx,0 = idx

idx⊗y = idx ⊗ idy !x⊗y =!x⊗!y ∇n⊗m = (∇n ⊗ ∇m); (idn ⊗ ρn,m ⊗ idm)

(iv) the coherence axioms: for all n ∈ S⊗ and x, y ∈ S⊗E
∇n; (idn ⊗ ∇n) = ∇n; (∇n ⊗ idn) ∇n; ρn,n = ∇n

∇n; (idn⊗!n) = idn ρx,y; ρx,y = idx ⊗ idy

(v) and the naturality axiom: for all s : x → y, t : z → w

(s ⊗ t); ρy,w = ρx,z; (t ⊗ s)

Arrows of gs-monoidal theories that are constructed without the generators axiom
are called basic gs-monoidal arrows. The theory obtained only with basic
arrows is denoted by bGS(Σ).
For example, consider graph L of Figure 2. Assuming that the sort of nodes is s,
this graph can be modeled as the following gs-monoidal arrow: (∇1 ⊗ ∇2); (F ⊗
∇1 ⊗ ∇2 ⊗A); (idF ⊗ S ⊗ Backup⊗ S ⊗ idA): s ⊗ s → F ⊗ S ⊗ Backup⊗ S ⊗ A.
Graphically, this arrow is represented in Figure 3 (1 and 2 are the first and
second occurrences of sort s in s ⊗ s).
Notation: In the pictures, the operator ⊗ and the underlines in the domain and
codomain of the arrows will be omitted. Moreover, we will draw indexed bullets
(•) in the graphical representation to describe the instances of sorts.

FF
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BackUp

S
2

1

1

S1

BackUp

S

A

2

1

1L : s s −> F S BackUp S A

Fig. 3. Arrow of a gs-monoidal theory

The theory defined below is used to model a special kind of graph morphism:
morphisms that are total on nodes (and may identify nodes), and are partial on
arcs (and may not identify arcs). Identification of nodes is achieved by the ∇
operator, as in gs-monoidal theories. The possibility of deleting arcs is achieved
by the

!

operator, yielding partial functions (only for arcs).
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Definition 10 (pgm-monoidal theories). Given a (hyper)signature Σ = (S,
OP ) and its extension ΣE = (SE , OPE), the associated pgm-monoidal the-
ory PGM(Σ) is the monoidal connection diagram with objects the elements of
the free commutative monoid over SE ((SE)⊗, ⊗, 0) and arrows generated by the
following inference rules: sum, identities, composition and permutations (anal-
ogous to the rules in Def. 9), and the rules in Table 2.

Table 2. Additional Inference Rules for pgm-monoidal Theories

(new)
x ∈ (SE − S)⊗!

x : 0 → x ∈ PGM(Σ)

(duplicators)
n ∈ S⊗

∇n : n → n ⊗ n ∈ PGM(Σ)
(dischargers)

x ∈ S⊗

E

!x : x → 0 ∈ PGM(Σ)

The composition operator ; is associative and the monoid of arrows satisfies the
functoriality, identity, coherence and naturality axioms (Def. 9); as well as the
monoidality axioms (all of Def. 9 plus !0 =

!

0 = ρ0,0 = id0 and

!

x⊗y =

!

x⊗

!

y,
for all x, y, z ∈ S⊗E ).
The theory obtained using the same objects and arrows generated by the rules
above, except the composition is called short pgm-graph theory, denoted by
sPGM(Σ). The theory obtained using all rules except new and with discharger
only for x ∈ S⊗ is called basic pgm-graph theory, denoted by bPGM(Σ).

Note that in pgm-monoidal theories the generators axiom was not used. This
has the effect that arrows of these theories do not correspond to graphs as
gs-monoidal theories (because arcs are not allowed), they rather describe rela-
tionships between the objects (that are lists of nodes and arc labels). Moreover,
an arrow of bPGM(Σ) is also an arrow of bGS(Σ).

The following definition relies on the fact that basic gs-monoidal arrows of
one sorted signatures correspond to total functions in the inverse direction, that
is, each gs-monoidal arrow n → m corresponds to a total function m → n (see
[CG99] for the proof). As basic pgm-monoidal arrows are also basic gs-monoidal
arrows, they also correspond to total functions. This will be used to construct
pullback squares of such arrows based on pushouts of functions. These pushouts
will model the node-component morphisms of rule applications.

Definition 11 (Derivation Pair). Given one-sorted signatures Σh and Σv,
and arrows s : n → m ∈ bGS(Σh) and t : q → m ∈ bPGM(Σv). The deriva-
tion pair of s and t, denoted by deriPair(s, t), is a pair of a basic gs-monoidal
and a basic pgm-monoidal arrows (s′ : p → q, t′ : p → n) such that the inverse
square is a pushout in the category of sets and total functions.

Now we define a tile rewrite system that can be used to model graph rewriting.
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Definition 12 (Tile sequent, Tile rewrite system). Let Σh and Σv be two
(one sorted) signatures, called the horizontal and the vertical signature respec-
tively. A Σh-Σv tile sequent is a quadruple l

a−→
b

r, where l : x → y and r : p → q

are arrows of GS(Σh) while a : x → p and b : y → q are arrows of PGM(Σv).
Arrows l, r, a and b are called respectively initial configuration, final configu-
ration, trigger and effect of the tile. Trigger and effect are called observations.
Underlined strings x, y, p and q are called respectively initial input interface,
initial output interface, final input interface and final output interface.

A short tile sequent is a tile l
a−→
b

r where observations a and b are arrows of

the short pgm-graph theory sPGM(Σv) (i.e. no sequential composition is allowed
to build them).

A tile rewrite system (trs) R is a triple 〈Σh, Σv, R〉, where R is a set of
Σh-Σv short tile sequents called rewrite rules.

A trs R can be considered as a logical theory, and new sequents can be derived
from it via certain inference rules.

Definition 13 (pgm-monoidal tile logic). Let R = 〈Σh, Σv, R〉 be a trs.
Then we say that R entails the class R of the tile sequents s

a−→
b

t obtained by

finitely many applications of the inference rules depicted in Table 3.

Table 3. pgm-monoidal Tile Logic

(generators)
s

a
−→
b

t ∈ R

s
a
−→
b

t ∈ R
(h-refl)

s : x → y ∈ GS(Σh)

ids = s
idx
−→
idy

s ∈ R
(v-refl)

a : x → y ∈ PGM(Σv)

ida = idx
a
−→
a

idy ∈ R
;

(p-comp)
α = s

a
−→
b

t, α′ = s′
a′
−→
b′

t′ ∈ R

α ⊗ α′ = s ⊗ s′
a⊗a′
−−→
b⊗b′

t ⊗ t′ ∈ R

(h-comp)
α = s

a
−→
c

t, α′ = s′
c
−→
b

t′ ∈ R

α ∗ α′ = s; s′
a
−→
b

t; t′ ∈ R
(v-comp)

α = s
a
−→
b

u, α′ = u
a′
−→
b′

t ∈ R

α · α′ = s
a;a′
−→
b;b′

t ∈ R
;

(perm)
a : x → y, b : x′

→ y′
∈ PGM(Σv)

ρa,b = ρx,x′
a⊗b
−→
b⊗a

ρy,y′ ∈ R

(PBnodes)
s : n → m ∈ bGS(Σh), a : q → m ∈ bPGM(Σv)

s
a′
−→
a

s′ ∈ R
(s′, a′) = deriPair(s, a)

4.2 Interpretation of LOGGs as Tile Rewriting Systems

The idea introduced in [MR02] of representing graphs and rules as tiles is the
following:



144 L. Ribeiro and F.L. Dotti

Graphs: Graphs will be modeled as the horizontal components of the tiles. Let
TG = ({s}, A, sourceTG) be a type graph. Based on this graph we can build
a signature Σh = ({s}, AΣ), where AΣ contains all arcs of A as operations
(the information about the arity is given by the sourceTG function). A graph
will be then an arrow x → y of the corresponding gs-monoidal theory, where
x, y ∈ ({s}  A)⊗. This means that the mapping from x to y is constructed
by using, besides the arcs of the graph, the operations of identity and per-
mutation for all sorts and, for elements of sort s (nodes), duplication and
discharging may also be used allowing, respectively, the same node to be
source of more than one hyperarcs, and that there are nodes that are not
source of any hyperarc. For the hyperarcs of the graph we include a target
function that assigns to each arc an occurrence of its type (indexed by a
natural number). Usual (closed) graphs correspond to the special case of
G : x → y when we have x ∈ {s}⊗ and y ∈ A⊗. Other graphs are called open
graphs, and will be used as auxiliary components to allow the modeling of
the direct derivations.

Rules: A rule r : L → R is a (partial) graph morphism r = (rN , rA). Such
a rule can be represented as a tile having as horizontal arrows the graphs
L and R, and as vertical arrows mappings that allow to glue nodes, delete
arcs, preserve and create arcs and nodes. These vertical arrows are arrows
of the pgm-monoidal theory for the signature Σv = Σh. Rule Recover of
Figure 1 corresponds to the tile of Figure 4 (vertical mapping is shown as
dashed arrows, creation - new - is denoted by the

!

, and deletion - bang
- is denoted by !). Note that at the west side of the tile Recover we have
modeled the component RecoverN of the rule, whereas in the east side we
model the component RecoverA.
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Fig. 4. Modeling a rule as a tile

Definition 14 (Signature of a Type Graph). Given a type graph TG =
(N, A, sourceTG), the corresponding hypergraph signature is ΣTG = (N, ATG),
where ATG = {a : sourceTG(a) → 0|a ∈ A}.
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In [MR02] it was shown that the graphs typed over TG = (N, A, sourceTG)
with N being a singleton are the arrows of kind n → a of a gs-monoidal theory
with signature ΣTG, where n ∈ N⊗ and a ∈ (NE −N)⊗, with ΣE

TG = (NE , AE).
Morevover, graph morphisms typed over TG are tiles having as horizontal and
vertical signature ΣTG where the north and south sides are the arrows corre-
sponding to graphs (the left- and right-hand sides of the rule, respectively), and
the vertical arrows are arrows of PGM(ΣTG). A direct derivation of a grammar
GG can be modeled by a suitable composition of tiles of the pgm-monoidal tile
logic R obtained by the TRS 〈Σh, Σv, R〉, where Σh = Σv = ΣTG (as discussed
above), and R is the set of tiles representing the rules of GG. A derivation
G

r,m
=⇒ H using rule r : L → R at match m : L → G can be obtained as a

composition of tiles that will give raise to a tile r′ : G → H . This can be done
in 4 steps (see [MR02] for detailed explanations):

1. Context Graph: Construct the (context) graph G′, that contains all nodes
of G and all arcs that are in G and are not in the image of the match m
(that is, G′ is G after removing the deleted and preserved arcs).

2. Tile 1: Construct the tile r ⊗ idG′ , that is the parallel composition of the
tile corresponding to rule r and the identity tile of graph G′.

3. Tile 2: Construct the tile corresponding to the match and derivation on
the node component: the north side of this tile corresponds to mN (the
component of the match morphism that maps nodes), the east side is the
west side of the tile obtained in step 2, and the remaining sides will be
mappings of nodes such that the resulting square commutes and has no
nodes that are not in the north or east sides already.

4. Resulting Tile: The result of the application of rule r at match m is then
given by the sequential composition of the tiles obtained in the last 2 steps:
T ile 1 ∗ T ile 2 (obtained by the application of rule h-comp of R).

5 Open Graphs

Although open graphs were defined in [MR02], they were just used to build
auxiliary tiles to enable the description of the derivation as tile rewrite systems.
Since LOGGs were defined only for closed graphs (the initial graph and all rules
were only allowed to have this kind of graphs), it was not possible to use the
feature of horizontal composition of tiles to model composition of parts of a
system, we could only use the vertical dimension to model the evolution of the
system via the application of rules. In the sequel we will define a special kind of
open graph (in which only nodes may be shared), and show that small changes in
the definitions of Sect. 4 provide a much more interesting specification formalism.

Definition 15. A (node-)open graph typed over TG = (N, A, sourceTG), with
N being a singleton, is a tuple OGTG = (G, ON), where G = (OG, typeOG, TG)
is a typed graph and ON is a subset of nodes of OG, called the open nodes.

According to this definition, an open graph is just a typed graph with a distin-
guished set of nodes that are called open, meaning that these are the points to
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which other graphs may be attached when composing this graph with another
one. Graphs with no open nodes will be called closed graphs (this is the case of
all graphs defined in the previous sections).

In terms of gs-monoidal theories, open graph can be characterized as arrows
of the kind n → na, where n is a multiset of nodes (like in closed graphs) and na
may contain nodes and arcs (in closed graphs, this component consisted only of
arcs). The nodes that appear in na are the open nodes. An additional require-
ment is necessary to assure compatibility with Def. 15: due to the duplication
operation, it could be possible to have a gs-monoidal arrow with, for example,
two nodes in na corresponding to the same node in n – but such an arrow should
not correspond to an open graph.

Characterization 16. An arrow n → na of a gs-monoidal theory with signa-
ture ΣTG, with ΣE

TG = (NE , AE), represents an (node-)open graph if n ∈ N⊗,
na ∈ (NE)⊗, and each node of n is connected to at most one node node of na.

In the rest of this paper, we refer to open graphs instead of node-open graphs.
More general forms of graphs (in which n ∈ (NE)⊗) will be called general graphs.

5.1 LOGGs Using Open Graphs

We can rephrase the definition of LOGGs now by using open graphs instead of
graphs, and the morphisms will be tiles having open graphs as horizontal arrows
and arrows of PGM(ΣTG) as vertical arrows. As an example, we will consider
the specification of client/server systems. While working with distributed sys-
tems it is highly desirable to be able to compose systems from separate modules
via well defined interfaces, as well as to specify open systems. Openess is used
in this context in the sense that parts of the system are open to engage in col-
laboration with previously unknown other modules. The collaboration may take
place through the exchange of well defined messages using appropriate channels.

Therefore, while specifying one part of the system it is important to have
suitable means to make explicit which of its parts are open for collaboration. On
the other hand, it is also important to state clearly what is assumed from other
modules that may engage in communication during the life-time of the system.
Using LOGGs, we can identify approapriate abstractions for such cases.

The example depicted in Figure 5 shows a generic situation where a server S is
open to communicate with clients C. Although it would be possible to represent
graphs and rules as arrows/tiles, we will stick to the usual graphical representa-
tion, marking open nodes (nodes that are present in the left- and right-hand sides
of gs-monoidal arrows) with a circle. The type graph was not depicted, since it
is straightforward (has one node and all types of arcs that appear in the speci-
fication). Client and server communicate via a communication channel. A client
may send a request Req to the server. The server, in order to accomplish the re-
quest, may have to allocate internal resources R. This situationis quite common
in distributed systems: for instance, TCP connections are opened depending on
available memory needed to store incomming data through the connection; or
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Fig. 5. Client/Server System

even the service for a specific client may need a new thread. The resource is then
assigned to the client (L) and the request is positively responded with Ack. If no
resources are avaliable, the server may deny the service through Nack.

The client may eventualy cease service usage (Exit), leading the resource to
be freed (F). Note that when a client and a server engage in a communication,
the client and server share a private communication channel (a closed node).
In order to allow the possibility of new clients to communicate with the server,
an open communication channel node has to be created, thus the rule for open
channel creation is needed (rule NewClient). This situation is analogous to the
use of the replication operator in process algebra, and is extremely useful in
the design of open systems, since a server does not know a priori how many other
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clients may be using it, and the fact that we may have open nodes provides the
necessary abstraction to describe such a situation: the semantics will consider
all possible compositions of a server with any number of clients.

To be able to define the desired behavior as a tile systems, we need additional
tiles: after performing the 4 steps described in section 4, we must compose the
resulting tile T 3 with an additional tile to glue the open nodes according to
the way defined in the rule/match. This additional tile can be obtained as the
parallel composition of a tile that is the horizontal identity of the arcs involved
in the west arrow of T 3 and a tile that has as east side the node component
of the west arrow of T 3, and whose north arrow describe the gluing of open
nodes specified by the derivation. This tile corresponds to a pushout of total
functions, and to obtain this effect, we must take the north and south arrows
from a theory that allows to glue nodes (for example, a coGS(ΣTG) [BM02]).
Like the rule PBnodes of Table 3, a corresponding rule should be included in
the pgm-monoidal theory to generate the needed tiles. Moreover, the semantics
should take into account the composition of a server with any number of clients,
since the behavior of a server without clients would be empty. This will be
discussed in the following section.

5.2 Composition of Open Graphs

An important feature of this new model is the possibility to merge partial states
of a system via interface items (open nodes). But, since we still do not allow arcs
in the interface, a more involved construction is needed to build the composition.
Given two open graphs G1 : n → me and G2 : n′ → m′e′, we need to make the
target of G1 equal to the source of G2 to enable the composition (we assume that
G2 does not necessarily have the same number of nodes as open nodes in G1,
since in practical application this would be a strong requirement ). The idea is
to define that the first m nodes of G2 will be glued to corresponding open nodes
of G1, and the rest of the nodes will remain in the resulting graph. To obtain
this effect, we need to to build the following arrow (G1 ⊗ idNG2); (G2 ⊗ idAG1) :
n′′ ⇒ m′′e′′, where idNG2 is the identity arrow on the nodes of G2 that will not
be matched to open nodes of G1, idAG1 is the identity arrow on arcs of G1. This
way, n′′ contains all nodes of G1 and all nodes of G2 that were not merged with
nodes of G1, m′′ contains all open nodes of G2 and e′′ contains all arcs of G1
and G2. This construction is illustrated in Figure 6. Note that this composition
is not commutative: we compose the open nodes of the first graph with nodes of
the second (and the latter may be open or closed nodes).

To enable that composition takes place during the evolution of the system via
rules, we need to enrich further the tile system with (i) tiles in which the north
and south arrows consist only of nodes and are identity arrows, and the east
and west arrows denote the same total function; (ii) tiles in which the north and
south arrows consist only of arcs and are identities and east and west arrows
describe the same partial injective function. Note that the whole functionality
of the system only takes place when the interplay between horizontal and vertical
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composition is allowed: in the example, the system starts with an open commu-
nication channel, and in this situation, no rules may be applied; when a client
composes with this system (this may happen since all graphs are available as tiles
in the tile system of a LOGG), this open channel is restricted for the communi-
cation with this client, and the rules of the server become applicable (including
the rule that creates a new communication channel). This very interesting view
on the behavior of open systems is inspired by the tile modeling.

6 Conclusion and Future Work

In this paper we reviewed the concepts of Linear-Ordered Graph Grammars
(LOGGs) as presented in [MR02]. We showed an example of application of this
kind of grammars, taking advantages of its features to model distributed systems.
We then discussed how the notion of open graph can be exploited to model open
systems. In this framework, the behavior is defined not only by the rules that
specify a system, but also by the different ways in which this system may be
composed with other systems. The cooperation between horizontal and vertical
compositions for a system can be naturally described in the tile systems setting.

This contribution makes evident that LOGGs provide a link between the area
of graph grammars and tile systems, showing that both areas of research can
benefit from each other. In particular, we showed that by modeling graph gram-
mars as tile systems, we immediately got ideas on novel kinds of graphs, on how
composition of these new kinds of graphs may be defined, and on the relation-
ships between composition and evolution (through derivations) of a system.

Since it was not the aim of this paper to show all formal definitions, but to
provide insights on possible applications and extensions of linear-ordered graph
grammars, a lot of work still has to be done to formalize the presented ideas.
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frossi@math.unipd.it

Abstract. This short note introduces the area of constraint and logic
programming. I will first briefly describe the main contributions of Ugo
Montanari to these disciplines. Then I will summarize the papers con-
tained in this volume, and concerned with either constraint or logic pro-
gramming, that have been written in honour of Ugo Montanari.

1 Constraint Programming

Constraint programming (CP) [1,8,11,15,14] is a powerful paradigm for solving
combinatorial search problems. CP was born as a multi-disciplinary research area
that embeds techniques and notions coming from many other areas, among which
artificial intelligence, computer science, databases, programming languages, and
operations research. Constraint programming is currently applied with success
to many domains, such as scheduling, planning, vehicle routing, configuration,
networks, and bioinformatics.

Constraint solvers take a real-world problem, represented in terms of decision
variables and constraints, and find assignments to all the variables that satisfy
all the constraints. Constraint solvers search the solution space either systemati-
cally, as with backtracking or branch and bound algorithms, or use forms of local
search which may be incomplete. Systematic methods often interleave search and
inference, where inference consists of propagating the information contained in
one constraint to the neighboring constraints. Such inference, called constraint
propagation, is usually very useful, since it may greatly reduce the parts of the
search space that need to be visited. Constraints that are often used in real-life
problems, called global constraints, come with their own ad-hoc efficient propa-
gation mechanisms, that make them especially efficient to use.

The initial ideas underlying the whole constraint programming research area
emerged in the 70’s with several pioneering papers on constraint propagation.
Among them, it is no doubt that the most influential of all has been the 1974
paper by Ugo Montanari titled “Networks of Constraints: Fundamental Prop-
erties and Applications to Picture Processing” (Information Science, vol. 7, p.
95–132, 1974) [13], where, for the first time, a form of constraint propagation
called path consistency was defined and studied in depth. This paper is one of
the most cited and influential in the field of constraint programming. For the

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 151–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



152 F. Rossi

first time, there was a clear and formal study of a new notion of local consistency,
as well as of many other concepts such as the notion of decomposable networks
of constraints. The influence was both in terms of the results contained in the
paper, as well as in terms of a very formal and clear style of presentation, typical
of all Ugo’s papers, that was very rare in Artificial Intelligence at that time.

In 1995, when CP was already well developed and with many research lines,
Ugo made another important contribution to the field, by introducing, together
with S. Bistarelli and myself, the notion of soft constraints, that is, constraints
that can have several levels of satisfiability [3,2]. To do this, algebraic concepts
were used, such as the notion of semiring, that was used to model the set of
satisfiability levels. The main contribution was the introduction of a very gen-
eral framework where several classes of soft constraints could be modelled, and
where properties could be proven once and for all, and then inhertited by all the
instances. Since then, the area of soft constraints has evolved greatly, with other
modelling formalisms, solving techniques, applications, and theoretical results.
Further contributions of Ugo along this line include the embedding of soft con-
straints in programming paradigms, such as constraint logic programming [4,5]
and concurrent concurrent programming [6,7].

2 Logic Programming

Logic programming [10] is a declarative programming paradigm where programs
are not made of commands nor of functions, but of logical implications (called
clauses) between collections of predicates. Executing a logic program means ask-
ing whether a certain statement (called the goal) is true under the logical theory
modelled by the clauses. To answer this question, the current goal is recursively
“unified” with the conclusion (also called the head) of a clause. Unification is
therefore a crucial mechanism to execute a logic program such as those written
in Prolog. However, it can be very expensive to compute.

Ugo Montanari, together with Alberto Martelli, gave an essential contribution
to logic programming with the paper “An Efficient Unification Algorithm” (ACM
TOPLAS, 1982) [12], by introducing an efficient way to unify two terms. In this
paper, the problem of unifying two terms is seen as the problem of finding the
solution of a set of equations, and it is shown that this can be done very efficiently.
For a historical view of how this result came about, see also the paper by Alberto
Martelli in this volume.

3 Papers About Constraint and Logic Programming in
This Volume

The paper “Semiring-based soft constraints”, by Stefano Bistarelli and Francesca
Rossi, describes the work done together with Ugo Montanari for the introduction
of semiring-based soft constraints, as well as the main lines of research that
have been followed since then to extend, use, and make soft constraints more
applicable.
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Constraint programming is a declarative programming framework, where, ide-
ally, a user should state its constraints, and the underlying solver should solve
them. There are many other declarative programming paradigms, and most of
them, included CP, suffer from the lack of debugging tools. This is inherently
related to the declarative nature of such paradigms. The paper “Declarative De-
bugging of Membership Equational Logic Specifications”, by Rafael Caballero,
Narciso Marti-Oliet, Adrian Riesco, and Alberto Verdejo, shows how to use
declarative (or algorithmic debugging) in the context of Maude, a high-level
declarative language supporting equational and rewriting logic computations.

Classical spreadsheet software, such as Excel, embed a very simple form of
constraint programming, since it is possible to relate the value of a cell to
the value of other cells via some function. By extending these functions to be
generic constraints, we greatly enlarge the applicability of this software. The
paper “SPREADSPACES: Mathematically-Intelligent Graphical Spreadsheets”,
by Nachum Dershowitz and Claude Kirchner, shows how to enhance classical
spreadsheets to obtain systems where spreadsheet computation, as well as con-
straint solving and optimization, can be carried on in a graphical environment.

Constraints have been embedded in many programming paradigms, but the
one that has shown to be the most suitable is the logic programming par-
adigm. The paper “An Overview of The Ciao Multiparadigm Language and
Program Development Environment, and its Design Philosophy”, by Manuel
Hermenegildo, Francisco Bueno, Manuel Carro, Pedro Lopez-Garcia, and Ger-
man Puebla, is a brief overview of the CIAO programming language, that started
as a constraint logic programming language [9], and that now supports func-
tional, logic, constraint, and object-oriented programming, in an environment
with concurrent, parallel, and distributed executions, as well as many auxiliary
tools such as debuggers, verifiers, and visualizers.

Constraint programming problems are usually solved via systematic search,
which traverses a search tree via depth-first backtracking search. Search trees
have only OR-nodes, that model branching via variable instantiation. By aug-
menting them with AND-nodes, modelling problem decomposition, it is possible
to exploit variable independency during search. This can lead to exponential
speed-up. Binary decision diagrams are also widely and effectively used to model
Boolean functions. The paper “AND/OR Multi-Valued Decision Diagrams for
Constraint Networks”, by Robert Mateescu and Rina Dechter, shows how to
combine the idea of decision diagrams and of AND/OR search structures to
model compactly and solve more efficiently constraint problems, by providing a
survey of recent results in this line of research.
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Abstract. The semiring-based formalism to model soft constraint has
been introduced in 1995 by Ugo Montanari and the authors of this pa-
per. The idea was to make constraint programming more flexible and
widely applicable. We also wanted to define the extension via a general
formalism, so that all its instances could inherit its properties and be
easily compared. Since then, much work has been done to study, extend,
and apply this formalism. This papers gives a brief summary of some of
these research activities.

1 Before Soft Constraints: A Brief Introduction to
Constraint Programming

Constraint programming [1,42,60,74,68] is a powerful paradigm for solving com-
binatorial search problems that draws on a wide range of techniques from ar-
tificial intelligence, computer science, databases, programming languages, and
operations research. Constraint programming is currently applied with success
to many domains, such as scheduling, planning, vehicle routing, configuration,
networks, and bioinformatics.

The basic idea in constraint programming is that the user states the con-
straints and a general purpose constraint solver solves them. Constraints are
just relations, and a constraint satisfaction problem (CSP) states which rela-
tions should hold among the given decision variables. For example, in scheduling
activities in a company, the decision variables might be the starting times and
the durations of the activities, as well as the resources needed to perform them,
and the constraints might be on the availability of the resources and on their
use for a limited number of activities at a time.

Constraint solvers take a real-world problem, represented in terms of decision
variables and constraints, and find an assignment of values to all the variables
that satisfies all the constraints. Constraint solvers search the solution space
either systematically, as with backtracking or branch and bound algorithms,
or use forms of local search which may be incomplete. Systematic methods of-
ten interleave search and inference, where inference consists of propagating the
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information contained in one constraint to the neighboring constraints. Such in-
ference, usually called constraint propagation, may reduce the parts of the search
space that need to be visited.

Rather than trying to satisfy a set of constraints, sometimes people want to
optimize them. This means that there is an objective function that tells us the
quality of each solution, and the aim is to find a solution with optimal quality.
To solve such problems, techniques such as branch and bound are usually used.

The initial ideas underlying the whole constraint programming research area
emerged in the ’70s with several pioneering papers on local consistency, among
which the 1974 paper by Ugo Montanari [63], where for the first time a form
of constraint propagation, called path consistency, was defined and studied in
depth. Since then, the field has evolved greatly, and theoretical study has been
coupled with application work, that has shown the need for several extensions
of the classical constraint formalism. The introduction of semiring-based soft
constraints lies within this evolution thread.

In the classical notion of constraint programming, constraints are relations.
Thus a constraint can either be satisfied or violated. In the early ’90s, some
attempts had been made to generalize the notion of constraint to an object with
more than just two levels of satisfiability.

For example, fuzzy constraints [46,69] allow for the whole range of satisfiability
levels between 0 and 1. Then, the quality of a solution is the minimum level of
satisfiability of the constraints for that solution. The aim is then to find a solution
whose quality is highest.

Because fuzzy constraints suffer from the so-called ”drowning effect” (where
the worst level of satisfiability ”drowns” all the others), lexicographic constraints
were introduced [49], to obtain a more discriminating ordering of the solutions,
where also solutions with the same worst level can be distinguished.

Another extension to classical constraints are the so-called probabilistic con-
straints [48], where, in the context of an uncertain model of the real world, each
constraint is associated to the probability of being present in the real problem.
Solutions are then associated to their conjoint probability (assuming indepen-
dence of the constraints), and the aim is to find a solution with the highest
probability.

In weighted constraints, instead, each constraint is given a weight, and the aim
is to find a solution for which the sum of the weights of the satisfied constraints
is maximal. A very useful instance of weighted constraints are MaxCSPs, where
weights are just 0 or 1 (0 if the constraint is violated and 1 if it is satisfied). In
this case, we therefore want to satisfy as many constraints as possible.

While fuzzy, lexicographic, and probabilistic constraints were defined for mod-
eling purposes, that is, to model real-life situations that could not be faith-
fully modeled via classical constraints, weighted constraints and MaxCSPs were
mainly addressing over-constrained problems, where there are so many con-
straints that the problem has no solution. In fact, the aim is to satisfy as many
constraints as possible, possibly using priorities (modeled by the weights) to have
more discriminating power.
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This second line of reasoning lead also to the definition of the first general
framework to extend classical constraints, called partial constraint satisfaction
[51]. In partial CSPs, over-constrained problems are addressed by defining a
metric over constraint problems, and by trying to find a solution of a problem
which is as close as possible to the given one according to the chosen metric.
MaxCSPs are then just an instance of partial CSPs, where the metric is based
on the number of satisfied constraints.

2 Semiring-Based Soft Constraints: Main Idea and
Properties

The idea of the semiring-based formalism [26,27,61,7] was to further extend the
classical constraint notion, and to do it with a formalism that could encompass
most of the existing extensions, as well as other ones not yet defined, with the
aim to provide a single environment where properties could be proven once and
for all, and inherited by all the instances.

At the technical level, this was done by adding to the usual notion of a CSP
the concept of a structure representing the levels of satisfiability of the con-
straints. Such a structure is a set with two operations: one (written +) is used to
generate an ordering over the levels, while the other one (×) is used to define how
two levels can be combined and which level is the result of such combination.
Because of the properties required on such operations, this structure is similar to
a semiring: from here the terminology of ”semiring-based soft constraints”, that
is, constraints with several levels of satisfiability, and whose levels are (totally
or partially) ordered according to the semiring structure. Fuzzy, lexicographic,
probabilistic, weighted, and MaxCSPs are all instances of the semiring-based
framework. In general, problems defined according to the semiring-based frame-
work are called soft constraint satisfaction problems (SCSPs).

Figure 1 shows a weighted CSP as a graph. Variables and constraints are
represented respectively by nodes and by undirected arcs (unary for c1 and c3,
and binary for c2), and semiring values are written to the right of each tuple.
Here we assume that the domain of the variables contains only elements a, b and
c. An optimal solution of this problem is (X = b, Y = c), that has weight 7.

X Y

〈a〉 → 9
〈a〉 → 9

〈b〉 → 1 〈b〉 → 5
〈c〉 → 9 〈c〉 → 5

〈a, a〉 → 8

〈a, b〉 → 2

〈c, a〉 → 8

〈c, b〉 → 2

〈b, a〉 → ∞

〈b, b〉 → ∞

〈a, c〉 → 2

〈b, c〉 → 1

〈c, c〉 → 2

c1

c2

c3

Fig. 1. A weighted CSP
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In the same year in which semiring-based soft constraints were introduced
(1995), another general formalism to model constraints with several levels of
satisfiability was proposed: the so-called ”valued” constraints [72]. Valued con-
straints are very similar to semiring-based soft constraints, except that their
levels of satisfiability cannot be partially ordered [13].

The possibility of partially ordered set of levels of satisfiability can be useful
in several scenarios. When the levels are the result of the combination of several
optimization criterion, it is natural to have a Pareto-like approach in combining
such criteria, that naturally leads to a partial order. Also, even if we have just
one optimization criteria, we may want to insist in declaring some levels as
incomparable, because of what they model. In fact, the elements of the semiring
structure do not need to be numbers, but can be any objects that we want
to associate to a way of giving values of the variables of a constraints. If, for
example, the objects are all the subsets of a certain set, then we have a partial
order under subset inclusion.

One of the strengths of constraint programming is the ability to remove local
inconsistencies via constraint propagation. This techniques can be extended to
soft constraints. If some properties of the semiring structure (mainly the idem-
potence of the combination operator) hold, this extension has the same desirable
properties as the classical notion. That is, it terminates, it returns an equivalent
problem, and it is independent on the order of the application over constraints
[22]. Otherwise, a different notion of constraint propagation can be defined, which
enjoys some of the properties but not all (for example, independence does not
hold any longer) [39,40,71,21].

Some real-life situations cannot be modeled via soft constraints with idem-
potent operators. For this reason, a more general notion that does not assume
this property has been introduced in [75]. In this more general setting, semiring
valuations are useful, for example, when counting the number of solutions.

Another extension of the semiring-based framework has been proposed in [54],
where a metric space has been combined with semiring-based constraints to
capture distances between preference levels. In [59] the distance is then used to
define a notion of constraint relaxation.

It is known that non-binary classical constraints can always be modeled by
binary constraints, if enough new variables are introduced (primal representa-
tion) or if we use variables with tuple domains (dual representation). In [58] this
issue has been considered in the context of soft constraints, and it was shown
that any set of semiring-based soft constraints can be modeled via unary soft
constraints plus classical binary constraints.

3 Embedding Soft Constraints in Programming
Paradigms

Classical constraints have been embedded in several programming paradigms, such
as logic programming and concurrent programming. This has lead to Constraint
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Logic Programming (CLP) [60,55,56] and Concurrent Constraint (cc) program-
ming [70]. Similar attempts have been done with semiring-based soft constraints.

3.1 Soft CLP

To build applications with constraints, a language is needed where such con-
straints are easily embedded and handled as first class objects. This is why
soft constraints have been embedded in the Constraint Logic Programming
(CLP) [56] formalism. The resulting paradigm, called SCLP (for Semiring-based
CLP, or also Soft CLP) [29,30], has the advantage of treating in a uniform way,
and with the same underlying machinery, all constraints that can be seen as
instances of the semiring-based approach. This leads to a high-level declara-
tive programming formalism where real-life problems involving constraints of all
these kinds can be easily modeled and solved.

As usual for logic programming languages, three equivalent semantics have
been defined for SCLP: model-theoretic, fix-point, and operational, which are
conservative extensions of the corresponding ones for LP. Additionally, the de-
cidability of the semantics of SCLP programs have been investigated: if a goal
has a semiring value greater than or equal to a certain value in the semiring,
then we can discover this in finite time. Moreover, for SCLP programs without
functions, the problem is completely decidable: the semantics of a goal can be
computed in finite and bounded time.

The SCLP framework has been implemented [53] on top of an existing
CLP(FD) language. The resulting language, called CLP(FD,S), is parametric
with respect to the semiring S, and can handle semiring-based soft constraints
over S in problems where variables have finite domains.

3.2 Soft cc

Semiring-based soft constraints have also been embedded in concurrent lan-
guages. The framework proposed in [31,25] (called scc) extends the cc program-
ming framework [70] by using soft constraints instead of classical ones.

In cc programming, a set of agents share a store which contains constraints.
An agent can ask if a constraint is entailed by the store, or can tell (that is, add)
a new constraint to the store. In scc, the notions of ask and tell are parameterized
with respect to the level of consistency of the store or the semiring level of each
instance of the constraints present in the store. In this way, each tell and ask
agent is equipped with a preference (or consistency) threshold which is used to
determine their success, failure, or suspension, as well as to prune the search.

Scc programming has been also extended to deal with timed [20] and non-
monotonic [35] issues. The timed extension is based on the hypothesis of bounded
asynchrony: computation takes a bounded period of time and is measured by a
discrete global clock. Action prefixing is then considered as the syntactic marker
which distinguishes a time instant from the next one. In non-monotonic scc some
new actions provide the user with explicit non-monotonic operations: retract(c),
to remove constraint c from the current store; updateX(c), to transactionally
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relax all the constraints of the store that deal with variables in set X, and then
add a constraint c; and nask(c), to test if constraint c is not entailed by the
store.

The framework has been implemented [43]. In particular, the soft constraint
constructs were adapted to and integrated within the propagation process of
Mozart [47].

Soft constraints have been embedded also in the Constraint Handling Rule
(CHR) framework, a formalism to specify constraint solvers and constraint prop-
agation algorithms via a set of rewriting rules [24,19]. The obtained system al-
lows one to design and specify naturally soft constraint solvers, including soft
propagation algorithms.

4 Extending Soft Constraints to Model Other Kinds of
Preferences

Semiring-based soft constraints are a way to model preferences. However, prefer-
ences can be of various kinds, and semiring-based soft constraints, as originally
defined, are good at modeling only some of them.

For example, preferences can be quantitative or qualitative (e.g., “I like this at
level 10” versus “I like this more than that”). They can also be conditional (e.g.,
“If the main dish is fish, I prefer white wine to red wine”) or bipolar (e.g., “I like
fish a lot, and I slightly dislike meat”). Soft constraints can model directly and
naturally quantitative preferences, but are not as good at modeling qualitative,
conditional, or bipolar preferences. We will now summarize some approaches to
model these other kinds of preferences via extensions or adaptations of semiring-
based soft constraints.

4.1 Bipolar Preferences

Bipolarity is an important topic in several fields, such as psychology and multi-
criteria decision making, and it has recently attracted interest in the AI commu-
nity, especially in argumentation and qualitative reasoning. Bipolarity in pref-
erence reasoning can be seen as the possibility to stating both degrees of satis-
faction (that is, positive preferences) and degrees of rejection (that is, negative
preferences).

Positive and negative preferences can be thought as two symmetric concepts,
and thus one can think that they can be dealt with via the same operators.
However, this may not model what one usually expects in real scenarios. For
example, when we have a scenario with two objects A and B, if we like both A
and B, then having both A and B should be more preferred than having just A
or B alone. On the other hand, if we don’t like A nor B, then the preference of
A and B together should be smaller than the preferences of A or B alone. That
is, the combination of positive preferences should produce a higher (positive)
preference, while the combination of negative preferences should give us a lower
(negative) preference.
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When dealing with both kinds of preferences, it is natural to express also
indifference, which means that we express neither a positive nor a negative pref-
erence over an object. For example, we may say that we like peaches, we don’t
like bananas, and we are indifferent to apples. Then, a desired behavior of indif-
ference is that, when combined with any preference (either positive or negative),
it should not influence the overall preference. For example, if we like peaches and
we are indifferent to apples, a dish with peaches and apples should have overall
a positive preference.

Finally, besides combining preferences of the same type, we also want to be
able to combine positive with negative preferences. The most natural and in-
tuitive way to do so is to allow for compensation. Comparing positive against
negative aspects and compensating them with respect to their strength is one of
the core features of decision-making processes, and it is, undoubtedly, a tactic
universally applied to solve many real life problems. For example, if we have a
meal with meat (that we like very much) and wine (that we don’t like), then
what should be the preference of the meal? To know that, we should be able to
compensate the positive preference given to meat with the negative preference
given to wine. The expected result is a preference which is between the two,
and which should be positive if the positive preference is ”stronger” than the
negative one.

Semiring-based soft constraints can only model negative preferences, since
in this framework preference combination returns lower preferences. However,
this framework can be generalized to model also positive preferences. In [65]
this is done by defining a new algebraic structure to model positive preferences.
The two structures are then linked by setting the highest negative preference
to coincide with the lowest positive preference, to model indifference. Then, a
combination operator between positive and negative preferences is defined to
model preference compensation. To find optimal solutions of bipolar problems,
it is possible to adapt usual soft constraint propagation and branch and bound.

4.2 Conditional Qualitative Preferences

While soft constraints cannot model conditional qualitative preferences directly,
CP-nets [37] (Conditional Preference networks) can. CP-nets exploit conditional
preferential independence by structuring a user’s possibly complex preference
ordering with the ceteris paribus (that is, “all else being equal”) assumption. CP-
nets are sets of conditional ceteris paribus preference statements (cp-statements).
For instance, the statement “I prefer red wine to white wine if meat is served”
asserts that, given two meals that differ only in the kind of wine served, and
both containing meat, the meal with red wine is preferable to the meal with
white wine.

If we compare the expressive power of CP-nets and soft constraints, we may
see that classical constraints are at least as expressive as CP-nets in terms of
optimal solutions. In fact, it is possible to show that, given any CP-net, we
can obtain in polynomial time a set of classical constraints whose solutions are
the optimal outcomes of the CP-net [36]. However, if we are interested not just
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in the optimal solutions, but in the whole solution ordering, CP-nets and soft
constraints are incomparable.

However, it is possible to approximate a CP-net ordering via soft constraints,
achieving tractability while sacrificing precision to some degree [45]. Different
approximations can be characterized by how much of the original ordering they
preserve, the time complexity of generating the approximation, and the time
complexity of comparing outcomes in the approximation. It is vital that such
approximations are information preserving; that is, what is ordered in the CP-
net is also ordered in the same way in the soft constraint problem. Another
desirable property of approximations is that they preserve the ceteris paribus
property.

The possibility of approximating CP-nets via soft constraints means that, with
only a soft constraint solver at hand, we can model and solve real-life problems
containing either qualitative and quantitative preferences.

5 Mastering the Complexity of Modeling and Solving
Soft Constraint Problems

In constraint problems we look for a solution, while in soft constraint problems
we look for an optimal solution. Thus, soft constraint problems are more difficult
to handle by a solver. To ease this difficulty, several AI techniques have been
exploited. Here we cite just three of them: abstraction, symmetry breaking, and
explanation generation.

Abstraction is used to work on a simplified version of the given problem, thus
hoping to have a significantly smaller search space, while explanation generation
is used to ease the understanding of the behavior of the solver. For example,
it is not always easy for a user to understand why there are no better solution
than the one returned. Symmetry breaking, instead, aims at simplifying the
problem by pruning part of the search space, via the elimination of symmetric
(or interchangeable) assignments.

An added difficulty in dealing with soft constraints comes also in the model-
ing phase, where a user has to understand how to model faithfully his real-life
problem via soft constraints. Since soft constraints require the specification of
all the preferences inside the constraints, it may be too tedious for a user to do
this. Also, some users may prefer to not reveal all their preferences because of
privacy reasons. In both cases, we end up with a soft constraint problem where
some preferences are missing. To reason in this scenario, we may use techniques
like machine learning to complete the problem, or we may try to find an optimal
solution without completing the problem, or by eliciting only a small number of
missing preferences.

5.1 Abstraction

Although it is obvious that SCSPs are much more expressive than classical CSPs,
they are also more difficult to process and to solve. Therefore, sometimes it may
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be too costly to find all, or even only one, optimal solution. Also, although
classical propagation techniques like arc-consistency can be extended to SCSPs,
even such techniques can be too costly to be used, depending on the size and
structure of the partial order associated to the SCSP. Finally, sometimes we may
not have a solver for the class of soft constraints we need to solve, while we may
have a solver for a ”simpler” class of soft constraints.

For these reasons, it may be reasonable to work on a simplified version of the
given soft constraint problem, trying however to not loose too much information.
Such a simplified version can be defined by means of the notion of abstraction,
which takes an SCSP and returns a new one which is simpler to solve. Here, as in
many other works on abstraction, “simpler” may have several meanings, like the
fact that a certain solution algorithm finds a solution, or an optimal solution, in
a fewer number of steps, or also that the abstracted problem can be processed
by a machinery which is not available in the concrete context.

To define an abstraction, we may use for example the theory of Galois in-
sertions [41]: given an SCSP (the concrete one), we may get an abstract SCSP
by just changing the associated semiring, and relating the two structures (the
concrete and the abstract one) via a Galois insertion. Note that this way of
abstracting constraint problems does not change the structure of the problem
(the set of variables remains the same, as well as the set of constraints), but just
the semiring values to be associated to the tuples of values for the variables in
each constraint [10].

Once we reason on the abstracted version of a given problem, we can bring
back to the original problem some (or possibly all) of the information derived in
the abstract context, and then continue the solution process on the transformed
problem, which is a concrete problem equivalent to the given one. The hope is
that, by following this route, we get to the final goal faster than just solving the
original problem.

Given any optimal solution of the abstract problem, we can find upper and
lower bounds for an optimal solution for the concrete problem. It is also possible
to define iterative hybrid algorithms which can approximate an optimal solution
of a soft constraint problem by solving a series of problems which abstract, in
different ways, the original problem. These are anytime algorithms since they
can be stopped at any phase, giving better and better approximations of an
optimal solution.

Experimental results show that this line is promising, for example when we
want to solve a fuzzy CSP but we just have a solver for classical constraints [33].

5.2 Symmetry Breaking

The existence of symmetries in a problem has the effect of artificially increasing
the size of the search space that is explored by search algorithms. Therefore, a
typical approach is to break the symmetries in the problem so that only unique
solutions are returned. The significant advantage is that not only do we return
fewer solutions, but we also reduce the search effort required to find these solu-
tions by eliminating symmetric branches of the search tree.
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In [23,73] an approach is presented to deal with symmetry in the semiring-
based framework for soft constraints, and it is shown that breaking symmetries in
soft constraint satisfaction problems improves the efficiency of search. In [11,12]
interchangeability has been extended to the soft CSP framework by adding a no-
tion of threshold and degradation. With these extensions, values are considered
interchangeable only by checking solutions with a semiring level better than a
given threshold (thus disregarding differences among solutions that are not suf-
ficiently good), or solutions whose exchange cannot degrade the current solution
by more than a given factor.

5.3 Explanations

One of the most important features of problem solving in an interactive setting
is the capacity of the system to provide the user with justifications, or explana-
tions, for its operations. Such justifications are especially useful when the user is
interested in what happens at any time during search, because he/she can alter
features of the problem to facilitate the problem solving process.

Basically, the aim of an explanation is to show clearly why a system acted
in a certain way after certain events. In the context of constraint problems,
explanations can be viewed as answers to user’s questions like the following:
Why isn’t it possible to obtain a solution? Why is there a conflict between these
values for these variables? Why did the system select this value for this variable?
In soft constraint problems, explanation should certainly take preferences into
account.

In addition to providing explanations, interactive systems should be able to
show the consequences, or implications, of an action to the user, which may be
useful in deciding which choice to make next. In this way, they can provide a
sort of “what-if” kind of reasoning, which guides the user towards good future
choices. Implications can be viewed as answers to questions like the following:
What would happen if this variable could only take on these values? What would
happen if this value were added to the domain of this variable? Fortunately,
in soft constraint problems this capacity can be implemented with the same
machinery that is used to give explanations.

A typical example of an interactive system where constraints and preferences
may be used, and where explanations can be very useful, are configurators. A
configurator is a system which interacts with a user to help him/her to configure
a product. A product can be seen as a set of component types, where each type
corresponds to a certain finite number of concrete components, and a set of com-
patibility constraints among subsets of the component types. A user configures
a product by choosing a concrete component for each component type, such that
all the compatibility constraints as well as personal preferences are satisfied. For
example, in a car configuration problem, a user may prefer red cars, but may
also not want to completely rule out other colors. Thus red will get a higher
preference with respect to the other colors.

Constraint-based technology is currently used in many configurators to both
model and solve configuration problems: component types are represented by
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variables, having as many values as the concrete components, and both compati-
bility and personal constraints are represented as constraints (or soft constraints)
over subsets of such variables. At present, user choices during the interaction with
the configurator are usually restricted to specifying unary constraints, in which
a certain value is selected for a variable.

Whenever a choice is made, the corresponding (unary) constraint is added to
existing compatibility and personal constraints, and some constraint propagation
notion is enforced, for example arc-consistency (AC) [68], to rule out (some
of the) future choices that are not compatible with the current choice. While
providing justifications based on search is difficult, arc-consistency enforcing has
been used as a source of guidance for justifications, and it has been exploited to
help the users in some of the scenarios mentioned above. For example, in [50],
it is shown how AC enforcement can be used to provide both justifications for
choice elimination, and also guidance for conflict resolution.

The same approach can be used also for configurators with preferences [64], us-
ing a generalized version of arc-consistency, whose application may decrease the
preferences in some constraints. When a user makes a choice for a specific feature
of a configuration problem, the preferences of the other features are automatically
lowered to the minimum value. This triggers arc-consistency, which in turn low-
ers other preferences for features that are correlated to the chosen one. If all the
values of a feature have minimal preference, that feature cannot be instantiated to
any value. Thus the sequence of choices already made cannot lead to a complete
configuration. Otherwise, the configuration process may continue, but the lowered
preference values can help in guiding towards the best complete configurations. It
is therefore possible to compute explanations describing why the preferences for
some values decrease, and suggesting at the same time which assignment has to be
chosen, or retracted, in order to maximize the quality of a complete configuration.

5.4 Learning

In a soft constraint problem, sometimes one may know his/her preferences over
some of the solutions, but have no idea on how to code this knowledge into
the constraint problem in terms of local preferences. That is, one has a global
idea about the goodness of a solution, but does not know the contribution of
each single constraint to such a measure. In such a situation, it is difficult both
to associate a preference to the other solutions in a compatible way, and to
understand the importance of each tuple and/or constraint. In other situations,
one may have just a rough estimate of the local preferences, either for the tuples
or for the constraints.

In [66], this scenario is theoretically addressed by proposing to use learning
techniques based on gradient descent. More precisely, it is assumed that the
level of preference for some solutions (that is, the examples) is known, and a
suitable learning technique is defined to learn, from these examples, values to
be associated with each constraint tuple, in a way that is compatible with the
examples. In [6] the theoretical framework proposed in [66] is implemented, and
results of several experiments are shown.
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Soft constraint learning has been embedded also in a general interactive con-
straint framework, where users can state both usual preferences over constraints
and also preferences over solutions proposed by the system [67]. In this way,
the modeling and the solving process are heavily interleaved. Moreover, the two
tasks can be done also incrementally, by specifying some preferences at each
step, and obtaining better and better solutions at each step. In this way, the
examples needed are much less, since they are not given by the user all at the
beginning of the solving process, but are guided by the solver, that proposes the
next best solutions and asks the user to give a feedback on them.

5.5 Incompleteness and Elicitation

Sometimes the task of specifying a whole soft CSP may be so heavy that a user
may be unwilling to provide a complete specification. For example, some pref-
erences may be omitted. Preference omission may have several reasons, such as
privacy concerns, or timing issues among several users concurring in the specifi-
cation of a soft CSP.

Even if a soft CSP has some missing preferences, it could still be feasible to find
an optimal solution. However, there is more than one notion of ”optimality”. Two
extreme notions of optimal solutions are the following: possibly optimal solutions
are assignments to all the variables that are optimal in at least one way currently
unspecified preferences can be revealed, while necessarily optimal solutions are
assignments to all the variables that are optimal in all ways in which currently
unspecified preferences can be revealed.

Given an incomplete soft CSP, its set of possibly optimal solutions is never
empty, while the set of necessarily optimal solutions can be empty. Of course what
we would like to find is a necessarily optimal solution, to be on the safe side: such
solutions are optimal regardless of how the missing preferences would be specified.
However, if this set is empty, we can interleave search and preference elicitation.
More precisely, we can ask the user to provide some of the missing preferences and
try to find, if any, a necessarily optimal solution of the new incomplete soft CSP.
Then we can repeat the process until the current problem has at least one nec-
essarily optimal solution. Experimental results show that this process ends after
eliciting a very small percentage of the missing preferences [52].

6 Applying Soft Constraints

Soft constraints have been applied to several scenarios. Here we will review some
of them. Others can be found in [61].

6.1 Temporal Reasoning

Reasoning about time is a core issue in many real life problems, such as planning
and scheduling for production plants, transportation, and space missions. Several
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approaches have been proposed to reason about temporal information. Temporal
constraints have been among the most successful in practice.

In temporal constraintproblems, variables either represent instantaneous events
or temporal intervals. Temporal constraints allow one to put temporal restrictions
either on when a given event should occur, or on how long a given activity should
last. Several qualitative and quantitative constraint-based temporal formalisms
have been proposed. A qualitative temporal constraint defines which temporal re-
lations, e.g. before, after, during, are allowed between two temporal intervals repre-
senting two activities. A quantitative temporal constraint instead defines restric-
tions between the start and end times of some activities. Once the constraints have
been stated, the goal is to find an occurrence time, or duration, for all the events,
such that all temporal constraints are respected.

The expressive power of classical temporal constraints may however be insuf-
ficient to model faithfully all the aspects of the problem. For example, it may
be that some durations are more preferable than others, such as in “I can have
lunch between 11:30am and 2pm, but I prefer to have it at 1pm”, or in “I can
meet you between 9am and 10am, but the earlier the better”. For this reason,
both qualitative and quantitative temporal reasoning formalisms have been ex-
tended with quantitative preferences to allow for the specification of such a kind
of statements.

In particular, the qualitative approach has been augmented with fuzzy pref-
erences, that are associated with the relations among temporal intervals allowed
by the constraints. Higher values represent a more preferred relation. Once such
constraints have been stated, the goal is to find a temporal assignment to all the
variables with the highest “lower” preference on any constraint.

In [57] the semiring-based formalism has been combined with temporal quan-
titative constraints. The result are soft temporal constraints where each allowed
duration or occurrence time for a temporal event is associated to a (fuzzy) pref-
erence representing the desirability of that specific time. Tractability results have
been shown for some classes of these problems, characterized by the absence of
disjunctions in the temporal constraints (as in the classical case) and by the
shape of the preference functions.

6.2 Security

The semiring-based framework has been used to tackle several security problems,
such as protocols, policies, and system/network security. The basic idea used is
to consider security not as a Boolean predicate but as a notion suitable to be
represented via different levels. So, instead of just having secure and non secure
protocols, we have protocols that satisfy the confidentiality and authentication
goals with a certain security level [2,3]. By considering such security levels (for
instance public, confidential, secret, and top-secret), protocols can be better
analyzed and sometimes new flaws [4,5] can be found.

The security of systems and networks have been analyzed by considering
respectively integrity policies and trusts among nodes of a network. The in-
tegrity of a system can then be evaluated by checking how much it satisfies some
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specified (soft) constraints [14,15]. In a similar manner, by adding constraints on
the type of flow permitted or denied among the nodes of a network, a flow analy-
sis can be executed, revealing inter-operation [16] or cascading [17,18] problems.

Soft constraints and logic programming together have been also used [34]
to represent the concept of multi-trust, which is aimed at computing trust by
collectively involving a group of trustees at the same time: the trustor needs the
concurrent support of multiple individuals to accomplish its task.

6.3 Routing and Quality of Service

Semirings are also used for Routing and Quality of Service (QoS). For instance,
in [62] the authors give a generic algorithm for finding singlesource shortest dis-
tances in a weighted directed graph when the weights are elements of a semiring.
The same algorithm can also be used to solve efficiently classical shortest paths
problems or to find the kshortest distances in a directed graph. An interesting
foundational model has been instead introduced in [44]. The model handles QoS
attributes as semantic constraints within a graphical calculus for mobility. The
QoS attributes are related to the programming abstractions and are exploited to
select, configure, and dynamically modify the underlying system oriented QoS
mechanisms.

Semirings and constraints together are instead used in [28,32] where a formal
model to represent and solve routing and multicast routing problems in multi-
cast networks with QoS has been suggested. And-or graphs have been used to
represent the network and SCLP programs are used to compute the best path (or
the best tree when multicast is considered), according to QoS criteria. Another
approach extends instead cc programming [38]. In the resulting framework, Ser-
vice Level Agreement requirements are (soft) constraints that can be generated
either by a single party or by the synchronization of two agents.

6.4 Data Mining

The paradigm of pattern discovery based on constraints was introduced with
the aim of providing the user with a tool to drive the discovery process towards
potentially interesting patterns, with the positive side effect of achieving a more
efficient computation.

In classical constraint-based mining, a constraint is a Boolean function which
returns either true or false. In [8,9] a new paradigm of pattern discovery based
on soft constraints has been introduced. This provides a rigorous theoretical
framework, which is very general (having the classical paradigm as a particular
instance), and able to measure the level of interest of a pattern.

7 Conclusions and Future Scenarios

Ugo Montanari and the authors of this paper introduced twelve years ago the no-
tion of semiring-based soft constraints. Since then, the semiring-based framework
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has been further studied, extended, and applied to several scenarios. In this paper
we have described the extension of this framework to deal with both positive and
negative preferences, as well as its adaption to deal with conditional qualitative
preferences. Moreover, we have briefly outlined how this kind of constraints have
been embedded in constraint-based languages, both sequential and concurrent.
Furthermore, we have described how the complexity of modeling and solving a
problem with soft constraints has been mitigated via the use of techniques such
as abstraction, explanation generation, symmetry breaking, machine learning,
and preference elicitation. Finally, we have mentioned some applications to the
fields of security, QoS, data mining, and temporal reasoning.

Although the initial idea of semiring-based soft constraints generated a huge
amount of research, both on the theoretical and on the application side, much
more can be done to make soft constraints more useful and widely applicable. For
example, many tractability results, developed for classes of classical constraints,
can be studied and adapted to the setting of soft constraints. Also, specialized
solvers for specific classes of soft constraints, as well as general solvers for the
whole class, should be developed. We also believe that the generalization started
with the introduction of the soft constraint formalism should be continued to
achieve a single framework where many kinds of preferences should be easily
modeled and solved. We also believe that uncertainty issues should be taken into
consideration, as well as multi-agent scenarios where several agents express their
preferences over a common set of objects and want to agree over the choice of
one or more objects which are highly preferred by all of them. On the application
side, the semiring idea could be used in reputation logic to give a quantitative
and qualitative measure to the notion of trust among users. The field of QoS
seems also a field that deserve further study.

8 A Special Thank

We would really like to thank Ugo Montanari for the very interesting and exciting
time spent working together on the subject of this paper and on other research
issues. His knowledge, skills, generosity, and passion for research has always been
for us an inspiring example that drives our work and fills us with pride for having
shared some research activities with him.

References

1. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press,
Cambridge (2003)

2. Bella, G., Bistarelli, S.: Soft Constraints for Security Protocol Analysis: Confi-
dentiality. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990. Springer,
Heidelberg (2001)

3. Bella, G., Bistarelli, S.: Soft Constraint Programming to Analysing Security Pro-
tocols. In: Theory and Practice of Logic Programming (TPLP), special Issue on
Verification and Computational Logic, vol. 4(5), pp. 1–28. Cambridge University
Press, Cambridge (2004)



170 S. Bistarelli and F. Rossi

4. Bella, G., Bistarelli, S.: Confidentiality levels and deliberate/indeliberate protocol
attacks. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security
Protocols 2002. LNCS, vol. 2845, pp. 104–119. Springer, Heidelberg (2004)

5. Bella, G., Bistarelli, S.: Information Assurance for Security Protocols. Computers
& Security 24(4), 322–333 (2005)

6. Biso, A., Rossi, F., Sperduti, A.: Experimental results on Learning Soft Constraints.
In: Proc. KR 2000 (7th Int. Conf. on Principles of Knowledge Representation and
Reasoning) (2000)

7. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS,
vol. 2962. Springer, Heidelberg (2004)

8. Bistarelli, S., Bonchi, F.: Soft Constraint Based Pattern Mining. Data & Knowledge
Engineering 62(1) (2007)

9. Bistarelli, S., Bonchi, F.: Extending the Soft Constraint Based Mining Paradigm.
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Abstract. Algorithmic debugging has been applied to many declarative program-
ming paradigms; in this paper, it is applied to the rewriting paradigm embodied in
Maude. We introduce a declarative debugger for executable specifications in mem-
bership equational logic which correspond to Maude functional modules. Declar-
ative debugging is based on the construction and navigation of a debugging tree
which logically represents the computation steps. We describe the construction of
appropriate debugging trees for oriented equational and membership inferences.
These trees are obtained as the result of collapsing in proof trees all those nodes
whose correctness does not need any justification. We use an extended example to
illustrate the use of the declarative debugger and its main features, such as two dif-
ferent strategies to traverse the debugging tree, use of a correct module to reduce
the number of questions asked to the user, and selection of trusted vs. suspicious
statements by means of labels. The reflective features of Maude have been exten-
sively used to develop a prototype implementation of the declarative debugger for
Maude functional modules using Maude itself.

Keywords: declarative debugging, membership equational logic, Maude, func-
tional modules.

1 Introduction

As argued in [23], the application of declarative languages out of the academic world
is inhibited by the lack of convenient auxiliary tools such as debuggers. The traditional
separation between the problem logic (defining what is expected to be computed) and
control (how computations are carried out actually) is a major advantage of these lan-
guages, but it also becomes a severe complication when considering the task of debug-
ging erroneous computations. Indeed, the involved execution mechanisms associated
to the control make it difficult to apply the typical techniques employed in imperative
languages based on step-by-step trace debuggers.

Consequently, new debugging approaches based on the language’s semantics have
been introduced in the field of declarative languages, such as abstract diagnosis, which
formulates a debugging methodology based on abstract interpretation [9,1], or declara-
tive debugging, also known as algorithmic debugging, which was first introduced by E.
Y. Shapiro [19] and that constitutes the framework of this work. Declarative debugging
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has been widely employed in the logic [10,14,22], functional [21,17,16,18], and multi-
paradigm [5,3,11] programming languages. Declarative debugging is a semi-automatic
technique that starts from a computation considered incorrect by the user (error symp-
tom) and locates a program fragment responsible for the error. The declarative debug-
ging scheme [15] uses a debugging tree as a logical representation of the computation.
Each node in the tree represents the result of a computation step, which must follow
from the results of its child nodes by some logical inference. Diagnosis proceeds by tra-
versing the debugging tree, asking questions to an external oracle (generally the user)
until a so-called buggy node is found. A buggy node is a node containing an erroneous
result, but whose children all have correct results. Hence, a buggy node has produced
an erroneous output from correct inputs and corresponds to an erroneous fragment of
code, which is pointed out as an error.

During the debugging process, the user does not need to understand the computation
operationally. Any buggy node represents an erroneous computation step, and the de-
bugger can display the program fragment responsible for it. From an explanatory point
of view, declarative debugging can be described as consisting of two stages, namely the
debugging tree generation and its navigation following some suitable strategy [20].

In this paper we present a declarative debugger for Maude functional modules
[7, Chap. 4]. Maude is a high-level language and high-performance system supporting
both equational and rewriting logic computation for a wide range of applications. It is
a declarative language because Maude modules correspond in general to specifications
in rewriting logic [12], a simple and expressive logic which allows the representation
of many models of concurrent and distributed systems. This logic is an extension of
equational logic; in particular, Maude functional modules correspond to specifications
in membership equational logic [2,13], which, in addition to equations, allows the state-
ment of membership assertions characterizing the elements of a sort. In this way, Maude
makes possible the faithful specification of data types (like sorted lists or search trees)
whose data are defined not only by means of constructors, but also by the satisfaction
of additional properties.

For a specification in rewriting or membership equational logic to be executable in
Maude, it must satisfy some executability requirements. In particular, Maude functional
modules are assumed to be confluent, terminating, and sort-decreasing1 [7], so that, by
orienting the equations from left to right, each term can be reduced to a unique canonical
form, and semantic equality of two terms can be checked by reducing both of them to
their respective canonical forms and checking that they coincide. Since we intend to
debug functional modules, we will assume throughout the paper that our membership
equational logic specifications satisfy these executability requirements.

The Maude system supports several approaches for debugging Maude programs:
tracing, term coloring, and using an internal debugger [7, Chap. 22]. The tracing facili-
ties allow us to follow the execution on a specification, that is, the sequence of rewrites
that take place. Term coloring consists in printing with different colors the operators
used to build a term that does not fully reduce. The Maude debugger allows the user to
define break points in the execution by selecting some operators or statements. When

1 All these requirements must be understood modulo some axioms such as associativiy and
commutativity that are associated to some binary operations.
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a break point is found the debugger is entered. There, we can see the current term and
execute the next rewrite with tracing turned on.

The Maude debugger has as a disadvantage that, since it is based on the trace, it
shows to the user every small step obtained by using a single statement. Thus the user
can loose the general view of the proof of the incorrect inference that produced the
wrong result. That is, when the user detects an unexpected statement application it is
difficult to know where the incorrect inference started.

Here we present a different approach based on declarative debugging that solves
this problem for functional modules. The debugging process starts with an incorrect
transition from the initial term to a fully reduced unexpected one. Our debugger, after
building a proof tree for that inference, will present to the user questions of the fol-
lowing form: “Is it correct that T fully reduces to T ′?”, which in general are easy to
answer. Moreover, since the questions are located in the proof tree, the answer allows
the debugger to discard a subset of the questions, leading and shortening the debugging
process.

The current version of the tool has the following characteristics:

– It supports all kinds of functional modules: operators can be declared with any com-
bination of axiom attributes (except for the attribute strat, that allows to specify
an evaluation strategy); equations can be defined with the otherwise attribute; and
modules can be parameterized.2

– It provides two strategies to traverse the debugging tree: top-down, that traverses
the tree from the root asking each time for the correctness of all the children of
the current node, and then continues with one of the incorrect children; and divide
and query, that each time selects the node whose subtree’s size is the closest one to
half the size of the whole tree, keeping only this subtree if its root is incorrect, and
deleting the whole subtree otherwise.

– Before starting the debugging process, the user can select a module containing only
correct statements. By checking the correctness of the inferences with respect to
this module (i.e., using this module as oracle) the debugger can reduce the number
of questions asked to the user.

– It allows the user to debug Maude functional modules where some equations and
memberships are suspicious and have been labeled (each one with a different label).
Only these labeled statements generate nodes in the proof tree, while the unlabeled
ones are considered correct. The user is in charge of this labeling. Moreover, the
user can answer that he trusts the statement associated with the currently questioned
inference; that is, statements can be trusted “on the fly.”

Detailed proofs of the results, additional examples, and much more information
about the implementation can be found in the technical report [4], which, together with
the Maude source files for the debugger, is available from the webpage http://maude.
sip.ucm.es/debugging .

2 For the sake of simplicity, our running example will be unparameterized, but it can easily be
parameterized, as shown in [4].

http://maude.
sip.ucm.es/debugging
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2 Maude Functional Modules

Maude uses a very expressive version of equational logic, namely membership equa-
tional logic (MEL) [2,13], which, in addition to equations, allows the statement of mem-
bership assertions characterizing the elements of a sort. Below we present the logic and
how its specifications are represented as Maude functional modules.

2.1 Membership Equational Logic

A signature in MEL is a triple (K,Σ,S) (just Σ in the following), with K a set of kinds,
Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a pairwise dis-
joint K-kinded family of sets of sorts. The kind of a sort s is denoted by [s]. We write
TΣ,k and TΣ,k(X) to denote respectively the set of ground Σ-terms with kind k and of
Σ-terms with kind k over variables in X , where X = {x1 : k1, . . . ,xn : kn} is a set of K-
kinded variables. Intuitively, terms with a kind but without a sort represent undefined
or error elements. MEL atomic formulas are either equations t = t ′, where t and t ′ are
Σ-terms of the same kind, or membership assertions of the form t : s, where the term
t has kind k and s ∈ Sk. Sentences are universally-quantified Horn clauses of the form
(∀X)A0 ⇐ A1 ∧ . . .∧An, where each Ai is either an equation or a membership assertion,
and X is a set of K-kinded variables containing all the variables in the Ai. Order-sorted
notation s1 < s2 (with s1,s2 ∈ Sk for some kind k) can be used to abbreviate the condi-
tional membership (∀x : k)x : s2 ⇐ x : s1. A specification is a pair (Σ,E), where E is a
set of sentences in MEL over the signature Σ.

Models of MEL specifications are called algebras. A Σ-algebra A consists of a set Ak

for each kind k ∈ K, a function A f : Ak1 ×·· ·×Akn −→ Ak for each operator f ∈ Σk1...kn,k,
and a subset As ⊆ Ak for each sort s ∈ Sk, with the meaning that the elements in sorts
are well-defined, whereas elements in a kind not having a sort are undefined or error
elements. The meaning [[t]]A of a term t in an algebra A is inductively defined as usual.
Then, an algebra A satisfies an equation t = t ′ (or the equation holds in the algebra),
denoted A |= t = t ′, when both terms have the same meaning: [[t]]A = [[t ′]]A . In the same
way, satisfaction of a membership is defined as: A |= t : s when [[t]]A ∈ As.

A specification (Σ,E) has an initial model TΣ/E whose elements are E-equivalence
classes of terms [t]. We refer to [2,13] for a detailed presentation of (Σ,E)-algebras,
sound and complete deduction rules, initial algebras, and specification morphisms.

Since the MEL specifications that we consider are assumed to satisfy the executabil-
ity requirements of confluence, termination, and sort-decreasingness, their equations
t = t ′ can be oriented from left to right, t → t ′. Such a statement holds in an algebra,
denoted A |= t → t ′, exactly when A |= t = t ′, i.e., when [[t]]A = [[t ′]]A . Moreover, un-
der those assumptions an equational condition u = v in a conditional equation can be
checked by finding a common term t such that u → t and v → t. This is the notation we
will use in the inference rules and debugging trees studied in Sect. 3.

2.2 Representation in Maude

Maude functional modules, introduced with syntax fmod ... endfm, are executable
MEL specifications and their semantics is given by the corresponding initial member-
ship algebra in the class of algebras satisfying the specification.
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In a functional module we can declare sorts (by means of keyword sort(s)); sub-
sort relations between sorts (subsort); operators (op) for building values of these sorts,
giving the sorts of their arguments and result, and which may have attributes such as
being associative (assoc) or commutative (comm), for example; memberships (mb) as-
serting that a term has a sort; and equations (eq) identifying terms. Both memberships
and equations can be conditional (cmb and ceq).

Maude does automatic kind inference from the sorts declared by the user and their
subsort relations. Kinds are not declared explicitly, and correspond to the connected
components of the subsort relation. The kind corresponding to a sort s is denoted [s].
For example, if we have sorts Nat for natural numbers and NzNat for nonzero natural
numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like3

op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

2.3 A Buggy Example: Non-empty Sorted Lists

Let us see a simple example showing how to specify sorted lists of natural numbers in
Maude. The following module includes the predefined module NAT defining the natural
numbers.

(fmod SORTED-NAT-LIST is
pr NAT .

We introduce sorts for non-empty lists and sorted lists. We identify a natural number
with a sorted list with a single element by means of a subsort declaration.

sorts NatList SortedNatList .
subsorts Nat < SortedNatList < NatList .

The lists that have more than one element are built by means of the associative jux-
taposition operator __.

op __ : NatList NatList -> NatList [ctor assoc] .

We define now when a list (with more than one element) is sorted by means of a
membership assertion. It states that the first number must be smaller than the first of the
rest of the list, and that the rest of the list must also be sorted.

3 The underscores indicate the places where the arguments appear in mixfix syntax.
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vars E E’ : Nat . var L : NatList . var OL : SortedNatList .
cmb [olist] : E L : SortedNatList if E <= head(L) /\ L : SortedNatList .

The definition of the head function distinguishes between lists with a single element
and longer ones.

op head : NatList -> Nat .
eq [hd1] : head(E) = E .
eq [hd2] : head(L E) = E .

We also define a sort function which sorts a list by successively inserting each nat-
ural number in the appropriate position in the sorted sublist formed by the numbers
previously considered.

op insertion-sort : NatList -> SortedNatList .
op insert-list : SortedNatList Nat -> SortedNatList .
eq [is1] : insertion-sort(E) = E .
eq [is2] : insertion-sort(E L) = insert-list(insertion-sort(L), E) .

The function insert-list distinguishes several cases. If the list has only one num-
ber, the function checks if it is bigger than the number being inserted, and returns the
sorted list. If the list has more than one element, the function checks that the list is
previously sorted; if the number being inserted is smaller than the first of the list, it is
located as the (new) first element, while if it is bigger we keep the first element and
recursively insert the element in the rest of the list.

ceq [il1] : insert-list(E, E’) = E’ E if E’ < E .
eq [il2] : insert-list(E, E’) = E E’ [owise] .
ceq [il3] : insert-list(E OL, E’) = E E’ OL
if E’ <= E /\ E OL : SortedNatList .
ceq [il4] : insert-list(E OL, E’) = E insert-list(OL, E’)
if E OL : SortedNatList [owise] .

endfm)

Now, we can reduce a term in this module. For example, we can try to sort the list
3 4 7 6 with

Maude> (red insertion-sort(3 4 7 6) .)
result SortedNatList : 6 3 4 7

But... the list obtained is not sorted! Moreover, Maude infers that it is sorted. Did
you notice the bugs? We will show how to use the debugger in Sect. 4.3 to detect them.

3 Declarative Debugging of Maude Functional Modules

We describe how to build the debugging trees for MEL specifications. Detailed proofs
can be found in [4].
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e : s
(SRed)

(Membership)
{θ(ui) → ti ← θ(u′

i)}1≤i≤n {θ(v j) : s j}1≤ j≤m

θ(e) : s
(Mb)

if e : s ⇐ u1 = u′
1 ∧·· ·∧un = u′

n ∧ v1 : s1 ∧·· · ∧ vm : sm

(Replacement)
{θ(ui) → ti ← θ(u′

i)}1≤i≤n {θ(v j) : s j}1≤ j≤m

θ(e) → θ(e′)
(Rep)

if e → e′ ⇐ u1 = u′
1 ∧·· · ∧un = u′

n ∧ v1 : s1 ∧·· ·∧ vm : sm

Fig. 1. Semantic calculus for Maude functional modules

3.1 Proof Trees

Before defining the debugging trees employed in our declarative debugging framework
we need to introduce the semantic rules defining the specification semantics. The infer-
ence rules of the calculus can be found in Fig. 1, where θ denotes a substitution.

They are an adaptation to the case of Maude functional modules of the deduction
rules for MEL presented in [13]. The notation θ(ui) → ti ← θ(u′

i) must be understood as
a shortcut for θ(ui) → ti, θ(u′

i) → ti. We assume the existence of an intended interpre-
tation I of the specification, which is a Σ-algebra corresponding to the model that the
user had in mind while writing the statements E , i.e., the user expects that I |= e → e′,
I |= e : s for each reduction e → e′ and membership e : s computed w.r.t. the specification
(Σ,E). As a Σ-algebra, I must satisfy the following proposition:

Proposition 1. Let S = (Σ,E) be a MEL specification and let A be any Σ-algebra. If
e → e′ (respectively e : s) can be deduced using the semantic calculus rules reflexivity,
transitivity, congruence, or subject reduction using premises that hold in A , then A |=
e → e′ (respectively A |= e : s).

Observe that this proposition cannot be extended to the membership and replacement
inference rules, where the correctness of the conclusion depends not only on the calcu-
lus but also on the associated specification statement, which could be wrong.

We will say that e → e′ (respectively e : s) is valid when it holds in I , and invalid
otherwise. Declarative debuggers rely on some external oracle, normally the user, in
order to obtain information about the validity of some nodes in the debugging tree.
The concept of validity can be extended to distinguish wrong equations and wrong
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membership axioms, which are those specification pieces that can deduce something
invalid from valid information.

Definition 1. Let R ≡ (af ⇐ u1 = u′
1 ∧·· · ∧un = u′

n ∧ v1 : s1 ∧·· · ∧ vm : sm), where af
denotes an atomic formula, that is, either an oriented equation or a membership axiom
in a specification S. Then:

– θ(R) is a wrong equation instance (respectively, a wrong membership axiom in-
stance) w.r.t. an intended interpretation I when

• There exist t1, . . . , tn such that I |= θ(ui) → ti, I |= θ(u′
i) → ti for i = 1 . . .n.

• I |= θ(v j) : s j for j = 1 . . .m.
• θ(af ) does not hold in I .

– R is a wrong equation (respectively, a wrong membership axiom) if it admits some
wrong instance.

It will be convenient to represent deductions in the calculus as proof trees, where the
premises are the child nodes of the conclusion at each inference step. For example, the
proof tree depicted in Fig. 2 corresponds to the result of the reduction in the specifica-
tion for sorted lists described at the end of Sect. 2.3. For obvious reasons, the operation
names have been abbreviated in a self-explanatory way; furthermore, each node cor-
responding to an instance of the replacement or membership inference rules has been
labelled with the label of the equation or membership statement which is being applied.

In declarative debugging we are specially interested in buggy nodes which are invalid
nodes with all its children valid. The following proposition characterizes buggy nodes
in our setting.

Proposition 2. Let N by a buggy node in some proof tree in the calculus of Fig. 1 w.r.t.
an intended interpretation I . Then:

1. N is the consequence of either a membership or a replacement inference step.
2. The equation associated to N is a wrong equation or a wrong membership axiom.

3.2 Abbreviated Proof Trees

Our goal is to find a buggy node in any proof tree T rooted by the initial error symptom
detected by the user. This could be done simply by asking questions to the user about
the validity of the nodes in the tree according to the following top-down strategy:

Input: A tree T with an invalid root.
Output: A buggy node in T .
Description: Consider the root N of T . There are two possibilities:

– If all the children of N are valid, then finish identifying N as buggy.
– Otherwise, select the subtree rooted by any invalid child and use re-

cursively the same strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on the height
of T . As an easy consequence, the following result holds:
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Proposition 3. Let T be a proof tree with an invalid root. Then there exists a buggy
node N ∈ T such that all the ancestors of N are invalid.

However, we will not use the proof tree T as debugging tree, but a suitable abbrevia-
tion which we denote by APT (T ) (from Abbreviated Proof Tree), or simply APT if the
proof tree T is clear from the context. The reason for preferring the APT to the orig-
inal proof tree is that it reduces and simplifies the questions that will be asked to the
user while keeping the soundness and completeness of the technique. In particular the
APT contains only nodes related to the replacement and membership inferences using
statements included in the specification, which are the only possible buggy nodes as
Proposition 2 indicates. Fig. 3 shows the definition of APT (T ). The Ti represent proof
trees corresponding to the premises in some inferences.

The rule APT 1 keeps the root unaltered and employs the auxiliary function APT ′ to
produce the children subtrees. APT ′ is defined in rules APT 2 . . .APT 8. It takes a proof
tree as input parameter and returns a forest {T1, . . . ,Tn} of APT s as result. The rules for
APT ′ are assumed to be tried top-down, in particular APT 4 must not be applied if APT3

is also applicable. It is easy to check that every node N ∈ T that is the conclusion of a
replacement or membership inference has its corresponding node N′ ∈ APT (T ) labeled
with the same abbreviation, and conversely, that for each N′ ∈ APT (T ) different from
the root, there is a node N ∈ T , which is the conclusion of a replacement or membership
inference. In particular the node associated to e1 → e2 in the righthand side of APT3 is
the node e1 → e′ of the proof tree T , which is not included in the APT (T ). We have
chosen to introduce e1 → e2 instead of simply e1 → e′ in the APT (T ) as a pragmatic
way of simplifying the structure of the APT s, since e2 is obtained from e′ and hence
likely simpler (the root of the tree T ′ in APT3 must be necessarily of the form e′ → e2

by the structure of the inference rule for transitivity in Fig. 1). We will formally state
below (Theorem 1) that skipping e1 → e′ and introducing instead e1 → e2 is safe from
the point of view of the debugger.

Although APT (T ) is no longer a proof tree we keep the inference labels (Rep) and
(Mb), assuming implicitly that they contain a reference to the equation or membership
axiom used at the corresponding step in the original proof trees. It will be used by the
debugger in order to single out the incorrect fragment of specification code.

Before proving the correctness and completeness of the debugging technique we
need some auxiliary results. The first one indicates that APT ′ transforms a tree with
invalid root into a set of trees such that at least one has an invalid root. We denote the
root of a tree T as root(T ).

Lemma 1. Let T be a proof tree such that root(T ) is invalid w.r.t. an intended interpre-
tation I . Then there is some T ′ ∈ APT ′(T ) such that root(T ′) is invalid w.r.t. I .

An immediate consequence of this result is the following:

Lemma 2. Let T be a proof tree and APT (T ) its abbreviated proof tree. Then the root
of APT (T ) cannot be buggy.

The next theorem guarantees the correctness and completeness of the debugging tech-
nique based on APTs:
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(APT1) APT

(
T1 . . .Tn

af
(R)

)

=
APT ′

(
T1 . . .Tn

af
(R)

)

af
(with (R) any inference rule)

(APT2) APT ′
(

e → e
(Rf )

)

= /0

(APT3) APT ′

⎛

⎝
T1 . . .Tn

e1 → e′ (Rep)
T ′

e1 → e2
(Tr)

⎞

⎠ =
{

APT ′(T1) . . .APT ′(Tn) APT ′(T ′)
e1 → e2

(Rep)

}

(APT4) APT ′
(

T1 T2
e1 → e2

(Tr)

)

= {APT ′(T1), APT ′(T2)}

(APT5) APT ′
(

T1 . . .Tn

e1 → e2
(Cong)

)

= {APT ′(T1), . . . ,APT ′(Tn)}

(APT6) APT ′
(

T1 T2

e : s
(SRed)

)

= {APT ′(T1), APT ′(T2)}

(APT7) APT ′
(

T1 . . .Tn

e : s
(Mb)

)

=
{

APT ′(T1) . . .APT ′(Tn)
e : s

(Mb)

}

(APT8) APT ′
(

T1 . . .Tn

e1 → e2
(Rep)

)

=
{

APT ′(T1) . . .APT ′(Tn)
e1 → e2

(Rep)

}

Fig. 3. Transforming rules for obtaining abbreviated proof trees

Theorem 1. Let S be a specification, I its intended interpretation, and T a finite proof
tree with invalid root. Then:

– APT (T ) contains at least one buggy node (completeness).
– Any buggy node in APT (T ) has an associated wrong equation in S.

The theorem states that we can safely employ the abbreviated proof tree as a basis
for the declarative debugging of Maude functional modules: the technique will find a
buggy node starting from any initial symptom detected by the user. Of course, these
results assume that the user answers correctly all the questions about the validity of the
APT nodes asked by the debugger (see Sect. 4.1).

The tree depicted in Fig. 4 is the abbreviated proof tree corresponding to the proof
tree in Fig. 2, using the same conventions w.r.t. abbreviating the operation names. The
debugging example described in Sect. 4.3 will be based on this abbreviated proof tree.

4 Using the Debugger

Before describing the basics of the user interaction with the debugger, we make explicit
what is assumed about the modules introduced by the user; then we present the available
commands and how to use them to debug the buggy example introduced in Sect. 2.3.
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is(6) → 6
is1

il(6, 7) → 6 7
il2

is(7 6) → 6 7
is2

hd(7) → 7
hd1

6 7 : SNL
olist

il(6 7, 4) → 6 4 7
il3

is(4 7 6) → 6 4 7
is2

hd(4 7) → 7
hd2

hd(7) → 7
hd1

4 7 : SNL
olist

6 4 7 : SNL
olist

il(6 4 7, 3) → 6 3 4 7
il3

is(3 4 7 6) → 6 3 4 7
is2

Fig. 4. Abbreviated proof tree for the sorted lists example

4.1 Assumptions

Since we are debugging Maude functional modules, they are expected to satisfy the ap-
propriate executability requirements, namely, the specifications have to be terminating,
confluent, and sort-decreasing.

One interesting feature of our tool is that the user is allowed to trust some state-
ments, by means of labels applied to the suspicious statements. This means that the
unlabeled statements are assumed to be correct. A trusted statement is treated in the
implementation as the reflexivity, transitivity, and congruence rules are treated in the
APT transformation described in Fig. 3; more specifically, an instance of the member-
ship or replacement inference rules corresponding to a trusted statement is collapsed in
the abbreviated proof tree.

In order to obtain a nonempty abbreviated proof tree, the user must have labeled some
statements (all with different labels); otherwise, everything is assumed to be correct. In
particular, the buggy statement must be labeled in order to be found. When not all the
statements are labeled, the correctness and completeness results shown in Sect. 3 are
conditioned by the goodness of the labeling for which the user is responsible.

Although the user can introduce a module importing other modules, the debugging
process takes place in the flattened module. However, the debugger allows the user to
trust a whole imported module.

As mentioned in the introduction, navigation of the debugging tree takes place by
asking questions to an external oracle, which in our case is either the user or another
module introduced by the user. In both cases the answers are assumed to be correct.
If either the module is not really correct or the user provides an incorrect answer, the
result is unpredictable. Notice that the information provided by the correct module need
not be complete, in the sense that some functions can be only partially defined. In the
same way, the signature of the correct module need not coincide with the signature of
the module being debugged. If the correct module cannot help in answering a question,
the user may have to answer it.

4.2 Commands

The debugger is initiated in Maude by loading the file dd.maude (available from
http://maude.sip.ucm.es/debugging), which starts an input/output loop that al-
lows the user to interact with the tool.

As we said in the introduction, the generated proof tree can be navigated by using
two different strategies, namely, top-down and divide and query, the latter being the

http://maude.sip.ucm.es/debugging
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default one. The user can switch between them by using the commands (top-down
strategy .) and (divide-query strategy .). If a module with correct definitions
is used to reduce the number of questions, it must be indicated before starting the de-
bugging process with the command (correct module MODULE-NAME .). Moreover,
the user can trust all the statements in several modules with the command (trust[*]
MODULE-NAMES-LIST .) where * means that modules are considered flattened.

Once we have selected the strategy and, optionally, the module above, we start the
debugging process with the command4

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)

If we want to debug only with a subset of the labeled statements, we use the command

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM with LABELS .)

where LABELS is the set of suspicious equation and membership axiom labels that must
be taken into account when generating the debugging tree.

In the same way, we can debug a membership inference with the commands

(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)
(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT with LABELS .)

How the process continues depends on the selected strategy. In case the top-down
strategy is selected, several nodes will be displayed in each question. If there is an
invalid node, we must select one of them with the command (node N .), where N is
the identifier of this wrong node. If all the nodes are correct, we type (all valid .).

In the divide and query strategy, each question refers to one inference that can be
either correct or wrong. The different answers are transmitted to the debugger with the
commands (yes .) and (no .). Instead of just answering yes, we can also trust some
statements on the fly if, once the process has started, we decide the bug is not there. To
trust the current statement we type the command (trust .).

Finally, we can return to the previous state in both strategies by using the command
(undo .).

4.3 Sorted Lists Revisited

We recall from Sect. 2.3 that if we try to sort the list 3 4 7 6, we obtain the strange
result

Maude> (red insertion-sort(3 4 7 6) .)
result SortedNatList : 6 3 4 7

That is, the function returns an unsorted list, but Maude infers it is sorted. We can debug
the buggy specification by using the command

Maude> (debug in SORTED-NAT-LIST : insertion-sort(3 4 7 6) -> 6 3 4 7 .)

4 If no module name is given, the current module is used by default.
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is(6) → 6
is1

il(6, 7) → 6 7
il2

is(7 6) → 6 7
is2

hd(7) → 7
hd1

6 7 : SNL
olist

il(6 7, 4) → 6 4 7
il3

is(4 7 6) → 6 4 7
is2

Fig. 5. Abbreviated proof tree after the first question

With this command the debugger computes the tree shown in Fig. 4. Since the default
navigation strategy is divide and query, the first question is

Is this transition (associated with the equation is2) correct?
insertion-sort(4 7 6) -> 6 4 7
Maude> (no .)

We expect insertion-sort to order the list, so we answer negatively and the sub-
tree in Fig. 5 is selected to continue the debugging. The next question is

Is this transition (associated with the equation is2) correct?
insertion-sort(7 6) -> 6 7
Maude> (yes .)

Since the list is sorted, we answer yes, so this subtree is deleted (Fig. 6 left). The
debugger asks now the question

Is this membership (associated with the membership olist) correct?
6 7 : SortedNatList
Maude> (yes .)

This sort is correct, so this subtree is also deleted (Fig. 6 right) and the next question
is prompted.

Is this transition (associated with the equation il3) correct?
insert-list(6 7, 4) -> 6 4 7
Maude> (no .)

With this information the debugger selects the subtree and, since it is a leaf, it con-
cludes that the node is associated with the buggy equation.

The buggy node is:
insert-list(6 7, 4) -> 6 4 7
With the associated equation: il3

hd(7) → 7
hd1

6 7 : SNL
olist

il(6 7, 4) → 6 4 7
il3

is(4 7 6) → 6 4 7
is2

il(6 7, 4) → 6 4 7
il3

is(4 7 6) → 6 4 7
is2

Fig. 6. Abbreviated proof trees after the second and third questions
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That is, the debugger points to the equation il3 as buggy. If we examine it

ceq [il3] : insert-list(E OL, E’) = E E’ OL
if E’ <= E /\ E OL : SortedNatList .

we can see that the order of E and E’ in the righthand side is wrong and we can proceed
to fix it appropriately.

We can check the fixed function by sorting again the list 3 4 7 6. We obtain now the
sorted list 3 4 6 7. Then, we have solved one problem, but if we reduce the unsorted
list 6 3 4 7

Maude> (red 6 3 4 7 .)
result SortedNatList : 6 3 4 7

we can see that Maude continues assigning to it an incorrect sort.
We can check this inference by using the command

Maude> (debug 6 3 4 7 : SortedNatList .)

The first question the debugger prompts is

Is this membership (associated with the membership olist) correct?
3 4 7 : SortedNatList
Maude> (yes .)

Of course, this list is sorted. The following question is

Is this transition (associated with the equation hd2) correct?
head(3 4 7) -> 7
Maude> (no .)

But the head of a list should be the first element, not the last one, so we answer no.
With only these two questions the debugger prints

The buggy node is:
head(3 4 7) -> 7
With the associated equation: hd2

If we check the equation hd2, we can see that we take the element from the wrong
side.

eq [hd2] : head(L E) = E .

To debug this module we have used the default divide and query strategy. Let us
check it now with the top-down strategy. We debug again the inference

insertion-sort(3 4 7 6) -> 6 3 4 7

in the initial module with the two errors. The first question asked in this case is
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Is any of these nodes wrong?
Node 0 : insertion-sort(4 7 6) -> 6 4 7
Node 1 : insert-list(6 4 7, 3) -> 6 3 4 7
Maude> (node 0 .)

Both nodes are wrong, so we select, for example, the first one. The next question is

Is any of these nodes wrong?
Node 0 : insertion-sort(7 6) -> 6 7
Node 1 : insert-list(6 7, 4) -> 6 4 7
Maude> (node 1 .)

This time, only the second node is wrong, so we select it. The debugger prints now

Is any of these nodes wrong?
Node 0 : 6 7 : SortedNatList
Maude> (all valid .)

There is only one node, and it is correct, so we give this information to the debugger,
and it detects the wrong equation.

The buggy node is:
insert-list(6 7, 4) -> 6 4 7
With the associated equation: il3

But remember that we chose a node randomly when the debugger showed two wrong
nodes. What happens if we select the other one? The following question is printed.

Is any of these nodes wrong?
Node 0 : 6 4 7 : SortedNatList
Maude> (node 0 .)

Since this single node is wrong, we choose it and the debugger asks

Is any of these nodes wrong?
Node 0 : head(4 7) -> 7
Node 1 : 4 7 : SortedNatList
Maude> (node 0 .)

The first node is the only one erroneous, so we select it. With this information, the
debugger prints

The buggy node is:
head(4 7) -> 7
With the associated equation: hd2

That is, the second path finds the other bug. In general, this strategy finds different
bugs if the user selects different wrong nodes.

In order to prune the debugging tree, we can define a module specifying the sorting
function sort in a correct, but inefficient, way. This module will define the functions
insertion-sort and insert-list by means of sort.
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(fmod CORRECT-SORTING is
pr NAT .
sorts NatList SortedNatList .
subsorts Nat < SortedNatList < NatList .
vars E E’ : Nat . vars L L’ : NatList . var OL : SortedNatList .
op __ : NatList NatList -> NatList [ctor assoc] .
cmb E E’ : SortedNatList if E <= E’ .
cmb E E’ L : SortedNatList if E <= E’ /\ E’ L : SortedNatList .

The sort function is defined by switching unsorted adjacent elements in all the pos-
sible cases for lists.

op sort : NatList -> SortedNatList .
ceq sort(L E E’ L’) = sort(L E’ E L’) if E’ < E .
ceq sort(L E E’) = sort(L E’ E) if E’ < E .
ceq sort(E E’ L) = sort(E’ E L) if E’ < E .
ceq sort(E E’) = E’ E if E’ < E .
eq sort(L) = L [owise] .

We now use sort to implement insertion-sort and insert-list.

op insertion-sort : NatList -> SortedNatList .
op insert-list : SortedNatList Nat -> SortedNatList .
eq insertion-sort(L) = sort(L) .
eq insert-list(OL, E) = sort(E OL) .
endfm)

We can use this module to prune the debugging trees built by the debug commands
if we previously introduce the command

Maude> (correct module CORRECT-SORTING .)

Now, we try to debug the initial module (with two errors) again. In this example, all
the questions about correct inferences have been pruned, so all the answers are negative.
In general, the correct module does not have to be complete, so some correct inferences
could be presented to the user.

Maude> (debug in SORTED-NAT-LIST : insertion-sort(3 4 7 6) -> 6 3 4 7 .)

Is this transition (associated with the equation il3) correct?
insert-list(6 4 7, 3) -> 6 3 4 7
Maude> (no .)

Is this membership (associated with the membership olist) correct?
6 4 7 : SortedNatList
Maude> (no .)

Is this transition (associated with the equation hd2) correct?
head(4 7) -> 7
Maude> (no .)
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The buggy node is:
head(4 7) -> 7
With the associated equation: hd2

The correct module also improves the debugging of the membership. With only one
question we obtain the buggy equation.

Maude> (debug in SORTED-NAT-LIST : 6 3 4 7 : SortedNatList .)

Is this transition (associated with the equation hd2) correct?
head(3 4 7) -> 7
Maude> (no .)

The buggy node is:
head(3 4 7) -> 7
With the associated equation: hd2

4.4 Implementation

Exploiting the fact that rewriting logic is reflective [6,8], a key distinguishing fea-
ture of Maude is its systematic and efficient use of reflection through its predefined
META-LEVEL module [7, Chap. 14], a feature that makes Maude remarkably extensi-
ble and that allows many advanced metaprogramming and metalanguage applications.
This powerful feature allows access to metalevel entities such as specifications or com-
putations as data. Therefore, we are able to generate and navigate the debugging tree
of a Maude computation using operations in Maude itself. In addition, the Maude sys-
tem provides another module, LOOP-MODE [7, Chap. 17], which can be used to specify
input/output interactions with the user. Thus, our declarative debugger for Maude func-
tional modules, including its user interactions, is implemented in Maude itself, as an
extension of Full Maude [7, Chap. 18]. As far as we know, this is the first declarative
debugger implemented using such reflective techniques.

The implementation takes care of the two stages of generating and navigating the
debugging tree. Since navigation is done by asking questions to the user, this stage has
to handle the navigation strategy together with the input/output interaction with the user.

To build the debugging tree we use the facts that the equations defined in Maude
functional modules are both terminating and confluent. Instead of creating the complete
proof tree and then abbreviating it, we build the abbreviated proof tree directly.

The main function in the implementation of the debugging tree generation is called
createTree. It receives the module where a wrong inference took place, a correct
module (or the constant noModule when no such module is provided) to prune the tree,
the term initially reduced, the (erroneous) result obtained, and the set of suspicious
statement labels. It keeps the initial inference as the root of the tree and uses an auxiliary
function createForest that, in addition to the arguments received by createTree,
receives the module “cleaned” of suspicious statements, and generates the abbreviated
forest corresponding to the reduction between the two terms passed as arguments. This
transformed module is used to improve the efficiency of the tree construction, because
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we can use it to check if a term reaches its final form only using trusted equations, thus
avoiding to build a tree that will be finally empty.

Regarding the navigation of the debugging tree, we have implemented two strategies.
In the top-down strategy the selection of the next node of the debugging tree is done by
the user, thus we do not need any function to compute it. The divide and query strategy
used to traverse the debugging tree selects each time the node whose subtree’s size is
the closest one to half the size of the whole tree, keeping only this subtree if its root
is incorrect, and deleting the whole subtree otherwise. The function searchBestNode
calculates this best node by searching for a subtree minimizing an appropriate function.

The technical report [4] provides a full explanation of this implementation, including
the user interaction.

5 Conclusions and Future Work

In this paper we have developed the foundations of declarative debugging of executable
MEL specifications, and we have applied them to implement a debugger for Maude
functional modules. As far as we know, this is the first debugger implemented in the
same language it debugs. This has been made possible by the reflective features of
Maude. In our opinion, this debugger provides a complement to existing debugging
techniques for Maude, such as tracing and term coloring. An important contribution of
our debugger is the help provided by the tool in locating the buggy statements, assuming
the user answers correctly the corresponding questions. The debugger keeps track of the
questions already answered, in order to avoid asking the same question twice.

We want to improve the interaction with the user by providing a complementary
graphical interface that allows the user to navigate the tree with more freedom. We are
also studying how to handle the strat operator attribute, that allows the specifier to
define an evaluation strategy. This can be used to represent some kind of laziness.

We plan to extend our framework by studying how to debug system modules, which
correspond to rewriting logic specifications and have rules in addition to memberships
and equations. These rules can be non-terminating and non-confluent, and thus behave
very differently from the statements in the specifications we handle here. In this context,
we also plan to study how to debug missing answers [14] in addition to the wrong
answers we have treated thus far.
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Abstract. Starting from existing spreadsheet software, like Lotus 1-2-
3R©, ExcelR©, or Spreadsheet 2000R©, we propose a sequence of enhance-
ments to fully integrate constraint-based reasoning, culminating in a
system for reactive, graphical, mathematical constructions. This is driven
by our view of constraints as the essence of (spreadsheet) computation,
rather than as an add-on tool for expert users. We call this extended com-
putational metaphor, spreadspaces.

We believe that research towards more general and realistic constraint solving
frameworks has to go on in parallel with the effort to make fewer and fewer requests
to the user. In other words, users should be asked only for as much as they want to
give the system. This amount of information (decided by users but with a minimum

set by the system below which most precision is lost) is then used by the system to
construct the whole constraint problem.

—Ugo Montanari and Francesca Rossi [18]

1 Overview

Our ultimate goal in this work is the design of a graphical environment for
spreadsheet-like computations, including solving and optimization, wherein the
graphical interface serves as an input medium, in addition to its traditional
output rôle. Changing a displayed value, be it graphical or textual, results im-
mediately in the appropriate changes to values it depends on. This integrated
system, with its transparent graphical mode of interaction, will dramatically ex-
tend the capabilities of existing commercial products, providing sophisticated
mathematical intelligence for the computationally näıve.

Spreadspaces do not have the look or feel of spreadsheets [20], or even of
graphical spreadsheets, but rather that of a graphical user interface. At the
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design level, the system serves as a graphical design environment with defin-
able and extensible graphical objects. Thus, educators, for example, can design
spreadspaces within which schoolchildren can solve problems and investigate
variants.

Target users are everyday users of personal computers. Examples of
spreadspace applications include:

– Exploring mathematical relations (see the baguette example below).
– Simulating physical devices (such as a pendulum).
– High school problem solving.
– Contingent (“what-if”) financial calculations (for example, home loan plan-

ning, tax computations).
– Logical and mathematical puzzles (for example, map coloring, crypto-

arithmetic).

Today’s spreadsheets provide ad-hoc constraint solving [8,16,7], mainly via
linear programming, and incorporate sophisticated graphical output. But these
features are patched on top of the basic spreadsheet, making the interface difficult
and limiting its general use.

The following sections lead us from minor cosmetic enhancements of current
spreadsheets, through sophisticated tools for the incorporation of mathematical
intelligence, to user-friendly graphical spreadspaces.

2 Cosmetic Constraints

The goal was to give the user a conceptual model which was unsurprising – it was
called the principle of least surprise. We were illusionists synthesizing an experience.

Our model was the spreadsheet – a simple paper grid that would be laid out on a table.
The paper grid provided an organizing metaphor for a working with series of numbers.

While the spreadsheet is organized we also had the back-of-envelope model which
treated any surface as a scratch pad for working out ideas.

—Bob Frankston (coinventor of Visicalc)

We begin with some simple “cosmetic” improvements to modern-day spread-
sheets. The central notion is that of constraints, which are boolean (true/false)
formulæ, involving comparisons and conditionals, that are required to evaluate to
true. Constraints extend ordinary formulæ by allowing the user to specify more
general relations between variables. Guaranteeing the truth of a constraint forces
the variables it involves to take on appropriate values. Values that make a con-
straint true are called a solution. Typical constraints involve inequalities (such
as Years < 80), type information (Years: Integer), and logical combinations
((Years=62 and Gender=Female) or (Years=65 and Gender=Male)). To sat-
isfy a constraint, the variables (like Years) appearing in it are set by the system
to appropriate values by computation and solving mechanisms.
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To incorporate constraints into the spreadsheet paradigm, we do the following:

1. Add a new kind of cell for constraints. One should be able to switch the type
of a cell from boolean to constraint and back again easily. This facilitates
debugging a set of constraints.

2. Only cells with an empty value are considered to be variables. Special flags
can be used to indicate preference for maximal or minimal possible solutions.
Cells that contain user-supplied values, like X3 having the value 4, would
be interpreted as an implicit constraint, viz. X3 = 4. This is in contrast
with current systems which allow the solver to modify cells containing user-
supplied values.

3. As in today’s spreadsheets, symbolic names (like Current Price) can be
given to cells instead of their Cartesian name (e.g. G13), and these could be
used in expressing constraints.

4. It would be nice to allow cells to contain interval values (like 0..100) to
express ranges of possible inputs or outputs.

As a simple example, consider the problem of graphing the price of a (nice,
fresh and crusty) baguette under variable inflation rates.

Using today’s spreadsheets, one can answer the question, “What is the lowest
inflation rate such that the price of a baguette will increase tenfold in the span of
a person’s lifetime?”, by using the following spreadsheet, where the constraints
are specified and solved via the integrated solver:

With the same example, using a constraint spreadsheet, a user will input the
following spreadsheet containing two constraints: a type constraint in C2 and an
inequality constraint in C3. The variable to be maximized is B2:
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A B C D
1 Current Price 9
2 Years :70≤B2≤80 :B2 integer
3 Inflation Rate !min
4
5 Future Price B1*(1+B3)^B2 :B5=10*B1

The system is designed to automatically solve the constraint and display the
following values:

A B C D
1 Current Price 9
2 Years 70 solved solved
3 Inflation Rate 3.34%
4
5 Future Price 90 solved

The value 3.34% is assigned to the cell B3 (better known as Inflation Rate)
since it is the smaller number that allows the constraints given in the spreadsheet
to be satisfied. Constraints are written in cells like C2 and D2 to specify that
Years should be an integer in between 70 and 80. In its solved form the constraint
spreadsheet displays the result of the computation in cells that contain formulæ
(like B5), and either solved , when the constraint is satisfied, or false, if no
solution has been found, in cells that contain constraints (like C5) .

Formally, a spreadspace is a finite set of constraints (which are finite or in-
finite relations) on values of cells. At any given moment, each cell is either
“protected” (user-supplied input or derived therefrom) or “variable”. Relations
defined in constraints are not directional: whether a constraint X3*3=2*Y3 would
cause X3 to be calculated from a known value of Y3 or vice-versa would depend
on the context. A variable can be determined, not only by fixing related rigid
values and calculating functional dependencies (as in backsolving a value for X3
from the equation Y3=3*X3 and a fixed value for Y3), but also by solving sev-
eral inequalities (like Y3=X3*X3, X3>0, and 10<Y3<20, for integer X3 and Y3),
depending on the sophistication of the available solver routines.

Thus, processing spreadsheets with constraint cells involves the following
steps:

1. Extract the set of constraints from the spreadsheet.
2. Choose which variable cell(s) to solve for.
3. Attempt to solve the constraints using constraint solvers.
4. If the set of solutions is non-empty, determine which solution should be fed

back to the appropriate cells.

Today’s systems have capabilities to “backsolve” single constraints, optimize
by linear programming, and solve some non-linear equations using Newton’s
method and the like. Only rudimentary solving capabilities for integers are avail-
able. As we outline in the next section, more powerful tools are in fact available.
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3 Constrained Spreadsheets

What was important were the features we’d left. We’d already discussed wall-sized
interactive displays with live graphics but the systems weren’t up to it. More

important, the grid provided the simplifying structure that made it a spreadsheet as a
opposed to a more general surface.

—Bob Frankston (letter to D. J. Power, 15 April 1999)

Starting from the cosmetically improved spreadsheet of the prior section, we
aim to add more sophisticated solvers. The driving engine is a cooperating set
of numerical and symbolic constraint-solving modules. They transform the ex-
tracted set of constraints into a “solved form”.

The system should incorporate as much mathematical ability as possible.
These could include facilities for:

– interval arithmetic,
– finite domains,
– finite sets,
– propositional calculus,
– algebraic identities (associativity, commutativity, etc.),
– polynomials.

Such capabilities exist in computer algebra systems designed to solve elaborated
constraints like: Axiom, Maple, Mathematica R©, MuPAD R©, Numerica. Finite
domain solvers can be solved using ILOG R© Solver ([11]) or GNU Prolog ([21])
or specialized solvers written in general-purpose or rule based languages like
ELAN ([5,2]). In some cases, searching for solutions might be necessary. Several
works stemming from the declarative programming community extend classical
spreadsheets with constraints, including, among others, instance [15,10,23,3,12].

To achieve the kind of capabilities we envision, a blackboard architecture,
with component solvers contributing partial solutions to the listed constraints,
is indicated.

4 Constrained Graphics

Modern spreadsheets provide tools for generating graphical representation of
spreadsheet data. The resultant graphs can be sized, placed, and annotated, as
desired. For instance, TK!solver [13,14], Spreadsheet 2000 R© [24] and iWork R©

Numbers [4] for the Mac provide nice interfaces that are more graphical and
less tabular than standard spreadsheets. The relationship between graphics and
constraints has a very long history to which Ugo Montanari has contributed
greatly [17]. The relationship with spreadsheets has also been developed by nu-
merous authors, including, for example, [6,9].

The parameters of the graphics (position, color, spacing, etc.) should be link-
able to the spreadsheet itself. Furthermore, constraint solving could be employed
to determine their value.
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Graphical objects should include dials, meters, switches, etc. The baguette
spreadsheet could be portrayed in the following manner:

Importantly, it is not hard to express graphical objects themselves as sets of
relatively simple constraints. Thus constraint-solving could be used to calculate
the graphical representations. This adds a lot more expressivity.

5 Active Graphics

Once we have graphics expressed as first-class constraints, the only difference
being that results are displayed on a screen, it is possible to allow the user to
directly manipulate the graphical objects, causing constraints to be solved and
other displays to change accordingly. At this stage, the system would no longer
bear any external resemblance to spreadsheets.

Virtually all interaction becomes graphical. Graphical output would not be an
add-on that sits atop arithmetic computations, as in today’s systems, but would
be fully integrated with the calculations and constraint solving. By representing
graphical objects and their properties (value, size, color, etc.) in this way, changes
the user makes to the graphical objects will immediately result in new values
that drive other parts of the spreadspace.
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Returning to the baguette example, the same spreadspace as above can be
used to gracefully solve all the following queries:

1. What will the price of a baguette be in 9 years if the current price is 9 pesos,
and the inflation rate is 10%?
To indicate what the input values are, the user pushes the buttons alongside
Current Price, Years and Inflation Rate. Then the user sets the current
price to 9 and the rate to 10. The answer is graphed and also displayed in
the Future Price cell as shown in the figure just above.

2. What happens if the inflation rate rises to 20% (35%)?
The user just uses the mouse to move the dial to the appropriate values.

3. What is the lowest inflation rate such that the price of a baguette will
increase tenfold in the span of a person’s lifetime?
This time, the user pushes Current Price, Future Price and
Inflation Rate, and sets the final price to 10 times as much (90).
Lastly he/she turns the inflation rate dial until a satisfactory value appears
in the Years cell: graphics become active.

4. What inflation rate causes the price to increase tenfold in only 4 years?
Starting with the previous state, the user reverses the statuses of Years and
Inflation Rate by toggling their buttons, and then sets Years to 4. The
inflation rate is displayed and the graph is updated.

This spreadspace is simply constructed by choosing the graphical elements
from menus, placing and sizing them with the mouse, changing some of the
default values to better ones. Entering the formula either textually or in a menu-
driven manner relates the various entities mathematically. Dragging cell names
or values can streamline the construction of the formula.

To give a deeper intuition of the way it works, let us write a script for some
of the actions needed to create the baguette spreadspace:
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1. I pull down the device menu and choose a dial. I place it where I want on
the screen and stretch it to the desired size.
An instance of the object dial is created and therefore the following
constraints are added to the currently empty constraint store. We assume
the dial to have its center at coordinates (a, b) and to be of radius r (all
specified indeed graphically by the action of the user who drags the dial on
the working space):
dial.value = 0 the default value presented by the dial
dial.center = (a, b)
dial.radius = r
dial.shape = ((x − a)2 + (y − b)2 = r2)
dial.min = 0
dial.max = dial.min+ 100
dial.marking[dial.min : dial.max].color = black
dial.foreground= black

Finally, since by default the value of this object can be either set by
the user interactively (in which case dial.in is true, value by default) or
set by the constraint solver (in which case dial.out is true), the following
constraints are added:
dial.readWrite = (dial.in �= dial.out)
dial.in = true

2. I change the high value from the default 100 to 200, and all the intermediate
values change to match.
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The constraint store now contains:
dial.value = 0
dial.center = (a, b)
dial.radius = r
dial.shape = ((x − a)2 + (y − b)2 = r2)
dial.min = 0
dial.max = 200
dial.marking[dial.min : dial.max].color = black
dial.foreground= black

3. I change the color of the markings in the range [100 : 200] to red, by catching
all of them, holding the mouse button down to get the list of attributes, and
then choosing the foreground color item, which gives a palette from which
I choose a dark blue. I leave the default low value of 0 and default interval
markings.
So now we have the following:
dial.value = 0
dial.center = (a, b)
dial.radius = r
dial.shape = ((x − a)2 + (y − b)2 = r2)
dial.min = 0
dial.max = 200
dial.marking[dial.min : 100[.color = black
dial.marking[100 : dial.max].color = red
dial.foreground= darkBlue
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4. Then I choose a simple rectangular display from the menu, placing it near
the dial.
This has the effect to add to the previous constraint store the following:
rectDisplay1.position= (c, d) determined by the user action
rectDisplay1.height= 5 default value
rectDisplay1.length= rectDisplay1.height∗ 5 default value
rectDisplay1.type= real
rectDisplay1.value= 0
rectDisplay1.min= 0
rectDisplay1.max= rectDisplay1.min+ 100
rectDisplay1.foreground= black

etc.

As one can see, an explicit set of constraints is built using a graphical interac-
tive interface. It represents exactly all the behavioral knowledge the user wants
to put into his or her model.

6 Examples

Here are a few simple examples highlighting some of the original features of
spreadspaces.

6.1 Color-Changing Rectangle

Context: The user is resizing a rectangle by dragging one of the corners or sides
of the rectangle with her mouse.

Constraint: The designer of the current spreadspace has written the following
constraints, where P identifies the perimeter of the rectangle.

P > 3 ⇒ rectangle.backGroundColor= red
P ≤ 3 ⇒ rectangle.backGroundColor= blue

Behavior: When the user is in-playing the size of the rectangle with her mouse,
the color of the rectangle is displayed in red when the perimeter of the rectangle
is larger than 3 in the current length unit. Otherwise, it is shown in blue.

6.2 Standard Spreadsheet

Context: The user uses a spreadsheet to understand the relationship between the
total amount of money “available”, the amount “allocated” (earmarked) and the
amount still available. With a standard spreadsheet, depending on the quantity
one wants to compute, one has to make three different computations expressed
in three different spreadsheets as illustrated in Fig. 1.
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Fig. 1. Spreadsheet examples

Constraint: The designer of that spreadspace simply writes the following con-
straint:

Already allocated+ Still available = Total available

Behavior: As soon as the value of 2 of the above variables are known, the third
is fulfilled automatically.

6.3 Red First

Context: The user sees three circles and can in-play the color of them using a
menu poping up when (s)he clicks right on one of the circles. At the beginning
the circles have the same background color than the overall background (which
is assumed not to be red!).

Constraint: The designer of that spreadspace has written the following con-
straint:

(C1.backGroundColor= red)
⊕ (C2.backGroundColor= red)

⊕ (C3.backGroundColor= red)
= 1

where ⊕ denotes exclusive or.

Behavior: The only valid in-play of the user will be to enter the first one to be
red, and the other not to be red. This will therefore force the user to behaves
accordingly.

7 S2
p System Organization

The diagram in Fig. 2 exemplifies how a user of the S2
p spreadspace system

we are describing fills in values for the fields of the cell just positioned on the
spreadspace.

1. The user clicks on the Name field, types “Already allocated”, and hits the
return key.

2. The Interaction Manager
(a) identifies C1.Name as the field modified, and
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Fig. 2. Information flow from user to constraints

(b) parses the string “Already allocated”.
3. The Object Manager tries now to update the cell and – for this purpose

– initiates the solver and waits for an answer.
4. The Constraint Manager tries to add the new constraint C1.Name =

“Already allocated”.
The solver detects no contradiction, but has computed (by constraint propa-
gation, based on the name and default font) that the width of the cell should
be 80, and thus C1.Width = 80 is added as a constraint, and that value is
also passed to the Object Manager.

5. The Object Manager updates the Name and Width fields of cell C1 in the
database.

6. The Interaction Manager updates the display with the new values. No
values are shaded at this point on the display.

In this context, one can see the importance of the constraint satisfier and/or
solver. Of course, all the work on constraint solving, combination, propagation
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and clever handling of constraint stores shall be reused and possibly adapted to
handle huge numbers of heterogeneous constraints.

8 Conclusion

It is clear that people use computers to do many computations that can be
expressed as mathematical problem solving. However, many of these tasks are
difficult or inconvenient with current software.

– Spreadsheets may provide constraint-solving, but only as an afterthought;
though relatively powerful, the interface is not intuitive, and the computa-
tional meaning of constraints is obscured. Most aspects of the layout and
graphics are not integrated into the spreadsheet, even in graphical spread-
sheets, and the graphics certainly have no connection with the solver.

– Commercial constraint solvers are designed for programmers, and cannot be
used by spreadsheet users and their kin. Symbolic systems may have powerful
graphing capabilities, but solving requires mathematical and programming
sophistication, since solving usually necessitates heavy user-interaction. Ex-
isting solvers cannot cooperate, and future improvements cannot be added
modularly.

– Graphical interface design systems allow one to construct the kind of objects
in our baguette example, but all calculations must be hard-wired.

The beauty and value of spreadspaces lie in their seamless integration of
spreadsheet computations, constraint solving, and optimization, in an active and
appealing graphical environment. As such, it contributes to the large research
interest in spreadsheets, both with regard to their deductive extensions [1,22]
and from the risk point of view [19].
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Abstract. We describe some of the novel aspects and motivations be-
hind the design and implementation of the Ciao multiparadigm pro-
gramming system. An important aspect of Ciao is that it provides the
programmer with a large number of useful features from different pro-
gramming paradigms and styles, and that the use of each of these fea-
tures can be turned on and off at will for each program module. Thus, a
given module may be using e.g. higher order functions and constraints,
while another module may be using objects, predicates, and concurrency.
Furthermore, the language is designed to be extensible in a simple and
modular way. Another important aspect of Ciao is its programming en-
vironment, which provides a powerful preprocessor (with an associated
assertion language) capable of statically finding non-trivial bugs, veri-
fying that programs comply with specifications, and performing many
types of program optimizations. Such optimizations produce code that
is highly competitive with other dynamic languages or, when the highest
levels of optimization are used, even that of static languages, all while re-
taining the interactive development environment of a dynamic language.
The environment also includes a powerful auto-documenter. The paper
provides an informal overview of the language and program development
environment. It aims at illustrating the design philosophy rather than at
being exhaustive, which would be impossible in the format of a paper,
pointing instead to the existing literature on the system.

1 Origins and Initial Motivations

Ciao [50,48,5,25,49] is a modern, multiparadigm programming language with
an advanced programming environment. The ultimate motivation behind the
system is to develop a combination of programming language and development
tools that together help programmers produce in less time and with less effort
code which has fewer or no bugs and which also performs very efficiently on
platforms from small embedded processors to powerful multicore architectures.
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Ciao has its main roots in the &-Prolog language and system [51]. &-Prolog’s
design was aimed at achieving higher performance than state of the art sequen-
tial logic programming systems by exploiting (and-)parallelism. This required
the development of a specialized abstract machine capable of running in parallel
and very efficiently a large number of (possibly non-deterministic) goals [44,51]
(the abstract machine was derived from early versions of SICStus Prolog). It
also required extending the source language to allow expressing parallelism and
concurrency in programs. This made it possible for the user to parallelize pro-
grams manually in a relatively simple way. The system was later extended to
support constraint programming, including the concurrent and parallel execu-
tion of such programs [30]. Significant work was done with Ugo Montanari and
Francesca Rossi in this context through the development of a true concurrency
semantics that implied the possibility of exploiting truly maximum parallelism
in the execution of constraint programs [68,10,11]. Additional work was also per-
formed to extend the system to support other computation rules, such as the
Andorra principle [90,7,79,9], other sublanguages, etc.1

The experience of this process of gradual extension of the capabilities of the
&-Prolog system inspired some of the fundamental concepts underlying the Ciao
system. In particular, while each of the functionalities mentioned above (Andorra
execution, constraint programming, concurrent programming, etc.) was typically
implemented up to that time by a separate (and complex) system comprising
compiler, abstract machine, etc. we observed that all such extensions could in
fact be supported efficiently within the same system provided the underlying
machinery implemented a relatively limited set of basic constructs (a kernel
language) [50,48], coupled with an easily programmable and modular way of
defining new syntax and giving semantics to it in terms of that kernel language.
This approach is, of course, not exclusive to Ciao, but in Ciao the facilities that
enable building from a simple kernel are very explicitly available (and their use
encouraged) from the system programmer level to the application programmer
level.

1 It is interesting to note that a great deal of this initial work on the design and
implementation of Ciao occurred within the ACCLAIM EU project, in which the
Andorra Kernel Language (AKL) and its successor, the Oz language [42], were also
developed. The great group of people involved in the project, including Ugo Mon-
tanari, Seif Haridi, Gert Smolka, Peter VanRoy, David Warren, and many others
resulted in a very fruitful collaboration that effectively gave birth to modern multi-
paradigm languages. Within this collaborative context, Ciao took different paths to
AKL and Oz in many aspects, including for example the use of assertions and global
analysis support, the fact that in Ciao non-determinism (backtracking) is implicit, or
the use of a (Prolog-derived) syntax aimed at easily supporting meta-programming.
As another example, in Ciao the language has always been sequential by default, i.e.,
concurrency has to be added explicitly by the user (or the parallelizer), whereas in
the original Oz and AKL designs the language was concurrent by default (although
this has been changed in later Oz designs). Interesting aspects of Oz include for
example the extensive development and use of computational spaces as first-level
constructs.



An Overview of the Ciao Multiparadigm Language 211

This is one of the fundamental capabilities of the Ciao system, which ef-
fectively allows Ciao to support multiple programming paradigms and styles.
In Ciao all operators, “builtins,” and most other syntactic and semantic lan-
guage constructs such as conditionals or loops are not part of a predefined “lan-
guage.” Instead they are user-modifiable constructs living in libraries which can
be loaded or unloaded at will thanks to the notion of packages [15]. This is the
mechanism which allows adding new syntax to the language and giving semantics
to this syntax. Most importantly, such packages, and thus the restrictions and
extensions to the language that they provide, can be activated or deactivated
separately on a per-module/class basis without interfering with each other.2 The
different source-level constructs (and sub-languages / DSLs) are supported by
a compilation process defined within the corresponding package, typically via
a set of rules defining source-to-source transformation into the kernel language,
with the (rather infrequent) help of modules or classes written in an external
language using one of the several interfaces provided. The approach of compiling
to a common kernel implies that the programming styles that Ciao implements
share much at both the semantic and implementation levels, and they naturally
reuse significant portions of the compiler, documenter, abstract machine, etc.

Another fundamental characteristic of the Ciao system is that it provides
a powerful preprocessor, called CiaoPP [8,52,53], which is capable of statically
finding non-trivial bugs, verifying that the program complies with specifications,
and performing many types of program optimizations. A key ingredient for the
above task is the Ciao assertion language [82]. While not strictly required for
developing or compiling programs, the preprocessor and assertion language are
important and distinctive components of the Ciao design and they also have
their origin in earlier work stemming from &-Prolog. In particular, the &-Prolog
compiler included a parallelizer which was capable of automatically annotating
programs for parallel execution [51,74,71]. This required developing advanced
program analysis technology based on abstract interpretation [27] (leading to
the development of the PLAI analyzer [91,73,55,76]) which allowed inferring
program properties such as independence among program variables [73,75], ab-
sence of side effects [72], non-failure [36], data structure shape and instantiation
state (“moded types”) [87], or even being able to infer upper and lower bounds
on the sizes of data structures and the cost of procedures [33,32,37,34], which
was instrumental for performing automatic granularity control [33,66,65]. Also,
in addition to automatic parallelization the &-Prolog compiler performed other
optimizations such as multiple (abstract) specialization [84]. While the &-Prolog
inference technology was aimed at performing program optimizations to maxi-
mize execution speed and minimize resource consumption, interacting with the
system it soon became clear that the wealth of information inferred by the ana-
lyzers would also be very useful as an aid in the program development process,
and this led to the idea of the Ciao assertion language and preprocessor, as we
will discuss later.

2 In fact, some Ciao packages are intended to be portable so that they can be used
with little modification in other logic and constraint logic programming systems.
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� �

1 :- module(_, _, [functional , lazy ]).
2

3 nrev ([]) := [].
4 nrev ([H|T]) := ~conc(nrev (T), [H]).
5

6 conc ([], L) := L.
7 conc ([H|T], K) := [H | conc(T, K)].
8

9 fact (N) := N=0 ? 1
10 | N>0 ? N * fact (--N).
11

12 :- lazy fun_eval nums_from /1.
13 nums_from (X) := [X | nums_from (X+1)].
14

15 :- use_module (library (’lazy/lazy_lib ’), [take /3]).
16 nums (N) := ~take(N, nums_from (0)).

�� �

Fig. 1. Some examples in Ciao functional notation

2 Supporting Multiple Paradigms

We will now show some examples of how the extensibility of the kernel language
mentioned before allows Ciao to incorporate the fundamental constructs from a
number of programming paradigms. In particular, the system currently offers, as
a combination of syntactic and semantic extensions, the following programming
models:

– Functional Programming: functional notation is provided by a set of packages
which, besides a convenient syntax to define functions (or predicates using
a function-like layout), gives support for semantic extensions which include
higher-order facilities (e.g., function abstractions and applications thereof)
and, if so required, lazy evaluation. For illustration, Figure 1 lists a number
of examples using the Ciao functional notation. nrev and conc are written
by using multiple :=/2 definitions. fact is written using a disjunction of
guards (which actually commits the system to the first matching choice).
The ~ prefix (eval, which can often be omitted) is the opposite of quote and
states that its argument is a call (as opposed to a data structure to unify
with). All of this syntax is defined in the functional package, which is
loaded into the module (line 1). nums from is declared lazy, which is possible
thanks to the lazy package, also loaded into the module. An important point
is that these packages only modify the syntax and semantics of this module,
and other modules can use any other packages. Finally, nums uses take from
the library of lazy functions/predicates.

In general, functional notation is just syntax and thus the following query
(loading the functional package in the top level allows using functional no-
tation –the top level behaves in this sense exactly as a module):
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� �

1 :- module(_, _, [functional , hiord , bfall]).
2

3 color := red | blue | green.
4

5 list := [] | [_ | list ].
6

7 list_of(T) := [] | [~T | list_of(T)].
�� �

� �

8 :- module(_, _, [hiord , bfall]).
9

10 color(red). color(blue ). color(green).
11

12 list ([]).
13 list ([_|T]) :- list(T).
14

15 list_of(_, []).
16 list_of(T, [X|Xs]) :- T(X), list_of(T, Xs).

�� �

Fig. 2. Examples in Ciao functional notation and state of translation after applying
the functional package

?- use_package(functional).
?- [3,2,1] = ~nrev(X).

produces the answer:

X = [1,2,3]

As mentioned before other constructs such as conditionals do commit the
system to the first matching case. More strictly “functional” behavior (e.g.,
being single moded, in the sense that a fixed set of inputs must always
be ground and for them a single output is produced, etc.) can be enforced
using assertions, to be discussed later. Figure 2 lists more examples using
functional and other packages, and the result after applying just the trans-
formations implied by the functional package. Note the use of higher order
in list of. More details on Ciao’s functional notation can be found in [21].

– Logic Programming Flavors: a set of packages (which are loaded by default
when a Prolog module is read in) provide support for full ISO-Prolog and
a number of other classical “builtins” expected by users to be provided by
Prolog systems —except that of course in Ciao rather than builtins all of
them are optional features brought in from the libraries.3 This is signaled by

3 The support of Prolog is done in such a way that Prolog code runs without modifica-
tion, and the system top level comes up by default in Prolog mode. As a result, many
Ciao users which come to the system looking for a good Prolog implementation do
get what they expect and, if they do not poke further into the menus and manuals,
may never realize that Ciao is in fact quite a different beast.
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simply not using the third argument (the one devoted to listing packages)
in module declarations.

Alternatively, by avoiding the loading of the Prolog packages the user
can restrict the module to use only pure logic programming, without any
of Prolog’s impure features. For example, the second listing in Figure 2 is a
pure logic programming module. If a call to a Prolog builtin such as assert
were to appear within the module it would be signaled by the compiler as
calling an undefined predicate. Features such as, for example, declarative
I/O, can be added to such pure modules, by loading additional libraries.
This also allows adding individual features of Prolog on a needed basis.
Higher-order logic programming with predicate abstractions is supported
through the hiord package. This is also illustrated in the second listing
in Figure 2. As a further example of the capabilities of the hiord package
consider the queries:

?- use_package(hiord), use_module(library(hiordlib)).
?- P = ( _(X,Y) :- Y = f(X) ), map([1, 3, 2], P, R).

where, after loading the higher-order package hiord and instantiating P to
the predicate abstraction (X,Y) :- Y = f(X), map([1, 3, 2], P, R) is
applied to P producing:

R = [f(1), f(3), f(2)]

The (reversed) query:

?- P = ( _(X,Y) :- Y = f(X) ), map(M, P, [f(1), f(3), f(2)]).

produces:

M = [1, 3, 2]

– Additional Computation Rules: In addition to the usual depth-first, left-to-
right execution regime of Prolog, and again by loading suitable packages,
other computation rules such as breadth-first, iterative deepening, Andorra
model, etc. are available. As an example in the second listing in Figure 2 any
calls to color, list, and list of will be executed breadth-first.4 Tabling [24]

4 The possibility of using different control rules has shown useful not only in ap-
plications but also (and very specially) when teaching logic programming. In our
experience, it is cumbersome to make the first introductory lectures to logic pro-
gramming using Prolog since the particular (albeit often practically useful) quirks
and the subsequent non-termination of Prolog get in the way of teaching the fun-
damental concepts of logic programming. We have found that it makes perfect
sense to start with a purer logic language, with better termination and fairness
characteristics. The Ciao breadth-first mode has proved quite useful for this (see
http://www.cliplab.org/logalg for the slides of our course based on this ap-
proach). Once the beauty of pure logic programming is experienced the student
is then introduced to the practical and powerful choices made in the design of Pro-
log, and later to topics and functionality beyond Prolog, such as those outlined in
this document, all within the same system.

http://www.cliplab.org/logalg


An Overview of the Ciao Multiparadigm Language 215

� �

1 :- module(_,_,[ fsyntax ,clpqf]).
2

3 fact (.=. 0) := .=. 1.
4 fact (N) := .=. N*fact (.=. N-1) :- N .>. 0.
5

6 sorted := [] | [_].
7 sorted([X,Y|Z]) :- X .<. Y, sorted([Y|Z]).

�� �

Fig. 3. Ciao constraints (combined with functional notation)

is currently being added using an approach which relies mostly on a source-
to-source program transformation (which is performed using a package) and
an external C library which is accessed using one of the available foreign in-
terfaces [29]. The underlying abstract machine did not have to be changed,
and therefore sequential execution is left essentially untouched.

– Constraint Programming: several constraint solvers and classes of constraints
using these solvers are supported including CLP(Q), CLP(R) (a derivation
of [57]), and CLP(FD). The constraint languages and solvers, which are built
on more basic blocks such as attributed variables [56] and/or the higher-level
Constraint Handling Rules (CHR) [39,88], are also extensible at the user
level. As an example, Figure 3 provides two examples using Ciao CLP(Q)
constraints, combined with functional notation. For example, line 3 can be
read as: if the argument of fact is constrained to 0 then the “output”
argument is constrained to 1. In the next line if the argument of fact is
constrained to be greater than 0 then the “output” is constrained to be
equal to N*fact( .=. N-1 ). The two definitions (fact and sorted) can
be called with their arguments in any state of instantiation. For example,
the query

?- sorted(X).

returns:

X = [] ? ;

X = [_] ? ;

X = [_A, _B],
_A .<. _B ? ;

X = [_A, _B, _C],
_B .<. _C,
_A .<. _B ? ;

X = [_A, _B, _C, _D],
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_C .<. _D,
_B .<. _C,
_A .<. _B ?

etc.
– Object-Oriented Programming: object-oriented programming is provided by

the O’Ciao class and object packages [80]. These packages provide capabil-
ities for class definition, object instantiation, encapsulation and replication of
state, inheritance, interfaces, etc. These features are designed to be natural
extensions of the underlying module system.

– Concurrency, Parallelism, and Distributed Execution: other packages bring
in extensive capabilities for expressing concurrency (including a concurrent,
shared version of the internal fact database which can be used for synchro-
nization), distribution, and parallel execution [14,11,23]. A notion of “active
objects” also allows compiling objects so that they are ultimately mapped
to a standalone process, which can then be transparently accessed by the
rest of an application. This provides simple ways to implement servers and
services in general.

In addition to characteristics that are specific to certain programming paradigms,
many other additional features are available through libraries such as, e.g.:

– Structures with named arguments (feature terms), a trimmed-down version
of ψ-terms [2] which makes it possible to compile statically all structure
unifications to Prolog unifications, which ensures that using them adds no
overhead to the execution.

– Persistence, which makes it possible to transparently save and restore the
state of selected facts of the dynamic database of a program on exit and
startup. This is the base of a high-level interface with databases [26].

– Answer set programming [38], an alternative logic programming model based
on the stable model semantics [40].

– WWW programming, where Ciao provides libraries to easily establish a map-
ping between HTML / XML and Herbrand terms, to easily handle (generate
/ transform / inspect / . . . ) them in order to for example, write CGIs (or
complete web sites) quite easily Ciao [17].

Again, all of these can be activated or deactivated on a per-module / class basis.

3 The Ciao Approach to Assertions

Many languages (e.g. Mercury [89,43] or Haskell [59,58], to cite some modern,
well-known examples from the logic and functional programming communities)
impose certain type-related requirements, e.g., all types (and, when relevant,
modes) used have to be defined explicitly or all procedures have to be “well-
typed” and “well-moded”.

One argument in favor of such declarations and restrictions is that they can
be useful to clarify interfaces and meanings, and in general to make large pro-
grams more maintainable and well documented, facilitating “programming in
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the large.” Besides, the compiler may use them to generate more specific code,
which can be better in several ways (e.g., performance-wise).

We certainly agree with this! But at the same time we also wanted Ciao to
be useful (as, say, Prolog, Scheme, or, more recently, Python) for “programming
in the small,” prototyping, developing simple scripts, or simply experimenting
while trying to find a solution to a problem, ... and for this we feel type and
mode declarations and other related restrictions can sometimes get in the way.

Fortunately, we came up with a unique solution to this apparent conundrum:
Ciao includes a very rich assertion language (and a methodology for dealing
with such assertions) [52,82] which allows expressing not only classical types,
but also a much wider variety of properties (modes, determinacy, non-failure,
cost, ...), but in Ciao these assertions are optional. This solution makes Ciao
very useful both for programming in the small and in the large. We believe that
Ciao’s solution to the issue of assertions combines effectively the advantages of
the strongly typed and untyped language approaches, bringing the best of both
worlds to the programmer, but within a broader scope which, as we will see,
makes it possible to use a uniform language to express more program properties
(and, therefore, to interact with a tool able to check or infer / reconstruct them).
This is, in some sense, related to the soft typing approach, pioneered in [20], but
it differs from it in that it is not restricted to types. Instead, the framework is
open regarding the kind of properties that can be expressed in the corresponding
assertions. As an example, systems which aim at performing automatic compile-
time checking are often rather strict about the properties which the user can
write in assertions. This is understandable because otherwise, the underlying
static analyses are of little use for proving the assertions. In our case, we use
the same assertion language for different purposes, including run-time checking.

� �

1 :- module(_, [nrev /2], [assertions , fsyntax , nativeprops ]).
2 :- entry nrev /2 : {list , ground} * var.
3

4 :- pred nrev(A, B) : list(A) => list(B).
5 :- success nrev(A, B) => size_o(B, length(A)).
6 :- comp nrev(_, _) + (not_fails , is_det ).
7 :- comp nrev(A, _) + steps_o(length(A)).
8

9

10 nrev ([]) := [].
11 nrev ([H|L]) := ~conc (~ nrev(L),[H]).
12

13 :- comp conc(_, _, _) + (terminates , non_det ).
14 :- comp conc(A, _, _) + steps_o(length(A)).
15

16 conc ([], L) := L.
17 conc ([H|L], K) := [ H | ~conc(L,K) ].

�� �

Fig. 4. Naive reverse with some –partially erroneous– assertions
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Therefore, the user may use properties which go beyond those which the static
analyses in the system can prove. Of course, even though such assertions may
sometimes be useful at compile-time for certain purposes, the user cannot expect
CiaoPP to automatically always be able to verify such assertions statically.

As an example, Figure 4 includes the definitions of nrev and conc (similarly
to Figure 1) but also states some program properties expressed using the Ciao
assertion language (whose syntax and semantics are made available to the mod-
ule by means of the assertions package). For example, the assertion in line 4
expresses that when nrev is called (:) the first argument should be a list, and
the second one should be a list on success (=>). The + field in comp assertions can
contain a conjunction of global properties of the computation of the predicate
(as the one in line 7). The predicates which are used in such assertions can be in
libraries (such as the nativeprops library used in the figure) or defined by the
user. For example, the definitions in Figure 2 can be used as types in assertions
(e.g., line 4 in Figure 4).

4 Program Documentation, Static Debugging, and
Verification

One of the most useful characteristics of the assertions used in Ciao is that they
are designed to serve many purposes. First, any assertions present in programs
can be processed by an autodocumenter (lpdoc [46]) in order to generate useful
documentation. Also, assertions are analyzed interactively during program de-
velopment by the system preprocessor (CiaoPP) which can find non-trivial bugs
statically, verify that the program complies with the assertions, or even gener-
ate automatically proofs of correctness that can be shipped with programs and
checked easily at the receiving end (using the proof/abstraction carrying code
approach [3]). Even if a program contains no user-provided assertions, Ciao can
check the program against the assertions contained in the libraries used by the
program, thus potentially catching additional bugs at compile time. If the system
cannot prove nor disprove some property at compile time, the system can (op-
tionally again) introduce a run-time check for such property in the executable.
For homogeneity, and to ease information exchange among the autodocumenter
and the different checkers and analyzers, analysis results are reported using also
the assertion language —which, since it is readable by humans, can be inspected
by a programmer, for example to make sure that the results of the analyses agree
with the intended meaning of the program.

Interestingly, the same underlying technology (global analysis based on ab-
stract interpretation) that allows the system to obtain useful results even when
assertions are not present for all predicates, also allows dealing with complex
properties, beyond classical types, in a safe way. As a result, for example,
the programmer has the possibility of stating assertions about the efficiency
of the program (lower and/or upper bounds on the computational cost of pro-
cedures [37,35]) which the system will try to verify or falsify, thus perform-
ing automatic debugging and validation of the performance of programs. Many
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� �
1 :- module(qsort , [qsort/2], [assertions , fsyntax ]).

2 :- use_module (compare , [geq/2, lt /2]).

3 :- entry qsort/2 : {list (num), ground} * var.

4

5 qsort ([]) := [].

6 qsort([X|L]) := ~append (~ qsort(L1), [X|~ qsort(L2)])

7 :- partition (L, X, L1 , L2).

8

9 append([], X) := X.

10 append([H|X], Y) := [H | ~append(X,Y)].

11

12 partition ([],_B ,[] ,[]).

13 partition ([E|R],C,[E|Left1],Right) :-

14 lt(E,C), partition (R,C,Left1 ,Right).

15 partition ([E|R],C,Left ,[E|Right1 ]) :-

16 geq(E,C), partition (R,C,Left ,Right1).
�� �

Fig. 5. A modular qsort program

other interesting properties of the predicates and literals of the program can be
handled, such as data structure shape (including pointer sharing), bounds on
data structure sizes, and other operational variable instantiation properties, as
well as procedure-level properties such as determinacy [63], non-failure [12,36],
termination, and bounds on the execution time [67], as well as on the consump-
tion a large class user-defined resources [77].

Assertions also allow programmers to describe the relevant properties of mod-
ules or classes which are not yet written or are written in other languages. This
is also done in other languages but often using different types of assertions for
each purpose. In contrast in Ciao the same assertion language is used again for
this task. This, interestingly, makes it possible to run checkers / verifiers / docu-
menters against code which is only partially developed: the traditional “stubs”,
which have to be changed later on for a working version, can be replaced by an
assertion declaring how the predicate should behave, with the advantage that
this declared behavior can effectively be checked against its uses.

We will now present some examples which illustrate how these capabilities
are used in practice, and which also help introduce some aspects of the assertion
language. The first example will illustrate automatic inference of non-trivial code
properties while the second will focus on the use of assertions in verification and
debugging, and more specifically to detect problems in the expected performance
of a program.

As mentioned before, CiaoPP includes a non-failure analysis, based on [36]
and [12], which can detect procedures and goals that can be guaranteed not
to fail, i.e., to produce at least one solution or not to terminate. It also can
detect predicates that are “covered”, i.e., such that for any input (included in
the calling type of the predicate), there is at least one clause whose “test” (head
unification and body builtins) succeeds. CiaoPP also includes a determinacy
analysis based on [63], which can detect predicates which produce at most one
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solution, or predicates whose clause tests are mutually exclusive, even if they are
not deterministic (because they call other predicates that can produce more than
one solution). We will use the code in Figure 5. The aforementioned analyses
infer different types of information which include, among others, that expressed
by the following assertion:

:- true pred qsort(A,B)
: ( list(A,num), var(B) ) => ( list(A,num), list(B,num) )
+ ( not_fails, covered, is_det, mut_exclusive ).

which expresses that, if qsort(A, B) is called with a list of numbers in A and
a variable in B, then B will on exit be a list of numbers and the predicate will
not fail, will give at most one solution, and will not perform backtracking at the
level of its clauses (the + field in pred assertions can contain a conjunction of
global properties of the computation of the predicate.)

CiaoPP can also infer lower and upper bounds on the sizes of terms and
the computational cost of predicates [37,35]. The cost bounds are expressed as
functions on the sizes of the input arguments and yield the number of resolution
steps. Various measures can be used for the “size” of an input, such as list length,
term size, term depth, integer value, etc. Note that obtaining a finite upper bound
on cost also implies proving termination of the predicate. As an example, the
following assertion is part of the output of the upper bounds analysis:

:- true pred append(A,B,C)
: ( list(A,num), list1(B,num), var(C) )
=> ( list(A,num), list1(B,num), list1(C,num),

size_ub(A,length(A)), size_ub(B,length(B)),
size_ub(C,length(B)+length(A)) )

+ steps_ub(length(A)+1).

Note that in this example the size measure used is list length. The property
size_ub(C,length(B)+length(A) means that an (upper) bound on the size of the
third argument of append/3 is the sum of the sizes of the first and second
arguments. The inferred upper bound on computational steps is the length of
the first argument of append/3.

The following is the output of the lower-bounds analysis:

:- true pred append(A,B,C)
: ( list(A,num), list1(B,num), var(C) )
=> ( list(A,num), list1(B,num), list1(C,num),

size_lb(A,length(A)), size_lb(B,length(B)),
size_lb(C,length(B)+length(A)) )

+ ( not_fails, covered, steps_lb(length(A)+1) ).

The lower-bounds analysis uses information from the non-failure analysis, with-
out which a trivial lower bound of 0 would be derived.

As a second example, we illustrate how in CiaoPP it is possible to state
assertions about the efficiency of the program which the system will try to verify
or falsify, thus implementing a form of performance debugging and validation.
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This is done by specifying lower and/or upper bounds on the computational cost
of predicates (given in number of execution steps). Consider for example again
the naive reverse program in Figure 4. The assertion in line 7 states that nrev
should be linear in the length of the (input) argument A. CiaoPP can be used to
verify (or disprove) this assumption by running the analyzer (as before) to infer
bounds on costs and then comparing them with the assertion. In fact, nrev is of
course quadratic. With compile-time error checking turned on, and mode, type,
non-failure and lower-bound cost analysis selected, CiaoPP issues the following
error message:

ERROR: false comp assertion:
:- comp nrev(A,B) : true => steps_o(length(A))

because in the computation the following holds:
steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1)

This message states that nrev will take at least length(A)2+3 length(A)
2 + 1 res-

olution steps (which is the cost analysis output), while the assertion requires
the cost to be in O(length(A)) resolution steps. As a result, the worst case as-
ymptotic complexity stated in the user-provided assertion is proved wrong by
the lower bound cost assertion inferred by the analysis. This allows detecting
the inconsistency and proving that the program does not satisfy the efficiency
requirements imposed. Note that upper-bound cost assertions can be proved to
hold by means of upper-bound cost analysis if the bound computed by analysis
is lower or equal than the upper bound stated by the user in the assertion. The
converse holds for lower-bound cost assertions [8]. Thanks to this functionality,
CiaoPP can also certify programs with resource consumption assurances as well
as efficiently checking such certificates [47].

5 High Performance with Less Effort

A potential benefit of strongly typed languages is performance: the compiler
can generate more efficient code with the additional type and mode information
that the user provides. Performance is a good thing, of course. However, we do
not want to put the burden of efficient compilation on the user by requiring
the presence of many program declarations: the compiler should certainly take
advantage of any information given by the user, but if the information is not
available it should do the work of inferring such program properties. This is the
approach taken in Ciao: as we have seen before, when assertions are not present
in the program Ciao’s analyzers try to infer them. Most of these analyses are
performed at the kernel language level, so that the same analyzers are used for
several of the supported programming models. The information inferred by the
global analyzers is used to perform optimizations, including multiple abstract
specialization [85], partial evaluation [81], dead code removal, goal reordering,
reduction of concurrency / dynamic scheduling [83], low-level optimization (in-
cluding optimized compilation to native code via C), and others [53].
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Fig. 6. Headset with a Gumstix processor (left) and 3-D compass (right)

The objective is again to achieve the best of both worlds: with no assertions
or analysis information the low-level Ciao compiler (ciaoc [16]) generates code
which is highly competitive in speed and size with the best dynamically typed
systems. And then, when useful information is present (either coming from the
user or inferred by the system analyzers) the optimizing compiler (see, e.g., [69]
for an early description) can produce code that is competitive with that coming
from strongly-typed systems. Ciao’s highly optimized compilation has been suc-
cessfully tested for example in applications with tight resource usage constraints
(including real-time) [19], obtaining a 7-fold speed-up w.r.t. the default byte-
code compilation (the performance of which is similar to that of state of the art
abstract machine-based systems). The application in hand was real-time spacial
placement of sound sources for a virtual reality suit and ran in a small (“Gum-
stix”) processor embedded within a headset (Figure 6). It is interesting to note
that this level of performance is only around 20-40% slower than a comparable
implementation in C of the same application.

A particularly interesting optimization performed by CiaoPP, and which is
inherited from the &-Prolog system, is automatic parallelization [45,41]. This is
specially relevant nowadays given that the wide availability of multicore proces-
sors has made parallel computers mainstream. We illustrate this by means of a
simple example using goal-level program parallelization [6,22]. This optimization
is performed as a source-to-source transformation, in which the input program is
annotated with parallel expressions. The parallelization algorithms, or annota-
tors [71], exploit parallelism under certain independence conditions, which allow
guaranteeing interesting correctness and no-slowdown properties for the paral-
lelized programs [54,31]. This process is made more complex by the presence
of variables shared among goals and pointers among data structures at run-
time. Let us consider again the program in Figure 5. A possible parallelization
(obtained in this case with the “MEL” annotator [71]) is:
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qsort([X|L],R) :-
partition(L,X,L1,L2),
(

indep(L1, L2) ->
qsort(L2,R2) & qsort(L1,R1)

;
qsort(L2,R2), qsort(L1,R1)

),
append(R1,[X|R2],R).

which indicates that, provided that L1 and L2 do not have variables in common
at run-time, then the recursive calls to qsort can be run in parallel. Assuming
that lt/2 and geq/2 in Figure 5 need their arguments to be ground (note that
this may be either inferred by analyzing the implementation of lt/2 and geq/2
or by stated by the user using suitable assertions), the information inferred by
the abstract interpreter using, e.g., mode and sharing/freeness analysis, can de-
termine that L1 and L2 are ground after partition, and therefore they do not
have variables to share. As a result, the independence test and the correspond-
ing conditional is simplified via abstract executability and the annotator yields
instead the following code:

qsort([X|L],R) :-
partition(L,X,L1,L2),
qsort(L2,R2) & qsort(L1,R1),
append(R1,[X|R2],R).

which is much more efficient since it has no run-time test. This test simplification
process is described in detail in [6] where the impact of abstract interpretation
in the effectiveness of the resulting parallel expressions is also studied.

The tests in the above example aim at strict independent and-parallelism.
However, the annotators are parametrized on the notion of independence. Dif-
ferent tests can be used for different independence notions: non-strict inde-
pendence [13], constraint-based independence [31], etc. Moreover, all forms of
and-parallelism in logic programs can be seen as independent and-parallelism,
provided the definition of independence is applied at the appropriate granularity
level.5

The information produced by the CiaoPP cost analyzers is also used to per-
form combined compile–time/run–time resource control. An example of this is
task granularity control [65] of parallelized code. Such parallel code can be the
output of the process mentioned above or code parallelized manually. In general,
this run-time granularity control process involves computing sizes of terms in-
volved in granularity control, evaluating cost functions, and comparing the result
with a threshold to decide between parallel and sequential execution. Optimiza-
tions to this general process include cost function simplification and improved
term size computation [64].

5 For example, stream and-parallelism can be seen as independent and-parallelism if
the independence of “bindings” rather than goals is considered.
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6 Incremental Compilation: Other Support for
Programming in the Small and in the Large

In addition to all the functionality provided by the preprocessor and assertions,
programming in the large is further supported again by the module/class sys-
tem [15,80]. This design is the real enabler of Ciao’s modular program devel-
opment support tools, effective global program analysis, modular static debug-
ging, and module-based automatic incremental compilation and optimization.
The analyzers and compiler take advantage of the module system and module
dependencies to reanalyze / recompile only part of the application modules af-
ter one of them is changed, without any need to define “makefiles” or similar
dependency-related additional files.

Application deployment is enhanced beyond the traditional Prolog top-level,
since the system offers a full-featured interpreter but also supports the use of
Ciao as a scripting language and a compiled language. Several types of executa-
bles can be easily built, from multiarchitecture bytecode executables to single-
architecture, standalone executables. Multiple platforms are supported, includ-
ing Windows, Linux, Mac Os X, and many other Un*x-based OSs.

Modular distribution of user and system code in Ciao, coupled with modular
analysis, allows the generation of stripped executables, with only those builtins
and libraries used by the program. Those reduced-size executables permit pro-
gramming in the small when strict space constraints are present. Flexible de-
velopment of applications and libraries that use components written in several
languages is also allowed, by means of compiler and abstract machine support
for multiple bidirectional foreign interfaces to C/C++, Java, Tcl/Tk, SQL data-
bases (with a notion of predicate persistence), etc. The interfaces are expressed in
(and any necessary glue code automatically generated from) descriptions written
in the assertion language, as previously stated.

7 An Advanced Integrated Development Environment

Another design objective of Ciao has been to provide a truly productive program
development environment that integrates all of the tools mentioned before in
order to fulfill the objective of allowing the development of correct and efficient
programs in as little time and with as little effort as possible. This includes a
rich graphical development interface, based on the latest, graphical versions of
Emacs and offering menu and widget-based interfaces with direct access to the
top-level/debugger, preprocessor, and autodocumenter, as well as an embeddable
source-level debugger with breakpoints, and several execution visualization tools.
In addition, a plugin with very similar functionality is also available for the
Eclipse environment.

The programming environment makes it possible to start the top-level, the
debugger, or the preprocessor, and to load the current module within them by
pressing a button or via a pair of keystrokes. Figure 7 shows a source file (with
syntax highlighting, top level, menus, buttons, etc.). Tracing the execution in
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Fig. 7. A program file and the top-level interpreter

the debugger makes the current statement in the program be highlighted in an
additional buffer containing the debugged file (Figure 8).

The environment provides also automated access to the documentation, ex-
tensive syntax highlighting, auto-completion, or auto-location of errors in the
source, and is highly customizable (to set, for example, alternative installation
directories or the location of some binaries). Figure 9 shows the location in the
source of a simple syntactic error. The direct access to the preprocessor allows
interactive control of all the static debugging, verification, and program trans-
formation facilities. As an example, Figure 10 shows CiaoPP signaling in the
source a semantic error (in the same way as the previous simple syntactic er-
ror). In particular, it is the cost-related error discussed previously in which the
compiler detects (statically!) that the definition of nrev does not comply with
the assertion requiring it to be of linear complexity. The direct access to the
auto-documentation facilities [46] allows using a pair of keystrokes to generate
human-readable program documentation from the current file in a variety of
formats from the assertions, directives, and machine-readable comments present
in the program being developed or in the system’s libraries, as well as all other
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Fig. 8. The source debugger in action

program information available to the compiler. This direct access to the docu-
menter and on a per-module basis is very useful in practice in order to build
documentation incrementally and to make sure that, for example, cross refer-
ences between files are are well resolved and that the documentation itself is well
structured and formatted. As a further example of the different components and
capabilities of the environment, Figure 11 shows a VisAndOr [18] depiction of
an and-parallel execution.

8 Some Final Thoughts on Parallelism, Dynamic
Languages, and Mainstream Programming

Interestingly many of the motivations behind the development of Ciao over the
years have acquired presently even more crucial importance. Parallelism capabil-
ities are becoming ubiquitous thanks to the widespread use of multi-core proces-
sors. Indeed, most laptops on the market contain two cores (typically capable
of running up to four threads simultaneously) and single-chip, 8-core servers are
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Fig. 9. Error location in the source –a simple syntactic error

now in widespread use. Furthermore, the trend is that the number of on-chip
cores will double with each processor generation. In this context, being able to
exploit such parallel execution capabilities in programs as easily as possible be-
comes more and more a necessity. However, it is well-known [61] that paralleliz-
ing programs is a hard challenge. This has renewed interest in language-related
designs and tools which can simplify the task of producing parallel programs.

At the same time, the environment in which much software needs to be de-
veloped nowadays (decoupled software development, use of components and ser-
vices, increased interoperability constraints, need for dynamic update or self-
reconfiguration, mash-ups) is posing requirements which align with the classi-
cal arguments for dynamic languages but which in fact go beyond them. Ex-
amples of often required dynamic features include making it possible to (par-
tially) test and verify applications which are partially developed, and which
will never be “complete” or “final”, or which need to have flexibility in their
APIs because they need to have a variable number of arguments or their “entry
points” evolve over time in an asynchronous, decentralized fashion (e.g., services,
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Fig. 10. Error location in the source –a cost error

including web services). These requirements, coupled with their intrinsic agility
in development, have made dynamic programming languages (such as Python,
Ruby, Lua, JavaScript, Perl, PHP, etc.) a very attractive option in recent years
for a number of purposes that go well beyond simple scripting. Parts written in
these languages often become essential components (if not the central implemen-
tation vehicle) of mainstream applications. The practical relevance of dynamic
features is also illustrated by the many successful languages and frameworks
which aim at bringing together ideas of both worlds. For example, Objective-
C [28], which mixes C, object orientation, and the possibility of having dynam-
ically typed variables and messages, is currently used as the base of Mac OS X,
and it was used before in NextStep. Other frameworks, such as Java and .NET,
are intensely working on ensuring and improving the interoperability among dy-
namic and static languages by including support for dynamicity in their virtual
machines. Another example is the future fourth revision of ECMAScript [1] on
which the JavaScript and ActionScript languages are based, that will include
optional (soft-)type declarations to allow the compiler to generate more efficient
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Fig. 11. VisAndOr depiction of an and-parallel execution of QuickSort

code and detect more errors. The Tamarin project [70] intends to use this ad-
ditional information to generate faster code. For Python, the PyPy project [86]
designed a language, RPython [4] that imposes constraints on the programs to
ensure that they can be statically typed. RPython is moving forward as a general
purpose language.

At the same, detecting errors at compile-time and inferring properties required
to optimize programs, are still important issues in real-world applications. This
has also brought the development of safe versions of traditional languages, such
as, e.g., CCured [78] or Cyclone [60] for C, as well as of systems that offer
capabilities similar to those of the Ciao assertion preprocessor, such as Necula
et al.’s Deputy 6 or Leino et al.’s Spec# [62].

We believe that Ciao has pioneered and is continuing to push the state of the
art in these currently very relevant and challenging areas, and offers a unique
combination of features which directly address many of these challenges. The
Ciao approach to exploiting parallelism provides powerful parallelizers and at
the same time allows programmer and parallelizer to cooperate. Programmers
can choose between expressing manually the parallelism with high-level con-
structs, letting the compiler discover the parallelism, or a combination of both.
Parts of a program can be parallelized by hand and other parts automatically.
Furthermore, the parallelizer also checks manual parallelizations for correctness.
Finally, the output of the parallelizer is expressed in the same high level lan-
guage, which means that programmers can easily inspect (and improve) the
parallelizations produced by the compiler. At the heart of these capabilities are
CiaoPP’s powerful, modular, and incremental abstract interpretation-based pro-
gram analyzers. The use of this technology was pioneered by &-Prolog and Ciao
(it was arguably the first use of abstract interpretation in a real compiler) and
we continue to believe it is the most promising nowadays, and they are being

6 http://deputy.cs.berkeley.edu/

http://deputy.cs.berkeley.edu/
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adopted or will be adopted by many systems (see, e.g., [45] for further discussion
of this topic).

Regarding the conundrum between statically and dynamically checked lan-
guages, Ciao has also pioneered and continues to push the state of the art of
what we believe is the most promising approach in order to be able to obtain
the best of both worlds: the combination of a flexible, multi-purpose assertion
language with sophisticated assertion processing based on strong program analy-
sis technology. This allows support for dynamic language features while at the
same time having the capability of achieving the performance and efficiency of
static systems. It also allows being able to work in a seamless way with a large
class of properties, some of them even user-defined, and which go well beyond
traditional types. Again, at the heart of these capabilities are CiaoPP’s abstract
interpretation-based analyzers.

Finally, we also believe that Ciao’s language design offers unique possibilities
due to its simple and powerful extensibility features, which not only allow to
selectively bring in the constructs of multiple programming paradigms, but also
make it possible for the programmer to easily extend (and restrict) the language
as needed, syntactically and semantically, and to quickly design domain-specific
languages.

Probing Further

The reader is encouraged to explore the system, its documentation, and the
tutorial papers that have been published on it. We are currently working on the
new 1.14 system version which includes significant enhancements with respect
to the previous version (1.10). In addition to the autodocumenter, we plan to
include a beta version of the preprocessor in the default Ciao distribution (up
to now, CiaoPP was only distributed on demand and installed separately). Ciao
1.14 is available already on demand from the Ciao subversion repository.

But, Why Is it Called Ciao?

After reading the previous paragraphs the reader may have already seen the logic
behind the “Ciao Prolog” phrase. Ciao is an interesting word which is used both
to say hello and goodbye. Ciao intends to be a truly excellent, high-performance,
and freely available ISO-Prolog system which can be used as a classical Prolog,
in both academic and industrial environments (and, in particular, to introduce
users to Prolog and to constraint and logic programming –the hello Prolog part).
But Ciao is also a new-generation, multiparadigm programming language and
sophisticated program development environment for large, complex applications
which goes well beyond Prolog and other classical logic programming languages
–the goodbye Prolog part. And it has the advantage (when compared to other
modern systems that support different forms of logic programming) that it does
so while keeping full Prolog compatibility when desired.
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Contact / download info

http://www.ciaohome.org
http://www.cliplab.org
ciao@clip.dia.fi.upm.es

The Ciao Development Team
Technical U. of Madrid, Spain
U. of New Mexico, USA
U. Complutense de Madrid, Spain
IMDEA-Institute for Software Development
Technology

Ciao is free software protected to remain so by the GNU LGPL license. It can
be used freely to develop both free and commercial applications.
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170. U.of Linköping Press (1997)

9. Bueno, F., Hermenegildo, M.: An Automatic Translation Scheme from Prolog to
the Andorra Kernel Language. In: Proc. of the 1992 International Conference on
Fifth Generation Computer Systems, Institute for New Generation Computer Tech-
nology (ICOT), vol. 2, pp. 759–769 (June 1992)

10. Bueno, F., Hermenegildo, M., Montanari, U., Rossi, F.: From Eventual to Atomic
and Locally Atomic CC Programs: A Concurrent Semantics. In: Rodŕıguez-
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Abstract. The paper is an overview of a recently developed compilation data
structure for graphical models, with specific application to constraint networks.
The AND/OR Multi-Valued Decision Diagram (AOMDD) augments well known
decision diagrams (OBDDs, MDDs) with AND nodes, in order to capture func-
tion decomposition structure. The AOMDD is based on a pseudo tree of the
network, rather than a linear ordering of its variables. The AOMDD of a con-
straint network is a canonical form given a pseudo tree. We describe two main
approaches for compiling the AOMDD of a constraint network. The first is a top
down, search-based procedure, that works by applying reduction rules to the trace
of the memory intensive AND/OR search algorithm. The second is a bottom up,
inference-based procedure, that uses a Bucket Elimination schedule. For both al-
gorithms, the compilation time and the size of the AOMDD are, in the worst case,
exponential in the treewidth of the constraint graph, rather than pathwidth as is
known for ordered binary decision diagrams (OBDDs).

1 Introduction

The paper is an overview of AND/OR Multi-Valued Decision Diagrams (AOMDDs)
as a compiled data structure for constraint networks. We present here an extension of
the work in [1], while still maintaining the focus on constraint networks. AOMDDs for
weighted graphical models and for constraint optimization were presented in [2,3].

The AOMDD is based on two existing frameworks: (1) AND/OR search spaces for
graphical models; (2) binary decision diagrams (BDDs). AND/OR search spaces [4,5,6]
have proven to be a unifying framework for various classes of search algorithms for
graphical models. The main novelty is the exploitation of independencies between vari-
ables during search, which can provide exponential speedups over traditional search
methods that can be viewed as traversing an OR structure. The AND nodes capture
problem decomposition into independent subproblems, and the OR nodes represent
branching according to variable values.

Decision diagrams are widely used in many areas of research, especially in software
and hardware verification [7,8]. A BDD represents a Boolean function by a directed
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acyclic graph with two sink nodes (labeled 0 and 1). Every internal node is labeled
with a variable and has exactly two children: low for 0 and high for 1. If isomorphic
nodes (i.e., with the same label and identical children) are not merged, we have the full
search tree explored by the backtracking algorithm. The tree is ordered if variables are
encountered in the same order along every branch. The tree can then be compressed
by merging isomorphic nodes, and by eliminating redundant nodes (i.e., whose low and
high children are identical). The result is the celebrated reduced ordered binary decision
diagram, or OBDD for short, introduced by Bryant [9]. However, the underlying struc-
ture is OR (i.e., linear structure rather than tree). If AND/OR search trees are reduced
by node merging and redundant nodes elimination we get a compact search graph that
can be viewed as a BDD representation augmented with AND nodes.

This paper shows how to combine the two ideas, creating a decision diagram that has
an AND/OR structure, thus exploiting problem decomposition. As a detail, the number
of values of variables is also increased from two to any constant. In the context of
constraint networks, decision diagrams can be used to represent the whole set of solu-
tions, facilitating solutions count, solution enumeration and queries on equivalence of
constraint networks. The benefit of moving from OR structure to AND/OR is in a lower
complexity of the algorithms and size of the compiled structure. It typically moves from
being bounded exponentially in pathwidth pw∗, which is characteristic to chain decom-
positions or linear structures, to being exponentially bounded in treewidth w∗, which is
characteristic of tree structures (it always holds that w∗ ≤ pw∗ and pw∗ ≤ w∗ · log n).
In both cases, the compiled structure achieved in practice is often far smaller than what
the bounds suggest.

A decision diagram offers a compilation of a propositional knowledge-base. A multi-
valued AND/OR decision diagram extends compilation to general graphical models.
The knowledge compilation approach has become an important research direction in
automated reasoning in the past decades [10,11,12]. Typically, a knowledge represen-
tation language is compiled into a compact data structure on which various queries can
be answered quickly. Accordingly, the computational effort can be divided between
an offline and an online phase where most of the work is pushed offline. Compilation
can also be used to generate compact building blocks to be used by online algorithms
multiple times. Macro-operators compiled during or prior to search can be viewed in
this light [13], while in graphical models the building blocks are the functions whose
compact, compiled, representation can be used effectively across many tasks.

As one example, consider product configuration tasks and imagine a user that
chooses sequential options to configure a product. In a naive system, the user would
be allowed to choose any valid option at the current level based only on the initial con-
straints, until either the product is configured, or else, when a dead-end is encountered,
the system would backtrack to some previous state and continue from there. This would
in fact be a search through the space of possible partial configurations. Needless to say,
it would be very unpractical, and would offer the user no time guarantee. A system
based on compilation would actually build the backtrack-free search space in the offline
phase, and represent it as compactly as possible. In the online phase, only valid partial
configurations (i.e., that can be extended to a full valid configuration) are allowed, and
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depending on the query type, response time guarantees can be offered in terms of the
size of the compiled structure.

Numerous other examples, such as diagnosis and planning problems can be formu-
lated as graphical models, and for which compilation would be useful. Compilation in
diagnosis can facilitate fast detection of possible faults or explanations for some unusual
behavior. In planning, compilation would allow swift adjustments according to changes
in the environment. Probabilistic models are one of the most used types of graphical
models, and the basic query is to compute conditional probabilities of some variables
given the evidence. A compact compilation of a probabilistic model would allow fast
response for any change in the evidence along time. Formal verification is another ex-
ample where compilation is heavily used to compare equivalence of circuit design, or
to check the behavior of a circuit. Binary Decision Diagram (BDD) [9] are arguably the
most widely known and used compiled structure.

Our AOMDD proposal is related to two earlier research lines within the BDD liter-
ature. The first is the work on Disjoint Support Decompositions (DSD) [14], investi-
gated within the area of design automation [15], that were proposed as enhancements
for BDDs aimed at exploiting function decomposition. The second is the work on BDD
trees [16]. Another related proposal is the recent work by Fargier and Vilarem [17] on
compiling CSPs into tree-driven automata. We will comment more on the relationship
between these work and AOMDD in the related work section.

The structure of the paper is as follows. Section 2 provides the preliminaries. Section
3 gives and overview of AND/OR search spaces. Section 4 introduces the AOMDD and
Section 5 shows that it is a canonical form for constraint networks. Section 6 describes
a search based algorithm for compiling the AOMDD. Section 7 presents a compilation
algorithm based on a Bucket Elimination schedule and the APPLY operation. Section 8
presents related work and Section 9 concludes.

2 Preliminaries

A constraint network and its associated graph are defined in the usual way:

Definition 1 (constraint network). A constraint network is a 3-tuple R = 〈X,D,C〉,
where: X = {X1, . . . , Xn} is a set of variables; D = {D1, . . . , Dn} is the set of
their finite domains of values, with cardinalities ki = |Di| and k = maxn

i=1 ki ; C =
{C1, . . . , Cr} is a set of constraints over subsets of X. Each constraint is defined as
C = (Si, Ri), where Si is the set of variables on which the constraint is defined, called
its scope, and Ri is the relation defined on Si.

Definition 2 (constraint graph). The constraint graph (or primal graph) of a con-
straint network is an undirected graph, G = (X, E), that has variables as its vertices
and an edge connecting any two variables that appear in the scope (set of arguments)
of the same constraint.

A pseudo tree resembles the tree rearrangements introduced in [18]:

Definition 3 (pseudo tree). A pseudo tree of a graph G = (X, E) is a rooted tree T
having the same set of nodes X, such that every arc in E is a backarc in T (i.e., it
connects nodes on the same path from root).
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Fig. 1. Boolean function representation and reduction rules

Definition 4 (induced graph, induced width, treewidth, pathwidth). An ordered
graph is a pair (G, d), where G is an undirected graph, and d = (X1, ..., Xn) is an
ordering of the nodes. The width of a node in an ordered graph is the number of neigh-
bors that precede it in the ordering. The width of an ordering d, denoted w(d), is the
maximum width over all nodes. The induced width of an ordered graph, w∗(d), is the
width of the induced ordered graph obtained as follows: for each node, from last to first
in d, its preceding neighbors are connected in a clique. The induced width of a graph,
w∗, is the minimal induced width over all orderings. The induced width is also equal
to the treewidth of a graph. The pathwidth pw∗ of a graph is the treewidth over the
restricted class of orderings that correspond to chain decompositions.

2.1 Binary Decision Diagrams Review

Decision diagrams are widely used in many areas of research to represent decision
processes. In particular, they can be used to represent functions. Due to the fundamental
importance of Boolean functions, a lot of effort has been dedicated to the study of Binary
Decision Diagrams (BDDs), which are extensively used in software and hardware verifi-
cation [7,8]. Bryant [9] introduced the Ordered Binary Decision Diagram (OBDD). The
order of variables along any path of an OBDD is the same. OBBDs provide a compact
representation and efficient operations (the apply procedure, that combines two OBDDs
by an operation is at most quadratic in the sizes of the input diagrams).

Example 1. Figure 1(a) shows a table representation of a Boolean function. A binary
tree representation is shown in Figure 1(b). The internal round nodes represent the vari-
ables, the solid edges are the 1 (or high) value, and the dotted edges are the 0 (or low)
value. The leaf square nodes show the value of the function for each assignment along
a path. The tree is ordered, because variables appear in the same order along each path.

There are two reduction rules that transform a decision diagram into an equivalent one:
(1) isomorphism: merge nodes that have the same label and the same children; (2) re-
dundancy: eliminate nodes whose low and high edges point to the same node, and
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Fig. 2. Bucket Elimination

connect parent of removed node directly to child of removed node. Applying the two
reduction rules exhaustively yields a reduced OBDD, sometimes denoted rOBDD. We
will just use OBDD and assume that it is completely reduced.

Example 2. Figure 1(c) shows the binary tree from 1(b) after the isomorphic terminal
nodes have been merged. The highlighted nodes, labeled with C, are isomorphic, and
Figure 1(d) shows the result after they are merged. Now, the highlighted nodes labeled
with C and B are redundant, and removing them gives the OBDD in Figure 1(e).

