

Lecture Notes
in Business Information Processing 10

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University ofTrento, Italy

Norman M. Sadeh
Carnegie Mellon University, Pittsburgh, PA, USA

Michael J. Shaw
University of Illinois, Urbana-Champaign, /L, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Jan L.G. Dietz Antonia Albani
Joseph Barjis (Eds.)

Advances in
Enterprise Engineering I

4th International Workshop CIAO! and
4th International Workshop EO MAS, held at CAiSE 2008
Montpellier, France, June 16-17, 2008
Proceedings

~ Springer

Volume Editors

Jan L.G. Dietz
Antonia Albani
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: {j .l.g.dietz,a.albani} @tudelft.nl

Joseph Barjis
University of Wisconsin
2100 Main St., Stevens Point, WI 54481, USA
E-mail: jbarjis@uwsp.edu

Library of Congress Control Number: 2008928014

ACM Computing Classification (1998): J.1, D.2, H.4

ISSN
ISBN

1865-1348
978-3-540-68643-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer. com

© Springer-Verlag Berlin Heidelberg 2008

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12275977 06/3180 54 3 2 I 0

Preface

The expectation for the future of the 21st century enterprise is complexity and

agility. In this digital age, business processes are scattered not only through­

out the labyrinth of their own enterprises, but also across different enterprises,

and even beyond the national boundaries. An evidence of this is the grow­

ing phenomenon of business process outsourcing. Increasing competition, higher

customer demands, and emerging technologies require swift adaptation to the
changes.

To understand, design, and engineer a modern enterprise (or an enterprise

network) and its interwoven business processes, an engineering and systematic

approach based on sound and rigorous theories and methodologies is necessary.

Along with that, a paradigm shift seems to be needed for addressing these issues

adequately. An appealing candidate is to look at an enterprise and its business

processes as a social system. In its social setting, an enterprise and its busi­

ness processes represent actors with certain authorities and assigned roles, who

assume certain responsibilities in order to provide a service to its environment.

The need for this paradigm shift along with the complexity and agility of

modern enterprises, gives inspiration for the emerging discipline of Enterprise
Engineering. For the study of this socio-technical phenomenon, the prominent

tools of Modeling and Simulation play a significant role. Both (conceptual) mod­

eling and simulation are widely used for understanding, analyzing, and engineer­

ing an enterprise (its organization and business processes).
In addressing the current challenges and laying down some principles for

enterprise engineering, this book includes a collection of papers presented and

discussed at the joint meeting of CIAO! 2008 and EOMAS 2008, organized in
conjunction with the 20th CAiSE conference. The scopes of these two workshops
are to a large extent complementary, with CIAO! being more focused on the

theory and application of enterprise engineering and EOMAS on the methods
and tools for modeling and simulation.

June 2008 Jan L.G. Dietz
Antonia Albani

Joseph Barjis

Enterprise Engineering - A Manifesto

Traditional organizational sciences fall short in assisting enterprises to adapt
their strategies and to implement them effectively and flexibly. Enterprise Engi­
neering is a design-oriented approach for coping with these problems, based on
the merging of organizational sciences and information system sciences. It aims
at bringing rigor to organizational design.

Motivation

The prosperity of modern society is largely determined by the societal perfor­
mance of enterprises, of all kinds, including commercial, non-profit, and govern­
mental companies and institutions, as well as all kinds of alliances between them,
such as virtual enterprises and supply chains. By the societal performance of an
enterprise is understood its performance in all aspects that are considered im­
portant, notably economic, social, and ethical. Ultimately, it depends on two key
factors. One is the strategy chosen by the enterprise, as well as the continuous
adaptation of this strategy to upcoming threats and challenges. The other one
is the implementation of this strategy in a comprehensive, coherent, consistent,
as well as efficient and adaptable way.

Unfortunately, the vast majority of strategic initiatives fail, meaning that
enterprises are unable to gain success from their strategy. The high failure rates
are reported from various domains: total quality management, business process
reengineering, six sigma, lean production, e-business, customer relationship man­
agement, as well as from mergers and acquisitions. Whereas often, presumably
for convenience sake, unforeseen or uncontrollable events are presented as the
causes of failure, research has shown that strategic failure is mostly the avoid­
able result of inadequate strategy implementation. Rarely is it the inevitable
consequence of a poor strategy.

A plethora of literature indicates that the key reason for strategic failures is
the lack of coherence and consistency, collectively also called congruence, among
the various components of an enterprise. At the same time, the need to operate
as an integrated whole is becoming increasingly important. Globalization, the
removal of trade barriers, deregulation, etc., have led to networks of cooperat­
ing enterprises on a large scale, enabled by the virtually unlimited possibilities
of modern information and communication technology. Future enterprises will
therefore have to operate in an ever more dynamic and global environment. They
need to be more agile, more adaptive, and more transparent. In addition, they
will be held more publicly accountable for every effect they produce.

Said problems are often addressed with black-box thinking based knowledge,
i.e., knowledge concerning the function and the behavior of enterprises. Such
knowledge is sufficient, and perfectly adequate, for managing an enterprise within

VIII Enterprise Engineering - A Manifesto

the current range of control. However, it is fundamentally inadequate for chang­
ing an enterprise, which is necessary to meet performance goals that are outside
the current range of control. In order to bring about those changes in a system­
atic and controlled way, white-box based knowledge is needed, i.e., knowledge
concerning the construction and the operation of enterprises. Developing and
applying such knowledge requires no less than a paradigm shift in our thinking
about enterprises, since the traditional organizational sciences are dominantly
oriented towards organizational behavior, based on black-box thinking.

The needed new paradigm is that enterprises are purposefully designed systems.
The needed new skill is to (re)design, (re)engineer, and (re)implement an enter­
prise in a comprehensive, coherent and consistent way (such that it operates as
an integrated whole), and to be able to do this whenever it is needed.

The Paradigm Shift

The current situation in the organizational sciences resembles very much the one
that existed in the information systems sciences around 1970. At that time, a
revolution took place in the way people conceived information technology and
its applications. Since then, people have been aware of the distinction between
the form and the content of information. This revolution marks the transition
from the era of Data Systems Engineering to the era of Information Systems
Engineering. The comparison we draw with the computing sciences is not an
arbitrary one. On the one hand, the key enabling technology for shaping future
enterprises is the modern information and communication technology (ICT). On
the other hand, there is a growing insight in the computing sciences that the cen­
tral notion for understanding profoundly the relationship between organization
and ICT is the entering into and complying with commitments between social
individuals. These commitments are raised in communication, through the so­
called intention of communicative acts. Examples of intentions are requesting,
promising, stating, and accepting. Therefore, as the content of communication
was put on top of its form in the 1970's, the intention of communication is now
put on top of its content. It explains and clarifies the organizational notions
of collaboration and cooperation, as well as authority and responsibility. This
current revolution in the information systems sciences marks the transition from
the era of Information Systems Engineering to the era of Enterprise Engineer­
ing, while at the same time merging with relevant parts of the Organizational
Sciences, as illustrated in Fig. 1.

Mission

The mission of the discipline of Enterprise Engineering is to combine (relevant
parts from) the traditional organizational sciences and the information systems
sciences, and to develop emerging theories and associated methodologies for

Enterprise Engineering - A Manifesto IX

Information Systems Sciences

Form -······-····• Data ···-···-·······-+ Data_Systf!ms l Engmeenng

Content Informa_tion: Informat!on srstems
Commumcat10n Engmeenng

l

Organization
Sciences

Intention- • . ' -----·• Enterprise Engineering
. Collaboration I

Cooperation .
~----------------------~

Fig. 1. Enterprise Engineering

the analysis, design, engineering, and implementation of future enterprises. Two
fundamental notions have already emerged and seem to be indispensable for
accomplishing this mission: Enterprise Ontology and Enterprise Architecture.

Enterprise Ontology is conceptually defined as the understanding of an enter­
prise's construction and operation in a fully implementation-independent way.
Practically, it is the highest-level constructional model of an enterprise, the
implementation model being the lowest one. Compared to its implementation
model, the ontological model offers a reduction of complexity of well over 90%.
It is only by applying this notion of Enterprise Ontology that substantial strate­
gic changes of enterprises can be made intellectually manageable.

Enterprise Architecture is conceptually defined as the normative restriction of
design freedom. Practically, it is a coherent and consistent set of principles that
guide the design, engineering, and implementation of an enterprise. Any strategic
initiative of an enterprise can only be made operational through transforming
it into principles that guide the design, engineering, and implementation of the
new enterprise. Only by applying this notion of Enterprise Architecture can
consistency be achieved between the high-level policies (mission, strategies) and
the operational business rules of an enterprise.

June 2008 Jan L.G. Dietz
Jan A.P. Hoogervorst

Organization

The CIAO! and EOMAS workshops are organized annually as two international
forums for researchers and practitioners in the general field of Enterprise Engi­
neering. Organization of these two workshops and peer review of the contribu­
tions made to these workshops are accomplished by an outstanding international
team of experts in the fields of Enterprise Engineering, Modeling and Simulation.

Workshop Chairs

CIAO! 2008

Jan L.G. Dietz
Antonia Albani

EOMAS 2008

Joseph Barjis

Delft University of Technology (The Netherlands)
Delft University of Technology (The Netherlands)

University of Wisconsin- Stevens Point (USA)

Program Committee

CIAO! 2008

Wil van der Aalst
Bernhard Bauer
Johann Eder
Joaquim Filipe
Rony G. Flatscher
Kees van Hee
Birgit Hofreiter
Jan Hoogervorst
Emmanuel dela Hostria
Christian Huemer
Zahir Irani
Peter Loos
Graham Mcleod

EOMAS 2008

Anteneh Ayanso
Manuel I. Capel-Tunon

Arturo Molina
Aldo de Moor
Hans Mulder
Moira Norrie
Andreas L. Opdahl
Maria Orlowska
Martin Op 't Land
Erik Proper
Gil Regev
Dewald Roode
Pnina Soffer
Jose Tribolet
Johannes Maria Zaha

Rodney Clarke
Ashish Gupta

XII Organization

Oleg Gusikhin
Selma Limam Mansar
Mikael Lind
Prabhat Mahanti
Yuri Merkuryev
Vojtech Merunka
Alta van der Merwe
Murali Mohan Narasipuram
Oleg V. Pavlov

Sponsoring Organizations

Viara Popova
Srini Ramaswamy
Han Reichgelt
Peter Rittgen
Natalia Sidorova
Jose Tribolet
Alexander Verbraeck
Gerald Wagner

- CAiSE 2008 (International Conference on Advanced Information Systems
Engineering)

- SIGMAS (Special Interest Group on Modeling And Simulation
of the Association for Information Systems)

Table of Contents

Process Modeling

On the Nature of Business Rules . 1
Jan L.G. Dietz

Process Flexibility: A Survey of Contemporary Approaches............ 16
Helen Schonenberg, Ronny Mans, Nick Russell,
Nataliya Mulyar, and Wil van der Aalst

Subsuming the BPM Life Cycle in an Ontological Framework of
Designing . 31

U do K annengiesser

Information Gathering for Semantic Service Discovery and Composition
in Business Process Modeling . 46

Norman May and Ingo Weber

Collaboration and Interoperability

Challenges in Collaborative Modeling: A Literature Review 61
Michie[Renger, Gwendolyn L. K olfschoten, and Gert-J an de Vreede

A Petri-Net Based Formalisation of Interaction Protocols Applied to
Business Process Integration . 78

Djamel Benmerzoug, Fabrice Kordon, and Mahmoud Boufaida

Enterprise Architecture

Competencies and Responsibilities of Enterprise Architects: A
Jack-of-All-Trades?.. 93

Claudia Steghuis and Erik Proper

Interoperability Strategies for Business Agility . 108
Mats-Ake Hugoson, Thanos Magoulas, and Kalevi Pessi

Towards a Business-Oriented Specification for Services 122
Linda Terlouw

Model Transformation and Simulation

Automated Model Transformations Using the C.C Language
Vojtech Merunka, Oldfich Nouza, and Jifi Brozek

137

XIV Table of Contents

Improvement in the Translation Process from Natural Language to
System Dynamics Models . 152

Yutaka Takahashi

Developing a Simulation Model Using a SPEM-Based Process Model
and Analytical Models. 164

Seunghun Park, Hyeonjeong Kim, Dongwon Kang, and
Doo-Hwan Bae

Formal Modeling and Discrete-Time Analysis of BPEL Web Services 179
Radu M ateescu and Sylvain Rampacek

Author Index.. 195

On the Nature of Business Rules

Jan L.G. Dietz

Delft University of Technology, the Netherlands
j.l.g.dietz@tudelft.nl

Abstract. Business rules are in the center of attention, both in the 'business
world' and in the 'ICT applications world'. Recently, the OMG has completed a
major study in defining the notion of business rule and its associated notions.
On closer look, however, the definitions provided appear to be not as rigid and
precise as one would hope and as deemed necessary. Based on the consistent
and coherent theoretical framework of Enterprise Ontology, several clarifica­
tions of the core notions regarding business rules are presented. They are illus­
trated by means of a small example case.

Keywords: Business Rule, Enterprise Ontology, DEMO, Modal Logic.

1 Introduction

1.1 A Survey of Current Business Rule Notions

Business rules constitute a subject of topical interest. They are presented and pro­
moted as a means to achieve several highly valued properties of information systems
(ICT applications), like flexibility, maintainability, transparency, and cost savings.
Recently, the Object Management Group (OMG) adopted the SBVR standard (Se­
mantics of Business Vocabulary and Business Rules) for specifying business objects,
facts, and rules [13]. However, even in this impressive piece of work, the core notions
appear not to be defined as crisply as one would whish.

One of the most well known documents regarding business rules is the authorita­
tive work of Ronald Ross [14]. According to Ross, business rules build on terms and
facts. A term is a basic noun or noun phrase in natural language. Examples of terms
(taken from [14]) are:

Customer
Order
Quantity back-ordered
Employee name

(Basic? Atomic?)
(Atomic?)
(Basic?)
(Knowable?)

In order to keep the set of terms manageable, Ross proposes three fundamental tests
that terms have to pass in order to be included. First, they should represent the most
basic things of an enterprise, i.e., they cannot be derived or computed. Second, they
should be atomic, i.e., they should represent things that are indivisible. Third, they
should be knowable, i.e., they should represent things that exist, rather than things hat
happen. Unfortunately, no hard criteria are provided for determining whether a term

J.L.G. Dietz eta!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 1-15, 2008.
©Springer-Verlag Berlin Heidelberg 2008

2 J.L.G. Dietz

succeeds or fails to pass the tests. Anticipating on the results of applying the Enterprise
Ontology Theory, as presented in Section 3, we have put already some question marks
next to the example list of terms above; they will be addressed later. Facts, according to
Ross, are expressed by sentences that follow the subject-verb-object structure, where
subjects and objects are referred to by terms. Examples of facts (taken from [14]) are:

Customer places order
Order is included in shipment
Employee has a gender
Manager is a category of employee

(verbal predicate))
(nominal predicate)
(nominal predicate)
(instance of meta fact type)

Again anticipating on the results of applying the Enterprise Ontology Theory in
Section 3, the first observation to be made is that apparently fact types are repre­
sented: the sentences that can be instantiated. The fourth sentence is an exception. It
cannot be instantiated since it is itself an instance, be it of a meta fact type. Second,
no distinction is made between nominal and verbal predicates, i.e., between facts and
(apparent) acts.

In accordance with many other authors (e.g., [10], [12]), Ross requires business
rules to be declarative, instead of procedural, and to be expressed in well-formed (ide­
ally: logical) formulas. Three fundamental categories are distinguished: rejectors,
producers, and projectors. A rejector is a rule that constraints the behavior of a busi­
ness. Rejectors can be violated. A producer is a rule for computing or logical deriva­
tion. A projector is a rule through which an action is evoked. Examples of each of
these categories are:

A customer cannot rent more than one car at the same time
The amount to be paid is the list price plus VAT
Reorder stock if the quantity on hand drops below some level

(rejector)
(producer)
(projector)

Distinguishing between categories of rules undoubtedly makes sense but some
questions immediately pop up: Why three? Why these three? Halpin [10], for exam­
ple, proposes a subdivision of the rejectors in static and dynamic constraints, a dis­
tinction that is founded in database research. Next, the formulation of the projector
example can hardly be called declarative. So, this contradicts the point of departure.

1.2 Research Questions and Research Approach

The short survey above should suffice to sketch the problem area we want to address
and to formulate research questions that have both societal and scientific relevance,
being motivated by the conviction that conceptual frameworks, like the SBVR, should
be made much more rigid. The research questions to be addressed are:

I. Business rules appear to support and guide the operations of a business. But
what is exactly their scope? In particular, how are they distinguished from de­
sign principles, as incorporated in the notion of architecture?

2. How can the notion of business rule be made crisper? Related to that, how
important is the way of formulation (declarative-shape or imperative-shape)?

On the Nature of Business Rules 3

3. How is the notion of business rule related to the notions of business object,
business fact, and business event?

4. What useful distinctions can be made in order to keep the total set of business
rules manageable? Related to this: what makes a rule a business rule?

We will seek answers to these questions on the basis of a scientifically sound foun­
dation, namely Enterprise Ontology, in particular its underlying '¥-theory [7]. The
'¥-theory offers a coherent and consistent understanding of the operation of an enter­
prise. Such a theory is the basis one needs to clearly and precisely define core notions
like (business) rules, (business) objects, (business) facts, and (business) events. Any
other basis will at best reduce the current confusion to some extent, but not suffi­
ciently. The ambition of the research project on which this paper reports, is to remove
the confusion definitively.

In Section 2, the theoretical basis of our research approach is summarized. Space
limitations force us to keep it rather concise which means that a reader who is totally
unfamiliar with the notion of Enterprise Ontology may need to read some references.
On the basis of the presented theory, we will clarify the notion of business rule, as
well as related notions, in Section 3. The analysis is illustrated by a small example
case. Section 4 contains the conclusions that can be drawn.

2 An Introduction to Enterprise Ontology1

2.1 Theoretical Foundations

There exist two different system notions, each with its own value, its own purpose,
and its own type of model: the function-oriented or teleological and the construction­
oriented or ontological system notion [2]. The teleological system notion is about the
function and the (external) behavior of a system. The corresponding type of model is
the black-box model. Ideally, such a model is a (mathematical) relation between a set
of input variables and a set of output variables, called the transfer function. The teleo­
logical system notion is adequate for the purpose of using or controlling a system. It is
therefore the dominant system concept in e.g. the social sciences, including the organ­
izational sciences. For the purpose of building and changing a system, one needs to
adopt the ontological system notion. It is therefore the dominant system notion in all
engineering sciences.

The ontological system notion is about the construction and operation of a system.
The corresponding type of model is the white-box model, which is a direct conceptu­
alization of the ontological system definition presented below. The relationship with
function and behavior is that the behavior is brought forward, and consequently ex­
plained, by the construction and the operation of a system. These definitions are in
accordance with the work of Gero et al. if one substitutes their use of "structure" by
"construction and operation" [9]. The ontological definition of a system, based on the
one that is provided in [2], is as follows. Something is a system if and only if it has
the next properties:

1 The contents of this section is based on the '¥-theory [7]. The Greek letter '¥ is pronounced as
PSI, which stands for Performance in Social Interaction. It constitutes the basic paradigm of
the theory and conveys the underlying philosophical stance of constructivism [15].

4 J.L.G. Dietz

• Composition: a set of elements of some category (physical, biological, social,
chemical etc.).

• Environment: a set of elements of the same category. The composition and the
environment are disjoint.

• Structure: a set of influencing bonds among the elements in the composition
and between these and the elements in the environment.

• Production: the elements in the composition produce services that are delivered
to the elements in the environment.

Associated with every system is the world in which the actions of the system get
their effect. The state of a world is a set of facts. The state space of a world is the set
of lawful states, and the transition space is the set of lawful sequences of transitions.
The occurrence of a transition is called an event.

A fact is something that is the case [17]. The knowledge of a fact can be expressed in
a predicate over one or more objects, where an object is conceived as a bare individual
[1]. We will consider only elementary facts [6, 10]. Facts can be declared, like the dec­
laration of the concept 'car', or defined, like the definition of the concept 'van' on the
basis of the concept 'car'. This notion of fact is all one needs for modeling a world. It is
only a matter of convenience to conceive of entities next to facts. An entity type is just a
unary fact type, for example the type car. Including both types and classes in a concep­
tual model is also a matter of convenience. An entity class is just the extensional coun­
terpart of the (intensional) entity type. As an example, the class CAR = { x I car(x)}.
According to the distinction between function and construction, the collective services
provided by an enterprise to its environment are called the business of the enterprise; it
represents the function perspective. Likewise, the collective activities of an enterprise in
which these services are brought about and delivered, including the human actors that
perform these activities, are called the organization of the enterprise; it represents the
construction perspective. An organization is a system in the category of social systems.
This means that the elements are social individuals, i.e. human beings or subjects in
their ability of entering into and complying with commitments about the things that are
produced in cooperation. Subjects fulfill actor roles (to be explained later). A subject in
its fulfillment of an actor role is called an actor.

2.2 The Universal Transaction Pattern

Actors perform two kinds of acts. By performing production acts, the actors contrib­
ute to bringing about and delivering services to the environment of the organization.
A production act (P-act for short) may be material (manufacturing, transporting, etc.)
or immaterial (deciding, judging, diagnosing, etc.). By performing coordination acts
(C-acts for short), actors enter into and comply with commitments. In doing so, they
initiate and coordinate the performance of production acts. Examples of C-acts are
requesting and promising a P-fact. The result of successfully performing a C-act is a
coordination fact or C-fact (e.g., the being requested of a P-fact).

The result of successfully performing a P-act is a production fact or P-fact. P-facts
in the case Library (see Sect. 3) are "loan L has been started" and "the late return fine
for loan L has been paid". The variable L denotes an instance of loan. An actor role is
defined as a particular, atomic 'amount' of authority, viz. the authority needed to per­
form precisely one kind of production act.

On the Nature of Business Rules 5

COORDINATION ACTOR ROLES PRODUCTION

8 C-act B P-act ~
- Actors - P-
----··- -··-·· world
C-fact P-fact

Fig. 1. The white-box model of an organization

Just as we distinguish between P-acts and C-acts, we also distinguish between two
worlds in which these kinds of acts have effect: the production world or P-world and
the coordination world or C-world respectively (see Fig. 1). At any moment, the
C-world and the P-world are in a particular state, simply defined as a set of C-facts or
P-facts respectively. When active, actors take the current state of the P-world and the
C-world into account (indicated by the dotted arrows in Fig. 1). C-facts serve as
agenda for actors, which they constantly try to deal with. Otherwise said, actors inter­
act by means of creating and dealing with C-facts. The operational principle of
organizations is that actors feel committed to deal adequately with their agenda.

P-acts and C-acts appear to occur in generic recurrent patterns, called transactions
(4, 7]. Our notion of transaction is to a some extent similar to the notion of Conversa­
tion for Action in (16] and to the notion of Workflow Loop in (3]. A transaction goes
off in three phases: the order phase (0-phase), the execution phase (E-phase), and the
result phase (R-phase). It is carried through by two actors, who alternately perform
acts. The actor who starts the transaction and eventually completes it, is called the
initiator or customer. The other one, who actually performs the production act, is
called the executor or producer. The 0-phase is a conversation that starts with a re­
quest by the customer and ends (if successfully) with a promise by the producer. The
R-phase is a conversation that starts with a statement by the producer and ends (if
successfully) with an acceptance by the customer. In between these two conversations
there is theE-phase in which the producer performs the P-act.

In Fig. 2, we present the basic form of this transaction pattern. It shows that the bring­
ing about of an original new, thus, ontological, production result (as an example: the de­
li very of a bouquet of flowers) starts with the requesting of this result by someone in the
role of customer from someone in the role of producer. The original new thing that is

customer

Fig. 2. The basic pattern of a transaction

6 J.L.G. Dietz

created by this act, as is the case for every coordination act, is a commitment. Carrying
through a transaction is a "game" of entering into and complying with commitments.

So, the process starts with the request for the bouquet by the customer, which brings
the process to the state "result requested", the result being the ownership by the customer
of the desired bouquet. The producer responds to the state "result requested" by promis­
ing to bring about the desired result, which brings the process to the state "result prom­
ised". This represents a to-do item for the producer: he has to comply with the promise
by actually delivering the bouquet of flowers, i.e., executing the production act. In the act
of handing over the bouquet to the customer, he states that he has complied with his
promise. The process now comes to the state "result stated". The customer responds to
this state by accepting the result. This act completes the transaction successfully.

The basic pattern must always be passed through for establishing a new P-fact. A
few comments are in place however. First, performing a C-act does not necessarily
mean that there is oral or written communication. Every (physical) act may count as
a C-act. Second, C-acts may be performed tacitly, i.e. without any signs being
produced. In particular the promise and the acceptance are often performed tacitly
(according to the rule "no news is good news"). Third, next to the basic transaction
pattern, as presented in Fig. 2, two dissent patterns and four cancellations patterns are
identified [4, 7]. Together with the standard pattern they constitute the complete
transaction pattern. It is exhibited in Fig. 3. Next to the basic transaction steps (a step
is a combined C-act and C-fact) discussed before, there is the decline as the alterna­
tive of a promise, and the reject as the alternative of an accept. Both C-facts are dis­
cussion states, where the two actors have to 'sit together' and try to come to a (new)
agreement. When unsuccessful, the transaction is stopped, either by the initiator or by
the executor. Four cancellation patterns, on the left and the right side, complete the
transaction pattern, one for every basic step.

Fig. 3. The universal transaction pattern

On the Nature of Business Rules 7

Every transaction process is some path through this complete pattern, and every
business process in every organization is a connected collection of such transaction
processes. This holds also for processes across organizations, like in supply chains
and networks. That is why the transaction pattern is universal and must be taken as a
socionomic law: people always and everywhere conduct business (of whatever kind)
along this pattern [7].

2.3 The Aspect Organizations

Three human abilities play a significant role in performing C-acts. They are called
forma, informa and performa respectively [7]. The forma ability concerns being able
to produce and perceive sentences. The informa ability concerns being able to formu­
late thoughts into sentences and to interpret sentences. The term 'thought' is used in
the most general sense. It may be a fact, a wish, an emotion etc. The peiforma ability
concerns being able to engage into commitments, either as performer or as addressee
of a coordination act. This ability may be considered as the essential human ability for
doing business (of any kind).

From the production side, the levels of ability may be understood as 'glasses' for
viewing an organization (see Fig. 4). Looking through the ontological glasses, one
observes the business actors (B-actors), who perform P-acts that result in original
(i.e., non-derivable) facts. So, an ontological act is an act in which new original things
are brought about. Deciding and judging are typical ontological production acts. On­
tological production acts and facts are collectively called B-things. Looking through
the infological2 glasses, one observes intellectual actors (1-actors), who perform in­
fological acts like deriving, computing, and reasoning. As an example, calculating the
late return fine in the case Library (Sect. 3) is an infological act. lnfological produc­
tion acts and facts are collectively called 1-things.