2.2 Bucket Elimination Review

Bucket Elimination (BE) [19] is a well known variable elimination algorithm for infer-
ence in graphical models. An ordering d = (X1, X2, . . . , Xn) of the variables guides
the execution of BE. Each variable is associated with a bucket. Each constraint from
C is placed in the bucket of its latest variable in d. Buckets are processed from Xn to
X1 by eliminating the bucket variable (the constraints residing in the bucket are joined
together, and the bucket variable is projected out) and placing the resulting constraint
(also called message) in the bucket of its latest variable in d. After its execution, BE ren-
ders the network backtrack free, and a solution can be produced by assigning variables
along d. BE can also produce the solutions count if marginalization is done by summa-
tion (rather than projection) over the functional representation of the constraints, and
join is substituted by multiplication.

BE also constructs a bucket tree, by linking the bucket of each Xi to the destination
bucket of its message (called the parent bucket). A node in the bucket tree typically has
a bucket variable, a collection of constraints, and a scope (the union of the scopes of
its constraints). If the nodes of the bucket tree are replaced by their respective bucket
variables, it is easy to see that we obtain a pseudo tree of the constraint graph.

Example 3. Figure 2(a) shows a network with four constraints. Figure2(b) shows the
execution of BE along d = (A, B, E, C, D). The buckets are processed from D to A 1.
Figure 2(c) shows the bucket tree. The pseudo tree corresponding to the order d is given
in Fig. 3(a).

1 Figure 2 reverses the top down bucket processing described in earlier papers.
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Fig. 3. AND/OR search tree and graph

3 Overview of AND/OR Search Space for Constraint Networks

The AND/OR search space is a recently introduced [4,5,6] unifying framework for
advanced algorithmic schemes for graphical models. Its main virtue consists in ex-
ploiting independencies between variables during search, which can provide exponen-
tial speedups over traditional search methods oblivious to problem structure. Since
AND/OR Multi-Valued Decision Diagrams are based on AND/OR search spaces, we
provide a comprehensive overview for completeness sake.

3.1 AND/OR Search Tree

The AND/OR search tree is guided by a pseudo tree of the constraint graph. The idea
is to exploit the problem decomposition into independent subproblems during search.
Assigning a value to a variable (conditioning) is equivalent in graph terms to removing
that variable (and its incident edges) from the constraint graph. A partial assignment can
therefore lead to the decomposition of the residual constraint graph into independent
components, each of which can be searched (or solved) separately. The pseudo tree
captures precisely all these decompositions, given an order of variable instantiation.

Definition 5 (AND/OR search tree of a constraint network). Given a constraint net-
work R = 〈X,D,C〉, its constraint graph G and a pseudo tree T of G, the associated
AND/OR search tree has alternating levels of OR and AND nodes. The OR nodes are
labeled Xi and correspond to variables. The AND nodes are labeled 〈Xi, xi〉 and cor-
respond to value assignments. The structure of the AND/OR search tree is based on T .
The root is an OR node labeled with the root of T . The children of an OR node Xi are
AND nodes labeled with assignments 〈Xi, xi〉 that are consistent with the assignments
along the path from the root. The children of an AND node 〈Xi, xi〉 are OR nodes la-
beled with the children of variable Xi in the pseudo tree T . The leaves of AND nodes
are labeled with “1”. There is a one to one correspondence between solution subtrees
of the AND/OR search graph and solutions of the constraint network [4].

Example 4. Figure 3 shows an example of an AND/OR search tree for the constraint
network given in Figure 2(a), assuming all tuples are consistent, and variables are binary
valued. When some tuples are inconsistent, some of the paths in the tree do not exists.
Figure 3(a) gives the pseudo tree that guides the search, from top to bottom, as indicated
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by the arrows. The dotted arcs are backarcs from the primal graph. Figure 3(b) shows
the AND/OR search tree, with the alternating levels of OR (circle) and AND (square)
nodes, and having the structure indicated by the pseudo tree.

The AND/OR search tree can be traversed by a depth first search algorithm, thus using
linear space. It was already shown [18,20,21,4,6] that:

Theorem 1. Given a constraint network R and a pseudo tree T of depth m, the size
of the AND/OR search tree based on T is O(n km), where k bounds the domains of
variables. A constraint network of treewidth w∗ has a pseudo tree of depth at most
w∗ log n, therefore it has an AND/OR search tree of size O(n kw∗ log n).

The AND/OR search tree expresses the set of all possible assignments to the problem
variables (all solutions). The difference from the traditional OR search space is that a
solution is no longer a path from root to a leaf, but rather a subtree, defined as follows:

Definition 6 (solution subtree). A solution subtree of an AND/OR search tree contains
the root node. For every OR nodes it contains one of its child nodes and for each of its
AND nodes it contains all its child nodes, and all its leaf nodes are consistent.

3.2 AND/OR Search Graph

The AND/OR search tree may contain nodes that root identical conditioned subprob-
lems. These nodes are said to be unifiable. When unifiable nodes are merged, the search
space becomes a graph. Its size becomes smaller at the expense of using additional
memory by the search algorithm. The depth first search algorithm can therefore be
modified to cache previously computed results, and retrieve them when the same nodes
are encountered again. The notion of unifiable nodes is defined formally next.

Definition 7 (minimal AND/OR graph, isomorphism). Two AND/OR search graphs
G and G′ are isomorphic if there exists a one to one mapping σ from the vertices of G
to the vertices of G′ such that for any vertex v, if σ(v) = v′, then v and v′ root identical
subgraphs relative to σ. The minimal AND/OR graph is such that all the isomorphic
subgraphs are merged. Isomorphic nodes (that root isomorphic subgraphs) are also
said to be unifiable.

Theorem 2 ([6]). The minimal AND/OR search graph of a constraint network R rela-
tive to a pseudo-tree T is unique.

Note that the definition of minimality in [6] is based only on isomorphism reduction.
We extend it by also eliminating the redundant nodes. The previous theorem only shows
that given an AND/OR graph, the merge operator has a fixed point, which is the minimal
AND/OR graph. It can be shown that the AOMDD is a canonical representation (given
a pseudo tree), namely that any two equivalent constraint networks can be represented
by the same unique AOMDD, and the AOMDD is minimal in terms of number of nodes.

Some unifiable nodes can be identified based on their contexts. We can define graph
based contexts for both OR nodes and AND nodes, just by expressing the set of ancestor
variables in T that completely determine a conditioned subproblem. However, it can be
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shown that using caching based on OR contexts makes caching based on AND contexts
redundant and vice versa, so we will only use OR caching. Any value assignment to the
context of X separates the subproblem below X from the rest of the network.

Definition 8 (OR context). Given a pseudo tree T of an AND/OR search space,
context(X) = [X1 . . . Xp] is the set of ancestors of X in T , ordered descendingly,
that are connected in the primal graph to X or to descendants of X .

Definition 9 (context unifiable OR nodes). Given an AND/OR search graph, two OR
nodes n1 and n2 are context unifiable if they have the same variable label X and the
assignments of their contexts are identical. Namely, if π1 is the partial assignment of
variables along the path to n1, and π2 is the partial assignment of variables along
the path to n2, then their restriction to the context of X is the same: π1|context(X) =
π2|context(X).

The depth first search algorithm that traverses the AND/OR search tree, can be modified
to traverse a graph, if enough memory is available. We could allocate a cache table
for each variable X , the scope of the table being context(X). The size of the cache
table for X is therefore the product of the domains of variables in its context. For
each variable X , and for each possible assignment to its context, the corresponding
conditioned subproblem is solved only once and the computed value is saved in the
cache table, and whenever the same context assignment is encountered again, the value
of the subproblem is retrieved from the cache table. Such an algorithm traverses what
is called the context minimal AND/OR graph.

Definition 10 (context minimal AND/OR graph). The context minimal AND/OR
graph is obtained from the AND/OR search tree by merging all the context unifiable
OR nodes.

It was already shown that [20,4,6]:

Theorem 3. Given a constraint network R, its primal graph G and a pseudo tree T ,
the size of the context minimal AND/OR search graph based on T , and therefore the
size of its minimal AND/OR search graph, is O(n kw∗

T (G)), where w∗T (G) is the induced
width of G over the depth first traversal of T , and k bounds the domain size.

Example 5. We refer again to Figure 3. Figure 3(a) shows the pseudo tree, where the
(OR) context of each node appears in square brackets. Notice that the context of a node
is identical to the message scope from its bucket in Fig. 2. Figure 3(c) shows the context
minimal AND/OR graph.

4 AND/OR Multi-valued Decision Diagram (AOMDD)

The context minimal AND/OR graph (Definition 10) offers an effective way of identify-
ing some unifiable nodes during the execution of the search algorithm. Namely, context
unifiable nodes are discovered based only on their paths from the root, without actually
solving their corresponding subproblems. However, merging based on context is not
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complete, which means that there may still exist unifiable nodes in the search graph
that do not have identical contexts. Moreover, some of the nodes in the context mini-
mal AND/OR graph may be redundant, for example when the set of solutions rooted at
variable Xi does not depend on the specific value assigned to Xi (this situation is not
detectable based on context). This is sometimes termed as “interchangeable values” or
“symmetrical values”.

We propose to augment the minimal AND/OR search graph with removing redun-
dant variables as is common in OBDD representation. This yields a data structure that
we call AND/OR BDD, that exploits decomposition by using AND nodes. We present
the extension over multi-valued variables yielding AND/OR MDD or AOMDD. Subse-
quently we present two algorithms for compiling the canonical AOMDD of a constraint
network: the first is search based, and uses the memory intensive AND/OR graph search
to generate the context minimal AND/OR graph, and then reduces it bottom up by ap-
plying reduction rules; the second is inference based, and uses a Bucket Elimination
schedule to combine the AOMDDs of initial functions by APPLY operations (similar to
the apply for OBDDs). Both approaches have the same worst case complexity as the
AND/OR graph search with context based caching, and also the same complexity as
Bucket Elimination, namely time and space exponential in the treewidth of the prob-
lem, O(n kw∗

).

4.1 From AND/OR Search Graphs to Decision Diagrams

We will now show how we can process an AND/OR search graph by reduction rules
similar to the case of OBDDs, in order to obtain a representation of minimal size. In
the case of OBDDs, a node is labeled with a variable name, for example A, and the low
(dotted line) and high (solid line) outgoing arcs capture the restriction of the function
to the assignments A = 0 or A = 1. To determine the value of the function, one
needs to follow either one or the other (but not both) of the outgoing arcs from A. The
straightforward extension of OBDDs to multi-valued variables (multi-valued decision
diagrams, or MDDs) was presented in [22].

We generalize the OBDD and MDD representations by allowing each outgoing arc
to be an AND arc. An AND arc connects a node to a set of nodes, and captures the
decomposition of the problem into independent components.

We define the AND/OR Decision Diagram representation based on AND/OR search
graphs. We find it useful to introduce the meta-node data structure, which defines small
portions of any AND/OR graph, based on an OR node and its AND children:

Definition 11 (meta-node). A meta-node u in an AND/OR search graph of a constraint
network consists of an OR node labeled X (therefore var(u) = X) and its k AND
children labeled x1, . . . , xk that correspond to the value assignments of X . Each AND
node labeled xi stores a list of pointers to child meta-nodes, denoted by u.childreni.

We also define two special meta-nodes, that will play the role of the terminal nodes in
OBDDs. The terminal meta-node 0 indicates the inconsistent assignments, while the
terminal meta-node 1 indicates the consistent ones.
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Any AND/OR search graph can now be viewed as a diagram of meta-nodes, simply
by grouping OR nodes with their AND children, and adding the terminal meta-nodes
appropriately.

It is now easy to see when a variable is redundant with respect to the outcome of
the function based on the current partial assignment. Intuitively, any assignment to a
redundant variable should lead to the same set of solutions.

Definition 12 (redundant meta-node). Given an AND/OR search graph G represented
with meta-nodes, a meta-node u with var(u) = X and |D(X)| = k is redundant iff
u.children1 = . . . = u.childrenk .

An AND/OR graph G, that contains a redundant meta-node u, can be transformed into
an equivalent graph G′ by replacing any incoming arc into u with its common list of
children u.children1 (joined in an AND arc), and then removing u and its outgoing
arcs from G.

The notion of isomorphism is extended naturally from AND/OR graphs to meta-
nodes.

Definition 13 (isomorphic meta-nodes). Given an AND/OR search graph G repre-
sented with meta-nodes, two meta-nodes u and v having var(u) = var(v) = X and
|D(X)| = k are isomorphic iff u.childreni = v.childreni, ∀i ∈ {1, . . . , k}.

Naturally, the AND/OR graph obtained by merging isomorphic meta-nodes is equiv-
alent to the original one. We can now define the AND/OR Multi-Valued Decision
Diagram:

Definition 14 (AOMDD). An AND/OR Multi-Valued Decision Diagram (AOMDD) is
a weighted AND/OR search graph that is completely reduced by isomorphic merging
and redundancy removal, namely:

(1) it contains no isomorphic meta-nodes; and
(2) it contains no redundant meta-nodes.

5 AOMDDs for Constraint Networks Are Canonical Forms

It is well known that OBDDs are canonical representations of Boolean functions given
an ordering of the variables [9], and this property extends to MDDs [22]. In the case of
AOBDDs and AOMDDs, the canonicity is with respect to a pseudo tree, following the
transition from total orders (that correspond to linear orderings) to partial orders (that
correspond to pseudo tree orderings).

Proposition 1. Let f be a function, not always zero, defined by a constraint network
over X. Given a partition {X1, . . . ,Xm} of the set of variables X (namely, Xi ∩Xj =
φ, ∀ i �= j, and X = ∪m

i=1X
i), if f = f1 ⊗ . . . ⊗ fm and f = g1 ⊗ . . . ⊗ gm,

such that scope(fi) = scope(gi) = Xi for all i ∈ {1, . . . , m}, then fi = gi for all
i ∈ {1, . . . , m}. Namely, if f can be decomposed over the given partition, then the
decomposition is unique.
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Based on the previous proposition, in can be shown that AOMDDs for constraint net-
works are canonical representations given a pseudo tree.

Theorem 4 (AOMDDs are canonical for a given pseudo tree). Given a constraint
network, and a pseudo tree T of its constraint graph, there is a unique (up to isomor-
phism) AOMDD that represents it, and it has the minimal number of meta-nodes.

The proof, omitted for space reasons, is by structural induction over the depth of the
pseudo tree.

A constraint network is defined by its relations (or functions). There exist equivalent
constraint networks that are defined by different sets of functions, even having different
scope signatures. However, equivalent constraint networks define the same function,
and we can ask if the AOMDD of different equivalent constraint networks is the same.
The following theorem can be derived immediately from Theorem 4.

Theorem 5. Two equivalent constraint networks that admit the same pseudo tree T
have the same AOMDD based on T .

6 Using AND/OR Search to Generate AOMDDs

In Section 4.1 we described how we can transform an AND/OR graph into an AOMDD
by applying reduction rules. In Section 6.1 we describe the explicit algorithm that takes
as input a constraint network, performs AND/OR search with context-based caching to
obtain the context minimal AND/OR graph, and in Section 6.2 we give the procedure
that applies the reduction rules bottom up to obtain the AOMDD. The reduction proce-
dure can actually be incorporated in the search algorithm, but we present it separately
for clarity.

6.1 Algorithm AND/OR-SEARCH-AOMDD

Algorithm 1, called AND/OR-SEARCH-AOMDD, compiles a constraint network into
an AOMDD. A memory intensive (with context-based caching) AND/OR search is
used to create the context minimal AND/OR graph (see Definition 10). The input to
AND/OR-SEARCH-AOMDD is a constraint network R and a pseudo tree T , that also
defines the OR-context of each variable.

Each variable Xi has an associated cache table, whose scope is the context of Xi in
T . This ensures that the trace of the search is the context minimal AND/OR graph. A
list denoted by LXi (see line 34), is used for each variable Xi to save pointers to meta-
nodes labeled with Xi. These lists are used by the procedure that performs the bottom
up reduction, per layers of the AND/OR graph (one layer contains all the nodes labeled
with one given variable). The fringe of the search is maintained on a stack called OPEN.
The current node (either OR or AND node) is denoted by n, its parent by p, and the
current path by πn. The children of the current node are denoted by successors(n).
For each node n, the Boolean attribute consistent(n) indicates if the current path can
be extended to a solution. This information is useful for pruning the search space.
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Algorithm 1: AND/OR SEARCH - AOMDD
input :R = 〈X, D, C〉; pseudo tree T rooted at X1; parents pai (OR-context) for every variable Xi .
output : AOMDD ofR.
forall Xi ∈ X do1

Initialize context-based cache table CacheXi
(pai) with null entries2

Create new OR node t, labeled with Xi; consistent(t) ← true; push t on top of OPEN3
while OPEN �= φ do4

n← top(OPEN); remove n from OPEN // Forward5
successors(n)← φ6
if n is an OR node labeled with Xi then // OR-expand7

if CacheXi
(asgn(πn)[pai]) �= null then8

Connect parent of n to CacheXi
(asgn(πn)[pai]) // Use the cached pointer9

else10
forall xi ∈ Di do11

Create new AND node t, labeled with 〈Xi, xi〉12
if 〈Xi, xi〉 is consistent with πn then // Constraint Propagation13

consistent(t) ← true14
add t to successors(n)15

else16
consistent(t) ← false17
make terminal 0 the only child of t18

if n is an AND node labeled with 〈Xi, xi〉 then // AND-expand19
if childrenT (Xi) == φ then20

make terminal 1 the only child of n21
else22

forall Y ∈ childrenT (Xi) do23
Create new OR node t, labeled with Y24
consistent(t) ← false25
add t to successors(n)26

Add successors(n) to top of OPEN27
while successors(n) == φ do // Backtrack28

let p be the parent of n29
if n is an OR node labeled with Xi then30

if Xi == X1 then // Search is complete31
BottomUpReduction // begin reduction to AOMDD32

Cache(asgn(πn)[pai])← n // Save in cache33
Add meta-node of n to the list LXi34
consistent(p) ← consistent(p) ∧ consistent(n)35
if consistent(p) == false then // Check if p is dead-end36

remove successors(p) from OPEN37
successors(p) ← φ38

if n is an AND node labeled with 〈Xi, xi〉 then39
consistent(p) ← consistent(p) ∨ consistent(n);40

remove n from successors(p)41
n← p42

The algorithm is based on two mutually recursive steps: Forward (beginning at line
5) and Backtrack (beginning at line 28), which call each other (or themselves) until the
search terminates. In the forward phase, the AND/OR graph is expanded top down. The
two types of nodes, AND and OR, are treated differently according to their semantics.

Before an OR node is expanded, the cache table of its variable is checked (line 8).
If the entry is not null, a link is created to the already existing OR node that roots the
graph equivalent to the current subproblem. Otherwise, the OR node is expanded by
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generating its AND descendants. Each value xi of Xi is checked for consistency (line
13). Any level of constraint propagation can be performed in this step (e.g., look ahead,
arc consistency, path consistency, i-consistency etc.). The computational overhead can
increase, in the hope of pruning the search space more aggressively. We should note
that constraint propagation is not crucial for the algorithm, and the complexity guar-
antees are maintained even without it. The consistent AND nodes are added to the list
of successors of n (line 15), while the inconsistent ones are linked to the terminal 0
meta-node (line 18).

An AND node n labeled with 〈Xi, xi〉 is expanded (line 19) based on the structure
of the pseudo tree. If Xi is a leaf in T , then n is linked to the terminal 1 meta-node (line
21). Otherwise, an OR node is created for each child of Xi in T (line 23).

The forward step continues as long as the current node is not a dead-end and still has
unevaluated successors. The backtrack phase is triggered when a node has an empty set
of successors (line 28). Note that, as each successor is processed, it is removed from the
set of successors in line 41. When the backtrack reaches the root (line 31), the search is
complete, the context minimal AND/OR graph has been generated, and the Procedure
BOTTOMUPREDUCTION is called.

When the backtrack step processes an OR node (line 30), it saves a pointer to
it in cache, and also adds a pointer to the corresponding meta-node to the list
LXi . The consistent attribute of the AND parent p is updated by conjunction with
consistent(n). If the AND parent p becomes inconsistent, it is not necessary to check
its remaining OR successors (line 37). When the backtrack step processes an AND
node (line 39), the consistent attribute of the OR parent p is updated by disjunction
with consistent(n).

The AND/OR search algorithm usually maintains a value for each node, correspond-
ing to a task that is solved (e.g., counting solutions, or cost of the optimal solution). We
did not include values in our description because an AOMDD is just an equivalent rep-
resentation of the original constraint network R. Any task over R can be solved by a
traversal of the AOMDD. It is however up to the user to include more information in
the meta-nodes (e.g., number of solutions for a subproblem).

6.2 Reducing the Context Minimal AND/OR Graph to an AOMDD

Procedure BottomUpReduction processes the variables bottom up relative to the
pseudo tree T . We use the depth first traversal ordering of T (line 1), but any other
bottom up ordering is as good. The outer for loop (starting at line 11) goes through
each level of the context minimal AND/OR graph (where a level contains all the OR
and AND nodes labeled with the same variable, in other words it contains all the meta-
nodes of that variable). For efficiency, and to ensure the complexity guarantees, a hash
table, initially empty, is used for each level. The inner for loop (starting at line 11) goes
through all the meta-nodes of a level, that are also saved (or pointers to them are saved)
in the list LXi . For each new meta-node n in the list LXi , in line 6 the hash table H is
checked to verify if a node isomorphic with n already exists. If the hash table H already
contains a node p corresponding to the hash key (Xi, n.children1, . . . , n.childrenki),
then p and n are isomorphic and should be merged. Otherwise, if the new meta-node n
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Procedure BottomUpReduction
input : A constraint networkR = 〈X, D, C〉; a pseudo tree T of the primal graph, rooted at X1;

Context minimal AND/OR graph, and lists LXi of meta-nodes for each level Xi .
output : AOMDD ofR.
Let d = {X1, . . . , Xn} be the depth first traversal ordering of T1
for i← n down to 1 do2

Let H be a hash table, initially empty3
forall meta-nodes n in LXi do4

if H(Xi, n.children1, . . . , n.childrenki
) returns a meta-node p then5

merge n with p in the AND/OR graph6

else if n is redundant then7
eliminate n from the AND/OR graph8

else9
hash n into the table H:10
H(Xi, n.children1, . . . , n.childrenki

)← n11

return reduced AND/OR graph12

is redundant, then it is eliminated from the AND/OR graph. If none of the previous two
conditions is met, then the new meta-node n is hashed into the table H .

Proposition 2. The output of Procedure BottomUpReduction is the AOMDD of R
along the pseudo tree T , namely the resulting AND/OR graph is completely reduced.

Note that we explicated Procedure BottomUpReduction separately only for clarity.
In practice, it can actually be included in Algorithm AND/OR-SEARCH-AOMDD,
and the reduction rules can be applied whenever the search backtracks. We can main-
tain a hash table for each variable, during the AND/OR search, to store pointers to
meta-nodes. When the search backtracks out of an OR node, it can already check the
redundancy of that meta-node, and also look up in the hash table to check for isomor-
phism. Therefore, the reduction of the AND/OR graph can be done during the AND/OR
search, and the output will be the AOMDD of R.

From Theorem 3 and Proposition 2 we can conclude:

Theorem 6. Given a constraint network R and a pseudo tree T of its constraint graph
G, the AOMDD of R corresponding to T has size bounded by O(n kw∗

T (G)) and it can
be computed by Algorithm AND/OR-SEARCH-AOMDD in time O(n kw∗

T (G)), where
w∗T (G) is the induced width of G over the depth first traversal of T , and k bounds the
domain size.

7 Using Bucket Elimination to Generate AOMDDs

In this section we propose to use a Bucket Elimination (BE) type algorithm to guide
the compilation of a constraint network into an AOMDD. The idea is to express the
constraints as AOMDDs, and then combine them via the APPLY operator by following
a BE schedule. The APPLY is a procedure very similar to that from OBDDs [9], but it
is adapted to AND/OR search graphs. It takes as input two constraints represented as
AOMDDs based on the same pseudo tree, and outputs their join, also represented as an
AOMDD based on the same pseudo tree.
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Fig. 4. (a) Constraint graph for C = {C1, . . . , C9}, where C1 = F ∨ H , C2 = A ∨ ¬H ,
C3 = A ⊕ B ⊕ G, C4 = F ∨ G, C5 = B ∨ F , C6 = A ∨ E, C7 = C ∨ E, C8 = C ⊕ D,
C9 = B ∨ C; (b) Pseudo tree (bucket tree) for ordering d = (A, B, C, D, E, F, G, H)
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Fig. 5. Execution of BE with AOMDDs

Example 6. Consider the constraint network defined by X = {A, B, . . . , H}, DA =
. . . = DH = {0, 1} and the constraints (where ⊕ denotes XOR): C1 = F ∨ H ,
C2 = A∨¬H , C3 = A⊕B⊕G, C4 = F ∨G, C5 = B∨F , C6 = A∨E, C7 = C∨E,
C8 = C ⊕ D, C9 = B ∨ C. The constraint graph is shown in Figure 4(a). Consider the
ordering d = (A, B, C, D, E, F, G, H). The pseudo tree (or bucket tree) induced by d
is given in Fig. 4(b). Figure 5 shows the execution of BE with AOMDDs along order-
ing d. Initially, the constraints C1 through C9 are represented as AOMDDs and placed
in the bucket of their latest variable in d. The scope of any original constraint always
appears on a path from root to a leaf in the pseudo tree. Therefore, each original con-
straint is represented by an AOMDD based on a chain. (i.e., there is no branching into
independent components at any point). The chain is just the scope of the constraint, or-
dered according to d. For bi-valued variables, the original constraints are represented by
OBDDs, for multiple-valued variables they are MDDs. Note that we depict meta-nodes:



AND/OR Multi-valued Decision Diagrams for Constraint Networks 253

A
0 1

B
0 1

C
0 1

0

D
0 1

1

F
0 1

G
0 1

H
0 1

C
0 1

D
0 1

E
0 1

F
0 1

G
0 1

B
0 1

C
0 1

F
0 1

C
0 1

F
0 1

H
0 1

(a)

D

C

B

F

A

E

G

H

1 0

B

CC C

D D D D D

E E

F F F

G G G G

H

(b)

Fig. 6. (a) The final AOMDD; (b) The OBDD corresponding to d

one OR node and its two AND children, that appear inside each gray node. The dotted
edge corresponds to the 0 value (the low edge in OBDDs), the solid edge to the 1 value
(the high edge). We have some redundancy in our notation, keeping both AND value
nodes and arc-types (doted arcs from “0” and solid arcs from “1”).

The BE scheduling is used to process the buckets in reverse order of d. A bucket is
processed by joining all the AOMDDs inside it, using the APPLY operator. However, the
step of elimination of the bucket variable is omitted because we want to generate the full
AOMDD. In our example, the messages m1 = C1 �� C2 and m2 = C3 �� C4 are still
based on chains, so they are still OBDDs. Note that they still contain the variables H
and G, which have not been eliminated. However, the message m3 = C5 �� m1 �� m2
is not an OBDD anymore. We can see that it follows the structure of the pseudo tree,
where F has two children, G and H . Some of the nodes corresponding to F have two
outgoing edges for value 1.

The processing continues in the same manner. The final output of the algorithm,
which coincides with m7, is shown in Figure 6(a). The OBDD based on the same or-
dering d is shown in Fig. 6(b). Notice that the AOMDD has 18 nonterminal nodes and
47 edges, while the OBDD has 27 nonterminal nodes and 54 edges.

7.1 Algorithm BE-AOMDD

Algorithm 2, called BE-AOMDD, creates the AOMDD of a constraint network by
using a BE schedule for APPLY operations. Given an order d of the variables, a pseudo
tree is created based on the constraint graph (this is just the bucket tree, or elimination
tree of d). Each initial constraint Ci is then represented as an AOMDD, denoted by
Gaomdd

Ci
, and placed in its bucket. To obtain the AOMDD of a constraint, its scope is

ordered according to d, a search tree (based on a chain) that represents Ci is generated,
and then reduced by Procedure BottomUpReduction. Then, the algorithm proceeds
exactly like BE, with the only difference that the join of constraints (represented as
AOMDDs) is realized by the APPLY algorithm, and variables are not eliminated but
carried around to the destination bucket. The messages between buckets are initialized
with the dummy AOMDD of 1, denoted by Gaomdd

1 , which is neutral for join.
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Algorithm 2: BE-AOMDD
input : Constraint networkR = 〈X, D, C〉, where X = {X1, . . . , Xn}, C = {C1, . . . , Cr} ;

order d = (X1, . . . , Xn)
output : AOMDD representing ��i∈F Ci

Let T be the pseudo tree (bucket tree) corresponding to d; for i← 1 to r do // place constraints1
in buckets

place Gaomdd
Ci

in the bucket of its latest variable in d2

for i← n down to 1 do // process buckets3
message(Xi)← Gaomdd

1 // initialize with AOMDD of 1 ;4
while bucket(Xi) �= φ do // combine AOMDDs in bucket of Xi5

pick Gaomdd
f from bucket(Xi);6

bucket(Xi)← bucket(Xi) \ {Gaomdd
f };7

message(Xi)← APPLY(message(Xi),Gaomdd
f )8

add message(Xi) to the bucket of the parent of Xi in T9

return message(X1)10
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Fig. 7. Example of APPLY operation

7.2 The AOMDD APPLY Operation

The apply operator takes as input two AOMDDs representing constraints C1 and C2
and returns an AOMDD representing their join C1 �� C2. In OBDDs the apply oper-
ator combines two input diagrams based on the same variable ordering. Likewise, in
order to combine two AOMDDs we assume that they are based on the same pseudo
tree. This restriction is satisfied when we use APPLY to combine the constraints in the
same bucket of the BE based algorithm. There are also more relaxed version of APPLY,
when the pseudo trees of the two input constraints need only be compatible, rather than
identical. Intuitively, this means that the pseudo trees generate partial orders (based on
descendance relation) that are not in conflict. For space reasons, we will not present
the details of the APPLY algorithm here, but refer the reader to [1]. We will just briefly
describe it by an example.

Example 7. Figure 7 shows the result of combining two Boolean functions by an AND
operation (or product). The input functions f and g are represented by AOMDDs based
on chain pseudo trees, while the results is based on the pseudo tree that expresses
the decomposition after variables A and B are instantiated. The APPLY operator per-
forms a depth first traversal of the two input AOMDDs, and generates the resulting
AOMDD based on the output pseudo tree. Similar to the case of OBDDs, a function
or an AOMDD can be identified by its root meta-node. In this example the input meta-
nodes have labels (A1, A2, B1, B2, etc.). The output meta-node labeled by A2B2 is
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the root of a diagram that represents the function obtained by combining the functions
rooted by A2 and B2.

The complexity of BE-AOMDD and the output size are similar to those of the search
based algorithm:

Theorem 7. The space complexity of BE-AOMDD and the size of the output AOMDD
are O(n kw∗

), where n is the number of variables, k is the maximum domain size and
w∗ is the treewidth of the bucket tree. The time complexity is bounded by O(r kw∗

),
where r is the number of initial functions.

8 Related Work

There are various lines of related research. The formal verification literature, beginning
with [9] contains a very large number of papers dedicated to the study of BDDs. How-
ever, BDDs are in fact OR structures (the underlying pseudo tree is a chain) and do
not take advantage of the problem decomposition in an explicit way. The complexity
bounds for OBDDs are based on pathwidth rather than treewidth.

As noted earlier, the work on Disjoint Support Decomposition (DSD) is related to
AND/OR BDDs in various ways [14]. The main common aspect is that both approaches
show how structure decomposition can be exploited in a BDD-like representation. DSD
is focused on Boolean functions and can exploit more refined structural information
that is inherent to Boolean functions. In contrast, AND/OR BDDs assumes only the
structure conveyed in the constraint graph. They are therefore more broadly applicable
to any constraint expression and also to graphical models in general. They allow a
simpler and higher level exposition that yields graph-based bounds on the overall size
of the generated AOMDD.

McMillan introduced the BDD trees [16], along with the operations for combin-
ing them. For circuits of bounded tree width, BDD trees have linear space upper bound
O(|g|2w22w

), where |g| is the size of the circuit g (typically linear in the number of vari-
ables) and w is the treewidth. This bound hides some very large constants to claim the
linear dependence on |g| when w is bounded. However, McMillan maintains that when
the input function is a CNF expression BDD-trees have the same bounds as AND/OR
BDDs, namely they are exponential in the treewidth only.

The AND/OR structure restricted to propositional theories is very similar to deter-
ministic decomposable negation normal form (d-DNNF) [11]. More recently, in [23],
the trace of the DPLL algorithm is used to generate an OBDD, and compared with
the typical formal verification approach of combining the OBDDs of the input function
according to some schedule. The structures that were investigated are still OR.

McAllester [24] introduced the case factor diagrams (CFD) which subsume Markov
random fields of bounded tree width and probabilistic context free grammars (PCFG).
CFDs are very much related to the AND/OR graphs. The CFDs target the minimal rep-
resentation, by exploiting decomposition (similar to AND nodes) but also by exploiting
context sensitive information and allowing dynamic ordering of variables based on con-
text. CFDs do not eliminate the redundant nodes, and part of the cause is that they use
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zero suppression. There is no claim about CFDs being a canonical form, and also there
is no description of how to combine two CFDs.

More recently, independently and in parallel to our work on AND/OR graphs [4,5],
Fargier and Vilarem [17] proposed the compilation of CSPs into tree-driven automata,
which have many similarities to our work. Their main focus is the transition from linear
automata to tree automata (similar to that from OR to AND/OR), and the possible sav-
ings for tree-structured networks and hyper-trees of constraints due to decomposition.
Their compilation approach is guided by a tree-decomposition while ours is guided by
a variable-elimination based algorithms. And, it is well known that Bucket Elimination
and cluster-tree decomposition are in principle, the same [25].

9 Conclusion

This paper gives an overview of a new compilation data structure for constraint net-
works. The AND/OR Multi-valued Decision Diagram (AOMDD) [1,2,3] emerges from
the study of AND/OR search spaces for graphical models [4,5,26,6] and ordered binary
decision diagrams (OBDDs) [9]. Graphical models algorithms that are search-based
and compiled data-structures such as BDDs differ primarily by their choices of time vs
memory. When we move from regular OR to an AND/OR search space, the spectrum
of algorithms available is improved. We believe that the AND/OR search space clarifies
the available choices and helps guide the user into making an informed selection of the
algorithm that would fit best the particular query asked, the specific input function and
the available computational resources.

We presented the two main algorithmic approaches for compiling an AOMDD for
constraint networks. The first is a top down procedure, that uses memory intensive
AND/OR search, and applies reduction rules to the trace of the search. The second is a
bottom up procedure that uses a Bucket Elimination schedule to combine the constraints
via the APPLY operator.

As part of our current and future work, we are implementing, and experimenting
with, the algorithms described here in order to provide an empirical evaluation.
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Software Engineering: Ugo Montanari’s Main
Contributions and Introduction to the Section

Stefania Gnesi

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, ISTI - CNR, Pisa

Ugo Montanari began to work in software engineering related topics in the early eight-
ies when he started to promote the use of formal techniques in industries. In that period
Ugo established a strong cooperation mainly with Olivetti, that was for more than a
decade a very active italian ICT company.

Those were also the years when the first Progetto Finalizzato Informatica started and
in this context Ugo chaired the P1 subproject, “Industria Nazionale del settore: Architet-
tura e Struttura dei Sistemi di Elaborazione” whose aims were: i) the development of a
prototypical local network meant also to be used to develop software products for the
public administration; ii) the realization of a prototypical micro processor with depend-
ability, availability and reconfigurability characteristics to be employed for industrial
automation; iii) the development of methods and software programs to be used as basis
for the software production.

Continuing the involvement of Olivetti a project was funded by the European Com-
munity under the multi-annual programme CEC MAP for the development of an Ada
Compiler and Programming Systems. Few years later another CEC MAP project on the
Formal Definition of Ada was funded and very successfully carried out by a consor-
tium that included Università di Genova with Prof. Egidio Astesiano and University of
Copenhagen with Prof. Dines Bjørner. As a follow up of these projects an interesting
workshop on Software Factories and Ada was organized [1] by Ugo and Nico Haber-
mann with the aims of presenting advances in software engineering and their relations
with the development of the Ada language. In the paper [2] presented at the 1st Eu-
ropean Software Engineering Conference, Ugo proposed an execution environment for
the formal definition of Ada based on a logic programming approach. The aim of this
paper was to evaluate the feasibility and effectiveness of an interpreter based on the
formal definition of Ada.

The new directions in software development became a very important forum of dis-
cussions as the basis for technological and theoretical advances with the purpose of
making the software production more rigorous. In 1987, Ugo was one of the organizers
of the Advanced Seminar on Foundations of Innovative Software Development as part
of the International Joint Conference on Theory and Practice of Software Development
(TAPSOFT) [3,4].

Based also on these project experiences Ugo has always maintained strong contacts
with the Italian ICT industry, establishing cooperation with companies such as SE-
LENIA, (nowadays Selex), the research branch of Telecom Italia CSELT (nowadays
TILAB) and many others. Cooperations that have been pursued within national and in-
ternational research projects in the software engineering area, such as for example the
recent participation to the EU projects Agile: Architectures for Mobility Information

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 258–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Software Engineering: Ugo Montanari’s Main Contributions 259

Societies Technology [5] and SENSORIA: Software Engineering for Service-Oriented
Overlay Computers, both chaired by Prof. Martin Wirsing; to the Italian MUR projects
“Architetture Software ad Alta Qualità di Servizio per Global Computing su Coop-
erative Wide Area Networks” and Tocai “Tecnologie Orientate alla Conoscenza per
Aggregazioni di Imprese per Internet ”.

From the research point of view, the activity of Ugo in the software engineering
area was mainly in topics related to Software Architectures. An important issue in the
area of software architecture is the specification of reconfiguration and mobility of sys-
tems proposing the use of graphs as modeling framework [6,7,8,9]. The architectural
design of systems deals with the high level structuring of configurations. Checking that
a system belongs to an architectural style (or shape) implies that the architecture is an
instance of a structurally defined class. In [10] an approach for representing hierarchical
software architecture shapes using types was proposed.

Organization of the Software Engineering Section

Seven papers belong to this section, most of them are from friends that worked with
Ugo in the projects we have mentioned above.

The first one is by Egidio Astesiano, Gianna Reggio and Filippo Ricca: “Modeling
Business within a UML-based Rigorous Software Development Approach”. In this pa-
per the authors provided an attempt at showing that software system development and
business modeling can be aligned and that this means not only that there must be a
strict correlation between the two, but that it could be necessary to adopt for both the
same conceptual frame and notation. To that end, the authors present an approach, fully
integrated within a UML-based rigorous model-driven method.

The second one is by Dines Bjørner: “From Domain to Requirements”. In this paper
a view of requirement engineering and its relation with domain engineering is shown,
presenting a summary of the essentials of domain engineering and then the essence of
two aspects of requirements: the domain requirements and the interface requirements
prescriptions as they relate to domain descriptions.

A framework for organizational knowledge management based on Business Process
Modeling (BPM), that is the main modeling practice connecting the management and
engineering disciplines in software development, is presented in the paper “Business
Process Modeling for Organizational Knowledge Management” by Luca Abeti, Paolo
Ciancarini and Rocco Moretti.

In the paper “Event-based Service Coordination” by Gianluigi Ferrari, Roberto Guan-
ciale, Daniele Strollo and Emilio Tuosto, the problem of designing and implementing a
framework for programming service coordination policies is tackled presenting the pro-
totype implementation of Java Signal Core Layer (JSCL), a coordination middleware for
services based on the event notification paradigm.

The main motivations that lead to the present need for supporting continuous soft-
ware evolution have been analyzed by Carlo Ghezzi, Paola Inverardi, and Carlo Mon-
tangero in the paper “Dynamically Evolvable Dependable Software From Oxymoron
To Reality”

In “The Temporal Logic of Rewriting: A Gentle Introduction” by José Meseguer
the temporal logic of rewriting TLR∗ is presented. It extends the CTL∗ logic adding
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action atoms, in the form of spatial action patterns. Semantically and pragmatically,
however, when used together with rewriting logic as a ‘tandem’ of system specification
and property specification logics, it has substantially more expressive power than purely
state-based logics like CTL∗ or purely action-based logics like ACTL∗.

The last paper of this section is “A Heterogeneous Approach to UML Semantics”
by Mara Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki and Martin Wirsing.
In this paper a heterogeneous approach to the semantics of UML is proposed, where
each diagram type can be described in its ‘natural’ semantics, and the relations between
diagram types are expressed by appropriate translations.
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Abstract. We share the view that software system development andbusi-
ness modeling have to be aligned. In our opinion that means not only that
theremust be a strict correlation between the two, but thatwe should adopt
both the same conceptual frame and notation, enforcing a seamless activ-
ity flow between them. In this paper we offer an attempt at showing that
such an easy bridge can be provided. To that end we present an approach,
fully integrated within aUML-based rigorous model-drivenmethod,where
business processes are viewed in the context of the overall business struc-
ture and may be modeled hierarchically at various levels of detail.

1 Introduction

The term Business Modeling (BM) has been used in the years with different
meanings. For example, at the beginning of the years 2000 BM has been in-
troduced in the well-known RUP (Rational Unified Process Model) model for
software development as a “discipline”, alongside Requirements and Analysis &
Design, to mean what was then usually called Domain Model, but with some
emphasis for its use in the development of business applications. Nowadays, BM
still keeps a close relationship with domain modeling, but its link with business
organization and goals is more stringent.

To put our work into perspective, we may distinguish different purposes, view-
points, and trends in the current treatment of this subject. The first distinction
comes from the focus: either more on the business management side or on the
side of the information systems supporting the business. In the domain of Busi-
ness Process Re-engineering and Enterprise Architecture, BM is focused on the
aim of analyzing, organizing and managing the business activities. On the other
side, BM is viewed as preliminary to and integrated with the development of
information systems. For example in [1] “the business model is used to express
the part played by the product (system or component) being developed in the
context of the business that will fund its development (or purchase it) and use
it”; and [2] is concerned with “the alignment of business processes and IT”.

A further distinction on both sides is on the main concern and the granular-
ity level of the modeling. Some approaches are only concerned with the process
� Laboratorio Iniziativa Software FINMECCANICA/ELSAG spa - CINI.
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flow and there BM is in essence the description of the processes composing the
business. Others are instead more comprehensive, paying attention to the busi-
ness context; among those, there is a varying degree of concern for the economic
aspects, including risk analysis and heuristics for process identification, or for
the operational aspects, such as the process activities.

In all the approaches there seems to be a consensus for the need or the rel-
evance, at least, of a supporting notation. Still such consensus has not been
reached about the choice of a notation, though currently BPMN (Business
Process Modeling Notation, see [3]), and (part of) the UML are clearly the
favorite. In particular, it has been shown how BPMN can be replaced by the
UML Activity Diagrams (see [4]) at the process definition level, while, at a more
or less “comprehensive level”, various UML Profiles for Business Modeling have
been proposed (see, e.g., for UML 1.4 [5] and for UML 2 [2], also for references).

Also on the basis of some experience on the industry side, we very much agree
with the point put forward in [2] that “most software developers are not aware of
business processes or are not able to read the models”. Thus we are convinced of
the need of building a bridge between the business and the system development
side, or better the need of providing methodological tools for a seamless flow of
activity, from business to systems. This is a point much advocated in [6], where
the contiguity, and even a substantial overlapping of BM and system development,
especially according to the SOA paradigm [7], is argued. For us too, a motivation
of our work is to pave the way to an efficient use for the SOA paradigm. Indeed we
believe that, in order to integrate Business Analysis and SOA software develop-
ment, we first need means to treat relevant services and business processes within
the same notation frame and with a clearly indicated correlation.

To that end, we devote this paper to present the integration of Business
Modeling, including Process Modeling, within MARS, a UML based Model-
driven Adaptively Rigorous approach to Software development [8,9,10]. MARS
falls into the class of what we have called well-founded methods [11], namely it
enforces a tighter and more precise structuring of the artifacts for the different
phases of the software development process, than required by most MDA [12]
compliant methods. That characteristic helps inexperienced developers speed-
up the process and at the same time facilitates the consistency checks among
the various artifacts, and hence their final quality. Moreover, MARS strives
to balance formalism and easiness of use: the formal background provides the
foundational rigor but is kept hidden from the developer.

Here we summarize the key ideas of the work presented in this paper:

– adopting as visual notation UML 2.0 and following a multiview approach;
– modeling a business process not in isolation, but within the context of the

various processes composing the business, and of their mutual relationships
(inclusion, specialization, dependency, . . . );

– modeling all the entities involved in the business or at the business boundary
(i.e., part of the domain in which the business operates) and their various
aspects (e.g., organizational aspects);

– precise modeling of the activities that build up the business processes.
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There are, we believe, two main reasons for choosing a fully UML notation,
including the process description: first it gives the possibility of defining the Busi-
ness Process Modeling in its context (the mentioned comprehensive approach,
as in [2]); moreover it allows to keep BM into the same frame of the software
development, not running the risk of facing a different paradigm and even dif-
ferent meanings of terms, as it would be if we used for example BPMN for the
process description (e.g., BPMN is not object-oriented). Furthermore, MARS
tries to propose consistent ways to handle common aspects in the various de-
velopment phases; for example a Data View is part of the Requirement and of
the Design model (since MARS follows the principle of not confusing data types
and objects), and so also the Business Model will have a Data View.

We illustrate our proposal by means of a running case study ASSOC where
“the business” consists in organizing and running an association of persons, not
further detailed. In the following sections we present first the Overall Structure
of the BM, then the Business Context and, separately, the Business Processes.
A section is then devoted to discuss and compare some related work, before
providing our conclusions. For readers non-expert in UML we have added in the
footnotes some explanations for the less common constructs.

2 Business Modelling: The Overall Structure

The overall structure of a Business Model following the MARS method [8,9,10]
is shown in Fig. 1 by means of a UML class diagram.

We propose to model all the entities that are part of the business by the Static
View, which is essentially a UML class diagram. Such entities are then classified
into business objects, business workers, and external. Further orthogonal clas-
sifications may be introduced (e.g., autonomous versus passive, human versus
hardware/software system). The way the business workers are organized may be
also modelled by means of the Organization View. The Business Process View
then presents the business processes that define how the business is carried out.
It consists of the Business Process Overview Diagram, that is a summary of the
various processes and of their mutual relationships, together with the descrip-
tions of all the processes, the Business Process Description. The description of a
business process mainly presents the business entities taking part in it, and the
activities carried out. The Data View lists and makes precise all the data types
used to type attributes and operations appearing in the other views.

In the paper we use as a running example the case study ASSOC, where “the
business” is managing an association of persons, not further detailed. The associ-
ation is established at some point and may terminate subsequently. The persons
may join and leave the association at any time. The association is run by a board
elected by all the associates and chaired by one of its members. A secretary, which
is not an associate, will take care of the administrative tasks.

In the following sections we present the various parts of the Business Model,
illustrating them on the ASSOC case study.
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1

StaticView
definition: Package 1

BusinessProcessView
summary: BusinessProcessOverviewDiagram

BusinessProcessDescription

name: String
businessGoal: Text
level: { large, normal }
precondition: Text [0..1]
postcondition: Text [0..1]
overall: Collaboration
activity: ActvityDiagram

1..*

Business Model
1

DataView
definition: Package

OrganizationView
definition: Class Diagram

0..1

Fig. 1. Business Model Structure

3 Business Modeling: The Context

The context of the business, in our approach, consists of the involved business
entities and of how they are structured and organized.

3.1 Data View

The Data View introduces all the non-predefined data types needed in the other
views. It is useful to guarantee a better coherence among the various views
introducing a common basic vocabulary, and help distinguish in the Static View
a business object and the data used to describe it. Consider, for example, the case
of a business object Order that has an attribute deliverAddress of class Address:
the class Address will be given in the Data View, whereas the class Order will
appear in the Static View; thus there will be no doubt whether the address is a
business object or not.

Technically, the Data View is a UML package containing a class diagram,
containing only data types1 and where the relationships are either specialization
or aggregation or composition.

In Fig. 2 we present the Data View of the Business Model relative to the ASSOC
case study. It defines six data structures: the votes (notice that a vote may also

1 A UML data type is a classifier whose instances are pure values, i.e., they have no
identity and their state cannot be changed; thus the operations of a data type are
all queries, i.e., pure functions.
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A "validity"defines when a meeting of a 
committee is valid, by saying for each 
qualification which is the required paticipation 
rate for members having such qualification.

<<datype>>
Qualification

A "voting mechanism" determines the 
result of a votation given the votes, 
distinguished in yes, no and null,  and the 
number of the persons having the right to vote.

<<enumeration>>
Vote

yes
no
null

<< datype >>
VotingMechanism

check(Yes:Int,No:Int,Null:Int,mayVote:Int): Boolean

<< datype >>
ValidityRule

rate(Qualification): Real

<<datype>>
Time

<<datype>>
Text

Fig. 2. ASSOC Business Model: Data View

be null, i.e., an abstention), the qualification of the associates having different
rights and duties, the voting mechanism (how to vote on an item on the agenda
of a meeting), the validity rules (defining when a meeting is valid, depending
on the number of participants of the various qualifications), the time and text.
Notice how the flexibility of the UML notation allow the modeler to choose
the preferred degree of precision; for example, some data types, as Qualification
and Text, are not detailed at all, and others, as VotingMechanism, are abstractly
modeled without detailing their internal structure.

3.2 Static View

The Static View, a UML package containing at least one class diagram, makes
explicit which are the entities appearing in the business (modeled by objects
whose classes appear in such diagram) and their mutual relationships (modeled
by associations among the corresponding classes), if any. The other elements of
the class diagram, such as class attributes, operations and constraints, and the
other diagrams in the package (such as state machines defining the behaviour
of some classes) may be used to model relevant aspects of such entities. In the
Static View we may use the following stereotypes to classify the business entities:

�bw� business workers, those entities performing the basic actions of the busi-
ness;

�bo� business objects, those entities over which the basic actions are per-
formed;

�ext� external entities, those entities outside the responsibility of the busi-
ness, but with which the business needs to interact.

The above three stereotypes are mutually exclusive, and each class appearing in
the Static View should be decorated with one of them; they represent the role of
the entities w.r.t. the business.
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<<bw>>
<<auto>>
Person

name: String
qual: Qualification

AcloseMeeting(Meeting)
Aparticipate(Meeting)
Adiscuss(Item,Text)
AmyVote(Item,Vote)
ApresentItem(Item)
AproposeResolution(Item,Text)
AscheduleMeeting(Committee,Time,Document)
AstartMeeting(Meeting)

announcedMeeting(Meeting)
closedMeeting(Meeting)
failedMeeting(Meeting)
presented(Item)
meetingResult(Document)
shown(Item,Text)
started(Meeting)

*

*

members

*

*

partic
ipants

0..1
agenda

*

*

meetings of

<<bo>>
Document

0..1
minutes

*

chair

1

*

of

1..*

in

contains

Comunication

0..1

votes

Discussion
votedBy:VotingMechanism

Votes
yes: Int = 0
no: Int = 0
null:  Int = 0

<<bo>>
Association

name: String
statute: Text

*

board

1

*

se
cr

et
ar

y

1

<<bo>>
Meeting

status:{scheduled,open,closed}
when: Time
open()
terminated()
setlle(Item,Text)
allSettlled(): Boolean
valid(): Boolean
addParticipant(Person)

*

as
so

ci
at

es
Li

st

1

*

w
ho

*

<<bo>>
Committee

name: String
chairQual: Qualification
memberQual: set(Qualification)
meetingVal: ValidityRule
conflict(Time): Boolean
scheduledMeeting(Time,Document)

Item
title: String
content: Text
approved(): Boolean

<<bo>>
AssocList

For each committee, its chair is one of its members, and the qualifications of its
chair and of its members are ok.
context C: Committee inv:

C.members->includes(C.chair) and C.chair.qual = C.chairQual and
C.memberQual->includesAll(C.members.qual)

The scheduled meetings do not have minutes.
context M:Meeting inv: (M.status = scheduled) <=> M.minutes.size()= 0
The secretary of an association cannot be a member of the same.
context A: Association inv: (A.associatesList.who->excludes(A.secretary)

Fig. 3. ASSOC Business Model: Static View
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It may be useful also to model the fact that an entity be able to perform au-
tonomous behaviour. In our approach we use the active class stereotype �auto�
to indicate those business entities capable of autonomous behaviour, i.e., those
not just reacting to external stimuli. An autonomous act of one such entity is
modeled by sending to itself a special kind of UML signals2. The signals modeling
the autonomous acts are stereotyped by �A� (visually denoted by identifiers
starting with a bold capital A). We collect the �A� signals that the instances
of a class are able to (self) send, by listing all their receptions in a specific
compartment of the class icon, placed between the attribute and the operation
compartments (see for example the class Person in Fig. 3); and we represent the
signal attributes as operation arguments3.

In Fig. 3 we present the Static View of the ASSOC case study. All business
workers are persons that will play the various roles required by the business, as
associates, members of the board, secretary and so on, as will be presented later
in the Business Process View. The business objects are the meetings, committees,
associations, documents and the list of the associates. A meeting can have an
agenda and/or a minute: both are of type Document. A document is composed
of items4, specialized in Communication and Discussion (the difference is that the
former is concluded without a vote while the latter with a vote). Notice how
the use of the UML constraints, expressed using OCL, allows to model quite
precisely the relationships among the various business entities (see bottom of
Fig. 3).

3.3 Organization View

The Organization View consists of a class diagram where the organizational struc-
ture of the business is modeled. The classes appearing in that diagram are classes
with stereotype either �bw� or �bo� already appearing in the Static View 5, or
new classes. Some classes may be stereotyped by �ou� (visually depicted using
a thick line), and will represent the organizational units6. The aggregation and
composition associations will depict the hierarchical structure among the various
units, and the membership relation between units and workers, also clarifying
their roles inside the units. Constraints may be added by stating properties on

2 From [13]: “A signal triggers a reaction in the receiver in an asynchronous way and
without a reply. By declaring a reception associated to a given signal, a classifier
specifies that its instances will be able to receive that signal, and will respond to it
with the designated behavior.”

3 The UML requires to depict each signal similarly to a class with an attribute corre-
sponding to each signal argument, but this will excessively clutter the Static View.

4 Noting that Item is represented in Fig. 3 without �bo�, because parts inherit the
stereotypes of the “whole”

5 Recall that in the UML the same class may appear in several class diagrams of the
same model; furthermore only part of the class features may be shown in a diagram.

6 In UML a class may have several stereotypes, and thus a class having stereotype
�ou� may have also stereotype �bo�; clearly the �ou� will be shown only in
this view.



268 E. Astesiano, G. Reggio, and F. Ricca

the associations and on the class instances, and thus on the way the business
entities are organized inside the business.

Whenever needed it is also possible to add some object diagram, where the
instances are typed using the classes appearing in this class diagram, getting a
classical “organizational chart”.

When modeling the business processes by means of UML activity diagrams,
see Sect. 4, it will be possible to see what is done by the various organization
units using the swimlanes mechanism.

In Fig. 4 we present the Organization View of the ASSOC case study. The
organization units are the association itself, the board and the staff, made by
the secretary and by the chair of the board.

*

*

m
em
be
rs

*

ch
ai
r

1

*

board

1

*

president

1

<<bo>>
<<ou>>

Association

<<bo>>
<<ou>>

Committe

*

associates

*

<<bw>>
Person

<<ou>>
Staff

*

includes

*

*

staff

1

The staff consists of the secretary and the chair of the board, and the
associates are defined by the association list, introduced in the Static View (see Fig. 3).
context AS: Association inv:

AS.staff.includes = { AS.secretary, AS.board.chair } and
AS.associates = AS.associatesList.who

Fig. 4. ASSOC Business Model: Organization View

4 Business Modeling: The Business Processes

We assume that in a business there are many different processes, thus our ap-
proach requires first to give an overview of them and of their mutual relationships
(Business Process Overview Diagram), and after to describe the various processes
(Business Process Description).
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4.1 The Business Process Overview

The Business Process Overview Diagram visually summarizes the processes of the
modeled business together with the business entities taking part in them, and
their mutual relationships.

We use a stereotype �BP� of the UML model element “use case” to represent
a business process, whereas [5] uses “business use case”. A use stereotyped by
�BP� is visually depicted by an oval with a thick line. A Business Process
Overview Diagram is then a UML use case diagram, where the use cases are
stereotyped with �BP�, the actors are the business entities taking part in them,
and the lines between ovals and actors show the participation. It is important to
note that, the box showing the boundary of the system is lacking: in modeling
the business there is no need to show “THE” system (that will be considered
when developing a software system to support the business). In this diagram it
is also possible to depict:

– inclusion relationships among the business processes (using the correspond-
ing relationship between use cases of the UML, visually represented by a
dashed arrow7.

– dependency relationships (with the standard meaning in the UML: BP1 de-
pends on BP2 whenever any modification in BP2 may affect BP1);

– specializations (recall that use cases, and thus business processes, are UML
classifiers).

The actors are typed using the classes appearing in the Static View and in
the Organization View. Moreover, actors may have a multiplicity marking: that
means that several instances of a class take part in the business process.

In Fig. 5 we show the Business Process Overview Diagram relative to the
ASSOC case study. The diagram shows that the main business process Managing-
Association is built out of other processes (it includes them) as Establishing
Association, Hold Board Meeting. Moreover both business workers – like SECT,
the secretary, and CHAIR, the chair of the board – and business objects – like
BD, the board, and AL, the list of associates – take part in the various processes.
The stereotype �large� and the icons used for the various kinds of actors are
introduced in the following section.

4.2 The Business Process Descriptions

The description of a business process (see Fig. 1) follows a template presented
below by listing all its parts.

– “Name”: it identifies the business process.
– “Business goal”: a natural language text, it describes the goal (intention) of

the business process;
7 For simplicity we drop the decoration �inclusion� over the dashed line of the

inclusion, since there is no possibility to confuse it with an extension relation (not
used in this case).
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<<large>>
Managing

Association

Establishing
Association

BD:
Committee

CHAIR:
Person

MBS:
Person

1..*

ASSOCIATED:
Person

SECT:
Person

Joining
Asociation

Leaving
Association

Terminating
Association

Electing
Board

Holding Board 
Meeting

AL: AssocList

Fig. 5. ASSOC Business Model: Business Process Overview Diagram

– “Precondition” and “Postcondition” (both are optional): natural language
text, they state what we assume about the current state of the business
before/after the execution of the business process.

– “Level”, i.e., the granularity of the process: – large (a rather large process usu-
ally made up by composing many business processes, corresponding to a rea-
sonably high level business goal and to a manager point of view), – normal
(what is usually intended as a business process from a business worker point of
view: these are the processes that the people involved in the business may dis-
cuss). The large business processes are represented by the stereotype �large�.

– “Overall view” (see the detail in Sect. 4.3): it summarizes the business enti-
ties taking part in the process, the parameters and their mutual relationships.

– “Activity”: a presentation of the activities, together with their causal/
temporal relationships, that build up the process (i.e., the workflow view
of the process).
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4.3 Overall View of a Business Process

The overall view of a business process is a, possibly parameterized, UML col-
laboration8, where the roles, typed using classes appearing in the Static View or
in the Organization View, correspond to all the business entities taking part in
the business process; usually no connectors among them are shown, since we are
not interested in the message exchange among them. We choose to represent the
collaboration in the following way (the UML offers two different ways to depict
the collaboration, see [13, Sect. 9.3.3]):

Name

BOC1
BO

1 BW 1

BWC1

BOCk

BO k

. . .
BW

m

BWCm

. . .

P1:C1
. . .

Pn:Cn

EXC1

EX 1

EXCh

E
X

k

. . .

where Name is the name of the business process, P1, . . . , Pn are the parameters,
BO1, . . . , BOk, BW1, . . . BWm, EX1, . . . , EXh are the business entity (roles to be
played by business entities) taking part in the process; C1, . . . , Cn, BOC1, . . . ,
BOCk, BWC1, . . . , BWCm, EXC1, . . . , EXCh are classes appearing in the Static
View or in the Organization View. We use different icons for the classes depending
on their stereotype (box, sticky man and parallelogram9). Since we can attach
a constraint to the collaboration, we can state, if any, which conditions the
business entities and the parameters must satisfy to take part in the business
process. Fig. 6 (up) shows the overall view of the business process Holding Board
Meeting.

4.4 Activity of a Business Process

The Activity of a business process is described by means of a UML activity dia-
gram. The actions appearing in that diagram can be only calls of the operations/
signals of the business entities taking part in it, which have been introduced in
the Static View.

To keep the presentations of the activity of the business processes simple and
quite readable, we strongly suggest to define appropriate auxiliary sub-activities,
and then to reuse them taking advantage of the UML 2.0 construct “rake” (see
8 From [13]: collaboration is a kind of classifier and defines a set of cooperating enti-

ties to be played by instances (its roles), as well as a set of connectors that define
communication paths between the participating instances.

9 The last one inspired by the icon used for external entities in the old fashion flow
chart.
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[13, Sect. 12.3.14]). If a business process BP1 is included into the business process
BP2, then the behaviour of BP2 will be modeled by an activity diagram invoking
the activity modeling the behaviour of BP1, using again the rake construct.

In Fig. 6 we present the description of the process Holding Board Meeting, the
more detailed definitions of some of the activities appearing in that figure are
reported in Fig. 7, whereas the remaining auxiliary activities and the descriptions
of the other business processes appearing in Fig. 5 can be found in [14]. The
UML 2.0 “rake” construct indicates that the activities are further on described
by means of auxiliary activity diagrams given apart. Notice in Fig. 6 how the
use of the auxiliary sub-activities, which can be then detailed apart, allows also
to get a less precise but quite expressive and useful presentation of the processes
activity. The level of abstraction of this view is hence comparable to the one of
BPMN [3].

5 Related Works

The literature reports several proposals for business modeling having the pur-
pose of representing various aspects of a business, such as operational processes,
organizational structures, goals, and risk analysis. In this section, we focus only
on related works in business modeling which are based or extend UML.

The UML profile for business modeling of the OMG is defined in the chapter 4
of the UML 1.4 specification [15]. The model consists of two views, one external
(described by the use case model) and one internal view (described by the object
model). As already noted in [2], the model lacks: (i) a description of a detailed
process flow as sequence of activities, but also (ii) the business context.

The profile for business modeling proposed by Johnston [5], based on prior
work by Rational Software and Objectory, extends the OMG proposal in sev-
eral directions. It adds new stereotypes such as business actor, business entity,
business goal, business worker and substantially organizes the business model
into two parts: business use case model and business analysis model. Moreover
it introduces goals, events and activity diagrams to model the flow of the busi-
ness processes (i.e., the dynamic behaviour). This profile is a component of the
RUP c©(Rational Unified Process). While we share with Johnston [5] the use
of UML stereotypes, events and activity diagram and we have taken from him
several fundamental ideas (for example our Business Process Overview Diagram
is similar to the Business Use Case Model proposed in [5]) our Business Model
multi-view structure is richer. Most important, in [5], the actions of the activity
diagram are expressed by means of natural language instead in our proposal they
are operations in the “Object’s World”.

COMET [1] is a use-case driven and MDA [12] based methodology aimed
at supporting the process of developing and maintaining systems, components,
products and product families. That methodology, among other things, includes
also a business modeling method. Even if, some ingredients of the business mod-
eling method of COMET are similar to ours (for example the use of UML activity
diagrams), the point of view and the aim of the business models is different. In
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Business Process: Holding Board Meeting
Goal: The functioning of the association is managed by its board, that discusses
and decides during its meeting. The goal of this process is to have the meeting
of the association board.
Level: Normal

Holding Board Meeting

Committee

CHAIR = BD.chair  and
MBS = BD.members 

BD

CHAIR

Person
MBS

1..*

Person

Activity:

[ M.allSettled() ]

DiscussingItem

M: Meeting

M: Meeting

[ not M.allSettled() ]

SchedulingMeeting(BD)

OpeningMeeting

M: Meeting

ClosingMeeting

M: Meeting

HoldingBoardMeeting

M: Meeting

Fig. 6. Description of the business process Holding Board Meeting

[1] the business model is used “to express the part played by the product (system
or component) being developed in the context of the business that will fund its
development (or purchase it) and use it”. We use instead the model to describe
the business, to understand it better and, possibly, to re-engineer it.
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for some  P in MBS
  P.A participate(M);
  M.addParticipant(P)

M.open()

[ M.valid() ][ not M.valid() ]
MBS.failed(M)

time = M.when

MBS.started(M)

SchedulingMeeting(M.of)

Opening Meeting
M: Meeting
{M.status = scheduled}

M: Meeting
{M.status = open}

CHAIR. AstartMeeting(M)

M.participants.closedMeeting(M);
M.terminated();
MBS.meetingResult(M.minutes)

Closing Meeting
M: Meeting

CHAIR. AcloseMeeting(M)

Fig. 7. Two auxiliary sub-activities used in Holding Board Meeting (UML signal recep-
tions, as AStartMeeting, are represented with the appropriate icon)

One of the first UML 2 profiles for business process modeling has been pro-
posed by List and Korherr in [2]. That profile provides two complementary per-
spectives, the business and the sequence perspective. The first, described sub-
stantially using stereotypes, presents the business processes integrating together
several aspects like goals, measures, customers, deliverables, process types etc.
The sequence perspective refines the business perspective and describes the de-
tailed flow of the process (i.e., the workflow). The main differences between our
and their proposal are that: (i) we use more views (data, static, organization,
business processes overview) to represent the static part of the processes, while
List and Korherr [2] put all of them together in a unique view and (ii) we chose
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the activity diagrams to represent/describe the flow of the process, while they
prefer leaving this decision to the process modeler, who is free to choose among
activity diagrams, BPMN [3] and other means.

In [16], Brambilla et alt. adopt a formalized model-driven development process
[12] for workflow-based applications and argue for the automatic integration
of the workflow model within the domain model. That is an alternative way
to implement workflow models. Usually they are implemented with the help
of dedicated workflow management systems which have the drawback of being
heavy-weight applications. The initial workflow model is expressed in BPMN
while the domain model is represented with a UML class diagram. Then, model-
driven development methods may use the workflow extended domain model,
produced combining an OCL representation of the given workflow model and
the domain model, to automatically generate an implementation of the system
enforcing the business processes in the final technology platform. Even if both
our purpose and technical treatment is completely different, we give the same
importance to domain modeling (for us the domain is represented by means of
the static view) and to the integration of the workflow models within domain
models.

Sensoria10 is an integrated project (6th Framework Programme) funded by
the EU which aim is to develop a novel comprehensive approach to the en-
gineering of Service-Oriented Systems, where foundational theories, techniques
and methods are integrated in a pragmatic software engineering approach. The
research themes range across the whole lifecycle of software development from re-
quirements to deployment including coding and maintenance. The main research
topics of Sensoria are: Modelling Service-Oriented Software, Formal analysis of
Service-Oriented Software and Deployment and Runtime issues. In several of
their works [17,18] it seems that the conception of business process is different
from ours. They have a view more oriented to SOA, i.e., they consider a business
process as an orchestration of services while we have a more abstract view: for
us, a business process is a collection of interrelated tasks, which solve a particu-
lar issue. Another difference is that we consider the business modeling as a first
step in the development of SOA based applications, i.e., the services are derived
directly starting from the business model. Instead, they, for the same aim, use
a Use case model (see [18] for an example) conveniently tailored for SOA based
applications. A workflow based approach to business process modeling (named
StPowla) that integrates a simple graphical notation, a natural policy language
— Appel — and the Service Oriented Architecture, to assemble and orchestrate
available services in the business process is presented in [19].

6 Conclusions and Future Work

With the aim, shared by many other colleagues, of filling the gap between Busi-
ness Modeling (BM) and software development, and also building over some
previous work by us and others, as mentioned in the Introduction and in Sect. 5,
10 http://www.sensoria-ist.eu/
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we have proposed to treat the BM following a UML-based model-driven rigorous
method, in much the same way we handle Domain Modeling, but with a special
concern for the business context and the description of the business processes
within that context. In that way we may benefit of all the facilities provided by
the UML, such as the reuse of artifacts, possibly with the help of specialization
both for business processes and the various entities and actors involved in the
business.

A most important feature of our approach is that we adopt the same concep-
tual and terminological framework for BM and software system development.
However, starting with the direct modeling of the business processes without
requiring a preliminary alternative representation (say, in BPMN or other work-
flow notation), we may extract those other representations at various levels of
abstraction/detail. A further step in our work will consist in providing some au-
tomatic way to recover those representations. Also we have not insisted here on
the adaptive aspect of the MARS approach that allows to pass from an extremely
precise UML description of every step, to a variety of “light” descriptions, includ-
ing textual parts, but still well-founded, because based on a rigorous underlying
model, with which they may be confronted.

We are currently experimenting our way to model business in two specific
projects in cooperation with some companies. On one side we want to derive
from the business model a realization of a supporting application using state-of-
the-art workflow engines and content management systems. On the other side, we
are looking for a viable method to discover and orchestrate the services needed
to execute the modeled processes, following a SOA approach.
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Abstract. We first present a summary of essentials of domain engi-
neering, its motivation, and its modelling of abstractions of domains
through the modelling of the intrinsics, support technologies, manage-
ment and organisation, rules and regulations, scripts, and human behav-
iour of whichever domain is being described.

Then we present the essence of two (of three) aspects of requirements:
the domain requirements and the interface requirements prescriptions
as they relate to domain descriptions and we survey the basic opera-
tions that “turn” a domain description into a domain requirements pre-
scription: projection, instantiation, determination, extension and fitting.
An essence of interface requirements is also presented: the “merging” of
shared entities, operations, events and behaviours of the domain with
those of the machine (i.e., the hardware and software to be designed).

1 Introduction

This paper presents a model of early stages of software development that is not
conventional. The model is presented in two alternating ways: (i) we present some
of the principles and techniques of that unconventional software development
method, and (ii) we present — what in the end, that is, taken across the paper,
amounts to a relatively large example.

In summary: the objective of the present paper is to relate domain engineer-
ing to requirements engineering and to show that one can obtain an altogether
different basis for requirements engineering.

2 The Triptych Principle of Software Engineering

We start, unconventionally, by enunciating a principle. The principle expresses
how we see software development as centrally consisting of three “programming-
like” phases based on the following observation: before software can be designed
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we must understand its requirements, and before requirements can be prescribed
we must understand the application domain. We therefore see software develop-
ment proceeding, ideally, in three phases: a first phase of domain engineering, a
second phase of requirements engineering, and a third phase of software design.

The first paragraphs of Sects. 3 and 4 explain what the objectives of domain
engineering and requirements engineering are. The sections otherwise outline
major development stages and steps of these two phases.

3 Domain Engineering

The objective of domain engineering is to create a domain description. A domain
description specifies entities, functions, events and behaviours of the domain such
as the domain stakeholders think they are. A domain description thus (indica-
tively) expresses what there is. A domain description expresses no requirements
let alone anything about the possibly desired (required) software.

3.1 Stages of Domain Engineering

To develop a proper domain description necessitates a number of development
stages: (i) identification of stakeholders, (ii) domain knowledge acquisition, (iii)
business process rough-sketching, (iv) domain analysis, (v) domain modelling:
developing abstractions and verifying properties, (vi) domain validation and (vii)
domain theory building.

Business process (BP) rough-sketching amount to rough, narrative outlines of
the set of business processes as experienced by each of the stakeholder groups.
BP engineering is in contrast to BR re-engineering (BPR) which we shall cover
later, but briefly in Sect. 4.2.

We shall only cover domain modelling.

3.2 First Example of a Domain Description

We exemplify a transportation domain. By transportation we shall mean the
movement of vehicles from hubs to hubs along the links of a net.

Rough Sketching — Business Processes. The basic entities of the trans-
portation “business” are the (i) nets with their (ii) hubs and (iii) links, the (iv)
vehicles, and the (v) traffic (of vehicles on the net). The basic functions are those
of (vi) vehicles entering and leaving the net (here simplified to entering and leav-
ing at hubs), (vii) for vehicles to make movement transitions along the net, and
(viii) for inserting and removing links (and associated hubs) into and from the
net. The basic events are those of (ix) the appearance and disappearance of
vehicles, and (x) the breakdown of links. And, finally, the basic behaviours of
the transportation business are those of (xi) vehicle journey through the net and
(xii) net development & maintenance including insertion into and removal from
the net of links (and hubs).
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Narrative — Entities. By an entity we mean something we can point to,
i.e., something manifest, or a concept abstracted from, such a phenomenon or
concept thereof.

Among the many entities of transportation we start with nets, hubs, and links.
A transportation net consists of hubs and links. Hubs and links are different

kinds of entities. Conceptually hubs (links) can be uniquely identified. From a
link one can observe the identities of the two distinct hubs it links. From a hub
one can observe the identities of the one or more distinct links it connects.

Other entities such as vehicles and traffic could as well be described. Please
think of these descriptions of entities as descriptions of the real phenomena and
(at least postulated) concepts of an actual domain.

Formalisation — Entities

type H, HI, L, LI, N = H-set × L-set
value obs HI: H→HI, obs LI: L→LI, obs HIs: L→HI-set,obs LIs: H→LI-set
axiom

∀ (hs,ls):N •

card hs≥2 ∧ card ls≥1 ∧ ∀ h:H • h ∈ hs ⇒
∀ li:LI • li ∈ obs LIs(h) ⇒

∃ l′:L • l′ ∈ ls∧li=obs LI()∧obs HI(h) ∈ obs HIs(l′)∧
∀ l:L • l ∈ ls ⇒

∃ h′,h′′:H • {h′,h′′}⊆hs∧obs HIs(l)={obs HI(h′),obs HI(h′′)}
value xtr HIs: N → HI-set,xtr LIs: N → LI-set

Narrative — Operations. By an operation (of a domain) we mean a function
that applies to entities of the domain and yield entities of that domain — whether
these entities are actual phenomena or concepts of these or of other phenomena.

Actions (by domain stakeholders) amount to the execution of operations.

Among the many operations performed in connection with transportation we
illustrate some on nets. To a net one can join new links in either of three ways:
The new link connects two new hubs — so these must also be joined , or The
new link connects a new hub with an existing hub — so it must also be joined,
or The new link connects two existing hubs. In any case we must either provide
the new hubs or identify the existing hubs.

From a net one can remove a link. Three possibilities now exists: The removed
link would leave its two connected hubs isolated unless they are also removed
— so they are; The removed link would leave one of its connected hubs isolated
unless it is also removed — so it is; or The removed link connects two hubs into
both of which other links are connected — so all is OK. (Note our concern for net
invariance.) Please think of these descriptions of operations as descriptions of the
real phenomena and (at least postulated) concepts of an actual domain. (Thus
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they are not prescriptions of requirements to software let alone specifications of
software operations.)

Formalisation — Operations

type
NetOp = InsLnk | RemLnk
InsLnk == 2Hs(h1:H,l:L,h2:H)|1H(hi:HI,l:L,h:H)|0H(hi1:HI,l:L,hi2:HI)
RemLnk == RmvL(li:LI)

value
int NetOp: NetOp → N ∼→ N
pre int NetOp(op)(hs,ls) ≡

case op of
2Hs(h1,l,h2) →

{h1,h2}∩ hs={}∧l�∈ ls∧
obs HIs(l)={obs HI(h1),obs HI(h2)}∧

{obs HI(h1),obs HI(h2)}∩ xtr HIs(hs)={}∧
obs LIs(h1)={li}∧obs LIs(h2)={li},

1H(hi,l,h) → ...,
0H(hi1,l,hi2) → ...

end

int NetOp(op)(hs,ls) ≡
case op of

2Hs(h1,l,h2) →
(hs ∪ {h1,h2},ls ∪ {l}),

1H(hi,l,h) →
(hs\{xtr H(hi,hs)}∪{h,aLI(xtr H(hi,hs),obs LI(l))},ls ∪ {l}),

0H(hi1,l,hi2) → ...,
RmvL(li) → ...

end

xtr H: HI × H-set ∼→ H
xtr H(hi,hs) ≡ let h:H • h ∈ hs ∧ obs HI(h)=hi in h end
pre ∃ h:H • h ∈ hs ∧ obs HI(h)=hi

aLI: H × LI → H, sLI: H × LI → H
aLI(h,li) as h′,

pre li �∈ obs LIs(h), post obs LIs(h′)={li} ∪ obs LIs(h)∧ ...
sLI(h′,li) as h,

pre li ∈ obs LIs(h′), post obs LIs(h)=obs LIs(h′)\{li}∧ ...

The ellipses, . . . , shall indicate that previous properties of h holds for h′.
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Narrative — Events. By an event of a domain we shall here mean an instan-
taneous change of domain state (here, for example, “the” net state) not directly
brought about by some willed action of the domain but either by “external”
forces or implicitly, as an unintended result of a willed action.

Among the “zillions” of events that may occur in transportation we single out
just one. A link of a net ceases to exist as a link.1

In order to model transportation events we — ad hoc — introduce a trans-
portation state notion of a net paired with some — ad hoc — “conglomerate”
of remaining state concepts referred to as ω : Ω.

Formalisation — Events

type
Link Disruption == LiDi(li:LI)

channel
x:(Link Disruption|...)

value
transportation transition: (N × Ω) → in x (N × Ω)
transportation transition(n,ω) ≡

... �� let xv = x? in
case xv of

LiDi(li) → (int NetOp(RmvL(li))(hs,ls),line dis(ω))
... end end �� ...

line dis: Ω → Ω

Narrative — Behaviours. By a behaviour we mean a possibly infinite se-
quence of zero, one or more actions and events.

We illustrate just one of very many possible transportation behaviours.
A net behaviour is a sequence of zero, one or more executed net operations: the

openings (insertions) of new links (and implied hubs) and the closing (removals)
of existing links (and implied hubs), and occurrences of external events (limited
here to link disruptions).

Formalisation — Behaviours

channel
x:...

value
transportation transition: (N × Ω) → in x (N × Ω)
transportation transition(n,ω) ≡

... �� let xv = x? in case xv of ... end end
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... �� let op:NetOp • pre IntNetOp(op)(n) in IntNetOp(op)(n) end ...
transportation: (N × Ω) → in x Unit
transportation(n,ω) ≡

let (n′,ω′) = transportation transition(n,ω) in
transportation (n′,ω′) end

3.3 Domain Modelling: Describing Facets

Domain modelling, as we shall see, entails modelling a number of domain facets.
By a domain facet we mean one amongst a finite set of generic ways of

analysing a domain: a view of the domain, such that the different facets cover con-
ceptually different views, and such that these views together cover the
domain.

These are the facets that we find “span” a domain in a pragmatically sound
way: intrinsics, support technology, management & organisation, rules & regu-
lations, scripts and human behaviour: We shall now survey these facets.

Domain Intrinsics. By domain intrinsics we mean those phenomena and con-
cepts of a domain which are basic to any of the other facets (listed earlier and
treated, in some detail, below), with such domain intrinsics initially covering at
least one specific, hence named, stakeholder view.

For the large example of Sect. 3.2, we claim that the net, hubs and links were
intrinsic phenomena of the transportation domain; and that the operations of
joining and removing links were not: one can explain transportation without
these operations. We will now augment the domain description of Sect. 3.2 with
an intrinsic concept, namely that of the states of hubs and links: where these
states indicate desirable directions of flow of movement.

A Transportation Intrinsics — Narrative. With a hub we can associate a concept
of hub state. The pragmatics of a hub state is that it indicates desirable directions
of flow of vehicle movement from (incoming) links to (outgoing) links. The syntax
of indicating a hub state is (therefore) that of a possibly empty set of triples of
two link identifiers and one hub identifier where the link identifiers are those
observable from the identified hub.

With a link we can associate a concept of link state. The pragmatics of a link
state is that it indicates desirable directions of flow of vehicle movement from
(incoming, identified) hubs to (outgoing, identified) hubs along an identified link.
The syntax of indicating a link state is (therefore) that of a possibly empty set
of triples of pairs of identifiers of link connected hub and a link identifier where
the hub identifiers are those observable from the identified link.
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A Transportation Intrinsics — Formalisation.

type
X = LI×HI×LI [ crossings of a hub ], P = HI×LI×HI [ paths of a link ]
HΣ = X-set [ hub states ], LΣ = P-set [ link states ]

value
obs HΣ: H → HΣ, obs LΣ: L → LΣ,
xtr Xs: H → X-set, xtr Ps: L → P-set
xtr Xs(h) ≡

{(li,hi,li′)|li,li′:LI,hi:HI•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}
xtr Ps(l) ≡

{(hi,li,hi′)|hi,hi′:HI,li:LI•{hi,hi′}=obs HIs(l)∧li=obs LI(l)}
axiom ∀ n:N,h:H;l:L • h ∈ obs Hs(n)∧l ∈ obs Ls(n) ⇒

obs HΣ(h)⊆xtr Xs(h) ∧ obs LΣ(l)⊆xtr Ps(l)

Domain Support Technologies. By domain support technologies we mean
ways and means of implementing certain observed phenomena or certain con-
ceived concepts.

A Transportation Support Technology Facet — Narrative, 1. Earlier we claimed
that the concept of hub and link states was an intrinsics facet of transport nets.
But we did not describe how hubs or links might change state, yet hub and link
state changes should also be considered intrinsic facets. We there introduce the
notions of hub and link state spaces and hub and link state changing operations.
A hub (link) state space is the set of all states that the hub (link) may be in. A
hub (link) state changing operation can be designated by the hub and a possibly
new hub state (the link and a possibly new link state).

A Transportation Support Technology Facet — Formalisation, 1.

type HΩ = HΣ-set, LΩ = LΣ-set
value obs HΩ: H → HΩ, obs LΩ: L → LΩ
axiom ∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)
value

chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′, pre hσ ∈ obs HΩ(h), post obs HΣ(h′)=hσ
chg LΣ(l,lσ) as l′, pre lσ ∈ obs LΩ(h), post obs HΣ(l′)=lσ

A Transportation Support Technology Facet — Narrative, 2. Well, so far we
have indicated that there is an operation that can change hub and link states.
But one may debate whether those operations shown are really examples of



From Domain to Requirements 285

a support technology. (That is, one could equally well claim that they remain
examples of intrinsic facets.) We may accept that and then ask the question: How
to effect the described state changing functions ? In a simple street crossing a
semaphore does not instantaneously change from red to green in one direction
while changing from green to red in the cross direction. Rather there is are
intermediate sequences of green/yellow/red and red/yellow/green states to help
avoid vehicle crashes and to prepare vehicle drivers. Our “solution” is to modify
the hub state notion.

A Transportation Support Technology Facet — Formalisation, 2.

type
Colour == red | yellow | green
X = LI×HI×LI×Colour [ crossings of a hub ]
HΣ = X-set [ hub states ]

value
obs HΣ: H → HΣ, xtr Xs: H → X-set
xtr Xs(h) ≡

{(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}
axiom

∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X •

{(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧
li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

A Transportation Support Technology Facet — Narrative, 3. We consider the
colouring, or any such scheme, an aspect of a support technology facet. There
remains, however, a description of how the technology that supports the inter-
mediate sequences of colour changing hub states.

We can think of each hub being provided with a mapping from pairs of “sta-
ble” (that is non-yellow coloured) hub states (hσi,hσf ) to well-ordered sequences
of intermediate “un-stable’ (that is yellow coloured) hub states paired with some
time interval information 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′, tδ′···′)〉 and so that
each of these intermediate states can be set, according to the time interval in-
formation,2 before the final hub state (hσf ) is set.

A Transportation Support Technology Facet — Formalisation, 3.

type
TI [ time interval ]
Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling
value

obs Sema: H → Sema,
chg HΣ: H × HΣ → H,
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chg HΣ Seq: H × HΣ → H
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg HΣ Seq(h,hσ) ≡

let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end
sig seq: H → Signalling → H
sig seq(h)(sigseq) ≡

if sigseq=〈〉 then h else
let (hσ,tδ) = hd sigseq in let h′ = chg HΣ(h,hσ);
wait tδ;
sig seq(h′)(tl sigseq) end end end

Domain Management & Organisation. By domain management we mean
people (such decisions) (i) who (which) determine, formulate and thus set stan-
dards (cf. rules and regulations, a later lecture topic) concerning strategic, tac-
tical and operational decisions; (ii) who ensure that these decisions are passed
on to (lower) levels of management, and to “floor” staff; (iii) who make sure
that such orders, as they were, are indeed carried out; (iv) who handle undesir-
able deviations in the carrying out of these orders cum decisions; and (v) who
“backstop” complaints from lower management levels and from floor staff.

We use the connective ‘&’ (ampersand) in lieu of the connective ‘and’ in order
to emphasise that the joined concepts (A & B) hang so tightly together that it
does not make sense to discuss one without discussing the other.

By domain organisation we mean the structuring of management and non-
management staff levels; the allocation of strategic, tactical and operational
concerns to within management and non-management staff levels; and hence the
“lines of command”: who does what and who reports to whom — administra-
tively and functionally.

A Transportation Management & Organisation Facet — Narrative. In the pre-
vious section on support technology we did not describe who or which “ordered”
the change of hub states. We could claim that this might very well be a task for
management.

(We here look aside from such possibilities that the domain being modelled
has some further support technology which advices individual hub controllers as
when to change signals and then into which states. We are interested in finding
an example of a management & organisation facet — and the upcoming one
might do!)

So we think of a ‘net hub state management’ for a given net. That management
is divided into a number of ‘sub-net hub state managements’ where the sub-nets
form a partitioning of the whole net. For each sub-net management there are two
kinds management interfaces: one to the overall hub state management, and one
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for each of interfacing sub-nets. What these managements do, what traffic state
information they monitor, etcetera, you can yourself “dream” up. Our point is
this: We have identified a management organisation.

A Transportation Management & Organisation Facet — Formalisation.

type
HIsLIs = HI-set×LI-set,
MgtNet′ = HIsLIs×N, MgtNet={|mgtnet:MgtNet′•wf MgtNet(mgtnet)|}
Part′ = HIsLIs-set×N, Part={|part:Part′•wf Part(part)|}

value
wf MgtNet: MgtNet′ → Bool
wf MgtNet((his,lis),n) ≡

[ The his component contains all the hub ids.
of links identified in lis ]

wf Part: Part′ → Bool
wf Part(hisliss,n) ≡

∀ (his,lis):HIsLIs •

(his,lis) ∈ hisliss ⇒ wf MgtNet((his,lis),n)∧
[ no sub−net overlap and together they ′′span′′ n ]

Etcetera.

Domain Rules and Regulations

Domain Rules. By a domain rule we mean some text (in the domain) which
prescribes how people or equipment are expected to behave when dispatching
their duty, respectively when performing their function.

Domain Regulations. By a domain regulation we mean some text (in the domain)
which prescribes what remedial actions are to be taken when it is decided that
a rule has not been followed according to its intention.

A Transportation Rules & Regulations Facet — Narrative. The purpose of main-
taining an appropriate set of hub (and link) states may very well be to guide
traffic into “smooth sailing” — avoiding traffic accidents etc. But this requires
that vehicle drivers obey the hub states, that is, the signals. So there is undoubt-
edly a rule that says: Obey traffic signals.And, in consequence of human nature,
overlooking or outright violating signals there is undoubtedly a regulation that
says: Violation of traffic signals is subject to fines and . . . .

A Transportation Rules & Regulations Facet — Formalisation. We shall, regret-
fully, not show any formalisation of the above mentioned rule and regulation. To
do a proper job at such a formalisation would require that we formalise traffics,
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say as (a type of) continuous functions from time to pairs of net and vehicle
positions, that we define a number of auxiliary (traffic monitoring) functions,
including such which test whether from one instance of traffic, say at time t to a
“next” instance of time, t′, some one or more vehicles have violated the rule3, etc.
The “etcetera” is ominous: It implies modelling traffic wardens (police trying to
apprehend the “sinner”), ‘etc.’ ! We rough-sketch an incomplete formalisation.

type
T [ time ], V [ vehicle ], Rel Distance = {| f:Rel • 0<f<1 |}
VPos == VatH(h:H) | VonL(hif:HI,l:L,hit:HI,rel distance:Rel Distance)
Traffic = T → (N × (V →m VPos))

value violations: Traffic → (T×T) → V-set

Vehicle positions are either at hubs or some fraction f down a link (l) from
some hub (hit) towards the connected hub (hit). Traffic maps time into vehicle
positions. We omit a lengthy description of traffic well-formedness.

Domain Scripts. By a domain script we mean the structured, almost, if not
outright, formally expressed, wording of a rule or a regulation that has legally
binding power, that is, which may be contested in a court of law.

A Transportation Script Facet — Narrative. Regular buses ply the network
according to some time table. We consider a train time table to be a script. Let
us take the following to be a sufficiency narrative description of a train time
table. For every train line, identified by a line number unique to within, say a
year of operation, there is a list of train hub visits. A train hub visit informs of
the intended arrival and departure times at identified hubs (i.e., train stations)
such that “neighbouring” hub visits, (tai , hi, tdi) and (taj , hj , tdj), satisfy the
obvious that a train cannot depart before it has arrived, and cannot arrive at
the next, the “neighbouring” station before it has departed from the previous
station, in fact, taj − tdi must be commensurate with the distance between the
two stations.

A Transportation Script Facet — Formalisation.

type
TLin
HVis = T × HI × T
Journey′ = HVis∗, Journey = {|j:Journey′•len j≥2|}
TimTbl′ = (TLin →m Journey) × N
TimTbl = {| timtbl:TimTbl′ • wf TimTbl(timtbl) |}

value
wf TimTbl: TimTbl′ → Bool
wf TimTbl(tt,n) ≡
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[ all hubs designated in tt must be hubs of n ]
[ and all journeys must be along feasible links of n ]
[ and with commensurate timing net n constraints ]

Domain Human Behaviour. By human behaviour we mean any of a quality
spectrum of carrying out assigned work: from (i) careful, diligent and ac-
curate, via (ii) sloppy dispatch, and (iii) delinquent work, to (iv) outright
criminal pursuit.

Transportation Human Behaviour Facets — Narrative. We have already exem-
plified aspects of human behaviour in the context of the transportation domain,
namely vehicle drivers not obeying hub states. Other example can be given:
drivers moving their vehicle along a link in a non-open direction, drivers waving
their vehicle off and on the link, etcetera. Whether rules exists that may prohibit
this is, perhaps, irrelevant. In any case we can “speak” of such driver behaviours
— and then we ought formalise them !

Transportation Human Behaviour Facets — Formalisation. But we decide not
to. For the same reason that we skimped proper formalisation of the violation
of the “obey traffic signals” rule. But, by now, you’ve seen enough formulas and
you ought trust that it can be done.

off on link: Traffic → (T×T) ∼→ (V →m VPos×VPos)
wrong direction: Traffic → T ∼→ (V →m VPos)

3.4 Discussion

We have given a mere glimpse of a domain description. A full description of a
reasonably “convincing” domain description will take years to develop and will
fill many pages (hundreds, . . . (!)).

4 Requirements Engineering

The objective of requirements engineering is to create a requirements prescrip-
tion: A requirements prescription specifies externally observable properties of
entities, functions, events and behaviours of the machine such as the require-
ments stakeholders wish them to be. The machine is what is required: that is,
the hardware and software that is to be designed and which are to satisfy the
requirements. A requirements prescription thus (putatively) expresses what there
should be. A requirements prescription expresses nothing about the design of
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the possibly desired (required) software. We shall show how a major part of
a requirements prescription can be “derived” from “its” prerequisite domain
description.

The Example Requirements. The domain was that of transportation. The
requirements is now basically related to the issuance of tickets upon vehicle entry
to a toll road net and payment of tickets upon the vehicle leaving the toll road net
both issuance and collection/payment of tickets occurring at toll booths which
are hubs somehow linked to the toll road net proper. Add to this that vehicle
tickets are sensed and updated whenever the vehicle crosses an intermediate toll
road intersection.

tp1 tp2 tp3 tpntpn−1tpj

l12

l21 l32

l23 l34 lj−1j

ljj−1l43 lj+1j

ljj+1

ln−1n−2

ln−1n

lnn−1

ln−2n−1
ti1 tinii2 ii3 iij iin−1

Fig. 1. A simple, linear toll road net: tpi: toll plaza i, ti1, tin: terminal intersection
k, iik: intermediate intersection k, 1<k<n lxy : tollway link from ix to iy , y=x+1 or
y=x-1 and 1≤x<n.

4.1 Stages of Requirements Engineering

The following are the stages of requirements engineering: stakeholder identifica-
tion, business process re-engineering , domain requirements development, interface
development, machine requirements development, requirements verification and
validation, and requirements satisfiability and feasibility.

The domain requirements development stage consists of a number of steps:
projection, instantiation, determination, extension, and fitting.

We shall basically only cover business process re-engineering and domain
requirements development

4.2 Business Process Re-engineering

Business process re-engineering (BPR) re-evaluates the intrinsics, support tech-
nologies, management & organisation, rules & regulations, scripts, and human
behaviour facets while possibly changing some or all of these, that is, possibly
rewriting the corresponding parts of the domain description.
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Re-engineering Domain Entities. The net is arranged as a linear sequence
of two or more (what we shall call) intersection hubs. Each intersection hub has a
single two-way link to (what we shall call) an entry/exit hub (toll plaza); and each
intersection hub has either two or four one-way (what we shall call) tollway links:
the first and the last intersection hub (in the sequence) has two tollway links
and all (what we shall call) intermediate intersections has four tollway links. We
introduce a pragmatic notion of net direction: “up” and “down” the net, “from
one end to the other”. This is enough to give a hint at the re-engineered domain.

Re-engineering Domain Operations. We first briefly sketch the tollgate
Operations. Vehicles enter and leave the tollway net only at entry/exit hubs
(toll plazas). Vehicles collect and return their tickets from and to tollgate ticket
issuing, respectively payment machines. Tollgate ticket-issuing machines respond
to sensor pressure from “passing” vehicles or by vehicle drivers pressing ticket-
issuing machine buttons. Tollgate payment machines accept credit cards, bank
notes or coins in designated currencies as payment and returns any change.

We then briefly introduce and sketch an operation performed when vehicles
cross intersections: The vehicle is assumed to possess the ticket issued upon entry
(in)to the net (at a tollgate). At the crossing of each intersection, by a vehicle,
its ticket is sensed and is updated with the fact that the vehicle crossed the
intersection.

The updated domain description section on support technology will detail
the exact workings of these tollgate and internal intersection machines and
the domain description section on human behaviour will likewise explore the
man/machine facet.

Re-engineering Domain Events. The intersections are highway-engineered
in such a way as to deter vehicle entry into opposite direction tollway links,
yet, one never knows, there might still be (what we shall call ghost) vehicles,
that is vehicles which have somehow defied the best intentions, and are observed
moving along a tollway link in the wrong direction.

Re-engineering Domain Behaviours. The intended behaviour of a vehicle
of the tollway is to enter at an entry hub (collecting a ticket at the toll gate),
to move to the associated intersection, to move into, where relevant, either an
upward or a downward tollway link, to proceed (i.e., move) along a sequence of
one or more tollway links via connecting intersections, until turning into an exit
link and leaving the net at an exit hub (toll plaza) while paying the toll.

• • •

This should be enough of a BPR rough sketch for us to meaningfully proceed to
requirements prescription proper.
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4.3 Domain Requirements Prescription

A domain requirements prescription is that part of the overall requirements prescrip-
tion which can be expressed solely using terms from the domain description. Thus to
construct the domain requirements prescription all we need is collaboration with
the requirements stakeholders (who, with the requirements engineers, developed
the BPR) and the possibly rewritten (resulting) domain description.

Domain Projection. By a domain projection we mean a subset of the domain
description, one which leaves out all those entities, functions, events, and (thus)
behaviours that the stakeholders do not wish represented by the machine.

The resulting document is a partial domain requirements prescription.

Domain Projection — Narrative. We copy the domain description and call the
copy a 0th version domain requirements prescription. From that document we
remove all mention of link insertion and removal functions, to obtain a 1st version
domain requirements prescription.

Domain Projection — Formalisation. We do not show the resulting formalisa-
tion.

Domain Instantiation. By domain instantiation we mean a refinement of the
partial domain requirements prescription, resulting from the projection step, in
which the refinements aim at rendering the entities, functions, events, and (thus)
behaviours of the partial domain requirements prescription more concrete, more
specific. Instantiations usually render these concepts less general.

Domain Instantiation — Narrative. The 1st version domain requirements pre-
scription is now updated with respect to the properties of the toll way net: We
refer to Fig. 1 and the preliminary description given in Sect. 4.2. There are three
kinds of hubs: tollgate hubs and intersection hubs: terminal intersection hubs
and proper, intermediate intersection hubs. Tollgate hubs have one connecting
two way link. linking the tollgate hub to its associated intersection hub. Termi-
nal intersection hubs have three connecting links: (i) one, a two-way link, to a
tollgate hub, (ii) one one-way link emanating to a next up (or down) intersection
hub, and (iii) one one-way link incident upon this hub from a next up (or down)
intersection hub. Proper intersection hubs have five connecting links: one, a two
way link, to a tollgate hub, two one way links emanating to next up and down
intersection hubs, and two one way links incident upon this hub from next up
and down intersection hub. (Much more need be narrated.) As a result we obtain
a 2nd version domain requirements prescription.
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Domain Instantiation — Formalisation, Toll Way Net.

type
TN = ((H × L) × (H × L × L))∗ × H × (L × H)

value
abs N: TN → N
abs N(tn) ≡ (tn hubs(tn),tn hubs(tn))
pre wf TN(tn)

tn hubs: TN → H-set,
tn hubs(hll,h,( ,hn)) ≡

{h,hn} ∪ {thj,hj|((thj,tlj),(hj,lj,lj′)):
((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

tn links: TN → L-set
tn links(hll, ,(ln, )) ≡ ... as above ...

theorem ∀ tn:TN • wf TN(tn) ⇒ wf N(abs N(tn))
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th2
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thk
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lnk

lkn

thn
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hll(1),hll(2)

hll(j) hll(j+1)

hll(j),hll(j+1)

hll(len hll)hll(len hll −1)

hll(len h −1),hll(len hll)

thj’

Fig. 2. A simple, linear toll road net: thi: toll plaza i, h1, hn: terminal intersections,
h2, hj , h

′
j , hk: intermediate intersections, 1<j≤k, k=n-1 lxy, lyx: tollway link from hx

to hy and from hy to hx, 1≤x<n. lx−1x, lxx−1: tollway link from hx−1 to hx and hx to
hx−1, 1≤x<n, dashed links are not in formulas.

Domain Instantiation — Formalisation, Well-formedness.

type
LnkM == plaza | way

value
wf TN: TN → Bool
wf TN(tn:(hll,h,(ln,hn))) ≡
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wf Toll Lnk(h,ln,hn)(plaza) ∧ wf Toll Ways(hll,h) ∧
wf State Spaces(tn) [ to be defined under Determination ]

value
wf Toll Ways: ((H×L)×(H×L×L))∗ × H → Bool
wf Toll Ways(hll,h) ≡

∀ j:Nat • {j,j+1}⊆inds hll ⇒
let ((thj,tlj),(hj,ljj′,lj′j)) = hll(j),

( ,(hj′, , )) = hll(j+1) in
wf Toll Lnk(thj,tlj,hj)(plaza) ∧
wf Toll Lnk(hj,ljj′,hj′)(way) ∧ wf Toll Lnk(hj′,lj′j,hj)(way) end ∧

let ((thk,tlk),(hk,lk,lk′)) = hll(len hll) in
wf Toll Lnk(thk,tlk,hk)(plaza) ∧
wf Toll Lnk(hk,lk,hk′)(way) ∧ wf Toll Lnk(hk′,lk′,hk)(way) end

value
wf Toll Lnk: (H×L×H) → LnkM → Bool
wf Toll Lnk(h,l,h′)(m) ≡

obs Ps(l)={(obs HI(h),obs LI(l),obs HI(h′)),
(obs HI(h′),obs LI(l),obs HI(h))} ∧

obs Σ(l) = case m of
plaza → obs Ps(l),
way → {(obs HI(h),obs LI(l),obs HI(h′))} end

Domain Determination. By domain determination we mean a refinement of
the partial domain requirements prescription, resulting from the instantiation
step, in which the refinements aim at rendering the entities, functions, events,
and (thus) behaviours of the partial domain requirements prescription less non-
determinate, more determinate. Instantiations usually render these concepts less
general.

Domain Determination — Narrative. We single out only two ’determinations’:
The link state spaces. There is only one link state: the set of all paths through
the link, thus any link state space is the singleton set of its only link state. The
hub state spaces are the singleton sets of the “current” hub states which allow
these crossings: (i) from terminal link back to terminal link, (ii) from terminal
link to emanating tollway link, (iii) from incident tollway link to terminal link,
and (iv) from incident tollway link to emanating tollway link. Special provision
must be made for expressing the entering from the outside and leaving toll plazas
to the outside.
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Domain Determination — Formalisation.

wf State Spaces: TN → Bool
wf State Spaces(hll,hn,(thn,tln)) ≡

let ((th1,tl1),(h1,l12,l21)) = hll(1),
((thk,ljk),(hk,lkn,lnk)) = hll(len hll) in

wf Plaza(th1,tl1,h1) ∧ wf Plaza(thn,tln,hn) ∧
wf End(h1,tl1,l12,l21,h2) ∧ wf End(hk,tln,lkn,lnk,hn) ∧
∀ j:Nat • {j,j+1,j+2}⊆inds hll ⇒

let (,(hj,ljj,lj′j)) = hll(j),((thj′,tlj′),(hj′,ljj′,lj′j′)) = hll(j+1) in
wf Plaza(thj′,tlj′,hj′) ∧ wf Interm(ljj,lj′j,hj′,tlj′,ljj′,lj′j′) end end

wf Plaza(th,tl,h) ≡
obs HΣ(th) = { [ crossings at toll plazas ]

(′′external′′,obs HI(th),obs LI(tl)),
(obs LI(tl),obs HI(th),′′external′′),

(obs LI(tl),obs HI(th),obs LI(tl))} ∧
obs HΩ(th) = {obs HΣ(th)} ∧ obs LΩ(tl) = {obs LΣ(tl)}

wf End(h,tl,l,l′) ≡
obs HΣ(h) = {[ crossings at 3−link end hubs ]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(l)),
(obs LI(l′),obs HI(h),obs LI(tl)),(obs LI(l′),obs HI(h),obs LI(l))} ∧

obs HΩ(h) = {obs HΣ(h)} ∧
obs LΩ(l) = {obs LΣ(l)} ∧ obs LΩ(l′) = {obs LΣ(l′)}

wf Interm(ul 1,dl 1,h,tl,ul,dl) ≡
obs HΣ(h) = {[ crossings at properly intermediate, 5−link hubs ]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(dl 1)),
(obs LI(tl),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(tl)),
(obs LI(ul 1),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(tl)),(obs LI(dl),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(ul))} ∧
obs HΩ(h) = {obs HΣ(h)} ∧ obs LΩ(tl) = {obs LΣ(tl)} ∧
obs LΩ(ul) = {obs LΣ(ul)} ∧ obs LΩ(dl) = {obs LΣ(dl)}

Not all determinism issues above have been fully explained. But for now we
should — in principle — be satisfied.

Domain Extension. By domain extension we understand the introduction of
domain entities, functions, events and behaviours that were not feasible in the
original domain, but for which, with computing and communication, there is the
possibility of feasible implementations, and such that what is introduced become
part of the emerging domain requirements prescription.
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Domain Extension — Narrative. The domain extension is that of the controlled
access of vehicles to and departure from the toll road net: the entry to (and
departure from) tollgates from (respectively to) an "an external" net — which
we do not describe; the new entities of tollgates with all their machinery; the
user/machine functions: upon entry: driver pressing entry button, tollgate de-
livering ticket; upon exit: driver presenting ticket, tollgate requesting payment,
driver providing payment, etc.

One added (extended) domain requirements: as vehicles are allowed to cruise
the entire net payment is a function of the totality of links traversed, possi-
bly multiple times. This requires, in our case, that tickets be made such as to
be sensed somewhat remotely, and that intersections be equipped with sensors
which can record and transmit information about vehicle intersection crossings.
(When exiting the tollgate machine can then access the exiting vehicles sequence
of intersection crossings — based on which a payment fee calculation can be
done.)

All this to be described in detail — including all the thinks that can go wrong
(in the domain) and how drivers and tollgates are expected to react.

Domain Extension — Formalisation. We suggest only some signatures:

type
Mach, Ticket, Cash, Payment, Map TN

value
obs Cash: Mach → Cash, obs Tickets: M → Ticket-set
obs Entry, obs Exit: Ticket → HI, obs Ticket: V → (Ticket|nil)

calculate Payment: (HI×HI) → Map TN → Payment

press Entry: M → M × Ticket [ gate up ]
press Exit: M × Ticket → M × Payment
payment: M × Payment → M × Cash [ gate up ]

Domain Extension — Formalisation of Support Technology. This example pro-
vides a classical requirements engineering setting for embedded, safety critical,
real-time systems, requiring, ultimately, the techniques and tools of such things
as Petri nets, statecharts, message sequence charts or live sequence charts and
temporal logics (DC, TLA+).

Requirements Fitting. The issue of requirements fitting arises when two or
more software development projects are based on what appears to be the same
domain. The problem then is to harmonise the two or more software development
projects by harmonising, if not too late, their requirements developments.
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We thus assume that there are n domain requirements developments, dr1 , dr2 ,
. . . , drn , being considered, and that these pertain to the same domain — and
can hence be assumed covered by a same domain description.

By requirements fitting we mean a harmonisation of n > 1 domain require-
ments that have overlapping (common) not always consistent parts and which
results in n ‘modified and partial domain requirements’, and m ‘common domain
requirements’ that “fit into” two or more of the ‘modified and partial domain
requirements’.

Requirements Fitting — Narrative. We postulate two domain requirements: We
have outlined a domain requirements development for software support for a toll
road system. We have earlier hinted at domain operations related to insertion
of new and removal of existing links and hubs. We can therefore postulate that
there are two domain requirements developments, both based on the transport
domain: one, drtoll

, for a toll road computing system monitoring and controlling
vehicle flow in and out of toll plazas, and another, drmaint., for a toll link
and intersection (i.e., hub) building and maintenance system monitoring and
controlling link and hub quality and for development.

The fitting procedure now identifies the shared of awareness of the net by
both drtoll and drmaint. of nets (N), hubs (H) and links (L). We conclude from
this that we can single out a common requirements for software that manages
net, hubs and links. Such software requirements basically amounts to require-
ments for a database system. A suitable such system, say a relational database
management system, DBrel, may already be available with the customer.

In any case, where there before were two requirements (drtoll , drmaint.) there
are now four: (i) d′rtoll

, a modification of drtoll which omits the description parts

pertaining to the net; (ii) d′rmaint.
, a modification of drmaint. which likewise

omits the description parts pertaining to the net; (iii) drnet, which contains what
was basically omitted in d′rtoll

and d′rmaint.
; and (iv) drdb:i/f

(for database

interface) which prescribes a mapping between type names of drnet and relation
and attribute names of DBrel.

Much more can and should be said, but this suffices as an example in a
software engineering methodology paper.

Requirements Fitting — Formalisation. We omit lengthy formalisation.

Domain Requirements Consolidation. After projection, instantiation, de-
termination, extension and fitting, it is time to review, consolidate and possibly
restructure (including re-specify) the domain requirements prescription before
the next stage of requirements development.
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5 Discussion

5.1 An ‘Odyssey’

Our ‘Odyssey’ has ended. A long example has been given.
We have shown that requirements engineering can have an abstraction ba-

sis in domain engineering; and we have shown that we do not have to start
software development with requirements engineering, but that we can start soft-
ware development with domain engineering and then proceed to a more orderly
requirements engineering phase than witnessed today.

5.2 Claims of Contribution

What is essentially new here is the claim and its partial validation that one
can and probably should put far more emphasis on domain modelling, the do-
main modelling concepts, principles and techniques of business process domain
intrinsics, domain support technologies, domain management and organisation,
domain rules and regulations, domain scripts and domain human behaviour; the
identification of, and the decomposition of the requirements development process
into, domain requirements, interface requirements and machine requirements;
the domain requirements “derivation” concepts, principles and techniques of
projection, instantiation, determination, extension and fitting and the identifi-
cation of structuring of the interface ground requirements shared entities, shared
operations, shared events and shared behaviours.

5.3 Comparison to Other Work

Jackson’s Problem Frame approach [4] cleverly alternates between domain analy-
sis, requirements development and software design. For more satisfactory com-
parisons between our domain engineering approach and past practices and writ-
ings on domain analysis we refer to [3].

5.4 A Critique

A major presentation of domain and of requirements engineering is given in [1,
Chaps. 8–16 and 17–24]. [3] provides a summary, more complete presentation of
domain engineering than the present paper allows, while [2] discusses a set of
research issues for domain engineering. Papers, like [3,2], but for requirements
engineering, with more a complete presentation, respectively a discussion of re-
search issues for this new kind of requirements engineering might be desirable.
The current paper’s Sect. 4 provided a slightly revised structuring of the interface
requirements engineering.

Some of the development steps within the domain modelling and likewise
within the requirements modelling are refinements, and some are extensions. If
we ensure that the extensions are what is known as Conservative extensions
then all theorems of the source of the extension go through and are also valid in
the extension. Although such things are here rather clear much more should be
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said here about ensuring Conservative extensions. We do not since the current
paper is is not aimed at the finer issues of the development but at the domain
to requirements “derivation” issues.

5.5 Programming Methodology Versus Software Engineering

The following question has been formulated: How to make a programming
methodological approach like this become everyday software engineering prac-
tice ? For example, a small company willing to launch on the market a new idea
in a specific domain, needs under this approach to build up a full domain formal-
ization. I fear that this could be felt as a too large burden. On the other hand,
using pre-cooked, public, standardized or third-party formalizations of specific
domains could end in constraining the imagination of innovators ?

The programming methodological answer is: Yes, one must build a domain
description, informal and, ideally speaking also formal.

The software engineering answer is: how “full” it should be: at least “big”
enough to encompass the requirements.

The science and engineering answer is: public universities must experimentally
develop and research sufficiently broad (scope) domain theories, while private
software houses adapt these to their narrower (span) application domains, thus
establishing proprietary, corporate assets.

The research answer is: We must study a programming methodology like the
one put forward in this paper. We must do so because the programming method-
ology appears logical, sound. We cannot abstain from studying this programming
methodology just because (even a majority of) software engineers “feels” that it
is too large a burden to follow this approach “slavishly”.
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Abstract. The growing complexity of a networked and information-
dependent economy requires the innovation of the adopted processes to-
gether with their related services. In particular, many Small and
Medium-sized Enterprises (SME’s) currently base their organizational
models in a resource-centric view rather than in a knowledge-based or-
ganizational model which is a fundamental bound to their innovation
capabilities. This paper presents a framework for organizational knowl-
edge management. Our approach is based on Business Process Model-
ing (BPM), that is the main modeling practice connecting the manage-
ment and engineering disciplines in software development. The aim is to
present how the software requirements analysis can help in formalizing
and sharing the knowledge concerning the business processes. Besides,
we show how the service and ontology abstractions can be useful for
software development.

1 Introduction

In recent years Ugo Montanari published as sole author or as coauthor a num-
ber of papers on some fundamental theoretical issues related to Service-Oriented
Architectures, see for instance [8, 9, 10, 13, 22]. Service-Oriented Architectures
are software architectures that enable new application scenarios in which small,
loosely coupled pieces of functionality are published, consumed, and combined
with other functions over a network. A key feature of the SOA’s is a two-level
model to implement global enterprise systems, where business functions are im-
plemented by individual services and business processes are built as combinations
of services.

This technologically-oriented research trend has to confront another, more
socio-organizationally-oriented research trend. In fact, the studies about enter-
prise organizational processes have brought deep changes in the economy and so-
ciety [11]. The evolution of Business Process Modeling (BPM) has been strongly
influenced by its relationships with the new technologies like business process
reengineering [16]. Despite the close relationship between the business process
view in technology and economy, this concept is considered differently and for
different goals by the software engineers and managers [26].
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Fig. 1. The three views for BPM

The Business Processes (BP’s) modelers of contemporary enterprises have to
consider the changes enacted by the new technologies in their processes [29]. On
the other hand, the new software engineering technologies influence BP’s in the
development of service systems [14]. Besides, the emergence of new enterprise
models, such as networked and service-oriented enterprises, requires open and
interoperable technologies supporting their processes.

Figure 1 identifies the three points of view representing the three main per-
spectives for BPM:

– Enterprise view: its goal is the business improvement. At this level the
models deal with the organization, the strategies, the business rules, the
business domains, the internal and external BP’s, etc. It is the BPM per-
spective commonly used by the economic business analysts.

– System view: at this level the goal is to acquire the early-requirements of a
system by means of a business analysis. The models concern the organization,
the internal BP’s, the business entities, the systems, the architectures, etc.
It is the perspective of the software business analysts.

– Execution view: at this level the goal is to define an executable model
for BP’s. It is the software engineers perspective for the system design and
implementation. This view of BP’s is shared with the developers.

The capability to design a system by means of the service abstraction for
its components has important implications in software engineering [22, 30] and
can be easily connected to the BP models by means of a design based on the
Model-Driven Architecture (MDA) [1]. This issue can be addressed in the System
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view perspective and can be managed by software engineering languages and
methods [6].

However, the BP-to-Service mapping can be treated differently in the Sys-
tem and Execution views because we can distinguish two further perspectives,
namely: a dynamic and static representation of BP’s and services. Our approach
concerns only the static mapping of the knowledge related to the BP’s into ser-
vices and ontology abstractions. The dynamic behaviors and reconfigurations
for services and architectures are considered orthogonal issues for the design of
distributed systems by means of the BP abstraction [10, 17].

Currently do not exist methods and tools for BP’s development that enable to
connect all the three BPM views exposed in Figure 1. Indeed, the current Inte-
grated Development Environments (IDE’s) do not fully support the management
of both the service abstraction and the related BP technologies evolution.

This paper honors Ugo focussing on the study of the relationship between
software engineering and BP modeling. We propose a requirements-driven soft-
ware development method that considers all the needs and motivations related
to the BP’s view in order to support the software systems development. Our
approach uses the service as intermediate abstraction in order to incrementally
model the system starting from its BP’s representation. In our approach, the ser-
vices are considered as autonomous computational entities that can be managed
by means of model-driven tools in order to implement the systems.

In this method others modeling languages can be added in order to better
support the implementation of BPM. For instance, constraints for service mod-
els can be added by means of the SENSORIA Reference Modeling Language
(SRML) metamodel [7] in our model-driven tool.

In the next section, we show an overview of our approach. Section 3 presents
some IDE and tools supporting the service abstraction management. In Section
4, we present our conclusions.

2 BP’s for Organizational Knowledge Management

In this section, we present a method for product knowledge formalization based
on software engineering and BPM techniques. This method presents three general
phases which correspond to the three BPM views exposed in Section 1. These
phases are: Business Modeling, System Modeling and System Implementation.

In order to define a method able to manage the entire business and to achieve
the software knowledge formalization, we assume that the method itself can be
tuned for a specific project. Indeed, the BPM process may vary for many reasons:

– BPM can be realized for merely knowledge acquisition or for analysis and
requirements identification

– the system development can require a sketch, blueprint or detailed represen-
tation

– the development requires more emphasis on structural or behavioral modeling
– the stakeholders, analysts or managers can be not confident with the adopted

modeling language
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– the reasons of software development could be not well understood
– the methods and processes used inside the company can be inadequate and

difficult to change

Such reasons are an important aspect of our work because high varying busi-
ness and problems require to vary also the processes used for BPM [6].

This approach allows to address high-level-requirements in a distributed ap-
plication and can be exploited in the development of a SOA.

2.1 Business Modeling

The goals of the Business Modeling phase is to wrap the current management
with a technology support and to constantly share the knowledge among the
economists and the system engineers inside a company.

The focus of the Business Modeling phase is on collecting and maintaining
all the knowledge about the company organization, the strategies, the goals, the
risks and the management-related issues. In order to face these aspects, this
phase is decomposed into two sub-phases: the informal brainstorming and the
enterprise knowledge formalization. The former sub-phase is a collective learn-
ing activity [23] trying to realize a shared knowledge-base about the company
organization, the strategies and the goals.

Usually different stakeholders assign different meanings to the constructs (e.g.,
actors, goals, strategies, organizational units) of the organizational knowledge
based on their mental models [2]. In this sub-phase, the models are mainly
used to structure the problems and the organization. In the latter sub-phase
the business process analysts and the managers try to formalize the knowledge
in order to check its consistency and to discuss with the stakeholders. Thus,
these sub-phases are cyclic Business Modeling sub-phases performed many times
taking into account the specific company, project or stakeholders needs. These
sub-phases enable to move from a tacit knowledge of the company into a codified
and consistent knowledge consisting of BP’s for the represented organization.

In the Business Modeling phase the degree of competency, the background
and the belief of each participant may vary significantly. Thus, it does not make
sense to propose a standard sets of steps and restrictive guidelines for Business
Modeling. Besides, the language provided by Si* [21], UML [25] and the Busi-
ness Process Management Notation (BPMN) [26] can be useful for enterprise
knowledge formalization. This set of guidelines and languages is not restrictive
because usually the stakeholders and managers are reluctant to spend time on
brainstorming, process formalization, learning, training and becoming confident
with formal specification languages and methods.

We now briefly discuss the three languages mentioned above. The UML Use
Case diagrams have been chosen because of their proved efficacy in stakeholder-
analyst collaboration [12]. The Use Case diagrams use intuitive and quick to un-
derstand concepts such as: actor, use case, inclusion, extension, system
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boundary etc. BPMN is a specification of the Object Management Group (OMG)
and the Business Process Management Initiative (BPMI.org) [26]. It synthesizes
the best practices of the BPM community and defines a graphical notation for
the BP’s similar to a flow-chart. Such a notation is both consistent with UML
and understandable by the stakeholders, analysts, business users, developers,
etc. Moreover, BPMN is widely extensible and can be incrementally adopted.
Si* considers a set of primitive concepts such as actor, goal, task, and resource
in order to model a socio-technical system. An actor is an active entity having
strategic goals and performing actions to achieve these goals. A goal is a strategic
interest of an actor. A Soft-goal is similar to a goal, but the fulfillment condition
is not clearly defined. A task specifies a sequence of actions that can be executed
to achieve a goal. Finally, a resource represents a physical or an informational
entity.

Goals, tasks, and resources are often related among them in many ways. In
particular, three relations have been identified, namely AND/OR decomposition,
means-end, and contribution relations. The AND/OR decomposition combines
AND and OR refinements of a root goal into sub-goals. The Means-end relation
identifies tasks providing means for achieving a goal and the resources produced
or consumed by a task. The contribution relation identifies the impact of the
achievement of goals and tasks on the achievement of other goals and tasks. Due
to the general meaning of the Si* concepts, we use them without a prescriptive
formalism in the informal brainstorming sub-phase. Thus, starting from the be-
ginning of our practice, the tacit knowledge is acquired in terms of the concepts
that we will use in the enterprise knowledge formalization sub-phase and in the
System Modeling phase.

We distinguish between functional and non-functional specifications. The
functional specifications are formalized using the UML Use Case diagrams as
regards the static aspects of BP’s, and BPMN as regards the dynamic interac-
tions among the BP’s concepts. The non-functional specifications closer to tacit
knowledge are formalized by using Si* diagrams. The informal brainstorming
sub-phase allows to identify an unorganized and not-formalized set of early-
requirements that giving a first sketch of the domain and the knowledge con-
cerning the organization. The enterprise knowledge formalization sub-phase is
the first phase trying to obtain a formal and analyzable BP representation. The
cyclic informal brainstorming sub-phase helps the stakeholders in understanding
their implicit knowledge and defining a shared knowledge base of the processes.
The enterprise knowledge formalization sub-phase tries to organize the informal
knowledge in order to analyze it in the System Modeling phase.

The modeling of goals and strategies (that are not caught by Use Cases and
BPMN models) are essential for BPM design and knowledge acquisition. For this
purpose, our approach uses the Si* notation. Si* helps to model strategical and
operational aspects of the business. By means of the Si* concepts, we are able to
connect formally represented systems and actors to, for instance, business units,
manager aims, practices and company policies.
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2.2 System Modeling

At the beginning of the System Modeling phase, we use the outputs of the
Business Modeling phase in order to derive an analysis similar to the Tropos
early-requirements analysis [19]. The Business Modeling phase provides three
inputs to the System Modeling phase:

1. A formalized knowledge about the business and business processes repre-
sented in a set of diagrams.

2. Some indicative choices or purposes to develop new systems and products.
3. A first analysis concerning the technologies that can be used to realize new

goals or improve the existing business.

In the System Modeling phase, further technical choices are made in techni-
cal brainstormings. In particular, we consider the non-functional requirements
defined by means of Si*. Besides, the goals and the soft-goals and their relation-
ships with the system can be deeply analyzed by exploiting the Tropos early-
requirements analysis process [15, 19]. The early-requirements analysis concerns
with the understanding of a problem by studying an existing organizational
setting. The intentions of the stakeholders are modeled as goals and goal depen-
dencies among actors, and analyzed by means some form of goal analysis. The
output of this phase is an organizational model including the relevant actors and
their respective dependencies for the achievement of the goals and the soft-goals,
and for performing or obtaining resources. The System Modeling phase includes
six models that can be defined by means of Si*:

– Actor Model: allows to identify the actors and their objectives, entitle-
ments, and capabilities. The agents are also described in terms of the roles
they play.

– Social Model: allows to identify and analyze the social relationships among
the system actors and the stakeholders. Trust and distrust relationships be-
tween actors are discovered and modeled (i.e., expectations of actors about
the capabilities and behaviors of other actors).

– Goal Model: allows to model the goals from the point of view of an actor.
The impact of the goals on the achievement of other goals is analyzed and
modeled in order to refine the requirements models and to elicit new social
relations among the actors.

– Execution Dependency Model: allows to identify the actors depending
on other actors for achieving their goals, executing the tasks and supplying
the resources. In this model the assignments of responsibilities among the
actors are discovered and modeled.

– Delegation Model: allows to model an actor delegating to other actors the
achievement of goals, the execution of tasks and the access to the resources.
This model enables the transfer of rights among the actors.

– Task/Resource Model: allows to elicit and model the tasks and the re-
sources providing means for the achievement of goals. The impact of the
tasks on the achievement of goals is analyzed and modeled.
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These models enable to define a rigorous representation of the enterprise
knowledge by means of the Actor, Social, Execution Dependency and Delegation
Models. Besides, they enable to perform some analysis on such a knowledge by
means of the Goal model and Task/Resource Model. The analyses that can be
carried out are:

– Means-end analysis: aimed to identify tasks, goals or resources that pro-
vide means for achieving a specific goal.

– Goal/Resource refinement: analyzes and decomposes the goals and/or
resources in terms of AND/OR decompositions.

– Contribution Analysis: studies the impact of the tasks and the achieve-
ments of goals on the achievement of other goals.

Starting from the Business Modeling phase, if in the System Modeling phase
the need emerges to reengineer BP’s or new IT system, the Si* diagrams must
be considered together with UML Use Cases and BPMN diagrams. In this way,
the IT System requirements can be derived and used in one or more System
Implementation phases.

One of the most important activities of the System Modeling phase is the
mapping from the business process concepts into the concepts useful in the
System Implementation phase. We do not suggest to map BP’s directly into
the programming languages concepts (e.g., objects and classes), but we try to
exploit the ontology and service concepts as intermediate abstractions enabling
to move from business processes to implementation paradigms. Starting from
the Si* and BPMN models, one or more application service models, depending
on the number of the systems to implement, are defined.

The concept of service is considered as a very general abstraction for software
development and can be used to represent a wide range of interacting software
components [30]. In the same way, the UML Use Cases are used to derive a set of
ontological concepts to be represented in one or more ontology models. In order
to perform the Use Case-to-Ontology mapping, we can use the Rational Unified
Process Business Model-to-System mapping rules [20] to incrementally redefine
the Use Case models in a system-centric perspective. The application service
and ontology models are both represented in diagrams similar to the UML Class
Diagrams [25]. We propose this type of diagrams since it is very intuitive and
has an easy to remember semantics. Besides, the service abstraction is useful
for a logical division of the software [28]. Such a division is more coarse-grained
than the division obtained by components or objects. The selection of the service
and ontology abstractions represents a meeting point between the designer and
developer requirements in the translation from BP’s to services. On the one hand,
to derive services from BP’s it is useful to realize high level interfaces that are
representative of the actual provided business services. On the other hand, the
granularity of the services helps to define software components that can be easily
changed and reused. The definition of the appropriate level of granularity for the
services should consider both cohesion (i.e., the degree of relatedness of service
functions) and coupling (i.e., the degree of service independence). The cohesion
and coupling information can be derived in the BP’s-to-Service mapping. The
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non-functional requirements can be derived from the Si* models by means of
goals and soft-goals dependences analysis.

2.3 System Implementation

The last phase of our practice is the System Implementation phase whose goal is
to model the concrete executable support for the BP’s. The aim of this phase may
change depending on the specific structure of the Business Modeling and System
Modeling phases. The System Implementation phase is not necessarily performed
because in the System Modeling phase it is possible to decide that no changes have
to be made in the current BP’s and that no new systems have to be realized.

The outputs of the System Modeling phase are the service and the ontology
models. Such models are used to realize a detailed design of the system. De-
pending on the system nature (e.g., Web applications, centralized systems, Grid
systems, agent-based systems, etc.), a specific system implementation abstrac-
tion is used in order to model the system (e.g., classes, agents, Web Services,
Web pages, CORBA components, Entity Java Beans, etc.). In this context, the
service model represents the behavioral aspects of the software, while the on-
tology model represents the concepts used in the static aspects. For instance,
the services in the application service model can be used in the UML behav-
ioral models (e.g., the activity diagrams) or in the execution business process
languages (e.g., BPEL4WS [4]). In an analogous way, the ontology models can
be used for the UML structural models (e.g., the class diagrams) or to define
conceptual and logical models of databases.

3 Tools for the System Modeling Phase

In this section we briefly describe some tools useful in the System Modeling phase
described in Section 2.2. In order to support the mapping of the BP’s represented
by means of Si*, UML Use Cases and BPMN into the service abstraction, we need
tools allowing to define, model, and deploy in a simple and platform-independent
way the software services. In particular, we focus on Uniframe [5] and the MOd-
eling TOol for Grid and Agent Services (MOTO-GAS) [1].

Uniframe [5] aims to overcome the platform heterogeneity of distributed sys-
tems by using MDA-based service-oriented models. Uniframe defines an abstrac-
tion for a unified architecture, relies on MDA in order to design the service mod-
els, and uses a formal specification language to define the components and to sup-
port their connection. Uniframe investigates many component-based and service-
oriented issues and defines an abstraction for a unified architecture. It uses UML
to design service models and MDA to realize the Unified Meta-Component Model
(UMM) used as a glue putting together different technologies.

MOTO-GAS [1] is a tool that enables to model both stateful and stateless
services. A meaningful aspect of MOTO-GAS is the support for the Web Service
Resource Framework (WSRF) [27]. Such support is given through the WSRF
MetaObject Facility (MOF) [24] metamodel. MOTO-GAS allows to define a
platform-independent application service model which can be mapped into an
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instance of the WSRF MOF metamodel. In this context, the application service
model defined in the System Modeling phase represents an application defined
by a set of services and resources in a Platform-Independent Model (PIM) de-
scribed by UML. By means of the MDA-based ATLAS Transformation Language
(ATL) [3, 18], it is possible to produce a Platform-Specific Model (PSM) com-
plying with the WSRF MOF metamodel.

MOTO-GAS uses some existing plug-ins implementing the MDA specifica-
tions and allowing an effective consistency between the realized models and
their respective metamodels. This set of plug-ins allows to define the applica-
tion service models and to automatically generate: a WSDL definition, the Java
service skeleton, the Web Service Deployment Descriptor (WSDD) file, and the
Java Naming and Directory Interface (JNDI) deployment file for the service
application used in the System Implementation phase.

Both Uniframe and MOTO-GAS are useful to support the System Modeling
phase down to the System Implementation phase of our proposed practice. In
particular, a model-driven support is considered an essential feature in order to
develop platform-independent models of the system derived from the BP models
designed in the Business Modeling phase.

4 Conclusions

In this paper we have presented a modeling approach considering a whole busi-
ness and its organizational issues. It is aimed to obtain a full interaction between
technologists and managers involved in the business innovation performed by
means of the new technologies.

Our proposed method aims to analyze the use of BPM in software engineering.
We have combined three complementary aspects represented by: Si*, UML Use
Cases, and BPMN. Even though these aspects overlap, they enable to manage
BP’s from different points of view.

Considering a software engineering point of view, the service and ontology
concepts represent strategic elements enabling to connect the economic and ex-
ecution view of BP’s. In particular, the service abstraction represents the bot-
tleneck for BP’s because it allows to map the enterprise BP’s into the executive
BP’s and the system functionalities. Such BP’s are mapped into services that
are connected in order to create execution BP’s and system functionalities.

A framework including both the support for the collaborative work among
stakeholders, and the support for model-driven development of the system and
ontology abstractions is far from being realized. In this context a further support
of the Business Modeling phase in a model-driven IDE may consist in automating
the mapping of the Si*, UML Use Case and BPMN models into the service and
ontology models.
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Abstract. In this paper we tackle the problem of designing and imple-
menting a framework for programming service coordination policies. In
particular, we illustrate the design and the prototype implementation
of Java Signal Core Layer (JSCL), a coordination middleware for ser-
vices based on the event notification paradigm. We formally motivate
the design choices of the JSCL middleware by exploiting a variant of the
π-calculus specifically tailored to deal with event notification and distrib-
ution. We demonstrate how service coordination polices can be precisely
programmed in JSCL by some simple but illustrative case studies.

Keywords: Service Oriented Architectures, Event Notification,
Coordination.

1 Introduction

The web service protocol stack (e.g. WSDL, UDDI, SOAP) provides basic sup-
port for the development of service-oriented architectures by exploiting facilities
to publish, discover and invoke network-available services. The service proto-
col stack has been extremely valuable to highlight the key innovative features
of the service oriented computing approach. Most of the current development
methodologies are focused on composition of services. Two different approaches
can be adopted: orchestration and choreography. In the orchestration, services
are thought as isolated and the main focus relies on their internal behavior.
The participants have no acknowledgment of the surrounding network. An in-
termediate component, the orchestrator is responsible to arrange service activi-
ties according to the work-flow plan. This strategy provides a local view of the
participants. From the other hand, the choreography model involves all parties
and their associated interactions providing a global view of the system. Rele-
vant standard technologies have emerged to model coordination policies. Among
� Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project Sen-

soria and by the Italian FIRB Project Tocai.it.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 312–329, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Event-Based Service Coordination 313

them, particular relevance is given to the Business Process Execution Language
(BPEL4WS) [20], for the orchestration, and Web Service Choreography De-
scription Language (WS-CDL) [28], for the choreography. However, it is not
infrequent that such standards have drawbacks. In fact, constructs are often
informally specified which usually leads to ambiguities or redundancy. Several
research and implementation efforts are currently devoted to provide a clear
semantics for their constructs and tools for verification (COWS [21], Global
Calculus [8], λreq [1] ORC [24], SCC [3], SOCK [18] to cite a few). However,
research is still underway.

A well known paradigm for specifying and programming distributed systems
is the event notification paradigm (EN, for short), where distributed computa-
tional components can act as publishers and/or subscribers. When a component
intends to send data to or requests a service from other components, it issues an
event that eventually shall trigger a reaction from subscribers that previously
subscribed for such kind of events. The EN paradigm seems to provide a suit-
able framework to deal with service oriented architectures (SOAs) that require
components to be loosely coupled. Specifically, the EN paradigm features high
level coordination mechanisms that allow programmers/designers to decouple
components and rely entirely on event handling.

In this paper, we report our experience in using the EN paradigm to design
and implement coordination policies for SOA. We designed and implemented a
middleware called Java Signal Core Layer [12] (JSCL). A distinguished feature
of JSCL consists in the strict interplay among formal semantic foundations,
implementation pragmatics and experimental evaluation of the resulting pro-
gramming constructs. More precisely, all the programming facilities available
in JSCL have a clear semantics. Indeed, at the abstract level, the middleware
takes the form of the Signal Calculus [12, 13, 11] (SC). The SC is a variant of
the π-calculus [26] with explicit primitives to deal with event notification and
component distribution. At the implementation level, JSCL takes the form of a
collection of Java API equipped with a standard development environment (an
Eclipse plug-in). The JSCL API’s are available at www.tao4ws.net.

The SC allows one to define services coordination policies (orchestration and
choreography) relying on event notification only. Moreover, it features sessions as
a mechanism to synchronize work-flows of distributed and independent compo-
nents. Remarkably, SC does not assume any centralized mechanism for publish-
ing, subscribing and notifying events. Indeed, each subscriber explicitly defines
the class of events it is interested in. In [22] this pattern is referred to as non bro-
kered, in contrast with the brokered solutions that implements publish/subscribe
mechanisms on top of a classification of signals without taking into account the
involved components. Basically, brokered solutions rely on global state space e.g.
linda tuple spaces [15].

All SC notions are reflected in the JSCL API’s. Indeed, the design choices
underlying the JSCL implementation have been formally motivated in terms of
the SC. Hence, SC and JSCL can be regarded as a foundational framework and
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Fig. 1. JSCL-SC technological context

its programming counterpart for specifying, verifying and programming coordi-
nation policies of distributed services.

We envisage the impact of our approach on the service oriented computing
technologies as follows. Conceptually, the JSCL-SC framework adds a further
layer to the basic web service protocol stack (SOAP, UDDI, WSDL). The JSCL-
SC layer provides the formal and programming mechanisms to design, verify and
program web service coordination policies (e.g. a BPEL4WS orchestrator or a
WS-CDL choreography) on top of the basic service protocols. Figure 1 pictorially
illustrates the context of our approach.

In this paper we outline the main features of our framework. We refer to
[12, 13, 17, 27] for the details. We demonstrate the usefulness of JSCL in the
practical programming of coordination policies by some case studies. The focus
of our experiments has been on the design and implementation of the work-flow
of the coordination, taking into account the possibility of handling long-running
transactions in the style of SAGA compensations [14, 5].

This paper is organized as follows. In Section 2 we review the SC process
calculus. Section 3 outlines the architectures of the JSCL middleware. Section 4
discusses the case studies. Section 5 yields some concluding remarks.

2 Signal Calculus

In this section, we present a simplified version of SC focusing on session managing
only. We assume a set of topic names (ranged over by τ), a set of signal variables
(ranged over by x) and a set of signal names (ranged over by s, s1, s2...). In
the following the name n ranges over signal names and signal variables. Signal
names represent data exchanged among components and should carry additional
information even if this feature is not explicitly modeled here. Finally, we assume
a set of component names a, b, .... Hereafter, we adopt the notation a to denote
a set of component names.

The calculus is centered around the notion of component, written as a[B]RF ,
that represents a service uniquely identified by a name a, the public address of
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B ::= out〈n : τ c©τ ′〉.B (Signal emission)
| (ντ )B (Topic restriction)
| rupd (R) .B (Reaction update)
| fupd(F ).B (Flow update)
| B | B′ (Parallel)
| !B (Bang)
| 0 (Empty behavior)

Fig. 2. Behaviors

the service, with internal behavior B and interfaces R and F respectively called
reactions and flows.

Figure 2 displays the syntax of SC behaviors. The signal emission out〈n :
τ c©τ ′〉.B spawns signal n of topic τ over the session τ ′ and then continues as B.
Topics can be generated dynamically by restriction. Restriction acts as a binder
for the declared topic; namely, the occurrences of τ in (ντ)B are bound. The
calculus provides two primitives to allow a component to dynamically change its
interface: the reaction update rupd (R) .B and the flow update fupd(F ).B. The
former installs a new reaction R in the interface part of components and the
latter adds F to its flows. Recursive behaviors are obtained via replication !B
with the usual interpretation that there are infinitely many copy of B available,
namely !B is equivalent to B | !B. The empty and parallel constructs have the
obvious meaning.

Reactions describe how a component reacts upon the reception of a signal and
their syntax is given by the following grammar:

R ::= 0 | x : τ c©λτ ′ → B | x : τ c©τ ′ → B | R|R

The empty reaction 0 cannot react to any signal. The lambda reaction x :
τ c©λτ ′ → B is triggered by signals having topic τ independently from the actual
session the event belongs to. The check reaction x : τ c©τ ′ → B reacts only to
signals having topic τ issued for the session identified by the topic τ ′. Once a re-
action has been fired, the behavior B is spawned in the component and will start
its executed in parallel with the existing behaviors. Notice that for a lambda re-
action the name τ ′ is bound in the behavior B, while for a check reaction it is
a free name. Moreover, in both reactions the variable x acts as a binder for the
name of the received signal. Reaction composition allows a component to react
to different kinds of signal in different ways.

Flows describe the component view of the coordination policies. Their syntax
is defined as follows:

F ::= 0 | τ � a | F |F.

The empty flow 0 does not deliver any kind of signals, the single flow τ � a
delivers signals having topic τ to the components specified in the set a and,
finally, flows can be composed in parallel.
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Networks describe the component distribution and carry signals exchanged
among components (the syntax of networks is given below).

N ::= ∅ | a[B]RF | N ‖ N | 〈s : τ c©τ ′〉@a | (ντ)N

A network can be empty ∅, a single component a[B]RF , or the parallel composition
of networks N ‖ N ′. Networks handle signals exchanged among components.
The signal emission spawns into the network, for each target component, an
“envelope” 〈s : τ c©τ ′〉@a containing the signal and the target component name
a. Finally, restriction allows the scope extrusion of freshly generated topics over
networks.

2.1 Operational Semantics

We now present the operational semantics of the SC.
The structural congruence over reactions, flows, behaviors and networks is

the smallest congruence relation that satisfies the commutative monoidal laws
for (R, |, 0), (F, |, 0), (B, | , 0) and (N, ‖, ∅). Additionally, the following laws hold:

(ντ)0 ≡ 0, ((ντ)B) | B′ ≡ (ντ)(B | B′), if τ /∈ fn(B′)
(ντ)∅ ≡ ∅, ((ντ)N) ‖ N ′ ≡ (ντ)(N ‖ N ′), if τ /∈ fn(N ′)

and, if B ≡ B′,

x : τ c©λτ ′ → B ≡ x : τ c©λτ ′ → B′ (1)
x : τ c©τ ′ → B ≡ x : τ c©τ ′ → B′ (2)

where x can be alpha converted both in (1) and (2), while τ ′ only in (1).
Finally, for the structural congruence over networks the following equations

hold:

a[0]0F ≡ ∅,
F1 ≡ F2 B1 ≡ B2 R1 ≡ R2

a[B1]R1
F1

≡ a[B2]R2
F2

,
τ /∈ fn(R) ∪ fn(F ) ∪ {a}
a[(ντ)B]RF ≡ (ντ)a[B]RF

.

To simplify the definition of the reduction relation over networks, we introduce
an auxiliary function on flows. The flow projection, (F )↓τ , is inductively defined
as follows:

(τ � a)↓τ= a (τ � a)↓τ ′= (0)↓τ ′= ∅ (F1|F2)↓τ= (F1)↓τ ∪(F2)↓τ

Intuitively, the projection (F )↓τ takes a flow and a topic and yields the set of
names of components which have subscribed for events of topic τ . In other words,
when a signal having topic τ occurred, it must be delivered to all the subscribed
components, identified by the names in the set (F )↓τ .

The reduction relation → over networks is defined by the rules depicted in
Figure 3.
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a[rupd (R′) .B′ | B]RF → a[B′ | B]
R|R′

F (ReactionUpd)

a[fupd(F ′).B′ | B]RF → a[B′ | B]RF |F ′ (FlowUpd)

(F )↓τ= {b1, . . . , bn}
(Emit)

a[out〈s : τ c©τ ′〉.B′ | B]RF → a[B′ | B]RF ‖ 〈s : τ c©τ ′〉@b1 ‖ . . . ‖ 〈s : τ c©τ ′〉@bn

〈s : τ c©τ ′〉@a ‖ a[B]
x:τ c©τ ′→B′|R
F → a[B|{s/x}B′]RF (RCActivation)

〈s : τ c©τ ′〉@a ‖ a[B]
x:τ c©λτ1→B′|R
F → a[B|{s/x}{τ ′/τ1}B′]

x:τ c©λτ1→B′|R
F (RLActivation)

N → N ′

(NStep)
N ‖ N1 → N ′ ‖ N1

N ≡ N ′ N → N1
(NStruct)

N ′ → N1

Fig. 3. Operational semantics

Reactions can be added to a component by the rule ReactionUpd. The rule
extends the interface of the component named a by appending to the set of
installed reactions the new reaction. Similarly, the FlowUpd extends the flow in-
terface of a component by appending the new flow. The Emit, RCActivation and
RLActivation rules define notification dispatching: at emission time, component
a spawns into the network a signal targeted to all the components (ci ∈ b). Once
a signal envelope has been spawn into the network, the RCActivation or the
RLActivation rules can be applied in accordance with the kind of the installed
reactions. Notice that the application of these rules activates the behavior as-
sociated to the reactions applying the suitable variable substitutions. Finally a
check reaction has a stateless interpretation: after its execution, the reaction is
removed by the component interface.

2.2 Joining Events

To explain the SC programming model, we specify a work-flow synchronization
mechanism. Let us consider a network consisting of four components: an emitter
E, two intermediate components C1 and C2, and the join service J . The emit-
ter E starts the communications raising toward C1 and C2 two events having
different topics. Both components C1 and C2 perform an internal computation
and then notify their termination by issuing an event to the join service J . The
join service J waits for the termination of both components and then executes
its internal behavior B. The signals sent to C1 and C2 are both related to the
same session τ . This session is later used by the component J to synchronize the
work-flow. The two intermediate services C1 and C2 can concurrently perform
their tasks, while the execution of the service J can be triggered only after the
completion of their executions.
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This work-flow pattern can be specified by the SC network E ‖ C1 ‖ C2 ‖ J ,
where:

E � e[(ντ)out〈s : τ1 c©τ〉.out〈s : τ2 c©τ〉.0]0τ1�c1|τ2�c2

Ci � ci[0]x:τi c©λτ→out〈x:τi c©τ〉.0
τi�j , i = 1, 2

J � j[0]
x:τ1 c©λτ→rupd(x′:τ2 c©τ→B).0
0

The join component has only one active reaction installed for signals having
topic τ1. When the two intermediary services forward their signals, the envelope
containing the τ2 event cannot be consumed by the join, and remains pending
over the network. The reception of the τ1 envelope triggers the activation of the
join generic reaction. The reaction reads the session of the signal τ1 and creates
a new specialized reaction for the signal topic τ2. This reaction can be triggered
only by signals that refer to the session received by the τ1 signal. Once such kind
of signal is received, the behavior B is executed.

3 Java Signal Core Layer

The Signal Calculus has been used to formally drive the prototype implementa-
tion of a middleware, called Java Signal Core Layer (JSCL), aimed at program-
ming service coordination policies in an event notification based paradigm.

JSCL has been designed and implemented by a two-level architecture re-
flecting the structure of the SC. The lower level is called the Inter Object Com-
munication Layer (iocl). The iocl layer provides the primitives for handling
network interactions. Indeed, the iocl layer abstracts from the actual network-
ing technologies in order to hide the network complexity to the higher layer
called Signal and Component Layer (SCL). The naming facilities for identifying
components, the capabilities for data serialization and message delivering have
been implemented by the iocl layer. Several instances of the iocl may coex-
ist within a JSCL program. The basic idea is that each iocl instance acts as
the bridge among several network infrastructures (e.g. Web Services, CORBA,
remote methods, etc). Intuitively, the iocl represents the SC network and sup-
ports component distribution and the notification/delivery of messages to the
distributed components. The SCL layer provides all the facilities to create and
handle components, signals, reactions by introducing suitable Java API’s. Hence,
JSCL supports implementation of event-based coordination policies by enabling
Java-like programming techniques.

We do not discuss here the concrete implementation of the JSCL layers (we
refer to [27] for the detailed presentation). In order to give a flavor of how
JSCL has been implemented, we present the JSCL signal delivery protocol. This
protocol is displayed in Figure 4. Once the component S1 raises a new event, the
resulting notification is delivered to the list of components (S2) subscribed for the
corresponding signal type. The signal delivering is implemented by demanding
the local iocl service ioclL to serialize the message and to contact the remote
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Fig. 4. Signal delivery protocol

iocl service ioclR (Step 1). This step is performed in an asynchronous way (Step
2). Once the message has been received, the remote iocl service ioclR performs
the data deserialization and forwards the signal to the component S2 (Step 3).

4 Case Studies

To illustrate some of the features and the design-programming facilities made
available by our framework, we consider two small case studies. First, we address
the problem of composing Web Services in long-running transactional business
processes, where compensations must be dealt with appropriately. We illustrate
the JSCL implementation of a module which provides suitable primitives for
wrapping and invoking Web Services as activities in long-running transactions.
The second case study concerns the design and implementation of a car emer-
gency system. We assume a car equipped with a diagnostic system that continu-
ously reports on the status of the vehicle. When the car experiences some major
failure (e.g. engine overheating, exhausted battery, flat tires) the in-car emer-
gency service is invoked to select the appropriate tow-truck and garage services.

4.1 Implementing Long Running Transactions in JSCL

One of the emerging issues when aggregating Web Services is constituted by the
so-called long-running transactions (LRTs), i.e., the possibility of requiring a set
of Web Services interactions to be executed atomically. Note that the problem
is not just to coordinate the updates of a distributed repository (e.g., a data-
base), since components are loosely coupled and any of them is responsible for
maintaining the consistency on local data. In order to achieve atomicity, LRTs
may use compensations, namely, ad-hoc activities that are responsible for un-
doing the effects of partial executions when the overall orchestration cannot be
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completed. In fact, most of the standards proposed for orchestrating Web Ser-
vices (e.g. BPEL4WS [20]) include primitives for handling LRTs. Noteworthy, all
those proposals formalize the orchestration syntax but not the semantics, whose
informal description can make the intended behavior of constructs ambiguous
and can lead to different implementations of the same language.

Here, we take advantage of a formal framework for isolating and studying
LRTs since our goal is to build a framework for coordinating transactional com-
positions over a solid formal basis. The formal framework we choose is Näıve
Sagas [5], a process calculus for compensable transactions. From the existing
calculi for LRTs [6, 7, 10, 2, 9, 19, 23], we have chosen Näıve Sagas because it ex-
poses the orchestration mechanism behind LTRs. In fact, activities in a saga
are described at the high level of abstraction, where the elementary actions are
not interpreted. Transactional flows are processes built by composing with the
standard parallel and sequential composition plus the compensation pair con-
struct. Given two actions A and B, the compensation pair A ÷ B corresponds
to a process that uses B as compensation for A. Intuitively, A ÷ B yields two
flows of execution: the forward flow and the backward flow. During the forward
flow, A÷B starts its execution by running A and then, when A finishes: (i) B is
“installed” as compensation for A, and (ii) the control is forwardly propagated
to the other stages of the transactions. In case of a failure in the rest of the
transaction, the backward flow starts so that the effects of executing A must
be rolled back. This is achieved by activating the installed compensation B and
afterward by propagating the rollback to the activities that were executed before
A. Note that B is not installed if A is not executed.

With JSCL the transactional blocks are obtained by suitable wrappers, called
Transactional Components (TC). To implement the behavior of a transactional
component we need three kinds of topics

– SIGCMT is used to notify that the entire work-flow has been successfully
completed,

– SIGFW is used to activate the next steps of the chain within a transactional
work-flow (forward flow),

– SIGRB is used to activate the compensations (backward flow).

The JSCL implementation of the transactional component (TC) is illustrated
in Code 1 in the appendix. A TC is constructed (see lines 3-7) by specifying its
address, the main activity (A) to be performed and its compensation (C). The
component is initialized by creating the flows for both the SIGRB and SIGFW

topics (see lines 13-19). The declaration of reactions for TC is implemented
by the method initReactions . Notice that TC installs just one reaction for
handling requests of SIGFW (lines 23-59). The line 27 declares the activation
condition for the installed reaction. The first parameter, FW , declares the topic,
while the second parameter is used to specialize reactions on a session (null is
used for lambda reactions).

The block 28-58 contains the declaration of the task to be executed. Once
a signal having topic SIGFW is received, the method handle is invoked. The
components tries to execute the main activity A (line 33) and if a failure happens,
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Fig. 5. SAGA compensable process: an example

the rollback signal is sent out (lines 37-38) and the reaction terminates. If A is
successfully executed, the compensation for that session flow can be installed
(block 45-55). Notice that, in this case the rollback will be activated only for the
requests owning to the current session. A check reaction is used to handle this
case. The reaction for rollback requests consists of executing the compensation
activity C propagating the request along the backward chain.

The JSCL implementation of Näıve Sagas provides components implement-
ing parallel and sequential structural composition of transactional gates. The
composition constructs keep the structure of TC and can be reused in further
compositions. Figure 5 shows the (intuitive) implementation of the Näıve Sagas
compensable process P � A1 ÷ B1; A2 ÷ B2; A3 ÷ B3.

Correctness of the JSCL implementation of Näıve Sagas can be formally stated
via a semantic preserving encoding of Näıve Sagas in SC (we refer to [17] for the
technical treatment). Here, we simply provide via an example the intuition of
the encoding. We assume as given two functions [[A ÷ B]](x, τs) and [[B]]rb(x, τs)
that translate a Näıve Sagas process A÷B and the compensation B to SC inter-
nal behaviors. The two functions work on signal named x having session τs. We
also assume that the first function translates the successful return statements
into the signal emission out〈x : fw c©τs〉.rupd (x : rb c©τs → [[B]]rb(x, τs)) and
the exception rising into out〈x : rb c©τs〉.0, and that the second function trans-
lates the successful return statements into the signal emission out〈x : rb c©τs〉.0
and the exception rising into out〈x : ex c©τs〉.0. The Näıve Sagas compensable
process, previously described, is represented by the SC network [[P ]]:

[[A1 ÷ B1]] � p1[0]x:fw c©λτs→[[A1÷B1]](x,τs)
fw�p2

[[A2 ÷ B2]] � p2[0]x:fw c©λτs→[[A2÷B2]](x,τs)
fw�p3|rb�p1

[[A3 ÷ B3]] � p3[0]x:fw c©λτs→[[A3÷B3]](x,τs)
rb�p2

[[P ]] � [[A1 ÷ B1]] | [[A2 ÷ B2]] | [[A3 ÷ B3]]

Conceptually, our implementation of Näıve Sagas compensable processes add
a further layer to JSCL. This new layer exploits JSCL primitives to define the
behavior of transactional constructs according to Näıve Sagas. In other words,
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1 public c lass TransactionalComponent {
2 public TransactionalComponent (
3 ComponentAddress addr ,
4 AtomicTask A,
5 AtomicTask C,
6 ComponentAddress [ ] prev ,
7 ComponentAddress [ ] next ,
8 )
9 {

10 super ( addr ) ; i n i tRea c t i on s (A, C) ; i n i tF lows ( prev , next ) ;
11 }
12
13 public void i n i tF lows (
14 ComponentAddress [ ] prev ,
15 ComponentAddress [ ] next )
16 {
17 for ( int i =0; i<prev . l ength ; i++){ createFlow (FW, next [ i ] ) ; }
18 for ( int i =0; i<prev . l ength ; i++){ createFlow (RB, prev [ i ] ) ; }
19 }
20
21 public void i n i tRea c t i on s (AtomicTask A, AtomicTask C)
22 {
23 addReaction (
24 new Reaction (
25 // adds a lambda react ion re l a t ed
26 // to forward top ic .
27 new SignalType (FW, null ) ,
28 new HandlerTask (){
29 public Object handle ( S igna l s i g n a l ){
30 // Retreive the s i gna l sess ion top ic as SC lambda binder
31 Object s e s s i o n = ( ( SignalType ) ( s i g n a l . getType ( ) ) ) . g e tSe s s i on ( ) ;
32 try {
33 A. exec ( s i g n a l ) ;
34 } catch ( AtomicActionException e ){
35 // i f A in t e rna l l y f a i l s ,
36 // a s i gna l with type RB i s sent back
37 s i g n a l . getType ( ) . setTopic (RB) ;
38 emit ( s i g n a l ) ; return ;
39 }
40 // i n s t a l l s a react ion to handle r o l l b a c k
41 // coming backward and re l a t ed to the current
42 // context .
43 // The compensation in i n s t a l l e d only i f
44 // the main a c t i v i t y has been cor r e c t l y done
45 addReaction (
46 new Reaction (
47 // adds a check react ion re l a t ed
48 // to forward top ic .
49 new SignalType (RB, s e s s i o n ) ,
50 new HandlerTask (){
51 public Object handle ( S igna l s i g n a l ){
52 // executes the compensation
53 C. exec ( s i g n a l ) ; emit ( s i g n a l ) ;
54 }
55 })
56 ) ;
57 }
58 })
59 ) ;
60 }
61 } Code 1: Transactional Component

Näıve Sagas compensable processes become a specialized variant of JSCL where
gates come equipped with few carefully selected signals that are tailored to the
treatment of web service transactions. The underlying JSCL layer makes the
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implementation fully distributed. The prototype implementation of Näıve Sagas
compensable process in JSCL has been first presented in [4]. We refer to [27] for
a more detailed treatment of the implementation issues.

4.2 The Car Emergency System

In this section we illustrate how the SC can be used for modeling the service
coordination issues of the SENSORIA car emergency system [29] where a car
manufacturer provides an assistance service to its customers. Once a customer’s
car breaks down, the system attempts to locate a garage, a tow truck and a rental
car service so that the car is towed to the garage and repaired meanwhile the
customer may continue his travel. The inter-dependencies between the booking
services are summarized as follows:

– the first step is to charge the credit card with a security amount;
– before looking for a tow truck, a garage must be found as it poses additional

constraints to the candidate tow trucks;
– if finding a tow truck fails, the garage appointment must be revoked;
– if renting a car succeeds and finding either a tow truck or a garage appoint-

ment fails, the car rental must be redirected to the broken down car’s actual
location;

– if the car rental fails, it should not affect the other services.

To describe the work-flow and the inter-dependencies among services we exploit
the standard Business Process Modeling Notation (BPMN [16]) (see Figure 6).
Notice that the specification above exploits the transactional and compensation
facilities of BPMN.

Charge
Credit Card

Revoke
Charge

Cancel Garage
Appointment

Order Garage
Appointment

Order
Tow Truck

Cancel
Tow Truck

Order
Rental Car

Redirect
Rental Car

Fig. 6. Car emergency system: the BPMN Specification
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The Car Emergency System: The SC specification. We now formally
describe the Car Emergency System in SC. Each participant is represented by a
SC component making use of the three types of signals below:

– τf is used by forward signals. These signal propagate the information on the
completion of previous activities in the work-flow

– τr is used by rollback signals. Rollback signals are backwardly propagated
by components when their compensations have been executed;

– τn is used to notify the current work-flow session to components that have
to synchronize several work-flow paths.

A component that represents a BPMN activity is a transactional component
and can instantiate either a reaction that handles τf signals or one that handles
τr signals. We now specify the basic building block of the SC specification trans-
actional component TC = TC(a, A, C,−−→prev,

−−→
next) where a denotes the location

of the component, A the internal behavior and C the compensation. We assume
that it propagates τf signals to the components in

−−→
next and τr signals to the

components in −−→prev. The boolean parameter sub states if the component is a
sub-transaction. In the following, for the sake of readability, we use prev and
next to denote the sets −−→prev and

−−→
next, respectively. Hereafter, we also assume

that:

1. if A successfully terminates, then a τok signal issued;
2. if A fails, then an exception (a τexc signal) is raised to inform the component

to start the backward flow

TC(a, A, C, prev, next, sub) � a[0]RT C(A,C,sub)
τf �next|τr�prev|τexc�a|τok�a

where:

RTC(A, C, sub) �

x : τf c©λτ →

rupd

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x : τok c©τ →

rupd

⎛

⎜
⎜
⎝

x′ : τr c©τ →
C.
out〈x′ : τr c©τ〉.
0

⎞

⎟
⎟
⎠ .

out〈x : τf c©τ〉.0
x : τexc c©τ → Bexc(x, τ, sub)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

|

A

and:

Bexc(x, τ, sub) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

out〈x : τr c©τ〉.0 if sub = false

rupd

⎛

⎝
x′ : τr c©τ →

out〈x′ : τr c©τ〉.
0

⎞

⎠ .

out〈x : τf c©τ〉.0
otherwise
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In the initial state, the component TC can react only to a τf signal. Hence,
the session τ starts and A is executed. Concurrently with the activity A, the
component installs the reactions to check termination of A (i.e. the emission
of signal τok or signal τexc). If the execution of A is successful, a check re-
action for a further rollback notification (τr) is installed, and the τf signal
is propagated to the successive stages in the work-flow (out〈x : τf c©τ〉.0).
When a τr signal for session τ is received, the compensation C is executed
and the rollback signal is propagated to previous stages (out〈x′ : τr c©τ〉.0).
Notice that two handlers (Bexc) for the exception of the main activity are
provided, according to the sub parameter. In the first case, the handler sim-
ply starts the backward flow, raising a rollback signal. In the second case,
the handler propagates the τf signal, since an error of the sub-transaction
should not affect the computation of the other components. Moreover the com-
ponent installs a reaction for τr to forward backward flow without executing the
compensation.

A sequential work-flow is specified as a chain of transactional components by
setting the next and prev sets suitably. To model the parallel branch, we define
the collector and emitter components as follows:

Emitter(a, prev, next, collector) �
a[0]

x:τf c©λτ→rupd(x′:τr c©τ→rupd(x′′:τr c©τ→out〈x′′:τr c©τ〉.0)).out〈x:τn c©τ〉.out〈x:τf c©τ〉.0
τf �next|τr�prev|τn�{collector}

Collector(a, prev, next) �
a[0]

x:τn c©λτ→rupd(x′:τf c©τ→rupd(x′′:τf c©τ→rupd(x′′′:τr c©τ→out〈x′′′:τr c©τ〉.0.out〈x′′:τf c©τ〉.0)))
τf �next|τr�prev

The emitter represents the entry point of the parallel branch. Basi-
cally, it activates the forward flow of next components, and synchro-
nizes their backward flows. The synchronization mechanism is implemented
by installing two reactions for the topic τr and the session τ (through
rupd (x′ : τr c©τ → rupd (x′′ : τr c©τ → ...))). After that the synchronization
mechanism has been installed, the emitter activates the forward flow
(out〈x : τn c©τ〉.out〈x : τf c©τ〉.0). Notice that the component emits two signals:
one having topic τf and the other one having topic τn. The first signal is delivered
to the components representing the parallel activities. The other one is delivered
to the collector, informing it of the received session that will be later used by
it to implement its synchronization. When the synchronization of the backward
flow takes place, the emitter forwards the rollback signal (out〈x′′ : τr c©τ〉.0) to
the prev components.

Similarly, the collector component is responsible to implement the synchro-
nization mechanism for the forward flows and to activate the backward flows of
the parallel components when a τr signal is received. Notice that the collector
exploits a τn signal to get information about the session τ .

Summing up, the car emergency system is specified by the following SC
network:
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TC(card, ChargeCredit, RevokeCredit, {}, {garage}) ‖
TC(garage, OrderGarage, CancelGarage, {card}, {e}) ‖
Emitter(e, {garage}, {truck, car}, {c}) ‖
TC(truck, OrderTowTruck, CancelT owTruck, {e, car}, {c}) ‖
TC(car, OrderCar, RedirectCar, {e}, {c}) ‖
Collector(c, {truck, car}, {})

The Car Emergency System: the JSCL implementation. The JSCL
middleware come equipped with an environment in the form of an Eclipse plug-
in that supports the design and development of service coordination policies.The
JSCL development environment is composed by three layers: an editor that per-
mits to graphically model service coordination policies, a model transformation
that compiles a model into Java code and the JSCL middleware as runtime sup-
port. Our development methodology consists of three steps.The first step consists
of the graphical definition of the coordination policy of services. The graphical
model obtained is then used as input of a compilation facility that generates the
JSCL code where the internal logic of each service is rendered through suitable
annotations. Finally, the annotations must be finalized to implement the internal
behavior of each service.

The JSCL graphical notation captures the sequence of activities via the de-
scription of the network topology of components involved in the work-flow. This
notation has some similarities with BPMN. The main difference is that BPMN
defines directly the flow of the messages exchanged among components exploit-
ing a standard flow-chart notation. Our notation defines the correlation among
services, while the message sequence depends by the component internal behav-
ior and is not directly caught at design time. Figure 7 provides the snapshot of
the design of the Car Emergency System within the JSCL environment.

Notice that our design exploits a specialized JSCL AndComponent (a general-
ization of the Join component introduced in Section 2). The first AndComponent
is used to synchronize the backward flow before the Garage compensation. The
second AndComponent has a twofold role: (i) to synchronize the forward flow,
and (ii) to execute the compensation of RentalCar if both the OrderTowTruck
fails and the RentalCar main activity has been completed successfully. Notice
also that the OrderTowTruck compensation is not executed if the RentalCar
fails. The EndPoint component represents the BPMN final state. This compo-
nent simply forwards the received signals without change their type.

The graphical model is then used to generate the template JSCL code where
the internal logic of each component has not yet been implemented. Below we
show the template code of the ForwardTruck.

protected class ForwardTruck extends SignalHandlerTask {
public Object handle ( Signal s ){

try {
TruckComponent parent = (TruckComponent) getParent();
// Program here the internal logic
parent.state.set(s,ID(), true) ;
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Fig. 7. The JSCL Graphical Design

emit(s) ;
}
catch (Exception e ) {
s.setType (ROLLBACK) ;
emit ( s ) ;

}
}

}

Once the template code has been generated, it is possible to implement the
component internal logic using standard Java programming techniques.

5 Concluding Remarks

The SC-JSCL framework has been design to support the specification, the im-
plementation and verification of coordination policies for services oriented ap-
plications. Our main goal is to provide general facilities to implement high-level
languages for service oriented architectures (e.g. BPEL4WS [20], BPML [25],WS-
CDL [28]). The strict interplay between SC and JSCL permits to drive and verify
implementation of such languages.

A number of approaches have been introduced to provide the formal foun-
dations of standards for service orchestrations and service choreographies. The
SC-JSCL framework differs from these approaches (COWS [21], Global Calcu-
lus [8], λreq [1] ORC [24], SCC [3], SOCK [18] to cite a few), since it focus on a
lower level of abstraction, merging the theoretical formalization with the imple-
mentation requirements. Indeed, the emphasis in SC-JSCL is just on designing
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general facilities to program coordination patterns on services by exploiting the
notion of event notification.

There are a number of directions that we are pursuing for the future devel-
opment of our framework. In [13], we introduced an algebraic structure over
topics. This allows us to implement complex coordination logics directly inside
the signal type. Moreover, this provides the foundational description of BPMN-
like gateways. We intend to investigate this issue in order to design a BPMN
work-flow engine based on the SC/JSCL framework. Furthermore, we plan to
extend the SC/JSCL framework with facilities for reasoning and proving prop-
erties of coordination policies. On one hand, we are extending the compilation
facilities so to generate both the source JSCL code and the SC specification out
of the JSCL graphical notation. On the other hand, we plan to integrate in our
environment toolkits that provide verification and analysis capabilities for Java
programs and other semantic checker (e.g. bisimulation and model checkers) for
the SC specification.
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Abstract. We analyze the main motivations that lead to the present
need for supporting continuous software evolution, and discuss some of
the reasons for change requirements. Achieving software that is both
dynamically evolvable and dependable is our long-term research goal.
We do not attempt here to propose a unified solution to dissolve the
apparent oximoron, i.e. to reconcile these apparently conflicting goals.
Rather, we enlighten different facets of the problem by distilling our
experience through three research experience reports. We discuss the
lessons learned from the state of the art and practice exemplified by our
approaches and outline the directions of possible future research.

1 Introduction

Software evolution has been recognized as a key issue since many years, and
several approaches have been identified to tame it. The pioneering work by Be-
lady and Lehman in the late 1970s pointed out that evolution is intrinsic in
software: as an application is released for use, the world in which it is situ-
ated changes, and therefore new demands arise [26]. Much work was devoted
to identifying design techniques that would accommodate future changes [36],
and object-oriented design and languages became widely adopted solutions in
practical software development. Current progress in the field is documented by
the series of specialized workshops, such as IWPSE [1], and working groups
sponsored by many organizations, such as [16].

What is new today is the unprecedented degree and speed of change. Software
lives in an open world with changing requirements [8]. Software systems never
stabilize, but appear to be in a permanent β–version. Besides, software evolution,
which was traditionally practiced as an off-line activity, nowadays must often be
accommodated at run–time. Traditionally, domains where new features or fixes
had to be incorporated into a running software were rare, a notable exception
being telecommunications. This requirement is now arising for applications in
many domains, e.g. those supporting context-aware behaviors.

The challenging problems to be faced to support such high degrees of dy-
namism and decentralization, are further exacerbated since, more and more
often, the applications must also exhibit high degrees of dependability, so that
reliance can be justifiably placed on the services it delivers [35]. As now commonly
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understood, dependability encompasses both functional and nonfunctional soft-
ware qualities, such as performance, latency (or even guaranteed response time),
and availability.

The conjoined need for evolution and dependability is already showing today
and is likely to become more and more relevant in the future [17]. Examples can
be found in ambient intelligence settings—such as assisted living—and in busi-
ness processes supporting dynamic enterprise federations. Unfortunately, how-
ever, continuous change and dependability are viewed and practiced today as an
oxymoron, i.e. as conflicting requirements.

In response to the need for adaptation, software systems have been evolving
from closed, static, and centralized architectures to Service Oriented Architec-
tures (SOA), where the components and their connections may change dynami-
cally. So, software systems are increasingly constructed to provide useful services
that are exposed for possible use and discoverable by clients through network
infrastructures. Services can be composed, recursively, by external parties to pro-
vide new added-value services. This emerging scenario is open—because new ser-
vices can appear and disappear—, dynamic—because compositions may change
dynamically—, and decentralized—because no single authority coordinates all
developments and their evolution.

In our opinion, to support software evolution and reconcile it with dependabil-
ity, the entire software development process must be revisited in terms of meth-
ods, techniques, languages, and tools. In particular, verification and validation
concerns, which in traditional software can be confined within development-time
activities, now become perpetual, and extend to software operation.

The paper starts by analyzing the main motivations for supporting continuous
change, and classifies the nature of change requirements. It then illustrates three
approaches that involved the authors. These contributions describe different at-
tempts to meet dependability requirements for highly evolvable software. Rather
than proposing a unified solution to the problem of reconciling the terms of the
oxymoron, i.e. of building dynamically evolvable dependable software, which re-
mains our long-term research goal, we decided to enlighten different facets of the
problem by distilling our experience around a common case study. We discuss
the lessons learned from the state of the art and practice exemplified by our
approaches and outline the directions of possible future research.

2 Change Requirements and Research Challenges

In this article, we consider software evolution, as driven by frequent changes
in the context embedding the software, which therefore requires continuous dy-
namic adaptation. That is, we focus on how software running and providing
service can deal in-line with changes in its context, differently from what hap-
pens in refactoring and reengineering, which as off–line design activities.

Context changes may come from many different sources, and we do not in-
tend here to provide an exhaustive taxonomy. It may be useful, however, to
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emphasize two relevant classes of, possibly overlapping, contexts and changes,
which inspired several of the case-studies we tackled in our research.

Business context. Nowadays, enterprises federate their operations by network-
ing via Web services, to reduce time-to-market. These federations change
dynamically according to evolving business goals. For example, a supplier
may change its alliance with the distributors and the retailers to improve
its sales, or to balance performance and reliability of the overall process.
This occurs as the system is operating, according to dynamically gathered
business information.

Physical context. In pervasive, ubiquitous applications, user support has to
be provided to mobile users, who move across different physical contexts.
The change of spatial context, generated as users move, may imply further
context changes with respect to available resources, like connectivity, energy,
and available software services. Sometimes context changes are generated by
sensing physical data other than location, e.g., light or temperature. What
is common, however, is that such changes occur while the system is in oper-
ation, and they require that system behavior evolves as soon as the change
is detected.

In both cases, the underlying notion of change leads to the need for the soft-
ware to achieve different degrees of (self-)adaptation/evolution, and at different
levels of granularity, from software architecture to line of code. For instance, in a
federated information system, to achieve the required flexibility, the structure of
the bindings among services must be defined dynamically as business processes
are operational, to maximize the overall quality of service. Similarly, in ambi-
ent intelligence applications, often the requirements for context-aware behaviors
imply solutions at the software architecture level where the bindings among the
components of a distributed software configuration change dynamically because
of changes in the physical context. As an example, in an assisted living setting,
a request to lower the temperature in a room may be bound to sending a com-
mand to the air conditioning system or to sending a command to an actuator
that opens the window, depending on the outdoor temperature. In this example,
the physical context provides temperature sensing information, which affects the
system behavior. The physical context can further change as a consequence of
user mobility. For example, if the user moves to a different location, new ways of
achieving the same goal of lowering the temperature may become available. The
software might be able to discover them and adapt its behavior to maximize the
user satisfaction.

The nature of the changes we identified above, and the need to cope with
them in real-life systems, challenge our current ability to design software. On the
one hand, we need to develop principles and techniques for self-organizing soft-
ware architectures. On the other, as we observed, dynamic change conflicts with
other requirements, most notably with dependability. The main, long-term, open
questions are whether dynamic change can coexist with stringent dependability
requirements, and how this can be achieved through sound design principles and
methods.
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3 Approaches to the Development of Adaptable Evolving
Software

In this section we present three approaches that address the problem of evolv-
ing adaptable services from three different perspectives of the service life cycle,
the specification, the deployment and the continuous verification. Then first ap-
proach targets business process modelers and final users, i.e. business managers,
operators and clients, and provides adaptation by a combination of policies and
SOA. Then we present the approach taken in the PLASTIC project to provide a
(limited) form of service adaptation at deployment time. Finally, we describe a
unified approach to lifelong verification of dynamic service compositions, which
encompasses development time—when service compositions are model-checked—
and run time—when orchestrated service executions are monitored for compli-
ance with correctness properties.

To clarify our approaches to dependable adaptation and provide concrete
grounds for a preliminary discussion on their integration, we use a common run-
ning case study, namely the On Road Assistance scenario, from SENSORIA [24].
In this scenario, when the diagnostic system of a (very expensive) car of brand
CNX reports a severe failure, such that the car is no longer drivable, a notification
message is sent to the CNX assistance center, and then the OnRoadAssistance
workflow is launched with the accident data, to detect and book appropriate
recovery services in the area: garage for repair, tow truck and rental car. After
booking, the diagnostic data are automatically transferred to the selected garage,
to identify in advance the spare parts needed to perform the repair. Similarly,
the GPS data of the stranded vehicle are sent to the towing service. Besides, the
driver has to deposit a security payment before being able to order the services.

3.1 An Approach to Business Process Flexibility

The work presented in this section is part of the endevour of the EU IST
project SENSORIA (Software Engineering for Service-Oriented Overlay Com-
puters), which aims at a novel comprehensive approach to the development of
service oriented software, where foundational theories, techniques and methods
are fully integrated in a pragmatic engineering process [43]. A key requirement
in this respect is good support for flexibility, to accommodate the variability
of the business domains where the systems are deployed, as we discussed in
the previous sections. To this end, we propose StPowla, a Service–Targeted
Policy–Oriented WorkfLow Approach, a novel way to integrate Business Process
Management (BPM), Service Oriented Computing (SOC), and Service Oriented
Architecture (SOA). StPowla introduces a combination of policies and work-
flows that permits to capture the essential requirements of a business process
using a workflow notation and at the same time permits to express variability
in a descriptive way by attaching policies to the workflow. From BPM we adopt
techniques to model, enact and monitor the business process; SOC and SOA
are currently the most promising approach to the design and development of
software that can meet the flexibility requirements of the modern enterprises.
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The approach. StPowla addresses the integration of business processes and
Service Oriented Architectures at a high level of abstraction, that is, close to the
business goals. StPowla exploits this integration to cope with the variety and
variability of business requirements, at the same time avoiding that too many
details obfuscate the essence of the business workflow. Its driving ideas are that

– a business process is described by a core workflow, designed by a business
modeller, i.e. a professional knowledgeable in the business domain at hand.
This model captures the essence of the process as the composition of tasks à
la BPMN [34], i.e. document transformations that are conceptually elemen-
tary in the domain, while accomplishing a meaningful step in the business;

– each task can be characterized along several service level (SL) dimensions,
with respect to the way it is carried out, i.e. the kind/quality of resources it
uses. We use service level in a generalized sense, with respect to the common
understanding in the SOA community. Each dimensions is essentially a type
of service level, and is used to constrain the admissible implementations of
a task. Often dimensions coincide with commonly used service level types,
like bandwidth and cost. However, in StPowla, the dimensions relate also
to domain specific resources, e.g. authorizing roles (simple, double autho-
rization), expertise holders (automatic system or human expert, or both),
etc. The dimensions must have a natural, clear interpretation in the domain,
since they are the key element in the hands of the stakeholders to adapt a
core workflow to their varying requirements;

– the business modeller is in charge of identifying the relevant dimensions,
balancing the needs of the business stakeholders and of the IT professionals
that implement the tasks;

– the stakeholders (mostly informatically näıf) can adapt the core workflow to
their needs by attaching policies to various elements of the workflow;

– adaptation occurs either by refinement or by reconfiguration. In the latter
case, the policy prescribes reconfiguration actions, out of a predefined set,
which includes, for instance, task insertion and deletion. We have refinement
when a policy constrains the admissible characteristics of a task along chosen
dimensions;

– the stakeholders can add/delete policies at any time, once the workflow has
been installed in the system supporting the business: the changes will affect
the enactment of all the instantiations to follow.

Key integration factors. To address its goals, StPowla integrates three
main ingredients: a graphical workflow notation, a policy language, and SOA.
Although intended to be independent of the workflow notation, some high level
constructs to build processes out of tasks are presented in [15], and the related
UML profile [25]. Here, we can be satisfied with the simplest combinators: se-
quence, choice, and fork/join, as they are available in UML activity diagrams,
for instance.

Currently, we use Appel [40,42], a general language for expressing policies
in a variety of application domains, which was designed to support a clear sep-
aration between the core language and its specialization for concrete domains.
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This fosters its use in different business domains. Besides, it has two character-
istics that support its use by non technical users: it has a friendly interface to
define policies in tabular form, and has been given formal semantics via a map-
ping to DSTL [32]. An associated technique to detect conflicts when policies are
deployed, providing a first early form of dependability [31].

With respect to SOA, StPowla’s users, though informatically näıf, should
be aware that the business is ultimately carried out by e–services, i.e. computa-
tional entities that are characterized by two sets of parameters: the invocation
parameters, related to the functionality, and the service level parameters. The
stakeholders should understand that they can adapt the core workflow by acting
on the SL parameters, besides reconfiguring the core.

With respect to implementation, the architecture of the StPowla run-time
engine features two execution environments, one for the workflows and one for
the policies, interacting via signals that triggers policies from the tasks, and carry
back results. The architecture follows naturally from the structure of StPowla
specifications, which consist of a workflow part and a policy part.

The policy language. In Appel a policy consists of a number of policy
rules, grouped using a number of operators (sequential, parallel, guarded and
unguarded choice). A policy rule consists of an optional trigger, an optional
condition, and an action. The applicability of a rule depends on whether its con-
ditions are satisfied, once its trigger has occurred. A condition expresses prop-
erties of the state of the system and of the trigger parameters. Conditions may
be combined with and, or and not, with the expected meaning. Conditions are
either domain specific or more generic (e.g. time) predicates; triggers are domain
specific. Actions are domain specific: those introduced to support StPowla are
discussed below. aslo triggers are domain specific: since in StPowla we associate
policies to tasks, we introduce triggers signalling the entry into (taskEntry) or
the exit from (taskExit) a task.

Tasks, policies, and services. Tasks are the units where BPM, SOA and poli-
cies converge: the intuitive notion of task is revisited to offer a novel combina-
tion of services and policies. To specify tasks, we specialize Appel to deal with
software services, by introducing action req(<Signature>, <InvocationArgs>,
<RequiredServiceLevels>) for service discovery and invocation. The semantics
of this action is to find a service as described by the first and third arguments,
bind it, and invoke it with the values in the second argument. This dynamic ser-
vice invocation semantics is inspired by λreq[11] and SRML [28]. With this action,
a default policy can be associated with each task, so that when the control reaches
the task, a service is looked for, bound and invoked, to perform the functionality
of the task, with default constraints on any pertinent SL dimension.

Adaptation by refinement occurs when the user overrides the default policy
with his own SL constraints, using the composition operators of Appel. SL
dimensions are specified in the domain description by their name, set of val-
ues, and applicable operators. For instance, dimension Automation takes values
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Fig. 1. The On Road Assistance business process

in {automatic, interactive}, where the former excludes the involvement of
humans in the fulfillment of the task.

Conditions and arguments to triggers and services can refer to the execution
state via attributes, i.e. properties of tasks and workflows. There are also global
attributes, valid through the workflow of an application. Attributes values are
the principal source of information used to adapt the business process: they are
used in policy conditions and required SL specifications. Appel is specialized
with actions to set and get the attributes values, with standard syntax.

Attribute types are introduced at different points in the development: a few
predefined ones, like Integer, etc., come with StPowla and are applicable to
any task or workflow. Most attributes types are part of the domain specific
specialization of the Appel component of StPowla, i.e. they come from the
ontology of a particular business domain, and often are nothing else but SL
dimensions. The set of values of an attribute can grow at operation time, or
even utterly new types can be introduced, whenever more choices are offered to
the stakeholders by new service implementations.

The running example in StPowla. To attack the On Road Assistance sce-
nario in StPowla, we first develop the core workflow: the UML4SOA [25] ac-
tivity diagram in Figure 1 should be self explaining.

Let us see a few policies that adapt the core workflow to different contexts.
The first one allows a driver who knows and trusts some of the repairing and
towing services of his own town, to choose them directly:

P1: If the car fault happens in the driver’s town, then let him select the services
to be used. Otherwise choose the services automatically.

Another policy may be introduced to allow the driver to book also a hotel room,
if she is far from home, and does not want to go home and then come back to
recover her car:

P2: If the car fault happens far from home, also book a hotel room.

Finally, since the whole workflow entails communications with the CNX centre,
the driver may be concerned with costs, and choose a low cost connection, as a
standard:

P3: Use low cost connections.

The scope of the policies is different: P1 and P2 apply to a single task, while P3
is a global, unconditional policy. P1 and P3 are examples of refinement, since



Dynamically Evolvable Dependable Software: From Oxymoron to Reality 337

they entails choosing between two implementations of a task, while P2 entails a
reconfiguration, since a new task is needed in the workflow. In the following, for
sake of space, we will concentrate on the technical facets related to refinements.

To formalize the policies, the modeler defines two attributes: driverTown,
of type Town, bound to the driverś home town, and crashLocation, of type
Location, bound to the car crash location, as detected by the embedded car
GPS. Both are workflow attributes. Moreover, commCost is a global attribute, of
type CommCost, a domain dependent SL dimension with values in {low, high}.
We will also use the predefined SL dimension Automation.

P1 formalization. This policy applies to task selectBest. It is defined as a
sequence, the first argument being the request of an interactive choice and the
second one dealing with the automatic case. In Appel , operator seq checks its
second argument only if the first one is not applicable, here only if the crash
location is different from the driver’s town. Hence:

P1: appliesTo selectBest
when taskEntry([])
if in(thisWorkflow.crashLocation, thisWorkflow.driverTown)
do req(main, [], [Automation = interactive])

seq when taskEntry([])
do req(main, [], [Automation = automatic])

P3 formalization. This policy simply sets the global attribute commCost:

P3: do thisApplication.commCost = low

Global policies are executed as soon as they are installed. So, once installed,
P3 will influence all subsequent service searches that depend on the value of
commCost. Note that the user is unaware of which task actually uses the com-
munication services that are affected by this attribute, since they will be buried
in the implementation. However, the fact that the attribute is available to the
user, has to be seen as a requirement by the implementors. Interesting ways to
fulfill such a requirement are presented in the next sections.

Discussion. Of course, it would be possible to define a detailed business model
that encapsulates all the options, but it is typical that while the essential process
remains the same, the policies change. In the running example, the default in-
stallation would include P1-P2, but the driver may discard some: may be, she
does not care of P1, since she has no knowledge about garages, neither of P2,
since she can stay with friends. The driver might install P3, but in some situa-
tions, e.g. if she is scared enough at night, she might override her default choice,
as more expensive communications will provide more reliable connections, hence
a likely prompter rescue.

More in general, the identification of the SL dimensions is the key aspect of
StPowla, with respect to both adaptation and dependability. In particular,
StPowla addresses adaptation to changes in the business context: if an exten-
sion of a dimension, or an utterly new dimension, is needed, new services can be
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developed/searched to take care of the extension, and new policies can be de-
fined and put in place, without the need of intervention on the already existing
services and policies.

With respect to dependability, StPowla intends to be a bridge between
high level analysis, likely those advocated in [27], which may be performed on
the workflows, and the subsequent development phases. As usual in a divide–
and–conquer approach, the properties assessed at the workflow level assume
that services offering the required service levels are available, and therefore act
as requirements for the software processes procuring such services, let it be by
in–house development, out–sourcing, buying, exploiting open source projects,
and searching registries. The identified SL dimensions, together with the task
functional specifications, provide the guiding grid for the procurement activities.

3.2 An Approach to Adaptable SOA

In this section we introduce the approach to adaptation taken in the IST PLAS-
TIC project, whose goal is the rapid and easy development/deployment of self-
adapting services for B3G networks [38]. A more extensive presentation of the
approach can be found in [4,5].

The PLASTIC development process model relies on model-based solutions to
build self-adaptable context-aware services. In PLASTIC a service is equipped
with a functional specification that describes behavioral aspects of the mod-
eled service, and with a Service Level Specification (SLS) that characterizes the
Quality of Service (QoS) that the service can offer to a user in response to her
request. Thus the notions of offered SLS and requested SLS are introduced to
address the extra-functional properties that will be used to establish the Service
Level Agreement (SLA) between the service provider and the service consumer.
The SLA is an entity modeling the conditions on the (possibly negotiated) QoS
accepted by both the service consumer and the service provider. SLA represents
a kind of contract that is influenced by the service request requirements, the
service description and the context where the service has to be provided and
consumed (i.e. the union of provider-, network-, and consumer-side context).
The contractual procedure may terminate either with or without an agreement.

Accounting for the heterogeneous nature of B3G network-side context, the
PLASTIC platform needs to deliver and deploy: (i) provider-side adapted ap-
plications to be exposed as services able to offer different SLSs depending on
the provider capabilities; (ii) consumer-side adapted applications able to suit-
ably consume the dynamically discovered services so to guarantee the desired
service’s quality expressed within the SLS requested by the user.

Both consumer- and provider-side applications must correctly run on the re-
spective target devices: this requires the ability to reason on programs and envi-
ronments in terms of the resources they need and offer, respectively (i.e. resource
demand and resource supply), and the ability to suitably adapt the application
to the environment that will host it.

PLASTIC’s service code (on both consumer and provider side) consists of two
parts: the core and the adaptive code. The core code is the frozen portion of the
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pub l i c adap tab l e c l a s s Connect ion {
pub l i c adap tab l e vo id send ( ) ;
pub l i c adap tab l e vo id connect ( ) ; . . .

}
a l t e r n a t i v e UMTS adapts Connect ion {

pub l i c send ( Loca t i on crashLoc , Data accData ) { /∗ s end s v i a UMTS∗/ . . . }
pub l i c connect ( ) { /∗ connect s v i a UMTS∗/

Annotat ion . r e s o u r c eAnno t a t i o n ( ”UMTS( t r u e ) ” ) ; . . . }
}
a l t e r n a t i v e WiFi adapts Connect ion {

pub l i c send ( Loca t i on crashLoc , Data accData ) { /∗ s end s v i a WiFi∗/ . . . }
pub l i c connect ( ) { /∗ connect s v i a WiFi∗/

Annotat ion . r e s o u r c eAnno t a t i o n ( ”WiFi ( t r u e ) ” ) ; . . . }
}

Fig. 2. An adaptable class

application and represents the invariant semantics of the service. The adaptive one
is a “generic code” that represents the degree of variability that makes the code
capable to adapt to the execution contexts. This variability based on physical con-
textual information and consumer needs can be solved hence leading to a set of
alternatives. When a service is invoked, a run-time analysis is performed (on the
available models) and, depending on the analysis results, a new alternative might
be selected among the available ones. The generic code is written by using the
extended version of the Java language supported by the CHAMELEON frame-
work. CHAMELEON allows the development of services that are generic and can
be correctly adapted with respect to a dynamically provided context. The con-
text is characterized in terms of available resources, hardware and/or software.
The approach enables the correct adaptation of the generic code w.r.t. a given
execution context [19,29], and offered and requested SLSs. The framework (fully
implemented in Java) is composed of the following 5 components:

Development Environment. A standard Java development environment that
provides developers with a set of ad-hoc extensions to Java for easily specifying,
in a flexible and declarative way, how the consumer and provider service code
can be adapted. Methods are the smallest building blocks that can be adapted.
The standard Java syntax is enriched by new key-words to specify: adaptable
classes that are classes that contain one or more adaptable methods ; adaptable
methods that are the entry-points for a behavior that can be adapted; finally,
adaptation alternatives that specify how one or more adaptable methods can
actually be adapted. The output of this step is an extended Java program, i.e. a
generic service code. In Figure 2 we present a snippet of a consumer’s adaptable
code. The adaptable class Connection contains two adaptable methods : send and
connect (introduced by the key-word adaptable). Adaptable methods do not have
a definition in the adaptable class where they are declared but they are defined
within adaptation alternatives (see the keywords alternative and adapts). It is
possible to specify more than one alternative for a given adaptable class. The
Connection class has two alternatives: one connects and sends location and data
via the UMTS interface and the other one via the WiFi interface.
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pub l i c c l a s s Annota t i on {
pub l i c s t a t i c vo id r e s o u r c eAnno t a t i o n ( S t r i n g ann ) {} ;
pub l i c s t a t i c vo id l o opAnnota t i on ( i n t n ) {} ;
pub l i c s t a t i c vo id c a l l A n n o t a t i o n ( i n t n ) {} ;

}

Fig. 3. Annotation class

Resource Definition:
define Energy as Natural
define Bluetooth as Boolean
define Resolution as {low, medium, high}

Resource Demand:
{Bluetooth(true),Resolution(high)}
Resource Supply:
{Bluetooth(false),UMTS(true),Resolution(low)}

Fig. 4. A resource definition, a resource demand and a resource supply

Annotations may also add information about particular code instructions (see
the keyword Annotation). Annotations are specified at the source code level by
means of calls to the “do nothing” methods of the Annotation class shown in
Figure 3. In this way, after compilation, annotations are encoded in the bytecode
through well recognizable method calls to allow for easy processing. Annotations
can be of three types: (i) resourceAnnotations which directly express a resource
demand. For instance, in Figure 2, the method call Annotation.resourceAnnotation
(”WiFi(true)”) demands for a WiFi interface; (ii) loopAnnotations express an
upper bound to the number of loops; (iii) callAnnotations express an upper bound
to the number of recursive method calls.

Resource Model. A formal model that permits the characterization of the com-
putational resources needed to consume/provide a service.

Some resources are subject to consumption (e.g. energy, heap space), while oth-
ers, if present, are never exhausted (e.g. function libraries, network radio inter-
faces). Thus, we model a resource as a typed identifier that can be associated to
natural, boolean or enumerated values (left hand-side of Figure 4 shows an exam-
ple of some resource definitions). Natural values are used for consumable resources
whose availability varies during execution. Boolean values define resources that
can be present or not (i.e. non-consumable ones). Enumerated values can define
non-consumable resources that provide a restricted set of admissible values (e.g.
screen resolution, network type). A resource instance is an association res(val)
where a resource is coupled to its value (e.g. Bluetooth(true)). A resource set
is a set of resource instances with no resource occurring more than once. Center-
ing around the resource model, we also define the notions of compatibility between
two resource sets to verify if the resource set describing the resource demand of an
alternative is compatible with the set representing the resource supply of an exe-
cution environment deciding if the application can there run safely. For instance,
in Figure 4, the resource sets are clearly not compatible since the adaptation al-
ternative demands for a bluetooth interface and high screen resolution but the
execution environment does not supply any of them. The framework encodes re-
source sets into XML files that have not been shown for presentation purposes.
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1) istore 1 → {CPU(2)} 2) invoke.* → {CPU(4)}
3) .* → {CPU(1), Energy(1)}
4) invokestatic LocalDevice.getLocalDevice()→ {Bluetooth(true), Energy(20)}

Fig. 5. A resource consumption profile

Abstract Resource Analyzer (ARA). An interpreter to compute resource
consumption. Within our framework, ARA’s implementation is based on a tran-
sition system which abstracts the JVM w.r.t. resource consumption. In this ab-
straction we consider bytecode instructions behaviour only by taking into ac-
count their effects on resources. ARA inspects the bytecode of the alternatives
and is parametric on the resource consumptions profile associated to bytecode
instructions in a given execution environment.

Resource consumption profiles provide the description of the characteristics
of a specific execution environment, in terms of the impact that Java Bytecode
instructions have on the resources; these profiles associate resources consump-
tion to particular patterns of Java bytecode instructions specified as regular
expressions. Since the bytecode is a verbose language1, this allows to define the
resource consumption associated to both basic instructions (e.g., ipush, iload,
etc.) and complex ones, e.g. method calls.

Figure 5 represents an example of a profile over resources defined in Fig-
ure 4: the last row states that a call to the getLocalDevice() static method of
the LocalDevice class of the javax. bluetooth library requires the presence
of Bluetooth on the device (Bluetooth (true)), and it causes a consumption
of the resource Energy equal to 20 cost units. Note that the expression “.*”
matches every bytecode. Through these profiles, ARA can be instantiated w.r.t.
the resource-oriented characteristics of a specific execution environment. Basi-
cally, ARA takes in a Java program, a profile and returns the program’s resource
demands.

Execution Environment. Any device that will execute the code. Typically
it is provided by PDAs, smart phones, etc. This environment is not strictly
part of our framework. However it should provide a declarative description of
the resources available to consume/provide the service, plus the consumption
profile.

Customizer. It takes in inputs the resource supply and the provided profile,
and explores the space of the possible adaptation alternatives. This step delivers
consumer/provider standard bytecode. Both consumer and provider can exploit
CHAMELEON for selecting/deploying the best suited adaptation alternative for
service consumption and provision, respectively.

The PLASTIC service consumption and provision is based on the Web Ser-
vices (WS) technologies and hence on the WS Interaction Pattern. For PLASTIC
adaptation, the WS interaction pattern is slightly modified in order to (possibly)
reach the SLA at the end of the discovery phase. Accounting for the different
1 This is particularly true for method invocations where the method is uniquely iden-

tified by a fully qualified id (base class identifier + name + formal parameters).
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Fig. 6. PLASTIC Services Interaction Pattern

offered and requested SLSs (associated to the different service provision/con-
sumption alternatives, respectively) a “matching” procedure tries to negotiate
the SLA. Referring to Figure 6, the steps involved are:

1. The service provider publishes into the PLASTIC Registry the service de-
scription in terms of its functional specification and associated SLSs. Each
service can be implemented by different Customizer -generated alternatives,
each one with its own SLS. SLSs are computed on the base of the resource
consumption of the alternatives obtained through the quantitative analysis
performed by ARA. The WSDL code is coupled with the SLS specifications,
which are used by the registry to choose the most suitable provider-side al-
ternative to be used for serving the requests. The registry also stores a set
of consumer-side alternatives to be delivered to the consumer and used for
suitably consuming the service.

2. The consumer, through a PLASTIC-enabled device, queries the registry for
a specific service functionality, additionally providing its resource supply and
requested SLSs.

3. The registry searches for a suitable consumer-side alternative that, after
delivery, will correctly run on the consumer device with the provided resource
supply and will satisfy the requested SLSs by interacting with the suitable
provider-side alternative. This means that the SLA can be established only
upon existence of (i) a provider-side alternative that has associated a suitable
offered SLS and (ii) a suitable consumer-side alternative. If no alternative
is able to directly and fully satisfy the request requirements, negotiation is
necessary.

4. If the previous phase is successful - i.e., the SLA has been reached - the
service consumption can take place under the QoS constraints.

The running example in PLASTIC. Let us now show how PLASTIC may
support the implementation of the On Road Assistance workflow, as specified
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in the previous section. Assume that the diagnostic system uses two external
radio interfaces - WiFi and UMTS - that, after failure, are no longer func-
tioning. Fortunately, the diagnostic system can back up by connecting to the
CNX center through the interfaces provided by any PLASTIC-enabled device
connected to it, e.g. through a cable. Let us also assume that the car manu-
facturer has a preestablished contract with both UMTS and WiFi proprietary
network providers that, whenever a backup connection is required, allows the
PLASTIC-enabled devices to either connect with low-cost and low-speed UMTS
or high-cost and high-speed WiFi.

Note that, even though at production-time the manufacturer may expect that
the driver changes her attitude w.r.t. connection cost it cannot predict all the
mobile devices that, in the future, might be used as a backup to connect to
the CNX center. Thus, the car is equipped with an on-board PLASTIC registry
connected to the diagnostic system that stores the two variants of Connection
(whose meta-code is illustrated in Figure 2) together with their offered SLSs:
SLSwf = {Speed=High, Cost=High} and SLSumts = {Speed=Low, Cost=Low}
associated to the WiFi and UMTS alternatives, respectively.

When the driver is asked to use a backup connection, she plugs in her device to
the diagnostic system. The device searches the registry for a suitable alternative
that, after delivery, will be able to correctly run on the device, thus letting
the driver specify the requested SLS and connect to the CNX center. Suppose
that the device (within its resource supply) specifies that it is equipped with
WiFi capabilities only and that the crash location is covered by WiFi hotspots
only. The driver also specifies a requested SLS SLSreq={Cost=Low}. The only
suitable alternative is WiFi but SLSwf does not fully match SLSreq since its cost
is High. A negotiation is necessary and it starts by informing the client that the
system can only connect through high-cost WiFi (i.e. the “current version” of
the PLASTIC registry can only offer the consumer-side alternative associated
to SLSwf). If the driver accepts, the SLA is reached, the WiFi alternative is
automatically deployed on her device and the assistance request can take place
under the established SLA. Without network coverage, no suitable alternative
can be selected, and the workflow fails.

Discussion. The PLASTIC approach to dependable adaptation concerns the
variability of both the context and the consumer needs. Adaptation occurs at
discovery/deployment– or invocation–time: when the context information be-
comes available and the consumer preferences have been expressed,
CHAMELEON will guarantee an optimal alternative, if any.

Within the considered scenario, the change occurs when the UMTS and WiFi
interfaces of the diagnostic system break. Adaptation to this change is twofold:
on one hand, the diagnostic system reacts by informing the driver of the occurred
fault and asking to use a mobile device for a backup connection; on the other
hand, adaptation occurs when the suitable alternative (if any) is automatically
deployed. These adaptations together present dependability since the ability of
the diagnostic system to still provide the CNX service as expected should bring
about a considerable degree of trust that the driver has in the system.
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Indeed, the framework goes beyond the use we have shown in which we con-
sider only non-consumable resources, i.e. the network interfaces. ARA also per-
mits to infer properties related to consumable resources (e.g. energy consump-
tion, memory foot-print), hence allowing for other dimensions of adaptation.

A form of system evolution can be achieved, by providing the on-board PLAS-
TIC registry with additional adaptation alternatives (through automatic and/or
on demand, possibly remote, updates) in order to better fit the driver needs
and to extend its scope to newly marketed mobile devices with new features not
considered by the current set of alternatives.

3.3 An Approach to Lifelong Verification of SOA

In this section we describe SAVVY (Service Analysis, Verification, and Valida-
tion methodologY), which is intended to support the design and operation of
dependable Web service compositions. SAVVY has been distilled by research
performed in the context of several projects, such as the EU IST SeCSE [39,41]
and PLASTIC [38] projects, and the Italian Ministry of Research FIRB project
ART DECO [37]. SAVVY is supported by several prototype tools that are cur-
rently being integrated in a comprehensive design and execution environment.

The context. SAVVY views software services as components exporting useful
functionalities, exposed through the Web and accessible via standard protocols.
Services are administered and run by independent parties. To make them us-
able by others, their specification is published through registries that advertise
both their functional and non-functional properties. Their internals, however,
are hidden to external users.

Most current research efforts and industrial developments on service tech-
nology aim at enabling new business models based on services. In particular,
SAVVY’s goal is to support the needs of service integrators (also called service
brokers) in the definition of new value-adding composite services, through the
integration of existing services (or, recursively, composite services). In SAVVY,
service composition is achieved by means of a workflow composition language
that orchestrates the execution of external remote services. Indeed, Web service
compositions leverage remote services to deliver highly dynamic and distrib-
uted systems. Since services are administered and run in their own domains, the
governance of these systems is intrinsically distributed and services may evolve
independently over time. SAVVY focuses on lifelong verification of service com-
positions, which encompasses design-time and run-time verification.

Dynamic service composition. Most current approaches to Web service com-
positions assume that the binding between the workflow and the external services
is statically defined when the workflow is deployed. SAVVY instead supports
dynamic binding. At design time, service integrators may refer to the external
services to be composed through their specification, ignoring the actual services
that will be orchestrated at run time. They only assume that service implemen-
tations which fulfill the required specifications will be available at run time. Any
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actual services that fulfill the contract encoded by the specification can be se-
lected for use at run time: the binding between a service request and a service
provision is therefore established dynamically. Design-time verification checks
that composite services deliver the expected functionality and meet the speci-
fied quality of service, under the assumption that the external services used in
the composition fulfill the contracts defined through their interface.

The motivation and rationale behind this approach is that the marketplace of
services is open and continuously evolving. New service providers may join, pro-
viding services with different and possibly improved qualities. Service integrators
should therefore design their composite services in a way that is as independent
as possible of the actual services available at any given time, so that the com-
position may adapt itself to the dynamic offer available at run time, to optimize
some desirable quality of service.

The flexibility of the approach we described above hinders dependability. Be-
cause the marketplace is open and decentralized, no central authority is in charge
of coordinating it, or even guaranteeing that an exported service honors its con-
tract, i.e., it satisfies its specification. Furthermore, after publishing a service spec-
ification in a registry, the service provider may evolve the implementation in a way
that breaks the contract, perhaps inadvertently. For these reasons, design-time
verification may be threatened by the dynamic bindings established at run time,
or by dynamic changes of service implementations. Run-time continuous verifica-
tion is therefore needed to guarantee the correctness of composite services.

SAVVY considers service compositions described in the BPEL workflow lan-
guage [3], with correctness statements rendered in ALBERT [7], a temporal logic
language suitable for asserting both functional and nonfunctional properties that
specify the quality of service (QoS). Furthermore, it assumes the external ser-
vices to be integrated in the workflow to be stateless. In what follows, we provide
a brief introduction to BPEL, ALBERT, design-time verification, and run-time
verification in SAVVY.

BPEL. BPEL —Business Process Execution Language for Web services—is
a high-level XML-based language for the definition and execution of business
processes [3]. It supports the definition of workflows that provide new services,
by composing external services in an orchestrated manner. The definition of a
workflow contains a set of global variables and the workflow logic is expressed
as a composition of activities, which include primitives for communicating with
other services (receive, invoke, reply), executing assignments (assign), signaling
faults (throw), pausing (wait), and stopping the execution of the process (termi-
nate). Moreover, constructs sequence, while, and switch provide standard control
structures and implement sequences, loops, and branches. Construct pick makes
the process wait for the occurrence of the first (out of several) incoming message,
or for a timeout to expire, after which it executes the activities associated with
such an event. The language also support the concurrent execution of activities
by means of construct flow.

In SAVVY, at design time one can define abstract workflows, i.e., the external
services orchestrated by the workflow are not bound statically; they are only
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Table 1. ALBERT syntax

φ ::= χ | ¬φ | φ ∧ φ | Becomes(χ) | Until(φ,φ) |
Between(φ,φ,K) | Within(φ,K)
χ ::= ψ relop ψ | ¬χ | χ ∧ χ | onEvent(μ)
ψ ::= var | ψ arop ψ | const | past(ψ, onEvent(μ), n) |
count(φ, K) | count(φ, onEvent(μ), K) | fun(ψ, K) |
fun(ψ, onEvent(μ), K) | elapsed(onEvent(μ))
relop ::= < | ≤ | = | ≥ | >
arop ::= + | − | × | ÷
fun ::= sum | avg | min | max | . . .

identified by their ALBERT specification, described hereafter. The binding to
specific, concrete service implementations which satisfy their specification only
needs to be established at run time.

ALBERT. The ALBERT assertion language [7] is a temporal specification
language for stating functional and non-functional properties of BPEL compo-
sitions. It is used in SAVVY at design time according to an assume/guarantee
specification and proof pattern. Certain ALBERT properties (AAs–assumed as-
sertions) specify external services as seen by the workflow: they define the as-
sumptions made on the external services that are composed. Other ALBERT
properties (GAs–guaranteed assertions) define the properties the BPEL work-
flow ought to guarantee. GAs precisely state the proof obligations to be honored
at design time. AAs precisely state the properties to be verified at run time,
when external service invocations are bound to concrete services, to ensure that
they behave as expected.

ALBERT formulae predicate over internal and external variables. The former
represent data pertaining to the internal state of the BPEL process in execution.
The latter represent data that are used in the verification, but are not part of the
process’ business logic and must be obtained externally (for example, by invoking
other Web services, or by accessing some global, persistent data representing
historical information). Given a finite set of variables V and a finite set of natural
constants C, an ALBERT formula φ is defined as in Table 1,where var ∈ V ,
const, K, n ∈ C, and onEvent is an event predicate. Becomes , Until , Between
and Within are temporal predicates. count , elapsed , past , and all the functions
derivable from the non-terminal fun are temporal functions of the language.
Parameter μ identifies an event: the start or the end of an invoke or receive
activity, the receipt of a message by a pick or an event handler, or the execution
of any other BPEL activity. The above syntax only defines the language’s core
constructs. The usual logical derivations are used to define other connectives and
temporal operators (e.g. ∨, Always , Eventually , . . .).

As an example, a functional AA on an invoke of an external service S can be
written as post-condition in the following form:

onEvent(end S) → AA
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Fig. 7. Monitoring framework

where AA is a predicate on the values computed by service S. It is also possible
to express nonfunctional AAs, such as latency in a service response. The follow-
ing ALBERT formula specifies that the duration of S’s invocation should not
exceed 1 minute:

onEvent(start S) → Within(onEvent(end S), 60)

ALBERT can also be used to express GAs. For example, one may state an upper
bound to the duration of a certain sequence of activities, which includes external
service invocations, performed by a composite BPEL workflow in response to a
user input request.

ALBERT semantics is defined in [7] rather conventionally over a timed state
word, an infinite sequence of states s = s1, s2, . . . , where a state si is a triple
(Vi, Ii, ti). Vi is a set of 〈variable , value〉 pairs, Ii is a location of the process
and ti is a time-stamp. States can therefore be considered as snapshots of the
process.

Property verification. ALBERT GAs are verified at design time by model
checking. SAVVY provides a verification environment based on the Bogor model
checker [12] through which verification can be performed. A full implementation
of the verification environment is in progress. An implementation (called Dy-
namo) exists at this stage only for a predecessor of ALBERT, called WSCoL [9],
and for an initial temporal extension [6].

ALBERT AAs can then be verified at run-time to ensure compliance of ex-
ternally invoked services with the properties assumed at design time. This is
achieved by the monitoring environment shown in Fig. 7.

The Formulae Repository is a persistent storage for ALBERT formulae to be
monitored. The ActiveBPEL Engine [2] is an open-source implementation of a
BPEL engine that we have extended with monitoring capabilities using aspect
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oriented techniques [23]. The Data Manager is the aspect that is weaved into the
engine, and its main responsibility is to collect the data on which monitoring is to
be performed. ALBERT formulae may also refer to external data, which do not
belong to the business logic itself, but are retrieved instead from external sources
(e.g., context information). This is achieved through Data Collectors. All collected
data are time-stamped, labeled with the point in the process in which they were
extracted, and sent to the Active Pool, which stores them to create (bounded)
historical sequences. Finally, we have the Data Analyzer. This component receives
monitoring directives from the Data Manager and interacts with the Active Pool
to execute them. We distinguish between two possible execution models. If the
system is critical the monitor has an immediate impact on the process execution:
the process is terminated and the error can be dealt with immediately. If, on
the other hand, we are monitoring only for collecting information on how the
system works, the process continues and all monitoring results are logged for
off-line analysis.

A full implementation of the monitoring environment in Fig. 7 is currently
in progress. It is based on previous prototypes [10] that were developed in the
contexts of SeCSE and PLASTIC. It also inherits features from other approaches,
surveyed in [13].

The running example in SAVVY. Let us refer to the On Road Assistance
scenario introduced earlier, and let us briefly illustrate how this can be handled
in SAVVY. It is straightforward to translate the workflow in Figure 1 into BPEL.
Each task is implemented as an activity, which invokes an external service. In the
following we assume that the interfaces of the external services of the resulting
process have the name of the corresponding task.

We now show how to specify sample properties of the OnRoadAssistance work-
flow in ALBERT. We assume for simplicity that external services are activated
via synchronous invoke activities. In general, start S and end S are events that
signal the start and the end of BPEL activity S. We will discuss the meaning of
the other variables when we introduce them.

CommunicationBoundResponseTime. Assuming that the On Road Assis-
tance workflow runs on the car and that two communication channels are avail-
able for use, several external services —namely FindServices, ChargeCard, and
BookGarage— reply within 120 seconds when a low-cost communication chan-
nel is used, and within 60 seconds if a high-cost communication channel is used.
In ALBERT this AA is expressed as a conjunction of formulae, each of which
follows the pattern:

onEvent(start S) →
(VCG::getConnection()/cost=‘low’∧
Within(onEvent(end S), 120) ∨
(VCG::getConnection()/cost=‘high’∧
Within(onEvent(end S), 60))
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where VCG::getConnection()/cost represents an external variable, provided
by the VCG is the external vehicle communications, which yields contextual in-
formation on the communications channel currently in use within the car, and
S ranges on the names of the external services listed above.

AssistanceTimeliness. Other external services, namely BookTruck and Rent-
Car, involve the real word, and are assumed to terminate only when the required
assistance has been delivered, e.g. when the tow truck is near the car. As in the
previous example, we may assume that an external variable provides contextual
information about the quality of service required (and paid for) by the user. Such
variable may have values fast or standard, meaning that the tow truck must
arrive in 20 or 50 minutes, respectively. The RentCar service follows the same
pattern. The ALBERT AAs that formalize these requirements can be expressed
similarly to the previous case.

GlobalAssistanceTimeliness. If quality of service fast has been selected, the
tow truck will be in proximity of the car within 30 minutes from the moment
when the credit card is charged. The property can be expressed as follows:

onEvent(end ChargeCard) →
(QOA::getClass()/truckTime=‘fast’→

Within(onEvent(end BookTruck), 1800)

where QOA is an external service that provides information about the quality
of assistance to be guaranteed (and subscribed by the user).

The last property is a GA and must be guaranteed to the user by the On-
RoadAssistance workflow. Its validity can be easily proved by model checking
at design time, based on the previous AAs and on structure of the workflow
process.

Discussion. SAVVY supports the definition of abstract BPEL workflows, where
the orchestrated services are only specified by their required interface, which in-
cludes AAs for the semantic aspects. This supports seamless reconfigurations of
the bindings to external services at run time. For example, the abstract Find-
Services service may be reified by a default service that is pre-installed in the
car, or by an external service available after subscription and payment of a fee.
The method ensures, however, that the assumed properties of an orchestrated
service’s interface will be checked for validity at run time. This ensures that any
deviation from a global property of the abstract workflow will be detected in
any concrete instantiation.

SAVVY does not specify what should occur if an assumed property is not ver-
ified at when run-time verification fails. We are currently investigating different
self-healing strategies, which may range from retrying invocation (in the case of
transient errors) to re-binding to alternative service candidates to re-planning
the workflow.
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4 Conclusions

Building dependable dynamically evolvable software is hard and challenging, and
no coherent development approach is currently available. We have explored here
three research lines that focus on different aspects of the overall problem. The
discussion of a common case-study in the three approaches showed that they are
complementary, and it might be worthwhile to combine them effectively, as part
of future research. In a nutshell, it is possible to see StPowla as an approach to
orchestrate plastic services, and provide adaptable business services on a wide
variety of devices. SAVVY may be adapted to support design and operation of
the service-based system, focusing on property verification.

Indeed, StPowla and plastic work at different conceptual levels, business
process and service, respectively, but share the need of a conceptualization of
the dimensions along which the service level can be agreed between consumers
and providers. Therefore, some of the variability to be resolved by the plastic
Customizer, rather than reflecting the choices in the execution platform, could
reflect the alternatives available in the business model. In passing, we note that
often these alternatives refer to characteristics that can be also seen as pertaining
to the execution platform, albeit an abstract one that includes, for instance, the
various business roles. Indeed, besides the Automation dimension introduced in
Section 3.1, often the choice has to do with which business roles (clerk, manager,
CEO, . . . ) are needed to perform or authorize given tasks. Finally, SAVVY does
not focus on how changes occur in the system and how they can be managed,
but offers an approach to keep them under control, to achieve dependability.

To conclude, we have addressed the problem of dealing with adaptable appli-
cations under dependability guarantees. As a concrete and challenging setting
we have considered the service oriented paradigm that naturally lends itself to
consider the execution dynamic environment intertwined with the static devel-
opment one. We have presented three separately conceived approaches that well
apply at three different but related life cycle stages. At each stage it is possi-
ble to express different levels of variability and to assess suitable dependability
guarantees on system execution. As we discussed above, the three approaches
might be integrated in a unifying framework that permits the specification of the
business process, its implementation by means of adaptable services and finally
its lifelong verification. The key point of such a unified approach is that de-
pendability can only be achieved by moving software verification and validation
activities forward to deployment and execution time. This represents a great re-
search challenge for the models, techniques and methods we have experimented
so far. None of them can straightforwardly face the transition and all of them
need to be re-elaborated in order to become affordable at execution time.

Laudatio. The core problem of designing and implementing evolving distrib-
uted applications that might dynamically re-configure by preserving some kind
of dependability in terms of their software architecture and of the module/com-
ponent type structure is not new. Interestingly enough these kind of problems
were already addressed years ago in the scope of the Progetto Finalizzato Infor-
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matica, in the sub–project Architettura e Struttura dei Sistemi di Elaborazione,
led by Ugo Montanari, and in which the authors were involved.

For the last two authors, this line of work developed, following a sugges-
tion by Ugo, from initial attempts to provide consistent configuration and re-
configuration capabilities to Ada [18,22] to more developed and advanced pro-
posals [20,21].

The project and Ugo’s leadership have also been a source of inspiration for
the first author, who was working on modelling concurrency and real-time Ada’s
constructs [30] at the time, and then developed a research line on verifiable
real-time systems [14,33].

In retrospective, that project was an extremely fertile ground for the devel-
opment of concepts and ideas on (dynamic) software architectures, which years
later were addressed in a systematic and comprehensive way by the software
engineering community.
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formalism for time-critical systems. IEEE Trans. Softw. Eng. 17(2), 160–172 (1991)

15. Gorton, S., Reiff-Marganiec, S.: Towards a task-oriented, policy-driven business
requirements specification for web services. In: Business Process Management, pp.
465–470 (2006)

16. ERCIM Working Group (2007), http://w3.umh.ac.be/evol/
17. Inverardi, P.: Software of the future is the future of software? In: Montanari, U.,

Sannella, D., Bruni, R. (eds.) TGC 2007. LNCS, vol. 4661, pp. 69–85. Springer,
Heidelberg (2007)

18. Inverardi, P., Levi, G., Montanari, U., Vallario, G.N.: A distributed KAPSE archi-
tecture. Ada Lett. III(2), 55–61 (1983)

19. Inverardi, P., Mancinelli, F., Nesi, M.: A declarative framework for adaptable appli-
cations in heterogeneous environments. In: SAC 2004, pp. 1177–1183. ACM Press,
New York (2004)

20. Inverardi, P., Martini, S., Montangero, C.: Is type checking practical for system
configuration? In: Dı́az, J., Orejas, F. (eds.) TAPSOFT 1989 and CCIPL 1989.
LNCS, vol. 352, pp. 257–271. Springer, Heidelberg (1989)

21. Inverardi, P., Mazzanti, F.: Experimenting with dynamic linking with ada. Softw.,
Pract. Exper. 23(1), 1–14 (1993)

22. Inverardi, P., Montanari, U., Vallario, G.N.: How to develop a programming en-
vironment almost completely in a compiled language. In: International Comput-
ing Symposium 1983 on Application Systems Development, pp. 429–438. Teubner
(1983)

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier,
J.M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

24. Koch, N., Berndl, D.: Requirements modelling and analysis of selected scenarios:
Automotive case study. Technical report, SENSORIA EU–IST–016004 (2007),
http://www.pst.informatik.uni-uenchen.de/projekte/Sensoria/del 24/
D8.2.a.pdf

25. Koch, N., Mayer, P., Heckel, R., Gonczy, L., Montangero, C.: UML for service-
oriented systems, SENSORIA EU-IST 016004 Deliverable D1.4.a (2007),
http://www.pst.ifi.lmu.de/projekte/Sensoria/del 24/D1.4.a.pdf

26. Lehman, M.M., Belady, L.A.: Program evolution: processes of software change.
Academic Press Professional, Inc., San Diego (1985)

27. Leveson, N.G.: A systems-theoretic approach to safety in software-intensive sys-
tems. IEEE Trans. Dependable Sec. Comput. 1(1), 66–86 (2004)

28. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A Formal Approach to Service Component
Architecture. Web Services and Formal Methods 4184, 193–213 (2006)

http://w3.umh.ac.be/evol/
http://www.pst.informatik.uni-uenchen.de/projekte/Sensoria/del_24/D8.2.a.pdf
http://www.pst.informatik.uni-uenchen.de/projekte/Sensoria/del_24/D8.2.a.pdf
http://www.pst.ifi.lmu.de/projekte/Sensoria/del_24/D1.4.a.pdf


Dynamically Evolvable Dependable Software: From Oxymoron to Reality 353

29. Mancinelli, F., Inverardi, P.: Quantitative resource-oriented analysis of java (adapt-
able) applications. In: WOSP 2007: Proceedings of the 6th international workshop
on Software and performance, pp. 15–25. ACM Press, New York (2007)

30. Mandrioli, D., Zicari, R., Ghezzi, C., Tisato, F.: Modeling the ada task system by
petri nets. Computer Languages (1985)

31. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-based detection of conflicts
in APPEL policies. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767,
pp. 257–271. Springer, Heidelberg (2007)

32. Montangero, C., Semini, L.: Distributed states logic. In: 9th International Sympo-
sium on Temporal Representation and Reasoning (TIME 2002), Manchester, UK,
July 2002, IEEE CS Press, Los Alamitos (2002)

33. Morzenti, A., Mandrioli, D., Ghezzi, C.: A model parametric real-time logic. ACM
Trans. Program. Lang. Syst. 14(4), 521–573 (1992)

34. OMG. Business process modeling notation. Technical report (February 6, 2006),
http://www.bpmn.org/

35. IFIP WG 10.4 on Dependable Computing and Fault Tolerance. Dependability:
Basic concepts and terminology (October 1990)

36. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. pp.
139–150 (1979)

37. ART DECO Project. Description of Work (2005),
http://artdeco.elet.polimi.it/Artdeco

38. PLASTIC Project. Description of Work (2005), http://www.ist-plastic.org
39. SeCSE Project. Description of Work (2004), http://secse.eng.it/
40. Reiff-Marganiec, S., Turner, K.J., Blair, L.: Appel: The accent project policy en-

vironment/language. Technical Report TR-161, University of Stirling (December
2005)

41. The SeCSE Team. Designing and deploying service-centric systems: The SeCSE
way. In: Proceedings of Service Oriented Computing: a look at the Inside
(SOC@Inside’07), workshop colocated with ICSOC 2007 (2007)

42. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P., Ireland, J.:
Policy support for call control. Computer Standards and Interfaces 28(6), 635–649
(2006)

43. Wirsing, M., Carizzoni, G., Gilmore, S., Gonczy, L., Koch, N., Mayer, P., Palas-
ciano, C.: Software engineering for service-oriented overlay computers (2007),
http://www.sensoria-ist.eu/files/whitePaper.pdf

http://www.bpmn.org/
http://artdeco.elet.polimi.it/Artdeco
http://www.ist-plastic.org
http://secse.eng.it/
http://www.sensoria-ist.eu/files/whitePaper.pdf


The Temporal Logic of Rewriting:

A Gentle Introduction
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Abstract. This paper presents the temporal logic of rewriting TLR∗.
Syntactically, TLR∗ is a very simple extension of CTL∗ which just adds
action atoms, in the form of spatial action patterns, to CTL∗. Seman-
tically and pragmatically, however, when used together with rewriting
logic as a “tandem” of system specification and property specification
logics, it has substantially more expressive power than purely state-
based logics like CTL∗, or purely action-based logics like A-CTL∗. Fur-
thermore, it avoids the system/property mismatch problem experienced
in state-based or action-based logics, which makes many useful prop-
erties inexpressible in those frameworks without unnatural changes to
a system’s specification. The advantages in expresiveness of TLR∗ are
gained without losing the ability to use existing tools and algorithms
to model check its properties: a faithful translation of models and for-
mulas is given that allows verifying TLR∗ properties with CTL∗ model
checkers.

1 Introduction

I feel deeply grateful to Ugo Montanari for our long friendship, and for our equally
long scientific collaboration, spanning more than twenty years of our lives. In hon-
oring him on his 65th birthday, I have chosen a topic close to our common interest
in algebraic models of true concurrency, but emphasizing the interplay between
algebraic models and temporal logic properties.

1.1 The System/Property Mismatch Problem

In formal specification there is a natural division of labor between two clear and
necessary tasks: (i) to formally specify a system design in a system specification;
and (ii) to formally specify the requirements that such a system should satisfy
in a property specification. This leads naturally to a division of labor between
two logics: a system specification logic LS , and a property specification logic
LP . I call such a pair of logics a tandem, and use the notation LS/LP . This
paper is all about the RewritingLogic/TLR∗ tandem, where rewriting logic is
used to specify concurrent system, and TLR∗ is used to specify their temporal
properties.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 354–382, 2008.
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Some tandems are better than others by being more expressive.1 The formal
specification task involves assigning to an informal design Des a formal system
specification SDes in LS , and to an informal requirement req a sentence ϕreq in
LP . The crucial objective is to faithfully capture the intended meaning of Des
and req , so that we have in fact an equivalence

Des satisfies req ⇔ SDes |= ϕreq (�)

The left side of the equivalence is still in our informal metalanguage, and only
the right side is fully formalized: that is the whole point of formal specifications.
The expressiveness problem for a tandem LS/LP is, first, whether, assuming we
can correctly express Des as SDes in LS , we can express req at all in LP , and,
second, even if we can, how easily and naturally we can do so. What may happen
is that we cannot express req directly in LP , that is, there is no ϕreq to be found
such that we have the above equivalence (�). However, we may be able to express
req indirectly by “cooking” the system specification SDes . That is, we may be
able to devise a quite different system specification S̃Des that encodes what is
inexpressible about req in our original specification SDes , and to find a formal
property ϕreq meaningful for S̃Des , so that we have an equivalence

Des satisfies req ⇔ S̃Des |= ϕreq (�)

When situations of this kind, requiring frequent “cooking” of system spec-
ifications, arise in a tandem LS/LP , I say that LS/LP suffers from the sys-
tem/property mismatch problem. The mismatch can sometimes be palliated by
finding an alternative tandem L′S/L′P and a faithful mapping of tandems, from
L′S/L′P to our given tandem LS/LP . By this I mean a pair of functions (K, γ) :
L′S/L′P −→ LS/LP , where K maps a system specification S′ in L′S to a corre-
sponding system specification K(S′) in LS , and γ maps a formula ϕ′ in L′P to
a formula γ(ϕ′) in LP in such a way that we have an equivalence

S′ |=′ ϕ′ ⇔ K(S′) |= γ(ϕ′) (†)

where the symbols |=′ and |= emphasize that formula satisfaction is taking place
in different tandems. A mapping of tandems (K, γ) : L′S/L′P −→ LS/LP may
allow us to express the design Des as a formal specification S′Des in L′S , and the
requirement req as a sentence ϕ′req in L′S , so that we have a chain of equivalences

Des satisfies req ⇔ S′Des |=′ ϕ′req ⇔ K(S′Des) |= γ(ϕ′req) (‡)

This gives us a systematic recipe for “cooking”the system specification SDes as
K(S′Des), and expressing req as γ(ϕ′req).

1 Everything else being equal, being more expressive is clearly an advantage and, as I
argue in this paper, the key to avoiding the “system/property mismatch problem.”
However, greater expressiveness does not always come entirely for free: one may
lose some decidability properties, or have higher computational complexity of model
checking, or get a harder to understand formalism.
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A good example of unending system/property mismatch problems is furnished
by tandems typically used in action-based and state-based approaches to the
specification of concurrent systems and their properties. At the system specifi-
cation level, action-based approaches typically adopt the formalisms of labeled
transition systems, and state-based approaches that of Kripke structures. At the
property specification level, they respectively adopt temporal or modal pure ac-
tion logics, based on the labels of events, and pure state-based logics, based on
atomic state predicates. For example, the tandem Kripke/CTL∗ (or one of its
subtandems such as Kripke/CTL or Kripke/LTL) is widely used in the state-
based camp (see [11] for an in-depth discussion of the Kripke/CTL∗ tandem).
On the other hand, the tandem LTranSys/A-CTL∗ proposed by De Nicola and
Vaandrager [34], where A-CTL∗ is a pure action logic mirror image of CTL∗, is
a perfect exponent of a corresponding tandem in the action-based camp. Two
important and elegant results in [34] are precisely the proof of correctness of
two faithful mappings of tandems, one Kripke/CTL∗ −→ LTranSys/A-CTL∗,
and another in the opposite direction LTranSys/A-CTL∗ −→ Kripke/CTL∗.
These two mappings palliate mismatch problems caused by the existence of
action-based properties that are directly inexpressible in purely state-based log-
ics, and, similarly, of state-based properties that are directly inexpressible in
purely action-based logics.

Is this all there is to it? I do not think so. First, the mismatch problems
obviated by the above mappings of tandems have to do with properties that are
either purely action-based or purely state-based. But as I illustrate with examples
in Section 2, many natural properties, by being mixed properties involving in an
intrinsic way both action-based and state-based aspects, are by their very nature
directly inexpressible in either LTranSys/A-CTL∗ or Kripke/CTL∗. Second, the
fact that we can indirectly express a property is helpful, but it is a clear sign
of lack of expressiveness in the formalisms involved, and forces one to reason
in an indirect, roundabout way about things that should be expressed much
more directly and naturally. Third, both labeled transition systems and Kripke
structures are quite limited, low-level formalisms. Not only do they each lack
what the other has: by assuming unstructured sets of elements for their states,
both lack support for expressing high-level system structure such as concurrency.

1.2 How RewritingLogic/TLR∗ Addresses System/Property
Mismatches

I view the RewritingLogic/TLR∗ tandem as a good choice of intrinsically more
expressive formalisms for both system and property specification. I begin com-
menting on rewriting logic, and then explain TLR∗ as its ideal counterpart
at the property specification level. This is certainly neither the first nor the
only proposal for combining state-based and action-based features (see, e.g.,
[37,17,22,36,20,21,8,7,9,1,14,18,23]); however, it is a tandem design proposal with
a number of useful new features.
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Rewriting logic [30] is a very expressive and general logical framework for
concurrent systems [30,25] that includes labeled transition systems and Kripke
structures as special cases. Furthermore:

– Labeled transitions are defined parametrically and locally: the variables in
the terms t and t′ of a rewrite rule l : t −→ t′ are its parameters ; and one
does not have to specify the contexts in such those local transitions happen.

– The locality of rewriting, together with the algebraic structure of states,
makes possible the intrinsic and explicit expression of a system’s concur-
rency, which is directly supported by the logic [30].

– Concurrency is expressed in an “ecumenical” and “nonsectarian” way, with-
out building in any particular concurrency model. Instead, any such mod-
els can be easily specified within rewriting logic as specific rewrite theories
[30,25].

– Since equational logic is a sublogic, equational theorem proving tools can be
used to combine theorem proving and model checking (see, e.g., [32,12]).

– Rewrite theories have an initial model semantics [30], which supports very
useful inductive reasoning principles.

– Another important advantage is executability: rewrite theories are concurrent
programs, which can be both executed and analyzed [12].

What is TLR∗, and what are its key advantages when used in tandem with re-
writing logic? From the syntactic point of view, TLR∗ is a simple extension of the
state-based logic CTL∗ (see, e.g., [11]). The extension consists of just adding to
CTL∗ a new kind of atom. The atoms of CTL∗ are state predicates in a set AP of
atomic predicates. They are interpreted in a Kripke structure by the structure’s la-
beling function. In TLR∗, besides such state atoms, we can also have action atoms,
belonging to a set of spatial action patterns. In a standard labeled transition sys-
tem, the only possible action patterns are the labels themselves. Instead, because of
the local and parametric nature of rewrite rules, and the algebraic nature of states,
we can have much more expressive action atoms that specify not just the fact that
an action or event labeled l has happened, but where, in the spatial structure of
the distributed state, has the action actually happened. The point is that the para-
metric nature of a rewrite rule l : t(x1, . . . , xn) −→ t′(x1, . . . , xn) involving vari-
ables x1, . . . , xn is shared by its label l, which we can view also as a parametric la-
bel l(x1, . . . , xn). Furthermore, the local nature of a rewrite rule, which allows it to
happen in many different contexts, can be constrained by specifying in a spatial ac-
tion pattern the allowable spatial “shapes” we are interested in having as contexts.
Therefore, spatial action patterns have the general form C[l(t1, . . . , tn)], where l
is the rule label indicating the type of action, C is a context term indicating the
spatial shape of the context in which the action is taking place, and t1, . . . , tn are
terms constraining the shape of the parameters the rule can be instantiated with.

What are then the key advantages of TLR∗? First, its simultaneous support
for both state-based and action-based properties, and for mixed properties in-
volving both action and state aspects. Second, the expressiveness of action-based
patterns to localize actions. Third, that this greater expressiveness is achieved
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without losing the wealth of model checking techniques and tools of the state-
based tradition. I show in Section 4.3 that there is a faithful mapping of tandems
RewritingLogic/TLR∗ −→ Kripke/CTL∗ that makes it possible to model check
a TLR∗ formula using a CTL∗ model checker with an acceptable cost in com-
plexity for the kinds of properties one wishes to verify in practice.

I motivate TLR∗ in Section 2 by means of a simple example. Rewrite theories,
proof terms, computations, and spatial action patterns are covered in Section 3.
TLR∗, its syntax and semantics, and the mapping of tandems making it possible
to model check TLR∗ properties using CTL∗ model checkers, are studied in
Section 4. Sections 5 and 6 discuss related work and present some conclusions.

2 A Simple Example

To motivate TLR∗ and why temporal logics that are either solely state-based
or solely action-based cannot directly express natural properties one would like
to specify and verify, I use a simple fault-tolerant client-server communication
protocol. There can be many clients and many servers, and each server can
serve many clients. For simplicity I assume that each client communicates with
a single server. The purpose of the communication is for the client to ask a
question from the server and then receive an answer. For simplicity I assume
that both the question and the answer are natural numbers. The server S uses a
function f , only known to the server itself, that, given a question N from client
C, computes the answer f(S, C, N). The communication environment is faulty:
messages can arrive out of order, can be duplicated and can be lost. In spite
of the faulty environment, the protocol satisfies a very natural property: under
appropriate fairness assumptions, any client asking a question does eventually
receive the corresponding answer.

The protocol has a simple system specification as a rewrite theory R =
(Σ, E, R), with (Σ, E) an equational theory defining the states as elements of
the initial algebra TΣ/E, and R a collection of labeled rewrite rules describing
the message-passing asynchronous transitions between clients and servers. The
fact that messages can arrive out of order is modeled by making the commu-
nication medium a “soup,” in which clients, servers, and messages are floating.
Algebraically, this soup is represented as a multiset of sort State, built up with a
multiset union operator, denoted with empty syntax (juxtaposition), satisfying
laws of commutativity (X Y = Y X) and associativity ((X Y ) Z = X (Y Z)),
and having the empty multiset (denoted null) as an identity (X null = X). The
elements floating in this soup are the states of different clients and servers and
the messages. Clients and servers have names belonging to a sort Oid . Client
states are represented as four-tuples of the form [C, S, N, W ], where C is the
client’s name, S is the name of the server it wants to communicate with, N is
the natural number representing the question, and W is either a natural number
corresponding to the answer if it has already been received, or the nil value if
the answer has not yet been received. Servers are stateless and are represented
as structures [S], with S the server’s name. Messages are all represented as pairs
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of the form I � CNT , with I the addressee’s name, and CNT the message
contents. Such contents are pairs (J, N), with J the sender’s name, and N a
number. There is also the function f computed by the server, whose specific
defining equations need not concern us here. I now explain the rewrite rules R:

req : [C, S, N,nil ] −→ [C, S, N,nil ] S � (C, N)
reply : S � (C, N) [S] −→ [S] C � (S, f(S, C, N))
rec : C � (S, M) [C, S, N, W ] −→ [C, S, N, M ]
dupl : I � CNT −→ I � CNT I � CNT
loss : I � CNT −→ null

All variables in the terms of the above rules are written with capital letters and
have the sorts already explained above. For example, C and S have sort Oid , N
and M have sort Nat , and W has a supersort of Nat , say DefaultNat , containing
also the nil element. Note that all the rules are “soup rewriting” rules. Thanks
to the associativity and commutativity of multiset union, rules such as reply
and rec express the asynchronous nature of the message passing communication,
since they can be applied as long as the client or server is in a state matching
part of the rule’s lefthand side pattern and somewhere in the soup there is a
message matching the rest of that lefthand side pattern. The meaning of the
rules is now quite obvious. Rule req means that, as long as the client has not
yet received an answer, it can keep resending its request. Rule reply means that
the server can answer repeated requests from a client. Rule rec means that the
client can receive the answer from the client and will store the answer in its
fourth component. The rules dupl and loss model the faulty environment and
have the obvious meaning: messages can be either duplicated or lost.

This simple protocol satisfies the key property that under suitable fairness
assumptions any client asking a question does eventually receive the answer
from its server. Fairness assumptions are needed, because without them the loss
rule could preempt all communication. As I show in what follows, even this very
simple property cannot be directly expressed in either a purely state-based logic,
or a purely action-based logic without modifying the above system specification.

Consider an initial state with server a and clients b and c of the form

[a] [b, a, 7,nil ] [c, a, 17,nil ]

and let us assert this property for a and b with the TLR∗ formula

A(FairnessAssumptions ⇒ F rec(b))

I focus for the moment on the conclusion formula F rec(b) and will explain later
the FairnessAssumptions subformula. The spatial action rec(b) illustrates a key
feature of TLR∗. rec(b) is shorthand notation for rec(b, S, M, N, W ). It asserts
that the general action2 rec(C, S, M, N, W ) corresponding to applying the rec

2 Note that the variables of a given rewrite rule are listed in their textual order of
appearance in its lefthand side.
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rule has taken place with the rule’s variable C instantiated to b. Since the re-
maining variables in the spatial action are “don’t care” variables, by convention
we can use any of the following three equivalent notations:

rec(b, S, M, N, W ) = rec(b, , , , ) = rec(b)

Therefore, rec(b) allows us to localize the action rec to the client b.
Can we replace rec(b) by a state-based formula? Yes and no. For the above

initial state, in which client b has not yet received an answer, it is possible
to replace rec(b) in the above universally-quantified formula by the state-based
formula ¬(answered .b) ∧ X answered .b, where the state predicate answered .b
holds of a state if there is a client named b whose last component is a natural
number, and does not hold if either b is not present or its last component is nil .
However, there is no state-based formula equivalent to rec(b) without changing
our protocol specification. To see why not, notice that such a formula should
presumably be a path formula φ that must be evaluated on a sequence, say
ρ = ρ(1) ρ(2) . . . ρ(n) . . . of states. Consider the state

[a] [b, a, 7, f(a, b, 7)] a � (b, 7) [c, a, 17,nil ]

in which b has already received an answer from a, but there is still another copy
of its request message in the soup, either because b had sent two requests, or
because the dupl rule was applied. Consider now the sequence of states ρ with
ρ(0) the above state, ρ(1) the state obtained from ρ(0) by removing the message
a � (b, 7) from the soup, and ρ(n + 2) obtained from ρ(n + 1) by adding a fresh
new copy of the message a � (c, 17). The intrinsic ambiguity is that in passing
from ρ(0) to ρ(1) either the rule rec, with C instantiated to b is applied, so
that we have ρ |= φ, or the rule loss could have been applied, so that we have
ρ �|= φ, a blatant contradiction. The point is that we have no way to tell from
the sequence ρ which rule was applied. In particular, the state-based formula
¬(answered .b) ∧ X answered .b is not equivalent to rec(b), and in fact does not
hold for any state in the above sequence ρ.

Another case in point is the localized spatial action req(b) (which is short-
hand for req(b, S, N)). It is utterly impossible to define a state-based formula φ
asserting that the action req(b) has taken place. Consider a state such as

[a] [b, a, 7,nil] a � (b, 7) [c, a, 17,nil]

in which b has already sent its request, and consider the infinite sequence π of
states obtained from this state by adding to it one more copy of the message
a � (b, 7) each time. Since such a sequence can be obtained by applying the rule
req with C instantiated to b at every single step, if such a formula φ existed,
we should have π |= φ. But since the same sequence π can also be obtained by
applying the dupl rule at every single step, we must conclude that π �|= φ. Again,
given the sequence of states π, we have no way to tell whether the action req(b)
has taken place or not: the only thing we can say for sure is that it could have
taken place, since the scenario in which req(b) is applied at least once, and the
dupl rule is applied whenever req(b) is not applied, is consistent with π.
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One could adopt a weaker “possibilistic” semantics of the “could have hap-
pened” kind by interpreting the holding of an action δ on the pair of subsequent
states π(0) and π(1) of a sequence of states π as the possibility of performing an
action of the kind δ : π(0) −→ π(1). More precisely, we could define a satisfaction
relation π |=♦ δ, read “δ holds possibly in π,” by the equivalence

π |=♦ δ ⇔ (π(0), π(1)) ∈ Pairs(δ)

where, by definition, Pairs(δ) denotes the set of pairs of states where we can
reach the second state from the first by the spatial action δ. The problem with
this possibilistic semantics is that it blurs the distinction between different ac-
tions, since in general various other actions δ′ could also perform a transition
of the form δ′ : π(0) −→ π(1); therefore, by asserting π |=♦ δ we would also be
committed to asserting π |=♦ δ′. For π our example sequence, we would have
π |=♦ req(b) and π |=♦ dupl , making it impossible to distinguish between these
two different actions. Instead, what we would like to have (and TLR∗ has) is not
a “possibilistic” semantics, but an “actual” semantics, telling us which action
has actually taken place. In such an actual semantics, we could simultaneously
assert that req(b) has taken place and dupl has not, even though the pair of
states involved could be related by either req(b) or dupl . This, of course, is what
is impossible in the state-based semantics. As I explain in Section 3.3, the notion
of computation needed for the actual semantics provided by TLR∗ is not just a
sequence of states π, but a pair (π, γ), where π is a sequence of states, and γ
a sequence of rewrite proofs between such states. Such a notion of computation
allows us to distinguish which actions have actually taken place; and to give
semantics to both action-based and state-based properties. For π our example
state sequence, this resolves the above paradox π |= φ, and π �|= φ for φ a formula
expressing the action req(b), since now we have many different computations of
the form (π, γ), (π, γ′), etc. γ could be an infinite sequence of req(b) actions; and
γ′ could be an infinite sequence of dupl actions, giving us (π, γ) |= req(b) and
(π, γ) �|= dupl , together with (π, γ′) |= dupl and (π, γ′) �|= req(b).

The FairnessAssumptions subformula is interesting in its own right, because
it illustrates two important points: (i) the impossibility of directly expressing
a natural property like fairness in either purely state-based or purely action-
based logics; and (ii) the flexibility of TLR∗ to express not just what might be
called standard fairness properties, but the more expressive “localized fairness”
properties that I proposed in [29]. Standard notions of fairness typically concern
transitions, see, e.g., [24]. For example, the strong fairness of a transition labeled
l can be expressed in CTL∗-like notation by the formula Fair (l) defined by:

Fair (l) = GF enabled(l) ⇒ GF taken(l)

Similarly, the weak fairness (justice) property of l can be expressed in CTL∗-like
notation by the formula Just(l) defined by:

Just(l) = FG enabled(l) ⇒ GF taken(l)
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Note, however, that the CTL∗-like notation is misleading, since it seems to
suggest that Fair(l) and Just(l) can be directly expressed as state-based for-
mulas. But this is just what in general may be utterly impossible. Consider
again the rule req in our example, and the requirement Just(req). The require-
ment enabled(req) is purely state-based and has a straightforward specification.
We can just extend our protocol specification by adding a new sort Prop of
atomic propositions having a constant enabled .req , and a binary function sym-
bol |= : State × Prop −→ Bool defined in its positive case by the equation

X [C, S, N,nil ] |= enabled .req = true

with X a variable of sort State. The requirement enabled(req) is then the atomic
state predicate enabled .req . The really problematic requirement is taken(req),
which in TLR∗ is just the spatial action req = req(C, S, N). This requirement
is utterly inexpressible in CTL∗ without cooking the system specification, since
assuming a path formula φ that could express it, the same sequence of states π
considered above for req(b) would also give us π |= φ and π �|= φ.

Let us turn to the formula FairnessAssumptions. We need suitable fairness
requirements for rules req, reply , and rec. For req, it seems clear that some kind
of justice requirement will suffice. Here is where TLR∗’s flexibility to localize
spatial actions becomes crucial. The problem is that Just(req) is not what we
want as an ingredient in FairnessAssumptions. To see why not, notice that there
can be multiple clients in our state (in the initial state we had clients b and c).
Now notice that a computation in which the action req(c) is taken at every step
does indeed satisfy the Just(req) formula; but b is utterly starved. What we need
is to localize to b the justice requirement, which becomes the TLR∗ formula

Just(req(b)) = FG enabled .req(b) ⇒ GF req(b)

where enabled .req now becomes a parametric atomic proposition operator
enabled .req : Oid −→ Prop defined in its positive case by the equation

X [C, S, N,nil ] |= enabled .req(C) = true.

Similarly, Fair(reply) is not what we want: in this case we need to localize it to
both a and b, since even when localized to a, the server a could be answering
questions from c in a fair way, but utterly starving b; so we get the requirement

Fair(reply(a, b)) = FG enabled .reply(a, b) ⇒ GF reply(a, b)

where enabled .reply is defined in its positive case by the equation

X S � (C, N) [S] |= enabled .reply(S, C) = true.

I hope that the general pattern to define such localized fairness formulas in
TLR∗ is sufficiently clear from these examples. Our desired fairness requirement
for a and b is then the TLR∗ formula:

FairnessAssumptions = Just(req(b)) ∧ Fair(reply(a, b)) ∧ Fair (rec(b)).
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Fairness properties as the one above are interesting because, by intrinsically
combining the need for both state-based predicates and actions, they underscore
the lack of expressive power of both solely state-based logics like CTL∗ and solely
action-based logics like A-CTL∗ [34], since in general none of them can directly
express such fairness properties without cooking the given system specification.
A key advantage of TLR∗ is that it can directly and naturally express both state-
based and action-based properties, as well as mixed properties that intrinsically
combine state-based and action-based aspects. A further advantage is that, by
exploiting the algebraic nature of the state structure supported by rewriting logic
specifications, it allows actions that are not just plain labels, but that can be
spatially located and can be easily localized to the special situations just needed.

3 Rewrite Theories, Computations and Spatial Actions

I explain key aspects of rewriting logic needed to use it in tandem with TLR∗.
Since in rewriting logic concurrent computation and logical deduction coincide,
the notion of proof term is crucial. Proof terms are at the heart of the finite and
infinite computations that we can associate to a rewrite theory to evaluate the
truth of TLR∗ formulas. Spatial actions are then useful patterns that characterize
a family of corresponding proof terms as their instances.

3.1 Rewrite Theories

A rewrite theory is a triple R = (Σ, E, R), with (Σ, E) an equational theory, and
R a collection of rewrite rules. There are various possibilities for the equational
logic in which the equational theory (Σ, E) is specified: one can choose unsorted,
many-sorted, order-sorted, or even membership equational logic. To keep the
exposition as simple as possible, I will assume that (Σ, E) is a many-sorted
equational theory. The rewrite rules in R are of the form l : q −→ r, with l
a label, q and r Σ-terms of the same sort, and such that the set of variables
vars(r) appearing in the rule’s righthand side is a subset of the variables vars(q)
appearing on the lefthand side. Although one can associate a different label
to each different rule in R, it is also possible for several rules to share the
same label. All the ideas in this paper can be extended to the more general
rewrite theories in [3,12], which, besides using a more expressive equational logic,
can have conditional rewrite rules, and where rewriting under some argument
positions of a function symbol f in Σ can be forbidden by declaring them frozen.

Intuitively, a rewrite theory R = (Σ, E, R) specifies a concurrent system
whose states are elements of the initial algebra TΣ/E defined by the equational
theory (Σ, E), and whose rewrite rules define concurrent transitions between
those states. For example, for the rewrite theory R = (Σ, E, R) specifying the
fault-tolerant client-server protocol discussed in Section 2, the states are the
soups of clients, servers and messages, that is, elements of sort State in the ini-
tial algebra TΣ/E, and the rewrite rules specify the protocol transitions that can
concurrently take place in such soups. Therefore, mathematically each state is
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modeled as an E-equivalence class [t]E of ground terms, and rewriting happens
modulo E, that is, we rewrite not just terms t but rather E-equivalence classes
[t]E representing states. A one-step rewrite [t]E −→1

R [t′]E exists in R iff there
exists u ∈ [t]E such that u can be rewritten to v using some rule l : q −→ r in
R in the standard way, denoted u −→1

R v, and we furthermore have v ∈ [t′]E .
More precisely, we have u −→1

R v using l : q −→ r in R iff there is a position3 p
in u and a many-sorted substitution θ such that u|p = θ(q) and v = u[θ(r)]p.

The problem is that for arbitrary E and R, with, say, E and R finite, whether
[t]E −→1

R [t′]E holds is in general undecidable. The most useful rewrite theories
satisfy additional conditions under which we can decide in a finite number of
steps whether [t]E −→1

R [t′]E holds or not. Call a rewrite theory computable if
it is of the form R = (Σ, E ∪ A, R), with E, A, and R finite and is such that:

1. Equality modulo A is decidable, and there exists a matching algorithm mod-
ulo A producing a finite number of A-matching substitutions, or failing oth-
erwise, that can implement rewriting in A-equivalence classes. This implies
that for a rewrite theory of the form R′ = (Σ, A, Q) with Q a finite set of
rewrite rules, whether [t]A −→1

R′ [t′]A holds or not is decidable.
2. (Σ, E ∪ A) is ground terminating and confluent modulo A [13]. That is: (i)

in RE/A = (Σ, A, E) there are no infinite sequences of the form

[t1]A −→1
RE/A

[t2]A . . . [tn]A −→1
RE/A

[tn+1]A . . .

where the [ti]A ∈ TΣ/A (RE/A-rewriting terminates on ground A-equivalence
classes); and (ii) for each [t]A ∈ TΣ/A there is a unique A-equivalence class
[canE/A(t)]A ∈ TΣ/A called the E-canonical form of [t]A modulo A such that
any terminating sequence (possibly of length zero) beginning at [t]A,

[t]A −→1
RE/A

[t1]A . . . [tn]A −→1
RE/A

[tn+1]A

where [tn+1]A cannot be further rewritten with E module A, necessarily has
[tn+1]A = [canE/A(t)]A. The ground confluence and termination assump-
tions make the mapping [t]E∪A 	→ [canE/A(t)]A bijective. Therefore, we can
uniquely represent E ∪ A-equivalence clases as A-equivalence classes in E-
canonical form modulo A.

3. In addition to condition (2), the rules R are ground coherent relative to the
equations E modulo A (in a somewhat stronger sense than in [39]). This
precisely means that, if we decompose the rewrite theory R = (Σ, E ∪A, R)
into the simpler theories RE/A = (Σ, A, E) and RR/A = (Σ, A, R) (which
have decidable relations −→1

RE/A
and −→1

RR/A
because of (1)), then for each

3 See [13] for basic notation on term rewriting. Positions in a term are denoted as
strings of nonzero natural numbers and represent tree positions when the term is
parsed as a tree. Two useful notions are that of a subterm of a given term t at a
given position p, denoted t|p, and of replacement in t of such a subterm by another
term u at position p, denoted t[u]p. For example, in the term t = x+((z+0)+y), the
subterm at position 2.1 is z + 0, and the replacement t[z]2.1 is the term x + (z + y).
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ground A-equivalence class [t]A such that [t]A −→1
RR/A

[t′]A using a given
rewrite rule l : q −→ r in R we can always find a corresponding rewrite
[canE/A(t)]A −→1

RR/A
[t′′]A using the same rewrite rule l : q −→ r in R such

that [canE/A(t′)]A = [canE/A(t′′)]A.

Conditions (1)–(3) then imply that for each sort s in Σ, (→1
R,s) is a computable

binary relation on TΣ/E∪A,s: one can decide [t]E∪A →1
R [u]E∪A by generating

the finite set of all one-step R-rewrites modulo A of canE/A(t) and testing if any
of them has the same E-canonical form modulo A as [canE/A(u)]A. The above
computability requirements (1)–(3) are quite natural and are typically met in
practical rewriting logic specifications. They are assumed by the Maude system
as part of the “contract” with the user to make the theory executable in an
efficient way. Conditions (2) and (3) can be checked for some equational axioms
A using the Maude Church-Rosser, Termination, and Coherence tools [12].

To make the integration of rewriting logic and TLR∗ smoother, I define the
class RWTh0 as the class of rewrite theories R satisfying:

– R is computable and has a sort State as its chosen sort of states.
– If R has a sort named Prop (it need not have it in general), then it must

also have a sort named Bool with constants true and false and an operator
|= : State × Prop −→ Bool . Prop is the designated sort of atomic state

predicates, and |= is the function defining whether a given state satisfies a
given state predicate. Furthermore, if Σ is the signature of R, then we will
define the subsignature Π ⊆ Σ of its state predicate symbols as the set of all
operators in Σ of the form p : A1 × . . .×An −→ Prop, with n ≥ 0. The sorts
A1, . . . , An are called the parameter sorts of the atomic state predicate p.

– R is deadlock-free. This means that in R there are no finite sequences

[t1]A −→1
R [t2]A . . . [tn]A −→1

R [tn+1]A

such that [tn+1]A cannot be further rewritten (i.e., it is a “deadlock state”).
This is not at all a strong restriction, since, as explained in [32,12], any
rewrite theory R whose rules do not have rewrites in their conditions can be
transformed into a semantically equivalent theory R̂ that is deadlock-free.

3.2 Proof Terms

Rewriting logic has inference rules that, given a rewrite theory R, infer all the
concurrent computations possible in the system specified by R [30,3]. That is,
given two states [u], [v] ∈ TΣ/E∪A, one can reach [v] from [u] by some possibly
complex concurrent computation if and only if one can prove R � [u] −→ [v],
where the sequent [u] −→ [v] does not necessarily denote a single rewrite step,
but can instead correspond to a complex combination of: (i) concurrent rewrites
(different subterms being rewritten simultaneously, as, for example, client b re-
sending a request to server a, and a responding to an earlier copy of that request
simultaneously in the protocol of Section 2); and (ii) sequential compositions of
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such concurrent rewrites. In rewriting logic any such complex computation reach-
ing [v] from [u] is witnessed by a proof term, say λ, written R � λ : [u] −→ [v].
For example, in our client-server protocol we may have a state [u] of the form

[a] [b, a, 7,nil ] a � (b, 7)

and a state [v] of the form

[a] [b, a, 7,nil] a � (b, 7) b � (a, f(a, b, 7))

and the proof λ : [u] −→ [v] that [v] can be reached from [u] by the concurrent
computation in which b resends the message and, simultaneously, a replies to the
message present in [u], is the proof term λ = req(b, a, 7) reply(a, b, 7). Therefore,
a proof term gives us a precise description of how a concurrent computation
reaching a state [v] from a state [u] has happened. But several such computations,
specified by several proof terms, may in some sense be equivalent. For example,
we may consider the concurrent request and reply described by our λ above to
be in some sense equivalent to both: (i) the sequential computation in which
the request happens first and the reply second; and (ii) the one in which first
the reply happens and then the request is sent. That is, we have the following
equality of proof terms, all of which reach [v] from [u] in an equivalent manner:

req(b, a, 7) reply(a, b, 7)
= (req(b, a, 7) [a] a � (b, 7)) ; (reply(a, b, 7) [b, a, 7,nil ] a � (b, 7)))
= (reply(a, b, 7) [b, a, 7,nil]) ; (req(b, a, 7) [a] b � (a, f(a, b, 7)))

where ; is the sequential composition operator between proof terms. Note that
now each proof subterm in the above sequential compositions describes a one-
step rewrite of the form γ : [u] −→1

R [w], or of the form γ : [w] −→1
R [v], for

some w. For example, we have (req(b, a, 7) [a] a � (b, 7)) : [u] −→1
R [w] for [w]

the state
[a] [b, a, 7,nil ] a � (b, 7) a � (b, 7)

Rewriting logic defines a general equivalence relation between proof terms
[30,3] which satisfies the property that any proof term λ has (possibly many)
equivalent interleaving descriptions as a sequential composition γ1; . . . ; γk of one-
step proof terms γi. Such one-step proof terms have a very simple algebraic
description: they are all of the form γ = t[l(u1, . . . , un)]p, with t, u1, . . . , un Σ-
terms, and l a rule label, indicating that at position p in t, a rule labeled l and
having variables, say, x1, . . . , xn has been applied with substitution θ = {x1 	→
u1, . . . , xn 	→ un}. Note the slight technicality that, to make the expression
l(u1, . . . , un) unambiguous, we have to agree on some order of the variables
x1, . . . , xn. I assume that we use the textual order in which they appear in the
rule’s lefthand side. For example, if the lefthand side is the term f(z, y, g(y, x, z)),
then the textual order is z, y, x.

One-step proof terms will be very useful to label atomic transitions in the com-
putations on which we will evaluate the truth of path formulas in TLR∗. We just
need a few more technical details to make the treatment of such one-step proof
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terms canonical in the context of computable rewrite theories. The point is that,
given a computable rewrite theory R = (Σ, E ∪ A, R) and given a state [u]E∪A

we can have in general an infinite number of one-step proof terms rewriting it,
because the equivalence relation between proof terms includes the equivalence
modulo E ∪ A among its axioms [30]. What we really want is the notion of a
canonical one-step proof term. This will allow us to have only a finite number
of such canonical proof terms specifying all the one-step rewrites from a given
state. This is made possible by property (3) (ground coherence) of a computable
rewrite theory, which gives us a systematic way of associating to an arbitrary
one-step proof term a corresponding canonical proof term. Indeed, ground co-
herence ensures that, given a rewrite proof t[l(u1, . . . , un)]p : [t]A −→1

RR/A
[t′]A

using a given rewrite rule l : q −→ r in R we can always find a corresponding
rewrite proof canE/A(t)[l(v1, . . . , vn)]p′ : [canE/A(t)]A −→1

RR/A
[t′′]A using the

same rewrite rule l : q −→ r in R such that [canE/A(t′)]A = [canE/A(t′′)]A.
Let us call [canE/A(t)[l(v1, . . . , vn)]p′ ]A a canonical one-step proof term for R =
(Σ, E ∪ A, R). Since R is finite and there exists an A-matching algorithm, there
is only a finite number of such canonical proof terms, representing in a canonical
way all one-step rewrites from a given state, and such canonical proof terms can
be effectively computed. We can also make canonical the representation of the
states reached from a given state by one-step rewrites: we can associate to the
rewrite proof canE/A(t)[l(v1, . . . , vn)]p′ : [canE/A(t)]A −→1

RR/A
[t′′]A its corre-

sponding canonical one-step rewrite proof, namely, [canE/A(t)[l(v1, . . . , vn)]p′ ]A :
[canE/A(t)]A −→1

RR/A
[canE/A(t′′)]A. I denote canonical one-step rewrite proofs

[canE/A(t)]A
γ

−→1 [canE/A(t′′)]A

where γ = [canE/A(t)[l(v1, . . . , vn)]p′ ]A, leaving implicit the reference to R .

3.3 Computations

Canonical one-step rewrite proofs are the key ingredient to arrive at our de-
sired notion of computation, on which the truth of TLR∗ path formulas will be
evaluated. Recall that if R = (Σ, E ∪ A, R) ∈ RWTh0, then R, besides being
computable, is assumed to be deadlock-free and to have a sort named State
corresponding to the states of the system specified by R. We can then define
two useful sets. First, the set (CanΣ/E,A)State of all A-equivalence classes of
the form [canE/A(t)]A, where t is a ground Σ-term of sort State. Of course,
what (CanΣ/E,A)State describes is the set of all states of the system speci-
fied by R in their canonical form representation. Second, we can define the
set CanPTerms1(R) of all one-step canonical proof terms in R. Then, by defin-
ition, an infinite computation in R ∈ RWTh0 is a pair of functions (π, γ), with
π : N −→ CanΣ/E,AState , and γ : N −→ CanPTerms1(R) such that for all n ∈ N,

π(n)
γ(n)

−→1 π(n + 1)
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is a canonical one-step rewrite proof in R. Graphically, (π, γ) looks as follows:

π(0)
γ(0)

−→1 π(1)
γ(1)

−→1 π(2) . . . π(n)
γ(n)

−→1 π(n + 1) . . .

Comp(R)∞ denotes the set of infinite computations in R, and for each [t] ∈
CanΣ/E,AState , Comp(R)∞[t] denotes the infinite computations starting at [t], that
is, those computations (π, γ) such that π(0) = [t]. Given an infinite computation
(π, γ) and a number i ∈ N, (π, γ)i denotes the suffix of (π, γ) beginning at
position i, that is, the pair of functions (π ◦ si, γ ◦ si) with s the successor
function, s0 the identity function, and sn+1 = s ◦ sn.

3.4 Spatial Actions

Spatial actions are the action atoms of TLR∗. They generalize one-step proof
terms, which can be thought of as ground-instantiated spatial actions. A one-step
proof term tells us exactly what action takes place, with which instantiation of
the rule’s variables, and at which exact position in the state. Spatial actions
describe instead patterns, that in general specify not just a single one-step proof
term, but a possibly infinite set of such proof terms. Roughly speaking, we can
think of spatial actions as “one-step proof terms with variables,” but they are
slightly more general than that, since I also allow rule labels themselves, with
no instantiation information, as the most general kind of spatial actions. Given
a rewrite theory R = (Σ, E ∪ A, R) ∈ RWTh0, the simplest way to describe its
corresponding set SP(Ω, L) of spatial actions is as a set of terms with variables
in a signature associated to R. First of all, note that, since R is computable,
the equations E are ground confluent and terminating modulo A. This means
that in the canonical forms [canE/A(t)] not all function symbols in Σ may be
present, since some of them may correspond to functions defined by equations
in E which are evaluated away when a canonical form is reached. For example,
our client-server protocol specification may represent natural numbers in Peano
notation with a constant 0, and a successor function s, and can have an addition
function + defined by the equations N + 0 = N , and N + s(M) = s(N + M).
Then, the symbol + will never be present in any canonical form of a ground
term. Call Ω ⊂ Σ the subsignature of constructors associated to the ground
confluent and terminating (modulo A) equational theory (Σ, E ∪ A), where, by
definition, f ∈ Ω iff there is a ground term t such that f is a function symbol in
[canE/A(t)]. In our example, 0 and s, and also , are constructors, but + is not
a constructor. As it will become clear in what follows, making the constructor
signature Ω explicit is an important technical requirement to make the checking
of whether a given canonical 1-step proof term γ is an instance of a spatial
action pattern δ decidable. Note that, given a rewrite theory R = (Σ, E∪A, R) ∈
RWTh0, all its canonical proof terms γ ∈ CanPTerms1(R) must be of the form
γ = [t[l(u1, . . . , un)]p]A, with t, u1, . . . , un, Ω-terms.

Let us now define the set SP(Ω, L) of R’s spatial action patterns, where Ω
is the subsignature of constructors and L is the set of labels labeling rules in R,
and where I assume Ω ∩ L = ∅. The signature Ω(L) extends Ω by adding:
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– a fresh new sort Top
– for each rewrite rule l : q −→ r in R with q, r of sort B, and with the

textually-ordered set of variables in q having respective sorts B1, . . . , Bn:
• an operator l : B1 × . . . × Bn −→ B

• a constant l of sort B

• an operator top : B −→ Top

Let X be a many-sorted set of variables with an infinite set of variables for
each sort in Ω. Consider the algebras: (i) TΩ(L)/A(X) of A-equivalence classes
of Ω(L)-terms with variables in X ; and (ii) TΩ/A(X) of A-equivalence classes of
Ω-terms with variables in X . SP(Ω, L) is the subset of TΩ(L)/A(X) defined by:
– for each l ∈ L, [l]A, [top(l)]A ∈ SP(Ω, L)
– [l(u1, . . . , un)]A ∈ SP(Ω, L) if l ∈ L, [l(u1, . . . , un)]A ∈ TΩ(L)/A(X),

and u1, . . . , un ∈ TΩ/A(X)
– [top(l(u1, . . . , un))]A ∈ SP(Ω, L) if l ∈ L, [top(l(u1, . . . , un))]A ∈

TΩ(L)/A(X),
and u1, . . . , un ∈ TΩ/A(X)

– [v[l(u1, . . . , un)]p]A ∈ SP(Ω, L) if p is not the empty (top) position, l ∈ L,
[v[l(u1, . . . , un)]p]A ∈ TΩ(L)/A(X), and v, u1, . . . , un ∈ TΩ/A(X).

Note that CanPTerms1(R) ⊆ SP(Ω, L), so that any canonical one-step proof
term is a ground version of some spatial action pattern. The main purpose of
spatial action patterns is to endow TLR∗ with flexible action patterns with
varying degrees of generality: they can range from the most general patterns
of the form [l]A (that only indicate that some rule labeled l has been applied
somewhere in the state structure) to fully instantiated canonical one-step proof
terms (that fully specify the position, rule label, and variable instantiation), to
anything in between. As explained in Section 2, action patterns δ ∈ SP(Ω, L) can
often be abbreviated by following a few simple conventions, making their notation
more succinct. I will often leave the A-equivalence class [δ]A of an action pattern
δ implicit, and work directly with a representative δ. An action pattern of the
form l describes a rule labeled l that can be applied anywhere. In our running
protocol example, the action pattern req allows the req rule to be applied to
any client anywhere in the soup. An action pattern l(u1, . . . , un) allows l to also
be applied anywhere, but constrains the variable instantiation θ to be itself a
further instance of the substitution x1 	→ u1, . . . , xn 	→ un. For example, with
the pattern req(b), the req rule can only be applied to client b. Action patterns
of the form top(l(u1, . . . , un)) are needed to cover the case where l is applied at
the top of the term. For example, top(req(b)) only allows application of the req
rule to states consisting of just one client named b, with no other clients, servers,
or messages present in the state. The most fully spatial patterns are those of the
form v[l(u1, . . . , un)]p with v a nonempty context and p a position. For example,
we could constrain the req rule to be applied to states containing only one client,
its corresponding server, and no other clients, servers, or messages, by means of
the spatial action pattern [S] req(C, S), which is obtained from the nonempty
context term [S] X by replacing X by req(C, S) at position 2.
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The last point to be explained is how we can effectively check that a given
canonical one-step proof term γ is an instance of a spatial action pattern δ ∈
SP(Ω, L). This check will be essential when defining the semantics of TLR∗. First
of all, notice that, by our assumption that there is an A-matching algorithm, the
instance-of relation modulo A between [u], [v] ∈ TΩ(L)/A(X), denoted [u]A �A

[v]A , and defined by [u]A �A [v]A iff there is a many-sorted substitution θ
such that [u]A = [θ(v)]A, is a decidable relation, since it amounts to checking
whether u matches the pattern v modulo A. The instance-of relation between
a canonical one-step proof term γ and a spatial action pattern δ ∈ SP(Ω, L),
denoted γ �A δ, is a slight variant of the �A relation defined as follows:

– [v[l(u1, . . . , un)]p]A �A [l]A
– [v[l(u1, . . . , un)]p]A �A [l(v1, . . . , vn)]A iff [l(u1, . . . , un)]]A �A [l(v1, . . . , vn)]A
– [v[l(u1, . . . , un)]p]A �A [w[l(v1, . . . , vn)]p′ ]A iff [v[l(u1, . . . , un)]p]A �A [w[l(v1, . . . , vn)]p′ ]A
– [l(u1, . . . , un)]A �A [top(l)]A
– [l(u1, . . . , un)]A �A [top(l(v1, . . . , vn))]A iff [l(u1, . . . , un)]]A �A [l(v1, . . . , vn)]A.

4 The Temporal Logic of Rewriting

I first introduce the syntax of TLR∗, and then define its satisfaction seman-
tics on a rewrite theory. By restricting the spatial action patterns and/or the
atomic state predicates used, one obtains various sublogics of TLR∗, including
well-known state-based and action-based sublogics. The generality and expres-
siveness of the RewritingLogic/TLR∗ tandem allow it to unify as special cases
both the state-based tandem Kripke/CTL∗, based on Kripke structures, and the
action-based tandem DFLTranSys/TLR∗(L), based on (deadlock-free) labeled
transition systems. I also show that there is a pair of model and formula trans-
formations faithfully mapping the tandem RewritingLogic/TLR∗ to the tandem
Kripke/CTL∗. This makes possible the use of standard CTL∗ model checkers to
verify TLR∗ properties of finite-state systems specified by rewrite theories.

4.1 TLR∗ Syntax

TLR∗ is a family of logics parameterized by the spatial actions SP(Ω, L) and the
signature of atomic propositions Π . The most general of these logics is TLR∗, a
generalization of the state-based CTL∗ logic that allows both spatial actions and
state predicates in formulas. Similarly, TLR is the sublogic of TLR∗ generalizing
CTL, and LTLR is the sublogic generalizing LTL.

Everything is parameterized by the spatial actions SP(Ω, L) and the sig-
nature of state predicates Π . For example, TLR∗ is the parametric family
TLR∗(SP(Ω, L), Π). The key classes I consider are: (i) TLR∗(SP(Ω, L), Π), and
PTLR∗(SP(Ω, L), Π), which generalize, respectively, state and path formulas in
CTL∗; (ii) TLR(SP(Ω, L), Π), and PTLR(SP(Ω, L), Π), which generalize, re-
spectively, state and path formulas in CTL; (iii) QFR(SP(Ω, L), Π), the (path-)
quantifier-free formulas; (iv) LTLR(SP(Ω, L), Π), which generalizes LTL formu-
las; (v) the spatial actions in positive or negative form Atom(SP(Ω, L)); and (vi)
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the atomic state predicates in positive or negative form Atom(Π). I assume that
all state predicate constants and function symbols are constructors, i.e., that
there is a subsignature containment Π ⊆ Ω, and then define the set Prop(Π) of
atomic propositions as the set of ground terms Prop(Π) = TΩProp . I use BNF-like
notation to characterize the syntax of each of these logics, with variables:

δ : SP(Ω, L), λ : Atom(SP(Ω, L)), p : Prop(Π), α : Atom(Π)

ϕ, ϕ′ : TLR∗(SP(Ω, L), Π), φ, φ′ : PTLR∗(SP(Ω, L), Π)

ζ, ζ′ : TLR(SP(Ω, L), Π), μ : PTLR(SP(Ω, L), Π), η, η′ : QFR(SP(Ω, L), Π).

– Atom(SP(Ω, L)) : δ | ¬δ
– Atom(Π) : � | ⊥ | p | ¬p
– TLR∗(SP(Ω, L), Π) : α | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | Aφ | Eφ
– PTLR∗(SP(Ω, L), Π) : ϕ | λ | ¬φ | φ ∨ φ′ | φ ∧ φ′ | Xφ | φUφ′ | φRφ′ | φWφ′ |

Fφ | Gφ
– TLR(SP(Ω, L), Π) : α | ¬ζ | ζ ∨ ζ′ | ζ ∧ ζ′ | Aμ | Eμ
– PTLR(SP(Ω, L), Π) : ζ | λ | Xζ | ζUζ′ | ζRζ′ | Fζ | Gζ
– QFR(SP(Ω, L), Π) : λ | α | ¬η | η∨η′ | η∧η′ | Xη | ηUη′ | ηRη′ | ηWη′ | Fη | Gη
– LTLR(SP(Ω,L), Π) : Aη

For example, the formula

A(FairnessAssumptions ⇒ F rec(b))

specifying the the client-server protocol property already discussed in Section 2
belongs to LTLR(SP(Ω, L), Π), with Ω, resp. Π , the constructor, resp. predi-
cate, subsignature of Σ in our example system specification R = (Σ, E ∪ A, R).

Smaller, useful sublogics of TLR∗(SP(Ω, L), Π) can be obtained by restricting
the atomic propositions and/or spatial actions allowed. That is, we can define
sublogics of TLR∗ parameterized by a subset W ⊆ SP(Ω, L) of spatial actions,
and a subset Δ ⊆ Prop(Π) of atomic propositions. Specifically, the sublogic
PTLR∗(W, Δ) ⊆ PTLR∗(SP(Ω, L), Π) is defined by the set-theoretic formula
PTLR∗(W, Δ) = {φ ∈ PTLR∗(SP(Ω, L), Π) | sp(φ) ⊆ W ∧ prop(φ) ⊆ Δ},
where sp(φ) denotes the set of spatial action subformulas of φ, and prop(φ) de-
notes the set of atomic proposition subformulas. In exactly the same way we can
define all the smaller sublogics, such as TLR∗(W, Δ), TLR(W, Δ), LTLR(W, Δ),
and so on. In the particular case where we make just one of these parame-
ters empty without restricting the other, we encounter well-known logics. When
W = ∅, and Δ = Prop(Π), we obtain specializations to the state-based logics
CTL∗, CTL, and LTL; that is, CTL∗(Π) = TLR∗(∅, Π), CTL(Π) = TLR(∅, Π),
and LTL(Π) = LTLR(∅, Π). When W = SP(Ω, L) and Δ = ∅, one obtains
pure action logics : TLR∗(SP(Ω, L)) = TLR∗(SP(Ω, L), ∅), TLR(SP(Ω, L)) =
TLR(SP(Ω, L), ∅), and LTLR(SP(Ω, L)) = LTLR(SP(Ω, L), ∅). These pure ac-
tion logics can be further restricted by allowing only atomic labels l ∈ L as
actions, i.e., by choosing W = L. In this way we obtain TLR∗(L) = TLR∗(L, ∅),
TLR(L) = TLR(L, ∅), and LTLR(L) = LTLR(L, ∅). The mixed action-state
logic SE -LTL in [8,9] is also obtained this way as: SE -LTL(L, Π) = LTLR(L, Π).
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4.2 TLR∗ Semantics

The semantics of a state formula ϕ ∈ TLR∗(SP(Ω, L), Π) is given by the satis-
faction relation R, [t] |= ϕ defined below, where R ∈ RWTh0 has subsignatures
of constructors Ω and of state predicates Π , and [t] is a state, that is, an A-
equivalence class [t]A in E-canonical form modulo A and of sort State, where
E ∪ A are the equations in R.

Similarly, the semantics of a path formula φ ∈ PTLR∗(SP(Ω, L), Π) is given
by the satisfaction relation R, (π, γ) |= φ, where (π, γ) is an infinite compu-
tation in Comp(R)∞. Since one can express all of TLR∗(SP(Ω, L), Π) and
PTLR∗(SP(Ω, L), Π) in terms of Atom(SP(Ω, L)), Atom(Π), the basic con-
nectives �, ¬, ∨, X, U, and the universal path quantifier A, it is enough to
define the semantics for the atoms and for those connectives. Since TLR∗ gen-
eralizes CTL∗, the semantic definitions are entirely similar to those for CTL∗

(see, e.g., [11]). The key new addition is the semantics of spatial actions. The
satisfaction relation is defined inductively as follows:

– R, [t] |= �
– R, [t] |= p ⇔ E ∪ A � t |= p = true
– R, [t] |= ¬ϕ ⇔ R, [t] �|= ϕ
– R, [t] |= ϕ ∨ ϕ′ ⇔ R, [t] |= ϕ or R, [t] |= ϕ′

– R, [t] |= Aφ ⇔ ∀ (π, γ) ∈ Comp(R)∞[t] R, (π, γ) |= φ

– R, (π, γ) |= ϕ ⇔ R, π(0) |= ϕ
– R, (π, γ) |= δ ⇔ γ(0) �A δ
– R, (π, γ) |= ¬φ ⇔ R, (π, γ) �|= φ
– R, (π, γ) |= φ ∨ φ′ ⇔ R, (π, γ) |= φ or R, (π, γ) |= φ′

– R, (π, γ) |= Xφ ⇔ R, (π, γ)1 |= φ
– R, (π, γ) |= φUφ′ ⇔ ∃k ∈ N s.t. R, (π, γ)k |= φ′ ∧ ∀0 ≤ i < k R, (π, γ)i |= φ

At the syntactic level, we have already seen that TLR∗ contains both the state-
based logic CTL∗ and the pure action logic TLR∗(L), where L is a parameter
denoting the given set L of labels, as sublogics. This generality has a similar
counterpart at the semantic level, where both Kripke structures and labeled
transition systems can be seen as very simple special cases of rewrite theories
(with rewrite rules that rewrite atomic constants instead of rewriting general
terms). As explained in [31], we have two faithful embeddings of tandems

Kripke/CTL∗ ↪→ RewritingLogic/TLR∗ ←↩ DFLTranSys/TLR∗(L)

where DFLTranSys stands for the class of deadlock-free labeled transition sys-
tems. Other pure action logics can be embedded into the RewritingLogic/TLR∗

tandem by faithful mappings of tandems. For example, two formula translations
γ : HM (L) −→ TLR∗(L), and β : A-CTL∗(L) −→ TLR∗(L), from, respec-
tively, Hennesy-Milner logic [19], and De Nicola and Vaandrager A-CTL∗ [34],
are defined in [31] and shown to yield faithful mappings of tandems

DFLTranSys/A-CTL∗(L)
(id,β)−→ DFLTranSys/TLR∗(L)

(id,γ)←−DFLTranSys/HM (L)
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4.3 Reduction to State-Based Temporal Logics

Although the example in Section 2 has shown that in general there is no direct
way of expressing TLR∗ properties in state-based logics without changing the
system specification, there is, however, a systematic indirect way of achieving
such a reduction to state-based logics, namely, to CTL∗. This requires changing
both the system specification, by associating to a rewrite theory a suitable Kripke
structure, and translating the TLR∗ formula ϕ into a corresponding CTL∗ for-
mula ϕ̃. That is, we need to define a suitable faithful mapping of tandems. Since
any TLR∗ formula φ only involves a finite set sp(φ) of spatial actions as subfor-
mulas, it is always sufficient to consider formulas in TLR∗(W, Π) with W finite.
The faithful mapping of tandems we seek is a mapping parametric in W

(KW , (̃ )) : RewritingLogic/TLR∗(W, Π) −→ Kripke/CTL∗(Π ∪ W )

with W a finite set of spatial actions in the given rewrite theory R, and Π the
subsignature of state predicates in R; and where in the translated CTL∗ formula
ϕ̃ a spatial action pattern δ ∈ W becomes an additional state predicate.

Recall that a Kripke structure on a set AP of atomic propositions is a triple
K = (A, R, L), with A a set of states, R ⊆ A × A a total transition relation,
and L : A −→ P(AP ) a labeling function assigning to each state a ∈ A the set
L(a) ⊆ AP of the atomic propositions that hold in a. Given R ∈ RWTh0 and
a finite W ⊆ SP(Ω, L), the construction KW maps the rewrite theory R to the
following Kripke structure KW (R):

– Its set of states is (CanΣ/E,A)State × P(W ); that is, states are pairs ([t], U),
with [t] a state of R, and U ⊆ W a subset of spatial actions in W .

– Its transition relation is defined by the equivalence: ([t], U) −→ ([t′], V ) iff

there is a canonical one-step rewrite proof [t]
γ

−→1 [t′] in R, and V is the set

actW (γ) = {δ ∈ W | γ �A δ}.

That is, a transition ([t], U) −→ ([t′], V ) is possible iff there exists a one-step

rewrite [t]
γ

−→1 [t′] in R, and V is the set of all spatial action patterns in W
of which γ is an instance (note that V could be empty).

– Its set of atomic propositions is the set Prop(Π) ∪ W , and the labeling
function maps a state ([t], U) to the set of atomic propositions LR([t]) ∪ U ,
where, by definition, LR([t]) = {p ∈ Prop(Π) | E ∪ A � [t] |= p = true};
that is, the atomic propositions holding in a state ([t], U) are exactly those
holding in [t] plus the propositions U .

In typical model-checking applications of this mapping of tandems, we will
be interested in using the construction KW (R) to model check a TLR∗ formula
ϕ using a CTL∗ model checker, and we will choose the smallest W possible,
namely, W = sp(ϕ). In most practical cases such a set W will furthermore be
unambiguous, in the sense that different action patterns in W never overlap. For
example, if W ⊆ L is just a set of labels, different labels always denote different
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sets of one-step proof terms and therefore such an W is always unambiguous; but
we can have also unambiguous action patterns such as l(0) and l(s(x)), where
l is parametric on, say, the natural numbers with 0 and successor s, since l(0)
and l(s(x)) can never have a common ground instance. The interest of having
W unambiguous is that then all transitions ([t], U) −→ ([t′], V ) in KW (R) have
U and V either singleton subsets of W , or the empty set. This means that the
original state space of reachable states of R from some initial state, if is finite,
is then only increased by a |W | + 1 factor. In, [31] a detailed unifiability-based
decision procedure is given to determine if a given W is unambiguous.

Given now a formula ϕ ∈ TLR∗(W, Π) (resp. φ ∈ PTLR∗(W, Π)) we can
associate to it a formula ϕ̃ ∈ CTL∗(W ∪ Π) (resp. ϕ̃ ∈ PCTL∗(W ∪ Π)) by sys-
tematically replacing each occurrence of a spatial action δ ∈ W in ϕ by the for-
mula Xδ. The construction KW (R), together with the above formula translation
(̃ ) define a mapping of tandems (KW , (̃ )) : RewritingLogic/TLR∗(W, Π) −→
Kripke/CTL∗(Π ∪ W ). This mapping is a faithful mapping of tandems preserv-
ing the satisfaction relations |= in TLR∗(W, Π) and |=CTL∗ in CTL∗(Π ∪ W ).
This is shown by the following theorem proved in detail in [31].

Theorem 1. Given a rewrite theory R ∈ RWTh0 and a finite W ⊆ SP(Ω, L),
for each state [t] in R, subset U ⊆ W , and formula ϕ ∈ TLR∗(W, Π), the
following equivalence holds:

R, [t] |= ϕ ⇔ KW (R), ([t], U) |=CTL∗ ϕ̃

The above theorem gives us a systematic way of verifying TLR∗ properties of a
rewrite theory R by verifying the CTL∗ translation of those properties on the
Kripke structure KW (R). Notice that if R is finite-state and computable, then
so is KW (R). Therefore, in such case we can use standard CTL∗ model-checking
algorithms —or CTL or LTL algorithms if the translated formula falls within
those sublogics— to verify the given TLR∗ property of our original system. Note,
also, that given any formula ϕ ∈ TLR∗(SP(Ω, L), Π), we can always choose
W = sp(ϕ). Therefore, the computational cost to model check ϕ̃ from an initial
state ([t], U) can be estimated in terms of the size |R[t]| of the original rewrite
theory R starting at [t], which we can define as |R[t]| = |ReachR([t])|+ | −→1

[t] |,
where ReachR([t]) is the set of states reachable from [t], and −→1

[t] is the re-
striction of the one-step rewrite relation to states in ReachR([t]). Similarly,
let KW (R)([t],U) denote the sub-Kripke structure of KW (R) determined by the
states reachable from ([t], U), let ReachKW (R)([t], U) denote the set of such reach-
able states, and let −→(t,U) denote the restriction of the transition relation
to states reachable from ([t], U). The size of this sub-Kripke structure is then
|KW (R)([t],U)| = |ReachKW (R)([t], U)| + | −→(t,U) |. We then have the inequal-
ities: |ReachKW (R)([t], U)| ≤ |ReachR([t])| · 2|sp(ϕ)|, and | −→(t,U) | ≤ | −→1

[t]

| · 22·|sp(ϕ)|. Therefore, we obtain the bound |KW (R)([t],U)| ≤ |R[t]| · 22·|sp(ϕ)|,
and for the most common case when W is unambiguous the considerably better
bound |KW (R)([t],U)| ≤ |R[t]| · (|sp(ϕ)| + 1)2. Therefore, since the complexity
of model checking a CTL, resp., LTL or CTL∗ formula ϕ̃ on a Kripke structure
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B = (B, →B, LB) is O(|ϕ̃| · |B|), resp., |B| ·2O(|�ϕ|) (see [11]), for B = KW (R)([t],U)

we conclude that the complexity of model checking ϕ̃ is O(|ϕ̃| · |R[t]| · 22·|sp(ϕ)|)
(resp. O(|ϕ̃| · |R[t]| · (|sp(ϕ)| + 1)2) in the unambiguous case) if ϕ̃ ∈ CTL; and
O(|R[t]| · 22·|sp(ϕ)| · 2O(|�ϕ|)) (resp. O(|R[t]| · (|sp(ϕ)| + 1)2 · 2O(|�ϕ|)) in the unam-
biguous case) if ϕ̃ is a LTL or CTL∗ formula. In all cases we only incur an extra
factor 22·|labels(ϕ)| (resp. (|sp(ϕ)|+1)2 in the most common, unambiguous case),
which in practice should not be too big for a typical ϕ. Note that in the worse
case we have |ϕ̃| = 2 · |ϕ|. The above are rather naive estimates, since by gener-
alizing the state-based model-checking algorithms to “native” TLR∗ algorithms
that can work directly on R, the above bounds could be greatly improved. For
example, for LTLR formulas, the model checking approach in Theorem 3 in [8,9],
based on the so-called state-event product of a labeled Kripke structure and a
Büchi automaton, does not require any increase in the state space of R.

4.4 The Example Revisited

The general reduction to state-based logics can be illustrated with our client-
server protocol example and ϕ our example LTLR formula in Section 2. The
set sp(ϕ) is sp(ϕ) = {req(b), reply(a, b), rec(b)}. Since different spatial actions in
sp(ϕ) have different labels, sp(ϕ) is clearly unambiguous. We can then define
a rewrite theory Rsp(ϕ) whose rules are the following modified versions of our
original rules:

req : {X [C, S, N,nil ] | A} −→ if C == b then

{X [C, S, N,nil ] S � (C, N) | req(b)} else {X [C, S, N,nil ] S � (C, N) | τ} fi
reply : {X S � (C, N) [S] | A} −→ if C == b and S == a

then {X [S] C � (S, f(S, C, N)) | reply(a, b)}
else {X [S] C � (S, f(S, C, N)) | τ} fi

rec : {X C � (S, M) [C, S, N, W ] | A} −→ if C == b

then {X [C, S, N, M ] | rec(b)}
else {X [C, S, N, M ] | τ} fi

dupl : {X I � CNT | A} −→ {X I � CNT I � CNT | τ}
loss : {X I � CNT | A} −→ {X | τ}

The equational theory (Σ, E∪A) of the original rewrite theory R for our protocol
is extended by: (i) renaming the sort State to OldState; (ii) adding a new sort,
Action with a constant τ (denoting the empty set ∅) and operators req, rec :
Oid −→ Action, and reply : Oid × Oid −→ Action; (iii) adding a new sort State
together with an operator { | } : OldState × Action −→ State; that is, now a
state is a pair {X | A}, with X an OldState, and A an Action; and (iv) adding
an if then else fi operator. The equations E ∪ A remain unchanged, except for
the obvious new equations for the if then else fi operator, and the need to lift
to the new state structure the satisfaction equations for localized enabledness
state predicates enabled .req , enabled .rec : Oid −→ Prop and enabled .reply :
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Oid ×Oid −→ Prop. For example, the positive case of the enabled .req predicate
is defined by

{X [C, S, N,nil ] | A} |= enabled .req(C) = true

This example also illustrates an additional point, namely, that the KW (R) con-
struction can be decomposed into two simpler constructions: (i) a rewrite theory
transformation R 	→ RW , adding to the states of R a second component con-
taining finite sets of spatial actions in W ; and (ii) the standard construction
R 	→ K(R) mapping a rewrite theory to its underlying Kripke structure (see
[12]), so that we have KW (R) = K(RW ). The decomposition KW (R) = K(RW )
is particularly useful when model checking R, [t] |= ϕ with ϕ a LTLR formula:
we can model check instead RW , ([t], ∅) |= ϕ̃ in the Maude LTL model checker,
which implicitly performs the K(R) construction.

Our transformed system, although very simple, has an infinite number of reach-
able states, even for simple initial states such as the one discussed in Section 2.
Therefore, we cannot verify the LTLR formula ϕ = A(FairnessAssumptions ⇒
F rec(b)) by model checking the LTL formula ϕ̃ directly on Rsp(ϕ) using standard
algorithms. However, we can verify it by defining a simple finite-state equational
abstraction R̂sp(ϕ) of Rsp(ϕ) [32], and model checking ϕ̃ on R̂sp(ϕ). For abstrac-
tions in general (see Chapter 13 and Theorem 16 in [11]), and equational abstrac-
tions in particular [32], if a ACTL∗ formula holds for the abstraction, then it holds
also for the original system. The equational abstraction R̂sp(ϕ) in question is the
rewrite theory obtained by adding to Rsp(ϕ) the single equation:

I � CNT I � CNT = I � CNT

This equation causes a lack of coherence for the rules reply , rec, and loss, so
a simple process of “coherence completion” has to be performed by adding to
Rsp(ϕ) extra versions of these rules that are coherent. For example, we need to
add an extra loss rule of the form

loss : {X I � CNT | A} −→ {X I � CNT | τ}

The LTL formula ϕ̃ can then be model checked using Maude’s LTL model checker
on the initial state init defined by the term

{[a] [b, a, 7,nil] [c, a, 17,nil] | τ}

which by Theorem 1 is the counterpart for Rsp(ϕ) and R̂sp(ϕ) of the initial state
for R in Section 2. Indeed, Maude’s LTL model checker gives us the answer

Maude> red modelCheck(init,tilde(FairnessAssumptions -> <> rec(b))) .
result Bool: true

Appendix A in [31] contains the Maude specification of the theories Rsp(ϕ)

and R̂sp(ϕ), as well as the automation of the mapping ϕ 	→ ϕ̃.
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5 Related Work

There is much related work on both state-based and action-based logics. This
section is not a survey, and I do not attempt to cover what is indeed a very vast
field. I do however comment on various logics that I view as most closely related
to TLR∗. They break down naturally into: (i) state-based logics; (ii) action-based
logics; and (iii) mixed logics supporting both actions and state predicates.

The connections to well-known state-based logics such as LTL, CTL, and
CTL∗ (see, e.g., [24], [11]), to action-based logics such as Hennessy-Milner logic
[19], and A-CTL∗ [34], and to the mixed action-state logic SE -LTL in [8,9], all
of which can be viewed as special cases of the RewritingLogic/TLR∗ tandem,
have already been discussed in Sections 4.1–4.2.

Regarding other state-based logics, I would like to briefly comment on the
Spatial Logic for Concurrency of Caires and Cardelli [5,6], which is primarily a
spatial modal logic for process calculi in the π-calculus spirit and has some close
relationships to the modal μ-calculus. Caires and Cardelli use spatial features
only for state predicates and do not distinguish between different actions, which
are all handled by a single, unlabeled diamond modality4. Instead, TLR∗ uses
spatial features for action patterns, while spatial features are not used for state
predicates. If one accepts the equation “concurrency = π-calculus,” the logic of
Caires and Cardelli is indeed a state-based logic for concurrency. From a more
ecumenical point of view, it is a logic well suited for π-calculus-like concurrent
systems, which are particular kinds of rewrite theories [38].

Regarding various action-based temporal and modal logics, I refer the reader
to a survey by Mateescu [27], where, besides Hennessy-Milner logic and A-CTL∗,
various other action-based logics are both discussed in detail and compared
with each other, including: (i) the μ-A-CTL [15] extension of A-CTL∗, which
adds to A-CTL a least fixpoint operator and has the same expressive power as
the modal μ-calculus; (ii) Propositional Dynamic Logic (PDL) [37,17]; and (iv)
the modal μ-calculus [22] (μL). As already pointed out, the closest analogue of
TLR∗ among action logics is A-CTL∗, which can be viewed as a special case of
TLR∗. The modal μ-calculus is itself more expressive than A-CTL, PDL, and
Hennessy-Milner logic (see [27] for a careful comparison). To the work covered
in Mateescu’s survey, I would also add the NPATRL logic [28] associated to the
NRL Protocol Analyzer. Since this tool uses backwards symbolic search to verify
cryptographic protocols, the NPATRL logic uses past temporal logic operators
and event atoms.

The third class of logics to compare TLR∗ with are logics supporting both
actions and state predicates. First of all, two of the logics in Mateescu’s survey,
namely PDL and the modal μ-calculus are already in this category, since they
support both state predicates and actions. In some sense, the closest analogue
to PDL is not TLR∗ itself but, instead, the strategy language and the strategy
formulas presented in [31], which, although not having the same primitives or
expressive power as PDL, can be thought of as some kind of dynamic logic,

4 See however the related [4], which has an action-labeled diamond.
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which shares with PDL the general idea of using regular expressions and of be-
ing interpreted on finite computations. Regarding the modal μ-calculus, it is
well-known that it can encode both CTL and CTL∗ (see, e.g., [11], [2]). There-
fore, more than a direct comparison with TLR∗, the best comparison rests on
the observation that, just as TLR∗ generalizes CTL∗, there is a similar gener-
alization of μL to a modal μ-calculus of rewriting μLR, whose syntax I define
below. As TLR∗, μLR is likewise parametric on the constructors Ω, labels L,
and predicate signature Π of a rewrite theory R. Therefore, we have a para-
metric family of formulas, where assuming as before that Π ⊆ Ω, and the set
of atomic propositions Prop(Π) = TΩProp , and using as before the variables
δ : SP(Ω, L), and p : Prop(Π), and assuming a disjoint set SVar of variables
X, Y, Z, . . ., that in the semantics will range over subsets of the set of states, plus
ϕ, ϕ′ : μLR(SP(Ω, L), Π), we have the following BNF-like syntax definition:

μLR(SP(Ω, L), Π) : p | X | ϕ ∧ ϕ′ | [δ]ϕ | ¬ϕ | νX.ϕ

where every free occurrence of X in νX.ϕ must occur positively, that is, within
the scope of an even number of negations. The semantics of μLR can then be
defined along standard lines (see [31]). The ideas in this paper could have been
developed for μLR instead than for TLR∗. My preference for TLR∗ is motivated
by pragmatic reasons of the kind already pointed out in Footnote 1.

Yet another line of work involves several extensions of either A-CTL∗ or A-
CTL supporting both actions and state predicates, including, e.g., [36,18,1,14].
Although almost all these logics use unstructured labels, one noteworthy ex-
ception is the logic presented in [14], which shares some common features with
TLR∗, since action expressions involving logical variables are used to describe
interactions between services in a service-oriented architecture. Three other ap-
proaches proposing mixed logics with both state-predicates and actions are: (i)
the extension of the SE -LTL in [8,9] to a universally path quantified logic involv-
ing ω-regular expressions [7]; (ii) the ESTL logic of events and states for Petri
nets of [21]; and (iii) the Kripke modal transition systems of [20], and their use
in the verification of safety and liveness properties in the context of the modal
μ-calculus.

The work most closely related to the one presented here, and indeed one of its
sources of inspiration, is that on VLRL, a Verification Logic for Rewriting Logic
developed in [16,26]. Two common similarities are: (i) state-based predicates can
be expressed in both logics; and (ii) both VLRL and TLR∗ support spatial action
patterns. However, VLRL is a Hennessy-Milner-like modal logic without tempo-
ral modalities. This is compensated for by providing an interface that extends
VLRL with some temporal logic operators. In this regard, the TLR∗ solution is
simpler (no such interface is needed) and, on the temporal logic dimension, more
expressive. A mapping from VLRL action formulae into LTL, similar in spirit to
the reduction from TLR∗ to CTL∗ given in Section 4.3, was presented in [35].

Two other logics that combine actions and state-based formulas are the UNITY
logic of Chandy and Misra [10], and Misra’s logic for Seuss [33]. In both cases, an
action corresponds to a command c in a UNITY or Seuss program, and can be men-
tioned in a Hoare-like triple {p} c {q}. Such triples are elegantly deployed in both
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[10] and [33] to reason axiomatically about temporal logic properties. One impor-
tant difference with TLR∗ is that, since the meaning of temporal logic formulas is
defined by universal or existential quantification over the actions of a program, ac-
tions as such do not appear in temporal logic formulas, which remain state-based.

Although Lamport’s Temporal Logic of Actions (TLA) [23] and TLR∗ have
a similar motivation, both methodologically and technically TLA and TLR∗

are very different. Methodologically, the division of labor between system and
property specification logics supported by the RewritingLogic/TLR∗ tandem is
flatly rejected in TLA. Lamport proposes TLA in [23] as:

“a simpler approach in which both the algorithm and the property are
specified by formulas in a single logic.”

This has important technical consequences. The key one is that TLA builds into
the logic a shared variable, imperative programming model. TLA formulas talk
about states by making mathematical statements about program variables. To
capture state change, the usual technique of using primed versions of the program
variables is adopted. Then an action in Lamport’s sense is a predicate involving
both primed and unprimed variables, and therefore describing a set of pairs of
states. Although TLA is a logic of actions, its semantics, however, remains state-
based, in the precise sense of being defined over sequences of states. It is indeed
what I called in Section 2 a “possibilistic” semantics, so that an action A in
Lamport’s sense holds true of a sequence of states π, which in my notation I
would write π |=♦ A, if and only if the pair of states (π(0), π(1)) belongs to the
binary relation defined by A. For the reasons explained in Section 2, as any other
“possibilistic semantics,” TLA cannot distinguish between two different actions
that happen to relate the same pair of states: one would need to add some
kind of history variables to make such distinctions. For somebody accepting the
equation “concurrent system specification = imperative concurrent algorithm,”
TLA is an attractive framework. But of course this is just a specific approach to
concurrent system specification with its own advantages and drawbacks.

6 Conclusions

I have explained the “system/property mismatch problem,” which plagues both
purely action-based and purely state-based formal specification tandems. I have
then proposed the RewritingLogic/TLR∗ tandem as a way to generalize and unify
a wide range of action-based and state-based tandems and avoid many of these
mismatch problems. Although this is neither the first nor the only proposal for
combining state-based and action-based formalisms, it has a number of unique
advantages. At the system specification level, rewrite theories allow much higher
level descriptions than either Kripke structures or labeled transition systems,
support true concurrency, and allow easy combination of algorithmic and deduc-
tive reasoning. At the property specification level, the generalization from CTL∗

to TLR∗ is so straightforward as not to cause any additional ease-of-use prob-
lems. Indeed, the opposite is the case, since action-based properties, requiring
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complex indirect expression in CTL∗ as well as cooking of system specifications,
now become trivial to specify with expressive action-based patterns and do not
require any such cooking. At the algorithmic level, because of the existence of
a faithful mapping of tandems RewritingLogic/TLR∗ −→ Kripke/CTL∗, TLR∗

properties can be model checked using CTL∗ model checkers at reasonable cost
for the formulas typically encountered in practice.
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Abstract. UML models consist of several diagrams of different types describ-
ing different views of a software system ranging from specifications of the static
system structure to descriptions of system snapshots and dynamic behaviour. In
this paper a heterogeneous approach to the semantics of UML is proposed where
each diagram type can be described in its “natural” semantics, and the relations
between diagram types are expressed by appropriate translations. More formally,
the UML family of diagram types is represented as a “heterogeneous institution
environment”: each diagram type is described as an appropriate institution where
typically the data structures occurring in a diagram are represented by signature
elements whereas the relationships between data and the dynamic behaviour of
objects are captured by sentences; in several cases, the diagrams are themselves
the sentences. The relationship between two diagram types is described by a so-
called institution comorphism, and in case no institution comorphism exists, by
a co-span of such comorphisms. Consistency conditions between different dia-
grams are derived from the comorphism translations. This heterogeneous seman-
tic approach to UML is illustrated by several example diagram types including
class diagrams, OCL, and interaction diagrams.

1 Introduction

Almost exactly 40 years ago, computer programs had become so large and complex
that many software development projects failed and maintaining software programs
was almost unmanageable. Neither pragmatic methods for software construction nor
the scientific foundations of programming were established at the time; the need for
systematic software development techniques was so urgent and evident that in 1968 the
first software engineering conference was organized in Garmisch [39].

Today, software systems are larger than ever, and software is the central innovating
factor of many high-tech products, services, and systems, e.g. in consumer electronics,
automotive applications, telecommunications, and business. Our daily life and work de-
pend more and more on such software-intensive systems. Driven by techniques such as
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object-orientation, service-orientation, or model-transformation, practical software en-
gineering methods have considerably evolved and many companies follow well-defined
software development processes for constructing larger and larger software systems.
A substantial body of theoretical foundations of programming is available and formal
modelling and analysis techniques like abstraction and refinement techniques, model
checking or theorem proving have undergone a steep development during the last years.
However, at the same time we experience that many software systems are error-prone,
unstable, have security holes, and do not meet the required quality standards. There
is still a large gap between industrial practice and formal approaches: pragmatic mod-
elling languages and techniques lack formal foundations, inhibiting the development of
powerful analysis and development tools, while formal approaches are often too dif-
ficult to use, do not scale easily to complex software-intensive systems, and are not
well-integrated with pragmatic methods. Aspects such as distribution, mobility, hetero-
geneity, quality of service, security, trust, and dynamically changing infrastructures and
environments are not well supported by actual engineering methods.

Bridging this gap and advancing software engineering theory and methods is one
of the main aims of our common research with Ugo Montanari during the last several
years. In the project AGILE [1] we developed an architectural approach to software mo-
bility which was based on a uniform mathematical framework to support sound method-
ological principles, formal analysis, and refinement. The aim of SENSORIA [48,50] is
to develop a novel comprehensive approach to the engineering of service-oriented soft-
ware systems where foundational theories, techniques and methods are fully integrated
in a pragmatic software development process. With SENSORIA techniques software
engineers can model a system in the usual way by using standard high-level visual
modelling languages such as UML; but they get additional help for reasoning about
functional and non-functional properties of the system by mathematical models which
run in the background hidden from the developer.

As a prerequisite for the SENSORIA approach we investigate in this paper the seman-
tics of UML. Models expressed in this language consist of several diagrams of different
types describing different views of a software system ranging from specifications of
the static system structure to descriptions of system snapshots and dynamic behaviour.
For example, UML 1.x offers nine different types of diagrams for describing different
static and dynamic aspects of a system. Depending on the modelling purpose one may
employ e.g. class diagrams, component diagrams, state diagrams, sequence diagrams,
activity diagrams, or instance diagrams. UML 2.0 adds several new diagram types and
enhances the expressiveness and semantics of sequence diagrams and activity diagrams
considerably.

We propose here a new “heterogeneous approach” to the semantics of UML which
concentrates on the comparison and integration of different modelling formalisms, and
in which

– each diagram type can be described in its “natural” semantics,
– relations between diagram types are expressed by appropriate translations, and
– consistency conditions can be derived between diagrams of different type.

More formally, we present the UML family of diagram types as a “heterogeneous
institution environment”. An institution is given by a type of signatures, a type of
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sentences, a notion of model, and a notion of validity of a sentence in a model. Each
diagram type is described as an appropriate institution, and each diagram instance is
a specification in the institution. Typically, the data structures occurring in a diagram
are named by signature elements whereas the dynamic behaviour of objects and rela-
tionships between data are described by sentences; in several cases, the diagrams are
themselves the sentences. The semantic concepts involved are captured by the models
considered, with the validation between sentences and models determining the seman-
tics of particular diagrams. The relationship between two diagram types is described by
so-called institution comorphisms, and in case no institution comorphism exists, by a
co-span of such comorphisms. Consistency conditions between different diagrams are
derived from the comorphism translations or the co-span construction. We illustrate the
heterogeneous semantic approach to UML by several diagram types including class dia-
grams, OCL, and interaction diagrams; we demonstrate the use of heterogeneous UML
institutions by means of the e-learning case study of the SENSORIA project [50].

The remainder of this paper is structured as follows: In Sect. 2 we review the related
work to the semantics on modelling languages and, in particular, on UML semantics.
Sect. 3 introduces the theory of heterogeneous institution environments. In Sect. 4 we
present sketches of the institutions for class diagrams, OCL, and interaction diagrams
and in Sect. 5 we sketch how these different languages can be linked by institution
comorphisms and co-spans. The implications for consistency conditions between dia-
grams of these different types are discussed in Sect. 6. Finally, in Sect. 7 we conclude
with a short discussion of the results of the paper and an outlook on further research
topics.

2 Related Work

Giving an integrated semantics to UML is a difficult task due to the complexity and
variety of the different diagram types. The classical approaches to programming lan-
guage semantics are adequate only for a restricted subset of the specification and mod-
elling tasks of software development. For example, denotational semantics is an elegant
framework for compositionally modelling functional behaviour but it is not so appro-
priate for the dynamic behaviour of concurrent processes; in contrast, structural oper-
ational semantics (SOS) is well-suited for the latter but treats data structures only in
a syntactic way. Algebraic specifications are appropriate for modelling complex data
types and associated operations, but they are not easily usable for specifying reactive
systems, in spite of the elegant work started with [2] on axiomatic process algebra.

In order to model static functional aspects as well as dynamic concurrent behaviour,
several researchers investigated extensions or combinations of these methods. Broy pro-
poses a denotational “system model” based on stream-processing functions in combi-
nation with abstract data types (see e.g. [8,9]) and currently uses this system model
for developing a complete UML semantics [5,6,7], where diagrams are taken as predi-
cates that a system model instance has to satisfy. Other approaches propose the combi-
nation of CSP and Z [23,47] or a combination of algebraic specifications and labelled
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transition systems [42]. Rewriting logic [34] is a semantic framework for concurrency
which extends the algebraic specification approach to concurrent systems.

Ugo Montanari’s tile model [24] is a system model for describing the behaviour of
open systems; it is a SOS-like compositional framework where data structures are not to
be restricted to syntactic terms, and it can be seen as an extension of rewriting logic by
taking into account state changes with side effects and synchronisation [35]. Architec-
tural Design Rewriting [10] is another novel elegant approach of Ugo Montanari where
rewriting techniques are integrated with graph transformations in order to support the
design of reconfigurable software architectures.

Our framework is inspired by these combination approaches; but instead of a tight
integration of different modelling techniques we aim at a loose coupling and use a “het-
erogeneous specification approach” which concentrates on the comparison and integra-
tion of different specification formalisms, retaining the formalisms most appropriate for
expressing parts of the overall problem.

For UML, this line of research started with our algebraic viewpoint approach [49]
and the general categorical setting of Ehrig, Orejas, and Padberg (see e.g. [21]). In
other contexts, institutions [27] and general logics [33] have been proposed as a formal
basis establishing a powerful framework for heterogeneous specifications and hetero-
geneous proofs [3,45,36,37]. In particular, Goguen uses a heterogeneous institutional
framework for database schema integration [25]. Our approach in this paper is particu-
larly inspired by the KORSO development graph [40] and its subsequent formalisation
by Mossakowski [37,38] in the heterogeneous institution setting.

3 Heterogeneous Institution Environments

To cope with the multitude of different views of software systems as captured in UML
by various diagram types we need to formally define what logical systems are (each
corresponding to a different diagram type) and how they may be related (to provide
precise semantic links between UML diagrams of different types). The theory of in-
stitutions, started by Goguen and Burstall [26,27] and then developed in a number of
directions, from an abstract theory of software specification and development [46] to a
very general version of abstract model theory [20], offers a suitable formal framework.

The usual presentation of the theory of institutions depends on category theory [31].
However, to follow the presentation here not much more is needed than some intuitive
understanding of the basics: a category K consists of a collection |K| of objects and
morphisms between them (including identity morphisms) that can be composed in a
natural way; a functor F : K → K′ between categories maps objects to objects and
morphisms to morphisms preserving their source and target, identities and composition;
and a natural transformation between “parallel” functors F,F′ : K → K′ consists of a
family of morphisms in K′ that link the functor values on each object in |K| and change
smoothly w.r.t. the functor values on each morphism in K.

An institution I consists of a category SignI of signatures describing its language
symbols; a functor SenI : SignI → Set,1 describing its language in the form of

1 The category Set has all sets as objects and all functions between them as morphisms.
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sentences; a functor ModI : Signop
I → Set,2 describing its models; and for Σ ∈

|SignI | a satisfaction relation |=I,Σ ⊆ ModI(Σ) × SenI(Σ) describing which
sentences are satisfied (hold) in which models. Expanding the above, the sentence
functor SenI yields a set SenI(Σ) of Σ-sentences for each signature Σ ∈ |SignI |,
and a function SenI(σ) : SenI(Σ) → SenI(Σ′), denoted simply by σ, that repre-
sents the σ-translation of Σ-sentences to Σ′-sentences for each signature morphism
σ : Σ → Σ′. The model functor ModI gives a set ModI(Σ) of Σ-models for each
signature Σ ∈ |SignI |, and a function ModI(σ) : Mod(Σ′) → Mod(Σ), denoted
by |σ , that yields σ-reducts of Σ′-models for each signature morphism σ : Σ → Σ′.
The satisfaction relations have to satisfy the following satisfaction condition for all
Σ, Σ′ ∈ |SignI |, signature morphisms σ : Σ → Σ′, Σ-sentences ϕ ∈ SenI(Σ) and
Σ′-models M ′ ∈ ModI(Σ′):

M ′ |=I,Σ′ σ(ϕ) ⇐⇒ M ′|σ |=I,Σ ϕ .

We typically omit the subscript I when referring to the components of an institution I,
and the subscript Σ on the satisfaction relations. For any signature Σ, the satisfaction
relation extends naturally to sets of Σ-sentences and classes of Σ-models. Moreover, it
determines the usual consequence relation: a Σ-sentence ϕ ∈ Sen(Σ) is a (semantic)
consequence of a set Φ ⊆ Sen(Σ) of Σ-sentences, written Φ |= ϕ, if for all Σ-models
M ∈ Mod(Σ), M |= Φ implies M |= ϕ.

The notion of institution is quite general, as it imposes only very mild requirements
on the logical system. Apart from the implicit structural assumptions (like functorial-
ity of sentence translations and model reducts) the key requirement is the satisfaction
condition. Informally, it asserts that logical satisfaction is invariant under the change of
signature, and so does not depend on the context of use of a sentence. This property
may fail for some logical systems (for instance, when some version of “closed world
assumption” is used). Nevertheless, typically the satisfaction of a sentence depends only
on semantic interpretation of the symbols it actually involves, and the satisfaction con-
dition then holds. Consequently, examples of institutions abound, and include standard
logical systems like equational, first-order and higher-order logics, various modal log-
ics, logics of partial functions, etc. We refrain from spelling out any examples for now,
with examples of institutions capturing various UML diagram types to be presented
below.

Given the definition of an institution to capture the informal notion of a logical sys-
tem, we can make precise various ways in which logical systems can be related. The
starting point was the definition of an institution morphism in [26,27]. Other notions fol-
lowed, capturing different intuitions and various aspects of relating one logical system
to another. We will use here institution comorphisms (named so in [29]; see “plain maps
of institutions” in [33] and “institution representations” in [43,44]). Very informally, an
institution comorphism ρ : I → I′ captures how a weaker and poorer institution I can

2 To keep things simple, we work with the version of institutions where morphisms between
models, not needed here, are disregarded. To capture standard examples, we should allow here
for the use of classes, rather than just sets of models — but again, we will disregard such
foundational subtleties here.
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be represented in a stronger and richer institution I ′, by representing I-signatures as I ′-
signatures and I-sentences as I′-sentences, and extracting I-models from I ′-models.

More precisely, for arbitrary institutions I = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉
and I ′ = 〈Sign′,Sen′,Mod′, 〈|=′Σ′〉Σ′∈|Sign′|〉, an institution comorphism ρ : I →
I ′ consists of a functor ρSign : Sign → Sign′; a natural transformation ρSen : Sen →
ρSign ;Sen′; and a natural transformation ρMod : (ρSign)op ;Mod′ → Mod, such that
for any signature Σ ∈ |Sign| the translations ρSen

Σ : Sen(Σ) → Sen′(ρSign (Σ)) of
sentences and ρMod

Σ : Mod′(ρSign(Σ)) → Mod(Σ) of models preserve the satisfac-
tion relation, that is, for any ϕ ∈ Sen(Σ) and M ′ ∈ Mod′(ρSign(Σ)):

M ′ |=′ρSign (Σ) ρSen
Σ (ϕ) ⇐⇒ ρMod

Σ (M ′) |=Σ ϕ .

The naturality requirements amount to the facts that ρSen and ρMod are families of func-
tions ρSen

Σ : Sen(Σ) → Sen′(ρSign(Σ)) and ρMod
Σ : Mod′(ρSign(Σ)) → Mod(Σ),

respectively, such that for σ : Σ → Σ′ the diagrams in Fig. 1 commute.

Sen(Σ2) Sen′(ρSign (Σ2))

Sen′(ρSign (Σ1))Sen(Σ1)

�ρSen
Σ2

�
σ

�
ρSign(σ)

�
ρSen

Σ1

Mod′(ρSign(Σ2))Mod(Σ2)

Mod(Σ1) Mod′(ρSign(Σ1))

�ρMod
Σ2

�
|σ

�

|ρSign (σ)

�
ρMod

Σ1

Fig. 1. Naturality diagrams for an institution comorphism

The original notion of institution morphism [27] essentially differs from the above
only in the direction of translation of models and sentences w.r.t. translation of sig-
natures: an institution morphism from I to I′ maps I-signatures to I ′-signatures,
I-models to I ′-models, and I ′-sentences to I-sentences, capturing quite a different
intuition though (how a richer institution I is built over the poorer institution I′). Other
possible notions of a mapping between institutions can be obtained by a similar manip-
ulation of mutual directions of the translations involved [44], to capture yet different
intuitions. It turns out, however, that all such variations can be expressed using insti-
tution comorphisms, albeit in general we may need a span of those. Namely, to relate
two institutions I and I ′, when a direct institution comorphism between them cannot
be given, we can devise an auxiliary “intermediate” institution I ′′ that incorporates the
common features of I and I ′, and relate those features using a span of comorphisms

I ρ←− I ′′ ρ′

−→ I ′. In particular, using spans of comorphisms we can capture semi-
comorphisms, which relate signatures and models of institutions as comorphisms do,
but do not translate sentences at all (then the intermediate institution has the empty sets
of sentences).

It turns out, however, that spans of comorphisms need not offer the most natural way
to capture certain “consistency” (rather than “sharing”) requirements between models
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of two institutions. It is often more natural to join the two institutions then by a sink

(co-span) of comorphisms I ρ−→ I ′′ ρ′

←− I ′ that embed the institutions I and I ′ into
an auxiliary, richer institution I′′, where the consistency conditions may be expressed.
(A perhaps even more natural alternative, which we will not discuss here, is to link the
two institutions by a span of institution morphisms.)

Institutions with institution comorphisms (with rather obvious, component-wise
composition) form a category coINS . We will be working in a context of a num-
ber of logical systems, formalised as institutions, linked in various ways by institution
comorphisms. We hence define a heterogeneous institution environment HIE to be a
diagram in the category coINS , that is, for some underlying graph G = 〈N , E〉,3
HIE = 〈〈In〉n∈N , 〈ρe〉e∈E〉 consists of institutions In, for n ∈ N , and institution
comorphisms ρe : In → Im, for e : n → m in E .

As we have mentioned, quite a number of logical systems have been formalised as
institutions in the literature. Similarly, quite a number of them have been linked by insti-
tution maps of various kinds, and hence by (spans of) comorphisms. Rarely, however, a
number of these have been collected together to offer a framework for building hetero-
geneous specifications. One notable exception is the HETS family of institutions [37],
supported by a tool to build and work with heterogeneous specifications [38].

In this paper we outline a family of institutions capturing various UML sublanguages
and comorphisms that represent the expected semantic relationships between them —
this too will form such a heterogeneous institution environment.

4 Institutions for the UML Sublanguages

The UML sublanguages, on the one hand, provide means for the design and specifica-
tion of different aspects or views of a software system. On the other hand, institutions
deliver a model theoretic characterisation of logics. Institutions, by the satisfaction con-
dition, guarantee that certain properties still hold after renaming and/or identification
of symbols. Consequently, and in the frame of an institution, two or more theories can
be combined in such a way that the properties of each one of them do not get lost by
putting them together. We investigate if the semantics of the UML sublanguages can be
precisely captured by institutions, and how they can be linked.

Let us sketch institutions for the UML sublanguages of static structures (i.e., class
diagrams), interaction diagrams, and OCL by means of a running example inspired
by an e-learning case study for service-oriented computing [32]: In a university, thesis
topics are managed by a central electronic office, where tutors announce topics that
students can work on and where students may accept posted topics. The electronic office
ensures certain conditions, like that no student is given more than one topic.

We do not detail here the institutions mentioned above fully formally, for more de-
tails see [19,18,17]. We also leave out for now possible definitions of other UML sub-
languages as institutions.

3 G is given by a set of nodes N and a family of sets of edges E = 〈En,m〉n,m∈N unam-
biguously classified by their source and target. We identify E with

�
n,m∈N En,m and write

e : n → m for e ∈ En,m.
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4.1 Institution of Static Structures

Signatures for static structures declare class names, typed attributes and methods, and
association names with corresponding association ends. For instance, the class diagram
in Fig. 2 declares

({EOffice, Topic, Tutor, Student, String, Void},

{tname : Tutor → String,

sname : Student → String,

content : Topic → String,

announce : EOffice × Tutor × Topic → Void,

post : EOffice × Tutor × Topic → Void,

accept : EOffice × Student × Topic → Void,

register : EOffice × Student × Topic → Void},

{tuteof ⊆ tutors : Tutor × eoffice : EOffice,

tuttop ⊆ tutor : Tutor × topics : Topic,

topeof ⊆ topics : Topic × eoffice : EOffice,

topstu ⊆ topic : Topic × student : Student,

stueof ⊆ students : Student × eoffice : EOffice})

announce(tutor : Tutor, topic : Topic)
post(tutor : Tutor, topic : Topic)
accept(student : Student, topic : Topic)
register(student : Student, topic : Topic)

EOffice

Student

sname : Stringcontent : String

Topic

Tutor

tname : String

0..1

topic student

students*

stueof

topeof

tutors

*

tutor 1

*topics

eoffice

tuteof 1

eoffice

0..1

eoffice1

* topics

topstu

0..1

Fig. 2. E-office example: class diagram (1)

Sentences associated with a signature of the institution of static structures declare
multiplicities for associations. The class diagram of Fig. 2 presents a theory axiomatized
by the following sentences

association(tuteof, tutors : Tutor : 0..�, eoffice : EOffice : 1..1) ,

association(tuttop, tutor : Tutor : 1..1, topics : Topic : 0..�) ,

association(topeof, topics : Topic : 0..�, eoffice : EOffice : 0..1) ,
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association(topstu, topic : Topic : 0..1, student : Student : 0..1) ,

association(stueof, students : Student : 0..�, eoffice : EOffice : 1..1) .

Models of a class diagram signature are given as sets of object states. Object states
are sets of created object identifiers of the declared class names, together with functions
that interpret attributes and methods, as well as relations that interpret associations.
Moreover, models of a presentation are required to satisfy the constraints put on associ-
ations. In our example we require, for instance, that for each topic there is at most one
student and for each student there is at most one topic, so that if we navigate from a
topic to its student, then we can navigate back to the topic, and vice versa.

For signature morphisms, translations, and reducts, consider again the class diagram
in Fig. 2 and the class diagram in Fig. 3 with an additional method remove for class
EOffice, and different multiplicities for association tuteof. A signature morphism σ from
the signature induced by the former to the signature induced by the latter can be defined
with σ(x) = x for every element of the simpler signature. The reduct of any model sim-
ply “forgets” the interpretation of the method remove. Signature morphisms canonically
extend to sentences: the axioms of the simple signature are not rephrased in the context
of the complex signature, whose axioms in fact are stronger. Indeed, whereas the class
diagram of Fig. 2 allows an arbitrary number of tutors for an e-office, the class diagram
of Fig. 3 requires at least one tutor per e-office. Therefore, for any model satisfying the
stronger axiom, its reduct also satisfies the weaker axiom.

announce(tutor : Tutor, topic : Topic)
post(tutor : Tutor, topic : Topic)
accept(student : Student, topic : Topic)

Tutor

Student

sname : Stringcontent : String

Topic

EOffice

remove(topic : Topic)
register(student : Student, topic : Topic)

tname : String

students*

topeof

tutors

1..*

1 eoffice

stueof

tutor 1

*topics

eoffice

tuteof 1

eoffice

0..1

* topics

topstu

0..10..1

topic student

Fig. 3. E-office example: class diagram (2)

4.2 Institution of Interactions

Signatures for interactions simply declare class names and class-typed messages. Given
a set of variables, typed over declared class names, a signature induces a set of sentences
as follows. Atomic formulas are sequence diagrams (mathematically represented using
labelled pomsets, see [41]) and their composition using interaction-building operators
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: EOffice

post(tutor, topic)
announce(tutor, topic)

tutor : Tutor

accept(student, topic)
register(student, topic)

student : Student

Fig. 4. E-office example: sequence diagram for accepting a topic

like for instance seq, par, loop, etc. (for details see [16]). Well-formed formulas com-
bine atomic ones using conjunction, negation, universal quantification, and equality of
variables. As usual, sentences are closed formulas.

For instance the interaction diagram in Fig. 4 declares classes Tutor, Topic, EOf-
fice, and Student, and messages announce(Tutor, Topic), post(Tutor, Topic), accept(Student,
Topic), and register(Student, Topic). Given variables tutor : Tutor, eoffice : EOffice, and
student : Student, the only sentence represented by the diagram is the atomic formula
given by the following pomset:

[{X1, X2, X3, X4, X5, X6, X7, X8},
{X1 < X2 < X3 < X4 < X6 < X7 < X8, X5 < X6,},
{X1 
→ snd(tutor, eoffice, announce(tutor, topic)),
X2 
→ rcv(tutor, eoffice, announce(tutor, topic)),
X3 
→ snd(eoffice, eoffice, post(tutor, topic)),
X4 
→ rcv(eoffice, eoffice, post(tutor, topic)),
X5 
→ snd(student, eoffice, accept(student, topic)),
X6 
→ rcv(student, eoffice, accept(student, topic)),
X7 
→ snd(eoffice, eoffice, register(student, topic)),
X8 
→ rcv(eoffice, eoffice, register(student, topic))}]

In the institution of interactions, an interpretation maps class names to sets of object
instances and messages to message instances. Object instances may interchange mes-
sage instances; we define send events as triples of a sender instance, a receiver instance,
and a message instance; receive events are defined similarly. Traces are sequences of
send/receive events. Models for interactions are defined to be pairs (P, N) of sets of
traces.

In order to grasp the notion of models for interactions and of satisfaction relation of
an interaction by a model, recall that interactions depict possible message interchange
scenarios, and perhaps forbid (other) scenarios by use of the interaction-building op-
erator neg. In general, hence, interactions do not completely specify a software sys-
tem. Given an interpretation, given a valuation of variables by object instances (of the
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correct class), an interaction induces positive and negative traces of send/receive events.
These induced sets, of all positive traces and of all negative traces, need not be disjoint,
and their union need not contain every possible trace [16]. Given a valuation, a model
(P, N) satisfies an interaction if the negative traces of the interaction diagram under
that valuation are contained in N , and the genuine positive ones (i.e., positive and non-
negative) are included in P . Equality, negation, conjunction and universal quantification
are interpreted as usual.

On the one hand, for example the trace

snd(tutor, eoffice, announce(tutor, topic)) · rcv(tutor, eoffice, announce(tutor, topic)) ·
snd(eoffice, eoffice, post(tutor, topic)) · rcv(eoffice, eoffice, post(tutor, topic)) ·
snd(student, eoffice, accept(student, topic)) · rcv(student, eoffice, accept(student, topic)) ·
snd(eoffice, eoffice, register(student, topic)) · rcv(eoffice, eoffice, register(student, topic))

positively satisfies the interaction diagram of Fig. 4, where tutor, topic, eoffice and student
are instances of the corresponding classes, and the message instances coincide with the
messages declared in the signature of above. On the other hand, no trace negatively
satisfies the interaction, i.e., the set of negative traces of the interaction is empty.

An equivalent abstract representation of the diagram of Fig. 4 is seq(S1, S2), where
S1 is the labelled pomset

[{X1, X2, X3, X4},
{X1 < X2 < X3 < X4},
{X1 
→ snd(tutor, eoffice, announce(tutor, topic)),
X2 
→ rcv(tutor, eoffice, announce(tutor, topic)),
X3 
→ snd(eoffice, eoffice, post(tutor, topic)),
X4 
→ rcv(eoffice, eoffice, post(tutor, topic)) }]

and S2 the labelled pomset

[{Y1, Y2, Y3, Y4},
{Y1 < Y2 < Y3 < Y4},
{Y1 
→ snd(student, eoffice, accept(student, topic)),
Y2 
→ rcv(student, eoffice, accept(student, topic)),
Y3 
→ snd(eoffice, eoffice, register(student, topic)),
Y4 
→ rcv(eoffice, eoffice, register(student, topic)) }]

and seq combines its arguments sequentially in a “instance-wise” manner: For each in-
stance, all events for this instance in the first argument must happen before all events
for this instance in the second argument. Hence, we could moreover have split the pom-
set S2 into S1

2 and S2
2 with S1

2 representing the sending and reception of the message
accept(student, topic), and S2

2 the sending and reception of the message register(student,
topic), and combine S1

2 and S2
2 using the seq interaction-building operator. In other

words, the abstract representation of a diagram needs not be unique. These different
representations are nevertheless equivalent, i.e., have the same models.

Signature morphisms in the interactions institution work similarly to the signature
morphisms in the static structure institution, renaming classes and messages. The trans-
lation of sentences along a signature morphism is canonical, and reducts forget all traces
mentioning events only expressible over the target signature.
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4.3 OCL Institution

OCL signatures declare class names, query names (that correspond to attributes and
query methods), and method names. Class names are equipped with a partial order rela-
tion representing the inheritance hierarchy. Default (or built-in) types extend these dec-
larations. So for instance the set of class names is closed under application of the type
constructors Set and Sequence (which is equivalent to list construction). This extended
type system is used to define a (unique) type for each query name and each method
name. The inheritance hierarchy together with a built-in subtype relation induce the
OCL-subtype relation, that comprises class names as well as query and method names.
The sentences defined by an OCL signature are invariants and pre/postconditions, as
in the example shown in Fig. 5. The corresponding signature declares, possibly among
others, class names EOffice, Student, and Topic, query names topic and student for EOffice,
student for Topic, topic for Student, and a method name register for EOffice. OCL presen-
tations consist of an OCL signature and a set of OCL sentences over that signature.

context EOffice::accept(student : Student, topic : Topic)
pre: topic.student->empty() and student.topic->empty()
post: topic.student = student and student.topic = topic

Fig. 5. E-office example: OCL specification of accept

The OCL interpretations map class names to sets of created objects, and provide
a mechanism to retrieve functions that implement query names and method names;
see [15]. The former functions do not modify the state of objects, whereas the latter may
modify the state. Models of OCL theories are state transition systems, whose states are
sets of created objects and whose transitions are labelled by a method invocation and
the corresponding return value, so that the target state of a transition is the result of
applying the method on the origin state. Moreover, every state of these models observes
the invariants of the theory, and any two adjacent states satisfy the pre-/postconditions
required for the method that labels the transition connecting these two states.

Signature morphisms, translations and reducts, again, are built similarly to the cor-
responding notions in the static structure institution.

5 Linking UML Institutions

We study how particular views of a given software system, as represented in different
languages designed for their specification, can be linked with each other. In particular,
we investigate the natural links between the UML institutions as sketched above.

Following the presentation in Sect. 3, there are two possibilities to link institutions:
direct translation from one institution to another via a comorphism, and definition of
a new mediating institution to which both institutions are embedded (see definition of
sink in Sect. 3).
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context Tutor inv: eoffice->count() = 1
context Tutor inv: eoffice->tutors->includes(self)
context EOffice

inv: tutors->forall(x | x.eoffice->includes(self))

Fig. 6. EOffice example: multiplicity axiom for tuteof translated into OCL

The institution of class diagrams can easily be embedded into the OCL institution. In-
deed, class names are mapped to class names, typed attributes to queries, typed method
to method names, and role names to set-valued queries (this means, the same class
name possibly gets more queries when translated). Sentences of a theory presentation
given by a class diagram are translated into OCL invariants. So, for instance, the first
association -sentence associated with Fig. 2 is translated into the OCL invariants of
Fig. 6. In general, for a binary association a ⊆ r1 : c1 × r2 : c2 with declared multiplic-
ity association(a, r1 : c1 : m1, r2 : c2 : m2), the translation of each of the multiplici-
ties consists of a constraint for navigability and up to two constraints for cardinality: if
m1 is of the form n1..n2, then

context c1 inv: r2->forall(x | x.r1->contains(self))
context c2 inv: r1->count() >= n1 and r1->count() <= n2 ;

if m1 is of the form n..�, then

context c1 inv: r2->forall(x | x.r1->contains(self))
context c2 inv: r1->count() >= n1 ;

and similarly for m2.
This translation gets somewhat more involved for other than binary associations and

the various kinds of multiplicities. Nevertheless, the translation is rather straightfor-
ward: the same as above, it takes care of back navigability and cardinalities within the
bounds imposed by multiplicities.

Given an OCL model for a signature, we extract from it a model of an embedded
class diagram signature by taking the set of states of the OCL model.

The institution of class diagrams cannot so easily be embedded in the institution of
interactions. Again, class names could be mapped to class names, and typed methods
to sets of messages. But it is not trivial how to embed typed attributes and association
names, nor how to translate declarations of multiplicities for associations. Since class
diagrams can be embedded into OCL, this matter, however, is not so crucial if the OCL
institution and the interactions institution can be linked.

For this an auxiliary institution OCL+I can be devised that contains all the elements
of the OCL institution as well as all the elements of the institution of interactions. Sig-
natures declare class names (as OCL signatures and interaction signatures do), query
names and method names (as in the OCL institution); query and method names, together
with variables typed over declared class names, induce messages (which correspond to
messages in the institution of interactions). Sentences are either OCL sentences over
class names, query names and method names, or interaction sentences over class names
and induced messages. A model is a set of so-called runs; cf. [14,11]. Runs are se-
quences of pairs, each pair consisting of a set of created objects and a set of events. An
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event is a send or receive event (cf. models for interactions in the previous section) or a
mark that indicates that a univocally identified method invocation has come to an end.4

Given pairs (ωk, Hk) and (ωl, Hl) of a run, with k < l, we say that the events in Hk

occur before the events in Hl; events within the same set are considered to occur simul-
taneously. A model satisfies an OCL+I sentence if every single run in the model satisfies
the OCL+I sentence. The satisfaction condition for single runs, a relation between a run
and an OCL+I sentence, is defined in three parts, namely for pre/postcondition pairs,
for invariants, and for interactions.

A run satisfies an OCL pre/postcondition for a method m whenever for any two pairs
(ωk, Hk) and (ωl, Hl) of the run, with k the precondition time (i.e., Hk−1 containing
the reception of a call on method m), and with l the corresponding postcondition time
(i.e., Hl−1 containing the mark that indicates that the call on method m at time k has
come to an end), the following property holds: ωk and the call satisfy the precondition,
and ωk, ωl, the return value and the call satisfy the postcondition (we have to include
the call when checking both the pre- and the postcondition, since these conditions may
refer to the arguments of the call).

A run satisfies an OCL invariant if each set of created objects sans the objects cur-
rently executing a method (cf. definition of pre- and postcondition times above) ob-
serves the invariant.

Given a variable valuation, a run satisfies an interaction if any trace obtained from
the run by first eliminating the sets of objects, then eliminating the marks, and finally
linearising simultaneous events, is positive and non-negative for the interaction under
the valuation.

For signatures and sentences, the embedding of the OCL institution as well as the
embedding of the institution of interactions in the institution OCL+I are straightfor-
ward. The transformation of OCL+I models into OCL models and the one into inter-
action models can be sketched as follows. On the one hand, an OCL+I model defines
an OCL model, i.e., a state transition system, whose set of states is the union of all the
sets of objects of all the runs of the OCL+I model, and whose transitions are labelled
v.m(v1, . . . , vn) : v′ and connect an origin state ωk with a target state ωl if these states
are the precondition and postcondition times, respectively, of a method call m on v
with arguments (v1, . . . , vn) and return value v′; in case there is no return value, then
the transition is labelled simply v.m(v1, . . . , vm). Notice that a set of objects ωi can
occur more than one time within a run and within an OCL+I model; in the OCL model,
the corresponding state may thus have many transitions arriving to and departing from
it. On the other hand, an OCL+I model defines an interaction model (P, N) where P
is the set of traces obtained from the runs of the OCL+I model by the procedure de-
scribed above (elimination of sets of objects, deletion of marks from sets of events, and
linearisation of simultaneous events) and N is the complement of P .

Notice that the set of sentences of a signature of OCL+I is, so to speak, the union
of the set of sentences of the embedded OCL signature and the set of sentences of the

4 A termination mark is useful for asynchronous methods and signal processing. There may be
also a termination mark for a synchronous method, however; in this case, the mark and the
send event for the result value of the method execution must be contained in the same set Hi

of events of the run (they occur simultaneously, so to speak).
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: EOfficetutor : Tutor

Pre_accept and Inv_EOffice

Post_accept and Inv_EOffice

Pre_announce and Inv_EOffice

post(tutor, topic)
announce(tutor, topic)

Post_announce and Inv_EOffice

accept(student, topic)
register(student, topic)

student : Student

Fig. 7. E-office example: sequence diagram incl. OCL sentences for accepting a topic.

embedded interactions signature, these two simpler signatures sharing somehow the
method names (that are declared in the OCL signature and which occur in the messages
of the interaction signature). Instead, we could moreover allow intertwined sentences
as in Fig. 7.

These matters as well as criteria for devising a kind of (least) upper bound, i.e., a
reasonable sink for two given institutions are subject of ongoing study.

6 Consistency Conditions

Working with a specification formalism with different viewpoints, like UML, raises the
question concerning consistency of specifications developed in different viewpoints.
In a heterogeneous institution environment, as the one sketched here for UML, this
question is equivalent to the problem of characterising when specifications in different
but linked institutions have, in some sense, a common model.

We begin by a concept of consistency within a single institution I. Intuitively, two
sets of sentences are consistent if their union admits a model. We want, however, to be
able to identify different symbols or to point at common symbols used by sentences
in these two sets. We thus define consistency of two sets of sentences Φ1 and Φ2 over
signatures Σ1 and Σ2, respectively, with respect to a third signature Σ and signature
morphisms σ1 : Σ1 → Σ and σ2 : Σ2 → Σ as follows: there is a model M ∈ Mod(Σ)
such that σ1(Φ1) ∪ σ2(Φ2) is satisfied by M , or equivalently, M |σ1 satisfies Φ1 and
M |σ2 satisfies Φ2.

This concept of consistency can be lifted to a heterogeneous institution environment.
Let us first consider two institutions I1 and I2 linked by a comorphism ρ : I1 → I2.
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A set of sentences Φ1 ⊆ SenI1(Σ1) is consistent with a set of sentences Φ2 ⊆
SenI2(Σ2) with respect to a signature Σ ∈ |SignI2 | and signature morphisms σ1 :
ρSign(Σ1) → Σ and σ2 : Σ2 → Σ if ρSen

Σ1
(Φ1) and Φ2 are consistent with respect to

Σ, σ1 and σ2, i.e., if there is a model M ∈ ModI2(Σ) such that σ1(ρSen
Σ1

(Φ1))∪σ2(Φ2)
is satisfied by M , or equivalently, ρMod

Σ1
(M |σ1) satisfies Φ1 and M |σ2 satisfies Φ2.

Generalizing this further, if institutions I1 and I2 are linked by a co-span I1
ρ1−→

I ρ2←− I2, two sets of sentences Φ1 ⊆ SenI1(Σ1) and Φ2 ⊆ SenI2(Σ2) are consistent
with respect to a signature Σ ∈ |SignI | and signature morphisms σ1 : ρ1

Sign (Σ1) →
Σ and σ2 : ρ2

Sign(Σ2) → Σ if ρ1
Sen
Σ1

(Φ1) and ρ2
Sen
Σ2

(Φ2) are consistent with respect to
Σ, σ1 and σ2. This is equivalent to the existence of a model M ∈ ModI(Σ) such that
ρ1

Mod
Σ1

(M |σ1) ∈ ModI1(Σ1) satisfies Φ1 and ρ2
Mod
Σ2

(M |σ2) ∈ ModI2(Σ2) satisfies
Φ2.

In the heterogeneous institution environment for UML, the institutions for static
structures and for OCL are linked by a comorphism. Given a class diagram as a speci-
fication in the institution of static structures and a set of invariants and operation spec-
ifications, we are interested in their consistency with respect to shared class names,
attributes, and translated association ends. For example, when linking the translation of
the class diagram in Fig. 2 with the OCL specification in Fig. 5, the conjuncts of the
postcondition of accept imply each other due to the association -axiom for topstu.

As long as both specifications do not require any particular objects of the classes in
the class diagram to exist, their consistency can always be witnessed by a model, i.e.,
a state transition system, whose states are empty sets of object instances. However, for
our e-office example, if the OCL specification contains, e.g.,

context Tutor
inv: Tutor.allInstances()->count() >= 2

a common model must show at least two instances of Tutor, as this symbol is identified
with Tutor. Thus, the invariants induced in the comorphism translation of class dia-
grams to OCL, which, in particular, require then at least one e-office to exist, must not
contradict the invariants in the extended OCL specification.

The institution OCL+I integrates the semantics of OCL and of interactions via a co-
span of institution comorphisms. It does so by presupposing a particular way of link-
ing operation specifications from OCL with sequencing obligations from interactions.
Here, we are interested in their consistency with respect to shared class names on the
one hand, and identifying query and method calls with messages on the other. Consider,
for example, the operation specification for accept in Fig. 5 and the interaction in Fig. 4.
Then, in order to be able to obtain a common model in OCL+I, it is required that the
precondition of accept does not contradict the postcondition of announce, as the post-
condition time of announce is the same as the precondition time of accept; indeed, this
is the case in our specification when accept is called only by a student lacking a topic.

The particular integrating institution OCL+I with the co-span of institution
co-morphisms presented above is by no means the only possibility to link the OCL
and the interactions institution. We could also choose a looser definition of satisfaction
of an interaction by a run: a trace is obtained from a run by not only eliminating the
set of objects and eliminating the marks but also skipping all those events that happen
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on objects that are not mentioned in the interaction. In this situation, the postcondition
of an operation and the precondition of another operation, albeit the termination of the
first and the start of the second happen immediately after each other in an interaction,
do not have to show any correlation, as always some event, external to the interaction,
could interfere and restore the precondition of the second operation.

7 Conclusions

We have presented a general framework for constructing the semantics of different
UML diagram types in a flexible way. The framework is used as a mathematical basis
of UML in the SENSORIA development approach for service-oriented systems. It relies
on the mathematical theory of institutions and offers a new approach to the semantics
of heterogeneous system specifications in a “heterogeneous institution environment”. It
allows one to describe each diagram type in its “natural” semantics. Different diagram
types are integrated via appropriate translations (into each other or into intermediate in-
stitutions), and in this way their semantic consistency can be analysed. Another advan-
tage of our approach is that other system models can be easily integrated. For instance,
rewriting logic and temporal logic are themselves institutions [12,13].

Institutions provide an elegant and robust framework for programming in the large
and in particular for compositionality. Indeed, the satisfaction condition ensures that
properties fulfilled by parts of a development do not get lost when putting those parts
together. This is also true when, even at different places, those parts are made more
specific using a refinement relation based on model-class inclusion. The trade-off is
the loss of expressive power regarding some reflective properties like closed-world as-
sumption (cf. the OCL constructs Type and Type.allInstances). Depending on
the application, however, this is a price we are willing to pay, since the compositionality
gained applies not only to the development of the software system as such but also to
the verification of the whole system, which may proceed by verification of the parts.

Incontrast toMossakowski[36],wekeepthedifferentinstitutions(oftheheterogeneous
institution environment) separate and do not aim at integrating them into a single
(heterogeneous) institution using the so called Grothendieck construction. The latter only
puts the institutions side by side and allows atmost thesharing of syntactic constructs. As a
consequence, from this construction we do not get additional insight like e.g. consistency
conditions, and may moreover loose the intuitiveseparationof thediverseviewsofferedby
the individual institutions in a heterogeneous institution environment.

The ideas in this paper present only a first step to a comprehensive heterogeneous
approach to system development which will support also model transformations, refine-
ment, and deployment to particular programming languages environments, and provide
relationships to “single” system models such as Broy’s stream-based system model.
Currently we are studying the embedding of service-oriented concepts into our het-
erogeneous system model approach, ranging from declarative specifications of SCA in
SRML [22] and Montanari’s Architectural Design Rewriting [10] to process algebraic
specifications of the dynamic behaviour of services [4,28,30].
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21. Ehrig, H., Padberg, J., Orejas, F.: From basic views and aspects to integration of specifica-

tion formalisms. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoret-
ical Computer Science: Entering the 21th Century, pp. 202–214. World Scientific, Singapore
(2001)

22. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A Formal Approach to Service Component Architec-
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38. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)

39. Naur, P., Randell, B.: Software Engineering — Report on a Conference sponsored by the
NATO Science Committee. NATO Sci. Affairs Div., Bruxelles, Garmisch (1969)

40. Pepper, P., Wirsing, M.: A Method for the Development of Correct Software. In: Jähnichen,
S., Broy, M. (eds.) KORSO 1995. LNCS, vol. 1009, pp. 27–57. Springer, Heidelberg (1995)



402 M.V. Cengarle et al.

41. Pratt, V.: Modeling Concurrency with Partial Orders. Int. J. Parallel Program. 15(1), 33–71
(1986)

42. Reggio, G., Repetto, L.: CASL-CHART: A Combination of Statecharts and the Algebraic
Specification Language CASL. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 243–
272. Springer, Berlin (2000)

43. Tarlecki, A.: Institution representation. Unpublished note, Dept.of Computer Science, Uni-
versity of Edinburgh (1987)

44. Tarlecki, A.: Moving between Logical Systems. In: Haveraaen, M., Dahl, O.-J., Owe, O.
(eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502.
Springer, Heidelberg (1996)

45. Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., de Rijke, M. (eds.) Fron-
tiers of Combining Systems. Studies in Logic and Computation, vol. 2, pp. 337–360. Re-
search Studies Press (2000)

46. Tarlecki, A.: Abstract Specification Theory: An Overview. In: Broy, M., Pizka, M. (eds.)
Models, Algebras, and Logics of Engineering Software. NATO Science Series — Computer
and System Sciences, vol. 191, pp. 43–79. IOS Press, Amsterdam (2003)

47. Wehrheim, H.: Behavioural Subtyping in Object-Oriented Specification Formalisms. Habil-
itationsschrift, Carl-von-Ossietzky-Universität Oldenburg (2002)

48. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:
Semantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-Peyre, J.-
F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Hei-
delberg (2006)

49. Wirsing, M., Knapp, A.: View Consistency in Software Development. In: Wirsing, M.,
Knapp, A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 341–357. Springer, Hei-
delberg (2004)

50. Wirsing, M., Nicola, R.D., Gilmore, S., Hölzl, M.M., Lucchi, R., Tribastone, M., Zavattaro,
G.: Sensoria process calculi for service-oriented computing. In: Montanari, U., Sannella, D.,
Bruni, R. (eds.) TGC 2007. LNCS, vol. 4661, pp. 30–50. Springer, Heidelberg (2007)



Ugo Montanari and Concurrency Theory

Roberto Gorrieri

Dipartimento di Scienze dell’Informazione, Università di Bologna
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1 Introduction

This short note introduces the reader to the contributed papers in the area of
concurrency theory that have been written in honour of Ugo Montanari. I also
draw the attention to one of the contributions of Ugo in this area that, in my
opinion, constitutes a pearl in theoretical computer science and would deserve
to be investigated further.