B-organization B-things

!-organization 1-things

0 -organization 0-things

Fig. 4. Depiction of the aspect organizations

Looking through the datalogical glasses, one observes datalogical actors (D-actors),
who execute datalogical acts like gathering, distributing, storing, and copying docu­
ments containing the facts mentioned above. So, a datalogical production act is an act in
which one manipulates the form of information, commonly referred to as data, without

2 The notions "infological" and "datalogical" are taken from Langefors [11].

8 J.L.G. Dietz

being concerned about its content. For example, the act of recording a loan in the
Library's database is a datalogical act. Datalogical production acts and facts are col­
lectively called D-things.

The distinction levels as exhibited in 4 are an example of a layered nesting of sys­
tems [2]. Generally spoken, the system in some layer supports the system in the next
higher layer. Conversely, the system in some layer uses the system in the next lower
layer. So, the B-organization uses the I- organization and the I- organization uses the
D- organization. Conversely, the D- organization supports the I- organization and the
I- organization supports the B- organization.

In the '¥-theory based DEMO methodology3, four aspect models of the complete
ontological model of an organization are distinguished, as exhibited in 5. The Con­
struction Model (CM) specifies the construction of the organization: the actor roles in
the composition and the environment as well as the transaction types in which they
are involved. The Process Model (PM) specifies the state space and the transition
space of the C-world. The State Model (SM) specifies the state space and the transi­
tion space of the P-world. The Action Model consists of the action rules that serve as
guidelines for the actor roles in the composition of the organization.

Enterprise Ontology is one of the two pillars of the emerging field of Enterprise
Engineering, Enterprise Architecture being the other one [8]. The paradigm of Enter­
prise Engineering is that an enterprise4 is a designed artifact. Its implication is that
any change of an enterprise, however small, means a redesign of the enterprise,
mostly only a redesign of its construction, sometimes also a redesign of its function.

3 Assessing the Notion of Business Rule

3.1 Clarifications

As we have seen in Sec. 1, the core notion of business rule, common to all sources, is
that it is a constraint on the behavior of an enterprise; it specifies what is allowable
and what isn't. Within Enterprise Engineering, a clear distinction is made between the
design phase and the operational phase of an enterprise [8]. In the design phase, one is
concerned with the (re)design of both the function of the enterprise (its business) and
the construction (its organization). The design process is guided by the applicable
functional and constructional design principles. They are the operationalization of the
notion of Enterprise Architecture, as explained in [8].

The first clarification we propose is to use the term "business rule" exclusively for
the operational phase of an enterprise, thus to consider business rules as operational
rules. Consequently, business rules are determined during the (re)design of an enter­
prise, and every change of a business rule, as well as the addition or deletion of a rule,
implies a redesign of the enterprise. The relationship between business rules and enter­
prise policies is therefore indirect, namely via the design principles that are applied in
the design phase. The knowledge sources we have referred to in Sec. 1 don't contain
explicit statements regarding the distinction between design phase and operational

3 Design and Engineering Methodology of Organizations, see www.demo.nl
4 We use the term "enterprise" in a most general way. It refers to companies, to governmental

agencies, to unions, to not-for-profit institutions, etc.

On the Nature of Business Rules 9

phase. This prevents us from elaborating the issue, conjecturing at the same time that
such a strict distinction is not made.

On the basis of the holistic enterprise ontology, as discussed in Sec. 2, the second
clarification we propose is to consider business rules as specifications of the state
space and the transition space (of both the production world and the coordination
world) of an enterprise's B-organization.

Although business rules can very well be expressed in natural language [14] and in
diagrammatic languages [10], the most precise and concise way is to express them by
formulas in modal logic [7, 13]; conversely, one could say that it is the nature of a
business rule to be a formula in modal logic. A modal logic formula is a (first-order,
all-quantified) logical formula preceded by a modal operator. It appears that one can
distinguish between two modal operators: necessity (with its negation: possibility) and
obligation (with its negation: prohibition). Let us, based on the two modal operators,
distinguish between declarative-shape and imperative-shape business rules respec­
tively. A declarative-shape business rule expresses a constraint on the state space or
the transition space of a world. Examples of a state space constraint and a transition
space constraint are respectively:

A customer cannot rent more than one car at the same time
The start of a car rental has to be preceded by depositing a particular amount

An imperative-shape business rule expresses how to respond to a business event,
like a procedure or protocol. It is important to notice that imperative-shape business
rules do not come in addition to declarative-shape business rules but that they are op­
erational transformations of declarative-shape business rules. Applying the impera­
tive-shape business rules of an organization guarantees that one is compliant with the
declarative-shape business rules. So, strictly spoken, one can do with only imperative­
shape business rules. However, providing also the declarative-shape business rules
gives much more insight in the state space and the transition space of both the produc­
tion and the coordination world. Next, it is a helpful intermediate stage in formulating
imperative-shape business rules. Of course, one has to take care that the imperative­
shape rules and the declarative-shape rules are mutually consistent.

Fig. 5. The ontological aspect models

10 J.L.G. Dietz

Projecting the modal operators on the four aspect models of DEMO (Fig. 5), it
turns out that the declarative-shape business rules are contained in the State Model
and the Process Model, and the imperative-shape business rules in the Action Model.
Thus, the latter ones are action rules, prescribing how actors should respond to busi­
ness events. As said before, declarative-shape business rules are constraints on the
state space and the transition space of both the C-world and the P-world. Regarding
the P-world, we propose to call its state elements business facts, being predications
over business objects. Regarding the C-world, we already called C-facts business
events. This is the third clarification we propose.

The last and fourth clarification we propose is to distinguish between the three as­
pect organizations. This separation of concerns is very useful in making the total set
of 'business' rules manageable, next to the adoption of the universal transaction pat­
tern that contains already a bunch of predefined rules. Both Halpin's categories of
static constraints and dynamic constraints [10] and Ross' rejectors [14] presumably
cover all three aspect organizations.

Next, we propose to reserve the term "business rule" exclusively for B-organization
rules. This position is contrary to OMG's [13], where a business rule is defined as a rule
under business jurisdiction. This doesn't seem to be a good criterion. First, it obfuscates
that enterprises are also subject to rules from outside, e.g., from national legislation.
Second, naming a concept by a term that does not reflect an inherent property of the
concept is never a good idea, since the essence of the concept will not be captured.

3.2 Illustrations

To elaborate and illustrate our point of view, let us take an example case, namely the
case Library [5, 7]. A general understanding of the operations of a library is sufficient
to keep up with the discussion. We will focus on the processes concerning book loans.
Among others, the next constraints apply:

A member cannot lend more than max_copies_in_loan at the same time (1)
Lent books have to be returned within the standard_loan _period (2)
A loan cannot be ended if the book copy has not been returned (3)
Loans that are ended too late will be fined with the incurred _fine amount (4)
A person may have more than one membership at the same time (5)

Let us make some preliminary observations. Rule 1, 3, and 5 are state space con-
straints. Rules 2 and 4 are transition space constraints. Note that all rules can be vio­
lated except rule 5. Let us next project these rules on the theoretical foundations of
Enterprise Ontology. Without further explanation we state that the next transactions,
including their results, are involved in these rules, taken from [5, 7]:

T04 loan start
T05 book return
T06loan end
T07 fine payment

R04 loan L has been started
R05 the book copy of loan L has been returned
R06 loan L has been ended
R07 the late return fine for loan L has been paid

The corresponding parts of the Process Model of the Library are exhibited in Fig. 6
and Fig. 7.

On the Nature of Business Rules 11

Fig. 6. Process Model of the loan start process

A box (symbol for an act) including a disk (symbol for coordination) represents a
C-act (e.g., request T04) and its resulting C-fact (e.g., T04 requested), collectively
called a transaction step, and indicated with e.g., T04/rq5. A box including a diamond
(symbol for production) represents a P-act (e.g., the P-act of T04) and its resulting
P-fact (e.g., the P-fact of T04), collectively called the execution step of the transac­
tion, and indicated with e.g., T04. A solid arrow from a step S 1 to a step S2 ex­
presses the constraint that S 1 precedes S2 as well as that S2 has to be performed after
S 1. So, for example, the promise of T04(L), where L denotes some loan, precedes
the request of T05(L), and this request has to be performed once T04(L) is promised.
A dotted arrow from S1 to S2 expresses only the constraint that S2 precedes Sl. So,
for example, the promise of T05(L) precedes the execution of T04(L), i.e., actor A04
has to wait for executing T04(L) until T05(L) is performed. The gray-lined rectan­
gles represent the responsibility areas of the involved actor roles. For example, A04
is responsible for performing T04/pm, T05/rq, T04/ex, T04/st, and T05/ac. Note that,
for the sake of simplicity, only the basic transaction pattern is shown in Fig. 6 and
Fig. 7.

The corresponding, complete, part of the Action Model for actor A04 consists of
the next action rules:

When T04(L) is requested, it must be declined if the total number of books in loan
under the same membership as the one for L is equal to the current maximum
number of copies in loan; otherwise it must be promised.
When T04(L) is promised, T05(L) must be requested.
When T05(L) is promised, T04(L) must be executed and stated.
When T05(L) is stated, it must be rejected if the book copy is damaged; otherwise it
must be accepted.

Note that we have solved the having to wait until T05(L) is promised before being
able to execute T04(L) by the 'trick' that T04(L) must be executed when T05(L) is
promised. This is fully acceptable in practice, while preserving that we are dealing
with an inter-transaction relationship.

5 rq stands for request, pm for promise, st for state, ac for accept, and ex for executing the P-act.

12 J.L.G. Dietz

Fig. 7. Process Model of the loan end process

The corresponding, complete, part of the Action Model for actor A06 consists of
the next action rules:

When T06(L) is requested, it must be declined ifT05(L) is not accepted; otherwise
it must be promised.
When T06(L) is promised, T07(L) must be requested if the acceptance of T05(L)
was too late; otherwise T06(L) is executed and stated.
When T07(L) is stated, it must be rejected if the amount paid is not correct; other­
wise it must be accepted.
When T07(L) is accepted, T06(L) is executed and stated.

Note that T07 is an optional enclosed transaction in T06. It will only be performed
if applicable. Only in that case the last two rules are applied.

Fig. 8 exhibits the part of the State Model that corresponds with the two loan proc­
esses, as presented and discussed above, according to the diagrammatic language of
WOSL [6], which is based on ORM [10]. It shows, among other things, the rule that a
person may have more than one membership at th,e same time, and that a loan must

Pis the member in M

R01 R04 ROS

the tare return line
for L has been paid

Fig. 8. State Model of (a part of) the Library

On the Nature of Business Rules 13

have an associated membership and an associated book copy. The diamond shaped
unary fact types are transaction results. They are the only fact types that can be cre­
ated by actors, together with the objects to which they belong. All other fact types are
existentially dependent on them. The object class PERSON is colored gray to express
that its members are created outside the scope of the Library, contrary to MEMBER­
SHIP, LOAN, and BOOK COPY.

Lastly, let us address the comments we have put to citations of the knowledge
sources in Sec. 1. Regarding the concept customer, two questions were raised: is it
basic and is it atomic? We don't consider it basic because it is a role of a person or an
institute. In the latter case it would even also be not atomic. The atomicity of the con­
cept of order is questionable because it normally is an aggregation of things. The con­
cept of quantity back-ordered is not considered basic because it normally would be
computed.

4 Conclusions

Based on the '¥-theory (see Section 2), a clear distinction can be made between the
function and the construction of an enterprise, respectively called its business and its
organization. Another useful separation of concerns that can be made subsequently
regards the distinction between three aspect organizations: the B-organization, the
!-organization, and the D-organization. The ontological model of an enterprise is the
('¥-theory-based) model of its B-organization. Among other things, it contains a com­
plete set of business object classes, business fact types, business event types, and
business rules.

A business object class is the extensional counterpart of an (intensional) unary fact
type, and thus not a separate concept [17]. As an example, the class CAR = {x I
car(x)}. Consequently, there is only one concept needed to describe the state of a
(business) world, which is the concept of business fact.

A business event is the occurrence of a transition in the coordination world of an
enterprise's B-organization. It is the effect of an act by an actor in the B-organization.
Business events are agenda for actors, i.e., things to which they respond by taking
appropriate actions.

A business rule is a statement that constrains either the state space or the transition
space of either the production world or the coordination world of an enterprise's
B-organization. Defined in this way, we speak of a declarative-shape rule. It appears
very practical to transform declarative-shape rules into imperative-shape rules, i.e.,
action rules. Ross' projectors [14] seem to be action rules.

Although there is no fundamental difference between the declarative way of formu­
lating rules and the imperative way, one could argue that imperative-shape rules offer
less freedom to act than declarative-shape rules. It is good to realize, however, that
this is only a matter of appearance. An interesting topic for future research would be
the relationship between the kind of an organization and the preference for one of the
two shapes of rules. Our hypothesis is that it is likely to find a preference for declara­
tive-shape rules in organizations where people have a high level of education and pro­
fessionalism. Conversely, one may expect to find a preference for imperative-shape
rules in organizations where this level is low. Compliance with the rules is in the first

14 J.L.G. Dietz

kind of organizations a matter of trust in the competence and the responsibility of
people. In the second kind, it is more likely that compliance is enforced by (auto­
mated) workflow systems, in which the rules are 'hard-wired'.

Next to business rules, so the rules applicable to the B-organization, there are simi­
lar operational rules concerning the !-organization and the D-organization. Examples
of an 1-rule and aD-rule are respectively:

Customers must be informed about penalties of late return before the car rental
starts (i.e., before they accept the rental by signing the contract).
A copy of the driver license must be made before the customer fills out his data.

These !-rules and D-rules are certainly not unimportant. At the same time, it is ob-
vious that the impact of violating them on the business is far less than the impact of
violating B-rules. Therefore, it seems to be a good idea to deal with them separately.
Derivation rules (Halpin [10]) or producers (Ross [14]) are infological rules; they
belong to the !-organization. A subtle but important distinction can be made between
the ontological definition of a fact and the infological rule by which it is computed or
derived [6].

The analysis and discussion in this paper is performed in the context of Enterprise
Engineering, where enterprises are considered to be designed artifacts. Business rules
are part of the design and engineering of an enterprise, starting from its Enterprise
Ontology. This design has been guided by the design principles of the applied Enter­
prise Architecture [8]. Business rules guide the operation of an enterprise; design
principles guide its design.

References

1. Bunge, M.A.: Treatise on Basic Philosophy. The Furniture of the World, vol. 3. D. Reidel
Publishing Company, Dordrecht (1977)

2. Bunge, M.A.: Treatise on Basic Philosophy. A World of Systems, vol. 4. D. Reidel Pub­
lishing Company, Dordrecht (1979)

3. Denning, P., Medina-Mora, R.: Completing the loops. In: ORSAffiMS Interfaces, vol. 25,
pp. 42-55 (1995)

4. Dietz, J.L.G.: Generic recurrent patterns in business processes. In: van der Aalst, W.M.P.,
ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, Springer, Heidel­
berg (2003)

5. Dietz, J.L.G., Halpin, T.A.: Using DEMO and ORM in concert- A Case Study. In: Siau,
K. (ed.) Advanced Topics in Database Research, vol. 3, IDEA Publishing, London (2004)

6. Dietz, J.L.G.: A World Ontology Specification Language. In: Meersman, R., Tari, Z. (eds.)
Proceedings OTM 2005 Workshops. LNCS, vol. 3762, pp. 688-699. Springer, Heidelberg
(2005)

7. Dietz, J.L.G.: Enterprise Ontology - Theory and Methodology. Springer, Heidelberg
(2006)

8. Dietz, J.L.G., Hoogervorst, J.A.P.: Enterprise Ontology and Enterprise Architecture- how
to let them evolve into effective complementary notions. GEAO Journal of Enterprise Ar­
chitecture 2(1) (March 2007)

9. Gero, J.S., Kannengiesser, U.: The situated function-behaviour-structure framework. De­
sign Studies 25(4), 373-391 (2004)

On the Nature of Business Rules 15

10. Halpin, T.A.: Information Modeling and Relational Databases. Morgan Kaufmann, San
Francisco (2001)

11. Langefors, B.: Information System Theory. Information Systems 2, 207-219 (1977)
12. Morgan, T.: Business Rules and Information Systems. Addison-Wesley, Reading (2002)
13. OMG SVBR, http://www.omg.org/docslbei/05-08-0l.pdf
14. Ross, R.G.: Principles of the Business Rules Approach. Addison-Wesley, Reading (2003)
15. Searle, J.R.: The Construction of Social Reality, Allen Lane. The Penguin Press, London

(1995)
16. Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foundation for

Design, Ablex, Norwood (1986)
17. Wittgenstein, L.: Tractatus logico-philosophicus (German text with an English translation

by C.K. Ogden). Routledge & Kegan Paul Ltd., London (1922)

Process Flexibility: A Survey of Contemporary
Approaches

Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar,
and Wil van der Aalst

Eindhoven University of Technology
P.O. Box 513, 5600MB Eindhoven, The Netherlands

{m.h.schonenberg,r.s.mans,n.c.russell,nmulyar,w.m.p.v.d.aalst}~tue.nl

Abstract. Business processes provide a means of coordinating interac­
tions between workers and organisations in a structured way. However
the dynamic nature of the modern business environment means these
processes are subject to a increasingly wide range of variations and must
demonstrate flexible approaches to dealing with these variations if they
are to remain viable. The challenge is to provide flexibility and offer pro­
cess support at the same time. Many approaches have been proposed in
literature and some of these approaches have been implemented in flexi­
ble workflow management systems. However, a comprehensive overview
of the various approaches has been missing. In this paper, we take a
deeper look into the various ways in which flexibility can be achieved
and we propose an extensive taxonomy of flexibility. This taxonomy is
subsequently used to evaluate a selection of systems and to discuss how
the various forms of flexibility fit together.

Keywords: Taxonomy, flexible PAIS, design, change, deviation, under­
specification.

1 Introduction

In order to retain their competitive advantage in today's dynamic marketplace,
it is increasingly necessary for enterprises to streamline their processes so as to
reduce costs and to improve performance. Moreover, it is clear that the economic
success of an organisation is highly dependent on its ability to react to changes
in its operating environment.

To this end, Process-Aware Information Systems (PAISs) are an desirable
technology as these systems support the business operations of an enterprise
based on models of both the organisation and its constituent processes. PAISs
encompass a broad range of technologies ranging from systems which rigidly
enforce adherence to the underlying process model, e.g., workflow systems or
tracking systems, to systems which are guided by an implied process model but
do nothing to ensure that it is actually enforced, e.g., groupware systems.

Typically, these systems utilise an idealised model of a process which may be
overly simplistic or even undesirable from an operational standpoint. Further­
more the models on which they are based tend to be rigid in format and are not

J.L.G. Dietz eta!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 16-30, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Process Flexibility: A Survey of Contemporary Approaches 17

able to easily encompass either foreseen or unforeseen changes in the context or
environment in which they operate. Up to now, there have not been any broadly
adopted proposals or standards offering guidance for developing flexible process
models able to deal with these sorts of changes. Instead most standards focus
on a particular notation (e.g., XPDL, BPEL, BPMN, etc.) and these notations
typically abstract from flexibility issues.

Process flexibility can be seen as the ability to deal with both foreseen and
unforeseen changes, by varying or adapting those parts of the business process
that are affected by them, whilst retaining the essential format of those parts
that are not impacted by the variations. Or, in other words, flexibility is as
much about what should stay the same in a process as what should be allowed
to change[15]. Different kinds of flexibility are needed during the BPM life cycle
of a process. Based on an extensive survey of literature and flexibility support
offered by existing tools1 , a range of approaches to achieve process flexibility have
been identified. These approaches have been described in the form of a taxonomy
which provides a comprehensive catalogue of process flexibility approaches for
the control-flow perspective.

The remainder of this paper is organised as follows. Section 2 presents the tax­
onomy for process flexibility. In Section 3, we use the taxonomy to evaluate the
support of process flexibility in several contemporary PAISs, namely ADEPTl,
YAWL, FLOWer and Declare. In Section 4 we discuss related work. Finally, we
conclude the paper and identify opportunities for future work in Section 5.

2 Taxonomy of Flexibility

In this section, we present a comprehensive description of four distinct ap­
proaches that can be taken to facilitate flexibility within a process. All of these
strategies improve the ability of business processes to respond to changes in their
operating environment without necessitating a complete redesign of the under­
lying process model, however they differ in the timing and manner in which they
are applied. Moreover they are intended to operate independently of each other.
These approaches are presented in the form of a taxonomy which aims to define
each of them in detail. The taxonomy is applicable to both classical (imperative)
and constraint-based (declarative) specifications.

2.1 Specification Approaches

Generally, process behaviour depends on the structure of a process, which can be
defined in an imperative or a declarative way. An imperative approach focuses on
the precise definition of how a given set of tasks has to be performed (i.e., the task
order is explicitly defined). In imperative languages, constraints on the execution
order are described either via links (or connectors) between tasks and/ or data
conditions associated with them. A declarative approach focuses on what should
be done instead of how. It uses constraints to restrict possible task execution

1 See (10] for full details of the approach pursued and the literature and tools examined.

18 H. Schonenberg et al.

~
{[A,B]}

a) Imperative approach

l.l "A should precede B" l,;l
~f-------'---1~

{[A], [A,A], [A,B,A], [A,B,B], .. }

b) Declarative approach

Fig. 1. Execution variances between imperative and declarative approaches

options. By default all execution paths are allowed, i.e., allowing all executions
that do not violate the constraints. In general, the more constraints are defined
for a process, the less execution paths are possible, i.e., constraints limit process
flexibility. In declarative languages, constraints are defined as relations between
tasks. Mandatory constraints are strictly enforced, while optional constraints
can be violated, if needed. Figure 1 provides an example of both approaches.
For both of them, a set of possible execution paths are illustrated. Note that a
declarative approach offers many more execution paths.

2.2 Flexibility Types in Detail

In this section we discuss the individual flexibility types. Each of them is de­
scribed in detail using a standard format including: a motivation, definition,
scope, realisation options, i.e., the situations and domains to which the flexibil­
ity type applies, an example and discussion.

Flexibility by Design
Motivation. When a process operates in a dynamic environment it is desirable
to incorporate support for the various execution alternatives that may arise
within the process model. At runtime, the most appropriate execution path can
be selected from those encoded in the design time process model.

Definition. Flexibility by Design is the ability to incorporate alternative ex­
ecution paths within a process model at design time allowing the selection of
the most appropriate execution path to be made at runtime for each process
instance.

Scope. Flexibility by design applies to any process which may have more than
one distinct execution trace.

Realisation options. The most common options for realisation of flexibility by
design are listed below. It is not the intention of the authors to give a complete
overview of all options.

parallelism - the ability to execute a set of tasks in parallel;
choice- the ability to select one or more tasks for subsequent execution from
a set of available tasks;
iteration- the ability to repeatedly execute a task2 ;

2 Note that iteration can be seen as a particular type of choice, where the join precedes
the split.

Process Flexibility: A Survey of Contemporary Approaches 19

Fig. 2. Flexibility by design: a choice of execution paths is specified

interleaving - the ability to execute each of a set of tasks in any order such
that no tasks execute concurrently;

- multiple instances - the ability to execute multiple concurrent instances of
a task; and

- cancellation - the ability to withdraw a task from execution now or at any
time in the future.

The notions above are thoroughly described by the workflow patterns [20] and
have been widely observed in a variety of imperative languages. We argue that
these concepts are equally applicable in a declarative setting which has a much
broader repertoire of constraints that allow for flexibility by design. Note that
both approaches really differ with respect to flexibility. To increase flexibility
in an imperative process, more execution paths have to be modeled explicitly,
whereas increasing flexibility in declarative processes is accomplished by reducing
the number of constraints, or weakening existing constraints.

Example. Figure 2 exemplifies a choice construct in an imperative model. The
figure depicts that after executing A, it is possible to either execute B, followed
by C, or to execute C directly. Using the choice construct, the notion of skipping
tasks can be predefined in the process model.

Discussion. Realisation options can be implemented differently in different
ways. For example there are different variants of the choice construct, such as
exclusive choice and deferred choice, which can be effected in different ways.
Interested readers are referred to the workflow patterns [20].

Describing all possible execution paths in a process model completely at
design-time may be either undesirable from the standpoint of model complex­
ity or impossible due to an unknown or unlimited number of possible execution
paths. The following three flexibility types provide alternative mechanisms for
process flexibility.

Flexibility by Deviation

Motivation. Some process instances need to temporarily deviate from the exe­
cution sequence described by the associated process model in order to accommo­
date changes in the operating environment encountered at runtime. For example,
it may be appropriate to swap the ordering of the register patient and perform
triage tasks in an emergency situation. The overall process model and its con­
stituent tasks remain unchanged.

Definition. Flexibility by Deviation is the ability for a process instance to de­
viate at runtime from the execution path prescribed by the original process
without altering its process model. The deviation can only encompass changes

20 H. Schonenberg et al.

to the execution sequence of tasks in the process for a specific process instance,
it does not allow for changes in the process model or the tasks that it comprises.

Scope. The concept of deviation is particularly suited to the specification of
process models which are intended to guide possible sequences of execution rather
than restrict the options that are available (i.e., they are descriptive rather than
prescriptive). These specifications contain the preferred execution of the process,
but other scenarios are also possible.

Realisation options. The manner in which deviation is achieved depends on
the specification approach utilised. Deviation can be seen as varying the actual
tasks that will be executed next, from those that are implied by the current
set of enabled tasks in the process instance. In imperative languages this can be
achieved by applying deviation operations. For declarative approaches, deviation
basically occurs through violation of optional constraints. The following set of
operations characterise support for deviation by imperative languages:

- Undo task A: Moving control to the moment before the execution of task
A. One point to consider with this operation is that it does not imply that
the actions of the task are undone or reversed. This may be an issue if the
task uses and changes data elements during the course of its execution. In
such situations, it may also be desirable to roll-back or compensate for the
consequences of executing the task in some way, although it is not always
possible to do so, e.g., the effects of sending a letter can not be reversed.
Redo task A: Executing a disabled, but previously executed task A again,
without moving control. This operation provides the ability to repeat a pre­
ceding task. One possible use for the operation is to allow incorrectly entered
data during task execution to be entered again. For example after register­
ing a patient in a hospital and undertaking some examinations, the registra­
tion task can be repeated to adjust outdated or incorrect data. Note that
updating registration data should not require medical examinations to be
performed again.
Skip task A: Passing the point of control to a task subsequent to an en­
abled task A. There is no mechanism to compensate for the skipped task
by executing it at a later stage of the execution. This operation is useful
for situations, where a (knowledgeable) user decides that it is necessary to
continue execution, even though some preceding actions have not been per­
formed. For example, in life threatening situations it should be possible to
start surgery immediately, whereas normally the patient's health status is
evaluated before commencing surgery.
Create additional instance of task A: Creating an additional instance of a task
that will run in parallel with those instances created at the moment of task in­
stantiation. It should be possible to limit the maximal number of task instances
running in parallel. For example, a travel agency making trip arrangements for
a group of people has to do the same arrangements if the number of travelling
people increase (i.e., a separate reservation has to be done for each person).
Invoke task A: Allows a task in the process model that is not currently
enabled, and has not yet been executed, to be initiated. This task is initiated

Process Flexibility: A Survey of Contemporary Approaches 21

trace=[A) trace= [A, "skip 8")

a) before "skip B" b) after "skip a·

Fig. 3. Flexibility by deviation: the point of control is moved

immediately. For example, when reviewing an insurance claim, it is suspected
that the information given may be fraudulent. In order to determine how to
proceed, the next task to be executed is deferred and a detailed investigation
task (which normally occurs later in the process) is invoked. The execution
of the investigation task does not affect the thread of control in the process
instance and upon completion of the invoked task, execution continues from
this point. Should the thread of control reach a previously invoked task at
a later time in a process instance, it may be executed again or skipped on a
discretionary basis.

Note that although we define deviation operations for imperative approaches
only, this does not mean that there is no notion of these deviations in declarative
approaches. Consider for example constraint ''A precedes B", which is defined as
an optional constraint. By executing B before any occurrence of A, A is actually
skipped by violating the optional precedence constraint. In this paper we clearly
make a distinction between deviation for imperative and declarative approaches,
due to the subtle difference in the act of deviating. Providing a full mapping of
deviation operations to declarative constraints is beyond the scope of this paper.

Example. Figure 3 exemplifies flexibility by deviation by applying a skip oper­
ation. In Figure 3(a) task B is enabled. After applying skip B (Figure 3(b)), it
is possible to execute a (currently not enabled) successor of an enabled task B.

Discussion. Deviation operations can be implemented in different ways, but
for process mining purposes it should be possible to identify where deviations
occurred during process execution. Furthermore additional requirements for the
operators can be given, e.g., the "undo A" operation only has any effect when task
A has been executed previously. When undoing task A, it may be recorded in
one of two possible ways in the execution trace: either the undo task is explicitly
marked as an execution action, or the occurrence of task A being undone is
removed from the trace.

Flexibility by Underspecification

Motivation. When specifying a process model it might be foreseen that in
the future, during run-time execution, more execution paths are needed which
must be incorporated within the existing process model. Furthermore, often only
during the execution of a process instance does it become clear what needs to
be done at a specific point in the process. When all execution paths cannot be

22 H. Schonenberg et a!.

defined in advance, it is useful to be able to execute an incomplete process model
and dynamically add process fragments expressing missing scenarios to it.

Definition. Flexibility by Underspecification is the ability to execute an incom­
plete process model at run-time, i.e., one which does not contain sufficient infor­
mation to allow it to be executed to completion. Note that this type of flexibility
does not require the model to be changed at run-time, instead the model needs
to be completed by providing a concrete realisation for the undefined parts.

Scope. The concept of underspecification is mostly suitable for processes where
it is clearly known in advance that the process model will have to be adjusted at
specific points, although the exact content at this point is not yet known (and may
not be known until the time that an instance of the process is executed). This
approach to process design and enactment is particularly useful where distinct
parts of an overall process are designed and controlled by different work groups,
but the overall structure of the process is fixed. In this situation, it allows each of
them to retain some degree of autonomy in regard to the tasks that are actually
executed at runtime in their respective parts of the process, whilst still complying
with the overall process model.

Realisation options. An incomplete process model is deemed to be one which
is well-formed but does not have a detailed definition of the ultimate realisation
of every task. An incomplete process model contains one or more so-called place­
holders. Placeholders are nodes which are marked as underspecified (i.e., their
content is unknown) and whose content is specified during the execution of these
placeholders. We distinguish two types of placeholder enactment:

• Late binding: where the realisation of a placeholder is selected from a set
of available process fragments. Note that to realise a placeholder one pro­
cess fragment has to be selected from an existing set of predefined process
fragments. This approach is limited to selection, and does not allow a new
process fragment to be constructed.

• Late modelling: where a new process fragment is constructed in order to
realise a given placeholder. Not only can a process fragment be constructed
from a set of currently available process fragments, but also a new process
fragment can be developed from scratch3 . Therefore late binding is encom­
passed by late modelling. Some approaches [21]limit the construction of new
models by (declarative) constraints.

For both approaches, the realisation of a placeholder can occur at a num­
ber of distinct times during process execution. Here, two distinct moments for
realisation are recognised:

• before placeholder execution: the placeholder is realised at commencement
of a process instance or during execution before the placeholder has been
executed for the first time.

• at placeholder execution: the placeholder is realised when it is executed.

3 However, this can only be done by highly skilled persons.

Process Flexibility: A Survey of Contemporary Approaches 23

a) before realisation

rl ~ --- ?15 'c'
~~

b) after realisation

Fig. 4. Flexibility by underspecification: realisation of a placeholder

Placeholders can be either realised once, or for every subsequent execution of
the placeholder. We distinguish two distinct realisation types:

• static realisation, where the process fragment chosen to realise the place­
holder during the first execution is used to realise the placeholder for every
subsequent execution.

• dynamic realisation, where the realisation of a placeholder can be chosen
again for every subsequent execution of the placeholder.

Example. Figure 4(a) shows an incomplete process model with a placeholder
task between A and C. Figure 4(b) illustrates the realisation of the placeholder,
by a process fragment from a linked repository of process fragments. This figure
shows the realisation as a sequence of self-looping tasks, but it can be realised
by any well-formed process fragment.

Discussion. The process fragments available for placeholder realisation can be
stored in a so called repository. A repository can be available for one or more
processes, just for a particular task or a set of tasks.

Flexibility by Change

Motivation. In some cases, events may occur during process execution that
were not foreseen during process design. Sometimes these events cannot be ad­
dressed by temporary deviations from the existing process model, but require
the addition or removal of tasks or links from the process model on a permanent
basis. This may necessitate changes to the process model for one or several pro­
cess instances; or where the extent of the change is more significant, it may be
necessary to change the process model for all currently executing instances.

Definition. Flexibility by Change is the ability to modify a process model at
run-time such that one or all of the currently executing process instances are
migrated to a new process model. Unlike the previously mentioned flexibility
types the model constructed at design time is modified and one or more instances
need to be transferred from the old to the new model.

Scope. Flexibility by change allows processes to adapt to changes that are iden­
tified in the operating environment. Changes may be introduced both at the
level of the process instance and also at that of the process model (also known
as change at instance level, and type or model level respectively).

Realisation options. For flexibility by change we distinguish the following
variation points, which are partly based on [2].

24 H. Schonenberg et al.

Effect of change defines whether changes are performed on the level of a process
instance or on the level of the process model, and what the impact of the change
on the new process instances is.

• Momentary change: a change affecting the execution of one or more selected
process instances. The change performed on a given process instance does
not affect any future instances.

• Evolutionary change: a change caused by modification of the process model,
affecting all new process instances.

Moment of allowed change specifies the moment at which changes can be intro­
duced in a given process instance or a process model.

• Entry time: changes can be performed only at the moment the process in­
stance is created. After the process instance has been created, no further
changes can be introduced to the given process instance. Momentary changes
performed at entry time affect only a given process instance. The result of
evolutionary changes performed at entry time is that all new process in­
stances have to be started after the change of the process model has been
performed, and no existing process instances are affected (they continue ex­
ecution according to the process model with which they are associated).

• On-the-fly: changes can be performed at any time during process execution.
Momentary changes performed on-the-fly correspond to customisation of a
given process instance during its execution. Evolutionary changes performed
on-the-fly impact both existing and new process instances. The new process
instances are created according to the new process model, while the existing
process instances may need to migrate from the existing process model to
the new process model.

Migration strategy defines what to do with running process instances that are
impacted by an evolutionary change.

• Forward recovery: affected process instances are aborted.
• Backward recovery: affected process instances are aborted (compensated if

necessary) and restarted.
• Proceed: changes introduced are ignored by the existing process instances.

Existing process instances are handled the old way, and new process instances
are handled the new way.

• Transfer: the existing process instances are transferred to a corresponding
state in the new process model.

Example. In Figure 5(a) we show a process model that is changed into the
process model depicted in Figure 5(b) by removing task B. The effect of this
change is that instances of the new process model will skip task B permanently.

Discussion. A very detailed description of change operations can be found in
[24]. The authors propose using high level change patterns rather than low level
change primitives and give full descriptions for the identified patterns. Based
on these change patterns and features, they provide a detailed analysis and
evaluation of selected systems from both academia and industry.

Process Flexibility: A Survey of Contemporary Approaches 25

a) before "delete B" b) after "delete B"

Fig. 5. Flexibility by change: a task is deleted

3 Evaluation of Contemporary Offerings

In this section, we apply the taxonomy presented in Section 2 to evaluate a se­
lection ofPAISs, namely, ADEPT1 [17], YAWL4 (version 8.2b) [1,5,4], FLOWer
(version 3.0) [3] and Declare (version 1.0) [11,12]. This evaluation provides an
insight into the manner and extent to which the individual flexibility types are
actually implemented in practice. The selection of PAISs has been based on the
criterion of supporting process flexibility, which excludes classical workflow sys­
tems and most commercial systems. Moreover, the selected systems cover distinct
areas of the PAIS technology spectrum, such as adaptive workflow (ADEPT1),
case handling (FLOWer) and declarative workflow (Declare).

Although we focus on the evaluation of flexibility support, it is worthwhile
mentioning that there is a huge difference in the maturity of the selected offer­
ings. FLOWer has been widely used in industry where its flexible approach to
case handling has proven to be extremely effective for a variety of purposes (e.g.,
insurance claim handling). ADEPT1 has also been successfully applied in dif­
ferent areas, such as health care [17]. Throughout its development lifetime, the
designers of ADEPT [16] have focussed on supporting various forms of change
[16,19,24]. The intention of the next version (ADEPT2) is to provide full support
for changes, including transfer. YAWL is a more recent initiative based on formal
foundations that shows significant promise in the support of a number of dis­
tinct flexibility approaches. Declare is the most recent of the offerings examined
and its declarative basis provides a number of flexibility features. Interestingly,
it supports transfer of existing process instances to the new process model. In
the declarative setting, transfer is easily supported because it is not necessary
to find a matching state in the new process for each instance [12].

The evaluation results are depicted in Table 1, which shows whether a system
provides full (+), partial (+ /-) or no support (-) for an evaluation criterion.
For the full description of the evaluation criteria and the detailed evaluations
for each of the offerings, we refer readers to the associated technical report [10].
The remainder of this section discusses the evaluation results.

Flexibility by design can be provided in several ways. Parallelism, choice and
iteration are fully supported by all systems. Interleaving, multiple instances and
cancellation are not supported by all systems, but they are all supported by
YAWL and Declare, although in different ways. Due to the nature of declara­
tive languages, the designer is encouraged to leave choices to users at run-time.
Flexibility by deviation is similarly supported by both FLOWer and Declare

4 The evaluation of YAWL includes the so-called Worklet Service.

26 H. Schonenberg et a!.

Table 1. Product evaluations

IADEPTliYAWL IFLOWeriDeclarel

Flexibility by design
Parallelism + + + +
Choice + + + +
Iteration + + + +
Interleaving - + +I- +
Multiple instances - + + +
Cancellation - + - +

Flexibility by deviation
Deviation operations (imperative languages)

Undo - - +
Redo - - +
Skip - - +
Create additional instance - - +I-
Invoke task - - +

Deviation operations (declarative languages)
Violation of constraints +

Flexibility by underspecification
Late binding - + - -
Late modelling - + - -
Static, before placeholder - - - -
Dynamic, before placeholder - - - -
Static, at placeholder - - - -
Dynamic, at placeholder - + - -

Flexibility by change
Effect of change

Momentary change + - - +
Evolutionary change - + - +

Moment of allowed change
Entry time + - - +
On- the-fly + + - +

Migration strategies for evolutiona1-y change
Forward recovery - + - -

Backward recovery - + - -
Proceed - - - +
1\·ansfer - + - +

despite their distinct conceptual foundations. FLOWer achieves t his by sup­
porting almost all of the deviation operations, whereas Declare allows for vio­
lation of optional constraints. Flexibility by underspecification is only supported
by YAWL (through its Worklet service). Flexibility by change is supported by
ADEPTl, YAWL and Declare. ADEPTl supports moment ary change, which is
allowed both at entry-time and on-the-fly. As mentioned earlier, t he ADEPT
developers have undertaken comprehensive research into the issue of dynamic
process change and it will be interesting to see this incorporated in the next

Process Flexibility: A Survey of Contemporary Approaches 27

release (ADEPT2) when it becomes available. Evolutionary change is supported
by YAWL and Declare, but unlike Declare, YAWL only supports changes to
the process model. For this reason, YAWL does not support momentary change,
entry time change and a proceed strategy. Declare supports changes for process
instances and for the process model and offers proceed and transfer strategies.
Transfer will be applied to those instances for which the execution trace does not
violate the new process model, otherwise the proceed strategy will be applied,
see [12] for details.

None of the evaluated systems provides the full range of flexibility alterna­
tives. YAWL focusses on providing flexibility by design and underspecification,
ADEPT1 on flexibility by change, FLOWer on flexibility by deviation and De­
clare provides flexibility in several different areas: design, deviation, and change.

4 Related Work

The need for process flexibility has long been recognised [8,18] in the workflow
and process technology communities as a critical quality of effective business pro­
cesses in order for organisations to adapt to changing business circumstances.
It ensures that the "fit" between actual business processes and the technolo­
gies that support them are maintained in changing environments. The notion of
flexibility is often viewed in terms of the ability of an organisation's processes
and supporting technologies to adapt to these changes [22, 7]. An alternate view
advanced by Regev and Wegmann [13] is that flexibility should be considered
from the opposite perspective i.e., in terms of what stays the same not what
changes. Indeed, a process can only be considered to be flexible if it is possible
to change it without needing to replace it completely [14]. Hence flexibility is
effectively a balance between change and stability that ensures that the identity
of the process is retained [13].

There have been a series of proposals for classifying flexibility, both in terms
of the factors which motivate it and the ways in which it can be achieved within
business processes. Snowdon et al. [22] identify three causal factors: type flexibil­
ity (arising from the diversity of information being handled), volume flexibility
(arising from the amount of information types) and structural flexibility (arising
from the need to operate in different ways). Soffer [23] differentiates between
short-term flexibility, which involves a temporary deviation from the standard
way of working, and long-term flexibility, which involves changes to the usual
way of working. Kumar and Narasipuram [9] distinguish pre-designed flexibility
which is anticipated by the designer and forms part of the process definition and
just-in-time responsive flexibility which requires an "intelligent process manager"
to deal with the variation as it arises at runtime. Carlsen et al. [6] identify a series
of desirable flexibility features for workflow systems based on an examination of
five workflow offerings using a quality evaluation framework. Heinl et al. [8] pro­
pose a classification scheme with distinct approaches - flexibility by selection,
where a variety of alternative execution paths are designed into a process, and
flexibility by adaption, where a workflow is "adapted" (i.e., modified) to meet
with the new requirements. Two distinct approaches to achieving each of these

28 H. Schonenberg et a!.

approaches are recognised: flexibility by selection can be implemented either by
advance modelling (before execution time) or late modelling (during execution
time) where as flexibility by adaption can be handled either by type or instance
adaption. Van der Aalst and Jablonski [2] adopt a similar strategy for support­
ing flexibility. Moreover they propose a scheme for classifying workflow changes
in detail based on six criteria: (1) reason for change, (2) effect of change, (3)
perspectives affected, (4) kind of change, (5) when are changes allowed and (6)
what to do with existing process instances. Regev et al. [14] provide an initial
attempt at defining a taxonomy of the concepts relevant to business process flex­
ibility. This taxonomy has three orthogonal dimensions: the abstraction level of
the change, the subject of the change and the properties of the change. Whilst it
incorporates elements of the research initiatives discussed above, it is not com­
prehensive in form and does not describe the relationships that exist between
these concepts or link them to possible realisation approaches.

The individual flexibility types discussed in this paper are informed by a
multitude of research initiatives in the workflow and BPM fields. It is not possible
to discuss these in detail in the confines of this paper, however there is a detailed
literature review of the area in [10].

5 Conclusion

In this paper we have proposed a comprehensive taxonomy of flexibility ap­
proaches achieved based on an extensive survey of contemporary offerings and
literature in the field. The four distinct flexibility types, that make up the pro­
posed taxonomy, differ with respect to the moment and the manner in which
both foreseen and unforeseen behaviour can be handled in a process. On the
basis of this taxonomy, we have evaluated the support for flexibility provided
by various commercial and research offerings (these were the only offerings that
demonstrated any sort of flexibility features).

The evaluation process revealed varying approaches to flexibility support in
the selected offerings. Moreover, individual offerings tended to exhibit a degree of
specialisation in their approach to process flexibility. Such a strict specialisation
limits the use of offerings in practice, since they are not capable of accommo­
dating foreseen and unforeseen behaviours in processes during different phases
of the BPM cycle. We hope that insights provided in this paper might trigger
the enhancement of existing tools and/or development of new ones with a view
for providing a greater support for flexibility.

A logical future step in researching the process flexibility is the establish­
ment of a formal taxonomy/ ontology for process flexibility, which would allow
realisations of each of the flexibility types to be compared in an objective and
language-independent way. Furthermore, another interesting line of research is
to assess the extent of flexibility that current processes demand with a view to
determining which of the flexibility approaches are of most use in practice.

In this paper we concentrated on the control-flow perspective of a business
process, other perspectives addressing data, resources and applications used in
a process are also subject to change. Thus, it would be worthwhile to extend

Process Flexibility: A Survey of Contemporary Approaches 29

the taxonomy in order to incorporate these perspectives. Additionally, there are
some interesting process mining challenges presented by systems that support
deviation or change operations, as in these offerings there is the potential for
individual process instances to execute distinct process models.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan­
guage. Information Systems 30(4), 245~275 (2005)

2. van der Aalst, W.M.P., Jablonski, S.: Dealing with Workflow Change: Identification
of Issues and Solutions. International Journal of Computer Systems, Science, and
Engineering 15(5), 267~276 (2000)

3. van der Aalst, W.M.P., Weske, M., Griinbauer, D.: Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering 53(2),
129~ 162 (2005)

4. Adams, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Edmond, D.: Dynamic,
Extensible and Context-Aware Exception Handling for Workflows. In: Curbera, F.,
Leymann, F., Weske, M. (eds.) Proceedings of the OTM Conference on Coopera­
tive information Systems (CoopiS 2007). LNCS, vol. 4803, pp. 95~112. Springer,
Heidelberg (2007)

5. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets:
A Service-Oriented Implementation of Dynamic Flexibility in Workflows. In:
Meersman, R., Tari, Z., eta!. (eds.) Proceeding of the OTM Conference on Cooper­
ative Information Systems (CoopiS 2006). LNCS, vol. 4275, pp. 291~308. Springer,
Heidelberg (2006)

6. Carlsen, S., Krogstie, J., Solvberg, A., Lindland, 0.1.: Evaluating Flexible Work­
flow Systems. In: Proceedings of the Thirtieth Hawaii International Conference on
System Sciences (HICSS-30), Maui, Hawaii, IEEE Computer Society Press, Los
Alamitos (1997)

7. Daoudi, F., Nurcan, S.: A Benchmarking Framework for Methods to Design Flex­
ible Business Processes. Software Process Improvement and Practice 12, 51~63
(2007)

8. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A Comprehen­
sive Approach to Flexibility in Workflow Management Systems. In: WACC 1999:
Proceedings of the international joint conference on Work activities coordination
and collaboration, pp. 79~88. ACM, New York (1999)

9. Kumar, K., Narasipuram, M.M.: Defining Requirements for Business Process Flex­
ibility. In: Workshop on Business Process Modeling, Design and Support (BPMDS
2006), Proceedings of CAiSE 2006 Workshops, pp. 137~148 (2006)

10. Mulyar, N.A., Schonenberg, M.H., Mans, R.S., Russell, N.C., van der Aalst,
W.M.P.: Towards a Taxonomy of Process Flexibility (Extended Version). BPM
Center Report BPM-07-11, BPMcenter.org (2007)

11. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business
Processes Management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169~ 180. Springer, Heidelberg (2006)

12. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint­
Based Workflow Models: Change Made Easy. In: Curbera, F., Leymann, F., Weske,
M. (eds.) Proceedings of the OTM Conference on Cooperative information Systems
(CoopiS 2007). LNCS, vol. 4803, pp. 77~94. Springer, Heidelberg (2007)

30 H. Schonenberg et al.

13. Regev, G., Bider, I., Wegmann, A.: Defining Business Process Flexibility with the
Help of Invariants. Software Process Improvement and Practice 12, 65-79 (2007)

14. Regev, G., Soffer, P., Schmidt, R.: Taxonomy of Flexibility in Business Processes.
In: Proceedings of the 7th Workshop on Business Process Modelling, Development
and Support (BPMDS 2006) (2006)

15. Regev, G., Wegmann, A.: A Regulation-Based View on Business Process and Sup­
porting System Flexibility. In: Workshop on Business Process Modeling, Design
and Support (BPMDS 2005), Proceedings of CAiSE 2005 Workshops, pp. 35-42
(2005)

16. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow
without Loosing Control. Journal of Intelligent Information Systems 10(2), 93-129
(1998)

17. Reichert, M., Rinderle, S., Dadam, P.: ADEPT Workflow Management System. In:
van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, Springer, Heidelberg (2003)

18. Reijers, H.A.: Workflow Flexibility: The Forlorn Promise. In: 15th IEEE Inter­
national Workshops on Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE 2006), Manchester, United Kingdom, June 26-28, 2006, pp.
271-272. IEEE Computer Society, Los Alamitos (2006)

19. Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria For Dynamic Changes
in Workflow Systems: A Survey. Data and Knowledge Engineering 50(1), 9-34
(2004)

20. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-29, BPM­
center.org (2006)

21. Sadiq, S.W., Sadiq, W., Orlowska, M.E.: Pockets of Flexibility in Workflow Speci­
fication. In: Kunii, H.S., Jajodia, S., S0lvberg, A. (eds.) ER 2001. LNCS, vol. 2224,
pp. 513-526. Springer, Heidelberg (2001)

22. Snowdon, R.A., Warboys, B.C., Greenwood, R.M., Holland, C.P., Kawalek, P.J.,
Shaw, D.R.: On the Architecture and Form of Flexible Process Support. Software
Process Improvement and Practice 12, 21-34 (2007)

23. Soffer, P.: On the Notion of Flexibility in Business Processes. In: Workshop on
Business Process Modeling, Design and Support (BPMDS 2005), Proceedings of
CAiSE 2005 Workshops, pp. 35-42 (2005)

24. Weber, B., Rinderle, S.B., Reichert, M.U.: Change Support in Process-Aware In­
formation Systems- A Pattern-Based Analysis. Technical Report Technical Report
TR-CTIT-07-76, ISSN 1381-3625, Centre for Telematics and Information Technol­
ogy, University of Twente, Enschede (2007),
http://eprints.eemcs.utwente.nl/11331/

Subsuming the BPM Life Cycle in an Ontological
Framework of Designing

Udo Kannengiesser

NICTA, Australian Technology Park, Bay 15 Locomotive Workshop
Eveleigh NSW 1430, Australia

udo.kannengiesser@nicta.com.au

Abstract. This paper proposes a framework to represent life-cycle activities
performed in business process management (BPM). It is based on the function­
behaviour-structure (FBS) ontology that represents all design entities uniformly,
independently of the specific stages in their life cycle. The framework specifies
a set of distinct activities that operate on the function, behaviour and structure
of a business process, subsuming the different life-cycle stages within a single
framework. This provides an explicit description of a number of BPM issues
that are inadequately addressed in current life-cycle models. They include
design-time analysis, flexibility of tasks and sub-processes, interaction between
life-cycle stages, and the use of experience.

Keywords: BPM, BPM life cycle, FBS ontology.

1 Introduction

The notion of business process management (BPM) has emerged as a paradigm in
organisational research and practice. It includes various techniques and tools that

support business processes through all stages in their life cycle. Four stages are often

proposed to compose the BPM life cycle [1, 2, 3], Figure 1:

1. Process Design: This stage includes modelling existing ("as-is") or future
("to-be") business processes.

2. Process Implementation: This stage provides and prepares the systems
that are to carry out the business process. Systems can include both human

operators and software.
3. Process Enactment: This stage realises the "actual", instantiated process

using the models and configurations produced by the first two stages.

4. Process Evaluation: This stage monitors, analyses and validates the

"actual" process and feeds the results back to the design stage.

The BPM life cycle suggests an iterative, continuous approach to managing business

activities, aiming to enable adaptation to changes in the business environment through

redesign of the process. It has been used as a framework for locating BPM research and

as a vision and benchmark for BPM tool vendors.

J.L.G. Dietz eta!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 31-45,2008.
©Springer-Verlag Berlin Heidelberg 2008

32 U. Kannengiesser

Fig. 1. The BPM life cycle

However, this model lacks explicit representations for a number of issues in BPM:

• Design-time analysis: The current model limits activities of analysis to
the Process Evaluation stage. However, there is an increasing interest in
approaches and tools for quantitative performance analysis, simulation
and optimisation of business processes at design time [4].

• Local flexibility: Restricting all design capacity to the first life-cycle stage
does not allow refining or adapting business processes closer to the Process
Enactment stage. This makes business processes rigid and inaccessible for
customisation, continuous improvement and control at the level of
individual tasks or sub-processes.

• Interaction: The BPM life cycle suggests a sequential, top-down execution
of the four stages, reminiscent of the "waterfall" model in software
engineering. However, in practice the individual stages commonly overlap
[1], and new process requirements often emerge during the life cycle
leading to dynamic interactions between the stages.

• Use of experience: The individual stages do not show the role of experience
that is gained from previous life-cycle activities to be reused in new life­
cycle situations.

This paper proposes an ontological framework that captures the BPM life cycle
with more explicit reference to the issues listed above. It is based on two fundamental
ideas. Firstly, business processes are designed entities or artefacts that can be
understood in the same way as physical artefacts such as houses, cars, computers, etc.
Secondly, the life cycle of business processes can be subsumed in a uniform
framework of designing. This expands the notion of designing to include activities
that have traditionally been viewed outside its scope. The framework presented in this
paper is based on the function-behaviour-structure (FBS) ontology [5, 6] that has been
widely used in the broader field of design research.

Subsuming the BPM Life Cycle in an Ontological Framework of Designing 33

2 An Ontological View of Business Processes

2.1 The Function-Behaviour-Structure Ontology

The FBS ontology distinguishes between three aspects of an artefact [5, 7]: function
(F), behaviour (B) and structure (S). To provide a good understanding ofthis ontology
(originally developed to represent physical products), Section 2 uses examples of
artefacts from the domains of both (physical) products and business processes.

2.1.1 Function
Function (F) of an artefact is defined as its teleology ("what the artefact is for"). This
definition views function as dependent on an observer's goals rather than on the
artefact's embodiment. Function represents the usefulness of the artefact for another,
"using system" [8]. It should not be confused with the concept of "transfer function".

Functions are often described using natural language expressions based on verb­
noun pairs. For example, some of the functions of a window can be described as "to
provide view", "to provide daylight" and "to provide rain protection".

Process goals (albeit defined in different ways by different people) represent an
important class of functions of business processes. They replace particular states of
the world (i.e., of the "using system") with ones that are more desirable from an
individual point of view. For example, a function of the process "credit an account"
could be formulated as the replacement of the state "not paid" with the state "paid".

Functions of a business process also comprise business goals such as "attract new
customers" and "reduce time to market", and quality goals such as reliability and
maintainability.