Ugo Montanari is – undoubtedly – one the fathers of the theory of Concur-
rency. He started his research in this area about 25 years ago and contributed
from the very beginning [29,27,25,26] with many stimulating ideas and propos-
als. In my role of former student of Ugo, I had the chance and the honour to
study first, and to follow then, some of these initial achievements. In my opinion,
there is a fil rouge that links together many of Ugo’s results in this area: the
goal to find general, parametric, uniform, compositional and, possibly, universal
theories that give comprehensive pictures of many subtheories that have been
studied in isolation. The impressive list of papers that can be given to substan-
tiate this claim includes at least the following [3,7,8,9,10,15,16,18]. Among the
many specific lines of research in this setting, I would like to mention the goal
to connect together distributed models of concurrency (such as Petri Nets and
graph grammars) with the world of process algebras, whose theories were devel-
oped for automata-based models where concurrency is not a primitive concept.
Many papers are devoted to reach this goal; among them, we mention at least
the following [1,2,4,6,12,13,14,19,23]. In particular, in the last part of this note, I
will draw the attention of the reader to one specific contribution of Ugo (and co-
workers) that I personally consider a pearl in theoretical computer science: the
definition of structural operational semantics for a process algebra that produces
Petri nets instead of ordinary labeled transition systems, which is often known
under the name of the DDM approach, after Degano, De Nicola and Montanari.

2 The Contributed Papers

The six papers that are collected in this section of the volume are valuable
contributions that somehow span over Ugo’s interests in this area.

– On the Synthesis of Zero-safe Nets by Philippe Darondeau is an interesting
contribution about a class of Petri nets that Bruni and Montanari have pro-
posed in [11], in order to compensate for the lack of mechanisms to force

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 403–408, 2008.
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synchronization of transitions in P/T nets. In zero-safe nets it is indeed nat-
ural to define transactional behaviour where many transitions are executed
atomically. While Bruni and Montanari have mainly studied the semantics
of this class of nets, Darondeau here addresses the so-called synthesis prob-
lem: given the specification of transaction systems in the form of linear step
automata in which the atomic steps between two stable states form a regular
language, find the corresponding implementations producing and consuming
resources in the form of bounded and well-behaved zero-safe nets. Daron-
deau proposes algorithmic techniques for this, resorting to a generalization
of the theory of regions for zero-safe nets.

– The paper Decomposition of Persistent Petri Nets, by Eike Best, deals with
persistent Petri nets, a class of nets characterized by the absence of conflicts
in behaviour, while admitting shared input places among distinct transitions.
The main result is a theorem stating that, in a bounded persistent net with
a strongly connected marking graph, any cycle of the marking graph can be
decomposed into a set of disjoint simple cycles. Starting from a known result
by Keller, the author develops the proof of the main theorem, showing, along
the way, several specific properties of persistent nets.

– In the paper Secure Data Flow in a Calculus for Context Awareness, Doina
Bucur and Mogens Nielsen present a process calculus for modelling context-
aware computing in the setting of ubiquitous computing systems. The process
calculus, based on Mobile Ambients, is equipped with new operators in order
to capture context provision and context discovery. The basic idea is to in-
troduce macro definitions residing inside ambients and macro calls, that may
cross the ambients boundaries. Moreover, since the network is highly reconfig-
urable, a type system is proposed in order to enforce distributed security poli-
cies of the hosting locations. Each ambient has a security policy in the form of
a process type, which has to be satisfied by any internal ambient in the ambi-
ents hierarchy. The validation of security policies is realized by a combination
of static and dynamic type checking.

– Paola Quaglia, a former student of Ugo, in the paper On Beta-binders com-
munications, focuses on the Beta-binder calculus, which has been proposed
in order to make easier the description and the analysis of biological sys-
tems. This kind of language follows the line initially proposed by Fontana
and Buss in 1996, and subsequently applied by Regev and Shapiro in 2001
to use process calculi in the biological context. The beta-binders language is
close to Ambient-like calculi developed by Cardelli, even if without nesting
of ambients, with the distinguishing feature to permit a form of communi-
cation in which the matching of input and output is rather loose. The main
motivation of the paper is to help understanding the differences between
Ambient and Beta-binders. This is done by developing a novel labeled se-
mantics for the beta-binders, which complements the one originally defined
as a reduction semantics. Then Quaglia presents a formal relation between
the two semantics, stipulating that the two are equivalent.

– The paper titled On the asynchronous nature of the asynchronous π-calculus,
by R. Beauxis, C. Palamidessi and F.D. Valencia, supports the claim that
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the asynchronous π-calculus is really a formalism for asynchronous commu-
nication, as commonly intended in the community of distributed systems. To
this aim, a new π-based calculus with buffers is presented, whose semantics
more clearly reflects the intuition of asynchrony, as all the communication
among processes are mediated via buffers. This new calculus is three-fold, as
buffers can be either bags, or stacks or queues. The first interesting result is
that the bag π-calculus is in strict correspondence with the asynchronous π-
calculus in either direction. Such a correspondence is so strict that no doubt
can be raised about the fact the asynchronous π-calculus is indeed a calculus
for asynchronous communication. On the contrary, the authors show that no
similar result can be obtained when buffers are stacks or queue.

– The paper titled StonyCam: a Formal Framework for Modeling, Analyzing
and Regulating Cardiac Myocytes, by E. Bartocci, F. Corradini, R. Grosu,
E. Merelli, O. Riganelli and Scott A. Smolka, is a brief and clear overview of
the StonyCam research program, jointly involving the Universities of Stony
Brook and Camerino. The problem of cardiac electrical disturbances, such
as atrial fibrillation, is introduced along with the need for a concretely use-
ful analysis and prediction tools. Throughout the paper a bird’s eye view is
offered regarding all the related work and the main techniques used so far.
In particular it is described how to model excitable cells using the theory
of hybrid automata, obtaining models amenable to formal analysis with a
tenfold speedup in simulation time with respect to classical systems of non-
linear differential equations. As an example it is also described an interesting
method for decting emergent behaviours.

3 One of Ugo’s Pearls

Many are the excellent contributions that Ugo has achieved during his brilliant
and exciting research life. And I am not old (or good) enough to remember all
of them! But for sure one of such results that I had the opportunity to apply in
some of my initial papers, as a student exercise [24,20], was the technique to give
a Petri net semantics to process algebras, CCS in particular [28,23,21,22]. This
technique – Ugo developed in joint work with Pierpaolo Degano and Rocco De
Nicola, and for this reason it has been sometimes called the DDM technique –
attracted a lot of interest, as an attempt to reconcile two mainstreams of concur-
rency theory that were developed independently and somehow in antagonism:
Petri nets and process algebras. Other researchers contributed to the success of
this technique, in particular Ernst-Rüdiger Olderog, who made it popular with
his significant textbook [17].

The key aspect of this technique is a non-trivial extension of Plotkin’ Structual
Operational Semantics [30,5] (SOS for short), which was originally conceived in
order to produce (labeled) transitions systems as semantic models of programs,
to the more elaborate setting of Petri Nets. In the original Plotkin’s approach,
the terms of an algebra of programs are the states of the transition systems,
while the transitions are generated by means of an inference system, defined
inductively on the syntax of terms.
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The very nice point is that the infinite (in states and transitions) labeled
transition system is defined implicitly with two finite, generative structures: a
grammar for the states/processes and a finite set of axioms and inference rules for
the transitions (that represent the evolution of a global state into another global
state). The transition system generated in this way is for the whole language,
but of course, one can focus his/her attention only on the part that is reachable
from a particular state/process. In the case of CCS, this SOS is particularly
concise and elegant.

Degano, De Nicola & Montanari have transposed this idea to Petri nets by
defining a grammar for generating the infinite set of CCS-oriented places of the
net and a finite set of axioms and inference rules generating the infinite set
of CCS-oriented net transitions. The global state (called marking in the Petri
net terminology) of the net is represented as a (multi-)set of places and the
transitions represent the evolution of a set of places (not necessarily the global
state) into another (multi-)set of places. There is a precise mapping dec of CCS
processes to markings of the net and the net associated to a CCS process E is
the net reachable from the marking dec(E). The resulting Petri net for CCS, on
the one hand, offers two main advantages:

– it is now possible to investigate non-interleaving semantics for CCS, based
on some notions of causality and conflict [21] that are somehow primitive in
Petri nets while completely absent in ordinary transition systems;

– it is possible to apply well-known Petri nets analysis techniques also to CCS
processes (e.g., reachability, coverability, net invariants).

On the other hand, this cross-fertilization between the area of Petri nets and
process algebra produced benefits also for the area of Petri nets, where some ideas
developed in the process algebra community were imported, notably bisimulation
equivalence.

If one tries to look with a up-to-date perspective to what has been done, one
immediately observes that there is a lot of work that could have been done and
that still deserves to be done. In fact, the Petri net for CCS that DDM devel-
oped is just one example of a missing general theory of SOS for Petri nets. The
theory of transition systems specification via SOS has a large body of results
(e.g., formats that ensure that bisimulation is a congruence) that could conceiv-
ably approached also for a to-be-developed theory of Petri nets specification via
SOS. For instance, it could be interesting to study which formats should have
the inference rules to ensure that a Petri net is safe, or of a special class (ele-
mentary, rather than Place/Transitions or else), or such that history preserving
bisimulation is a congruence. Another aspect is the meaning of negative premises
(that might perhaps be better modeled with the use of inhibitors). Summing up,
I think that the seminal papers that Ugo and co-workers have produced in this
area should be generalized to start a new line of cross-fertilization between the
Petri net area and the process algebra community.
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4 Conclusion

I think that probably the most impressive distinguishing quality of Ugo is his
ability to be a real maestro, in following the scientific work of many students,
most of which have taken positions in various Italian and international Univer-
sities or research insitutions.

I would like to end this short note by quoting (part of) my dedication to Ugo
I wrote in my PhD thesis, that somehow reflects this aspect of Ugo’s character:

Writing a Ph.D thesis under the supervision of Ugo Montanari has been
undoubtedly a unique experience. He is a shine researcher full of sci-
entific interests which tries to instill in the mind of his students and
collaborators with Socratic maieutic.

And indeed, Ugo often acts as a new Socrates in guiding the initial steps of his
many students. And he is so strongly affectionate to them, that he would never
part from them! (And this explains why many of them still live in Pisa ...)
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Abstract. Zero-Safe nets are an adequate framework for representing
linear step automata. We define a synthesis procedure based on regions
for deriving Zero-Safe nets from such automata.

1 Introduction

Zero-Safe nets were introduced by R. Bruni and U. Montanari to compensate for
the lack of a mechanism to force synchronization of transitions in PT-nets [1]. A
Zero-Safe net is a PT-net with distinguished places called zero-places. The other
places are called stable places. A marking in which every zero-place is empty
is a stable marking. A stable step is a sequence of transitions from a stable
marking to a stable marking, such that tokens produced and fed into stable
places during the step are not used until the completion of the step. R. Bruni
and U. Montanari provided categorical characterizations of the operational and
abstract semantics of Zero-Safe nets for two different token management policies,
reflecting the collective, resp. the individual token philosophies [1,2,3,4].

Our purpose is to revert the path from Zero-Safe nets to their semantics.
Given an automaton whose atomic transitions are sequences of micro-steps, the
problem is to synthesize a Zero-Safe net that behaves according to this specifi-
cation. It is moreover desirable that the synthesis procedure be effective, so that
Zero-Safe net implementations of linear step automata can be computed, hence
the accent is put here on algorithms.

A privileged field of application of Zero-Safe nets is Workflows. A Workflow
Net [5] is a Petri net with two special places i and o, used to mark the begin
and the end of a procedure composed of tasks modelled by transitions. The other
places of the net express dependences between tasks. A Workflow Net is sound if,
whenever it has been initialized with one token put in place i and all other places
empty, the procedure terminates eventually with one token in place o and all
other places empty. A Workflow Net may be seen as a Zero-Safe net with two
stable places i and o. The complete executions of the procedure correspond thus
with the stable steps of the Zero-Safe net. If the Workflow Net is sound, any
sequence of transitions of the Zero-Safe net may be extended into a stable step.
Note that a transition may occur an unbounded number of times in a transaction
owing to the possible presence of cycles in Workflow Nets. More general workflow
systems in which resources (or documents or goods) are taken and released (or
consumed and produced) by transactions may also be represented as Zero-Safe
nets, using stable places to hold these resources.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 409–426, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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We propose in this paper an algorithm that produces Zero-Safe nets labelled
injectively on transitions from (finite) linear step automata, in which a transition
from q to q′ is a sequence of micro-steps in a regular language L(q, q′). The
synthesized Zero-Safe nets are well-behaved in the sense that any sequence of
concurrently enabled transitions from a stable marking may be extended into a
stable step. Compensation [7] is therefore not needed in workflows implemented
by Zero-Safe net synthesis. As a matter of fact, due to the injective labelling of
nets, some linear step automata cannot be realized by any well-behaved Zero-Safe
net. Therefore, we propose a decision and synthesis algorithm whose output is
either a well-behaved Zero-Safe net, realizing the linear step automaton given in
input, or the answer that no such net exists. The algorithm takes time polynomial
in the size of step automata.

The synthesis of Zero-Safe nets may be studied with the collective or with the
individual token philosophies. Individual tokens are better suited for representing
parallel workflow transactions. However, for the sake of simplicity, we have chosen
to work with collective tokens.

The rest of the paper is organized as follows. Section 2 recalls the background
of Zero-Safe nets. Section 3 defines Zero-Safe regions of linear step automata
and proposes regional axioms for characterizing the linear step automata that
may be implemented with bounded and well-behaved Zero-Safe nets. Section 4
establishes the axiomatic characterization. Sections 5 and 6 provide a decision
and synthesis algorithm.

2 Zero-Safe Nets

This section, which borrows mainly from [4], recalls the definition of Zero-Safe
nets and their semantics. An illustration is given at the end of the section.

Definition 1 (PT-net). A PT-net is a tuple N = (P, T, F, M0) where P and
T are disjoint sets of places and transitions, F maps (P ×T )∪(T ×P ) to IN, and
M0 : P → IN is the initial marking. A marking is a map M : P → IN. Transition
t has concession at M if M(p) ≥ F (p, t) for every place p, in which case it may
be fired. Firing t at M leads to the marking M ′ defined with M(p) − F (p, t) =
M ′(p) − F (t, p) for all p (notation: M [t〉M ′). A firing sequence of N is a finite
or infinite sequence M0[t1〉 . . . Mn[tn+1〉 . . ..

Definition 2 (Zero-Safe net). A Zero-Safe net (or ZS-net) is a PT-net N =
(P, T, F, M0) where P = S ∪Z is the union of two disjoint subsets S and Z, and
M0(z) = 0 for all z ∈ Z. Places in S, resp. in Z, are called stable places, resp.
zero places. A marking of N is stable if M(z) = 0 for every zero place z ∈ Z.
Let ρ = M0[t1〉 . . . Mn−1[tn〉Mn be a non-empty firing sequence of N , then:

ρ is a stable step of N if

–
∑n

i=1 F (s, ti) ≤ M0(s) for all s ∈ S (concurrent enabling)
– M0 and Mn are stable markings (stable fairness)
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ρ is a stable transaction of N if in addition

– markings M1, . . . , Mn−1 are not stable (atomicity)
–

∑n
i=1 F (s, ti) = M0(s) for all s ∈ S (perfect enabling)

We write M{[t1 . . . tn〉M ′ to mean that M [t1〉 . . . [tn〉M ′ is a stable transaction
of the ZS-net (P, T, F, M).

Zero-places can be used to coordinate and synchronize in a single transaction
any number of transitions of the net [4]. In this view, unstable markings are
dealt with as unobservable and they are abstracted from. Tokens fed into stable
places during a stable transaction (also called stable tokens) are frozen until the
completion of the transaction. This is compatible with the intuition that stable
transactions implement sequences of micro-steps in (linear step) automata where
the updating of the current state is done on step completion. Another strong
requirement of stable transactions is that every stable token available at the
outset of a transaction is consumed during the transaction. This requirement
adds to the expressive power of ZS-nets (it is in fact not restrictive since, for
modelling idle resources, one can always introduce “idling” transitions with self-
loops connecting them with stable places).

A main contribution of the work on ZS-nets presented in [1,2,3,4] was to define
and compare two forms of truly-concurrent semantics of these nets, induced from
the collective token and from the individual token philosophy, respectively. Both
semantics are defined by considering permutations on stable transactions and
by mapping each stable transaction to its equivalence class w.r.t. permutations.
In this work, we forget about true concurrency and provide ZS-nets with linear
step semantics expressed by automata as follows.

Definition 3. A linear step automaton over T is a tuple A = (Q, L, q0) where Q
is the set of states, q0 is the initial state, and L : Q × Q → P(T ∗) defines for all
states q and q′ a (possibly empty) set L(q, q′) of non-empty sequences of micro-
steps from q to q′. Two linear step automata A = (Q, L, q0) and A′ = (Q′, L′, q′0)
over T are isomorphic (A ∼= A′ ) if there exists a bijection φ : Q → Q′ such
that φ(q0) = q′0 and L(q1, q2) = L′(φ(q1), φ(q2)) for all q1, q2 ∈ Q. A linear step
automaton is reachable if any state q ∈ Q equals qn for some sequence q0q1 . . . qn

such that L(qi, qi+1) 	= ∅ for all i. A linear step automaton is regular if Q is finite
and all languages L(q, q′) are regular subsets of T ∗. A linear step automaton is
trivial if it has a single state q0 and L(q0, q0) = ∅.

In general, L(q, q′) ∩ L(q, q′′) 	= ∅ for q′ 	= q′′ (linear step automata may be non-
deterministic), and L(q, q′)L(q′, q′′) may intersect both L(q, q′′) and its comple-
ment (linear step automata may have non-atomic steps).

A Zero-Safe net implements a linear step automaton if and only if this au-
tomaton may be reconstructed (up to isomorphism) as an abstraction of the
Zero-Safe net. The abstractions that we consider are the following.

Definition 4 (Reachable Stable State Graph). Let N = (S ∪ Z, T, F, M0)
be a ZS-net. The set of reachable stable markings of N (notation: RSM(N) )
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is the least set of stable markings containing M0 such that M ∈ RSM(N) and
M{[w〉M ′ entail M ′ ∈ RSM(N) for all w ∈ T ∗. The reachable stable state
graph of N (notation RSSG(N) ) is the linear step automaton (RSM(N), L, M0)
defined with L(M, M ′) = {w | M{[w〉M ′}.

The problem addressed in the next sections is the following: given a linear step
automaton A = (Q, L, q0), regular and reachable, decide whether A ∼= RSSG(N)
for some ZS-net N = (S ∪ Z, T, F, M0), well-behaved in the sense given by the
following definition.

Definition 5. A ZS-net N is well-behaved if, for any marking M ∈ RSM(N),
every concurrently enabled sequence M [t1〉 . . . [tn〉M ′ extends a stable transaction
or may be extended to a stable transaction.

For general ZS-nets, an external control is needed at run time to avoid perform-
ing sequences of transitions that could not be extended into sequences of stable
transactions. Such a control is problematic since an effective condition recogniz-
ing the inadequate transaction segments is not known [4]. This problem does
precisely not occur with well-behaved ZS-nets, hence they can be implemented
easily, all the more when they are bounded in the sense given by the following
definition.

Definition 6. A ZS-net N is bounded if RSM(N) is finite and there exists an
integer B such that, for any marking M ∈ RSM(N) and for any concurrently
enabled sequence M [t1〉 . . . [tn〉M ′, M ′(z) ≤ B for every zero-place z.

The next proposition shows that all well-behaved ZS-nets realizing regular step-
automata are bounded, hence their implementation is easy.

Proposition 1. Let A = (Q, L, q0) be a linear step automaton, regular and
reachable, then any well-behaved ZS-net N such that A ∼= RSSG(N) is bounded.

Proof. Let N = (S ∪ Z, T, F, M0). As A ∼= RSSG(N), RSM(N) is finite. It
remains to show that there exists an integer B such that, for any M ∈ RSM(N)
and for any concurrently enabled firing sequence ρ = M [t1〉M1 . . . [tn〉Mn in
which all markings Mi are unstable, Mn(z) ≤ B for every zero-place z ∈ Z. As N
is well-behaved, such firing sequences ρ may always be extended into transactions
ρ′ = M [t1〉M1 . . . [tn〉Mn [tn+1〉Mn+1 . . . [tn+k〉M ′ where M ′ ∈ RSM(N). Let
u = t1 . . . tn and v = tn+1 . . . tn+k. Seeing that RSM(N) is finite, in order to
prove the proposition, it suffices to show that Mn(z) ≤ B(M, M ′) for some bound
B(M, M ′) depending only on M , M ′ and z. Now, in view of the isomorphism
A ∼= RSSG(N), the set of words w ∈ T ∗ generated by transactions from M to
M ′ is equal to L(q, q′) for some q, q′ ∈ Q. Let A = (Q, δ, q, q′) be the minimal
automaton accepting the regular language L(q, q′), with partial transition map
δ : Q × T ⇀ Q, initial state q ∈ Q, and final state q′ ∈ Q. We claim that Mn(z)
depends only upon δ(q, u). To show this, let u′ = t′1 . . . t′m such that δ(q, u) =
δ(q, u′). As uv ∈ L(q, q′), necessarily u′v ∈ L(q, q′), and there should exist a
corresponding transaction M [t′1〉. . . [t′m〉M ′

m [tn+1〉 . . . [tn+k〉M ′. Therefore Mn =
M ′

m and Mn(z) can take at most |Q| different values. �
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Remark 1. For a well-behaved ZS-net N = (S ∪Z, T, F, M0), let RM(N) be the
set of all markings reached from M0 by sequences of transactions followed by a
transaction segment, and let RSG(N) be the graph obtained by connecting the
markings in RM(N) with the transitions M [t > M ′ occurring in transactions.
Using the same reasoning as in the above proof, one can show that for any two
well-behaved and bounded ZS-nets N and N ′, RSSG(N) ∼= RSSG(N ′) if and
only if RSG(N) ∼= RSG(N ′).

Remark 2. A ∼= RSSG(N) cannot hold unless A is deterministic. So we could
restrict ourselves to deterministic automata. However, the decision and synthesis
algorithm constructed in this paper copes with the general case.

We now illustrate the definitions given so far on a ZS-net that serves as running
example in the remaining sections.

a

b c

s1

s2

z3

z4

2

e d

2

Fig. 1. A ZS-net

Example 1. Consider the ZS-net N shown in Fig. 1. It has 2 stable places s1 and
s2, 2 zero-places z3 and z4, and 5 transitions a to e. In this net, F (e, s1) = 2,
F (z3, d) = 2, and all other values taken by F are 1 or 0, e.g. F (a, z3) = 1
and F (a, z4) = 0. In the initial marking M0, there are two tokens in the stable
place s1 and all other places are empty. RSM(N) contains exactly two stable
markings, namely M0 = (2, 0, 0, 0) and M1 = (1, 1, 0, 0). RSSG(N) is the linear
step automaton A = (RSM(N), L, M0) defined with L(M0, M1) = (a (bc)∗ ‖
a (bc)∗) d (where ‖ denotes the shuffle operator), and L(M1, M0) = a (bc)∗e. The
sets L(M0, M0) and L(M1, M1) are empty. The ZS-net N is well-behaved (and
it is bounded). �

3 Zero-Safe Regions

In this section, we define the ZS-regions of a linear step automaton by adapting
the concept of regions invented by Ehrenfeucht and Rozenberg for elementary



414 P. Darondeau

nets [8,9] and extended later on to PT-nets with the step firing rule [10] and to
general types of nets in [11]. To begin with, we introduce two monoids.

Definition 7. Let (IN× IN, +, (0, 0)) be the monoid with the composition opera-
tion (m, n)+(m′, n′) = (m+m′, n+n′), and let (IN× IN, · , (0, 0)) be the monoid
defined with the alternative composition operation (m, n) · (m′, n′) = if n ≥ m′

then (m, n+n′−m′) else (m+m′−n, n′) (the reader may check the associativity
of this composition).

Let A = RSSG(N) be the reachable stable state graph of a ZS-net N = (S ∪
Z, T, F, M0), hence A = (Q, L, q0) with Q = RSM(N) and q0 = M0. In this
particular case of reachable linear step automata, the following properties may
be observed.

property S
Each stable place s ∈ S induces a map φs : Q → IN, defined with φs(q) =
M(s) for q = M ∈ RSM(N). Let ηs : T → (IN × IN) be defined with ηs(t) =
(F (s, t), F (t, s)). Then for all states q, q′ and for all words t1t2 . . . tn in L(q, q′),
(φs(q), φs(q′)) = ηs(t1) + ηs(t2) + . . . + ηs(tn). Indeed, let q = M and q′ = M ′

then L(q, q′) = L(M, M ′), and by definition of stable transactions and perfect
enabling, M(s) = F (s, t1) + . . . + F (s, tn) and M ′(s) = F (t1, s) + . . . + F (tn, s).

property Z
For any zero-place z ∈ Z, let ηz : T → (IN × IN) be defined with ηz(t) =
(F (z, t), F (t, z)). The map ηz may be extended from T to T ∗ by setting ηz(t1t2 . . .
tn) = ηz(t1) · ηz(t2) · . . . · ηz(tn). Then for all states q and q′, for all words
w ∈ L(q, q′), and for all prefixes u = t1t2 . . . tn of w = uv, ηz(u) = (0, j) for
some j ≥ 0 and j = 0 if u ∈ L(q, q′). To see this, consider a one-place PT-net
Nz = ({z}, T, Fz, Mz), defined with Fz(z, t) = F (z, t), Fz(t, z) = F (t, z), and
some Mz(z) ≥ 0. If we let ηz(u) = (•u, u•), then the integer •u is the least
value of Mz(z) such that Mz[t1〉 . . . [tn〉M ′

z for some M ′
z, and this M ′

z is given by
M ′

z(z) = Mz(z)−•u+u•. Now u = t1t2 . . . tn is a prefix of w = uv ∈ L(q, q′), q =
M and q′ = M ′ are two stable markings of N , and Mz[t1〉 . . . [tn〉M ′

z for Mz(z) =
M(z) = 0 by definition of stable steps. Therefore •u = 0 and ηz(u) = (0, j) for
some j. If u = w ∈ L(q, q′) = L(M, M ′), then M ′

z(z) = M ′(z) = 0 because M ′

is a stable marking, hence in this case j = u• = M ′
z(z) − Mz(z) + •u = 0.

Example 2. Consider the linear step automaton A = RSSG(N) defined in Ex-
ample 1. Let φs1(M0) = 2 and φs1(M1) = 1. Let ηs1 be the map defined with
ηs1(a) = (1, 0), ηs1(d) = (0, 1), ηs1(e) = (0, 2), and ηs1(x) = (0, 0) for other x.
Take any word w ∈ L(M0, M1), then w has 2 occurrences of a, 1 occurrence
of d and no occurrence of e, hence ηs1(w) = (1, 0) + (1, 0) + (0, 1) = (2, 1) =
(M0(s1), M1(s1)). Now let ηz3 be the map defined with ηz3(a) = (0, 1), ηz3(b) =
(1, 0), ηz3(c) = (0, 1), ηz3(d) = (2, 0), and ηz1(e) = (1, 0). Define u = aabcb and
v = bccd thus w = uv ∈ L(M0, M1). Then ηz3(u) = (0, 1)·(0, 1)·(1, 0)·(0, 1)·(1, 0).
Seeing that (0, 1) · (0, 1) = (0, 2) and (1, 0) · (0, 1) = (1, 1), ηz3(u) = (0, 2) · (1, 1) ·
(1, 0) = (0, 2) · (1, 0) = (0, 1). Similarly, ηz3(v) = (1, 0) · (0, 1) · (0, 1) · (2, 0)
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and seeing that (0, 1) · (2, 0) = (1, 0), ηz3(v) = (1, 1) · (1, 0) = (1, 0). Therefore,
ηz3(w) = (0, 1) · (1, 0) = (0, 0). �

Let A = (Q, L, q0) be now any reachable linear step automaton over T . The ZS-
regions of A are defined by the following statements that mimick the respective
properties S and Z.

Definition 8. An S-region of A is a pair of maps φs : Q → IN and ηs : T →
(IN × IN) such that, for all states q and q′, (φs(q), φs(q′)) = ηs(t1) + ηs(t2) +
. . . + ηs(tn) for all words t1t2 . . . tn in L(q, q′).

Definition 9. A Z-region of A is a map ηz : T → (IN × IN) such that for all
states q and q′, ηz(t1) · ηz(t2) · . . . · ηz(tn) = (0, j) for all prefixes u = t1 . . . tn
of words uv ∈ L(q, q′), and j = 0 if u ∈ L(q, q′).

We use the term ZS-region to mean informally the S-regions or Z-regions of A.
In the sequel we use freely the notations ηs(u) and ηz(u) with u ∈ T ∗, to mean
the values of the extended maps ηs and ηz ranging over the respective monoids
(IN × IN, +, (0, 0)) and (IN × IN, · , (0, 0)). The goal of the next section is to find
necessary and sufficient conditions on the ZS-regions of a reachable linear step
automaton A such that A ∼= RSSG(N). In order to get an intuition of these
conditions, we come back to the particular case where A = (Q, L, q0) is the
reachable stable state graph of a ZS-net N = (S ∪ Z, T, F, M0).

Proposition 2. If N is well-behaved and bounded, then the linear step automa-
ton A = RSSG(N) is regular.

Proof. We must show that for all states q and q′, the language L(q, q′) is regular.
Let q = M and q′ = M ′. The transactions M [t1〉 . . . [tn〉M ′ in N correspond
bijectively with the transactions M[t1〉 . . . [tn〉M′ in the extended ZS-net N =
(S ∪ S′ ∪ Z, T, F , M) defined, together with the marking M′, as follows:

– each stable place s ∈ S has a replica s′ ∈ S′

– M(s) = M(s) and M(s′) = 0
– M′(s) = 0 and M′(s′) = M ′(s)
– F(s, t) = F (s, t), F(s′, t) = 0 and F(t, s′) = F (t, s), F(t, s) = 0
– M(z) = M(z), F(z, t) = F (z, t) and F(t, z) = F (t, z)

As N is well-behaved and bounded, the set of markings Mi found in transactions
ρ = M[t1〉 . . . [ti〉Mi . . . [tn〉M′ in N is finite. Let Q be the set of these markings,
and let A be the automaton over T with the set of states Q, the initial state M,
the final state M′, and the labelled transitions Mi−1[ti〉Mi. Clearly, A accepts
L(q, q′). As A is a finite automaton, L(q, q′) is regular. The linear step automaton
A is therefore regular (in the different sense given by Def. 3). �

Proposition 3. For any two distinct states q and q′, φs(q) 	= φs(q′) for some
stable place s ∈ S.

Proof. Let q = M and q′ = M ′, then M(z) = M ′(z) = 0 for every zero-place z.
Therefore, M(s) 	= M ′(s) for some stable place s, i.e. φs(q) 	= φs(q′). �
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Proposition 4. For any state q ∈ Q, word u ∈ T ∗, and transition t ∈ T , if
u = ε or uv ∈ L(q, q′) for some v ∈ T + and q′ ∈ Q, but utv /∈ L(q, q′) for any
v ∈ T ∗ and q′ ∈ Q, then ηs(ut) = (i, j) and φs(q) < i for some stable place
s ∈ S, or ηz(u) = (0, j), ηz(t) = (i′, j′), and j < i′ for some zero-place z ∈ Z.

Proof. Let q = M and u = t1 . . . tn, then M [t1〉 . . . [tn〉Mn for some marking
Mn and this firing sequence is concurrently enabled. We claim that, with the
hypotheses made in the proposition, there cannot exist any concurrently en-
abled firing sequence M [t1〉 . . . [tn〉Mn[t〉Mn+1. In order to establish this claim,
we assume the opposite and we derive a contradiction. As the ZS-net N is well-
behaved, the firing sequence M [t1〉 . . . [tn〉Mn[t〉Mn+1 extends a stable transac-
tion or it may be extended to a stable transaction. If the firing sequence may be
extended to a stable transaction, then utv ∈ L(q, q′) for some v ∈ T ∗ and q′ ∈ Q,
contradicting the hypotheses. If the firing sequence may be truncated to a stable
transaction M [t1〉 . . . [tm〉Mm for some m ≤ n, then by the condition of atomic-
ity, uv /∈ L(q, q′) for any v ∈ T + and q′ ∈ Q, contradicting again the hypotheses.
Therefore, the claim has been established. Seeing that M [t1〉 . . . [tn〉Mn is concur-
rently enabled, in order that there exists no concurrently enabled firing sequence
M [t1〉 . . . [tn〉Mn[t〉Mn+1, it is necessary and sufficient that ηs(t1 . . . tnt) = (i, j)
and φs(q) < i for some stable place s ∈ S, or ηz(t1 . . . tn) = (0, j), ηz(t) = (i′, j′),
and j < i′ for some zero-place z ∈ Z. �

Proposition 5. For any states q and q′, if w = uv ∈ L(q, q′) and u and v are
both non-empty, then ηz(u) = (0, j) with j 	= 0 for some z ∈ Z.

Proof. Let q = M and q′ = M ′, hence L(q, q′) = L(M, M ′). Let u = t1 . . . tn
and v = tn+1 . . . tk, then there exists a transaction M [t1〉M1 . . . [tn〉Mn . . . [tk〉Mk

ending with Mk = M ′. In view of the atomicity of transactions, Mn(z) 	= 0 for
some zero-place z. In view of Property Z, ηz(u) = (0, Mn(z)). Therefore, the
proposition holds for j = Mn(z). �

Example 3. Consider the linear step automaton A = RSSG(N) defined in Ex-
ample 1. The language L(M0, M1) = (a (bc)∗ ‖ a (bc)∗) d is regular since the
shuffle of two regular languages is regular. As M0(s1) = 2 and M1(s1) = 1,
the stable place s1 separates all stable markings (illustrating Proposition 3).
Let u = aabcb (see Example 2), then ud and ue are not prefixes of any word
in L(M0, M1) or L(M0, M0) (the latter set is empty). As regards ud, ηz3(u) =
(0, 1), ηz3(d) = (2, 0), and 1 < 2 (illustrating Proposition 4). As regards ue,
ηs2(u2) = (1, 0), φs2(M0) = M0(s2) = 0, and 0 < 1. Let v = bccd like in Ex-
ample 2, thus uv ∈ L(M0, M1). As we already saw, ηz3(u) = (0, 1), and 1 	= 0
(illustrating Proposition 5). �

Given two isomorphic reachable linear step automata A = (Q, L, q0) and A′ =
(Q′, L′, q′0), their respective sets of S-regions correspond obviously through the
isomorphism φ : Q → Q′, and their sets of Z-regions are identical. In view of
Properties S and Z and Propositions 2 to 5, in order that A ∼= RSSG(N) for some
bounded and well-behaved ZS-net N , the following conditions on A = (Q, L, q0)
must be satisfied:
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– regular representation
The linear step automaton A is regular.

– separation
For any two distinct states q and q′, φs(q) 	= φs(q′) for some S-region of A.

– forward closure
For any state q ∈ Q, word u ∈ T ∗, and transition t ∈ T ,
if u = ε or uv ∈ L(q, q′) for some v ∈ T + and q′ ∈ Q,
but utv /∈ L(q, q′) for any v ∈ T ∗ and q′ ∈ Q then
ηs(ut) = (i, j) and φs(q) < i for some S-region of A, or
ηz(u) = (0, j), ηz(t) = (i′, j′), and j < i′ for some Z-region of A.

– atomicity
For any states q and q′, if w = uv ∈ L(q, q′) and u and v are both non-empty,
then ηz(u) = (0, j) with j 	= 0 for some Z-region of A.

Example 4.
– Let A = (Q, L, q0) where Q = {q0, q1}, L(q0, q1) = L(q1, q0) = a, and

L(q0, q0) = L(q1, q1) = ∅, then A does not satisfy the condition of Sepa-
ration and it cannot be realized by a ZS-net.

– Let A = (Q, L, q0) where Q = {q0, q1}, L(q0, q1) = abbc+ acbb, and L(q1, q0)
= L(q0, q0) = L(q1, q1) = ∅, then A does not satisfy the Forward Closure
condition and it cannot be realized by a ZS-net. Adding abcb to L(q0, q1)
yields Forward Closure.

– Let A = (Q, L, q0) where Q = {q0, q1}, L(q0, q1) = aa, and L(q1, q0) =
L(q0, q0) = L(q1, q1) = ∅, then then A does not satisfy the condition of
Atomicity, and it cannot be realized by a ZS-net.

�

We will show in the next section that, for any regular and reachable linear step
automaton A, the conditions of Separation, Forward Closure, and Atomicity suf-
fice to guarantee that A ∼= RSSG(N) for some well-behaved ZS-net N , providing
the desired characterization.

4 Establishing the Axioms for ZS-Net Synthesis

Throughout the section, A = (Q, L, q0) is a regular and reachable linear step
automaton, whereas A = (Q, δ, q, QF ) denotes a trim automaton over T , with
partial transition map δ : Q × T ⇀ Q, initial state q ∈ Q, and set of final states
QF ⊆ Q. We recall that an automaton is trim if every state can be reached from
the initial state and co-reached from some final state.

In a first stage, we show that when Separation, Forward Closure, and Atom-
icity hold for A, finite subsets S and Z of ZS-regions of A witness for this fact.
Since Q is finite, this property is obvious for Separation, but it is less immediate
for Forward Closure and for Atomicity.

Lemma 1. Atomicity, when it holds for A, is witnessed by a finite subset of
Z-regions of A.
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Proof. Let ηz : T → (IN × IN) be any Z-region of A. By definition of Z-regions,
ηz(w) = (0, 0) for w ∈ L(q, q′). For fixed states q and q′, let A = (Q, δ, q, QF ) be
a finite automaton accepting the regular language L(q, q′). We claim that ηz(u)
depends only upon δ(q, u), hence there exists a unique map φz : Q → IN such
that ηz(u) = (0, φz(δ(q, u))), for all prefixes u of words w ∈ L(q, q′). In order to
establish this claim, we show that ηz(u) = ηz(u′) whenever uv and u′v belong to
L(q, q′) for some v. Let ηz(u) = (0, j) and ηz(u′) = (0, j′), thus we want to show
j = j′, and let ηz(v) = (k, l). In order that ηz(uv) = (0, 0), it is necessary that
j ≥ k and j + l− k = 0, hence j = k and l = 0. Similarly, ηz(u′v) = (0, 0) entails
j′ = k. Therefore j = j′ and the claim is established. Now, if atomicity holds for
A, then there must exist, for any decomposition w = uv of a word w ∈ L(q, q′)
into non-empty factors u and v, some Z-region ηz with φz(δ(q, u)) > 0 (hence
δ(q, u) 	= q). As δ(q, u) ranges over |Q| − 1 values, it suffices to choose at most
(|Q| − 1) Z-regions of A as witnesses for the condition of Atomicity w.r.t. the
fixed pair of states q and q′, and there are finitely many such pairs. �

The proofs of Proposition 1 and Lemma 1 establish two specific versions of the
general claim stated in the proposition below.

Proposition 6. Let q ∈ Q, Q′ ⊆ Q and let A = (Q, δ, q, QF ) be a trim automa-
ton accepting ∪q′∈Q′ L(q, q′). Then δ(q, u) = δ(q, u′) entails that ηz(u) = ηz(u′)
for any Z-region of A and ηs(u) = ηs(u′) for any S-region of A.

Proof. Straightforward adaptation of the proof of Lemma 1. �

Lemma 2. Forward Closure, when it holds for A, is witnessed by a finite subset
of ZS-regions of A.

Proof. For fixed q in A, let A = (Q, δ, q, QF ) be a trim automaton accepting the
regular language L(q) = ∪q′∈Q L(q, q′). If Forward Closure holds, then for any
u ∈ T ∗ and t ∈ T such that u = ε or uv ∈ L(q) for some v ∈ T +, but utv /∈ L(q)
for any v ∈ T ∗, there should exist an S-region of A such that ηs(ut) = (i, j)
and φs(q) < i or a Z-region of A such that ηz(u) = (0, j), ηz(t) = (i′, j′), and
j < i′. In view of Proposition 6, it suffices to choose at most |Q| ZS-regions of
A as witnesses for the condition of Forward Closure w.r.t. the fixed state q (i.e.
relatively to L(q)), and there are finitely many states q ∈ Q. �

The next stage, before showing that Separation, Forward Closure, and Atomicity
characterize the (reachable) linear step automata that may be realized with (well-
behaved) ZS-nets, is to define the ZS-net synthesized from a subset of ZS-regions
of A = (Q, L, q0).

Definition 10. Given a linear step automaton A = (Q, L, q0) over T and two
finite subsets S and Z of S-regions and Z-regions, respectively, of A, the ZS-net
synthesized from S and Z is the ZS-net N(S, Z) = (S ∪ Z, T, F, M0) defined as
follows, up to an isomorphism of ZS-nets over T :
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– S is a set in bijection with S, where the bijection maps s ∈ S to (φs, ηs) ∈ S,
– Z is a set in bijection with Z, where the bijection maps z ∈ Z to ηz ∈ Z,
– for all s ∈ S, M0(s) = φs(q0), and ηs(t) = (F (s, t), F (t, s)) for all t,
– for all z ∈ Z, M0(z) = 0, and ηz(t) = (F (z, t), F (t, z)) for all t

We can now state the main theorem we want to prove.

Theorem 1. Let A = (Q, L, q0) be a regular and reachable linear step automa-
ton over T , satisfying the conditions of Separation, Forward Closure and Atom-
icity. Let S and Z be finite sets of S-regions and Z-regions, respectively, of A,
witnessing for the satisfaction of these conditions. The ZS-net N(S, Z) is well-
behaved, and it realizes A, i.e. A ∼= RSSG(N(S, Z)).

The proof of Theorem 1 is cut into four propositions. The first three propositions
establish the isomorphism A ∼= RSSG(N(S, Z)). The last proposition shows
that N(S, Z) is well-behaved. The following definition of the relation ∼ intends
to capture the isomorphism A ∼= RSSG(N(S, Z)). In the sequel, we let N =
N(S, Z) for convenience.

Definition 11. Let ∼ ⊆ Q × RSM(N) be the relation such that q ∼ M if and
only if φs(q) = M(s) for all s ∈ S.

Proposition 7. Let q ∼ M and w ∈ L(q, q′), then M{[w〉M ′ and q′ ∼ M ′ for
some M ′ ∈ RSM(N).

Proof. For any S-region (φs, ηs) in S, ηs(w) = (φs(q), φs(q′)) and φs(q) = M(s).
For any Z-region ηz in Z, ηz(w) = (0, 0). If we let w = t1 . . . tn, then ηs(w) =
(
∑

i F (s, ti),
∑

i F (ti, s)), hence M [t1〉M1 . . . [tn〉Mn, this firing sequence is con-
currently and perfectly enabled , and it leads to a stable marking Mn, since
ηz(w) = (0, 0) for all z. Let M ′ = Mn. For any S-region (φs, ηs) in S, M ′(s) =
M(s) −

∑
i F (s, ti) +

∑
i F (ti, s) =

∑
i F (ti, s), hence (M(s), M ′(s)) = ηs(w) =

(φs(q), φs(q′)) and thus q′ ∼ M ′. Finally, for i < n, ηz(t1 . . . ti) = (0, j) and j 	= 0
for some Z-region ηz in Z (by the condition of Atomicity), hence all markings
Mi (i < n) are unstable. Therefore, M{[w〉M ′. �

Proposition 8. Let q ∼ M and M{[w〉M ′ then w ∈ L(q, q′) for some q′ ∼ M ′.

Proof. We first show, by an induction on the prefixes v of w (	= ε), that w must
be a prefix of some word in ∪q′∈Q L(q, q′). Suppose this property holds for v,
with w = vtv′. If it does not hold for vt, then by the Forward Closure condition,
the transition t cannot be fired at the marking of N(S, Z) reached by v, in
contradiction with M{[w〉M ′. We show next that w ∈ ∪q′∈Q L(q, q′). If this is not
the case, then ww′ ∈ ∪q′∈Q L(q, q′) for some w′ 	= ε. By the Atomicity condition,
ηz(w) = (0, j) and j 	= 0 for some Z-region ηz in Z, but this is impossible since
on the one hand, ηz(w) = (0, j) entails M ′(z) = j by definition of the zero-places
of N(S, Z) (Def. 10), and on the other hand, M ′(z) = 0 because M ′ is a stable
marking. Finally, if w ∈ L(q, q′) then q′ ∼ M ′ because w ∈ L(q, q′) entails by
Proposition 7 that M{[w〉M ′′ and q′ ∼ M ′′ for some M ′′ ∈ RSM(N), and the
firing rule of ZS-nets is deterministic. �
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Proposition 9. The relation ∼ is a bijection between Q and RSM(N).

Proof. Let q, q′ ∈ Q and M, M ′ ∈ RSM(N). If q ∼ M and q ∼ M ′, then
M(s) = φs(q) and M ′(s) = φs(q) for every S-region (φs, ηs) in S, hence M = M ′

(as M and M ′ are stable, M(z) = M ′(z) = 0 for any Z-region ηz in Z). If q ∼ M
and q′ ∼ M , then M(s) = φs(q) and M(s) = φs(q′) for every S-region (φs, ηs)
in S, hence q = q′ by Separation. �

Propositions 7, 8, and 9 entail directly the isomorphism A ∼= RSSG(N(S, Z)).

Proposition 10. N = N(S, Z) is well-behaved.

Proof. Let M ∈ RSM(N), then M ∼ q for some q ∈ Q because A ∼= RSSG(N).
Let ρ = M [t1〉M1 . . . [tn〉Mn such that M(s) ≥

∑
i F (s, ti) for every S-region

(φs, ηs) in S. If some prefix v = t1 . . . ti−1 of w = t1 . . . tn belongs to ∪q′∈Q

L(q, q′), then by Proposition 7, the initial segment of ρ with length i − 1 is a
stable transaction, hence ρ extends a stable transaction. In the converse case,
we show by induction on i ≤ n that vti must be a prefix of some word in
∪q′∈Q L(q, q′). Assume for a contradiction that v = ε or v is a prefix of some
word in ∪q′∈Q L(q, q′) but vti is not. By the Forward Closure condition, ηs(vti) =
(k, j) and φs(q) < k for some S-region in S, or ηz(v) = (0, j), ηz(ti) = (k, j′),
and j < k for some Z-region in Z. In both cases, seeing that φs(q) = M(s),
ηs(t) = (F (s, t), F (t, s)) and ηz(t) = (F (z, t), F (t, z)) for all s ∈ S and z ∈ Z
by construction of N(S, Z), M [t1〉M1 . . . Mi−1[ti〉 is not a concurrently enabled
firing sequence of N . It follows from this contradiction that N is well-behaved.

�

The proof of Theorem 1 has been completed. In view of Prop. 2, Theorem 1 may
also be formulated equivalently as follows.

Theorem 2. A reachable linear step automaton A over T may be realized by a
bounded and well-behaved ZS-net N over T if and only if it is regular (Def 3)
and the conditions of Separation, Forward Closure and Atomicity are satisfied.
In this case, let S and Z be finite sets of S-regions and Z-regions, respectively,
of A, witnessing for the satisfaction of these conditions, then the synthesized net
N = N(S, Z) is a solution to the ZS-net realization problem for A.

The above theorems provide a characterization of the ZS-net realizable linear
step automata, but they say nothing about the decision of the realization prob-
lem nor about the effective construction of a solution N = N(S, Z). These
aspects are treated in sections 5 and 6.

5 Computing S-Regions and Z-Regions

In this section, we supply a linear algebraic characterization of the S-regions
and Z-regions of a regular and reachable linear step automaton A = (Q, L, q0),
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which we assume non-trivial. We also suppose that A is provided with auxiliary
data as follows. For all states q and q′ such that L(q, q′) 	= ∅, A(q, q′) is a trim
automaton accepting L(q, q′), and w(q, q′) is a distinguished word in L(q, q′).
For all states q, A(q) is a trim automaton accepting ∪q′∈QL(q, q′). We define the
size of A as the sum of the sizes of all automata A(q, q′), which is greater than
|Q| and in general greater than the sum of the sizes of all automata A(q).

Notation 3 Let A = (Q, δ, q, QF ) be a trim automaton over T , with initial state
q ∈ Q. The set of transitions q′ t−→ δ(q′, t) may be divided into arcs and chords
such that the arcs form a spanning tree T with root q (the number of chords is
|T |− |Q|+1 where |T | is the number of transitions of A). Let (u, t, v) denote the
chord δ(q, u)

t−→ δ(q, v) where δ(q, ut) = δ(q, v) and u and v are labels of rooted
paths in T . T (q, q′) and T (q) denote arbitrary spanning trees for A(q, q′) and
A(q), respectively.

Notation 4 L(q, q′) 	= ∅ is noted q → q′ for short.

Notation 5 For any map η : T → (IN × IN) and for any word w ∈ T ∗, we let
η(w) = (η◦w, w◦η) in the monoid ((IN × IN), +, (0, 0)), and η(w) = (η•w, w•η)
in the monoid ((IN × IN), · , (0, 0)) - see Def. 7.

Let (φs, ηs) be an S-region of A, thus φs : Q → IN and ηs : T → (IN × IN). By
definition of S-regions, q → q′ ⇒ φs(q) = ηs

◦w(q, q′) and φs(q′) = w(q, q′)◦ηs,
hence ηs : T → (IN × IN) determines φs : Q → IN (since A is non-trivial).
Conversely, in order that a map ηs : T → (IN × IN) determines an S-region of
A, it is necessary and sufficient that the following conditions hold for all states
q, q′, q′′ and for all sink states qf (i.e. states qf with no successor state w.r.t. the
relation →):

– q0 → q and q0 → q′ ⇒ ηs
◦w(q0, q) = ηs

◦w(q0, q
′)

– q → q′ and q′ → q′′ ⇒ w(q, q′)◦ηs = ηs
◦w(q′, q′′)

– q → qf and q′ → qf ⇒ w(q, qf )◦ηs = w(q′, qf )◦ηs

– ηs(u) = ηs(w(q, q′)) for all u ∈ L(q, q′)

Now for any w ∈ T ∗, ηs
◦w =

∑
t w[t] × ηs

◦t and w◦ηs =
∑

t w[t] × t◦ηs, where
w[t] is the number of occurrences of t in w. The first three conditions amount
thus to a finite set of linear homogeneous equations in the variables ηs

◦t and t◦ηs

(t ∈ T ). Let A(q, q′) = (Q, δ, q, QF ). In order that the fourth condition holds, it
is necessary and sufficient that first, ηs

◦u = ηs
◦w(q, q′) and u◦ηs = w(q, q′)◦ηs

for any word u labelling a path from q to (some state in) QF in the spanning
tree T (q, q′), and second, that ηs

◦ut = ηs
◦v and ut◦ηs = v◦ηs for any chord

(u, t, v) (notation 5). The necessity of the second condition was already stated
in Proposition 6. This yields anew a finite set of linear homogeneous equations
in the variables ηs

◦t and t◦ηs. Altogether, the S-regions of A are character-
ized by a finite linear system ΣS(A), made of homogeneous equations in the
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variables ηs
◦t and t◦ηs, t ∈ T . This system has size polynomial in the size of A.

Each non-negative integer solution of ΣS(A), seen as a map ηs : T → (IN × IN),
viz ηs(t) = (ηs

◦t, t◦ηs), induces a unique map φs : Q → IN such that (φs, ηs) is
an S-region of A.

By definition of Z-regions, a map ηz : T → (IN × IN) is a Z-region of A if
and only if q → q′ entails ηz

•u = 0 for every prefix u of a word in L(q, q′),
and u•ηz = 0 for every word u ∈ L(q, q′). When both conditions hold, let
A(q) = (Q, δ, q, QF ), then δ(q, u) = δ(q, u′) ⇒ ηz(u) = ηz(u′) by Proposition 6.
Therefore, a map ηz : T → (IN × IN) defines a Z-region of A if and only if
the following conditions hold for all q, u, t, u′, t′, v′, w such that q ∈ Q, u la-
bels a rooted path in the spanning tree T (q), t ∈ T , (u′, t′, v′) is a chord of
T (q) (notation 5), and w labels a rooted path from q to (some state in) QF

in T (q):

– δ(δ(q, u), t)) defined ⇒ ηz
•t ≤ u•ηz (i.e. ηz

•ut = ηz
•u)

– u′t′•ηz = v′•ηz

– w•ηz = 0

As the first condition should hold for every prefix of u, entailing that ηz
•u = 0,

it may be replaced equivalently with: δ(δ(q, u), t)) defined ⇒ ηz
•t ≤ u•ηz −ηz

•u.
For u = t1 . . . tn, this condition may be rewritten to the linear inequality ηz

•t ≤∑
i≤n(ti•ηz −ηz

•ti). The second and third conditions may be rewritten similarly
to linear equations. Altogether, the Z-regions of A are characterized by a finite
linear system ΣZ(A), made of homogeneous equations and inequalities in the
variables ηz

•t and t•ηz, t ∈ T . This system has size polynomial in the size of A.
Each non-negative integer solution of ΣZ(A) defines a Z-region of A.

q0

q0

q1

q1
a

a

b

c

b
c

b

c

a

e

d

aa

Fig. 2. Spanning Trees (solid arcs) and Chords (dashed)

Example 5. Let A = (Q, L, q0) where Q = {q0, q1}, L(q0, q1) = (a (bc)∗ ‖
a (bc)∗) d, L(q1, q0) = a (bc)∗e, and L(q0, q0) = L(q1, q1) = ∅ (see Example 1).
Let A(q0, q1) and A(q1, q0) be the two automata shown in Figure 2, where the
spanning trees are represented with solid arcs while the chords are dashed. Let
w(q0, q1) = aad and w(q1, q0) = ae.
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The equations in ΣS(A) are:

aad◦ηs = ηs
◦ae (from q0 → q1 and q1 → q0)

ae◦ηs = ηs
◦aad (from q1 → q0 and q0 → q1)

ηs(aad) = ηs(aad) (aad is a path in T (q0, q1))
ηs(abc) = ηs(a) (first chord c of T (q0, q1))
ηs(aba) = ηs(aab) (chord b of T (q0, q1))
ηs(abac) = ηs(aa) (second chord c of T (q0, q1))
ηs(ae) = ηs(ae) (ae is a path in T (q1, q0))
ηs(abc) = ηs(a) (chord c of T (q1, q0))

After simplifications, one gets:
ηs
◦b = b◦ηs = ηs

◦c = c◦ηs = 0
2ηs
◦a + ηs

◦d = a◦ηs + e◦ηs

ηs
◦a + ηs

◦e = 2a◦ηs + d◦ηs

The equations in ΣZ(A) induced from L(q0, q1) are
(after some elimination):

ηs
•a = 0 (δ(q0, a) is defined)

ηs
•b ≤ a•ηs (δ(q0, ab) is defined)

ηs
•c ≤ a•ηs + b•ηs − ηs

•b (δ(q0, abc) is defined)
ηs
•d ≤ 2a•ηs (δ(q0, aad) is defined)

abc•ηs = a•ηs (first chord c of T (q0, q1))
aab•ηs = aba•ηs (chord b of T (q0, q1))
abac•ηs = aa•ηs (second chord c of T (q0, q1))
aad•ηs = 0 (aad is a path of T (q0, q1))

After simplifications, one gets:
ηs
•a = 0

2a•ηs = ηs
•d

d•ηs = 0
ηs
•b ≤ a•ηs

b•ηs + c•ηs = ηs
•b + ηs

•c

The remaining equations in ΣZ(A) induced from L(q1, q0) are:

a•ηs = ηs
•e

e•ηs = 0 �

The linear systems ΣS(A) and ΣZ(A) are used in section 6 to obtain a decision
and synthesis procedure for the problem ? (∃N)(A ∼= RSSG(N)).

6 A Decision and ZS-Net Synthesis Procedure

Let A = (Q, L, q0) be a regular and reachable linear step automaton where
q0 → q′ for some q′ (possibly equal to q0). For all q ∈ Q, let A(q) be a trim
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automaton accepting ∪q′∈QL(q, q′) and for all q′ such that q → q′, let w(q, q′)
be a distinguished word in L(q, q′). By Theorem 2, A may be realized by a well-
behaved ZS-net N over T if and only if the conditions of Separation, Forward
Closure and Atomicity are satisfied.

Proposition 11. Separation is decidable.

Proof. One should decide, for any two distinct states q, q′ ∈ Q, whether φs(q) 	=
φs(q′) for some S-region (φs, ηs). By definition of S-regions, q1 → q ⇒ φs(q) =
w(q1, q)◦ηs and q → q2 ⇒ φs(q) = ηs

◦w(q, q2). Suppose, e.g., q1 → q and
q′ → q′2 then φs(q) 	= φs(q′) if and only if w(q1, q)◦ηs 	= ηs

◦w(q′, q′2) for some
non-negative integer solution ηs of ΣS(A). The existence of such a solution can
be decided using time polynomial in the size of this linear homogeneous system.

�

Proposition 12. Atomicity is decidable.

Proof. One should decide, for all states q ∈ Q and for all words u ∈ T + such
that uv ∈ ∪q′∈QL(q, q′) for some v ∈ T +, whether u•ηz 	= 0 for some Z-region
ηz. Let A(q) = (Q, δ, q, QF ) and let T (q) be the associated spanning tree. By
Proposition 6, δ(q, u) = δ(q, u′) entails ηz(u) = ηz(u′) for any Z-region ηz . In
order to decide upon the condition of Atomicity, it suffices therefore to check first
that δ(q1, t) is undefined for all q1 ∈ QF and t ∈ T , and second that u•ηz 	= 0
for any word u labelling a path from q to some q2 /∈ QF in T (q). There exist
finitely many such words u. Let u = t1 . . . tn then u•ηz =

∑
i≤n(ti•ηz − ηz

•ti)
by definition of Z-regions. Thus u•ηz > 0 for some Z-region ηz if and only if∑

i≤n(ti•ηz − ηz
•ti) > 0 for some non-negative integer solution ηz of ΣZ(A).

The existence of such a solution can be decided using time polynomial in the
size of ΣZ(A). �

Proposition 13. Forward closure is decidable.

Proof. One should decide, for all states q ∈ Q, for all words u ∈ T ∗ such that
u = ε or uv ∈ ∪q′∈QL(q, q′) for some v ∈ T +, and for all transitions t ∈ T such
that utv /∈ ∪q′∈QL(q, q′) for any v ∈ T ∗, whether φs(q) − ηs

◦u < ηs
◦t for some

S-region (φs, ηs) or u•ηz < η•zt for some Z-region ηz .
Let A(q) = (Q, δ, q, QF ). By Proposition 6, δ(q, u) = δ(q, u′) entails ηs(u) =

ηs(u′) for any S-region ηs and ηz(u) = ηz(u′) for any Z-region ηz. It suffices
therefore to check the Forward Closure condition for u = ε and for words u =
t1 . . . tn labelling paths in T (q), hence for finitely many words.

The Forward Closure condition, when restricted to Z-regions, writes as the
linear inequality

∑
i≤n(ti•ηz − ηz

•ti) < ηz
•t. One can decide whether this in-

equality holds for some Z-region of A using time polynomial in the size of ΣZ(A).
The Forward Closure condition, when restricted to S-regions, expresses in two

different forms according to cases. If q′ → q and u = ε, the inequality to check
is w(q′, q)◦ηs < ηs

◦t. If q → q′, then the inequality to check is ηs
◦w(q, q′) <

ηs
◦u + ηs

◦t. In both cases, one can decide whether the appropriate inequality
holds for some S-region of A using time polynomial in the size of ΣS(A). �
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The above three propositions have established the following result.

Theorem 6. The Zero-Safe net realization problem for regular and reachable
linear step automata is decidable. The decision takes time polynomial in the size
of linear step automata.

7 Conclusion

The inventors of the Zero-Safe nets studied mainly their formal semantics. We
tried in this paper to show algorithmic techniques for implementing systems of
transactions producing and consuming resources in the form of bounded and
well-behaved Zero-Safe nets. The specifications of transaction systems which we
have considered are linear step automata in which the atomic steps between two
stable states form a regular language. We have shown that it is decidable whether
a linear step automaton may be implemented by a Zero-Safe net in which any
execution started from a stable state can be completed to a stable transaction.
A direction in which this work could be extended is transaction mining. In this
context, the states of the step automaton are known exactly and they should be
implemented up to a bijection, but the sets of atomic steps L(q, q′) are meant as
partial observations and other atomic steps may be added in the implementation.
We have some reasons to believe that the saturated ZS-net N(S, Z) synthesized
from all ZS-regions of the specification (linear step automaton) yields in this
case the least over-approximation of the specification that may be realized by
Zero-Safe nets. It is worth noting that this saturated ZS-net may always be
reduced to a finite ZS-subnet with an isomorphic reachable stable state graph
(using standard techniques of linear algebra for representing a polyhedral cone
by the finite set of extremal rays of this cone).

Acknowledgements. Thanks to the reviewers for their helpful suggestions.
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1 Introduction

Petri nets have traditionally been motivated by their ability to express concur-
rency. Subclasses of Petri nets with concurrency but without choices or conflicts
have been studied extensively. One of the best known – and comparatively re-
stricted – such class are the marked graphs [4]. However, perhaps the largest
class of (intuitively) choice-free nets are the persistent nets [7], a class of nets
that is significantly larger than marked graphs.

Some early results about persistent nets are Keller’s theorem [6], which will
be recalled in a later part of this paper, and the famous semilinearity result of
Landweber and Robertson [7], which states that the set of reachable markings of
a persistent net is semilinear. In this paper, we show that in bounded persistent
nets, the smallest cycles of its reachability graph enjoy a uniqueness property.

2 Definitions

A Petri net (S, T, F, M0) consists of two finite and disjoint sets S (places) and T
(transitions), a function F : ((S × T ) ∪ (T × S)) → N (flow) and a marking M0
(the initial marking). A marking is a mapping M : S → N.

The incidence matrix C is an S × T matrix of integers where the entry cor-
responding to a place s and a transition t is, by definition, equal to the number
F (t, s)−F (s, t). A T-invariant J is a vector of integers with index set T satisfy-
ing C · J = 0 where · is the inner (scalar) product, and 0 is the vector of zeros
with index set S. For a sequence σ ∈ T ∗ of transitions, its Parikh vector Ψ(σ)
is a vector of natural numbers with index set T , where Ψ(σ)(t) is equal to the
number of occurrences of t in σ.

A transition t is enabled (or activated, or firable) in a marking M (denoted by
M [t〉) if, for all places s, M(s) ≥ F (s, t). If t is enabled in M , then t can occur (or
fire) in M , leading to the marking M ′ defined by M ′(s) = M(s)+F (t, s)−F (s, t)
(notation: M [t〉M ′). We apply definitions of enabledness and of the reachability
relation to transition (or firing) sequences σ ∈ T ∗, defined inductively: M [ε〉 and
M [ε〉M are always true; and M [σt〉 (or M [σt〉M ′) iff there is some M ′′ with
M [σ〉M ′′ and M ′′[t〉 (or M ′′[t〉M ′, respectively).

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 427–438, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A marking M is reachable (from M0) if there exists a transition sequence σ
such that M0[σ〉M . The reachability graph of N , with initial marking M0, is the
graph whose vertices are the markings reachable from M0 and where an edge
labelled with t leads from M to M ′ iff M [t〉M ′. Figure 1 shows an example where
on the right-hand side, M0 denotes the marking shown in the Petri net on the
left-hand side.

The marking equation states that if M [σ〉M ′, then M ′ = M + C · Ψ(σ).
A Petri net is k-bounded if in any reachable marking M , M(s) ≤ k holds for

every place s, and bounded if there is some k such that it is k-bounded. A finite
Petri net (and we consider only such nets in the sequel) is bounded if and only
if the set of its reachable markings is finite.

A net N = (S, T, F, M0) is called a marked graph if
∑

t∈T F (s, t) ≤ 1 and∑
t∈T F (t, s) ≤ 1 for all places s.

a

c

b

d

M0

a

c

b

d

b

d

a

c

Fig. 1. A persistent Petri net (l.h.s.) and its reachability graph (r.h.s.)

3 Persistent Nets, and Related Notions

A net N , with some initial marking, will be called persistent, if whenever M [t1〉
and M [t2〉 for a reachable marking M and transitions t1 �= t2, then M [t1t2〉.

Two sequences M [σ〉 and M [σ′〉, firable from M , are said to arise from each
other by a single permutation if they are the same, except for the order of an
adjacent pair of transitions, thus:

σ = t1 . . . tktt′ . . . tn and σ′ = t1 . . . tkt′t . . . tn.

Two sequences M [σ〉 and M [σ′〉 are said to be permutations of each other (from
M , written σ ≡M σ′) if they are both firable at M and arise out of each other
through a (possibly empty) sequence of single permutations.

By τ−• σ, we will informally mean the sequence that is obtained when the
maximal subsequence of σ that occurs – in some order – inside τ , is erased from
τ . Formally, τ−• σ can be defined by induction on the length of σ:
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τ−• ε = τ

τ−• t =
{

τ , if there is no transition t in τ
the sequence obtained by erasing the first t in τ , otherwise

τ−• (tσ) = (τ−• t)−• σ.

By this definition, we have that τ−• σ and σ−• τ contain no common transitions.
The following theorem is the basis for our subsequent considerations. We will

provide a new proof, since we will refer to the technical details of this proof in
the sequel.

Theorem 1. Keller [6]
Let N be a persistent net and let τ and σ be two firing sequences starting from
some reachable marking M . Then

τ(σ−• τ) and σ(τ−• σ)

are also firing sequences from M , and what is more, they are permutations of
each other, i.e., τ(σ−• τ) ≡M σ(τ−• σ). In particular, the marking reached after
τ(σ−• τ) equals the marking reached after σ(τ−• σ).

...filling the diamond ...

(see text)

M

t1 x1

tn xm

σ−• τ τ−• σ

τ σ

Fig. 2. Outlining the proof of Keller’s theorem

Proof:
Let τ = t1 . . . tn and σ = x1 . . . xm. Persistency allows us to complete “small
diamonds”. For instance, if t1 �= x1, then both M [t1x1〉 and M [x1t1〉. The proof
proceeds by “completing big diamonds”, such as the one shown in Figure 2.
Special care needs to be taken if one of the ti equals one of the xj . We pro-
ceed systematically through t1, . . . , tn, in this order, trying to match as many
transitions ti as possible with transitions xj from σ.
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The starting point are the North, West and East corners of the diamond shown
in Figure 2. For each ti, we will define an i’th line from Northwest to Southeast.
Formally, each line is of the form M̂ [σ̂〉, where M̂ is a marking reachable from
M by some subsequence of τ and σ̂ is some subsequence of σ. Line 0, i.e. the
starting line, is given by σ which leads from the North corner to the East corner;
formally, it is defined to be M [σ〉. We distinguish two cases:

– If ti does not have some transition xj = ti on the previous (the (i−1)’th) line,
we draw a new (i’th) line after ti which is an exact parallel to the previous
line, and we cut the resulting parallelogram by small ti-labelled arcs form
Northeast to Southwest. This is justified by the small-diamond completion
property of persistent nets.

– If, however, on the (i−1)’th line, there are some x-transitions that are the
same as ti, we choose the first j for which xj = ti holds and we draw an
exact parallel only up to the starting point of xj . The endpoint of this parallel
will be merged with the endpoint of xj , and from that point onwards, the
new line is the same as the previous line. Thus, the new line contains one arc
(namely, an arc labelled with xj) less than the previous line. If xj happens to
be the first x-transition on the previous line, this construction corresponds
to the special case of merging the endpoints of ti and xj . The resulting
parallelogramoid is again subdivided by small ti-arcs, but this time only up
to the arc before xj , if there is any.

It is clear that the last line, from the West corner to the resulting South corner,
corresponds to the sequence σ−• τ of unmatched x-transitions, and it is also not
hard to see that the line from the East corner to the South corner corresponds
to the sequence τ−• σ of unmatched t-transitions. 1

Had we started with σ instead with τ , we would possibly have ended up with
a different interior of the diamond. However, the borders of the diamond are
unique.

Figures 3–5 exhibit some examples with τ = t1t2t3 and σ = x1x2x3.
In Figure 3, we assume that the only common transition between t1t2t3 and

x1x2x3 is t2 = x3. If, additionally, t1 = x1, we get the diamond shown in Figure
4. If t3 = x2 holds further, then the three southmost nodes are merged into a
single node, and the t3- and x2-arcs leading into them collapse into a single arc
labelled t3 (or x2), and we arrive at the diamond shown in Figure 5.

Clearly, if two sequences are permutations of each other, then they have the
same Parikh vector. In persistent nets, the converse is also true, provided they
are both firable from some marking M :

Lemma 1. Parikh-equivalence and ≡
Let N be a persistent net, M a reachable marking, and M [τ〉 and M [σ〉 two
transition sequences which are firable at M . If Ψ(τ) = Ψ(σ), then τ ≡M σ.

Proof: By the definitions of Parikh vector and −• , we have Ψ(τ) = Ψ(σ) if and
only if both τ−• σ = ε and σ−• τ = ε. The lemma now follows directly from
Theorem 1. 1
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M

M1

M2

M3

x1t1

t2

t3

x1

x2

x3

x1 t1

x2 t1

x3

t1

t2x1

x2
x1

x2

t3

t3

Line 0: M [x1x2x3〉

Line 1: M1[x1x2x3〉

Line 2: M2[x1x2〉

Line 3: M3[x1x2〉

Fig. 3. Diamond for t1t2t3 and x1x2x3, assuming t2=x3

M

M1

M2

M3

t1 x1

t2 x2

x3

x2

t3

x2 t3

Line 0: M [x1x2x3〉

Line 1: M1[x2x3〉

Line 2: M2[x2〉

Line 3: M3[x2〉

Fig. 4. Diamond for t1t2t3 and x1x2x3, assuming t1=x1∧t2=x3

M

M1

M2

M3

t1 x1

t2 x2

t3
x2

x3
t2

Line 0: M [x1x2x3〉

Line 1: M1[x2x3〉

Line 2: M2[x2〉

Line 3: M3[ε〉

Fig. 5. Diamond for t1t2t3 and x1x2x3, assuming t1=x1∧t2=x3∧t3=x2
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Lemma 2. A permutation lemma

Let N be persistent and let M [γ〉 and M [κγ〉 be two firing sequences from M ,
with transition sequences γ and κ.
Then there is a firing sequence M [γκ′〉 such that Ψ(κ) = Ψ(κ′) and κγ ≡M γκ′.

That is, κ can as a whole be permuted with γ, albeit, possibly, up to transition
re-orderings within κ.

Proof: By Keller’s theorem, M [γ〉 and M [κγ〉 imply that M [γ(κγ−• γ)〉. Put
κ′ = κγ−•γ. Clearly, Ψ(κγ−•γ) = Ψ(κ), and hence Ψ(γκ′) = Ψ(κγ). The fact that
κγ ≡M γκ′ now follows from Lemma 1, since both sequences are firable from
M . 2

Lemma 3. Disjoint sequences contradict boundedness

Let N be bounded and persistent and let τ and σ be two firing sequences, both
firable at M and leading to the same marking M̃ . Further, suppose that M �= M̃ .
Then there is at least one transition which occurs both in τ and in σ.

Proof: We will prove the lemma by contradiction. First, note that by M �= M̃
and because τ and σ lead to M̃ , τ �= ε �= σ. Assume that τ and σ are transition-
disjoint. Then τ−• σ = τ and σ−• τ = σ. By (the proof of) Keller’s theorem, we
get a special case of the diamond in Figure 2, namely Diamond 1 in Figure 6.
By assumption, the markings reached after τ and σ are the same, so that the
West and East corners of Diamond 1 are the same marking M̃ . Because σ is
firable from the West corner, it is also firable from the East corner, and thus we
get Diamond 2, again from transition-disjointness. The West and East corners of
Diamond 2 are again the same, because both are the marking obtained by firing
σ from M̃ . In this way, we get an infinite sequence M [σ〉M̃ [σ〉M̂ [σ〉M [σ〉 . . .

along the Eastern ridge of the diamonds. Moreover, since M �= M̃ , there is some
place s with M(s) �= M̃(s). Since the effect of σ is monotonic, it must be the
case that both M̃(s) �= M̂(s) and M(s) �= M̂(s). Thus we also have that M̂

is not in {M, M̃}, and that M is not in {M, M̃, M̂}, and so on. However, this
contradicts boundedness.
Hence, our assumption was wrong, and instead, the claim of the lemma is true.

3

4 Uniqueness of Simple Cycles in the Reachability Graph

A transition sequence τ is called cyclic if C ·Ψ(τ) = 0, i.e. if Ψ(τ) is a T-invariant.
From the marking equation, τ is cyclic if and only if M [τ〉M , for all markings
M which activate τ .

Definition 1. Decomposability and simplicity
A cyclic transition sequence τ is called decomposable if τ = τ1τ2 such that τ1
and τ2 are cyclic and τ1 �= ε �= τ2.

A cyclic firing sequence M [τ〉M is called simple if there is no decomposable
permutation τ ′ ≡M τ , also starting from M . 1
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Diamond 1

Diamond 2

M

�M

�M

�M

�M

τ σ

σ τ σ

Fig. 6. Completing diamonds, starting from M

In other words, a non-simple sequence can be permuted such that the per-
muted sequence has a smaller cyclic subsequence leading from some marking
back to the same marking. In Figure 1, for example, we have that:

abcd is not decomposable
acbd is decomposable, namely by τ1 = ac and τ2 = bd
M0[ac〉M0 is simple
M0[abcd〉M0 is not simple, because of the permutation M0[acbd〉M0.

M

M ′

M M

a

τ σ

Fig. 7. Two simple cycles with the same initial transition a

Theorem 2. Nondisjoint simple cycles are unique, up to permutation
Let N , with some initial marking, be bounded and persistent. Let M [aτ〉M and
M [aσ〉M , with some transition a and transition sequences τ and σ (see Figure
7). Suppose that both M [aτ〉M and M [aσ〉M are simple. Then aτ ≡M aσ.
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Proof: First, we prove that τ−•σ = ε implies σ−• τ = ε. To see this, suppose that
we have τ−• σ = ε and σ−• τ �= ε; we derive a contradiction.

By Keller’s theorem, aτ(σ−• τ) is firable from M and permutes aσ(τ−•σ), from
M . Because aσ = aσ(τ−• σ) reproduces M , so does aτ(σ−• τ). But because aτ
reproduces M as well, we have

M [ a τ︸︷︷︸
�=ε

〉M [ σ−• τ︸︷︷︸
�=ε

〉M.

But this contradicts the simplicity of M [aσ〉M , since aσ ≡M aτ(σ−• τ).
By symmetry, it follows that the proof can be split into two separate cases:

τ−• σ = ε = σ−• τ or τ−• σ �= ε �= σ−• τ.

Case 1: τ−• σ = ε = σ−• τ .
Then we have Ψ(τ) = Ψ(σ), whence also Ψ(aτ) = Ψ(aσ), and the desired result
τ ≡M σ follows directly from Lemma 1.

Case 2: τ−• σ �= ε �= σ−• τ .
We will derive a contradiction, showing that actually only Case 1 remains, and
thus proving the theorem. We prove the following in turn (and in increasing
order of difficulty):

1. The sequences σ−• τ and τ−• σ are both firable from M .
2. Starting from M , they lead to the same marking, say to M̃ .
3. M̃ �= M .

When this is proved, we may use boundedness and apply Lemma 3, yielding
the result that σ−• τ and τ−• σ must have some transition in common. This is a
contradiction to their definition.

Proof of 1.:
Let M [a〉M ′ (cf. Figure 7). From M ′, both τ and σ are firable, both leading to
M . By Keller’s theorem, also τ(σ−• τ) and σ(τ−• σ) are firable from M ′. Hence
both σ−• τ and τ−• σ are firable from M .

Proof of 2.:
Since aτ and aσ lead from M to M , the shorter sequences τ and σ also have the
same effect on markings (i.e.: if τ is firable from K and leads to marking K ′,
and if σ is firable from K, then σ also leads to K ′).

By Part 1., aτ(σ−• τ) and aσ(τ−•σ) are both firable from M and moreover, are
in relation ≡M . It follows that σ−• τ and τ−• σ must also have the same effect on
markings, and if they are fired from M , they lead to the same marking, M̃ .

Proof of 3.:
By contradiction. Assume that M̃ = M .

First of all, we have the following reproducing firing sequence:

M [τ−• σ〉M, (1)
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simply by Part 2. above, and by M̃ = M . Note that τ−• σ is just the sequence of
transitions (in the correct order) from τ that are not matchable with transitions
in σ, in the sense of (our proof of) Keller’s theorem.

Secondly, we will show that there is also a firing sequence

M [ρ〉M such that ρ ≡M a(τ−• (τ−• σ)). (2)

Note that τ−•(τ−•σ) is exactly (again in the correct order) the remaining sequence
of transitions from τ , i.e. the ones that are matchable with transitions from σ.

We now construct the sequence ρ in (2). Note from Part 1. above (i.e., es-
sentially from the proof of Keller’s theorem) that aτ is of the following form:

a γ0 χ1 γ1 χ2 . . . χr γr, with γ0 . . . γr = τ−• σ and χ1 . . . χr = τ−• (τ−• σ), (3)

with suitable r ≥ 0.
We define a series of markings M = M0, M1, . . . , Mr+1 = M as follows:

M = M0[γ0〉M1[γ1〉M2 . . . Mr[γr〉Mr+1 = M. (4)

This is possible because by Part 1., γ0 . . . γr = τ−•σ is firable from M = M0, and
by Part 2., we have Mr+1 = M .

Using Lemma 2 repeatedly, we may derive the following series of permutations
of the firing sequence M [aτ〉M :

1 M [aτ〉M =M0[aγ0χ1γ1χ2γ2χ3 . . . χrγr〉M0

2 M0[γ0〉
3 M0[γ0aχ1γ1χ2γ2χ3 . . . χrγr〉M0

4 M0[γ0〉 M1[aχ1γ1χ2γ2χ3 . . . χrγr〉M0

5 M1[γ1〉
6 M1[γ1ρ1χ2γ2χ3 . . . χrγr〉M0 with Ψ(ρ1) = Ψ(aχ1)

7 M1[γ1〉 M2[ρ1χ2γ2χ3 . . . χrγr〉M0

8 M2[γ2〉
9 M2[γ2ρ2χ3 . . . χrγr〉M0 with Ψ(ρ2) = Ψ(ρ1χ2)

...

Line 1 comes from the original decomposition of aτ , Formula (3). Line 2 comes
from (4). Line 3 stems from Lemma 2, applied to κ = a and γ = γ0; line 4 is the
same sequence as line 3, where M1 is inserted. Line 5 comes from (4), and line 6
is another application of Lemma 2 with κ = aχ1 and γ = γ1. Line 7 introduces
M2 into line 6, line 8 comes from (4), and line 9 is a third application of Lemma
2 with κ = ρ1χ2 and γ = γ2.

Continuing in this way, we get a firing sequence

M [γ0 . . . γr〉M [ρr〉M, with Ψ(ρr) = Ψ(aχ1 . . . χr).
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The marking reached after this sequence is indeed M , because the Parikh vector
of γ0 . . . γrρr is the same as that of aτ . Then we may finally put ρ = ρr, proving
(2) because according to (3), χ1 . . . χr = τ−• (τ−• σ), and because of Lemma 1.

Combining (1) and (2), we have the firing sequence

M [(τ−• σ)〉M [ρ〉M.

This sequence is decomposable, because both parts are nonempty: τ−• σ �= ε by
assumption, and ρ �= ε because a is contained in ρ. But because the sequence
M [(τ−• σ)ρ〉M is a permutation of M [aτ〉M by construction and by Lemma 1,
we get a contradiction to the simplicity of M [aτ〉M .

Hence the assumption was wrong, and M̃ �= M must hold true. This ends the
proof of Part 3., and thus also the proof of the theorem. 2

5 Concluding Remarks

The presence of transition a which is common to both cycles is relevant in the set
of premises of Theorem 2. Otherwise we could not have proved a contradiction
to simplicity, and without this precondition, the lemma is indeed not correct. To
see this, consider Figure 1 where two disjoint cycles lead through M0.

The next two examples show that both premises of the theorem are actually
necessary.

First, consider Figure 8. The net shown there is bounded, but not persistent.
Its reachability graph has two simple cycles, at and ax, which are not transition-
disjoint and do not have the same Parikh vector, violating the conclusion of
Theorem 2.

at x

M0

at x

Fig. 8. A non-persistent Petri net (l.h.s.) and its reachability graph (r.h.s.)

Next, consider Figure 9. The net shown there is persistent, but not bounded.
Its reachability graph is not shown in this paper because it is infinite. Instead,
one its possible converability graphs is shown on the right-hand side of the figure.
Again, there are two simple cycles, at and ax, which are not transition-disjoint
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s

t x

a

M0

t

x

t

x

a
t, a, x

s=ω s=1 s=0

Fig. 9. A non-bounded Petri net (l.h.s.) and a coverability graph (r.h.s.)

and do not have the same Parikh vector, and the conclusion of Theorem 2 is
once more violated.

In the special case of marked graphs, Theorem 2 is well-known. If two cycles
in the reachability graph of a marked graph start with the same transition a
and cannot be decomposed into smaller cycles, then both contain every transi-
tion of the connected component of a (in the Petri net) exactly once, and no
other transition. In general persistent nets, however, it may be the case that one
transition occurs more often than others in a simple cycle; for example, consider
Figure 10.

b c a

M0

b

a

c

a

Fig. 10. A bounded persistent Petri net (l.h.s.) and its reachability graph (r.h.s.)

Persistent nets can become quite complex. For example, every free-choice net
[5] can canonically be transformed into a persistent net, by superimposing one-
token cycles on the output transitions of a place that has more than one output
transition (as in Figure 10, which can be seen as a version of Figure 8 with such
a cycle).

The result described in this paper has arisen in the context of an attempt
to prove two conjectures described in [2], one relating to the conflict-freeness
hierarchy defined in that paper, and another one relating to the concept of
separability, also described there and investigated more fully in [3]. The first
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conjecture states that bounded and live persistent nets can essentially be sim-
plified to behaviourally conflict-free nets, where the latter means that any two
enabled transitions do not share a common input place. For instance, the net
shown in Figure 1 can trivially be simplified in this way, by omitting the place
with two tokens. The second conjecture states that bounded and live persistent
Petri nets are separable in the following sense: If the initial marking, say M , of
such a net, say N , is a k-multiple of another one, then N with initial marking
M behaves as k disjoint copies of N with initial marking (1/k) · M .

Both conjectures are still open, but Theorem 2 has, in the meantime, been
used and generalised in order to obtain a characterisation of the cycles in the
reachability graph of a bounded and persistent Petri net [1]. Namely, Theorem
2 can essentially be extended to all non-disjoint simple cycles of the reachability
graph, not just ones that start at the same marking or with the same transition.
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Abstract. We present a Mobile-Ambients-based process calculus to de-
scribe context-aware computing in an infrastructure-based Ubiquitous
Computing setting. In our calculus, computing agents can provide and
discover contextual information and are owners of security policies. Sim-
ple access control to contextual information is not sufficient to insure con-
fidentiality in Global Computing, therefore our security policies regulate
agents’ rights to the provision and discovery of contextual information
over distributed flows of actions. A type system enforcing security poli-
cies by a combination of static and dynamic checking of mobile agents is
provided, together with its type soundness.

Keywords: Ubiquitous Computing, Mobile Ambients, context aware-
ness, security, type system.

1 Introduction

The ubiquitous computing systems encourage a constantly changing execution
environment for their computing entities. In such settings, context awareness
is a computing paradigm in which schemes for context provision and discovery
make applications aware of the changes taking place in their computing context,
allowing them to gain advantage from context change, instead of employing a
middleware layer for hiding the changes from the application.

On the coordinates of the surveys upon context awareness of Chen, Schilit
and Abowd [11,19,1], contextual information or computing context is any piece
of information used by an application in order to infer knowledge about other
interesting computing entities (objects, persons or places) in its environment.
Primary context can be divided into (possibly overlapping) categories: resources,
such as neighbouring printers or the degree of congestion in the network; user
context, meaning an object or person’s location or status; physical context, such
as temperature or moment in time; history of context, meaning the recording of
any primary context over time. More complex conclusions about the environment
can be drawn by combining several pieces of primary context into what is denoted
by secondary context : a source of information is indexed by one type of context,
after which the result gets indexed by another.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 439–456, 2008.
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In order for applications to be able to access contextual information in a
dynamic network, context provision is the dissemination of contextual informa-
tion from the host entity to a network neighbourhood, to enlarge its visibility
scope; context discovery is the locating of the provided context by interested
applications. In large networks, the design for context provision and discovery
is complicated by the network size: network-wide provision is not feasible, and
provision to a locality of players is used instead.

According to Schilit [19], the basic way in which applications make use of the
surrounding context is by contextual information and commands, i.e. requests for
either data or actions, which produce different results depending on the specific
context in which they are issued. A context-aware application can also involve
context-triggered actions, i.e. rules which specify what commands to be auto-
matically executed, given certain properties which the context fulfills. Finally,
applications can employ automatic contextual reconfiguration to add and remove
entire software components in response to certain properties of the context.

Ubiquitous systems are numerous, highly dynamic and their contextual in-
formation should be made accessible to a selected subset of the players in the
network, features which make such systems difficult to enforce security policies
upon. Simple access control upon pieces of contextual information cannot prevent
their disclosure by agents collaborating on accessing them; static type checking
cannot verify, on its own, that a highly dynamic network respects policies, hence
dynamic type checking is called to verify the instances in which agents or code
move in the network. Given that such systems are selective, privileges are fine-
grained, so that users have different rights upon different pieces of contextual
information.

Our calculus models infrastructure-based (as opposed to ad hoc) ubiquitous
systems, inherently of hierarchical topology. In such systems, logical partitions
are imposed over the network and all communication between mobile entities
is mediated by the infrastructure; rooms, floors, buildings, and campuses are
such logical cells which act as mediators for context provision, context discovery
and general communication for the entities in their scope. Early systems in this
category include the Xerox ParcTab [20], Active Badge [21], and GUIDE [12].

Computing entities are modelled by mobile ambients enclosing processes and
other ambients, and the topology of the network evolves by the ambients’ running
of in and out movements. Furthermore, we introduce a modelling of contextual
information, distributed through the network over scopes of various sizes and
expressed by named macros. The context of an ambient is then the collected
contextual information hosted by all ambients enclosing it up until the root am-
bient, at the ambient’s current position. Context provision is performed by an
ambient through defining the named macro up in the network to a specified am-
bient destination to increase the macro’s scope. Context discovery is performed
by an ambient calling a macro name from a specified ambient and having the call
replaced with the macro body, if such a macro exists in the current context. The
context changes whenever ambients move and provide or consume contextual
information.
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The focus of this paper is to study the fulfilling of distributed security poli-
cies, in such a setting in which contextual information crosses boundaries in a
hierarchical topology. The type of a process is a pair composed by a function
recording the effects (provision or discovery) which ambients inner to the process
have on other ambients, and by a set of ambient names which are allowed to re-
side in the process. Any ambient can host security policies in the form of process
types, which all processes residing under this ambient should fulfill. This gives,
at any given moment in the evolution of the network, for any process sitting
in a context composed by a line of ancestor ambients (each with a policy of its
own), that the process must adhere to the composition of all ancestor policies.
Static type checking verifies that an initial state of the network is well-typed, for
dynamic type checking to then verify the incremental movements of definitions
and ambients in the network. We show well-typedness to be verified over any
sequence of reductions in the system, define errors and show that they cannot
appear in a well-typed system.

The rest of this paper is organised as follows: Section 2 presents the syntax
and the basic semantics of our calculus, Section 3 the type systems, the notion
of well-typedness and the subject reduction theorem, and Section 4 the opera-
tional semantics and the notion of type soundness. Finally, Section 5 illustrates
a case study modelling a ubiquitous computing infrastructure in a hospital, and
Section 6 reviews closely related work and concludes.

2 A Calculus for Context Awareness

In this section we briefly present the syntax and the basic, untyped semantics of
the calculus. In the complete syntax from Fig. 1, the nil process 0, parallel com-
position P | P ′, ambient a[P ], name restriction νz P and movement primitives
in a.P and out.P are all inherited from and have the same meaning as in the
Mobile Ambients calculus [10]; as in the Boxed Ambients calculus [7], there is no
open capability. From Zimmer’s calculus for context awareness [22] we borrow
the idea of contextual information as macro definitions residing at ambients. A
definition of the basic form def f � Q in P defines macro f as being the process
Q in a floating definition (f � Q) and continues execution with P , and any call
f for this macro would be replaced by its body Q; a simplified semantics for a
definition and call are:

Def def f � Q in P −→ (f � Q)P Call (f � Q) f −→ Q

The decorations τ and G on ambients and floating definitions from Fig. 1 and
Table 1 in the following are security and entry policies, respectively, and their
syntax and meaning are detailed in Section 3; they are ignored in this section.

Macro definitions come in two flavours: a one-shot definition f � Q is one
which is consumed by that macro being called and is suitable for modelling
network packets (if one sees data communication as a simple feature of context);
a permanent definition !f � Q is one which can be instantiated by any number
of macro calls, and in fact behaves like an infinite set of one-shot definitions.
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processes P ::= 0 no process
| P | P ′ parallel composition
| fa macro call, f ∈ F
| defa D in P macro definition
| aτ

G [P ] mobile entity, a ∈ A
| E P public definitions
| νz P name restriction, z ∈ F ∪ A
| in a.P movement in
| out.P movement out

definitions E ::= (D)a floating definition, upward
| (D)a,τ floating definition, downward

D ::= F | !F
F ::= f � P macro definition

Fig. 1. Syntax

Unlike Zimmer’s calculus, definitions and calls of contextual information are
not only made by processes to and from their enclosing ambient, but cross multi-
ple ambients’ boundaries; hence, definitions and calls are tagged with the identity
of the destination and source ambient, respectively: process def bf � Q in P pub-
lishes macro f at any ambient b in the ancestor ambient line of this process, and
process f b calls macro f from any such ambient. The calls and definitions being
tagged with the name of a destination ambient fits the infrastructure setting, in
which mobile entities have a degree of knowledge about the identities of servers,
gateways and about the protocols in the network, at least such that identities of
other points of interest can be provided by calling these.

For this, a process defining macro f to ambient b evolves into a floating
definition destined to b:

Def def b f � Q in P −→ (f � Q)b
P

for the floating definition to travel upwards to destination in fluid movements of
the form

(f � Q)b
P | R ≡ (f � Q)b (P | R)

(included among the structural congruence rules in Table 1) and

Up a
[
(f � Q)bP

]
−→ (f � Q)b a [P ]

(a semantics rule in Section 4). If permanent, a definition at its destination
b
[
(!f � Q)bP

]
expands single instances upon calls, with (!F ) ≡ (F )(!F ). When

called, a single floating definition moves down from its host ambient to the calling
process by the inverse of the upward movements above:

Down (f � Q)ba[P ] −→ a
[
(f � Q)bP

]
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for the call to be fulfilled at the calling ambient:

Call (f � Q)b
f b −→ Q

This scope extension for contextual information follows the idea that context is
formed by publishing information from a source to a wider locality of users; it
allows for the modelling of context provision and discovery over entire localities
of agents, unlike Zimmer’s model, which bounds the communication of context
within the enclosing ambient of the communicating process. This scheme also ef-
fectively models Schilit’s contextual information and commands from [19]: a call
for a service has a dynamic interpretation varying with context. Furthermore,
the intermediate steps a floating definition takes in order to reach a calling ambi-
ent gives that either contextual information or its destination can unexpectedly
become unreachable with the ambients’ changing of location; this fits the profile
of highly dynamic networks.

Table 1. Structural congruence is the smallest congruence relation satisfying these
rules

P |0 ≡ P νz 0 ≡ 0
P |Q ≡ Q|P νz νw P ≡ νw νz P

(P |Q)|R ≡ P |(Q|R) νz (P |Q) ≡ P |νz Q if z /∈ fn(P )
νz (aτ

G[P ]) ≡ aτ
G[νz P ] if z �∈ fn(aτ

G[])
(!F )a,τ ≡ (F )a,τ (!F )a,τ νz E P ≡ E νz P if z /∈ fn(E)

E1E2 ≡ E2E1

E P |Q ≡ E(P |Q) α-conversion

As an example, take a hospital’s ubiquitous system supporting collaboration
among mobile employees (inspired by [2]); the hospital network infrastructure is
ambient hni, and a doctor’s personal digital assistant doc currently residing in
the operating ward ow updates the network about his location docloc of current
value P , so that the tag of any nurse (at any location in the hospital, such as
office of) to locate him:

hni
[
ow

[
doc

[
defhni!docloc � P in 0

]]
| of

[
nurse

[
doclochni

]]]

The nurse’s code cannot execute without the docloc macro available in its con-
text, but after the definition becomes visible the system is:

hni
[
(!docloc � P )hni

(
ow [doc []] | of

[
nurse

[
doclochni

]])]

and one instance of the definition travels downwards to meet the request:

hni
[
(!docloc � P )hni

(
ow [doc []] | of

[
nurse

[
(docloc � P )hnidoclochni

]])]

and (docloc � P )hnidoclochni reduces to P .
We use two sets of names in our syntax: macro names f belong to an infinite

set F , and ambient names a belong to an infinite set A. A restriction νz can only
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be made upon any name z in F ∪ A, and α-conversion substitutes names from
F ∪ A. We adapt the convention: when considering a process, we assume that
the bound names of the process are different from its free names, if necessary,
after a number of α-conversion steps.

Crucially, the restriction operator ν is the only binder in our syntax; i.e., a
macro name in a macro definition is not a binder. Hence, the bound and free
names of a process bn(P ), fn(P ), the substituted process Pα and the extrusion
of restrictions are defined as is standard.

3 Type Systems and Well-Typedness

We introduce a typing system which specifies the effects which a process in our
calculus is allowed to have. A type is two-fold, as depicted in Fig. 2: on one hand,
a security policy τ is a function mapping a source ambient name to a destination
ambient name and to a set of effects which the source ambient can have upon
the destination ambient. An effect is the ability to run either a definition of or a
call for a macro name f . On the other hand, the mere presence of an ambient in
a process is a securable feature, thus we also enforce entry policies G, as being
subsets from the set of ambient names.

Entry policy G ⊆ A
Effects E =

⋃
f∈F{def(f), call(f)}

Security policy τ = A → (A → P(E))

Fig. 2. Entry policies and security policies

As is natural for Mobile-Ambients-based calculi, policies reside at the ambient
membrane. We call a subambient of a any ambient enclosed by a either directly, or
at any inner level. Then, we write aτ

G[P ] to specify that P should satisfy policies
τ and G. If b �∈ G, then P should not have a subambient b at all. Furthermore,
if τ(b)(c) �� def(f), then P should not have a subambient b directly enclosing a
process def cf � Q in R; similarly for macro calls.

As an example, the policy τ of the hospital network infrastructure hniτG is
such that only employees have access to the patient record of a certain VIP,
accessible through the protocol (i.e., macro name) vip directed at hni; thus,
for any visitor vis the policy states that τ(vis)(hni) �� call(vip) and applies
throughout the hospital system, without the need of it being multiplied (for
example, at the lower, ward level). Also, supposing that one floor floor3γ

C of the
hospital is closed to anybody but the hospital’s employees, vis �∈ C, so that no
further policies upon vis are needed inside floor3.

A fully-permissive entry policy is A, and a fully-permissive security policy is
denoted by ω, with

∀b, c ∈ A ∀f ∈ F ω(b)(c) � def(f) and ω(b)(c) � call(f).
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Two policies can be composed to denote a policy which satisfies both original
policies; the composition of entry policies G and H is G ∩ H , while the compo-
sition of security policies τ and σ is the policy τ ∩ σ, with

(τ ∩ σ)(b)(c) = τ(b)(c) ∩ σ(b)(c).

Composition is both commutative and associative, and ω is the identity element,
ω ∩ τ = τ , for all τ . We denote the set of all security policies by T .

We do not detail the matter of defining a particular syntax for policies. We
only assume such a syntax to infer a notion of free names of policies τ

G, written
fn ( τ

G). For all non-free combination of names, the policies are implicitly either
fully-permissive or fully-dismissive; then, for the free names, policies specify ex-
plicitly either restrictions or allowances, in both cases finitely many.

This notion of free names only needs to satisfy that the set of free ambient
names, fn ( τ

G)∩ A, and the set of free macro names, fn ( τ
G)∩ F , are both finite

sets, and that the following conditions are satisfied:

– for entry policies, the set of allowed names of subambients G is either finite
or cofinite, relative to the finite set of free ambient names fn ( τ

G) ∩ A;
– for security policies, any set of allowed definitions and calls τ(a)(b), ∀a, b ∈

A is either finite or cofinite relative to the finite set of free macro names
fn ( τ

G)∩F , and this former set is uniformly defined for all non-free ambient
names.

Given our hierarchical network topology of mobile agents, each hosting a pol-
icy, a process sitting in the scope of a set of ambients should comply with the
collected policies of those ambients. The initial state of a system is statically
checked for compliance with all the system’s policies, and then only individual
moves of ambients are checked in the operational semantics described in Sec-
tion 4.

3.1 A Type System for Active Code

There are two interconnected type systems; the one for active processes (i.e. all
processes not a macro definition body), with type statements of the form aτ

G 
 P
stating that P running at ambient a complies with the type τ , is depicted in
Fig. 3. The one for inactive processes (i.e. definition bodies, which travel over
ambient boundaries before being executed) is discussed subsequently. Finally,
Def. 1 at the end of the section defines a process to be well-typed if it is both
actively and inactively well-typed.

For the compactness of our typing expressions, we write ?f to stand for both
permanent !f and one-shot f definitions; similarly, we write σ? to stand for both
σ and no policy.

The interesting rule is Amb: in a top-down checking fashion, for a subambient
bσ
H [P ] sitting in an ambient a to be actively typed, process P has to be typed

with the composed security policy and the intersected entry policy given by the
policies of b and a; hence, in any statement of the form aτ

G 
 P , P sits in ambient
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Null aτ
G � 0 Par

aτ
G � P aτ

G � P ′

aτ
G � P |P ′ Call

τ (a)(b) 	 call(f)

aτ
G � fb

Def
τ (a)(b) 	 def(f) aτ

G � P

aτ
G � defb ?f � Q in P

Amb
b ∈ G bτ∩σ

G∩H � P

aτ
G � bσ

H [P ]

Msg
aτ

G � P

aτ
G � (D)b,σ?P

Res
aτ

G � P

aτ
G � νz P

z �∈ fn ( τ
G)

In
aτ

G � P

aτ
G � in b.P

Out
aτ

G � P

aτ
G � out.P

Fig. 3. Type system for active code

a, τ is the security policy composed of all security policies belonging to ambients
ancestor to P , and G is the intersection of their entry policies.

Then, for a process with a call effect f b sitting in aτ
G to be actively typed, the

condition in the Call rule is τ(a)(b) � call(f), for the effect to be allowed by the
composed policy τ . The same goes for definition effects in the Def rule, with
a further check on the continuation process P following the definition. Entry
policies are checked in the Amb rule, in which a subambient b is allowed to run
at aτ

G if b ∈ G.
In the Res rule, νz P is typed with respect to aτ

G if z is not one of the
free names of policies τ

G, i.e. those names upon which the policies explicitly
specify restrictions or allowances. On the other hand, if z is such a name, z
is α-converted to a fresh name. Thus, if e.g. a fresh ambient is created using
the restriction operator, at type checking the ambient name is non-free and is
checked against implicit policies (e.g. fully-restrictive).

Movement capabilities in and out are not type checked themselves, but the
operational semantics will impose well-typedness conditions for moves, as shown
in Section 4. Furthermore, we assume that a system starts in a state without
floating definitions, which allows us to only check statically definition bodies
only once in their defining process (Def), and not when floating (Msg).

3.2 A Type System for Inactive Code

For the type checking of definition bodies in Fig. 4, given that definitions travel
over ambient boundaries, the check is more complex. Intuitively, a defining pro-
cess def b ?f � Q in P has as result the definition (?f � Q)b travelling upwards
to ambient b and then downwards to any calling ambient; in the inactive type
system below, it is ensured that when having arrived at b, the body process
Q complies with the composed policies of b and its ancestors. Subsequently in
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Section 4, the remaining down movements will be checked dynamically, to en-
sure that Q complies with all the policies imposed within b down to the calling
ambient.

The context function C records the context, in terms of security and entry
policies, with which a definition body should comply when travelling upwards,
in order to maintain the well-typedness of the system. The function is totally
defined on the ambient names set A and takes values in pairs of security policies
(from the set T ) and entry policies (from P(A)). Formally, the type of this
function is (written here using a nonstandard notation reflecting our notation
for decorating ambients):

C : A −→ T
P(A).

Thus, whenever C(b) = τ
G, we have aC(b) = aτ

G.
The intuition is that, given a definition def b f �Q in P , its policy-wise context

C(b) returns the collected policies of ambients above b, so that in order for Q to
be run under b, bC(b)[Q] needs to be well-typed (i.e., both actively and inactively
typed against the collected policies C(b)).

As with both security and entry policies, C has a fully-permissive instantiation
Ω with:

Ω(A) = ω
A.

We frequently abuse the notation and write C(H) = τ
G to state that the value

of C for all elements in set H is τ
G. Also, we frequently define an instantiation of

such a context function C by writing updates upon Ω, of the form Ω [H → τ
G].

Null C, aτ
G �◦ 0 Par

C, aτ
G �◦ P C, aτ

G �◦ P ′

C, aτ
G �◦ P |P ′ Call C, aτ

G �◦ fb

Def
C, aτ

G �◦ P aτ
G[Q] well-typed

C, aτ
G �◦ defa ?f � Q in P

C, aτ
G �◦ P bC(b)[Q] well-typed

C, aτ
G �◦ defb ?f � Q in P

Amb
C [{a} ∪ G → τ

G] , bτ∩σ
G∩H �◦ P

C, aτ
G �◦ bσ

H [P ]

Msg
C, aτ

G �◦ P

C, aτ
G �◦ (D)b,σ?P

Res
C, aτ

G �◦ P

C, aτ
G �◦ νz P

z �∈ fn (C) ∪ fn ( τ
G)

In
C, aτ

G �◦ P

C, aτ
G �◦ in b.P

Out
C, aτ

G �◦ P

C, aτ
G �◦ out.P

Fig. 4. Type system for inactive code

Inactive type statements have the form C, aτ
G 
◦ P . This intuitively means

that all the definition bodies Q waiting to be activated in processes of the form
def bf � Q in R inside P sitting in ambient a will have to be able to run inside
the destination ambient: if the destination is the host ambient a itself, then the
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definition bodies have to comply with aτ
G, in which, as in the case of the active

type system, τ and G are composed by or intersected from all ambients above.
On the other hand, for a destination b �= a, the context function C(b) returns
the pair of collected policies from the set of ambients ancestor to b (if b is in P ’s
context) or from the maximal set of ambients which can ever exist above b, were
P to move under b.

For consistency, we assume that if one of our systems is not of the form
aτ

G[P ], there exists a unique ambient worldω
A with full permissions at the root

of the system. The type checking then proceeds top-down, while also collecting
contextual policies in a context function C: at top level, there exists no restrict-
ing context other than the enclosing root ambient aτ

G, and a typing statement
looks like Ω, aτ

G 
◦ P ; when another ambient is encountered, Ω, aτ
G 
◦ bσ

H [Q]
if Ω [{a} ∪ G → τ

G] , bτ∩σ
G∩H 
◦ Q and the context function for ambient b is the

updated Ω [{a} ∪ G → τ
G], meaning that if a definition in Q is destined to b, it

should comply with the composed policies of a and b; if destined to a or any
other ambient allowed inside a, it should comply with the policies of a. This last
fact is to ensure such a well-typedness, that the dynamic checks at in movements
are simple, as will be detailed in Section 4.

We then define well-typedness as being the dual, active and inactive, checking
of processes.

Definition 1 (Well-typedness). A system aτ
G[P ] is well-typed if aτ

G 
 P and
Ω, aτ

G 
◦ P . A system P without a root ambient is well-typed if worldω
A 
 P and

Ω, worldω
A 
◦ P .

4 Operational Semantics and Type Soundness

Our operational semantics from Fig. 5 preserves the flavour of reduction rules
In,Out,Struct and Context from standard Mobile Ambients. Moreover,
rules Up and Down depict the crossing of ambient borders by definitions float-
ing from their origin to the destination or from the latter to a calling ambient; if
these movements are successful, a pair composed by a called definition adjacent
to its call reduces to the definition body. In Fig. 5, the active contexts C are the
processes with one hole in active locations (i.e, locations in which a process can
suffer a reduction immediately), as in the following:

C ::= [·] | C|P | aτ
G[C] | E C | νz C

Static checking, discussed in Section 3, verifies that an initial state of the
system is well-typed. It includes, in the inactive type checking from Fig. 4, a
scheme to verify that even the bodies of those definitions destined to ambients
which are not currently in the context will safely run at those ambients, whenever
they become present. That verifies, for example, that in the setting

cρ
K [aτ

G[P ] | bσ
H [in a.Q | R]] ,

given that a ∈ K, definitions from Q | R destined to a are statically checked
against the policies of cρ

K . Thus, when b performs the in movement, it is sufficient
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Up aτ
G[(D)bP ] −→ (D)baτ

G[P ] aτ
G[(D)aP ] −→ aτ

G[(D)a,τP ]

Down
aσ∩τ

G [Q] well-typed

(f � Q)b,σaτ
G[P ] −→ aτ

G[(f � Q)b,σ∩τP ]

Def defa D in P −→ (D)aP Call (f � P )a,τ fa −→ P

In
b ∈ G bτ

G � Q | R Ω [{a} ∪ G → τ
G] , bτ

G �◦ Q | R

aτ
G[P ] | bσ

H [in a.Q | R] −→ aτ
G[P | bσ

H [Q | R]]

Out aτ
G[P | bσ

H [out.Q | R]] −→ aτ
G[P ] | bσ

H [Q | R]

Struct
P ≡ P ′ P −→ Q Q ≡ Q′

P ′ −→ Q′ Context
P −→ Q

C[P ] −→ C[Q]

Fig. 5. Operational semantics

to dynamically check that Q | R is well-typed against a’s policies, as shown by
rule In.

Furthermore, since static checking insures that the body of a definition is safe
to be run in the destination ambient it reached after moving upwards, all that
is left for the Down movement to dynamically check is the compliance with the
collected policies of each ambient down until the calling one. This is ensured by
decorating the floating definition (f�Q)a, when it has reached ambient aτ

G, with a
signature equal to τ ; with every down movement, the signature is composed with
the policy of the newly-crossed ambient, and Q is checked against its signature
and the crossed ambient’s group policy. This scheme has the flavour of firewall-
carrying code.

As an observation, the same static checking scheme, together with the dynamic
checking at the Down movement, have the side effect that some breakings of
policy could be caught by either of these checks (and are caught by the earliest,
static checking), if the case is such that the ambient tree in which the definition
moves up before reaching the destination also includes the calling ambient. On
the other hand, if the upward and downward trees are disjunct, only the dynamic
check can verify the definition body.

Furthermore, the reader may have wondered about our less standard approach
of modelling the availability of contextual information partially through reduc-
tion (rules Up, Down in Fig. 5), instead of structural congruence. Our choice
is motivated by the fact that we want to model explicitly the operational be-
haviour of firewalls in terms of filtering capabilities, in the event of contextual
information crossing firewalls during downward moves.

We can now state the subject reduction property, as follows.

Theorem 1 (Subject Reduction). If P is well-typed and P
∗→ Q, then Q is

well-typed.
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In the behaviour of a system it is considered an error, P → err, if an effect
(be it a definition or a call) breaks the security policy of any ambient in its
context, or if an ambient’s presence breaks the entry policy of any ambient in its
context, as in Fig. 6. The superscript τ and the subscript G decorating a context
C are the composition of all security policies above [·], and the intersection of
all entry policies above [·], respectively. The composed τ and G for a context C
are defined inductively in Table 2.

Err def
(σ ∩ τ )(a)(b) �	 def(f)

Cσ
H [aτ

G [defb f � Q in P | R]] −→ err

Err call
(σ ∩ τ )(a)(b) �	 call(f)

Cσ
H [aτ

G [fb | P ]] −→ err

Err in
H �	 a

Cσ
H [aτ

G [P ]] −→ err
Err str

P ≡ P ′ P ′ −→ err

P −→ err

Fig. 6. Errors

Table 2. The policies of contexts

Cτ
G τ G

[·] ω A
Cσ

H |P σ H
cρ
K [Cσ

H ] σ ∩ ρ K ∩ H
E Cσ

H σ H
(νz)Cσ

H σ H

We then state that if a system is well-typed, it can never display an error.

Theorem 2 (Type Soundness). If P is well-typed then P � ∗→ err.

5 Case Study: Ubiquitous Computing in a Hospital

Consider a ubiquitous computing infrastructure in a hospital, inspired by the
AWARE project [2], as in Fig. 7. The hospital network infrastructure hni main-
tains the patient records and keeps track of the location of doctors, nurses,
patient and visitors, all of them carrying PDAs, by having their PDAs announce
their presence periodically.

The patient records are read and updated by nurses and doctors using either
their tabs or the terminals in the operation ward and patients’ ward. Patients
and visitors have lower degrees of rights upon accessing–with their tabs or at
the terminals–patient records and employee locations.
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terminal

visitor

visitors’ ward

doctor

door

visitor

terminal

doctor

terminal

patients’ ward

patient

operating ward offices

floor 1 floor 2 floor 3

nurse

hospital network infrastructure

Fig. 7. The hospital system

5.1 The Guessing Visitor

The policy τ of the hospital network infrastructure hniτG is such that only em-
ployees have access to the patient record P of a certain VIP, accessible through
the protocol (i.e., macro name) vip directed at hni; for any visitor vis the policy
states that

τ(vis)(hni) �� call(vip).

An overly-curious visitor visω
V who guessed the protocol for accessing the VIP’s

record would enter through the door doorω
A (i.e., a new ambient visω

V would
be run as a subambient of door, after being sprouted from a banged definition
resident at door). The initial, static type checking determines that the system is
not well-typed. As an observation, expression νh

(
defdoor !h � Q | hdoor in hdoor

)

effectively models !Q.
The system, only focused on the door, is formalised as

hniτG[ (vip � P )hni

doorω
A

[
νh

(
defdoor !h � visω

V

[
viphni

]
|hdoor in hdoor

)]
].

We show that its well-typedness depends on at least the policy condition which
is not met, τ(vis)(hni) �� call(vip); the other conditions for its well-typedness,
possibly satisfied, are not depicted. The system is well-typed if it is also inactively
well-typed, as in the derivation tree in Fig. 8. Given that the well-typedness of
the system depends on a condition which is false, the error is raised at this stage.

5.2 The Conspiring Nurse

Have a nurse nurseω
N who agreed to conspire with the overly-curious visitor visω

V .
They plan on an indirect access scheme to the record viphni, for the visitor. The
visitor’s actions will be inconspicuous: the visitor residing in the visitors’ ward vw
and the nurse in her office of agree upon a new, private service (i.e., macro name)
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Ω, hniτG �◦ (vip � P )hni doorω
A

[
νh

(
defdoor !h � visω

V

[
viphni

]
| hdoor in hdoor

)]

Ω, hniτG �◦ doorω
A

[
νh

(
defdoor !h � visω

V

[
viphni

]
| hdoor in hdoor

)]

Ω [{hni} ∪ G → τ
G] , doorτ

G �◦ νh
(
defdoor !h � visω

V

[
viphni

]
| hdoor in hdoor

)

h �∈ fn ( τ
G)

Ω [{hni} ∪ G → τ
G] , doorτ

G �◦ defdoor !h � visω
V

[
viphni

]
| hdoor in hdoor

doorτ
G

[
visω

V

[
viphni

]]
well-typed

doorτ
G � visω

V

[
viphni

]

visτ
G∩V � viphni

τ (vis)(hni) 	 call(vip)

Fig. 8. The derivation tree for the guessing visitor scenario

key, assuming that the nurse is allowed to define key, key �∈ fn(τ). The nurse
makes key give access to the VIP record’s service name: defhni key � viphni in 0,
for then the visitor to call keyhni.

The hospital system is now:

hniτH [ (!vip � P )hni
ν key (

floor1α
A

[
vwσ
A

[
visω

V

[
keyhni

]]]
|

floor3γ
C

[
ofπ

O

[
nurseω

N

[
defhni key � viphni in 0

]]]
)]

Static checking on this state of the system passes without errors. The dynamic
checking at runtime raises the error the moment in which the nurse’s definition
is about to enter the visitor’s ambient. The reduction steps, up until the raising
of the error, are:

∗−→ ν key hniτH [
(
key � viphni

)hni
(!vip � P )hni

floor1α
A

[
vwσ
A

[
visω

V

[
keyhni

]]]
|

floor3γ
C [ofπ

O [nurseω
N []]]]

∗−→ hniτH [ (!vip � P )hni

floor1α
A

[
vwσ
A

[
ν key

((
key � viphni

)hni,τ∩α∩σ
visω

V

[
keyhni

])]]
|

floor3γ
C [ofπ

O [nurseω
N []]]]

in which the down movement
(
key � viphni

)hni,τ∩α∩σ
visω

V

[
keyhni

]
−→ visω

V

[(
key � viphni

)hni,τ∩α∩σ
keyhni

]

is allowed only if visτ∩α∩σ
V

[
viphni

]
is well-typed, a condition which depends on

τ(vis)(hni) � call(vip):

visτ∩α∩σ
V

[
viphni

]
well-typed

visα∩τ
V 
 viphni

τ(vis)(hni) � call(vip)
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5.3 The Wandering Visitor

Have the hospital policies devise a scheme to limit visitors from loading their
own services (say, named key) throughout the hospital. For this, the first floor
floor1α

A, enclosing the door and the visitors’ ward, has vis ∈ A and α allowing
visitors to publish services, but only up to the floor’s level: α(vis)(floor1) �
def(key), but α(vis)(hni) �� def(key). The second floor still allows patients
to be present during visiting hours, but imposes that they shouldn’t publish
anything while there, to any destination: both β(vis)(floor2) �� def(key) and
β(vis)(hni) �� def(key). There should never be a visitor on the third floor,
vis �∈ C, hence γ poses no further restrictions upon the visitor’s actions.

Have the visitor visω
V planning to tour the hospital’s three floors in search of

spots to load the system with his key service. A try at publishing key at hni
from the visitor’s ward:

hniτH [floor1α
A

[
vwσ
A

[
visω

V

[
defhnikey � P in 0

]]]
]

is signalled at static checking, since the active well-typedness of visω
V in this

context of security policies depends on a security condition which doesn’t hold:

visτ∩α∩σ
H∩V 
 defhnikey � P in 0
α(vis)(hni) � def(key)

The visitor would, however, be able to load the first floor (which acts like a
sandbox for his definitions) with his service, if performing deffloor1key � P in 0.

If still undeterred in his trials, he could walk to the second floor having in
mind to try defining deffloor2key � P in 0:

hniτH [floor1α
A [vwσ

A []] |
visω

V

[
in floor2.deffloor2key � P in 0

]
|

floor2β
B []]

In this case, the operational semantics for the in movement raises the error when
dynamically checking that:

visβ
B 
 deffloor2key � P in 0

β(vis)(floor2) � def(key)

and the same happens if moving to the third floor, upon the condition vis �∈ C
at the dynamic checking for in.

6 Related Work, Conclusions and Future Work

There are few direct formal models of context awareness in the presence of mobil-
ity. Among these, Birkedal et al. [3] propose a complex model of context aware-
ness able to model both the usual reconfigurations of the context, and queries
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upon context; noting that context queries cannot be naturally modelled with
one bigraphical reactive system (BRS), it proposes a solution (called a Plato-
graphical model), such that its expressivity suits well sophisticated real-world
context-aware systems. Braione [5] builds contextual reactive systems (CRS)
upon reactive systems, RS. The difference between a CRS and a RS is the pres-
ence of a function which captures an association between elementary rules and
their allowed reaction contexts, so that a CRS can express inhibitor and enabler
factors for interaction. Both models are yet to achieve full results in studying
behavioural equivalences and proving program properties.

Roman, Julien and Payton [16,18] build a language-based model of context-
aware systems under mobility, an interesting feature of which is the fact that
agents have as context the exposed (not private) variables of other agents. The
work also has a limited associated proof logic, with program properties being
expressed as predicate relations whose validity can be derived. Kjærgaard and
Bunde-Pedersen’s Conawa calculus [17] models context using several context
trees, one for each category of context information (e.g., one for location infor-
mation, one for activities and one for printers). An ambient entity will have a
pointer-like presence in one or more trees, with the usual in/out ambient capa-
bilities extended for mobility in multiple contexts.

Furthermore, we found inspiration in work on securing information flow in
programming languages, such as Boudol’s typing of information flow [4] in a
multi-threaded ML-like language, when declassifying information for legal users
(a stronger type system with flow policies, also guarding against termination
leaks).

A number of type systems were introduced for Mobile Ambients: Cardelli,
Ghelli and Gordon [9], Coppo et al. [13], Gorla, Hennessy and Sassone [14],
Bugliesi, Castagna and Crafa [8], among others, introduce message exchange
types, the typing of capabilities and actions, type-level groups of ambient names
(effectively giving policies for crossing, opening, exchanging messages), and vari-
ous security policies as membranes at ambient boundaries. Of particular interest
is Gorla and Pugliese’s enforcing of security policies via types in μKlaim [15]
for its fine-grained security features, assigning different privileges to users over
different resources in a flat topology of networks.

Our calculus aims at capturing a notion of context awareness in infrastructure-
based ubiquitous systems over a well-understood and applicable formalisation
such as Mobile Ambients; we also put to use our background in designing pro-
tocols for ubiquitous systems (Bucur and Bardram, [6]) to ground this work in
practice. Unlike the standard ambient communication scheme, we model context
and its communication by exposing and calling named macros across ambient
boundaries and policies, extending Zimmer’s [22] flat context communication
model. We design for a model of dynamic context with contextual information
being macros distributed over varying network scopes; we follow the previous
work in the field of designing for security with Mobile Ambients and apply secu-
rity policies at ambients’ membranes, limiting the capabilities enclosed processes
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can exhibit, to then type processes in regard to the hierarchy of policies enclosing
them. Also, we keep the fine-grained policies on the lines of μKlaim, only applied
over our hierarchical topology of locations.

Our calculus is applicable for modelling and reasoning upon a fraction of
the aspects of context-aware computing, in systems deployed over cell-based,
hierarchical topologies. The model can aid the understanding of the workings
of context in such mobile systems, and guide the implementation of an added
software layer for security. Moreover, we feel that the basic ideas of representing
contextual information, its communication and its use are applicable to a greater
extent; thus, as part of the future work we intend to focus on modelling context
awareness in ad hoc ubiquitous systems.

Acknowledgements. The authors wish to thank the anonymous reviewers for
their comments on improving this paper.
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On Beta-Binders Communications�
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Abstract. Beta-binders is a bio-inspired formalism with a formal re-
duction semantics in the process calculi style. The terms of the language
are boxes with an internal processing engine and provided with interfaces
for interactions with the other boxes in the environment.

Although Beta-binders shares some features with Ambient-like calculi,
it exhibits a quite distinctive communication paradigm which might show
to be relevant to modelling scenarios other than the biological ones. In
the perspective of developing a formal theory for the language, and hence
deepening the understanding of such a communication paradigm, here we
define a labelled semantics for Beta-binders and show its correspondence
to the original reduction semantics.

1 Introduction

Beta-binders [13] is one of the formalisms that have been recently defined to allow
the linguistic description of biological scenarios and to reason about them by ex-
ploiting the methods and techniques developed over the last couple of decades for
specifying and analyzing the behaviour of distributed systems (see, e.g., [7,9,2]).
Other examples of bio-inspired process languages are BioAmbients [14], and
Brane Calculi [1]. They both provide primitives to model wrappers of entities,
as well as primitives for interacting with entities external to the local wrapper.
This is in line with the observation that biological entities typically have an
internal processing unit, as well as a sort of surrounding border through which
the internal unit can receive and communicate signals. Beta-binders shares this
view with the above mentioned formalisms, and indeed the language describes
boxes equipped with sites for interaction with other boxes.

The Beta-binders communication paradigm, however, significantly departs
from the paradigms adopted by either typical process calculi or other bio-inspired
languages. The main difference is due to the fact that communication between
boxes is driven by a notion of compatibility of their sites, rather than by some
notion of site complementarity. This point is better introduced by resorting to
the prototypical example of reactive system: the vending machine. Writing in
CCS [7], the specification of a simple vending machine could be the following:

Ven = 35cents. tea.Ven + 50cents. coffee.Ven.

� This work has been partially sponsored by the PRIN 2006 Project BISCA - Sistemi
e calcoli di ispirazione biologica e loro applicazioni.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 457–472, 2008.
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In order to get a tea or a coffee from such machine, the user has to precisely
coordinate with its actions. He has to insert in the machine enough coins to be
entitled to collect his preferred drink (i.e., he has to execute either 35cents, the
action complementary to 35cents, or 50cents, complementary to 50cents), then
he can push the appropriate button (i.e., he can perform either tea or coffee). Let
us now imagine that the user has to interact with a much more obscure vending
machine: he just knows that he can insert coins and that, depending on the
amount of money, the machine will deliver some drink. A possible specification
of such machine and of a user willing to spend 40 cents would look like the
following:

Ven′ = [35 − 49]cents. tea.Ven′ + [50 − 69]cents. coffee.Ven′

Usr = 40cents. drink. nil.

where [35 − 49]cents means “upon receiving from 35 to 49 cents”, and [50 −
69]cents has an analogous meaning. Now 40cents is complementary to neither
[35−49]cents nor [50−69]cents, and drink is complementary to neither tea nor
coffee. Nonetheless, 40 cents is enough for a tea. Can Usr interact with Ven′ and
get a tea?

Biological systems behave in some respect as obscure vending machines: the
same high level event may be triggered by possibly different, and sometimes not
well-known, low level interactions. Beta-binders builts on the intuition that, in
order to underpin predictive modelling or simply infer behavioural models from
incomplete information, abstraction and non-determinism might be not enough.
A starting point for a suitable modelling language could be leaving some room
to “under-determinedness”. In Beta-binders, this is done by partially relaxing
the idea that interactions should always be based on the strict matching of
complementary actions, be them pairs of input and output, or pairs of request
to enter an ambient and permission to do so, or else. In other terms, Beta-binders
moves from the idea that Usr above should be entitled to interact with Ven′ and
get a tea from the machine.

More specifically, Beta-binders encapsulates (extended) π-calculus processes
[8,16] into boxes with typed interaction sites. For example, the following is a
graphical representation of a system given by three parallel components.

yr. nil

y : Γ1

x(w). zw. nil

x : Γ2 z : Δ1

u(v). nil

u : Δ2

(1)

Each of the pairs y : Γ1, x : Γ2, z : Δ1, and u : Δ2 denotes the name and
the type of the corresponding interaction site. The definition of the operational
semantics of the language is parametric w.r.t. both the domain of types and
a binary relation of type compatibility. Interaction within a box is ruled out
as it is in π-calculus. Interaction between a box B1 and a box B2 can take
place only if the processes encapsulated in B1 and B2 are ready to perform
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complementary actions (input/output) over one of their interfaces, and if the
types of these interfaces are compatible. For instance, assuming Γ1 and Γ2 be
compatible, in (1) the leftmost box can communicate with the central one. This
involves matching the output action yr over y : Γ1, and the input action x(w)
over x : Γ2.

The system illustrated in (1) also highlights that communication between
boxes can substantially modify the future interaction potentials of boxes. Sup-
pose for instance that (Γ1, Γ2) and (Δ1, Δ2) are pairwise compatible. Then the
communication between the first two boxes also triggers a communication be-
tween the second and the third box. This feature, which is particularly useful
in modelling pathways (see, e.g. [6]), is yet another source of the desired under-
determinedness.

In Beta-binders, different typing policies and notions of compatibility may be
adopted correspondingly to distinct specification needs. Choosing the appropri-
ate typing may reveal essential to model interaction paradigms that hardly fit
into the standard action/co-action view of communication. This was the case,
e.g., in rendering the the so-called shape spaces theory [10], a mathematical model
of the interactions among components of the immune system. In the correspond-
ing Beta-binders model [11], types of interaction sites were taken to be strings of
0s and 1s encoding both geometric information (e.g., size and shape of motifs)
and physical characteristics of molecular determinants (e.g., charge and ability
to form hydrogen bonds). Compatibility between types, in turn, was based on a
notion of distance between strings.

A range of biological scenarios have been modelled in Beta-binders, and many
of them have also been analyzed using a simulator [15] based on the stochastic
extension of the language [3]. Beta-binders, indeed, is mainly inspired by bio-
chemical interactions. The primitives of the language, though, are quite abstract
to suggest that the formalism could be applied to modelling scenarios coming
from fields other than life sciences. Boxes, for instance, could be nodes of a net-
work and the actual typing of interaction sites might implement constraints on
the communications between nodes (based, e.g., on belief or trust level). Beta-
binders, however, still lacks a formal theory which would help understanding the
potentials of its communication paradigm.

The original semantics of the language is given in reduction style, namely
reasoning on behaviours up to syntactic restructuring of processes. As always,
this eases the presentation of the operational semantics by pulling out some in-
tricacies due to the syntactic structure of terms. At the same time, reduction
semantics partially limits syntax-driven reasoning and hence makes mathemat-
ical treatment harder than it could be. Here we provide an alternative charac-
terization of Beta-binders semantics in terms of a labelled transition system and
show the operational correspondence between the labelled and the reduction se-
mantics. This is, we believe, a first step towards deeper investigations on the
formalism, and hence towards a better understanding of the applicability of its
communication paradigm. Not least, the simplification of formal developments
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can promote a shift of attention to possible typing disciplines for interaction
sites which is where the potentials of the language seem mainly to come from.

The rest of the paper is organized as follows. Section 2 contains a short
overview of Beta-binders. Section 3 presents the definition of the labelled se-
mantics for the language. The results about the operational correspondence of
the two transition systems are reported in Section 4. The paper ends with some
concluding remarks in Section 5.

2 Beta-Binders Overview

This section reviews the definition of Beta-binders, a bio-inspired language whose
terms are (essentially) π-calculus processes wrapped into boxes with interaction
capabilities. As in the π-calculus, the existence of a countably infinite set of
names (ranged over by x, y, z, . . .) is assumed. Furthermore, a special class of
binders, called beta binders, is introduced. Each binder characterizes an interac-
tion site by means of an identifier and an associated type. The domain of types
is left unspecified. It can be arbitrarily instantiated under the proviso that it is
decidable whether types are pairwise compatible or not.

Processes are generated by the following grammar.

B ::= Nil | B[ P ] | B ‖ B

B ::= β(x, Γ ) | βh(x, Γ ) | β(x, Γ )B | βh(x, Γ )B

P ::= nil | x(w). P | xy. P | P | P | νy P | !P |
expose(x, Γ ) . P | hide(x) . P | unhide(x) . P

where Nil is the deadlocked process, B[ P ] denotes the process P enclosed in a
box with interaction capabilities B, and B1 ‖ B2 is the parallel composition of
B1 and B2.

Interaction capabilities B are represented by sequences of elements of either
the shape β(x, Γ ) or the shape βh(x, Γ ), the so-called elementary beta binders.
Intuitively, the binder β(x, Γ ) represents an active, i.e. potentially interacting,
site of the box. Beta binders can be (or be made) hidden to prevent possible
interactions through them. A hidden binder is denoted by βh(x, Γ ). In either
β(x, Γ ) or βh(x, Γ ), the name x identifies the interaction site and is called the
subject of the binder, while Γ is the type of x. No requirement is set over the
domain of types T , but for assuming that each of its possible instances goes
along with the definition of a symmetric compatibility relation, and that the
predicate comp : T × T → {true, false}, which returns true iff its argument types
are compatible, is decidable.

The grammar for P generates extended π-calculus processes. The deadlocked
nil, as well as the input and output prefixes, and the operators for parallel com-
position, restriction and replication, have the same meaning as in π-calculus.
The added prefixes expose, hide, and unhide are directives for changing the inter-
action capabilities of the enclosing box by, respectively, adding a new interaction
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Table 1. Structural congruences ≡ and ≡b

P1 ≡ P2 if P1 ≡α P2

P | nil ≡ P, P1 | P2 ≡ P2 | P1, P1 | (P2 | P3) ≡ (P1 | P2) | P3

νz nil ≡ nil, νz νw P ≡ νw νz P, νz (P1 | P2) ≡ P1 | νz P2 provided z �∈ fn(P1)
! P ≡ P | ! P

BB′[ P1 ] ≡b B′B[P2 ] provided P1 ≡ P2

B ≡b B′ if (B = β+(x : Δ)B[ P ] and B′ = β+(y : Δ)B[ P{y/x} ]) or
(B′ = β+(x : Δ)B[P ] and B = β+(y : Δ)B[ P{y/x} ])

with y fresh in P and in sub(B) and where β+ stays for either β or βh

B ‖ Nil ≡b B, B1 ‖ B2 ≡b B2 ‖ B1, B1 ‖ (B2 ‖ B3) ≡b (B1 ‖ B2) ‖ B3

site, hiding an existing visible site, making visible a hidden site. The usual def-
initions of free names fn( ), of bound names bn( ), of names n( ), and of name
substitution are extended by stipulating that expose(x, Γ ) . P is a binder for x
in P .

Notational conventions. We write ũ as a shorthand for the tuple u1 . . . un of
names, and use νũ for νu1 . . . νun . Also, with a slight abuse of notation, we
sometime read tuples as sets.

The set of the subjects of all the elementary beta binders in B is denoted by
sub(B), and we write B = B1B2 to mean that B is the beta binder given by the
juxtaposition of B1 and B2. A binder B is said to be well-formed when the sub-
jects of its elementary components are all distinct. We use Δ, Δ1, . . . , Γ, Γ1, . . .
to range over site types, and B, B1, . . . to range of Beta-binders processes. When
all the binders B1,B2, . . . occurring in B are well-formed, B itself is said to be
well-formed.

The meta-variables B1,B2, . . . are overloaded to stay for either a beta binder
or the empty string. For instance, we write β(x, Γ )B1[ P ] to mean a process
that could have no other interface besides x. Notice, however, that by definition
each process has to have at least one (possibly hidden) interface. So, for example,
B1 is meant to be different from the empty string in B1[ P ]. �

The operational semantics for Beta-binders makes use of both a structural con-
gruence over pi-processes and a structural congruence over boxes. The needed
congruences are the smallest relations satisfying the laws in Table 1. The laws of
structural congruence over pi-processes are the typical π-calculus axioms, where
≡α is used to denote α-equivalence that is extended to deal with expose binders
in the natural way. The first axiom for boxes serves two purposes. It declares
that the actual ordering of elementary beta binders within a composite binder
is irrelevant, and states that the structural congruence of internal pi-processes
is reflected at the level of boxes. The second law is a sort of α-conversion axiom
for boxes. It states that the subject of elementary beta binders can be refreshed
under the proviso that name clashes in the internal process are avoided and that
well-formedness of binders is preserved. The latest laws are just the monoidal
axioms for the parallel composition of boxes.
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Table 2. Beta-binders reduction semantics

(intra)
P ≡ νũ (x(w). P1 | xz. P2 | P3)

B[ P ] � B[ νũ (P1{z/w} | P2 | P3) ]

(inter)
P ≡ νũ (x(w). P1 | P2) Q ≡ νṽ (yz. Q1 | Q2)

β(x, Γ )B1[ P ] ‖ β(y, Δ)B2[ Q ] � β(x, Γ )B1[ P
′ ] ‖ β(y, Δ)B2[ Q

′ ]
where P ′ = νũ (P1{z/w} | P2) and Q′ = νṽ (Q1 | Q2)

provided comp(Γ, Δ) and x, z /∈ ũ and y, z /∈ ṽ

(expose)
P ≡ νũ (expose(x, Γ ) . P1 | P2)

B[ P ] � B β(y, Γ )[ νũ (P1{y/x} | P2) ]
provided y /∈ ũ ∪ sub(B) ∪ fn(P2)

(hide)
P ≡ νũ (hide(x) . P1 | P2)

B β(x, Γ )[ P ] � B βh(x, Γ )[ νũ (P1 | P2) ]
provided x /∈ ũ

(unhide)
P ≡ νũ (unhide(x) . P1 | P2)

B βh(x, Γ )[ P ] � B β(x, Γ )[ νũ (P1 | P2) ]
provided x /∈ ũ

(redex)
B � B′

B ‖ B′′ � B′ ‖ B′′
(struct)

B ≡b B1 B1 � B2 B2 ≡b B′

B � B′

The reduction relation describing the operational semantics of Beta-binders is
defined by the axioms and rules collected in Table 2. Here we actually present a
subset of the language. The original Beta-binders semantics also provides ways
to join boxes together and to split a box in two. This is achieved by relaying
on the definition of (one or more instances of) computable functions fjoin and
fsplit that are used both to check whether the conditions for joining or splitting
boxes are met, and to assess the structure of boxes resulting from either the
merging or the splitting. To leave the user free to choose different strategies for
aggregation and disaggregation of boxes, the operational semantics is parametric
w.r.t. the definition of those functions. It would not be particularly difficult to
accommodate in the present framework the management of specific definitions
of fjoin and fsplit. For these reasons, in this work we stick to the main backbone
of Beta-binders semantics, which is given by the rules reported in Table 2.

The axiom intra concerns communications between pi-processes within the
same box. If the internal process is structurally equivalent to νũ (x(w). P1 |
xz. P2 | P3), then the box can perform a reduction leading to a process with
unchanged external interface and with internal process νũ (P1{z/w} | P2 | P3).
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The axiom inter describes possible interactions between boxes, and shows how
compatibility of types is used to match complementary actions performed by par-
allel Beta-binders processes. Notice that, whichever notion of type compatibility
is assumed, the communication ability is only determined by the types of the
involved beta binders rather than by their subjects. Information passes from the
box containing the process which exhibits the output prefix to the box enclosing
the process that performs the input action. Also observe that the communicated
name z is required to be free in the sending process. This definition of the axiom
inter corresponds to considering the borders of the box as the farthest limit that
restricted names can reach. This, in turn, is in line with the design principles of
the language which considers boxes as first class scope delimiters.

The axiom expose is used to add a new binder to a box. The name x declared
in the prefix expose(x, Γ ) is a placeholder which can be renamed to avoid clashes
with both the subjects of the other binders of the containing box, and the free
names of processes outside the scope of the binding expose prefix.

The axiom hide forces a binder to become hidden, and the unhide prefix, dual
to hide, makes visible a hidden binder.

As usual for reduction semantics, the rules redex and struct are meant, respec-
tively, to interpret the reduction of a parallel subcomponent as a reduction of
the global process, and to infer a reduction after a proper structural shuffling of
the process at hand.

A final observation about the semantics is that it preserves well-formedness
of processes.

Proposition 1. If B is well-formed and B � B′ then B′ is well-formed.

Proof. See [12]. �

3 Labelled Semantics

This section presents the labelled semantics for Beta-binders. To ease the pre-
sentation, binders are grouped into a list. Also, the operator ∗ is added to the
grammar for π-processes, so that B[ P ] is rendered by L ∗ P where L represents
[[B]] after the following definition of the translation function [[ ]]:

[[B]] = [ ] if B is empty

[[β(x, Γ )B′]] = (x, Γ ) :: [[B′]] [[βh(x, Γ )B′]] = (xh, Γ ) :: [[B′]]

where [ ] denotes the empty list, and “::” is the usual cons operator. Also, we
simply use the notation xh, instead of adopting triples with a component playing
as a flag, to denote that the binder named x is hidden. The full mapping of Beta-
binders terms into processes of the updated language is obtained by extending
the definition of the translation function with the following clauses:

[[Nil]] = Nil [[B[ P ]]] = [[B]] ∗ P [[B1 ‖ B2]] = [[B1]] ‖ [[B2]] .
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Table 3. Structural congruence ≡l

L1 ∗ P1 ≡l L2 ∗ P2 provided ((x,Γ ) is in L1 iff (x,Γ ) is in L2) and P1 ≡ P2

M ≡l M ′ if (M = (x+, Δ) :: L ∗ P and M ′ = (y+, Δ) :: L ∗ P{y/x}) or
(M ′ = (x+, Δ) :: L ∗ P and M = (y+, Δ) :: L ∗ P{y/x})

with y fresh in P and in firsts(L) and

where x+, y+ stay for either x, y or xh, yh

M ‖ Nil ≡l M, M1 ‖ M2 ≡l M2 ‖ M1, M1 ‖ (M2 ‖ M3) ≡l (M1 ‖ M2) ‖ M3

We let lists of beta binders be ranged over by L, L′, . . ., and let M , N , M ′,
N ′, . . . stay for translated processes. The following functions are assumed to be
defined on lists of pairs:

– firsts(L) returns the set of the first components of the pairs in L;
– ch(L, z, w) returns a list which is the same as L but for the fact that w ∈

firsts(L) is changed into z.

Also, we write (x, Γ ) ∈ L if Γ is the type paired with x ∈ firsts(L). Applying
ch(L, , ) is the only way to change the elements of firsts(L). Indeed we stipulate
that name substitution does not affect lists, namely (L ∗ P ){z/x} = L ∗ (P{z/x})
for all z and x. The following mathematical development requires adapting the
structural congruence ≡b to deal with translated processes. To this end ≡b is
refreshed into ≡l, which is defined to be the smallest congruence satisfying the
laws in Table 3.

In the labelled semantics, transition labels α are given by:

α ::= τ | x(w) | xz | x(w) | hd〈x〉 | uh〈x〉 | ex(w : Γ ) | x : Γ (w) | x : Γ 〈z〉

The input and output actions x(w), xz, and x(w) have the same informal
interpretation as in the late π-calculus semantics. The actions hd〈x〉, uh〈x〉,
and ex(w : Γ ) correspond, respectively, to the execution of a hiding, unhiding,
and expose directive. The informal meaning of x : Γ (w) is that the process can
execute an input over the beta binder named x and typed by Γ . Dually, the
action x : Γ 〈z〉 denotes the transmission of z over the binder x with type Γ .
We refer to these latest kind of actions as to global input and to global output ,
respectively.

The usual convention about fn(α) and bn(α) apply to input labels and to ei-
ther free or bound output labels. For the other actions we assume that
fn(hd〈x〉) = fn(uh〈x〉) = fn(x : Γ (w)) = {x}, and fn(x : Γ 〈z〉) = {x, z}, and
bn(ex(w : Γ )) = bn(x : Γ (w)) = {w}. Also, fn(L ∗ P ) = fn(P ).

Table 4 reports the labelled operational semantics of Beta-binders processes.
As common, the symmetric rules for symmetric operators (here | and ‖) are
omitted. The rules in the upper portion of the table, namely those named (i- )
are the usual rules of the late π-calculus transition system [9] augmented with
rules for dealing with the new prefixes for hiding, unhiding, and exposing a
binder. The kind of directive that is being executed is recorded in the label.
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Table 4. Labelled semantics

(i-inp) x(y). P
x(w)→ P{w/y} w/∈fn(νy P ) (i-out) xy. P

xy→ P

(i-exp) expose(y, Γ ) . P
ex(w:Γ )→ P{w/y} w/∈fn(νy P )

(i-hd) hide(x) . P
hd〈x〉→ P (i-uh) unhide(x) . P

uh〈x〉→ P

(i-par)
P

α→ P ′

bn(α)∩fn(Q)=∅
P | Q

α→ P ′ | Q
(i-com)

P
xy→ P ′ Q

x(w)→ Q′

P | Q
τ→ P ′ | Q′{y/w}

(i-close)
P

x(w)→ P ′ Q
x(w)→ Q′

P | Q
τ→ νw (P ′ | Q′)

(i-open)
P

xy→ P ′

y �=x, w/∈fn(νy P ′)

νy P
x(w)→ P ′{w/y}

(i-res)
P

α→ P ′

y /∈n(α)
νy P

α→ νy P ′
(i-bang)

P |!P α→ P ′

!P
α→ P ′

(inp)
P

x(w)→ P ′

(x,Δ)∈L

L ∗ P
x:Δ(w)→ L ∗ P ′

(out)
P

yz→ P ′

(y,Γ )∈L

L ∗ P
y:Γ〈z〉→ L ∗ P ′

(hd)
P

hd〈x〉→ P ′

x∈firsts(L)
L ∗ P

τ→ ch(L, xh, x) ∗ P ′
(uh)

P
uh〈x〉→ P ′

xh∈firsts(L)
L ∗ P

τ→ ch(L, x, xh) ∗ P ′

(tau)
P

τ→ P ′

L ∗ P
τ→ L ∗ P ′

(exp)
P

ex(w:Γ )→ P ′

w/∈firsts(L)
L ∗ P

τ→ (w, Γ ) :: L ∗ P ′

(par)
M

α→ M ′

bn(α)∩fn(N)=∅
M ‖ N

α→ M ′ ‖ N
(com)

M
x:Δ(w)→ M ′ N

y:Γ〈z〉→ N ′

comp(Δ,Γ)
M ‖ N

τ→ M ′{z/w} ‖ N ′

The single interesting point to observe is about (i-exp). Analogously to what
happens for input actions in (i-inp), the transition label shows a bound name
which, but for being fresh in the residual process, can be arbitrarily chosen in
a set of infinitely many names. This fact guarantees two main properties of the
transition system. The first one is relative to the interplay between (i-exp) and
(exp). The role of this latest rule is to add a new binder to the list L in L ∗ P
while avoiding possible clashes of binder names. To this end, the definition of
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(i-exp) ensures that it is always possible to choose a name w which is fresh enough
to let the action ex(w : Γ ) pass the (exp) rule. The second issue is relative to
the behaviour of expose(y, Γ ) . P in parallel compositions. By the (i-par) rule, a
process like R = expose(y, Γ ) . P | Q can actually execute the action ex(w : Γ )
only if w is not free in Q. This guarantees that possible future interactions over
the newly exposed binder will not affect Q which was actually outside the scope
of expose(y, Γ ) in the original process R.

The lower portion of Table 4 shows the rules needed to infer the behaviour of
processes of either the form L ∗ P or of the form M ‖ N . Rule (inp) states that,
if P can execute the input action x(w) and x is a binder paired with Δ in L,
then L ∗ P performs the special global input action x : Δ(w). Dually, rule (out)
states how the global output action y : Γ 〈z〉 can be performed by L ∗ P as an
immediate result of the execution of yz by P . Under the proviso that Δ and Γ
are compatible, global input and global output actions are matched together by
the (com) rule to give rise to a communication between boxes.

Rule (hd), applicable only if the binder x is listed in its unhidden form in L,
transforms the internal action hd〈x〉 into a τ action by L∗P upon the appropriate
updating of L. The interpretation of (uh) is analogous.

Possible τ actions performed by the internal process P as result of communi-
cations (either closing or not) are also executed by L∗P (rule (tau)). Eventually,
rule (par) is the upper level analogue of (i-par).

4 Operational Correspondence

The operational correspondence between the reduction semantics and the la-
belled semantics is reported below, together with a few intermediate results
which are needed to show the main ones.

The next three lemmas are auxiliary to showing how labelled transitions relate
to reductions (Theorem 1).

Lemma 1. If P
α→ P ′ then one of the following holds for P , α, and P ′:

1. α = x(w) and P ≡ νũ (x(y). P1 | P2) and P ′ ≡ νũ (P1{w/y} | P2) for some
x, w, ũ, y, P1, and P2 such that x /∈ ũ and w /∈ fn(P2) ∪ ũ;

2. α = xy and P ≡ νũ (xy. P1 | P2) and P ′ ≡ νũ (P1 | P2) for some x, y, ũ, P1,
and P2 such that x, y /∈ ũ;

3. α = ex(w : Γ ) and P ≡ νũ (expose(y, Γ ) . P1 | P2) and P ′ ≡ νũ (P1{w/y} |
P2) for some w, Γ, ũ, y, P1, and P2 such that w /∈ fn(P2) ∪ ũ;

4. α = hd〈x〉 and P ≡ νũ (hide(x) . P1 | P2) and P ′ ≡ νũ (P1 | P2) for some
x, ũ, P1, and P2 such that x /∈ ũ;

5. α = uh〈x〉 and P ≡ νũ (unhide(x) . P1 | P2) and P ′ ≡ νũ (P1 | P2) for some
x, ũ, P1, and P2 such that x /∈ ũ;

6. α = x(w) and P ≡ νz νũ (xz. P1 | P2) and P ′ ≡ νũ ((P1 | P2){w/z}) for any
z /∈ n(P ) and for some x, w, ũ, P1, and P2 such that x 
= z and x, z, w /∈ ũ;

7. α = τ and P ≡ νũ (x(w). P1 | xz. P2 | P3) and P ′ ≡ νũ (P1{z/w} | P2 | P3)
for some x, w, z, ũ, P1, P2, and P3.
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Proof. By induction on depth of inference. For the inductive base the five axioms
(i-inp), (i-out), (i-exp), (i-hd), and (i-uh) are considered. In each of these cases
process P2 in the thesis is nil, and ũ is the empty sequence of names. For the
inductive step, we only show the argument for the most interesting case.

Suppose that the last rule applied to infer P
α→ P ′ is (i-close). By definition

of the rule, for some x, w, Q, Q′, R and R′, it holds that P = Q | R, α = τ , and

P ′ = νw (Q′ | R′) with Q
x(w)→ Q′ and with R

x(w)→ R′.
Then by inductive hypothesis:

Q ≡ Qr = νṽ (x(y). Q1 | Q2) R ≡ Rr = νz νũ (xz. R1 | R2)

Q′ ≡ Q′r = νṽ (Q1{w/y} | Q2) R′ ≡ R′r = νũ ((R1 | R2){w/z})

with
x /∈ ṽ ∪ {z} ∪ ũ, and w /∈ fn(Q2) ∪ ṽ, and z, w /∈ ũ . (2)

Also, we can safely assume that

ṽ /∈ fn(Rr) ∪ fn(R′r), and ṽ ∩ (ũ ∪ {z}) = ∅, and z, ũ /∈ fn(Qr) ∪ fn(Q′r) . (3)

Indeed the involved terms could be α-converted to simultaneously meet the
conditions corresponding, for fresh ũ′, ṽ′, z′, to those listed in both (2) and (3).
Simply notice that any possible α-conversion would affect neither x, which by
(2) is free in both Qr and Rr, nor w, which again by (2) is free in both Q′r and
R′r.

Now observe that z /∈ fn(x(y). Q1 | Q2), by z /∈ fn(Qr) and z /∈ ṽ. Then, for
w′ fresh in P, P ′, Qr, Rr, Q

′
r, and R′r:

P = Q | R

≡ νṽ (x(y). Q1 | Q2) | νz νũ (xz. R1 | R2)

≡ νz νũ νṽ (x(y). Q1 | Q2 | xz. R1 | R2)

≡α νw′ νũ νṽ (x(y). Q1 | Q2 | xw′. R1{w′
/z} | R2{w′

/z})

P ′ = νw (Q′ | R′)

≡ νw (νṽ (Q1{w/y} | Q2) | νũ (R1{w/z} | R2{w/z}))

≡ νw νũ νṽ (Q1{w/y} | Q2 | R1{w/z} | R2{w/z})

≡α νw′ νũ νṽ (Q1{w/y}{w′
/w} | Q2{w′

/w} | R1{w/z}{w′
/w} | R2{w/z}{w′

/w})

≡α νw′ νũ νṽ (Q1{w′
/y} | Q2 | R1{w′

/z} | R2{w′
/z})

The above argument shows the fundamental role of α-conversion in carrying out
the proof, and also serves to clarify the choice of the inductive handle adopted
for bound actions. Above, we do not simply refresh z to w but rather resort to
a fresh name w′ which is used in both the development for P and in that for
P ′. Notice that refreshing z to w would be the same as simplifying the inductive
handle by just taking z = w in the sixth item of the statement. This simplified
handle would actually work in the present setting. In fact we could prove that
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“If P
xy→ P ′ then fn(P ) = fn(P ′) ∪ {x, y}”, and this would be the key issue in

showing that “If P
x(w)→ P ′ then P ≡ νw νũ (xw.P1 | P2) and P ′ ≡ νũ (P1 | P2)

with x 
= w and x, w /∈ ũ”. If the language were extended with the choice
operator, however, the latest properties would not hold any longer (think, e.g.,

of P1 = (xy. nil+xw. nil)
xy→ nil and of P2 = νy P1

x(w)→ nil). So we preferred to
state and carry out the most general argument. �

Lemma 2. If B is well-formed and [[B]] α→ M then either α = τ or α ∈
{x : Δ(w), x : Δ〈w〉} for some x, Δ, and w.

Proof. The proof is by induction on the inference of [[B]] α→ M . The base of the
induction is relative to the case when [[B]] has the shape L∗P , and the inductive
step to the case when [[B]] has the form M ‖ N . [Base] The last rule applied in
the inference is either (inp) or (out) or (hd) or (uh) or (tau) or (exp), hence the
thesis. [Step] By the definition of (com), the definition of (par), and the inductive
hypothesis. �

Lemma 3. If B is well-formed and [[B]] α→ M ′ with α 
= τ then [[B]] ≡l L ∗ P ‖
M1 and M ′ ≡l L ∗ P ′ ‖ M1 for some L, P, M1 and P ′ such that one of the
following holds for α, L, P and P ′:

1. α = x : Δ(w) and P ≡ νũ (x(w). Q1 | Q2) and P ′ ≡ νũ (Q1{z/w} | Q2)
for some x, Δ, w, ũ, Q1 and Q2 such that (x, Δ) ∈ L and x /∈ ũ and w /∈
fn(Q2) ∪ ũ;

2. α = x : Δ〈z〉 and P ≡ νũ (xz. Q1 | Q2) and P ′ ≡ νũ (Q1 | Q2) for some
x, Δ, z, ũ, Q1 and Q2 such that x, z /∈ ũ.

Proof. The proof is by induction on the inference of [[B]] α→ M ′. By Lemma 2
and the hypothesis α 
= τ , the action performed by [[B]] can only be a global
input or a global output. Then the induction base is limited to the analysis of
the rules (inp) and (out), while the rule (par) is relevant for the induction step. In
the first two cases mentioned above, the thesis comes by appealing to Lemma 1.

�

Theorem 1. If B is well-formed and [[B]] τ→ M ′ then B � B′ with [[B′]] ≡l M ′.

Proof. By induction on the inference of [[B]] τ→ M ′. The base of the induction is
relative to the case when [[B]] has the shape L ∗ P , and the inductive step to the
case when [[B]] has the form M ‖ N .

So, for the base case, we assume that either (hd) or (uh) or (tau) or (exp)
is in turn the last rule applied in the inference. In each case, by appealing to
Lemma 1, we can deduce both the structure of P in L ∗ P = [[B]] and the
structure of the derivative process M ′. Then the thesis comes by observing that,
respectively, either the axiom (hide) or (unhide) or (intra) or (expose) of the
reduction semantics in Table 2 can be applied to get B � B′ for B′ such that
[[B′]] ≡l M ′.



On Beta-Binders Communications 469

The relevant rules to analyze for the inductive step are the rules (par) and
(com). In the first case, the thesis comes by the inductive hypothesis and the
application of the (redex) reduction rule. When instead the last rule applied in
the inference is (com), we appeal to Lemma 3 and the thesis comes by applying
to B the (inter) reduction rule. �

As expected, relating reductions to labelled transitions is harder than proving
Theorem 1. Lemma 4 is a useful intermediate result to achieve the desired goal.

Lemma 4. If B is well-formed and B � B′ then there exist B1,B2, ũ, ṽ,
x, y, z, w, Δ, Γ , P1, P2, P3, Q1, Q2, and B1 such that one of the following holds:

1. B ≡b B1[ νũ (x(w). P1 | xz. P2 | P3) ] ‖ B1 and
B′ ≡b B1[ νũ (P1{z/w} | P2 | P3) ] ‖ B1;

2. B ≡b β(x, Γ )B1[ νũ (x(w). P1 | P2) ] ‖ β(y, Δ)B2[ νṽ (yz. Q1 | Q2) ] ‖ B1
and B′ ≡b β(x, Γ )B1[ νũ (P1{z/w} | P2) ] ‖ β(y, Δ)B2[ νṽ (Q1 | Q2) ] ‖ B1
with comp(Γ, Δ) and x, z /∈ ũ and y, z /∈ ṽ;

3. B ≡b B1[ νũ (expose(x, Γ ) . P1 | P2) ] ‖ B1 and
B′ ≡b B1 β(y, Γ )[ νũ (P1{y/x} | P2) ] ‖ B1 with y /∈ ũ ∪ sub(B1) ∪ fn(P2);

4. B ≡b B1 β(x, Γ )[ νũ (hide(x) . P1 | P2) ] ‖ B1 and
B′ ≡b B1 βh(x, Γ )[ νũ (P1 | P2) ] ‖ B1 with x /∈ ũ;

5. B ≡b B1 βh(x, Γ )[ νũ (unhide(x) . P1 | P2) ] ‖ B1 and
B′ ≡b B1 β(x, Γ )[ νũ (P1 | P2) ] ‖ B1 with x /∈ ũ.

Proof. First we show that if B � B′ then there exists a derivation of B � B′

in normal form, namely a derivation where the (struct) rule is used exactly once
and exactly as the very last rule of the derivation. This statement can be proven
by showing the following.

– An instance of the (struct) rule can always be added at the end of a deriva-
tion. This is simply achieved by using the reflexivity of ≡b.

– An occurrence of the (struct) rule followed by an occurrence of the (redex)
rule can be converted into an instance of (redex) followed by an instance of
(struct). This is obtained by re-arranging derivations as shown below.

B ≡b B1

···
B1 � B2 B2 ≡b B′

(struct)
B � B′

(redex)
B ‖ B′′ � B′ ‖ B′′

B ‖ B′′ ≡b B1 ‖ B′′

···
B1 � B2

(redex)
B1 ‖ B′′ � B2 ‖ B′′ B2 ‖ B′′ ≡b B′ ‖ B′′

(struct)
B ‖ B′′ � B′ ‖ B′′
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– Two consecutive occurrences of the (struct) rule can be condensed into one.
This is achieved by exploiting the transitivity of ≡b and re-arranging deriva-
tions as it is done below.

B ≡b B1

B1 ≡b B3

···
B3 � B4 B4 ≡b B2

(struct)
B1 � B2 B2 ≡b B′

(struct)
B � B′

B ≡b B1 ≡b B3

···
B3 � B4 B4 ≡b B2 ≡b B′

(struct)
B � B′

From the above, a derivation of B � B′ in normal form is such that an
axiom is first applied, then zero or more (redex) rules come, and finally (struct)
is applied. Then the desired thesis, where each of the listed cases corresponds to
one of the possible distinct axioms driving the derivation of B � B′ in normal
form. �

Theorem 2. If B is well-formed and B � B′ then [[B]] τ→≡l [[B′]].

Proof. By B � B′ and Lemma 4 we know which is the possible structure of
both B and B′. The proof is by case analysis of the five distinct possible shapes
of B. Here we only report the most interesting case, corresponding to the second
item in Lemma 4. This is the case when, for some x, Γ , B1, ũ, w, P1, P2, y, Δ,
B2, ṽ, z, Q1, Q2, and B3, the two processes B and B′ are such that:

B ≡b β(x, Γ )B1[ νũ (x(w). P1 | P2) ] ‖ β(y, Δ)B2[ νṽ (yz. Q1 | Q2) ] ‖ B3

B′ ≡b β(x, Γ )B1[ νũ (P1{z/w} | P2) ] ‖ β(y, Δ)B2[ νṽ (Q1 | Q2) ] ‖ B3

with comp(Γ, Δ) and x, z /∈ ũ and y, z /∈ ṽ.
Then [[B]] ≡l M1 ‖ M2 ‖ M3 where M1 and M2 are such that:

M1 = L1 ∗ νũ3 (νũ1 x(w). P1 | νũ2 P2)

M2 = L2 ∗ νṽ3 (νṽ1 yz. Q1 | νṽ2 Q2)

with L1 = [[β(x, Γ )B1]] and L2 = [[β(y, Δ)B2]], and where ũ = ũ1ũ2ũ3 and
ṽ = ṽ1ṽ2ṽ3 with ũi such that fn(P1) ∩ fn(P2) ∩ ũ ⊆ ũ3, fn(P2) ∩ ũ1 = ∅, and
fn(P1) ∩ ũ2 = ∅.

Then, by x /∈ ũ,

M1
x:Γ(w′)→ M ′

1 = L1 ∗ νũ3 (νũ1 P1{w′
/w} | νũ2 P2)

for some w′ such that w′ /∈ fn(νũ2 P2) by (i-par) and w′ /∈ ũ1ũ3 by (i-res). Here
notice that if M1 is composed in parallel with some N different from M2 (which
happens, e.g., for M1 ‖ M3 ‖ M2 ≡l M1 ‖ M2 ‖ M3), then
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M1 ‖ N
x:Γ (w′)→ M ′

1 ‖ N

and w′ is also such that w′ /∈ fn(N) by (par). So N{z/w′} = N for any z. Also,
by y, z /∈ ṽ,

M2
y:Δ〈z〉→ M ′

2 = L2 ∗ νṽ3 (νṽ1 Q1 | νṽ2 Q2) ≡l L2 ∗ νṽ (Q1 | Q2)

using (i-out), (i-res), (i-par), and (out). Then, by (par) and (com),

M1 ‖ M2 ‖ M3
τ→ M ′

1{z/w′} ‖ M ′
2 ‖ M3

where:
M ′

1{z/w′}
= L1 ∗ (νũ3 (νũ1 P1{w′

/w} | νũ2 P2)){z/w′} by z /∈ ũ3
= L1 ∗ νũ3 ((νũ1 P1{w′

/w} | νũ2 P2){z/w′}) by w′ /∈ fn(νũ2 P2)
= L1 ∗ νũ3 ((νũ1 P1{w′

/w}){z/w′} | νũ2 P2) by z /∈ ũ1
= L1 ∗ νũ3 (νũ1 (P1{w′

/w}{z/w′}) | νũ2 P2)
≡α L1 ∗ νũ3 (νũ1 (P1{z/w}) | νũ2 P2) by fn(P1) ∩ ũ2 = ∅, z /∈ ũ2
≡l L1 ∗ νũ3ũ2 (νũ1 (P1{z/w}) | P2) by fn(P2) ∩ ũ1 = ∅
≡l L1 ∗ νũ (P1{z/w} | P2)

Hence the thesis, by [[M ′
1{z/w′} ‖ M ′

2 ‖ M3]] ≡l [[B′]] . �

5 Concluding Remarks

We reviewed Beta-binders, a bio-inspired formalism which interprets processes
as boxes with typed interaction sites. The language shows a particular commu-
nication paradigm which was originally defined to try to deal with the modelling
of uncertain behaviours. The paradigm is based on both the notion of comple-
mentarity of actions, and the notion of compatibility of the types associated with
box interaction sites. Boxes are essentially closed worlds. Provided (and modulo)
the compatibility of sites, they can however communicate the one with the other
much in the π-calculus style.

The original Beta-binders semantics is given in reduction style, which, by
its own nature, limits the applicability of syntax-driven techniques and hence
typically makes it difficult to mathematically deal with behavioural properties.
In the perspective of developing a formal theory for the language, here we defined
a labelled semantics for Beta-binders and showed its correspondence with the
original semantics. The labelled semantics could undergo a stochastic extension
along the lines of the extension presented in [3]. From the stochastic point of
view, the crucial role played by the (redex) rule in [3] would be delegated to (par)
and (com), so to get an operational correspondence between the two extensions.

The alternative semantics defined in this paper is still infinitely branching.
In its case, though, the impact factors are those common to labelled semantics
for calculi with naming: the unguarded behaviour of the operator for recursion,
and α-equivalence. Once unguarded recursion is banned, α-equivalence can be
tackled in very many symbolic ways (see, e.g., [5,4,17]).
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On the Asynchronous Nature of the

Asynchronous π-Calculus�
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Abstract. We address the question of what kind of asynchronous com-
munication is exactly modeled by the asynchronous π-calculus (πa). To
this purpose we define a calculus πB where channels are represented
explicitly as special buffer processes. The base language for πB is the
(synchronous) π-calculus, except that ordinary processes communicate
only via buffers. Then we compare this calculus with πa. It turns out
that there is a strong correspondence between πa and πB in the case
that buffers are bags: we can indeed encode each πa process into a
strongly asynchronous bisimilar πB process, and each πB process into a
weakly asynchronous bisimilar πa process. In case the buffers are queues
or stacks, on the contrary, the correspondence does not hold. We show
indeed that it is not possible to translate a stack or a queue into a weakly
asynchronous bisimilar πa process. Actually, for stacks we show an even
stronger result, namely that they cannot be encoded into weakly (asyn-
chronous) bisimilar processes in a π-calculus without mixed choice.

1 Introduction

In the community of Concurrency Theory the asynchronous π-calculus (πa) [14,5]
is considered, as its name suggests, a formalism for asynchronous communica-
tion. The reason is that this calculus satisfies some basic properties which are
associated to the abstract concept of asynchrony, like, for example, the fact that
a send action is non-blocking and that two send actions on different channels
can always be swapped (see, for instance, [24,22]).

In other communities, like Distributed Computing, however, the concept of
asynchronous communication is much more concrete, and it is based on the as-
sumption that the messages to be exchanged are placed in some communication
means while they travel from the sender to the receiver. We will call such commu-
nication devices buffers. In general, it is also assumed that the action of placing
a message in the buffer and the action of receiving the message from the buffer
do not take place at the same time, i.e. the exchange is not instantaneous.

A frequent question that people then ask about the asynchronous π-calculus,
is “In what sense is this a model of asynchronous communication”? Often they
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are puzzled by the communication rule of πa, which is literally the same as the
one of the (synchronous) π-calculus [18]:

P
x̄y−→ P ′ Q

xy−→ Q′

P | Q
τ−→ P ′ | Q′

(1)

where x̄y represents the action of sending a message y on channel x, and xy
represents the action of receiving a message y from channel x. The rule suggests
that these two actions take place simultaneously, in a handshaking fashion.

To our experience the most convincing explanation of the asynchrony of πa

is that, because of the lack of output prefix in πa, in rule (1) P must be of the
form x̄y | P ′, and the transition P

x̄y−→ P ′ does not really represent the event
of sending. Originally, P must come from a process of the form C[x̄y | R] for
some prefix context C[ ] and some process R, and the “real” event of sending
takes place at some arbitrary time between the moment x̄y gets at the top-
level (i.e. when it is no more preceded by a prefix) and the event of receiving y,
the latter being what the rule (1) really represents. In the interval between the
two events, R evolves asynchronously into P ′. Of course, at this point another
question arises: “What happens to the message y in the meanwhile?” The best
way to see it is that y is placed in some buffer labeled with x. But then the
legitimate question follows on what kind of buffer this is, since it is well known
that a distributed system can behave very differently depending on whether
the channels are bags, queues, or stacks, for instance. In this paper we address
precisely this latter question.

Our approach is to define a calculus πT where buffers are represented explic-
itly, like it was done, for instance, in [3,9]. The symbol T stands for B, Q, and
S, in the case of bags, queues, and stacks respectively. The actions of receiving
from and sending to a given buffer are represented by input and output transi-
tions, respectively. The object of the action is the name being transmitted and
subject is the name (or type) of the source buffer if the action is an output, or
the destination buffer if the action is an input. The base language for πT is the
(synchronous) π-calculus with guarded choice, except that processes communi-
cate only via buffers. Then we compare this calculus with πa. It turns out that
there is a strong correspondence between πa and πB (the case of bags). More
precisely, if we interpret the πa send process x̄y as a bag of type x which contains
the single message y, then there is a strong asynchronous bisimulation between
a πa process P and its translation [[P ]] in πB (notation P ∼ [[P ]]). This result
reflects the intuitive explanation of the asynchronous nature of πa given above.
On the other hand, we can encode (although in a more involved way) each πB

process P into a πa process [[P ]]1, equivalent to P modulo weak asynchronous
bisimilarity (notation P ≈ [[P ]]).

We would like to point out that the the case of bags represents a feature of
communication in distributed systems, namely the fact that the order in which

1 We use the same notation [[·]] to indicate both the encoding from πa into πB and the
one from πB into πa. It will be clear from the context which is the intended one.
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messages are sent is not guaranteed to be preserved in the order of arrival. In the
case of the π-calculus, it is sufficient to allow the messages to be made available
in any order to the receiver (which is exactly the property which characterize
the bags as a data structure), because there are no primitives that are able
to make a “snapshot” of the system, and in particular to detect the absence
of a message. For languages which contain such a kind of primitive however
(for instance Linda, with the imp construct) the abstraction from the order
is not sufficient, and the faithful representation of distributed communication
would require a more sophisticated model. A proposal for such model is the
unordered semantics of [7]. In that paper the authors argue, convincingly, that
the unordered semantics is the most “asynchronous” semantics and the “right”
one for distributed systems.

In case the buffers are queues or stacks, on the contrary, the correspondence
between πT and πa does not hold. We show indeed that there is no encoding
of stacks or queues, represented as described above, into πa modulo weak asyn-
chronous bisimulation. By “encoding modulo R” we mean an encoding that
translates P into a process that is in relation R with P . Actually for stacks we
prove a stronger result: they cannot be translated, modulo weak bisimilarity,
even into πsc , the fragment of the (synchronous) π-calculus where the mixed
guarded choice operator is replaced by separate-choice, i.e. a choice construct
that can contain either input guards, or output guards, but not both. In other
words, the least we need to encode stacks is a mixed-choice construct where both
input and output guards (aka prefixes) are present.

The above result does not mean, obviously, that queues and stacks cannot
be simulated in πa: we will indeed discuss a possible way to simulate them by
encoding the send and receive actions on buffers into more complicated protocols.
The meaning of our negative result is only that a queue (respectively a stack) and
any translation of it in πa (respectively in πsc) cannot be related by a relation
like weak (asynchronous) bisimilarity, which requires a strict correspondence
between transitions.

1.1 Justifying the Choice of the Languages

The results presented in this paper would hold also if we had considered the
asynchronous version of CCS [4] instead than the asynchronous π-calculus. The
reasons why we have chosen the latter are the following. The asynchronous π-
calculus was the first process calculus to represent asynchronous communication
by using a send primitive with no continuation (asynchronous send), and in the
concurrency community it has become paradigmatic of this particular approach
to asynchrony. Moreover, the expressive power of the asynchronous π-calculus
has been widely investigated, especially in relation to other asynchronous calculi,
and in comparison with synchronous communication.

We have chosen the π-calculus with (mixed) guarded choice as a base language
for πT because in the π-calculus the main expressive gap between synchronous
and asynchronous communication lies exactly in between mixed choice and sep-
arate choice [20,19]. In other words, the π-calculus with mixed choice cannot
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be encoded in the asynchronous π-calculus in any “reasonable” way, while the
π-calculus with separate choice can. The choice of a synchronous language as
the basis for πT is motivated by the fact that it allows a precise control of the
communication mechanism: The processes communicate with each other via the
buffers, but the interaction between a process and a buffer is synchronous. So the
buffers are the only source of asynchrony in πT , which makes the encoding from
the asynchronous π-calculus into πT more interesting. Furthermore this model
of asynchronous communication is very close to the concrete implementation of
distributed systems [21].