2.1.2 Behaviour
Behaviour (B) of an artefact is defined as the attributes that can be derived from its
structure. They provide criteria for comparing and evaluating different objects or
processes. In the window example, behaviours include "thermal conduction", "light
transmission" and "direct solar gain". Typical behaviours of processes include speed,
cost and accuracy. These behaviours can be specialised and/or quantified for instances
of processes in particular domains. The notion of behaviour also covers "internal"
attributes such as formal correctness and consistency.

2.1.3 Structure
Structure (S) of an artefact is defined as its components and their relationships. This
definition can be understood most intuitively when applied to physical objects, such
as windows, engines and buildings. Here, structure comprises an object's form (i.e.,
geometry and topology) and material. In the window example, form includes "glazing
length" and "glazing height", and material includes "type of glass".

Mapping the concept of structure to business processes requires generalising the
notions of form and material into macro-structure and micro-structure, respectively.
Macro-structure is "formed" by the set of components and relationships that are
distinguishable at a given level of abstraction. Micro-structure "materialises" macro­
structure and is described using a shorthand qualifier, as its components and
relationships are too fine-grained to be represented explicitly. In the window example,

34 U. Kannengiesser

material is specified only as a label for the "type of glass" rather than as a set of
molecular components and their relationships.

Three interconnected components form the macro-structure of a process, Figure 2:
input, transformation, and output [6]. The transformation component often specifies a
sequence of activities or states that are its sub-components (not shown in Figure 2). This
description of process macro-structure maps onto Dietz' [8] "construction perspective"
(or "white-box perspective"): The transformation component may be elementary
("black box" or "transfer function") or composite ("white box"), but the overall process
structure can always be viewed as a "construction" of the same three components.

t

Fig. 2. Macro-structure of a process (i =input; t =transformation; o =output)

Two perspectives can be adopted to represent the micro-structure or "material" of a
process:

1. Object-centred perspective: This perspective views micro-structure as the
agent performing the transformation (t) and as the embodiment of the
input (i) and output (o). The agent can be a specific person, department,
organisation, software, role or a similar construct.

2. Process-centred perspective: This perspective views micro-structure as the
underlying mechanism of the process. It can be understood as a "style of
performing" the process, generalised from a set of more specific micro­
activities. For example, a possible micro-structure of the business process
"pay the supplier" may be labelled as "internet banking". The specific set
of activities that "materialise" this business process, in terms of distinct
steps such as "log in to online banking system", "fill out funds transfer
form" and "click the submit button", are not shown. They are located at a
clearly lower level of abstraction that is not of direct interest at the higher
process level.

2.1.4 Relationships between Function, Behaviour and Structure
Humans construct relationships between function, behaviour and structure through
experience and through the development of causal models based on interactions with
the artefact. Function is ascribed to behaviour by establishing a teleological
connection between the human's goals and measurable effects of the artefact. There is
no direct relationship between function and structure [9]. Behaviour is derived from
structure using physical laws or heuristics. This may require knowledge about
external effects and their interaction with the artefact's structure. In the window
example, deriving the behaviour "light transmission" requires considering external
light sources. An example for processes is accuracy, which is a behaviour derived
from the process output and an external benchmark.

Subsuming the BPM Life Cycle in an Ontological Framework of Designing 35

2.2 FBS Views in the BPM Life Cycle

Different observers usually have different views of the function, behaviour and
structure of an artefact. This Section shows how differences in FBS views of business
processes are driven by different design concerns and life-cycle stages.

2.2.1 Views for Different Design Concerns
The concept of different views among designers is well-known, particularly in multi­
disciplinary environments such as the architecture-engineering-construction (AEC)
domain. In these environments, every discipline has a distinct set of design concerns
that require the use of specific representations or views of the artefact. For example,
an architectural view (i.e., one that addresses design concerns typical for architects) of
the structure of a building design usually consists of a configuration of spaces, while a
structural engineering view (i.e., one that addresses design concerns typical for
structural engineers) of the same building usually consists of a configuration of floors
and walls. The differences between these views of structure are based on the different
behaviours that can be derived from them based on the functions that capture a
specific design concern. Functions associated with the architectural view include
spatial and environmental qualities, and functions associated with the structural
engineering view include aspects of stability. Different views are also common within
the same discipline; see, for instance, the "4+ 1" views of software architecture [1 0].

An example of orthogonal views in process modelling is the notion of different
perspectives of a process, such as proposed by Curtis et al. [11]: the "task", the
"control-flow", the "organisational" and the "informational" perspective. 1 A mapping
of these perspectives onto the FBS ontology, Table 1, shows that they all relate to the
notion of structure, including macro-structure (elementary and decomposed) and
micro-structure (object- and some process-centred). The connection of the four
perspectives to different design concerns has been pointed out by Luo and Tung [12].

2.2.2 Views for Different Life-Cycle Stages
Views of artefacts are further differentiated based on the life-cycle stages that deal
with these artefacts. To capture both business processes and physical objects, a
generic life cycle is specified comprising the following stages, Figure 3: Design,
Implementation, Realisation, and Diagnosis. In the world of physical products, these
stages are often known as Product Design, Production Planning, Production, and
Product Testing. The remainder of this Section presents the FBS views typical for the
individual stages, noting that these views are not always clear-cut.

FBS View in the Design Stage
For both physical products and business processes, the FBS view in Design comprises
a model of structure that reflects the required functions and behaviours underpinning

1 Curtis' original terms for the "task" and the "control-flow" perspective (namely the "functional"
and the "behavioural" perspective, respectively) have not been adopted in this paper to avoid
confusion with the notions of function and behaviour in the FBS ontology.

36 U. Kannengiesser

Table 1. Mapping four process perspectives onto the FBS ontology

Construct in the FBS Process perspectives [II, p. 77]

ontology

i (elementary) Task: "what process elements are being performed, and what

t (elementary) flows of informational entities (e.g., data, artefacts products),

o (elementary) are relevant to these process elements"

t (decomposed into Control Flow: "when proce element are performed (e.g.,

flows of activities) sequencing), as well as aspects of how they are performed

through feedback loops, iteration, complex decision-making

conditions, entry and exit criteria, and so forth"

object- and some Organisational: "where and by whom (which agents) in the

process-centred micro- organi ation proces elements are performed, the physical

structure of i, t and o communication mechanisms used for transfer of entities, and the

physical media and locations used for storing entities"

i (decomposed into Informational: "the informational entities produced or

information structures) manipulated by a process; these entities include data, artefacts,

t (decomposed into product (intermediate and end), and objects; this perspective

flows of information) includes both the structure of informational entities and the

o (decomposed into relationships among them"

information tructures)

- Process Design

- Production
- Process Enactment

Fig. 3. A generic life cycle capturing both (physical) product life cycle and BPM life cycle

the design decisions in favour of that particular structure. This view may be partitioned
according to specific design concerns, as outlined in Section 2.2.1. A number of lan­
guages have been developed to represent generic or concern-specific views of artefact
structure in Design, often with tool support such as computer-aided drafting (CAD)
packages for object models and BPM suites for business process models.

Subsuming the BPM Life Cycle in an Ontological Framework of Designing 37

FBS View in the Implementation Stage
This view generates a model of the artefact that can readily be realised using the
resources that are or can be made available. For mechanical assemblies, for example,
this involves creating a set of manufacturing and assembly plans based on the object
drawings received from the Design stage. These plans are procedural descriptions of
the steps required to transform raw material into parts (specified in manufacturing
plans) and parts into assemblies (specified in assembly plans). Plans are prepared in a
way to be understood by human workers and/or by numerically controlled (NC)
machines. The functions and behaviours associated with the implementation view
predominantly deal with issues specific to artefact realisation, such as feasibility,
production time and production cost.

For business processes, the FBS view in Implementation produces models of process
structure in the form of enactment plans that can be understood by human process workers
or automated process enactment systems. These models are often referred to as
workflows. They include more details of process structure than is captured in the business
process models of the design view. For example, workflows usually include process states
such as "started" and "completed", to manage the orchestration of individual activities
based on the resources available in the enactment (realisation) environment. Functions and
behaviours of workflows concentrate on feasibility (including correctness, absence of
deadlocks, etc.), time, resource utilisation and similar aspects, rather than the more high­
level business goals reflected in business process models.

FBS View in the Realisation Stage
The FBS view in Realisation is identical to the FBS view in the Implementation stage,
even though the structure of the realised artefact is no longer embodied in a
representation medium (such as paper or computational media) but in the "real"
world. Behaviours can be derived from this structure that can then be compared with
the behaviours of the implemented (i.e., not yet realised) artefact. This is then a basis
for devising control actions for process instances that deviate from the workflow.

FBS View in the Diagnosis Stage
The FBS view in Diagnosis is identical to the FBS view that was adopted in the Design
stage. This allows evaluating the artefact by comparing the measured behaviour with the
specified behaviour. As a possible result, improvements can be initiated by returning to
the Design stage and thus commencing another life cycle.

Summary
In the generic life cycle, at its current level of granularity, there are only two different
FBS views, each of which includes a design-time and a runtime component
corresponding to distinct life-cycle stages:

• The concept view, adopted in the Design stage (design-time component)
and the Diagnosis stage (runtime component)

• The realisation view, adopted in the Implementation stage (design-time
component) and the Realisation stage (runtime component)

These views form the basis for integrating the entire life cycle of an artefact in a
single framework of designing.

38 U. Kannengiesser

3 The BPM Life Cycle in a Framework of Designing

3.1 An Initial Framework of Designing

Designing aims to create the structure of new artefacts to meet a set of requirements
stated as functions. As this mapping between function and structure can be established
only via behaviour, that behaviour must satisfy two constraints: First, it must reliably
describe the object's "actual" performance under operating conditions, and, second, it
must be consistent with the functions required. One can think of behaviour as being
located in a field of tension between desirability, represented by function, and
feasibility, represented by structure. Designed objects are successful only if their
desired behaviour (constrained by function) matches their feasible behaviour
(constrained by structure).

Based on these concepts, an initial process framework of designing can be formulated
comprising the following fundamental design activities [7]:

• Formulation: transforms required function into behaviour that is expected
to achieve that function.

• Synthesis: transforms expected behaviour into a structure that is a
candidate solution to the design problem.

• Analysis: transforms the structure of the candidate design solution into
"actual" behaviour.

• Evaluation: compares expected behaviour and "actual" behaviour.
• Documentation: produces a description of the final design solution, in suffi­

cient detail to carry out the next stage in the life cycle (i.e., implementation
or realisation).

• Reformulation: modifies some of the properties of the artefact, affecting
function, behaviour or structure.

This framework can be applied to any artefact represented in any FBS view, and
thus also captures the two FBS views derived in Section 2.2.2. This results in two
distinct design processes, concept designing and realisation designing, represented
using the same framework. Note that the activity of analysis for these design
processes covers both design-time and runtime analyses, based on the embodiment of
the artefact in the "real" world or in a representation medium. Examples of design­
time analyses of (represented) business processes include process simulation,
verification and informal diagrammatic analysis [4]. An example of runtime analysis
of ("real") business processes is business activity monitoring (BAM).

Concept designing subsumes the Design stage in the BPM life cycle, but extends
this notion in two ways. First, it provides a more detailed account of designing as a set
of distinct activities rather than as a black box. Second, it spans the traditional divide
between the modelling and the operating environment, tying them more closely
together and thus enabling responsiveness of designing to both design-time and
runtime analyses.

Understanding realisation as designing accounts for the need to provide human
operators with sufficient freedom for carrying out processes in a way adapted to the
situation at hand [13]. Realisation designing generates two entities: one is an
elaboration of the artefact, i.e. of the business process, and the other one is the set of

Subsuming the BPM Life Cycle in an Ontological Framework of Designing 39

activities to be performed for providing and preparing the systems that are to execute
that process. The latter can be viewed as a separate, secondary artefact generated
during realisation designing.

3.2 A Model of Three Interacting Worlds

The initial framework of designing presented in Section 3.1 is a basis for capturing
the life-cycle aspects of design-time analysis and local flexibility; however, it does
not address interaction and the use of experience. This Section introduces the
foundations for an extended framework, drawing on a cognitively-based model of
designing.

Designers perform actions in order to change their environment. By observing and
interpreting the results of their actions, they then decide on new actions to be executed on
the environment. The designers' concepts may change according to what they are
"seeing", which itself is a function of what they have done. One may speak of an
"interaction of making and seeing" [14]. This interaction between the designer and the
environment strongly determines the course of designing. This idea is called situatedness,
whose foundational concepts go back to the work of Dewey [15] and Bartlett [16].

Gero and Kannengiesser [5] have modelled situatedness using the idea of three
interacting worlds: the external world, interpreted world and expected world, Figure 4(a).

The external world is the world that is composed of things outside the designer or
design agent. No matter whether things are "real" or represented, we refer to all of
them as just "design representations". This is because, in our model, their purpose is
to support interpretation and communication of design agents.

The interpreted world is the world that is built up inside the design agent in terms
of sensory experiences, percepts and concepts. It is the internal representation of that
part of the external world that the design agent interacts with. The interpreted world
provides an environment for analytic activities and discovery during designing.

The expected world is the world imagined actions of the design agent will produce.
It is the environment in which the effects of actions are predicted according to current
goals and interpretations of the current state of the world.

These three worlds are interrelated by three classes of interaction. Interpretation
transforms variables that are sensed in the external world into sensory experiences,
percepts and concepts that compose the interpreted world. Focussing takes some
aspects of the interpreted world and uses them as goals for the expected world. Action
is an effect which brings about a change in the external world according to the goals
in the expected world.

Figure 4(b) presents a specialised form of this model, with the design agent
(described by the interpreted and expected world) located within the external world, and
with general classes of design representations placed into this nested model. The set of
expected design representations (Xei) corresponds to the notion of a design state space,
i.e. the state space of all possible designs that satisfy the set of requirements. This state
space can be modified during the process of designing by transferring new interpreted
design representations (Xi) into the expected world and/or transferring some of the
expected design representations (Xei) out of the expected world. This leads to changes
in external design representations (Xe), which may then be used as a basis for re­
interpretation changing the interpreted world. (Changes in the external world may also

40 U. Kannengiesser

(a) (b)

External World

lntorpreled World

x•

X e- • external design representation
x I • [merpr<ted design <et>'"""'totion
X•' = expected design ~·••ion

= Ktion
~ • Interpretacion 1 constructive mMlOfY

~ • focussing

Fig. 4. Situatedness as the interaction of three worlds: (a) general model, (b) specialised model
for design representations

occur independently of the design agent.) Novel interpreted design representations (Xi)
may also be the result of memory (here called constructive memory), which can be
viewed as a process of interaction among design representations within the interpreted
world rather than across the interpreted and the external world.

Both interpretation and constructive memory are modelled as "push-pull"
processes, i.e. the results of these processes are driven both by the original experience
("push") and by some of the agent's current interpretations and expectations ("pull")
[17]. This notion captures the subjective nature of interpretation and constructive
memory, using first-person knowledge grounded in the designer's interactions with
their environment [17, 18, 19]. It is this subjectiveness that produces different views
of the same entity. Note that the views presented in Section 2.2 are based on the
generalised experience of disciplines and life-cycle concerns. Individuals construct
views on the fly, emerging from the interplay of "push" and "pull" that potentially
lead to novel interpretations over time.

3.3 Business Process Design in the Situated FBS Framework

Gero and Kannengiesser [5] have combined the FBS ontology with the model of
interacting design worlds, by specialising the description of situatedness shown in
Figure 4(b). In particular, the variable X, which stands for design representations in
general, is replaced with the more specific representations F, B and S. This results
in the situated FBS framework, Figure 5 [5]. In addition to using external, interpreted
and expected F, B and S, this framework uses explicit representations of external
requirements given to the designer by a stakeholder. Specifically, there may be
external requirements on function (FRe), behaviour (BRe) and structure (SRe). The
situated FBS framework also includes the process of comparison between interpreted

Subsuming the BPM Life Cycle in an Ontological Framework of Designing 41

behaviour (Bi) and expected behaviour (Bei), and a number of processes that
transform interpreted structure (Si) into interpreted behaviour (B\ interpreted
behaviour (Bi) into interpreted function (F\ expected function (Fei) into expected
behaviour (Bei), and expected behaviour (Bei) into expected structure (Sei). Figure 5
uses the numerals 1 to 20 to label the resultant set of processes. They do not represent
any order of execution. The 20 processes elaborate the fundamental design activities
introduced in Section 3.1, which will be shown in the remainder of this Section.

External World

Interpreted World

Expected
World

Fei =-~--r-"

101

Be i .:::.....1---r--- SR e

Ill ~:::::::-

Sei~~--,

-- ::ll transformdtion
............ :~: comparison
:=::E ~ interpretation f constructive memory

- ~ focussing

Fig. 5. The situated FBS framework (after [5])

3.3.1 Concept Designing of Business Processes
Formulation: Concept designers often receive an initial set of business and quality
goals as FRe, specific performance targets as BRe, and some required (sequences of)
activities as SRe. The designers interpret these requirements (processes 1 - 3) and
augment them by constructing additional requirements (processes 4 - 6). These are
often requirements that relate to rather "common-sense" considerations, such as basic
safety functions and reasonable throughput times. Concept designers ultimately
decide on a subset of the requirements and concepts to be taken into consideration for
generating design solutions (processes 7 - 9). A set of behaviours is derived from the
functions considered (process 1 0).

Synthesis: Concept designers generate the structure of a business process that is expec­
ted to meet the required behaviours (process 11), and extemalise that structure for
communicating and/or reflecting on it (process 12). This is commonly done using standard
notations such as BPMN, with appropriate tool support.

42 U. Kannengiesser

Analysis: Concept designers (or specialised analysis tools) interpret the extemalised
business process structure (process 13) and derive "actual" behaviours to allow for
evaluation of the business process (process 14). Ifthe external structure is "real" (i.e.,
executed), this activity corresponds to the Diagnosis stage of the life cycle.

Evaluation: consists of a comparison of expected behaviour and behaviour derived
through analysis (process 15).

Documentation: When the evaluated business process design is satisfactory, concept
designers produce an external representation of the final business process to be passed
on to realisation designing. This representation mainly consists of business process
structure (process 12), some of the business process behaviour (process 17) and, in
few cases, business process function (process 18). A common example of behaviour
in the externalised representation is a timing constraint on the business process.
Functions are included as annotations in textual form.

Reformulation: Concept designers may, at any time, before or after documentation,
focus on different function, behaviour and structure (processes 7 - 9). This
reformulation can be driven by changes in the external requirements provided by
stakeholders. For example, a customer may wish to increase the degree of automation
by implementing an activity as a web service rather than through manual processing
as they initially intended (i.e., new SRe). Another example is a new requirement
received from the realisation designer that a particular timing constraint of the
business process cannot be met using the resources available (i.e., new BRe). Other
drivers of reformulation include requirements that are not explicitly stated as such but
are constructed from within the designer. Examples include requirements emerging
from (the designer's knowledge of) changes in market competition and new
government regulations. Another common precursor for emerging design concepts is
the detection of unsatisfactory behaviour through design-time or runtime analysis.

3.3.2 Realisation Designing of Business Processes
Formulation: Realisation designers usually receive little explicit requirements on
function (FRe) and behaviour (BRe), as the documentation received from concept
designing- the business process model- mostly represents required structure (SRe).
As a result, the interpretation of external requirements (processes l - 3) needs to be
complemented through the internal construction of additional requirements (processes
4- 6). Typically, the internally generated requirements are functions and behaviours
related to a correct and resource-efficient orchestration of the given business process.
Realisation designers can also construct elaborations of the process structure, for
example, by dynamically allocating resources to activities. However, most modelling
languages and practices in concept designing tend to over-specify process structure
and thus restrict flexibility in process realisation [20, 21]. Realisation designers decide
on the requirements and concepts to be considered in their workflow design
(processes 7 - 9), and derive an additional set of behaviours from the functions
considered (process 10).

Synthesis: Realisation designers generate a workflow structure that is expected to
meet the required behaviours (process 11), and externalise that structure for
communicating and/or reflecting on it (process 12). The structure may be expressed

Subsuming the BPM Life Cycle in an Ontological Framework of Designing 43

using diagrammatic notations to be understood by humans or using formal notations
to be understood by automated systems for subsequent execution.

Analysis: Realisation designers (or specialised analysis tools) interpret the structure of
the externalised workflow structure (process 13) and derive "actual" behaviours to
allow for evaluation of the workflow (process 14). The external structure may be
"real'' (i.e., executed) or represented/simulated.

Evaluation: consists of a comparison of expected behaviour and behaviour derived
through analysis (process 15).

Documentation: When realisation designers are satisfied with their evaluations, they
produce an external representation of the final workflow. If the executing system is
automated, this representation may include only process structure (process 12) and
some behaviour (process 17). If the executing system involves a human process
operator, some process function (process 18) can be added to facilitate understanding
and acceptance of the workflow.

Reformulation: Realisation designers may, at any time, before or after business process
execution, focus on different function, behaviour or structure (processes 7 - 9). This
reformulation can be driven by changes in the external requirements provided by
concept designers, usually in form of a modified structure of the higher-level business
process model. This often occurs as a result of a reformulation of the concept design, as
outlined in Section 3.3.1. Another common driver of reformulation is the detection of
incorrect or inefficient activity execution (process 14), which may be addressed by
performing local adaptations on a process instance level. In cases where this is not
possible, the realisation designer needs to communicate the problem (process 17) and/or
propose changes to the business process model (process 12). This communication leads
to new requirements for the concept designer who then decides whether or not to take
them into consideration.

4 Conclusion

Representing the BPM life cycle in the situated FBS framework provides a rich
description of BPM activities, capturing the issues mentioned in Section 1:

• Design-time analysis: The framework comprises both design-time and
runtime analyses. This is based on the uniform representation it provides
for any type of embodiment of a business process, including paper-based,
digital, simulated and "real" environments. No matter how the process is
embodied, it can always be interpreted as structure that can then be
transformed into behaviour.

• Local flexibility: Extending the scope of designing to include implementation
and realisation provides flexibility at all levels of the life cycle, using the
capability of change that is inherent to designing. All changes are based on the
designers' decisions based on the current situation, constrained by their
interpretation of the requirements.

44 U. Kannengiesser

• Interaction: Business processes can change at any time during their life
cycle. The situated FBS framework captures this change through
reformulation processes that operate on the function, behaviour or
structure of a business process. Processes that have been reformulated in
concept designing can be interpreted as new external requirements for
realisation designing, and vice versa. This enables dynamic interactions
between life-cycle stages.

• Use of experience: Experience is captured in the situated FBS framework
by processes of interpretation and constructive memory. It is based not
only on the currently active BPM life cycle but also on the designers' "life
cycle", i.e., it is constructed from all their previous interactions with
business process designs and with one another.

The explicit description of these issues can lead to a more profound understanding
of the BPM life cycle. The design-ontological foundations established in this paper
provide a tool for BPM research to gain access to a wider range of approaches drawn
from various fields of design. We are currently using the situated FBS framework to
address some of the major life-cycle related challenges faced by BPM practitioners
[22], focussing on enhanced modelling languages and methods for more process
flexibility, interoperability and alignment with business goals.

Acknowledgments. NICT A is a national research institute with a charter to build
Australia's pre-eminent Centre of Excellence for information and communications
technology (ICT). NICT A is building capabilities in ICT research, research training
and commercialisation in the ICT sector for the generation of national benefit. NICT A
is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

1. van der Aalst, W.M.P.: Business Process Management Demystified: A Tutorial on Models,
Systems and Standards for Workflow Management. In: Desel, J., Reisig, W., Rozenberg, G.
(eds.) ACPN 2003. LNCS, vol. 3098, pp. 1-65. Springer, Heidelberg (2004)

2. zur Muehlen, M., Ho, D.T.-Y.: Risk Management in the BPM Lifecycle. In: Bussler, C.J.,
Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 454-466. Springer, Heidelberg (2006)

3. Wetzstein, B., Ma, Z., Filipowska, M., Bhiri, S., Losada, S., Lopez-Coho, J.-M., Cicurel,
L.: Semantic Business Process Management: A Lifecycle Based Requirements Analysis.
In: Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic, N. (eds.) Semantic
Business Process and Product Lifecycle Management. Proceedings of the Workshop
SBPM 2007, Innsbruck, Austria, pp. 1-10 (2007)

4. Vergidis, K., Tiwari, A., Majeed, B.: Business Process Analysis and Optimization: Beyond
Reengineering. IEEE Transactions on Systems, Man, and Cybernetics - Part C:
Applications and Reviews 38(1), 69-82 (2008)

5. Gero, J.S., Kannengiesser, U.: The Situated Function-Behaviour-Structure Framework.
Design Studies 25(4), 373-391 (2004)

Subsuming the BPM Life Cycle in an Ontological Framework of Designing 45

6. Gero, J.S., Kannengiesser, U.: A Function-Behavior-Structure Ontology of Processes.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing 21(4), 379-
391 (2007)

7. Gero, J.S.: Design Prototypes: A Knowledge Representation Schema for Design. AI
Magazine 11(4), 26-36 (1990)

8. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Berlin (2006)
9. de Kleer, J., Brown, J.S.: A Qualitative Physics Based on Confluences. Artificial

Intelligence 24, 7-83 (1984)
10. Kruchten, P.: Architectural Blueprints - The "4+ 1" View Model of Software Architecture.

IEEE Software 12(6), 42-50 (1995)
11. Curtis, B., Kellner, M.I., Over, J.: Process Modeling. Communications of the ACM 35(9),

75-90 (1992)
12. Luo, W., Tung, Y.A.: A Framework for Selecting Business Process Modeling Methods.

Industrial Management & Data Systems 99(7), 312-319 (1999)
13. van Aken, J.E.: Design Science and Organization Development Interventions: Aligning

Business and Humanistic Values. Journal of Applied Behavioral Science 43(1), 67-88
(2007)

14. SchOn, D.A., Wiggins, G.: Kinds of Seeing and their Functions in Designing. Design
Studies 13(2), 135-156 (1992)

15. Dewey, J.: The Reflex Arc Concept in Psychology. Psychological Review 3, 357-370
(1896 reprinted in 1981)

16. Bartlett, F.C.: Remembering: A Study in Experimental and Social Psychology. Cambridge
University Press, Cambridge (1932 reprinted in 1977)

17. Smith, G.J., Gero, J.S.: What Does an Artificial Design Agent Mean by Being 'Situated'?
Design Studies 26(5), 535-561 (2005)

18. Bickhard, M.H., Campbell, R.L.: Topologies of Learning. New Ideas in Psychology 14(2),

111-156 (1996)
19. Clancey, W.J.: Situated Cognition: On Human Knowledge and Computer Representations.

Cambridge University Press, Cambridge (1997)
20. Goedertier, S., Vanthienen, J.: Declarative Process Modeling with Business Vocabulary

and Business Rules. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part I.
LNCS, vol. 4805, pp. 603-612. Springer, Heidelberg (2007)

21. Zhu, L., Osterweil, L.J., Staples, M., Kannengiesser, U., Simidchieva, B.I.: Desiderata for
Languages to Be Used in the Definition of Reference Business Processes. International
Journal of Software and Informatics 1(1), 37-65 (2007)

22. Bandara, W., Indulska, M., Chons, S., Sadiq, S.: Major Issues in Business Process
Management: An Expert Perspective. BPTrends, 1-8 (October 2007)

Information Gathering for Semantic Service
Discovery and Composition in Business Process

Modeling

Norman May and Ingo Weber

SAP Research, Karlsruhe, Germany
{norman.may,ingo.weber}~sap.com

Abstract. When creating an execution-level process model today, two
crucial problems are how to find the right services (service discovery and
composition), and how to make sure they are in the right order (seman­
tic process validation). While isolated solutions for both problems exist,
a unified approach has not yet been available. Our approach resolves
this shortcoming by gathering all existing information in the process,
thus making the basis of semantic service discovery and task composi­
tion both broader and more targeted. Thereby we achieve the following
benefits: (i) less modeling overhead for semantic annotations to the pro­
cess, (ii) more information regarding the applicability of services, and
(iii) early avoidance of inconsistencies in the interrelation between all
process parts. Consequently, new or changed business processes can be
realized in IT more efficiently and with fewer errors, thus making enter­
prises more agile in response to new requirements and opportunities. 1

Keywords: Semantic Business Process Management, Web Service Dis­
covery & Composition.

1 Introduction

When enterprises need to adapt to changes in their environment they often have
to adjust their internal business processes. In such cases, a business expert with
little technical knowledge designs a changed or new business process model,
which should then be implemented. Today, the refinement of this model into an
executable process is carried out manually, requiring time and communication
between the domain expert and the respective IT expert with technical exper­
tise. Hence, enterprises are confronted with limited adaptability of IT-supported
business processes, leading to low agility and high cost for changes [3,18].

In this paper we present an improvement addressing this problem by extend­
ing and combining previous work on service discovery, service composition, and
process validation. In our approach we use all available process information to

1 This work has been funded through the German Federal Ministry of Econ­
omy and Technology (01MQ07012) and the European Union (IST FP6-026850,
http://www.ip-super.org).

J.L.G. Dietz et a!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 46-60, 2008.
©Springer-Verlag Berlin Heidelberg 2008

Information Gathering for Service Composition in Process Modeling 47

reduce the modeling effort, to improve the efficiency of the refinement into an
executable process, and to provide richer feedback on inconsistencies in models.

Our solution relies on semantic technologies which promise a simpler, cheaper
and more reliable transformation from the business level into the technical
level [3]. On the business level, the domain or business expert models a pro­
cess in a graphic modeling notation, e.g. BPMN or UML activity diagrams, or
in a process description language, e.g. a graphical representation of BPEL, and
all tasks in the process are annotated with concepts of a common ontology.

Assuming that all tasks of the business process can be implemented by a
set of Semantic Web services2 , an automatic translation of the business process
into an orchestration of Semantic Web Services is possible. Efficient algorithms
for such a translation require the Web services to be annotated with the same
ontology as the business process [1,4,16]; i.e. every Web Service is annotated
with its preconditions and its effect, i.e. the postcondition it establishes.

Finding the implementation for a process task is done in the following way:
First, service discovery attempts to find a matching Web service. If this is not
successful (or for other reasons not satisfactory, e.g., too costly), service compo­
sition is performed (e.g., [4]). Later on, the resulting combination of discovered
or composed services and the process model needs to be validated to assure that
the preconditions of all services hold in any possible case and that parallel ser­
vices are not in conflict with one another. This is needed since in previous work
discovery and composition is performed for every task in isolation and hence
potential conflicts between multiple tasks are not taken into account directly.

Currently, modeling of a complex process is laborious due to the need to
annotate all tasks with preconditions and postconditions manually. Also, by
regarding the manually annotated precondition of a task, service composition
may miss attractive solutions that could be applied by regarding the global
process context (but not from the local task context). In addition, the supposedly
"intelligent" tool may suggest faulty solutions, thus jeopardizing user acceptance.

Our solution is based on logical state summaries that may be encountered
during any valid execution of the process. These states can, e.g., model real world
behavior by using terms from the common ontology. The executable process
is in an invalid state if the execution states of two parallel execution paths
contradict each other. Such a contradiction arises in two cases: (1) One activity
invalidates the precondition of another activity that is executed in parallel. (2)
One activity relies on facts, some of which may be not true. We extend state­
of-the-art approaches by integrating service composition and process validation
to distribute information about the process model across all activities. More
precisely, the contributions of this paper are the following:

1. Our method reduces the effort for modeling semantic business processes: The
burden for annotating tasks is reduced because all context information is taken

2 In this paper we focus on the description based on Semantic Web services for the sake
of readability. However, any kind of known execution-level process building blocks
which are described in an analogous same way may be used here, e.g., automated
workflow tasks, or standardized but entirely manual activities.

48 N. May and I. Weber

into account. This is done, e.g. by expanding preconditions of the activities in
the business process based on the postconditions of their predecessors.

2. During service composition our approach takes into account constraint-sets
which restrict the states considered as intermediate states during service
composition. The pruned states would otherwise lead to inconsistencies with
states computed in parallel tasks.

3. We perform process validation in parallel with service composition. As a
consequence, we are able to detect semantically invalid process parts much
earlier than it is possible currently. Moreover, composition does not generate
conflicts, thereby improving the effectiveness of the overall approach.

The remainder of the paper is organized as follows. First we describe the
underlying formalism and existing work on composition and process validation
in Section 2. On this basis we detail how our solution improves these techniques
in Section 3. Section 4 discusses related work before Section 5 concludes.

2 Foundations

In order to discuss the concepts in this paper thoroughly, we now introduce the
underlying formalism verbally. Subsequently, we discuss shortly today's discov­
ery, composition, and semantic process validation techniques. A running example
is used for illustration purposes, and the shortcomings of today's techniques are
discussed at the end of the section.

2.1 Semantics for Business Process Models

In the following, the basic execution semantics of the control flow aspect of a
business process model are defined using common token-passing mechanisms,
as in Petri Nets. The definitions used here are basically equivalent to the ones
in [20], which extends [19] with semantic annotations and their meaning. For a
more formal presentation please refer to [20].

A process model is seen as a graph with nodes of various types - a single
start and end node, task nodes, XOR split/join nodes, and parallel split/join
nodes- and directed edges (expressing sequentiality in execution). The number
of incoming (outgoing) edges are restricted as follows: start node 0 (1), end node
1 (0), task node 1 (1), split node 1 (>1), and join node >1 (1). The location of
all tokens, referred to as a marking, manifests the state of a process execution.
An execution of the process starts with a token on the outgoing edge of the
start node and no other tokens in the process, and ends with one token on the
incoming edge of the end node and no tokens elsewhere (cf. soundness, e.g., [23]).
Task nodes are executed when a token on the incoming link is consumed and a
token on the outgoing link is produced. The execution of a XOR (Parallel) split
node consumes the token on its incoming edge and produces a token on one (all)
of its outgoing edges, whereas a XOR (Parallel) join node consumes a token on
one (all) of its incoming edges and produces a token on its outgoing edge.

Information Gathering for Service Composition in Process Modeling 49

As for the semantic annotations, we assume there is a background ontology 0
out of which two parts are used: the vocabulary as a set of predicates P, and a
logical theory T as a collection of formulae based on literals over the predicates.
Further, there is a set of process variables, over which logical statements can
be made, again as literals over the predicates. The logical theory is basically
interpreted as a rule base, stating e.g., that all monkeys are animals, or that
no man may be married to two women. These rules can then be applied to the
concrete process variables, e.g., a particular monkey or a particular man. Further,
the task nodes can be annotated using preconditions (pre) and postconditions
(post, also referred to as effects), which are also formulae over literals using
the process variables. A task can only be orderly executed if its precondition
is met, then changing the state of the world according to its postcondition.
The postcondition states the explicit effects, and together with the current state
and the theory we may derive implicit effects, e.g.: if one carries away a table
(with the explicit effect being that the table has been moved), and the theory
tells us that everything which is standing on some other thing moves with this
other thing, and the local state includes a bottle standing on the table, then the
implicit effect is that the bottle is moved too. For any set of literals L we refer
to L as the union of L and this implications of L from the theory (e.g. post; is
the union of the explicit and implicit effects of Ti)·

The question to which degree an explicit effect triggers implicit effects, i.e.,
further changes the state of the world, yields the well-understood frame and
ramification problems. We deal with it by following Winslett's possible models
approach [22], resulting in a notion of minimal changes, which can be described
as a kind of local stability: if there is no indication that something changed,
then we assume it did not change. Further, we assume that all changes (unless
explicitly inconsistent with the theory) trigger all applicable implications from
the theory directly. For more details please refer to [20].

Example 1. We motivate our solution based on the example process in Fig. 1,
represented in BPMN (11}. In this process, every Task Ti is annotated with
precondition pre; and postcondition post;. As outlined above, these annotations
allow for an automatic3 transformation into an executable orchestration of Se­
mantic Web Services and for validating the consistency of the process model.

Let us assume that the ontology contains the literals haveCar, poor, rich,
paysBills, billsPaid, haveProgram, and that the theory says that being rich and
being poor are mutually exclusive as well as that iff you are rich you usually pay
your bills4 :

- 'Vx : --,rich(x) V --,poor(x),
- 'Vx: rich(x) =} paysBills(x), and
- 'Vx : poor(x) =} --,paysBills(x).

3 In the ideal case, full automation is possible. In the general case the transformation
will be semi-automatic.

4 We refer to process variables as concrete entities, e.g., me, whereas the variables in
the services are not bound yet, e.g., x.

50 N. May and I. Weber

Fig. 1. Example BPMN process

Say, task T2 is the task of selling your car, and thus annotated with the precondi­
tion pre2 := [haveCar(me) 1\ poor(me)] and the postcondition post2 ·­

[•haveCar(me) 1\ rich(me)], where me is a process variable. Then, the theory
allows us to derive the following implicit effects: •poor(me) 1\ paysBills(me),
and
post2 = [•haveCar(me) 1\ rich(me) 1\ •poor(me) 1\ paysBills(me)].

Based on the execution semantics, we are now able to define the discovery of
Semantic Web Services, Service Composition, and Semantic Process Validation
more formally.

2.2 Service Discovery

By service discovery we mean the search for a service which matches a require­
ment best. Semantic Web Service discovery relies on the following input: (1) an
ontology 0 with T and P as above, (2) a set Web services S with their pre­
conditions and postconditions using the predicates in P, (3) a search request Q
for a set of Web services which is described through its preconditions and post­
conditions just as the Web services. Given this input, semantic service discovery
returns a set of services R that match the search request Q given ontology 0.
Three levels of matching are possible [12]: exact and subsumption matches may
suffice to implement a task by a single Web Service; partial matches do not
completely satisfy the request, however, a combination of them might do.

Example 2. Consider task T4 in Fig. 1 which is supposed to implement the
"PayBill" action. Task T4 is annotated with precondition pre4 := [paysBill(me)]
and postcondition post4 := [billPaid(me) 1\ poor(me)]. Assume that our service
repository contains the Web service CreditCardPayment which is annotated with
prePayBill := paysBill(x) and postPayBill := billPaid(x) 1\ poor(x).

Service discovery with pre4 as search request is invoked to find all Web services
whose preconditions hold. In this example, the Web service exactly matches the
tasks precondition. Next, we check if this service establishes the postcondition of
task T4, i.e. we have to test if the the Web Service's postcondition subsumes the
tasks postcondition. In this example, this condition holds, and thus the service
CreditCardPayment can be selected as the implementation of task T4 .

Information Gathering for Service Composition in Process Modeling 51

2.3 Service Composition

Service composition, in contrast, tries to find a composition of services which
jointly satisfy the requirements. In many cases service composition will be per­
formed when service discovery cannot find a single Web service - or it may be
that the composition is a better match to the request than any service individu­
ally. Several algorithms for service composition exist and can be integrated into
our framework, e.g. [4,8]. 5 All of them have in common that they find a sequence6

of Web services WSi,, WSi2 , ••• WSin for a task Ti where the following conditions
hold: (1) the precondition of each Web service is fulfilled at the point where this
service is to be executed, i.e., if s is the state in which wsij is be executed, then
s f= prews;. - in particular, in the context here the precondition of Ti enables

J

the execution of the first service, prei f= prews;,; (2) the postcondition of task
Ti is satisfied by the state s after the last Web service, i.e. s f= posti. Notice
that for the special case of n = 1 the composition result is a subset of the result
of service discovery, R.

Example 3. In the example process in Fig. 1, task T3 may be annotated with
pre3:=[rich(me)A•haveProgram(me)] and post3 := [haveProgram]. Say that there
are, amongst others, two services available: buyComputer and writeProgram
with

prebuyComputer := [rich(x)],
postbuyComputer := [•rich(x) A haveComputer(x)],
prewriteProgram := [haveComputer(x)], and
postwriteProgram := [haveProgram(x)].

Note that the resulting composition of Web services contains the literal•rich(x)
as part of its state. In fact, this is a non-obvious inconsistency which semantic pro­
cess validation, as described below, would detect. When service composition is per­
formed in isolation for every task, inconsistencies like this one can be the result.

2.4 Process Validation

As mentioned above, a process validation step is needed to detect inconsistencies
that may result from performing service composition in isolation for every task.
Service composition locally does not lead to any inconsistencies at execution
time. Hence, process validation only needs to consider tasks that potentially
are executed in parallel because the effects of a task T1 executed in parallel to
another task T2 may violate T2 's precondition. The basic steps for detecting
these inconsistencies are the following [20]:

Computing the parallelity relation. For every task, determine the set of
tasks that are potentially executed in parallel. Therefore, a matrix is

5 Note that there is another notion of service composition, namely the composition of

complex behavioral interfaces of a small number of known services- see, e.g., [6,13].
6 In general there may be more complex solutions than pure sequences - for the sake

of brevity we omit further details.

52 N. May and I. Weber

computed that states which pairs of tasks Ti, Tj may be executed in par­
allel (Ti II Tj)·

Detection of conflicting parallel tasks. Two parallel tasks Ti II Tj are in
precondition conflict if there is a literal l such that l, -,l E prei U postj, or in
effect conflict if there is a literal l' such that l', -,l' E posti U postj.

Determining if the preconditions will always hold. By propagation over
the process model it is possible to compute the intersection of all logical
states which may exist while an edge e is activated (i.e., a token resides on
the edge). This intersection, which we refer to as I* (e) captures the logical
literals which are always true when e is activated. Say, Ti is the task node
whose incoming edge is e. Then we can check if the precondition of Ti will
always hold when Ti may be executed, formally: I*(e) f= prei. If not, we
know that the process can be executed such that the precondition of Ti is
violated. We refer to this property as executability. 7

Example 4. Resuming with the example process in Fig. 1 after discovery
and service composition was performed as described above, process validation
produces the following results: First, the parallelity checker derives that Web
service PayBill is executed in parallel with Web services buyComputer and
writeProgram, and thus these two Web services can potentially be in con­
flict with Task PayBill. Next, we compute the states before and after exe­
cuting these Web services. Among these states, state construction will derive
the state after executing Web service buyComputer to be postbuyComputer' :=
[-,rich(me) 1\ haveComputer(me) 1\ poor(me) 1\ -,paysBill(me)]. Clearly, this con­
flicts with the precondition of Web service Pay Bill. Notice that this inconsistency
is not detected during service composition because it is performed for every task in
isolation.

2.5 Shortcomings of State-of-the-Art Solutions

The sequence of steps described in this section implies a number of limita­
tions and problems that we address with our solution. First, service discov­
ery and composition can only exploit the annotations explicitly attached to the
tasks in the process. Consider the example of a task Ti with prei := poor(me)
and posti := haveProgram(me). Then neither service discovery nor composition
would find any applicable services. If, however, the previous step in the process
was buyComputer, and the computer has not been sold already, then there is an
additional (hidden) precondition haveComputer(me). Taking this precondition
into account makes the problem solvable through discovery and composition.
Second, as shown in Section 2.3 service composition is performed for a single
task in the process in isolation because using process level composition would
be close to automatic programming, and thus computationally prohibitive. The
resulting orchestration of services is locally consistent and correct. However, in­
consistencies may be caused by a lack of information about dependencies to other

7 Note that this this is a design time property of a process, which indicates if or if not
instances of this process may not execute due to preconditions that are not fulfilled.

Information Gathering for Service Composition in Process Modeling 53

tasks. Therefore, a separate validation step is required to detect inconsistencies
between the orchestration computed for different tasks in isolation. Third, in­
consistencies induced during service composition per task or due to inconsistent
annotations are detected very late in the whole procedure, wasting computing
resources and slowing down the modeling process.

3 Solution Approach

In this section we present a detailed solution to the shortcomings identified in
the previous section. The rough outline of the approach is the following: (1)
before starting discovery or composition, all implicit information is derived from
the process context; (2) based on this information we can potentially extend the
preconditions of tasks that are to be implemented; (3) also due to the context
information, the annotations of tasks are enriched with constraint-sets which
are used to avoid the construction of compositions that are inconsistent with the
rest of the process model. Given the extended preconditions and postconditions
resulting from (1), service discovery and composition are able to detect more
candidate services which increases the chance that any solution is found.

Fig. 2. Original search space

In the remainder of this section we focus on the effects of these extensions
on the search space in service composition. This trivially relates to discovery by
considering single-step compositions only. In order to better explain the impli­
cations, we visualize the composition search space. Fig. 2 shows an exemplary,
unchanged search space, where the search starts from prei and tries to reach
posti. 8 The funnel above prei then indicates the boundaries of the search space.
This visualization of the search space serves as an intuitive and informal way to
explain the idea of our approach. For a more formal treatment of search space
implications, we refer to, e.g. [4,20]. Possible solutions can be depicted as paths
from prei to posth as depicted in Figure 3.

A solution path is only valid if it does not cross the boundaries of the search
space. Note that Path 1 in Fig. 3 leads through a region which is out of bound­
aries once the constraint-set is taken into account. In other words: Path 2 is valid

8 While the illustrations are related to forward search, the techniques can be applied
analogously to backward search. For these basic planning techniques see [15].

54 N. May and I. Weber

•••• Palh 1

• • • • Pa_,2

Fig. 3. Alternative solution paths, one of which violates the constraint-set

with and without considering the constraint-set, whereas Path 1 is only a valid
solution when the constraint-set is neglected.

3.1 Modification of the Search Space

In Section 2, we explained how current solutions compute a possible solution
given the precondition and a postcondition associated with a task (cf. Fig. 2).
Below, we show how the expansion of the precondition and the inclusion of
constraint-sets affects the shape of the search space.

First, we propose to expand the precondition of every task. For this purpose we
merge its precondition with the logical facts we know must always hold when this
task may be executed (given through I* of the incoming edge, see Section 2.4).
Basically, those are the literals which were established at one point in the process
before the current task, i.e., that were true from the start on, or that were made
true in the postcondition of another task, and which cannot be made false before
the task at hand is executed. The computation of this set of literals can be done
in polynomial time for our restricted class of processes (in the absence of loops) ,
e.g., by an efficient propagation technique such as the !-propagat ion method
described in [20]. 9

As shown in Fig. 4, our algorithm expands the precondition prei . In general,
the extended precondition allows us to discover additional applicable Web ser­
vices, because discovered Web Services can rely on more known preconditions.
This increases the choices to orchestrate Web Services, and thus it becomes more
likely to find any valid orchestration of Web Services. In Fig. 2, imagine that
the goal, i.e. the postcondition posti, was not completely inside the search space,
but that in Fig. 4 it was. This would mean that a previously unsat isfiable goal
becomes satisfiable by using the precondition expansion.

The constraint-set, our second extension to current solutions, may have an
opposite effect. Unlike preconditions and postconditions, which are conjunctive
formulae, a constraint-set is a set of literals interpreted as a disjunctive formula

9 This algorithm is implemented and runs in well under a second for common examples.
Given its polynomial time worst-case behavior, scalability is unlikely to be a problem.

Information Gathering for Service Composition in Process Modeling 55

M~rcn apace

Fig. 4. Search space with expanded precondition

Fig. 5. Constrained search space

which expresses constraints on the states that may be reached during the execu­
tion of a task: if one of the literals from the constraint-set appears, the constraint
is violated. The constraint-set is used to preemptively avoid parallelism-related
conflicts. Thus, it is computed as the negated union of all preconditions and
postconditions of the tasks that may be executed in parallel to the chosen task
node ni: constraint-seti := Uni !ln; { --,[ll E prej U postj }.

Besides constraints explicitly modeled by the user (e.g. only services pro­
vided by preferred service providers may be considered), we can apply the M­
propagation algorithm presented in [20] to compute the set of parallel nodes
for each task node. Given that, the computation of a constraint-seti is straight­
forward . As above, this can be done in polynomial time. Note that it is a de­
liberate choice to use a restricted logical formalism. While richer formalisms
offer more expressivity, the here proposed extensions for modeler support are to
be used during process modeling. Since long waiting times are undesirable, we
propose a restricted formalism here.

As shown in Fig. 5, constraint-sets restrict the search space considered during
service composition. As an important positive implication service composition
avoids generating solutions that will conflict with tasks executed in parallel. This
can be achieved by filtering out services whose preconditions and postconditions
would cause a conflict with the constraint-set in a filtering step right before the

56 N. May and I. Weber

Fig. 6. Constrained search space with expanded precondition

Fig. 7. Constrained search space with expanded precondition, and conflicts between
the precondition and the constraint-sets

actual composition. In effect, invalid orchestrations of Web Services will not even
be generated and thus need not be detected (and fixed) later- e.g., as in Fig. 3.

By including both extensions (Fig. 6) we gain the best of both: while consid­
ering further relevant services we restrict the search space to valid compositions.

Fig. 7 depicts another interesting case: here, the expanded precondition is in
conflict with the constraint-set. Apparently, the respective goal is not satisfiable
and should not be considered. Note that in this case the confli:ct is between
the expanded precondition and the narrowed boundaries of the constraint-set.
However, the conflict can also be present between the original boundaries and
the original precondition, or any combination in between.

Example 5. Reconsidering the example from Section 2, we now indicate how
the information gathering approach described in this section improves business
process modeling. First, based on expanded preconditions more relevant services
can be discovered, specifically when a service relies on postconditions established
by predecessors of a task which cannot be derived from the precondition of a task
alone. This improves upon the example mentioned in Section 2. 5 for current so­
lutions. Second, service composition does not compute an invalid orchestration
here when it takes into account the constraint-sets. Thus, in Example 3 ser­
vice composition in our method would not even generate a solution in which the
implementation of task T3 is in conflict with task T4 .

Information Gathering for Service Composition in Process Modeling 57

3.2 Configuration Options

An interesting aspect of our approach to semantic business process modeling
is its adaptability to specific user needs along three dimensions: (1) With our
method the user can, to a degree, trade completeness of the solution for efficiency.
(2) The quality and granularity of error messages can be configured to the needs
of the modeler. (3) It is possible to examine more suitable compositions beyond
the initial solution found by service composition.

Completeness vs. Efficiency. First, the user trade-off on completeness of com­
position vs. efficiency: one can configure the modeling tool such that precon­
ditions of tasks in a process are not expanded, leading to fewer Web services
being considered during composition and composition is performed faster (it
is exponential in the number of candidate services [4]). However, service com­
position may not find a valid composition of tasks that implements the mod­
eled process even if this is possible with the available Web services (compare
Fig. 2 and Fig. 4).

Error Reporting. Second, consider the problem that service composition fails
because a task in the process model cannot be composed without violating
its constraint-set. Then it may be useful to actually use the composition
regardless of the violation, and change other parts of the process model
to resolve the inconsistency. This becomes possible, e.g., by expanding the
precondition but ignoring the constraint-set of a task. An explicit semantic
process validation step, as it is used by state-of-the-art approaches, then
highlights the violation. Thereby, error messages presented to the user can
convey more information that help him to adjust the process.

Quality of the Composed Process. Finally, assume that a valid composi­
tion is already found by not expanding preconditions. One might still be
interested in a more suitable service composition, if any exists that is to
implement if preconditions are expanded.

These three dimensions for configuring the process underline the power of
being able to adapt the process to the specific needs of the process modeler, and
hence are another contribution of this paper.

3.3 Applying Search Space Modifications During Modeling

The modification of the search space outlined in this section is embedded into the
overall translation procedure that we describe below. Our integrating solution
extends the one presented in [21] while sharing its basic architecture.

Figure 8 summarizes the steps we follow for modeling a process. The user
triggers service composition for an arbitrary task in the modeled business pro­
cess. This can be done explicitly by a function invocation or implicitly, e.g. after
the modeler has finished to define the task. As a result, a request is sent to to
derive all relevant information, which includes for each task, one after the other
finding all states that can be executed in parallel, expanding the precondition,
deriving the constraint-set after which service discovery and service composition
is performed. This is repeated for each of the tasks in an order that reflects the

58 N. May and I. Weber

Fig. 8. Extended composition procedure

control flow over the tasks. Depending on whether or not the constraint-set is
taken into account, the process needs to undergo semantic validation as a final
step again. When no composition of the services was found, or when the mod­
eler is not satisfied with the solution, the conditions attached to the tasks of the
process model can be relaxed as discussed in Section 3.2.

4 Related Work

In this paper we present a solution that integrates service composition with pro­
cess validation to improve the efficiency of business process modeling. While to
the best of our knowledge no integrated approach has been proposed yet, isolated
solutions for service discovery, service composition, or process validation may be
reused as building blocks in our integrated solution. The general approach and
architecture that underlies our solution extends [21], which delivers implemen­
tation and configuration support in Semantic Business Process Management.

Our approach integrates well with the existing discovery mechanisms for Se­
mantic Web Services, e.g. [7,12] which are based on subsumption reasoning. In
order to make our solution more flexible in the presence of erroneous business
process models, we may extend service discovery to approximate reasoning. The
feedback provided by the discovery mechanism outlined in [17] may provide
guidance in case of empty results during service discovery, which can result from
inconsistent use of the background ontology or distributed ontologies.

The methods for service composition [4,8,10] and validation [20] referred in this
paper are based on the possible models approach of AI planning [22]. In principle,
other algorithms or formalisms for discovery [1], composition [2,10,14,16], or vali­
dation [5,9] may be used or adapted to this context.

However, note that [9] uses a fundamentally different way to check the se­
mantic consistency of process models: their work yields a checking method for
pairwise constraints over task co-occurrences (e.g., task A must always be pre­
ceded by task B) in block-based processes. In contrast, our underlying semantic

Information Gathering for Service Composition in Process Modeling 59

process validation checks if declaratively annotated preconditions and postcondi­
tions are consistent with a flow-based process model and a background ontology.
This is achieved by our !-propagation, which propagates summaries of the log­
ical states that may be encountered. And exactly this logical state information
then is used in the work presented in this paper for the precondition expansion
- which disallows relying on [9] for the purposes here.

With respect to [5], it is worthwhile noting that their approach goes into a
similar direction of propagating effects. Besides some formal flaws and concerns
about the computational properties of their work, further differences lie in the
focus on the interoperation of processes in [5] and the absence of a thorough
consideration of background ontologies.

5 Conclusion

In this paper we presented a method to support the modeler of a semantic
execution-level business process. For this purpose, the available semantic infor­
mation in the process is collected and made available to service discovery and
composition, leading to semantically consistent compositions. This is achieved
by integrating previous work on service composition and process validation. In
more detail, we use the process context to (i) extend the precondition which is
certain to hold at a given point in the process, and (ii) derive a constraint-set,
i.e., constraints on the intermediate states that may be reached inside a process
activity (e.g., by service composition).