1.2 Justifying the Criteria for the Encodings

As we stated above, our main positive result is the correspondence between πa

and πB, expressed in one direction by one encoding

[[·]] : πa → πB with P ∼ [[P ]] for all P in πa

and, in the other direction, by another encoding

[[·]] : πB → πa with P ≈ [[P ]] for all P in πB

We consider the above properties of the encodings as quite strong, and therefore
supporting the claim of a strict correspondence between πa and πB. They imply
for instance the condition of operational correspondence, which is one of the
properties of a “good” encoding according to Gorla ([10,11]).

One may question why we did not rather prove the existence of a fully abstract
encoding between πa and πB. We recall that, given a language L1 equipped with
an equivalence relation ∼1, and a language L2 equipped with an equivalence
relation ∼2, an encoding [[·]] : L1 → L2 is called fully abstract if and only if

for every P , Q in L1, P ∼1 Q ⇔ [[P ]] ∼2 [[Q]] holds

Full abstraction has been adopted sometimes in literature as a criterion for
expressiveness. We do not endorse this approach: In our opinion, full abstraction
can be useful to transfer the theory of a language to another language, but it is
not a good criterion for expressiveness. The reason is that it can be, at the same
time, both too strong and too weak a requirement. Let us explain why.

Too strong: Consider the asynchronous π-calculus πa, equipped with its “nat-
ural” notion of equivalence, the weak asynchronous bisimilarity, and the π-
calculus π, equipped with weak bisimilarity. Let [[·]] be the standard encoding
from πa to π defined as

[[x̄y]] = x̄y.0

and homomorphic on the other operators. Most people would agree that this
is a pretty straightforward, natural encoding, showing that π is at least as
powerful as πa. Still, it does not satisfy the full abstraction criterion. In fact,
there are weakly asynchronous bisimilar processes P, Q such that [[P ]] and
[[Q]] are not weakly bisimilar. Take, for example, P = 0 and Q = x(y).x̄y.
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Too weak: Consider an enumeration of Turing machines, {Tn}n, and an enu-
meration of minimal finite automata {An}n, with their standard language-
equivalence ≡. Consider the following encoding of Turing machines into (min-
imal) finite automata:

[[Tm]] = [[Tk]] if k < m and Tk ≡ Tm

[[Tm]] = An otherwise

where n is the minimum number such that An has not been used to encode
any Tk with k < m. By definition, we have that ∀m, n Tm ≡ Tn ⇔ [[Tm]] ≡
[[Tn]], but this certainly does not prove that finite automata are as powerful
as Turing machines!

Note that the second encoding, from Turing machines to finite automata, is
non-effective. This is fine for our purpose, which is simply to show that full
abstraction alone, i.e. without extra conditions on the encoding, is not a very
meaningful notion. Of course, it would be even more interesting to exhibit an
effective and fully abstract encoding between some L1 and L2, while most people
would agree that L2 is strictly less powerful than L1. But this is out of the scope
of this paper, and we leave it as an open problem for the interested reader.

1.3 Plan of the Paper

In the next section we recall some standard definitions. In Section 3, we introduce
the notion of buffer and the different types of buffer we will consider. Then in
Section 4, we define a π-Calculus communicating through bags. In Section 5,
we study the correspondence between the π-Calculus with bags and the πa-
calculus. The main bisimilarity results are established there. In Section 6, we
use the properties from Section 3 to prove the impossibility results for stacks
and queues. Section 7 discusses related work. Finally, Section 8 concludes and
outlines some directions of future research.

2 Preliminaries

2.1 The Asynchronous π-Calculus: πa

We assume a countable set of names, ranged over by x, y, . . ., and for each name
x, a co-name x. In the asynchronous π-Calculus, henceforth denoted as πa,
processes are given by the following syntax:

P, Q, . . . := 0
∣
∣
∣xz

∣
∣
∣ x(y).P

∣
∣
∣ νxP

∣
∣
∣ P | Q

∣
∣
∣ !P

The 0 represents an empty (or terminated) process. Intuitively, an output xz
represents a particle in an implicit medium tagged with a name x indicating that
it can be received by an input process x(y).P which behaves, upon receiving z,
as P [z/y], namely, the process where every free occurence of y is replaced by z.
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Table 1. Transition rules for the πa-calculus

(in)
x(y).P

xz→ P [z/y]
(out)

xz
xz→ 0

(sync) P
xy→ P ′, Q

xy→ Q′

P | Q
τ→ P ′ | Q′ (ν)

P
α→ P ′, a �∈ fn(α)

νaP
α→ νaP ′

(open)
P

xy→ P ′, x �= y

νyP
x(y)→ P ′

(close)
P

x(y)→ P ′, Q
xy→ Q′

P | Q
τ→ νy(P ′ | Q′)

(comp)
P

α→ P ′, bn(α) ∩ fn(Q) = ∅
P | Q

α→ P ′ | Q
(bang)

P | !P α−→ R

!P
α−→ R

(cong)
P ≡ P ′ P ′ α→ Q′ Q′ ≡ Q

P
α→ Q

We assume that P is α-renamed before applying [z/y] so to avoid name-capture.
A substitution σ causes name-capture in P if it replaces a name y by a name z
for which one or more free occurences of y in P are in the scope of a binder for
z. Furthermore, x(y).P binds y in P . The other binder is the restriction νxP
which declares a name x private to P . The parallel composition P | Q means P
and Q running in parallel. The replication !P means P |P | . . ., i.e. an unbounded
number of copies of P .

We use the standard notations bn(Q) for the bound names in Q, and fn(Q)
for the free names in Q, and write νx1 . . . xnP to denote νx1 . . . νxnP .

The (early) transition semantics of πa is given in terms of the relation α−→ in
Table 1. The label α represents an action which can be of the form τ (silent), xz
(free output), x(y) (bound output) or xz (free input). Transitions are quotiented
by the structural congruence relation ≡ below.

Definition 1. The relation ≡ is the smallest congruence over processes satisfy-
ing α-conversion and the commutative monoid laws for parallel composition with
0 as identity.

3 Buffers

A buffer in this paper is basically a data structure that accepts messages and
resends them later. We consider different types of buffers, depending on the pol-
icy used for outputting a previously received message. We focus on the following
policies, that can be considered the most common:

– Bag, or unordered policy: any message previously received (and not yet sent)
can be sent next.

– Queue, or FIFO policy: only the oldest message received (and not yet sent)
can be sent next.
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– Stack, or LIFO policy: only the last message received (and not yet sent) can
be sent next.

Let us now formally define these three types of buffer. We need to keep the
information about the order of reception to decide which message can be sent
next. This will be achieved using a common core definition for all kinds of buffers.

We will use M ∈ M to denote a message that the buffers can accept.

Definition 2 (Buffer). A buffer is a finite sequence of messages:

B = M1 ∗ ... ∗ Mk, k ≥ 0, Mi ∈ M (B is the empty sequence if k = 0).

∗ is a wild card symbol for the three types of buffers. Then, we will use the
notation M1 � ... � Mk for a bag, M1 � ... � Mk for a queue, M1 � ... � Mk for a
stack.

A reception on a buffer is the same for all kinds of policies:

Definition 3 (Reception on a buffer). Let B = M1 ∗ ... ∗ Mk. We write
B

M−→ B′ to represent the fact that B receives the message M , becoming B′ =
M ∗ B = M ∗ M1 ∗ ... ∗ Mk.

The emission of a message is different for the three types of buffers:

Definition 4 (Sending from a buffer). Let B = M1 ∗ ... ∗ Mk. We write

B
M−→ B′ to represent the fact that B sends the message M , becoming B′, where:

– If ∗ = � (bag case) then M = Mi for some i ∈ {1, ..., k} and B′ = M1 � ... �
Mi−1 � Mi+1 � ... � Mk.

– If ∗ = � (queue case) then M = Mk and B′ = M1 � ... � Mk−1.
– If ∗ = � (stack case) then M = M1 and B′ = M2 � ... � Mk.

Finally, we introduce here the notion of buffer’s content and sendable items.

Definition 5 (Buffer’s content). A buffer’s content is the multiset of mes-
sages that the buffer has received and has not yet sent:

C(M1 ∗ ... ∗ Mk) = {M1, ..., Mk}

Definition 6 (Buffer’s sendable items). A buffer’s sendable items is the
multiset of messages that can be sent immediately:

S(M1 � M2 � · · · � Mk) = {M1, M2, . . . , Mk}
S(M1 � M2 � · · · � Mk) = {Mk}
S(M1 � M2 � · · · � Mk) = {M1}

Note that S(B) is empty iff C(B) is empty. Furthermore, if B is a bag, then
C(B) = S(B).

Remark 1. If B is a buffer such that B
M1−→ and B

M2−→ with M1 �= M2 then B
must be a bag, i.e. B cannot be a stack or a queue.
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4 A π-Calculus with Bags

In this section, we define a calculus for asynchronous communications obtained
by enriching the synchronous π-Calculus with bags, and forcing the communi-
cations to take place only between (standard) processes and bags.

We decree that the bag’s messages are names. Each bag is able to send and
receive on a single channel only, and we write Bx for a bag on the channel x. We
use ∅x to denote an empty bag on channel x, and {y}x for the bag on channel
x, containing a single message, y.

Definition 7. The πB-calculus is the set of processes defined by the grammar:

P, Q ::=
∑

i∈I αi.Pi

∣
∣
∣P | Q

∣
∣
∣ νx P

∣
∣
∣ !P

∣
∣
∣ Bx

where Bx is a bag, I is a finite indexing set and each αi can be of the form x(y)
or xz. If |I| = 0 the sum can be written as 0 and if |I| = 1 the symbol “

∑
i∈I”

can be omitted.

The early transition semantics is obtained by redefining the rules in and out
in Table 1 and by adding the rules inbag and outbag for bag communication as
defined in Table 3. Note that they are basically the rules for the (synchronous)
π-Calculus except that communication can take place only between (standard)
processes and bags. In fact, the rule out guarantees that a process can only
output to a bag. Furthermore the only rule that generates an output transition
is outbag, hence a process can only input, via sync and close, from a bag.

The structural equivalence ≡ consists of the standard rules of Definition 1, plus
scope extrusion, plus P ≡ P |∅x. This last rule allows any process to have access
to a buffer even if the process itself is blocked by a binder. A typical example
would be P = νx(xy.x(z).Q), which could not execute any action without this
rule. Thanks to the rule, we have:

P ≡ νx(xy.x(z).Q | ∅x) → νx(x(z).Q | {y}x) → νx(Q[y/z] | ∅x)

Note that we could restrict the application of P ≡ P |∅x to the case in which P
is a pure process (not containing a bag already), i.e. a term of the asynchornous
π-calculus). We do not impose this constraint here because it is not necessary,
and also because we believe that allowing multiple bags on the same channel
name and for the same process is a more natural representation of the concept
of channel in distributed systems. Later in this paper, when dealing with stacks
and queues, we will have to adopt this restriction in order to be consistent with
the nature of stacks and queues.

A consequence of the rule P ≡ P |∅x is that every process P is always input-
enabled. This property is in line with other standard models of asynchronous
communication, for example the Input/output automata (see, for instance, [15]),
the input-buffered agents of Selinger [24] and the Honda-Tokoro original version
of the asynchronous π-calculus [14].

The scope extrusion equivalence – (νz P ) | Q ≡ νz (P | Q) if z �∈ fn(Q) – has
been added even though the open and close rules are present. This is to allow
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Table 2. Structural congruence for the π-Calculus with bags

P ≡ Q if P and Q are α-convertible
P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)
(νz P ) | Q ≡ νz (P | Q) if z �∈ fn(Q)

P ≡ P | ∅x for all possible x

Table 3. Transition rules for the π-Calculus with bags

(in)
αj = xy∑

i∈I

αi.Pi
xz→ Pj [z/y]

(out) Bx
xy−→ B′

x

(xy.P +
∑

i∈I

αi.Pi) | Bx
τ→ P | B′

x

(inbag) Bx
y→ B′

x

Bx
xy→ B′

x

(outbag)
Bx

y→ B′
x

Bx
xy→ B′

x

(sync)
P

xy→ P ′, Q
xy→ Q′

P | Q
τ→ P ′ | Q′ (ν)

P
α→ P ′, a �∈ fn(α)

νaP
α→ νaP ′

(open)
P

xy→ P ′, x �= y

νyP
x(y)→ P ′

(close)
P

x(y)→ P ′, Q
xy→ Q′, y �∈ fn(Q)

P | Q
τ→ νy(P ′ | Q′)

(comp)
P

α→ P ′, bn(α) ∩ fn(Q) = ∅
P | Q

α→ P ′ | Q
(bang)

P | !P α−→ R

!P
α−→ R

(cong)
P ≡ P ′ P ′ α→ Q′ Q′ ≡ Q

P
α→ Q

scope extrusion to apply also in some particular case where those rules would
not help. A good example is νx xy: only a buffer can make an output action, so
this process would not be able to use the open rule.

The basic input and output transitions for bags given by inbag and outbag are
defined in terms of receive and send transitions on buffers in Definition 3 and 4.
The following remark follows trivially from the rules in Table 3.

Remark 2. Let Bx a bag process. Then Bx
y−→ B′x iff Bx

xy−→ B′x. Similarly,

Bx
y−→ B′x iff Bx

xy−→ B′x.

The notions of free names and bound names for ordinary processes are defined
as usual. For bags, we define them as follows. Recall that C gives the content of
a buffer (see Definition 5).

Definition 8 (Bag’s free and bound names). Let Bx be a bag with content
C(Bx) = {y1, . . . , yk}. The free variables fn and the bound variables bn of Bx

are defined as fn(Bx) = {x, y1, . . . , yk} and bn(Bx) = ∅.
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5 Relation between the Asynchronous π-Calculus and
the π-Calculus with Bags

In this section, we study the relation between the πa-calculus and the πB-calculus.
We first define the notions of asynchronous bisimilarities, along the lines of [1] and
[14] . They will constitute the formal basis for stating the correspondence.

In the following, we use the standard notation for weak transitions: P
α=⇒ Q

stands for P
τ−→∗ α−→ τ−→∗Q.

Definition 9

Strong asynchronous bisimilarity. A symmetric relation R is a strong asyn-
chronous bisimulation iff whenever P R Q, then the following holds:

– If P
α−→ P ′ and α is not an input action, then: Q

α−→ Q′ with: P ′ R Q′

– If P
xy−→ P ′ then

• either Q
xy−→ Q′ with P ′ R Q′,

• or P ′ R (Q | xy).

We say that P and Q are strongly asynchronously bisimilar, written
P ∼ Q, iff there exists R such that: P R Q.

Weak asynchronous bisimilarity. A symmetric relation R is a weak asyn-
chronous bisimulation iff whenever P R Q, then the following holds:

– If P
α−→ P ′ and α is not an input action, then: Q

α=⇒ Q′ with: P ′ R Q′

– If P
xy−→ P ′ then

• either Q
xy

=⇒ Q′ with P ′ R Q′,
• or P ′ R (Q | xy).

We say that P and Q are weakly asynchronously bisimilar, written
P ≈ Q, iff there exists R such that: P R Q.

Note that weak asynchronous bisimulation is weaker than weak bisimulation,
and it is weaker than strong asynchronous bisimulation.

We will use the two notions of bisimulation introduced above to describe the
properties of the encodings from πa to πB and from πB to πa, respectively.
The notion of strong asynchronous bisimulation is almost the same, but not
completely, as the one of [1]. The difference is that, in [1], when P performs an
input action, Q can either perform a corresponding input action or a τ step. The
reason for introducing the chance is essentially to get the correspondence stated
in Theorem 1. We could have used weak asynchronous bisimulation instead, but
we preferred to show how strong the correspondence is. As for the notion of weak
asynchronous bisimulation, this is essentially the same as the one introduced
by [14] (called asynchronous bisimulation in that paper). The formulation is
different, since the labeled transition system of [14] is different from ours, however
it is easy to show that the (weak) bisimulations induced by their system, as
relations on process terms, coincide with our weak asynchronous bisimulations.
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5.1 From πa to πB

We observe that there is a rather natural interpretation of the πa-calculus into
the πB-calculus, formalized by an encoding defined as follows:

Definition 10. Let � � : πa −→ πB be defined homomorphically except for the
send process, which is translated as �xy� = {y}x.

It is easy to see that there is an exact match between the transitions of P
and the ones of �P �, except that {y}x can perform input actions on x that the
original process xy cannot do. This is exactly the kind of situation treated by the
additional case in the definition of asynchronous bisimilarity (additional w.r.t.
the classical definition of bisimilarity). Hence we have the following result:

Theorem 1. Let � � : πa −→ πB be the encoding in Definition 10. For every
P ∈ πa, P ∼ �P �.

The encoding from πB into πa is more complicated, but still we can give a rather
faithful translation.

5.2 From πB to πa

Our encoding of the πB-calculus into the πa-calculus is given below.

Definition 11. The encoding � � : πB −→ πa is defined as follows:

�
∑

i∈I αi.Pi� = ν(l, t, f) (lt | Πi∈I�αi.Pi�l)
�P | Q� = �P � | �Q�
�νv P � = νv �P �

�!P � = !�P �
�Bx� = Πyi∈S(Bx)xyi

where � �l is given by

�x(y).P �l = x(y).l(λ).
[
(if λ = t then �P �l,x(y) else xy) | lf

]

�P �l,x(y) = νl′
[
l′() | l′().�P � | l′().

(
xy | �x(y).P �l | lt

)]

�xy.P �l = l(λ).
[
(if λ = t then xy | �P �) | lf

]

In this definition, we use a if-then-else construct in the form if λ = t then P
else Q which is syntactic sugar for λ | t.P | f.Q. This is correct within the scope
of our definition because λ can only be t or f , and λ, t and f are private.

This encoding of the mixed choice is similar to the first encoding of input guarded
choice defined in [19]. The �P �l,x(y) is important to establish the bisimilarity
result. It consists of a non deterministic choice between going back to initial
state, or following with �P �.

The soundness of the encoding depends crucially on the fact that in the πB-
calculus the output of a standard process is non-blocking.
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Note that this encoding is not termination preserving. As in [19], this problem
could be addressed by removing the backtracking possibility and using a coarser
semantic (coupled bisimilarity). In this paper however we consider the stronger
notion of weak asynchronous bisimilarity recalled above.

Theorem 2. Let � � : πB −→ πa be the encoding in Definition 11. Then, for
every P ∈ πB, P ≈ �P �.

Proof. We give the proof only for the non-homomorphic cases of the encoding.
The homomorphic ones follow trivially.

1. �Bx�
2. �

∑
i∈I αi.Pi�

We will show that the above encodings are weakly asynchronous bisimilar to
their source processes. For (1), the statement follows from:

– Bx
xy−→ B′x =⇒ �B′x� = �Bx� | xy

– Bx
xy−→ B′x ⇐⇒ �Bx�

xy−→ �B′x�

Let us now consider the case (2). For the sake of simplicity, we will outline
the proof for a choice construct with only one input-guarded and one output-
guarded branches, the proof for a choice with more than two branches can be
easily generalized from this case. There are three kinds of possible transitions
from this choice2:

1. x(y).P + zv.Q
τ−→ Q | {v}z

2. x(y).P + zv.Q
xw−→ P [y/w]

3. x(y).P + zv.Q
xw−→ (x(y).P + zv.Q) | {w}x

These transitions are matched by the encoded process in the following way:

1. �x(y).P + zv.Q�
τ−→ νl(zv | �Q� | lf | �x(y).P �l)

2. �x(y).P + zv.Q�
xw−→ τ−→ τ−→ νl(�P [y/w]� | lf | �zv.Q�l)

3. (x(y).P + zv.Q) | {w}x ≈ �x(y).P + zv.Q� | xw

It is easy to see that νl(lf | �x(y).P �l) is weakly asynchronous bisimilar to 0, and
νl(lf | �zv.Q�l) is weakly asynchronous bisimilar to 0.

In the other direction, we have the above transitions plus the following one:

�x(y).P + zv.Q�
xw−→ R

where R = νl(lt | l(x).((if x = true then �P [y/w]�l,x(w) else xw) | lf) | �zv.Q�l).
In this case, the choice is not yet committed: the value xw has been received,
but the process can still choose to process �zv.Q�l and then release xw, or send

2 In the third transition, the input could be on a channel different from x. The proof
however proceeds in the same way.
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x(y).P + zv.Q

xw

xw

x(y).P + zv.Q | {w}x

τ

P [y/w]

xw

τ

Q | {v}z

Fig. 1. Transitions of a πB sum

�x(y).P + zv.Q�

xw

τ

τ

τ

xw

τ
≈ x(y).P + zv.Q | {w}x

x(y).P + zv.Q | {w}x ≈

x(y).P + zv.Q | {w}x ≈

P [y/w] ≈

τ

≈ Q | {v}z

Fig. 2. Transitions of the πa encoding of the πB sum in Figure 1

xw and come back to its initial state, or receive the value on x(y).P . This is
matched by the following transition from the original process:

x(y).P + zv.Q
xw−→ (x(y).P + zv.Q) | {w}x

Figures 1 and 2 show the transitions of a typical binary choice and its encoding
and how they are related by weak asynchronous bisimilarity.

6 Negative Results for Other Buffers

In this section, we show the impossibility of encoding other kinds of buffers
(i.e. not bags) into the asynchronous π-calculus and into the π-calculus with
separate choice. In particular, we show that a calculus with queues and stacks
cannot be encoded into πa modulo weak asynchronous bisimilarity. Then, we
show a stronger result for stacks: a calculus with stacks cannot even be encoded,
modulo weak asynchronous bisimilarity, in the π-calculus with separated-choice
(which is a superset of πa). Note that, since a weak bisimulation is a special
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case of weak asynchronous bisimulation, those results also hold modulo weak
bisimilarity.

We stress the fact that these results strongly depend on the requirement that
a term (in particular a stack or a queue) and its encoding be equivalent. We
believe that it is possible to simulate stacks or queues in πa. Our results only
say that it cannot be done via an encoding that satisfies the requirement of
translating a process into a weakly asynchronously bisimilar one.

We start by defining π-calculi with stacks and queues.

Definition 12. The π-Calculus with buffers of type T , written πT , where T is
either Q (queues) or S (stacks) is the set of processes defined by the grammar:

P, Q ::=
∑

i∈I αi.Pi

∣
∣
∣P | Q

∣
∣
∣ νx P

∣
∣
∣ !P

∣
∣
∣ Bx

where Bx represents a buffer of type T .

The operational semantics of πT is the same as the one defined in Section 4, except
that the last congurence rule (P ≡ P |∅x) only applies when P is a pure π-Calculus
process (i.e. not already containing a buffer), in order to avoid behaviours that do
not represent FIFO or LIFO strategies. Furthermore, the rules for bags (inbag and
outbag) should be interpreted as rules for stacks (resp. queues) in the sense that
the transitions in the premises should be those defined for stacks (resp. queues) in
Definition 4.

6.1 Impossibility of Encoding Queues and Stacks

In this section we show that it is not possible to find a valid encoding using the
πa-calculus for queues and stacks modulo weak asynchronous bisimilarity.

The result in this section depends critically on the following lemma, which is
known in literature ([22], Lemma 5.3.2).

Lemma 1. Let P be a process in the πa-calculus and assume that P
xy−→ α−→ P ′.

Then P
α−→ xy−→≡ P ′.

Theorem 3. Let � � be an encoding from πQ into πa (resp. from πS into πa).
Then there exists P ∈ πQ (resp. P ∈ πS) such that �P � �≈ P .

Proof. We prove the theorem by contradiction, for P ∈ πQ. The case of P ∈ πS

is analogous.
Let P be a queue Bx of the form · · · � y � z with y �= z. Then we have:

Bx
xz−→ xy−→ (2)

Since we are assuming �Bx� ≈ Bx, we also have �Bx�
xz=⇒ xy

=⇒. By using

Lemma 1 we obtain �Bx�
τ−→* xz−→ xy−→ τ−→*. Using Lemma 1 again we get:
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�Bx�
τ−→* xy−→ xz−→ τ−→*. Since �Bx� ≈ Bx we have Bx

xy
=⇒ xz=⇒, and, since a

buffer in isolation does not give rise to τ steps, we also have

Bx
xy−→ xz−→

By the latter, and (2), and Remark 1, we have that B cannot be a queue.

Remark 3. We could give a stronger result, namely that for any encoding � � :
πQ → πa (resp. � � : πS → πa) and any queue (resp. any stack) Bx, �Bx� �≈ Bx.
We leave the proof to the interested reader. The idea is that if Bx contains less
than two elements, then we can always make input steps so to get a queue with
two elements.

6.2 Impossibility of Encoding Stacks in the π-Calculus without
Mixed-Choice Operator

In this section we prove that stacks cannot be encoded in the language obtained
by adding a separate-choice construct to πa. We start by defining the π-Calculus
with separate choice.

The π-Calculus with Separate Choice: πsc This is a fragment of the syn-
chronous π-calculus where mixed guarded choice is replaced by separate choice.
The syntax is the following:

P, Q, . . . :=
∑

i∈I

xi(yi).Pi

∣
∣
∣
∑

i∈I

xizi.Pi

∣
∣
∣ νxP

∣
∣
∣P | Q

∣
∣
∣ !P

Here I is a set of indexes. Note that we have omitted the process 0 since it can
be represented as the empty summation.

The definition of the transition semantics is the same as the one of the asyn-
chronous π-calculus (Table 1), except for the rules in and out, that are replaced
by the following ones:

(in) ∑

i∈I

xi(yi).Pi
xj(zj)→ Pj [zj/yj]

(out) ∑

i∈I

xizi.Pi
xjzj→ Pj

The crucial property here is a sort of confluence that holds in the separate-
choice π-Calculus, as proved in [20](Lemma 4.1):

Lemma 2 (Confluence). Let P ∈ πsc. Assume that P
xy−→ R and P

zw−→ Q.

Then there exists S ∈ πsc such that Q
xy−→ S and R

zw−→ S.

Since we are working with weak asynchronous bisimilarity we need to consider
the possible τ transitions. Therefore, we need the following extension of the
above lemma.
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P

R Q

S

xy zw

zw xy

Fig. 3. Lemma of confluence

Lemma 3 (Confluence with τ). Let P ∈ πa. Assume that P
τ−→ R and

P
xy−→ Q. Then, either

1. P
xz−→ for any z, or

2. there exists S ∈ πsc such that: Q
τ−→ S and R

xy−→ S.

Proof. We have to consider the possibility that the transition P
τ−→ R is the

result of a synchronization between P1
xy−→ Q1 and P2

xy−→ Q2, where P1 and
P2 are parallel subprocesses in P , and the latter transition is the one which
induces P

xy−→ Q. If this is the case, then P
xz−→ for any z (note that x cannot

be bound in P because P
xy−→). On the other hand, if P

τ−→ R does not involve

the transition that induces P
xy−→ Q, then the proof is the same as for Lemma 2

(see [20], Lemma 4.1).

Theorem 4. Let � � be an encoding from πS into πsc. Then there exists P ∈ πS

such that P �≈ �P �.

Proof. Let P be a stack Bx of the form y � . . . . Assume by contradiction that
Bx ≈ �Bx� (i.e. Bx is weaklyasynchronously bisimilar to �Bx�) . Then Bx must
be weakly bisimilar to �Bx�. In fact, if Bx

xz−→ B′x ≈ �Bx�|xz ≈ Bx|xz, then we

would have both Bx
xy−→ and Bx

xz−→, which by Remark 1 is not possible.
Let z �= y. We have Bx

xy−→ B′x and Bx
xz−→. Since Bx is weakly bisimilar to

�Bx�, we have, for some P , �Bx�
τ−→* P

xy−→ τ−→* and P
τ−→* xz−→ τ−→*.

Let us assume that the number of τ steps before P inputs xz is not zero.
That is to say, P

τ−→ P ′ τ−→* xz−→. From Lemma 3, we have that either P
xz−→

for any z, or P ′
xy−→. Then, by re-applying this reasoning to each sequence of

τ transitions before the input of xz, we eventually get P
xy−→ and P

xz−→. By
applying Lemma 2 we have P

xy−→ zz−→ P ′ and P
zz−→ xy−→ P ′. From the fact that
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Fig. 4. Confluence with τ

Bx and �Bx� are weakly bisimilar, we get Bx
xy

=⇒ xz=⇒ and Bx
xz=⇒ xy

=⇒. Finally,
we observe that the last sequence is not possible, because after the input action
xz a stack can only perform an output of the form xz.

Figure 5 illustrates the fact that the encoded process must have a point where
confluence occurs, which is used in this proof.

Remark 4. Also in this case we could give a stronger result, namely that for any
encoding � � : πS → πsc and any stack Bx, �Bx� �≈ Bx. Again the idea is that if
Bx is not in the right form (i.e. it is empty), then we can make an input step so
to get a stack with one element.

7 Related Work

The first process calculi proposed in literature (CSP [6,13], CCS [16,17], ACP
[2]) were all based on synchronous communication primitives. This is because
synchronous communication was considered somewhat more basic, while asyn-
chronous communication was considered a derived concept that could be ex-
pressed using buffers (see, for instance, [13]). Some early proposals of calculi
based purely on asynchronous communication were based on forcing the interac-
tion between processes to be always mediated by buffers [3,9]. This is basically
the same principle that we use in this paper for the definition of πB.

At the beginning of the 90’s, asynchronous communication became much
more popular thanks to the diffusion of the Internet and the consequent in-
creased interest for widely distributed systems. The elegant mechanism for asyn-
chronous communication (the asynchronous send) proposed in the asynchronous
π-calculus [14,5] was very successful, probably because of its simple and basic
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Fig. 5. Impossibility to encode a stack

nature, in line with the tradition of process calculi. Thus it rapidly became the
standard approach to asynchrony in the community of process calculi, and it was
adopted, for instance, also in Mobile Ambients [8]. A communication primitive
(tell) similar to the asynchronous send was also proposed, independently, within
the community of Concurrent Constraint Programming [23].

We are not aware of any attempt to compare the two approaches to asynchrony
(the one with explicit buffers and the one with the asynchronous send). However,
our negative results concerning the non-encodability of stacks and queues in
πa use some properties of the asynchronous π-calculus that had been already
presented in literature [20,22]. Similar properties were also investigated in [12,24]
with the purpose of characterizing the nature of asynchronous communication.

An interesting study of various levels of asynchrony in communication for
Linda-like languages has been carried out in [7]. In this paper, the authors in-
vestigate three different semantics of the output operation: the instantaneous,
the ordered, and the unordered semantics. The first two essentially correspond
to the semantics defined in this paper for πa and πB, respectively. The third one
corresponds to the semantics for πB with the additional possibility of temporal
reordering of messages between their sending and their arrival. As argued in
the introduction, the last two cases should coincide in languages which do not
have the possibility of detecting the absence of a message, so these three calculi
(πa, πB, and πB with unordered semantics) should be equivalent (up to weak
asynchronous bisimilarity)3.

8 Conclusion and Future Work

In this paper we have investigated the relation between the asynchronous π-
calculus and a calculus πB where asynchronous communication is achieved via
3 This conjecture is due to Roberto Gorrieri.
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the explicit use of buffers. We have proved that there is a tight correspondence
when the buffers are bags, namely we have exhibited encodings in both directions
correct with respect to asynchronous bisimulation. For queues and stacks, on the
contrary, we have proved an impossibility result, namely that they cannot be
translated into asynchronously bisimilar processes belonging to the asynchronous
π-calculus.

We aim at applying these results for modeling and verifying (using the tools
developed for the asynchronous π-calculus) widely distributed systems with
asynchronous and bag-like communication.

Another line of research is to develop variants of the asynchronous π-calculus
in which communication is based on stack-like and queue-like disciplines, and
investigate their theories. The motivation is to model and verify distributed
systems with the corresponding kind of communication.

Acknowledgment

This work originates from a suggestion of John Mitchell and Andre Scedrov.
They remarked that outsiders to Concurrency Theory do not see so clearly why
the asynchronous π-calculus represents a model of asynchronous communica-
tion. So they recommended to give a justification in terms of a model (buffers)
which looks probably more natural to a wide audience, as this could make the
asynchronous π-Calculus more widely appreciated.

We also wish to thank Roberto Gorrieri, who helped us with very insightful
comments, and the anonymous reviewers.

References

1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science 195(2), 291–324 (1998); An extended
abstract appeared in Sassone, V., Montanari, U. (eds.): CONCUR 1996. LNCS,
vol. 1119, pp. 147–162. Springer, Heidelberg (1996)

2. Bergstra, J., Klop, J.: Process algebra for synchronous communication. Information
and Control 60(1,3), 109–137 (1984)

3. Bergstra, J.A., Klop, J.W., Tucker, J.V.: Process algebra with asynchronous com-
munication mechanisms. In: Brookes, S.D., Winskel, G., Roscoe, A.W. (eds.) Sem-
inar on Concurrency. LNCS, vol. 197, pp. 76–95. Springer, Heidelberg (1985)

4. Boreale, M., Nicola, R.D., Pugliese, R.: Trace and testing equivalence on asyn-
chronous processes. Information and Computation 172(2), 139–164 (2002)

5. Boudol, G.: Asynchrony and the π-calculus (note). Rapport de Recherche 1702,
INRIA, Sophia-Antipolis (1992)

6. Brookes, S., Hoare, C., Roscoe, A.: A theory of communicating sequential processes.
J. ACM 31(3), 560–599 (1984)

7. Busi, N., Gorrieri, R., Zavattaro, G.: Comparing three semantics for linda-like
languages. Theoretical Computer Science 240(1), 49–90 (2000)

8. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science
(TCS) 240(1), 177–213 (2000)



492 R. Beauxis, C. Palamidessi, and F.D. Valencia

9. de Boer, F.S., Klop, J.W., Palamidessi, C.: Asynchronous communication in pro-
cess algebra. In: Scedrov, A. (ed.) Proceedings of the 7th Annual IEEE Symposium
on Logic in Computer Science, Santa Cruz, CA, June 1992, pp. 137–147. IEEE
Computer Society Press, Los Alamitos (1992)

10. Gorla, D.: On the relative expressive power of asynchronous communication prim-
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Camerino I-62032, Italy

2 Department of Computer Science, Stony Brook University
NY 11794-4400, USA

The authors warmly thank Ugo for providing a constant source of inspiration for their

research. Ugo’s way of doing research has inspired and will continue to inspire past,

present and future generations of computer scientists.

Abstract. This paper presents a formal framework, experimental in-
frastructure, and computational environment for modeling, analyzing
and regulating the behavior of cardiac tissues. Based on the theory of
hybrid automata, we aim at providing suitable tools to be used in de-
vising strategies for the pharmacological or other forms of treatment of
cardiac electrical disturbances.

1 Introduction

Atrial fibrillation (Afib) is an abnormal rhythm originating in the upper cham-
bers of the heart afflicting 2-3 million Americans and whose incidence rises with
increasing age. Due to the “graying” of our population, 12-16 million Americans
may be affected by 2050. Not only is its incidence of epidemic proportions, its
morbidity is also significant. Among possible sequelae of the disease are thrombi
in the fibrillating atria and emboli released to the pulmonic and systemic circula-
tions. Although its importance to public health cannot be questioned, therapies
remain problematic. Persistence of the abnormal rhythm results in electrical
remodeling of the atria reinforcing its existence. Drugs are frequently ineffec-
tive and because of their lack of selectivity can induce arrhythmias themselves.
Frequently, electrical cardioversion is tried which is not uniformly successful. Fi-
nally, for intractable Afib, the abnormal reentrant pathways are mapped and the
tissue is radiofrequency ablated, which may result in a non-functional atrium.

This is a humbling observation from an engineering point of view, highlight-
ing the complexity of the heart and the need for reliable analysis and prediction
in-silico tools for cardiac behavior. Such tools would be of great use in devising
rational strategies for pharmacological or other intervention in cardiac electri-
cal disturbances such as Afib. During the last two years, we have worked (see
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Figure 1) towards a formal framework, experimental infrastructure, and com-
putational environment for modeling, analyzing and controlling the behavior of
excitable cells such as cardiac myocytes.

In this paper we provide a brief overview of the results obtained so far and dis-
cuss directions for future work. We start in Section 2 by describing how we modeled
the behavior of excitable tissue using networks of hybrid automata (HA). With
respect to the classical approach which uses systems of non-linear ordinary dif-
ferential equations HA models, by combining discrete and continuous processes,
are able to successfully capture the morphology of the excitation event (action
potential) of cardiac cells [22]. In section 3, we show how this approach also en-
hances the analysis capabilities of this biological phenomena. In particular it ren-
ders possible large-scale simulation of cardiac-cell networks and the detection of
emergent behavior such as fibrillation [9]. Once such a behavior has been iden-
tified, one could use electrical therapy in order to restore normal physiological
function. This means that any time a critical behavior is predicted, depending on
the type of spatial pattern, the right repair strategy is performed either at low-
level, e.g. by introducing an artificial inhibitor or catalyst agent to regulate the
ion channels of cell membranes, or at higher-level, e.g. by resetting the behavior
of a group of myocytes forcing a global correct behavior. We are investigating so-
lutions from the area of the networks of dynamical elements, where distributed
synchronization is obtained by dividing the whole network into groups or regions
of fully synchronized elements [18] while elements from different groups are not
necessarily synchronized and can be of entirely different dynamics [25]. Section 4
offers our concluding remarks and directions for future work.

2 Modeling Excitable Cells Using Hybrid Automata

An excitable cell has the ability to propagate an electrical signal, known at
the cellular level as the Action Potential (AP), to neighboring cells. An AP
corresponds to a difference in electrostatic potential between the inside and
outside of a cell, and is caused by the flow of ions across the cell membrane. The
major ion species involved in this process are sodium, potassium and calcium;
they flow through multiple voltage-gated ion channels as pore-forming proteins
in the cell membrane. Excitation disturbances can occur in the behavior of these
ion channels at the cell level, or in the propagation of the electrical waves at the
cell-network level.

Generally, an AP is an externally triggered event: a cell fires an action poten-
tial as an “all-or-nothing” response to a supra-threshold stimulus, and each AP

follows the same sequence of phases and maintains the same magnitude regard-
less of the applied stimulus. During an AP, generally no re-excitation can occur.
The early portion of an AP is known as “absolute refractory period” due to
its non-responsiveness to further stimulation. The “relative refractory period” is
the interval immediately following during which an altered secondary excitation
event is possible if the stimulation strength or duration is raised. Examples of
excitable cells are neurons, cardiac myocytes and skeletal muscle cells.
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Fig. 1. StonyCam Group from left to right: Ezio Bartocci, Flavio Corradini, Emanuela
Merelli, Scott Smolka, Oliviero Riganelli, Radu Grosu

Despite differences in AP duration, morphology and underlying ion currents,
the following major AP phases can be identified across different species of ex-
citable cells: resting, rapid upstroke, early repolarization phase, plateau and late
repolarization, and final repolarization (identical to the resting phase due to the
cyclic nature of an AP). The resting state features a constant transmembrane
potential (difference between the inside and outside potential of the cell) that is
about -80 mV for most species of cardiac cells; i.e. the membrane is polarized at
rest. During the AP upstroke, the transmembrane potential rapidly changes, from
negative to positive; i.e. the membrane depolarizes. This is followed by an early re-
polarization phase. A slower, plateau phase is present in most mammalian action
potentials, during which calcium influx facilitates muscle contraction. After this
phase, a faster final repolarization brings the potential back to the resting state.

The classical mathematical model [4,14,11] of excitable cell involve complex
systems of nonlinear differential equations. Such models not only impair formal
analysis but also impose high computational demands on simulations, especially
in large-scale 2D and 3D cell networks. To address this state of affairs, we have
developed Cycle-Linear Hybrid Automata (CLHA) models (see Figure 2). The
CLHA formalism was designed to be both abstract enough to admit formal analy-
sis and efficient simulation and expressive enough to capture the AP morphology
and restitution properties exhibited by classical non linear excitable-cell models.
The basic idea behind the CLHA model is the observation that, during an AP, an
excitable cell cycles through four basic modes of operations - resting, stimulated,
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Fig. 2. CLHA and the corresponding Action Potential

upstroke, early repolarization, plateau final repolarization - and the dynamics of
each mode is essentially linear and time-invariant. To capture possible non linear,
frequency-dependent properties such as restitution, the CLHA model is equipped
with one-cycle memory of the cells voltage and per-mode parameters of the
current cycle’s linear time invariant system of differential equations are updated
according to this voltage. Consequently, the models behavior is linear in any one
cycle but appropriately non linear overall. For more details on CLHA, we refer
the reader to [22]. A CLHA approximates AP and other bio-electrical properties
of several representative excitable-cell types, with reasonable accuracy [21,22,10].
This derivation was first performed manually [21,22]. In [10], we showed that it
is possible to automatically learn a much simpler cycle-linear hybrid automaton
for cardiac myocytes, which describes their action potential up to a specified
error margin. Moreover, as we have shown in [2,3], one can use a variant of
this model [21,20,23,24,22] to efficiently (up to an order of magnitude faster)
and accurately simulate the behavior of myocyte networks, and, in particular,
induce spirals and fibrillation. The term Cycle-Linear is used to highlight the
cyclic structure of CLHA, and the fact that while in each cycle they exhibit
linear dynamics, the coefficients of the corresponding linear equations and mode-
transition guards may vary in interesting ways from cycle to cycle. These CLHA

models were found to capture essential cell features, are amenable to formal
analysis, and exhibit, respect to the classical models, a nearly ten-fold speedup
in a simulation of 400x400 cell network.

3 Simulation and Analysis of Networks of Cardiac
Myocytes

3.1 Simulation

In order to simulate the emergent behavior of cardiac tissue, we have developed
CellExcite [3], a CLHA-based simulation environment for excitable-cell net-
works. CellExcite allows the user to sketch a tissue of excitable cells, plan the
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Fig. 3. Simulation of continuous and discrete behavior of CLHA network

stimuli to be applied during simulation, and customize the arrangement of cells
by selecting the appropriate lattice. Figure 3 presents our simulation results for a
400 ×400 CLHA network. The network was stimulated twice during simulation,
at different regions. The results we obtain demonstrate the feasibility of using
CLHA networks to capture and mimic different spatiotemporal behavior of wave
propagation in 2D isotropic cardiac tissue, including normal wave propagation
(1-150 ms); the creation of spirals, a precursor to fibrillation (200-250 ms); and
the break-up of such spirals into more complex spatiotemporal patterns, signal-
ing the transition to ventricular fibrillation (250-400 ms).

As can be clearly seen in Figure 3, a particular form of discrete abstraction,
in which the action potential value of each CLHA in the network is discretely ab-
stracted to its corresponding mode, faithfully preserves the network’s waveform
and other spatial characteristics. Hence, for the purpose of learning and detect-
ing spirals within CLHA networks, we can exploit discrete mode-abstraction to
dramatically reduce the system state space.

3.2 Detecting Emergent Behavior

One of the most important and intriguing questions in systems biology is how
to formally specify emergent behavior in biological tissue, and how to efficiently
predict and detect its onset. A prominent example of such behavior is electrical
spiral waves in spatial networks of cardiac myocytes (heart cells). Spiral waves
of this kind are a precursor to a variety of cardiac disturbances, including atrial
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Fig. 4. Overview of our method for learning and detecting the onset of spiral waves

fibrillation, an abnormal rhythm originating in the upper chambers of the heart.
Moreover, the likelihood of developing atrial fibrillation increases with age.

In [9], we addressed this question by proposing a simple and efficient method
for learning and automatically detecting the onset of spiral waves in cardiac tis-
sue (see Figure 4). Underlying our method is a linear spatial-superposition logic
(LSSL), which we have developed for specifying properties of spatial networks.
LSSL is discussed in greater detail below. Our method also builds upon hybrid-
automata, image-processing, machine-learning and model-checking techniques to
first learn an LSSL formula (LSSLF) that characterizes such spirals. The result-
ing LSSLF is then automatically checked against a quadtree representation [17] of
the scalar electric (SE) field, produced by simulating a hybrid automata network
modeling the myocytes, at each discrete time step. The quadtree representation
is obtained via hybrid abstraction [19] and hierarchical superposition of the ele-
mentary units within the field.

A key observation concerning our simulations (see Figure 3) is that a par-
ticular form of hybrid abstraction, in which the action potential value of each
CLHA in the network is discretely abstracted to its corresponding mode, faith-
fully preserves a spiral’s topological characteristic; i.e. its shape. Hence, for the
purpose of learning and detecting the onset of spirals within CLHA networks, we
can exploit hybrid abstraction to dramatically reduce the system state space. A
similar hybrid abstraction is possible for voltage recordings in live cell networks,
but this is outside the scope of this paper.

The state space of a 400 ×400 CLHA network is still prohibitively large even
after applying the above-described hybrid abstraction: it contains 4160,000 states,
as each CLHA has four modes! To combat this state explosion, we use a spatial
abstraction inspired by [12]: we regard the state of each automaton as a probabil-
ity distribution and define the superposition of a set of states as the probability
that an arbitrary state in this set has a particular mode. By successively apply-
ing superposition to the network, we obtain a tree structure, the root of which is
the state-superposition of the entire CLHA network, and the leaves of which are
the states of the individual CLHA. The particular superposition tree structure
we employ, quadtrees, is inspired by image-processing techniques [17]. We shall
refer to quadtrees obtained in this manner as superposition-quadtrees (SQT).

Our LSSL is an appropriate logic for reasoning about paths in superposition-
quadtrees, and the spatial properties of a CLHA network in which we are in-
terested, including spirals, can be cast in LSSL. For example, we have observed
that the presence of a spiral can be formulated in LSSL as follows: Given an



StonyCam: A Formal Framework for Modeling 499

SQT, is there a path from its root leading to the core of a spiral? Based on this
observation, we build a machine-learning classifier, the training-set records for
which correspond to the probability distributions of the nodes along such paths.
Each node distribution corresponds to an attribute of a training-set record, with
the number of attributes bounded by the depth of the SQT. An additional at-
tribute is used to classify the record as either spiral or non-spiral. For spiral-free
SQTs, we simply record the path of maximum distribution.

For training purposes, we use the CellExcite simulator [2,3] to generate, upon
successive time steps, snapshots of a 400 ×400 CLHA networks and their hybrid
abstraction; see Figures 4,3. Training data for the classifier is then generated by
converting the hybrid-abstracted snapshots into SQTs and selecting paths leading
to the core of a spiral (if present). The resulting table is input to the decision-tree
algorithm of the Weka machine-learning tool suite [8], which produces a classifier
in the form of a predicate over the node-distribution attributes.

The syntax of LSSL is similar to that of linear temporal logic, with LSSL’s
Next operator corresponding to concretization (anti-superposition). Moreover, a
(finite) sequence of LSSL Next operators corresponds to a path through an SQT.
The classifier produced by Weka can therefore be regarded as an LSSL formula.
The meaning of such a path is that of a magnifying glass, which starting from
the root, produces an increasingly detailed but more focused view of the image.
This effect is analogous to concept hierarchy in data mining [13] and arguably
similar to the way the brain organizes knowledge: a human can recognize a word
or a picture without having to look at all of the characters in the word or all of
the details in the picture, respectively.

We are now in a position to view spiral detection as a bounded-model-checking
problem [5]: Given the SQT Q generated from the discrete scalar electric field
of a CLHA network and an LSSL formula ϕ learned through classification, is
there a finite path π ∈ Q satisfying the LSSL formula ϕ, i.e. π |= ϕ? We use
this observation to check in real time, i.e. at each discrete simulation time step,
whether or not a spiral has been created. More precisely, the LSSL formula we
use states that no spiral is present, and we thus obtain as a counterexample one
or all the paths leading to the core of a spiral. In the latter case, we can identify
the number of spirals in the scalar field and their actual position.

4 Conclusion

The StonyCam collaboration has been a highly fruitful one to date, resulting
in the development of HA-based models of complex networks of excitable cells,
the CellExcite simulator for such networks, and techniques for learning and
detecting emergent behavior (spirals) in cardiac tissue. Much work remains to
be done, especially in the engineering of distributed coordination and control
algorithms for myocyte networks.

In other ongoing and future work, analyzing large-scale networks of cardiac
myocytes requires a flexible and powerful simulation environment. Along these
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lines, we are investigating the use of multiagent systems (MAS) and graphical
processing units (GPU). MASs would offer us increased flexibility while GPUs
would offer us increased computational power. A MAS is an autonomous software
entity able to perceive and react to the changes of the surrounding environment.
A MAS consists of a collection of interactive agents and a set of coordination
rules. It constitutes a suitable benchmark for simulating the actions and interac-
tions of autonomous real entities in a network to assess their effects on the system
as a whole. This programming paradigm allows to easily add new entities and
to modify the behavior of existing ones even in a zooming-in and zooming-out
approach [6]. Following [7,1], we would like to investigate a distributed coordi-
nation model based on simulation-time model checking for the online prediction
of critical behaviors in cardiac tissue.

Regarding GPUs, they implement a number of graphical primitive operations
in a very efficient manner. The use of graphics hardware has recently shown
promising results in massive simulations of complex behavioral models [15] and
in general-purpose stream computations [16]. We would like to explore their
computational power as well in our simulation environment for cardiac tissue.
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Ugo Montanari’s Models of Computation

Ugo’s research activity in the area of Models of Computation (MoC, for short) has been
prominent, influential and broadly scoped. Ugo’s trademark is that undefinable ability
to understand and distill computational aspects into new models as if you were reading
them out of some evident connection between well-know models: only, most often, that
connection is really visible only after Ugo shows the way. Like experienced sailors have
trusted compasses and sextants to help them find the best routes to harbour, Ugo relies
on a bag of favourite tools which he has used along the years to deliver a variety of
contributions to the MoC area. To mention just three (in alphabetic order): algebraic
techniques, concurrency theory, and unification mechanisms.

In this introductory contribution we would like to recall some of the influential MoC
models put forward by Ugo which cut across the three approaches. Before doing that,
it is worth devoting some space to discuss the three aspects separately. Notably, the use
of category theory is a pervasive common trait.

Algebraic techniques. By algebraic techniques we refer broadly to the use of universal
algebras and initial model semantics; of universal coalgebras and final semantics; and of
bialgebras. Many interesting papers witness Ugo’s leading role in exploiting algebraic
techniques during his entire scientific career. Indeed, his contributions are too many to
mention all in the space allocated to this overview; we shall therefore attempt to convey
the sense of Ugo’s broad-spectrum contribution by recapping only a few key results.

Reference [43] is the first paper on final, observational semantics in abstract data
types, and the main reference for one of the MoC contributed papers in this volume.
It presented several key insights in software specification and development for the first
time, like the separation between given sorts and newly specified ones, whereby the
given sorts lay the ground to define the observable behaviour for the new sorts. Another
key suggestion is that the specification of new data types is often partial —in the sense
that it may include “don’t care” cases— and that many realisations can exist that ex-
hibit equivalent observable behaviour but are not isomorphic. In fact, [43] shows that
the isomorphism classes of observably equivalent algebras conforming to the partial
specification form a complete lattice, yielding a so-called loose semantics.

Possibly the best known of Ugo’s papers, [52] exposes the underlying monoidal struc-
ture of the category of Petri net computations. The title itself is revealing: Petri nets are
monoids. Besides doing what it says on the tin, this paper opened a long-lasting and
fruitful collaboration with José Meseguer, and a research line on the initial semantics of
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computational models in which, after [33], we got deeply involved ourselves
[55,56,17,24,18]. The key insight is that by lifting the algebraic structure of (machine)
states to the level of computations via a so-called free construction, one can gain a deeper
understanding of the axioms which regulate equivalent computations (or processes), an
idea that is also the basis of Meseguer’s Rewriting Logic [51]. This theme of lifting the al-
gebraic structure of states to the level of concurrent computations has motivated the study
of Structured Transition Systems [30,39,37], while finding axiomatisations of computa-
tional structures has been reconsidered in [49,16,27,9,11].

A more recent result in coalgebraic semantics [57] has paved the way to the eÆ-
cient verification techniques for the �-calculus [35], and to the bialgebraic semantics
of fusion calculus [25]. The technique proposed in [57] addresses the issue of finding
a suitable setting to develop a coalgebraic semantics for the �-calculus, so as to char-
acterise minimal process realisations. The key diÆculty is the proper handling of fresh
names, tackled by exploiting a category of name-permutation algebras which underpins
the coalgebraic treatment of the �-calculus operational semantics.

Concurrency theory. Concurrency theory encompasses many di�erent techniques and
approaches, ranging from bisimilarity and contextual equivalences to event structure
semantics. It is harder here to make a representative selection of a few seminal papers,
because of the quality and volume of Ugo’s work in the area of concurrency models.

Given our previous lives in ‘Petri-land,’ we cannot help but mention the work on
unfolding semantics that generalised Winskel’s approach from the class of safe nets to
a wide class of place�transition nets [54]. An unfolding semantics accounts for a full
fledged view of the admissible computations, including concurrency, causality and con-
flict aspects: the so-called “truly concurrent” semantics. Exploiting mathematical tools
from category theory, the main result establishes that a chain of adjunctions (a suitable
categorical notion indicating that the corresponding construction is as good as possible)
leads from the category of Petri nets to the category of prime event structures, which
is equivalent to the category of coherent finitary prime algebraic domains (because of
this, the unfolding approach is sometimes referred to as a denotational semantics).

More recently, it was shown that such event structure semantics can be extended to a
more sophisticated setting of contextual nets and graph transformation systems, where
e.g., multiple concurrent read accesses to the same resource and inhibiting conditions
for the occurrence of certain events can be accounted for. The price to pay was the intro-
duction of more complex event structures [3,28,2,4,5]. Significantly related is also [1].
The extension has made it possible to provide event structure semantics to mobile cal-
culi for free by encoding them in graph transformation systems [14,15].

The paper [21] presents a mathematical setting building upon some analogies in the
representation of names, locations and causal links as shared entities. Such a uniform
treatment of di�erent concepts opens the way to the definition of a general-purpose
meta-model to be instantiated to several cases of interest. The main result shows that
the framework can be applied to the basic parallel processes with weak synchronisation,
by defining an operational semantics that accounts for concurrency aspects and a causal
abstract semantics and showing it equivalent with bisimilarity via “causal trees” [32].

It is finally worth to mention Ugo’s work on transactional extensions of concurrent
frameworks [44,20,12,13,7].
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Unification mechanisms. Logic programming and its extensions, in particular with con-
current constraints, are one of the long-term research interests of Ugo’s. In logic pro-
gramming, resolution steps are based on the notion of unification between the head of
a logic clause and a selected atomic sub-goal. The Martelli-Montanari algorithm [50]
is arguably the best known unification algorithm for constructing the “most general
unifier” (mgu) between a sub-goal and the head of a clause. Since those brilliant begin-
nings, the view of unification as an elegant coordination mechanism has been a recurrent
source of inspiration in Ugo’s work on MoC. We mention here three cases.

Reference [30] builds on the view of mgu as a categorical “equaliser:” clauses are
seen as rewrite rules whose variables can be further instantiated freely, and the compu-
tational model of a logic program is a suitable 2-category. The interesting point is that
the 2-cells of the 2-category are equipped with an algebraic structure that captures some
concurrency aspects. If there exists a refutation for the goal G with computed answer
substitution �, then in the 2-category model we can find a refutation for the goal G� but
not necessarily one for G. This situation is improved in [22], where the mgu is expressed
as a categorical “pullback” square and double-categories are considered instead of 2-
categories. This setting can account for the dynamic creation of fresh variables and deal
with the computed answer substitutions instead of just the correct answer substitutions.

The ideas in [22] are further developed in [6], where logic programming “resolution
rule” is generalised to MoC tailored to the needs of the general server-to-client bindings
required by the service oriented applications. When a new service is discovered, not
only it must adapt to the client, e.g., accepting a list of parameters, but vice versa the
client too must sometimes adapt to the server in order to establish the connection. Then,
the mgu represents the minimal possible adaptation that should be sought in order to
minimise the possible degradation.

Combined approaches. Much of Ugo’s scientific thinking can be characterised as the
aspiration to combine modelling elements so that the combination of the parts is more
expressive and flexible than their mere sum. Below we point out some examples.

The CHARM [31], Concurrency and Hiding in an Abstract Rewriting Machine, is an
abstract machine that combines algebraic techniques typical of process calculi with the
experience in constraint logic programming and graph transformation systems. Charac-
teristic of the CHARM is the ability to capture the essence of concurrent computations
in systems composed by a global, shared part and locally distributed resources.

GDS [26,34], Grammars for Distributed Systems, combines distributed computation
based on Hoare synchronisation with concurrent histories. This model later evolved
in Synchronized Hyperedge Replacement, SHR [45,46,40,36,48], where di�erent syn-
chronisation mechanisms are considered together with node merging and splitting.

HD-automata [57] (see also the section on Software Verification in the present vol-
ume), for History Dependent Automata, are an extension of ordinary automata aimed
to endow them with name handling features: states and transition labels may contain
names which can represent, e.g., communication channels or locations in distributed
systems. Each transition establishes a correspondence between the names in the source
state, those in the label and those in the target state. HD-automata permit an adequate
representation of the behavior of calculi with name mobility, as names can be garbage-
collected and reused to identify ‘verification-friendly’ processes semantics.



506 R. Bruni and V. Sassone

The Tile Model [41,53,58,19,29,38,8,47,16,42,10,23] combines the modularity of
Structured Transition Systems with Meseguer’s Rewriting Logic approach. While rewrite
rules in Rewriting Logic can be applied in any context and with any actual parameters, the
Tile Model allows rewritings to be inhibited under certain contexts. In category theory,
this correspond to move from 2-categories to double-categories. Moreover, as tiles have
been designed around concurrent systems, it is common to consider a monoidal struc-
ture of states that gives raise to a monoidal double-category of computations. Thanks
to these features, the Tile Model o�ers a framework where the specification of process
calculi with name passing, causality and locality becomes uniform and several important
results can be accounted for at the meta-theoretical level.

Papers on Models of Computation in This Volume

The six contributed papers in this section of the present volume cover several of Ugo’s
favourite topics; other papers on models of computation are included in other chapters
dealing with more specific contexts and applications.

Martı́n Abadi: Automatic mutual exclusion and atomicity checks. This contribution
presents a calculus for studying the Automatic Mutual Exclusion (AME) programming
model. Roughly, the AME calculus consists of a concurrent lambda calculus with ref-
erences, extended with constructs for thread spawning, yielding, blocking and atomic
execution. A type system ensures that atomic blocks are not violated through yield ex-
ecutions. The main results show soundness and progress theorems.

Samson Abramsky: Petri nets, discrete physics, and distributed quantum computation.
This inspired paper builds interesting connections between separate fields, and does
so by building upon some of Ugo’s best known work. In fact, it describes analogies
between Petri Nets, monoidal categories with additional structure, and quantum me-
chanics (in particular quantum information).

Filippo Bonchi, Maria Grazia Buscemi, Vincenzo Ciancia and Fabio Gadducci: A cat-
egory of explicit fusions. The paper introduces a suitable category E of equivalence
relations and shows it suitable to represent (abstract) syntax and semantics (via an endo-
functor B on SetE) of the calculus of explicit fusions. The main result gives a bijection
between inside-outside bisimulations and coalgebraic bisimulations for B.

José Luiz Fiadeiro: What do semantics matter when the meat is overcooked? This paper
presents a model for configuration management of service-oriented applications mod-
elled with the language developed by the EU funded Sensoria project. The model makes
use of various of Ugo’s favourite ingredients: roughly, business configurations are repre-
sented as graphs; constraint systems play the role of business policies; a module requir-
ing a set of services is seen as a clause in logic programming style; the reconfiguration
that happens when a service is called for instantiation (via the usual service-oriented
mechanism of discovery, selection, and binding) is modelled by a sort of resolution.

Nicoletta Sabadini and Robert Walters: Calculating Colimits Compositionally. Recent
years witnessed a renewed interest in exploring the dichotomy between the algebraic
and the graphical presentations of a system, a topics to which Ugo has also contributed.
Along these lines, the paper gives an algebraic description for finite colimits in a cate-
gory based on the cospan construction, whence the graphical counterpart.
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Donald Sannella and Andrzej Tarlecki: Observability concepts in abstract data type
specification, 30 years later. Last but not least, the paper is ideal for closing our
overview, because it presents in a modern fashion the pioneering ideas of Ugo on ab-
stract data type specification [43], commenting upon which we opened this contribution.
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Abstract. This paper provides an introduction to the Automatic Mutual
Exclusion (AME) programming model and to its formal study, through
the AME calculus. AME resembles cooperative multithreading; in the
intended implementations, however, software transactional memory sup-
ports the concurrent execution of atomic fragments. This paper also stud-
ies simple dynamic and static mechanisms for atomicity checks in AME.

1 Introduction

Transactions promise a practical mechanism for synchronization that should
facilitate the design and coding of a wide range of concurrent systems. In partic-
ular, in shared-memory concurrency, systems based on transactions may achieve
the efficiency of fine-grained locking while reducing the opportunities for dead-
locks, race conditions, and other bugs. For these benefits to be realized, however,
advances in low-level implementations of transactions do not suffice. Also needed
are corresponding languages and programming techniques (e.g., [9,10,6,3]).

The principle “Lo bueno, si breve, dos veces bueno” does not necessarily apply
to transactions. Although long-running transactions can lead to excessive conflicts
and may complicate hardware-based implementation strategies, they also support
a conservative style of programming in which transactions, with their guarantees,
are the default. This style is embodied, in particular, in the Automatic Mutual
Exclusion (AME) model [12,1], which is the focus of this paper.

AME can be seen as cooperative multithreading on top of software transac-
tional memory (STM) [14]. In the spirit of cooperative multithreading, calls to the
construct yield delimit atomic fragments of computations. STM allows multiple
sequential code fragments to execute at the same time, each within a transaction.

Yielding requires care. For instance, consider a call to a library method made
from within a transaction. As long as the execution remains within the same
transaction, the caller need not be concerned with concurrent calls to the library
or any other concurrent activity. On the other hand, the library method may
decide to interrupt the transaction by yielding, perhaps in order to interact with
the outside world. In this case, the caller may need to consider interleavings of
other computations, restoring invariants if necessary. In this paper we explore
a mechanism for asserting that, dynamically, yielding should not happen in a
particular piece of code. Yielding can be turned into (caught) run-time errors,
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and transactional recovery may optionally mask those errors altogether. We also
define and study a simple static type system that indicates whether yielding
is possible in a piece of code. A practical version of this type system has been
implemented for an extension of C# on Bartok-STM [11].

In sum, the goals of this paper are to provide an introduction to AME and to
its formal study (largely as a review of recent work [12,1]), and also to advance
a specific aspect of AME and its theory. Section 2 describes AME, informally.
Sections 3 and 4 define the AME calculus and its high-level formal semantics.
Section 5 and 6 concern dynamic atomicity checks and the static type system,
respectively. Section 7 establishes the soundness of the static type system with
respect to the dynamic atomicity checks. Section 8 concludes by mentioning
some further work. An appendix contains proofs.

Similar themes have been explored in other projects. For instance, in the
Mianjin language, type annotations distinguish routines that may perform com-
munication [13]. More recently (independently from the AME work), the model
Transactions with Isolation and Cooperation (TIC) includes a type system for
atomicity [15]. In both Mianjin and TIC, the type systems are defined semi-
formally. Further, other research on types for atomicity offers powerful analyses
that apply to Java and similar languages [7]. While some of their ideas may
be useful in implementations of AME, they may be less necessary at the AME
source level, because of the reliance on cooperation and transactions. In another
direction, research on sagas explores techniques that reconcile atomicity and re-
sponsiveness for long-lived transactions, with sophisticated treatments of nest-
ing, parallelism, and compensation (which are beyond the scope of the present
paper) [8,5]. Finally, research on cooperative multithreading includes techniques
for proving that yielding must eventually happen, guaranteeing fairness in single-
threaded implementations [4].

2 Automatic Mutual Exclusion

AME encourages programmers to use transactions: code is executed in transac-
tions by default. The intent is that the pervasive use of transactions will lead
to clearer programs with fewer synchronization bugs. However, for interactions
with legacy components and other computations that should not be placed in
transactions, code can be marked explicitly as “unprotected”.

In AME, running a program consists of executing a set of asynchronous
method calls. The semantics of AME guarantees that the program execution
is equivalent to executing each of these calls (or their fragments, as explained
below) in some serial order. An asynchronous method call is created by an in-
vocation async MethodName(<args>). The caller continues immediately after
this invocation. AME achieves concurrency by executing asynchronous method
calls in transactions, overlapping the execution of multiple calls, with roll-backs
when conflicts occur. If a transaction initiates other asynchronous method calls,
their execution is deferred until the initiating transaction commits, and they are
discarded if the initiating transaction aborts.
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V ∈ Value = c | x | λx. e
c ∈ Const = unit | false | true

x, y ∈ Var
e, f ∈ Exp = V

| e f
| ref e | !e | e := f
| async e
| yield
| blockUntil e

Fig. 1. Syntax of the AME calculus (without unprotected sections)

An asynchronous method call may also invoke yield. A yield call breaks a
method into multiple atomic fragments, implemented by committing one trans-
action and starting a new one. These atomic fragments are delimited dynami-
cally by the calls to yield, not statically scoped like explicit atomic blocks [7,9].
AME thus avoids some of the pitfalls of pure event-based programming models
(in particular, “stack ripping” [2].). With this addition, the overall execution of
a program is guaranteed to be a serialization of its atomic fragments.

An atomic fragment may include any number of guards, each of the form
blockUntil(<predicate>). An atomic fragment executes to completion only
if all the guards encountered in the course of the execution have predicates
that evaluate to true. The implementation of blockUntil does nothing if the
predicate holds, but otherwise it aborts the current atomic fragment and re-
executes it later (at a time when it is likely to succeed).

As indicated above, AME provides block-structured unprotected sections.
We omit them here, for simplicity. It is straightforward to extend the results
of this paper to them, although the semantics of unprotected sections can be
delicate.

3 The AME Calculus

In our formal study of AME, we focus on a small but expressive language that we
call the AME calculus. This calculus includes constructs for AME, higher-order
functions, and imperative features.

In Figure 1 we define the syntax of the AME calculus, omitting unprotected
sections. This syntax is untyped; we define a type system in Section 6. The syntax
introduces syntactic categories of values, constants, variables, and expressions.
The values are constants, variables, and lambda abstractions (λx. e). In addition
to values and to expressions of the forms async e, blockUntil e, and yield, the
expressions include notations for function application (ef), allocation (ref e,
which allocates a new reference location and returns it after initializing it to the
value of e), dereferencing (!e, which returns the contents in the reference location
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that is the value of e), and assignment (e := f , which sets the reference location
that is the value of e to the value of f).

We write let x = e in e′ for (λx. e′) e, and also write e; e′ for let x = e in e′

when x does not occur free in e′. Including standard control structures and other
common constructs (directly or by encodings) is routine.

As a small example, let us consider the following code fragment:

blockUntil !r0;
r1 := e1;
r2 := e2;
async (r3 := e3);
yield

in which r0, r1, r2, and r3 are variables that represent reference locations, and
e1, e2, and e3 are arbitrary expressions. This code fragment blocks until r0 holds
true, then it performs assignments to r1 and r2, forks an expression that will
perform an assignment to r3, and finally yields.

Intuitively, a programmer may expect that the assignments to r1 and r2 (but
not r3) happen within the same transaction, and this property will indeed hold if
e1 and e2 are simple values. However, in general, the evaluations of e1 and e2 may
trigger calls to yield, so the assignments may happen in different transactions. For
instance, e2 might be a call to a function with body yield; (blockUntil !r4); !r5,
which yields, waits until the value in r4 is true, and then returns the value in r5. In
that case, some other thread may execute between the assignments, may observe
inconsistent values in r1 and r2, and may misbehave as a result. Therefore, it is
useful to have dynamic or static means of guaranteeing that expressions such as e1
and e2 do not yield. Sections 5 and 6 address this goal.

4 High-Level Semantics

This section presents a semantics for the AME calculus. This semantics is in-
tended to provide a clear, high-level model, rather than a description of possi-
ble underlying implementation techniques. Accordingly, the semantics does not
model optimistic concurrency, conflict detection, roll-back, and other important
low-level features. In [1] we consider richer and weaker semantics that add these
features. Those weaker semantics implement the high-level semantics—though
under non-trivial assumptions that restrict the sharing of data between transac-
tions and unprotected code.

4.1 States

As described in Figure 2, a state 〈σ, T, e〉 consists of the following components:

– a reference store σ,
– a collection of expressions T , which we call the pool,
– a distinguished active expression e.
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S ∈ State = RefStore × ExpSeq × Exp
σ ∈ RefStore = RefLoc ⇀ Value
r ∈ RefLoc ⊂ Var
T ∈ ExpSeq = Exp∗

Fig. 2. State space

A reference store σ is a finite mapping of reference locations to values. Formally,
reference locations are special kinds of variables that can be bound only by a
reference store. We write RefLoc for the set of reference locations. We assume
that RefLoc is infinite, so RefLoc − dom(σ) is never empty. For every state
〈σ, T, e〉, we require that if r ∈ RefLoc occurs free in σ(r′), in T , or in e, then r ∈
dom(σ). This condition will be assumed for initial states and will be preserved
by computation steps.

4.2 Steps

A transition relation takes an execution from one state to the next. According
to this transition relation, when the active expression is unit, an expression
from the pool becomes the active expression. It is then evaluated as such until
it produces unit or until it yields. No other computation is interleaved with this
evaluation. Each evaluation step produces a new state. Unless the active expres-
sion is unit, this new state is obtained by decomposing the active expression
into an evaluation context and a subexpression that describes an operation (for
instance, a function application or an allocation).

As usual, a context is an expression with a hole [ ], and an evaluation context
is a context of a particular kind. Given a context C and an expression e, we write
C[ e ] for the result of placing e in the hole in C. We use the evaluation contexts
defined by the grammar:

P = [ ] | P e | V P | ref P | !P | P := e | r := P | blockUntil P

Figure 3 gives rules that specify the transition relation. The string “Trans” in
the names of the rules refers to “transition” rules, not to “transaction”. In these
rules, we write e[V/x] for the result of the capture-free substitution of V for x
in e, and write σ[r �→ V ] for the store that agrees with σ except at r, which is
mapped to V .

(Trans Activate) applies when the active expression is unit and the pool is
not empty; it takes an expression from the pool as the new active expression.
In all other rules, a subexpression in an evaluation context in the active expres-
sion determines a possible next operation. For instance, in (Trans Appl), the
subexpression is a function application (λx. e) V , so the next operation is beta
reduction, and the result e[V/x] of this beta reduction replaces (λx. e) V in the
evaluation context. Similarly, in (Trans Yield), the subexpression is yield, so



Automatic Mutual Exclusion and Atomicity Checks 515

〈σ, T, P [ (λx. e) V ]〉 �−→ 〈σ, T, P [ e[V/x] ]〉 (Trans Appl)

〈σ, T, P [ ref V ]〉 �−→ 〈σ[r �→ V ], T, P [ r ]〉 (Trans Ref)
if r ∈ RefLoc − dom(σ)

〈σ, T, P [ !r ]〉 �−→ 〈σ, T, P [ V ]〉 (Trans Deref)
if σ(r) = V

〈σ, T, P [ r := V ]〉 �−→ 〈σ[r �→ V ], T, P [ unit ]〉 (Trans Set)

〈σ, T, P [ async e ]〉 �−→ 〈σ, T.e, P [ unit ]〉 (Trans Async)

〈σ, T, P [ blockUntil true ]〉 �−→ 〈σ, T, P [ unit ]〉 (Trans Block)

〈σ, T, P [ yield ]〉 �−→ 〈σ, T.P [ unit ], unit〉 (Trans Yield)

〈σ, T.e.T ′, unit〉 �−→ 〈σ, T.T ′, e〉 (Trans Activate)

Fig. 3. Transition rules of the abstract machine

unit replaces yield, the active expression is moved to the pool, and the new
active expression is unit. No rule applies in some cases, for instance when the
active expression is blockUntil false. Lower-level semantics may abort and
roll-back in such cases [1].

These rules are more compact than previous ones, simply because of the omis-
sion of unprotected computations. Further variants are possible. In particular,
we may consider adding the rule:

〈σ, T, P [ yield ]〉 �−→ 〈σ, T, P [ unit ]〉

This rule represents a short-cut: it can be derived by composing (Trans Yield)
and (Trans Activate).

5 Dynamic Atomicity Checks

We extend the calculus with a construct that asserts the absence of yielding in a
computation. We focus on the high-level semantics of Section 4, though similar
extensions and corresponding results can be obtained for other semantics.

The extension goes as follows:

– We extend the syntax of the language with terms of the form
〈
e
〉
. Informally,〈

e
〉

means that there should be no yield in the course of the evaluation of e.
(This notation is inspired by Lamport’s angle brackets, which also indicate
atomicity.)
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– We also extend the evaluation contexts, so that evaluation can proceed un-
der

〈
·
〉
. Their grammar becomes:

P = [ ] | P e | V P | ref P | !P | P := e | r := P | blockUntil P |
〈
P

〉

– We extend all the rules of the operational semantics to these terms and these
evaluation contexts, and also add a rule to the operational semantics:

〈σ, T, P [
〈
V

〉
]〉 �−→ 〈σ, T, P [ V ]〉 (Trans Assert)

Given that
〈
e
〉

asserts that there is no yield in the course of the evaluation
of e, this rule says that the assertion can be dismissed when e is a value V
(not subject to further evaluation).

These extensions are conservative, in the sense that they affect neither the oper-
ational semantics nor the typing (in the type system of Section 6) of expressions
without assertions. Therefore, some of the main results below (Theorems 1 and 3)
apply also without the extensions.

Consider a transition that is an instance of (Trans Yield), so this transition
is of the form:

〈σ, T, P [ yield ]〉 �−→ 〈σ, T.P [ unit ], unit〉

for some σ, T , and P . We say that this transition is an atomicity violation if P
is of the form P ′[

〈
P ′′

〉
], for instance if P [ yield ] is

〈
yield

〉
or !

〈
ref yield

〉
.

What should we do with an atomicity violation? There are at least three
distinct possibilities:

1. Continue the computation despite the atomicity violation; in this case, the
main use of

〈
·
〉

is as a marker that allows us to explain what went wrong.
The present definition of the operational semantics embodies this possibility.
Accordingly, the results below concern this possibility as well.

2. Stop the computation, allowing for recovery.
Formally, it would suffice to remove the transitions that constitute atomicity
violations, with the understanding that any computation that has not com-
mitted may be rolled back, and perhaps retried later. Specifically, we would
restrict (Trans Yield) to:

〈σ, T, P [ yield ]〉 �−→ 〈σ, T.P [ unit ], unit〉
if P is not of the form P ′[

〈
P ′′

〉
]

Thus,
〈
P ′′[yield]

〉
would be analogous to blockUntil false.

3. Stop the computation with a fatal error.
Formally, we could add a special state wrong that would represent errors,
and change the operational semantics for producing errors instead of allowing
atomicity violations. Specifically, we would restrict (Trans Yield), as above,
and add:

〈σ, T, P ′[
〈
P ′′[yield]

〉
]〉 �−→ wrong

With all these options, it is attractive to prove that, for some class of good
programs, atomicity violations are not possible. The next section provides a
type system for this purpose.
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s, t ∈ Type = Unit
| Bool
| s →p t
| Ref t

p, q ∈ {Yields, NoYields}

Fig. 4. Types for yielding

6 Static Atomicity Checks

This section defines a simple type system for atomicity checking. This type
system can be seen as an alternative to the dynamic approach described above
in Section 5. However, the two approaches may be combined; moreover, the
dynamic approach is useful for formulating the correctness of the static approach
(in Section 7).

The type system is based on the syntax of types of Figure 4, and is defined
in terms of formal judgments:

E � � E is a well-formed typing environment
E ; p � e : t e is a well-typed expression of type t in E with p

The typing rules of Figure 5 operate on these judgments.
The type of an expression depends on a typing environment E, which maps

variables to types. The typing environment is organized as a sequence of bindings,
and we use ∅ to denote the empty environment:

E ::= ∅ | E, x : t

The core of the type system is the set of rules for the judgment E ; p � e : t
(read “e is a well-typed expression of type t in typing environment E with
effect p”). The intent is that, if this judgment holds, then e yields values of type
t with effect p, and the free variables of e are given bindings consistent with the
typing environment E. When p is Yields, this means that the evaluation of e
may yield; when p is NoYields, this means that the evaluation of e definitely
does not yield. We require that

〈
·
〉

appears only around expressions with effect
NoYields. We write q <: p for p = q or p = Yields. We say that e is well-typed
when there exist E, p, and t such that E ; p � e : t.

As a design choice, we arrange that every expression that can be typed with
effect NoYields can also be typed with effect Yields. For instance, we allow giv-
ing the effect Yields to the constant true, although the evaluation of true will
obviously never yield. This property ensures that effects are not invalidated by
computation. For example, consider the expression yield; true, which has effect
Yields and produces the result true. Because true has effects NoYields and
also Yields, the effect of yield; true continues to be derivable after reduction
to true.
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∅ 	 
 (Env ∅)

E 	 
 x �∈ dom(E)

E, x : t 	 
 (Env x)

E 	 

E ; p 	 unit : Unit

(Exp Unit)

E 	 

E ; p 	 false : Bool

(Exp Bool false)

E 	 

E ; p 	 true : Bool

(Exp Bool true)

E, x : t, E′ 	 

E, x : t, E′ ; p 	 x : t

(Exp x)

E,x : s ; p 	 e : t

E ; q 	 λx. e : s →p t
(Exp Fun)

E ; p 	 e1 : s →q t E ; p 	 e2 : s q <: p

E ; p 	 e1 e2 : t
(Exp Appl)

E ; p 	 e : t

E ; p 	 ref e : Ref t
(Exp Ref)

E ; p 	 e : Ref t

E ; p 	 !e : t
(Exp Deref)

E ; p 	 e1 : Ref t E ; p 	 e2 : t

E ; p 	 e1 := e2 : Unit
(Exp Set)

E ; p 	 e : Unit

E ; q 	 async e : Unit
(Exp Async)

E ; p 	 e : Bool

E ; p 	 blockUntil e : Unit
(Exp Block)

E 	 

E ; Yields 	 yield : Unit

(Exp Yield)

E ; NoYields 	 e : t

E ; p 	
〈
e
〉

: t
(Exp Assert)

Fig. 5. Rules of the first-order type system for yielding
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There are alternative methods for achieving the same effect. These include
the use of a system with subtyping, which would also provide more flexibility at
function types. The present method is simpler and enables us to focus on the
core system. Undoubtedly richer type disciplines are possible.

7 Soundness

Intuitively, the correctness of the type system is the property that says that if
an expression has effect NoYields statically then it does not yield at run-time.
However, in the course of evaluation, the expression may change, and that should
not be an excuse for yielding. So it is convenient to tag the expression, and to
keep the tag on the expression even if the expression changes until its evaluation
completes. The angle brackets of Section 5 serve as such a tag.

As a first step in the soundness proof, we generalize the type system to states
〈σ, T, e〉. We write

E ; p1. · · · .pn, p � 〈σ, e1. · · · .en, e〉
if

– dom(σ) = dom(E) ∩ RefLoc,
– for all r ∈ dom(σ), there exists t such that E(r) = Ref t and E ; NoYields �

σ(r) : t,
– E ; pi � ei : Unit for all i = 1..n,
– E ; p � e : Unit.

The first condition relates the domains of σ and E. The second one says that
E assigns types of the appropriate form to reference locations, and that σ
maps these reference locations to expressions of appropriate types, with effect
NoYields (because these expressions must be values). The remaining conditions
require typing the expressions e1, . . . , en, and e.

We say that 〈σ, e1. · · · .en, e〉 is well-typed if there exist E and p1, . . . , pn, p
such that E ; p1. · · · .pn, p � 〈σ, e1. · · · .en, e〉.

We obtain that typability is preserved by computation:

Theorem 1 (Preservation of Typability). If 〈σ, T, e〉 �−→∗ 〈σ′, T ′, e′〉 and
〈σ, T, e〉 is well-typed, then so is 〈σ′, T ′, e′〉.

Partly as a corollary, we also obtain a result that expresses the correctness of
NoYields:

Theorem 2 (Atomicity Soundness). If 〈σ, T, e〉 �−→∗ 〈σ′, T ′, e′〉 and 〈σ, T, e〉
is well-typed, then none of the transitions in 〈σ, T, e〉 �−→∗ 〈σ′, T ′, e′〉 is an atom-
icity violation.

Moreover, we obtain a progress result, which characterizes when a computation
may stop and implies that computations do not get stuck in unexpected ways:

Theorem 3 (Progress). If 〈σ, T, e〉 is well-typed, the only free variables in
〈σ, T, e〉 are reference locations, and 〈σ, T, e〉 �−→∗ 〈σ′, T ′, e′〉, then:
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1. there exists 〈σ′′, T ′′, e′′〉 such that 〈σ′, T ′, e′〉 �−→ 〈σ′′, T ′′, e′′〉; or
2. e′ is of the form P [ blockUntil false ]; or
3. e′ is unit and T ′ is empty.

The proofs of these three theorems are in an appendix.

8 Further Work

This paper provides an introduction to the AME programming model and ad-
vances one aspect of its development and formal study. We conclude with a brief
description of other recent and ongoing work on this model.

To date, we have only limited experience in programming in the AME model.
While this experience is rather encouraging, further experience may conceivably
lead to refinements in the constructs for AME. For instance, we have briefly
considered expressive generalizations of yield. In any case, it seems likely that
the need for atomicity checking will persist.

The semantics presented in this paper is a high-level description of the in-
tended meanings of the AME constructs. Lower-level semantics embody various
strategies for the implementation of these constructs. For instance, those lower-
level semantics can include optimistic concurrent execution of transactions, with
in-place updates to memory, conflict detection, and roll-backs [11]. In particu-
lar, the implementation of AME for C# on Bartok-STM relies on these features.
Such strategies may have great advantages in performance and responsiveness,
but they can lead to surprising results. We have therefore worked on describing
those strategies precisely and on analyzing their properties in detail [1]. The cor-
rectness of these strategies require substantial assumptions which say, roughly
that transactional and non-transactional computations do not share data di-
rectly. Several versions of these assumptions lead to correctness results, though
with different specifics. Some of these versions, and the corresponding trade-offs,
are the subject of ongoing work.
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Appendix: Proofs

Auxiliary Results. We rely on a few auxiliary results. Several of them are routine,
and we omit the corresponding proofs. These include a replacement lemma (in
the style of Wright and Felleisen [16]), a substitution lemma, and a lemma that
deals with updates to the state.

Lemma 1 (Replacement). Consider a derivation D of E ; p � P [ e0 ] : t.
Assume that this derivation includes, as a subderivation, a proof D0 of the judg-
ment E ; p0 � e0 : t0 for the occurrence of e0 in P [ · ]. Assume that we also
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have a derivation D′0 of E ; p0 � e′0 : t0 for some e′0. Let D′ be obtained from
D by replacing D0 with D′0, and e0 with e′0 in P. Then D′ is a derivation of
E ; p � P [ e′0 ] : t.

Lemma 2 (Substitution). If E, x : s, E′ ; p � e : t and E ; NoYields � e′ : s
then E, E′ ; p � e[e′/x] : t.

Lemma 3 (Update). Assume that r ∈ dom(σ) and E(r) = Ref t0. If E ; p1.
· · · .pn, p � 〈σ, e1. · · · .en, e〉 and E ; NoYields � V : t0, then E ; p1. · · · .pn, p �
〈σ[r �→ V ], e1. · · · .en, e〉.

The remaining lemmas are more specific to our study, so we outline their proofs.
They say that values can be typed as not yielding, if they can be typed at all; that
expressions that do not yield may be seen as yielding; and that yield can never
appear in an evaluation context when the type system does not indicate yielding.
They also provide an analysis of the possible forms of well-typed expressions.

Lemma 4. If E ; p � V : t then E ; NoYields � V : t.

This lemma holds simply because, in all the rules that can be used as the last
one for typing a value ((Exp unit), (Exp false), (Exp true), (Exp x), and (Exp
Fun)), the type system leaves the choice of effect completely unconstrained.

Lemma 5. If E ; NoYields � e : t then E ; Yields � e : t.

The proof of Lemma 5 is by induction on the derivation of E ; NoYields � e : t,
with a case analysis on which rule is applied last. No rule forces a conclusion with
NoYields: some rules where the conclusion may have effect NoYields (like (Exp
Async) and (Exp Assert)) leave the choice of effect unconstrained, while others
(like (Exp Appl) and (Exp Ref)) propagate the effect used in the hypotheses of
the rule application. In the latter case, Yields can be used instead of NoYields
also in the hypotheses of the rule application, by induction hypothesis and, in
the case of (Exp Appl), because q <: Yields always holds.

Lemma 6. It is never the case that E ; NoYields � P [ yield ] : t.

The proof of Lemma 6 is by induction on typing derivations, with a case analysis
on which rule is applied last.

– The cases of (Exp Unit), (Exp Bool false), (Exp Bool true), (Exp x), and
(Exp Fun) are trivial, since the expressions typed there are values and cannot
be the one in question.

– The case for (Exp Yield) is trivial because it gives an effect Yields.
– The cases of (Exp Appl), (Exp Ref), (Exp Deref), (Exp Set), and (Exp

Block) are all by applications of the induction hypothesis, which are possible
because the effects in the hypotheses of the rules are the same as the effects
in their conclusions.

– The case for (Exp Async) is excluded because a context P cannot be of the
form async P ′, so in this case P must be [ ], and async · cannot match
yield.
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– The case for (Exp Assert) is by application of the induction hypothesis, since
the effects in the hypothesis of the rule is NoYields.

Lemma 7. Suppose that e is a well-typed expression in which the only free vari-
ables are reference locations (with types of the form Ref t). Then e is a value or
an expression of the form P [ f ], where f has one of the forms (λx. e′) V , ref V ,
!r, r := V , async e′, blockUntil true, blockUntil false, yield, and

〈
V

〉
.

The proof of Lemma 7 is by induction on the typing of e, with a case analysis
on the last rule in the typing derivation.

– In the cases of (Exp Unit), (Exp Bool false), (Exp Bool true), (Exp x),
and (Exp Fun), e is a value.

– In the case of (Exp Appl), e cannot be a value. If e1 e2 is well-typed, then e1
and e2 must be well-typed, and we apply the induction hypothesis to them.
Suppose first that e1 is a value. Because the type of e1 must be a function
type, e1 must be of the form λx. e′. (It cannot be a variable because reference
locations do not have function types.) If e2 is also a value V , we obtain that
e is of the required form, with [ ] for P . If e2 is not a value, then it is of the
form P ′[ f ], for an appropriate f , and we let P be e1 P ′. If e1 is not a value,
then it is of the form P ′[ f ], for an appropriate f , and we let P be P ′ e2.

– In the case of (Exp Ref), e cannot be a value. If ref e1 is well-typed, then
e1 must be well-typed, and we apply the induction hypothesis to it. Suppose
first that e1 is a value. We obtain that e is of the required form, with [ ]
for P . If e1 is not a value, then it is of the form P ′[ f ], for an appropriate f ,
and we let P be ref P ′.

– In the case of (Exp Deref), e cannot be a value. If !e1 is well-typed, then e1
must be well-typed, and we apply the induction hypothesis to it. Suppose
first that e1 is a value. Because the type of e1 must be a reference type, e1
must be a reference location r. We obtain that e is of the required form,
with [ ] for P . If e1 is not a value, then it is of the form P ′[ f ], for an
appropriate f , and we let P be !P ′.

– In the case of (Exp Set), e cannot be a value. If e1 := e2 is well-typed, then e1
and e2 must be well-typed, and we apply the induction hypothesis to them.
Suppose first that e1 is a value. Because the type of e1 must be a reference
type, e1 must be a reference location r. If e2 is also a value V , we obtain that
e is of the required form, with [ ] for P . If e2 is not a value, then it is of the
form P ′[ f ], for an appropriate f , and we let P be r := P ′. If e1 is not a value,
then it is of the form P ′[ f ], for an appropriate f , and we let P be P ′ := e2.

– The cases of (Exp Async) and (Exp Yield) are immediate, using the con-
text [ ].

– In the case of (Exp Block), e cannot be a value. If blockUntil e1 is well-
typed, then e1 must be well-typed, and we apply the induction hypothesis
to it. Suppose first that e1 is a value; according to the typing rules, it can be
only false and true. (It cannot be a variable because reference locations
do not have type Bool.) We obtain that e is of the required form, with [ ] for
P . If e1 is not a value, then it is of the form P ′[ f ], for an appropriate f ,
and we let P be blockUntil P ′.
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– In the case of (Exp Assert), e cannot be a value. If
〈
e1

〉
is well-typed, then

e1 must be well-typed, and we apply the induction hypothesis to it. Suppose
first that e1 is a value. We obtain that e is of the required form, with [ ]
for P . If e1 is not a value, then it is of the form P ′[ f ], for an appropriate f ,
and we let P be

〈
P ′

〉
.

Proof of Theorem 1. We prove that if 〈σ, e1. · · · .en, e〉 �−→〈σ′, e′1. · · · .e′n′ , e′〉 and
〈σ, e1. · · · .en, e〉 is well-typed then so is 〈σ′, e′1. · · · .e′n′ , e′〉. The theorem follows
immediately by induction.

The proof is by cases on the operational-semantics rule being applied. In each
case, we show that if

E ; p1. · · · .pn, p � 〈σ, e1. · · · .en, e〉

then
E′ ; p′1. · · · .p′n′ , p′ � 〈σ′, e′1. · · · .e′n′ , e′〉

where, unless indicated otherwise, E′ = E, n′ = n, and p′i = pi for i = 1..n.
In several cases, we consider the typings of certain subexpressions that occur in
evaluation contexts; those typings are with respect to E, since the holes in the
contexts are never under binders.

– (Trans Appl): The typing of 〈σ, T, P [ (λx. e) V ]〉 must rely on (Exp Appl)
and (Exp Fun). Specifically, we must have E ; p0 � (λx. e) V : t0 for some t0
and p0, and therefore E ; p0 � λx. e : t1 →q0 t0 for some q0 <: p0 and E ; p0 �
V : t1 for some t1, and therefore E, x : t1 ; q0 � e : t0. By Lemma 5, E, x :
t1 ; q0 � e : t0 and q0 <: p0 imply E, x : t1 ; p0 � e : t0. By Lemma 2, we obtain
E ; p0 � e[V/x] : t0. By Lemma 1, we obtain a typing of 〈σ, T, P [ e[V/x] ]〉.

– (Trans Ref): The typing of 〈σ, T, P [ ref V ]〉 must rely on (Exp Ref). Specif-
ically, we must have E ; p0 � ref V : Ref t0 for some t0 and p0, and therefore
E ; p0 � V : t0. By Lemma 4, we obtain E ; NoYields � V : t0. We extend
E with r : Ref t0. We can do this extension because r ∈ RefLoc − dom(σ),
hence r �∈ dom(E). By a weakening (adding r : Ref t0 to E for typing
〈σ, T, P [ ref V ]〉) and Lemma 1, we obtain a typing of 〈σ, T, P [ r ]〉.

– (Trans Deref): The typing of 〈σ, T, P [ !r ]〉 must rely on (Exp Deref). Specif-
ically, we must have E ; p0 � !r : t0 for some t0 and p0, and therefore
E ; p0 � r : Ref t0. Since r is a variable, its type must come from the
environment E, so by hypothesis E ; NoYields � V : t0 where V = σ(r).
By Lemma 5, we also have E ; Yields � V : t0, which is useful in case p0 is
Yields. By Lemma 1, we obtain a typing for 〈σ, T, P [ V ]〉.

– (Trans Set): The typing of 〈σ, T, P [ r := V ]〉 must rely on (Exp Set). Specif-
ically, we must have E ; p0 � r := V : Unit for some p0, and therefore E ; p0 �
V : t0 and E ; p0 � r : Ref t0 for some p0. By Lemma 4, E ; p0 � V : t0 implies
E ; NoYields � V : t0. Since r is a variable, its type must come from the en-
vironment E. By Lemma 1, we can transform a typing of 〈σ, T, P [ r := V ]〉
into a typing of 〈σ, T, P [ unit ]〉, and since E ; NoYields � V : t0 and E(r) =
Ref t0, we also obtain a typing of 〈σ[r �→ V ], T, P [ unit ]〉 by Lemma 3.
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– (Trans Async): The typing of 〈σ, T, P [ async e ]〉 must rely on (Exp Async).
Specifically, we must have E ; p0 � async e : Unit for some p0, and therefore
that E ; q0 � e : Unit for some q0. By Lemma 1, we can transform a typing
of 〈σ, T, P [ async e ]〉 into a typing of P [ unit ], and then into a typing of
〈σ, T.e, P [ unit ]〉 by letting n′ = n + 1 and adding q0 to the sequence of
effects.

– (Trans Block): The typing of 〈σ, T, P [ blockUntil true ]〉 must rely on (Exp
Block), specifically on a derivation of E ; p0 � blockUntil true : Unit for
some p0. By Lemma 1, we obtain a typing of 〈σ, T, P [ unit ]〉.

– (Trans Yield): This case requires a trivial rearrangement in the effects: n′ =
n + 1, p′n+1 = p, and p′ = NoYields.

– (Trans Activate): This case requires a trivial rearrangement in the effects:
n′ = n − 1, and the effect pi that corresponds to the expression e is skipped
in p′1. · · · .p′n′ , and becomes p′.

– (Trans Assert): The typing of 〈σ, T, P [
〈
V

〉
]〉 must rely on (Exp Assert).

Specifically, we must have E ; p0 �
〈
V

〉
: t0 for some t0 and p0, and E ;

NoYields � V : t0, so E ; p0 � V : t0 by Lemma 5. By Lemma 1, we obtain
a typing of P [ V ] and then of 〈σ, T, P [ V ]〉.

Proof of Theorem 2. By Theorem 1, if 〈σ, T, e〉 is well-typed then so are all the
states reached in the computation 〈σ, T, e〉�−→∗〈σ′, T ′, e′〉. Therefore, it suffices to
prove that if 〈σ, T, e〉 is well-typed and 〈σ, T, e〉�−→〈σ′, T ′, e′〉, then this transition
is not an atomicity violation. The claim in the theorem then follows by induction.

So suppose that 〈σ, T, e〉 is well-typed and 〈σ, T, e〉 �−→ 〈σ′, T ′, e′〉. This tran-
sition could be an atomicity violation only if e is of the form P ′[

〈
P ′′[ yield ]

〉
]

for some P ′ and P ′′. If 〈σ, T, e〉 is well-typed, then so is e, and therefore also〈
P ′′[ yield ]

〉
, because a state can be well-typed only if all its components and

their subexpressions are well-typed. By the typing rule for assertions, the fact
that

〈
P ′′[ yield ]

〉
is well-typed implies that E′ ; NoYields � P ′′[ yield ] : t′ for

some E′ and t′. We conclude by Lemma 6.

Proof of Theorem 3. According to Theorem 1, the state 〈σ′, T ′, e′〉 is well-typed.
Since the rules of the operational semantics do not introduce free variables other
than reference locations, the only free variables in e′ are reference locations. The
desired conclusion follows from Lemma 8, given next.

Lemma 8. If 〈σ, T, e〉 is well-typed, and the only free variables in e are reference
locations, then:

1. there exists 〈σ′, T ′, e′〉 such that 〈σ, T, e〉 �−→ 〈σ′, T ′, e′〉; or
2. e is of the form P [ blockUntil false ]; or
3. e is unit and T is empty.

In order to prove Lemma 8, we apply Lemma 7 to e.

– If e is a value, then it must be unit because 〈σ, T, e〉 is well-typed and
reference locations do not have type Unit. If T is empty, then we are in the
third case. Otherwise, rule (Trans Activate) applies, and we are in the first
case.
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– If e is of the form P [ blockUntil false ], then we are immediately in the
second case.

– If e is of the form P [ f ] where f is one of (λx. e′) V , ref V , !r, r := V ,
async e′, blockUntil true, yield, and

〈
V

〉
, then (Trans Appl), (Trans Ref),

(Trans Deref), (Trans Set), (Trans Async), (Trans Block), (Trans Yield), or
(Trans Assert) apply, respectively, and we are in the first case again. In the
case of (Trans Ref), we use that RefLoc −dom(σ) is never empty. In the case
of (Trans Deref), we rely on the condition that if r ∈ RefLoc occurs free in e
then r ∈ dom(σ), and on the fact that σ maps reference locations to values.
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Abstract. We shall describe connections between Petri nets, quantum
physics and category theory. The view of Net theory as a kind of discrete
physics has been consistently emphasized by Carl-Adam Petri. The con-
nections between Petri nets and monoidal categories were illuminated
in pioneering work by Ugo Montanari and José Meseguer. Recent work
by the author and Bob Coecke has shown how monoidal categories with
certain additional structure (dagger compactness) can be used as the set-
ting for an effective axiomatization of quantum mechanics, with striking
applications to quantum information. This additional structure matches
the extension of the Montanari-Meseguer approach by Marti-Oliet and
Meseguer, motivated by linear logic.

1 Introduction

In this paper, we shall be concerned with links between three, prima facie very
different, areas:

– Models of concurrent computation, especially Petri nets.
– Physics, especially quantum mechanics and quantum information.
– Monoidal categories with additional structure (e.g. compact closure [16]).

In particular, we are motivated by the following previous work:

– Petri’s seminal work, which has always emphasized links between his Net
Theory and Physics [24,25,26].

– The pioneering work by Ugo Montanari and JoséMeseguer [21] using monoidal
categories as a setting for Net Theory, further extended by Marti-Oliet and
Meseguer [20].

– Our own work with Bob Coecke [4,5], using monoidal categories as a set-
ting for a novel axiomatization of quantum mechanics, with applications to
quantum information.

Thus the situation can be depicted as follows:
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2 Petri Nets as Discrete Physics

An important quality of Petri’s conception of concurrency, as compared with “lin-
guistic” approaches such as process calculi, is that it seeks to explain fundamental
concepts: causality, concurrency, process, etc. in a syntax-independent, “ge-
ometric” fashion. Another important point, which may originally have seemed
merely eccentric, but now looks rather ahead of its time, is the extent to which
Petri’s thinking was explicitly influenced by physics (see e.g. [25]). As one exam-
ple, note that K-density comes from one of Carnap’s axiomatizations of relativity
[11]. To a large extent, and by design, Net Theory can be seen as a kind of dis-
crete physics: lines are time-like causal flows, cuts are space-like regions, pro-
cess unfoldings of amarked net are like the solution trajectories of a differential
equation.

This acquires new significance today, when the consequences of the idea that
“Information is Physical” [17] are being explored in the rapidly developing field
of quantum informatics. Moreover, the need to recognize the spatial structure
of distributed systems has become apparent, and is made explicit in formalisms
such as the Ambient calculus [10], and Milner’s bigraphs [23].

We shall illustrate these points with some quotations from [25].

“This paper attempts to provide a common basis for physical and
computational ways of thinking. . . . If this approach should turn out to
be a small, but definite step towards the remote (perhaps illusory) goal
of founding technology and natural sciences on a theory of information
flow, the author would feel rewarded beyond merit.”

The paper discusses four levels of description for processes and systems.
We concentrate on the first two.

Level 0: Concurrency Structure

“Concurrency is short for “the binary relation of cotemporality of
world points”. Here we follow closely the axiomatizations of relativistic
space-time . . .

For individuals, we take the time layers of signals, the smallest prop-
agators of physical effects. Some signals are particles, others propagate
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. . . through interaction. The history of each signal is a “world line” and
consists of world points. Let x and y be individuals; we write x < y if
x �= y and a signal passes from x to y. We define

x co y ⇔ neither x < y nor y < x

x li y ⇔ x < y or y < x or x = y

Let
Co(x) := {z | x co z} Li(x) := {z | x li z}

If Co(x) = Co(y) or Li(x) = Li(y), we shall collect x and y into a
cluster; such clusters are equivalence classes of world points, and will be
the individuals of Level 1.”

Level 1: Occurrence Nets

“We shall now describe the structure of the set X of all occurrences,
and its partition into a set S of state elements, and a set T of transition
elements. . . .

A subset l ⊂ X will be called a Line iff it is a maximal set of
occurrences which are pairwise in relation li.

A subset c ⊂ X will be called a Cut iff it is a maximal set of occur-
rences which are pairwise in relation co.

The old physical postulate that every Cut represents a spatial dis-
tribution . . . can now be written as ‘every Cut meets every Line’, i.e. as
K-density.”

2.1 Causal Sets and Other Roads

Quite independently, physicists have recently been thinking along strikingly sim-
ilar lines, in one of the radical current approaches to quantum gravity, which
is being developed by Raphael Sorkin and his collaborators [28,9].

Following intuitions going back to Riemann and Einstein, the aim with Causal
Sets is to build a theory of space-time which is ultimately (at the “Planck scale”)
discrete. A causal set is just a locally finite poset. The elements are events,
the ordering is causality. The aim is to build everything back from these ingre-
dients, under the slogan

Order + Number = Geometry.

“Number” here refers to counting the events which have occurred in a given
region of spacetime; this is meaningful by local finiteness, and leads to a notion
of “volume”. There is a “dynamics” which comes from the growth of a poset.
Large-scale structural properties of space-time should emerge from stochastic
properties of such growth.

One may also note the popular book by Lee Smolin [27]: the discussion in the
first few chapters, especially of the relational view of spacetime, is very much in
the same spirit.
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We also mention the striking recent work by Keye Martin and Prakash Panan-
gaden [19], which builds back the spacetime manifold from the causal order, using
ideas from domain theory.

3 Interlude: Symmetric Monoidal Categories

We briefly recall and motivate the basic setting of symmetric monoidal cate-
gories. For further details, we refer to standard texts such as [18].

3.1 Categories

A category C has objects (types) A, B, C, . . . , and for each pair of objects A,
B a set of morphisms C(A, B). (Notation: f : A → B). It also has identities
idA : A → A, and composition g ◦ f when types match:

A
f−→ B

g−→ C

Categories allow us to deal explictly with typed processes, e.g.

Logic Programming Computation

Propositions Data Types States

Proofs Programs Transitions

3.2 Symmetric Monoidal Categories

A symmetric monoidal category comes equipped with an associative opera-
tion ⊗, the “tensor product”, which acts on both objects and morphisms — a
bifunctor:

A ⊗ B f1 ⊗ f2 : A1 ⊗ A2 −→ B1 ⊗ B2

There is also a symmetry operation

σA,B : A ⊗ B −→ B ⊗ A

which satisfies some ‘obvious’ rules, e.g. naturality:

A1 ⊗ A2
f1 ⊗ f2� B1 ⊗ B2

A2 ⊗ A1

σA1,A2

� f1 ⊗ f2� B2 ⊗ B1

σB1,B2

�
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The Logic of Tensor Product Tensor can express independent or concurrent
actions (mathematically: bifunctoriality):

A1 ⊗ A2
f1 ⊗ id� B1 ⊗ A2

A1 ⊗ B2

id ⊗ f2

�

f1 ⊗ id
� B1 ⊗ B2

id ⊗ f2

�

But tensor is not a ‘cartesian’ or categorical product, in the sense that we
cannot reconstruct an ‘element’ of the tensor from its components.

This turns out to comprise the absence of natural diagonals (copying) and
projections (deleting):

A
Δ−→ A ⊗ A A1 ⊗ A2

πi−→ Ai

Cf. A � A ∧ A A1 ∧ A2 � Ai.

Hence there is a direct connection to “resource-sensitive” logics such as linear
logic [14].

A basic example, familiar to Computer Scientists, is given by Rel, the category
with sets as objects and relations as arrows. Here the usual cartesian product
of sets gives a tensor product, but not the categorical product. In particular,
although we can define diagonals and projections, they are not natural. For
diagonals, this means that the diagram

X
ΔX� X × X

Y

R

�

ΔY

� Y × Y

R × R

�

does not commute in general, where ΔX = {(x, (x, x)) | x ∈ X} is the usual
diagonal, and R ⊆ X × Y can be any relation.

A fundamental example for Quantum Mechanics and Quantum Information
is FdHilb, the category of finite-dimensional complex Hilbert spaces and linear
maps, with the standard concrete tensor product of linear algebra [4].

4 Petri Nets and Monoidal Categories

In the late 1980’s there was a brief flowering of work relating Petri nets with
monoidal categories and Linear logic [29,13,21,20]. This work does not seem to
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have had much lasting impact on the Petri net community, but the work by
Ugo Montanari and José Meseguer in particular has been influential on wider
developments in concurrency and graph rewriting, e.g. [22]. We shall briefly
summarize their approach.

4.1 The Meseguer and Montanari Approach

Petri Nets are defined as
N = (S⊗, T, δ0, δ1)

where

– S⊗ is a free commutative monoid of states
– T is the set of transitions
– δ0, δ1 : T −→ S⊗ give the source and target of each transition.

A multiset of S-elements is just another way of thinking of a distribution of
tokens.

Example

buy-a

change buy-c

buy-a’ 4

3

$

q

a c

The transitions (axioms, arrows) are:

buy-c : $ ⊗ q −→ c buy-a : $ −→ a ⊗ q

buy-a’ : q3 −→ a change : $ −→ q4

Petri Categories By closing up the transitions under sequential and parallel
composition, a general notion of process is obtained:

– Given α : A −→ B and β : B −→ C, form α; β : A −→ C. Taking sequential
composition to be associative, and adding idle transitions 1A : A −→ A
which are identities for sequential composition, this gives a category.

– Given α : A1 −→ B1 and β : A2 −→ B2, form the parallel composition
α ⊗ β : A1 ⊗ A2 −→ B1 ⊗ B2. If we assume the key (bi)functoriality
axiom

(α1 ⊗ α2); (β1 ⊗ β2) = (α1; β1) ⊗ (α2; β2)

this gives a symmetric monoidal category.
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Meseguer and Montanari identify the particular kind of symmetric monoidal
categories which arise in this way — the Petri categories. They show that
the Best-Devillers theory of sequential and concurrent behaviours [8] can be
recaptured in a systematic way in this framework.

5 Processes in Monoidal Categories: A General
Perspective

We have seen that Petri Nets can be seen as particular examples of sym-
metric monoidal categories. But why not turn this around? Why not see
any symmetric monoidal category as a setting for describing computa-
tional processes in a resource sensitive way, closed under sequential
and parallel composition?

There is a natural objection to this, that we would then lose the additional
concrete, combinatorial structure of Petri nets, and the corresponding
graphical formalism, which is so much a part of how they are used.

But this objection does not really hold water! Monoidal categories, quite gen-
erally, admit a beautiful graphical calculus or diagrammatic notation which
makes equational proofs perspicuous, and is sound and complete for equational
reasoning in monoidal categories [15]. It also supports links with Logic (e.g. Proof
Nets) and with Geometry (Knots, Braids, Temperley-Lieb algebra etc.)[1,3].

5.1 Outline of the Graphical Calculus

In the graphical calculus we depict processes by boxes, and we label the inputs
and outputs of these boxes by types which indicate the kind of system on which
these processes act:

f
B

A

g
C

f
B

B

g
f
B

A

C

A

f
B

A

E

h
A

C

A B f
B

B

g
C

A

Algebraically, these correspond to:

1A : A → A, f : A → B, g ◦ f, 1A ⊗ 1B, f ⊗ 1C , f ⊗ g, (f ⊗ g) ◦ h

respectively. (The convention in these diagrams is that the ‘upward’ vertical
direction represents progress of time.)

Kets, Bras and Scalars: A special role is played by boxes with either no input
or no output, i.e. arrows of the form I −→ A or A −→ I respectively, where I
is the unit of the tensor. In the setting of FdHilb and Quantum Mechanics, they



534 S. Abramsky

correspond to states and costates respectively (cf. Dirac’s kets and bras [12]),
which we depict by triangles. Scalars then arise naturally by composing these
elements (cf. inner-product or Dirac’s bra-ket):

ψ
A

A

π
ψ

A
π

π ψo

=

Formally, scalars are arrows of the form I −→ I. In the physical context, they
provide numbers (“probability amplitudes” etc.). For example, in FdHilb, the
tensor unit is C, the complex numbers, and a linear map s : C −→ C is deter-
mined by a single number, s(1). In Rel, the scalars are the boolean semiring
{0, 1}.

This graphical notation can be seen as a substantial two-dimensional gener-
alization of Dirac notation [12]:

〈φ | | ψ〉 〈φ | ψ〉

Note how the geometry of the plane absorbs functoriality and naturality condi-
tions, e.g.:

f

g

=

f

g

(f ⊗ 1) ◦ (1 ⊗ g) = f ⊗ g = (1 ⊗ g) ◦ (f ⊗ 1)

6 Deficits and Cancellation

We shall now consider an extension of the Meseguer–Montanari approach, due
to Marti-Oliet and Meseguer [20]. For initial motivation, consider the following
example:
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Example

buy-abuy-c change

4

$

c a q

Transitions:

buy-c : $ −→ c buy-a : $ −→ a ⊗ q change : q4 −→ $

Note that there is no way of getting an apple if we start with three quarters!

6.1 The Financial Game

Marti-Oliet and Meseguer introduce the following modification of the usual token
game, motivated by the aim of extending the connection between Petri Nets and
monoidal structures to the whole of Multiplicative Linear Logic [14].

– Negative or dual tokens a∗ etc. are introduced. We can use these to repre-
sent situations involving deficits as well as the usual presence of resources.

– As well as the usual firing rules, we now have the opportunity to “borrow”
resources, creating both the resource, and the corresponding deficit.

• • • ◦=⇒

– Conversely, given a resource and a corresponding deficit, we can cancel
them, removing both:

• ◦ =⇒

Deficits and Cancellation The basic transitions we need are:

I −→ a∗ ⊗ a a ⊗ a∗ −→ I

where I is the unit of the monoidal structure, creating and cancelling a deficit.
We can now produce a computation in the above example to get an apple

from three quarters:

q3 −→ q3 ⊗ I −→ q3 ⊗ q∗ ⊗ q −→ $ ⊗ q∗ −→ a ⊗ q ⊗ q∗ −→ a
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This is a well known idea in Category theory: it takes us from symmetric
monoidal to compact closed categories [16]. How does this look in our graphical
calculus for monoidal categories?
Cups and Caps

A∗A

A∗ A

εA : A ⊗ A∗ −→ I ηA : I −→ A∗ ⊗ A.

Caps = Cancellations; Cups = Deficits.

6.2 Graphical Calculus for Information Flow

Compact Closure : The basic algebraic laws for units and counits.

= =

(εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (1A∗ ⊗ εA) ◦ (ηA ⊗ 1A∗) = 1A∗

In terms of deficits and cancellations:

• • ◦ • • •=⇒ =⇒ =

Names and Conames in the Graphical Calculus The units and counits are pow-
erful; they allow us to define a closed structure on the category. In particular,
we can form the name �f� of any arrow f : A → B, as a special case of
λ-abstraction, and dually the coname �f�:
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f

f

�f� : A ⊗ B∗ → I �f� : I → A∗ ⊗ B

This is the general form of Map-State duality:

C(A ⊗ B∗, I) � C(A, B) � C(I, A∗ ⊗ B).

7 Monoidal Categories and Physics

Having related physics to Petri nets, and Petri nets to monoidal categories, we
shall now show how to close the circle by relating (quantum) physics to monoidal
categories, following [4]. Moreover, a key role will be played by the compact
closed structure which was described in the previous section, as the abstract
form of the “negative flows” of deficits and cancellations, introduced by Marti-
Oliet and Meseguer to correspond to the logical structure of linear negation and
implication. Here the same structure arises with a physical motivation, and
plays a crucial rôle in explicating the information flows arising from quantum
entanglement.

7.1 Bits and Qubits

Classical Bits:

– have two values 0, 1
– are freely readable and duplicable
– admit arbitrary data transformations

Qubits:

– have a ‘sphere’ of values spanned by |0〉, |1〉

|+〉

|−〉

|+〉

|−〉

|Ψ〉
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– measurements of qubits

• have two outcomes |−〉, |+〉
• change the value |ψ〉

– admit unitary transformations, i.e. antipodes and angles are preserved.

Formally, a qubit is a vector1 in the two-dimensional complex Hilbert space C
2.

This space allows for two degrees of freedom when we measure the qubit in a
given basis; we get one of two possible answers, conventionally ‘0’ or ‘1’ in the
standard basis. Which of these answers we get is in general uncertain; the state
of the qubit tells us only the probability with which we will get each of the
two possible answers. Moreover, measurement has an effect on the system being
measured; it “collapses” to the basis state corresponding to the outcome of the
measurement.

7.2 Quantum Entanglement

We consider for illustration two standard examples of two-qubit entangled states,
the Bell state:

|00〉 + |11〉

and the EPR state:
|01〉 + |10〉

In quantum mechanics, compound systems are represented by the tensor
product of Hilbert spaces: H1 ⊗ H2. A typical element of the tensor product
has the form:

∑

i

λi · φi ⊗ ψi

where φi, ψi range over basis vectors, and the coefficients λi are complex num-
bers. Superposition encodes correlation: in the Bell state, the off-diagonal
elements have zero coefficients. This gives rise to Einstein’s “spooky action at
a distance”. Even if the particles are spatially separated, measuring one has an
effect on the state of the other. In the Bell state, for example, when we measure
one of the two qubits we may get either 0 or 1, but once this result has been
obtained, it is certain that the result of measuring the other qubit will be the
same.

This leads to Bell’s famous theorem [6]: QM is essentially non-local, in the
sense that the correlations it predicts exceed those of any “local realistic theory”.

1 Really by a one-dimensional subspace, or ray.
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From ‘paradox’ to ‘feature’: Teleportation

MBell

Ux

|00〉 + |11〉

x ∈ B
2

|φ〉

|φ〉

Alice Bob

In the teleportation protocol [7], Alice sends an unknown qubit φ to Bob, using
a shared Bell pair as a “quantum channel”. By performing a measurement in
the Bell basis on φ and her half of the entangled pair, a collapse is induced
on Bob’s qubit. Once the result x of Alice’s measurement is transmitted by
classical communication to Bob (there are four possible measurement outcomes,
hence this requires two classical bits), Bob can perform a corresponding unitary
correction Ux on his qubit, after which it will be in the state φ.

7.3 Categorical Quantum Mechanics and Diagrammatics

We now outline the categorical approach to quantum mechanics developed in
[4,5]. The same graphical calculus and underlying algebraic structure which
we have seen in the previous section has been applied to quantum information
and computation, yielding an incisive analysis of quantum information flow,
and powerful and illuminating methods for reasoning about quantum informatic
processes and protocols [4].

Bell States and Costates: The cups and caps we have already seen in the guise
of deficit and cancellation operations, now take on the rôle of Bell states and
costates (or preparation and test of Bell states), the fundamental building
blocks of quantum entanglement. (Mathematically, they arise as the transpose
and co-transpose of the identity, which exist in any finite-dimensional Hilbert
space by “map-state duality”).

A

A

A*

A*
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The formation of names and conames of arrows (i.e. map-state and map-
costate duality) is conveniently depicted thus:

=: f =:

fff

(2)

The key lemma in exposing the quantum information flow in (bipartite) entan-
gled quantum systems can be formulated diagrammatically as follows:

=f

g

= f

g

f

g

=

f

g

Note in particular the interesting phenomenon of “apparent reversal of the causal
order” . While on the left, physically, we first prepare the state labeled g and
then apply the costate labeled f , the global effect is as if we first applied f
itself first, and only then g. This corresponds to the apparent reversal of flow
of computations in the token game on Petri nets achieved with deficits and
cancellations.

Derivation of quantum teleportation. This is the most basic application of com-
positionality in action. We can read off the basic quantum mechanical potential
for teleportation immediately from the geometry of Bell states and costates:

Alice Bob

=
ψ ψ

Alice Bob Alice Bob

= ψ

The Bell state forming the shared channel between Alice and Bob appears as the
downwards triangle in the diagram; the Bell costate forming one of the possible
measurement branches is the upwards triangle. The information flow of the input
qubit from Alice to Bob is then immediately evident from the diagrammatics.
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This is not quite the whole story, because of the non-deterministic nature
of measurements. But in fact, allowing for this shows the underlying design
principle for the teleporation protocol. Namely, we find a measurement basis
such that each possible branch i through the measurement is labelled, under
map-state duality, with a unitary map fi. The corresponding correction is then
just the inverse map f−1

i . Using our lemma, the full description of teleportation
becomes:

f

=

fi i

fi
-1

fi
-1 =

8 Conclusions

We have described a striking nexus of ideas arising from several different sources.
Conceptually, the most interesting feature has been the need for “negative in-
formation flow”, which has arisen from several sources:

– In logic, with the need to account for negative polarities, as created by
connectives such as (linear) negation or implication, leading to Marti-Oliet
and Meseguer’s proposal of deficits and cancellations as a computational
correlate in the setting of Petri net dynamics.

– Physically, e.g. in the desciption of quantum teleportation, these negative
flows run counter to the normal flow of time and causality, and form part of
the enigma of quantum mechanics.

– Mathematically, we are led to dualities and closed structure.
– Geometrically, we go in the direction of loops, tangles and knots.

Standard Petri net theory, with its careful enforcement of local causality and
information flow, explicitly influenced by relativity theory, does not suffice to
capture the non-local features of quantum mechanics, which are exploited in
quantum information. Perhaps it is not too fanciful to see here in microcosm
some of the foundational obstacles to formulating an adequate theory of quantum
gravity!

The further elaboration and deepening of this nexus of ideas offers many in-
teresting challenges. In particular, a full analysis of distributed quantum compu-
tation, e.g. quantum security protocols, which should take into account both the
quantum and the classical ingredients of the protocols, and also reflect enough
of the spatio-temporal structure to capture the salient distributed features, will
require a deeper understanding of the ingredients we have assembled here, and
of how they may be related and combined.
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Abstract. Name passing calculi are nowadays an established field on
its own. Besides their practical relevance, they offered an intriguing chal-
lenge, since the standard operational, denotational and logical methods
often proved inadequate to reason about these formalisms. A domain
which has been successfully employed for languages with asymmetric
communication, like the π-calculus, are presheaf categories based on (in-
jective) relabelings, such as Set I. Calculi with symmetric binding, in the
spirit of the fusion calculus, give rise to new research problems. In this
work we examine the calculus of explicit fusions, and propose to model
its syntax and semantics using the presheaf category SetE, where E is the
category of equivalence relations and equivalence preserving morphisms.

1 Introduction

Among the many research themes Ugo Montanari considered in his carrier, he
was always concerned with the semantics of interactive systems. In our work we
consider a few topics, related to such a large area, that always interested Ugo,
namely final semantics, coalgebras, names and name fusions, and constraints.

Denotational Semantics via Final Object. In [35] Scott and Strachey intro-
duced denotational semantics as a way of formalizing the meaning of program-
ming languages: to each expression of the language a denotation is assigned, i.e.,
an object in a mathematical domain. In their original proposal, each program de-
notes a continuous function on a partially ordered set, mapping each input of the
program into the corresponding output. Despite its expressiveness, the approach
is less adequate in modelling the semantics of interactive systems : indeed, in this
case the non-deterministic behaviour of a program is more important than the
function it computes: thus, these systems can not be simply denoted as if they
were input-output functions.

An important tenet of denotational semantics is that it should be compo-
sitional, i.e, the denotation of a program expression has to be constructed by
the denotation of its sub-expressions. This property allows one to reason induc-
tively on the program structure, providing a general methodology for proving
properties of programs.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 544–562, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A lot of effort has been spent to give compositional denotational semantics
to concurrent programming languages. Usually, this has been accomplished by
restricting the focus to simple computational models exhibiting fundamental as-
pects of concurrent computations. Amongst the various proposals, process cal-
culi are one of the most successful: a set of basic operators defines the syntax
of the calculus (more formally, the set of operators is a signature and the ex-
pressions of the language are the elements of the initial algebra associated to
such a signature) and for each operator there is a set of (SOS [32]) rules de-
scribing the behaviour of the composite expression in terms of the behaviours
of its sub-expressions. The resulting operational semantics is usually a labeled
transition system (lts) where labels represent interactions amongst the various
sub-expressions (representing components) of an expression (a system).

Moreover, Universal Coalgebra [33] provides a good categorical framework
for the denotation of process calculi. Given a behavioural endo-functor B, one
can define the category of B-coalgebras and B-cohomomorphisms. By choosing
a certain endo-functor on Set (i.e., the category of sets and functions), we get
the category of all labeled transition systems and “zig-zag” morphisms (i.e.,
morphisms that both respect and reflect transitions). This category has a final
object F, i.e., from every lts there is a unique morphism to F.

In this setting, one can easily define the denotation of an lts as its image
through this unique morphism. This idea, that nowadays is called final semantics,
was originally proposed for abstract data types by Giarratana, Gimona and
Montanari in [20] and it is still central in Ugo’s work (see e.g. [11,2]).

Compositional Denotational Semantics via Initial and Final Object.
This kind of representation is not completely satisfactory, because the intrinsic
algebraic structure of states is lost, and compositionality of denotational seman-
tics is not reflected in this model. In [37], Turi and Plotkin provide a solution by
means of bialgebras. These are pairs composed of a Σ-algebra and a B-coalgebra
for Σ and B two endo-functors on Set related by a distributive law λ. Roughly,
they have shown that providing a set of SOS rules (in some well-behaved format)
corresponds to defining λ; the syntax of the formalism is the initial algebra for
Σ and the semantics domain is the final coalgebra for B. This uniquely induces
a (bialgebraic) morphism (representing the denotational semantics) that maps
each element of the initial Σ-algebra (i.e., each term of the syntax) into the final
B-coalgebra (representing the denotation of the terms). Since morphisms also
respect the operations of Σ, the denotational semantics is also compositional.

This approach is general enough to allow one, by simply modifying either
the base category or the associated endo-functors, also to handle sophisticated
process calculi having complex variable binding (like the value passing CCS [25]
and the π-calculus [26]). More precisely, in order to represent both syntax and
semantics, one has to consider proper endo-functors not on Set , but on categories
SetC of covariant presheaves over some C. These are functors from a generic
category C of interfaces and contexts to Set . Intuitively, a presheaf maps each
object i of C to the set of states having i as interface, and each arrow c : i → j
to a function turning states with interface i into states with interface j.
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As an example, abstract syntax with variable binding has been tackled as
a category of endo-functors Σ over SetF [14,21], for F the category of finite
cardinals (i.e., sets of variables) and all functions (i.e., variable substitutions).

Models for Names. The index category C can be made up of a single object.
This is the case of presheaves in the category SetG with G the group of per-
mutations over natural numbers. This category is essentially the same as the
nominal sets of Pitts and Gabbay [16], used to model abstract syntax with vari-
able binding, and of permutation algebras, that have been exploited to give a
final semantics of the π-calculus [28,6]. This corresponds to an untyped view of
interfaces, where the actual element of interest is the action of a presheaf on the
arrows of the one-object category.

Having more objects in the index category corresponds instead to a typed
framework. One of the most widely investigated cases is I, that is, the full sub-
category of F containing only injective morphisms. Both the early and late se-
mantics of the π-calculus [26] can be characterized by proper endo-functors on
Set I [36,13,15]. Intuitively, any object i of I is mapped to a set of processes whose
free names belong to i, and an arrow is mapped into an injective renaming. In
this perspective, it is easy to understand the roots of a problem which is common
to the typed and untyped case: interfaces of π-processes can always be enlarged
(an operation that corresponds to allocate new names) but never contracted (so
that two names can never be coalesced).

A solution to this problem was proposed by Montanari and Pistore by intro-
ducing history dependent automata [27,31], where at any step of the execution
a set of names can be junked away, obtaining an operational model where finite
state verification of name passing calculi can be carried out in interesting cases.
A coalgebraic formulation of HD-automata was given in [10,11], by employing
the category of named sets.

An equivalence result between the categories of named sets, permutation al-
gebras, SetG and the full subcategory of Set I of pullback preserving functors
(also known as Schanuel topos) has been given by the fourth author, Marino
Miculan and Ugo in [17]. An extension of this result to the associated categories
of coalgebras has recently been proposed in [9], by the third author and Ugo.
There, a garbage-collecting functor for name abstraction is defined on named
sets, allowing the coalgebraic framework of HD-automata to be generalised to
calculi different than the π-calculus.

In the previous proposals, arrows of the index category are just injections
of names, and thus names can not be fused. In order to tackle non injective
substitutions of names, one can consider different index categories. The open
semantics of the π-calculus [34], for example, can be defined using an endo-
functor on SetD, for D the category of irreflexive relations and relation-preserving
morphisms [19,24]. Roughly, every object is a set of names equipped with an
irreflexive relation such that two related names are considered distinguished.
Morphisms are functions between sets of names that preserve the relation and
thus they can not coalesce those names that are considered distinct.
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Explicit Fusions. In this work we introduce the category E, of equivalence
relations, in order to properly model explicit fusions [39], i.e., processes that
equate two names, allowing all the processes running in parallel with them to
use one name in place of the other. Our interest for the explicit fusion calculus
comes from the fact that it lies half-way between the fusion calculus [30] (to
which Ugo has devoted much attention in the last years [4,22,18,12,8]) and the
CC-Pi [7]. Indeed, explicit fusions are just instances of the more general concept
of named c-semiring introduced in [7] by the second author and Ugo.

Each object of E is an equivalence relation over a set of names. Analogously to
I, morphisms preserve names (i.e., names can not be junked away), but equiva-
lence classes can be enlarged, thus obtaining semantical fusion of names without
loosing any syntactic name. We prove that E is suitable for providing both syntax
and semantics to the calculus of explicit fusions [39] by showing both a syntactic
endo-functor Σ and a behavioural endo-functor B on SetE.

Unfortunately, it seems hard to recover the Turi-Plotkin framework, since the
operational behaviour of explicit fusion calculus is not compositional with re-
spect to the semantical name fusions provided by the arrows of E. This might
suggest that E is not adequate for our purposes, but the main result states that
inside-outside bisimulations [38] (i.e., the standard bisimulation of explicit fu-
sion) are in one to one correspondence with coalgebraic bisimulations for the
endo-functor B. Moreover, considering a proper saturated semantics [29,1] in
SetE might bring to a compositional operational semantics, and thus to a bial-
gebraic representation.

Thus the paper presents no conclusive result for the denotational semantics of
explicit fusion, but just a solid base for further studies. Moving beyond explicit
fusion, E is the first step toward a deeper understanding of named c-semirings
and then for a Turi-Plotkin characterization of CC-Pi [7]. Moreover, by slightly
modifying E, thanks to its definition as a comma category, one can obtain a cate-
gory of equivalence relations and distinctions that is suitable for open π-calculus
[34] and D-fusion [4]. Finally, these formalisms share a symbolic semantics that
can not be naively tackled through coalgebras. Giving a presheaf semantics for
them will hopefully allow these symbolic semantics to be characterized through
normalized coalgebras as shown by the first author and Ugo in [2,3].

Synopsis. In § 2 we give a brief overview of the explicit fusion calculus. In § 3
we introduce the category E of equivalence relations. In § 4 we show how to
use E to characterise an abstract syntax of explicit fusion calculus as an initial
algebra. In § 5 we define a behavioural endo-functor B on SetE and we state
a correspondence between inside-outside bisimulations and B-bisimulations. In
§ 6 we draw some conclusions and provide directions for future work.

2 Background on the Explicit Fusion Calculus

The explicit fusion calculus is a variant of the π-calculus that aims at guaran-
teeing asynchronous broadcasting of name equivalences to the environment. In
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order to ease its introduction, this section presents the explicit fusion calculus in
the standard π-calculus fashion rather than in the “commitment” style of [39].

Assume a set of names N , ranged over by x, y, . . . The (explicit) fusion
processes, ranged over by P, Q, . . . are defined by the syntax in Fig. 1(a). The
τ prefix stands for a silent action, while the complementary output x〈y〉 and
input x〈y〉 prefixes are used for communications. Unlike π-calculus, the input
prefix is not a binder, hence input and output operations are fully symmet-
ric. As usual, 0 stands for the inert process, P | P for the parallel composi-
tion, !P for the replication operator and (x)P for the process that makes the
name x local in P . An explicit fusion x = y is a process that exists concur-
rently with the rest of the system and that enables to use the names x and y
interchangeably.

We now define the structural congruences ≡1 and ≡2 as the least congruences
over processes closed with respect to α-conversion and satisfying the axioms in
Fig. 1(b) and Fig. 1(c), respectively. Finally, we define the structural congruence
≡ as the transitive closure (≡1 ∪ ≡2)∗. With respect to the standard structural
congruence of fusion processes, here we changed a few axioms. In particular,
we weakened the axiom called reflexivity, equating x = x and 0: in our case,
we offer a name-preserving version, equating x = x | P with P , whenever P
contains x free. Moreover, instead of the subtraction axiom, that equates the
processes (νx)(x = y) and 0 (thus allowing us to remove names from an equiv-
alence relation via restriction), we prefer to add an explicit α-conversion law
for our processes, which is apparently the reason underlying the introduction of
the subtraction axiom in [39]. Summing up, we considered a set of axioms guar-
anteeing that any parallel composition of fusions is closed with respect to the
composition with any fusion, when that fusion occurs in the induced equivalence
relation plus three axioms. These axioms (the left-most of Fig. 1(c)) ensure what
is called small-step substitution in Fig. 2 of [39]: this is further made explicit
by Proposition 1, taking into account the equivalence relation Eq(P ) (Fig 1(d)),
specifying the name equivalences induced by a process P : it properly general-
izes [39, Lemma 5].

Proposition 1 (decomposition). Let P , Q be processes such that P = C[Q]
for a unary context C[−] that does not bind the names in fn(P ) (i.e., such that
the placeholder − does not fall in the scope of a restriction operator (x), for any
x ∈ fn(P )). Moreover, let EP be the process

∏

{x,y∈fn(P )|(x,y)∈Eq(P )}
x = y

(where
∏

denotes the multiple parallel composition). Then, P ≡2 C[EP | Q].

The rules of the operational semantics, as depicted in Fig. 1(e), recall the rules
of the π-calculus. We assume a set of labels

L = {τ, z〈y〉, z〈y〉, z(w), z(w)}
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where z, y are free and w is bound. We let λ, λ1, . . . range over L. By Eq(P ) �
λ1 = λ2 we mean that P contains enough fusions to interchange λ1 and λ2.
Formally, we have

Eq(P ) � τ = τ

Eq(P ) � z〈y〉 = x〈w〉 if (z, x), (y, w) ∈ Eq(P ) (similarly for output)

Eq(P ) � z(v) = x(v) if (z, x) ∈ Eq(P ) (similarly for output)

Unlike the π-calculus, the synchronization of two complementary processes
x〈y〉.P and x〈z〉.Q yields an explicit fusion y = z rather than binding y to
z. According to rule (fus), a process can undergo any transition up to inter-
changing names that are fused. For instance, a process x = y | x〈z〉.P can make
both actions x〈z〉 and y〈z〉.

In [38] several bisimulations have been proposed for the explicit fusion calcu-
lus: they were all proved to coincide, and in fact to be congruences. For conve-
nience, as a reference semantics we consider the inside-outside bisimulation that
is much like π-calculus open bisimulation.

Definition 1 (inside-outside bisimulation). Let R be a symmetric relation
on fusion processes. We say that R is an inside-outside bisimulation if whenever
P R Q holds then

1. Eq(P ) = Eq(Q);
2. If P

λ→ P ′ with bn(λ) ∩ fn(Q) = ∅ then Q
λ→ Q′ and P ′ R Q′;

3. P | x = y R Q | x = y, for all fusions x = y.

We let ∼io denote the largest such bisimulation, the inside-outside bisimilarity.

According to clause 1, two processes x = y and 0 are not bisimilar, since Eq(x = y)
and Eq(0) differ. However, bisimilarity is not name preserving, so that 0 is indeed
bisimilar to x = x. Finally, note that clause 3 allows bisimilarity to distinguish the
following processes (inspired by an example described by Boreale and Sangiorgi [5]
for the π-calculus)

P =!y〈〉.x〈〉.τ.z〈〉 | !x〈〉.y〈〉.τ.z〈〉 Q =!(w)(y〈〉.w〈〉 | x〈〉.w〈〉.z〈〉)

When inserted into the context | x = y, Q can perform an action
z〈〉→ after two

steps (synchronizing y〈〉 with x〈〉), while P at least after three steps.

3 A Category of Name Equivalences

The paper aims at extending the presheaf approach in order to tackle the calcu-
lus of explicit fusions. To this end, we now define a category of equivalence re-
lations E that will be used to represent (the sets of) fusion processes as a presheaf
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π ::= τ
�
� x〈y〉

�
� x〈y〉 P ::= 0

�
� x = y

�
� π.P

�
� P | P

�
� (x)P

�
� !P

(a) syntax

P |0 ≡1 P P | Q ≡1 Q | P (P | Q) | R ≡1 P | (Q | R)

!P ≡1 P | !P (x)(y)P ≡1 (y)(x)P P | (x)Q ≡1 (x)(P | Q) if x �∈ fn(P )

(b) structural congruence, I

x = y | π.P ≡2 x = y | π.(x = y | P ) x = x | P ≡2 P if x ∈ fn(P )

x = y | (z)P ≡2 x = y | (z)(x = y | P ) if z �∈ {x, y} x = y ≡2 y = x

x = y | !P ≡2!(x = y | P ) x = y | y = z ≡2 x = z | y = z

(c) structural congruence, II

Eq(0) = Eq(π.P ) = Id the identity relation

Eq(x = y) = {(x, y), (y, x)} ∪ Id smallest equivalence including (x, y)

Eq(P | Q) = (Eq(P ) ∪ Eq(Q))∗ transitively-closed union

Eq((x)P ) = Eq(P ) \ {(y, z) | x ∈ {y, z}} removing name from equivalence classes

Eq(! P ) = Eq(P ) removing replication operator

(d) equivalence relation Eq(P )

(pref)

π.P
π→ P

(comm)

P
x〈y〉→ P ′ Q

x〈w〉→ Q′

P | Q τ→ P ′ | Q′ | y = w

(par)

P
λ→ P ′ bn(λ) ∩ fn(Q) = ∅

P | Q λ→ P ′ | Q
(res)

P
λ→ P ′ x /∈ n(λ)

(x)P
λ→ (x)P ′

(open-i)

P
z〈x〉→ P ′ (x, z) /∈ Eq(P )

(x)P
z(x)→ P ′

(fus)

P
λ→ Q Eq(P ) � λ = λ′

P
λ′
→ Q

(struct)

P ≡ P ′ λ→ Q′ ≡ Q

P
λ→ Q

(e) operational semantics (omitting rule (open-o) for output)

Fig. 1. Explicit fusion calculus

E → Set . The objects of E are basically surjective functions on sets and the
arrows of E are defined by taking suitable injective functions.
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Definition 2 (The category E). The category E of equivalence relations is
the category whose objects are surjective functions h : s � t in Set and whose
arrows σ : h → h′ are pairs 〈σ1, σ2〉 of functions in Set such that σ1 : s ↪→ s′ is
injective and the diagram below commutes.

s

h
����

� � σ1 �� s′

h′

����
t σ2

�� t′

The domain s of the function h specifies a set of names while the codomain
represents a set of equivalence classes involving the names of s. Note that every
s′ has at least the same arity of s. Furthermore, the equivalence classes in t must
be preserved in t′: in other words, the equivalence classes of the names in s,
as represented in t and carried along σ1 to s′, may be either left unchanged or
further merged in t′, but they can not be broken.

Note that all arrows in E are monomorphims. We let E(h, h′) denote the set of
all arrows in E with source h and target h′. Each object h of E defines a functor
E(h, ) : E → Set as follows. Every object h′ of E is mapped into the set E(h, h′).
An arrow σ : h′ → h′′ of E is mapped in the function E(h, σ) : E(h, h′) →
E(h, h′′), defined by post-composition: for any ρ ∈ E(h, h′), E(h, σ)(ρ) = ρ; σ.

Let {�} denote the one element set, graphically represented as •, and let us
denote by 1 and E the following two objects of E (corresponding to id{�} and
[id{�}, id{�}], respectively, for the uniquely-induced arrow)

•

��
•

•

���
��

��
� •

����
��
��

•
1 E

Then, E(1, h) is the set of all monomorphisms that map � to an element
of the domain of h: hence, it is isomorphic to it. Similarly, E(E, h) abstractly
represents the set of explicit fusions x = y (for x, y different names) that hold
in h. Hereafter, we denote the set E(1, ) by Names and the set E(E, ) by Fus.

On the structure of E Consider the comma category IDSet ↓ IDSet , i.e. the
category whose objects are triples 〈s, t, h : s → t〉 and whose arrows are pairs
σ1 : s → s′, σ2 : t → t′ such that the diagram below commutes.

s

��

σ1 �� s′

��
t σ2

�� t′

Let INI : I → Set be the functor that injects the category I into Set . Consider the
category INI ↓ IDSet , where I is the category of sets and injective functions: in
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the definition above, it simply means that σ1 must always be a monomorphism.
Now, E is the full subcategory of INI ↓ IDSet , including only those objects
〈s, t, h : s � t〉 such that h is surjective.

All limits do exist in INI ↓ IDSet : they are simply computed point-wise. This
is not the case instead in E. Let us consider e.g. pullbacks: given any two arrows
〈σ1, σ2〉 : h → h∗, and 〈σ′1, σ′2〉 : h′ → h∗, their pullback exists only if either σ2
or σ′2 is mono. Note that if both components of an arrow σ are mono, then σ is
a regular monomorphism in INI ↓ IDSet (and in E as well), meaning that it can
be computed as the equalizer of two arrows.

In the following, we sometimes consider functors from E to Set that are
pullback-preserving: this fact which basically implies that all regular monomor-
phisms in E are mapped into injective functions in Set .

4 Abstract Syntax

In this section we consider the category SetE of functors from E to Set (called
presheaves over E

op) and natural transformations. This category can be used for
both the syntax and the semantics of the explicit fusion calculus.

In the syntax, objects of the so-called index category E can be viewed as
types representing the equivalence classes of process names. The presheaf for the
syntax gives, for each index h : s � t, the set of those processes that can be
typed with h, i.e., processes whose set of free names coincides with s, and whose
equivalence class is the one induced by h.

In Section 4.1 we provide an account of the concrete syntax of the explicit
fusion calculus as a presheaf, exploiting the previously defined equivalence re-
lation Eq. Then, in Section 4.3 we explain how this syntax can be described as
an initial algebra in SetE for a suitable endo-functor, preserving types. For the
purpose, in Section 4.2 we introduce a number of basic constructions that are
used as a meta-language in SetE, and are distinguishing features of this category.

4.1 Typing the Concrete Syntax

For the definition of the syntactic presheaf, for each arrow h : s � t we introduce
the notation Kerh, representing the equivalence relation induced by h (obviously
defined), and the process Ph, containing all the pairs in an equivalence relation
h, viewed as fusions (analogous to the process EP induced by Eq(P ))

Ph =
∏

{x,y∈s|h(x)=h(y)}
x = y.

Consider the functor Syn: E → Set , defined on objects as

Syn (h : s � t) = {P | fn(P ) = s ∧ Eq(P ) = Kerh ∪ Id} / ≡2 .

The intuition behind this definition is that if an agent P is in Syn (h : s � t),
then its free names are the elements of s, and its equivalence classes Eq(P ) are
exactly those described by h, modulo adding the pairs (x, x) for x �∈ fn(P ).
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The action of the functor on arrows must injectively relabel processes, whilst
it syntactically adds as many fusions as needed (actually, all of them) to put a
process in the equivalence class chosen as destination

Syn (〈σ1 : s ↪→ s′, σ2 : t → t′〉 : h → h′)(P ) = Pσ1 | Ph′

4.2 A Basic Metalanguage in SetE

Besides the usual constructors for the polynomial endo-functors (namely con-
stants, finite sums and products), SetE actually allows us to define additional
constructors that are well-suited for handling fusions.

Bottom operator F⊥. For any s ∈ Set , let s⊥ be s + {�} and for any h :
s � t, let h⊥ : s⊥ � t⊥ be the arrow [h, id{�}]. The bottom operator F⊥

is an endo-functor on SetE defined as F⊥(h) = F (h⊥) and F⊥(〈σ1, σ2〉) =
F (〈(σ1)⊥, (σ2)⊥〉).

Box operator F�. The box operator F� is the endo-functor on SetE defined
on objects and arrows as below. Let h : s � t be an object of E. Then

F�(h) =
∑

p

F (h; p)

where p : t � p(t) is a (identity preserving) morphism from t to a partition p(t)
of t. Intuitively, p is an epimorphism further merging the names in s. Choosing
p(t) as a target of p simply amounts to choose a canonical representative for
each isomorphic merging of names.

s � � ids ��

h
����

s

h;p
��

t p
�� p(t)

Let h : s � t and h′ : s′ � t′ be objects of E and σ = 〈σ1, σ2〉 : h → h′ be an
arrow of E. Then

F�(σ) =
∑

p

F (〈σ1, σ
∗
2〉)

where σ∗2 is uniquely induced by the pushout depicted in the diagram below for
each p, noting that 〈σ1, σ

∗
2〉 : h; p → h′; p∗.

s

h;p
����

�� ids � �s

h
����

� � σ1 �� s′

h′

����
p(t)

σ∗
2 ���

�
�

�
����

p t σ2
�� t′

p∗�����
�

�
�

p(t′)
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Roughly, F� may add any possible name equivalence to an equivalence relation
on s. The box operator is used in Section 4.3 to define the functor for prefixes of
the explicit fusion. Indeed, a fusion process with a prefix π.P has no equivalence
relation on its names, while P may have any equivalence.

Shift operator F δ. The shift operator is the functor defined on objects and
arrows as follows. Let h : s � t be an object of E. Then

F δ(h) = F⊥(h) +
∑

e

F ([h, e])

where e : {�} → t is a function mapping � in some element of t and [h, e] :
s + {�} � t is the function uniquely induced by the coproduct, mapping all
elements of s in h(s) and � in e(�).

Let h : s � t and h′ : s′ � t′ be objects of E and σ = 〈σ1, σ2〉 : h → h′ be an
arrow of E. Then

F δ(σ) = F⊥(〈σ1, σ2〉) +
∑

e

F (〈(σ1)⊥, σ2〉)

noting that e; σ2 : {�} → t′ and 〈(σ1)⊥, σ2〉 : [h, e] → [h′, e; σ2].
The shift operator is used to define the functor for the restriction operation in

the explicit fusion. In fact, F δ is a variant of the functor for name generation used
to model restriction in the π-calculus. The main point here is that objects are
now equivalence relations. Hence, when generating a new name x, it is necessary
to specify whether x is equivalent to any other name already occurring in the
process, or it belongs to its own equivalence class.

4.3 Explicit Fusion Syntax as an Initial Algebra

An abstract syntax for the explicit fusion calculus is captured by the initial
algebra of the endo-functor Σ : SetE → SetE that is defined below.

ΣF = 1 (inert process)
+ F (replication)
+ F × F (parallel composition)
+ F� (tau prefix)
+ Names × Names × F� (input prefix)
+ Names × Names × F� (output prefix)
+ F δ (restriction)

We briefly comment on the component functors. For the purpose, we introduce
the notation !s representing the unique morphism of type s � {�} from s to the
final object in Set , viewed as an object of E (noting that !{�} = id{�}). Moreover,
we say that an object h : s � t of E is included in an object h1 : s1 � t1, and
we write h � h1, if there exists an arrow σ : h → h1.

The functor for the inert process just returns a singleton at each stage; whilst
the functor for replication just returns an additional copy of the processes at
each stage, as if prefixing them with a suitable operator.
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Table 1. Inference rules for Abstract Syntax

0 ∈ F (id∅)
p ∈ F (h) h � h1

p ∈ F (h1)
p ∈ F (h)
!p ∈ F (h)

p ∈ F �(h)
τ.p ∈ F (h)

p ∈ F δ(h)
(�)p ∈ F (h)

p ∈ F (h) q ∈ F (h)
p | q ∈ F (h)

a ∈ Names(h) b ∈ Names(h) p ∈ F �(h)
a〈b〉.p ∈ F (h)

a ∈ Names(h) b ∈ Names(h) p ∈ F �(h)
a〈b〉.p ∈ F (h)

The three functors for prefixing are similar, the idea being of “hiding” equiv-
alences of a process P when prefixed as π.P , similarly to what is done in the
definition of Eq(P ). To this purpose, we use the functor F�: it returns, at stage
h : s � t, all the processes occurring in F (h′) for all h′ such that h � h′ � !s.

The parallel composition of two elements a ∈ F (h1) and b ∈ F (h2) can only
be found at a stage h such that h1 � h and h2 � h. Indeed, being a presheaf, the
product F ×F is a functor of type E → Set defined as (F ×F )(h) = F (h)×F (h).
Hence, we can not find the product of two elements h1 and h2 belonging to
different stages, but we have to “inject” them into a common stage h, where both
can be found. Note that, since arrows can never remove fusions from objects of
E, this requirement is equivalent to stating that Eq(P | Q) = (Eq(P ) ∪ Eq(Q))∗,
carrying on the intuition that the stage of an element always includes its fusions.

Next, we consider F δ. We can exemplify its meaning using the process (x)(x =
y). This process belongs to F δ(id{y}), since its set of free names is indeed included
in {y}. However, it is obtained from the process x = y, which does not belong
to F (id{x,y}), but rather to F (!{x,y}). Hence, to capture the process (x)(x = y)
in the abstract syntax, F (!{y,�}) has to be a subset of F δ(id{y}).

The previous discussion is summed up by Table 1. The different stages h
account for the equivalences. Note e.g. that 0 belongs to F (id∅), for id∅ the
identity of the empty set. It thus belongs also to F (id{x}) and to F (!{x,y}), for
any name x, y. However, in the latter stage it represents the process 0 | x = y.

4.4 Including Fusions, Syntactically

We could have introduced explicitly the fusions in our syntactical functor, simply
considering the functor Fus to represent them

Σ′F = ΣF (fusionless calculus)
+ Fus (explicit fusions)

This ensures, by definition, that a process x = y (for x, y different names) can
not be found in F (h) unless (x, y) ∈ Kerh, i.e. that the syntax reflects the equiv-
alences of the objects in the index category. These constraints propagate to the
parallel composition of fusions with arbitrary processes, and they induce exactly
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the equivalence relation Eq on the abstract syntax. Nevertheless, this choice re-
quires a more complex relationship between concrete and abstract functor, and
we thus preferred to deal with the fusions only at the stage level.

5 Behavioural Functor

In this section we introduce a behavioural endo-functor B on SetE. This auto-
matically derives a notion of bisimulation that remarkably coincides with inside-
outside bisimulation. In order to prove this, we will first provide a more concrete
characterization of B-coalgebras in terms of E-transition systems and then a
corresponding notion of bisimulation.

The behavioural endo-functor B describes the type of the transition system.

BF = Pf (
F� (tau action)

+ Names × Names × F� (input action)
+ Names × Names × F� (output action)
+ Names × F⊥

�
(bound input action)

+ Names × F⊥
�

(bound output action)
)

First of all, note the definition of input. This is quite different from the stan-
dard works on presheaf semantics for π-calculus, such as [15], where an exponen-
tial type was used for the input action. In the explicit fusion calculus the input
and output prefixes are completely symmetric and thus input is non-binding.
For this reason, we can safely tackle it in the same way as output.

Moreover, the destination states for τ actions are in F�. This can be under-
stood by noting that when a process performs a τ transition, then the destination
has the same names of the starting state, yet possibly with more fusions. As an
example, consider the fusion process τ.(x = y | Q). Performing a τ transition,
this process arrives into the state x = y | Q, where x and y are now identified.
Analogously for input and output actions. Instead, in the case of bound input
and bound output, the arriving state has one more name and (possibly) more
fusions (that is, it has to belong to F⊥

�
).

5.1 B-coalgebras as E-transition Systems

A B-coalgebra is a pair 〈F, β〉, for F an object of SetE (i.e., F : E → Set is a
functor) and β : F → B(F ) is an arrow of SetE, i.e., a natural transformation
between F and B(F ). In other words, β : F → B(F ) is a family of functions
(β)h : F (h) → B(F )(h) for all h ∈ E, satisfying suitable naturality requirements.
Now, let

∫
F denote the set of the elements of a functor F , namely, the disjoint

union
∑

h∈E
F (h). It is easy to note that for any functor F and h ∈ E the

following inclusions F⊥(h) ⊆
∫

F , F�(h) ⊆
∫

F and F δ(h) ⊆
∫

F hold, so
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that by construction every B-coalgebra induces a transition relation whose state
space is represented by

∫
F .

In the following, we denote the elements of a functor F as pairs h � f , for
f ∈ F (h) and we write h � f ∈ F (h′) whenever F (h) ⊆ F (h′).

Definition 3 (E-transition system). An E-transition system consists of a
presheaf F : E → Set and a transition relation −→ such that

1. states are elements of
∫

F ;
2. transitions are typed such that

– if h � f
τ−→ h′ � f ′ then h′ � f ′ ∈ F�(h),

– if h � f
z〈y〉−→ h′ � f ′ then h′ � f ′ ∈ F�(h) and z, y ∈ Names(h),

– if h � f
z(�)−→ h′ � f ′ then h′ � f ′ ∈ F⊥

�
(h) and z ∈ Names(h),

where the symmetric rules for output are omitted;
3. transitions are preserved by morphisms σ = 〈σ1, σ2〉 : h → i, that is

– if h � f
τ−→ h′ � f ′ then i � F (σ)(f) τ−→ i; p∗ � F (〈σ1, σ

∗
2〉)(f ′) for p such

that h′ = h; p,

– if h � f
z〈y〉−→ h′ � f ′ then i � F (σ)(f)

σ1(z〈y〉)−−−−→ i; p∗ � F (〈σ1, σ
∗
2〉)(f ′) for p

such that h′ = h; p,

– if h � f
z(�)−→ h′ � f ′ then i � F (σ)(f)

(σ1)⊥(z(�))−−−−−−→ i; p∗ �
F (〈(σ1)⊥, (σ2)∗⊥〉)(f ′) for p such that h′ = h⊥; p

where p, p∗, and σ∗2 are as in the definition of the box operator (see Sec-
tion 4.2) and where the symmetric rules for output are omitted;

4. transitions are reflected by morphisms σ = 〈σ1, σ2〉 : h → i, that is
– if i � F (σ)(f) τ−→ i′ � f ′ then h � f

τ−→ h′′ � f ′′ such that h′′ = h; p and
i′ = i; p∗ and F (〈σ1, σ

∗
2〉)(f ′′) = f ′,

– if i � F (σ)(f)
z〈y〉−→ i′ � f ′ then h � f

u〈v〉−→ h′′ � f ′′ such that h′′ = h; p,
i′ = i; p∗, F (〈σ1, σ

∗
2〉)(f ′′) = f ′ and σ1(u〈v〉) = z〈y〉,

– if i � F (σ)(f)
z(�)−→ i′ � f ′ then h � f

u(v)−→ h′′ � f ′′ such that h′′ = h⊥; p,
i′ = i; p∗, F (〈(σ1)⊥, (σ2)∗⊥〉)(f ′′) = f ′ and (σ1)⊥(u(�)) = z(�).

where p, p∗, and σ∗2 are as in the definition of the box operator (see Sec-
tion 4.2) and where the symmetric rules for output are omitted.

The first condition requires that the states are indexed by the object of E. The
second condition requires that the transitions have the right type (according to
the definition of B). As for the third and fourth condition, they boil down to
require that for arrow σ : h → i (that is, for each renaming of names σ1 and
each enlargement of equivalence classes σ2), the set of transitions leaving from
each state h � f has to be precisely the same as for the set of transitions leaving
from i � f ′, for f ′ the state F (σ)(f) in the stage i.

We now give the first result of our contribution.

Proposition 2. E-transition systems are in one to one correspondence with B-
coalgebras.
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Proof. Consider the requirements of E-transition system. The first condition just
states that we are working with a presheaf. The second condition imposes the
correct type. The third and fourth requirement just impose that the transition
structure is a natural transformation between F and B(F ), for each functor F .

��
We now move to introduce a suitable notion of E-bisimulation.

Definition 4. Let (F, −→) and (G, −→) be two E-transition systems. Let R ⊆⊕
h∈E

F (h)×G(h) be an E-sorted family of symmetric relations. We say that R
is an E-bisimulation if whenever fRhg then

– if σ : h → i, then F (σ)(f)RiG(σ)(g),
– if h � f

α−→ h′ � f ′ then h � g
α−→ h′ � g′ and f ′Rh′g′.

We finally state the main result of the paper.

Proposition 3. E-bisimulations are in one to one correspondence with coalge-
braic bisimulations for the endo-functor B : SetE → SetE.

Proof. Let us now consider the definition of the coalgebraic bisimulation for the
endo-functor B : SetE → SetE.

A presheaf R and two natural transformations a : R → F and b : R → G form
a bisimulation (R, a, b) between (F, α) and (G, β) if (R, a, b) is a monic span1 in
SetE and there exists in SetE a natural transformation γ : R → B(R) such that
the following commutes.

F

α

��

R
a�� b ��

γ

��

G

β

��
B(F ) B(R)

B(b)
��

B(a)
�� B(G)

First of all note that in any category C with binary product, (R, a, b) is a monic
span if and only if the induced morphism 〈a, b〉 : R → F ×G is a monomorphism.
In Definition 4 we require that R ⊆

⊕
h∈E

F (h)×G(h), and this is equivalent to
restricting to those 〈a, b〉 that are injections of R into F × G, instead of simply
monomorphisms. Therefore, the one to one correspondence holds only up to
isomorphism, as it is standard in the theory of coalgebras.

Then, the first requirement of Definition 4 coincides with the fact that R is a
presheaf and a, b are natural transformations. Indeed, if fRhg (i.e., (f, g) ∈ R(h))
and σ : h → i, then R(σ)(f, g) ∈ R(i), because R is a functor E → Set . Notice
that R(σ)(f, g) = (F (σ)(f), G(σ)(g)), when considering 〈a, b〉 as the injection
of R into F × G. Indeed, since a : R → F is a natural transformation, then
ai(R(σ)(f, g)) = F (σ)ah(f, g) = F (σ)(f) (because 〈a, b〉 is the injection and not
simply a mono). Similarly bi(R(σ)(f, g)) = G(σ)bh(f, g) = G(σ)(g).
1 The triple (R, a, b) is a monic span (or monic pair) in a category C if for all h, i ∈ C

it holds that h = i whenever h; a = i; a and h; b = i; b do.
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The second requirement of Definition 4 (together with the fact that R is sym-
metric) coincides with requiring the existence of a γ making the above diagram
commute. This is a standard reasoning in the theory of coalgebras. The inter-
ested reader is referred to [33, Example 2.1]. ��

The correspondence between inside-outside bisimulations and B-bisimulatios is
now evident. Both definitions require that the same equations must hold in the
compared processes (this is implicitly expressed in E-bisimulations by requiring
that the relation is indexed over E). Moreover, both definitions require that the
relation is closed with respect to name fusions (this is equivalent to requiring that
the relation is closed under all arrows of E). And finally, the cases of bound input
and bound output (expressed in inside-outside bisimulation by bn (α)∩fn (Q) = ∅)
is safely tackled by considering as the bound name a new name for both processes.

5.2 A Further Abstraction

We round up the section by showing an alternative definition of the behavioural
functor. The definition would allow one to observe directly the classes of name
equivalences, instead of the names themselves.

Let Equiv : E → Set be the functor defined as Equiv(h : s � t) = t and
Equiv(〈σ1, σ2〉) = σ2. The behavioural endofunctor B : SetE → SetE is formally
defined as

BF = Pf (
F� (tau action)

+ Equiv × Equiv × F� (input action)
+ Equiv × Equiv × F� (output action)
+ Equiv × F⊥

�
(bound input action)

+ Equiv × F⊥
�

(bound output action)
)

¿From one side, this implicitly mimics the rule fus, by forcing all processes to
perform actions with equivalent names. On the other hand, this could be useful
as an efficient characterization, since there would only be one transition for any
two actions from a process P , as long as they are identified by the equivalence
class Eq(P ). We leave the exploration of this functor as future work.

6 Conclusions and Further Work

In this paper, we introduced the category E of equivalence classes, and we started
the study of the presheaf category SetE. Some preliminary results, summed up
in the last section, show that the category SetE seems the right universe for
providing denotational models for the fusion calculus.

Much work remains to be done. First of all, our propositions just proved
that SetE is the right category for discussing inside-outside bisimulation, but
it is yet to be proved that the operational semantics induced by the rules in
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Fig. 1(c) coincides with the unique morphism from the initial Σ-algebra TΣ

to B(TΣ) of our construction. The main problem concerns the fact that the
operational semantics of explicit fusion calculus is not compositional with respect
to name fusion, and thus it does not correspond to any arrow in SetE (natural
transformation). A possible way out of the empasse could be to consider the
category of functors from E to Set and lax natural transformations. Another
solution might consist in considering the context transition system in the spirit
of [29,23]: for all σ ∈ E, p

σ,l−→ p′ if and only if σ(p) l−→ p′. It is evident that such
an operational semantics is clearly compositional with respect to all fusions, and
thus it is trivially an arrow in SetE.

The latter solution could lead us to a coalgebraic characterization of the so
called efficient bisimulation [38, Definition 9]. There, as in the case of open bisim-

ulation [34], instead of considering transitions p
σ,l−→ p′ for all possible σ, only the

minimal σ’s are considered. This is also similar to reactive systems, as proposed
by Leifer and Milner [23]. The exact correspondence with this approach is shown
in [3] for the case of open π-calculus, and can be trivially extended to explicit
fusion calculus. Unfortunately, the definition of efficient bisimulation is asym-
metric and thus it seems hard to characterize it through canonical coalgebras.
Probably, normalized coalgebras [2] can be fruitfully employed for this aim.

In more general terms, we would like to have a better understanding of the
properties of SetE. In particular, we plan to check if alternative characterisations
exist, mimicking the correspondence between nominal sets and Schanuel topos
holding for the subcategory of Set I of pullback-preserving functors. As a start,
we noticed that in E pullbacks exist only along regular monomorphims.

As a next step, we would like to address those calculi featuring distinctions,
such as D-Fusion [4] and the open semantics for π-calculus [34]. A suitable de-
notational model could be obtained by considering the category D of irreflexive
graphs [24]. Given the injection IND : D → Set , we should then study the
comma category INI ↓ IND, thus equipping each equivalence class (and each pair
of names belonging to them) with a suitable irreflexive relation.
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Abstract. We develop an abstract operational model for configuration manage-
ment under service-oriented computing. This semantics is based on a graph-based 
representation of the configuration of global computers and an operational model 
of service-oriented dynamic reconfiguration based on a resolution-like mechanism 
similar to concurrent constraint programming. A resolution step involves a goal 
executed by a business activity and a clause that corresponds to a complex  
service. Unification captures service discovery, ranking and selection based on 
SLA-constraint optimisation and interpretations between specifications of conver-
sations expected by the goal and provided by the discovered service. The resol-
vent is a reconfiguration of the original business activity that results from binding 
the goal with the discovered service. 

1   Introduction 

Given the breadth of Ugo Montanari’s interests and expertise, it would not have been 
too difficult to contribute a paper in an area that he has touched. To match the depth 
of his ‘touch’ is, however, a much more difficult challenge. Not many people have 
made such profound contributions to what in computer science we usually call ‘se-
mantics’, i.e. the definition of mathematical structures that explain given computa-
tional phenomena. Something that is particularly difficult in this area is to make sure 
that we do not obfuscate the subject of study. The title of this paper is a quote from 
Jan Moir, a British food critic (it is debatable whether the British know more about 
semantics or overcooked meat): her protest is (quite rightly) directed to sophisticated 
elaborations that end up destroying ingredients that would have deserved a much 
lighter touch. To some of us, Italian cuisine is precisely about simplicity and attention 
to what the products being cooked require to bring the best in them. Not surprisingly, 
Ugo excels in this tradition, and I am very fortunate to have been exposed to his culi-
nary skills as a guest at a most memorable dinner that he cooked in May 2006.  

In this paper, I have tried to pay tribute to Ugo by ‘cooking’ a ‘dish’ using some of 
the ingredients that he has cultivated (and earned fame). I should say immediately that 
this not a ribollita, quite the contrary: it is very much work in progress within the 
SENSORIA project, one of many to which Ugo has contributed during his long ca-
reer. The dish is called “semantics of service-oriented configuration management”. 

Service-oriented computing (SOC) is a new paradigm in which interactions are no 
longer based on the exchange of products with specific parties – what is known as 
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clientship in object-oriented programming – but on the provisioning of services that 
are procured through a process of discovery and negotiation that takes place at run-
time, establishing a service-level agreement between the two parties. While it is rec-
ognised that specialised programming language primitives are needed that address the 
challenges raised by this new paradigm, we are still lacking models that are abstract 
enough to understand the foundations of the paradigm independently of the way ser-
vices are programmed, namely from their current Web manifestation [3].  

In previous papers (e.g. [2,12]), we have reported on the static aspects of SRML, a 
modelling language for service-oriented computing that we are defining within the 
SENSORIA project [20]. More precisely, we have focused on an algebraic approach 
for service description at the higher level of ‘business modelling’, and on techniques 
through which (simple) services can be assembled, at design-time, to create more 
complex services. Our contributions include language primitives for orchestrating 
interactions and a logic for specifying properties of conversations. Both the language 
and the associated logic are ‘technology agnostic’ in the sense that they are based on a 
semantic model that abstracts away from the languages in which services are pro-
grammed and the middleware that supports the coordination of interactions [1,13]. 
They are also expressive enough to accommodate orchestrations programmed in lan-
guages such as BPEL [7]. 

In this paper, we address the run-time aspects that are concerned with the way con-
figurations of global computers change as services are discovered, selected, instanti-
ated and bound to the applications that procured them. Once again, our aim is to  
provide an operational model of service-oriented configuration management that is 
independent of the technologies that provide the middleware infrastructure over 
which services can be deployed, published and discovered. For this purpose, we pro-
pose an approach inspired by (soft) concurrent constraint programming [6,19]: the 
process of reconfiguration is formalised in a resolution-style operational semantics 
that builds on the declarative algebraic semantics of SRML modelling primitives; the 
process of discovery, matching, ranking and selection involves unification/matching 
mechanisms based on c-semiring based techniques for constraint satisfaction and 
optimisation [5]. Familiarity with concurrent constraint programming is not strictly 
required as the analogy is used only for putting in context the different aspects of the 
operational model and its declarative semantics.  

In Section 2, we lay the table by making precise what we mean by a configuration. 
Sections 3 and 4 address the static architectural aspects: how configurations can be 
structured in terms of business activities and services. Sections 5 and 6 address the 
dynamic aspects, i.e. how configurations change as business activities discover and 
bind to services. Throughout the paper, we make use of methods and techniques de-
veloped by Ugo and his colleagues. In Section 7, we say how we would like to con-
tinue doing so. 

2   Configurations of Global Computers 

Graphs are one of the most important commodities for any researcher working in 
computer science, a bit like hot (preferably boiling) water for cooks: they are not so 
much ingredients (i.e. they are not food as such) but enablers or domains over which 
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one can cook a semantics. Ugo has excelled in the development and use of graph-
based techniques. Our paper will also use graphs galore. 

Ugo has been involved in pioneering work on the use of graphs for modelling 
software architectures (e.g. [15]). Because our aim is to develop a semantic domain 
for the way configurations of global computers are redefined as applications execute 
and get bound to other applications that offer required services, we choose to view 
configurations as graphs constituted of components (applications deployed over a 
given execution platform) and wires (interconnections between components over a 
given communication network) in a given state of execution (as in Fig. 1).  

We denote by COMP and WIRE the set of all components and wires, respectively. 
Every component c∈COMP and wire w∈WIRE may be in a number of states (e.g. 
valuations of local state variables), the set of which is denoted by STATEc and 
STATEw, respectively. We denote by STATE the corresponding indexed family of 
sets of states.  The precise nature of these local states is of no particular importance 
for this paper. 

A state configuration SF is defined to consist of: 
• A simple graph G, i.e. a set nodes(SF) and a set edges(SF); each edge e is as-

sociated with one and only one (unordered) pair n↔m of nodes. We take 
nodes(SF)⊆COMP (i.e. nodes are components) and edges(SF)⊆WIRE (i.e. 
edges are wires). 

• A (configuration) state S, i.e. an assignment of a state S(c)∈ STATEc to every 
c∈nodes(SF) and S(w)∈ STATEw to every w∈edges(SF). 

A state configuration <G,S> can change because either the state function S or the 
graph G change. We treat these two kinds of changes separately: a computation step 
(state change) may trigger a reconfiguration step, which needs to complete before the 
next computation step is performed.  

 

Fig. 1. The graph of a state configuration with 12 components and 13 wires 
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Changes to the state result from the computations executed by components and the 
coordination activities performed by the wires that connect them. The computational 
model that we are defining for SRML is explained in detail in [1]; besides providing 
local states for components and wires, configuration states include information on 
which events are pending; state transitions account for the effects of executing events 
on the local states and publication events. Because the configuration model that we 
discuss in this paper is largely independent of the computational one (except for what 
we call internal configuration policies below), we refrain from giving a detailed defi-
nition of that model and restrict ourselves to the aspects that are essential for under-
standing the way computation steps lead to reconfiguration ones. A computation step 
relates two state configurations <G,src>→ <G,trg> by changing the state and keep-
ing the graph invariant; reconfiguration steps, which change the graph but not the 
state, are considered later in the paper. 

3   Services as Architectural Units 

Our goal is to provide a semantics for changes in the configuration of a system, i.e. its 
graph, as resulting from a service-oriented architecture. More precisely, we are going 
to present a semantics for services as the basic units of configuration management. In 
this model, changes in the configuration graph – in the components that are active and 
the wires that connect them – result from the fact that state changes can trigger the 
discovery, ranking and selection of services that give rise to the addition of new com-
ponents and wires that connect them to the rest of the configuration.  

For this purpose, we need an architectural model of services. The basic elements of 
the architectural model of SRML are called modules. Together with some of his col-
leagues, Ugo gave a complete formalisation of the static aspects of this model in [9]. 
In this paper, we recall some of its essential parts and extend it to the dynamic as-
pects, i.e. service discovery and binding.  

In Fig. 2 we present the structure of a module that defines a service provided 
through an interface CR of type Customer for booking a flight and a hotel for a given 
itinerary and dates. The service relies on a component BA of type BookingAgent that 
orchestrates interactions with a service FA of type FlightAgent (for booking flights), a 
service HA of type HotelAgent (for booking hotel rooms), a service PA of type Pay-
Agent (for handling payments), and an external component DB of type UsrDB (that 
stores information about registered users).  

Modules are also defined as graphs. Although we use the same icons for state con-
figurations as for modules, the nodes of modules are not components and the edges 
are not wires: modules involve abstract models, i.e. the labels of the graph are types, 
not instances. The types abstract from the components the business roles that they 
play in the activity performed by the service and, from the wires, the connectors that 
are responsible for coordinating the way the components interact.  

Some of the nodes of a module may consist of interfaces to a pool of shared com-
ponents: this is the case of DB of type UsrDB, i.e. a database of users. Several such 
“uses-interfaces” can be included in a module. Other nodes – PA, HA, and FA – con-
sist of “requires-interfaces” to external services that may need to be discovered for the 
service to fulfil its business goal. This goal is captured in a “provides-interface” – the 
node CR of type Customer.  
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Fig. 2. The structure of a module defining the booking service of a travel agency 

This notion of service module was inspired by concepts proposed in the Service 
Component Architecture (SCA) [21]: they are abstractions of (composite) services 
whose execution involves a number of interactions among coarse-grained components 
that perform tasks according to the underlying business logic, as well as external 
entities that also play a role in the business domain. These external parties are not 
explicitly identified in the module but only implicitly through what we have called 
external-interfaces. External interfaces are more than syntactic declarations: they are 
typed by business protocols – abstract specifications of the conversations in which the 
parties are required to be involved – or by layer protocols in the case of uses-
interfaces – abstract specifications of the remote interactions supported with the ex-
ternal party. Likewise, the components themselves are not explicitly identified in the 
module. Instead, the module includes semantic interfaces – business roles – that 
model the way interactions are orchestrated by the components.  