In terms of runtime, these extensions have contrary effects: on the one hand,
the search space considered during service composition is reduced through the
constraint-sets, as they are used to prune away solutions which would lead to in­
consistent states in the resulting orchestration anyhow; on the other hand, the
extended preconditions may lead to a larger search space, if the composition is
performed in the manner of a forward search (i.e., starting at the precondition,
searching towards the postcondition); if, however, composition is done in a back­
ward search manner (i.e., in the opposite direction), this downside can be avoided.

While in practice the transformation of business processes into an executable
process is a largely manual task, our solution is a clear step towards better
automation. Thus, based on the presented solution the realization of changes to
business processes may experience a significant speed-up. In future work, we plan
to verify our claims experimentally by integrating and extending our previous
work [4,20] as described here.

References

1. Akkiraju, R., Srivastava, B., Anca-Andreea, I., Goodwin, R., Syeda-Mahmood,
T.: Semaplan: Combining planning with semantic matching to achieve web service
composition. In: 4th International Conference on Web Services (ICWS 2006) (2006)

2. Constantinescu, I., Faltings, B., Binder, W.: Typed Based Service Composition.
In: Proc. WWW 2004 (2004)

3. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: A vision towards using semantic web services for business
process management. In: ICEBE, pp. 535-540 (2005)

60 N. May and I. Weber

4. Hoffmann, J., Scicluna, J., Kaczmarek, T., Weber, 1.: Polynomial-Time Reasoning
for Semantic Web Service Composition. In: Intl. Workshop Web Service Composi­
tion and Adaptation (WSCA) at ICWS (2007)

5. Koliadis, G., Ghose, A.: Verifying semantic business process models in inter­
operation. In: Intl. Conf. Services Computing (SCC 2007) (2007)

6. Lemcke, J., Friesen, A.: Composing web-service-like abstract state machines
(ASMs). In: Intl. Conf. Services Computing- Workshops (SCW 2007) (2007)

7. Li, L., Horrocks, 1.: A software framework for matchmaking based on semantic web
technology. In: 12th World Wide Web Conference (WWW 2003) (2003)

8. Lutz, C., Sattler, U.: A proposal for describing services with DLs. In: International
Workshop on Description Logics 2002 (DL 2002) (2002)

9. Ly, L.T., Rinderle, S., Dadam, P.: Semantic correctness in adaptive process man­
agement systems. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006.
LNCS, vol. 4102, Springer, Heidelberg (2006)

10. Meyer, H., Weske, M.: Automated service composition using heuristic search. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
81-96. Springer, Heidelberg (2006)

11. OMG. Business Process Modeling Notation - BPMN 1.0. Final Adopted Specifi­
cation, February 6, 2006 (2006), http: I IWTiiVI. bpmn. orgl

12. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web ser­
vices capabilities. In: Horrocks, 1., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342,
Springer, Heidelberg (2002)

13. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web
services by planning at the knowledge level. In: IJCAI (2005)

14. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43-54.
Springer, Heidelberg (2005)

15. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (1995)

16. Sirin, E., Parsia, B.: Planning for semantic web services. In: Mcllraith, S.A., Plex­
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Hei­
delberg (2004)

17. Stuckenschmidt, H.: Partial matchmaking using approximate subsumption. In:
AAAI, pp. 1459-1464 (2007)

18. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.): Business process
management: A survey. Business Process Management (BPM). LNCS, vol. 2678.
Springer, Heidelberg (2003)

19. Vanhatalo, J., Vi:ilzer, H., Leymann, F.: Faster and More Focused Control-Flow
Analysis for Business Process Models though SESE Decomposition. In: Kramer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, Springer,
Heidelberg (2007)

20. Weber, 1., Hoffmann, J.: Semantic business process validation. Technical report,
University of Innsbruck (2008), http: I IWTiiVI. imweber. deltexteltr-sbpv. pdf

21. Weber, 1., Markovic, 1., Drumm, C.: A Conceptual Framework for Composition
in Business Process Management. In: Abramowicz, W. (ed.) BIS 2007. LNCS,
vol. 4439, Springer, Heidelberg (2007)

22. Winslett, M.: Reasoning about actions using a possible models approach. In: Proc.
AAAI 1988 (1988)

23. Wynn, M., Verbeek, H., van der Aalst, W., ter Hofstede, A., Edmond, D.: Business
process verification- finally a reality! Business Process Management Journal (2007)

Challenges in Collaborative Modeling:
A Literature Review

Michiel Renger1, Gwendolyn L. Kolfschoten1, and Gert-Jan de Vreede1'2

1 Department of Systems Engineering, Faculty of Technology Policy and Management,
Delft University of Technology, The Netherlands

d.r.m.renger@tudelft.nl, g.l.kolfschoten@tudelft.nl
2 Institute for Collaboration Science, University of Nebraska at Omaha, USA

gdevreede@mail.unomaha.edu

Abstract. Modeling is a key activity in conceptual design and system design.
Users as well as stakeholders, experts and entrepreneurs need to be able to cre­
ate shared understanding about a system representation. In this paper we
conducted a literature review to provide an overview of studies in which col­
laborative modeling efforts have been conducted to give first insights in the
challenges of collaborative modeling, specifically with respect to group compo­
sition, collaboration & participation methods, modeling methods and quality in
collaborative modeling. We found a critical challenge in dealing with the lack
of modeling skills, such as having a modeler to support the group, or create the
model for the group versus training to empower participants to actively partici­
pate in the modeling effort, and another critical challenge in resolving conflict­
ing (parts of) models and integration of submodels or models from different
perspectives. The overview of challenges presented in this paper will inspire the
design of methods and support systems that will ultimately advance the effi­
ciency and effectiveness of collaborative modeling tasks.

Keywords: Collaborative modeling, system analysis and design, groups, par­
ticipation, modeling methods.

1 Introduction

Modeling is a key activity in conceptual design and system design. There is broad
agreement that it is important to involve various experts, stakeholders and users in a
development cycle [1-3]. While these parties are often interviewed or in other ways
heard, they often lack the skills to actively participate in the modeling effort. If users
are not involved in systems analysis tasks, their problems, solutions, and ideas are dif­
ficult to communicate to the analyst. This often results in poor requirements defini­
tion, which is the leading cause for failed IT projects [1].

Further, analysts and entrepreneurs might have mental models, visions of a solu­
tion or system design, but might lack the adequate means of articulating these in
terms familiar to all stakeholders involved [4]. While there are means to verbally ex­
plain models, such as metaphors, a graphical representation is often more effective.
("A picture tells more than a thousand words"). In order to use graphical representa­
tions as a basis for discussion, it would be useful if all the stakeholders can be
actively engaged in the construction and modification of such models.

J.L.G. Dietz eta!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 61-77,2008.
©Springer-Verlag Berlin Heidelberg 2008

62 M. Renger, G.L. Kolfschoten, and G.-J. de Vreede

With increasing complexity of systems and organizations, creating shared under­
standing and joint representations of those systems becomes increasingly important.
Analytical skills become more wanted and more important to function in these com­
plex contexts. However, creating one's own system representation is in many ways
different from creating a joint system representation. With the increasing need for col­
laboration among experts and knowledge workers [5], collaborative modeling be­
comes increasingly important.

Collaborative modeling has been a research topic since the late 70's [6]. In order to
support collaborative modeling to create shared understanding and joint visions for
design and solution finding it is important to gain insight in best practices and key
challenges in collaborative modeling. Most articles on collaborative modeling de­
scribe case studies and practical experiences with collaborative modeling. While
meta-analysis has been performed to gain insight in metrics and effects in collabora­
tive modeling [7] and an overview of methods and role deviations has been described
[8, 9], to our knowledge there is no overview of challenges and best practices in col­
laborative modeling. Such overview would help us to find opportunities for research
and for the design of new supporting tools and methods to empower participants and
facilitators for effective and efficient collaborative modeling.

In this paper we provide an overview on collaborative modeling studies that brings
together the experiences and findings from literature to identify the main challenges
and lessons learned in the field. This could inspire research on new and innovative
collaborative modeling support systems and methods. Furthermore such overview of
challenges will be a valuable resource for practitioners in collaborative modeling. The
paper first defines collaborative modeling. Next we describe the different approaches
in collaborative modeling. Third, we discuss the research method for the literature re­
view, followed by the results in which we describe critical challenges and solutions
for successful collaborative modeling. We end with conclusions and suggestions for
further research.

2 Background

2.1 Collaborative Modeling Defined

For the purpose of the research presented in this paper, we define collaborative mod­
eling as:

The joint creation of a shared graphical representation of a system.

In this definition we focus on graphical modeling of systems as opposed to physical
modeling of objects or artifacts such as in architecture and industrial design. Graphi­
cal models are usually created in a conceptual design phase either for analysis or
design. They are used to communicate a representation of a system in order to under­
stand or change it. Conceptual models are used in a early phase of analysis and design
and therefore are initially associated with a sketching activity. However, when they
are used as a basis for design or structural analysis they need to meet various re­
quirements with respect to precision and rigor. They also may need to be translated to
computer models in order to calculate effects of the model. For this purpose,

Challenges in Collaborative Modeling: A Literature Review 63

modeling languages have been developed to capture conceptual models as computer
models to enable easy manipulation and automatic syntactic verifications. Using
computer models also makes it easier to make changes in a model, especially when
changes in one component result in changes to other components and relations be­
tween components.

Further, we focus on joint creation to indicate our interest in stakeholder participa­
tion in the modeling effort as opposed to modeling by external professionals or
analysts only. Joint creation requires the exchange of perspectives among the partici­
pants. The model is a way to elicit, highlight, and communicate different perspectives
and assumptions among group members.

In order to create a shared representation as opposed to an individual representa­
tion, a shared understanding of the elements and relations in the model needs to be
created. Shared understanding can be defined as "the overlap of understanding and
concepts among group members" [10, p. 36]. We build on this definition for the col­
laborative modeling domain where we define shared understanding as the extent to
which specific knowledge among group members of concepts representing system
elements and their relations overlaps. In order to create overlap in knowledge, par­
ticipants need not only share information about model elements and relations. They
also need to create shared meaning with respect to these elements and their relations.
Creating shared meaning is often studied from a 'sensemaking' perspective. Sense­
making is described by Weick as involving "the ongoing retrospective development
of plausible images that rationalize what people are doing" [11, p. 409]. Sensemaking
usually requires some development of shared meaning of concepts, labels, and terms.
It also includes the development of a common understanding of context and the
perspective of different stakeholders with respect to the model.

2.2 Approaches in Collaborative Modeling

Within the field of system dynamics, modelers started to involve client groups in the
modeling process since the late 70's [6]. Since that time, various other modeling ap­
proaches have adopted the notion of collaborative modeling and found methods to
involve stakeholders in their own modeling efforts, see e.g. [8, 12, 13]. As a result
various research groups performed field studies, gained experience, and eventually
developed sophisticated methods for modeling efforts that have high levels of stake­
holder participation. However, different modeling languages are associated with dif­
ferent methods for analysis and design. To accommodate different stakeholder
groups, new methods had to be developed leading to different approaches and eventu­
ally different patterns in collaborative modeling. Here we describe the most important
approaches in collaborative modeling.

2.2.1 Problem Structuring Methods
Problem Structuring Methods refer to a broad variety of methods and tools that have
developed mainly in the UK to cope with complexity, uncertainty and conflict [14].
The most well known of these methods are Soft Systems Methodology, Strategic
Choice, and Strategic Options Development and Analysis (SODA), of which the last
has further developed into Jointly Understanding Reflecting and Negotiating Strategy
Making (JoURNeY Making) [15]. These methods have the following similarities in

64 M. Renger, G.L. Kolfschoten, and G.-J. de Vreede

approach: use of a model as a transitional object, increasing the overall productivity
of group processes, attention to the facilitation of effective group processes, and sig­
nificance of facilitation skills in enabling effective model building [16]. Especially the
first of these is characteristic for Problem Structuring Methods: models are seen as in­
strumental to strategic decision making and problem solving in complex settings, so
the approach typically focuses on the overall decision making process which often in­
cludes simulation for scenario explorations. In Problem Structuring Methods, a
group's shared understanding is created by switching between the views of individual
participants and the entire group, and focus on the differences in view to resolve these
[17, 18].

2.2.2 Group Model Building
Group Model Building is considered a special case of Problem Structuring Methods
for hard modeling, and has been developed by researchers of the University at Albany
in New York, and the University of Nijmegen in the Netherlands. According to An­
dersen et al, Group Model Building refers to "a bundle of techniques used to construct
system dynamics models working directly with client groups on key strategic deci­
sions [19, p. 1]". Group Model Building always has a system dynamics approach, and
usually extends the conceptual model to simulation models to explore diverse strate­
gic options. The flexible outlines of the method, the so-called scripts, are presented
in [8].

The more applied and specific approach called Mediated Modeling is largely based
on these scripts and is developed mainly for complex problems of ecological nature.
Shared Vision Modeling provides a similar approach to handle water resource man­
agement problems [20].

2.2.3 Enterprise Analysis
Originally, collaborative modeling research at the University of Arizona has a
stronger focus on the development of software tools as well as facilitation techniques
for the support of collaborative modeling efforts [21, 22]. This approach concentrates
more on collaboratively built models as a goal in itself rather than as a transitional ob­
ject. The models to be built are often of the IDEFO type, and many techniques are es­
pecially meant to deal with IDEFO-standard models [23, 24].

Apart from these above described approaches, the term Participatory Modeling is
loosely used for collaborative modeling across different approaches. Companion
Modeling (ComMod) uses multi agent systems or role playing games to elicit infor­
mation needed to construct the model [25]. The used methods are designed to build
different types of models in different contexts with different purposes. In this article
we focus on the similarities between modeling methods and challenges in the collabo­
rative modeling effort.

3 Method

In this paper we focused on the challenges that groups encounter when they engage in
a collaborative modeling effort. As a research method we used a literature analysis.
Because the data collected in collaborative modeling is often of a qualitative nature, a

Challenges in Collaborative Modeling: A Literature Review 65

quantitative meta-analysis was not feasible. Moreover, a structural survey among key
journals would have been highly inefficient as collaborative modeling research can be
found in journals concerning modeling and collaboration as well as in domain specific
journals such as "Water Resources Update". While the resulting set of articles might
not be a complete set, the interdisciplinary nature suggests that a more qualitative ap­
proach is most efficient and effective to create an overview of existing literature on
collaborative modeling. In total we found 46 papers.

We analyzed papers that studied collaborative modeling in which the deliverable is a
graphical model of a system, as discussed in the definition. We searched for articles in
which the modeling method was the central topic. We did not discriminate among re­
search methods or approaches [21, 26, 27]. To identify articles we searched in various
research databases such as Google Scholar, Elsevier's Scopus, IEEE Explorer, the ACM
Portal and Science Direct on: collaborative modeling/ modelling, participatory model­
ing, group model building, shared vision modeling, and mediated modeling. Further, we
searched for articles on collaborative modeling within the context of the related subjects
such as: facilitation, G(D)SS, Collaboration Engineering, (Information) Systems and
Software Engineering, Business Process Modeling, collaborative design, and collabora­
tive learning. From the papers we found we searched the bibliography for additional
references, and we looked at papers that cited the papers we found [28].

For each article we searched for challenges and lessons learned. We captured these
in a database and compared the different findings from different perspectives. We
based these perspectives on the framework used by Nunamaker et al. to study the
effects of electronic meeting systems [29] (see figure 1).

Fig. 1. Framework used by Nunamaker et al. (1991) to study effects of EMS

We adapted this framework as to reflect the most relevant factors of collaborative
modeling as found in the literature:

• Group. We focused on the composition of the group and the different roles that can
be present during a modeling effort.

• Task and Context. We found papers in a wide variety of (possibly overlapping)
domains, including Systems Theory (15), technological support and Software Engi­
neering (14), collaboration and facilitation (11), Business Process Modeling (5) and
environment management (3). We also found that the collaborative modeling occurred
in various organizational settings such as public (7), military (4), insurance (2), health

66 M. Renger, G.L. Kolfschoten, and G.-J. de Vreede

care (2), and software engineering (2). Due to this broad scope, we chose to perform
our analysis independently of the task and contextual factors like domain and organ­
izational setting in which the modeling method is used.

• EMS. We found several studies in which specific tools were used to support col­
laborative modeling and in which this technology was the central topic. However,
this paper focuses on the modeling effort, not on the technological design of sup­
porting tools. Therefore, we study the technological aspect in terms of its function­
alities only, and how they relate to other aspects.

• Process. Since we are interested in the interaction challenges of participants and
the role of facilitation support in collaborative modeling efforts, we studied the
process from two perspectives: the interactive process and the modeling method.

• Outcome. For collaborative modeling, the model quality is of specific interest. Fac­
tors like efficiency and buy-in are considered in relation to other aspects.

Our tailored framework thus consists of four key aspects of collaborative model­
ing, as shown in figure 2. The results are described and compared in the next section.

Roles and
Group

Composilion

interactive

Model
Qualiry

Fig. 2. Adapted framework with four key aspects of collaborative modeling

4 Results

As discussed in the Method section, we study the challenges and lessons learned
found in the literature within four topics that represent critical choices in the design of
a collaborative modeling activity:

1. The roles and group composition
2. The interactive process; collaboration and participation
3. The modeling method, activities and modeling rules to support the modeling effort
4. The model quality, both from an objective and a subjective perspective.

4.1 Roles and Group Composition

Collaborative modeling requires expertise in two distinct area's; facilitation of the
group process and expertise in modeling, and the modeling semantics. Such expertise
is generally not available in organizations and is therefore often outsourced. On the
other hand, participants can also fulfill different roles in the collaborative modeling
process to coordinate tasks and responsibilities in the modeling effort.

Challenges in Collaborative Modeling: A Literature Review 67

4.1.1 Facilitation Roles
Richardson and Andersen have described five essential roles that should be present in
a Group Model Building session: the facilitator, the modeler/ reflector, the process
coach, the recorder and the gatekeeper [9]. Roles can be allocated to different people
in the group, which can effect the workload of those participants and therewith the ef­
fectiveness and the efficiency of collaboration support [30]. Furthermore, some roles
can be combined, or even (partly) assigned to group members. Having an outside fa­
cilitator is considered very useful, especially if technology is used [31, 32]. Vennix et
al. note that facilitated groups get less frustrated, have strongly improved group per­
formance, less social-hierarchical domination in discussions and focus on a broader
spectrum of approaches to the problem [6].

In traditional modeling methods, the input of stakeholders is processed into a
model by the analyst/ modeler. But also in more collaborative settings the role of
modeler is mentioned in the literature. However, a modeler/ reflector will not only
support the process of collaborative modeling, but will also interfere with the content
to help groups to understand the system or process under discussion. There is a dis­
cussion among scholars about the effect and ethics involved in content interference by
outside facilitators [33]. Also, there is no consensus among scholars about whether
the roles of facilitator and modeler should be represented by separate persons. Espe­
cially when the task is complex, a large cognitive load is imposed on a person that
serves both [9]. Separated roles of modeler and facilitator are found to save time and
increase model quality [9, 34, 35]. A facilitator and modeler need to work together
searnlessly and be careful not to create conflict between each other. Van den Belt
suggests that these roles are therefore inseparately intertwined, and a combined role
of facilitator and modeler is equally or even more efficient because it allows a
stronger focus on conflict resolving tasks [36]. Moreover, a larger supporting team is
more expensive. A third possibility would be to assign the modeler role to the group
of participants as a whole, which would increase the participation of group members,
but would also pose great challenges for the facilitation. Little explicit research is
found with the use of this approach.

The recorder, also known as chauffeur provides the technical support to the group
by processing the input of the group directly into a modeling tool and by operating
any additional technology such as group support systems [9, 30]. The role of the
chauffeur is closely related to the role of modeler, but the chauffeur functions more as
a scribe, whereas the modeler also interprets and reflects on the group's input. Both
roles can be executed by one person.

The process coach focuses solely on the dynamics of individuals and subgroups
and serves as an assistant to the facilitator to decrease cognitive load. The role of the
process coach is to detect conflict, uneasiness, dissatisfaction, a lack of motivation
and other signs of the group that require action from the facilitator. It is the task of the
process coach to not only identify these needs, but also to suggest remedies [9]. Little
literature is found that explicitly mentions this role.

Finally, the gatekeeper is the medium between the facilitation and the participation
roles. This role is a twofold representative: for the participants he represents the
supporting team and vice versa. Usually this is a person within the organization who
initiates and carries responsibility for the project. The gatekeeper can help the facilita­
tion team in preparation tasks and in assigning participation roles [9].

68 M. Renger, G.L. Kolfschoten, and G.-J. de Vreede

4.1.2 Participation Roles
One of the main reasons for failure of business process re-engineering projects is the
involvement of the wrong people at the wrong time for the wrong reasons [34].
Within all approaches the importance of selecting the right participants is acknowl­
edged [8, 37]. There are several factors that should be kept in mind when composing
the group. Critical choices should be made with respect to the involvement of experts
(professionals or people with experience) and the involvement of stakeholders. Some­
times both experts and stakeholders are involved to achieve both model quality as
well as support for the resulting representation of the system or process.

With respect to expert involvement a trade-off emerges between quality of the
model and shared understanding. First of all, the richness of the expertise in the group
should be considered in order to produce a complete model that covers the scope of
the system. However, when experts have non-overlapping expertise, it might become
more difficult to create shared understanding.

A similar trade-off occurs when inviting stakeholders. When critical stakeholders
are not invited, the group can have insufficient decision power, and there can be a
lack of support for solutions and decision by non-invited or insufficiently heard
stakeholders [34, 38]. Dean, Lee et al. note that the presence of both process designers
and process owners is important in process analysis [22]. In other methods user in­
volvement might be critical. On the other hand, more stakeholders can result in more
conflict, which will require more consensus building activities. For the same reason it
is found more difficult to maintain motivation among participants in a freestanding
project with non-professional interests [36].

In general, in a large group participants have less average speaking time in "live"
discussions [35]. Further, a large group produces a lot of information, which in its
tum puts a strain on the cognitive load of individual participants with the danger of
information overload [23, 24].

Although there are means to overcome the challenges of large groups, e.g. by
working in parallel by the use of group support systems, group discussions are found
to be at the heart of Group Model Building processes [35]. In some cases, different
stakeholders or experts are involved at different steps in the modeling process to re­
duce the burden on the costly time of professionals. However, stakeholders that are
involved later can put earlier made decisions back on the agenda, or even reject these
[34, 38]. Simultaneously involved participants are found to increase pace and buy­
in [34].

4.2 Collaboration and Participation

As mentioned above, the presence of a modeler or chauffeur has a large impact on the
group processes. When using a scribe/ modeler role individual group members have
less direct access and power to influence the model. The rules for scribe/ chauffeur
and modeler are different. In a chauffeured setting changes made to the model will
have to be agreed upon by the group before the chauffeur effectuates the change. An­
other rule, more associated to the modeler role is that the modeler can freely interpret
the group discussion, and based on this, change or extend the model [9].

Another effect of the presence of the chauffeur or modeler is that participants have
less access and ability to modify the model, and therewith to explain their perception

Challenges in Collaborative Modeling: A Literature Review 69

to the group. This lack of access can lead to less interactivity because of more indirect
communication among group members via the chauffeur [35]. This can decrease the
feeling of data ownership or group contribution to the model. Also, some cases in
which a modeler carried out the steps were identified as time-consuming [34]. In
some cases a modeler interpreted and made changes to the model in between sessions
which resulted in feelings that the model no longer captured the group's original in­
tent [13]. A problem with inability to change the model is that on one hand, partici­
pants are asked to 'translate' their perceptions and ideas to the modeling languagt;, but
on the other hand they do not get the opportunity to verify this translation, or to ex­
press their perception in the common modeling language. This lack of ability to ex­
press and the lack of feedback can cause a feeling of not being understood, and not
being able to express a vision or perspective.

Experiments with a modeler making changes simultaneously with the group were
less successful because the modeler could not keep up with the pace of the group.
Another possibility is that the group can directly make changes to the model, while
the facilitator or a separate modeler is present to give modeling guidance to the group
[13, 22]. In most cases of unchauffeured modeling, group members were given a model­
ing training in advance of the session, which is acknowledged to be critical [23].

A critical enabler of full group participation is the ability to work in parallel. In all
cases were the model was built in parallel, the group divided into subgroups and sub­
groups were assigned parts of the model corresponding to the subgroups' expertise.
Dennis et al. found that parallel built models are built ten times as fast as models built
with the plenary group [23]. While in general facilitation with group support systems
individual parallel work is common, little literature is found on individual parallel
model building. In both cases a key challenge lies in change management and change
awareness among parallel working individuals or groups. Andersen and Richardson
found that convergent thinking requires the input of the group as a whole [6, 8].

Group processes of collaborative modeling efforts can be strongly affected by so­
cial factors that are apparent among group members, e.g. organization-hierarchical
factors, and conformism. Conformism is the phenomenon that persons tend to align
opinions to the group opinion, especially when speaking in front of the group, which
is also called groupthink [39]. Groupthink is a negative form of convergence, where
confirmation is not rational but based on social pressure. These factors can be effec­
tively dealt with by the use of anonymity in the electronic modeling tool [35]. A
downside of anonymity is that changes cannot be attributed to experts or stakeholders.

4.3 Modeling Method

One of the main challenges of collaborative modeling is to design the process for the
modeling effort, i.e. a sequence of modeling steps [6, 8]. In [8], Andersen and
Richardson plea for a flexible approach, where the structure of each modeling effort is
adapted to the context and may even be adapted during the sessions. Dean et al. ex­
amine modeling methods from a less flexible perspective [13].

A key question in the design of the collaborative modeling process is whether to
start from scratch or with a preliminary model that is created by the supporting team
based on interviews or documents [40]. Vennix reports that the use of a preliminary

70 M. Renger, G.L. Kolfschoten, and G.-J. de Vreede

model is most suitable for cases where time is costly or where the supporting team is
less experienced, because it can increase efficiency an encourage a lively discussion
right from the start [8, 40]. On the other hand, there is a danger of perceived lack of
ownership of the preliminary model which could result in low commitment, putting
the process on the agenda, or rejection of the model [15, 40]. The process may be
thwarted if the preliminary model is based on unknown assumptions or outdated [34].

When starting from scratch, several approaches are available. In most approaches
the first step consists of a brainstorm or "gathering" to elicit the relevant concepts
[12, 13, 35]. In approaches for Enterprise Analysis [13] an initial model is often cre­
ated during the beginning of the modeling effort, often after a brainstorm about the
most relevant high-level concepts. This initial model acts as a starting point for the
further development, but differs from the preliminary models often used in Group
Model Building [6, 8] in that it is built in-session with the plenary group rather than
by the supporting team in advance. Furthermore, although both starting models can
change considerably during the overall process (and it is stressed that they will), ini­
tial models (built with the group) will probably determine the structure of the final
model more than preliminary models (built by the support team), because preliminary
models aim to provoke an initial discussion to elicit conflicting assumptions and per­
spectives [13, 40]. The use of a preliminary model is extended in the so-called proto­
typing strategy, where for each step in the modeling process an analyst prepares the
model and participants subsequently criticize and change the model [20]. Hengst and
de Vreede write that this approach produces better results than when participants
carry out each step, or when an analyst carries out each step [34].