The operational model that we wish to present for configuration management is in-
dependent of the formalisms used for defining business roles, business protocols, 
layer protocols and connectors. Therefore, we will not discuss these formalisms in the 
paper; we assume instead that we have available sets BROL, BUSP and LAYP of 
specifications of business roles, business protocols and layer protocols, respectively 
(see [12] for an overview of the formalisms used in SRML).  

The difference between business roles and protocols is that components that corre-
spond to the business roles are created and bound to their interfaces when the module 
is instantiated (i.e. when a new session of the service is initiated) whereas the external 
services that correspond to the business protocols are bound to the require interfaces 
at run-time after a process of discovery, ranking and selection triggered according to 
the internal configuration policy of the module.  

The difference with respect to layer protocols is that these bind to shared compo-
nents that persist independently of the activities performed by the services, whereas 
business roles bind to components that are created when the session starts and have no 
persistency beyond that session. Hence, in the case of the TravelBooking service, a 
new instance of BookingAgent is generated for each new session whereas all sessions 
will share the same component that binds to UsrDB (i.e. they all share the same data-
base of users). 
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Connectors, which label wires, are triples <μA,P,μB> where: 
• P is an “interaction protocol.”  Every interaction protocol has two roles roleAP 

and roleBP, and a glue glueP. The glue is a description of the coordination 
mechanisms enforced by the protocol, which we assume to be given in a for-
malism IGLU. 

• μA and μB are ‘attachments’ that connect the roles of the protocol to the entities 
(business roles or protocols) being interconnected. 

Interaction protocols are often just straight connections between ports identifying 
which interactions in roleA correspond to which interactions in roleB. In many cases, 
the interaction glue may include the routing of events, encryption/decryption of mes-
sages, or transforming sent data to the format expected by the receiver. In a connector, 
the interaction protocol is bound to the parties via attachments: these are mappings from 
the roles to the signatures of the parties identifying which interactions of the parties 
perform which roles in the protocol. We use CNCT to designate the set of connectors. 
See [2] for a more detailed account of how connectors are formalised in SRML. In 
software architecture, one can define connectors that involve an arbitrary number of 
roles, but service-oriented architectures involve only interactions between two partners. 

In addition to a graph, a module identifies two important aspects related to the way 
a service can change a configuration:  

• An internal configuration policy (indicated by the symbol ) that identifies 
the triggers of the external service discovery process, and the initialisation and 
termination conditions of the components.  

• An external configuration policy (indicated by the symbol ) that 

consists of the variables and constraints that determine the quality profile to 
which the discovered services need to adhere.  

The configuration policies (both internal and external) are discussed below to-
gether with a formal definition of the notion of module. 

4   Business Configurations 

As already explained, we approach the operational aspects of SOC from the point of 
view of the execution of business processes: our aim is to see state configurations as a 
result of the joint execution of a number of activities that can trigger the discovery 
and binding of external services. In the previous section, we discussed how services 
define architectural units. In this section, we discuss how the configuration itself is 
structured so that these units can be plugged together. This configuration structure is 
given by what we call business activities.   

We take business activities to be characterised, in every configuration, by  

• A sub-configuration, i.e. a subset of the components, and the wires between 
them, that execute as part of the activity. 

• A workflow that implements the “business logic” of the activity.  

For instance, we would like to recognise two activities in Fig. 1 whose sub-
configurations are as depicted in Fig. 3. Intuitively, both correspond to two instances 
of the same business logic (two costumers booking their travel) but at different stages 
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of their workflow: one (launched by LUI) is already connected to a flight and a hotel 
agent (LauF and LauH, respectively) but the other (launched by AUI) is also con-
nected to a (different) flight agent (AntF) still has to find a hotel agent. Both share a 
database DB (of users), which is a persistent component. 

 

Fig. 3. The sub-configurations corresponding to two business activities 

What we are calling ‘business workflow’ is formally captured by typing the sub-
configuration of the activity by what we call an ‘activity module’. For instance, the 
activity module depicted in Fig. 4 types some of the components of the configuration 
depicted in Fig. 1 with business roles and some of its wires with connectors. 

 

Fig. 4. An activity module 
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Activity modules are like service modules except that, instead of a provides-
interface, they include a ‘serves-interface’ through which users can interact with the 
activity. This is the case of AUI of type TravUI – a user interface for travel booking. 
Like uses-interfaces, serves-interfaces are labelled by layer protocols. It is important 
to understand the difference between serves- and provides-interfaces. In the case of 
the provides-interface, the corresponding party is the customer to which the module 
will be bound to provide a service. This customer is the business activity that trig-
gered the discovery of the service, not the top layer user. The latter binds to the 
serves-interface of the activity. Hence, in the case of the business configuration de-
picted in Fig. 3, we can see components – Lau and Ant – that interact with the users of 
the activities through two interfaces (LUI and AUI, respectively). 

In summary, a module M is defined to consist of:  

• A graph graph(M). 
• A distinguished subset of nodes requires(M)⊆nodes(M).  
• A distinguished subset of nodes uses(M)⊆nodes(M).  
• In the case of service modules, a node provides(M)∈ nodes(M) distinct from 

requires(M) and uses(M). 
• In the case of activity modules, a node serves(M)∈ nodes(M) distinct from re-

quires(M) and uses(M). 
• We denote by components(M) the set of nodes(M) that are not provides(M) or 

serves(M), nor in requires(M) or uses(M). 
• We denote by body(M) the (full) sub-graph of graph(M) that consists of com-

ponents(M) and all the edges between them. 
• A labelling function labelM such that  

o labelM(n)∈BROL if n∈components(M)  
o labelM(n)∈BUSP if n∈provides(M)∪requires(M)  
o labelM(n)∈LAYP if n∈serves(M)∪uses(M) 
o labelM(e:n↔m) is a connector <μA,P,μB> such that μA (resp. μB) is an at-

tachment between roleAP and labelM(n) (resp. roleBP and labelM(m)).  
• An internal configuration policy (see below) 
• An external configuration policy (see below) 

Whereas business roles, business protocols, layer protocols and interaction proto-
cols deal with functional aspects of the behaviour of a (complex) service or activity, 
configuration policies address properties of the configuration process itself. This is 
why we focus on them in more detail in this paper. 

The internal configuration policy of a module M concerns the timing of the binding 
of its interfaces and instantiation of its component and wire interfaces: 

• Each requires-node n∈requires(M) has an associated trigger condition trig-
ger(n): this is a condition that is evaluated over the state of the configuration. 
When this condition becomes true as a result of a computation step, the  
process of discovery, selection and binding starts executing, leading to a recon-
figuration step that completes the transition of state configurations. The next 
computation step takes place in the new configuration, i.e. computations  
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resume when the components of the selected service are instantiated and con-
nected to those of the activity.  

• Each component-node n∈components(M) has an initialisation condition init(n) 
that is ensured when the component is instantiated. That is, if we have a com-
putation step <G,src>→<G,trg> followed by a reconfiguration step 
<G,trg>→ <H,trg’>, the state trg’ must coincide with trg on the components 
and wires that are carried over to H as well as ensure that init(n) holds for any 
new node n in H.   

• Each component-node has a second state condition term(n) that determines 
when the component stops executing and interacting with the rest of the com-
ponents of the activity. That is, if a computation step <G,src>→<G,trg> is 
such that term(n) holds of a component n in state trg then n can be removed 
from G in the subsequent reconfiguration step. 

The external policy concerns the way the module relates to external parties: it de-
clares a set of constraints that have to be taken into account during discovery and 
selection. Every constraint involves a set of variables that includes both local parame-
ters of the service being provided and standard configuration parameters selected 
from a fixed set – availability, response time, message reliability, inter alia. These 
standard configuration parameters may apply to the service being provided, or to the 
services that need to be procured externally, or to the wires.  

In SRML, we adopt the framework for constraint satisfaction and optimization de-
fined by Ugo and colleagues in [5], in which constraint systems are defined in terms 
of c-semirings. As explained therein, this framework is quite general and allows us to 
work with constraints of different kinds – both hard and ‘soft’, the latter in many 
grades (fuzzy, weighted, and so on). The c-semiring approach also supports selection 
based on a characterisation of ‘best solution’ supported by multi-dimensional criteria, 
e.g. minimizing the cost of a resource while maximizing the work it supports. See 
[10] for other usages of this approach for service ranking and selection. 

In summary, an external configuration policy consists of:  

• A constraint system cs(M)=〈S,D,V〉 where S is a c-semiring, V is a totally or-
dered set (of configuration variables), and D is a finite set (domain of possible 
elements taken by the variables). 

• A set sla(M) of constraints over cs(M); every constraint consists of a selected 
subset con of variables and a mapping def:D|con|→S that assigns a degree of 
satisfaction to each tuple of values. 

• For every variable in cs(M), an owner – either a node or an edge of M. 

We can now define the notion of business configuration that accounts for the 
coarser business dimension that is overlaid by services on state configurations. We 
presuppose a space A of business activities. We also assume that we have typing 
relations COMP×BROL, COMP×LAYP and WIRE×CNCT through which we can 
tell whether a given component (resp. wire) complies with a given business role or 
layer protocol (resp. connector).  
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A business configuration consists of:  
• A state configuration SF. 
• A partial mapping B that assigns a module B(a) to the activities a∈A that are 

active in SF – the workflow being executed by a in the configuration SF. 
• A mapping C that assigns an homomorphism C(a) of graphs body(B(a))→SF 

to every activity a∈A that is active in SF. This homomorphism types the nodes 
of the activity with business roles or layer protocols – i.e. C(a)(n):labelB(a)(n) 
for every node n – and the edges with connectors – i.e. C(a)(e): labelB(a)(e) for 
every edge e of the body of the activity. 

The homomorphism labels the components and wires of the state configuration 
with the business elements (business roles and the connectors) that they fulfil in the 
activity.  

5   Services as Clauses 

The operational semantics that we wish to put forward for service-oriented reconfigu-
ration is inspired by another of Ugo’s contributions to computer science, this time to 
concurrent constraint programming (CCP) in its ‘soft’ version [6]. More precisely, our 
approach is not CCP sensu stricto: it borrows aspects and techniques from CCP but it 
also adds a few (interesting) new ingredients.  

The analogy starts with the identification of every service module with a ‘clause’:  

  
P 

body(M )
← ⎯ ⎯ ⎯  R1, K, Rn   

where labelM(provides(M))=P and labelM(requires(M))={R1,…,Rn}. In logic pro-
gramming “speak”, the clause states that, to obtain P, one has to find R1,…,Rn and 
execute body(M). The execution of the body corresponds, in a sense, to the computa-
tion that, in the execution of a Horn clause, is performed to provide an ‘answer’ – 
what in logic programming corresponds to a substitution. 

Using this representation, a business activity a is of the form:  

 B(a)
← ⎯ ⎯  R1, K, Rn 

where B(a) is body(B(a)). That is, a business activity corresponds to a goal clause: 
finding R1,…,Rn and providing an answer through the execution of B(a).  

Like in concurrent logic programming (CLP), we are not interested in the “don’t 
know” (“angelic”) non-determinism that results from exploring, through backtrack-
ing, all possible alternative matches to the Ri: if we are not happy with the chosen 
service provider, we cannot go back in time and restart with another provider!  That 
is, we ‘commit’ to the choice of service provider. We deal instead with what is some-
times called “indeterminism” (or “don’t care” non-determinism), which results from 
the existence of a choice of service provider. In CLP, this choice is controlled by the 
‘guard’ assigned to each clause – a sequence of goals that appears before the body of 
the clause, which need to be executed successfully for the clause to be chosen and the 
body to be executed. Among all clauses that have satisfiable guards, one of them is 
chosen and the execution ‘commits’ to it. 
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In CCP [19], one works in a more general setting in which all processes executing 
can interact by means of a shared set of constraints to which they can add new con-
straints (‘tell’) or check if they entail a given constraint (‘ask’). Soft CCP [6] general-
ises these mechanisms even further by working over a c-semiring as used in Section 0 
for external configuration policies: one can then choose among all satisfiable clauses 
that maximise the degree of satisfaction relative to the set of constraints. In our set-
ting, this means that we work instead with clauses of the form:  

  
P 

body(M )
← ⎯ ⎯ ⎯  sla(M) | R1, K, Rn   

where the set sla(M) acts as a ‘soft-guard’.  
As explained later in the paper, when the discovery of a requires-interface Ri of an 

activity  

  B(a)
← ⎯ ⎯ sla(a) | R1, K, Rn  

is triggered, the matching process identifies service modules (clauses) M 

  
P  

body(M )
← ⎯ ⎯ ⎯  sla(M ) |  T1, K, Tm  

and a ‘unifier’-morphism ρ that is an interpretation between Ri
 and P, and makes the 

combination sla(B(a))⊕R,ρsla(M) of the sets of constraints of B(a) and M consistent. 
The selection of the clause (service provider) is made among those that maximise 

the degree of satisfaction of the combined set of constraints. The resolvent is another 
goal clause corresponding to the reconfiguration of the business activity a:  

  ′ B (a) 
← ⎯ ⎯ ⎯  sla'(a) |  R1, K, Ri−1, T1, K, Tm , Ri+1, K, Rn  

where B’(a)=body(B(a)⊕R,ρM) and sla’(a)=contract(sla(B(a))⊕R,ρsla(M)) as defined 
below. That is, B’(a) is the body of the new workflow of the activity a that results 
from the binding with the discovered service and sla’(a) is the contract negotiated 
between a and M, which extends the amalgamated set of constraints of both a and M. 
That is, from the point of view of CCP, new constraints are added to the current set of 
the activity (each activity has its own set of constraints and its execution interferes 
with other activities only through the shared persistent components). 

When a state is reached in which the activity a is an empty clause of the form 

 B(a) 
← ⎯ ⎯ sla(a)  

the resolution process for that activity will have ended, meaning that the activity does 
not need any external services and will continue executing according to the same 
workflow until completion (though one may simplify the configuration by removing 
components as they finish executing). By then, all relevant quality-of-service vari-
ables will have been instantiated according to sla(a). 

However, one may not need to discharge all the requires-interfaces (i.e. bind them 
to service providers). The resolution step does not spawn immediately all the body 
goals in parallel; instead, we wait for the triggers declared for each goal Ti (in the 
example above) to become true in order to launch the corresponding discovery, rank-
ing and selection process. Notice that the evaluation of the triggers will change as 
execution proceeds. This is because the body B(a) of the activity will be executing 
and changing the state over which the triggers are evaluated, and sla(a) will itself 
change as new constraints are added. From the point of view of concurrent program-
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ming, this means that the goals are guarded by their triggers, i.e. they are of the form 
(ask(trigger(ni))→Ri) where ni is the node labelled by Ri and ask(c) checks if condi-
tion c is entailed by the current state and set of constraints.  

Because the state may change, what matters is not so much the consistency of the 
trigger with the current state and sla, but the fact that it may become true in a future 
state. However, contrarily to CCP, we do not take non-satisfiability as failure. As seen 
in Section 0, the internal configuration policy contains a termination condition for 
each component interface that determines when the execution of the instances should 
stop. For any (ask(trigger(ni))→Ri) still outstanding when all components have termi-
nated, the condition trigger(ni) will not be satisfiable in time, which we do not con-
sider to be a failure. Therefore, the components that are delivering the service may 
finish executing their (distributed) workflow without having triggered all the condi-
tions in the service internal configuration policy.  

6   Reconfiguration as Resolution 

In logic programming, different strategies may be adopted for choosing the next query 
to be processed, which in our case means the next service to be discovered. In our 
model, this choice is given by the occurrence of triggers. As mentioned in Section 0, 
every module declares, as part of its internal configuration policy, the triggering con-
ditions that apply to their requires-interfaces. Given a business configuration 
BC=〈<G,S >,B,C 〉 and an activity a, each condition trigger(r) is evaluated over the 
state S. If the condition trigger(R) for a given requires-interface R holds in BC, the 
“unification” process is launched, which should return a service that “best” fits the 
business protocol labelB(a)(R) and the external configuration policy of B(a).  

In our setting, this unification process involves three steps, which we can outline as 
follows:  

• Discovery. This step consists in finding the services – among those that are 
able to guarantee the properties of the business protocol labelB(a)(R) associated 
with R – with which it is possible to reach a service-level agreement.  

• Ranking. For each service M discovered in the previous step, we calculate the 
most favourable service-level agreement that can be achieved – the contract 
that will be established between the two parties if M is selected. This calcula-
tion uses a notion of satisfaction that takes into account the preferences of the 
activity a and the service M.  

• Selection. Select one of the services that maximises the level of satisfaction of-
fered by the corresponding contract. 

We are now going to define each of these steps in more detail, though most of the 
technical aspects need to be consulted in [5] and [13,14]. Consider a business configu-
ration BC=〈 SF,B,C 〉 and let R be a requires-interface of a business activity a such 
that trigger(R) holds in SF. The discovery phase returns all the service modules M 
that satisfy the following properties: 

• There is a specification morphism ρ: labelB(a)(R)→labelM(provides(M)), i.e. 
the behavioural properties offered by the provides interface of the candidate 
service module entail the properties required by the requires-interface of the 
activity up to a suitable translation between the languages of both. 
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• The constraint system cs(M) of the external policy of M is compatible with that 
of cs(B(a)). This means that we can extend the mapping ρ in such a way that, 
for every variable v in cs(B(a)): 

• if owner(v)=R, there exists ρ(v) in cs(M) such that type(v)=type’(ρ(v)) and 
owner’(ρ(v))=provides(M); 

• if owner(v) is a wire i↔R then, for every wire w’ in M of the form pro-
vides(M)↔j, there is a variable ρ(v,w’) in cs(M) s.t. owner’(ρ(v,w’))=w’ and 
type(v)=type’(ρ(v,w’)).  

• The combination sla(B(a))⊕R,ρsla(M) of the sets of constraints of B(a) and M is 
consistent (as defined below). 

Intuitively, compatibility means that each discovered service needs to support the 
properties required by the activity through the business protocol associated with R and 
the negotiation of the configuration parameters associated with R, i.e. those configura-
tion parameters that belong to R or to the wires that connect R to the components of 
the activity module. The first condition (entailment of properties) is handled through 
the logic that is adopted for specifying business protocols (see [12] for a flavour of the 
logic used in SRML). The second condition ensures that is indeed possible to achieve 
a service-level agreement between the activity and the service module. Compatibility 
of the constraint systems of B(a) and M relative to R ensures that they can be com-
bined, which gives rise to another constraint system.  

The combined constraint system cs(B(a))⊕R,ρcs(M) is defined as follows: 

• Its domain D” is the union D∪D’ of the domains of cs(B(a)) and cs(M). 
• Its set of variables V is the disjoint union of cs(B(a)) and cs(M) except for all 

pairs v|ρ(v) and v|ρ(v,w’), which give rise to variables (those involved in the 
negotiation). Notice that, if owner(v) is a wire i↔R, then we may end up with 
several “aliases” v|ρ(v,w’), one for each wire w’ in M of the form pro-
vides(M)↔j. We denote by neg(R,ρ) the set of such variables. 

 

Fig. 5. The elements involved in unification 
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The combined set of constraints sla(B(a))⊕R,ρsla(M) is defined by ‘lifting’ the con-
straints of sla(B(a)) and sla(M) to the new constraint system. 

In order to illustrate these constructions, consider that, at a certain point of the exe-
cution of the workflow of the business activity A_ANT0 in Fig. 5, the condition trigTA 
becomes true and triggers the unification process for TA. For the service module 
TRAVELBOOKING to be discovered, we would need to  

• Establish a specification morphism between TravelAgent (the business proto-
col that types TA) and Customer (the business protocol that types the provides 
interface CR of TRAVELBOOKING) showing that the properties required in Trav-
elAgent are entailed by those of Customer. 

•  Check that the constraint systems of A_ANT0 and TRAVELBOOKING are com-
patible. 

Finally, we can discuss how contracts are established. Together with the set 
neg(R,ρ) of the variables being negotiated (those in the domain of ρ), the set of con-
straints sla(B(a))⊕R,ρsla(M) defines a constraint problem. In the c-semiring frame-
work, the solution of this constraint problem is again a constraint and, hence, it as-
signs a degree of satisfaction to each possible tuple of values for the variables in 
neg(R,ρ). Ranking a discovered service M in our framework consists in finding an 
assignment that maximizes the degree of satisfaction. The constraint that results from 
the negotiation is denoted by contract(B(a)⊕R,ρM). The selected service is one with 
maximal rank.  

It remains to define the new business configuration that results from the process of 
discovery, ranking and selection – what we could call the ‘resolution step’ using the 
analogy with logic programming. This includes the new state configuration that re-
sults from instantiating the selected service over the current configuration and binding 
it to the business activity a that triggered the process, and the typing of the business 
activity with a new module. 

We start by defining the activity module that will type a in the new business con-
figuration. Consider that a service module M is returned by the selection process upon 
the occurrence of trigger(R) where R is a requires-interface of B(a). The binding of R 
with an instance of M involves the assembly of modules B(a) and M, giving rise to a 
new module that corresponds to the new execution plan of a. This new module is the 
composition B(a)⊕R,ρM (depicted in Fig. 6 for A_ANT0 and TRAVELBOOKING) defined 
as follows: 

• The graph of B(a)⊕R,ρM is obtained from the sum (disjoint union) of the graphs 
of B(a) and M by eliminating the nodes R and provides(M), and adding an 
edge i↔j between any two nodes i and j such that i↔R is an edge of B(a) and 
provides(M)↔j is an edge of M. The requires-interfaces are those of B(a), ex-
cept for R, and those of M. Given that provides(M) has been eliminated, there 
are no provides-interfaces; we obtain an activity module B that defines the new 
execution plan of the activity a. 

• The labels of the resulting graph are inherited from the graphs of B(a) and M, 
except for the new edges i↔j that result from the binding of R and provides(M) 
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through  the morphism ρ. These are calculated by composing the connectors that 
label i↔R and provides(M)↔j. This process of composition is detailed in [13]: 
basically, we need to compose the glues of the connectors through the roles that 
have been bound through the signature morphism.  

• The external configuration policy is contract(B(a)⊕R,ρM) and the triggers, ini-
tialisation and termination conditions of the internal configuration policy are 
all inherited from B(a) and M. 

We take this module to provide the reconfigured execution plan of the business ac-
tivity a. We can now define the new state and business configurations that result from 
the discovery and binding processes. The current state configuration is modified as 
follows:  

• New components (nodes) are added to the service layer, which are typed by 
the business roles of components(M). 

• New wires (edges) are added that are typed with the connectors that link to-
gether the new components introduced in the previous step. 

• New wires are added between the new components and the ones that were al-
ready present in the configuration, which are typed by the composed connec-
tors that result from the bindings. 

• New wires are added that bind the new service components to the shared per-
sistent components, which are typed by the layer protocols of uses(M). Notice 
that we do not create new shared persistent components (instances) in this pro-
cess: such components are used, not created by services. 

• The new components and wires are initialised so as to satisfy the internal con-
figuration policy of M. 

The new business configuration B’ is the same as B except for activity a for which 
B’(a) is B(a)⊕R,ρM. The homomorphism is as defined by the typing of nodes and 
wires discussed above.  

 

Fig. 6. A new session of TravelBooking starts and reconfigures the workflow of ANT 
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7   Final Tasting 

We cooked a dish using some of the ingredients that Ugo has given us during his 
career. As any good amateur of Italian cuisine would have done, the chosen ingredi-
ents are of top quality. As for the dish, “provate per credere”… 

We certainly hope not to have ‘overcooked the meat’. In our opinion, widely 
shared within the SENSORIA project, there is a lot of research that needs to be done 
towards a methodological and mathematical characterisation of the service-oriented 
computing paradigm [20]. Our approach differs from other work on Web Services 
(e.g. [3]) and SOC in general (e.g. [21]) in that we address not the middleware archi-
tectural layers or low-level design issues, but what we call the ‘business level’. That 
is, we view SOC as operating over configurations of global computers that are typed 
by business activities, which may need to discover and bind to external services as 
they execute and, therefore, reconfigure their activity.  

This emphasis on the business dimension is well apparent in the semantic model 
that we proposed in the sense that it separates the reconfiguration (business level) 
from the computation dimension (state level). More specifically, our model makes 
only minimal assumptions about the computational aspects that account for state 
changes and interactions, as well as the languages and formalisms that are used for 
specifying the workflows executed by components, the interaction protocols estab-
lished through the wires, and the properties that describe the properties of services. 
The specific formalisms used in the SENSORIA Reference Modelling Language 
(SRML) are presented in [2,12]. Other popular formalisms for modelling (web) ser-
vices are those also adopted for business workflows [17,18], as well different kinds of 
process calculi (e.g. [8,10,16]). However, the workflow-oriented formalisms tend not 
to address dynamic reconfiguration and the process calculi tend not to address it sepa-
rately from computation. As far as we know, SRML is the first service-modelling 
language to separate these two concerns.  

The semantics of the actual reconfiguration operated during a resolution step was 
given based on algebraic, graph-based techniques [13,14]. The notion of configuration 
and module were formalised in terms of graphs and their labelling with different kinds 
of components, connectors, specifications and specification morphisms. In this con-
text, another interesting semantics of the reconfiguration process that we would like to 
explore is the use of graph transformations, for instance as in [9] where the architec-
tural style of SRML has been defined by Ugo and some of his colleagues.  

Another aspect worth investigating is the “interleaving” of the synthesis/resolution 
process with the execution of the activity whose workflow is being synthesised. Hav-
ing offered separate models for these two processes, we intend to investigate how the 
reconfiguration process can be analysed in conjunction with the computations that are 
being performed by components and the coordination mechanisms on the interactions 
performed by the wires. For this purpose, we will rely on calculi (e.g. [16]) and logics 
(e.g. [4]) that are being developed within SENSORIA. Another avenue that we would 
like to explore in this respect is the use of graphs as a computational model, for in-
stance as developed in [11], once more with Ugo’s contribution. 
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Abstract. We show how finite limits and colimits can be calculated
compositionally using the algebras of spans and cospans, and give as an
application a proof of the Kleene Theorem on regular languages.

1 Introduction

In Computer Science:
The state spaces of systems are often described by finite limits or colimits in a
category E parametrized by a graph G which describes the underlying geometry
of the system. It is desirable that there is also an algebraic description, so that
the limit or colimit is described by an expression, rather than geometrically.

This goes back to the beginnings of computer science, where (i) a program
may be described either by a flow chart (goto’s), or program text (while) (Böhm-
Jacopini), (ii) a language may be specified by an automaton or an expression
(Kleene). And of course it is present in innumerable areas of computer science
(Petri nets versus process algebras, wysiwig versus markup, graph versus term
rewriting, etc.) and mathematics.

In Category Theory:
Finite limits and colimits are parametrized by graphs; that is, geometrically.
We show that they can also be described by expressions in an algebra. As an
application we prove Kleene’s theorem.

Perhaps the first proposal for a strict relation between graphic and alge-
braic/categorical descriptions arose in the work of R. Penrose [20] in his graphical
description of the tensor calculus in 1971. C.C. Elgot [6] began the algebraiciza-
tion of flowcharts and circuits introducing a categorical algebra which contained
three basic operations; in circuit terminology - series and parallel composition,
and feedback. In subsequent work this algebra has been intensively developed
by S.L. Bloom and Z. Esik, with the state of progress being recorded in their
monograph [2].
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In a parallel development G.M. Kelly and M.L. Laplaza [16] gave a graphical
account of compact closed monoidal categories. Following [25], A. Joyal and R.H.
Street [9] discovered the notion of braided monoidal category, a major impulse
towards the study of geometry and higher dimensional categories. Among the
many categorical developments was the discovery in [4] of the Frobenius equa-
tion and the recognition by Joyal of its importance in 2-dimensional cobordism
theory [17].

Ugo Montanari and his collaborators have played a fundamental role in re-
lated developments in computer science, beginning with the fundamental paper
[19] relating Petri nets and monoidal categories. Gadducci and Heckel [7],[8]
discovered that a category of cospans of graphs is a free symmetric monoidal
category with appropriate structure and axioms (one being the Frobenius ax-
iom (see also [22])), and gave an algebraic formulation of double-pushout graph
rewriting.

In the last ten years there has been a flowering of applications of monoidal cat-
egories in geometry, physics and computer science. We cite just three directions
in computer science [10], [3], [1].

The algebra in which finite limits and colimits in E may be expressed compo-
sitionally is an appropriate structure on spans and cospans in the category. This
fact is a partial explanation for the algebra of spans and cospans introduced in
[12],[14] and developed in various papers, such as [13],[15],[21].

This note is an expanded version of a lecture [23] to Category Theory 2007,
Carvoeiro, Portugal, 18th June 2007. A more detailed version with full proofs is
in preparation [24].

2 What Algebra?

Assume now E is a category with finite colimits. What is the algebra in which
finite colimits in E can be described by expressions?
It is cospan(E), considered as a symmetric monoidal category in which each
object has a commutative separable algebra structure. We call a category with
such a structure wscc (well-supported compact closed [26]). To be precise:

Definition 1. A commutative separable algebra [4] in a symmetric monoidal
category is an object A equipped with four arrows

! : I −→ A, ∇ : A ⊗ A −→ A, ¡ : A −→ I, Δ : A −→ A ⊗ A

such that (A, �, !) forms a commutative monoid, (A, �, ¡) forms a cocommutative
comonoid, and the following three axioms hold

(1A ⊗ ∇)(Δ ⊗ 1A) = Δ∇ = (∇ ⊗ 1A)(1A ⊗ Δ),

∇Δ = 1A.

We can draw a picture of the last three extra axioms, namely:



Calculating Colimits Compositionally 583

==

=

The wscc structure induces a self-dual compact closed structure on the cate-
gory, and we denote the units and counits of this structure as

ηA : I → A ⊗ A (= Δ · !), εA : A ⊗ A → I (= ¡ · ∇).

For some background to these axioms see also [17].

2.1 The wscc Structure on Span and Cospan Categories

We will describe the wscc structure on cospan(E) for E a finitely cocomplete
category – the dual structure on span(E) will then be clear.

An object of cospan(E) is an object of E; an arrow of cospan(E) from A to
B is an isomorphism class of cospans from A to B; that is, of pairs of arrows

α1, α2 : A → R ← B.

We will use the notation α1, α2; A ←→ B to distinguish cospans from arrows
in E. However given any arrow f : A → B there are special cospans denoted
f = f, 1B : A ←→ B and fo = 1B, f : B ←→ A. Composition of cospans is
by pushout. Now to describe the wscc structure of cospan(E). The monoidal
structure is sum. The special arrows

! : I −→ A, ∇ : A ⊗ A −→ A, ¡ : A −→ I, Δ : A −→ A ⊗ A

are (using ∇ both for the codiagonal in E and the structure in cospan(E), and
similarly overloading the symbol !)

! = ! : 0 ←→ A, ∇ = ∇ : A+A ←→ A, ¡ =!o : A ←→ 0, Δ = ∇o : A ←→ A+A.

2.2 Cspn(Graph/|E|)

Let Graph be the category of finite graphs, let |E| be the underlying graph (possi-
bly infinite) of E. Consider Graph/|E|, the category with objects diagrams in E,
and morphisms compatible graph morphisms. Then Cspn(Graph/|E|) is the full
subcategory of cospan(Graph/|E|) whose objects are discrete diagrams in E.

Notice that colimits in this category are calculated as in Graph, and are un-
related to colimits in E.
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We will denote diagrams using set-theoretical notation; for example

{A
f ��

g
�� B}

denotes the diagram with two parallel arrows.
It will be useful to introduce a way of picturing arrows in Cspn(Graph/|E|)

(engineering notation). Represent the objects in the centre graph of the cospan
as points, and arrows in the centre as components with one input (to the left)
and one output (to the right) joined to those points which are the domain and
codomain of the arrow. Represent the graph morphisms of the cospan as input
and output wires of the whole picture.

Example 1. Consider the following cospan of diagrams

{A} �� {A
f ��

B

h

��
k ��

g
�� C} {C}�� .

This cospan could be pictured as

A
B

C
g

f h

k

3 The Theorem

Taking colimit of diagrams in E induces a functor

colim : Graph/|E| → E.

Theorem 1. The functor colim : Graph/|E| → E extends to a functor

colim : Cspn(Graph/|E|) → cospan(E)

which preserves the wscc structure.

The definition of the extended colimit is just applying colimit to cospans. It
is straightforward that this colim preserves the constants of wscc structure of
Cspn(Graph/|E|), and that colim of the cospan of the diagram

{A} �� {A
f �� B} {B}��

is f : A ←→ B. The fact that colim preserves the tensor is also clear. What
remains to prove is the fact that colim is a functor – we outline the proof below.
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Another special case of colim is worth remarking. Consider a cospan in which
the centre diagram is also discrete, so that we may consider the cospan to be of
the form

{Ai}(i∈I)
φ:I→J �� {Bj}(j∈J) {Ck}(k∈K)

ψ:J←K�� .

Then colimit applied to this cospan is

Σi∈IAi
colim(φ) �� Σj∈JBj Σk∈KCk

colim(ψ)�� ,

where colim(φ) · inji = injφ(i) (i ∈ I) and colim(ψ) · injk = injψ(k) (k ∈ K)

Remark 1. Cspn(Graph/|E|) is the result of freely adding wscc category struc-
ture to the graph |E| (a special case of this result was proved in [22]). This
means that diagrams in |E| may be written as expressions in the wscc structure
of Cspn(Graph/|E|) with constants being the cospans of the form f for arrows
f of |E|.

Then colim preserves wscc expressions, so the colimit of any diagram may be
written as an expression in cospan(E). This is the compositionality of the calcu-
lation of colimits, mentioned in the title.

3.1 The Example of Coequalizers

Consider the following cospan of diagrams in E:

{A} �� {A
f ��

g
�� B} {B}�� .

The cospan of diagrams may be pictured, as described above, as

A B.

g

f

It is clear from the picture that the cospan may be expressed as the following
composite in Cspn(Graph/|E|) :

{A} �� Δ �� {A} + {A} �� {f}+{g} �� {B} + {B} �� ∇ �� {B}.

Applying colimit we see that the coequalizer of f and g may be expressed as the
composite in cospan(E)

A �� Δ �� A + A �� f+g �� B + B �� ∇ �� B.
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The composite of these three cospans is the pushout Q of the following diagram
in E

A
1A

���
��

��
��

� A + A

∇

����
��

��
��

�
f+g

����������� B + B

1

�����������
∇

		��
��

��
��

� B
1B



��
��

��
��

A

������������������������ B + B B

������������������������

Q

It is easy to verify directly that Q so defined is the coequalizer of f and g.

Example 2. By the same kind of reasoning the colimit of the diagram in example
1 may be given by the expression of cospans in E

(εB +C) · (h+B +k) · (Δ+B) ·Δ · (∇+ εA) · (f +B +g +A) · (A+ ηB +A) ·Δ.

Remark 2. Theorem 1 has an analogue for limits. If E has finite limits the functor
lim : (Graph/|E|)op → E extends to a functor

lim : Cspn(Graph/|E|) → span(E)

which preserves the wscc structure. This permits the compositional calculation

of finite limits in E. In fact the equalizer of two arrows A
f ��

g
�� B may be cal-

culated by the same expression as that of the coequalizer above but evaluated in
span(E) rather than cospan(E), since in both cases the expression is determined
by the wscc structure of Cspn(Graph/|E|).

3.2 Sketch of Proof of Theorem

The main point to check in showing that colim is a monoidal functor is (a special
case of) the following:

Consider a diagram D of diagrams in E parametrized by a graph G; that is,
a graph morphism D : G → Graph/|E|. We can do two things.
(1) Calculate first the colimit of D in Graph/|E| to obtain a diagram in E of
which we may then take the colimit in E, that is calculate

colimE(colimGraph/|E|(D)).

(2) Calculate the colimit of

G
D �� Graph/E colim �� E

that is, calculate colimE(colimE · D).
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Lemma colimE(colimGraph/|E|(D)) ∼= colimE(colimE · D).
Sketch of proof.
It suffices to show for any X ∈ E a bijection between cocones

colimGraph/|E|(D) −→ X

and cocones
colimE · D −→ X

But it is not hard to show that both of these are equivalent to a “compatible
family” of cocones

D(g) −→ X (g ∈ G).

A Very Special Case. Consider a diagram D of diagrams in E, namely

D = {{A} {B C}}.

Then

colimE(colimGraph/|E|(D)) = colimE({A B C}) = A + B + C,

whereas

colimE(colimE · D) = colimE({A B + C}) = A + (B + C).

The lemma says exactly that the triple sum may be formed by repeated double
sums, which has as a consequence the associative law for sums. It is clear that
the general form of the lemma implies many further “associative laws” - any two
wscc expressions which yield the same diagram evaluate to the same object in
cospan(E).

3.3 Example of Theorem

A general cospan in Cspn(Graph/|E|) from Ø to Ø with centre D may be
constructed by taking the disjoint sum of all the arrows, and then equating
vertices appropriately. This yields a formula for the general colimit of a finite
diagram as follows. Let Σdom denote the graph

∑
α∈D{dom(α)} and Σcod denote

the graph
∑

α∈D{codom(α)}. Let Σα denote the graph
∑

α∈D{α}. Let Σobj

denote the diagam consisting of all the objects in the D. Finally, let idom and
icod denote the discrete cospans corresponding to the domain and codomain
functions on the arrows of the graph parametrizing D. Then the cospan may be
written

{} �� η �� Σdom + Σdom ��icod·(
�

α)+idom �� Σobj + Σobj {}��ε�� .

Evaluating this formula instead in cospan(E) gives the classical formula for col-
imits in terms of the coequalizer of two arrows from

∑
α∈D dom(α) to

∑
A∈D A

(α arrow in D, A object in D).
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4 Limits and Colimits of Monoidal Diagrams

Systems in computer science are not usually constructed from parts with one
input and one output, like arrows in a graph. Components have multiple inputs
and outputs; that is, they are arrows in a monoidal graph.

Definition 2. A monoidal graph (A, V, d0, d1) consists of a set V of vertices,
and a set A of arcs and two functions d0, d1 : A −→ V ∗ (V ∗ the free monoid
on V ). A morphism of monoidal graphs φ = (φ0, φ1) from (A, V, d0, d1) to
(B, W, d0, d1) consists of two functions φ1 : A → B and φ0 : V → W such
that φ∗0d0 = d0φ1, φ

∗
0d1 = d1φ1. We denote the category (actually a presheaf

category) of monoidal graphs as MonGraph. There is an obvious notion then of
a monoidal diagram in a monoidal category since any monoidal category has an
underlying monoidal graph.

Definition 3. Let E be a category with finite colimits, regarded as a monoidal
category with sum as tensor. A cocone q of a monoidal diagram D to an object
X is a family of arrows (qi : Ai −→ X) (Ai objects of the diagram D) such
that for any arrow f : Ai1 + Ai2 + · · · + Aim → Aj1 + Aj1 + · · · + Ajn in the
diagram

(qj1 |qj2 |qjn | · · · |qjn) · f = (qi1 |qi2 |qi3 · · · |qim).

A colimit of monoidal diagram D is an object C with a cocone q from D which
is univeral; that is, any cocone to an object X factors uniquely through q.

4.1 Cspn(MonGraph/|E|)

Let E be a category with finite colimits, regarded as a monoidal category with
sum as tensor, and let |E| denote the underlying monoidal graph of E. Then
Cspn(MonGraph/|E|) denotes the full subcategory of cospan(MonGraph/|E|)
whose objects are discrete diagrams in E. Just as with Cspn(Graph/|E|) we may
picture arrows in Cspn(MonGraph/|E|), the only difference being that compo-
nents may have several input and output wires. Monoidal colimits may also be
calculated compositionally, in the algebra cospan(E), by a result analogous to
Theorem 1. Taking the monoidal colimit of diagrams in E induces a functor

moncolim : MonGraph/|E| → E.

Theorem 2. The functor moncolim : MonGraph/|E| → E extends to a
functor

moncolim : Cspn(MonGraph/|E|) → cospan(E)

which preserves the wscc structure.

We look at one example only.
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4.2 Example

Consider the following cospan of monoidal diagrams D in E: the centre is the
diagram with three objects A, B, C, and one arrow f : A+ C → B +C; the left
hand side is the diagram {A}; the right hand side is the diagram {B}. Pictured,
the cospan is

A B

C C

f

From the picture we see immediately that this cospan of diagrams is expressible
as a composite in Cspn(MonGraph/|E|), namely

{A} ��
{A}+η{C} �� {A} + {C} + {C} �� {f}+{C} �� {B} + {C} + {C} ��

{B}+ε{C} �� {B} .

Applying monoidal colimit yields the fact that the monoidal colimit of the orig-
inal diagram is the following composite in cospan(E):

A ��A+ηC �� A + C + C �� f+C �� B + C + C ��B+εC �� B .

Hence the colimit of the original diagram can be calculated as the pushout below.

A
inj

						
	 A + C + C

A+∇
��





 f+C

��������� B + C + C
B+C+C

������� B+∇
�� B

inj

�������

A + C

��������������������� B + C + C B + C

��������������������

colim

The colimit consists of orbits of A+B+C under f . The pullback of the resulting

cospan is the partial function obtained by iterating f .

5 The Kleene Theorem

Theorem 3. (Kleene)
The languages recognized by finite state automata are the closure of singletons
under union, concatenation and iteration.

To prove this classical theorem the category E we consider is ℘(Σ∗)-Cat, cate-
gories enriched in Σ-languages. There is a composite of wscc functors

Cspn(Graph/Σ)
Φ1 �� Cspn(Graph/℘(Σ∗))

Φ2 �� cospan(℘(Σ∗)-Cat).
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which takes a labelled graph (with input and output states) to the ℘(Σ*)-
category whose homs are the languages traced out from the domain to the
codomain. The existence of wscc functor Φ1 is implied by [22], and of Φ2 (=colim)
by Theorem 1.

This is already a Kleene-type theorem since, conceptually, the Kleene Theo-
rem says that behaviour is an operation-preserving morphism from an algebra of
systems to an algebra of possible behaviours, which implies that the perceived
behaviours are the smallest class of possible behaviours closed under operations.
In this case, the algebra of systems, that is the left-hand side, is generated as a
wscc category by single labelled edges, and hence the image on the right-hand
side is also generated as a wscc category by singleton languages.

However it is not the classical Kleene theorem, since the right-hand side does
not consist of single languages and the wscc operations of cospan(℘(Σ∗)-Cat)
are not the Kleene operations. Further the functor does not lose internal states.

To obtain a theorem closer to the classical Kleene theorem we consider core-
lations between ℘(Σ*) categories, by which we mean cospans which are jointly
bijective on objects. Then we compose the above wscc functor Φ2Φ1 with a
further wscc functor

Φ3 : cospan(℘(Σ∗)-Cat) −→ corel(℘(Σ∗)-Cat)

which uses the bijective-on-objects fully-faithful factorization to obtain from a
cospan of ℘(Σ*)-categories a corelation of ℘(Σ*)-categories.

The final composite

Φ3Φ2Φ1 : Cspn(Graph/Σ) −→ corel(℘(Σ∗)-Cat)

takes a labelled graph with initial and final states to the category with objects
only the initial and final states, and whose homs are the languages traced out.

To finish a proof of the classical Kleene theorem we need to show that the
wscc operations in corel(℘(Σ∗)-Cat), at the level of languages (homs), may be
expressed in terms of union, concatenation and ( )∗.

Clearly the operation of tensor of corelations does not change the languages
which occur as homs. The problem is the composition. But in a wscc category
the composition of two arrows may be expressed in terms of the tensor and
composition with the constants of the compact closed structure; pictured, this
is the fact that:

=

So the general operation of composition in corel(℘(Σ∗)-Cat) may be reduced
to the very special case of the colimit identifying two objects in a category.
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Consider a ℘(Σ∗)-category X containing two objects x and y. The colimit cat-
egory X ′ = X/(x = y) has hom X ′(z, w) equal to

X(z,w)∪(X(z,x)∪X(z,y))·(X(x,x)∪X(x,y)∪X(y,x)∪X(y,y))∗·(X(x,w)∪X(y,w)),

expressible using only Kleene operations. Hence the result.
This proof is very close to one of the usual proofs of Kleene (if you strip

the superstructure). Notice that the passage Φ1 permits the introduction of ε
moves; that is, homs which consist of the empty word. The superstructure has
the advantage of suggesting needed generalizations, for example, to parallelism.

6 Comments

The theorem we have described concerns calculating colimits as objects, not
as functors. We have not shown the compositionality of morphisms between
colimits. We believe that this is connected with the algebra of span and cospan
as symmetric monoidal bicategories, rather than as categories. We have made
initial progress in understanding this question in [18], by considering a very
special case, where we identify the role of 2-separable object.

There is a more precise relation between this work and the paper of Ugo
Montanari and José Meseguer [19]. Monoidal graphs may be thought of as Petri
nets without markings. Processes of a net G are arrows in the free symmetric
monoidal category on G. But in [5] we show that the free symmetric monoidal
category on G is an easily identifiable subcategory of Cspn(MonGraph/G),
with the same objects as Cspn(MonGraph/G), but with arrows being cospans
of “linear monoidal diagrams”, that is, those parametrized by monoidal graphs
without loops, forking or merging. Linear monoidal diagrams are a generalization
of paths in a graph. (Other classes of free categories are similarly obtainable by
specializing the type of graphs in the cospans).
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Abstract. We recall the contribution of Montanari’s paper [GGM76] and
sketch a framework for observable behaviour specification that blends
some of these early ideas, seen from a more modern perspective, with
our own approach.

1 Introduction

The starting point for this work is a brief paper [GGM76] coauthored by Ugo
Montanari and published in 1976. This appears to be the first of many papers to
study observational aspects of the algebraic approach to software specification
and development, where the overall idea is that one should regard a specification
of a system as constraining its observable behaviour, and nothing more. Such
a view is required to cope with many examples. However, it adds significant
technical complexities to the simple and elegant algebraic approach. Some of
these remain unresolved today, even after 30 years of research.

[GGM76] starts by challenging the initial algebra approach to specifications
of abstract data types, then recently introduced by early versions of [GTW78].
Most importantly, [GGM76] points out that not all sorts of data in a data type
play the same role: one should separate the given, “old” sorts from the “new”
ones, to be specified and implemented. What really matters then is the behaviour
of the data type as viewed via these old sorts only; the implementation details of
the new sorts play a secondary role. Such observable behaviour is captured by the
evaluation function restricted to terms that are of old sorts, but in general use
the new operations and involve new sorts internally. Another crucial insight in
[GGM76] is that in general there are many non-isomorphic algebras that display
the same observable behaviour. They show that the set of isomorphism classes of
such algebras (limited to the ones generated by the old sorts) forms a complete
lattice — a nice technical result which, however, is not used to insist that any
such specific algebra is always chosen (as in the initial [GTW78] or final [Wan79]
algebra approaches) since all of them are equally adequate implementations of
the given observable behaviour. Such behaviours are specified in [GGM76] by
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giving a partial evaluation function, which assigns values to some terms of old
sorts only, marking the others as “don’t care” cases (indicated by assigning to
them a special “value” α, a notation that we will maintain here). The latter
captures the situation where the specifier permits the behaviour to be chosen
arbitrarily (but consistently with other choices) in any particular implementa-
tion. Particular implementations for such a behaviour specification in [GGM76]
are captured as (generated) algebras that conform to the specification in the
obvious sense.

Quite a few points made in [GGM76] were very insightful in their historical
context. This is the first place we know of where several key ideas appear, in-
cluding some that underlie most of our own contributions to the area. First, the
stress on the need for loose specifications, which need not determine behaviour
unambiguously (up to isomorphism) was of key importance. The results on the
lattice properties of the class of models for a given observable behaviour initi-
ated a line of research in this direction, including a debate on the issue of initial
vs. final interpretation of algebraic specifications. One aspect which disappeared
in later work was the method of presenting specifications by using an explicitly
given set of data on which the data type is based, with behaviour specified by
indicating the results of evaluation of some terms, while explicitly marking oth-
ers as “don’t care” cases. The authors’ techniques turn out to be very close to
“abstract model specifications” in the style of VDM [Jon80]. The main contribu-
tion though is the idea of limiting specifications to observable parts of behaviour
only, thus introducing observability aspects to algebraic specification.

The pioneering role of [GGM76] is underlined by the fact that it cites just
12 references, some of them unpublished, with only a few concerning algebraic
specifications. Hardly any other papers in the field could have been mentioned
then: at the time, this is essentially all that there was! This has to be contrasted
with the outburst of work in the area in the following years, as for instance
summarised in the bibliography [BKL+91] some 15 years later, or in the overview
presentations of the field in [Wir90] or the more recent [AKKB99]. One important
line of activity concerned observability aspects, with an extensive literature of its
own, including [Rei81] and numerous papers presenting further developments in
various directions, at diverse levels of abstraction. This includes for instance the
popular hidden algebra framework [GM00] and our own work [ST87] aimed at
bringing this closer to logical characterisation via elementary equivalence, with
[BH06] offering a recent elegant approach benefiting from all this experience.

We reiterate some of the ideas presented in [GGM76] here, looking back at
more than 30 years of work on algebraic specification, and trying to blend what
happened with these ideas with our current personal perspective. We sketch a
framework for observable behaviour specification and development, reconsidering
some of the work presented earlier [ST88b, BST02, BST08] in a different tech-
nical setting. It is reassuring that, after shifting to quite a different specification
technology, inspired by [GGM76], our basic ideas on system specification, archi-
tectural design and development under an observational view of specifications
still stand.
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2 Algebraic Preliminaries

Signatures and signature morphisms are as usual, except for the treatment of
the distinguished sort bool .

Definition 2.1. A signature Σ = 〈S, Ω〉 consists of a set S of sort names and
an S∗ × S-indexed set Ω of operation names, where f ∈ Ω〈s1···sn,s〉 is written
f : s1 × · · · × sn → s. We require that bool ∈ S and that no operations in Ω
take arguments in bool . If A is an S-sorted set, then Σ(A) denotes the signature
obtained from Σ by adding the elements of A to Ω as constants.

If Σ′ = 〈S′, Ω′〉, then a signature morphism σ : Σ → Σ′ consists of a mapping
of sort names, σ : S → S′, and an S∗×S-sorted mapping of operation names, with
σ〈s1···sn,s〉 : Ω〈s1···sn,s〉 → Ω′〈σ(s1)···σ(sn),σ(s)〉, such that σ(s) = bool iff s is bool .

We regard bool as the sort of logical meta-values, where operations that deliver
results in bool are like predicates. Forbidding operations taking arguments in
bool corresponds to the fact that applying a predicate to a tuple of terms would
normally yield an atomic formula, not a term. We treat predicates here as op-
erations, with this restriction, rather than as relations, for the sake of technical
convenience. Observations (see Sect. 4) will be terms of sort bool .

Algebras and their homomorphisms are defined as usual, except that we fix
the interpretation of the distinguished sort bool to be the set B = {true, false}.

Definition 2.2. Given a signature Σ = 〈S, Ω〉, a Σ-algebra A consists of an
S-sorted carrier set A and, for each operation name f : s1 × · · · × sn → s, a
function fA : As1 × · · · × Asn → As. We require that Abool = B.

A Σ-homomorphism m : A → B between Σ-algebras A and B is an S-sorted
family of functions ms : As → Bs, s ∈ S, that preserve the values of operations,
as usual. We require that mbool is the identity on B.

Given a signature morphism σ : Σ → Σ′, for any Σ′-algebra A′, its σ-reduct
is the Σ-algebra A = A′|σ given by As = A′σ(s) for s ∈ S, and fA = σ(f)A′

for f ∈ Ω. Reducts of Σ′-homomorphisms and of S′-sorted sets as well as of
(S′-sorted) functions and relations between them are defined analogously.

Signatures and their morphisms form a category, which is cocomplete. Σ-algebras
and homomorphisms between them form a category (which is also cocomplete,
with the algebra TΣ of ground Σ-terms as the initial object). For any signa-
ture morphism σ : Σ → Σ′, σ-reduct is a functor. Moreover, the assignments
of the categories of algebras to signatures, and of reduct functors to signature
morphisms form a (contravariant) functor from the category of signatures to the
category of “all” categories. This functor is continuous, so that in particular the
following amalgamation lemma holds:
Lemma 2.3. Consider a pushout in the category of signatures.

Σ

Σ1

Σ2

Σ′
�

σ1

�
σ2

�σ′2

�
σ′1

Then for any Σ1-algebra A1 and Σ2-algebra A2 with
common Σ-reduct A1|σ1 = A2|σ2 , there exists a unique
Σ′-algebra A′ such that A′|σ′

2
= A1 and A′|σ′

1
= A2;

and similarly for homomorphisms.
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Given a signature Σ = 〈S, Ω〉 and an S-sorted set A, we will consider the set
TΣ(A) of Σ-terms with “variables” in A (when A is empty, we write TΣ for
TΣ(A)). Equivalently we could take TΣ(A), where elements of A are considered
as additional constants. The distinction will be disregarded whenever convenient.
Terms that are in A will be referred to as data; the others as non-data.

Given a signature morphism σ : Σ → Σ′, S-sorted set A and S′-sorted set
A′ such that A ⊆ A′|σ, σ induces the translation σ : TΣ(A) → TΣ′(A′) in the
obvious way: σ(a) = a for data terms a ∈ A, and extending this to non-data
terms by replacing each Σ-operation name f with Σ′-operation name σ(f).

By a Σ(A)-context we mean any Σ-term t that in addition to the operation
names from Σ and data from A may contain an occurrence of a special variable
�. Then, for any term t′ ∈ TΣ(A), we write t(t′) for the term in TΣ(A) obtained
by substituting t′ for � in t.1

3 Behaviours and Behaviour Specifications

Inspired by the notion of a (complete) specification in [GGM76] as a “black-
box” view of models, we will not deal explicitly with algebras here, but rather
concentrate on the study of their behaviours. Let Σ = 〈S, Ω〉.

Definition 3.1. A Σ-behaviour is an S-sorted carrier set A together with an
S-sorted evaluation function ev : TΣ(A) → A such that: ev (a) = a for all data
a ∈ A; if ev (t′) = a′ then ev(t(a′)) = ev(t(t′)) for all terms t′ ∈ TΣ(A) and
Σ(A)-contexts t; and Abool = B. We will use evaluation functions ev to refer to
behaviours, with carriers left implicit.

A knowledgeable reader will recognise the notion of an algebra for the monad TΣ .
In this definition, it suffices to consider contexts t of the form f(a1, . . . , �, . . . , an)
for a1, . . . , an ∈ A. Examples for this and other definitions will come in Sect. 5.

Definition 3.2. Given Σ-behaviours ev1 : TΣ(A1) → A1 and ev2 : TΣ(A2) →
A2, a homomorphism m : ev1 → ev2 is an S-sorted function m : A1 → A2,
such that mbool is the identity function on B, and if m(ev1(t1)) = ev2(t2) then
m(ev1(t(t1))) = ev2(t̂(t2)) for all Σ(A1)-contexts t, Σ(A1)-terms t1 and Σ(A2)-
terms t2, where t̂ results from t by replacing data a ∈ A1 by m(a) ∈ A2.

In this definition, it is once again sufficient to consider contexts t of the form
f(a1, . . . , �, . . . , an) for a1, . . . , an ∈ A1, and t1 and t2 that are data terms.

As usual, semantics (behaviours) can be translated along signature morphisms
in the opposite direction to the translation of syntax (terms):

Definition 3.3. Consider a signature morphism σ : Σ → Σ′ and Σ′-behaviour
ev ′ : TΣ′(A′) → A′. The σ-reduct of ev ′ is the Σ-behaviour ev ′|σ : TΣ(A) → A
where A = A′|σ and for t ∈ TΣ(A), (ev ′|σ)(t) = ev ′(σ(t)).

1 To be precise, this requires a careful identification of the sort for the variable � and
the term t′ — whenever convenient, we will continue omitting such details here.
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Proposition 3.4. Given a signature morphism σ : Σ → Σ′, the σ-reduct m|σ
of any homomorphism m : ev ′1 → ev ′2 between Σ′-behaviours is a homomorphism
between their σ-reducts, m|σ : ev ′1|σ → ev ′2|σ.

There is a 1–1 correspondence between Σ-behaviours and Σ-algebras, and be-
tween homomorphisms as above and ordinary homomorphisms on algebras, as
recalled in Sect. 2. This gives an isomorphism between the category of Σ-
behaviours and the category of Σ-algebras, and carries over to the reduct func-
tors determined by signature morphisms.

Σ-behaviours are specified by indicating what the values of certain terms
should be, while explicitly indicating that the values of other terms are not
constrained. We use α for the latter “don’t care” case, following [GGM76].

Definition 3.5. A Σ-behaviour specification is an S-sorted carrier set A to-
gether with an S-sorted function h : TΣ(A) → A ∪ {α} such that: h(a) = a for
all data a ∈ A; if h(t′) = a′ then h(t(a′)) = h(t(t′)) for all terms t′ ∈ TΣ(A) and
Σ(A)-contexts t; and Abool = B. We will use functions h to refer to behaviour
specifications, leaving their carriers implicit.

It is important to understand that α (“don’t care”) does not mean that any
choice of value will do; as we will see, the choice taken needs to respect the
values of those terms that are specified as non-α.

There are two natural orderings on behaviour specifications, both reflecting
the degree to which behaviour is constrained.

Definition 3.6. Let h1 : TΣ(A1) → A1 ∪ {α} and h2 : TΣ(A2) → A2 ∪ {α} be
Σ-behaviour specifications, and let ev : TΣ(A) → A be a Σ-behaviour.

1. h2 refines h1, written h1� h2, if A1 ⊆ A2 and h2 conforms to h1, that is:
for each t ∈ TΣ(A1), h2(t) = h1(t) whenever h1(t) �= α. Then ev satisfies h1
if ev (viewed as a behaviour specification) refines h1. We write Mod(h1) for
the class of all Σ-behaviours that satisfy h1.

2. h2 strongly refines h1 if h2 refines h1 and A1 = A2. Then ev : TΣ(A) → A
strongly satisfies h1 if ev strongly refines h1, which requires A1 = A.

For any Σ-behaviour specification h : TΣ(A) → A ∪ {α} we define its free exten-
sion by adding a new value for each of the “don’t care” cases. It corresponds to
the “initial symbolic representation” of h from [GGM76] (with all sorts viewed
as “old”) and is constructed as follows. Let I extend A by all non-data terms
t ∈ TΣ(A) such that all subterms t′ of t with h(t′) �= α are data. This not only
requires that h(t) = α, but also that all subterms of t are evaluated as far as de-
termined by h. Then, the free extension of h is the only function evI : TΣ(I) → I
such that evI(t) = h(t) for all terms t ∈ TΣ(A) with h(t) �= α, ev I(t) = t for all
terms t in I \ A, and evI(t(t′)) = evI(t(ev I(t′))) for all contexts t and terms t′.
Now, ev I is not necessarily a Σ-behaviour, because Ibool need not be B. How-
ever, we can obtain a Σ-behaviour from evI by choosing a function f : Ibool → B

that extends identity on B. Let then f̂ extend f to an S-sorted function that is
the identity on all sorts other than bool , and let Î be an S-sorted set such that
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Îs = Is for all sorts s �= bool and Îbool = B. Then ev f
h : TΣ(Î) → Î, such that

evf
h(t) = f̂(ev I(t)) for t ∈ TΣ(Î), is a Σ-behaviour that satisfies h. This proves

the following:

Lemma 3.7. Every Σ-behaviour specification h : TΣ(A) → A∪{α} is satisfiable.

It is not the case that any behaviour specification h is strongly satisfiable, unless
we add the requirement that whenever h(t1) = α then there exists some a ∈ A
such that if h(t(t1)) �= α then h(t(a)) = h(t(t1)). (See condition (c) in the
definition of specification in [GGM76].)

Lemma 3.8. For Σ-behaviour specifications h1 and h2, h1� h2 iff Mod(h2) ⊆
Mod(h1).

For technical convenience, let us introduce an additional special specification Ø
that is not satisfied by any behaviour, Mod(Ø) = Ø. We extend our definition
of refinement to cover Ø in the natural way, so that Lemma 3.8 still holds.

Complex behaviour specifications can be built in a structured way from sim-
pler specifications, using standard specification-building operations such as derive
(reduct), translate, union, defined in terms of their model classes in [ST88a]. For
behaviour specifications of the form considered here, these kernel specification-
building operations may be defined “internally”.

Definition 3.9. Reduct, translation and union of behaviour specifications are
defined as follows:

1. Given a signature morphism σ : Σ → Σ′ and Σ′-behaviour specification
h′ : TΣ(A′) → A′ ∪ {α}, its σ-reduct h′|σ is the Σ-behaviour specification
h : TΣ(A|σ) → A|σ ∪ {α} defined by h(t) = h′(σ(t)) for all t ∈ TΣ(A|σ).

2. Given a signature morphism σ : Σ → Σ′ and a Σ-behaviour specification
h : TΣ(A) → A ∪ {α}, let A′s′ =

⋃
{As | σ(s) = s′} for all sorts s′ in Σ′.

First, we define an auxiliary relation between terms t′ ∈ TΣ′(A′) and data
a′ ∈ A′, written h via σ forces t′ to a′, as the least relation such that
(a) if h(t) = a then h via σ forces σ(t) to a, and
(b) if h via σ forces t′′ to a′′ and h via σ forces t′(a′′) to a′ then h via σ

forces t′(t′′) to a′.
Then the σ-translation σ(h) of h is Ø if for some term t′ ∈ TΣ′(A′) and two
distinct data a′, a′′ ∈ A′, h via σ forces t′ to a′ and h via σ forces t′ to a′′.
Otherwise, σ(h) is the Σ′-behaviour specification h′ : TΣ(A′) → A′ ∪ {α}
such that for each term t′ ∈ TΣ′(A′), h′(t′) = a′ if h via σ forces t′ to a′ and
h′(t′) = α if such a′ ∈ A′ does not exist.

3. Given Σ-behaviour specifications h1 : TΣ(A1) → A1∪{α} and h2 : TΣ(A2) →
A2 ∪ {α}, first define an auxiliary relation between terms t ∈ TΣ(A1 ∪ A2)
and data a ∈ (A1 ∪ A2), written {h1, h2} forces t to a, as the least relation
such that
(a) if h1(t) = a or h2(t) = a then {h1, h2} forces t to a and
(b) if {h1, h2} forces t0 to a0 and {h1, h2} forces t(a0) to a then {h1, h2}

forces t(t0) to a.
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Then, the union h1 +h2 of h1 and h2 is Ø if for some term t ∈ TΣ(A1 ∪A2)
and two distinct data a, a′ ∈ (A1 ∪ A2), {h1, h2} forces t to a and {h1, h2}
forces t to a′. Otherwise, h1+h2 is the Σ-behaviour specification h : TΣ(A1∪
A2) → (A1 ∪ A2) ∪ {α} such that for each term t ∈ TΣ(A1 ∪ A2), h(t) = a
if {h1, h2} forces t to a and h(t) = α if such a ∈ (A1 ∪ A2) does not exist.

Theorem 3.10. 1. Given a signature morphism σ : Σ → Σ′ and Σ′-behaviour
specification h′, Mod(h′|σ) ⊇ Mod(h′)|σ, where Mod(h′)|σ is the class of all
σ-reducts of Σ′-behaviours in Mod(h′).

2. Given a signature morphism σ : Σ → Σ′ and Σ-behaviour specification h,
Mod(σ(h)) = Mod(h)|−1

σ , where Mod(h)|−1
σ is the class of all Σ′-behaviours

with σ-reducts in Mod(h).
3. Given two Σ-behaviour specifications h1 and h2, we have Mod(h1 + h2) =

Mod(h1) ∩ Mod(h2).

Note that for some (even injective) signature morphisms σ : Σ → Σ′ and Σ′-
behaviour specifications h′ there may be no Σ-behaviour specification h such
that Mod(h) = Mod(h′)|σ.

As usual, the above are just “kernel” operations on specifications, which un-
derly more complex ones that are closer to what will be used in practical ex-
amples. For instance, if h is a Σ-behaviour specification, then we can write
behaviour specifications over signatures extending Σ as follows (also permitting
self-explanatory notational variants whenever convenient):

h then signature-extension with sort-definitions and behaviour-definition

Here, signature-extension is an extension of Σ, possibly contributing new sort
names S′ and operation names over (S ∪ S′)∗ × (S ∪ S′), resulting in a new
signature Σ′, sort-definitions provides carrier definitions for the sorts in S′, and
behaviour-definition defines the functions hs for all sorts s ∈ S ∪ S′ excluding
those in S for which no new terms arise. In all the examples below, it will be
the case that the resulting specification is equivalent to a behaviour specification
h′ : TΣ′(A′) → A′ where for each sort s in Σ′, A′s and h′s are either inherited from
h or defined explicitly in sort-definitions and behaviour-definition, respectively,
and moreover, if h′s is defined in behaviour-definition then it extends hs. In
fact, such a behaviour specification may be defined explicitly referring to the
operations introduced by Def. 3.9, similarly as the standard enrich operation is
defined in terms of translation and union [ST88a].

4 Observable Behaviour

We now begin to focus on the main theme of this work, and look at what happens
when we consider only observable behaviour. As usual, we regard values of some
sorts as directly observable while the remaining sorts are treated as internal,
with properties of their elements made visible only via observations, which are
terms producing a result of observable sort. However, the technical means used
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to achieve this are somewhat different, at least superficially, from much previous
work in this area. Without loss of generality, we take bool to be the only observ-
able sort. In view of our earlier discussion on the role of bool , this means that we
observe only the results of predicate applications, and take none of the ordinary
“data” sorts as observable. This departs from standard approaches (a recent ex-
ception being [BST08]), where choosing a non-empty set of observable data sorts
is crucial to have any observations at all and it is appropriate for this set to vary
in the process of modular development (e.g. the parameter sorts in specifications
of local constructions must be locally considered as observable). The former is
taken care of by assuming that appropriate predicates are introduced into the
specifications considered; the latter will be achieved in a technically different
way here, see Def. 7.7 below.

Definition 4.1. An observable Σ-behaviour is a function ev : (TΣ)bool → B.
The observable part of a Σ-behaviour ev : TΣ(A) → A is the restriction of evbool

to (TΣ)bool , written as Obs(ev ) : (TΣ)bool → B.

The domain of the observable behaviour Obs(ev) is properly included in the
domain of the bool component of the behaviour ev : the latter also includes ob-
servations on non-ground terms, as well as the constants true and false. Including
true and false would do no harm, but it is inappropriate to regard observations
on unreachable values of non-observable sort as relevant to observable behaviour.

When producing a specification, we are actually interested in specifying ob-
servable behaviour; what happens with non-observable components is of no in-
terest, except insofar as they affect the observable behaviour. The definition of
observable behaviour specification is analogous to the definition of behaviour
specification above and is inspired by the notion of “specification” in [GGM76],
which is highlighted as their key definition.

Definition 4.2. An observable Σ-behaviour specification is a function
h : (TΣ)bool → B ∪ {α}. An observable Σ-behaviour ev : (TΣ)bool → B satisfies
h if ev(t) = h(t) whenever h(t) �= α. A Σ-behaviour ev : TΣ(A) → A (obser-
vationally) satisfies h if its observable part Obs(ev ) : (TΣ)bool → B satisfies h.
We write ModObs(h) for the class of all such behaviours. Finally, the observable
part of a Σ-behaviour specification h : TΣ(A) → A ∪ {α} is the restriction of h
to the set (TΣ)bool ; we write this as Obs(h) : (TΣ)bool → B ∪ {α}.

Lemma 4.3. Let h : TΣ(A) → A ∪ {α} be a Σ-behaviour specification. Then
Mod(h) ⊆ ModObs(Obs(h)), that is, for all Σ-behaviours ev, if ev satisfies h
then ev observationally satisfies Obs(h).

Any observable Σ-behaviour specification h : (TΣ)bool → B ∪ {α} may be equiv-
alently considered as the behaviour specification h+ : TΣ(B+) → B

+ ∪ {α} that
adds empty carriers for all sorts other than bool and maps all terms of these
sorts to α.

Lemma 4.4. Let h : (TΣ)bool → B ∪ {α} be an observable Σ-behaviour spec-
ification. Then ModObs(h) = Mod(h+), that is, for all Σ-behaviours ev , ev
observationally satisfies h iff ev satisfies h+.
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Any notion of observable behaviour gives rise to an equivalence between behav-
iours, whereby two behaviours are equivalent iff their observable parts coincide.
This equivalence, methods for proving it, and conditions under which it is pre-
served by constructions on behaviours, is central to the study of observability
concepts in specifications.

Definition 4.5. Two Σ-behaviours, ev : TΣ(A) → A and ev ′ : TΣ(A′) → A′,
are observationally equivalent, written ev ≡ ev ′, if Obs(ev ) = Obs(ev ′).

The following definition, and its use in the sequel, is derived from Schoett’s
notion of correspondence for Σ-algebras in [Sch87].

Definition 4.6. Let ev : TΣ(A) → A and ev ′ : TΣ(A′) → A′ be Σ-behaviours. A
Σ-correspondence ρ : ev �� ev ′ is an S-sorted relation ρ ⊆ A×A′ such that ρbool

is the identity relation on B, and ρ is preserved by operations: for any operation
name f : s1×· · · .×sn → s and terms t1, . . . , tn ∈ TΣ(A) and t′1, . . . , t

′
n ∈ TΣ(A′)

of the respective argument sorts, if ev(t1) ρs1 ev ′(t′1) and · · · and ev(tn) ρsn

ev ′(t′n) then ev(f(t1, . . . , tn)) ρs ev ′(f(t′1, . . . , t
′
n)).

In fact, it is enough to consider here t1, . . . , tn and t′1, . . . , t′n to be constants in
A and A′ respectively.

Σ-correspondences can also be presented as spans of Σ-behaviour homomor-
phisms, see e.g. [BST08].

Proposition 4.7. Let ev : TΣ(A) → A and ev ′ : TΣ(A′) → A′ be Σ-behaviours.
Then ev ≡ ev ′ iff there is a Σ-correspondence ρ : ev �� ev ′.

Proposition 4.8. Consider any Σ-behaviour specification h : TΣ(A) → A∪{α}
and its observable part Obs(h) : (TΣ)bool → B ∪ {α}. For every Σ-behaviour
ev : TΣ(B) → B that observationally satisfies Obs(h), there exists a Σ-behaviour
ev ′ : TΣ(C) → C such that ev ′ satisfies h, and ev ≡ ev ′.

5 Examples

The following examples illustrate the definitions above. Examples in the sequel
will build on these and will provide further illustrations.

We give an observable behaviour specification of symbol tables for a program-
ming language with block structure and local variable declarations. This builds
on the following specification of identifiers as strings.

����� =
eqsort ident = string
opns “a”, “b”, . . . , “any string you like”, . . . : string

The notion of eqsort is borrowed from Standard ML’s “eqtypes” (equality types).
Since ident is an eqsort, it comes with an implicit operation =: ident × ident →
bool such that h�����bool (i = j) = true iff i and j are identical strings. We allow
ourselves to write i = j below in place of h�����bool (i = j) = true for brevity.



602 D. Sannella and A. Tarlecki

We use an informal notation for extending observable behaviour specifica-
tions, with a meaning that is analogous to that defined above for the case of
behaviour specifications. According to the following specification, a symbol ta-
ble records identifiers without associating any information to them. Identifiers
that are added after entering a block are forgotten once the end of the block
is reached, since identifiers within the block are no longer in scope at that
point.

����	
 = ����� then
sort symtab
opns empty : symtab

add : ident × symtab → symtab
enter : symtab → symtab
leave : symtab → symtab
isin : ident × symtab → bool

with

h����	
bool (isin(i, empty)) = false
h����	
bool (isin(i, add(i′, t))) = α if t is unbalanced

else true if i = i′

else h����	
bool (isin(i, t))
h����	
bool (isin(i, enter(t))) = α if t is unbalanced

else h����	
bool (isin(i, t))
h����	
bool (isin(i, leave(t))) = α if leave(t) is unbalanced

else h����	
bool (isin(i, L(t)))

where a (ground) term t is unbalanced if there is a subterm of t containing more
occurrences of leave than enter . Informally, such a t is erroneous in the sense
that it indicates an attempt to exit a block that has not been entered. Otherwise
we say that t is well-balanced. Then L is an auxiliary function that for each t
such that leave(t) is well-balanced yields the term immediately inside the first
use of enter that is not matched by a preceding leave (formally: L(add(i, t)) =
L(t), L(enter(t)) = t, and L(leave(t)) = L(L(t))). The meaning of an equation
like h����	
bool (isin(i, empty)) = false above is that it holds for all of its ground
instances. (That is the reason why we needed constants in �����.)
����	
 is then an observable behaviour specification over the indicated sig-

nature (i.e., the signature of �����, including =, together with the sort symtab
and the operations listed above).

A refinement of ����	
 is ����	
′, given by the following function, which
specifies choices for the cases that ����	
 leaves open. It makes no use of α, and
so it determines a single observable behaviour; all of the behaviours that satisfy it
are observationally equivalent. We have decided here that for unbalanced terms
t, isin(i, t) yields true for any identifier i.
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h����	

′

bool (isin(i, empty)) = false
h����	


′

bool (isin(i, add(i′, t))) = true if i = i′

else h����	

′

bool (isin(i, t))
h����	


′

bool (isin(i, enter(t))) = h����	

′

bool (isin(i, t))
h����	


′

bool (isin(i, leave(t))) = true if leave(t) is unbalanced
else h����	


′

bool (isin(i, L(t)))

Examples of behaviours over the signature of ����	
 are given below in
the form of SML structures. When no partiality, exceptions, polymorphism etc.
arises, as below, this amounts to a definition of an algebra and therefore of a
behaviour in our sense. Given such a structure definition ���, we will write
���.s for its carrier of sort s, and ev��� for its behaviour function.

The definitions below build on the definition of ident as the eqsort (or in SML,
eqtype) string with constants as above.

structure LST =
struct

type symtab = (ident list) list
val empty = [[]] : (ident list) list
fun add(i,[]) = []
| add(i,l::st) = (i::l)::st

fun enter [] = []
| enter st = []::st

fun leave [] = []
| leave(l::st) = st

fun isin(i,[]) = false
| isin(i,[]::st) = isin(i,st)
| isin(i,(j::l)::st) = (i=j) orelse isin(i,l::st)

end

Here, symbol tables are represented as lists of lists of identifiers. A list of iden-
tifiers represents the set of identifiers declared in a given block. A list of these
lists is used to record block structure; this works because of the way that blocks
can be nested. The behaviour determined by �� satisfies ����	
 but does not
satisfy ����	


′.
A different behaviour ��′ is obtained by making the isin function yield true

for unbalanced symbol tables. In the code for ��, we just replace the definition
of isin by

fun isin(i,[]) = true
| isin(i,[[]]) = false
| isin(i,[]::st) = isin(i,st)
| isin(i,(j::l)::st) = (i=j) orelse isin(i,l::st)

(Note that the order of clauses matters in SML: the third clause only applies to
non-empty st .) ��′ satisfies ����	
′ and so also satisfies ����	
.

A different behaviour with the same observable part as �� is given by the
following structure, in which symbol tables are represented using functions. The
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set of identifiers within a given block is represented by its characteristic function,
of type ident → bool , and a stack of these (represented as an “array” of sets,
int → (ident → bool ) together with an integer “pointer” to the top of the stack)
is used to record block structure.

structure SST =
struct

type symtab = int -> (ident -> bool) * int
val empty = (fn n => if n=0 then (fn i => false)

else (fn i => true) ,
0)

fun add(i,(st,m)) =
(fn n => if n=m

then fn j => (i=j) orelse st(n)(j)
else st(n) ,

m)
fun enter(st,m) =

if m<0 then (st,m)
else (fn n => if n>m then fn j=>false else st(n) ,

m+1)
fun leave(st,m) = (st,m-1)
fun isin(i,(st,m)) = if m<0 then false

else if m=0 then st(m)(i)
else st(m)(i) orelse isin(i,(st,m-1))

end

Now, �� and �� are observationally equivalent but there is no homomor-
phism from either to the other, even if we restrict their carriers to the values of
ground terms. However, there are correspondences ρ : ev��� �� ev�� that witness
the behavioural equivalence. One such correspondence relates all pairs 〈st , m〉
for m < 0 with the empty list, and then for m ≥ 0 it relates 〈st , m〉 with all lists
[l0, . . . , lm] such that st(i)(j) = true iff j occurs at least once in li.

6 Implementations

We write specifications because we are interested in developing programs that
implement them. One way of proceeding is top-down, by stepwise refinement:
we refine the original specification of requirements to another one that is easier
to implement by filling in design decisions such as choosing between the options
of behaviour left open in “don’t care” cases.

The issue of implementing specifications by programs is not mentioned in
[GGM76]. An elegant approach to this issue has been developed in the years
since then, coping with both observational and non-observational views of spec-
ifications. In this section and the next one we adapt this existing approach to
the present framework, using our own work [ST88b, BST02, BST08] as a basis.

To produce a program from a specification, we proceed in stages by reducing
the problem to a simpler one. At each stage, we postulate a solution to the
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simpler problem, and show by construction how to turn such a solution into a
solution to the overall problem.

Definition 6.1. Let Σ and Σ′ be signatures. A construction from Σ to Σ′,
written κ : Σ ⇒ Σ′, is a function mapping any Σ-behaviour to a Σ′-behaviour.2

Given a Σ-behaviour specification h : TΣ(A) → A ∪ {α} and a Σ′-behaviour
specification h′ : TΣ′(A′) → A′∪{α}, we say that h implements h′ via κ, written
h′ κ� h, if κ maps each Σ-behaviour satisfying h to a Σ′-behaviour satisfying
h′, i.e. κ(Mod(h)) ⊆ Mod(h′), where κ(Mod(h)) denotes the image of Mod(h)
under κ. When we want to emphasize correctness of κ in relating h and h′ rather
than the relationship between h and h′, we say that κ is correct w.r.t. h and h′.

Although the definition says that a construction κ : Σ ⇒ Σ′ is a mathematical
function, it is best viewed as the semantic function underlying a parameterised
program [Gog96], or in SML terms a functor, which produces the components
(sorts and operations) required by Σ′ when supplied with the components re-
quired by Σ. Then h′ κ� h amounts to a reduction of the task of implementing
h′ to the task of implementing h, where κ supplies code to fill in the gap.

We can easily compose successive implementations. Then, once we have re-
duced the problem to one we have already solved, we obtain a solution to the
original problem.

Proposition 6.2. If h1 κ1
� h2 κ2
� h3 then h1 κ2;κ1

� h3. Thus, if h1 κ1
�

· · · κn−1
� hn and evn satisfies hn, then κ1(· · · (κn−1(evn)) · · · ) satisfies h1.

If we regard each construction as supplying some code, then composing a chain
of constructions combines all of these program fragments into a single program.

This picture can be considerably enhanced to accommodate architectural sys-
tem design [AG97] using multi-argument constructions to combine smaller com-
ponents into a larger system — see [SST92, BST02].

A more sophisticated version of Def. 6.1 is needed to deal with the distinc-
tion between ordinary and observable behaviours. Since only observable aspects
should determine correctness of implementations, in an implementation step
h′ κ� h it is too restrictive to require κ to deliver behaviours that “strictly”
satisfy h′. We weaken this to satisfaction of only the observable part of h′.

Definition 6.3. Given a Σ-behaviour specification h : TΣ(A) → A ∪ {α} and a
Σ′-behaviour specification h′ : TΣ′(A′) → A′∪{α}, we say that h observationally
implements h′ via κ, written h′ Obs

κ� h, if κ maps each Σ-behaviour satisfying h
to a Σ′-behaviour satisfying Obs(h′), i.e. κ(Mod(h)) ⊆ ModObs(Obs(h′)). Again,
when we want to emphasize correctness of κ in relating h and h′, we say that κ
is observationally correct w.r.t. h and h′.

This definition may be phrased in terms of observational equivalence: h′ Obs
κ� h

if for every Σ-behaviour ev satisfying h, there is a Σ′-behaviour ev ′ satisfying
h′ such that κ(ev) ≡ ev ′. By Lemma 4.3, if h′ κ� h then h′ Obs

κ� h.
2 Constructions involved in practical examples may turn out to be partial functions;

this may be dealt with similarly as in [BST02, BST08], so we disregard this issue
here for the sake of simplicity.
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But now composition of correctness is not so straightforward! Since observa-
tionally correct constructions build results that observationally satisfy the result
specification given arguments that satisfy the argument specification “strictly”,
the following additional property is required to ensure that no problems arise
when constructions are composed.

Definition 6.4. A construction κ : Σ ⇒ Σ′ is stable if it preserves observa-
tional equivalence, that is, for all Σ-behaviours ev1 and ev2, ev1 ≡ ev2 implies
κ(ev1) ≡ κ(ev2).

Proposition 6.5. If h1
Obs
κ1
� h2

Obs
κ2
� h3 and κ1 is stable then h1

Obs
κ2;κ1
� h3.

This suggests that in order to compose observational implementations, we must
check that constructions are stable as well as checking that the implementing
specification of one matches the implemented specification of the other. The
definition of stability of κ : Σ ⇒ Σ′ involves quantification over all pairs of Σ-
behaviours, so that could be difficult. But when constructions are determined
by parameterised programs in a programming language, e.g. functors in SML,
then it is possible to shift the burden of proof to the programming language
designers by requiring that all expressible constructions be stable. This is entirely
reasonable since it corresponds to requiring that parameterised programs respect
abstraction boundaries: κ may freely use the components of its parameter that
are listed in Σ, but may not take advantage of their particular internal properties.

6.1 Examples

A possible implementation of symbol tables as specified in Sect. 5, in terms of
identifiers, proceeds in three steps. We implement ����	
 by ������, then
������ by �����, and finally ����� by �����. The intermediate specifica-
tions ����� and ������ are as follows.

����� = ����� then
sort bunch
opns emptybunch : bunch

defaultbunch : bunch
addid : ident × bunch → bunch
isinbunch : ident × bunch → bool

with
bunch = ident list

and

h�����bunch (emptybunch) = []
h�����bunch (defaultbunch) = α

h�����bunch (addid (i, b)) = α if h�����bunch (b) = α
else i::h�����bunch (b)

h�����bool (isinbunch(i, b)) = α if h�����bunch (b) = α
else case h�����bunch (b) of [] ⇒ false

j::b′⇒ true if i = j
else isinbunch(i, b′)
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������ = ����� then
sort lb
opns emptylb : lb

addbunch : bunch ∗ lb → lb
popbunch : lb → lb
topbunch : lb → bunch
isemptylb : lb → bool

with
lb = bunch list

and

h�����lb (emptylb) = []
h�����lb (addbunch(b, l)) = α if h�����lb (l) = α or h�����bunch (b) = α

else b::h�����lb (l)
h�����lb (popbunch(l)) = α if h�����lb (l) = α

else case h�����lb (l) of [] ⇒ α
b::l′⇒ l′

h�����bunch (topbunch(l)) = α if h�����lb (l) = α
else case h�����lb (l) of [] ⇒ α

b::l′⇒ b
h�����bool (isemptylb(l)) = α if h�����lb (l) = α

else case h�����lb (l) of [] ⇒ true
b::l′⇒ false

h�����bunch (addid (i, b)) = α if h�����bunch (b) = α
else i::h�����bunch (b)

h�����bool (isinbunch(i, b)) = α if h�����bunch (b) = α
else case h�����bunch (b)

of [] ⇒ false
j::b′⇒ true if i = j

else isinbunch(i, b′)

����� describes an abstract data type for a collection of identifiers with
membership. ������, short for “layered bunch”, comes from the recognition
that a stack-like structure is relevant to dealing with entering and leaving blocks.

Note that the last two clauses of ������ need to be included, although
they are essentially repeated from �����: here b ranges over a larger set of
terms. A full-blown specification language for writing specifications in this style
would include notational conventions for circumventing this kind of boring and
error-prone repetition, as well as other inconveniences of the notation above.

Now we give the constructions, which are functions from behaviours to behav-
iours, in a number of variants, as SML functors. We proceed bottom-up, starting
with two variants of the implementation of ����� by �����.

functor FB(structure I : IDENT) : BUNCH =
struct

open I
type bunch = ident list
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val emptybunch = []
val defaultbunch = []
fun addid(i,b) = i::b
fun isinbunch(i,[]) = false
| isinbunch(i,j::b) = (i=j) orelse isinbunch(i,b)

end

Clearly, for any behaviour �� that satisfies �����, �
(��) yields a behaviour
that satisfies �����, and so �
 (the semantic function underlying the functor
FB) is correct w.r.t. ����� and �����, i.e. �����

�

� �����.

functor FB’(structure I : IDENT) : BUNCH =
struct

open I
type bunch = ident -> bool
val emptybunch = fn i => false
val defaultbunch = fn i => true
fun addid(i,f) = fn j => (i=j) orelse f(j)
fun isinbunch(i,f) = f(i)

end

Given any behaviour �� that satisfies �����, �
′(��) yields a behaviour that
does not satisfy �����. However, it does observationally satisfy the observable
part of ����� and so �


′ is observationally correct w.r.t. ����� and �����,
i.e. ����� Obs

�

′� �����.

Now we consider two ways of implementing ������ by �����.

functor FLB(structure B : BUNCH) : LBUNCH =
struct

open B
type lb = bunch list
val emptylb = []
fun addbunch(b,l) = b::l
fun popbunch [] = []
| popbunch(b::l) = l

fun topbunch [] = defaultbunch
| topbunch(b::l) = b

fun isemptylb [] = true
| isemptylb(b::l) = false

end

For any behaviour B that satisfies �����, ��
(B) yields a behaviour that
satisfies ������, and thus ������

��

� �����.

functor FLB’(structure B : BUNCH) : LBUNCH =
struct

open B
type lb = (int -> bunch) * int
val emptylb = (fn n => defaultbunch , ~1)
fun addbunch(b,(f,m)) = (fn n => if n>m then b else f(n) , m+1)
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fun popbunch(f,m) = (f,m-1)
fun topbunch(f,m) = f(m)
fun isemptylb(f,m) = m<0

end

For any behaviour B that satisfies �����, ��
′(B) yields a behaviour that
satisfies the observable part of ������, and so ������ Obs

��

′� �����.

Finally, we give two ways of implementing ����	
 by ������.

functor FST(structure LB : LBUNCH) : SYMTAB =
struct

eqtype ident = LB.ident
val "a" = LB."a" val "b" = LB."b" ...
type symtab = LB.lb
val empty = LB.addbunch(LB.emptybunch,LB.emptylb)
fun add(i,st) =

if LB.isemptylb(st) then st
else LB.addbunch(LB.addid(i,LB.topbunch(st)),LB.popbunch(st))

fun enter(st) = if LB.isemptylb(st) then st
else LB.addbunch(LB.emptybunch,st)

val leave = LB.popbunch
fun isin(i,st) =

if LB.isemptylb(st) then false
else if LB.isemptylb(LB.popbunch(st))

then LB.isinbunch(i,LB.topbunch(st))
else LB.isinbunch(i,LB.topbunch(st))

orelse LB.isin(i,LB.popbunch(st))
end

functor FST’(structure LB : LBUNCH) : SYMTAB =
struct

eqtype ident = LB.ident
val "a" = LB."a" val "b" = LB."b" ...
type symtab = LB.lb
val empty = LB.addbunch(LB.emptybunch,LB.emptylb)
fun add(i,st) =

if LB.isemptylb(st) then st
else LB.addbunch(LB.addid(i,LB.topbunch(st)),LB.popbunch(st))

fun enter(st) =
if LB.isemptylb(st) then st
else LB.addbunch(LB.emptybunch,st)

val leave = LB.popbunch
fun isin(i,st) =

LB.isemptylb(st) orelse
LB.isinbunch(i,LB.topbunch(st)) orelse
LB.isin(i,LB.popbunch(st))

end

For any behaviour �
 that satisfies ������, each of ��(�
) and ��
′(�
)

yields a behaviour that satisfies ����	
, and thus we have ����	

���
�
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������ and ����	

���

′� ������. And so, for each of these, we also have

an observational implementation, ����	
 Obs
���
� ������ etc.

All of these constructions are stable; since they are coded as closed SML func-
tors, under the very plausible conjecture that all closed SML-expressible functors
are stable. (Actually proving this result would be very tedious, as the proof would
need to consider the entire definition of SML. But it would only need to be done
once, thereafter freeing implementors from the obligation to check stability case
by case.) Consequently, the obvious compositions of these constructions yield be-
haviours that observationally satisfy ����	
. In particular, for any behaviour ��
that satisfies �����, ��(��
(�
(��))) corresponds to ��, ��′(��
(�
(��)))
corresponds to ��

′ and ��(��
′(�
′(��))) corresponds to ��. Other com-
binations, like ��(��
′(�
(��))) and ��

′(��
(�
′(��))), yield still different
structures.

Now consider the following modification to FST:

functor FSTBAD(structure LB : LBUNCH) : SYMTAB =
struct

eqtype ident = LB.ident
...
fun isin(i,st) =

if (st = LB.emptylb) then false
else if LB.popbunch(st) = LB.emptylb

then LB.isinbunch(i,LB.topbunch(st))
else LB.isinbunch(i,LB.topbunch(st))

orelse LB.isin(i,LB.popbunch(st))
end

(This is not valid in SML: the type LB.lb is not required to admit equality and
so st = LB.emptylb does not typecheck.)
���	� is still observationally correct: for every behaviour that satisfies

������,���	� builds a behaviour that observationally satisfies����	
 (since
for each �
 satisfying ������, for all well-balanced terms t of type symtab, the
values of isin(i, t) in ���	�(�
) and in ��(�
) coincide). But ���	� is not
stable. So, if we take��
′(�
′(��)), which does not satisfy ������ (even though
it satisfies the observable part of it), and then apply ���	� to build �	� =
���	�(��
′(�
′(��))),�	� neednot satisfy����	
. Indeed, it does not: eval-
uating the term isin(j, leave(add (i, enter(empty)))) in �	� gives true, and this
is incorrect according to ����	
.

7 Local Constructions in Global Contexts

Very informally, constructions as discussed in Sect. 6 were considered at the
“global” level of the entire system under development: they build a behaviour
that implements the overall requirements specification given any argument be-
haviour satisfying a specification of the part of the system yet to be implemented.
But in each development step the construction typically uses only a relatively
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small part of its argument to add a new part of the result, and just passes most
of the argument over to the result without using or touching it in any way.

We will now have a closer look at one aspect of modular development, namely
at the use of local constructions, which take as argument only as much of the
behaviour as is necessary to build some new part of the result. Such local con-
structions give rise to constructions at the “global” level, whereby the required
argument is cut out of the global context and the result combined with the same
global context, thus extending it by new parts and contributing to the overall
system implementation. We capture this idea using the pushout technique and
amalgamation, as is standard in algebraic specifications [EM85].

A technical tool we need is an extension of Lemma 2.3 to behaviours and
correspondences.

Lemma 7.1. Consider a pushout in the category of signatures.

Σ

Σ1

Σ2

Σ′
�

σ1

�
σ2

�σ′2

�
σ′1

Then for any Σ1-behaviour ev1 and Σ2-behaviour
ev2 with common Σ-reduct ev1|σ1 = ev2|σ2 , there ex-
ists a unique Σ′-behaviour ev ′ such that ev ′|σ′

2
= ev1

and ev ′|σ′
1

= ev2. Similarly for correspondences: for
any Σ1-correspondence ρ1 : ev1,1 �� ev1,2 and Σ2-
correspondence ρ2 : ev2,1 �� ev2,2 with common Σ-

reducts ev1,1|σ1 = ev2,1|σ2 , ev1,2|σ1 = ev2,2|σ2 , and ρ1|σ1 = ρ2|σ2 , there exists
a unique Σ′-correspondence ρ′ : ev ′1 �� ev ′2 such that ρ′|σ′

2
= ρ1 and ρ′|σ′

1
= ρ2,

where ev ′1|σ′
2

= ev1,1, ev ′1|σ′
1

= ev2,1, ev ′2|σ′
2

= ev1,2, ev ′2|σ′
1

= ev2,2.

We are ready now to state the main definitions for this section:

Definition 7.2. Given a signature morphism ι : Σ → Σ′, a (local) construction
along ι is a function κ that maps any Σ-behaviour ev to a Σ′-behaviour κ(ev)
such that κ(ev )|ι = ev.

Then, given a (“global context”) signature ΣG and
a (“fitting”) morphism γ : Σ → ΣG, the construc-
tion κγ along ι′ : ΣG → Σ′G induced by κ via γ (or
the γ-lifting κγ of κ) is defined for any ΣG-behaviour
evG so that κγ(evG) is the Σ′G-behaviour such that
κγ(evG)|ι′ = evG and κγ(evG)|γ′ = κ(evG|γ), where

Σ

ΣG

Σ′

Σ′G
�

γ

�
ι

�ι′

�
γ′

Σ′G and morphisms ι′ : ΣG → Σ′G, γ′ : Σ′ → Σ′G are given by a pushout of
ι : Σ → Σ′ and γ : Σ → ΣG.

As argued in Sect. 6, the key property of (global) constructions is stability.
Unfortunately, since enlarging the context of use typically expands observable
behaviour, stability of a local construction will not ensure that its lifting along
a fitting morphism is stable as well. Following [Sch87] we introduce a stronger
property, which is preserved by lifting along any morphism.

Definition 7.3. A construction κ along a signature morphism ι : Σ → Σ′ is
locally stable if it extends correspondences, that is, for any Σ-behaviours ev1
and ev2, any Σ-correspondence ρ : ev1 �� ev2 extends to a Σ′-correspondence
ρ′ : κ(ev1) �� κ(ev2) such that ρ′|ι = ρ.
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Theorem 7.4. A construction κ along a signature morphism ι : Σ → Σ′ is
locally stable if and only if for all signatures ΣG and fitting morphisms γ : Σ →
ΣG, the γ-lifting κγ of κ is stable.

The “only if” part of this theorem is what we need: local stability of a local
construction ensures its stability in any context of use; the “if” part shows that
no weaker condition can be given.

We now turn to the issue of specifying local constructions and using their
specifications to justify correctness of global implementation steps. The standard
approach would be that to specify local constructions along ι′ : Σ → Σ′, one
gives a Σ-behaviour specification that determines the arguments intended for
the construction, and a Σ′-behaviour specification that describes the results
built. Unfortunately, this doesn’t work in the framework discussed in this paper.
Any behaviour specification constrains the behaviour only on elements that are
in the specification’s carrier, since behaviours which satisfy that specification are
required to conform on such elements only, not on additional elements that may
also be present in their carriers. When a local construction is used in a global
context, the set of data for which the behaviour is of importance may grow
beyond what we can take explicit account of when writing a single specification.
We accommodate this by making the result specification depend on the carriers
of the argument supplied.3

Definition 7.5. A specification of local constructions along ι : Σ → Σ′ consists
of a Σ-behaviour specification h : TΣ(A) → A ∪ {α} and a function that maps
any set X ⊇ A to a Σ′-behaviour specification h′X : TΣ(X ′) → X ′∪{α}.We write
such a specification as ΠX :h→h′X.

A local construction κ along ι : Σ → Σ′ strictly satisfies (or, is strictly correct
w.r.t.) ΠX :h→h′X if for any Σ-behaviour ev : TΣ(X) → X that satisfies h, κ(ev)
is a Σ′-behaviour that satisfies h′X .

The conditions to ensure that a strictly correct local construction lifts to a
strictly correct construction in a global context are now rather natural:

Theorem 7.6. Let κ be a local construction along ι : Σ → Σ′ that strictly sat-
isfies ΠX :h→h′X .

Consider a signature ΣG with a fitting morphism
γ : Σ → ΣG and the usual pushout. Let hG : TΣG(AG) →
AG ∪ {α} and h′G : TΣ′

G
(A′G) → A′G ∪ {α} be behav-

iour specifications. If γ(h) refines hG, and for each
X ⊇ AG|γ , h′G refines ι′(h) + γ′(h′X) then the γ-lifting
κγ of κ is strictly correct w.r.t. hG and h′G.

Σ

ΣG

Σ′

Σ′G
�

γ

�
ι

�ι′

�
γ′

Let us now turn to observational correctness. As with stability, observational
correctness for (global) constructions would be too weak for local constructions:

3 Allowing, more generally, the result specification to depend on the entire argument
behaviour, not just its carriers, should not cause extra technical difficulties.
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when such a local construction is used in a global context, where more observa-
tions are available, correctness would be lost in general. The following definition
strengthens the requirements appropriately:

Definition 7.7. A local construction κ along ι : Σ → Σ′ locally satisfies (or, is
locally correct w.r.t.) ΠX :h→h′X if for any Σ-behaviour ev : TΣ(X) → X that
satisfies h, there is a Σ′-behaviour ev ′ that satisfies h′X and a Σ′-correspondence
ρ′ : ev ′ �� κ(ev) such that ρ′|ι is the identity (which implies ev ′|ι = ev).

Local correctness is stronger than observational correctness of κ, which would
just state that κ(ev ) observationally satisfies h′X . By requiring that this is “wit-
nessed” by a correspondence that is identity on the argument sorts, we “locally”
fix the argument sorts as observable, thus allowing arbitrary observations for
them to be added in the context of use, as the following key theorem shows.

Theorem 7.8. Let κ be a local construction along ι : Σ → Σ′ that is locally
stable and locally satisfies ΠX :h→h′X .

Consider a signature ΣG with a fitting morphism
γ : Σ → ΣG and the usual pushout. Let hG : TΣG(AG) →
AG ∪ {α} and h′G : TΣ′

G
(A′G) → A′G ∪ {α} be behaviour

specifications. If Mod(hG) ⊆ ModObs(Obs(hG +γ(h))),
and for each X ⊇ AG|γ , Mod(ι′(h) + γ′(h′X)) ⊆
ModObs(Obs(h′G)) then the γ-lifting κγ of κ is observ-

Σ

ΣG

Σ′

Σ′G
�

γ

�
ι

�ι′

�
γ′

ably correct w.r.t. hG and h′G.

7.1 Examples

Recall constructions ��
 and ��
′ as defined in Sect. 6. Any argument behaviour
B (which has to satisfy �����) is inherited by the result behaviours ��
(B)
and ��
(B), but it is passed there untouched and otherwise (apart from the type
bunch and the constant defaultbunch) is not used by ��
 and ��


′. Therefore
the essence of either of the two constructions can be captured over a smaller
signature as a local construction as follows.

We start with a simple argument specification:

���� =
sort elem
opns default : elem
with

elem = unit
and

h����elem (default) = α

The following function yields specifications for the result given a carrier for sort
elem ; note that all these result specifications have a common signature.
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��	��(sort elem) =
sort stack
opns emptystack : stack

push : elem × stack → stack
pop : stack → stack
top : stack → elem
isempty : stack → bool

with
stack = elem list

and

h��	��stack (emptystack ) = []
h��	��stack (push(b, l)) = α if h��	��stack (l) = α or h��	��elem (b) = α

else b::h��	��stack (l)
h��	��stack (pop(l)) = α if h��	��stack (l) = α

else case h��	��stack (l) of [] ⇒ α
b::l′⇒ l′

h��	��elem (top(l)) = α if h��	��stack (l) = α
else case h��	��stack (l) of [] ⇒ α

b::l′⇒ b
h��	��bool (isempty(l)) = α if h��	��stack (l) = α

else case h��	��stack (l) of [] ⇒ true
b::l′⇒ false

Here are two local constructions along the obvious inclusion of the signature
of ���� into the signature of ��	��(elem) (for any carrier for elem).

functor FSTACK(structure E : ELEM) : STACK(E.elem) =
struct

open E
type stack = elem list
val emptystack = []
fun push(b,l) = b::l
fun pop [] = []
| pop(b::l) = l

fun top [] = default
| top(b::l) = b

fun isempty [] = true
| isempty(b::l) = false

end

functor FSTACK’(structure E : ELEM) : STACK(E.elem) =
struct

open E
type stack = (int -> elem) * int
val emptystack = (fn n => default , -1)
fun push(b,(f,m)) = (fn n => if n>m then b else f(n), m+1)
fun pop(f,m) = (f,m-1)
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fun top(f,m) = f(m)
fun isempty(f,m) = m<0

end

���	�� and ���	��
′ are locally stable. As in Sect. 6.1, this should follow from

the fact that they are coded as SML functors. ���	�� and ���	��
′ are also

locally correct.
��
 and ��
′ arise as global constructions induced by ���	�� and ���	��′,

respectively, via the fitting morphism from the signature of ���� to the signa-
ture of ����� which maps elem to bunch and default to defaultbunch. This is,
of course, assuming the appropriate choice of names in the pushout signature,
where we need to rename stack to lb, emptystack to emptylb, etc. Stability and
observational correctness of ��
 and ��


′ follow from local stability and local
correctness of ���	�� and ���	��

′, respectively, using Thms. 7.4 and 7.8.

8 Conclusion

This is a new look at some of our previous work on observational interpre-
tation of specifications and its role in software specification and development
[ST88b, BST02, BST08], presented in a new framework inspired by the ideas in
[GGM76]. We have focused on a key idea in [GGM76], that of viewing a system
via its behaviour, given by the evaluation function for terms of sort bool , and
consequently, that of specifying behaviour by indicating the results of evaluating
some terms and leaving others as “don’t care” cases. The resulting framework
and its observational aspects are sketched in Sects. 3 and 4; our work on sys-
tematic software development is then adapted to this framework, concentrating
on the use of local constructions in a global context, in Sects. 6 and 7.

The specifications considered in this new framework are considerably more re-
strictive than axiomatic specifications. Even the simple constraint that the values
of two terms coincide cannot be captured without giving their common value ex-
plicitly. On the other hand, such specifications offer a visible link to so-called
“abstract model specifications” [Jon80] with mechanisms for making looseness
in specifications explicit, via the designation of “don’t care” cases, rather than
implicit, by simply omitting axioms from specifications that constrain required
behaviour. The ramifications of this link remains to be investigated. It is possible
to add axiomatic specifications to this framework, for which there are two ap-
proaches: one uses an observational interpretation of the axioms, where equality
refers to indistinguishability via the available operations; the other uses the stan-
dard interpretation, but closes model classes of specifications under behavioural
equivalence.

Other important parts of the story are not covered here for lack of space. One
major issue concerns proof: to show that a behaviour satisfies a specification,
or that one specification implements another, requires formal proofs about be-
haviours and specifications. An observational view of specifications complicates
this task, although again requiring stability helps considerably. But this is still
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a research area, with some questions unresolved after many years of work. A
recent elegant and promising approach to these issues is [BH06].

Another point concerns the extension of this account to deal with more com-
plex notions of behaviour, involving partial functions, higher-order functions,
subsorting, relations etc. When we depart from the total first-order case pre-
sented here, it is not always obvious what observable behaviour means: should
partiality of operations be observable or not? Should the results of relations, as
opposed to functions into bool , be observable or not?

Parallel to the developments in algebraic specifications, ideas concerning ob-
servability have been taken up in the area of concurrency (with significant contri-
butions from Ugo Montanari in this area too!). Essentially from their beginnings,
standard process calculi have been considered modulo a notion of bisimulation
in various variants, which captures similar intuitions as that of observational
equivalence studied in work on algebraic specifications. An abstract version of
bisimulation, defined using spans of “open maps” [JNW96] can be used to link
the two concepts, see [Las97, Las98]. It would be interesting to see how these
ideas may be instantiated in the present framework.

Yet another angle on this topic is provided by universal coalgebra [Rut00],
with techniques to specify coalgebras (and behaviours they define) using modal
logics [Kur01]. We would like to try extending the approach presented here in
this direction as well.
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1 Introduction

The great honour of introducing the Chapter on Software Verification for the
Festschrift dedicated to Ugo Montanari brings to mind a very personal memory.
I was a young Ph.D. student and I was discussing something with Ugo, or better
I was learning something from Ugo about how one could apply the abstract
notions of category theory in order to understand better the problems raised from
concurrency and synchronization. At a certain point Ugo wanted to interrupt
our talk because a seminar by Jaco de Bakker on the denotational semantics
of concurrency by metric spaces was about to begin. I was very familiar with
the works of de Bakker having studied them for my Laurea thesis under Ugo’s
supervision. Following my request to continue our discussion, Ugo replied,“Let’s
go to the seminar. We can always learn something listening to de Bakker”.

Why am I telling this little anecdote? I am telling it because it illustrates
perfectly the scientific unpretentiousness, passion and research rigour triad that
in my opinion has always distinguished Ugo – scientist and scholar. The tenacity
with which he has always wanted to debate the results he has found (of which
Ugo has many) is the very driving force of his scientific research. It is this passion
towards research which is one of the great teachings Ugo has conveyed to us, so
great in fact that it has not been hard for us, his pupils, to identify with this
aspect of Ugo.

His scientific activity is characterised by his ability to know thoroughly and in-
tegrate fundamental scientific notions and results from apparently distinct areas.
What’s more, he is also able to organise these creatively through the individ-
uation and development of fundamental notions, which have often opened new
research horizons. The scientific works of Ugo originate and develop by dynam-
ically linking these two aspects.

It is easy to affirm that the scientific work of Ugo has contributed to the
development of that research activity in the foundation of computer science that
generally goes under the name of software verification. There would be no point
in highlighting a series of results or partial contributions when it is precisely all
of his works which demonstrate to us the scientific importance of Ugo in this
area.

In this short note I would like to briefly present one of the seminal contri-
butions of Ugo to the field of software verification, trying to highlight precisely

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 618–624, 2008.
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those aspects of integration between scientific knowledge and the rigorous for-
mulation and tackling of problems.

2 Verification Via Semantics Equivalence

The application of formal methods to software engineering has generated tech-
niques and tools to deal with the various facets of the software development
process (see e.g. [6] and the references therein). One of the main advantages of
exploiting formal techniques consists of the possibility of constructing abstrac-
tions that approximate behaviours of the system under development. Often,
these abstractions are amenable to automatic verification of properties thus pro-
viding a support to the certification of software quality.

Among the different proposals, verification via semantics equivalence provides
a well established framework to deal with the checking of behavioural properties.
In this approach, checking behavioural properties is reduced to the problem of
contrasting two system abstractions (e.g. the specification and the implementa-
tion) to determine whether their behaviours coincide with respect to a suitable
notion of semantics equivalence. An illustrative example is provided by the in-
formation leak detection; in [14] the analysis of information flow is done by
verifying that the abstraction of the system P is equivalent to another abstrac-
tion obtained by suitably restricting the behaviour of P . A similar idea has been
exploited in [1] for the analysis of cryptographic protocols.

Bisimilarity [23] has been proved to be an effective basis for verification via
semantics-equivalence of system abstractions described in some process calculus.
Bisimilarity is a co-inductive relation defined over a special class of automata
called Labelled Transition Systems. The co-inductive nature of bisimilation pro-
vides an effective proof method to establish semantics equivalence: it is sufficient
to exhibit a bisimulation relating the two abstractions. Bisimulation-based proof
methods have been incorporated in several verification toolkits. We mention the
Concurrency WorkBench [7], the Meije-FC2 tools [4] and the JACK toolkit [3]
to cite a few. A variety of software systems of considerable complexity have been
formalized and proved correct by exploiting these semantics-based verification
environments.

The development of applications running over the Internet, the so called Global
Computing Systems, have introduced scenarios that are much more dynamic than
those handled with the techniques discussed above. Indeed, finite state verifica-
tion of global computing systems is much more difficult: in this case, even simple
systems can generate infinite state spaces. An illustrative example is provided
by naming mechanisms. Naming mechanism have been used to represent a va-
riety of different phenomena like internet addressing schema, resources, objects,
security keys, network events, session identifiers and so on. When an unbound
number of new names can be generated dynamically the abstract models for
naming tend to be infinite even in the simplest cases, unless explicit mechanisms
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are introduced to allocate and garbage collect names, allowing the same states
to be reused with different name meanings. Nominal processe calculi, in the style
of the π- calculus [17,26], emphasize the principle that naming mechanisms (e.g.
local name generation, name exchanges, scope facilities, etc.) provide a suitable
abstraction to formally explain a wide range of phenomena of global computing
systems.

3 History Dependent Automata

History Dependent automata (HD-Automata) are as a “syntax-independent”
automata based model amenable to represent the behaviour of a whole class of
formalisms that stress the role of names to refer to suitable semantics concepts.
HD-Automata allow for a compact representation of system behaviour by col-
lapsing states differing only for the renaming of local names and encompass the
main characteristics of nominal calculi, namely creation/deallocation of names.
Basically, HD-Automata associate a “history” to the names of the states ap-
pearing in the computation, in the sense that it is possible to reconstruct the
associations which have led to the state containing the name. Clearly, if a state
is reached in two different computations, different histories could be assigned to
its names.

HD-automata have been introduced by Ugo Montanari and Marco Pistore in
their CONCUR’95 article [19]. Indeed, in this article, HD-automata were called
π-automata, since they played the role of being a rather efficient structure in an
algorithm for detecting names that syntactically occur in π-calculus processes
but without any semantic meaning. This paper gives a prominent place to the
idea that being able to manage names in a syntax-independent way is the key
to understand and analyse nominal calculi.

This simplest version of HD-automata can be easily translated into ordinary
automata. Indeed, the simplest version of HD-automata has been exploited as
formal basis to design and implement semantic-based verification toolkit for
nominal calculi [8,10,9].

HD-automata have now evolved into a reference model for nominal calculi,
both from a theoretical and from a practical point of view. In their general
formulation states of HD-automata are equipped with name symmetries, (i.e.
groups of name permutations over a finite support) which further reduce the
size of the automata [21] and which guarantee the existence of the minimal real-
ization. The minimal HD-automata are computed using a partition refinement
algorithm [11]. They have a very important practical fall-out: for instance, the
problem of deciding bisimilarity is reduced to the problem of computing the
minimal transition system. Moreover, the minimal automaton is indistinguish-
able from the original one with respect to many behavioural properties (e.g.,
bisimilarity) and properties expressed in modal or temporal logics. The minimi-
sation algorithm, naturally suggested by the coalgebraic framework, has been
implemented in the MIHDA toolkit [12].
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The semantic framework of HD-automata has been used to characterize non-
interleaving semantics of process calculi [22,24] thus establishing a direct bridge
with the so called DDM approach to the non-interleaving semantics of pro-
cess calculi (see Roberto Gorrieri’s note in this volume). Other variations of
HD-automata have been defined for handling asynchrony [20] or by introducing
different algebraic operations [13] to model fusion calculus hyperbisimulation.

HD-automata can be defined by extending to structures with names several
frameworks initially proposed for classical automata, ranging from Rutten’s coal-
gebraic setting [12] and the recent work [5], to the bialgebraic setting of Turi and
Plotkin [16,21,18]. It has been proved [16] that the categories of permutation
algebras (namely the models of nominal logics, a suitable first order logic for
bindings and freshness [15,25]) and the categories of named sets (the category
where HD-automata lives) are indeed equivalent.

4 The Contributed Papers

The six papers that are collected in this Chapter of the volume are contributions
that extend across Ugo’s interests in this area.

Service-oriented computing is an emerging paradigm for distributed systems
that recently attracted Ugo’s research interests. Five contributions in this Chap-
ter address research issues raised by the service-oriented paradigm.

The contribution “History Dependent Automata for Service Compatibility”,
by Vincenzo Ciancia, Marco Pistore, Emilio Tuosto and myself reviews the main
lines of research that have been followed in the development of HD-automata.
Moreover, it outlines a novel usage of the HD-automata framework as interme-
diate language to check semantic compatibility of services at binding time in
service-oriented computing.

In the contribution “A type system for client progress in a service-oriented
calculus” by Lucia Acciai and Michele Boreale, a type system providing a guar-
antee of client progress for a process calculus for service-oriented applications
called CaSPiS, an extension of the SCC proposal [2]. The typing information is
used to ensure that in a well-typed system any client invoking a service is guar-
anteed not to get stuck during the execution of a conversation protocol because
of inadequate service communication capabilities.

The contribution “Session and Union Types for Object Oriented Program-
ming” by Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena
Giachino and Betti Venneri is about incorporating session types into the object-
oriented approach to programming. Session types offer a method for abstracting
and validating structured communication sequences (sessions). Indeed, session
types provide an appropriate notion of a contract, for services that are repre-
sented by methods. This paper improves over previous work by introducing union
into the session types, in order to enhance their flexibility and expressiveness. A
type safety result is presented: in well-typed executable programs, after a session
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has started, the values sent and received will be of the appropriate type, thus
avoiding runtime errors, and no process can get stuck forever.

The contribution “The pairing of contracts and session types” by Cosimo
Laneve and Luca Padovani presents a thorough comparison of session types and
contracts, two formalisms aiming at specifying high-level structured patterns
of communication between distributed services. The paper provides a nice syn-
thesis of previous works on session types and contracts and sheds light on the
relationship between them in the context of service-oriented computing.

The contribution “Specifying and Analysing SOC Applications with COWS’
by Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi summarizes
some results related to the COWS process calculus and its usage as a model
in service oriented computing. The paper illustrates how to use COWS for ser-
vice orchestration and discovery, and then focuses on two formal methods for
ensuring correctness of certain aspects of the computation: a static type system
that guarantees secrecy of data, and a verification framework based on modal
logics to verify functional properties of systems specified using COWS.

The last contribution “Approximating Behaviors in Embedded System De-
sign” by Roberto Passerone and Alberto Sangiovanni Vincentelli deals with ver-
ification of embedded systems. Embedded systems are electronic devices that
operate in the context of a physical environment, by sensing and reacting to
a set of stimuli. The paper reviews a formal methodology (recently proposed
by the authors) for approximating behaviours in embedded system design and
verification. The scenario is where one has an abstract description of the system
(the specification), a more concrete one (the refinement, implementation) and
abstract versions of both (for verification purposes). The approach is not lim-
ited to such a “square”: in general one can have several refinement levels. The
paper focuses on three behavioral models based on trace algebras (each tailored
to a different level of abstraction). It is shown how to map concrete traces into
more abstract ones via trace algebra homomorphisms that induce conservative
approximations.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

2. Boreale, M., Bruni, R., Caires, L., Nicola, R.D., Lanese, I., Loreti, M., Martins,
F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T., Zavattaro, G.:
SCC: A service centered calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.)
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Abstract. We use History Dependent Automata (HD-automata) as a
syntax-indepentend formalism to check compatibility of services at bind-
ing time in Service-Oriented Computing.

Informally speaking, service requests are modelled as pairs of HD-au-
tomata 〈Co, Cr〉; Cr describes the (abstract) behaviour of the searched
service and Co the (abstract) behaviour guaranteed by the invoker. Sym-
metrically, service publication consists of a pair of HD-automata 〈So, Sr〉
such that So provides an (abstraction of) of the behaviour guaranteed by
the service and Sr yields the requirement imposed to invokers. An invo-
cation 〈Co, Cr〉 matches a published interface 〈So, Sr〉 when Co simulates
Sr and So simulates Cr.

1 Introduction

Over the last few years nominal calculi have been envisaged as a suitable model
for Service-Oriented Computing (SOC). As a matter of fact, names provide a
uniform mechanism for abstracting a variety of different concepts like addresses,
links, continuations, distributed objects, localities, causal dependencies, crypto-
graphic keys and session identifiers. Also, the dynamicity issues usually arising in
distributed computing (e.g., network reconfiguration, link mobility) can benefit
from the sophisticated linguistic mechanisms of nominal calculi such as binding
and scope extrusion. The π-calculus [12, 22] is a small but illustrative example of
nominal calculus. Many of the concepts outlined above can be formally described
and explained in terms of the π-calculus.

In the nineties, Montanari and Pistore [14, 15, 20] introduced History De-
pendent automata (HD-automata) as a “syntax-independent” automata based
model amenable to represent the behaviour of a whole spectrum of formalisms
that stress the role of names to refer to suitable semantics concepts. For instance,
CCS with causality and localities and some dialects of the π-calculus have been
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semantically described by HD-automata. Indeed, different versions of HD-autom-
ata have been defined. The simplest version can easily be translated to finite-state
automata, but possibly with a larger number of states.

A more sophisticated variant consists of HD-automata with symmetries where
states are equipped with name symmetries (i.e., groups of name permutations).
HD-automata with symmetries yield two main benefits: a faithful representation
of linguistic mechanisms like scope extrusion and a re-adaptation of the partition
refinement algorithm [18] for semantic minimisation of HD-automata. Basically,
semantic minimisation provides a “garbage collection” mechanism of names so
that states can be eliminated if their behaviour is mimicked by other states,
possibly “re-using” their names with different meanings. Noteworthy, a theory
based on coalgebras in a category of “named sets” can be developed for this
kind of HD-automata, which extends the applicability of the approach to other
nominal calculi and guarantees the existence of the minimal automaton within
the same bisimilarity class [16, 6].

Also, the coalgebraic theory constitutes the formal basis upon which several
verification toolkits have been defined and implemented. In fact, on the one
hand, the front-end towards the π-calculus and the translation algorithm for the
simplest version of HD-automata have been implemented in the HAL tool [4, 5],
which relies on the JACK verification environment [1] for handling semantic ver-
ification via standard finite-state automata (e.g., model checking). And, on the
other hand, the minimisation algorithm, naturally suggested by the coalgebraic
framework, has been implemented in the Mihda toolkit [7, 8].

Finally, other variations of HD-automata have been defined by introducing
different algebraic operations [9], and are based on a algebraic-coalgebraic the-
ory [13]. Moreover, HD-automata have been considered with respect to bisimu-
lation-like behavioural equivalences (e.g., π-calculus bisimulation [12] or fusion
calculus hyperbisimulation [19]).

In this paper, we introduce a semantic framework for HD-automata based
on simulation and propose to use it as a mechanism for dealing with semantic-
based discovery of services within the service-oriented context. Our main goal is
to define a foundational framework to express behaviour -based service discovery.
Current standards for service discovery (i.e., UDDI and WSDL) provide purely
syntactic techniques. As a consequence, composing services only on the basis
of syntactic WSDL interfaces may lead to composite services that fall short in
meeting their requirements.

In our approach, service descriptions are annotated with HD-automata ab-
stracting the behaviour of the service. Informally speaking, service requests are
modelled as pairs of HD-automata 〈Co, Cr〉; Cr describes the (abstract) be-
haviour of the searched service and Co the (abstract) behaviour guaranteed by
the invoker. Symmetrically, service publication consists of a pair of HD-automa-
ta 〈So, Sr〉 where So provides an (abstraction of) of the behaviour guaranteed by
the service and Sr yields the requirement imposed to invokers. Operationally, a
service invocation 〈Co, Cr〉 matches a published interface 〈So, Sr〉 when Co sim-
ulates Sr and So simulates Cr. Hence, in our approach the operation of service
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discovery becomes a semantic-based operation: the service registry is searched
for a service matching the semantic abstractions.

In this paper we report our preliminary results in the exploitation of HD-autom-
ata as intermediate language to represent semantic-based discovery of services.

Structure of the Paper. § 2 fixes the notations, revisits the main notions un-
derlying HD-automata, and gives the definition of HD-automata. § 3 recasts the
definition of simulation relation given in [20] in our context. § 4 gives an example
applying the framework to the problem of semantical versioning of protocols. § 5
summarises our work, draws conclusions and sketches some research directions.

2 Background

This section collects the main notations and some basic concepts used through-
out the paper.

Let X , Y , Z, . . . be sets. Then:

– P(X) (resp. Pfin(X)) is the set of subsets (resp. finite subsets) of X ;
– [X → Y ] is the set of maps f with domain dom f

def= X and codomain
cod f

def= Y ; Im f
def= {f(x) ∈ Y | x ∈ X} is the image of f ;

– [X
inj→ Y ] is the set of injective maps from X to Y ;

– ι : X ↪→ Y is the inclusion map from X to Y (implicitely assuming that
X ∈ P(Y )) and, if f ∈ [Y → Z] then f |X = f ◦ ι is the restriction of f to X ;

– Aut(X) = {f ∈ [X → X ] | f bijective} is the set of automorphisms (or
permutations) of X .

To avoid cumbersome parenthesis,
inj→ has precedence over ∈ and sometimes

square brackets will be omitted from the denotation of functional domains.
We use P and R to range over (π-calculus) processes built on a countable set

of names ω. Elements of [ω → ω] are name substitutions and Pσ denotes the
agent obtained by applying the substitution σ ∈ [ω → ω] to P .

2.1 Automata as Coalgebras

We will define HD-automata as coalgebras for a functor on the category of NSet
(§ 2.2). To make the presentation more clear, we first summarise how classi-
cal automata can be specified as coalgebras for which very basic notions from
category theory have to be introduced. (The interested reader is referred to,
e.g., [21].)

Recall that a category is a collection of objects a, b, ... and morphisms f : a → b

from a to b (dom f
def= a and cod f

def= b resp. are the domain and codomain of
f). A category is subject to the following axioms:

– if f and g are morphisms for which cod f = dom g, the composition of f and
g, written g ◦ f , is a morphism of the category and dom g ◦ f = dom f and
cod g ◦ f = cod g;
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– morphism composition is associative: if f , g and h can be composed, (h ◦ g)◦
f = h ◦ (g ◦ f);

– for each object a there is the identity morphism ida : a → a; identities are
such that f ◦ iddom f = f = idcod f ◦ f , for any morphism f .

A functor F from A to B (written F : A → B) trasforms objects and mor-
phisms of the category A resp. into objects and morphisms of the category B,
preserving identities and composition. Formally, any object a in A is mapped
to an object Fa in B and any morphism f : a → b in A is sent to a morphism
Ff : Fa → Fb in B such that:

Fida = idFa, F(g ◦ f) = (Fg) ◦ (Ff).

For simplicity we limit ourselves to Set, the category of sets and total functions
with the usual function composition. The singleton set {�} is indicated as 1 and
the disjoint union of 1 with a set X is denoted by X + 1.

Definition 1 (F-Coalgebra). Let F : Set → Set be a fixed endofunctor on
Set (i.e., a functor from Set to Set). A pair (X, α) is a coalgebra for F (or
F-coalgebra) iff X is an object of Set (i.e., a set) and α : X → FX is an arrow
of Set (i.e., a total function from X to X ).

Given two F -coalgebras (X, α) and (Y, β), a function f : X → Y in Set is an
F-coalgebra (homo)morphism iff

X
f

��

α

��

Y

β

��

FX Ff
�� FY

commutes, namely β ◦ f = Ff ◦ α.

It is immediate to see that coalgebras for F = P(L × ) coincide with transition
systems labelled by L; in fact, if (X, α) is a P(L × )-coalgebra then X is the
set of states and, for x ∈ X , α(x) are the outgoing transitions of x. Vice versa,
given a L-labelled transition system T whose set of states is X one can define the
coalgebra (X, α) by letting α : x �→ {〈l, y〉 | 〈x, l, y〉 is a transition in T } for each
x ∈ X . Similarly, finitely branching L-labelled transition systems correspond
to Pfin(L × )-coalgebras. Also, and more importantly, coalgebra morphisms
enable the definition of coalgebraic bisimulation that nicely corresponds to the
familiar notion of bisimulation in labelled transitions systems. As usual, we let
π1 : X × Y → X and π2 : X × Y → Y be the projections on the cartesian
product of X and Y .

Definition 2 (Coalgebraic bisimulation). A bisimulation between two F -
coalgebras (X, α) and (Y, β) is a set B ⊆ X × Y such that there is θ : B → FB
making π′1 = π1 ◦ ι and π′2 = π2 ◦ ι two homomorphism, where ι : B ↪→ X × Y .
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In other words,

X × Y
π1

�����������
π2

�����������

X

α

��

B
��

��

θ

��

π′
1��

π′
2 �� Y

β

��

FX FBFπ′
1

��

Fπ′
2

�� FY

commute, namely α ◦ π′1 = Fπ′1 ◦ θ and
β ◦ π′2 = Fπ′2 ◦ θ.

The correspondence between coalgebra homomorphisms and bisimulations is
made precise by the following theorem, that holds under mild conditions on
the functor F (namely, preservation of weak pullbacks):

Theorem 1 ([21]). Morphism f : X → Y is an homomorphisms between two
F-coalgebras (X, α) and (Y, β) iff {(x, f(x)) | x ∈ X} is a bisimulation between
(X, α) and (Y, β).

Similar results have been proved for HD-automata and in the next sections we
recast the coalgebraic framework for HD-automata.

2.2 Named Sets and Named Functions

The definition of HD-automata relies on the notion of named sets (to represent
the states) and named functions (to represent transitions).

Definition 3 (Named set). A named set consists of a triple 〈Q, ‖ ‖ , G〉 where

– Q is a set of states;
– ‖ ‖ : Q → Pfin(ω) maps each state q ∈ Q to the set of names of ‖q‖;
– G : Q → P(Aut(ω)) maps each state q ∈ Q to G(q) which is a subgroup of

Aut(‖q‖) called symmetry of q.

We let L, M, N, . . . range over named sets; states, set of names and symmetry
maps of a named set N are written as QN , ‖ ‖N and GN , resp. (subscripts will
be removed if clear from the context).

By Definition 3, each state q ∈ QN of a named set N is equipped with a
finite set of names ‖q‖N (called support) together with a group of permutations
over such names. Intuitively, q represents a set of states “using” names in ‖q‖N

(the names of q) that are “indistinguishable” (according to a suitable equality
of states) under the permutations in GN (q).

Example 1. The set of π-calculus agents can be given a named set structure by
taking as elements sets q of agents and setting G(q) to be the symmetry made
of all permutations in Aut(ω) that applied to agents in q yield a structurally
congruent agent still in q. Namely, if P, R ∈ q then P ≡ Rρ for a ρ ∈ G(q).
Observe that all the agents in q have the same set of free names which is actually
the support of q, ‖q‖.
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A key feature of HD-automata is that names do not have a global meaning.
In fact, names are deemed local to states and transitions. This makes possible
garbage collection of unused names which is usually absent in ordinary transition
systems. For instance, in the ordinary semantics of the π-calculus, the agent
R(x) = (νy)x̄y.R(y) reaches an infinite number of agents because all R(z) with
fresh z are different. Instead, in the HD-automata representation of R(x) it is
the “history” of computation that establishes the freshness of names; hence, all
R(z) with fresh z collapse on a single state. Named functions yield the “history”
of computations.

Definition 4 (Named function). A named function F between two named
sets N and M is a pair of functions 〈h, Σ〉 such that

– h : QN → QM ;
– Σ : QN → P(ω

inj→ ω) such that for all q ∈ QN , Σ(q) ∈ Pfin(‖h(q)‖M

inj→
‖q‖N ) and, for all σ ∈ Σ(q)

σ ◦ GM (h(q)) = Σ(q) (1)
GN (q) ◦ σ ⊆ ΣF (q). (2)

We write F : N → M to denote a named function from N to M and, if F =
〈h, Σ〉, hF (resp. ΣF ) denotes h (resp. Σ).

Condition (1) intuitively states that a function in ΣF traces the history of names
of q when mapped via hF . Remarkably, ΣF contains in general many injective
functions: one for each permutation in the symmetry of hF (q). In other words,
ΣF is obtained by saturating an injective function with GM (q). This avoids the
possibility to have two different mappings, that only differ for a permutation
which is already in the symmetry of an element.

Condition (2) might look a bit obscure at a first glance, however it can be
explained as follows: if we interpret σ as the representative of the history of names
along a transition, condition (2) states that permutations in the symmetry of q
respect such a history, namely they do not “represent” a transition which is not
encompassed by Σ(q).

We conclude this section by defining identity and composition of named
functions.

Definition 5 (Identity and composition). Let L, M , N be named sets. The
identity named function on N is idN = 〈idQN , λq.GN (q)〉. If F : L → M and
H : M → N , the composition of F and H is 〈hH ◦ hF , Σ〉 where

Σ(q) = {σ ◦ σ′ | σ ∈ ΣF (q) ∧ σ′ ∈ ΣH(hF (q))}.

The composition of F and H is denoted as H ◦ F .

Summing up, named sets and named functions form the category NSet [6, 3].
In [11], it is shown how NSet is categorially equivalent to the category of nominal
sets [10], which is the same as algebras over the permutation signature [17].
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2.3 HD-Automata

We define HD-automata as labelled transition systems where a set of local names
is associated to each state. Locality of names is a key aspect of HD-automata
and, intuitively, asserts that identity of names used in a given state is not related
to that of names used in other states. This, combined with symmetries associated
to states, enables the minimisation of HD-automata [17, 3]. Roughly speaking,
the symmetry of a state q specifies how names of q can be interchanged without
affecting its observable behaviour. This also allows the size of the state space of
HD-automata to be reduced yielding a bisimulation checking algorithm. Here we
neglect some technical details in favour of a simpler presentation. Specifically,
we do not consider the normalisation operation (cf. [3, 6]).

We fix the named set L = 〈QL, ‖ ‖L , GL〉 of labels where

– QL is the set of labels (ranged over by l);
– ‖l‖L ∈ Pfin(ω) are the names “exposed” in a transition labelled by l;
– for each label l ∈ QL, GL(l) is usually the trivial group {id‖l‖L

}.

Example 2. A label representing the π-calculus output can be given by a label
out ∈ QL for which ‖out‖L = {x, y}, yielding the subject and the object names
of the output. Notice that an output where subject and object coincide can be
represented by a label out1 ∈ QL such that ‖out1‖L is a singleton. Similarly, a
bound output (where the object is a private name extruded to the environment)
can be represented by a label bout having a single name for the subject.

HD-automata can be defined as coalgebras for the functor T (given below) that
equips labelled transition systems with the notion of local names and binding
emerging from the base category NSet.

Let
�

N , the set of (L-)transitions on a named set N , be defined as

�

N=
{
〈q, l, n, π, ϑ〉 | q ∈ QN , l ∈ QL, n ∈ Pfin(ω), π : ‖l‖L

inj→ n, ϑ : ‖q‖N

inj→ n + 1
}
.

Each transition consists of a destination state q, a label l, a set of names n
(representing the observable names of the whole transition), and two injections
π and ϑ. The former maps the observable names of the label l into n, while ϑ
provides the history of the names of the destination state along the transition,
by mapping them to n. Remarkably, Im ϑ ⊆ n + 1 accounts for the generation
of a fresh name. Specifically, if a name of q is mapped on � ∈ 1 then it is fresh
(for simplicity we assume that at most one fresh name can be generated).

Transitions on N form a named set Tr[N ] = 〈
�

N, ‖ ‖�

N
, G�

N
〉 where

– ‖〈q, l, n, π, ϑ〉‖�

N
= n;

– G�

N
(〈q, l, n, π, ϑ〉) = {ρ ∈ Aut(n) | ρ|Im π = idIm π ∧ ρ∗ ◦ ϑ ◦ GN (q) = ϑ ◦

GN (q)}, where ρ∗ ∈ Aut(n + 1) is the map ρ + id1 (i.e., ρ∗|n = ρ and
ρ∗|1 = id1).
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The symmetry of a transition is given by the permutations that preserves the
mappings ϑ◦GN (q), that is the meaning of the names as given by the symmetry
of the target state q (and the label l).

Proposition 1. If N is named set, then Tr[N ] is a named set.

The functor T : NSet → NSet is specified by describing its action on objects
(i.e., named sets) and morphisms (i.e., named functions) of NSet. The action of
the functor T on an object N is

T N = 〈Pfin(QTr[N ]), ‖−‖TN , GTN 〉

where the set of names of T ∈ Pfin(QTr[N ]) is the union of the set of names of
all transitions in T , and the symmetry of T is the set of permutations for which
transitions in T “are preserved”. Formally,

‖T ‖TN =
⋃

〈q,l,n,π,ϑ〉∈T

n, GTN (T ) =
⋂

t∈T

G�

N
(t).

The action of T F = 〈h, Σ〉 on a named function F : N → M is given by

h(T ) =
⋃

〈q,l,n,π,ϑ〉∈T

{
〈hF (q), l, (Im ϑ ◦ σ ∪ Im π) \ 1, π, ϑ ◦ σ〉 | σ ∈ ΣF (q)

}

Σ(T ) = ι ◦ GTN (T ), where ι : ‖h(T )‖M ↪→ ‖T ‖N

Namely, T maps transitions on N to transitions on M replacing q with hF (q)
in each 〈q, l, N , π, ϑ〉 and relating names of hF (q) to names of q via ΣF (q). It is
worth noticing that the names of the transitions T are a superset of the names
h(T ) because they are the union of the images of ϑ ◦ σ (and π) of transitions in
h(T ). In fact, Im ϑ ⊆ n by definition of ϑ and the composition with the function
σ can only restrict the image of ϑ ◦ σ (which happens when some name of q is
discarded by F ).

Proposition 2. If F is a named function, then T F is a named function.

Definition 6. An HD-automata is a named function H : N → T N , namely it
is a coalgebra for the functor T on NSet.

3 Simulation for HD-Automata

This section recasts the definition of the simulation relation originally presented
in [20] (Definition 7.11, Chapter 7) in our context.

Definition 7 (HD-Simulation). Let H : N → T N and K : M → T M be two
HD-automata. A relation S ⊆ QN ×Aut(ω)×QM is an HD-simulation iff when-
ever (q, δ, q′) ∈ S for any 〈q1, l, n1, π1, ϑ1〉 ∈ hH(q) there are 〈q2, l, n2, π2, ϑ2〉 ∈
hK(q′) and δ′ ∈ Aut(ω) such that
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π1

��

l

π2

��

id

n1
� � ι1 �� hH(q1)T H
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�� q1
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Fig. 1. HD-automata simulation

– for all ρ1 ∈ GN (q1), σ1 ∈ ΣH(q1) and ρ′1 ∈ GTN (q′1) there are ρ2 ∈ GM (q2),
σ2 ∈ ΣK(q2) and ρ′2 ∈ GTM (q2) such that
1. δ ◦ ρ1 ◦ σ1|n1 ◦ ϑ1 ◦ ρ′1 = ρ2 ◦ σ2|n2 ◦ ϑ2 ◦ ρ′1 ◦ δ′ on the names x of q1 for

which ϑ1(ρ′1(x)) ∈ 1;
2. ϑ1(ρ′1(x)) ∈ 1 ⇐⇒ ϑ2(ρ2(δ′(x))) ∈ 1;
3. δ ◦ ρ1 ◦ σ1|n1 ◦ π1 = ρ2 ◦ σ2|n2 ◦ π2;

– (q′1, δ
′, q′2) ∈ S.

where δ (resp. δ′) is used as map from the names of q1 (resp. q′1) to the names
of q2 (resp. q′2) in the compositions above.

Definition 7 can be explained using the diagram in Figure 1 where

– bijections are represented by lines,
– elements of sets of maps Σ are represented by double lines,
– universally (resp. existentially) quantified maps are represented by solid

(resp. dotted) lines and
– all the arrows involving each of the states q1, q′1, q2 and q′2 are meant to be

maps from/to the names of the state.

For instance, ρ2 is a double dotted line because it is an existentially quantified
permutation in the symmetry of q2.

In Figure 1 the sub-diagram consisting of π1, ϑ1 and σ1|n1 = σ1 ◦ ι1 describes
how the coalgebra H maps the names of the transition 〈q′1, l, π, ϑ1〉 ∈ hH(q1)
on the names of q1 through the injective maps in ΣH(q1) (and similarly for the
sub-diagram consisting of π2, ϑ2 and σ2|n2 = σ2 ◦ ι2).

Intuitively, Definition 7 states that any transition from q1 is matched by a
transition from q2. However, names of such transitions and their relationship
with names of q1 and q2 are of concern. As a matter of fact, symmetries may
yield several different representations of equivalent states and transitions. There-
fore, the conditions on δ state that names of q1 and q2 must be related so that
the simulation is independent of their symmetries. More precisely, for any possi-
ble representation ρ1 of q1 and meaning σ1 of the names in the derivative of q1 (in



634 V. Ciancia et al.

the coalgebra H) it is possible to find corresponding representation ρ2 and σ2
for q2 (in the coalgebra K) in such a way that:

– the history of names in transitions are compatible;
– freshness of names is preserved;
– observed names are the same up to permutations of the symmetries.

Notice that the conditions above resp. correspond to conditions 1, 2 and 3 of
Definition 7.

Given an HD-simulation S and 〈q, δ, q′〉 ∈ S, Definition 7 demands δ to be
an automorphism of ω. In practice, name correspondences δ can be maps in
[‖q‖ → ‖q′‖] such that G(δ) def= {(x, δ(x)) | x ∈ ‖q‖} is a partial bijection in
‖q‖ × ‖q′‖, namely for all (x′, y′) ∈ G(δ), x = x′ ⇐⇒ y = y′.

Proposition 3. For each HD-simulation S there is an HD-simulation S′ such
that for all 〈q, δ, q′〉 ∈ S there is 〈q, δ′, q′〉 ∈ S′ such that δ′ ∈ [‖q‖ → ‖q′‖] is a
partial bijection.

Moreover, since each partial bijection on ω can be extended to an automorphism,
the following proposition holds.

Proposition 4. Let S be a set of triples 〈q, δ, q′〉 where q and q′ are states of
two HD-automata and δ ∈ [‖q‖ → ‖q′‖] is a partial bijection. If S satisfies the
conditions of Definition 3 then

S′ def= {〈q, δ̂, q′〉 | 〈q, δ, q′〉 ∈ S ∧ δ̂ ∈ Aut(ω) ∧ δ̂|‖q‖ = δ}

is an HD-simulation.

4 A Motivating Example

This section gives an example illustrating the main features of our approach,
namely symmetrical and behavioural service matching with explicit handling of
names.

Typically, in a distributed setting such as SOC, services and invokers agree
on the adopted communication protocol during their very first interaction, by
selecting a version identifier that is uniquely associated to a known protocol.
In other words, an exact matching of the identifiers would establish a sort of
“contract” about the communication protocol, avoiding unexpected requests or
replies.

However, distributed protocols commonly evolve from one version to another
of a service, making the usage of version identifiers a very fragile mechanism.
In our framework, version identifiers are replaced by behaviours and simulation
is used to establish the matching. This allows new deployed versions of services to
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slightly deviate from communication protocols in certain cases (e.g., by adding
functionality to certain stages).

4.1 The Scenario

Consider a service offering a “forwarding” mechanism whereby invokers send
an address a and a message m to be sent to a. The service sends m to a after
checking some conditions that we neglect for simplicity. Also, suppose that the
service handles sessions through cookies. For instance, at the beginning of the
interaction, a unique cookie is assigned to invokers. (Note that session handling is
a requirement imposed by the service to invokers, and it is a completely separate
issue from the effective service offered.) At any time during the evolution of the
interaction, the service may require to check the invoker’s cookie. Let this version
of the service be called protocol-A. A different version, called protocol-B,
allows the service to refresh cookies (i.e., to send a fresh cookie which should
replace the old one) at any stage of the protocol.

Since cookies are expected to be fresh (in practice, being randomly generated
with a very low probability of collision), it is necessary to explicitly handle fresh
resource generation. The absence of garbage collection of old session cookies
would yield infinite state systems, since an unbound number of (unused) cookies
should be maintained. Remarkably, since clients must record at least the last
received cookie (which is always fresh), it is not possible to model either of
the protocols without memory at all. Therefore HD-automata are a reasonable
choice, being close to ordinary labelled transition systems, with the added benefit
of name handling and garbage collection.

In order to make the presentation clearer, in the following:

– states and labels are written together with their set of local names; for in-
stance, q{x, y} or addr{a} denote a state q with two names x and y or a
label addr whose observed name is a;

– the HD-automata transition

q0
X

q1
Y

l Z, ϑ

represents a transition from q X to q′ Y with label l Z and mapping θ from
the names Y of q′ to those X of q such that π is the identity map on Z and ϑ
behaves as the identity of Y ∩ X ; moreover, θ is omitted if it is the identity;

– we write

q0
X

q1
Y

l1 Z1, θ1/.../
ln Zn, θn

for a set of transitions from q X to q Y with labels l1 Z1, ϑ1,..., ln Zn, ϑn.
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4.2 Binding Services Using HD-Automata Simulation

We assume that a service publishes (together with its signature) a pair of HD-au-
tomata 〈So, Sr〉 built on top of a fixed named set of labels. Intuitively, So yields
the (abstracted) behaviour of the service (its offer) and Sr is the requirement
that the service imposes to invokers to allow them to bind and make invocations.

We show here how this approach works for the scenario discussed in § 4.1 for
which we define the named set of labels 〈Lab, ‖ ‖ , G〉 as follows:

– Lab is the set {setC, readC, addr,msg,quit} (where setC and readC are
for setting a new cookie or reading a new one, addr is for communicating
an address, msg is for communicating a message and quit determines the
end of the protocol);

– ‖ ‖ maps setC and quit to the empty set while addr and msg are mapped
to a singleton;

– as assumed for named sets of labels, G maps each label to the trivial sym-
metry containing only the identity.

The HD-automaton representing the service requirements is Sr below:

sr0
{a′, m′}

sr1
{a′, m′, c′}

sr2
{a′, m′, c′}

sr3
{}

setC{},ϑ
c′

readC{c′}/
setC{}, ϑ

c′ /

addr{a′}

msg{m′} quit{}

where ϑc′ maps c′ to � and a′ (resp. m′) to a′ (resp. m′). HD-automaton Sr

formalises protocol-B service requirements and requires invokers to accept a
cookie and to be ready to reset it (setC) or provide it (readC) at any time
during the protocol before the message is sent. After sending the message, the
invoker has to quit.

Remark 1. It is a simple observation that requirements for protocol-A can be
obtained by removing the transition labelled setC{} from sr1 in Sr.

The service offers the behaviour So below to invokers that fulfill Sr:

so0
{a1, a2, c′}

so1
{a1, a2, c′}

so2
{a1, a2, m′, c′}

so3
{}

addr{a1}/
addr{a2}

setC{}, ϑ
c′

setC{}, ϑ
c′ /

readC{c′}/
addr{a1}/
addr{a2}

msg{m′} quit{}

where the cookie can be refreshed any number of times before and after getting
an (states so0 and so1). Once an address is sent, the service moves in state so1
where cookies can be refreshed or required for checking an unbound number of
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times. In so1 the service is also keen to accept addresses (either a1 or a2) before
sending the message. Finally, if the message is sent, the service halts.

Remark 2. Noteworthy, so1 could be replaced by a state so′1 equipped with the
symmetry {ida1,a2 , (a1 a2)} (where (a1 a2) is the transposition of a1 and a2).
However, for simplicity we prefer to stick with the current more explicit repre-
sentation.

Remark 3. Again, removing the transition setC{} from so1 in So yields the
HD-automaton for protocol-A.

Symmetrically to service publication, service invocations have to specify a
pair 〈Cr, Co〉 of HD-automata so that Cr describes the behaviour required by
the invoker to the service and Co yields the offered guarantees. An invocation
matching 〈Sr, So〉 is represented by 〈Co, Cr〉 where Co is:

co0
{a1, a2, m}

co1
{a1, a2, m, c}

co2
{a1, a2, m, c}

co3
{a1, a2, m, c}

co4
{}

setC{}, ϑ
c′

readC{c}/
setC{}, ϑc

addr{a1}

msg{m}

readC{c}/
setC{}, ϑc/
addr{a2}

msg{m}

readC{c}/
setC{}, ϑc

quit{}

and Cr is

cr0
{a1, a2}

cr1
{a1, a2, c}

cr2
{a1, a2, c}

cdr3
{a1, a2, c, m}

cr4
{a1, a2, c, m}

setC{}, ϑ
c′ addr{a1} addr{a2} msg{m}

Cr simply requires to the service the capacity of executing the sequence of tran-
sitions setting the cookie, receiving the addresses and forwarding. (Notice that
the invocation does not require the service to stop.)

Co guarantees that the client accepts a request to set the cookie, then in each
state is capable to provide the previously set cookie upon request, or to refresh
it, thus respecting the protocol imposed by the service provider.
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While it is immediate to see that So simulates Cr, it is less obvious that Co

simulates Sr. To show this, we build an explicit simulation between Sr and Co

represented in the following figure.

co0
{a1, a2, m}

co1
{a1, a2, m, c}

co2
{a1, a2, m, c}

msg{m}

co3
{a1, a2, m, c}

co4
{}

sr0
{a′, m′}

sr1
{a′, m′, c′}

sr2
{a′, m′, c′}

sr3
{}

setC{}, ϑ
c′

msg{m′}

quit{}

δ0 = ∅

δ1 = {(c′, c)}

δ2 = {(c′, c), (a′, a2)}

δ3 = {(c′, c), (a′, a1), (m′, m)}

δ4 = ∅

readC{c′}/
setC{}, ϑ

c′ /

addr{a′}

setC{}, ϑ
c′

readC{c}/
setC{}, ϑc

addr{a1}

readC{c}/
setC{}, ϑc/
addr{a2}

msg{m}

readC{c}/
setC{}, ϑc

quit{}

A simple check shows that

S = {〈sr0, δ0, co0〉, 〈sr1, δ1, co1〉, 〈sr2, δ2, co2〉, 〈sr2, δ3, co3〉, 〈sr3, δ4, co4〉}

yields an HD-simulation (by Proposition 4).

5 Conclusions and Future Work

We have introduced the foundations of a notion of behavioural matching of ser-
vices, that keeps in account resource generation in a finitistic way employing
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HD-automata. Our framework inherits the algorithmic properties of HD-autom-
ata and it can support effective usages in design environments for SOC.

As a a case study here we considered the versioning problem of protocols. In
the usual approach, versioning relies on version identifiers. Local deviations to a
protocol, hence, either lead to incompatibility between clients and servers, or to
servers mimicking a version identifier without giving real guarantees on the fact
that the protocol is respected. We tackled this problem exploiting the semantic
HD-automata machinery for the fresh generation of names.

A pair of matching interfaces (i.e., 〈Co, Cr〉 and 〈So, Sr〉 where Co simulates
Sr and So simulates Cr) determines a contract. A possible research direction
concerns the synthesis of a monitor out of a contract so that the fulfillment of
the contract can be enforced during the execution of the communication pro-
tocol. This is an interesting research direction as, during the execution of the
communication protocol, only traces can be observed (while at service binding
time the interfaces of two services can be represented by abstractions of their in-
teractive behaviours). We argue that a monitor can be automatically synthesised
from contracts.

Laudatio

HD-automata appeared for the first time in CONCUR’95, in an article by Ugo
Montanari and the third author of this paper [14]. At that time, HD-automata
were called π-automata, and they were simply seen as an efficient structure in
an algorithm for detecting names that were syntactically present in π-calculus
agents but that did not play any semantic role.

Since then, HD-automata have evolved into a reference model for nominal cal-
culi, both from a theoretical and from a practical point of view. HD-automata
can be defined by extending to structures with names several frameworks ini-
tially proposed for classical automata, ranging from the the categorical setting
of Nielsen and Winskel (see [20]), to Rutten’s coalgebraic setting (see this paper,
[3] and the recent work [2]), to the bialgebraic setting of Turi and Plotkin (see
[11, 17]). The semantic framework of HD-automata has been used to model and
analyse concepts such as locality, causality, link mobility and cryptography [5];
more recently, they have also been used to capture concepts typical of SOC, as
shown in this paper. Moreover, HD-automata have been exploited as the formal
basis for verification toolkits such as HAL and Mihda [4, 7].

Along the years, the research on HD-automata has involved several scientists,
including PhD students of Ugo, of whom we would like to remember Gioia Ris-
tori, who will unfortunately not be able to celebrate Ugo’s 65th birthday. If HD-
automata have become a reference model for nominal calculi, it is thanks to the
work of all these scientists. However, it is also and primarily thanks to Ugo, to his
intuition that HD-automata were much more than the efficient data structure of
CONCUR’95, to his idea that being able to managenames in a syntax-independent
way is the key to understand and analyse nominal calculi, and to his capability to
guide the research and to prove that this intuition was true.
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Abstract. We introduce a type system providing a guarantee of client progress
for a fragment of CaSPiS, a recently proposed process calculus for service-
oriented applications. The interplay of sessioning and data-orchestration primi-
tives makes the design of a type system for CaSPiS challenging. Our main result
states that in a well-typed CaSPiS system, and in absence of divergence, any
client invoking a service is guaranteed not to get stuck during the execution of a
conversation protocol because of inadequate service communication capabilities.

Keywords: process calculi, service-oriented computing, pi-calculus, type
systems.

1 Introduction

Recent years have seen the emergence of web-based applications composed by several
loosely coupled components, often referred to as web services, relying on message-
passing as the sole means of cooperation. This technological shift has in turn led to the
formulation of a new computational paradigm underpinning the construction of such
applications and known as Service Oriented Computing (SOC). Equipping SOC with
rigorous semantic foundations is the subject of a very active research area. We just
mention here the SENSORIA project [17], a large, EU-funded research initiative aiming
at the development of a comprehensive approach to the engineering of SOC software
systems, starting from rigorous methodological foundations.

CaSPiS (Calculus of Sessions and Pipelines, [2]) is a language currently being con-
sidered in SENSORIA as a candidate core calculus for SOC programming. CaSPiS
design, influenced both by Cook and Misra’s Orc [8] and by the pi-calculus [16], is
centered around the notions of session and of pipeline. In CaSPiS, these concepts, and
the related programming primitives, are viewed as natural tools for structuring client-
service interaction and orchestration, the following description of CaSPiS is partly
adopted from [2].

In CaSPiS, service definitions and invocations are written like (nullary) input and
output prefixes in CCS, thus we have:

s.P and s.Q

� Research supported by the Project FET-GC II IST-2005-16004 SENSORIA.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 642–658, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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where s is the name of the service. There is an important difference, though, as the
bodies P and Q are not quite continuations, but rather protocols that, within a session,
govern interaction between (instances of) the client and the server. As an example

currency_converter .(x).〈x ∗ r〉 and currency_converter .〈amount〉.(y).〈y〉↑

are respectively: a service that once called waits for an amount expressed in euros and
then sends back its counter-value in US dollars, computed according to an exchange
rate r; and a client that passes argument amount to the service, then waits for the
counter-value and returns this value as a result.

A session is generated as the result of a service invocation and represents an ongoing
conversation between a client and a service. In the variant of CaSPiS we consider, a
session is written [P |||Q], with P and Q the communicating protocols running at the
client and at the service side, respectively. For instance, synchronization of the client
and of the service described above triggers a new session

[〈amount〉.(y).〈y〉↑ ||| (x).〈x ∗ r〉] .

Here, after one reduction step, the counter-value x ∗ r will be computed by the service
protocol and then sent to the client:

[(y).〈y〉↑ ||| 〈amount ∗ r〉] → [〈amount ∗ r〉↑ ||| 0] .

The remaining activity will be performed by the client side, which will emit amount∗r
outside the session. In fact, values can be returned outside a session to the enclosing
environment using the return operator, 〈·〉↑. These values can be used to start new activ-
ities. To orchestrate flows of data arising from different sessions, CaSPiS provides the
programmers with a pipe operator, written P > Q. As an example, pipes allow to pass
the results produced by one service invocation in P onto the next service Q in a given
chain of invocations; or to wait for the results produced by two concurrent invocations
before invoking a third service. For instance, what follows is a client that invokes the
service currency_converter and then checks if the amount is available on his bank
account:

currency_converter .〈amount〉.(y).〈y〉↑ > (z).check_bank_availability .〈z〉 .

Very often, client-service interactions in a SOC scenario comprise not only the ex-
change of messages between the two main parties, but also invocation of subsidiary
services. The results produced by these subsidiary invocations are used in the main (top
level) session. For this reason, CaSPiS allows service invocations to be placed inside
sessions, hence giving rise to hierarchies of invocations and nested sessions. As an ex-
ample, suppose the exchange rate from euros to US dollars in the example above is not
fixed and that service currency_converter calls service exchange_rates for obtaining
the up to date rate as described below.

currency_converter .
(
(x).exchange_rates .

(
〈“e/$”〉.(z)〈z〉↑

)
> (r).〈x ∗ r〉

)
.
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Interaction of the client above and the new version of the currency_converter service
will lead to

[
(y).〈y〉↑|||

(
[〈“e/$”〉.(z)〈z〉↑) ||| R] > (r).〈amount ∗ r〉

)]

where R is the interaction protocol of service exchange_rates . Once R gets “e/$”
message, it provides the up to date exchange rate rate, the innermost session passes
this value through the pipeline and the whole process reduces to

[
(y).〈y〉↑ |||

(
[0 ||| R′] > 〈amount ∗ rate〉

)]

and then to [
〈amount ∗ rate〉↑ |||

(
[0 ||| R′] > 0

)]
.

The presence of pipes and nested sessions makes the dynamics of a CaSPiS session
quite complex: it is substantially different from simple type-regulated interactions as
found in the pi-like languages of, e.g. [11,10], or in the finite-state contract languages
of [5,4,6].

The present paper is a contribution towards developing programming techniques for
safe client-service interaction in a SOC scenario. Technically, we offer a type system
for CaSPiS that provides guarantees of client progress. In practice, this means that in a
well-typed CaSPiS system, and in absence of divergence, any client invoking a service
is guaranteed, during the execution of a conversation protocol, not to get stuck because
of inadequate service communication capabilities. More generally, we hope that some
of the concepts we discuss here may be further developed and find broader applications
in the future.

There are three key aspects involved in the design of our type system. A first aspect
concerns abstraction: types focus on flows of I/O value-types and ignore the rest (actual
values, service calls, . . . ). Specifically, types take the form of CCS-like terms describing
I/O flows of processes. In fact, a tiny fragment of CCS, with no synchronization and
restriction, is employed, where the role of atomic actions is played by basic types. A
second aspect concerns compliance of client protocols with service protocols, which is
essential to avoid deadlocks. In the type system, the operational abstractions provided
by types are employed to effectively check client-service compliance. To this purpose,
types are required to account for process I/O behaviour quite precisely. Indeed, ap-
proximation might easily result into ignoring potential client-service deadlocks. A final
aspect concerns the nesting of sessions. A session at a lower level can exercise effects
on the upper level, say the level of any enclosing session. To describe this phenomenon,
we follow [3,14] and keep track, in the type system, of the behaviour at both the current
level and at the level of a (fictitious) enclosing session. This results in type judgments of
the form P : [S]T, where S is the the current-level type and T is the upper-level effect
of P . Note that the distinction between types and effects we make here is somehow
reminiscent of the type-and-effects systems of [18], with the difference that our effects
are very simple (sequences of outputs) and are exercised on an upper level of activity
rather than on a shared memory.

The version of CaSPiS considered in this paper differs from the “official” one in [2]
in one important respect: we restrict our attention to the case where values can be
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returned outside a session only on the client side (the same restriction applies to the
language considered in [3]). The theoretical reasons for doing so will be discussed in
the concluding section. From a practical point of view, this limitation means that, once a
session is started, for the service there will be no “feedback” of sort as to what is going
on inside the session. This is somehow consistent with the idea that services should be
stateless entities.

Related work. Our work is mainly related to Bruni and Mezzina’s [3] and to Lanese et
al.’s [14]. In these papers, type systems for languages affine to CaSPiS are put forward.
In particular, the language considered in [3] is essentially CaSPiS with the restriction
discussed above. The language of [14], SSCC, differs from CaSPiS essentially be-
cause streams, rather than pipes, are provided for data orchestration of different activ-
ities. We share with [3,14] the two-level types technique. In some important aspects,
though, our system differs from theirs, resulting into a gain of simplicity and generality.
These aspects we discuss below. First, we take advantage of the restriction that values
can be returned only to the client and adopt a new syntax and operational semantics for
sessions that spares us the necessity of explicit session names and the annoying “bal-
ancing” conditions on them (see also [2]). Second, our type system does not suffer from
certain heavy restrictions of [3,14], like for example, forcing either of the two compo-
nents in a parallel composition to have a null effect. Also, the client-service compliance
relation we adopt is more flexible than the bare complementarity relation inherited from
session-types disciplines employed in [3,14]. Finally, our client-progress theorem is an
immediate consequences of two natural properties of the system (subject reduction, type
safety). In particular, we do not have to resort to a complex system of obligations and
capabilities a l Kobayashi [13,12], like [3] does. This is a benefit partly of a precise op-
erational correspondence between processes and types and partly of our new syntax for
sessions. Note that, in [14], synchronization problems related to data streams prevent
achieving a deadlock-freeness result.

Both CaSPiS and SSCC evolved from SCC (Serviced Centered Calculus) [1], a
language that arose from a joint effort of various partners involved in the SENSORIA
consortium. The original proposal turned out later to be unsatisfactory in some impor-
tant respects. In particular, SCC had no dedicated mechanisms for data orchestration
and came equipped with no type system. These problems motivated the proposal of a
few evolutions of SCC. As mentioned above, SSCC is stream-oriented, in that values
produced by sessions are stored into dedicated queues, accessible by their names, while
CaSPiS relies solely on pipes. Another evolution of SCC is the language in [19], fea-
turing message-passing primitives for communication in all directions (within a session,
from inside to outside and vice-versa).

Structure of the paper. The rest of the paper is organized as follows. In Section 2
we present CaSPiS−, the variant of CaSPiS we will consider. Client progress, the
property we wish to capture with our system, is also defined. A language of types is
introduced in Section 3, while a type system is presented in Section 4. Results about
the type system are discussed in Section 5, culminating in Corollary 1, which asserts
that well-typed processes enjoy the client progress property. We conclude with a few
remarks concerning the limitation of our system and further work in Section 6.
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Table 1. Syntax of CaSPiS−

P, Q ::=
P

i∈I
πi.Pi Guarded Summation π ::= (x : b) Input Prefix

| 〈u〉↑ Return | 〈u〉 Output Prefix

| s.P Service Definition

| u.P Service Invocation

| [P |||Q] Session

| P > Q Pipeline

| P |Q Parallel Composition

| (νs)P Restriction

| ∗P Replication

2 Processes

2.1 Syntax and Semantics

We introduce below the variant of CaSPiS, which we christen CaSPiS−, that we have
chosen as a target language for our type system.

Syntax. We presuppose the following disjoint sets: a set B of base values, a countable
set N of service names ranged over by n, s, . . . and a countable set V of variables,
ranged over by x, y, . . .. In the following, we let u be a generic element of N ∪ B ∪ V
and v be a generic element of N ∪ B. We presuppose a set Bt of base types, b, b′, . . .
which include name sorts S, S′, . . .. We finally presuppose a generic base-typing re-
lation, mapping base values and service names to base types, written v : b, with the
obvious proviso that service names are mapped to sorts and base values are mapped to
the remaining base types.

The syntax of the calculus is reported in Table 1. Input prefixes are annotated with
types b, which are associated to input variables. In service definitions and invocations,
s.P and s.Q, processes P and Q are the protocols followed respectively by the service
and client side. As in [2], the grammar defined in Table 1 should be considered as
a run-time syntax. In particular sessions [P |||Q] can be generated at run-time, upon
service invocation, but a programmer is not expected to explicitly use them. In [P |||Q]
processes P and Q represent respectively the rest of the client and the service protocol to
be executed. The free and bound names and variables of a term are defined as expected.
In the following, we suppose each bound name in a process different from free, and we
identify terms up to alpha-equivalence. We denote by fn(P ), resp. fv(P ), the set of free
names, resp. variables, of P , and indicate with P the set of closed terms, that is, the
set of process terms with no free variables. In what follows, we abbreviate the empty
summation by 0.

CaSPiS− is essentially the close-free fragment of the calculus in [2], but for a major
difference: in CaSPiS− sessions are one-sided. In particular, sessions are executed on
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the client side and all returned values are available only at this side. This simplifica-
tion allows us to dispense with session names and balancing conditions on them – see
[2] – which are necessary when the two sides of a sessions are distinct and far apart.
Practically, this limitation means that services in CaSPiS− cannot return values and
are stateless. Another, minor difference from [2] is that here returns are asynchronous.
Finally, for the sake of simplicity we do not consider structured values and expressions,
which can be easily accommodated.

Semantics. The operational semantics of the calculus is given in terms of a labelled

transition relation,
λ−→ defined as the least relation generated by axioms in Table 2.

Labels λ can be of the following form: input (v), output 〈v〉 or (νŝ)〈s〉 – where (νŝ)
indicates that the restriction (νs) may or may not be present –, return 〈v〉↑ or (νŝ)〈s〉↑,
service definition (νñ)s〈R〉, service invocation s(R) and synchronization τ . It is worth
noticing that service definitions are persistent, (DEF), and only (synchronous)
in-session value-passing is allowed, (S-COMl) and (S-COMr). As already stated, ses-
sions are one-sided, (CALL), and possible returns arising from the service protocol Q
are ignored – there is no symmetric rule of (S-RET). Note that in (P-PASS) we have
used an optional restriction (νn̂) to indicate that the passed value might be a bound ser-
vice name. Finally, note the run-time type check in (IN), which avoids type mismatch
between the received object and the expected base type. From a computational point
of view, this rule should not be particularly worrying, since we are only considering
checks on base values. Note that in pi-like process calculi, static checks on channels
are often sufficient to avoid such type mismatches – see e.g. the sorting system of [15].
In CaSPiS−, this solution is not viable as communication takes place freely inside
sessions. In fact, an alternative to run-time checks would be assigning “tags” to I/O
actions, to regulate data-exchange inside sessions, which would essentially amount to
re-introducing a channel-based discipline, which is not our main concern here. Note
that this issue does not arise in [3], because, as discussed in the Introduction, their type
system discards the parallel composition of two or more outputs inside sessions.

We shall often refer to a silent move P
τ−→ P ′ as a reduction; P ⇒ P ′ and P

λ=⇒ P ′

mean respectively P
τ−→∗P ′ and P

τ−→∗ λ−→ τ−→∗P ′.

2.2 Client Progress Property

The client progress property will be defined in terms of an error predicate. Informally,
an error occurs when the client protocol of an active session tries to send to or receive a
value from the service side, but the session as a whole is blocked. This is formalized by
the predicate →ERR defined below. In the definition, we rely on two standard notions,
structural congruence and contexts, briefly introduced below. Structural congruence,
≡, is defined as the least congruence over (open) processes preserved by substitutions
and satisfying the axioms in Table 3. In the vein of [2], the laws in Table 3 comprise the
structural rules for parallel composition and restriction from the pi-calculus, plus some
extra scope extension laws for pipelines and sessions.

Contexts, C[·], C′[·], . . ., are process terms with a hole; we shall indicate with C[P ]
the process obtained by replacing the hole with P . The notion of context can be gener-
alized to n-holes contexts as expected. We say a context is static if its hole is not under
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Table 2. Labeled Semantics

(IN) v : b
(x : b).P

(v)
−→ P [v/x]

(OUT)
〈v〉.P

〈v〉
−→ P

(RET)
〈v〉↑

〈v〉↑
−−→ 0

(REP)
P | ∗ P

λ
−→ P ′

∗P
λ
−→ P ′

(DEF)
s.P

s〈P 〉

−−→ s.P
(CALL)

s.P
s(Q)
−−→ [P |||Q]

(SYNCl)
P

(νñ)s〈R〉

−−−−−→ P ′ Q
s(R)
−−→ Q′

P |Q
τ
−→ (νñ)(P ′

|Q′)
(S-RET) P

(νv̂)〈v〉↑
−−−−−→ P ′

[P |||Q]
(νv̂)〈v〉
−−−−→ [P ′

|||Q]

(S-PASSl)
P

λ
−→ P ′ λ ::= τ | s(Q) | (νñ)s〈Q〉

[P |||Q]
λ
−→ [P ′

|||Q]
(S-COMl)

P
(v)
−→ P ′ Q

(νv̂)〈v〉
−−−−→ Q′

[P |||Q]
τ
−→ (νv̂)[P ′

|||Q′]

(S-SYNCl)
P

(νñ)s〈R〉

−−−−−→ P ′ Q
s(R)
−−→ Q′

[P |||Q]
τ
−→ (νñ)[P ′

|||Q′]
(SUM)

πj .Pj
λ
−→ Pj j ∈ I |I | > 1X

i∈I

πi.Pi
λ
−→ Pj

(P-PASS)
P

λ
−→ P ′ λ �= (νv̂)〈v〉

P > Q
λ
−→ P ′ > Q

(P-SYNC) P
(νv̂)〈v〉
−−−−→ P ′ Q

(v)
−→ Q′

P > Q
τ
−→ (νv̂)(P ′ > Q|Q′)

(PARl)
P

λ
−→ P ′ fn(Q) ∩ bn(λ) = ∅

P |Q
λ
−→ P ′

|Q
(R-PASS)

P
λ
−→ P ′ n /∈ n(λ)

(νn)P
λ
−→ (νn)P ′

(OPEN)
P

λ
−→ P ′ λ ::= (νã)s〈R〉 | (νã)〈n〉 | (νã)〈n〉↑ s �= n n ∈ fn(λ)

(νn)P
(νn)λ
−−−→ P ′

Symmetric versions of (S-SYNCl), (PARl), (S-PASSl), (S-SYNCl) and (S-COMl) are not displayed.

Table 3. Structural Congruence

(P |Q)|R ≡ P |(Q|R) P |Q ≡ Q|P P |0 ≡ P
(νn)(νm)P ≡ (νm)(νn)P ∗P ≡ ∗P |P

(νn)P |Q ≡ (νn)(P |Q) (νn)P > Q ≡ (νn)(P > Q) if n /∈ fn(Q)
[Q|||((νn)P )] ≡ (νn)[Q|||P ] [((νn)P )|||Q] ≡ (νn)[P |||Q] if n /∈ fn(Q)

the scope of a dynamic operator (input and output prefixes, replication, service defini-
tions and invocations, and the right-hand side of a pipeline). In essence, active subterms
in a process P are those surrounded by a static context.

Definition 1 (error). P →ERR if and only if whenever P ≡ C[[Q|||R]], with C[·]
static, and Q

λ−→, with λ ::= (v) | (νv̂)〈v〉, then [Q|||R] 	λ
′

−→, with λ′ ::= τ | s(P ′).
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A process guarantees client progress if it is error-free at run-time.

Definition 2 (client progress). Let be P ∈ P . We say P guarantees client progress if
and only if whenever P ⇒ P ′ then P ′ 	→ERR.

The above definition of error may seem too liberal, as absence of error does not actually

guarantee progress of the session if [Q|||R]
s(P ′)−−−→ and service s is not available. In fact,

we are interested in processes where such situations do not arise: we call these processes
well-formed, and define them formally below. First, we need a notion of s-receptive
process, a process where a service definition for the service name s is available under a
static context, hence is active.

Definition 3 (s-receptive process). Let be P an (open) process. P is s-receptive if
s ∈ fn(P ) and P ≡ C[s.R] for some static C[·] not binding s.

Definition 4 (well-formed process). Let be P ∈ P . P is well-formed if and only if for
each s ∈ fn(P ) P is s-receptive and whenever P ≡ C[(νs)Q] process Q is s-receptive.

Well-formedness is preserved by reductions.

Lemma 1. Let P be well-formed. P ⇒ P ′ implies P ′ is well-formed.

The following lemma ensures that, in well-formed processes, each active service call
can be immediately served, thus substantiating our previous claim that our definition of
error is adequate for well-formed processes.

Lemma 2. Let P ∈ P be well-formed. If P ≡ C[s.Q], with C[·] static, then either
C[·]=C0

[
C1[·] | C2[s.R]

]
, C[·]=C0

[
[C1[·]|||C2[s.R]]

]
or C[·]=C0

[
[C1[s.R]|||C2[·]]

]
,

for some static contexts C0[·], C1[·] and C2[·], and for some process R.

3 Types

In this section we introduce syntax and semantics of types, essentially a fragment of
CCS corresponding to BPP processes [7].

The set T of types is defined by the grammar in Table 4. Recall that b, b′, . . . range
over base types in Bt, including sorts. Notice that, like in [3], we need not nested ses-
sion types in our system, because in order to check session safety it is sufficient to check
local, in-session communications. In what follows we abbreviate with 0 the empty sum-
mation type.

The semantics of types is described in terms of a labelled transition relation,
α−→,

derived from the axioms in Table 5. It is worth noticing that input and output prefixes, ?b
and !b, cannot synchronize with each other – we only have interleaving in this fragment
of CCS.