In the subsequent convergence phase a different emphasis emerges among model­
ing approaches. Problem Structuring Methods have a stronger focus on eliciting the
relations between individual mental maps as the model is considered a means to
achieve consensus and shared understanding [12, 16]. The approaches for Enterprise
Analysis focus more on the structure of the model itself, and are therefore more based
on the grammar, and focus on correctness of individual modeling techniques, i.e.
IDEFO-standards [13].

4.4 Model Quality

The importance of the model quality can differ for each case. For example, if the goal
is to learn to improve collaboration and teamwork the modeling process is more im­
portant than its output [18], or when the goal is to learn the modeling method syntac­
tic quality is critical [41]. Quality is a container concept for 'meeting criteria'.
Depending on the goal of the collaborative modeling effort criteria for quality can be
determined. In modeling, quality has two key classes of criteria: syntactic and a se­
mantic quality. Syntactic quality concerns the correctness of the model according to
the grammar of the modeling language, and therewith it's explanatory power. Seman­
tic quality concerns the correctness of the model in terms of content, and whether it
represents the system it describes. In collaboration quality is focused on process (e.g.
participation, progress) and outcome (e.g. efficiency, effectiveness, complexity,
shared understanding), and can be objective (e.g. time spend, quality according to ex­
perts) and subjective (e.g. satisfaction, usefulness).

Challenges in Collaborative Modeling: A Literature Review 71

4.4.1 Syntactic Quality
The syntactic quality of a model can be measured according to predefined model
type-specific syntactic rules. These rules are most prescribed for the IDEFO format,
and most attention for syntax is found in the literature on the Enterprise Analysis.
Apart from IDEFO-specific rules, model quality aspects that are important for all
modeling types are the low amount of homonyms (some concepts are included in oth­
ers) and synonyms (overlapping concepts), and the interconnectedness of different
parts of the model, the latter being more a semantic qualifier. These aspects are espe­
cially important when the model is built by participants in a parallel setting [22, 23].
Dennis et al. found that, as would be expected, models that are built by an experi­
enced modeler have better syntactical quality than models that are interactively built
by participants [23, 24]. Therefore, approaches for parallel modeling with a high level
of participation have to incorporate ways to improve syntactic quality. There are
several methods at hand to this aim: training, guidance, periodic review, change
awareness, and technological support. An extensive training of several days might be
desired for the syntactic quality, but is often unpractical and costly. Therefore, Dean
et al. suggest a combination of a small training and guidance of an experienced mod­
eler during the sessions [13]. Model integration can also be improved through an
explicit integration process step with the plenary group, whereas integration of par­
ticipant built models by an external integrator can cause feelings of loss of ownership
[23, 24]. Further, a modeling tool can have various change awareness functionalities,
with which a subgroup can view the changes made by other subgroups or are auto­
matically notified about these changes. Some case studies report good results where
subgroups integrated their own model parts with others during the parallel process
step [13, 42], but there is little evidence that supports the claim that a support team
can rely on the voluntary integration by participants. Technological support can be
used to avoid the appearance of homonyms and synonyms: before defining a new in­
put a user has to go through a list of previously defined concepts. Also, built-in re­
strictions according to syntactic rules can improve syntactical quality, which proved
very successful [13, 22].

4.4.2 Semantic Quality
In practice, semantic model quality can be difficult to measure, so one has to rely on
the subjective perceptions of participants or the support team [40]. We note that in
few studies perceptions of model quality are measured from a participants' perspec­
tive. Semantic model quality concerns the completeness and correctness of the model
[34]. The completeness of a model denotes to what extent the model covers all as­
pects of the system it represents. A high complexity can be an indication of complete­
ness , at the same time, models are meant to offer insight in an aspect or part of a
system and should therewith reduce complexity [29]. There a several ways to measure
complexity, either quantitatively by the number of objects and relations in the model,
or qualitatively though observation, interviewing or analysis of results. The correct­
ness of a model denotes to what extent the aspects of a system are depicted ade­
quately [34]. Hengst and de Vreede write that stakeholder involvement can produce
more complete and correct models [34]. This may be due to more richness and diver­
sity of expertise in the group. Also, the role of a modeler in the session may be of

72 M. Renger, G.L. Kolfschoten, and G.-J. de Vreede

influence to the model quality. However, Dennis et al. found hardly any difference in
semantic model quality between collaborative and analyst-built models [13, 23].

5 Discussion and Conclusions

This paper presented an overview of four critical challenges in collaborative model­
ing, the related findings from cases in literature and the trade-offs involved. This
overview offers an overview of challenges, which provide a basis for the development
of new supporting methods and systems to overcome these challenges and to em­
power participants and facilitators in collaborative modeling.

Within the field of collaborative modeling various different approaches use well­
developed sophisticated methods which are specific for the approach. Although these
approaches are designed to apply to different settings, we feel that research in col­
laborative modeling would benefit greatly from focusing on the similarities between
them.

We found a couple of key trade-offs that have to be considered for successful col­
laborative modeling efforts.

• A first trade-off can be found in the choices with respect to group composition. On
one hand involving stakeholders and experts can improve correctness, buy-in and
completeness; on the other hand it can lead to conflict and misunderstanding due to
different perspectives and non-overlapping expertise. In smaller groups, model
building efficiency will be higher, participation will increase and it is generally
easier to create shared understanding.

• A second important trade-off was found with respect to the level of participation. If
participants are empowered to make changes to the model directly, they will have a
feeling of ownership and are more likely to accept the final model and decisions
derived from it. However, critical stakeholders and domain experts are not neces­
sarily skilled modelers. To achieve syntactical quality of the model it is therefore
useful to involve a chauffeur or modeler. The trade-off between quality and par­
ticipation has to be evaluated in light of the scope and complexity of the system
that is to be represented. Further research has to be done to evaluate whether the
role of modeler can be performed by participants themselves.

• A third critical challenge is the choice of a starting point for the modeling task. The
use of a preliminary model, created by an expert or analyst, outside the group
process, can speed up the process and raise critical discussion topics, but can also
cause detachment and even rejection of the process and the resulting model.

• A final challenge can be found when collaborative modeling effort is performed in
parallel, which can also improve modeling efficiency. When separate (sub) models
are created in parallel a challenge lies in the convergence and integration of these
models In order to support integration of sub models or changes created in parallel,
strict rules are required to ensure syntactical quality and shared understanding. An
interesting research challenge lies in the development and evaluation of facilitation
tools and techniques to support the integration of sub-models. Such research can
benefit from the use of patterns in access control and change awareness for com­
puter-mediated interaction [43]. Another interesting direction for further research

Challenges in Collaborative Modeling: A Literature Review 73

is to find other convergence techniques to integrate different perspectives and to
resolve conflicts in semantics, perceived relations, and scope.

Concluding, the field of collaborative modeling has a rich history, but researchers
have only just begun to capture and formalize best practices and methods that are
known to help achieve successful outcomes. Lessons learned are numerous, but the
challenges identified in this paper offer a research agenda to develop formalized
methods for collaborative modeling and to design new tools to support these methods.

References

1. Boehm, B., Gruenbacher, P., Briggs, R.O.: Developing Groupware for Requirements Ne­
gotiation: Lessons Learned. IEEE Software 18 (2001)

2. Fruhling, A., de Vreede, G.J.: Collaborative Usability Testing to Facilitate Stakeholder In­
volvement. In: Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Griinbacher, P. (eds.)
Value Based Software Engineering, pp. 201-223. Springer, Berlin (2005)

3. Standish Group: CHAOS Report: Application Project and Failure (1995)
4. Hill, R.C., Levenhagen, M.: Methaphors and Mental Models: Sensemaking and Sensegiv­

ing in Innovative and Entrepreneurial Activities. Journal of Management 21, 1057-1074
(1995)

5. Frost, Sullivan.: Meetings Around the World: The Impact of Collaboration on Business
Performance. Frost & Sullivan White Papers, 1-19 (2007)

6. Vennix, J.A.M., Andersen, D.F., Richardson, G.P., Rohrbaugh, J.: Model-building for
group decision support: Issues and alternatives in knowledge elicitation support. European
Journal of Operational Research 59, 28-41 (1992)

7. Rouwette, E.A.J.A., Vennix, J.A.M., Mullekom, T.v.: Group Model Building Effective­
ness: a Review of Assessment Studies. System Dynamics Review 18, 5-45 (2002)

8. Andersen, D.F., Richardson, G.P.: Scripts for Group Model Building. System Dynamics
Review 13, 107-129 (1997)

9. Richardson, G.P., Andersen, D.F.: Teamwork in Group Model Building. System Dynamics
Review 11, 113-137 (1995)

10. Mulder, I., Swaak, J., Kessels, J.: Assessing learning and shared understanding in technol­
ogy-mediated interaction. Educational Technology & Society 5, 35-47 (2002)

11. Weick, K.E.: Sensemaking in Organizations. Sage Publications Inc., Thousand Oaks
(1995)

12. Shaw, D., Ackermann, F., Eden, C.: Approaches to sharing knowledge in group problem
structuring. Journal of the Operational Research Society 54(913), 936-948 (2003)

13. Dean, D.L., Orwig, R.E., Vogel, D.R.: Facilitation Methods for Collaborative Modeling
Tools. Group Decision and Negotiation 9, 109-127 (2000)

14. Rosenhead, J.: Rational analysis for a problematic world: problem structuring methods for
complexity, uncertainty and conflict (1993)

15. Eden, C., Ackermann, F.: Cognitive mapping expert views for policy analysis in the public
sector. European Journal of Operational Research 127,615-630 (2004)

16. Eden, C., Ackermann, F.: Where next for Problem Structuring Methods. Journal of the
Operational Research Society 57,766-768 (2006)

17. Ackermann, F., Eden, C.: Using Causal Mapping with Group Support Systems to Elicit an
Understanding of Failure in Complex Projects: Some Implications for Organizational Re­
search. Group Decision and Negotiation 14, 355-376 (2005)

74 M. Renger, G.L. Kolfschoten, and G.-J. de Vreede

18. Ackermann, F., Franco, L.A., Gallupe, B., Parent, M.: GSS for Multi-Organizational Col­
laboration: Reflections on Process and Content. Group Decision and Negotiation 14, 307-
331 (2005)

19. Andersen, D.F., Vennix, J.A.M., Richardson, G.P., Rouwette, E.A.J.A.: Group model
building: problem structuring, policy simulation and decision support. Journal of the Op­
erational Research Society 58, 691-694 (2007)

20. Lund, J.R., Palmer, R.N.: Water Resource System Modeling for Conflict Resolution. Wa­
ter Resources Update 108, 70-82 (1997)

21. Morton, A., Ackermann, F., Belton, V.: Technology-driven and model-driven approaches
to group decision support: focus, research philosophy, and key concepts. European Journal
oflnformation Systems 12, 110-126 (2003)

22. Dean, D.L., Lee, J.D., Orwig, R.E., Vogel, D.R.: Technological Support for Group Process
Modeling. Journal of Management Information Systems 11, 43-63 (1994)

23. Dennis, A.R., Hayes, G.S., Daniels Jr., R.M.: Re-engineering Business Process Modeling.
In: Proceedings of the Twenty-Seventh Annual Hawaii International Conference on Sys­
tem Sciences (1994)

24. Dennis, A.R., Hayes, G.S., Daniels Jr., R.M.: Business process modeling with group sup­
port systems. Journal of Management Information Systems 15, 115-142 (1999)

25. Gurung, T.R., Bousquet, F., Trebuil, G.: Companion Modeling, Conflict Resolution, and
Institution Building: Sharing Irrigation Water in the Lingmuteychu Watershed, Bhutan.
Ecology and Society 11 (2006)

26. Trauth, E.M., Jessup, L.M.: Understanding Computer-mediated Discussions: Positivist and
Interpretive Analyses of Group Support System Use. MIS Quarterly 24,43-79 (2000)

27. Creswell, J.W.: Research Design: Qualitative & Quantitative Approaches. Sage Publica­
tions, Inc., Thousand Oaks (1994)

28. Webster, J., Watson, R.T.: Analyzing the Past to Prepare for the Future: Writing a Litera­
ture Review. MIS Quarterly 26, xiii-xxiii (2002)

29. Nunamaker, J.F., Alan, R.D., Joseph, S.V., Douglas, V., Joey, F.G.: Electronic meeting
systems to support group work, vol. 34, pp. 40-61. ACM, New York (1991)

30. Kolfschoten, G.L., Niederman, F., Vreede, G.J.d., Briggs, R.O.: Roles in Collaboration
Support and the Effect on Sustained Collaboration Support. In: Hawaii International Con­
ference on System Science. IEEE Computer Society Press, Waikoloa (2008)

31. Vreede, G.J.d., Boonstra, J., Niederman, F.A.: What is Effective GSS Facilitation? A
Qualitative Inquiry into Participants' Perceptions. In: Hawaiian International Conference
on System Science. IEEE Computer Society Press, Los Alamitos (2002)

32. Dennis, A.R., Wixom, B.H., Vandenberg, R.J.: Understanding Fit and Appropriation Ef­
fects in Group Support Systems Via Meta-Analysis. Management Information Systems
Quarterly 25, 167-183 (2001)

33. Griffith, T.L., Fuller, M.A., Northcraft, G.B.: Facilitator Influence in Group Support Sys­
tems. Information Systems Research 9, 20-36 (1998)

34. den Hengst, M., de Vreede, G.J.: Collaborate Business Process Engineering: A Decade of
Lessons from the Field. Journal of Management Information Systems 20, 85-113 (2004)

35. Rouwette, E.A.J.A., Vennix, J.A.M., Thijssen, C.M.: Group Model Building: A Decision
Room Approach. Simulation & Gaming 31, 359-379 (2000)

36. van den Belt, M.: Mediated Modeling: A System Dynamics Approach to Environmental
Consensus Building. Island Press (2004)

37. Vreede, G.J.d., Davison, R., Briggs, R.O.: How a Silver Bullet May Lose its Shine -
Learning from Failures with Group Support Systems. Communications of the ACM 46,
96-101 (2003)

Challenges in Collaborative Modeling: A Literature Review 75

38. Maghnouji, R., de Vreede, G., Verbraeck, A., Sol, H.: Collaborative Simulation Modeling:

Experiences and Lessons Learned. In: HICSS 2001: Proceedings of the 34th Annual Ha­

waii International Conference on System Sciences (HICSS-34), vol. 1, p. 1013. IEEE

Computer Society, Washington (2001)
39. Janis, I.L.: Victims of Groupthink: A Psychological Study of Foreign-Policy Decisions and

Fiascoes. Houghton Mifflin Company, Boston (1972)
40. Vennix, J.A.M.: Group Model Building: Facilitating Team Learning Using System Dy­

namics. John Wiley & sons, Chichester (1996)
41. Hengst, M.d.: Collaborative Modeling of Processes: What Facilitation Support does a

Group Need? In: Americas Conference on Information Systems, AIS Press, Omaha (2005)

42. Ram, S., Rarnesh, V.: Collaborative conceptual schema design: a process model and proto­

type system. ACM Transactions on Information Systems"16, 347-371 (1998)
43. Schiimmer, T., Lukosch, S.: Patterns for Computer-Mediated Interaction. Wiley & Sons

Ltd., West Sussex (2007)

Appendix: Articles Used in the Literature Review

Ackermann, F., Eden, C.: Using Causal Mapping with Group Support Systems to Elicit an Un­
derstanding of Failure in Complex Projects: Some Implications for Organizational Research.
Group Decision and Negotiation, Vol. 14 (2005) 355-376

Ackermann, F., Franco, L., Gallupe, B., Parent, M.: GSS for Multi-Organizational Collaboration:
Reflections on Process and Content. Group Decision and Negotiation 14 (2005) 307-331

Adamides, E.D., Karacapilidis, N.: A Knowledge Centred Framework for Collaborative Busi­
ness Process Modelling. Business Process Management, Vol. 12 (2006) 557-575

Akkermans, H.A., Vennix, J.A.M.: Clients' Opinions on Group Model-Building: An Explora­
tory Study. System Dynamics Review, Vol. 13 (1997) 3-31

Andersen, D.F., Richardson, G.P.: Scripts for Group Model Building. System Dynamics Re­
view, Vol. 13 (1997) 107-129

Andersen, D.F., Vennix, J.A.M., Richardson, G.P., Rouwette, E.A.J.A.: Group Model Building:
Problem Structuring, Policy Simulation and Decision Support. Journal of the Operational
Research Society, Vol. 58 (2007) 691-694

Aytes, K.: Comparing Collaborative Drawing Tools and Whiteboards: An Analysis of the
Group Process. Computer Supported Cooperative Work, Vol. 4. Kluwer Academic Publish­
ers (1995) 51-71

van den Belt, M.: Mediated Modeling: A System Dynamics Approach to Environmental Con­
sensus Building. Island Press (2004)

de Cesare, S., Serrano, A.: Collaborative Modeling Using UMLand Business Process Simula­
tion. HICSS '06: Proceedings of the 39th Annual Hawaii International Conference on Sys­
tem Sciences. IEEE Computer Society, Washington, DC, USA (2006) 10.12

Daniell, K.A., Ferrand, N., Tsoukia, A.: Investigating Participatory Modelling Processes for
Group Decision Aiding in Water Planning and Management. Group Decision and Negotia­
tion (2006)

Dean, D., Orwig, R., Lee, J., Vogel, D.: Modeling with a Group Modeling Tool: Group Sup­
port, Model Quality and Validation. Proceedings of the Twenty-Seventh Annual Hawaii In­
ternational Conference on System Sciences (1994)

Dean, D.L., Lee, J.D., Nunamaker, J.J.F.: Group Tools and Methods to Support Data Model
Development, Standardization, and Review. Proceedings of the Thirtieth Annual Hawaii In­
ternational Conference on System Sciences (1997)

76 M. Renger, G.L. Kolfschoten, and G.-J. de Vreede

Dean, D.L., Lee, J.D., Orwig, R.E., Vogel, D.R.: Technological Support for Group Process
Modeling. Journal of Management Information Systems, Vol. 11. M. E. Sharpe, Inc. (1994)
43-63

Dean, D.L., Lee, J.D., Pendergast, M.O., Hickey, A.M., Jay F. Nunamaker, Jr.: Enabling the
Effective Involvement of Multiple Users: Methods and Tools for Collaborative Software
Engineering. Journal of Management Information Systems, Vol. 14. M. E. Sharpe, Inc.
(1997) 1 79-222

Dean, D.L., Orwig, R.E., Vogel, D.R.: Facilitation Methods for Use with EMS Tools to Enable
Rapid Development of High Quality Business Process Models. Proceedings of the 29th Ha­
waii International Conference on System Sciences, Vol. 3. IEEE Computer Society, Wash­
ington, DC, USA (1996) 472

Dean, D.L., Orwig, R.E., Vogel, D.R.: Facilitation Methods for Collaborative Modeling Tools.
Group Decision and Negotiation, Vol. 9 (2000) 109-127

Dennis, A.R., Hayes, G.S., Daniels, R.M., Jr.: Re-engineering Business Process Modeling. Pro­
ceedings of the Twenty-Seventh Annual Hawaii International Conference on System Sci­
ences(l994)

Dennis, A.R., Hayes, G.S., Robert M. Daniels, Jr.: Business Process Modeling with Group Sup­
port Systems. Journal of Management Information Systems, Vol. 15. M. E. Sharpe, Inc.
(1999) 115-142

Eden, C., Ackermann, F.: Cognitive Mapping Expert Views for Policy Analysis in the Public
Sector. European Journal of Operational Research 127 (2004) 6I5-630

Eden, C., Ackermann, F.: Where Next for Problem Structuring Methods. Journal of the Opera­
tional Research Society, Vol. 57 (2006) 766-768

Gurung, T.R., Bousquet, F., Tn!buil, G.: Companion Modeling, Conflict Resolution, and Insti­
tution Building: Sharing Irrigation Water in the Lingmuteychu Watershed, Bhutan. Ecology
and Society, Vol. 11 (2006)

Hayne, S., Ram, S.: Group Data Base design: Addressing the View Modeling Problem. J. Syst.
Softw., Vol. 28. Elsevier Science Inc. (I995) 97-116

den Hengst, M., de Vreede, G.J.: Collaborate Business Process Engineering: A Decade of Les­
sons from the Field. Journal of Management Information Systems, Vol. 20 (2004) 85-113

den Hengst, M., de Vreede, G.J., Magnhnouji, R.: Using soft OR Principles for Collaborative
Simulation: A Case Study in the Dutch Airline Industry. Journal of the Operational Re­
search Society, Vol. 58 (2006) 669-682

Jefferey, A.B., Maes, J.D.: Improving Team Decision-Making Performance with Collaborative
Modeling. Team Performance Management, Vol. II (2005) 40-50

Lee, J.D., Dean, D.L., Vogel, D.R.: Tools and Methods for Group Data Modeling: A Key En­
abler of Enterprise Modeling. SIGGROUP Bulletin, Vol. I8. ACM (I997) 59-63

Lee, J.D., Zhang, D., Santanen, E., Zhou, L., Hickey, A.M.: ColD SPA: A Tool For Collabora­
tive Process Model Development. HICSS '00: Proceedings of the 33rd Hawaii International
Conference on System Sciences-Volume 1. IEEE Computer Society, Washington, DC, USA
(2000) 1004

Lucia, A.D., Fasano, F., Scanniello, G., Tortora, G.: Enhancing Collaborative Synchronous
UML Modelling with Fine-grained Versioning of Software Artefacts. J. Vis. Lang. Comput.,
Vol. 18. Academic Press, Inc. (2007) 492-503

Lund, J.R., Palmer, R.N.: Water Resource System Modeling for Conflict Resolution. Water Re­
sources Update, Vol. 108 (I997) 70-82

Maghnouji, R., de Vreede, G., Verbraeck, A., Sol, H.: Collaborative Simulation Modeling: Ex­
periences and Lessons Learned. HICSS '0 I: Proceedings of the 34th Annual Hawaii Interna­
tional Conference on System Sciences (HICSS-34)-Volume 1. IEEE Computer Society,
Washington, DC, USA (2001) 1013

Millward, S.M.: Do You Know Your STUFF? Training Collaborative Modelers. Team Per­
formance Management, Vol. 12 (2006) 225-236

Challenges in Collaborative Modeling: A Literature Review 77

Orwig, R., Dean, D.: A Method for Building a Referent Business Activity Model for Evaluat­
ing Information Systems: Results from a Case Study. Communications of the AIS 20 (2007)
article 53

Pata, K., Sarapuu, T.: A Comparison of Reasoning Processes in a Collaborative Modelling En­
vironment: LearningAbout Genetics Problems Using Virtual Chat. International Journal of
Science Education, Vol. 28 (2006) 134 7-1368

Purnomo, H., Yasmi, Y., Prabhu, R., Hakim, S., Jafar, A., Suprihatin: Collaborative Modelling
to Support Forest Management: Qualitative Systems Management at Lumut Mountain, In­
donesia. Small Scale Forest Economics, Management and Policy, Vol. 2 (2003) 259-275

Ram, S., Ramesh, V.: Collaborative Conceptual Schema Design: A Process Model and Proto­
type System. ACM Transactions on Information Systems, Vol. 16. ACM (1998) 347-371

Richardson, G.P., Andersen, D.F.: Teamwork in Group Model Building. System Dynamics Re­
view, Vol. 11 (1995) 113-137

Rouwette, E.A.J.A., Vennix, J.A.M., Thijssen, C.M.: Group Model Building: A Decision Room
Approach. Simulation & Gaming, Vol. 31 (2000) 359-379

Rouwette, E.A.J.A., Vennix, J.A.M., van Mullekom, T.: Group Model Building Effectiveness:
A Review of Assessment Studies. System Dynamics Review, Vol. 18 (2002) 5-45

Samarasan, D.: Collaborative Modeling and Negotiation. SIGOIS Bulletin, Vol. 9. ACM
(1988) 9-21

Vennix, J.A.M.: Group Model Building: Facilitating Team Learning Using System Dynamics.
John Wiley & sons (1996)

Vennix, J.A.M.: Group Model-Building: Tackling Messy Problems. System Dynamics Review,
Vol. 15 (1999) 379-401

Vennix, J.A.M., Akkermans, H.A., Rouwette, E.A.J.A.: Group Model-building to Facilitate
Organizational Change: An Exploratory Study. System Dynamics Review, Vol. 12 (1996)
39-58

Vennix, J.A.M., Andersen, D.F., Richardson, G.P.: Foreword: Group Model Building, Art, and
Science. System Dynamics Review, Vol. 13 (1997) 103-106

Vennix, J.A.M., Andersen, D.F., Richardson, G.P., Rohrbaugh, J.: Model-building for Group
Decision Support: Issues and Alternatives in Knowledge Elicitation Support. European
Journal of Operational Research 59 (1992) 28-41

de Vreede, G.-J.: Facilitating Organizational Change. Delft University of Technology (1995)
de Vreede, G.-J.: Group Modeling for Understanding. Journal of Decision Systems, Vol. 6

(1997) 197-220

A Petri-Net Based Formalisation of Interaction Protocols
Applied to Business Process Integration

Djamel Benmerzoug1, Fabrice Kordon2, and Mahmoud Boufaida1

1 LIRE Laboratory, Computer Science Department,
Mentouri University of Constantine 25000, Algeria

{berumerzougdj,boufaida_mahrnoud}@yahoo.fr
2 LIP6 Laboratory, Pierre et Marie Curie University,

4, place Jussieu, 75252 Paris Cedex 05 France
fabrice.kordon@lip6.fr

Abstract. This paper presents a new approach for Business Process Integration
based on Interaction Protocols. It enables both integration and collaboration of
autonomous and distributed business processes modules. We present a semantic
formalisation of the interaction protocols notations used in our approach. The
semantics and its application are described on the basis of translation rules to
Coloured Petri Nets and the benefits of formalisation are shown. The verified
and validated interaction protocols specification is exploited afterwards with an
intermediate agent called « Integrator Agent » to enact the integration process
and to manage it efficiently in all steps of composition and monitoring.

Keywords: Business Processes Integration, Interaction Protocols, Coloured
Petri Nets, Multi-agent Systems.

1 Introduction

Unlike traditional business processes, processes in open, Web-based settings typically
involve complex interactions among autonomous, heterogeneous business partners. In
such environments there is a clear need for advanced business applications to
coordinate multiple business processes into a multi-step business transaction. This
requires that several business operations or processes attain transactional properties
reflecting business semantics, which are to be treated as a single logical unit of work
[1]. This orientation requires distilling from the structure of businesses collaboration
the key capabilities that must necessarily be present in a Business Process Integration
(BPI) scenario and specifying them accurately and independently from any specific
implementation mechanisms.

Web services are a promising technology to support business processes coordination
and collaboration [2][3]. They are an XML-based middleware that provides RPC-like
remote communication, using in most cases SOAP over HTTP. Web services are
designed to allow machine-to-machine interactions. This interaction takes place over a
network, such as the Internet, so Web services are by definition distributed, and operate
in an open and highly dynamic environment.