The basic requirement for ensuring client progress is type compliance between client
and service protocols involved in sessions, defined below. In the following, we indicate
with α the coaction of α: ?b =!b and !b =?b. This notation is extended to sets of actions
as expected. Moreover, we indicate with I(S) the set of initial actions S can perform:
I(S) = {α | ∃S′ : S α−→ S′}. Type compliance is defined co-inductively and guarantees
that, given two compliant types S and T, either S is stuck, or there is at least one action
from S matched by a coaction from T. Formally:
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Table 4. Syntax of types

T, S, U, V ::=
∑

i αi.Ti Guarded Summation α ::= !b Output Prefix
| T |T Interleaving | ?b Input Prefix
| ∗T Replication

Table 5. Labeled transition system of types

(SUM-T) j ∈ I∑

i∈I

αi.Ti
αj
−→ Tj

(PAR-Tl) T α
−→ T′

T|S α
−→ T′

|S

(PAR-Tr) S α
−→ S′

T|S α
−→ T|S′ (REP-T)

T| ∗ T α
−→ T′

∗T α
−→ T′

Definition 5 (type compliance). Let be S, T ∈ T . Type compliance is the largest re-
lation on types such that whenever S is compliant with T, written S ∝ T, it holds that
either I(S) = ∅ or K = I(S) ∩ I(T) 	= ∅ and for each α ∈ K and each S′ and T′

such that S α−→ S′ and T α−→ T′, it holds that S′ ∝ T′.

4 A Type System for Client Progress

In this section we introduce a type system that ensures client progress, that is, ensures
that sessions cannot block as long as the client’s protocol is willing to do some action.

The type system is along the lines of those in [3,14] and is reported in Table 6. We
presuppose a mapping ob from sorts {S, S′, . . .} to types T , with the intended meaning
that if ob(S) = T then names of sort S represent services whose abstract protocol is T.
We take s : T as an abbreviation of s : S and ob(S) = T for some S. A context Γ is a
finite partial mapping from types to variables. For u a service name, a base value or a
variable, we take

Γ � u : T

to mean either that u = s : T, or u = v : b or u = x ∈ dom(Γ ) and Γ (x) = T.
Type judgments are of the form Γ � P : [S]T, where Γ is a context, P is a possibly
open process with fv(P ) ⊆ dom(Γ ) and S and T are types. Informally, S and T repre-
sent respectively the in-session, or internal, and the external types of P . The first one
describes inputs and outputs P can perform at the current session level, while the sec-
ond one represents the outputs P can perform at the parent level – which correspond to
P ’s returns. As already discussed in the Introduction, the external type T describes the
effects produced outside the enclosing session, that is the effects visible one level up.

Rule (T-DEF) checks that the internal type of the service protocol corresponds to the
type expected by the sorting system; moreover, the rule requires the absence of exter-
nal effects, hence, as discussed earlier, no returns are allowed on the service protocol.
Concerning rules (T-CALL) and (T-SESS), it is worth noticing that the premises en-
sure compliance between client and service internal types. Rule (T-SUM) requires that
each summand exposes the same external type: intuitively, sums are resolved as internal
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Table 6. Rules of the type system

(T-OUT)
Γ � P : [S]T Γ � u : b

Γ � 〈u〉.P : [!b.S]T (T-RES)
Γ � P : [S]T

Γ � (νa)P : [S]T

(T-INP)
Γ, x : b � P : [S]T

Γ � (x : b).P : [?b.S]T (T-PAR)
Γ � P : [S1]T1 Γ � Q : [S2]T2

Γ � P |Q : [S1|S2](T1|T2)

(T-RET) Γ � u : b
Γ � 〈u〉↑ : [0]!b

(T-SUM)
∀i ∈ I : Γ � πi.Pi : [αi.Si]T |I | �= 1

Γ �
∑

i∈I

πi.Pi : [
∑

i∈I

αi.Si]T

(T-DEF)
s : V Γ � P : [V]0

Γ � s.P : [0]0 (T-CALL)
Γ � u : V Γ � P : [S]T S ∝ V

Γ � u.P : [T]0

(T-REP)
Γ � P : [S]T

Γ � ∗P : [∗S] ∗ T (T-SESS)
Γ � P : [S]U Γ � Q : [T]0 S ∝ T

Γ � [P |||Q] : [U]0

(T-PIPE)
Γ � P : [S]T Γ � Q : [?b.U]V monomf(S, b) NoSum(S)

Γ � P > Q : [S � U](T|S @ V)

choices from the point of view of an enclosing session, hence which branch is chosen
should not matter as for the external effect. Finally, rule (T-PIPE) deserves some expla-
nations. We put some limitations on the types of the pipeline operands. First, the right-
hand process Q is a single, input-prefixed process of type ?b.U, ready to receive a value.
Second, we make sure, through predicate NoSum(S), that the left-hand P ’s type does
not contain any summation. Third, we make sure, through predicate monomf(S, b),
that the type of the left-hand side of a pipeline is “monomorphic”, that is, contains only
outputs of the given type b. Formal definition of NoSum(S) and monomf(S, b) are
obvious and omitted. We will come back to these restrictions in Remark 1.

The auxiliary functions � and @ are used to build respectively the internal and the
external type of P > Q starting from the types of P and Q. In essence, both S � U
and S @V spawn a new copy of type U and V, respectively, in correspondence of each
output prefix in S. The main difference is that in @ inputs in S are discarded, while
in � they are preserved. This because S is an internal type, hence its actions cannot
be observed from the external viewpoint. Formally, S � U and S @ V are inductively
defined on the structure of S as follows.

!b.S � U = U|(S � U) !b.S @ U = U|(S @ U)
?b.S � U = ?b.(S � U) ?b.S @ U = S @ U
∗S � U = ∗(S � U) ∗S @ U = ∗(S @ U)

(S1|S2)� U = (S1 � U)|(S2 � U) (S1|S2) @ U = (S1 @ U)|(S2 @ U)

Note that NoSum(S) ensures the absence of summations on the internal type S,
hence we intentionally omit definitions of � and @ for this case.

Example 1 (pipelines). Consider the process P below, which calls two services ansa
and bbc, supposed to reply by sending a newspage of type news, returns an acknowl-
edgment of type ack, sends the received news by e-mail to address a and outputs an
acknowledgment:
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P
�
= (νcallnews)

( (
callnews .

(
ansa.(y : news).〈y〉↑ | bbc.(y : news).〈y〉↑

)

| callnews.(w : news).(z : news).〈(w · z)〉↑
)

> (x : (news× news)).
(
〈ack〉↑ | Email.〈(x, a)〉.(y : ack).〈y〉↑

))

where we suppose service Email is defined elsewhere with associated protocol of the
expected type ?(news × news × eAddr).!ack.
Suppose callnews :!news | !news. Then the left hand side of the pipeline is of type
[!(news × news)]0 and the right one of type [?(news × news).!ack]!ack. Hence, given
that !(news × news) � !ack = !ack and !(news × news) @ !ack = !ack, the whole
process P has associated type [!ack]!ack.

Remark 1 (summations and pipelines). We discuss here the necessity of banning sum-
mations on both side of pipelines. Suppose summations on the left hand side are allowed
and consider e.g. the following process

P
�
=

(
(x : int).(〈x〉 | 〈x〉 | 〈x〉↑) + (y : int).(〈y〉 | 〈y〉↑)

)
> (w : int).〈w〉↑ .

It is clear that

(x : int).(〈x〉 | 〈x〉 | 〈x〉↑) + (y : int).(〈y〉 | 〈y〉↑) : [?int.(!int | !int)+?int.!int]!int
(w : int).〈w〉↑ : [?int]!int .

And by definition of � and @, P : [S]T with

S
�
= (?int.(!int | !int)+?int.!int)� 0 = 0

T
�
= !int |

(
(?int.(!int | !int)+?int.!int)@!int

)
= !int |

(
(!int | !int)+!int

)
.

But T contains a non-guarded summation, hence T /∈ T .
Similarly, suppose that summations at top level are allowed on the right-hand side of

pipelines, like in

Q
�
= 〈1〉 >

(
(x : int).((z : int).R1 | (w : int).R2) + (y : int).R3

)

the internal type associated to Q is

!int �
(
(?int.TR1 | ?int.TR2) + TR3

)
= (?int.TR1 | ?int.TR2) + TR3

which contains a non-guarded summation. In fact, we might type sums with distinct
input prefixes (external determinism only). In such a manner, each output performed
by the left-hand side must be deterministically associated to one choice on the right
one and no summation would arise by �. We have preferred to restrict our attention
to pipelines where the right-hand side does not contain summations at top level for the
sake of simplicity.

Let us now discuss some important differences with [3], relative to how pipelines and
parallel compositions are managed. In typing a pipeline, Bruni and Mezzina require that
the left-hand side be a single output if the right-hand side contains more than a single
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input (or the vice-versa). As discussed, we only require absence of summations on the
left-hand side. E.g. in [3] the process (x).

(
∗ 〈x〉

)
> (y).s.〈y〉.(z).〈z〉↑, which receives

a value and uses it to call service s an unbounded number of times, is not well-typed,
while it is in our system. Concerning parallel composition, they require that either of the
two components has a null type. This means that, e.g. a process invoking two services
in parallel, and then return something, like in Example 1, are not well typed in their
system. Concerning sessions, in [3] the authors decide to keep the two-sided structure
of the original calculus, but ignore all effects on the service side. From the point of view
of expressiveness, this is essentially equivalent to using one-sided sessions, like we do.

5 Results

The first step towards proving that well-typed processes guarantee client progress is
establishing the usual subject reduction property (Proposition 1). Next, we prove that
if a type is not stuck, the associated process is not stuck either (Proposition 2). Finally,
type safety (Theorem 1), stating that a well typed process cannot immediately generate
an error, is sufficient to conclude.

In the following, we denote by Γ �n P : [S]T a type judgment whose derivation
from the rules in Table 6 has depth n. Moreover, we abbreviate ∅ � P : [S]T as P :
[S]T. Finally, we say P ∈ P is well-typed if P : [S]T for some S and T.

Lemma 3 (substitution). If Γ, x : b �n P : [S]T and v : b then Γ �m P [v/x] : [S]T,
with m ≤ n.

Lemma 4. 1. Whenever S ?b−→ S′ then S � T ?b−→ S′� T.
2. Whenever S !b−→ S′ then S � T = T|S′� T.

3. Whenever S � T ?b−→ V then either S ?b−→ S′ and V = S′� T or S !b′
−→ S′, T ?b−→ T′

and V = T′|S′� T.

4. Whenever S � T !b−→ V then S !b′
−→ S′, T !b−→ T′ and V = T′|S′� T.

Lemma 5. 1. Whenever S ?b−→ S′ then S @ T = S′@ T.

2. Whenever S !b−→ S′ then S @ T = T|S′@ T.

3. Whenever S @ T !b−→ V then S !b′
−→ S′, T !b−→ T′ and V = T′|S′@ T.

Proposition 1 (subject reduction). Suppose P : [S]T. Then

1. whenever P
(v)−→ P ′, for some v : b, then S ?b−→ S′ and P ′ : [S′]T;

2. whenever P
(νv̂)〈v〉−−−−→ P ′, for some v : b, then S !b−→ S′ and P ′ : [S′]T;

3. whenever P
〈v〉↑−−→ P ′, with v : b, then T !b−→ T′ and P ′ : [S]T′;

4. whenever P
(νñ)s〈Q〉−−−−−→ P ′ then P ′ : [S]T;

5. whenever P
s(Q)−−→ P ′, with s : U and Q : [U]0, then P ′ : [S]T;

6. whenever P
τ−→ P ′ then P ′ : [S]T.



654 L. Acciai and M. Boreale

Proof. The proof is straightforward by induction on the derivation of P : [S]T and
proceeds by distinguishing the last tying rule applied. The most interesting case is
(T-SESS), which we examine below (concerning other cases, note that case (T-INP)
relies on Lemma 3 and (T-PIPE) relies on Lemma 3, 4 and 5).

(T-SESS): by [P |||Q] : [S]0 and the premises of the rule, we get P : [T]S, Q : [U]0 and
T ∝ U. We distinguish various cases, depending on the rule applied for deducing

[P |||Q] λ−→.
(S-RET): λ = (νv̂)〈v〉 and by the premises of the rule and (S-RET), it must be

P
〈v〉↑−−→ P ′. Suppose v : b. Hence, by applying the inductive hypothesis to P ,

we get P ′ : [T]S′, with S !b−→ S′, and [P ′|||Q] : [S′]0, by (T-SESS).

(S-PASSl): by the premises of the rule, we get P
λ−→ P ′, and by applying the

inductive hypothesis to P , we get P ′ : [T]S. Therefore, [P ′|||Q] : [S]0, by
(T-SESS).

(S-COMl): λ = τ and by the premises of the rule, we get P
(v)−→ P ′ and Q

〈v〉−→ Q′.
Suppose that v : b. By applying the inductive hypothesis to both P and Q, we

get T ?b−→ T′, U !b−→ U′, P : [T′]S and Q : [U′]0. Moreover, by definition of ∝ it
must be T′ ∝ U′. Hence, by (T-SESS), [P ′|||Q′] : [S]0.

(S-SYNCl): λ = τ and by the premises of the rule, we get P
(νñ)s〈R〉−−−−−→ P ′, Q

s(R)−−→
Q′, P ′ : [T]S and Q′ : [U]0. Therefore, by (T-SESS), we get [P |||Q] : [S]0.

(S-PASSr), (S-COMr), (S-SYNCr): the proof proceeds in a similar way.

Proposition 2. Suppose P : [S]T. Then:

1. whenever S α−→ then P
λ−→ with λ ::= τ | s(Q) | λ′ and either λ′ = (v), if α =?b,

or λ′ = (νv̂)〈v〉, if α =!b, for some v : b;

2. whenever T !b−→ then P
λ−→ with λ ::= τ | 〈v〉↑ | (v′) | (νv̂′)〈v′〉 | s(Q), for some

v : b.

Proof. The proof is straightforward by induction on the derivation of P : [S]T and
proceeds by distinguishing the last typing rule applied. For the first result, the most
interesting cases are (T-SESS) and (T-PIPE).

(T-SESS): by [P |||Q] : [S]0 and the premises of the rule, we get P : [T]S, Q : [U]0 and
S ∝ U.
By applying the inductive hypothesis to P , given that it must be α =!b for some b,

we get P
λ−→ with λ ::= τ | 〈v〉↑ | (v′) | (νv̂′)〈v′〉 | s(Q), for some v : b.

If P
τ−→, then [P |||Q] τ−→, by (S-PASSl). Similarly, if P

s(Q)−−→, then [P |||Q]
s(Q)−−→,

by (S-PASSl).

If P
〈v〉↑−−→ then [P |||Q]

〈v〉−→ with v : b, by (S-RET).
Otherwise, by Proposition 1 (subject reduction) and λ ::= (v′) | (νv̂′)〈v′〉 for some

v′ : b′, we get T α−→, with α ::=?b′ | !b′. Hence, by ∝, U α−→ and by applying the

inductive hypothesis to Q we get either Q
λ−→, Q

τ−→, or Q
s(Q)−−→. In the first case,
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either (S-COMl) or (S-COMr ) can be applied for deducing [P |||Q] τ−→. In both
the second and the third case, rule (S-PASSr) can be applied for deducing either

[P |||Q] τ−→ or [P |||Q]
s(Q)−−→.

(T-PIPE): by P > Q : [S � U]T|S @ V and the premises of the rule, we get P : [S]T,
Q : [?b′.U]V, NoSum(S) and monomf(S, b′).

Suppose α =?b. By Lemma 4, S � U ?b−→ implies either S ?b−→ or S !b′
−→ and U ?b−→.

In both cases, by applying the inductive hypothesis to P we get P
λ−→, with λ ::=

τ | (v) | (νv̂′)〈v′〉 | s(Q), for some v : b and v′ : b′. Therefore, either P > Q
τ−→,

P > Q
(v)−→ or P > Q

s(Q)−−→, by (P-PASS) and (P-SYNC).

Suppose α =!b. By Lemma 4, S !b′
−→, S � U = S′� U|U and U !b−→. Hence, again

by applying the inductive hypothesis to P , we get either P > Q
τ−→ or P >

Q
s(Q)−−→, by either (P-PASS) or (P-SYNC).

Concerning the second result, the most interesting case is (T-PIPE) and proceeds by
applying Lemma 5 instead of Lemma 4 as shown for the previous case.

The following theorem is the main result of the paper.

Theorem 1 (type safety). Suppose P is well typed. Then P 	→ERR.

Proof. Suppose by contradiction that P →ERR. This means that P ≡ C[[P1|||P2]],

P1
λ−→, with λ ::= (v) | (νv̂)〈v〉 and [P1|||P2] 	λ

′
−→, with λ′ ::= τ | s(R).

Given that P is well typed, by induction on C[·] we can prove that [P1|||P2] is well-
typed too, hence there are suitable S, T and U such that P1 : [S]T, P2 : [U]0 and
S ∝ U.

Now, by P1
λ−→, for some λ, and by Proposition 1 (subject reduction), we deduce that

there is a suitable α ::=?b | !b such that S α−→. Hence I(S) 	= ∅. By definition of ∝, we

get I(S) ∩ I(U) 	= ∅. That is, there is at least one α such that S
α−→ and U

α−→.

Suppose α =?b (the case when α =!b is similar). By Proposition 2, we have P1
λ−→

and P2
λ′
−→, with λ ::= (v) | τ | s(Q) and λ′ ::= (νv̂)〈v〉 | τ | s(Q′), for a suitable v : b.

Now, if either λ or λ′ is a τ or a service call, we get a contradiction, because we would
get a transition for [P1|||P2] violating P →ERR. The only possibility we are left with
is λ = (v) and λ′ = (νv̂)〈v〉, but this would imply [P1|||P2]

τ−→, contradicting again
P →ERR.

Corollary 1 (client progress). Suppose P is well typed. Then P guarantees client
progress.

Proof. By Proposition 1 and Theorem 1.

Example 2. Consider the system Sys below, composed by:

– a directory of services D, which upon invocation offers a set of services s̃i. We
suppose that each service definition si.Pi is well typed;

– a client C that asks S service to compute the summation of two integers and outputs
its value;
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– a service S, that, upon invocation: (1) asks D for the name of an available service
of type Ssum, with ob(Ssum) = ?int.?int.!int – that is a service capable of receiv-
ing two integers and computing and outputting their sum; (2) invokes the received
service and gets the result of the computation; and, (3) passes this value to its client.

D
�= (νs̃i)(dir.

∑
i〈si〉|

∏
si

si.Pi)

C
�
= sum.〈2〉.〈3〉.(w : int)〈w〉↑

S
�
= sum.(z : int).(y : int).(

dir.
(
(x : Ssum).〈x〉↑

)
> (y : Ssum).y.

(
〈z〉.〈y〉.(w′ : int).〈w′〉↑

))

Sys
�
= C|(ν dir)(S|D) .

The whole system is well typed assuming sum :?int.?int.!int and dir :
∑

i!Si, with
si : Si for each i (Sys : [!int]0) and, as expected,

Sys ⇒≡ [〈5〉↑|||0] | (ν dir)(S|D) .

Example 3 (divergence). Let us show a simple example of a process that is well typed
but diverges. Let s be a service with associated type !b and let be Q = s.(x : b).〈x〉↑.

It is easy to see that (x : b).〈x〉↑ : [?b]!b, (T-RET) and (T-IN), ?b ∝!b and Γ � s.(x :
b).〈b〉↑ : [!b]0, (T-CALL).

Note also that by (SYNC):

Q|s.Q→ [((x : b).〈x〉↑)|||Q]|s.Q → [((x : b).〈x〉↑)|||
(
[((x : b).〈x〉↑)|||Q]

)
]|s.Q → · · ·

hence Q | s.Q diverges.
More complex types are needed for avoiding such kind of divergences. E.g. types

extended with service calls, and an extended type system for ensuring termination and
livelock freedom, in the style of [9,13]. We let these extensions as future works.

6 Conclusion

We have presented a type system ensuring client progress for well typed CaSPiS−

processes. While capturing an interesting class of services, the system we propose suf-
fers from an important limitation with respect the language in [2]: CaSPiS− does not
allow values produced inside a session to be returned to the service. Overcoming this
limitation would imply allowing non-null effects in the body P of a service definition
s.P , at the same time labelling those effects as “potential” – as they are to be exercised
only if and when s is invoked.

It would also be important to account in a type-theoretic framework another for an-
other important feature offered by the language in [2]: the possibility of explicitly clos-
ing sessions and handling the corresponding compensation actions.

Although the compliance relation we make use of already offers some flexibility
on the client side, it would be interesting to extend the type system with subtyping on
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service protocols. This would imply, in the first place, understanding when two service
protocols in CaSPiS can be considered as conformant, that is, equivalent from the
point of view of any client. To this purpose, a good starting point is represented by the
theories of [5,6], which provide notions of conformance for contracts, that is, service
protocols.
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Abstract. In network applications it is crucial to have a mechanism to guarantee
that communications evolve correctly according to the agreed protocol. Session
types offer a method for abstracting and validating structured communication se-
quences (sessions). In this paper we propose union types for refining and enhanc-
ing the flexibility of session types in the context of communication centred and
object oriented programming. We demonstrate our ideas through an example and
a calculus formalising the main issues of the present approach. The type system
garantees that, in well-typed executable programs, after a session has started, the
values sent and received will be of the appropriate type, and no process can get
stuck forever.
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1 Introduction

Writing safe communication protocols has become a central issue in the theory and
practice of concurrent and distributed computing. The actual standards still leave to the
programmer much of the responsibility in guaranteeing that the communication will
evolve as agreed by all the involved agents.

Session types [26, 27] offer a method for abstracting and validating structured com-
munication sequences (sessions). This is achieved by giving types to communication
channels, in terms of the types of values sent or received, e.g., the type ���������	

expresses that an integer will be received and then a boolean value will be sent. A ses-
sion involves channels of dual session type, thus guaranteeing that, after a session has
started, the values sent and received will be of the appropriate type. Since the specifica-
tion of a session is a type, the conformance test of programs with respect to specifica-
tions becomes type checking.

The popularity of class-based object oriented languages justifies the interest in
searching for class definitions which naturally include communication primitives. For
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this reason, an amalgamation of communication centred and object oriented program-
ming has been first proposed in [18], where methods are unified with sessions and
choices are based on the classes of exchanged objects.

Union types have been shown useful for enhancing the flexibility of subtyping in
various settings [1, 21, 11, 10, 29]. For example a bank can answer 
�� or ��� accord-
ing to the balance between an account and an item price. If 
�� and ��� are objects
of classes � and ������
 respectively, then the class of the object ������ is natu-
rally the union of the two classes � and ������
, i.e. �∨������
. Without union
types typing ������ would require a superclass of both � and ������
 to be already
defined, and this superclass could include unwanted objects. With union types we can
express communications between parties which manipulate heterogeneous objects just
by sending and receiving objects which belong to subclasses of one of the classes in
the union. In this way the flexibility of object-oriented depth-subtyping is enhanced, by
strongly improving the expressiveness of choices based on the classes of sent/received
objects.

The aim of the present paper is to discuss and formalise the use of union types for
session-centred communications in a core object-oriented calculus. A preliminary ver-
sion of the basic calculus, without union types, is defined in [18]. In the present paper,
the calculus of [18] is formally revised, so that typing and semantics are rather cleaner
and simpler. Furthermore, the extension to union types, which is the main novelty of
the present proposal, poses specific problems in formulating reduction and typing rules
to ensure that communications are safe while flexible.

We first present an example which illustrates the main features of our approach and
then we formalise these features through a featherweight representation. We call SAM∨

(Sessions Amalgamated with Methods plus union types) the language of the example
and FSAM∨ the formalising calculus.

SAM∨ Overview. SAM∨, as the language of [18], is concerned with the amalgamation
of the object oriented features with the session part, but it is agnostic w.r.t. to the remain-
ing features of the language, such as whether the language is distributed or concurrent,
and the features for synchronisation.

In SAM∨, sessions and methods are “amalgamated”: invocation takes place on an
object and the execution takes place immediately and concurrently with the request-
ing thread (indeed, SAM∨ is multi-threaded and the communication is asynchronous).
Thus, it keeps the method-like invocation mechanism while involving two threads, typ-
ical of session based communication mechanisms. The body is determined by the class
of the receiving object (avoiding in this way the usual branch/select primitives [27]),
and any number of communications interleaved with computation is possible. Sessions
are defined in a class, which can have also fields. We believe that the above amalga-
mated model of session naturally reflects our intuition of services. Furthermore, it can
neatly encode “standard” methods.

A thread can make a session request through �.�{�′}, where � is an expression
denoting an object, � is the name of a session defined in the object’s class; then, � is
evaluated to an object �, and the session body of � in �’s class is executed concurrently
with �′, introducing a new pair of fresh channels � and �̃ (one for each communication
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direction) to perform communications between the session body and �′1. Notice that
channels are implicit, and are not written by the programmer. At every step, in each
thread, there is only one single active channel on which communications are performed.

The expressions ����(�) and ���(�) send and receive objects on the active channel,
respectively. The expression �����(�){�1 ⇒ �1 � . . .��n ⇒ �n} (where C means Case)
evaluates � to an object and sends it on the active channel, and then continues with �i,
where �i is the class that best fits the class of the object sent. The counter part of �����
is the expression ����(�){�1 ⇒ �1 � . . . � �n ⇒ �n}, where the choice is based on the
class of the object received. The expression �����(�){�1 ⇒ �1 � . . .��n ⇒ �n} (where
W means While) is similar to �����(�){�1 ⇒ �1 � . . .��n ⇒ �n}, except that it allows
for enclosed ����, which continues the execution at the nearest enclosing �����. The
expression ����(�){�1 ⇒ �1 � . . .��n ⇒ �n} has the obvious meaning. Finally, �•�{}
delegates the current session to the object resulting from the evaluation of �; the body
of the session � in the class of that object is executed concurrently, using the current
session. At the end, the final value of the body is passed to the current thread.

Related Papers. We describe FSAM∨ following Featherweight Java [30], which today
has become a standard for class based object calculi.

Session Types have been first introduced to model communication protocols between
π-calculus processes [26, 32, 27]. They have been made more expressive by enriching
them with correspondence assertions [3], subtyping [24], bounded polymorphism [23]
and safer by assuring deadlock-freedom [14]. More recently session types have been
extended to multi-party communications [2, 9].

Session types have been developed also for CORBA [33], for functional languages
[25, 34], for boxed ambients [22], for the W3C standard description language for Web
Services CDL [8, 35, 31, 28], for operating systems [19], and for object oriented pro-
gramming languages [17,16,13,15,18,6]. In [6] generic types are added to a language/-
calculus based on the approach of [18]; independently from the different typing exten-
sions, FSAM∨ improves the definition of the calculi of [18] and [6], both in syntax
and in operational semantics.

Union types have been proved useful for functional languages [1, 11], for object-
oriented languages [29], for languages manipulating semi-structured data [21] and for
the π-calculus [10]. We will tell more on the relations between the present paper and
[29] at the end of Subsection 6.1.

There are many concurrent object-oriented languages and calculi in the literature; for
this topic we refer to the related work section of [20].

Paper Structure. In Section 2 we describe SAM∨ in terms of an example. We then
proceed by formalising the calculus FSAM∨, its typing and semantics. Section 7 draws
some future work directions.

2 An Example

In this section, we describe SAM∨ through an example, which expresses a typical col-
laboration pattern, c.f. [35, 7, 8], and which refines the example of [18]. This simple

1 � and �̃ play for channels a role similar to that of ���� for objects.
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1 sessiontype Shopping ST =

2 !Item.?Money.μα.!{ OK ⇒ !AccntNr.!Money.?{OK ⇒ ?Date, NoMoney ⇒ ε },
3 NoDeal ⇒ ε ,
4 MakeAnOffer ⇒ ? { Money ⇒ α, NoDeal ⇒ ε } }
5

6 sessiontype ExaminePrice ST = ?Money.!Ok∨NoDeal∨MakeAnOffer
7

8 sessiontype Sell ST =

9 ?Item.!Money.μα.?{ OK ⇒ ?AccntNr.?Money.!{ OK⇒!Date, NoMoney ⇒ ε },
10 NoDeal ⇒ ε,
11 MakeAnOffer ⇒ ! { Money ⇒ α, NoDeal ⇒ ε } }
12

13 sessiontype CalDelDate ST = ?Item.!Date

14

15 sessiontype CalNewPrice ST = ?Money.!Money∨NoDeal
16

17 sessiontype CreditCheck ST = ?AccntNr.?Money

Fig. 1. Session types for the buyer-seller example

protocol contains essential features which demonstrate the expressiveness of the id-
ioms of SAM∨. The buyer negotiates a price from a seller, and if and when they have
reached agreement, he sends his bank account number so that it gets verified that he
has enough money. If he has enough money, he receives the delivery date, otherwise the
deal falls through. The seller delegates to a bank the part of the session that checks the
money in the account. Such delegation has traditionally been expressed through higher
order sessions; instead, SAM∨ can delegate the current session through a session call as
in [18,6]. The negotiation allows several rounds: the buyer may either accept the price,
or break the negotiation, or require a better deal by sending different kinds of answers;
in the latter case, the seller might respond by sending a better price, or might break the
negotiation sending a negative answer. Thus, branch selection in control structures is
based on the dynamic class of an object sent.

The session types �������� �� and ��		 �� (see Figure 1) describe the communi-
cation pattern between the � 
�� and the ��		��.

The session type �������� �� describes the above protocol from the point of view
of the buyer. The part �!��"������
 indicates sending an !��" followed by receipt
of a ����
. The recursive type μα .! { � ⇒ ..., ��#��	 ⇒ ..., �����$$�� ⇒
... } describes the negotiation part, whereby an object is sent, and then, depending on
whether the actual object sent belongs to class �, ��#��	, or ����%�$$��, the first,
second or third branch is taken. In the first branch, the account number and the price is
sent; then, either � followed by a #���, or a ������
 is received. In the third branch,
a further object is received, and if that object is a ����
, then the negotiation resumes
on the basis of it, whereas if it is a ��#��	, the negotiation ends.

Note that in both �������� �� and ��		 �� the recursion variable is nested inside
multiple choices, so that this behaviour could not have been expressed using regular
expressions as in [15]. The use of recursive types has also other advantages, like that
of allowing iterative expressions with multiple exit points and multiple recursions. In
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1 class Buyer {

2 AccntNr accnt; Seller seller;

3

4 String∨Date Shopping ST shopping
5 { Item prodId := ....;

6 seller.sell{

7 send(prodID);

8 Money price := rec;

9 examinePrice{send(price);

10 OK∨NoDeal∨MakeAnOffer resp := rec};
11 sendW(resp){

12 OK ⇒ { send(accnt); send(price);

13 recC(x) { OK ⇒ Date delivDate:=rec; �
14 NoMoney ⇒ new String("no money"); } }�
15 NoDeal ⇒ new String("refusing proposed price") �
16 MakeAnOffer ⇒ {

17 recC(x) { Money ⇒ examinePrice{send(x);

18 resp := rec};

19 cont; �
20 NoDeal ⇒ new String("offer refused")}

21 }

22 } //end of session call sell

23 } //end of session shopping

24

25 Object ExaminePrice ST examinePrice

26 { Money price := rec

27 ... //code for decision

28 send(resp)

29 } // end of session examinePrice

30 }

Fig. 2. The class ���	


Figure 2 we show the implementation of the class � 
��. It has the fields ����� and
��		��, which will contain the account number and the ��		�� used to buy products.

The class � 
�� supports two sessions called �������� and ���"���&����. Ses-
sion �������� has session type �������� �� and return type ������∨#���. The
union type ������∨#��� describes the possible results of the negotiation: in case of
success the session ends returning the date of the delivery of the item; in case of failure
it returns a string describing the reason. In the body of this session the desired product
is determined and stored in ����!� (line 5). Then, a session request is made to the
��		�� to run session ��		 (line 6). Thus, the ��		�� will run the body of ��		 in
parallel with the remaining part of the session body of ��������, and a connection will
be created between the two threads. On this connection, the � 
�� will send an !��"

(line 7), receive a ����
 and store it in ����� (line 8). Based on its value the � 
��

will calculate his response calling session ���"���&���� which returns the answer in
���� (lines 9 and 10). Let us notice that ����’s type is the union of all the possible
answers’ type. On line 11, the � 
�� enters a loop with �����, where he sends ����,
and branches according to its class. If ���� is �, indicating acceptance of the price,
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1 class Seller {

2 Bank bank;

3

4 String∨Item Sell ST sell
5 { Item prodID := rec;

6 Money price=...;

7 send(price);

8 recW( x ){

9 OK ⇒ { sendC( bank•check{ } )
10 {OK ⇒ calDelDate{send(prodID);

11 Date date := rec};

12 send(date); prodID �
13 NoMoney ⇒ new String("failed bank transaction");

} } �
14 NoDeal ⇒ new String("proposal refused by buyer") �
15 MakeAnOffer ⇒ { calNewPrice{send(price);

16 Money∨NoDeal resp := rec} ;
17 sendC(resp){ Money ⇒ cont �
18 NoDeal ⇒ new String("refusing

proposed price"); } }

19 }

20 } //end of session sell

21

22 Object CalDelDate ST calDelDate

23 { Item item := rec

24 ... //code for calculate date

25 send(date)

26 } // end of session calDelDate

27

28 Object CalNewPrice ST calNewPrice

29 { Money price := rec

30 ... //code for response (if the answer is positive then the field

31 //price is updated with the new price)

32 sendC(resp)

33 } // end of session calNewPrice

34 }

Fig. 3. The class �	��	


then the � 
�� will send his account number, and price (line 12); and will receive an
object which may be �, in which case he will receive a #��� and store it in ��	�'#���
(line 13), or will receive a ������
 (line 14). In this case the reason of failure is stored
in the string $��	 ��. If ���� is ��#��	, indicating that the price is unacceptable,
then the session terminates. If the response is ����%�$$��, inviting the ��		�� to
make a better offer, then the rest depends on the other party’s response, indeed Line 17
contains ���� indicating that a value will be received, and the remaining steps will be
determined by its class. If the value received is a ����
 then session ���"���&����

is called, which returns the � 
��’s reaction in ����, and the recursion will continue
(line 19). If the value received is ��#��	, then the loop will be abandoned.
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1 class Bank {

2 Ok∨NoMoney CreditCheck ST check
3 { AccntNr accnt := rec;

4 Money amt := rec;

5 .... // code for check

6 If(response) then new Ok else new NoMoney;

7 }// end of session check

8 }

Fig. 4. The class ���

Notice that in order to get an arbitrary number of repetitions, it is crucial to allow
objects of different classes to be sent in the different iterations of while loops.

The session type ��		 �� describes the protocol from the point of view of the
��		��, and is “dual” to �������� ��. We now consider the class ��		��, from
Figure 3. The session body for ��		 starts by receiving the description of an !��",
calculating and sending its price. Then, in line 8, it enters a ���� loop, which is the
counterpart to the ����� loop from �������� and performs all the ��		��’s negotia-
tion. The interesting feature shown here is delegation, on line 9, whereby, the ���� is
requested to continue the session, using the current connection, and by application of
the session body �����. At the end of the execution of ����� the session will continue
according to the bank answer (� or ������
).

The session type for ����� from class ���� in Figure 4 is the receipt of a %������
and a ����
 followed by sending either �, or a ������
 object. Note that the session
body for ����� is not aware whether it will be called through a session request, or
through delegation. The return type of ����� is the union of the types of the possible
answers, i.e. �∨������
.

Notice that the sessions ���"���&����, ��	���#��� and ��	���&���� are exam-
ples of the implementation in SAM∨of methods, since they start by receiving arguments
and after elaborating them send a result.

3 Syntax

This section presents the syntax of FSAM∨ (Figure 5), a minimal concurrent and im-
perative core calculus, based on Featherweight Java [30] (abbreviated with FJ).
FSAM∨ supports the basic object-oriented features and session request, session del-
egation, branching sending/receiving and loops. In details, FSAM∨ encompasses the
following linguistic features: basic object oriented expressions, session bodies and com-
munication constructs that combine send/receive with branching and loops.

We use grey to indicate expressions that are produced during the reduction process,
but do not occur in the source code of a program. We also use the standard convention
of denoting with ξ a sequence of elements ξ1, ...,ξn.

Union types are defined as in [29]: they are built out of class names by the union
operator (denoted by ∨ ).

Programs are defined from a collection of classes. The metavariables � and #, possi-
bly with subscripts, range over class names. Each class has a name, a list of fields of the
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(union type) � ::= � | �∨�

(class) � ::= ���� � � � { ��; � }
(session) � ::= ���{ 	 }
(expression) 	 ::= � | ���� | ���� | � | 	� 	 | 	.�:= 	 | 	.� | �	� �(	)

| 	.�{	} | 	•�{ � }
| �. �	���(	){� ⇒ 	�� ⇒ 	}
| �. 
	��(�){� ⇒ 	�� ⇒ 	}
| �. �	���(	){� ⇒ 	�� ⇒ 	}
| �. 
	��(�){� ⇒ 	�� ⇒ 	}

(parallel threads) P ::= 	 | P || P

Fig. 5. Syntax, where syntax occurring only at runtime appears shaded . Syntax for session types
� is in Figure 9.

form �$, where $ represents the field name and � its type, and a list of sessions of the
form ���{ � }, where � is the return type, � the session type, � the session name, and �
the session body. For the sake of conciseness the symbol � represents class extension,
as in [30]. All classes are defined as extensions of the topmost class �(���.

Expressions include variables, that are both standard term variables � and the special
variables ���� and ����. The variable ���� is considered implicitly bound in any ses-
sion declaration. Instead, ����� and ���� are the only binders for ����, that represents
the continuation by recursive computation. Let us notice that free occurrences of ����
in � are not bound in the expression �����(�){. . .}: actually no occurrence of ���� can
appear in � if this expression is typable (see rule SENDW-T in Figure 11).

In a session request �.�{�′} we call the expression �′ the co-body of the request
(since it will be evaluated concurrently with the body of requested session).

In the session delegation expression, �•�{�}, the channel � is added by the opera-
tional semantics in order to keep track of the channel to pass to the delegated session.

Channels are implicit in the source language syntax. At runtime, communication
channels � are introduced at each new session request. We denote the dual with ˜...,
where �̃ is again a runtime channel, and where ˜... is an involution: ˜̃� = �. Whenever a
thread uses a channel �, the other participant in the communication uses its dual �̃. The
operational semantics associates to � and �̃ two different queues of messages; when a
thread, which uses the channel �, wants to receive a message it will inspect the queue
associated to �, while, when it sends a message it will add it to the queue associated to
�̃ (see Section 5).

The body of a communication expression is a pair of alternatives {�1 ⇒ �1 � �2 ⇒
�2}, whose choice depends on the class of the object that is sent or received. In par-
ticular, in case of ����� and ���� the expressions �i can contain ����, representing
recursive computations.

With respect to SAM∨ we only have binary choices as bodies of communication ex-
pressions in FSAM∨, since the other forms can be encoded with them. First of all, a
unary choice {� ⇒ �} can be simply encoded as {� ⇒ � � � ⇒ ��� �(���()}, since
sending or receiving an object of class � will always choose the first alternative. With
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unary choices we can encode the two communication constructs used in the example,
i.e., ���� for sending, and ��� for receiving, that we omit from FSAM∨: the ex-
pression �����(�){�(���⇒ ��� �(���()} encodes ����(�) and in a similar way,
����(�){�(���⇒ �} encodes ���.

With binary choices we can also encode n-ary choices for n > 2, getting in this way
the constructs used in the example of Section 2. The informal idea of such encoding,
given the set of classes to be used in the choices, is to take the first (in the left to right
order) relative minimum from this set and use it to define the first branch; the second
branch will use �(��� and we iterate this procedure to write the expression of this
second branch, until we remain with only two choices. Thus, for instance, consider the
choice {�1 ⇒ �1 ��2 ⇒ �2 ��3 ⇒ �3}, where �1 is not related to the other classes and �2

is a subclass of �3; we can encode this choice with the (nested) binary choice: {�1 ⇒ �1 �
�(���⇒ {�2 ⇒ �2 ��3 ⇒ �3}}. Notice that this encoding is correct also if �2 = �3.

The types used for selecting branches in a choice are class names. This simplifies
the formal treatment and the proofs, but, again, we can encode choices with arbitrary
union types by n-ary choices in a straightforward way; e.g., {�1 ∨�2 ⇒ ���3 ⇒ �′} is
encoded as {�1 ⇒ ���2 ⇒ ���3 ⇒ �′}.

A runtime expression is either a user expression (i.e. an expression in Figure 5 with-
out shaded syntax) or an expression containing channels and/or object indentifiers.
Furthermore, threads of runtime expressions can occur at runtime (see the operational
semantics). Parallel threads are ranged over by P. Fully evaluated objects will be repre-
sented by object identifiers denoted by �.

The main novelty of FSAM∨ w.r.t. FJ is that session invocation can involve the
creation of concurrent and communicating threads. Other minor differences are: we do
not have cast and overriding, which are orthogonal to our approach; we do not have
explicit constructors, then in the object instantiation expression ��� �(�), the values �
to which � reduce are the initial values of the fields.

Notice that standard methods can be seen as special cases of sessions. In fact, a
method declaration can be (informally) encoded as a session with nested ����s (one
for each parameter) and with one ����� returning the method body. Similarly, method
calls are special cases of session requests: the passing of arguments is encoded as nested
�����s (one for each argument) and the object returned by the method body is retrieved
via one ����. This encoding will use unary choices that can be rendered with binary
choices as explained above.

4 Auxiliary Functions

As in FJ, a class table CT is a mapping from class names to class declarations with
domain D(CT). Then a program is a pair (CT,�) of a class table (containing all the
class definitions of the program) and an expression � (an expression belonging to the
source language representing the program’s main entry point). The class �(��� has
no fields and its declaration does not appear in CT. As in FJ, from any CT we can
read off the subtype relation between classes, as the transitive closure of � clause;
moreover this relation is extended in order to relate types built out of union (Figure 6).
As usual considering union types modulo the equivalence relation induced by <: we
get the commutativity and associativity of ∨ . Therefore each union type can be written
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� <: �
� <: �′ �′ <: �′′

� <: �′′
���� � � � { ��; � } ∈ ��

� <: �

� <: �∨�′ �′ <: �∨�′ �′ <: � �′′ <: �

�′ ∨�′′ <: �

fields(���	��) = •
fields(�) = �′ �′ ���� � � � { ��; � }

fields(�) = ��,�′ �′

fields(�) = ��

ftypew(�i,�) = ftyper(�i,�) = �i

ftypew(�,�1 ∨�2) =

⎧
⎪⎨

⎪⎩

ftypew(�,�1) if ftypew(�,�1) <: ftypew(�,�2),
ftypew(�,�2) if ftypew(�,�2) <: ftypew(�,�1),
⊥ otherwise.

ftyper(�,�1 ∨�2) = ftyper(�,�1)∨ ftyper(�,�2)

���� � � � { ��; � } ���{ 	 } ∈ �

stype(�,�) = {�}
���� � � � { ��; � } � � �

stype(�,�) = stype(�,�)

stype(�,�1 ∨�2) = stype(�,�1)∪ stype(�,�2)

���� � � � { ��; � } ���{ 	 } ∈ �

rtype(�,�) = �

���� � � � { ��; � } � � �

rtype(�,�) = rtype(�,�)

rtype(�,�1 ∨�2) = rtype(�,�1)∨ rtype(�,�2)

���� � � � { ��; � } ���{ 	 } ∈ �

sbody(�,�) = 	

���� � � � { ��; � } � � �

sbody(�,�) = sbody(�,�)

Fig. 6. Subtyping and Lookup Functions

as �1 ∨ . . .∨�n for n ≥ 1: we say that the classes �1, . . . ,�n build the union type �1 ∨
. . .∨�n. A union type �1 ∨ . . .∨�n is proper if n > 1.

We assume a fixed CT that satisfies some usual sanity conditions as in FJ [30].
Thus, in the following, instead of writing CT(�) = �	��� . . . we will simply write
�	��� � . . ..

We define auxiliary functions (see Figure 6) to lookup fields and sessions from CT;
these functions are used in the typing rules and in the operational semantics. The fields
lookup function is as in FJ. As for field type lookup we distinguish between the contexts
where the field is used for reading (ftyper) from those where it is for writing (ftypew). The
stype and rtype return a set of session types and the return type of a session, respectively,
while sbody returns the body of a session. As in FJ these functions may have to inspect
the class hierarchy in case the required element is not present in the current class.

Notice that the type lookup functions take a type as argument (not simply a class
name) because the receiver expression of a field/session access may be of a proper
union type. As for field type lookup, when the field is used in read mode, in case of
a proper union type, we simply return the union type of the result of ftyper invoked
on the argument types (if both retrievals succeed). On the contrary, when a field is
updated, due to the contravariance relation, in case of a proper union type we must
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	���=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	1����	2��� if 	 = 	1�	2,

	1���.� if 	 = 	1.�,

	1���.���	2��� if 	 = 	1.���	2,

	1��� �{	2} if 	 = 	1 �{	2},
	1���•�{�} if 	 = 	1•�{ },
�.�	���(	0���){� ⇒ 	���} if 	 = �	���(	0){� ⇒ 	},
�.
	��(�){� ⇒ 	���} if 	 = 
	��(�){� ⇒ 	},
�.�	���(	){� ⇒ 	���} if 	 = �	���(	){� ⇒ 	},
�.
	��(�){� ⇒ 	���} if 	 = 
	��(�){� ⇒ 	},
	 otherwise.

			′/����
 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	1		′/����
�	2		′/����
 if 	 = 	1�	2,

	1		′/����
.� if 	 = 	1.�,

	1		′/����
.���	2		′/����
 if 	 = 	1.���	2,

	1		′/����
 �{	2} if 	 = 	1 �{	2},
	1		′/����
•�{�} if 	 = 	1•�{�},
�.�	���(	0){� ⇒ 			′/����
} if 	 = �.�	���(	0){� ⇒ 	},
�.
	��(�){� ⇒ 			′/����
} if 	 = �.
	��(�){� ⇒ 	},
	′ if 	 = ����,

	 otherwise.

Fig. 7. Channel Addition and Continuation Replacement

return the intersection of the result of ftypew on the arguments; however, in the absence
of multiple inheritance, the only possible cases are those listed in Figure 6, thus we can
avoid introducing intersection types.

As for the stype lookup function, it returns a set of session types; in case it is invoked
with a class name as argument, it will return a singleton. The interesting case is when
it is invoked with a proper union type: it will return the union of the sets corresponding
to the argument types, so that we have all the session types of the classes that build
the union type (see how it is used in the typing system, Figures 11 and 13). The rtype
lookup function behaves in a covariant way since the resulting object cannot be used in
writing mode. We notice that sbody is only invoked with a class name as type argument,
since we invoke sessions on objects only, and all objects have a class name as type.

It is easy to verify that all lookup functions applied to equivalent union types return
either equivalent union types or the same sets of session types, whenever they are defined.

5 Operational Semantics

Objects passed in asynchronous communications are stored in a heap. A heap h is a finite
mapping with domain consisting of objects and channel names. Its syntax is given by:

h ::= [] | � �→ (�,$ : �) | � �→ � | h ::h

where :: denotes heap concatenation.
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During evaluation, any expression ��� �(�) will be replaced by a new object iden-
tifier �. The heap will then maps the object identifier � to the pair (�,$ : �) of its class
name � and the list of its fields with corresponding objects �; this mapping is denoted
by � �→ (�,$ : �).

The form h[� �→ h(�)[$ �→ �′]] denotes the update of the field $ of the object � with
the object �′.

Channel names are mapped to queues of objects: � �→ �. The heap produced by
h[� �→ �] maps the channel � to the queue �. With some abuse of notation we write
� :: � and � :: � to denote the queue whose first and last element is �, respectively.

Heap membership for object identifiers and channels is checked using standard set
notation, by identifying h with its domain, we can also write � ∈ h, and � ∈ h.

The values that can result from normal termination are parallel threads of fully eval-
uated objects.

In the reduction rules we make use of the special channel addition operation �...�,
and of the continuation replacement operation 	.../����
 (their formal definitions are
in Figure 7, where {� ⇒ �} is short for {�1 ⇒ �1 � �2 ⇒ �2}). We denote by ���� the
source expression � in which all occurrences of receive, send, and delegation expres-
sions which are not within the co-body of a session request are extended, so that they ex-
plicitly mention the channel � they will use (remember that channel names are not writ-
ten by the programmer). Also, we denote by �	�′/����
 the expression � in which all
occurrences of ����, that are not within the co-body of a session request or within the
body of a send/receive loop, are replaced by �′, thus preserving the correct nested struc-
ture of while expressions. For example ����(�){�1 ⇒ ���2 ⇒ ����}���	�′/����
=
�.����(�){�1 ⇒ ���2 ⇒ �′}.

The reduction is a relation between pairs of threads and heaps:

P,h −→ P′,h′

Reduction rules use evaluation contexts (based on runtime syntax) that capture the no-
tion of the “next subexpression to be reduced”:

E ::= [−] | E ;� | E .$ | E .$ := � | �.$ := E | E .�{�} |
E •�{�} | �.�����(E ){�1 ⇒ �1 ��2 ⇒ �2}

The explicit mention of the evaluation context is needed in rule SESSREQ-R (Figure 8),
in which a new thread is generated in parallel with the evaluation context.

Reduction rules are in Figure 8. Rule PAR-R models the execution of parallel threads.
In this rule parallel composition is considered modulo structural equivalence. As usual,
we define structural equivalence rules asserting that parallel composition is associative
and commutative:

P || P1 ≡ P1 || P P || (P1 || P2) ≡ (P || P1) || P2 P ≡ P′ ⇒ P || P1 ≡ P′ || P1

The successive four rules define the execution of standard object-oriented constructions.
Rule SESSREQ-R models the connection between the co-body � of a session request

�.�{�} and the body �′ of the session �, in the class of the object �. This connection is
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PAR-R
	,h −→ P,h′

	 || P1,h −→ P || P1,h
′

SEQ-R
E [�;	],h −→ E [	],h

FLD-R
h(�) = (�,� : �)

E [�.�i],h −→ E [�i],h
NEWC-R

fields(�) = �� � � h

E [�	��(�)],h −→ E [�],h :: [� �→ (�,� : �)]

FLDASS-R
E [�.� := �

′],h −→ E [�′],h[� �→ h(�)[� �→ �
′]]

SESSREQ-R
h(�) = (�, ) sbody(�,�) = 	′ �, �̃ � h

E [�.�{	}],h −→ E [	���] || [�/����]	′��̃�,h[�, �̃ �→ ()]

SESSDEL-R
h(�) = (�, ) sbody(�,�) = 	

E [�•�{�}],h −→ E [[�/����]	���],h
SENDCASE-R

h(�̃) = � h(�) = (�, ) � ⇓ {�1,�2} = �i

E [�.�	���(�){�1 ⇒ 	1 ��2 ⇒ 	2}],h −→ E [	i],h[�̃ �→ � :: �]

RECEIVECASE-R
h(�) = � :: � h(�) = (�, ) � ⇓ {�1,�2} = �i

E [�.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2}],h −→ E [[�/�]	i],h[� �→ �]

SENDWHILE-R
E [�.�	���(	){�1 ⇒ 	1 ��2 ⇒ 	2}],h −→ E [�.�	���(	){�1 ⇒ 	′

1 ��2 ⇒ 	′
2}],h

where 	′
i = 		i/����
�.�	���(	){�1 ⇒ 	1 ��2 ⇒ 	2}/����

RECEIVEWHILE-R
E [�.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2}],h −→ E [�.
	��(�){�1 ⇒ 	′

1 ��2 ⇒ 	′
2}],h

where 	′
i = 		i/����
�.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2}/����

Fig. 8. Reduction Rules

established through a pair of fresh channels �, �̃. For this purpose the expression �.�{�}
reduces, in the same context, to its own co-body ���� and in parallel, outside the context,
it spawns the body [�/����]�′��̃� of the called session. The explicit substitution of � in
� and of �̃ in �′ ensures that the communication is on the fresh dual channels � and �̃.
Thus, an object can serve any number of session requests. For example,

�.�{�����(5){�1 ⇒ �1 ��2 ⇒ �2}};��� �( ) −→
�.�����(5){�1 ⇒ �1�����2 ⇒ �2���};��� �( ) ||
�̃.����(�){�′

1 ⇒ [�/����]�′
1��̃���

′
2 ⇒ [�/����]�′

2��̃�}

if ����(�){�′
1 ⇒ �′

1 ��′
2 ⇒ �′

2} is the body of session � in the class of the object �.
Notice that there is no ambiguity in this rule, since

(�.�����(5){�1 ⇒ �1�����2 ⇒ �2���} ||
�̃.����(�){�′

1 ⇒ [�/����]�′
1��̃���

′
2 ⇒ [�/����]�′

2��̃�});��� �( )

is not a thread according to the syntax of FSAM∨.
Rule SESSDEL-R replaces the session delegation � • �{�} by [�/����]����, where

� is the body of the session �, in the class of the object �. This allows a part of the
communication to be delegated via the channel � to the object �: this delegation is
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transparent for the thread using the dual channel �̃. When the delegated job is over, the
original thread can resume the communication via the channel �. For example
�•�{�} −→ �.����(�){�1 ⇒ [�/����]�1�����2 ⇒ [�/����]�2���}
if ����(�){�1 ⇒ �1 ��2 ⇒ �2} is the body of session � in the class of the object �.

The communication rule for �����, SENDCASE-R, puts the object �, i.e. the result
of evaluating the expression �, in the queue associated to the dual channel �̃ of the
communication channel �. The computation then proceeds with the expression �i, if
�1 � �2 and �i is the smallest class in {�1,�2} to which the object � belongs. Otherwise,
if �1 = �2 and � belongs both to �1 and to �2, then the computation proceeds with
�1

2. This is given by the condition h(�) = (�, ) and by the following definition of
� ⇓ {�1,�2} = �i, using the subtyping relation (Figure 6):

� ⇓ {�1,�2} =

⎧
⎪⎨

⎪⎩

�i if � <: �i and � <: � j with i � j imply � j �<: �i,

�1 if � <: �1 = �2,

⊥ otherwise.
Dually the receive communication rule takes an object � from the queue associated to
channel � and returns the expression [�/�]�i, if h(�) = (�, ) and � ⇓ {�1,�2} = �i.

In rules SENDCASE-R and RECEIVECASE-R it is understood that the transition
cannot fire if � ⇓ {�1,�2} = ⊥. However we will see that � ⇓ {�1,�2} is always defined
in well-typed expressions.

Rules SENDWHILE-R and RECEIVEWHILE-R simply realize the repetition using
the case communication expressions. Note that �����(E ){�1 ⇒ �1 � �2 ⇒ �2} is not
an evaluation context, since we do not want to reduce the expression which controls the
loop before the application of rule SENDWHILE-R, in which the ����� expression is
unfolded.

Only communication and delegation expressions containing explicit channels can be
reduced. So, for example, �����)�*{�} and �•�{} are stuck; however, as we will see
in Subsection 6.1, the latter cannot be typed and the former is not an initial expression
(type soundness is only guaranteed for initial expressions).

6 Typing

Session types, ranged over by �, describe the communications that take place during
a session. The syntax of session types is in Figure 9, where we use † as a symbol that
stands for either ! or ?. By ε we denote the empty communication, and the concatenation
�1.�2 expresses the communications in �1 followed by those in �2. The session type ε
is the neutral element of concatenation, so that ε.� = � = �.ε for all �.

The types !{�1 ⇒ �1 ��2 ⇒ �2} and ?{�1 ⇒ �1 ��2 ⇒ �2} express the sending and
the receiving of an object, respectively: depending on the class of this object the com-
munication will proceed with one of the �i. In μα.†{�1 ⇒ �1 ��2 ⇒ �2} the session
type variable α can occur inside �i with the usual meaning of representing the whole
session type. We consider recursive session types modulo fold/unfold: i.e., μ α.� =

2 In this particular case, there is no other motivation for selecting the smallest index but to avoid
introducing non-deterministic choices. From this point of view, alternative solutions could be
just as sound: for instance, the selection of the greatest index or linguistic restrictions on the
expressions 	i, e.g., the condition 	1 = 	2 whenever �1 = �2.
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† ::= ! | ? direction
� ::= ε | α | � | †{� ⇒ ��� ⇒ �} | μα.†{� ⇒ ��� ⇒ �} | �.� session type

Fig. 9. Syntax of Session Types

[μ α.�/α]�. So we equate μα.†{�1 ⇒ �1 ��2 ⇒ �2} to †{�1 ⇒ �1 ��2 ⇒ �2} when α
does not occur in †{�1 ⇒ �1 ��2 ⇒ �2}.

The type � is used only as session type for the command ����: it plays the role of
a place holder which will be replaced by a type variable when the while expression is
completed (see rules SENDW-T and RECEIVEW-T in Figure 11).

We say that a session type is closed if it does not contain occurrences of free session
type variables and of �. Therefore, each closed session type has one of the following
shapes:

– ε;
– μα.†{�1 ⇒ �1 ��2 ⇒ �2} or †{�1 ⇒ �1 ��2 ⇒ �2};

or a concatenation of the session types above. For simplicity we will use in definitions
unfolded recursive types whenever possible.

6.1 Typing of Channel Free Expressions

In this subsection we define typing for user expressions, in which communication chan-
nels are implicit. For technical reasons it is useful to consider also expressions with
occurrences of object identifiers, which are not directly expressible in user syntax. We
call these expressions channel free expressions. The term environments therefore will
contain also type assignments to object identifiers. This permits a simpler formulation
of the runtime typing rules, as we will see in next subsection.

The typing judgement has the shape

Γ � � : � � �

where Γ is a term environment, which maps ����, ����, variables and objects to types,
and � represents the session type of the (implicit) active channel.

In order to allow (possible) multiple occurrences of a variable or ���� with different
types inside an expression, we define the following “update” operation on Γ (+ ranges
over ����, ����, term variables, and object identifiers):

Γ (+ : �)(+′) =
{
� if +′ = +

Γ (+′) otherwise.

Thus, the operation Γ (+ : �) has the effect of adding + : � to Γ , but after deleting a
declaration of + from Γ (if there is one). This will avoid checking well-formedness of
term environments and does not require an explicit weakening rule to add an assumption
on the ���� variable (when typing nested while communication expressions).

To assure a safe communication between two threads we must require their session
types to be dual, i.e., that each send will correspond to a receive and vice versa. The
duality is then the symmetric relation generated by the rules of Figure 10, in which we
consider folded recursive types, otherwise the definition would not be well-founded.
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ε � ε α � α
�1 � �′

1 �2 � �′
2

�1.�2 � �′
1.�

′
2

�1 ∨�2 <: �′
1 ∨�′

2 �i ⇓ {�′
1,�

′
2} = �′

j ⇒ �i � �′
j �′

l ⇓ {�1,�2} = �k ⇒ �k � �′
l

μα.!{�1 ⇒ �1 ��2 ⇒ �2} � μα.?{�′
1 ⇒ �′

1 ��′
2 ⇒ �′

2}

Fig. 10. Duality Relation

The exchanged values must also be of one of the classes expected by the receiver. All
possible choices on the basis of the class of the exchanged value must continue with
session types which are dual of each other. For this reason we have to perform checks
on the type of the exchanged values in both directions:

– for any sent value of type �i such that �i ⇓ {�′
1,�

′
2} = �′

j for some 1 ≤ j ≤ 2 we
require �i � �′

j;
– for any received value of type �′

l such that �′
l ⇓ {�1,�2} = �k for some 1 ≤ k ≤ 2

we require �k � �′
l .

For instance, let us consider the session types !{����� ⇒ �1 � ������ ⇒ �2} and
?{������	� ⇒ �3 � �(��� ⇒ �4} where ������	� <: �����. At run time a
������	� can be sent as a �����, thus the types �1 and �3 have to be dual. Notice
that, thanks to the absence of generics we can be more flexible w.r.t. [6]: the types used
in the choices (actually their union) of the send can be subtypes of the ones expected
(in the dual receive).

Typing rules for channel free expressions are in Figure 11. For the sake of simplicity
in rule NEWC-T we require that the initialisation of an object does not involve com-
munications. Notice that in rule SEQ-T we use session type concatenation to represent
that first the communications in �1 and then those in �2 are performed.

The rule for session request SESSREQ-T relies on the duality relation (Figure 10)
to assure that all the bodies of the session � in the classes which build the union type
� and the co-body �′ of the request will communicate properly. In typing session del-
egation (rule SESSDEL-T) we take into account that the whole expression will be re-
placed by the session body defined in the class of the expression to which the session
is delegated (cf. the reduction rule SESSDEL-R, Figure 8). Notice that the condition
stype(�,�)={�′} does not imply � be one class, but only that all definitions of � in the
classes which build � have the same session types. If a session has session type ε , then
it is meaningless to use it in a delegation, while it is sensible to use it in a request. For
this reason we require �′ � ε in rule SESSDEL-T.

Rules SENDC-T and RECEIVEC-T require all possible alternative expressions to
have the same type �, but they can implement different communication sequences �i.
Rule SENDC-T prescribes that the class type of � is the union type of the classes used
in the choice. Without union types the typing rule for the same construct in [18] was
much more demanding and less clear. The typing rules for the while communication
expressions are similar, but they also discharge the assumption on ���� and replace the
occurrences of � in session types by a fresh variable α which will be bound by μ . In
rule SENDW-T typing � with session type ε prevents � from containing occurrences
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AXIOM-T
Γ � ! : Γ (!) � ε ! � ����

CONT-T
Γ � ���� : Γ (����) � �

SUB-T
Γ � 	 : � � � � <: �′

Γ � 	 : �′ � �
NEWC-T
fields(�) = �� Γ � 	i : �i � ε

Γ � �	��(	) : � � ε

FLD-T
Γ � 	 : � � �

Γ � 	.� : ftyper(�,�) � �

SEQ-T
Γ � 	 : � � � Γ � 	′ : �′ � �′

Γ � 	�	′ : �′ � �.�′

FLDASS-T
Γ � 	 : � � � Γ � 	′ : ftypew(�,�) � �′

Γ � 	.� := 	′ : ftypew(�,�) � �.�′

SESSREQ-T
Γ � 	 : � � � Γ � 	′ : �′ � �′ �′ � �′′ ∀�′′ ∈ stype(�,�)

Γ � 	.�{	′} : �′ � �

SESSDEL-T
Γ � 	 : � � � stype(�,�) = {�′} �′ � ε rtype(�,�) = �′

Γ � 	•�{} : �′ � �.�′

SENDC-T
Γ � 	 : �1 ∨�2 � � Γ � 	i : � � �i

Γ � �	���(	){�1 ⇒ 	1 ��2 ⇒ 	2} : � � �.!{�1 ⇒ �1 ��2 ⇒ �2}
RECEIVEC-T

Γ (� : �i) � 	i : � � �i

Γ � 
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2} : ��?{�1 ⇒ �1 ��2 ⇒ �2}
SENDW-T

Γ � 	 : �1 ∨�2 � ε Γ (���� : �) � 	i : � � �i α fresh in �1,�2

Γ � �	���(	){�1 ⇒ 	1 ��2 ⇒ 	2} : � � μα.!{�1 ⇒ [α/�]�1 ��2 ⇒ [α/�]�2}
RECEIVEW-T

Γ (���� : �)(� : �i) � 	i : � � �i α fresh in �1,�2

Γ � 
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2} : � � μα.?{�1 ⇒ [α/�]�1 ��2 ⇒ [α/�]�2}

Fig. 11. Typing Rules for Channel Free Expressions

of communications and ����3. Notice that requiring that both branch expressions in a
choice operation have the same union type � does not imply that we require them to be
of the same class: in fact, � can be a proper union type. For instance, we may have that
Γ � �1 : �1 � �1 and Γ � �2 : �2 � �2; by subsumption (rule SUB-T) we also have that
Γ � �1 : �1 ∨�2 � �1 and Γ � �2 : �1 ∨�2 � �2. Then, � = �1 ∨�2.

Figure 12 defines well-formed class tables. Rule SESS-WF type checks the session
bodies with respect to the current class � taking as term environment the association
between ���� and �. Notice that � has no dual type, so sessions whose bodies would
be typed with types containing � would be useless. This justifies the condition that �
must be closed in rule SESS-WF.

A last remark is that, since no typing rule generates free session type variables, then
all session types in typing judgements are closed unless they contain occurrences of �.

3 Note that this typing allows 	 to contain session requests, since the execution of these requests
will use different channels to communicate.
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SESS-WF
{���� : �} � 	 : � � � � is closed

���{ 	 } �� in �

CLASS-WF
� �� � �� in �

���� � � � { ��; � } ��

Fig. 12. Well-formed Class Tables

The rules, presented in this section, define how the type system checks that the
declarative part of the program and the main part are well-typed, also with respect to
session types used in declarations of sessions. However, when considering well-typed
executable programs, we require that they are closed with respect to term variables and
that all communication expressions occur inside session co-bodies, that is, that they are
typed in the empty type environment with an empty session type. Namely, an initial
expression � is such that /0 � � : � � ε for some �. It is easy to verify that the set of
initial expressions is the set of closed and well-typed user expression. For example, let
us consider the stuck expressions �����)�*{�} and �•�{}:

– �����)�*{�} is well-typed but its session type is not empty,
– �•�{} is not well-typed.

We conclude this subsection by comparing FSAM∨ with FJ ∨ , an extension of FJ
with union types, proposed by Igarashi and Nagira in [29]. They define union types as in
the present paper: the essential difference is that they have traditional methods instead
of sessions.

The method signatures are of the shape �→ �, where both the parameter types � and
the return type � are union types. The method type lookup function applied to a method
name " and to a union type � gives a set of method signatures, i.e. all the signatures
which " has in the classes which build �. This is similar to our stype function, which
returns a set of session types.

The rule of method call checks that the types of the parameters agree with all the
signatures found by the method type lookup function for the union type of the object.
Also our rule SESSREQ-T requires the session type of the co-body be dual to all the
session types returned by the stype function.

It is easy to check that the encoding of methods by sessions sketched at the end of
Section 3 extends without changes to methods with union types.

6.2 Typing of Runtime Expressions

During evaluation of well-typed programs, channel names are made explicit in send and
receive expressions, as well as in session delegation. Thus, in order to show how well-
typedness is preserved under evaluation, we need to define new typing rules for runtime
expressions. Furthermore, in typing runtime expressions, we must take into account the
session types of more than one channel: runtime expressions contain explicit channel
names (used for communication) thus session types must be associated with channel
names in an appropriate way. Then judgements have the form

Γ ��� : � � Σ

where Σ denotes a session environment which maps channels to session types.
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AXIOM-RT
Γ �� ! : Γ (!) � /0 ! � ����

FLD-RT
Γ �� 	 : � � Σ

Γ �� 	.� : ftyper(�,�) � Σ

SUB-RT
Γ �� 	 : � � Σ � <: �′

Γ �� 	 : �′ � Σ
NEWC-RT
fields(�) = �� Γ �� 	i : �i � /0

Γ �� �	��(	) : � � /0

CONT-RT
Γ (���� : �) �� ���� : � � {� : �}

SEQ-RT
Γ �� 	 : � � Σ Γ �� 	′ : �′ � Σ ′

Γ �� 	�	′ : �′ � Σ .Σ ′

FLDASS-RT
Γ �� 	 : � � Σ Γ �� 	′ : ftypew(�,�) � Σ ′

Γ �� 	.� := 	′ : ftypew(�,�) � Σ .Σ ′

SESSREQ-RT
Γ �� 	 : � � Σ Γ � 	′ : �′ � �′ �′ � �′′ ∀�′′ ∈ stype(�,�)

Γ �� 	.�{	′} : �′ � Σ
SESSDEL-RT
Γ �� 	 : � � Σ stype(�,�) = {�} � � ε rtype(�,�) = �′

Γ �� 	•�{�} : �′ � Σ .{� : �}
SENDC-RT

Γ �� 	 : �1 ∨�2 � Σ Γ �� 	i : � � {� : �i}
Γ �� �.�	���(	){�1 ⇒ 	1 ��2 ⇒ 	2} : � � Σ .{� :!{�1 ⇒ �1 ��2 ⇒ �2}}

RECEIVEC-RT
Γ (� : �i) �� 	i : � � {� : �i}

Γ �� �.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2} : � � {� :?{�1 ⇒ �1 ��2 ⇒ �2}}
SENDW-RT

Γ �� 	 : �1 ∨�2 � /0 Γ (���� : �) �� 	i : � � {� : �i} α fresh in �1,�2

Γ �� �.�	���(	){�1 ⇒ 	1 ��2 ⇒ 	2} : � � {� : μα.!{�1 ⇒ [α/�]�1 ��2 ⇒ [α/�]�2}}
RECEIVEW

Γ (���� : �)(� : �i) �� 	i : � � {� : �i} α fresh in �1,�2

Γ �� �.
	��(�){�1 ⇒ 	1 ��2 ⇒ 	2} : � � {� : μα.?{�1 ⇒ [α/�]�1 ��2 ⇒ [α/�]�2}}

Fig. 13. Typing Rules for Runtime Expressions

A session environment maps only a finite set of channels to session types different
from ε , and all the remaining to ε . We can then represent one session environment with
an infinite number of finite sets which give all the meaningful associations and some of
the others. For example {� : �} and {� : �,�′ : ε} represent the same environment. This
choice avoids an explicit weakening rule for session environments. Figure 13 gives the
typing rules for runtime expressions, which differ from those for channel free expres-
sions for having session environments instead of a unique session type. For this reason
we extend the concatenation of session types to session environments as follows:

Σ .Σ ′(�) = Σ(�).Σ ′(�)

Notice that in rule SESSREQ-RT we are making use of the judgement Γ � �′ : � � �′,
where the expression �′ does not contain channels, but it can contain object identi-
fiers. This justifies our choice of considering channel free expressions instead of user
expressions in the typing rules of previous subsection. Notice also that the session en-
vironments of the branches in the communication expressions only contain the current
channel as subject, since these expressions will never be reduced before the selection
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has been done. In rule SENDW-RT we assume Γ ��� : �1 ∨�2 � /0, since the evaluation
of � cannot start before the ����� expression has been unfolded to a �����.

The typing rules for runtime expressions differ from the ones for user expressions
only in assigning the session type to explicit channels, not in the union type.

6.3 Type Soundness

Our type system enjoys subject reduction and assures progress (−→∗ is the reflexive
and transitive closure or −→):
If /0 � �0 : �0 � ε and �0, [ ] −→∗ P,h, where P ≡ �1 || . . . || �n, then:

– for each �i we get Γ ���i : �i � Σi for some Γ ,�i,Σi (1 ≤ i ≤ n), and there is j
(1 ≤ j ≤ n) such that � j = �0, and;

– either P,h −→ P′,h′ for some P′,h′, or for all i (1 ≤ i ≤ n) �i is an object identifier.
The runtime errors which our type system prevents are:

1. the selection of a field and the request of a session which do not belong to the class
of the current object;

2. the creation of a pair of dual channels whose communication sequences do not
perfectly match.

Proofs, more examples and discussions can be found in the extended version of this
paper, available at http://www.di.unito.it/∼dezani/papers /bcdgvfull.pdf.

7 Conclusion

In the present paper we showed, through the language SAM∨, how the addition of union
types to an object oriented language with session types enhances flexibility.

The amalgamation of communication centred and object oriented programming, as
it has been developed in [18, 6] and in the present paper, can be extended in various di-
rections. In particular we plan to integrate this approach with multi-party session com-
munication [9] and with safe failure recovery [4].

Moreover, we want to study the extension of union and intersection to session types,
following the intuition given by union/intersection of contracts in [12].

Lastly it would be interesting to integrate session primitives with name constraints
as introduced in [5] in order to allow specification of Quality of Service requirements.

Acknowledgements. We thank the referees for their helpful comments. The final version
of the paper improved due to their suggestions.
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Abstract. We pair session types and contracts using two encodings. The encod-
ing of session types accommodates width and depth subtyping, two properties
that partially hold in contracts. The encoding of contracts accommodates com-
plex synchronization patterns, since session types own a simple control protocol.
The encodings allow one to use the two formalisms interchangeably, within the
context of dyadic interactions.

1 Introduction

Service Oriented technologies and Web Services have been recently proposed as a new
way of distributing and organizing complex applications across the Internet. The suc-
cess of these technologies has fostered the development of formal methods for statically
analyzing and verifying the behavior of concurrent and distributed systems. Two such
methods – session types [14,11,10] and contracts [3,15,4] – aim at describing the com-
munication protocol implemented by services. These methods provide a foundation for
statically checking that a process implements a given communication protocol and for-
mally characterize compliance (when a client interacts successfully with a service) and
safe replacement (when it is possible to replace a process with another one).

Session types and contracts find their origins in two different domains: the former
ones derive from the domain of type theory and type systems, whereas contracts are
more related to the study of behavioral equivalences, such as bisimulation and testing
equivalence [7,13]. Both languages are equipped with similar constructors. For exam-
ple, the session type

S
def= μx.&〈Login : ⊕〈Wrong : x;Ok : &〈VoteA : end;VoteB : end〉;Cheat : end〉〉

and the contract

I[σ ] def= I[rec x.Login.(Wrong.x ⊕Ok.(VoteA+VoteB)⊕Cheat)]

where I = {Login,Wrong,Ok,Cheat,VoteA,VoteB}, represent a simple service for an
online ballot between two candidates A and B. Before a client is allowed to vote, he
must provide a valid login token that the system uses for ensuring that preferences are
expressed at most once, for otherwise the voter is identified as a cheater.

In contracts, the actions such as Login and Cheat represent atomic communications
between the voter and the service and we have two binary operators for encoding al-
ternatives: a + indicates an external choice (the voter chooses the candidate) whereas

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 681–700, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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a ⊕ indicates an internal choice (the service decides whether the login is valid or not).
In session types we have branches &〈· · · 〉 and choices ⊕〈· · · 〉 that play the same roles
played by + and ⊕. However, branches indicate the receipt of a label expressing the
decision of the voter, whereas choices indicate that the service emits a label expressing
the alternative it has chosen. Hence, the direction of the exchanged messages is en-
coded in the type of alternative, rather than in the labels themselves. Also, while actions
in contracts may encode the exchange of data between the voter and the service, labels
in session types are only meant to implement the control part of the protocol. In fact,
typical presentations of session types admit additional constructs for representing the
exchange of data, which we omit in this paper as they are irrelevant for the results that
follow.

The relationship between session types and contracts also regards the semantics,
although, in this case, their different origin is evident because the relations are mostly
the opposite. For example, the session type

T
def= &〈Login : ⊕〈Ok : &〈VoteA : end;VoteB : end〉〉〉

and the contract
I[τ] def= I[Login.Ok.(VoteA+VoteB)]

both describe a ballot service that does not care about cheaters and always accepts login
tokens regardless their validity. It turns out that T is a subtype of S (notation T ≤ S) and
I[σ ] is a subcontract of I[τ] (notation I[σ ] � I[τ]). That is, the subtype relation T ≤ S
embodies the notion of safe substitutability: every term having type S may be replaced
by a term having type T without affecting the context in a sensible way. The subcontract
relation I[σ ] � I[τ] embodies the notion of successful interaction (called compliance):
the set of clients succeeding in interacting with a service of contract I[σ ] also succeed
with a service of contract I[τ].

There are also some differences between the theory of session types and the one
of contracts. In one direction, these differences mainly regard the so-called width sub-
typing. Session types, much alike object-oriented type disciplines, enjoy the property
&〈VoteA : end;VoteB : end〉≤ &〈VoteA : end〉 (the ballot service can be extended with
more candidates without invalidating former voters), namely width extensions of capa-
bilities is always possible. In contracts this is not the case. To discuss the point, consider
the contracts I[σ1] = {VoteA,VoteB}[VoteA] and I[σ2] = {VoteA,VoteB}[VoteA+
VoteB] and the client K[ρ ] = {VoteA,VoteB,e}[VoteA.e + VoteB.VoteB.e]. Such
client tries to vote for candidate A once or for B twice. It is easy to verify that K[ρ ] suc-
cessfully interacts with I[σ1] whilst the interaction may fail with I[σ2], therefore I[σ1] ��
I[σ2]. In contracts width subtyping is admitted provided the additional capabilities are
not present in the interface of the smaller contract. For example {VoteA}[VoteA] �
{VoteA,VoteB}[VoteA+VoteB] (the client K[ρ ] is not a valid client for {VoteA}[VoteA]
because it has a larger interface). In the other direction, the differences follow by the
fact that session types embody the property that sessions are supposed to be completed
symmetrically by both parties, whilst contracts are biased towards clients, which are
free to interrupt the interaction any time they please. As a consequence, the resulting
theory of contracts admits depth subtyping, namely the replacement of a service with
another one providing a longer communication protocol, whereas this is not possible
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in session types. Another difference is that contracts describe a more abstract synchro-
nization pattern than session types do. For example, in the theory of contracts, a client
such as

{Login,Ok,VoteA,VoteB,e}[Login.Ok.(VoteA.e+VoteB.e)]

may successfully interact with a service as I[τ], while, in session types, a branch can-
not be matched by another branch. That is, session types describe a communication in
which no handshaking between the interacting parties ever occurs. There is always ex-
actly one party having control, and this party has to explicitly notify the other one about
the (internal) choices it has made.

In this contribution we undertake a thorough comparison between session types and
contracts for assessing a precise relationship between the two formalisms. We define
two encodings, one from session types to contracts, and the other from contracts to
session types. These encodings allows one to use the two formalisms interchangeably,
without losing any relevant information. Therefore it is possible to argue about session
types by means of the subcontract relation and, conversely, about contracts by using
the deductive system of the subtyping relation. However, because of the differences
between the two theories, the two encodings are not one the converse of the other. Let
us discuss this issue with few examples. We encode the session type

T ′ def= &〈Login : ⊕〈Ok : end ; Cheat : end〉〉

into the contract

I′[τ ′] def= [Login,Ok,Cheat](Login.(Ok⊕Cheat)+Ok.Ω +Cheat.Ω)

where the terms Ok.Ω and Cheat.Ω have been added in order to enforce width subtyp-
ing in the contract. If a client of I′[τ ′] attempts actions that are not explicitly allowed by
T ′ then a catastrophic state – Ω – is reached, meaning that, in practice, such actions are
not guaranteed.

To illustrate the encoding of contracts into session types we discuss the encoding of
{VoteA,VoteB}[VoteA⊕VoteB], which eventually generates the session type

⊕〈{VoteA} : &〈 /0 : end;{VoteA} : end〉;
{VoteB} : &〈 /0 : end;{VoteB} : end〉;
{VoteA,VoteB} : &〈 /0 : end;{VoteA} : end;{VoteB} : end〉〉

where we use sets of actions as labels. This type manifests a blow up of the input con-
tract that is needed for compiling the complex synchronization patterns of contracts.
Indeed, in the theory of contracts, {VoteA,VoteB}[VoteA⊕ VoteB] is equivalent to
{VoteA,VoteB}[VoteA⊕ VoteB⊕ (VoteA+ VoteB)]. That is, an internal choice be-
tween two alternatives means that one or possibly both are available. The encoding of
contracts has to model explicitly which alternative is taken by sending a notification to
the partner.

Related work. The research on contracts was inspired by “CCS without τ’s” [8] and by
Hennessy’s model of acceptance trees [12,13]. Contracts are an alternative representa-
tion of acceptance trees. The relation � was first introduced in [3], albeit it suffered
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from the lack of a clean semantic characterization and from the fact that it was not tran-
sitive. The version of � used in this paper is the same as the one introduced in [15].
In fact, � resembles the must preorder (and it reduces to the must preorder when the
interfaces are large enough), but it arises from a notion of compliance that significantly
differs from the notion of “passing a test” in the testing framework [7] and that more
realistically describes well-behaved clients of Web services. The version of � we work
with is actually a stricter version of a more powerful subcontract relation that has been
investigated in [4].

Session types have been originally proposed in [14] and subsequently extended for
dealing with functional languages [16], asynchrony, object-orientation [10]. In this pa-
per we take [11] as the main reference for session types because it focuses on the sub-
typing relation. It is worth to notice that we restrict our analysis on the control aspects
of session types, whilst other features such as first-class sessions and name passing,
which are described in [11], have not been investigated in the framework of contracts
yet.
Structure of the paper. We present the formal syntax and semantics of contracts in
Section 2 and of session types in Section 3. Sections 4 and 5 present the encoding from
session types to contracts and from contracts to session types, respectively. Section 6
concludes by summarizing the main similarities and differences between contracts and
session types.

2 Contracts

The syntax of contracts uses an infinite set of names N ranged over by a, b, c, . . . ,
and a disjoint set of co-names N ranged over by a,b,c, . . . . Names and co-names are
generically called actions. We let a = a and use α,β , . . . to range over actions; we let
I, J,K, . . . and R,S, . . . to range over (finite) sets of actions and we extend the operation ·
to sets of actions so that R = {α | α ∈ R}. An infinite set of variables is also used, which
is ranged over by x,y,z, . . . .

Contracts are pairs I[σ ] where I is a finite subset of N ∪N representing the static
interface of the contract (all the actions occurring in σ must also occur in I), whereas σ ,
called behavior, is defined by the grammar:

σ ::= 0 | α.σ | σ ⊕ σ | σ + σ | x | rec x.σ

Informally, 0 describes the inactive behavior; α.σ describes the behavior that performs
an action α and then behaves like σ ; σ ⊕ τ describes the behavior that autonomously
decides whether to behave as σ or as τ; σ + τ describes the behavior that lets the
environment choose whether it should behave as σ or as τ; finally, rec x.σ describes a
recursive behavior that is equivalent to σ{rec x.σ/x}. In the following we write Ω for
the behavior rec x.x.

Behaviors retain a transition relation that is inductively defined by the rules

α.σ α−→ σ σ ⊕ τ −→ σ σ α−→ σ ′

σ + τ α−→ σ ′
σ −→ σ ′

σ + τ −→ σ ′ + τ

rec x.σ −→ σ{rec x.σ/x}
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plus the symmetric rules for ⊕ and +. We write =⇒ for the reflexive and transitive
closure of −→; σ α=⇒ σ ′ for σ =⇒ α−→=⇒ σ ′; σ α=⇒ if there exists σ ′ such that σ α=⇒
σ ′. We write σ↑ if σ has an infinite internal computation σ = σ0 −→ σ1 −→ σ2 −→ ·· ·
and σ↓ if not σ↑. We write σ↓α1 · · ·αn if σ↓ and, if σ α1=⇒ σ ′ implies σ ′↓α2 · · ·αn; we
write σ↑ϕ otherwise. For example Ω↑, rec x.a+ x↑, and rec x.(a.x+b.x)↓ϕ for every
ϕ ∈ {a,b}∗. We let init(σ) be {α | σ α=⇒}.

A basic use of contracts is to verify whether a client protocol is compliant with a
service protocol. This compliance is possible if, independently of the internal choices
of both client and service, the client successfully completes every interaction with the
service. We now formalize the notions of “interaction” and of “successful completion”:

– The interaction of a client and a service is defined by the relation −→ over pairs of
behaviors as follows:

ρ −→ ρ ′

ρ ‖ σ −→ ρ ′ ‖ σ
σ −→ σ ′

ρ ‖ σ −→ ρ ‖ σ ′
ρ α−→ ρ ′ σ α−→ σ ′

ρ ‖ σ −→ ρ ′ ‖ σ ′

where we assume that ρ is a client contract and σ is a service contract. As usual
we write =⇒ for the reflexive and transitive closure of −→.

– The successful completion of the client is modeled using a special name e. The
client has successfully completed the interaction with the service if no further syn-
chronization with the service is possible and the client can emit an e action. We
assume that behaviors never manifest co-names e.

Definition 1 (Compliance). The (client) contract K[ρ ] is compliant with the (service)
contract I[σ ], written K[ρ ] � I[σ ], if K \ {e} ⊆ I and ρ ‖ σ =⇒ ρ ′ ‖ σ ′ implies

1. if ρ ′ ‖ σ ′ �−→, then {e} ⊆ init(ρ ′);
2. if σ ′↑, then {e} = init(ρ ′).

According to the notion of behavioral compliance, if a client K[ρ ] is compliant with
a service I[σ ] then it should never attempt to perform actions that are not allowed
by the interface of the service it is interacting with. If the client-service conversa-
tion terminates, then the client is in a successful state (it will emit e). For example,
a.e+b.e � a⊕b and a.e⊕b.e � a+b but a.e⊕b.e �� a⊕b because of the computation
a.e⊕ b.e‖ a⊕ b =⇒ a.e‖ b �−→ where the client waits for an interaction on a in vain.
Similarly, the client must reach a successful state if the conversation does not terminate
but the divergence is due to the service. In this case, however, the client cannot rely on
any signal from the service, not even an end-of-connection one, so it is required to do
nothing but terminate.

Following De Nicola and Hennessy’s approach to process semantics [7], this test
induces a preorder on services on the basis of the set of clients that comply with a given
service.

Definition 2 (Subcontract). A contract I[σ ] is a subcontract of J[τ], written I[σ ] � J[τ],
if and only if, for every K[ρ ], we have K[ρ ] � I[σ ] implies K[ρ ] � J[τ]. We let I[σ ] � J[τ]
if both I[σ ] � J[τ] and J[τ] � I[σ ].
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That is, if a client is compliant with a service I[σ ] and I[σ ] � J[τ], then the same client
is also compliant with J[τ]. Hence, the service J[τ] can be safely used where I[σ ] is
expected. As usual it is easier to figure out inequalities: {a,b}[a] �� {a,b}[a.b] be-
cause {a,b,e}[a.(e+ b)] � {a,b}[a] but {a,b,e}[a.(e+ b)] �� {a,b}[a.b]; {a,b}[a] ��
{a,b}[a + b] because {b,e}[e+ b] � {a,b}[a] but {b,e}[e+ b] �� {a,b}[a + b].

Since the set of clients compliant with a given service is usually infinite, Definition 2
gives little insight on the properties of �. This calls for a direct, coinductive character-
ization of �, which also happens to be easier to work with in the proofs of the results
that follow (a further coinductive characterization of the testing preorder appears in [5],
but is somehow less direct as it is based on a generalized prebisimulation preorder over
a suitably transformed transition system).

Definition 3 (Coinductive subcontract). Let σ ⇓ R (read σ has ready set R) if and
only if σ =⇒ σ ′ and R = init(σ ′). The relation R is a coinductive subcontract if
I[σ ] R J[τ] implies I ⊆ J and whenever σ↓ then

1. τ↓, and
2. τ ⇓ R implies σ ⇓ R′ and R′ ⊆ R, and
3. α ∈ I and τ α=⇒ τ ′ implies that there exist σ1, . . . ,σn such that σ α=⇒ σi for every

1 ≤ i ≤ n and I[
⊕

1≤i≤n σi] R J[τ ′].

By this definition, a contract I[σ ] such that σ↑ is the smallest one with interface I.
When σ↓, condition 1 constrains the larger contract J[τ] to converge as well, since
clients might rely on the convergence of σ to complete successfully. Condition 2 states
that J[τ] must exhibit a more deterministic behavior: the smaller the number of ready
sets is, the more deterministic the contract is. Furthermore, J[τ] should expose at least
the same capabilities as the smaller one (R′ ⊆ R). Condition 3 is perhaps the most subtle
one, as it deals with all the possible derivatives of the smaller contract. The point is
that {a,b,c}[a.b+a.c] � {a,b,c}[a.(b⊕ c)] since, after interacting on a, a client of the
service on the left side of � is not aware of which state the service is in (it can be either
b or c). Hence, we have to consider all of the possible derivatives after a, thus reducing
to verifying {a,b,c}[(b + c)⊕ b ⊕ c]R {a,b,c}[b ⊕ c] which trivially holds.

The set-theoretic and the coinductive versions of the subcontract relation do coincide,
as the following proposition states (a proof can be found in the full version of [15]).

Proposition 1. � is the largest coinductive subcontract.

The theory of � has been thoroughly studied in [15]; in particular it has been put in cor-
respondence with a well-known equivalence – the must testing [13]. A useful property
relating � and −→ is in order.

Proposition 2. If σ =⇒ σ ′, then I[σ ] � I[σ ′].

The generality of contracts (allowing for arbitrary mixtures of unguarded internal and
external choices) makes them hard to compare directly with session types, in which
choices and branches are always guarded and syntactically layered. It is thus useful to
introduce a normal form for contracts that is more amenable to such a comparison and
is also necessary in the encoding presented in Section 5. For every I[σ ] there exists σ ′
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in normal form such that I[σ ] � I[σ ′]. This result is slightly more general than those
in [6,7,13], where normal forms are used to demonstrate the completeness of an axiom-
atization and are defined for recursion-free terms only. The normal form uses particular
families of sets of actions – the acceptance set.

Definition 4 (acceptance set [13]). The acceptance set of a behavior σ , denoted by

A (σ), is defined as A (σ) def= {R ⊆ init(σ) | ∃S ⊆ R : σ ⇓ S}. We let A , A ′, . . . range
over acceptance sets.

Definition 5 (normal form). A behavior σ is in normal form if either σ = Ω or σ = x
or σ =

⊕
R∈A (σ) ∑α∈R α.σα or σ = rec x.

⊕
R∈A (σ) ∑α∈R α.σα and each σα is in

normal form.

Let σ(α) def=
⊕

σ=⇒ α−→σ ′ σ ′ and let nf(σ) be a family of behavior names defined as
follows

nf(σ) def=

{
Ω if σ↑
⊕

R∈A (σ) ∑α∈R α.nf(σ(α)) otherwise

It is not obvious that σ(α) is well defined and that behavior

a

b

⊕

rec

rec

names nf(σ) may be folded into a finite behavior (by using
recursion and variables). In order to prove these facts, we rep-
resent behaviors as syntax trees where variables are pointers
to the corresponding binder [1]. For example, the figure on the
right shows the syntax tree of σ = rec x.a.rec y.b.(x + y).

As usual, every node in syntax trees corresponds to a closed
term (i.e. a behavior) that is unique up to the name of bound
variables. For example, in the above tree, the node b corre-
sponds to the behavior b.(σ + (rec y.b.(σ + y))). The formal definition of behavior
associated with a node is omitted because standard.

Lemma 1. Let �σ� def= {τ | ∃α : α.τ occurs in the syntax tree of σ}. If σ ϕ
=⇒ σ ′, then

�σ ′� ⊆ �σ�.

Proof. We prove that the property holds by induction on the derivation of σ −→ σ ′

or σ α−→ σ ′ (symmetric cases are omitted). The lemma follows by a straightforward

induction on the length of the derivation σ ϕ
=⇒ σ ′.

(σ = α.σ ′ α−→ σ ′) We distinguish two subcases: if σ does occur in σ ′, then �σ ′� =
�σ�; if σ does not occur in σ ′, then �σ ′� = �σ� \ {σ ′} ⊂ �σ�.

(σ = σ ′ ⊕ τ −→ σ ′) We conclude immediately �σ ′� ⊆ �σ ′ ⊕ τ� = �σ�.
(σ = τ + τ ′, τ α−→ σ ′) By induction hypothesis we have �σ ′� ⊆ �τ� hence �σ ′� ⊆

�τ� ⊆ �τ + τ ′� = �σ�.
(σ = τ + τ ′′, τ −→ τ ′, σ ′ = τ ′+τ ′′) By induction hypothesis we have �τ ′�⊆�τ�, hence

�σ ′� = �τ ′ + τ ′′� ⊆ �τ + τ ′′� = �σ�.
(σ = rec x.τ , σ −→ τ{σ/x} = σ ′) We conclude immediately �σ ′� = �σ�. �
It is worth to notice that Lemma 1 does not hold if behaviors are extended with a parallel
operator “|”. For example if σ = rec x.a | (b.x + 0), then σ(b) = a | σ , which is not a
subtree in the syntax tree of σ .
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Lemma 2. Let D(σ) def= {σ(ϕ) | σ ϕ
=⇒}. Then D(σ) is finite.

Proof. Let D0,D1, . . . be the family of sets defined as follows:

D0
def= {σ} Di+1

def= Di ∪{σ ′ | ∃σ ∈ Di : ∃α : σ =⇒ α−→ σ ′}

We only need to show that there exists n such that Dn = Dn+1, because each σ(ϕ) is
obtained by joining some continuations σ ′, for some subtrees α.σ ′ in σ . Let n be the
cardinality of �σ� (n is the number of distinct subtrees in the syntax tree of σ and it
exists because σ is finite). By contradiction, assume that there exists σn+1 ∈ Dn+1 \Dn.
Then there exist σ1, . . . ,σn and α1, . . . ,αn,αn+1 such that

σ =⇒ α1−→ σ1 =⇒ α2−→ ·· · =⇒ αn−→ σn =⇒αn+1−→ σn+1

and σi ∈ Di \ Di−1 for every 1 ≤ i ≤ n. We have σn+1 ∈ �σn�. By Lemma 1 we deduce
σn+1 ∈ �σ�. Since �σ� has only n distinct subtrees, σn+1 is reachable from σ with at
most n reductions, thus σn+1 ∈ Dn, which contradicts σn+1 ∈ Dn+1 \ Dn. �

Theorem 1. For every I[σ ] there exists σ ′ in normal form such that I[σ ] � I[σ ′]. The
behavior σ ′ is the folding of nf(σ).

Proof. By Lemma 2 there are finitely many σ(ϕ). These σ(ϕ) are in one-to-one corre-
spondence with the behavior names that may be recursively invoked by nf(σ). There-
fore the set of such behavior names is finite and nf(σ) may be folded into a behavior
with recursion and variables.

To prove the subcontract equivalence, let R be the least relation containing � and
such that

1. if I[σ ] � J[τ] and τ ′ is the normal form of τ , then I[σ ] R J[τ ′];
2. if I[σ ] � J[τ] and σ ′ is the normal form of σ , then I[σ ′] R J[τ].

We prove that R is a subcontract relation; the theorem follows directly.
Let I[σ ] R J[τ ′], where τ ′ is the normal form of τ . Then I[σ ] � J[τ]. As regards con-

dition 1 in the definition of coinductive subcontract, notice that from I[σ ] � J[τ] we
have σ↓ implies τ↓, hence τ ′↓ from the definition of normal form. As regards con-
dition 2, let τ ′ ⇓ R, then R ∈ A (τ), hence τ ⇓ R′ and R′ ⊆ R by definition of A (τ).
From I[σ ] � J[τ] we obtain σ ⇓ S and S ⊆ R′, hence we conclude S ⊆ R. As regards
condition 3, let τ ′ α=⇒ τ ′′. Then J[τ ′(α)] � J[τ ′′] and, by definition, τ ′(α) is in normal
form. Then τ α=⇒ and, by I[σ ] � J[τ], σ α=⇒. Therefore I[σ(α)] � J[τ(α)], hence by
definition of R, I[σ(α)] R J[τ ′′′], where τ ′′′ is the normal form of τ(α). By definition
of normal form τ ′′′ = τ ′(α) and we conclude.

Let I[σ ′] R J[τ], where σ ′ is the normal form of σ . Then I[σ ] R J[τ]. As regards
condition 1 in the definition of coinductive subcontract, σ ′↓ implies σ↓, hence τ↓. As
regards condition 2, let τ ⇓ R. From I[σ ] � J[τ] we have σ ⇓ S and S ⊆ R and we
conclude by observing that σ ′ ⇓ S. As regards condition 3, let τ α=⇒ τ ′. Then there exist
σ1, . . . ,σn such that I[

⊕
1≤i≤n σi] � J[τ ′]. Since I[σ(α)] � I[

⊕
1≤i≤n σi] and the normal

form of σ(α) is equal to σ ′(α) we conclude I[σ ′(α)] R J[τ ′] by definition of R. �

By Theorem 1, from now on we let nf(σ) be the normal form of σ .
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3 Session Types

Similarly to a contract, a session type is meant to describe the type of a communication
as a sequence of actions and branching points. The syntax of session types uses an
infinite set of labels L ranged over by �,�′, . . . , and an infinite set of variables ranged
over by x,y,z, . . . . Session types are defined by the grammar:

S ::= end | ⊕〈�i : Si
i∈I〉 | &〈�i : Si

i∈I〉 | x | μx.S

The session type end describes a completed communication; the session type ⊕〈li :
Si

i∈I〉 describes a choice where a process autonomously decides to proceed according
to one of the continuations Si’s. Before doing so, the process notifies the partner of the
communication by sending a label �i. The session type &〈�i : Si

i∈I〉 describes a branch
where a process is ready to proceed according to any of the continuations Si’s. Before
doing so, the process waits for a label �i from the process it is interacting with. The
label uniquely identifies the continuation. The session type μx.S describes a recursive
type, much like a recursive contract.

Following [11], session types are taken contractive, namely every occurrence of a
variable is guarded by at least a choice or a branch. Unlike [11], however, we omit
session types describing the communications of actual data (not merely labels) during
a session. Typically, such communications are represented by session types of the form
!t.S (for “send a message of type t on the channel and then continue as S”) or ?t.S (for
“receive a message of type t from the channel and then continue as S”). However, as
far as the comparison of session types and contracts is concerned, the presence of such
actions is not particularly relevant, since we are going to focus on the control part of
an interaction. The addition of !t and ?t actions to the above grammar does not pose
any particular problem for all of the results that follow, but at the same time it does not
contribute any significant insight in the comparison.

The semantics of session types is defined in terms of a subtyping relation ≤, which
is presented by means of a deductive system or as a coinductive definition [11]. In this
contribution we stick to this latter presentation that turns out to be easier to compare
with the subcontract relation defined in the previous section. More precisely, S ≤ T ,
whenever every process with type S can be used where a process with type T is ex-
pected (in this respect, ≤ differs from � as it is oriented as a real subtyping relation).
Because of the structure of session types, ≤ is quite straightforward to define: basically
every choice in S must be defined on a subset of the labels occurring in the correspond-
ing choice in T , whereas any branch in S must be defined on a superset of the labels
occurring in the corresponding branch in T . Let

unfold(S) def=
{
unfold(T{S/x}) if S = μx.T
S otherwise

That is, unfold(·) removes topmost recursions until it reveals a branch or a choice. It is
worth to notice that unfold(·) is always defined because session types are contractive.

Definition 6 (Subtyping). The relation R is a coinductive subtyping if S R T implies

1. if unfold(S) = end, then unfold(T ) = end,
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2. if unfold(S) = ⊕〈�i : Si
i∈I〉, then unfold(T ) = ⊕〈� j : Tj

j∈J〉 and I ⊆ J and for
every i ∈ I we have Si R Ti,

3. if unfold(S) = &〈�i : Si
i∈I〉, then unfold(T ) = &〈� j : Tj

j∈J〉 and J ⊆ I and for
every j ∈ J we have S j R Tj.

Let ≤ be the largest coinductive subtyping.

For example, we have ⊕〈� : S〉≤ ⊕〈� : S;�′ : T 〉 since the smaller session type represents
a process that behaves more deterministically than the one represented by the larger
session type. Dually we have &〈� : S;�′ : T 〉 ≤ &〈� : S〉 since the process represented
by the smaller session type offers a wider range of continuations (it is ready to accept
a superset of the labels accepted by the process represented by the larger session type).
Unlike contracts, however, we have &〈� : S〉 �≤ end and ⊕〈� : S〉 �≤ end. In the first case
the process waits for a label that never arrives, in the second case it sends a label that
the matching party is not ready to receive.

Session types are naturally equipped with a dual(·) function computing the dual
type.

dual(end) = end
dual(⊕〈�i : Si

i∈I〉) = &〈�i : dual(Si) i∈I〉
dual(&〈�i : Si

i∈I〉) = ⊕〈�i : dual(Si) i∈I〉
dual(x) = x

dual(μx.S) = μx.dual(S)

As for unfold(·), dual(·) is always defined because session types are contractive. If S
is the session type representing the behavior of a process, then dual(S) represents the
behavior of a “canonical” process that interacts successfully with the first one. The
theory of session types does not formalize the notion of successful interaction, but we
will be able to reason about it by means of one of our encodings in Section 5.

The duality between choices and branches in session types is formalized by the fol-
lowing proposition. Let in(S) (respectively, out(S)) be the set of labels occurring in
branches (respectively, choices) of S. Then subtyping induces a relation on labels in(·)
and out(·).

Proposition 3. If S≤T then (1) out(S)⊆out(T ), (2) in(T )⊆in(S), and (3) dual(T )≤
dual(S).

Notice that from the previous proposition and from the fact that dual(·) is the inverse
of itself (dual(dual(S)) = S), we have S ≤ T if and only if dual(T ) ≤ dual(S).

4 Encoding Session Types into Contracts

In order to encode session types into contracts we preliminarily need to set a corre-
spondence between labels and names. For simplicity we let L = N . Therefore, in the
following, we will not distinguish between labels and names and we will address them
with �, a, . . . .

The encoding �S�I of a session type S is defined with respect to an interface I (Ta-
ble 1). The terminal behavior σe is e if the session type being encoded regards a client,
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Table 1. Encoding of session types into contracts

�end�I = σe

�⊕〈�i : Si
i∈1..n〉�I =

⊕
i∈1..n �i.�Si�I

�&〈�i : Si
i∈1..n〉�I = ∑i∈1..n �i.�Si�I +∑α∈I\{�1 ,...,�n} α.Ω

�x�I = x
�μx.S�I = rec x.�S�I

or 0 if it regards a service. The only case that deserves discussion is branch. The contract
�&〈�i : Si

i∈1..n〉�I has as many initial actions as are allowed by the interface, irrespective
of the labels of the branches. This enforces width subtyping in the resulting contracts,
which is otherwise false, in general. In facts, {a,b}[a] �� {a,b}[a+b] because the client
{a,b}[a.e+b] is compliant with the first service, but not with the second one. By trans-
lating S = &〈a : S′〉 as simply {a,b}[a.�S′�] (the action b is in the interface because it
occurs in S′), then a client such as {a,b}[a.e+b.ρ ] could fail when one replaces �S�{a,b}
with �T �{a,b} and T ≤ S, for instance when T = &〈a : S′ ; b : T ′〉. To avoid these cases,
one has to exclude {a,b}[a.e+ b.ρ ] from those clients that are compliant with �S� be-
cause it attempts to do an action (b) that is not explicitly allowed by S. This exclusion
follows by translating a branch into an external choice “+” with a summand for every
action in the interface: the actions that do not appear as labels of the branch are given
a continuation Ω. Therefore, the contract �S�{a,b} does not admit, in general, a client
{a,b}[a.e+ b.ρ ] but only a client {a,b}[a.e+ b.e] (this client has to terminate after an
interaction on b, without requiring any further capability to the service). The contract
Ω is the smallest one with a given interface: a client compliant with Ω will also comply
with any other service, in particular with those resulting from the encoding of smaller
session types.

Example 1. According to the encoding, we have

– �&〈a : end〉�{a} = a;
– �&〈a : end〉�{a,b} = a + b.Ω;
– �&〈a : end;b : end〉�{a,b} = a + b;
– �⊕〈a : end〉�{a} = �⊕〈a : end〉�{a,b} = a;
– �⊕〈a : end;b : end〉�{a,b} = a⊕ b.

We notice that &〈a : end;b : end〉 ≤ &〈a : end〉 and {a}[a] � {a,b}[a + b.Ω] �
{a,b}[a + b]. Similarly, ⊕〈a : end〉 ≤ ⊕〈a : end;b : end〉 and {a,b}[a⊕ b] � {a,b}[a].

�

More generally, the encoding of Table 1 makes the subtyping relation and the subcon-
tract relation agree.

Theorem 2. Let J = in(T )∪out(T ) and I = in(S)∪out(T ). Then S ≤ T if and only
if J[�T �J] � I[�S�I].

Proof. (“only if” part) Let R be the least relation such that
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1. if J ⊆ I then J[Ω] R I[σ ];
2. if S ≤ T and J = in(T )∪out(T ) and I = in(S)∪out(T ), then J[�T �J] R I[�S�I].

We prove that R is a coinductive subcontract. Let J[�T �J] R I[�S�I]. By Proposition 3,
J ⊆ I. By definition, �·�· always yields behaviors σ such that σ↓. Therefore condition 1
in Definition 3 is trivially satisfied. As regards conditions 2 and 3, we reason by cases
on S. By definition of ≤, S ≤ T if and only if unfold(S) ≤ unfold(T ). Therefore we
may restrict to cases where neither S nor T are recursive types.

(S = end) Then T = end. Condition 2 follows immediately; condition 3 is vacuous.
(S = ⊕〈�h : Sh

h∈H〉) Then T = ⊕〈�k : Tk
k∈K〉 and H ⊆ K and Sh ≤ Th, for every h ∈ H.

As regards condition 2, if �S�I ⇓ R then �h ∈ R for some h ∈ H. Since H ⊆ K,
�T �J ⇓ {�h} and {�h} ⊆ R. As regards conditions 3, by Proposition 2, it suffices to

consider the transitions �S�I
�h=⇒ �Sh�I for every h ∈ H. Since H ⊆ K, �T �J

�h=⇒ �Th�J

and �Th�J R �Sh�I follows by Sh ≤ Th;
(S = &〈�k : Sk

k∈K〉) Then T = &〈�h : Th
h∈H〉 with H ⊆ K. Condition 2 follows because

�T �J ⇓ {�h | h ∈ H} and �S�I ⇓ {�k | k ∈ K} and {�h | h ∈ H} ⊆ {�k | k ∈ K}. As

regards condition 3, by Proposition 2, it suffices to consider �S�I
�k=⇒ �Sk�I with

k ∈ J. There are two subcases: either (i) �k �∈ {�h | h ∈ H} or (ii) �k ∈ {�h | h ∈ H}.

In subcase (i), �T �J
�k=⇒ Ω and J[Ω] R I[�Sk�I]) by definition of R. In subcase (ii),

�T �J
�k=⇒ �Tk�J. From Sk ≤ Tk we derive J[�Tk�J] R I[�Sk�I] by definition of R.

(“if” part) We prove that if S �≤ T , then J[�T �J] �� I[�S�I]. We reason by cases on the
shape of S and T . It is sufficient to consider those cases in which none of the types
begins with a recursion and S ≤ T holds directly, without looking at the session types
in the choices and branches possibly found in S and T .

(S = end) It must be T �= end. Then �S�I ⇓ {e} whereas �T �J ⇓ R implies R �= /0 and
e �∈ R;

(S = ⊕〈�i : Si
i∈I〉) If T = end, then we can reason as for the case S = end and conclude

that J[�T �J] �� I[�S�I]. If T = &〈� j : Tj
j∈J〉, then �T �J has only one ready set J =

in(T )∪out(T ), which contains at least two actions and hence cannot be smaller
than {�i}, for every i ∈ I. If T = ⊕〈� j : Tj

j∈J〉 and I �⊆ J, then there exists i ∈ I such
that i �∈ J. So �S�I ⇓ {�i} whereas �T �J ⇓ R implies R �= /0 and �i �∈ R;

(S = &〈�i : Si
i∈I〉) If T = end we conclude immediately since no �i is equal to e. If

T = ⊕〈� j : Tj
j∈J〉, then from I = in(S)∪out(T ) we have that j ∈ J implies � j ∈ I.

Now we have �S�I

� j=⇒ Ω, whereas �T �J
�i=⇒ σ implies σ↓. If T = &〈� j : Tj

j∈J〉
and J �⊆ I, then there exists j ∈ J such that j �∈ I. If J �⊆ I there is nothing to prove.

If J ⊆ I, then �S�I

� j=⇒ Ω, whereas �T �J

� j=⇒ σ implies σ↓. �

The following proposition shows that internal moves in the encoding of a session type
S correspond to reducing its choices and determining a session type S′ ≤ S.
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Proposition 4. If �S�I =⇒ σ , then σ = �S′�I and S′ ≤ S.

Proof. It is sufficient to consider the case �S�I −→ σ , then the lemma follows directly.
We reason by cases on the structure of S, there are only two possibilities:

(S = ⊕〈�i : Si
i∈K〉) Then �S�I =

⊕
i∈I �i.�Si�I −→ ⊕

i∈J � j.�S j�I = �⊕〈� j : S j
j∈J〉�I with

J ⊆ I. We conclude by observing that ⊕〈� j : S j
j∈J〉 ≤ S.

(S = μx.S′) Then �S�I = rec x.�S′�I −→ �S′�I{rec x.�S′�I/x} = �S′{S/x}�I and this is
the only possible reduction. We conclude because S′{S/x} ≤ S. �

The encoding in Table 1 allows us to relate session types and their duals. The relation
is exactly the compliance of Definition 1.

Theorem 3. Let I = in(S)∪out(S) and J = in(T )∪out(T ) and S ≤ dual(T ). Then
�S�I � �T �J.

Proof. Let R be the least relation such that if S ≤ dual(T ) and in(S)∪ out(S) ⊆ I

and in(T )∪out(T ) ⊆ J, then �S�I R �T �J. We prove that R is a compliance relation.
Let �S�I R �T �J. By Proposition 4, if �S�I −→ ρ , then ρ = �S′�I and S′ ≤ S ≤ dual(T ).
Symmetrically, if �T �J −→ σ , then σ = �T ′�J and T ′ ≤ T , hence, by Proposition 3(3),
S ≤ dual(T ) ≤ dual(T ′). It follows that we may restrict our analysis to cases where
neither the encoding of S nor the encoding of T can perform internal moves:

(S = end) Then T = �end�J. Therefore �S�I ‖ �T�J �−→ and �S�I
e−→;

(S = ⊕〈� : S′〉) Then T = &〈�i : Ti
i∈K〉J and � = �i for some i ∈ K and S′ ≤ dual(Ti).

Now �S�I
�−→ and �T �J

�−→, hence �S�I ‖ �T �J −→ �S′�I ‖ �Ti�J and we conclude
�S′�I R �Ti�J by definition of R.

(S = &〈�i : Si
i∈I〉) Dual of the previous case. �

5 Encoding Contracts into Session Types

The encoding of contracts to session types is partially defined. In particular, we will
restrict the encoding to behaviors that are convergent. The reason for this restriction
derives from the fact that session types describe communications whose end is agreed
by both parties having type end. The behavior Ω, on the other hand, represents a service
that may not pay any attention to the communication it is involved in, and it has no
corresponding session type.

A behavior σ is strongly convergent if, for every sequence ϕ , σ↓ϕ . The following
encodings are defined on contracts with strongly convergent behaviors. It is also conve-
nient to restrict the encoding of client contracts to those whose behavior never leads to 0
without emitting e. For example, the behavior a.e+b.0 describes a client that succeeds
if the service proposes a, but that fails if the service proposes b. Such a behavior has no
counterpart in session types, where unacceptable labels are not explicitly specified. In
general, if a client is unable to handle a particular action, like b in the example, it should
simply omit that action from its behavior. We say that a (client) contract I[ρ ] is canon-

ical if, whenever ρ ϕ
=⇒ ρ ′ is maximal, then ϕ = ϕ ′e and e /∈ names(ϕ ′). For example
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{a}[a.e], {a}[rec x.a.x], and /0[Ω] are canonical; {a,b}[a.e+b.0] and {a}[rec x.a+ x]
are not canonical. For strongly convergent, canonical client behaviors it is the case that
the subcontract relation can be safely used for replacing equivalent clients still preserv-
ing compliance. This result is fundamental in the encoding of client contracts, as the
encoding relies on the normal form.

Proposition 5. Let K[ρ ] be a strongly convergent, canonical client contract such that
K[ρ ] � I[σ ] and K[ρ ] � K[ρ ′]. Then K[ρ ′] � I[σ ].

Proof. First of all note that if K[ρ ] � K[ρ ′] and ρ is strongly convergent, so is ρ ′. Let

ρ ′ ‖σ =⇒ ρ ′′ ‖σ ′ be an interaction of ρ ′ and σ . Then ρ ′ ϕ
=⇒ ρ ′′ and σ ϕ

=⇒ σ ′ for some
sequence ϕ of actions. From K[ρ ] � K[ρ ′] and the fact that ρ and ρ ′ are strongly conver-

gent we derive that ρ ϕ
=⇒ ρ ′′′ �−→ for some ρ ′′′ such that init(ρ ′′′) ⊆ init(ρ ′′), hence

ρ ‖ σ =⇒ ρ ′′′ ‖ σ ′. Assume ρ ′′ ‖ σ ′ �−→. Then ρ ′′′ ‖ σ ′ �−→, hence {e} ⊆ init(ρ ′′′) ⊆
init(ρ ′′). Assume σ ′↑. From K[ρ ] � I[σ ] and the fact that ρ is canonical we derive
that {e} = init(ρ ′′′) ⊆ init(ρ ′′). From K[ρ ] � K[ρ ′] we derive K[ρ(ϕ)] � K[ρ ′(ϕ)]
and ρ(ϕ) =⇒ ρ ′′′ and ρ ′(ϕ) =⇒ ρ ′′. Hence init(ρ ′′) ⊆ init(ρ(ϕ)) = {e}, namely
{e} = init(ρ ′′′). In both cases we conclude K[ρ ′] � I[σ ]. �

The encoding of contracts into session types is reported in Table 2. We write S �� A (A
is an acceptance set) if for every R ∈ A , either e ∈ R or S ∩ R �= /0. We use an injective
map ·̂ from sets of actions to labels that we leave unspecified.

Table 2. Encoding of contracts into session types

Encoding of client contracts/behaviors:

C �K[ρ]� = ⊕〈 ̂
K \{e} : C �nf(ρ)�K\{e}〉

C �
⊕

R∈A ∑α∈R α.ρα �K = &〈Ŝ : ⊕〈 /̂0 : end;
︸ ︷︷ ︸
if e ∈ R

{̂α} : C �ρα�K
R∈A ,α∈S∩R〉S⊆K,S��A 〉

C �rec x.ρ�K = μx.C �ρ�K

C �x�K = x

Encoding of service contracts/behaviors:
S �I[σ ]� = &〈K̂ : S �nf(σ)�K

K⊆I〉

S �
⊕

R∈A ∑α∈R α.σα �K = ⊕〈R̂ ∩ K : &〈 /̂0 : end; {̂α} : S �σα �K
α∈R∩K〉R∈A 〉

S �rec x.ρ�K = μx.S �ρ�K

S �x�K = x

The encoding distinguishes between client and service contracts. One reason is that,
unlike sessions, which are supposed to be completed symmetrically by both parties, the
theory of contracts is biased towards clients, which are free to interrupt the interaction
any time they please. The other reason is that contracts describe a more abstract syn-
chronization pattern than session types do, and the encoding of contracts into session
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types has to render this synchronization pattern, which amounts to a little handshaking
protocol.

The session types corresponding to the client contract K[ρ ] and the service contract
I[σ ] are denoted by C �K[ρ ]� and S �I[σ ]�, respectively. The labels in the types repre-
sent finite sets of actions in the source contracts. Let us discuss the encoding of a service
contract. The first step in the generation of the session type is the offering of an inter-
face to the client. Any client that asks no more capabilities than those offered by the
service can connect. Hence, the service offers as many interfaces as the number of the
subsets of its own interface. For every offered interface, the continuation session type
is a specialized encoding of the service’s contract, restricted to the offered interface:
S �σ�K. For the proper encoding of the behavior, we resort to the normal form (Defi-
nition 5). A behavior of the form

⊕
R∈A ∑α∈R α.σα is one in which the service can be

in as many states as the cardinality of A . In each state R ∈ A , the service is ready to
perform any of the actions in R. So, the service begins by communicating to the client
the state it is in (restricted to the interface of the connected client). Then, the service
accepts a singleton action, among those that are available, indicating the choice of the
client, or the special action /̂0 denoting the fact that the client has decided to terminate
at this stage. We notice that the term

⊕〈R̂ ∩ K : &〈 /̂0 : end; {̂α} : S �σα �K
α∈R∩K〉R∈A 〉

is well formed: every label of a branch or a choice has exactly one continuation because
the behavior

⊕
R∈A ∑α∈R α.σα is in normal form.

In some sense the encoding of a service contract is “kind” as it tries to accommodate
the largest number of clients (not only those connecting with exactly the same interface
as the service, but also with smaller ones). Conversely, the encoding of a client contract
is selfish in that it only encodes the client behavior, whose only purpose is to success-
fully achieve its task. The first action of the client is the selection of the service interface
that matches with its own (containing the co-actions of the client’s interface). Then, at
each interaction, the client must be ready to accept a set S of actions from the service,
representing the state the service is in. However, not all such states are suitable for the
client. In particular, let A be the acceptance set of the client; the client will only accept
those states S such that, for every R ∈ A , either e ∈ R (the client is ready to terminate)
or S ∩ R �= /0 (the client and the service can synchronize). Said otherwise, the fewer sets
S the client can accept from the service, the more demanding it is. Once a set has been
accepted, the client may choose the special label /̂0, signaling its intention to terminate
the interaction, or it may choose a label {̂α}, signaling the intention of synchronizing
on α . Because of the way the sets S are accepted by the client, it is always possible to
pursue at least one of such possibilities.

There are discretions in the two encodings C �·� and S �·�: the alternation between
⊕ and & may be reversed without changing the following correctness results.

Example 2. Consider the service contracts

I[σ ] def= {a,b}[a ⊕ b] and I[τ] def= {a,b}[a + b]

and notice that I[σ ] � I[τ]. Their respective encodings are
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S �I[σ ]� = &〈 /̂0 : ⊕〈 /̂0 : &〈 /̂0 : end〉〉;
{̂a} : ⊕〈 /̂0 : &〈 /̂0 : end〉; {̂a} : &〈 /̂0 : end; {̂a} : end〉〉;
{̂b} : ⊕〈 /̂0 : &〈 /̂0 : end〉; {̂b} : &〈 /̂0 : end; {̂b} : end〉〉;
{̂a,b} : ⊕〈{̂a} : &〈 /̂0 : end; {̂a} : end〉;

{̂b} : &〈 /̂0 : end; {̂b} : end〉;
{̂a,b} : &〈 /̂0 : end; {̂a} : end; {̂b} : end〉〉〉

S �I[τ]� = &〈 /̂0 : ⊕〈 /̂0 : &〈 /̂0 : end〉〉;
{̂a} : ⊕〈{̂a} : &〈 /̂0 : end; {̂a} : end〉〉;
{̂b} : ⊕〈{̂b} : &〈 /̂0 : end; {̂b} : end〉〉;
{̂a,b} : ⊕〈{̂a,b} : &〈 /̂0 : end; {̂a} : end; {̂b} : end〉〉〉

and now we have S �I[τ]� ≤ S �I[σ ]�. Notice that, in the encoding of I[σ ], we have
A (σ) = {{a},{b},{a,b}}. �

More generally, the encodings of related contracts are related session types, except that
the direction of the preorder is reversed.

Theorem 4. Let σ and τ strongly convergent. Then I[σ ] � J[τ] if and only if S �J[τ]� ≤
S �I[σ ]�.

Proof. (“only if” part) Let R be the least relation such that

– if I[σ ] � J[τ] and σ and τ are strongly convergent, then S �J[τ]� R S �I[σ ]�; addi-
tionally, if K ⊆ I then S �nf(τ)�K R S �nf(σ)�K.

We prove that R is a coinductive subtyping. Let S R T . We have two possibilities,
according to the definition of R.

1. (S = S �J[τ]�, T = S �I[σ ]�, and I[σ ] � J[τ]) By definition of S �·� we have S =
&〈K̂ : S �nf(τ)�K

K⊆J〉 and T = &〈K̂ : S �nf(σ)�K
K⊆I〉. From I ⊆ J we have

{K̂ | K ⊆ I} ⊆ {K̂ | K ⊆ J}, hence each label in the topmost branch of T also oc-
curs as a label in the topmost branch of S. Now take K ⊆ I. We have to show that
S �nf(τ)�K R S �nf(σ)�K), but this follows immediately from the definition of R
and from I[σ ] � J[τ].

2. (S = S �nf(τ)�K, T = S �nf(σ)�K, K ⊆ I, and I[σ ] � J[τ]) We have several sub-
cases depending on the shape of the normal form of σ and τ . Assume that nf(σ) =
⊕

R∈A (σ) ∑α∈R α.σα and nf(τ) =
⊕

S∈A (τ) ∑β∈S β .τβ . Then S = ⊕〈Ŝ ∩ K : &〈 /̂0 :

end; {̂β} : S �τβ �K
β∈S∩K〉 S∈A (τ)〉 and T = ⊕〈R̂ ∩ K : &〈 /̂0 : end; {̂α} :

S �σα�K
α∈R∩K〉 R∈A (σ)〉. From I[σ ] � J[τ] we have that {S ∩ K | S ∈ A (τ)} ⊆

{R ∩ K | R ∈ A (σ)}, hence each label in the topmost choice of S also occurs
as a label in the topmost choice of T . Take S ∈ A (τ). The label Ŝ ∩ K occurs
in both S and T , hence the corresponding branches have exactly the same set
of labels { /̂0} ∪ {{̂α} | α ∈ S ∩ K}. Let S′ = S �τα �K and T ′ = S �σα �K. From
I[nf(σ)] � J[nf(τ)] and α ∈ I we have that nf(τ) α=⇒ implies nf(σ) α=⇒ and
I[σα ] � J[τα ], so we conclude S′ R T ′ by definition of R.
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Assume that nf(σ) = rec x.σ ′, where σ ′ is in normal form. Then I[σ ] �
I[σ ′{nf(σ)/x}] and σ ′{nf(σ)/x} is itself in normal form. Since σ is strongly con-
vergent, we eventually reach some σ ′′ in normal form such that σ ′′ does not begin
with a recursion and I[σ ] � I[σ ′′]. Similarly for τ . Hence, we easily reduce to the
previous subcase.

(“if” part) We prove that I[σ ] �� J[τ] implies S �J[τ]� �≤ S �I[σ ]�. It suffices to con-
sider all the possibilities by which I[σ ] �� J[τ] directly:

1. if I �⊆ J, then there exists α ∈ I such that α �∈ J. Then {̂α} is a label occurring in
the topmost branch of S �I[σ ]� but not occurring in the topmost branch of S �J[τ]�,
hence S �J[τ]� �≤ S �I[σ ]�;

2. let R1, . . . ,Rn be the ready sets of σ and assume that there exists R such that τ ⇓ R

and for every 1 ≤ i ≤ n we have Ri �⊆ R, that is for every 1 ≤ i ≤ n there exists
αi ∈ Ri ∩ I and αi �∈ R. From I ⊆ J we know that both S �I[σ ]� and S �J[τ]� have
the label Î in their corresponding topmost branches with continuations S �nf(σ)�I

and S �nf(τ)�I respectively. Then, by the fact that ·̂ is injective, it follows that
R̂ ∩ I �∈ {R̂i ∩ I | Ri ∈A (σ)}, hence R̂ ∩ I is a label occurring in the topmost choice of
S �nf(τ)�I but not occurring in the topmost choice of S �nf(σ)�I , so we conclude
S �J[τ]� �≤ S �I[σ ]�;

3. assume that there exists α ∈ I such that τ α=⇒ and σ �
α=⇒. Then τ ⇓ S where α ∈ S

whereas σ ⇓ R implies α �∈ R. Hence we can reason as for the previous case and
conclude S �J[τ]� �≤ S �I[σ ]�. �

The strict correspondence between ≤ and � allows one to use them interchangeably, as
discussed in the example below.

Example 3. Consider the client contracts

K[ρ ] def= {a,b,e}[a.e+ b.e] and K[ρ ′] def= {a,b,e}[a.e⊕ b.e]

and notice that K[ρ ] � I[σ ] whereas K[ρ ′] �� I[σ ], where I[σ ] is the service contract
defined in Example 2. The respective encodings of these two client contracts are

C �K[ρ ]� = ⊕〈{̂a,b} : &〈{̂a} : ⊕〈{̂a} : end〉;
{̂b} : ⊕〈{̂b} : end〉;
{̂a,b} : ⊕〈{̂a} : end; {̂b} : end〉〉〉

C �K[ρ ′]� = ⊕〈{̂a,b} : &〈{̂a,b} : ⊕〈{̂a} : end; {̂b} : end〉〉〉

and now we notice that S �I[σ ]� ≤ dual(C �K[ρ ]�), namely it is safe to use S �I[σ ]�
to interact successfully with C �K[ρ ]�. On the other hand S �I[σ ]� �≤ dual(C �K[ρ ′]�)
because S �I[σ ]� may be in a state where only a or only b are available, whilst the client
K[ρ ′] autonomously decides which of the two actions to execute. Notice however that
S �I[τ]� ≤ dual(C �K[ρ ′]�). �

More generally, if K[ρ ] � I[σ ] holds then it is safe to use the service S �I[σ ]� to interact
with the client C �K[ρ ]� and in fact dual(C �K[ρ ]�) is the principal service type that
interacts successfully with C �K[ρ ]�.
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Theorem 5. K[ρ ] � I[σ ] if and only if S �I[σ ]� ≤ dual(C �K[ρ ]�).

Proof. (“only if” part) Let R be the least relation such that

– if K[ρ ] � I[σ ] and ρ and σ are strongly convergent, then S �I[σ ]�R dual(C �K[ρ ]�)
and S �nf(σ)�

K\{e} R dual(C �nf(ρ)�K\{e}).

It is sufficient to show that R is a coinductive subtyping. Let S R T . We have two
possibilities.

1. (S = S �I[σ ]�, T = dual(C �K[ρ ]�), and K[ρ ] � I[σ ]) Then S = &〈Ĥ :

S �nf(σ)�H
H⊆I〉 and T = &〈 ̂

K \ {e} : dual(C �nf(ρ)�K\{e})〉. From K \ {e} ⊆ I

we have that the label in the topmost branch of T also occurs as a label in the top-
most label of S. We must show that S �nf(σ)�H R dual(C �nf(ρ)�K\{e}), but this
is obvious by definition of R.

2. (S = S �nf(σ)�K, T = dual(C �nf(ρ)�K), and (K ∪{e})[ρ ] � I[σ ]) Let nf(σ) =
⊕

R∈A (σ) ∑α∈R α.σα and nf(ρ) =
⊕

R∈A (ρ) ∑α∈R α.ρα . Then

S = ⊕〈R̂ ∩ K : &〈 /̂0 : end; {̂α} : S �nf(σα)�K
α∈R∩K〉 R∈A (σ)〉

T = ⊕〈Ŝ : &〈 /̂0 : end; {̂α} : dual(C �nf(ρα)�K) R∈A (ρ),α∈S∩R〉 S⊆K,S��A (ρ)〉

Let R ∈ A (σ) be a ready set of the service. Then R ∩ K = R ∩ K ⊆ K. Furthermore,
by definition of ��, we have that R ∩ K �� A (ρ) if and only if for every R′ ∈ A (ρ)
we have either e ∈ R′ or R ∩ K ∩ R′ �= /0. But R′ ⊆ K, hence R ∩ K ∩ R′ = R ∩ R′. So
R ∩ K �� A (ρ) is a direct consequence of the hypothesis (K ∪{e})[ρ ] � I[σ ]. Fur-

thermore, from the same hypothesis and from nf(ρ) α=⇒ and nf(σ) α=⇒ it follows
that (K∪{e})[ρα ] � I[σα ], hence we conclude S �nf(σα)�K R dual(C �nf(ρα)�K)
by definition of R.

(“if” part) Trivial by the definitions of the encoding, the details are left to the reader.
�

By combining Theorem 5 and Proposition 3(3) we derive an interesting dual result,
by which dual(S �I[σ ]�) is the principal client type that interacts successfully with
S �I[σ ]�.

Corollary 1. K[ρ ] � I[σ ] if and only if C �K[ρ ]� ≤ dual(S �I[σ ]�).

6 Discussion

The encoding of session types into contracts (Section 4) is simple and almost homomor-
phic with respect to the operations. The branch is the only operation whose encoding
requires some care, by adding extra �.Ω subterms in the generated contract for those
labels � not mentioned in the session type. That is, the encoding renders clearly that
processes involved in a session may only perform actions that are explicitly allowed by
the type of the partner process. In other words, session types describe communications
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where at any time exactly one of the two interacting parties has control and no hand-
shaking occurs. Interestingly, by interpreting Ω as a catastrophic state of a process and
by considering a slightly weaker notion of subcontract relation called safe must in [2],
we have α.Ω � 0, meaning that, in practice, action α is not guaranteed.

The encoding of contracts into session types (Section 5) manifests an exponential
blow up of the encoded contract. This indicates that contracts are more abstract than
session types and are capable of expressing more complex synchronization scenarios.
Part of this added expressiveness derives from the operators + and ⊕, which can be
used for composing arbitrary behaviors in a liberal way. As we have anticipated in
the introduction, the encoding of {a,b}[a ⊕ b] explicitly notifies the client if only a is
available, or if only b is available, or if both a and b are available. This is possible
only if the service has centralized control over its own resources and can decide about
the availability of a and b. If, on the other hand, the service is a collection of possibly
distributed processes (as in service choreographies) it may be impractical or impossible
to provide such information to the client.

The lesson we learn is that there is a strict correspondence between contracts and
session types that allows one to use them interchangeably within the context of dyadic
interactions, where both parties provide centralized control on the communication pro-
tocol. Contracts go beyond session types in that they permit to characterize arbitrary
processes in addition to sessions. For instance, the process a | b, which stands for the
parallel composition of two smaller processes sending messages a and b, can be seen as
having two unrelated sessions with type ⊕〈a : end〉 and ⊕〈b : end〉. On the other hand,
the whole process can be typed according to one of the following behaviors

Ω a.Ω + b.Ω a.b+ b.Ω a.Ω + b.a a.b+ b.a

representing regular, increasingly accurate approximations of the process behavior.
Recently type systems with sessions have been extended so as to guarantee stronger

progress properties [9]. Such type systems must necessarily consider a broader perspec-
tive that takes into account the mutual dependencies and interactions between sessions.
In this respect, we plan to investigate whether the additional expressiveness of contracts
already provides the required machinery for dealing with these issues.
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Abstract. COWS is a recently defined process calculus for specifying and com-
bining service-oriented applications, while modelling their dynamic behaviour.
Since its introduction, a number of methods and tools have been devised to
analyse COWS specifications, like e.g. a type system to check confidentiality
properties, a logic and a model checker to express and check functional proper-
ties of services. In this paper, by means of a case study in the area of automo-
tive systems, we demonstrate that COWS, with some mild linguistic additions,
can model all the phases of the life cycle of service-oriented applications, such
as publication, discovery, negotiation, orchestration, deployment, reconfiguration
and execution. We also provide a flavour of the properties that can be analysed
by using the tools mentioned above.

1 Introduction

In recent years, the increasing success of e-business, e-learning, e-government, and
other similar emerging models, has led the World Wide Web, initially thought of as a
system for human use, to evolve towards an architecture for service-oriented computing
(SOC) supporting automated use. SOC advocates the use of loosely coupled ‘services’,
to be understood as autonomous, platform-independent, computational entities that can
be described, published, discovered, and assembled, as the basic blocks for building in-
teroperable and evolvable systems and applications. While early examples of technolo-
gies that are at least partly service-oriented date back to CORBA, DCOM, J2EE and
IBM WebSphere, the most successful instantiation of the SOC paradigm are probably
the more recent web services. These are sets of operations that can be published, lo-
cated and invoked through the Web via XML messages complying with given standard
formats. To support the web service approach, several new languages and technologies
have been designed and many international companies have invested a lot of efforts.

Current software engineering technologies for SOC, however, remain at the descrip-
tive level and lack rigorous formal foundations. We are still experiencing a gap between
practice (programming) and theory (formal methods and analysis techniques) in the de-
sign of SOC applications. The challenges come from the necessity of dealing at once
with issues like communication, co-operation, resource usage, security, failures, etc.
in a setting where demands and guarantees can be very different for the many differ-
ent components. Many researchers have hence put forward the idea of using process
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calculi, a cornerstone of current foundational research on specification and analysis of
concurrent, distributed and mobile systems through mathematical — mainly algebraic
and logical — tools. Thus, many process calculi have been designed, addressing one
aspect or another of SOC and aiming at assessing the adequacy of diverse sets of prim-
itives w.r.t. modelling, combining and analysing service-oriented applications.

Due to their algebraic nature, process calculi convey in a distilled form the com-
positional programming style of SOC. Thus, for example, many well-known problems
related to services composition (e.g., messages not received, race conditions, deadlocks,
incompatible behaviours) could be investigated through an adequate and sufficiently ex-
pressive process calculus. A major benefit of using process calculi is that they enjoy a
rich repertoire of elegant meta-theories, proof techniques and analytical tools that can
be likely tailored to the needs of service-based applications. It has been already argued
that type systems, model checking and (bi)simulation analysis provide adequate tools
to address topics relevant to the web services technology (see e.g. [20,24]). This ‘proof
technology’ can eventually pave the way for the development of automatic property
validation tools. Therefore, process calculi might play a central role in laying rigorous
methodological foundations for specification and validation of SOC applications.

By taking inspiration from well-known process calculi and from the standard lan-
guage for orchestration of web services WS-BPEL [22], in [15] we have designed
COWS (Calculus for Orchestration of Web Services), a process calculus for specify-
ing and combining service-oriented applications, while modelling their dynamic be-
haviour. We have shown that COWS can model different and typical features of web
services, such as, e.g., multiple start activities, receive conflicts, routing of correlated
messages, service instances and interactions among them. Since its definition, some
linguistic extensions have been introduced to model timed activities [17] and dynamic
service discovery and negotiation [19], thus obtaining a linguistic formalism capable
of modelling all the phases of the life cycle of service-oriented applications. A number
of methods and tools have also been devised to analyse COWS specifications, such as
the stochastic extension defined in [23] to enable quantitative reasoning on service be-
haviours, the type system introduced in [18] to check confidentiality properties, and the
logic and model checker presented in [9] to express and check functional properties of
services. In this paper, by means of the ‘on road assistance scenario’, a case study in the
area of automotive systems defined and analysed within the EU project Sensoria [2],
we provide a flavour of COWS main features and specification style, and illustrate the
classes of properties that can be analysed by using some of the tools mentioned above.

The rest of the paper is organized as follows. Section 2 introduces the scenario that
will be used throughout the paper for illustration purposes. Section 3 presents syntax
and main features of COWS; this is done in a step-by-step fashion while modelling
some services within the scenario and their orchestration. Section 4 shows that also
service discovery and negotiation can be naturally modelled in COWS by exploiting
some mild linguistic additions, i.e. timed activities, constraints and operations on them.
Section 5 sums up a type-based approach for expressing and enforcing confidential-
ity properties. Section 6 illustrates a logical verification framework including the logic
SocL for expressing functional properties of services and the on-the-fly model checker
CMC for verifying them. Section 7 concludes the paper with some final remarks.
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2 On Road Assistance Scenario

The ‘on road assistance scenario’ [13] is one of the scenarios in the area of automotive
systems defined and analysed within the EU project Sensoria [2] and describes some
functionalities that will be likely available in the near future. The scenario involves a
number of services that are discovered and bound at run-time according to levels of
service specified at design time, so as to deliver the best available functionalities at
agreed levels of quality. A brief description follows.

The in-vehicle diagnostic system reports a severe failure when the car is no
longer drivable. The car’s discovery system then identifies garages, car rentals
and towing truck services in the car’s vicinity. At this point, the car’s reasoner
system selects a set of adequate services taking into account personalised poli-
cies and preferences of the driver, e.g. balancing cost and delay, and tries to
order them. Before being enable to order services, the owner of the car has
to deposit a security payment, that will be given back if ordering the services
fails. Other components of the in-vehicle service platform involved in this as-
sistance activity are a GPS service, providing the car’s current location, and an
orchestrator, coordinating all the described services.

An UML-like activity diagram of the orchestration of services is shown in Figure 1.
For simplicity, we assume that the orchestration is only triggered either by an ‘engine
failure’ or by a ‘low oil level’ sensor signal. The process starts with a request from
the orchestrator to the bank to charge the driver’s credit card with the security deposit
payment. This is modelled by the UML action requestCardCharge for charging the
credit card whose number is provided as an output parameter of the action call. In
parallel to the interaction with the bank, the orchestrator requests the current location of
the car from the car’s internal GPS service. The current location is modelled as an input
to the requestLocation action and subsequently used by the findServices interaction
which retrieves a list of services. If no service can be found, an action to compensate
the credit card charge will be launched. For the selection of services, the orchestrator
synchronises with the reasoner service to obtain the most appropriate (best) services.

Service ordering is modelled by the UML actions orderGarage, orderTowTruck and
orderRentalCar. When the orchestrator makes an appointment with the garage, the
diagnostic data are automatically transferred to the garage, which could then be able,
e.g., to identify the spare parts needed to perform the repair. Then, the orchestrator
makes an appointment with the towing service, providing the GPS data of the stranded
vehicle and of the garage, to tow the vehicle to the garage. Concurrently, the orchestrator
makes an appointment with the rental service, by indicating the location where the car
will be handed over to the driver.

The workflow described in Figure 1 models the overall behaviour of the system.
Besides interactions among services, it also includes activities using concepts devel-
oped for long running business transactions (e.g. in [11,22]). These activities entail
fault and compensation handling, kind of specific activities attempting to reverse the
effects of previously committed activities, that are an important aspect of SOC applica-
tions. Specifically, in the considered scenario, the security deposit payment charged to
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Fig. 1. Orchestration in the on road assistance scenario



Specifying and Analysing SOC Applications with COWS 705

Table 1. COWS syntax

s ::= kill(k) | u • u′!ē (kill, invoke)
| ∑l

i=0 pi • oi?w̄i.si | s | s (receive-guarded choice, parallel)
| {|s|} | [d] s | ∗ s (protection, delimitation, replication)

the driver’s credit card must be revoked if either the discovery phase does not succeed
or ordering the services fails, i.e. both garage/tow truck and car rental services reject
the requests. Moreover, if ordering a tow truck fails, the garage appointment has to be
cancelled and the rental car delivery has to be redirected to the stranded car’s actual
location. Instead, if ordering the car rental fails, the overall process may not fail, as the
activity is enclosed in a sub-transaction.

3 COWS: A Calculus for Orchestration of Web Services

In this section, we report the syntax of COWS and explain the semantics of its primitives
in a step-by-step fashion while modelling the on road assistance scenario (the complete
specification can be found in [16]). Due to lack of space, here we only provide an in-
formal account of the semantics of COWS and refer the interested reader to [15,14] for
a formal presentation, for examples illustrating peculiarities and expressiveness of the
language, and for comparisons with other process-based and orchestration formalisms.
To get accustomed to using the language one can also use CMC [1], a tool supporting
the automated derivation of all computations originating from a COWS term.

3.1 Syntax

The syntax of COWS, given in Table 1, is parameterized by three countable and pair-
wise disjoint sets: the set of (killer) labels (ranged over by k, k′, . . .), the set of values
(ranged over by v, v′, . . . ) and the set of ‘write once’ variables (ranged over by x, y,
. . . ). The set of values is left unspecified, but we assume that it includes the set of
names, ranged over by m, n, o, p, . . . , mainly used to represent partners and operations.
The language is also parameterized by a set of expressions, ranged over by e, whose
exact syntax is deliberately omitted. We just assume that expressions contain, at least,
values and variables, and do not include killer labels (that, hence, are not communica-
ble values). Partner and operation names can be combined to designate communication
endpoints; e.g. p •o denotes the endpoint composed of the partner p and the operation
o. Being values, partner and operation names can be exchanged in communication, but
dynamically received names can only be used to designate endpoints for service invoca-
tion. Indeed, endpoints of receive activities are identified statically because their syntax
only allows using names and not variables.

We use w to range over values and variables, u to range over names and variables, and
d to range over killer labels, names and variables. Notation ·̄ stands for tuples of objects,
e.g. x̄ is a compact notation for denoting the tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0).
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In the sequel, we shall use 0 to denote empty choice and + to abbreviate binary choice.
We will omit trailing occurrences of 0, writing e.g. p • o?w̄ instead of p • o?w̄.0, and
write [d1, . . . , dn] s in place of [d1] . . . [dn] s. We will write Z � W to assign a symbolic
name Z to the term W.

The only binding construct is delimitation: [d] s binds d in the scope s (the notions of
bound and free occurrences of a name/variable/label are defined accordingly). In fact,
differently from most process calculi, receive activities in COWS bind neither names
nor variables. This enables e.g. easily modelling and updating the shared state of con-
current threads within each service instance. Delimitation can be used to generate fresh
names whose scope can later dynamically change because of taking place of communi-
cation. This is exactly as in the π-calculus [21]. However, delimitation is more general
than the restriction of the π-calculus since it can be also used to declare variables (thus
regulating the range of application of the substitutions generated by communications)
and to delimit the field of action of kill activities. Notably, killer labels are dealt with
differently from names and variables since, being not communicable values, their scope
is statically determined by the corresponding delimitation and can never change.

3.2 Basic Operators for Service Orchestration

The COWS term representing the ‘orchestration’ in Figure 1 is

[pcar] ( Orchestrator | GPS | Discovery | Reasoner | SensorsMonitor )
| Bank | OnRoadRepairServices

The services above are composed by using the parallel composition operator | that
allows the different components to be concurrently executed and to interact with each
other. The delimitation operator [ ] is used here to declare that pcar is a (partner) name
known to all services of the in-vehicle platform, i.e. Orchestrator, GPS, Discovery,
Reasoner and SensorsMonitor, and only to them.

Orchestrator, the most important component of the in-vehicle platform, is

[xcarData] ( pcar • oeng f ail?〈xcarData〉.sengfail + pcar • olowoil?〈xcarData〉.slowoil )

This term uses the choice operator + to pick one of those alternative ‘recovery’ be-
haviours whose execution can start immediately. The receive-guarded prefix operator
pcar • oi?〈xcarData〉. expresses that each recovery behaviour starts with a receive activity
of the form pcar • oi?〈xcarData〉 corresponding to reception of a request emitted, when a
failure arises, by SensorsMonitor (a term representing the behaviour of the ‘low level
vehicle platform’). Receives, together with invokes, written as p • o!〈e1, . . . , em〉, are
the basic communication activities provided by COWS. Besides input parameters and
sent values, they indicate the endpoint p • o through which the communication should
occur. p • o can be interpreted as a specific implementation of operation o provided
by the service identified by the logic name p. This naming mechanism allows a same
service to be identified by means of different logic names, i.e. to play more than one
partner role as in WS-BPEL. An inter-service communication takes place when the ar-
guments of a receive and of a concurrent invoke along the same endpoint do match1,

1 The pattern-matching mechanism permits correlating messages logically forming a same in-
teraction ‘session’ by means of their same contents. We refer to [15,14] for further details.
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and causes replacement of the variables arguments of the receive with the correspond-
ing values arguments of the invoke (within the scope of variables declarations). For
example, variable xcarData, declared local to Orchestrator by means of the delimitation
operator, is initialized by the receive leading the recovery activity with data provided by
SensorsMonitor. Notice that, while executing a recovery behaviour, Orchestrator does
not accept other recovery requests. We are also assuming that it is restarted at the end
of the recovery task.

The recovery behaviour sengfail executed when an engine failure occurs is

[pe, oe, xloc, xlist]
( ( RequestCardCharge | RequestLocation.FindServices )
| pe • oe?〈〉. pe • oe?〈〉. SelectServices.

[xgarageGPS ] ( OrderGarage.OrderTowTruck | OrderRentalCar ) )

pe • oe is a scoped endpoint along which successful termination signals (i.e. com-
munications that carry no data) are exchanged to orchestrate execution of the differ-
ent components. Variables xloc, xlist and xgarageGPS are used to store the value of the
car’s current location, the list of closer on road services discovered and the garage’s
GPS location, respectively. To present the specification of sengfail in terms of the
UML actions of Figure 1, we have used an auxiliary ‘sequence’ notation. Thus, e.g.,
RequestLocation.FindServices indicates that execution of RequestLocation terminates
before execution of FindServices starts. Indeed, RequestLocation.FindServices actually
stands for the COWS term

pcar • oreqLoc!〈〉 | pcar • orespLoc?〈xloc〉.
( pcar • o f ind!〈xloc, ServicesType〉
| pcar • oservicesFound?〈xlist〉. pe • oe!〈〉 + pcar • oservicesNotFound?〈〉 )

where RequestLocation and FindServices are

RequestLocation � pcar • oreqLoc!〈〉 | pcar • orespLoc?〈xloc〉

FindServices � pcar • o f ind!〈xloc, ServicesType〉
| pcar • oservicesFound?〈xlist〉. pe • oe!〈〉

Endpoints of service invocations can also contain variables as, e.g., in the term

OrderGarage � xgarage • oorder!〈pcar, xcarData〉 |
[xrepairNum] (pcar • ogarageFail?〈〉 + pcar • ogarageOK?〈xrepairNum, xgarageGPS 〉)

Here, variable xgarage is used to invoke a garage service whose partner name is unknown
at design time. This garage will be selected dynamically by activity SelectService that,
through a communication, replaces xgarage with the actual partner name of the garage.
Indeed, in COWS dynamic binding of discovered services and service reconfiguration
rely on the exchange of partner and operation names in communication.

Bank, the last service we show in this section, can serve multiple requests simulta-
neously. This behaviour is modelled by exploiting the replication operator ∗ to spawn
in parallel as many copies of its argument term as necessary. The definition of Bank is
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∗ [xcust, xcc, xamount, ocheckOK, ocheckFail]
pbank • ocharge?〈xcust, xcc, xamount〉.
(< perform some checks and reply on ocheckOK or ocheckFail>
| pbank • ocheckFail?〈〉. xcust • ochargeFail!〈〉
+ pbank • ocheckOK?〈〉. [chargeID] ( xcust • ochargeOK!〈chargeID〉

| pbank • orevoke?〈chargeID〉.
< revoke chargeID>. xcust • orevokeOK!〈〉 ) )

Once prompted by a request, differently from Orchestrator, Bank creates one specific
instance to serve that request and is immediately ready to concurrently serve other re-
quests. Notably, each instance exploits communication on ‘internal’ operations ocheckOK

and ocheckFail to model a conditional choice, and creates a new ‘charge identifier’ by
means of the delimitation operator (that acts here as the restriction operator of the π-
calculus). Thus, if after some invocations the service receives a message along the end-
point pbank • orevoke to revoke a request, a certain number of service instances could be
able to accept it. However, the message is routed to the proper instance by exploiting,
as a correlation value, a unique identifier (that is named chargeID in the term above)
characterizing the instance.

3.3 Fault and Compensation Handling

We now show how to modify the specification described in the previous section for
adding the fault and compensation activities depicted in Figure 1. For improving read-
ability, these activities are highlighted by a gray background to distinguish them from
‘normal behaviour’. For example, the term modelling the garage ordering is:

OrderGarage � xgarage • oorder!〈pcar, xcarData〉
| [xrepairNum] pcar • ogarageFail?〈〉.

( pcar • oundo!〈cc〉
| [p, o] (p •o!〈xloc〉 | p • o?〈xgarageGPS 〉) )

+ pcar • ogarageOK?〈xrepairNum, xgarageGPS 〉.
pcar • oundo?〈garage〉.
( xgarage • ocancel!〈xrepairNum〉
| pcar • ocancelOK?〈〉
| pcar • oundo!〈cc〉 | pcar • oundo!〈rentalCar〉 )

Thus, if ordering a garage fails, the compensation of the credit card charge is invoked
by sending a signal cc (abbreviation of ‘card charge’) along the endpoint pcar • oundo and
the rental car delivery is redirected by assigning the car’s current location xloc to the
variable xgarageGPS (this assignment is modelled by means of communication along the
private endpoint p • o). Otherwise, a compensation handler is installed that is invoked
whenever tow truck ordering fails and, in that case, attempts to cancel the garage order
and to compensate the credit card charge and the rental car order.

To model fault handling and compensation behaviours, the term OrderGarage ex-
ploits interactions along the endpoint pcar • oundo. However, to better support the spec-
ification of these aspects, COWS provides two further constructs. Kill activities of the
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form kill(k), where k is a killer label, can be used to force termination of all unprotected
parallel terms inside the enclosing [k] , that stops the killing effect. Kill activities are ex-
ecuted eagerly with respect to the other parallel activities but critical code, such as e.g.
fault/compensation signals and handlers, can be protected from the effect of a forced
termination by using the protection operator {| |}. By exploiting these new features, the
recovery behaviour sengfail becomes

[pe, oe, xloc, xlist, oundo, k ]
( ( RequestCardCharge | RequestLocation.FindServices )
| pe • oe?〈〉. pe • oe?〈〉. SelectServices.

[xgarageGPS ] ( OrderGarage.OrderTowTruck |OrderRentalCar) )

where RequestCardCharge and FindServices are defined as

FindServices � pcar • o f ind!〈xloc, ServicesType〉
| pcar • oservicesFound?〈xlist〉. pe • oe!〈〉
+ pcar • oservicesNotFound?〈〉.

( kill(k) | {|pcar • oundo!〈cc〉 | pcar • oundo!〈cc〉|} )

RequestCardCharge � pbank • ocharge!〈pcar, ccNum, amount〉
| {| [xchargeID] pcar • ochargeFail?〈〉. kill(k)

+ pcar • ochargeOK?〈xchargeID〉.
( pe • oe!〈〉 | pcar • oundo?〈cc〉.pcar • oundo?〈cc〉.

( pbank • orevoke!〈xchargeID〉
| pcar • orevokeOK?〈〉 ) ) |}

Thus, whenever services finding fails, FindServices terminates the whole recovery be-
haviour and sends two signals cc along the endpoint pcar • oundo. Similarly, if charging
the credit card fails, then RequestCardCharge terminates the whole recovery behav-
iour sengfail. Otherwise, it installs a compensation handler that takes care of revoking
the credit card charge. Activation of this compensation activity requires two signals cc
along pcar • oundo and, thus, takes place either whenever FindService fails or whenever
both OrderGarage and OrderRentalCar (not shown here) fail.

4 Service Publication, Discovery and Negotiation

We have demonstrated so far that COWS can model service specification, orches-
tration, reconfiguration, and execution. Now, we focus on other important phases of
the life cycle of service-oriented applications. In fact, in a service-oriented architec-
ture, services can play essentially three different roles: the provider, the requester and
the registry. Providers offer functionalities and publish machine-readable service de-
scriptions on registries to enable automated discovery and invocation by requesters. In
addition to the function that the service performs, service descriptions also include non-
functional properties, such as e.g., response time, availability, reliability, security, and
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performance, that jointly represent the quality of the service (QoS). Some of these prop-
erties could depend on the current run-time configuration of the system (e.g. the maxi-
mum allowed bandwidth might depend on the actual load of the server), thus a dynamic
discovery process is often needed to find a provider that meets the requesters’ require-
ments. Moreover, since services are often developed and run by different organizations,
a key issue of the discovery process is to define a flexible negotiation mechanism that
allows two or more parties to reach a joint agreement about cost and quality of a ser-
vice, prior to service execution. The outcome of the negotiation phase is a Service Level
Agreement (SLA), i.e. a contract among the involved parties that sets out both type and
bounds on various performance metrics of the service to be provided, and the remedial
actions to be performed if these are not met.

We want now to demonstrate that service publication, discovery and SLA negotiation
can be naturally modelled in COWS by exploiting the additions of ‘timed’ activities and
‘constraints’. Timed activities have been introduced in [17], by adding specific rules for
modelling time passing to the COWS operational semantics, since it is not known to
what extent timed computation can be reduced to untimed forms of computation [25].
Specifically, COWS is extended with a WS-BPEL-like wait activity of the form � e, that
suspends the execution of the invoking service until the time interval whose duration is
specified as an argument has elapsed and can be used as a guard for the choice operator.
Constraints have been introduced in [19], by exploiting the fact that COWS’ definition
is parameterised with respect to a few sets of objects, namely the set of values and
that of expressions that operate on them. Notably, we do not take a definite standing
on which of the many kinds of constraints one should use. For example, one could use
crisp constraints, that can only be satisfied or violated, or soft constraints, that instead
can be satisfied with multiple consistency levels (these are usually expressed by means
of c-semirings [4] and interpreted as levels of preference or importance). From time to
time, the appropriate kind of constraints to work with should be chosen depending on
what one intends to model.

Still in [19] we argue that the concurrent constraint computing model can be easily
mimicked in COWS. This model of computation is based on a shared store of con-
straints that provides partial information about possible values that program variables
can assume. In COWS the store of constraints is represented by the following service:

storeC � [p, o] ( p •o!〈C〉 | ∗ [x] p •o?〈x〉.( ps • oget!〈x〉 | [y] ps • oset?〈y〉.p •o!〈y〉 ) )

where C is the multiset of constraints currently in the store, while ps is a distinguished
partner, and oget and oset are distinguished operations. Other services can interact with
the store service in mutual exclusion, by acquiring the lock (and, at the same time, the
stored value) with a receive along ps • oget and by releasing the lock (providing the new
stored value) with an invoke along ps • oset. The programs running in parallel with the
store can act on it by performing operations for adding/removing constraints to/from the
store (tell and retract, respectively), and for checking entailment/consistency of a
constraint by/with the store (ask and check, respectively). For example, the service
tell c.s willing to perform operation tell c and then to continue as service s can be
rendered in COWS as follows:

[p, o] ( p •o!〈c〉 | [y] p •o?〈y〉.[x] ps • oget?〈〈y, x〉〉.({| ps • oset!〈x � {y}〉 |} | s) )
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Due to lack of space, we refer the interested reader to [19] for the implementation of
the other operations and further details.

Now, like in cc-pi [5], service descriptions and SLA requirements can be expressed
as constraints that can be dynamically generated and composed, and that can be used
by the involved parties both for service publication and discovery, and for the SLA
negotiation process. Consistency of the set of constraints resulting from negotiation
means that the agreement has been reached. Timed activities can be exploited to allow
services not to get stuck forever waiting on a receive.

We use the on road assistance scenario to illustrate all such features and to put the
related mechanisms to work. Initially, each on road service has to publish its service
description on a service registry. For example, assume that a garage service description
consists of: a string identifying the kind of provided service, the provider’s partner
name, and a constraint that defines the garage location. Now, by assuming that the
registry provides the operation opub by means of the partner name preg, a garage service
can request the publication of its description as follows:

preg • opub!〈“garage”, pgarage, gps = (4348.1143N, 1114.7206E) 〉
gps is what we call a constraint variable. In fact, it is a specific name and, hence, is not
affected by substitution application. Constraint variables are used to avoid that taking
place of communication can make the store inconsistent. Indeed, suppose constraints in
the store may contain variables and consider the following example:

[x] ( store∅ | tell(x ≤ 5). (p •o!〈6〉 | p • o?〈x〉) )

After action tell has added the constraint x ≤ 5 to the store, communication along the
endpoint p • o can modify the constraint in 6 ≤ 5, thus making the store inconsistent. To
distinguish constraint variables from COWS (true) variables, the formers are written in
the typewriter style (e.g. x, y, . . . ). The service registry can be defined as

[oDB] ( ∗ [xtype, xp, xc] preg • opub?〈xtype, xp, xc〉.preg • oDB!〈xtype, xp, xc〉 | Rsearch )

For each publication request received along the endpoint preg • opub from a provider
service, the registry service outputs a service description along the private endpoint
preg • oDB. The parallel composition of all these outputs represents the database of the
registry. The subservice Rsearch, serving the searching requests, is defined as

Rsearch � ∗ [xtype, xclient, xc, oaddToList, oaskList]
preg • osearch?〈xtype, xclient, xc〉. [ps] ( store∅ | tell xc.R′ | List )

R′ � [k] ( ∗ [xp, xconst] preg • oDB?〈xtype, xp, xconst〉.
( {|preg • opub!〈xtype, xp, xconst〉|} | check xconst. preg • oaddToList!〈xp〉 )

|� δ. ( kill(k) | {| [xlist] preg • oaskList?〈xlist〉. xclient • oresp!〈xlist〉 |} ) )

When a searching request is received along preg • osearch, the registry service initializes a
new local store (delimitation [ps] makes store∅ inaccessible outside of service Rsearch)
by adding the constraint within the query message. Then, it cyclically reads a descrip-
tion (whose first field is the string specified by the client) from the internal database,
checks if the provider constraints are consistent with the store and, in case of success,
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adds the provider’s partner name to a list (by exploiting an internal service List, that
provides operations oaddToList and oaskList). After δ time units from the initialization of
the local store, the loop is terminated by executing a kill activity and the current list of
providers for service type xtype is sent to the client. Notably, reading a description in
the database, in this case, consists of an input along preg • oDB followed by an output
along preg • opub; this way we are guaranteed that, after being consumed, the description
is correctly added to the database. It is worth noticing that service descriptions are non-
deterministically retrieved, thus the same provider can occur in the returned list many
times. This could be avoided by refining the specification, e.g. by tagging each service
description with an index (stored in an additional field) that is then exploited to read
the descriptions in an ordered way. Moreover, since our notion of time does not rely on
the so-called ‘maximal progress assumption’, i.e. communication does not prevent the
execution of timed transitions, there is no guarantee that any service at all is retrieved.

After the user’s car breaks down and Orchestrator is triggered, the service Discovery
of the in-vehicle platform will receive from Orchestrator a request containing the GPS
data of the car, that it stores in xloc, and a string identifying the kind of the required
services (see the specification in Section 3.2). By exploiting the latter information, it
will know that it has to search a garage, a tow truck and a rental car service. For example,
the component taking care of discovering a garage service can be

preg • osearch!〈“garage”, pcar, dist(xloc, gps) < 20 〉 | [xgarageList] pcar • oresp?〈xgarageList〉
where the constraint dist(xloc, gps) < 20 means that the required garages must be less
than 20 km far from the stranded car’s actual location.

Once the discovery phase terminates and Reasoner communicates the best garage
service to Orchestrator, the latter and the selected garage engage in a negotiation phase
in order to sign an SLA. First, Orchestrator invokes the operation oorder provided by
the selected garage (see OrderGarage definition at page 708); then, it starts the nego-
tiation by performing an operation tell that adds Orchestrator’s local constraints (i.e.
constraints with restricted constraint variables) to the shared global store; finally, it syn-
chronizes with the garage service, by invoking osync, for sharing its local constraints
with it.

[cost, duration]
tell ( (cost < 1500 ∧ duration < 48) ∨ (cost < 800 ∧ duration � 48) ).
( xgarage • osync!〈cost, duration〉
| [xrepairNum] pcar • ogarageOK?〈xreapairNum〉. · · · + pcar • ogarageFail?〈〉. · · · )

In our example, the constraints state that for a repair in less than two days the driver is
disposed to spend up to 1500 Euros, otherwise he is ready to spend less than 800 Euros.

After the synchronization with Orchestrator, the selected garage service tries to im-
pose its first-rate constraint c = ((cost′ > 2000 ∧ 6 < duration′ < 24) ∨ (cost′ >
1500 ∧ duration′ � 24)) and, if it fails to reach an agreement within δ′ time units,
weakens the requirements and retries with the constraint c′ = ((cost′ > 1700 ∧ 6 <
duration′ < 24) ∨ (cost′ > 1200 ∧ duration′ � 24)). Both constraints are specifi-
cally generated by the garage service for the occurred engine failure, by exploiting the
transmitted diagnostic data. After δ′′ time units, if also the second attempt fails, it gives
up the negotiation. This negotiation task is modelled as follows:
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[xcost, xduration, cost
′, duration′]

pgarage • osync?〈xcost, xduration〉. tell (xcost = cost
′ ∧ xduration = duration

′).
( tell c. xclient • ogarageOK!〈repairNum〉
+� δ′ . ( tell c′. xclient • ogarageOK!〈repairNum〉

+� δ′′ . xclient • ogarageFail!〈〉 ) )

Notably, operations tell cannot be used as guards for the choice operator. Thus, a
term like tell c. s+� e. s′ should be considered as an abbreviation for

[p, q, o] ( check c. (p •o!〈〉 | q • o?〈〉. tell c. s) | � e. s′ + p • o?〈〉. q •o!〈〉 )
Intuitively, if the constraint c is consistent with the store, the timer can be stopped (i.e.
communication along p • o makes a choice and removes the wait activity); afterward,
the constraint can be added to the store, provided that other interactions that took place
in the meantime do not lead to inconsistency. Otherwise, if the timeout expires, the
constraint cannot be added to the store.

5 A Type System for Checking Confidentiality Properties

The type system for COWS introduced in [18] permits expressing and forcing policies
regulating the exchange of data among interacting services and ensuring that, in that
respect, services do not manifest unexpected behaviours. This enables us to check con-
fidentiality properties, e.g., that critical data such as credit card information are shared
only with authorized partners. The type system has been obtained by tailoring to COWS
the type-based approach for protecting data in distributed systems put forward in [12],
in the context of a higher-order functional programming language, and drawn on in [6],
in that of languages for global computing.

The types express the policies for data exchange in terms of regions, i.e. sets of
service partner names attachable to each single datum. Service programmers can thus
settle the partners usable to exchange any given datum (and, then, the services that can
share it), thus avoiding the datum be accessed (by unwanted services) through unau-
thorized partners. Then, a type inference system (statically) performs some coherence
checks (e.g. the service used in an invocation must belong to the regions of all data
occurring in the argument of the invocation) and derives the minimal region annota-
tions for variable declarations that ensure consistency of services initial configuration.
COWS operational semantics uses these annotations in very efficient checks (i.e. subset
inclusions) to authorise or block transitions, in order to guarantee that computations
proceed according to them. This property, called soundness, can be stated as follows: a
service s is sound if, for any datum v in s associated to region r and for all evolutions
of s, it holds that v can be exchanged only by using services in r. As a consequence of
the type soundness of the language, it follows that well-typed services always comply
with the policies regulating the exchange of data among interacting services. In fact, it
is also possible to move all dynamic checks to the static phase. This would require a
static analysis that gathers information about all the values that each variable can as-
sume at runtime and uses these information to verify the compliance with the specified
policies. At the price of a more complex static phase, this approach, on the one hand,
would alleviate the runtime checks but, on the other hand, could discard terms that at
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runtime would behave soundly since statically they cannot guarantee to comply with
their policies. We are currently evaluating and implementing the two approaches.

We illustrate now some relevant properties for the on road assistance scenario.
Firstly, a driver in trouble must be assured that information about his credit card and his
location cannot become available to unauthorized users. Thus, for example, the credit
card identifier ccNum, communicated by activity RequestCardCharge to service Bank,
gets annotated with the policy {pbank}, that allows Bank to receive the datum but prevents
it from transmitting the datum to other services. Other non-critical data, e.g. amount,
can be transmitted without an attached policy. The typed version of RequestCardCharge
(where irrelevant fault/compensation details are omitted) is defined as follows

pbank • ocharge!〈pcar, {ccNum}{pbank}, amount〉
| [xchargeID] pcar • ochargeFail?〈〉 + pcar • ochargeOK?〈xchargeID〉.pe • oe!〈〉

Notably, the annotations set by programmers are written as a subscript of the datum
to which they refer to. Instead, the annotations put by the type inference, to better dis-
tinguish them from those put by the programmers, are written as a superscript of the
variable declaration to which they refer to. Thus, the syntax of variable delimitation be-
comes [{x}r] s, which means that the datum that dynamically will replace x will be used
in s at most by the partners belonging to the region r. Hence, once the type inference
phase ends, Bank gets annotated as follows

∗ [{xcust}{pbank}, {xcc}{pbank}, {xamount}{pbank}, ocheckOK, ocheckFail]
pbank • ocharge?〈xcust, xcc, xamount〉.
(< perform some checks and reply on ocheckOK or ocheckFail>
| pbank • ocheckFail?〈〉. xcust • ochargeFail!〈〉
+ pbank • ocheckOK?〈〉.

[chargeID] ( xcust • ochargeOK!〈chargeID〉
| pbank • orevoke?〈chargeID〉.
< revoke chargeID>. xcust • orevokeOK!〈〉 ) )

Indeed, the annotations inferred for variables xcust, xcc and xamount are derived from the
use of these variables made by Bank. Thus, they are assigned region {pbank} because
they are only used in the receive along pbank • ocharge and, of course, the partner name of
the endpoint must belong to the region of the variables.

Suppose instead that service Bank (accidentally or maliciously) attempts to reveal
the credit card number through some ‘internal’ operation such as pint • o!〈{xcc}r〉, for
some region r. For Bank to successfully complete the type inference phase, we should
have pint ∈ r. Then, as result of the inference, we would get the annotated variable
declaration [{xcc}r′ ] , for some region r′ with r ⊆ r′. Now, the interaction between the
typed terms RequestCardCharge and Bank would be blocked by the runtime checks
because the datum sent by RequestCardCharge would be annotated as {ccNum}{pbank}
while the region r′ of the receiving variable xcc is such that pint ∈ r ⊆ r′ � {pbank}.

When delivering a datum, we can specify different policies according to the invoked
service. For example, when sending the car’s current location stored in xloc to services
OrderTowTruck and OrderRentalCar, we annotate it with the regions {xtowTruck} and
{xrentalCar}, respectively. This means that the corresponding service invocations get an-
notated as follows:
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xtowTruck • oorder!〈pcar, {xloc}{xtowTruck}, xgarageGPS 〉
xrentalCar • oredirect!〈xrentalNum, {xloc}{xrentalCar}〉

Notably, the used policies are not fixed at design time, but depend on the partner vari-
ables xtowTruck and xrentalCar , and, thus, will be determined by the services that these
variables will be bound to as computation proceeds. For example, consider a towing
truck service annotated as follows:

TowTruck � ∗ [{xclient}r1 , {xcarLoc}r2 , {xgarageLoc}r3 , ocheckOK, ocheckFail]
ptowTruck • oorder?〈xclient, xcarLoc, xgarageLoc〉.
(< perform some checks and reply on ocheckOK or ocheckFail >
| ptowTruck • ocheckFail?〈〉. xclient • otowTruckFail!〈〉
+ ptowTruck • ocheckOK?〈〉.

[towTruckNum] xclient • otowTruckOK!〈towTruckNum〉 )
Now, the car’s current location can be communicated to the towing truck if, and only
if, the region of the variable xcarLoc that, after communication, will store the datum and
the region of xloc do comply, i.e. r2 ⊆ {ptowTruck}.

As a final example, the on road services could want to guarantee that critical data
sent to the in vehicle services, such as cost and quality of the service supplied, are
not disclosed to competitors. For example, suppose that the towing truck services, like
TowTruck before, must send the estimated travel time (ETT ) to clients. To prevent this
datum from being sent to competitor services, ETT is communicated with an attached
policy that only authorizes the client partner to access it, as in the following activity

xclient • otowTruckOK!〈towTruckNum, {ETT }{xclient}〉

6 A Logical Framework for Verifying Functional Properties

The logical verification framework introduced in [9] permits checking functional prop-
erties of services by abstracting away from the computational contexts in which they are
operating. Specifically, services are abstractly considered as entities capable of accept-
ing requests, delivering corresponding responses and, on-demand, cancelling requests,
over specified interactions. The ‘abstract’ service actions are the following: request(i, c),
response(i, c), cancel(i, c) and fail(i, c), where the name i indicates the interaction to
which the corresponding ‘concrete’ action (i.e. the action occurring in the COWS spec-
ification) belongs, and c denotes a tuple of correlation values that identifies a particu-
lar invocation of the action. For example, request(i, c) indicates that the corresponding
concrete action represents the initial request of the interaction i and its invocation is
identified by the correlation tuple c; similarly, response(i, c), cancel(i, c) and fail(i, c)
characterise actions that correspond to a response, a cancellation and a failure notifi-
cation, respectively, of the interaction i. The name of the interaction or the correlation
tuple will be omitted whenever they are not relevant. The correspondence between con-
crete actions used in the specifications and the abstract actions above must be defined
from time to time by the user through appropriate abstraction rules.

Our abstract notion of services can be modelled by Doubly Labelled Transition Sys-
tems (L2TSs, [7]) in a very natural way. Thus, to formalize functional properties of
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services, we have tailored UCTL [3], a branching time temporal logic interpreted over
L2TSs originally introduced to express properties of UML statecharts, to deal with
service-oriented aspects. The resulting logic, that we call SocL, combines the action
paradigm of ACTL [8] with predicates that are true over states. A key novelty of SocL
is the possibility to specify parametric formulae to correlate service requests to the cor-
responding answers. Technically, correlation tuples in the actions of SocL formulae can
use variables. Let var be a correlation variable name; we use $var to indicate the binder
of the occurrences of %var. For example, request(i, 〈$var〉) denotes a request action for
the interaction i that is uniquely identified through the correlation variable $var. This
way, subsequent actions, corresponding e.g. to response to that specific request, can
unambiguously refer it through %var.

SocL allows us to express several relevant abstract properties for the services within
the on road assistance scenario. A few examples follow.

1. AG accepting request(engineFailure)
This formula means that the service Orchestrator is available, i.e. it is always
capable to accept a request for the interaction engineFailure. Indeed, a formula
like AG φ holds in a state q of a given L2TS if, and only if, the formula φ
holds in q and in all the states reachable from q along each path starting from
q. accepting request(engineFailure) is an atomic proposition that can hold or not
in a state of the L2TS and means that the service is able to accept a request for the
interaction engineFailure.

2. AG [request(garage, 〈$car〉)] AFresponse(garage,〈%car〉)∨fail(garage,〈%car〉) true
This formula means that all garage services contacted by Orchestrator are respon-
sive, i.e. they always guarantee a response to each received request. Indeed, a for-
mula like [γ] φ means that in the next state of any path, reached by an action sat-
isfying the action formula γ, the formula φ holds; a formula like AFγ φ holds in a
state q if, and only if, φ holds in q or in one of the states reachable from q (by a last
action satisfying γ) along each path starting from q. Notably, responses (both posi-
tive and negative) from the contacted garage service belong to the same interaction
garage of the garage appointment request and are correlated by the variable car.

3. ¬E(true¬ response(charge)Urequest(garage)∨request(rentalCar)true)
This formula means that a garage or a rental car request can be processed only
after the driver’s credit card has been successfully charged. Indeed, ¬ is the nega-
tion operator and E(φ χUγ φ′) is the until operator, that means that there exists
a path starting from the current state for which φ′ holds at the starting state or
at a future state (reached by an action satisfying γ), and φ has to hold until that
state is reached (by executing unobservable actions or actions satisfying χ). No-
tably, some of the previously used operators can be derived from the until operator:
EF φ stands for E(true ttUtt φ), where tt is the action formula always satisfied, AG φ
stands for ¬EF¬φ, AFγ true stands for A(true tt Uγtrue), and EFγ true stands for
E(true tt Uγtrue).

4. EFresponse(rentalCar,〈$rentalNum〉) EFfail(towTruck) AFcancel(rentalCar,〈%rentalNum〉) true
This formula means that, if renting a car succeeds and finding a tow truck fails,
then the rental car order must be cancelled (because the car must be redirected to
the driver’s current location). Notably, the cancelling request belongs to the same
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Fig. 2. Excerpt of the concrete L2TS for the on road assistance scenario

interaction rentalCar of the rent confirmation and they are correlated by the vari-
able rentalNum.

5. EFfail(rentalCar) EFresponse(towTruck) true
This formula means that if renting a car fails, tow truck (and, therefore, garage
appointment) can succeed.

6. AG [fail(towTruck)] AFcancel(garage) true
This formula means that if finding a tow truck fails, the garage appointment will be
revoked.

7. ¬E(true¬ response(garage)Urequest(towTruck)true)
This formula means that before looking for a tow truck, a garage must be found.

To check if a COWS term enjoys some abstract properties expressed as SocL formu-
lae, the following steps must be performed. Firstly, the LTS defining the semantics of
the COWS term (see [15] for a commented presentation of the LTS) is transformed into
an L2TS by labelling each state with the set of actions the COWS term is able to per-
form immediately from that state. Of course, the transformation preserves the structure
of the original COWS LTS. For example, the concrete L2TS obtained by applying this
transformation to the on road assistance scenario is shown in Figure 2. Notably, in our
L2TS arcs are labelled by set of actions, rather than by single actions as it is usual.

Secondly, since we are interested in verifying abstract properties of services, such as
those shown before, we need to abstract away from unnecessary details by transforming
concrete actions into abstract ones. This is done by means of suitable abstraction rules
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Fig. 3. Excerpt of the abstract L2TS for the on road assistance scenario

that replace the concrete labels on the transitions with abstract actions (i.e. request(i, c),
response(i, c), cancel(i, c) and fail(i, c)) and the concrete labels on the states with atomic
propositions (such as, e.g., accepting request(i)). The transformation only involves the
concrete actions we want to observe; the concrete actions that are not replaced by their
abstract counterparts may not be observed. Thus, the application of the abstraction rules
transforms the concrete L2TS into an ‘abstract’ one. For example, the abstract L2TS
of the on road assistance scenario shown in Figure 3, is obtained by applying to the
concrete L2TS of Figure 2 the following abstraction rules:

Action : oeng f ail → request(engineFailure)
Action : ocharge → request(charge)
Action : ochargeOK → response(charge)
Action : pgarage 1 • oorder〈$1, ∗〉 → request(garage, 〈$1〉)
Action : pgarage 2 • oorder〈$1, ∗〉 → request(garage, 〈$1〉)
Action : $1 •ogarageOK → response(garage, 〈$1〉)
Action : $1 •ogarageFail → f ail(garage, 〈$1〉)
Action : ocancel → cancel(garage)
. . .
Action : orentalCarOK〈$1〉 → response(rentalCar, 〈$1〉)
Action : oredirect〈$1, ∗〉 → cancel(rentalCar, 〈$1〉)
State : oeng f ail → accepting request(engineFailure)

Most of the rules are self-explicative, we comment on the remaining ones. Variables
“$n” (with n natural number) are used to define parametric abstraction rules. Also the
wildcard “ ∗ ” is used for increasing flexibility. The fourth and fifth rules prescribe
that whenever an action over the endpoints pgarage 1 • oorder or pgarage 2 • oorder with
sent data 〈pcar, data〉 (that match 〈$1, ∗〉) occurs in the label of a transition, then it is
replaced by the abstract action request(garage, 〈pcar〉). This way, the car partner name
pcar can be used to correlate responses from the contacted garage service. Similarly,
the second-last rule prescribes that whenever an action over the operation oredirect with
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sent data 〈rentalNum, gps〉 occurs in the label of a transition, then it is replaced by
cancel(rentalCar, 〈rentalNum〉). The last rule works similarly, but it applies to labels
of states rather than to labels of transitions.

Finally, the SocL formulae are checked over the abstract L2TS. To assist the verifi-
cation process, one can use CMC [1], that is a model checker for SocL formulae over
L2TS, other than an interpreter for COWS terms. One can thus verify that, as expected,
all the abstract properties we introduced before do hold for the COWS specification of
on road assistance scenario, but the first property, because Orchestrator is not a persis-
tent service capable of accepting and serving multiple requests (indeed, as we noted in
Section 3.2, it can only perform one recovery task at a time).

7 Concluding Remarks

COWS falls within a main line of research that aims at developing process calculi
capable of capturing the basic aspects of service-oriented systems and, possibly, of
supporting the analysis of qualitative and quantitative properties of services. We have
demonstrated that one can use COWS to model all the phases of the life cycle of SOC
applications such as publication, discovery, negotiation, orchestration, deployment, re-
configuration and execution. We believe that the methods and tools we have described
for expressing and checking properties of services are already an important added value
of using COWS as a modelling language.

The fact that several relevant aspects of SOC systems can be suitably addressed and
dealt with in an homogeneous and direct way by using a single linguistic low-level for-
malism somehow suggests that COWS could serve as a common and convenient basis
to enable analysis of service-oriented applications by translation from higher level lan-
guages. As further steps in this direction, we are currently studying translations from
the service orchestration language WS-BPEL [22] and the Sensoria Reference Mod-
elling Language SRML [10] into COWS. A short-term goal of this activity is to define,
via translation in COWS, an operational semantics for these two high level languages.
A long-term goal is to enable using proof techniques and analytical tools developed
for COWS, such as the type system and the logical verification framework summed up
in this paper, and the stochastic extension defined in [23], to analyse service-oriented
applications programmed in WS-BPEL or modelled in SRML.
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referees provided helpful suggestions for improving the presentation.

References

1. CMS: an on-the-fly model checker and interpreter for COWS, http://fmt.isti.
cnr.it/cmc/

2. Software Engineering for Service-Oriented Overlay Computers (Sensoria) (2005),
http://sensoria.fast.de/

3. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-checking
approach for the analysis of communication protocols for Service-Oriented Applications. In:
Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 133–148. Springer, Heidelberg
(2008)

http://fmt.isti.
cnr.it/cmc/
http://sensoria.fast.de/


720 A. Lapadula, R. Pugliese, and F. Tiezzi

4. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimiza-
tion. Journal of the ACM 44(2), 201–236 (1997)

5. Buscemi, M., Montanari, U.: CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32.
Springer, Heidelberg (2007)

6. De Nicola, R., Gorla, D., Pugliese, R.: Confining data and processes in global computing
applications. Science of Computer Programming 63, 57–87 (2006)

7. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM 42(2), 458–
487 (1995)

8. De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition systems. In:
Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)

9. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A model checking
approach for verifying COWS specifications. In: Fiadeiro, J., Inverardi, P. (eds.) FASE 2008.
LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg (2008)

10. Fiadeiro, J., Lopes, A., Bocchi, L.: A formal approach to service component architecture. In:
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Abstract. Embedded systems are electronic devices that function in the context
of a physical environment, by sensing and reacting to a set of stimuli. To sim-
plify the design of embedded systems, different parts are best described using
different notations and analyze with different techniques, i.e., the system is said
to be heterogeneous. We informally refer to the notation and the rules that are
used to specify and verify the elements of heterogeneous systems and their col-
lective behavior as a model of computation. In this paper, the use of conservative
approximations (recently introduced by the authors) is reviewed to establish rela-
tionships between different models of computation in a design. After presenting
the basic definitions, we propose three different models at different levels of ab-
straction for describing a system and the progression towards its implementation.
Then, we derive associated conservative approximations starting from simple ho-
momorphisms between sets of behaviors of the different models.

1 Introduction

Embedded systems are electronic devices that function in the context of a physical en-
vironment, by sensing and reacting to a set of stimuli. To simplify the design of an
embedded system, its different parts are best described using different notations and
analyzed with different techniques. In this case, we say that the system is heteroge-
neous. For example, the model of the software application that runs on a distributed
collection of nodes in a sensor network is often concerned only with the initial and final
state of the behavior of a reaction. In contrast, the particular sequence of actions of the
reaction could be relevant to the design of one instance of a node. Likewise, the notation
used in reasoning about a resource management subsystem is often incompatible with
the handling of real time deadlines, typical of communication protocols. This form of
heterogeneity is also reflected in the structure of the design teams, which increasingly
consist of highly specialized groups that focus on the solution of a particular task, under
the direction of system architects.

Designers benefit from this separation. First, the system is naturally partitioned into
smaller and more manageable parts. Secondly, and more importantly, designers are free
to select for each subsystem the rules that are used to specify its behavior as a hierarchi-
cal collection of modules (composition), and to verify that such behavior conforms to
a specification (refinement verification). These rules vary widely across different mod-
eling domains, such as the ones outlined above. The restrictions and the intrinsic prop-
erties of these rules, which we collectively refer to as a model of computation, are the
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basis of domain specific techniques that can be used to guarantee the correctness of the
implementation in an easier way.

While specified separately, subsystems must eventually interact to form the system
behavior, and will in fact do so in the physical implementation. However, system de-
signers are typically interested in not waiting until the final stages of the implementa-
tion to validate the system functionality and performance metrics, because the cost of
fixing design and specification errors increases dramatically in the later phases of the
design flow as amply documented for electronic systems, software and integrated cir-
cuits. The costs associated with late discovery of errors and, in particular, of integration
errors, have risen to a point that they are no longer sustainable. To witness, consider
the recent recalls by Mercedes-Benz of 1.5 million cars for problems with the braking
subsystem. Consequently, the ability of the system designer to specify, manage, and
verify the functionality and performance of concurrent behaviors, within and across
heterogeneous boundaries, is essential. Most design methodologies that address these
problems are based on the processes of abstraction and refinement, that is, of the ap-
plication of maps that convert and relate different models of computation. However,
crossing the boundaries between abstraction levels by abstracting and refining a spec-
ification is often not trivial. The most common pitfalls include mishandling of corner
cases and inadvertently misinterpreting changes in the communication semantics.

These problems arise because of the poor understanding and the lack of a precise
definition of the abstraction and refinement maps used in the flow, which are therefore
likely to provide little, if any, guarantee of satisfying a given set of constraints and spec-
ifications, without resorting to extensive simulation or tests on prototypes. However, in
the face of growing complexity, this approach will have to yield to more rigorous meth-
ods. In addition, abstraction and refinement should be designed to preserve, whenever
possible, the properties of the design that have already been established. This is essen-
tial to increase the value of early, high level models and to guarantee a speedier path to
implementation.

In this paper we review abstraction and refinement relationships in the form of con-
servative approximations [3,17,18] introduced by the authors to approach the problem
of abstraction and refinement from a formal standpoint. Conservative approximations
are closely related to abstract interpretations, and, in addition, preserve refinement ver-
ification from an abstract to a concrete model while avoiding the occurrence of false
positive results. This property of an abstraction is useful because, presumably, refine-
ment verification is more efficient at the abstract level than it is at the concrete. In this
paper we show how to derive models of computation and the corresponding abstraction
and refinement maps starting from simple models of behavior. We focus in particular
on models that include both continuous and discrete behaviors, and are therefore appro-
priate for the design of hybrid systems [4].

The rest of the paper is structured as follows. Section 2 gives an overview of our
methodology and formal framework and introduces the basic terminology. A set of
different agent models for embedded systems are presented in Section 3. Then, we
construct relationships between these models and give a general recipe for deriving
conservative approximations in Section 4. Section 5 surveys related work and discusses
other forms of abstraction. In all cases, the specific abstraction is either an instance of
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an abstract interpretation (and is therefore unsound for refinement verification), or is a
particular case of conservative approximations. Finally, Section 6 provides directions
for our future research.

2 Methodology Overview

Before we can investigate the notion of an abstraction, we must provide a way to de-
scribe its domain and range, namely the models of computation. In general, an ab-
straction transforms a block of computation in one model into a block of computation
in another model. For example, it may transform a module written in a discrete event
language (such as Verilog or VHDL) into a transaction level module that ignores the
precise time at which events occur, such as a dataflow language. We therefore represent
models of computation at the granularity of the module, or block. In other words, a
model of computation is simply the set of blocks that can be expressed in the model.
For instance, we represent a model of computation based on finite state machines as the
set of finite state machines, or a dataflow model of computation as the set of dataflow
actors. However, the representation of the blocks need not be in the form of a pro-
gramming language. In fact, to simplify the task of defining abstraction functions, we
typically represent blocks as the set of behaviors, or traces that they can exhibit. The
nature of these traces obviously depends on the particular model of computation: for in-
stance, they may consist of sequences of values (as in the case of synchronous models),
functions of real variables (for more accurate continuous time models), or sets of values
representing certain performance metrics (power models, constraints). Because we use
traces, we will refer to blocks in any model of computation generically as agents, and
they will be denoted by the letters p and q. Traces often refer to the externally visi-
ble features of agents: their actions, signals, state variables, etc. We do not distinguish
among the different types, and we refer to them collectively as a set of signals W . Each
trace and each agent is then associated with an alphabet A ⊆ W of the signals it uses.

We make a distinction between two different kinds of traces: complete traces and
partial traces. A complete trace has no endpoint. A partial trace has an endpoint; it
can be a prefix of a complete trace or of another partial trace. Every complete trace
has partial traces that are prefixes of it; every partial trace is a prefix of some complete
trace. The distinction between a complete trace and a partial trace has only to do with the
length of the trace (that is, whether or not it has an endpoint), not with what is happening
during the trace. For example, a finite string can represent a complete behavior with a
finite number of actions, or it can represent a partial behavior.

In our framework, the first step in defining a model of computation is to construct
an algebra of traces C. The trace algebra contains the universe of partial traces and the
universe of complete traces for the model of computation. The algebra also includes
three operations on traces: projection, renaming and concatenation. Intuitively, these
operations correspond to encapsulation, instantiation and sequential composition, re-
spectively. Projection removes all references to a specified set of signals in a trace,
hiding them from an external observer, while renaming is used to change the names
of the signals, emulating the replacement of actual for formal parameters in function
instantiation. Concatenation, which joins two behaviors at their ends, can be used to
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define the notion of a prefix of a trace. We say that a trace x is a prefix of a trace z if
there exists a trace y such that z is equal to x concatenated with y.

Agents in a model of computation do not exist in isolation. For instance, agents can
be combined with the operation of parallel composition (denoted by the symbol ‖) to
yield a new agent in the same model of computation. An agent algebra Q is used to
define these operators, together with their set of agents. For trace-based agent models,
an agent algebra is constructed in a fixed way from the algebra of the corresponding
traces, where agents are simply sets of traces. For composition, the new agent combines
the behaviors of the original components in such a way that the new behaviors are
consistent with those of the components when projected onto their alphabets. Other
operations are derived by simply extending to sets of traces the operators of the trace
algebra. We will show examples of these derivations later in Section 3.

Different means can often be used to achieve the same goal. Likewise, agents with
different behavior may sometimes yield the same result when applied to a particular
context. In particular, if an agent p can always be replaced for an agent q in any context
without materially changing the outcome of the composition, then we say that p refines
q. In the rest of this paper we use the symbol � to denote this refinement relationship,
and we write p � q whenever p refines q. We also refer to q as a specification, and
to p as an implementation of q. For trace-based models, refinement can be reduced to
checking containment between the trace set of agents, and is therefore analogous to
verification methods based on language containment.

2.1 Refinement Preserving Abstractions

The choice of levels of abstraction, or models, in a heterogeneous design methodology
is obviously very important. Each model must in fact be capable of supporting the
desired techniques, and must be detailed enough to provide answers to the specific
questions under consideration for the particular subsystems it applies to. An equally
important choice has to do with the way the levels of abstraction are connected, or, in
other words, with the abstraction and refinement functions that are used to relate the
models. In general, many forms of abstraction and refinement are possible. In practice,
only those that preserve certain properties of interest are useful. In particular, we are
interested in abstractions that preserve the refinement relationship � when moving from
a more abstract model to a more concrete one. More formally, assume p and q are agents
in a model Q, and that p′ and q′ are the corresponding abstractions in a model Q′. Then
we say that the abstraction preserves the refinement relationship from the abstract to the
concrete model if p′ � q′ implies that also p � q.

This property is useful for several reasons. First, refinement verification can be used
to establish that an agent satisfies some requirement by comparing it to a specifica-
tion. It would therefore be at best inconvenient if the result of this verification were
lost during a refinement step of the methodology. In the worst case, it could lead to
incorrect designs. A second advantage has to do with the efficiency of refinement veri-
fication. The process is in fact potentially more efficient at the abstract level because of
the lesser amount of information included in the model. An abstraction that preserves
the refinement relationship can thus be used to translate a complex verification prob-
lem at the concrete level to a simpler problem at the abstract level. This translation is
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conservative: while the loss of information may make it impossible to establish a refine-
ment relationship between the abstracted agents, it ensures that when the relationship
is indeed established it also holds at the concrete level. In other words, false positive
results are ruled out.

Conservative approximations are constructed using two abstraction functions, in-
stead of just one. The first function, usually denoted Ψu, is applied to the implementa-
tion p, while the second function, denoted Ψl, is applied to the specification q. The pair
(Ψl, Ψu) forms a conservative approximation whenever Ψu(p) � Ψl(q) implies p � q.
Thus, by definition, a conservative approximation always preserves the refinement re-
lationship from the abstract to the concrete model. In the rest of this paper, we first in-
troduce a number of models of interest for the development of embedded systems, and
then show how to relate them using conservative approximations, and their inverses,
obtained from simple homomorphisms on traces.

The notion of a conservative approximation is independent of the use of traces as
an underlying agent model [18]. In particular, it could be used in other contexts, such
as branching-time logics, where refinement and equivalence are expressed in terms of
simulations. Our motivations for developing a trace-based model is the ease with which
conservative approximations can be derived starting from simple homomorphic func-
tions on behaviors.

3 Models of Embedded System Behavior

In this section we will present three models at progressively higher levels of abstraction,
by defining a trace algebra and a corresponding agent algebra. We develop our models
in the context of hybrid systems [4], a particular kind of heterogeneous systems that
combine behaviors expressed as a continuous evolution with the occurrence of instan-
taneous discrete events. These two aspects of a behavior are often called the flows and
the jumps of the system. Hybrid formalisms are particularly useful when designing em-
bedded control systems, which require modeling the physical behavior of environments
that undergo sudden mode changes. The hybrid model, in addition, is necessary for an
accurate evaluation of a control strategy based on discrete computations.

The first model that we present, called metric time, is intended to represent exactly
the evolutions (the flows and the jumps) of a system as a function of global real time.
With the second we abstract away the metric while maintaining the total order of oc-
currence of events. This model is used to define the untimed semantics of embedded
applications. Finally, the third trace algebra further abstracts away the information on
the event occurrences by only retaining initial and final states and removing the in-
termediate steps. This simpler model can be used to describe the semantics of some
programming language constructs. Later, we will use homomorphisms on trace sets to
derive conservative approximations.

3.1 Metric Time

A typical semantics for hybrid embedded systems includes continuous flows that rep-
resent the continuous dynamics of the system, and discrete jumps that represent in-
stantaneous changes of the operating conditions. The system is modeled by its state
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variables. In our formalization, the evolution of the state variables takes the form of
a single piece-wise continuous function over real-valued time, where the continuous
segments represent the flows, while the discontinuities between the segments model
the jumps. In this paper we assume that the variables of the system take only real or
integer values. Real-valued variables are used, for instance, to model quantities such
as position and speeds, while integer variables are more appropriate for modalities and
other discrete quantities. The sets of real-valued and integer valued variables for a given
trace are called VR and VZ, respectively. Traces may also contain actions, which are dis-
crete events that can occur at any time. Actions do not carry data values. For a given
trace, the set of input actions is MI and the set of output actions is MO. Actions could
be, for example, the commands issued by a user, or signals generated by an embedded
controller.

Each trace has a signature γ which is a 4-tuple of the above sets of signals:

γ = (VR, VZ, MI , MO).

The sets of signals may be empty, but we assume they are disjoint. The alphabet of γ is

A = VR ∪ VZ ∪ MI ∪ MO.

The set of partial traces for a signature γ is BP (γ). Each element of BP (γ) is a triple
x = (γ, δ, f). The non-negative real number δ is the duration (in time) of the partial
trace. The function f has domain A. For v ∈ VR, f(v) is a function in [0, δ] → R,
where R is the set of real numbers and the closed interval [0, δ] is the set of real numbers
between 0 and δ, inclusive. This function must be piece-wise continuous and right-hand
limits must exist at all points. Analogously, for v ∈ VZ, f(v) is a piece-wise constant
function in [0, δ] → Z, where Z is the set of integers. For a ∈ MI ∪ MO, f(a) is a
function in [0, δ] → {0, 1}, where f(a)(t) = 1 iff action a occurs at time t in the trace.

The set of complete traces for a signature γ is BC(γ). Each element of BC(γ) is
a pair x = (γ, f). The function f is defined as for partial traces, except that each
occurrence of [0, δ] in the definition is replaced by R

�−, the set of non-negative real
numbers.

To complete the definition of this trace algebra, we must define the operations of
projection, renaming and concatenation on traces. The projection operation proj(B)(x)
is defined iff MI ⊆ B ⊆ A, where B is the set of signals that must be retained. The
trace that results is the same as x except that the domain of f is restricted to B. The
renaming operation x′ = rename(r)(x) is defined iff r is a one-to-one function from
A to some A′ ⊆ W . If x is a partial trace, then x′ = (γ′, δ, f ′) where γ′ results from
using r to rename the elements of γ and f ′ = r ◦ f .

The definition of the concatenation operator x3 = x1 · x2, where x1 is a partial trace
and x2 is either a partial or a complete trace, is more complicated. If x2 is a partial
trace, then x3 is defined iff γ1 = γ2 and for all a ∈ A,

f1(a)(δ1) = f2(a)(0),

(note that δ1, δ2, etc., are components of x1 and x2 in the obvious way). Concatenation
is defined only when the end points of the two traces match. By doing so, jumps must be
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modeled explicitly by a trace, and do not arise as a byproduct of concatenation. When
defined, x3 = (γ1, δ3, f3) is such that δ3 = δ1 + δ2 and for all a ∈ A,

f3(a)(δ) = f1(a)(δ) for 0 ≤ δ ≤ δ1,

f3(a)(δ) = f2(a)(δ − δ1) for δ1 ≤ δ ≤ δ3.

The concatenation of a partial trace with a complete trace yields a complete trace with
a similar definition. If x3 = x1 · x2, then x1 is a prefix of x3.

3.2 Non-metric Time

In the definition of this trace algebra we are concerned with the order in which events
occur in the system, but not in their absolute distance or position. This is useful if we
want to describe the semantics of a programming language for embedded systems that
abstracts from a particular real time implementation. Although we want to remove real
time, we want to retain the global ordering on events induced by time. In particular,
to simplify the abstraction from metric time to non-metric time described below, we
would like to support the case of an uncountable number of events1. Sequences are
clearly inadequate given our requirements. Instead we use a more general notion of a
partially ordered multiset to represent the trace. We quote the original definition given
by Pratt [19], and due to Gischer, which begins with the definition of a labeled partial
order. We then specialize this notion to our needs.

Definition 1 (Labeled partial order, Pratt [19]). A labeled partial order (lpo) is a 4-
tuple L = (V, Σ, ≤, μ) consisting of

1. a vertex set V , typically modeling events;
2. an alphabet Σ (for symbol set), typically modeling actions such as the arrival of

integer 3 at port Q, the transition of pin 13 of IC-7 to 4.5 volts, or the disappearance
of the 14.3 MHz component of a signal;

3. a partial order ≤ on V , with e ≤ f typically being interpreted as event e necessarily
preceding event f in time; and

4. a labeling function μ : V → Σ assigning symbols to vertices, each labeled event
representing an occurrence of the action labeling it, with the same action possibly
having multiple occurrence, that is, μ need not be injective.

A pomset (partially ordered multiset) is then the isomorphism class of an lpo, denoted
[V, Σ, ≤, μ]. By taking lpo’s up to isomorphism we confer on pomsets a degree of ab-
straction equivalent to that enjoyed by strings (regarded as finite linearly ordered labeled
sets up to isomorphism), ordinals (regarded as well-ordered sets up to isomorphism),
and cardinals (regarded as sets up to isomorphism).

This representation is suitable for the above mentioned infinite behaviors: the under-
lying vertex set may be based on an uncountable total order that suits our needs. For our
application, we do not need the full generality of pomsets. Instead, we restrict ourselves
to pomsets where the partial order is total, which we call tomsets.

1 In theory, such Zeno-like behavior is possible, for example, for an infinite loop whose
execution time halves with every iteration.
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Traces have the same form of signature as in metric time:

γ = (VR, VZ, MI , MO).

Both partial and complete traces are of the form x = (γ, L) where L is a tomset. When
describing the tomset L of a trace, we will in fact describe a particular lpo, with the
understanding that L is the isomorphism class of that lpo. An action σ ∈ Σ of the
lpo is a function with domain A such that for all v ∈ VR, σ(v) is a real number (the
value of variable v resulting from the action σ); for all v ∈ VZ, σ(v) is an integer; and
for all a ∈ MI ∪ MO, σ(v) is 0 or 1. The underlying vertex set V , together with its
total order, provides the notion of time, a space that need not contain a metric. For both
partial and complete traces, there must exist a unique minimal element min(V ). The
action μ(min(V )) that labels min(V ) should be thought of as giving the initial state
of the variables in VR and VZ. For each partial trace, there must exist a unique maximal
element max(V ) (which may be identical to min(V )). As defined above, the set of
partial traces and the set of complete traces are not disjoint. It is convenient, in fact,
to extend the definitions so that traces are labeled with a bit that distinguishes partial
traces from complete traces, although we omit the details.

By analogy with the metric time case, it is straightforward to define projection and
renaming on actions σ ∈ Σ. This definition can be easily extended to lpo’s and, thereby,
traces. The concatenation operation x3 = x1 · x2 is defined iff x1 is a partial trace,
γ1 = γ2 and μ1(max(V1)) = μ2(min(V2)). When defined, the vertex set V3 of x3 is a
disjoint union:

V3 = V1 
 (V2 − min(V 2)),

ordered such that the orders of V1 and V2 are preserved and such that all elements of V1
are less than all elements of V2. The labeling function is such that for all v ∈ V3

μ3(v) = μ1(v) for min(V1) ≤ v ≤ max(V1),
μ3(v) = μ2(v) for max(V1) ≤ v.

3.3 Pre-post Time

The third and last trace algebra is concerned with modeling non-interactive constructs
of a programming language. In this case we are interested only in an agents possible
final states given an initial state. This semantic domain could therefore be considered
as a denotational representation of an axiomatic semantics.

We cannot model communication actions at this level of abstraction, so signatures
are of the form γ = (VR, VZ) and the alphabet of γ is A = VR ∪ VZ. A non-degenerate
state s is a function with domain A such that for all v ∈ VR, s(v) is a real number (the
value of variable v in state s); and for all v ∈ VZ, s(v) is an integer. We also have a
degenerate, undefined state ⊥∗.

A partial trace BP (γ) is a triple (γ, si, sf ), where si and sf are the initial and fi-
nal states. A complete trace BC(γ) is of the form (γ, si, ⊥ω), where ⊥ω indicates
non-termination. This trace algebra is primarily intended for modeling terminating be-
haviors, which explains why so little information is included on the traces that model
non-terminating behaviors.
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The operations of projection and renaming are built up from the obvious definitions
of projection and renaming on states. The concatenation operation x3 = x1 · x2 is
defined iff x1 is a partial trace, γ1 = γ2 and the final state of x1 is identical to the initial
state of x2. As expected, when defined, x3 contains the initial state of x1 and the final
state of x2.

3.4 Construction of Agent Models

Our models of agent are constructed in a fixed way from models of traces by considering
the set of behaviors that an agent exhibits. An agent over a given trace algebra is a pair
(γ, P ), where γ is a signature and P is a subset of the traces for that signature. The set
P represents the set of possible behaviors of an agent.

An agent algebra has a set of agents over a given trace algebra as its domain. Oper-
ations of projection, renaming, parallel composition and serial composition on agents
are defined using the operations of the trace algebra, as follows.

Projection and renaming are the simplest operations to define. When they are de-
fined depends on the signature of the agent in the same way that definedness for the
corresponding trace algebra operations depends on the signature of the traces. The sig-
nature of the result is also analogous. Finally, the set of traces of the result is defined
by naturally extending the trace algebra operations to sets of traces. For instance, if
p = (γ, P ) is an agent, then proj(B)(p) = (γ′, proj(B)(P )), where γ′ is obtained by
γ by retaining only the elements of B. Sequential composition is defined in terms of
concatenation in an analogous way. The only difference from projection and renam-
ing is that sequential composition requires two agents as arguments, and concatenation
requires two traces as arguments.

Parallel composition of two agents is defined only when all the traces in the agents
are complete traces, and the set of output actions of the two agents are disjoint. Let the
agent p′′ be the parallel composition of p and p′. Then the components of p′′ are as
follows (MI and MO are omitted in pre-post traces):

V ′′
R

= VR ∪ V ′
R

V ′′
Z

= VZ ∪ V ′
Z

M ′′
O = MO ∪ M ′

O

M ′′
I = (MI ∪ M ′

I) − M ′′
O

P ′′ = {x ∈ BC(γ′′) : proj(A)(x) ∈ P ∧ proj(A′)(x) ∈ P ′}.

Here, the variables of the composite p′′ are the union of the variables of the compo-
nents p and p′. The actions of the composite are also the union of the actions of the
components. An action is regarded as an output of the composite if it is an output of
either component. However, an action is an input of the composite if it is an input of
one of the components, and it is not at the same time an output of the other compo-
nent, so that an input can only be connected to one output. The definition of P ′′ ensures
that the behaviors of the composite are all and only the behaviors consistent with the
components.
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4 Relations Between Models

The three trace algebras defined above cover a wide range of levels of abstraction. The
first step in formalizing the relationships between those levels is to define homomor-
phims between the trace algebras. Trace algebra homomorphisms induce corresponding
conservative approximations between the agent algebras, as we shall see.

4.1 Homomorphisms

From metric to non-metric time. A homomorphism from metric time to non-metric time
should abstract away detailed timing information. This requires characterizing events
in metric time and mapping those events into a non-metric time domain. Since metric
time trace algebra is, in part, value based, some additional definitions are required to
characterize events at that level of abstraction.

Let x be a metric trace with signature γ and alphabet A such that

γ = (VR, VZ, MI , MO),
A = VR ∪ VZ ∪ MI ∪ MO.

We define the homomorphism h by defining a non-metric time trace y = h(x). This
requires building a vertex set V and a labeling function μ to construct an lpo. The trace
y is the isomorphism class of this lpo. For the vertex set we take all reals such that an
event occurs in the trace x, where the notion of event is formalized in the next several
definitions.

Definition 2 (Stable function). Let f be a function over a real interval to R or Z. The
function is stable at t iff there exists an ε > 0 such that f is constant on the interval
(t − ε, t].

Definition 3 (Stable trace). A metric time trace x is stable at t iff for all v ∈ VR ∪ VZ

the function f(v) is stable at t; and for all a ∈ MI ∪ MO, f(a)(t) = 0.

In other words, a trace is stable at a time t if it is possible to find a left neighborhood of
t (i.e., an interval (t − ε, t] for ε > 0) where the trace is constant and no action occurs.
When a trace is not stable at t, then we say that the trace has an event at t.

Definition 4 (Event). A metric time trace x has an event at t > 0 if it is not stable at
t. Because a metric time trace doesn’t have a left neighborhood at t = 0, we always
assume the presence of an event at the beginning of the trace. If x has an event at t,
the action label σ for that event is a function with domain A such that for all v ∈ A,
σ(a) = f(a)(t), where f is a component of x as described in the definition of metric
time traces.

Now we construct the vertex set V and labeling function μ necessary to define y and,
thereby, the homomorphism h. The vertex set V is the set of reals t such that x has an
event at t. While it is convenient to make V a subset of the reals, remember that the
tomset that results is an isomorphism class. Hence the metric defined on the set of reals
is lost. The labeling function μ is such that for each element t ∈ V , μ(t) is the action
label for the event at t in x.
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Note that if we start from a partial trace in the metric trace we obtain a trace in the
non-metric trace that has an initial and final event. It has an initial event by definition.
It has a final event because the metric trace either has an event at δ (the function is not
constant), or the function is constant at δ, and then there must be an event that brought
the function to that constant value (which, in case of identically constant functions, is
the initial event itself).

To show that h does indeed abstract away information, consider the following situa-
tion. Let x1 be a metric time trace. Let x2 be same trace where time has been “stretched”
by a factor of two (i.e., for all v ∈ A1, x1(a)(t) = x2(a)(2t)). The vertex sets gener-
ated by the above process are isomorphic (the order of the events is preserved), therefore
h(x1) = h(x2).

From non-metric to pre-post time. The homomorphism h from the non-metric time
traces to pre-post traces requires that the signature of the agent be changed by removing
MI and MO. Let y = h(x). The initial state of y is formed by restricting μ(min(V ))
(the initial state of x) to VR∪VZ. If x is a complete trace, then the final state of y is ⊥ω. If
x is a partial trace, and there exists a ∈ MI ∪MO and time t such that f(a)(t) = 1, the
final state of y is ⊥∗. Otherwise, the final state of y is formed by restricting μ(max(V )).

4.2 Conservative Approximations

As discussed in the introduction, we are interested in relating different models that
describe systems at different levels of abstraction. We can accomplish this by deriving
a conservative approximation from a homomorphism between trace algebras. Consider
two trace algebras C and C′. Intuitively, if h(x) = x′, the trace x′ is an abstraction of
any trace y such that h(y) = x′. Thus, x′ can be thought of as representing the set of
all such y. For instance, a non-metric time trace x′ can be thought of the abstraction
of all possible stretched versions y in the metric time model. This is easily extended
to sets of traces, and therefore to agents. Hence, if Q and Q′ are agent algebras over
C and C′ respectively, we use the function Ψu that maps an agent p = (γ, P ) in Q
into the agent (γ, h(P )) in Q′ as the upper bound in a conservative approximation. A
sufficient condition for a corresponding lower bound is: if x ∈ P , then h(x) is not in
the set of possible traces of Ψl(p). This leads to the definition of a function Ψl(p) that
maps P into the set h(P ) − h(B(γ) − P ), where B(γ) is the set of all traces with
alphabet γ. For instance, the lower bound of a metric time agent p into non-metric time
includes a trace x′ if and only if p contains all its possible concretizations (time stretched
versions). The conservative approximation Ψ = (Ψl, Ψu) is an example of a conservative
approximation induced by h. A slightly tighter lower bound is also possible (see [3]).

It is straightforward to take the general notion of a conservative approximation in-
duced by a homomorphism, and apply it to specific models. Simply construct trace
algebras C and C′, and a homomorphism h from C to C′. Recall that these trace al-
gebras act as models of individual behaviors. One can construct the agent algebras Q
over C and Q′ over C′, and a conservative approximation Ψ induced by h. Thus, one
need only construct two models of individual behaviors and a homomorphism between
them to obtain two agent models along with a conservative approximation between the
individual agents of the models.
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This same approach can be applied to the three trace algebras, and the two homo-
morphisms between them, that were defined in Section 3, giving conservative approxi-
mations between process models at three different levels of abstraction. The application
of the upper bound is straightforward, since it is a natural extension to sets of the homo-
morphism on behaviors. The lower bound, on the other hand, provides complementary
information. For instance, the lower bound of a metric-time agent contains all those
behaviors for which the agent has an analogous behavior for any possible “stretching”
of the time-axis. Thus, the lower bound identifies those behaviors in an agent that are in
a sense speed independent. Similarly, the conservative approximation from non-metric
time to pre-post traces identifies the subset of behaviors of an agent which depend ex-
clusively on the initial and final state of the computation.

4.3 Inverse Approximations

As we have discussed, if Ψ = (Ψl, Ψu) is a conservative approximation from Q to Q′,
then p′ = Ψu(p) represents a kind of upper bound on p. It is instructive to investigate
whether there is an agent in Q that is represented exactly by p′ rather than just being
bounded by p′. If no agent in Q can be represented exactly, then Ψ is abstracting away
too much information to be of much use for verification. If every agent in Q can be
represented exactly, then Ψl and Ψu are equal and are isomorphisms from Q to Q′.
These extreme cases illustrate that the amount of abstraction in Ψ is related to what
agents p are represented exactly by Ψu(p) and Ψl(p).

To formalize what it means to be represented exactly in the context of conservative
approximations, we define the inverse Ψinv of the conservative approximation Ψ . The
inverse of an approximation is a function from the abstract model Q′ to the concrete
model Q that, as we shall see in this section, completes the relationships between Q
and Q′ by establishing a refinement map across the models. Normal notions of the
inverse of a function are not adequate for constructing the inverse of a conservative
approximation Ψ , since Ψ is a pair of functions. Our notion of an inverse is thus based
on the following result.

Lemma 1. Let Q and Q′ be models of computation, and let (Ψl, Ψu) be a conservative
approximation from Q to Q′. For all p1 and p2 in Q, if Ψl(p1) = Ψu(p1) = p′ and
Ψl(p2) = Ψu(p2) = p′, then p1 = p2.

Lemma 1 shows that when the upper and the lower bound coincide for a particular
agent p, then, intuitively, the abstraction p′ is an exact representation of p. To put it
another way, p does not use any of the additional information provided by the concrete
level, since it can be determined uniquely from its abstraction p′. It is therefore natural
to define Ψinv (p′) = p, where p is the agent in Q such that Ψu(p) = Ψl(p) = p′. If
Ψl(p) = Ψu(p), then p is not represented exactly in Q′. In this case, p is not in the
image of Ψinv .

Definition 5 (Inverse of a Conservative Approximation). Let Ψ = (Ψl, Ψu) be a con-
servative approximation from Q to Q′. For p′ ∈ Q′, the inverse Ψinv (p′) is defined and
is equal to p if and only if Ψl(p) = Ψu(p) = p′.

It follows from the definition that, when Ψinv is defined, the following identity holds:

Ψl(Ψinv (p′)) = Ψu(Ψinv (p′)).
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The function Ψinv need not be defined for all p′. This may happen, for example, if the
model Q′ includes information that cannot be expressed exactly in Q. In that case, Ψinv

is a partial function and is only defined for the agents that have an exact representation
in both models. When an agent has an exact representation in Q and Q′, we say that it
can be used indifferently in the two models, or that it is polymorphic. This is because
the agent makes no assumption regarding its behavior based on information that can be
expressed exclusively in either model of computation. However, the representation of
the agent in Q and Q′ is, in general, different. Thus, this notion extends our ability to
reuse agents across models that employ different representations.

For our examples, the inverse of the approximation from metric to non-metric time
agent is always defined, and translates a non-metric time agent to a corresponding met-
ric time agent which non-deterministically chooses a given timing for any of its behav-
iors. This non-determinism is typical of our approach, and is useful to expose the de-
grees of freedom that are available in a design-by-refinement methodology. Similarly,
the inverse of the conservative approximation that goes from pre-post to non-metric
time agents builds a concretization where each pair of initial and final states is non-
deterministically computed by reordering actions along the time axis.

A conservative approximation thus induces its own inverse in the form of a (possibly
partial) refinement map. The inverse is uniquely determined, and, because of the defin-
ing properties of a conservative approximation, Ψinv is one-to-one, and, when restricted
to the image of Ψinv , the functions Ψl and Ψu are equal and are the inverse of Ψinv . In ad-
dition, when defined, Ψinv is always monotonic and, if either Ψl or Ψu is also monotonic,
it preserves the ordering of the agents in both directions. Hence, the inverse embeds the
abstract model of computation (or at least the part of it where it is defined) into the
more concrete model, in a way that is consistent with the chosen abstractions. Different
conservative approximations between the same models may therefore induce different
embeddings. This is again an indication of the importance of choosing the right abstrac-
tion for the problem at hand. The nature of the embedding, in fact, determines how one
model is interpreted in terms of the other, and quantifies the amount of information lost
during the abstraction.

4.4 Modeling Constructs in Embedded Software

Using Pre-Post Traces. One of the fundamental features of embedded software is that
it interacts with the physical world. Conventional axiomatic or denotational semantics
of sequential programming languages only model initial and final states of terminat-
ing programs. Thus, these semantics are inadequate to fully model embedded software.
However, much of the code in an embedded application does computation or internal
communication, rather than interacting with the physical world. Such code can be ade-
quately modeled using conventional semantics, as long as the model can be integrated
with the more detailed semantics necessary for modeling interaction. Pre-post agents
are quite similar to conventional semantics. As described earlier, we can also embed pre-
post agents into more detailed models. Thus, we can model the non-interactive parts of
an embedded application at a high level of abstraction that is simpler and more natural,
while also being able to integrate accurate models of interaction, real-time constraints
and continuous dynamics.



734 R. Passerone and A.L. Sangiovanni-Vincentelli

As an example we consider the problem of developing software to control an engine
in the cutoff region [2]. Here, the behaviors of an automobile engine are divided into
regions of operation, each characterized by appropriate control actions to achieve a de-
sired result. The cutoff region is entered when the driver releases the accelerator pedal,
thereby requesting that no torque be generated by the engine. In order to minimize
power train oscillations that result from suddenly reducing torque, a closed loop con-
trol damps the oscillations using carefully timed injections of fuel. The control problem
is therefore hybrid, consisting of a discrete (the fuel injection) and a continuous (the
power train behavior) systems tightly linked.

01. void control algorithm( void ) {
02. // state definition
03. struct state { double x1; double x2; double omega c; } current state;
04. // Init the past three injections (assume injection before cutoff)
05. double u1, u2, u3 = 1.0;
06.
07. loop forever {
08. await( action request );
09. read current state( current state );
10. compute sigmas( sigma m, sigma 0, current state, u1, u2, u3 );
11. // update past injections
12. u1 = u2; u2 = u3;
14. // compute next injection signal
15. if ( sigma m < sigma 0 ) {
16. action injection( );
17. u3 = 1.0;
18. } else {
19. action no injection( );
20. u3 = 0.0;
21. }
22. }
23. }

Fig. 1. An embedded control algorithm

Figure 1 shows the top level routine of the control algorithm. Although we use a C-
like syntax, the semantics are simplified, as described later. The controller is activated
by a request for an injection decision (this happens every full engine cycle). The algo-
rithm first reads the current state of the system (as provided by the sensors on the power
train), predicts the effect of injecting or not injecting on the future behavior of the sys-
tem, and finally controls whether injection occurs. The prediction uses the value of the
past three decisions to estimate the position of the future state. The control algorithm
involves solving a differential equation, which is done in the call to compute sigmas
(see [2] for more details). A nearly optimal solution can be achieved without injecting
intermediate amounts of fuel (i.e., either inject no fuel or inject the maximum amount).
Thus, the only control inputs to the system are the actions action injection (max-
imum injection) and action no injection (zero injection).
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The semantics of each statement of the programming language is given by an agent.
To simplify the semantics, we assume that inter-process communication is done through
shared actions rather than shared variables. A pre-post agent has a signature γ of the
form (VR, VZ). For the semantics of a programming language statement, γ indicates the
variables accessible in the scope where the statement appears. For a block that declares
local variables, the agent for the statement in the block includes in its signature the local
variables. The agent for the block is formed by projecting away the local variables from
the agent of the statement.

The sequential composition of two statements is defined as the concatenation of the
corresponding agents: the definition of concatenation ensures that the two statements
agree on the intermediate state. The traces in the agent for an assignment to variable v
are of the form (γ, si, sf ), where si is an arbitrary initial state, and sf is identical to si

except that the value of v is equal to the value of the right-hand side of the assignment
statement evaluated in state si (we assume the evaluation is side-effect free).

The semantics of a procedure definition is given by an agent with an alphabet
{v1, . . . , vr} where vk is the k-th argument of the procedure (these signal names do
not necessarily correspond to the names of the formal variables). We omit the details of
how this agent is constructed from the text of the procedure definition. More relevant
for our control algorithm example, the semantics of a procedure call proc(a, b) is
the result of renaming v1 → a and v2 → b on the agent for the definition of proc. The
parameter passing semantics that results is value-result (i.e., no aliasing or references)
with the restriction that no parameter can be used for both a value and result. More
realistic (and more complicated) parameter passing semantics can also be modeled.

To define the semantics of if-then-else and while loops we define a function
init(x, c) to be true if and only if the predicate c is true in the initial state of trace x.
The formal definition depends on the particular trace algebra being used. In particular,
for pre-post traces, init(x, c) is false for all c if x has ⊥∗ as its initial state.

For the semantics of if-then-else, let c be the conditional expression and let
PT and PE be the sets of possible traces of the then and else clauses, respectively.
The set of possible traces of the if-then-else is

P = {x ∈ PT : init(x, c)} ∪ {x ∈ PE : ¬init(x, c)}

Notice that this definition can be used for any trace algebra where init(x, c) has been
defined, and that it ignores any effects of the evaluation of c not being atomic.

In the case of while loops we first define a set of traces E such that for all x ∈ E
and traces y, if x · y is defined then x · y = y. For pre-post traces, E is the set of all
traces with identical initial and final states. If c is the condition of the loop, and PB the
set of possible traces of the body, we define PT,k and PN,k to be the set of terminating
and non-terminating traces, respectively, for iteration k, as follows:

PT,0 = {x ∈ E : ¬init(x, c)}
PN,0 = {x ∈ E : init(x, c)}

PT,k+1 = PN,k · PB · PT,0

PN,k+1 = PN,k · PB · PN,0
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The concatenation of PT,0 and PN,0 at the end of the definition ensures that the fi-
nal state of a terminating trace does not satisfy the condition c, while that of a non-
terminating trace does. Clearly the semantics of the loop should include all the termi-
nating traces. For non-terminating traces, we need to introduce some additional nota-
tion. A sequence Z =< z0, . . . > is a non-terminating execution sequence of a loop
if, for all k, zk ∈ PN,k and zk+1 ∈ zk · PB . This sequence is a chain in the prefix
ordering. The initial state of Z is defined to be the initial state of z0. For pre-post traces,
we define PN,ω to be all traces of the form (γ, s, ⊥ω) where s is the initial state of some
non-terminating execution sequence Z of the loop. The set of possible traces of the loop
is therefore

P = (
⋃

k

PT,k) ∪ PN,ω.

Using Non-Metric Time Traces. Using an inverse conservative approximation, as de-
scribed earlier, the pre-post trace semantics outlined above can be embedded into the
non-metric time agent model. However, this is not adequate for two of the constructs
used in Figure 1: await and the non-terminating loop. These constructs must be de-
scribe directly at the lower level of abstraction provided by non-metric time traces.

As used used in Figure 1, the await(a) simply delays until the external action a
occurs. Thus, the possible partial traces of await are those where the values of the
state variables remain unchanged and the action a occurs exactly once, at the endpoint
of the trace. The possible complete traces are similar, except that the action a must
never occur.

To give a more detailed semantics for non-terminating loops, we define the set of
extensions of a non-terminating execution sequence Z to be the set ext(Z) = {x ∈
B(γ) : ∀k[zk ∈ pref(x)]}. For any non-terminating sequence Z , we require that ext(Z)
be non-empty, and have a unique maximal lower bound contained in ext(Z), which we
denote lim(Z). In the above definition of the possible traces of a loop, we modify the
definition of the set of non-terminating behaviors PN,ω to be the set of lim(Z) for all
non-terminating execution sequences Z .

Using Metric Time Traces. Analogous to the embedding discussed in the previous sub-
section, non-metric time agents can be embedded into the metric-time agent model.
Here continuous dynamics can be represented, as well as timing assumptions about
programming language statements. Also, timing constraints that a system must satisfy
can be represented, so that the system can be verified against those constraints.

5 Related Work

Abstract interpretations [6,7] are a widely used means of relating different domains of
computation for the purpose of facilitating the analysis of a system. An abstract inter-
pretation between two domains of computation consists of an abstraction function and
of a concretization function that form a Galois connection. The distinguishing feature
of an abstract interpretation is that the concretization of the evaluation of an expres-
sion using the operators of the abstract domain of computation is guaranteed to be an
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upper bound of the corresponding evaluation of the same expression using the oper-
ators of the concrete domain. Hence, a conservative evaluation can be carried out at
the more abstract level, where it is potentially computationally more efficient. Refine-
ment verification, however, is unsound: a positive refinement verification result at the
abstract level does not guarantee a corresponding refinement verification result at the
concrete level. Conservative approximations overcome this problem because they em-
ploy two separate abstraction functions, one for the implementation and one for the
specification. Our study shows that this is a necessary condition for the preservation of
refinement, and one that is not satisfied by a Galois connection [18]. Conservative ap-
proximations and abstract interpretations are however strongly related, in that a pair of
Galois connections can be used to construct a conservative approximation [18]. This re-
sult is important because it extends the rich field of abstract interpretations to refinement
verification.

The study of heterogeneous systems is also a central theme of both the Metropo-
lis [1] and the Ptolemy [11] projects. In Metropolis, a system is composed of processes
that communicate over media expressed in a meta-model of computation. Their combi-
nation, and their relationships, implicitly determine the interaction semantics. Because
of its generality, the underlying meta-model fabrics can be used to promote reuse of
diverse components. The communication media, however, must be carefully designed
to resolve possible incompatibilities. Our work can be thought of as the theory base for
the use of the meta-model to represent heterogeneous systems. In addition, conservative
approximations have been used to make the process of platform-based design advocated
in the Metropolis project precise, and their application in this area is part of our current
work [17].

Similarly, Ptolemy consists of several executable domains of computation that can
be mixed in a hierarchy controlled by a global scheduler. Ptolemy does not currently
provide a notion of abstraction between the different models in the system. However, an
important innovative concept in the design of the Ptolemy II infrastructure is the notion
of domain polymorphism [12]. An actor (agent) is domain polymorphic if it can be used
indifferently, i.e., without modification, in several domains of computation. To check
whether an actor can be used in a particular domain, the authors set up a type system
based on state machines, which is used to describe the assumptions of each model and
each actor relative to an abstract semantics.

Conservative approximations offer a formal way of defining a similar concept of
polymorphism, even though they do not rely upon a common underlying semantics,
as in the case of Ptolemy. A distinctive feature of conservative approximations is their
ability to determine which parts of the models are unaffected by the application of the
abstraction. This information is useful because it identifies the elements of the mod-
els that can be expressed indifferently under the interpretation of either model, without
changing their meaning. Our interpretation of this notion is, however, broader than that
introduced in Ptolemy II. In particular, an actor (agent) is polymorphic in our frame-
work when it makes no assumption regarding its behavior based on information that
cannot be expressed in the other model. When this is the case, reuse of subsystems can
be extended across the boundaries of heterogeneous models. This leads to the notion
of the inverse of a conservative approximation, which is a refinement map that is used
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to embed one model into another. The embedding provides us with an interpretation of
agents across different models which is consistent with the corresponding abstraction.
An agent is polymorphic precisely when this interpretation is exact. This has the advan-
tage of making the process of abstraction and refinement of an agent explicit. Elements
that do not fall in the range of the inverse can only be approximated by the other model.

Another example of approximation is the homomorphic reduction proposed by Kur-
shan [9,10]. This technique can be applied to models of behavior that consist of lan-
guages (sets of sequences) that are recognized by a class of ω automata called L-
automata, which are able to express both safety and fairness constraints. Here, each
automaton P constructed over a set of symbols L (an L-automaton) accepts a language
L(P ) ⊆ Lω, where Lω denotes the set of all infinite sequences of symbols from L.
Verification in this context is the process of determining whether the language L(P )
recognized by an implementation automaton P is contained in the language L(T ) ac-
cepted by the specification automaton T , i.e., that L(P ) ⊆ L(T ). This problem can be
reduced to a more abstract language L′ by verifying that L(P ′) ⊆ L(T ′), for appropri-
ate abstract L′-automata P ′ and T ′. The main result2 states that L(P ′) ⊆ L(T ′) implies
L(P ) ⊆ L(T ) provided there exists a language homomorphism Φ :Lω �→ L′ω such that
Φ(L(P )) ⊆ L(P ′) and Φ(L(T #)) ⊆ L(T ′#). In this case, Φ is said to be co-linear3

for (P, T ; P ′, T ′). In the co-linearity condition above, the notation T # denotes the dual
automaton4 of T , which is closely related to language complementation.

We have argued before that one function on languages is not sufficient to guarantee
the preservation of such verification result. The apparent contradiction with the use
of just one language homomorphism Φ can be reconciled by accounting for the use
of the dual automaton in the co-linearity condition. Effectively, if Φ is co-linear for
(P, T ; P ′, T ′), then it can be shown that not only is Φ(L(P )) ⊆ L(P ′), but also that

L(T ′) ⊆ Φ(L(T )), where the overline bar denotes language complementation. Hence,
the language of the specification T is transformed according to a different abstraction

functions, namely Θ(L(T )) = Φ(L(T )). Interestingly, Φ and Θ form the upper and
lower bound of a conservative approximation that is closely related (and under certain
conditions equal) to the conservative approximation induced by a homomorphism (see
Section 4). Co-linearity of Φ thus simply ensures that L(P ′) and L(T ′) provide looser
bounds, a condition that still guarantees soundness in the verification. Conservative
approximations generalize the technique of homomorphic reduction to arbitrary agent
models, and can therefore be applied to models that are not described by automata.

Model checking techniques based on abstraction/refinement is also a well studied
related field of application for abstraction mappings [5], and is a typical application of
the framework of abstract interpretations. The technique consists of first deriving an
over-approximation of a state-based model using, for instance, predicate abstraction.
The abstract model is constructed in a way that ensures that the property to be verified
can be represented exactly (by, for example, an appropriate choice of the predicates).
Therefore, if the property is verified in the abstract domain, it is also verified in the

2 Theorem 8.5.2 in [9].
3 Definition 8.5.1 in [9].
4 Definitions 6.2.19 and 6.2.26 in [9].
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concrete domain. If not, a counter-example is generated and used to refine the abstract
domain until the satisfaction of the property is determined. The approach based on con-
servative approximations differs because, as explained, it allows non-trivial abstraction
of the specification, as well as of the implementation. Model checking techniques also
exist that use under-approximations, rather than over-approximations, to derive an ab-
stracted model [16]. This is similar to our use of the lower bound function. However,
unlike our use of the lower bound, the under-approximation is applied to the imple-
mentation, rather than to the specification. This corresponds again to using a Galois
connection, one that goes in the reverse direction. By doing this, if the abstract model
violates the property under verification, then it can be concluded that also the concrete
model violates the property. Instead, if the abstract model satisfies the property, the ver-
ification is inconclusive and the abstract model must be refined until the property is
proved incorrect, or the abstraction becomes exact. This approach may be useful when
the interest lies in finding true counter-examples and bug traces.

Another formalization of abstraction is based on theory interpretations [14]. Here,
an abstract architecture description and a concrete architecture description are both
translated to theories in a logical language (typically first-order logic). The concrete
architecture is correct relative to the abstract architecture if there is a theory interpre-
tation I from the abstract theory Θ to the concrete theory Θ′; that is, for every for-
mula F , F ∈ Θ ⇒ I(F ) ∈ Θ′. In addition, it may be required that I be faithful:
F /∈ Θ ⇒ I(F ) /∈ Θ′. Our approach does not interpret architectures, or other agents,
as logical theories. Instead, they are directly modeled as mathematical objects. This can
be thought of as a model based approach, as opposed to a theory based approach. In
a model based approach, within a given model of computation, the refinement relation
is just a binary relation on objects in the model. This notion of refinement is easier to
reason about than theory interpretations, but it is less flexible for comparing agents in
different models of computation. This can be addressed by introducing abstract inter-
pretations or conservative approximations.

Process Spaces [15] is a very general class of concurrency models, and it compares
quite closely to trace-based agent models [17]. Given a set of executions E , a Process
Space SE consists of the set of all the processes (X, Y ), where X and Y are subsets of
E such that X ∪Y = E . The sets of executions X and Y of a process are not necessarily
disjoint, and they represent the assumptions (Y ) and the guarantees (X) of the process
with respect to its environment. As in trace-based agent models, executions are abstract
objects. Different sets of abstract executions E1 and E2 induce different Process Spaces
SE1 and SE2 . The notion of process abstraction from SE1 to SE2 in Process Spaces is
related to the notion of conservative approximation. In particular, process abstractions
are defined as the Galois connections between process spaces that are derived from a
relation on the set of abstract executions. The connections are obtained as axialities [8].
A process abstraction is classified as optimistic or pessimistic according to whether
it preserves certain verification results from the concrete to the abstract or from the
abstract to the concrete model. These two kinds of abstraction can be used in combi-
nation to preserve verification results both ways. However, in that case, the two models
are isomorphic since there is effectively no loss information. Optimistic and pessimistic
process abstractions roughly correspond to the two abstraction functions of conservative
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approximations. However, our use of these functions is significantly different, since we
apply them in combination (one for the specification, the other for the implementation).
Consequently, our models need not be isomorphic, so that we obtain stronger preserva-
tion results without sacrificing the abstraction.

Winskel et al. [20] propose a framework based on category theory that is related to
ours. In their formalism, each model of computation is turned into a category where
the objects are the agents, and the morphisms represent a refinement relationship based
on simulations between the agents. The authors study a variety of different models
that are obtained by selecting arbitrary combinations of three parameters: behavior vs.
system (e.g., traces vs. state machines), interleaving vs. non-interleaving (e.g., state ma-
chines vs. event structures) and linear vs. branching time. The common operations in
a model are derived as universal constructions in the category. Relationships can be
constructed by relating the categories corresponding to different models by means of
functors, which are homomorphisms of categories that preserve morphisms and their
compositions. When categories represent models of computation, functors establish
connections between the models in a way similar to abstraction maps and semantic
functions. In particular, when the morphisms in the category are interpreted as refine-
ment, functors become essentially monotonic functions between the models, since pre-
serving morphisms is equivalent to preserving the refinement relationship.

In [20], the authors thoroughly study the relationships between the eight different
models of concurrency above by relating the corresponding categories through functors.
In addition, these functors are shown to be components of reflections or co-reflections.
These are particular kinds of adjoints, which are pairs of functors that go in opposite di-
rections and enjoy properties that are similar to the order preservation of the abstraction
and concretization maps of a Galois connection. When the morphisms are interpreted as
refinement, reflections and co-reflections generalize the concept of Galois connection
to preorders. In fact, the relationships between categories based on adjoints are similar
in nature to the abstractions and refinements obtained by abstract interpretations and
conservative approximations. However, as described above for abstract interpretations,
conservative approximations use independent abstractions for the implementation and
the specification in order to derive a stronger result in terms of preservation of the re-
finement relation, and avoidance of false positive verification results. Indeed, we require
two Galois connections, instead of one, to determine a single conservative approxima-
tion. In the work presented in [20], this translates in two adjoints per pair of categories.

6 Conclusions

We presented the use of abstraction and refinement functions between models of com-
putation for the verification and design of heterogeneous systems. We compared con-
servative approximations to abstract interpretations and we showed that, unlike abstract
interpretations, conservative approximations always preserve refinement verification re-
sults from an abstract to a concrete model, while avoiding false positives. Therefore,
conservative approximations are better suited for heterogeneous design methodologies,
i.e., methodologies that use several models of computation. In particular, because they
always guarantee correctness, conservative approximations provide more flexibility in
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choosing the verification strategy and the hierarchy of models used in the design flow.
We then described how to construct models of computation suitable for the design of
embedded systems, and how conservative approximations can be derived for these mod-
els starting from simple functions (homomorphisms) over their set of behaviors. In ad-
dition, the inverse of a conservative approximation has been shown to identify com-
ponents that can be used indifferently in several models, thus enabling reuse across
domains of computation. The resulting theory can be used as the basis of frameworks
that support heterogeneous modeling.

Our current work focuses on extending techniques that make it easier to construct
conservative approximations between agent models. The axialities of homomorphisms
on behaviors described in this paper is one such example. However, homomorphisms
are usually defined to preserve the alphabet of behaviors, so that the induced conserv-
ative approximations, too, must preserve the alphabet of agents. More interesting con-
servative approximations can be constructed by letting the homomorphism change the
alphabet of a behavior, for example by hiding certain signals, like clocks and activa-
tion signals, that have no meaning in a more abstract model. This is also appropriate
for converting a detailed protocol specification into a more abstract, transaction-based,
specification. Arbitrary changes of the alphabet are also possible. In this case, however,
the homomorphism must not only be applied to the behaviors, but also to the operators,
in order to correctly translate expressions. In this case the homomorphism becomes
similar to a functor between categories, where a category has behaviors as objects and
the operators as morphisms.

A model that uses behaviors as its underlying structure may impose restrictions on
the kind of agents that can be constructed. For example, only receptive (or progres-
sive, or input enabled) agents might be allowed. The axialities of a homomorphism,
however, may not necessarily yield agents that satisfy such conditions. A promising
avenue of future research consists therefore in identifying the agent that most faithfully
approximates the missing abstraction, while satisfying the constraints imposed by the
model, and while still functioning as the bound of a conservative approximation. This
would constitute a generalization of the technique proposed by Loiseaux et al. [13] on
property-preserving abstractions in the context of transition systems.
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Last, but by no means least... This section covers the most important facet of
Ugo’s personality, namely, his tireless efforts in building national and interna-
tional relationships, in order to foster the advance of research. Indeed, a large
part of Ugo’s time is spent in casting a web of links among people as well as
institutions, fostering research collaborations and exchanges of ideas. A facet of
his personality Ugo is aware of, as he witnesses in his recent book-interview [11].

Consider e.g. the first three contributions of this section, and let us start
chauvinistically with the Italian colleague, Angelo Raffaele Meo. Ugo often talks
about those five years “lost to his research”, where he actively contributed to
the shaping of the governmental guidelines for ITC. In the late Seventies, Meo
was the chair of the National Program in Computer Sciences for the National
Research Council (CNR); Ugo headed one of the three sections of that Pro-
gram, devoted to Computer Industry. The major subproject of the Program was
Campus Net (CNet) Project, lead by Norma Lijtmaer and running from 1979
to 1985. Ugo, Norma and Meo were the driving force behind CNet: the project
represented a major focus for Italian ITC, maybe one of the most influential
and ambitious among those projects combined into the first Progetto Finaliz-
zato in Informatica sponsored by CNR. Research issues focused on developing
the functional specification and implementing prototype versions of distributed
systems on local networks. The technical accomplishments were initially spread
in a series of technical reports, and the main achievements were collected in a
two-volume proceedings of the final symposium [7], held in Pisa in June 24-28,
1985. The presence of a large group of industrial partners, among them Olivetti,
had consequences far beyond the scientific assessments of the projects itself, in
a booming period for the national industry. Moreover, the project was likely the
defining moment for Ugo’s interests in concurrency, and one of the key steps in
the rise of the whole area in Italy. Some of the outcomes of the project (such
as [6], originally a CNet technical report) were later considered pivotal by key
people like Robin Milner in the development of nominal calculi. The topic tackled
by Meo in his article is maybe far from Ugo’s current interests. Nevertheless, let
us not forget that Ugo was the coauthor of the first Italian textbook on formal
languages and computability [5].

But for Ugo, the research landscape has always been a global one. As a stu-
dent, you were warmly encouraged to reading articles and submitting your own
output to conferences around the world, in order to learn from the discussions
and the exchange of ideas, standing indeed on the shoulders of giants. Likewise,
also the scope of Ugo’s connections has been international. Such a span is well-
represented by the many distinguished authors who contributed to the overview
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of the Esprit Basic Research Action CEDISYS, a “fruitful project which brought
together researchers at the meeting point of true concurrency and process alge-
bra, in the period 1988-1991”. A report by Ugo, the project leader, can be found
in [10]. I leave to the contributors of the memoir the task of introducing the
reader to the scientific broad aims, as well as to the far reaching influences and
technical achievements, brought forth by the project, one of the many that Ugo
was part of in the latest two decades. As a chronicler, I will limit myself just to
unveil the name of the “younger members of the project [who] had been both
Ugo Montanari’s Master students in Pisa and Matthew Hennessy’s PhD students
in Edinburgh” referred to in the article, namely, Ilaria Castellani and Rocco De
Nicola; and to point out the third leg of the Pisa unit, besides Ugo and Rocco,
that is, Pierpaolo Degano.

Many of the participants of the project agree that the presence of CEDYSIS
and of similar initiatives was a key factor in paving the way for the CONCUR
series of conferences. It is a well-known fact that the concurrency theory forum
was established as an off-shot of the similarly named Basic Research Action,
lead by Jos C.M. Baeten (indeed, the subtitle in the original call of papers
read “Theories of Concurrency: Unification and Extension”, thus echoing the
name of the BRA; and the conference was heralded as “the first in a series of
conferences that will be organized by the ESPRIT project no.3006 CONCUR”).
The first edition of the conference was chaired by Jan Willem Klop, and the
proceedings were edited by him together with Baeten. Ugo was part of that
Program Committee, and since its inception Ugo has been part of the Steering
Committee, and one of the main force behind the development of the concurrency
community. The wide range of his interests is powerfully reflected in the variety of
works he has presented: indeed, so far he is the most significant contributor, with
16 papers, to the conference. The flurry of activities on concurrency left many
traces, either in the concurrency mailing list [3] or in more specific venues such as
the reports on Strategic Directions in Computing Research by the Concurrency
Working Group [2], chaired by Scott Smolka. Ugo and Baeten have been since
then strong advocates of the use of process algebras as a perfect tool for the
unambiguous specification of systems, and the textbook contribution by Baeten
in this section would surely fit in the general mood of that period.

The remaining contributions of the volume are laudatio by colleagues, or mem-
ories of working experience from former colleagues and students. This time, let us
first consider the international side. Turing-laureate Robin Milner discusses the
influence of the seminal paper “Petri nets are monoids”, coauthored by Ugo with
his long-time friend José Meseguer [9]. The timeline of that article is recalled in
the general introduction to this volume. As for its contents, it is fair to say that
since then Ugo always put monoidal categories at the center of his reflections on
concurrency models (see e.g. page 33 in [11]). Probably, Ugo’s influence on the
community is best rendered by the words of Milner: “[Ugo] is one who deserves
credit for bringing to our notice the categorical ideas that can help us think this
subject more clearly”. The 1973 meeting Milner refers to actually took place on
March, 1-3; its proceedings are collected in [4]. It was the first Italian conference
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devoted to theoretical computer science, and the gathering represented a pivotal
step for the “coming of age” of the community. However, Milner’s connection
with Ugo was in fact established and strengthened in the Nineties by the Europe-
funded Basic Research Action (later on, Esprit Working Group) CONFER (for
“CONcurrency and Functions: Evaluation and Reduction”), coordinated by Jean
Jacques Lévy from 1994 to 2000.

The red trail of European projects leads to Jan Rutten, one of the driving
forces behind the renewed interest of computer scientists towards coalgebras,
a topic pursued vigorously by Ugo in latest years. His first collaboration with
Ugo dates back to the two European Science Project MASK (“Mathematical
Structures for Concurrency”), led by Jaco W. De Bakker from 1992 to 1996.
Rutten’s whimsical paper witnesses the impression made by the appearance of
Ugo: this impression is shared by his students, but it can be found in many oral
reminiscences of Ugo’s peers, since his first appearances in the Seventies...

The Seventies are warmly remembered by Alberto Martelli. Both he and Ugo
came from Politecnico di Milano, brought to Pisa by Antonio Grasselli, one of
the founding fathers of the Computer Science curriculum in Pisa. Martelli wrote
a string of joint papers with Ugo in the decade, on a large variety of subjects,
as well as being finally part of the Pisa unit in CNet, before moving to Turin.
The relevance of the unification algorithm coauthored by him and Ugo, reported
in [8], has been already stressed by the editors of this volume: it is however
enlightening to see here also the intellectual environment surrounding such a
scientific achievement, and its recasting of its origin in the scientific stimuli from
artificial intelligence, so actively pursued by Ugo at the time.

Franco Turini was one of the first students of Ugo in the by then just formed
Corso di Laurea in Scienze dell’Informazione in Pisa. He was thus also among
the first students to be awarded the Laurea degree in Italy, since the curriculum
in the Tuscan town, established in 1969, was at the time the only one of its
kind in Italy. He was involved in the Pisa unit of the CNet project, and still
called himself a theoretician in his earlier research years. Franco rightly draws
the attention of the readers to Ugo’s teaching ability. Indeed, Ugo takes great
pride in being identified as a nurturer (see again his book-interview), and this is
reflected in the attention he pays to the didactic exploitation of current research
trends, pursuing his teaching excellence “by looking for more elegant proofs of
the theorems and a smoother flowing of the results”.

Finally, the carrier of Daniel Yankalevich witnesses the tireless effervescence
of Ugo we all know quite well. “Dani” has been one of the first students to come
out of ESLAI, the Escuela Superior Latinoamericana de Informática (besides
the general introduction of this volume, see also the corresponding wikipedia
entry [1]). The institute for higher education was founded in 1986 by the Ar-
gentinian government under its first Democratic president after the dictatorship,
Raul Alfonśın (and unfortunately closed in 1990 by his successor, Carlos Menem).
The school “had a considerable impact on informatics teaching and research in
Argentina and South America”, as the editors of this volume say, and many of
his pupils have reached position in universities and industries around the world.
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Ugo played a major role in its establishment, together with his late-wife Norma,
of Argentinian origin, and one of the many exiles during the military ruling: the
experience is warmly remembered by Ugo in his book-interview, and, also as a
witness of the applicative side of research, always foremost in Ugo’s mind, Dani’s
memories appear to me as the appropriate closure for the whole volume.
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Abstract. Some elements are presented of a forthcoming textbook on
automata theory and formal languages, that puts more emphasis on
equational reasoning. Some advantages of such an approach are dis-
cussed. This paper is dedicated to Ugo Montanari, who has contributed
such a lot to concurrency theory and the theory of computational models.

1 Introduction

The theory of automata and formal languages on the one hand, and concurrency
theory on the other hand, both present a model of computation. These theories
have a lot in common, for instance they share the concept of a transition system
or an automaton. Both theories can also stand to gain by adopting notation,
methods and techniques developed in the other theory. Here we have a look at
an approach to automata and formal languages that uses equational reasoning
as has been developed in process algebra.

2 Grammar as a Recursive Specification

We present a few examples of an equational approach to automata theory. We
limit ourselves to examples in the class of regular languages, but applications in
the setting of context-free languages and Turing machines can be added easily.
Crucial to this approach is presenting a grammar as a recursive specification.
Consider a simple right-linear grammar.

S → aT | aW

T → aU | bW

U → bV | bR

W → aR

R → bW | λ.

Consider a simple process algebraic language with the following signature Σ:

– There is a constant 0 denoting unsuccessful termination or deadlock;
– There is a constant 1 denoting successful termination or skip;
– For each element a of the alphabet A, there is a unary operator a denoting

action prefix;

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 747–756, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



748 J.C.M. Baeten

– There is a binary operator + denoting alternative composition or choice.

Now the grammar above can be presented as a recursive specification over a
set of variables {S, T, U, V, W, R} as follows. This specification is linear, as every
summand on the right-hand side is 0,1 or an action prefix of a variable.

S = aT + aW

T = aU + bW

U = bV + bR

V = 0

W = aR

R = bW + 1.

Such a presentation of a grammar did occur in literature, see e.g. [5], [7] or
[6], but was not exploited in order to do calculations.

Every closed term over Σ denotes an automaton by means of Structural Oper-
ational Semantics, SOS for short (see e.g. [1]). The rules in Table 1 define when
a closed term x is a final state in an automaton (x ↓) and when a closed term x

has an a-labeled transition to term x′ (x a−→ x′). Thus, the two axioms at the
top say that every term of the form ax has an a-step to x, and that 1 is a final
state. The four rules below are the rules for choice: a step from x + y must be a
step from x or a step from y (discarding the other component), and x + y is a
final state exactly when x or y is.

Starting from a term x, each reachable state is a subterm of x, and so each
automaton generated by these rules has finitely many states. Thus, the language
of such an automaton is a regular language.

Next, we add a recursive specification over a finite set of variables V , so for
each P ∈ V there is exactly one equation P = tP , where tP is a term over Σ and
variables V . For a recursive specification, the following rules need to be added,
see Table 2. For each term over Σ with only variables from V , an automaton
can be constructed. The states in this automaton are again terms over Σ and
V , and transitions and termination are given by the rules.

Table 1. Operational rules (a ∈ A)

ax
a

−→ x 1 ↓

x
a

−→ x′

(x + y)
a

−→ x′

y
a

−→ y′

(x + y)
a

−→ y′

x ↓

(x + y) ↓

y ↓

(x + y) ↓
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Table 2. Operational rules for recursion

tP
a

−→ x P = tP

P
a

−→ x

tP ↓ P = tP

P ↓

S

T U V

W R

a

a

b

b

b
a

a

b

Fig. 1. Example automaton

As an example, for the given recursive specification, using the rules we get
exactly the automaton in Figure 1.

Now let us consider the laws that hold in this minimal algebra MA. The laws
in Table 3 give the commutativity, associativity and idempotency of alternative
composition, and state that 0 is a unit element for alternative composition. In
each case, the automata generated by the two sides of the equation are exactly
the same, apart from the name of the initial state. Thus, they denote isomorphic
automata.

Table 3. Laws of MA

x + y = y + x
(x + y) + z = x + (y + z)
x + x = x
x + 0 = x

The laws in Table 4 give the distributivity of action prefix over alternative
composition and the zero law for action prefix. The automata generated by the
two sides of the equation are not isomorphic, but have the same language.

Both language equivalence and isomorphism are equivalence relations on au-
tomata. Language equivalence is also a congruence relation, but isomorphism is
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Table 4. Two more laws of MA (a ∈ A)

ax + ay = a(x + y)
a0 = 0

not: the automaton of 1 is isomorphic to the automaton of 1 + 0. However, the
automaton of a(1 + 0) + a1 has three states (the other states are 1 + 0 and 1),
and the automaton of a1+ a1 has only two states (the other state is 1), so they
cannot be isomorphic.

If we want to turn isomorphism into a congruence relation, it is needed to
relate several nodes with the same behavior in one automaton with several
nodes with the same behavior in another automaton. In this way, bisimula-
tion is obtained: bisimulation is the most distinguishing congruence contain-
ing isomorphism. This means the following: if there is any equivalence on au-
tomata that is a congruence for the operators of Σ and that relates any two
isomorphic automata, then necessarily any two bisimilar automata must be
related.

Now a string is an element of the language of a recursive specification exactly
when it is a summand of the initial variable. If we define x ≤ y as x + y =
y, then we have that string w is an element of the language generated by a
recursive specification with initial variable S exactly when S ≥ w1. In our
example recursive specification, the language contains string aaba:

S = aT + aW ≥ aW = aaR = aa(bW + 1) = aabW + aa1 ≥ aabW =

= aabaR = aaba(bW + 1) = aababW + aaba1 ≥ aaba1.

We find that recursive specifications over Σ generate exactly the family of
regular languages. Recursive specifications over Σ plus sequential composition
give the family of context-free languages. Finally, recursive specifications over Σ
plus parallel composition with communication and abstraction yields the family
of all computable languages (see [2]).

3 Deterministic Automata

A well-known theorem from automata theory states that for each non-
deterministic automaton, there is a deterministic automaton that accepts the
same language. This theorem is usually proved using the powerset construction:
a state of the deterministic automaton consists of a set of states of the non-
deterministic automaton (see e.g. [10]). Students find this abstract construction
often difficult to grasp. Moreover, it is not always clear to them which subsets
are needed in the deterministic automaton, and which are not needed. In the
equational approach, all that is needed is the application of the distributive law
of Table 4.
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S U

V W

S U + V S + W

X

a

b

b b

a

a

a

b

a

b

b

a

Fig. 2. Finding a deterministic automaton

To illustrate, we give an example.

Example 1. Given is the automaton on the left-hand side of Figure 2, with state
variables S = {S, U, V, W}. As a recursive specification, we get

S = aU + aV

U = bS

V = bW + 1

W = 0.

Application of the distributive law yields the following set of equations.

S = aU + aV = a(U + V )
U + V = bS + bW + 1 = b(S + W ) + 1
S + W = aU + aV + 0 = a(U + V )

Commonly, a deterministic automaton has a total transition function, and
thus in any state for any label there must be an outgoing transition. In automata
theory, a so-called trap state is added, that shows every possible behaviour but
can never lead to a final state. Equationally, this amounts to the addition of a
Chaos process X (see [8]). As this process can never terminate, adding summands
leading to it does not change the language generated. The resulting recursive
specification becomes

S = a(U + V ) + bX

U + V = b(S + W ) + 1 + aX

S + W = a(U + V ) + bX

X = aX + bX.

The resulting automaton is displayed on the right-hand side of Figure 2.
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4 Automata with ε-Transitions

We consider automata with transitions not consuming input. These transitions
are usually called ε-transitions or λ-transitions. Taking an example from process
algebra, I call these transitions τ -transitions, and add τ -prefixing to the
language.

A well-known theorem from automata theory states that for each automaton
with ε-transitions, there is an automaton without such transitions accepting the
same language. To prove this, again the powerset construction is used (see e.g.
[9]). In our case, removing τ -transitions just boils down to the application of the
law τx = x that is valid in language equivalence.

Example 2. Consider the automaton at the left-hand side of Figure 3. It yields
the recursive specification

S = aW + τT

T = aU

U = τU + bV + τT

V = 0
W = 1

We calculate:

S = aW + τT = aW + T = aW + aU

U = τU + bV + τT = U + bV + T = U + bV + aU

V = 0

W = 1

As T is not a reachable state in the resulting automaton, it can be left out. We
show the resulting automaton on the right-hand side of Figure 3. Note that the
τ -loop on U is just omitted.

S T

W

U

V

S

W

U

V

τ

a b

a

a b

τ a
a

τ

Fig. 3. Finding an automaton without silent steps
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5 Regular Expressions

The family of regular languages is exactly the family of languages given by
regular expressions. We will see that expressing a regular language by means of
a regular expression boils down to solving the recursive equations. Two extra
operators are needed: sequential composition and Kleene star or iteration.

The operational rules for the additional operators are given in Table 5. We call
the resulting algebra Iteration Algebra. Thus, a sequential composition can start
with a step from the first component. If the first component is in a final state, a
step from the second component can be taken. A sequential composition is in a
final state only if both components are in a final state. An iteration can take a step
from the body, entering into the loop. When the loop is finished, the process can be
repeated. Any iteration can be exited immediately, not executing the body at all.

The set of reachable states of an automaton with initial state x · y consists of
all x′ · y where x′ is reachable from x, plus, in case the automaton of x has a
final state, all y′ reachable from y. The set of states reachable from x∗ are the
terms x′ · x∗ where x′ is reachable from x. In both cases, the set of reachable
states is finite, and so we find that every automaton generated by the SOS-rules
of Iteration Algebra is finite, so its language is regular.

Table 5. Additional operational rules for sequential composition and Kleene star (a ∈
A)

x
a

−→ x′

x · y
a

−→ x′
· y

x ↓ y
a

−→ y′

x · y
a

−→ y′

x ↓ y ↓

x · y ↓

x
a

−→ x′

x∗ a
−→ x′

· x∗ x∗
↓

Table 6 shows laws for sequential composition and Kleene star, where in each
case the automata generated by both sides of an equation are isomorphic. Se-
quential composition is associative, and action prefix can be seen as a restricted
form of sequential composition. Sequential composition distributes over alterna-
tive composition from the right. 1 is a unit element of sequential composition,
and 0 is a left zero element. The first law of Kleene star says that the iterated
term can be repeated zero times (summand 1) or at least one time (x · x∗).
Termination inside an iteration is disregarded, only steps count, as is shown in
the first operational rule for Kleene star. Finally, if the iterated term is just 0,
only termination can occur.
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Table 6. Isomorphism laws for Iteration Algebra (a ∈ A)

(ax) · y = a(x · y)
(x · y) · z = x · (y · z)
(x + y) · z = x · z + y · z
1 · x = x
x · 1 = x
0 · x = 0
x∗ = x · x∗ + 1
(x + 1)∗ = x∗

0∗ = 1

Next, Table 7 shows laws that do transform the automaton, but preserve
language equivalence. They say that 0 is also a right zero, and sequential com-
position distributes over alternative composition also from the left.

Table 7. Language equivalence laws for Iteration Algebra (a ∈ A)

x · 0 = 0
x · (y + z) = x · y + x · z

In addition, we need a rule that we call RSP* (see [3]; this is a special case of
the Recursive Specification Principle of ACP, see e.g. [4]):

x = y · x + z, y � ↓ =⇒ x = y∗ · z.

We provide a not so simple example.

Example 3. Consider a specification over 3 variables where every variable has
an outgoing step to every variable.

S = aS + bT + cU

T = dS + eT + fU

U = gS + hT + iU + 1

In order to solve for S, calculate as follows:

S = aS + bT + cU = a1 · S + bT + cU = (a1)∗ · (bT + cU) =

= (a1)∗ · bT + (a1)∗ · cU,

and S has been eliminated. Now use this in the other two equations. They
become:

T = dS + eT + fU = d(a1)∗ · bT + d(a1)∗ · cU + eT + fU =
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= (d(a1)∗ · b1 + e1) · T + (d(a1)∗ · c1 + f1) · U

and

U = gS + hT + iU + 1 = g(a1)∗ · bT + g(a1)∗ · cU + hT + iU + 1 =

= (g(a1)∗ · b1 + h1) · T + (g(a1)∗ · c1 + i1) · U + 1.

Next, eliminate T from the equation of T :

T = (d(a1)∗ · b1 + e1)∗ · (d(a1)∗ · c1 + f1) · U,

and substitute this in the equation of U :

U = (g(a1)∗ · b1 + h1) · (d(a1)∗ · b1 + e1)∗ · (d(a1)∗ · c1 + f1) · U +

+ (g(a1)∗ · c1 + i1) · U + 1 =

= {(g(a1)∗ · b1+h1) · (d(a1)∗ · b1+ e1)∗ · (d(a1)∗ · c1+ f1)+ (g(a1)∗ · c1+ i1)}∗.

This result can be substituted again in the equation of T to obtain a regular
expression for T :

T = (d(a1)∗ · b1 + e1)∗ · (d(a1)∗ · c1 + f1)·

·{(g(a1)∗ · b1+ h1) · (d(a1)∗ · b1+ e1)∗ · (d(a1)∗ · c1+ f1)+ (g(a1)∗ · c1+ i1)}∗.

Finally, both the expressions for T and U can be substituted in the equation of
S:

S = ((a1)∗ · c1 + (a1)∗ · b(d(a1)∗ · b1 + e1)∗ · (d(a1)∗ · c1 + f1))·

·{(g(a1)∗ · b1+ h1) · (d(a1)∗ · b1+ e1)∗ · (d(a1)∗ · c1+ f1)+ (g(a1)∗ · c1+ i1)}∗.

In this example, we converted a finite automaton into a regular expression
without the need of a generalized automaton where the edges are labeled by
regular expressions.

6 Conclusion

Every undergraduate curriculum in computer science contains a course on au-
tomata theory and formal languages. On the other hand, an introduction to
concurrency theory is usually not given in the undergraduate program. Both
theories as basic models of computation are part of the foundations of computer
science. Automata theory and formal languages provide a model of computation
where interaction is not taken into account, so a computer is considered as a
stand-alone device executing batch processes. On the other hand, concurrency
theory provides a model of computation where interaction is taken into account.
Concurrency theory is sometimes called the theory of reactive processes.

Both theories can be integrated into one course in the undergraduate curricu-
lum, providing students with the foundation of computing. I teach such a course
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at my university in the first half of 2008. In this way, both theories have a lot to
gain from such an integrated presentation. As an example, it is shown how an
equational approach can be useful in automata theory. On the other hand, by
working from automata theory, some standardization can be brought to concur-
rency theory. For instance, it can be achieved that everyone writes 0 instead of
0, nil, δ, STOP , and 1 instead of ε, SKIP .
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Abstract. We recall some memories of the Esprit Basic Research Action
CEDISYS, a small, well-focussed and fruitful project which brought to-
gether researchers at the meeting point of true concurrency and process
algebra, in the period 1988-1991. The project was initiated and effec-
tively animated by Ugo Montanari, a passionate and long-time advocate
of both these approaches to the semantics of concurrency.

1 Genesis of the Project

Twenty years after its start, we revisit some of the results of the CEDISYS
project, trying to place them in their historical context and to emphasise their
impact on later work. The Basic Research Action CEDISYS (Compositional
Distributed Systems) was funded by the European Community under the Esprit
programme, between January 1988 and December 1991. The project involved
four institutions: the three Computer Science Departments of the Universities of
Aarhus (Denmark), Pisa (Italy), and Sussex (United Kingdom), and the INRIA
Research Unit of Sophia Antipolis (France). The action was coordinated by Ugo
Montanari.

The CEDISYS project did not come about by chance. It emerged quite natu-
rally from pre-existing interactions among the partners, and from their increasing
convergence of interests and approaches. The Aarhus partners were experts in
domain theory and true concurrency models and had been among the founders
of Event Structures, a nonsequential model of computation closely related to
domains. The Sussex and Sophia partners were process calculi specialists, with
a strong interest in true concurrency semantics. As for the Pisa site, Ugo Mon-
tanari had been from the very start an enthusiastic advocate of both Milner’s
calculus CCS and of true concurrency models, whereas other members of the
group had been active researchers in the process calculi community. Finally, two
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younger members of the project had been both Ugo Montanari’s Master students
in Pisa and Matthew Hennessy’s PhD students in Edinburgh (this tradition of
mobility among the sites was to be maintained during and after the project).

It was undoubtedly Ugo’s merit to have detected the potential of bringing
together these particular partners, and to propose a well-focussed project whose
objectives could be easily shared by all. In retrospect, it is clear that the initial
conditions were there for the project to become operational very quickly. Indeed,
in the three years of its activity, the project turned out to be both lively and
cohesive, and, in our view, also very productive.

In the remaining sections we shall try to highlight some of the project’s results,
without aiming in any way at an exhaustive account (the interested reader is
referred for more details to the project’s final report [87]).

2 Goal and Context

In this section, we recall the goal of the project and point out its connection
to previous and contemporary research. In the final CEDISYS report [87], the
overall objective of the project is described as follows:

“developing a fundamental understanding of the nature of concurrency and pro-
viding a formal framework useful for describing concurrent and distributed sys-
tems. This formal framework should support the specification and development
of such systems and should lead to methodologies for proving systems correct and
more generally for deriving their properties”.

More specifically, the project aimed at “a theory of concurrency where the dis-
tributed nature of processes is properly taken into account”. The plan was to
“compare existing formalisms, develop models, languages and logics with compo-
sitionality and abstraction capabilities”, as well as to “experiment with techniques
and tools for supporting the implementation of the proposed formalisms”.

At the time when the project was proposed, two main approaches to the
theory of concurrency had been investigated:

– The true concurrency approach. Here concurrent processes were represented
by means of event-based nonsequential models, among which the most estab-
lished ones were Petri nets [100,108] and Event Structures [110,94]1. These
models had pleasant characteristics: they were expressive enough to repre-
sent the new phenomena arising in concurrent computations, and they were
sufficiently concrete to serve both as system models and as execution models.
In some sense, they seemed to be able to play the roles of “denotational”
and “operational” models at the same time. Moreover, a formal result es-
tablished that Event Structures were concrete representations of particular

1 Other proposed models were Mazurkiewicz traces [83], Grabowski’s partial words [70]
and Gischer and Pratt’s pomsets [55,103,104]. However, these appeared to be more
suited as execution models than as system models.
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domains: as such, they appeared as a natural candidate for denoting concur-
rent processes. However, both Petri nets and Event Structures lacked two
important properties of denotational semantics: abstraction, and, up to the
mid-eighties, also compositionality. Indeed, the first studies on Petri nets had
concentrated on analysis techniques, rather than on techniques for the syn-
thesis and extension of nets. In connection with the advent of process calculi
in the early eighties, combinators for Petri nets and Event Structures had
started to be investigated, mainly by Winskel [111,113] but also by other
researchers [37,38]. Still, these models appeared too intensional to offer a
proper denotational semantics for concurrency.

– The process algebraic approach. This was a relatively new but very active
line of research, initiated by Milner in 1980 with his proposal of a Calculus
of Communicating Systems (CCS) [85]. Here concurrent processes were de-
fined as terms of an algebra and interpreted as labelled transition systems,
using Plotkin’s structural operational semantics (SOS) [102]. The abstract
semantics of processes was to be recovered in a second step, by quotient-
ing processes with respect to an observational equivalence, and notably with
respect to bisimulation equivalence [99,86]. This equivalence could further-
more be characterised by a set of axioms. The simplicity and elegance of
CCS, which made it formally close to the lambda-calculus, together with
the powerful mathematical tools that accompanied it (SOS semantics, bisim-
ulation proof method, algebraic laws), immediately turned CCS, and the
family of process calculi which rapidly grew around it, into an appealing
field of experimentation for a large community of researchers. Indeed, the
introduction of CCS and SOS semantics resulted in a renewed interest in
operational semantics for concurrency, after the difficult quest for a deno-
tational semantics in the late 70’s (conducted by Milner himself and by
other researchers). However, the emphasis of the process algebraic approach
was on compositionality rather than on abstraction. Abstraction was only
recovered a posteriori through observational equivalences, and thus the re-
sulting semantic model amounted to a (syntactic) term model. In spite of
this, CCS had many of the qualities of a denotational model. In particu-
lar, the axiomatisations of bisimulation and other behavioural equivalences
(e.g. testing equivalence [41]) made it possible to reason about processes and
reduce them to normal forms. Another important property of process cal-
culi was their ability to describe both complete systems and their abstract
specifications, so that the satisfaction relation of the latter by the former
could be simply implemented via observational equivalence. Labelled tran-
sition systems were also the prime models for a simple modal logic called
Hennessy-Milner logic [74], which precisely characterised bisimulation equiv-
alence.

The two approaches just described had somewhat complementary advantages
and drawbacks:
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– Process calculi enjoyed the properties of compositionality and substitutiv-
ity, by virtue of their algebraic syntax and of the existence of behavioural
congruences. On the other hand, they used an interleaving semantics, simu-
lating concurrency by a nondeterministic choice of sequential interleavings.
The characteristic semantic equation of process calculi, as formally expressed
by Milner’s expansion law, could informally be rendered as: concurrency =
sequentiality + nondeterminism. Hence the notions of causality and distrib-
ution, which were present in the syntax, were lost in the semantics.

– Petri nets and Event Structures allowed for a clear distinction between con-
currency, causality and conflict, which were all primitive relations on events.
In contrast with the interleaving equation, they embodied the true concur-
rency inequation: concurrency �= causality + conflict. The main drawback of
these models was their lack of abstract semantics.

In the light of this situation, two natural questions came to mind: 1) How to for-
mally relate models? and 2) How to bridge the gap between the two approaches,
so as to get the best of each world?

Initial answers to these questions had already started to be provided, both by
CEDISYS members (to be) and by other researchers. For instance, a compar-
ison of different concurrency models, related by adjunctions within a common
categorical framework, had been carried out by Winskel in [114]. Attempts at
narrowing the gap between process calculi and models had also started to be
made, either by interpreting process combinators in the models, or by increasing
the “observational power” of the operational semantics of calculi so as to capture
(some amount of) concurrency and causality.

Among the early interpretations of process calculi (CCS, CSP [75], TCSP [21],
CCSP [98]) into nonsequential models, we could cite:

– CCS: interpretations into Petri nets by De Cindio et al. [38], Goltz and My-
croft [63], Winskel [113], Nielsen [92], and Vaandrager and van Glabbeek [62];
interpretations into Event Structures by Winskel [111] and (for a subset of CCS)
by Boudol and Castellani [13];

– CSP and TCSP: interpretations into Petri nets by De Cindio et al. [37], by
Goltz and Reisig [64] and by Goltz and Loogen [82];

– CCSP (a mixture of CCS and TCSP): interpretation into Petri nets by
Olderog [98].

A few proposals for enriching the operational semantics of CCS (sometimes
in relation to the interpretations above) had also been put forward. The gen-
eral idea here was to retain more of the syntax of processes in their semantics,
by adding “structure” to the labelled transition system of CCS. This structure
could be introduced either via structured actions (generalising atomic actions
to composite actions) or via structured states (somehow departing from an ex-
tensional view of transition systems), or combining both. We could cite here:
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– Structured labels: “pomsets” in Boudol and Castellani’s semantics for a subset
of CCS [13], and “concurrent histories” in the semantics by Degano, De Nicola
and Montanari [42];
– Structured states: pairs of local and concurrent residuals in the distributed
bisimulation semantics of Castellani and Hennessy [24,27], “grapes” in the partial
order semantics of [42].

To conclude this introductory section, we could say that in the course of the
eighties, a shift had been made from denotational towards operational seman-
tics: thanks to Plotkin’s structural approach and to the rapid development of
process calculi, operational semantics had acquired new dignity and had gradu-
ally become the touchstone for models of concurrency.

One of the central questions of the CEDISYS project was then: how to enrich
the operational semantics of CCS so as to take into account concurrency and
distribution, and how to relate the new operational semantics to interpretations
of CCS into Petri nets or Event Structures?

3 Some Achievements of the Project

The project’s work on noninterleaving semantics for concurrency was structured
along five axes: 1) comparison of existing formalisms, 2) models, 3) languages,
4) logics and proof systems, and 5) implementation. It is not our intention here
to give an exhaustive account of the work accomplished. Neither shall we try to
give a well-balanced description of the project’s results. Rather, we aim at giving
an idea of the project’s collaborative work by picking some representative results
which benefitted from the interaction among the partners within axes (1) – (3).
We shall try to reconstruct the history of these results within the “4-player ping-
pong game” of CEDISYS, and to analyse their influence on subsequent research.
As will become evident, Ugo’s role in the project was a very prominent and
pervasive one: not only was he the inspired instigator and supportive coach of
the game (which terminated with four winners and no loser), but he was also
personally involved in most of the themes of the project. If the term “pervasive
computing” had not yet appeared at that time, the term “pervasive researching”
could well have been coined on purpose for Ugo!

As it should be apparent from the discussion in the previous section, there
was already a strong convergence of ideas and interests within the consortium,
even before the project started. We wish now to show how this convergence
turned into a fruitful “cross-fertilization” among the sites in the course of the
project: how some existing ideas came to their full development, and how new
ideas emerged from the project’s “chemical soup” (in the sense of the CHAM
model [10] described below...). In doing so, we shall focus on two main strands:
1) noninterleaving operational semantics for CCS, and 2) nonsequential models
and abstract semantics.
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3.1 Noninterleaving Operational Semantics for CCS

Process calculi include a parallel composition operator and a form of sequential
composition. These operators specify respectively a concurrency and a causality
relation between the actions of their components. However, these relations are
“forgotten” when passing from the syntax to the standard labelled transition
semantics of the calculus. To define a noninterleaving operational semantics for
CCS the idea was then, quite naturally, to add structure to its labelled transition
system so as to retain in the semantics some of the information about concur-
rency and causality which was present in the syntax. As mentioned in Section 2,
some proposals for enriching the operational semantics of CCS along these lines,
by adding structure to the actions or to the states of transitions, had already
been presented by some of the project’s partners. However, these proposals did
not completely fulfill the objective, either because they were defined only on
subsets of CCS, or because they did not fully agree with existing interpretations
of CCS into Event Structures and Petri nets. Indeed, the initial criterion for
these noninterleaving operational semantics for CCS was their agreement with
interpretations of the calculus into event based semantic domains.

This line of work, aiming at obtaining noninterleaving operational semantics
for CCS by enriching its labelled transition system, was intensively pursued in
the project. Notable advances were made, both on structured actions and on
structured states:

1. Structured actions. In the standard labelled transition system of CCS,
transitions are labelled by atomic actions. Two ways of generalising such
actions were investigated:

• Composite actions. The idea here was to relax the atomicity constraint to
allow transitions to be labelled by whole nonsequential computations. In the
early work by Boudol and Castellani [13,14], transitions labelled by pomsets
(partially ordered multisets) had been defined for a simple CCS-like language
with parallel composition but no communication. In that case, pomset tran-
sitions could be directly constructed by means of new transition rules, whose
effect was to transfer the constructs of sequential and parallel composition
from the processes to the actions labelling their transitions. However, it was
not clear how to extend this direct pomset semantics to the full language
CCS, since the parallel composition of two pomsets does not in general yield
a pomset when communication is allowed. This led the authors to propose,
in [16,15], an indirect construction of a pomset transition starting from a
class of permutation-equivalent transition sequences. This construction “a
posteriori” of a partial order from an equivalence class of sequential compu-
tations was similar to that used for defining Mazurkiewicz traces [84]. The
novelty of [16,15] was the use of enriched transitions for CCS called proved
transitions (because they were labelled with a representation of their proof in
the inference system of CCS), from which the concurrency relation between
transitions could be derived by syntactic means. A different construction
of partial order computations for CCS, starting from enriched sequential
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computations called concurrent histories, obtained by concatenating atomic
histories (corresponding to single steps) and recording their causality rela-
tion, was proposed by Degano, De Nicola and Montanari in [42,47,46]. In
that case, the construction exploited structured states rather than struc-
tured actions, and made use of the causality rather than the concurrency
relation. This semantics will be discussed in more detail later, under the
heading “structured states”. Note that, while in the direct pomset seman-
tics of [13,14] atomic actions were replaced with composite actions in the
transition system itself, in both the proved transition semantics [16,15] and
the concurrent history semantics [45,44] actions remained atomic in the ba-
sic transition system but were decorated with additional information (they
were instances of the “decorated atomic transitions” discussed below). Par-
tial order transitions were only retrieved in a second step.

Clearly related to the generalisation of atomic actions to composite actions
was the issue of action refinement, which was thoroughly studied within the
project. However, the motivation behind action refinement was not that
of modelling nonsequential computations, bur rather of managing different
levels of abstraction in the description of computations (sequential or not).
The project’s work on action refinement will be described in Section 3.2.

• Decorated (atomic) actions. In this case the idea was to remain with atomic
actions but to annotate them with syntactic information so as to identify
the component responsible for them. Several kinds of decorated actions were
proposed:

– Actions with localities [19,20,4,89,91]. Localities were introduced to dis-
tinguish different parallel components: they could either be assigned sta-
tically to processes (static localities [4,91,25]) and then transmitted to
their actions, or be dynamically created and associated with actions, and
then recorded in the residual process (dynamic localities [19,20]). The no-
tion of dynamic locality proposed by Boudol, Castellani, Hennessy and
Kiehn was already implicitly present in the distributed bisimulation se-
mantics of [27], embodied in the idea of splitting the residual of a transi-
tion among multiple observers; indeed, the idea of associating localities
with actions and processes emerged after some insightful (but unsuc-
cessful) attempts by Kiehn [78] at extending to full CCS the distributed
bisimulation semantics of [27]. As it were, in the presence of global scope
operators like restriction, the idea of splitting the residual of a transi-
tion among multiple observers could only be implemented by inserting
the observers themselves in the residual, which exactly amounted to the
introduction of dynamic localities. Similarly, the notion of static local-
ity was already implicitly contained in both that of “atomic history” by
Degano and Montanari [42,49], and in that of “proof” by Boudol and
Castellani [16,15]. In this sense, Montanari and Yankelevic’s paper on
parametric localities [89] may be seen as an accomplishment of both the
concept of atomic history and of the notion of locality (and particularly
of static locality [4]) which had been meanwhile developed in the project.
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– Actions with causes. In the model of causal trees by Darondeau and
Degano [34,35], the actions labelling the branches were annotated with
their set of (global) causes in the computation given by the path from
the root to the action. In Kiehn’s subsequent papers [79,80], this causal
semantics was compared with the dynamic locality semantics within a
common framework (the “local-global cause transition system”), which
also allowed a stronger semantics to be defined, based on the conjunction
of local and global causes.

– Actions with proofs. In the proved transition system of Boudol and
Castellani [16,15], labels go all the way from simple atomic actions to
complete “proofs” of transitions. As remarked by the authors in [18],
the notion of proof could be weakened in various ways to obtain more
specific semantics (for instance, the static locality semantics). Again, the
notion of “atomic history” [42] could be seen as a precursor to that of
“proof” (although it did not record choices, and hence did not support
the definition of a concurrency relation between transitions).

– Actions with past. Both actions with dynamic localities and actions with
causes are instances of actions with portions of their “computational
past” or “global history”. In contrast, actions with a “static past” or
“local history” were considered in the event transition system proposed
for CCS by Boudol and Castellani in [18], as an intermediate among three
different interpretations of the calculus (into proved transition systems,
flow event structures and flow nets).

2. Structured states. New forms of structured states were explored, often in
connection with the decorated actions described above:

– Grapes. In their early model of concurrent histories [49], Degano and
Montanari had defined concrete computations with structured initial and
final states. These structured states, called grapes [42], were essentially
the sets of sequential components of a process, each of them being anno-
tated with its “position” within the process. This annotation allowed the
computations to be concatenated while recording the causality relation
among their actions. The constituent blocks of such computations, called
atomic histories, could be directly derived by operational rules. From a
concurrent history, a partial ordering of actions could be abstracted away.
This model was used by Degano, De Nicola and Montanari to define a
partial ordering semantics for CCS in [42,47].

– Processes with past. Whenever actions with past are used, it is also nec-
essary to record the past in the states, so that the computational history
can be incremented at each step and propagated with subsequent actions.
Thus, corresponding to actions with dynamic localities and actions with
causes, processes with localities and processes with causes were intro-
duced. A more general notion of process with past or “marked process”
was considered in the event transition system of [18]. A marked process
contains all the information of the original process, but additionally spec-
ifies which part of the process has been executed. It corresponds to an
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unfolded Petri net with a marking, or to an event structure with a con-
figuration.

Although not expressly tailored for true concurrency, but reflecting in some
sense the notions of distribution and mobility associated with concurrency, a
new model for describing the operational semantics of parallel processes, called
the Chemical Abstract Machine (CHAM), was proposed by Berry and Boudol
in [10]. In this model, the state of a system of concurrent agents is viewed as a
“chemical solution”, in which floating “molecules” can interact with each other
according to “reaction rules”. The CHAM model introduced a new, simpler
way of expressing a reduction semantics in a concurrent scenario, which was
to become quite popular in later research on process calculi (notably on the
π-calculus [86], the join-calculus [54] and the ambient calculus [22]).

3.2 Abstract Noninterleaving Semantics

Most of the noninterleaving semantics for CCS described in the previous section
were compared with interpretations of CCS into nonsequential models such as
Event Structures and Petri nets, or used as a basis for defining behavioural
equivalences on processes, in order to obtain more abstract semantics.

Nonsequential Models. As mentioned earlier, the initial criterion for assess-
ing the new noninterleaving operational semantics for CCS was their agreement
with “denotational semantics”, given by interpretations of CCS into semantic
domains like Event Structures and Petri nets. Thus, for instance, in [45,44]
Degano, De Nicola and Montanari showed the consistency of their operational
semantics of [43] with interpretations of CCS into prime event structures [94]
and condition-event systems (a class of Petri nets). In [16], Boudol and Castel-
lani showed that their proved transition semantics agreed with an interpretation
of CCS (and SCCS) into flow event structures, a class of event structures lying
between prime and stable event structures [114], thus generalising their previ-
ous result of [13,14]. In a joint paper between Aarhus and Sophia [28], it was
shown that parallel composition of flow event structures can be characterized as
a categorical product, and that flow event structures obtained as interpretations
of CCS terms satisfy a particular structural property (which generalises that
given in [13] for a subset of CCS). In [18], the results of [14,16] were extended to
flow nets [12], a class of “stable” Petri nets, and to asynchronous transition sys-
tems, a model introduced by Bednarczyk in [9]. Indeed, the need for interpreting
process algebras gave a new impulse to the study of semantic domains. Besides
the above-mentioned flow event structures and flow nets, which were designed
to fit typical process combinators, we could also cite here the models of bundle
event structures [81] (developed outside the project but shown to correspond
to safe flow nets in [17]), Δ-free event structures [36], and later on, transition
systems with independence [117].

On a more abstract level, a line of research that was actively pursued within
the project was the comparison of different semantic models within an algebraic
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or categorical framework. A web of strong formal connections, expressed as ad-
junctions among various transition-based models presented as categories, had
already been established by Winskel in [112,115]. A notable contribution was
made by Nielsen, Rozenberg and Thiagarajan with the introduction of the no-
tion of region, which allowed the above connections to be extended to a class
of structured transition systems [95,96,97]. The idea of region was to be further
used by Winskel and Nielsen in [117] to give an adjunction between Petri nets
and asynchronous transition systems [9].

The unification of models of concurrency into a common algebraic framework
had also been a central concern of Ferrari and Montanari’s work [51,53], where
the permutation semantics of [14] was lifted to a more abstract setting, which
could then be specialised in various ways. For instance, by introducing axioms to
equate permutation-equivalent computations, one could obtain partial ordering
computations. Also, by considering categories having CCS models as objects,
one could use morphisms to represent a specification-implementation relation
between two CCS models. In the paper [52], the same authors proposed a gen-
eralisation of Milner’s expansion theorem to a language called CCCS, a variant
of CCS with an “observation prefixing” operator. Observations were elements of
an algebra (in fact, they were “proofs” in the sense of [14]). By adding axioms
to this algebra, one could instantiate the extended expansion theorem to char-
acterise different bisimulation equivalences, such as standard bisimulation and
pomset bisimulation. As it were, the extended expansion theorem was a gen-
eralisation of that proposed in [13] for pomset bisimulation (where a notation
for “pomset prefixing” had similarly been introduced for axiomatisation pur-
poses). In the same spirit, a parametric approach for axiomatising bisimulation
equivalences was later proposed in [48]: in this case, the underlying structures,
called “observation structures”, were node-labelled graphs where the labels rep-
resented computations. This framework allowed for the characterisation of a
larger number of equivalences. The last model we wish to mention is Gorrieri
and Montanari’s SCONE calculus [67], a calculus of Petri nets generated by a
set of combinators, which was used in particular to implement CCS.

As might be apparent from the above discussion, there were two main “angles
of attack” in the project. In general, Aarhus and Pisa partners had a strong
concern in generality and parametricity, and tended to privilege a “uniform”
or “parametric” approach to the study of nonsequential models. By contrast,
Sophia and Sussex partners preferred to focus on particular calculi or models,
adopting a more “language-specific” or “model-specific” approach.

Noninterleaving equivalence notions. Based on the various concrete oper-
ational semantics described in Section 3.1, several noninterleaving behavioural
equivalences and preorders were proposed for CCS. For some of them, axioma-
tisations or logical characterisations were also provided. Let us briefly recall the
main proposals:

– NMS-equivalence. In [43], Degano, De Nicola and Montanari had proposed
a partial ordering semantics based on a tree-model called Nondeterministic
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Measurement Systems (NMS). By applying “observation functions” to
NMS’s, different equivalence notions could be obtained, among which a par-
tial ordering equivalence called NMS-equivalence.

– Pomset bisimulation. The pomset transition system of [13] and its extension
in [16] gave rise to the notion of pomset bisimulation. Pomset bisimulation
equivalence was unrelated to NMS-equivalence. An axiomatisation of pomset
bisimulation for a subset of CCS was given in [13].

– Mixed-ordering equivalence. Based on the concurrent history semantics [49],
Degano, De Nicola and Montanari proposed in [45,44] an equivalence called
“mixed-ordering equivalence”, which combined the observation of the tem-
poral ordering with that of the causal ordering of actions. This equivalence
was stronger than pomset bisimulation, and was shown by Aceto [2] to coin-
cide with an equivalence proposed by Goltz and Van Glabbeek to deal with
action refinement, called history-preserving bisimulation [57].

– Distributed bisimulation. Some advances were made on distributed bisimu-
lation equivalence. In his PhD thesis [31], Christensen presented a logical
characterisation and a decidability result for distributed bisimulation (in its
initial formulation with local and concurrent residuals [24]). In [78], Kiehn
showed the limits of the original definition of distributed bisimulation, which
appeared to be incompatible with the CCS restriction operator. Indeed, in
the light of Kiehn’s observations [78] and Aceto’s results [3], the “right” ex-
tension of distributed bisimulation to full CCS turned out to be dynamic
location equivalence (see below, and previous discussion at page 763).

– Location equivalence and preorder. The static [4] and dynamic [19,20] local-
ity semantics supported two different definitions of “location equivalence”
and “location preorder”. For the dynamic versions, an axiomatisation was
also provided in [20]. In [4], Aceto established the coincidence of the static
and dynamic notions for a subset of CCS with only top-level parallelism
(this work was later to be extended to full CCS by Castellani [25] and by
Mukund and Nielsen [91]). Since static and dynamic localities do not have
the same meaning - static localities represent sites, while dynamic locali-
ties represent sets of local causes - this result was not obvious. It amounted
to proving that observing distribution and observing local causality were
essentially the same thing. Dynamic location equivalence was shown to coin-
cide with distributed bisimulation on the subset of CCS without restriction,
where the latter had been originally defined. On the smaller subset of CCS
with parallel composition but no communication, it was finer than pomset
bisimulation (because it recorded how computations were locally extended).
As soon as communication was introduced, it became incomparable with
pomset bisimulation.

– Local mixed-ordering equivalence. A transition system for CCS labelled with
static localities, called “spatial transition system”, was studied by Monta-
nari and Yankelevich in [118,90]. In this case, transitions with localities were
not directly used to define an equivalence, but rather to build a second
transition system, labelled by “local mixed partial orders” (where the or-
dering was a mixture of temporal ordering and local causality). This new
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transition system was then used to define a behavioural equivalence called
local mixed-ordering equivalence. This equivalence, a variant of the mixed-
ordering equivalence discussed above, was shown in [118] to coincide with
dynamic location equivalence.

– Causal bisimulation. The bisimulation equivalence associated with Daron-
deau and Degano’s causal trees, called causal bisimulation [34], was also
investigated in relation to action refinement in [36]. It was shown to coincide
with history-preserving bisimulation, and hence also with mixed-ordering
equivalence. A complete axiomatisation for causal bisimulation was given
in [34].

– Local-global cause equivalence. A “local-global cause transition system” for
CCS, where actions were decorated with both their local and global causes,
was proposed by Kiehn in [79] and [80] (see also [77]). By disregarding the
set of global causes, respectively local causes, of actions, one could then
obtain two different equivalences called “local cause equivalence” and “global
cause equivalence”, which were shown to coincide respectively with dynamic
location equivalence and causal bisimulation. This semantics also supported
a stronger equivalence, called local-global cause equivalence, arising from the
joint observation of the two sets of causes.

An interesting and somewhat unexpected outcome of these studies on nonin-
terleaving equivalences was that distributed and causal semantics, exemplified
respectively by location equivalence and causal bisimulation, were in general
incomparable: they only coincided on the finite fragment of CCS without com-
munication (essentially because in that case all causality is local). Another ob-
servation was that, while both location equivalence and causal bisimulation are
“history-preserving” equivalences (recording respectively the local and the global
history), other equivalences like pomset bisimulation were instead “forgetful”. A
detailed comparison of noninterleaving equivalences was given by Aceto in [2,3].
A more recent comparison, including other equivalences, may be found in [26].

Action refinement. Another question that was thoroughly studied within the
project was that of action refinement. The motivation here was to allow for a
specification of systems at different levels of abstraction. This was to be used
as a conceptual underpinning for the so called “top-down design” of distributed
systems, whereby a system is developed by successive refinements of atomic
actions into more complex behaviours. Usually an “implementation relation”
between two successive descriptions was introduced, in order to guarantee the
correctness of the refinement process.
Approaches to action refinement may be classified according to various criteria:

– atomic versus non-atomic refinement: in the first case the refining behaviour
is required to be executed atomically, while in the latter it may be freely
interleaved with other behaviours;

– horizontal versus vertical refinement: in the first case the abstract and con-
crete descriptions are given in the same formalism, while in the latter case
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they are given in different formalisms, and an encoding from the first to the
second formalism has to be provided;

– syntactic versus semantic refinement: in the first case action refinement is
introduced in a language by means of a specific operator, and implemented as
syntactic substitution; in the second case it is defined on a semantic model.

In some early work on atomicity by Boudol and Castellani [14,11], as well as
in the paper [66] by Gorrieri, Marchetti and Montanari, methods for treating
computations as atomic (that is, both recoverable and interference-free, in the
terminology of [11]) had been considered. In both cases, an auxiliary labelled
transition system was introduced for describing atomic computations. However,
these proposals were not explicitly concerned with the issue of action refinement,
but rather with that of atomicity of behaviours. Subsequently, all the project’s
work on action refinement was essentially concerned with non-atomic refinement,
both syntactic and semantic, and mostly of the horizontal type. Indeed, non-
atomic refinement was the most popular approach at that time.

Although the motivation behind action refinement was quite different from
that of noninterleaving semantics, a connection between the two questions was
deemed to exist for some time, and resulted in a concurrent development of their
theories. Let us briefly recall the research context at the time.

When dealing with syntactic action refinement, a new refinement operator is
introduced in the language. Then a natural question to address is whether this
operator preserves behavioural equivalences. In a short note [29] published in
1987, Castellano, De Michelis and Pomello showed that standard bisimulation
equivalence was not preserved by action refinement, and conjectured that the
recourse to a noninterleaving semantics was necessary to cope with refinement.
Robustness with respect to action refinement became a new criterion to assess
equivalence notions, and spurred the search for new noninterleaving equivalences.

Hennessy’s unpublished manuscript “On the relationship between time and
interleaving” [71], later to become “Axiomatising finite processes” [72], was prob-
ably the first attempt to consider actions with duration without explicitly intro-
ducing time, by splitting atomic actions into a beginning subaction and an ending
subaction. Strong bisimulation equivalence with respect to these subactions was
called timed equivalence in [6], where it was shown to be preserved by action
refinement in the simple setting of CCS without communication and restriction.
The owl example from [56] shows that this is no longer the case when the ex-
pressiveness of the language is increased to allow communication and some form
of hiding. A strengthening of timed equivalence called refine equivalence is ob-
tained by requiring, in the bisimulation game, that the matching of begin actions
should determine the matching of the corresponding end actions; the identity of
the original action which gives rise to the begin and end actions is remembered
in the bisimulation game. In [7], the weak version of this equivalence, called weak
refine equivalence, was shown to be preserved by refinement in a more expressive
language with communication. Although somewhat complicated to define, the
latter equivalence seems more natural than timed equivalence. It is also techni-
cally easier to handle; for example the refinement theorem in [6], in the simple
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language, was actually proved for the strong version of refine equivalence, and
the result was only obtained indirectly for timed equivalence by showing that
the two equivalences coincided on the simple language.

Similar ideas were pursued outside the project by van Glabbeek and Vaan-
drager [62,56], in the setting of non-interleaving models such as Event Structures
and Petri Nets. Their equivalence, called ST-bisimulation equivalence, was very
close in spirit to refine equivalence, although the decision of which end actions are
to be matched was determined by the previous history of associations between
actions. In [62], van Glabbeek and Vaandrager showed that ST-bisimulation
was robust for action refinement in the setting of Event Structures. Since ST-
bisimulation is not a partial order equivalence (it was conceived for real-time
and disregarded some causality) this result invalidated the conjecture of [29].

Meanwhile Goltz and van Glabbeek [57] had shown that, except for pomset
trace equivalence, none of the partial order equivalences existing at the time was
preserved by refinement. In particular pomset bisimulation and NMS equivalence
were not robust with respect to refinement. In the same paper, it was shown
that a stronger partial order equivalence called history preserving bisimulation
(already used by Rabinovitch and Trakhtenbrot under the name “behaviour
structure equivalence” [107], but reformulated on Event Structures by Goltz
and van Glabbeek), was preserved by refinement on prime event structures. This
result was to be strengthened in subsequent papers, by considering more general
forms of refinement and more general classes of Event Structures [58,59,60].

The above-mentioned work by Aceto and Hennessy mostly concentrated on
syntactic refinement. In Aceto’s thesis [1], on the other hand, both syntactic and
semantic refinement were considered. In a similar vein, Nielsen, Engberg and
Larsen presented in [93] four different fully abstract models, based on sets of
pomsets, for a simple CCS-like process calculus (essentially the same as in [13])
equipped with a refinement construct. These results were generalised by Aceto
and Engberg to a model based on pomsets failures (pomsets with refusal sets)
in [5]. Semantic refinement was studied by Gorrieri and Montanari in [67,68],
as well as in Gorrieri’s thesis [65]; here, vertical refinement was privileged and
the use of implementation relations, parameterised by refinement functions, was
investigated. More specifically, in [67] Gorrieri and Montanari proposed an im-
plementation of the subset of CCS without restriction and relabelling into the
net calculus SCONE. This result was generalised in [65] to full CCS and to
SCONE+, an extension of SCONE. In [68] the same authors put forward a
general methodology for “atomic linear refinement”, where each refined process
could be proved to be a correct atomic implementation of its source process.

In [36], Darondeau and Degano explored the issue of syntactic and seman-
tic action refinement in their model of causal trees [34]. To this purpose, they
proposed an adaptation of prime event structures called “free event structures”,
which was closed with respect to event refinement. Causal trees were already
known to correspond to event structures up to history-preserving bisimulation.
Refinement operators were then introduced for causal trees and the agreement
of syntactic and semantic refinement was established.
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4 Conclusion

In this section, we attempt a short, and certainly incomplete, analysis of the
impact of the CEDISYS project on contemporary and subsequent research. As
can be gathered from the discussion in the previous sections, the project was
the theatre of intense “cross-fertilization”. Many examples of mutual influences
among the partners have already been cited. Let us point out some others, and
mention some later influences on other researchers.

The work on localities may be viewed as carrying the project’s “trademark”.
As explained earlier, the notion of dynamic locality stemmed from previous work
on distributed bisimulation, which in turn had been inspired by abstraction ho-
momorphisms [23,88] (or rather their extension to true concurrency), and by
some earlier work by Degano, De Nicola and Montanari on partial order seman-
tics for CCS [42]. The later work by Corradini and De Nicola on localities [32] was
also very much in the spirit of CEDISYS. Localities are now an intrinsic compo-
nent of the wide range of calculi used to study “network aware” computing, with
varying characteristics reflecting the different facets of network computing; typ-
ical examples include the ambient calculus [22], the distributed π-calculus [73],
the join-calculus [54], and the language KLAIM (locality-based LINDA) [39,40].

The essential characteristics of the chemical abstract machine [10] have been
widely adopted, and now form part of the natural framework for designing and
studying computational calculi. In particular they provide a very convenient and
useful methodology for defining the reduction semantics of such calculi.

The notion of proved transition system has also been very influential. Apart
from its use within the project, let us cite the work by Badouel and Darondeau,
who established in [8] a correspondence between (a variant of) the proved tran-
sition semantics and an interpretation of CCS into Stark’s trace automata [109].
In [50], Degano and Priami studied proved trees, a subset of proved transition sys-
tems which was well-suited for the comparison with causal trees. Subsequently,
proved transition systems were taken up by Priami [105], under the name en-
hanced transition systems, and used for many different purposes; a particularly
interesting application area is that of Computational Systems Biology, [106]. The
study of reversible computing [33,101] also benefitted from this idea; for example,
the model used in [101] is very close to that of event transition systems [18].

The project’s work on refinement was both inspired and used by Goltz and
van Glabbeek [60,59] as well as by Rensink [69]. These authors also took up the
model of flow event structures, which turned out to be well-suited for certain
forms of refinement. In particular, in [61], Goltz and van Glabbeek proposed a
subclass of flow event structures which was both closed under action refinement
and well-behaved with respect to parallel composition, thus generalising the work
by Castellani and Zhang [28].
The notion of open map bisimulation [76,30], introduced a few years after the
end of the project, was partly inspired by that of abstraction homomorphism.
The general issue of abstraction, namely how to make models such as event
structures and Petri nets and their morphisms abstract enough to support a
fully fledged “domain theory for concurrency”, continues to be pursued, one
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recent line being through the introduction of a formal treatment of symmetry
on such models [116].

We could not close this recollection of the CEDISYS project without a special
praise for “Ugo’s management style”, which led the project to meet its commit-
ments with a Swiss clock punctuality, while being experienced by all its members
as a most stimulating and enjoyable collaboration.

Acknowledgements. We would like to thank Luca Aceto, Rocco De Nicola
and the anonymous reviewer for helpful comments.
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Some Theorems Concerning the Core Function

Angelo Raffaele Meo

Politecnico di Torino

Abstract. In a preceding paper an NP-complete problem has been dis-
cussed pertaining to a function, called “core function”, which plays an
important role in the well known Boolean satisfiability problem (see the
first item in the references list). In this paper, some theorems concerning
the minimal Boolean implementation of the core function are proved.

1 A Theorem of Boolean Isotonic Functions

Let f(x1,x2, ..., xn) be an isotonic Boolean function, that is a Boolean function
which can be implemented with only AND and OR gates.

Let Imin be one of its minimum cost implementations among all the imple-
mentations of f, the cost being defined as the total number of AND, OR or
NOT gates. Let Cmin be the cost of Imin.

Theorem 1. There exists always an implementation J of f containing only
AND and OR gates, applied to both complemented and uncomplemented in-
put variables, such that cost(J) ≤ 2 * Cmin

This theorem is nearly obvious (a proof is reported in Appendix A). It is will be
used in the analysis of core function.

2 The Question “P = NP?”

The simple theorem proved in the preceding section will be applied to the analy-
sis of a well known problem, namely the question “P = NP?”.

A brief description of the definitions and properties well known among the sci-
entists of modern computational complexity theory which will be made reference
to, is presented in this section.

P denotes the class of all the decision problems which can be solved in poly-
nomial time.

NP denotes the class of all the decision problems f satisfying the property that
the function check(f) analyzing a witness of the decision problem is polynomial
time decidable.

“P=NP?”, or, in other terms, “Is P a proper subset of NP?”, is one of the
most important open questions in modern computational complexity theory.

A decision problem C in NP is NP-complete if it is in NP and if every other
problem L in NP is reducible to it in the sense that there is a polynomial time

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 778–796, 2008.
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algorithm which transforms instances of L into instances of C producing the
same values.

The importance of NP-completeness derives from the fact that, if we find
a polynomial time algorithm for just one NP-complete problem, then we can
construct polynomial time algorithms for all the problems in NP and, conversely,
if any single NP-complete problem does not have a polynomial time algorithm,
than no NP-complete problem has a polynomial time solution.

The analysis discussed in this paper will be based on a well known NP-
complete problem which is called “satisfiability problem” or SAT.

Given a Boolean expression containing only the names of a set of variables,
the operators AND, OR and NOT, and parentheses, is there an assignment of
TRUE and FALSE values to the variables which makes the entire expression
TRUE?

It is well known that the problem remains NP-complete also when all the
expressions are written in “conjunctive normal form” with 3 variables per clause.
In this case, the analyzed expressions will be of the type

(x11 OR x12 OR x13) AND
(x21 OR x22 OR x23) AND (1)
. . . . . . . . . . . . . . . . . .
(xt1 OR xt2 OR xt3)

where

– t is the number of clauses or triplets;
– each xij is a variable with or without a NOT operator in front of it;
– each variable can appear multiple times in the expression.

If the deterministic Turing machine is assumed as the computational model,
with {0,1,b} as its set of input symbols, the input data appearing on the tape
at the beginning of computation can represent the data of expression (1) in the
following way

. . . b b <binary code of number of variables> <separator>
s11 n111 n112 . . . n11m

s12 n121 n122 . . . n12m

s13n131 n132. . . n13m (2)
s21 n211 n212 . . . n21m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
st3 nt31 nt32 . . . nt3m b b . . .

where

– b is the blank symbol;
– t is the number of triplets;
– sij denotes the sign of variable xij(with sij = 1 denoting that xij is preceded

by operator NOT);
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– nijk denotes the k-th component of the binary code <nij1 nij2 . . . nijm>
representing the name of variable xij ;

– the binary code of the number nv of variables is needed in order to determine
the number m of binary digits necessary to represent the names of variables
according the rule m=minimun integer not less than log2 nv;

– the binary code of the separator must not be included in the binary code of
the number of variables.

Notice that, by neglecting the bits of the binary code of the number of variables
and the bits of the separator, the number of input bits on the tape will be

n = t * 3 * (1 + minimum integer not less than log2 3*t) (3)
since the maximun value of the number of variables is t*3.

The properties of Turing machines processing the bit string described by (2)
will be analyzed in this paper with reference to a family {Cn} of Boolean cir-
cuits. Cn has n binary inputs and produces the same binary output as the
corresponding Turing machine.

The equivalence between a deterministic Turing machine M processing some
input x belonging to {0,1}n and an n-input Boolean circuit Cn is well known. It is
also known that the number of gates, or AND,OR,NOT operators, appearing in
circuit Cn, is polynomial in the running time TM(n) of the corresponding Turing
machine. We shall prove here that the number of gates of the circuit Cn increases
exponentially with n; it follows that also TM(n) increases exponentially.

3 The Core Function

In the case of satisfiability problem with 3 variables for clause, Boolean circuit
Cn has n inputs which the binary data described in (2) are applied to. (Of course,
the binary code of the number of variables and the separator are not needed).
The output of Cn will take the value TRUE when, and only when, there is an
assignment of values TRUE and FALSE to variables making expression (1)
TRUE.

In order to simplify analysis, circuit Cn will be decomposed into two process-
ing layers as shown in Fig. 1.

A variable j of triplet i will be defined as “compatible” with variable k of
triplet h when, and only when, either the sign sij of the former variable is equal
to the sign shk of the latter or the name <nij1 nij2 . . . nijm> of the former is
different from the name <nhk1 nhk2 . . . nhkm> of the latter. From that definition
it follows that two not compatible variables have different signs and the same
name; therefore, their AND is identically FALSE.

The compatibility layer is composed of 3*t*(3*t-3)/2 identical cells, one for
each pair of variables belonging to different triplets.

As shown in Fig. 2, the inputs of a cell will be the sign sij and the name
<nij1 nij2 . . . nijm> of variable j of triplet i, and the sign shk and the name
<nhk1 nhk2. . . nhkm> of variable k of triplet h. The ouput of the same cell cijhk

will be TRUE when, and only when, the two variables are compatible between
themselves.
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Fig. 1. Decomposition of Boolean circuit Cn into the compatibility layer and core layer

Fig. 2. Compatibility cell

Variable cijhk will be called a compatibility variable or simply a compatibility.
The core layer processes only the 3*t*(3*t-3)/2 compatibility variables cijhk

and produces the global result of computation.
As the circuit Cn, also the global Boolean function implemented by Cn may be

decomposed into two layers of functions. At the compatibility layer, the function
implemented by a cell may be written as follows (by using the symbols *, +,
and ! for representing AND, OR and NOT operators):

cijhk= sij * shk + !sij * !shk+
+ nij1 * !nhk1 + !nij1 * nhk1 + (4)
+ nij2 * !nhk2 + !nij2 * nhk2 +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+nijm * !nhkm + !nijm * nhkm

The Boolean function implemented by the core layer will be called the “Core
Function” of order t, where t is the number of triplets. It will be denoted with the
symbol CF(t). The core function can be determined by proceeding as follows.

Consider one selection of variables appearing in (1), one and only one for each
triplet, for all the triplets. Let

1i1, 2i2, . . . , tit (5)
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(with i1, i2, . . . , it ∈ {1,2,3}) be the indexes <number of triplet, number of
variable in the triplet> of the selected variables. Let Π be the product of all the
compatibility variables relative to all the pairs of the selected variables

P = c1i12i2 * c1i13i3 * . . . . * ct−1it−1tit (6)

The core function can be defined as the sum

∑
Π (7)

of the products (6) relative to all the selections (5).
For example, in the case of 3 triplets, the core function can be defined as

follows:

CF(3) = c1121 * c1131 * c2131 +
c1121 * c1132 * c2132 +
c1121 * c1133 * c2133 + (8)
c1122 * c1131 * c2231 +
...(other 22 products)...
c1323 * c1333 * c2333

It is easy to prove that Eq. (1) is TRUE when, and only when, the core
function takes the value TRUE.

Notice that the processing work of the cell of Fig. 2 increases with the loga-
rithm of the number of the variables since such is the increment of the code of
the name of a variable. Therefore, the total processing work of the compatibility
layer can be written as:

K * 3*t * (3*t – 3) * log2(3*t)

where 3*t * (3*t – 3)/2 is the total number of the compatibility cells.
Besides, the problem solved by the core layer is clearly in NP, because it is

easy to verify a witness solution. It follows that, since the compatibility layer
polinomially reduces an NP-complete problem (3SAT) to the problem solved
by the core layer, the core function describes a new NP-complete problem. This
will be the problem discussed in the following sessions.

4 Properties of the Core Function

In a previous paper [1] the following properties of a core function have been
proved.

Lemma 1 (Property 1). The core function CF is totally isotonic.

Lemma 2 (Property 2). Any product (6) is a prime implicant of the core
function (that is, a product of variables which is included by no other).
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Lemma 3 (Property 3). Since the different selections of each of variables
(5) are 3, the number of prime implicants of the core function is equal to 3t.
Each of these prime implicants is essential and is the product of t*(t-1)/2
compatibilities.

In the next section, reference will be made to the following definitions.

Definition 1 (spurious term). A pair of compatibility variables {chklm , cpqrs}
is defined as a spurious pair if

– h = p and k �= q; or
– h = r and k �= s; or
– l = p and m �= q; or
– l = r and m �= s.

For example, the pair {c1121, c1231} is a spurious pair since the triplet 1 is
associated to two different indexes of variables (1 and 2).

A spurious term is a product of compatibility variables countaining the ele-
ments of one or more than one spurious pair.

For example, the term
c1121 * c1231 * c2131

is a spurious term since it contains the elements of the spurious pair {c1121,
c1231}.

Definition 2 (impure term). A term T of the core function CF (namely, a
product of literals implying CF), which contains one or more complemented vari-
ables, will be defined as an impure term. The product of all the uncomplemented
variables of T will be defined as the core of T.

Definition 3 (mark). Consider a not spurious subset of the variables listed in
(6) satisfying the property that each of the indexes of triplet appears at least once
in some variable. The product of the variables of such a subset will defined as a
“mark” or a “not spurious mark” of the prime implicant which it is part of.

For example, in the case of CF (4), the product
M = c1a2b* c1a3c* c1a4d (9)

(where a, b, c, d are elements of {1,2,3}) is a “not spurious mark” of the prime
implicant

P= c1a2b * c1a3c * c1a4d * c2b3c * c2b4d * c3c4d (10)
since all the indexes of triplet appear at least once in (9).

A spurious term in which all the indexes of triplet appear at least once will
be called a “spurious mark”. Notice that a spurious mark may be the mark of
more than one prime implicant. For the example, in the case of CF(3),

c1121 * c1131 * c1122
is a spurious mark of both the prime implicants

c1121 * c1131* c2131
and

c1122 * c1131 * c2231.
An impure term whose core is a (possibly spurious) mark will be a defined as

a (possibly spurious) impure mark.
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Definition 4 (extended prime implicants). A term T of the core function
which contains all the uncomplemented literals of a prime implicant will be de-
fined as an “extended prime implicant”.

It may be a spurious prime implicant or an impure prime implicant or both a
spurious and impure prime implicant.

Notice that an extended prime implicant can be viewed as a (possibly spurious
or impure) mark.

Definition 5 (remainder). A term which is neither a possibly spurious or
impure mark nor an extended prime implicant will be called a “remainder”.
Generally, a remainder can be associated to one or more prime implicants.

For example,
R = c2b3c * c2b4d * c3c4d (11)

is a remainder of the prime implicant (10). As will be shown shortly, a neither
spurious or impure remainder R “belongs” to more than one prime implicant,
in the sense that

R ≥ Pi

for a set {Pi} of prime implicants of the core function.
For example, in the case of CF(3), c2131 is a remainder of the prime implicants
P1 = c1121 * c1131 * c2131
P2 = c1221 * c1231 * c2131 (12)
P3 = c1321 * c1331 * c2131
On the definitions of mark and remainder the following properties are based.

Lemma 4 (Property 4). A not spurious mark M specifies a corresponding
prime implicant P uniquely. Indeed, if all the indexes of triplet appear in M, the
product (6) is completely defined.

We shall write
P = I(M)

to state that P is the prime implicant specified by M.
The same equation will be written to state that P is one of the prime impli-

cants specified by the spurious mark M.
As already mentioned, a remainder R does not specify a corresponding prime

implicant uniquely. In the example relative to CF(3) above described, three
prime implicants correspond to c2131, as shown by (12), since a single index of
triplet is missing in that remainder. In general, if z triplets are not involved in R,
there are 3z different ways of involving the missing triplets. Hence the following
property follows.

Lemma 5 (Property 5). A not spurious remainder R in which the indexes of
z triplets are missing corresponds to 3z different prime implicants.

Finally, the following property can be proved.

Lemma 6 (Property 6). Let P1 and P2 be two products of variables such that
P1* P2 is equal to a prime implicant P of a core function. Either P1 or P2 is
a mark of P.
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5 The Reference Architecture

The theorem proved in Appendix A makes it possible to simplify the proof of the
fact that the cost of the core function increases exponentially with the number
of variables.

Indeed, we shall consider the implementations of the core function with AND
and OR gates only (isotonic implementations). We shall prove that no isotonic
implementation exists which increases not exponentially with the number of vari-
ables; hence, we shall derive that no implementation of general type (with NOT
gates also) exists which increases with the number of variables exponentially.

Fig. 3. The reference architecture

Fig. 3 shows the related architecture characterized by a number of subnet-
works each of which has the structure shown by Fig. 4. As an alternative, the
network of Fig. 3 might be composed by a single network of the type of Fig. 4.

Fig. 4. The structure of a PCA

Each of the circuits presented in Fig. 4 will be called a “primary composite
addendum (PCA)” and each of the OR gates together with its input gates will
be called a “primary factor of a primary composite addendum (PCAF)” (Fig. 5).
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Fig. 5. A structure of a PCAF

Consider the Boolean values of the functions implemented by the circuits
preceding nodes A, B, H, K, P,

val (A)
val (B)
...........
val (H)
val (P) = val (A) * val (B) *...* val (H) * val (K)
Each of these Boolean values can be expressed as the sum of its prime impli-

cants and, therefore, as a sum of terms of the type:
(M1 + M2 + M3 +...+ R1 + R2 + R3 +....)

where the Mi ’s are marks (or prime implicants) and the Ri ’s are remainders.
It is easy to prove that the following four different cases may occur

1. val (A) * val (B) *...*val (H) = M11 + M12 + M13 +...
and
val (K) = M21 + M22 + M23 +...+ R21 + R22 + R23 +...

2. val (A) * val (B) *...* val (H) = M11 + M12 + M13 +...
and
val (K) = M21 + M22 + M23 +....

3. val (A) * val (B) *...*val (H) = M11 + M12 + M13 +...+ R11 +
R12 + R13 +...
and
val (K) = M21 + M22 + M23 +...

4. val (A) * val (B) *...* val (H) = M11 + M12 + M13 +...R11 + R12
+ R13 +...
and
val (K) = M21 + M22 + M23 +...+ R21 + R22 + R23 +...
but, for any i, j,
R1i * R2j = 0.
Indeed, if any R1j * R2j were different fron 0 identically, val (P) could
not the core function.
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For the sake of brevity, we shall restrict analysis to case 1, leaving the reader
the task of analyzing the other three cases by the same arguments we shall apply
to case 1.

Besides, a product M1j * M2j must generate a possibly extended prime im-
plicant I(M1j). We shall assume that for any i

M1i * Mzj = I(M1j).
The extension to the general case has no conceptual relevance and is left to

the reader for the sake of brevity.
As mentioned, a prime implicant can be interpreted as a mark; so, in the

preceding relationships some mark Mij might be a prime implicant.

6 The Merit and Cost of a PCA

The Boolean function implemented by a PCA is the sum of prime implicants,
some of which are extended.

An extended prime implicant contains only a fraction of the minterms con-
tained in the corresponding not extended prime implicant. Therefore, we shall
define the merit of a not extended prime implicant as the value 1 and the merit
of an extended prime implicant as the fraction of minterms of the corresponding
prime implicants it covers.

Finally, the merit of a PCA will be defined as the sum of the merits of all its
extendended and not extended prime implicants.

Generally, the cost of a PCA will be defined as the number of OR or AND
gates it contains. However, if a gate or a subnetwork of gates may be used in
another PCA, its cost will be divided by the number of different prime implicants
it might contribute to implementing.

The definitions of merit and cost will be used in the evaluation of the total
cost of an implementation of core function.

7 The Structure of PCA’s and PCAF’s

Any product M1i * M2j or M1i* R2j must coincide with a prime implicant
(or with an extended prime implicant) of the core function.

First consider the products of the type M1i * R2j. It is easy to prove that any
product of this family must coincide with one of the prime implicants I(M1j)
generated by M1i.

Notice that a spurious mark might generate a term of the core function which
is the extension of two or more prime implicants. However, this case will not be
considered here since the number of minterms contained in such an extension
decreases very quickly with the number of variables of core function.

A mark might be a spurious term. However, we shall assume that the number
of literals making it a spurious term is less than e*N where e is arbitrarily small
and N is the total number of compatibilities.

In what follows we shall need a new definition.



788 A.R. Meo

Definition 6 (complete and nearly complete marks). A mark M will be
defined as “complete in a given variable of a given triplet” if it contains all the
compatibilities involving that variable.

For example the mark
c1121 * c1131

of CF(3) is complete in nodo 11.
A mark M will be defined as “nearly complete in a given variable of a given

triplet ” if it contains nearly all the compatibilities involving that variable, the
exceptions being at maximum equal to e*N where e is arbitrarily small and N
the total number of compatibilities.

On this definition the following theorem is based.

Theorem 2. Consider two products of the following type:
M11 * R21= I(M11)
M12 * R22= I(M12)

If I(M11) is different from I(M12), then M11 and M12 must be nearly complete
in two different variables.

Proof. For the sake of brevity we shall present here only an informal proof. More
formal definitions and proofs concerning nearly complete marks and terms can
be found in Appendix B.

Assume that M11 is complete in a given variable of a given triplet and M12
is nearly complete in another variable with the exception of a compatibiblity c.

Since also M12 * R21 must be equal to I(M12), then R21 must contain that
compatibility c. As a consequence the product M11* R21 will contain c and,
therefore, it will be spurious.

Its merit will be 1/2.
Assume now that M11 is complete in a given variable and M12 is nearly

complete in another variable with the exceptions of two compatibilities c1 and
c2. In this case R21 must contain both c1 and c2, and its merit will be 1/4.

As a synthesis, the merit decreases very quickly with e*N.

The previous theorem can be extended to the products of the type M1i * M2j

according the following theorem.

Theorem 3. Consider the products
M11 * M21 and M12 * M22

Then, M11 * M21 and M12 * M22 must be equal to the prime implicants specified
by M11 and M12, respectively. Besides, M11 and M12 must be nearly complete
in two different variables.

As a consequence of the preceding theorems we can state the following theorem.

Theorem 4. If condition 1 of Section 4 is satisfied and the hypothesis is as-
sumed that no complemented variables occur, val (A) * val (B)* ... *val (H)
(Fig. 4) can be expressed as a sum of nearly complete marks or prime implicants.
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As mentioned, the hypothesis has been assumed here that, for any i, M1i* M2i

is equal to I(M1i). In general, for some i
M1i * M2i= I(M1i)

while for other i
M1i * M2i= I(M2i).
In this general case the same type of analysis which is going to be presented

here can be applied.

8 The Decomposition of a PCA in Factors

Consider again the function
val(A) * val(B) * ...*val(H)
under the hypothesis that it is the sum of nearly complete marks and no

complemented variable occur. We are interested now in determing val(H).
Assume
val(A) * val(B)*... = (a+b+c+...)
val(H) = (m+n+o+...)

where a, b, c, ..., m, n, o, ... are the prime implicants of the Boolean functions
they represent.

Of course,
(a+b+c+...) * (m+n+o+...) = M11 + M12 + ...
Let
a * m = M11
b * n = M12
Consider
a * n
Since a*n will be one of addenda of (M11 + M12+...) each of which must be

nearly complete in one of its variables, only one of the two following conditions
is possible:

1.1 a is nearly complete in the variables characteristic of M11;
1.2 n is nearly complete in the variables characterist of M12.

Now consider the product b * m.
Since also b *m will be one of the addenda of (M11 + M12 +...), only one

of the two following conditions is possible:

2.1 b is nearly complete in the variables characteristic of M12;
2.2 m is nearly complete in the variables characteristic of M11.

The combinations of the cases 1.1, 1.2, 2.1, 2.2 produce the following conclusive
alternatives:

3.1 a is nearly complete as M11 and b is nearly complete as M12;
3.2 a and m are nearly complete as M11;
3.3 b and n are nearly complete as M12;
3.4 m is nearly complete as M11 and n is nearly complete as M12.
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In the cases 3.1 and 3.4 (a + b+...) and (m + n +...) have the same type
of structure as (M11 + M12 +...); in the cases 3.2 and 3.3, (a + b +...) and
(m + n +...) contain a number of nearly complete terms less by a unit than
the number of near complete marks contained in (M11 + M12 +...).

The same line of reasoning apply also to the decomposition in factors of (a +
b +...) or (m + n +...). Therefore, we can state the following theorem.

Theorem 5. In the decomposition of a PCA in factors of the type shown in
Fig. 3 and Fig.4 the number of the generated factors is equal to or larger than the
number of prime implicants produced by that PCA. As a consequence also the
merit of a PCA is less than the number of the corresponding prime implicants.

9 The Decomposition of a PCAF in Addenda

Let val (A) be the Boolean function implemented by the subnetwork whose
output is node A of the circuit of Fig. 5. Node A is a PCAF resulting from n1
decomposition operations of PCA P in factors. Assume that val (A) is equal
to

R1+ R2 +...+Rp+ M1 + M2 + ...+Mq

and, therefore, it contains q nearly complete marks.
A might be the output of an OR gate whose inputs take the values R1,

R2,..., M1, M2.., as shown in Fig. 5.
In this case each of the value M1, M2, ... can be implemented with an AND

gate having a subset of the input variable x1, x2,... of CF as its inputs. It is
apparent that the total number of gates implementing PCA P is larger than n1
+ q and, therefore, it is larger than the number of prime implicants implemented
by P.

Alternatively A might be the output of an OR gate whose inputs take values
of the type

∑
R +

∑
M as shown by the example of Fig. 6. Also in this case,

an addendum as (R1 + M1 + M2) can be decomposed in factors by using
a number of gates larger than 2, the number of nearly complete marks. Also
in this case the total number of gates implementing PCA P is larger than the
number of prime implicants implemented by P.

10 The Role of Complemented Variables

So far the hypothesis has been assumed that complemented variables play no
important role in marks or remainders. Such a simple hypothesis will be removed
in this section.

Let us return to the first decomposition in factors shown in Fig. 4 and Fig.
5. The relationships:

val(A) * val(B) *....*val(H) = M11 + M12 +...
val(K) = M21 + M22 + ....+ R21 + R22 +....

presented in Section 4 are still valid, but now marks and remainders may contain
complemented variables.
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Fig. 6. A second type of structure of a PCAF

Subdivide the set of marks M1i into the following subsets:
marks containing no complemented variables;
marks containing one complemented variable !c11;
marks containing one complemented variable !c12;
..............
marks containing two complemented variables !c11 !c12;
marks containing two complemented variables !c11!c13;
..............
marks containing three complemented variables !c11 !c12 !c13;
and so on.
Of course, some of these subsets may be empty.
Let m be the number of elements contained in the largest subset.
The evaluations discussed in previous sections apply to first subset and, with

minor changes, to each of the other subsets. So, a single decomposition can
reduce the number of marks of all the subsets by one unit. It follows that the
number of gates contained in a PCA will be

cost ≥ m
Now we can evaluate the merit of the considered PCA. The merit of a prime

implicant generated by the marks of the first subset which contain no comple-
mented variables may be equal to 1, but the merit of each of the prime impli-
cants generated by the marks of the other subsets decreases very quickly with
the number of complemented variables contained in the generated mark. Indeed,
the merit of each of the prime implicants generated by a mark containing one
complemented variable is less than (or equal to) 1/2; the merit of each of the
prime implicants generated by a mark containing two complemented variables
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is less than (or equal to) 1/4; and so on. If n is the number of complemented
variables used to subdivide the set of marks into disjoint subsets, the total merit
of a PCA will be less than the following limit:

m * 1 + m * n * 1/2 +
+ m * bin(n,2) * (1/2)2 +
+ m * bin(n,3) * (1/2)3 +
.................................

where bin (n,i) denotes the number of combination of n elements i by i.

11 Conclusion

From the analysis presented in previous section we can deduce an upper bound
for the merit of a gate, which is specified by the following value;

1 + n/2 + bin(n,2) * (1/2)2 +
+ bin(n,3) * (1/2)3 + .......
But n is less than N, the total number of compatibilities, and 3N is the

number of prime implicants of the core function.
It follows that the number of gates necessary to implement the core function,

represented by 3N divided by the above specified merit of a gate, increases with
N exponentially.
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Appendix A

Theorem 1. There exists always an implementation J of f containing only
AND and OR gates, applied to both complemented and uncomplemented input
variables, such that cost(J) ≤ 2 * Cmin

Proof. Let us divide the gates of implementation Imin of f into different levels.
At level l we place the gates all inputs of which coincide with the comple-

mented or uncomplemented input variables xi or !xi (where !xi denotes the
complement of variable xi).

Level 2 contains the gates whose inputs coincide with input variables or out-
puts of level 1 gates.

In general terms, level q contains the gates whose inputs coincide with input
variables or outputs of levels less than q.

We can transform Imin into J by deleting NOT gates and adding new AND
or OR gates as follows.

Fig. 7. The transformatin of gates of level 1
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Fig. 8. The transformation of the gates of level 1

Fig. 9. A two level subnetwork

We start from level 1.
For any level 1 AND gate we join an OR gate whose inputs are the com-

plements of the inputs of the considered AND gate (Fig. 7). Similarly, for any
level 1 OR gate we join an AND gate whose inputs are the complements of the
corresponding OR gate.

By virtue of such operations, for any output u of the level 1 gates a new node
will be available in the new circuit we are generating whose value will be !u.
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Fig. 10. The transformation of subnetwork of fig. 9

As a second step of processing, for any level 2 AND gate of implementation
Imin we shall join an OR gate whose inputs are the complements of the inputs
of the corresponding AND gate, in both the cases when these inputs coincide
with input variables of f or with outputs of level 1 gates (Fig. 8).

A similar transformation will be applied to all level 2 OR gates.
As an example, the two level subnetwork of Fig. 9 will be transformed into

the subnetwork of Fig. 10. Notice that at the outputs of J not only the outputs
u and w of Imin will be available, but also their complements !u and !v.

The preceding operations will be applied to all the levels of implementation
Imin, in the order of increasing levels. It is apparent that the number of gates
of J is less than twice the number of gates of Imin.

Appendix B

Let NPCA be the number of PCA’s contained in the minimum cost imple-
mentation of core function and NPCA(N) the corresponding function of the
number N of compatibilities.

Let us assume that NPCA(N) is an unknown polynomial function P(N).
Indeed, if NPCA(N) were an exponential function, the cost of the minimum
cost implementation would be exponential.

Consider again the product
val(P) = (M11 + M12+ M13+...) * (M21 + M22+ M23+...)

and the following definitions

Definition 7. An elementary product
M1j * M2j = Jij
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(which is an extended prime implicant I(M1i) or I(M2j)) is defined as a spurious
prime implicant of order s if it can be transformed into a not spurious prime
implicant by removing s of its literals.

Definition 8. The merit of Iij is defined as
merit (Iij) = 2−s

Definition 9. An elementary product Iij is considered as “useful” if its merit
is larger than 1/P(N).

Indeed, if
NPCA * merit (Iij) < 1

the elementary contributions of an extended prime implicant for any PCA are
not sufficient to generate a not extended prime implicant.

From the preceding Definitions 8 and 9 the following simple theorem follows.

Theorem 6. The extended prime implicant is Iij useful if it is spurious of order
s and

s < log2 P(N)

Definition 10. A spurious (of order s) mark M1j is useful if
s < log2 P(N)

Indeed, if M1j is not useful, neither a product involving M1j can be useful.

Definition 11. A mark M or a term T will be defined as “nearly complete in
a given variable of a given triplet” if it contains all the compatibilities involving
that variable with the exception of a number of them less than log2 P(N).

The theorems of Section 8 are true also by making reference to the preceding
Definition 11. The proof is left to the reader.



The Seventies
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mrt@di.unito.it

I arrived in Pisa at the beginning of 1968, after getting my degree from the
Politecnico of Milan. At that time Antonio Grasselli was moving from the Po-
litecnico of Milan to organize the new curriculum in Computer Science at the
University of Pisa, and wanted to create a research group there. The group was
established at the Istituto di Elaborazione dell’Informazione (IEI) of the Na-
tional Research Council, and included initially Giorgio Levi, Ugo Montanari,
Franco Sirovich and myself.

The initial research activities of the group were in the area of image processing,
but, after a couple of years, the group, which in the meantime had been joined by
Gigina Carlucci Aiello, decided to modify its main research topic. Our conclusion
was that Artificial Intelligence was a new and more challenging area, allowing to
combine theoretical aspects with problems of practical interest, and we started
to redirect our research towards the topic. In those years, all of us spent long
periods in the USA, and this gave us an up-to-date view of the main research
themes, and allowed to establish international contacts.

The early research activities of Ugo can be placed mainly in this context.
Since the beginning Ugo showed a great autonomy in selecting important re-
search topics, and carried out high level research both in Pisa and while visiting
US institutions like University of Maryland, Stanford University and Carnegie
Mellon. His first papers deal with picture processing, graphics, graph gram-
mars, networks of constraints. These papers, most of which with Ugo as a single
author, have been published in famous journals [7,10,9,8,11,12]. Most of these
papers were later considered as pioneering papers in the above mentioned areas,
and are still widely cited.

My first joint paper with Ugo was about optimal smoothing in picture process-
ing, presented at the IFIP Congress 1971 [2]. The paper describes the use of op-
timization techniques based on dynamic programming for smoothing pictures,
and was the first of a series of papers where we studied the foundations of
dynamic programming. In other papers, we approached optimization problems
using artificial intelligence methods, consisting in finding minimal cost solutions
in ordinary or AND/OR graphs [3,5], and we explored the relationships between
dynamic programming and heuristic search methods [4].

In the second half of the seventies, the group had grown, and we became
interested also on different topics. In particular, we worked on a project aimed
at developing a programming environment based on a symbolic interpreter. I
would like also to point out a paper by Rocco De Nicola, Ugo and myself on
a formal comparison between message passing and shared memory, which is
perhaps the first of Ugo’s papers on the theory of concurrent computations [1].

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 797–798, 2008.
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My last paper with Ugo was An Efficient Unification Algorithm, published in
the TOPLAS in 1982 [6]. Unification in first-order logic is the central step of the
inference rule called resolution, used, in particular, by interpreters of the lan-
guage Prolog, which had appeared in the seventies. The unification algorithm, as
originally proposed, could be extremely inefficient; therefore, various researchers
started to analyze the complexity of the problem and studied more efficient al-
gorithms. We became interested in this topic in 1976, and developed a linear
algorithm, which was presented in a Technical Report in 1976. Unfortunately,
a similar result had independently been proposed by Paterson and Wegman,
and thus we reformulated our result as an efficient, but not linear, unification
algorithm. Our paper represents the unification problem as the solution of a
set of equations and presents a nondeterministic algorithm, from which the ef-
ficient algorithm is derived. It is interesting to remark that many authors who
have cited our paper consider the “Martelli and Montanari algorithm” to be the
nondeterministic one, rather than its efficient version.

At the end of the seventies I moved to the University of Torino, but I still
remember with great pleasure the years spent in Pisa, when we carried out
exciting scientific work in a pleasant friendly atmosphere.

Happy birthday, Ugo.
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Categories, Software and Meaning

Robin Milner

University of Cambridge, Computer Laboratory

I am delighted to be able to share in celebrating Ugo’s birthday, if not with a
formal paper then at least with some loosely-knit philosophical ideas.

I have worked on ideas similar to Ugo’s for most of our careers. Ugo had much
to do with the stream of expert Italians, many now well-known, who travelled
from the warmth of Pisa to the romantic but cooler climate of Edinburgh, often
to launch their careers with a PhD there. Going further back, I remember with
excitement the meeting on parallel processes at Pisa in 1973, organised I believe
by Ugo, the first concurrency conference I ever attended.

I have a growing regard for Ugo’s creativity in fundamental notions, and his
boldness in formulating and tackling the problems that arise from them. In one
particular case, his paper with Pepe Meseguer entitled Petri nets are monoids,
he opened up an avenue of thought that goes very deep. The paper gives a
prominent place to causality, and to causal independence, and thus is a part
of the conceptual repertoire not only of Petri nets but also of event structures.
But independence arises not only with respect to causality, but also with respect
to connectivity and locality. We can call actions independent by virtue of their
occurring on different channels, or in different places; these kinds of independence
are not the same as causal independence.

Whatever kind of independence we entertain, the idea of a monoidal category
arises almost automatically. This is because any notion of independence presup-
poses its opposite: the dependence of one arrow on another, naturally exhibited
by possibility of composing two to make a third. For example, we may compose
two actions to form a third if the output state of one is the input state of the
other; this is causal dependence. Equally we may compose one substitution with
another to form a third if the range of one is the domain of the other; thinking
if names as links — or pointers — this is dependence of linking. In either case,
if dependence is absent then we can juxtapose the actions to form a third. A
monoidal category distils the way that composition and juxtaposition of — re-
spectively — dependent and independent arrows relate to each other; we see it
arising in many guises in concurrency. In recent work Ugo, and many others in-
cluding myself, are using models based upon graphs to exploit the way in which
(in)dependence of linking and (in)dependence of placing (i.e. spatial arrange-
ment) co-exist, and so help us to explain the behaviour of mobile interactive
systems.

But I propose that we respond at a higher level to the inspiration from
monoidal categories. Let us use them not only as models, but also to organ-
ise the wide range of models that computer scientist use, in such a way that we
can join our science more readily to software engineering. We may not — and
perhaps should not — begin with a rigorous treatment. One way to begin is to
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note that we surely build models at different levels of abstraction, and we relate
them to each other; so let us ask what insight we gain into this relationship, if we
entertain the idea that these models are themselves the objects of a category? Of
course, we can immediately ask what the arrows would be, and how to compose
them; and we can ask what it could mean to juxtapose independent models,
and then to juxtapose a pair of arrows (whatever they are) between pairwise
independent objects.

I have played with these ideas, and found some sense. Those who are interested
may like to read my short essay The tower of informatic models, which will be
published by Cambridge University Press in a volume entitled From Semantics
to Computer Science: Essays in honour of Gilles Kahn.

In that essay I propose that a closer link can be formed between computation
theory and software engineering by considering every model to have two parts:
(a) a set of entities, and (b) their meaning. These phrases are deliberately infor-
mal and generous in application. For example, any programming language LAN
is a model, once the meaning of programs is supplied either formally or — as in
the Algol 60 report — informally. Equally, predicate logic LOG together with
the truth-valuation of its formulae forms a model. There is a conflict here with
the logicians’ normal use of the term ‘model’. They use it to mean a semantic
space in which formulae are evaluated, whereas here I use it to denote both the
logic and that semantic space.

Now, in our putative category of models, we can define an arrow between
these two models. Call it Hoare : LOG → LAN ; it consists of the validation
(perhaps by Hoare logic) of LAN programs against pre- and post-conditions
drawn from LOG. Let us call such an arrow an explanation; it demonstrates that
the meanings of entities in the more concrete model (in this case LAN) realises
the meanings of corresponding entities in the more abstract model (LOG). There
may also be other kinds of arrow.

Now consider independence. Relevant to the flight of the European Airbus
are at least three independent models, informatic, electro-mechanical and me-
teorological; only the first of these is computational. Each of the three models
has both entities and meaning, determined by its own science. The tensor prod-
uct of these models is then a (partial) explanation of a coordinated model that
describes the flight of a whole aircraft. Thus the product model ‘explains’ the
aircraft by means of a product of explanatory arrows, expressed in different sci-
ences. In this example the informatic explanation has indeed been carried out
by abstract interpretation.

It is accurate, at least sometimes, to say that the opposite (in the true cate-
gorical sense) of an explanation is a ‘realisation’ of one model by another. In the
extreme we have the aircraft itself, realising its models; so we can think of real
phenomena — the flight of actual aircraft — as extremal models.

Other examples of explanation and realisation abound. For example, a com-
piler is a realisation of one language by another. With logics, languages and
abstraction one can easily present much of our work as a tower of models built
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in a monoidal category. Note that explanations are often achieved by what is
conveniently called model-checking.

To make these ideas precise will take some effort, and it may be better first to
find a way of discussing them informally with software engineers, because then we
may make them precise in a way that is acceptable in engineering practice. This
effort would be timely; many members of the software engineering community
are committed to some form of model-driven engineering (MDE), though they
may diverge in their understanding of this term just as we may diverge on what
should be a rigorous notion of model. I suggest tht both communities are more
likely to succeed if they reach convergence not merely within their communities
but also between them.

I hope Ugo will forgive me for this superficial introduction of a subject which
I believe to be deep. I don’t doubt that if I had discussed it with him first it
would be better. But in my opinion he is one who deserves credit for bringing to
our notice the categorical ideas that can help us think this subject more clearly.



A Roman Senator

Jan Rutten

CWI and Vrije Universiteit Amsterdam

Somehow I have always viewed Ugo Montanari as a Roman Senator. I do not
remember when this started but it must have been rather soon after we first
met. Whenever I listen to one of his innumerable lectures — but even without
him actually being present — I picture Ugo in a white toga, and imagine him
addressing the Roman Senate. No doubt the basis for this image is his physical
stature: formidable and noble, with a large head and straight nose. But of course,
it is because of the combination of this with his great worthiness, his undoubted
authorithy, his spirituality and his conviction, that this image of Ugo as a Roman
Senator comes to mind.

As a small sign of my great appreciation for all that Ugo has meant for
the scientific community in general, for computer science and coalgebra, more
specifically, and for myself in the form of many personal contacts in the course
of the last twenty years, I include this little picture1:

1 See http://www.flickr.com/photos/diagonals/370704326 for a larger version.
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The picture was taken in Roma, City of cities, home of the Senate and its
Senators, at the Piazza del Campidoglio, a beautiful square that was conceived by
Michelangelo, near the Forum Romanum. The statue is part of the the Fontana
della Dea Roma and, alas, does not represent a Senator. Instead it was used
by Michelangelo as a representation of the river Tigris, or actually its Roman
counterpart the Tevere (which explains the presence of the wolf with Romolo
and Remo, on the left). And it comes somehow very close to the image I’ve been
trying to convey above.

Who, one may wonder, is the little mortal sitting on the right, at the feet and
in the shadow of the statue? We don’t know. It could be Ugo himself, as a young
man, still without a beard. It could be (an Italian version of) myself. Could it
be you?!



The Semantics of Ugo Montanari

Franco Turini

Dipartimento di Informatica, University of Pisa
F.Turini@di.unipi.it

The first time I met Ugo Montanari, he had no beard. It was 1970 and I was
a student attending the third year of a master degree in computer science at
the University of Pisa (“Laurea in Scienze dell’informazione”) and he had just
come back from the States and had been given the job of teaching a course
on System theory. The subject was very oriented towards classical theoretical
engineering, not very much to do with computer science and programming. I
thought his teaching style was great, as was the way he was able to demystify
complex concepts. However, I was not particularly impressed by the subject.
The following year was my fourth and last year, and, when I looked at the list
of courses available, I discovered that Ugo Montanari would be teaching the
course on Methods in Information Processing (“Metodi per il trattamento della
informazione”). Montanari had planned to teach the most important theoretical
foundations of computer science: formal languages, computability theory, and
the semantics of programming languages. In the US, formal languages and com-
putability theory were already an integral part of any computer science course.
But not so in Italy. In fact my course in Pisa was the first of its kind. And the
idea of including semantics of programming languages as the third leg of the
theoretical corpus of computer science was really a leap into the future, almost
visionary. I remember that the learning material was a paper by Johnston [2]
presenting the so-called contour model, which was an initial attempt to formalize
the operational semantics of a programming language. That course impressed me
more than any other in the entire curriculum. Needless to say, I asked Montanari
to be my supervisor for my Master’s thesis. I wrote a thesis on the semantics
of nondeterministic languages, mostly inspired by the contour model, in which I
tried to extend the stack-based computation model to handle nondeterministic
computations and the need to handle efficiently state saving and recovery. The
first ideas developed at that time have subsequently kept me busy working for
many years [3,4,5]. Imagine my pleasure when in 1990 I was given the possibility
of teaching a course on Methods in information processing in parallel with a
course taught by Montanari. There were still three subjects: formal languages,
computability and formal semantics of programming languages. In the mean-
while much research had been done in the third area. Scott and Strachey had
laid down the foundations of denotational semantics, and a few books on this
subject had been published. Montanari and I decided to follow Gordon’s book
[1] which went down very well with our students. A few years later the teaching
of computer science in Italy was redesigned. Courses with a coverage as large as
Methods in Information Processing were replaced by shorter courses. A course
on Semantics of programming languages was introduced, and Montanari and I
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taught it in two parallel courses. We taught both operational and denotational
semantics and their relationships, and even some elements of semantics of par-
allel programming languages. We had a good English book [6] translated for us
to use. However I was again impressed by Ugo’s desire to improve the teaching,
by looking for more elegant proofs of the theorems and a smoother flowing of
the results. Well, today Ugo Monatanari and I teach different courses, but I am
ready to start tomorrow to design and prepare a new course with him. As has
always been in the past, I bet that it would be another highly rewarding expe-
rience for me. Finally, let me thank the editors of this book for offering me the
opportunity to express my appreciation to someone who really deserves the title
of “maestro”.
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Abstraction for a Career in Industry:

A Praise for Ugo’s 65 Years

Daniel Yankelevich

Pragma Consultores

I arrived in Italy to join Ugo’s group after getting my MsC degree on December
1989, on a Friday night, after a 15 hours trip crossing the ocean. Saturday
morning, at 7:30, I received a call at the apart hotel where I was staying. Ugo
had the theory that it was better to get over jet lags as soon as possible. At
8:30 AM we had our first meeting to discuss categories, models for concurrent
computation, and process algebras.

After that, we had a lot of meetings. Sometimes the discussions were captured
in papers that we published, but as very often happens in academia (too often
for my taste) most of the knowledge was lost.

I am not sure whether we ever had the discussion that follows or it was just
a dream. But it sounds quite real. I’ve came into Ugo’s office at 7:40 AM.

Ugo: - So, what do you mean when you say you are tired of CCS? CCS is just
a process algebra - there can be many. Let’s concentrate on the concepts, not on
the syntax.

Me: - Ciao, Ugo, it’s nice to see you again.
Ugo: - However, you will agree that it is not by chance that CCS was designed

as it was. You can capture most of the problems of cooperation and concurrency,
and if you want them solved, you should first solve them in a simple model, isn’t
it? (actually: ”non è vero?”)

Me: - Well, I have a doubt precisely about that. My point is: when you talk
about computable functions, there is an agreement that the function itself (the
relation input/output) is the object of interest, and this agreement is needed
in order to have a Church Thesis. In the case of concurrent systems, and even
interactive systems, there is not such agreement at all. In every conference there
are at least two proposals of what a computation should be, what an observation
is, or different equivalences

Ugo: - Any process which could naturally be called an effective procedure can
be realized by a Turing machine.

Me: - Well, if the process is to digitalize input from a digital camera and
produce a distorted version of it, this would be modeled too abstractly by a
Turing Machine. Probably, the computation required after the input is codified
and before the output is printed can be modeled, but for an external observer
that is nothing. What is the right level of abstraction?

Ugo: - May be there is not such thing as a right level of abstraction. Why should
someone tell you at what level you must observe the computation? The point is
what are you going to do with the computations. I am not a mathematician, and
after you understood the model, you want to solve a practical problem. You have
to apply the model to build better software, always remember that.
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I have always had problems describing my job. I am the founder, and since
last year the Chief Innovation Officer, of a technology firm with branches in
Latinoamerica and Spain. During the last fifteen years I worked in software-
intensive projects and systems. And I think my job, in the last 15 years, was
more related to semantics than it could be suspected: I was always translating
technology in business terms and sometimes vice-versa.

Many times I have asked myself whether or not the skills I have learned
from Ugo helped me in doing my job. The answer is yes. I have not only learned
semantics of concurrent languages or process algebras from Ugo. Actually, I have
learned from him (and from the other people I have worked with during the same
period) three skills that were key to my career. First, the main skill that helped
me and I think it is essential for computer scientists, software engineers and
related disciplines, is abstraction. This is probably not new: the SWEBOK and
many specialists mention abstraction as a key skill for computer professionals.
To learn how to deal with abstractions is a continuous process that begins in our
early childhood and probably continues all our lives. Ugo masters abstraction as
few people I have met. I have learned from him how it is possible to work with
abstractions in a systematic way.

The other two skills are also related to the work with abstractions. One is
modeling and formalization: how to construct models to represent abstractions,
and how to reason and make explicit properties using those models. This is
incredibly useful for anyone working with projects and technology. Traditionally,
this skill was learned from Physics, but engineers know about the usefulness of
models. And Ugo always remembers that he is an Engineer.

The last skill could be named ”symbolic transformations”, and it consists in
transforming representations from a model to a different one. In my PhD thesis
I worked with Ugo on the idea of having a very detailed description of a system
and then to transform it (using abstractions and formal techniques) in different
views that were coherent by construction. More than 15 years later, I have been
working with my team on a model for Project Portfolio Management, abstracting
away details from the process in order to build three views of the same model.
This allowed us to understand what techniques and technology could help us.
Even though these two topics (project portfolio management and concurrent
programming languages) are very different, both reasoning processes were very
similar in their nature.

Besides those skills, Ugo transmits an incredible passion for what he does.
When I managed to get in touch with that passion inside myself, I found a
greater joy in my job and my career. I think this is not a skill, is something else,
but it is invaluable. Abstraction, Formalization and Symbolic Transformations
play very important roles in a professional’s education. These skills are way
more important than particular techniques for specific problems. Everything is
important, but you must choose when resources -in particular time- are limited.
In the limit, and provocatively, one might talk about a tradeoff between training
and education. Training is used to acquire specific techniques to solve specific
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problems. Education implies a wider formation that allows one to apply the same
concepts to new problems.

I have had the luck of having a real education with the group I have worked
with at Pisa, much of it achieved through ”Socratic discussions” with Ugo. I
really recommend this way of learning both to teachers and to trainees - it lasts
a lifetime.
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