Heterogeneity, distribution, openness, highly dynamic interactions, are some among
the key characteristics of another emerging technology, that of intelligent agents and

J.L.G. Dietz eta!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 78-92,2008.
©Springer-Verlag Berlin Heidelberg 2008

A Petri-Net Based Formalisation oflnteraction Protocols 79

Multi-Agent Systems (MAS). M. Luck et al. [4] propose the following definition: "an
agent is a computer system that is capable of flexible autonomous action in dynamic,
unpredictable, typically multi-agent domains."

We already proposed a new approach based on Web services and agents for
integrating business processes [5]. The BPI modeling is based on Interaction
Protocols (IP) that enable autonomous, distributed business process management
modules to integrate and collaborate.

IP are a useful way for structuring communicative interaction among business
process management modules, by organizing messages into relevant contexts and
providing a common guide to all parties. The value of IP-based approach is largely
determined by the interaction model it uses. The presence of an underlying formal
model supports the use of structured design techniques and formal analysis and
verification, facilitating development, composition and reuse.

Most IP modeling projects to date have used or extended finite state machines
(FSM) and state transition diagram (STD) in various ways [8]. FSM and STD are
simple, depict the flow of action/communication in an intuitive way, and are
sufficient for many sequential of interactions. However, they are note adequately
expressive to model more complex interactions, especially those with some degree of
concurrency. In the other hand, Coloured Petri Nets (CPN) [9] are a well known and
established model of concurrency, and can support the expression of a greater range
of interactions. In addition, CPN like FSM, have an intuitive graphical representation,
are relatively simple to implement, and are accompanied with a variety of techniques
and tools for formal analysis and design.

Unfortunately, the existing works on the use of formal models to represent IP leave
open several questions [8], [16], [19], [21]. Most previous investigations have not
provided a systematic comprehensive coverage of all issues that arise when
representing complex protocols such as intra-Enterprise Application Integration (EAI)
as well as the inter-enterprise integration (B2B, for Business to Business).

This paper presents a generic approach for the BPI based on interaction protocols.
Translation rules of IP based on AUML/BPEL4WS [13],[14] notations into CPN are
proposed, enabling their formal analysis and verification. We provide interactions
building blocks allowing this translation to model complex e-business applications
that enable autonomous, distributed business process management modules to
integrate and collaborate.

This CPN-based representation can be used to essentially cover all the features
used in IP standards, including communicative act attributes (such as message guards
and cardinalities) and protocol nesting. Also, we present a skeleton automated
procedure for converting an IP specification to an equivalent CPN, and demonstrate
its use through a case study.

In the next section we, briefly present our approach. Section 3 describes a CPN
based representation of IP. In section 4, we provide a skeletal algorithm for
converting BPI based on interaction protocols in AUML/BPEL4WS to Coloured Petri
nets. Section 5 shows how the verified and the validated IP specification can be
exploited by the MAS to enact the BPI. Related work is discussed in section 6 and
conclusions are drawn in section 7.

80 D. Benmerzoug, F. Kordon, and M. Boufaida

2 An Overview of the Proposed Approach

In recent years, BPI modeling and reengineering have been longstanding activities in
many companies. Most internal processes have been streamlined and optimized,
whereas the external processes have only recently become the focus of business
analysts and IT middleware providers. The static integration of inter-enterprise
processes as common in past years can no longer meet the new requirements of
customer orientation, flexibility and dynamics of cooperation [10].

In [6],[7] we have developed an agent-based method for developing cooperative
enterprises information systems. This method permits to explicitly map the business
process into software agents. In [5], we have described the use of IP to define and
manage public processes in B2B relationships. This process is modelled using AUML
(Agent UML [13]) and specified with BPEIAWS [14].

In this approach, we consider two types of business processes, the private processes
and the public ones. The first type is considered as the set of processes of the
company itself and they are managed in an autonomous way. Private processes are
supported within companies using traditional Workflow Management Systems,
Enterprise Resources Planning systems or proprietary systems. These systems were
intended to serve local needs. In other hand, public processes span organizational
boundaries. They belong to the companies involved in a B2B relationship and have to
be agreed and jointly managed by the partners.

Design ! lmpll!'mcnta.tion

Spa«: I Sp>e<

Othtt MAS Applicalion!

Fig. 1. The proposed approach

The B2B integration scenarios typically involve distributed business processes that
are autonomous to some degree. Companies participating in this scenario publish and
implement a public process. The applications integration based on public process is
not a new approach. The current models for BPI are based on process flow graphs
[11], [12]. A process flow graph is used to represent the public process. This approach
lacks the flexibility for supporting dynamic B2B integration. In contrast, our approach
(figure 1) presents an incremental, open-ended, dynamic, and personalizable model
for B2B integration.

A Petri-Net Based Formalisation of Interaction Protocols 81

The use of IP to define public processes enables a greater autonomy of companies
because each company hides its internal activities, services and decisions required to
support public processes. In this way, the IP provide a high abstraction level in the
modelling of public processes. The AUML model is mapped to a BPEL4WS
specification, which represents the initial social order upon a collection of agents
(figure 1). Since BPEL4WS describes the relationships between the Web services in
the public process, agents representing the Web services would know their
relationships a priori. Notably, the relationships between the Web services in the
public process are embedded in the process logic ofthe BPEL4WS specification.

This relationship entails consistency problems, which can at best be solved at the
level of models. Indeed, we used the BPEL4WS specification to generate a validation
tool that can check that a BPEL4WS document is well-formed (the BPEL4WS
preserves the business constraints, which are specified by means of OCL (Object
Constraint Language [23])). In this work, we have exploited the Sun Microsystem
Web Services Developer Pack [15]. In particular, we have used the JAXB (Java
Architecture for XML Binding) library to build Java classes from a BPEL4WS

specification (for more detail see [5]).
In this paper, we address the problem of verification of BPI based on interaction

protocols. Indeed, we propose a novel and flexible representation of protocols that
uses CPN in which, interaction building blocks explicitly denote joint conversation
states and messages. So, interaction protocols specification can be translated to an
equivalent CPN model and CPN tools can afterwards be used to analyze the process.

3 A CPN-Based Model for BPI Based on Interaction Protocol

BPI is defined as an interaction protocol involving different companies. It specifies
the interaction between local business process and Web services and their
coordination. For this purpose, we define the IP as follow:

Definition: An Interaction Protocol is a quadruplet: IP = <ID, R, M, fM>, where:

- ID is the identify of the interaction protocol
R = {r~. r2, ••• , rn} (n>1) is a set of Roles (private business process or Web
Services)

- M is a set of non-empty primitive (or/and) complex messages, where:
• A Primitive Message (PM) corresponds to the simple message, it is defined as

follow: PM= <Sender, Receiver, CA, Option>, where:
o Sender, Receiver E R
o CA E FIPA ACL (Communicative Act such as: cfp, inform, ...)
o Option: contain additional information (Synchronous I Asynchronous

message, constraints on message, ...)
• A Complex Message (CM) is built from simpler (primitive) ones by means of

operators: CM = PM 1 op PM2 ••• op PMm. where:
o m>l, opE {OR, XOR, AND}, and
o ViE [1, m[, PMi.Sender = PMi+1.Sender, PMi.Sender E R.

fM: a flow relation defined as : fM ~ (RxR), where (RxR) is a Cartesian product
(rl,r2) E (RxR), for rl,r2 E R

82 D. Benmerzoug, F. Kordon, and M. Boufaida

Ideally, IP should be represented in a way that allows performance analysis, validation
and verification, automated monitoring, debugging, etc. Various formalisms have been
proposed for such purposes. However, Petri nets have been shown to offer significant
advantages in representing IP, compared to other approaches [16]. Specifically, Petri nets
are useful in validation and testing, automated debugging and monitoring and dynamic
interpretation of IP.

Our main motivation in describing the semantics of IP applied to BPI by using
CPN is that the existence of several variation points allows different semantic
interpretations that might be required in different application domains. This is usually
our case, and so, high-level Petri nets are used as formal specification. This provides
the following advantages:

CPN provide true concurrency semantics by means of the step concept, i.e. when at
least two non-conflictive transitions may occur at the same time. It is the ideal
situation for our application domain (several activities moving within the same
space of states: the <flow;:> section in BPEL4WS).
The combination of states, activities, decisions, primitives and complex message
exchanges (namely fork-join constructions) means that the IP notations are very
rich. CPN allow us to express, in the same formalism, both the kind of system we
are dealing with and its execution.
Formal semantic is better in order to carry out a complete and highly automated
analysis for the system being designed.

3.1 Translation Rules from IP Elements to CPN

The objective of this section is to propose some general rules which may be applied to
formally specify interaction protocols endowing them with a formal semantics. Such a
semantics will enable the designer to validate his/her specifications. As shown in the
translation rules in Table 1, we focus on the description of dynamic aspects of protocols
using the CPN's elements (places, transitions, arcs, functions, variables and domains).

The CPN representation in Table 1 introduces the use of token colours to represent
additional information about business processes interaction states and communicative
acts of the corresponding interaction. The token colour sets are defined in the net
declaration as follow: (the syntax follows standard CPN-notation [9])

Colour sets :
Communicative Act =with informlcfplproposel··· ;
Role = string with "a" .. "z" ; I I Role = {r1 , r 2 , ••• }, r, E R
Content= string with "a" .. "z" ;
Bool =with trueifalse;
MSG = record s,r: Role; CA: Communicative Act; C: Content
Variables:msg, msgl, msg2: MSG; x: Bool;

The MSG colour set describes communicative acts interaction and is associated
with the net message places. The MSG's coloured token is a record <s,r,ca,c>, where
the s and r elements determine the sender and the receiver of the corresponding
message. This elements have the colour set ROLE, which is used to identify business
processes or/and Web services participating in the corresponding interaction. The
COMMUNICATIVE ACT and the CONTENT colour sets represent respectively the FIPA­
ACL communicative acts and the content of the corresponding message. We note that

A Petri-Net Based Formalisation of Interaction Protocols 83

places without colour set hold an indistinguishable token and therefore have the
colour domain token = { •}.

We now show how various interaction protocols features described in our work can
be represented using the CPN formalism.

Rl: A role (the <partner> section in BPEL4WS) is considered equivalent to a type of
resource, which is represented in a Petri net as a place. Hence, there will be one token
in the place for each actor playing this role. Each one of these places is labelled with
the corresponding role name.

R2: The "life line" of role is represented implicitly by a places and transitions sequence
belonging to this role. The net is constituted therefore by one sub-net (Petri net process)
for each role acting during the interaction and these nets are connected by places that
correspond to the exchanged messages.

R3: A message exchange between two roles is represented by a synchronization place
and arcs. The first ongoing arc connects the transition of "message sending" to the
"synchronization place", while the second outgoing arc connects this place to the
"receiving message transition".

R4: A primitive message exchange: As we have already said, a primitive message
corresponds to the simple message. A <receive> and <reply> activities (asynchronous
messages) are represented by a transition which has an in-place and out-place (see R3
in Table 1). An <invoke> activity (synchronous messages) is represented by a pair of
transitions, one of them may fire a request token to the sub-net of the receiver role,
and the other may wait for a token from this sub-net.

RS: A complex message exchange: A complex message is represented by a substitution
transition. The control flow between messages exchange is captured by connecting the
activity-related transitions with arcs, places, and transitions purely used for control flow
purpose. More refined control flow can be expressed using arc inscriptions and
transition guard expressions.

Table 1 (RS - (1)) shows a more complex interaction, called XOR-decision. (the
<if>l<pick> section in the BPEL4WS specification) so that only one communicative
act can be sent. In this case, each type of message is associated to a transition with a
function on its input arc. The function plays the role of a filter, i.e. it control the firing
of the transition corresponding to the message type. Table 1 (RS - (2)) shows another
complex interaction, the OR-parallel interaction (the <switch> section), in which the
sender can send zero, one or more communicative acts (inclusively) to the designated
recipients simulating an inclusive-or.

The last type of complex message is the AND-parallel (the <follow> section) which
models concurrency messages sending. This type of complex interaction is
represented by means of parallel case or multi-threading in CPN.

R6: Iteration: An iteration in a part of IP specification is represented by an arrow and
a guard expression or an end condition (the <while> section in BPEIAWS). In CPN,
an iteration is specified in the same way except that the end condition is a guard
expression associated with the transition that starts the iteration.

84 D. Benmerzoug, F. Kordon, and M. Boufaida

Rl: Roles/Web
services

R2: Role life line

R3: message
exchange
(asynchronous
messages)

R4: primitive
message exchange
(synchronous
messages)

R5 (1): complex
message exchange
(the XOR-
Decision)

R5(2): complex
message exchange
(the OR-Decision)

R5(3): complex
message exchange
(the AND-
Decisiosn)

R6: Iteration

Table 1. A Translation Rules From IP to CPN

AUML elements

[£!] ~

0
I

D
I
I

~
msg >~

msg

I

m'gl ~

~~
I I

: m'gl ~

~~
I I

: m'gl ~

~~
I

H
I

BPEL4WS elements
<process>

<partners>
<partner name="pl "/>
<partner name=''P2"/>

<I artners>

<sequence>
<receive name="msg"

partner="p2"

</receive>

<invoke name="p2"
partner="P2"
inputVariable="Request"
output Variable= "Result">

</invoke>

<if condition= "Bool-Exp">
<reply name="msgl ''>

</reply>
<reply name="msg2">

</reply>
</if>

<switch standard-attributes>
<case condition!>

<reply name="msgl ">

</reply>
<lease>
<case condition2>
<reply name="msg2">

;J;~piy>""
</case>
<otherwise>

<i~th~~i~e>
</switch>

<flow>
<reply name="msgl ">

</reply>
<reply name="msg2''>

</reply>
</flow>

<while condition= "Bool-
Exp">
<receive name="msg"

partner="p2"
.

</while>

pl
CPN elements

p2

R7: Case of
termination

A Petri-Net Based Formalisation of Interaction Protocols 85

Table 1. (continued)

msg.CAE {failure, cancel,
Refuse, not~understood }
I I

I

msg)~

ABORT is a final state (end oflnteraction
with Failure)

I

R7: Case of termination: In the specification of the FIP A-ContractNetProtocol besides
the AUML diagram other requirements are described in the text [13]: The sending of
not-understood messages and the so called FIP A-Cancel-Metaprotocol: Every received
message is responded to by a not-understood, if the comprehension of the message
failed. In this case, the protocol is cancelled for the corresponding participant. In a CPN,
this is realized by adding a transition to the final state ABORT (except the initial state).
This transition corresponds to the reception of acts: Failure, Cancel, Refuse or not­
understood, which can terminate the IP with failure.

3.2 An Algorithm for Transforming an IP to Its CPN Representation

Previous investigations have explored various machine-readable Petri net
representations. However, interaction protocols are typically specified in human­
readable form (e.g., in AUML [13]). The question of how to automatically translate
an interaction protocol specification into a machine-readable form has been
previously ignored [16]. We present an automated procedure for transforming an IP to
its CPN representation.

The algorithm is presented in figure 2. It inputs an IP as defined in section 3, and it
outputs a corresponding CPN representation. The CPN is constructed by iterating:
The algorithm essentially creates the IP-net by exploring the interaction protocol.
Lines 1 and 2 initiate different variables used in this algorithm and respectively the
CPN output. The roles places, denoted by the variable RP, hold the initiating places
for the Petri net. These places correspond to the roles of the IP (line 3, 4 and 5). Each
one of these places is labelled with the corresponding role name.

We enter the main loop in line 7 and set curr to the first message in the IP. Lines
8-16 create the CPN components of the current iteration. First, in line 8, message
places, associated with curr role place, are created using CreateMessagePlace.

These places correspond to communicative acts. Then, in line 9, we create
intermediate places that correspond to interaction state changes as a result of these
messages associated with curr place. Then, in CreateTransitions and CreateArcs,
these places are connected through transitions and arcs, using the CPN building
blocks previously described (section 3). Finally, we add token elements colour to the
CPN structure, implementing attributes using the FixColor function (line 16).

To complete the iteration, the CPN output, is updated according to the current
iteration in lines 17-19. The loop iterates as long as M contains messages that have
not been handled. Finally, the resulting CPN is returned (line 21).

86 D. Benmerzoug, F. Kordon, and M. Boufaida

Algorithm Create!P-net (input : IP=<ID, R, M, fM>, output : CPN)

1: RP~0 II Roles places
MP~ 0 //Messages places
IM ~ 0 //Intermediate places
TR ~ 0 //list of transitions
AR ~ 0 //list of arcs

2: CPN ~ new CPN
3: For every r E R do
4. RP~createRolePlaceO II there would be one token in every RP place
5: CPN.places ~ RP
6: While M i- 0 do
7: curr ~ M.dequeueO
8: MP~ CreateMessagePlace(curr)
9: IM ~ CreatelntermediatePlace(curr,MP)
10: TR ~ CreateTransitions(curr,MP,IM)

II: If curr.CA 11: {Failure, Cancel, Refuse, not-understood}
12: AR~ CreateArcs(curr,MP,IM,TR)
13:
14:
15:

Else // MP is a terminating place
AR ~ CreateArcs(curr, IM, TR)

End If

16: FixColor(MP, TR,AR,curr. CA)

17: CPN.places ~ CPN.places u MP u IM
18: CPN.transitions ~ CPN.transitions u TR
19: CPN.arcs ~ CPN.arcs u AR
20: End while
21: Return CPN

Fig. 2. IP to CPN Conversion Procedure

4 A Case Study: The Agent-Based Transportation e-Market
System

To illustrate this algorithm, we use it to construct a CPN of a part of our example
presented in [7] (shown as IP in figure 3). This example illustrates the interaction
among three parts: Customer, Broker and !Revise, where the two first parts are
Interfaces of different business systems, and the last part is an automatic service. In
this protocol, the process starts when the Customer role sends a message with
business information: request (ItineraryData). Once the Broker receives these
messages, the Web service !Revise is invoked for reviewing the customer itinerary
and divide this itinerary into sub-itineraries.

We note that all the private processes are not defined by the interaction protocol
because they are private aspects of the Broker. After dividing the itinerary, the Broker
decides whether to send a message propose (ItineraryPlan) to the Customer or
refuse the customer request because it cannot be satisfied. This is defined with a logical
connector XOR, which represents that only one of the two alternative messages can be

A Petri-Net Based Formalisation of Interaction Protocols 87

a- the AUML Interaction Protocol

<"""""" ·- ~rt~--------------1

<partner nounc · cu.uomc::r"P I
<J»ttnet 1'13•ne "Broker"~ .
<ptrtn.:r n."'me-"1Revi51:'"'/> '
<I rs>

0 <\'ariibi~-N---·---

<\willblc llll..tne"'"rcqucst"/)o
<\'lllio.bk na,.mc.:o"rcsponsc"f>

</\•:uiablt'
<nqurn<'e>
<r«eh~ n•n• '"rt'qunt"

p.rtncr-"Brokrr'"

<11'1'pl)''> .. <i¥iii'iifi> _________ , __ ",

<rtply n•m '"(•ilurt"'> I
!

</t t pl)'> 1
<r t pl)' nam '"proposr .. > .

-- -~-!Y:;r•'-~~--~=--····--· J
~Itch>

b- the BPEL4WS of(a)

Fig. 3. An Interaction Protocol as AUMUBPEIAWS

sent. In this case, the Customer has two interaction threads that represent the incoming
messages. When the Customer receives a message propose (ItineraryPlan), he can
accept this itinerary plan or can declare a failure during the negotiation because
consensus has not been achieved.

We now use the algorithm introduced above (fig. 2) to create a CPN for this IP.
The algorithm begins with the creation of three Roles Places (RP) initially marked
(one place for every role/partner in the IP: lines 3 and 4). Line 5 permits to update the
CPN with the RP variable. In the first iteration of the main loop (line 7), the curr
variable is set to the first message in the IP (curr r <"Customer", "Broker··, "request",
"S">). The algorithm creates net places, which are associated with the curr variable,
i.e. a request message place (line 8) and two places in the Customer and respectively
the Broker sub-nets (the CreateinterrnediatePlace () function at line 9).

These three places (see the resulting CPN in Figure 4) are connected using the
asynchronous message building block shown in Table 1. The MP is not a terminating
place (the Customer is waiting for a response from the Broker) and is thus connected
through transitions and arcs with the CreateTransitions () and CreateArcs ()
functions (lines 10, 11, 12). Next, the colour sets of the corresponding places are
determined (colour domains of the transitions are generally defined according to the
domains of the results of functions evaluation of input arcs).

88 D. Benmerzoug, F. Kordon, and M. Boufaida

AllORT (mol ofiP
"''ilh flii!Uil:) ··-·····-;).

Colour dOII'Iain • ff'&Utn,
Propose}

_ _...._~!L..""

CoJourdomain • (J='aiiLUt"•...)­
Jnfonnl

I(msg_ca•~F•IItm'-... --)­
"Sendfail~,~teM

If msg..ea,."'lnfonn"'
"SeNt i nfonrt

Fig. 4. The Resulting CPN of the IP presented in Fig. 3

In the second iteration, curr is set to <"Broker", "Customer", "failure ", "A">$
<"Broker", "Customer", "propose", "A">. In this case, the Broker can send either a
failure or a propose messages, and thus appropriate message places are created using
the XOR-decision building block shown in Table 1. Then, two places, corresponding
to the results of the messages are created. These places are connected using the X OR­
decision described in Table 1. This building block involves the creation of the guard
conditions on the transitions controlling the firing of the transition corresponding to
the message type (which is represented as a colour in the Petri net).

In this iteration, we note that the MP place corresponding to the message "failure"
is a terminating place, so no outgoing transitions or arcs are creating from this place.
The loop iterates as long as M contains messages that have not been handled. Finally,
the resulting CPN is returned (Figure 4).

5 Validation and Property Verification

CPN allow us to validate and evaluate the usability of a system by performing
automatic and/or guided executions. These simulation techniques can also carry out
performance analysis by calculating transaction throughputs, etc. Moreover, by
applying other analysis techniques it is possible to verify static and dynamic
properties in order to provide the complement to the simulation. Some of these
properties are that:

There are no activities in the system that cannot be realized (dead transitions). If
initially dead transitions exist, then the system was bad designed.
The IP specification exhibits the liveness property (e.g., the output CPN guarantees
the existence of an initial state such that for any accessible state, at least one
operation is executed).

A Petri-Net Based Fonnalisation of Interaction Protocols 89

It is always possible to return to a previous state (home properties). For instance, to
compare the results of applying different decisions from the same state. (the case of
XOR and OR decision)
The system may stop before completion (deadlock). Thus, a work might never be
finished, or it might be necessary to allocate more resources to perform it.
Certain tokens are never destroyed (conservation). Hence, resources are maintained
in the system.

6 Enabling Integration Process with Multi-Agent Systems

As we already have said, the BPEIAWS process specification is considered as a
language for specifying the interaction protocol of multi-agents system. In this section
we briefly describe how the MAS use the verified and validated BPElAWS
specification to establish the BPI. Our suggestion consists in the addition of a specific
agent between the MAS application and its IP parts conceived as Web services (see
figure 5). The main advantage of this approach is the integration completeness
property inherent from our BPEIAWS specification. Integration completeness means
that the IP is itself published and accessed as a Web service that can participate in
other application integration. Since applications integration is often viewed as a
hierarchy of different local systems and services, the integration completeness
property permits the agent-based integration to be included via BPEIAWS into other
applications integration definitions.

Web Services of
the application

<: Communication Bus :>
r---n _____ -- _rr ___ ----------------------_u_- --1

~ ® 6:):
~~~~1!~~~~~~~-ll:~~~~~~~~~~~~~~~~~~~~~~~~~~rr~~~~~ 
I I 
I I 
I I 

I 
I 
I 
I 
I 

Company 2 Company n 

~------------- ----------------------------------' 

Fig. 5. Global Structure of our Architecture 



90 D. Benmerzoug, F. Kordon, and M. Boufaida 

As shown in Figure 5, the BPEL4WS specification is exploited thereafter with an 
intermediate agent called «Integrator Agent». This integration must keep as much as 
possible the autonomy of architecture core based on agents. Indeed, The agents are 
coordinated with the Integrator agent and the exchange of messages to enact the BPI. 
In this architecture, the following communication pathways exist: 

agent to agent communication occurs via FIPA ACL and is facilitate by a FIP A 
compliant Agent Management System. 
agent to Web service communication is accomplished via SOAP messages. 
agent to BPEL4WS dataspace communication uses appropriate protocols/interfaces 
provided by the dataspace. The dataspace is used to store BPEL4WS process 
variables, which maintain the state of the IP. 

The main roles of the Integrator agent are the creation, monitoring, and control of 
IP life cycle. It's architecture features two modules: an interaction manager and a 
service manager. The interaction manager contains operational knowledge (e.g., 
Interactions states). It also provides operations for monitoring interactions (i.e., 
creating and deleting instances). The service manager provides methods for receiving 
service requests, tracing service executions, and communicating with service 
requesters in accordance with IP definition (e.g., sending a notification informing the 
requester that deadline for cancelling an operation is passed). 

7 Related Work 

BPI and automation is an active research domain. The community is still debating the 
issues of enterprises collaboration at the business process level. 

In [17], P. Buhler et al. summarize the relationship between agents and Web 
services with the aphorism "Adaptive Workflow Engines= Web Services+ Agents": 
namely, Web services provide the computational resources and agents provide the 
coordination framework. They propose the use of the BPEL4WS language as a 
specification language for expressing the initial social order of the multi-agent 
system. P. Buhler et al. does not provide any design issues to ensure the correctness of 
their interaction protocols. 

In [21], authors propose translating rules for the conversation of an interaction 
protocol given in AUML to CPN. Unfortunately, no procedures were provided that 
guide the conversion of an interaction protocol given in AUML to Petri net 
representations. 

The Symphony project [18] has developed an algorithm for analyzing a composite 
service specification for data and control dependences and partitioning it into a set of 
smaller components. These components are then distributed to different locations and, 
when deployed, cooperatively deliver the same semantics as the original workflow. 
Symphony does not provide any support for failures arising from workflow 
mismatches since it assumes that the distributed processes will be derived from a 
single complete BPEL process. 

Several other approaches aim to solve the integration problem by emphasizing 
interaction protocols. The state transition diagram (STD) has been extensively used 
for IP specification due to its clarity. The weakness is that it does not reflect the 



A Petri-Net Based Formalisation of Interaction Protocols 91 

asynchronous character of the underlying communication [19]. Furthermore, it is not 
easy to represent integration of protocols. The Dooley Graph [20] is an alternative 
formalism for visualizing agent inter-relationships within a conversation. Object­
oriented methods like UML [22] offer a way to reduce the gap between users and 
analyst when considering message transfers, yet they only address the dynamic 
behavior of individual objects and are informal. 

Compared with the related work, our approach allows us to provide a clear 
separation of inter-enterprise collaboration management and local business process 
management, to make full use of existing workflow system components, to support 
both public processes and private business processes. Another advantage of our 
approach is the integration completeness property inherent from our BPEL4WS 
specification. It means that the IP is itself published and accessed as a Web service 
that can participate in other application integration. Since applications integration is 
often viewed as a hierarchy of different local systems and services, the integration 
completeness property allows agent-based integration to be incorporated via 
BPEL4WS into other applications integration definitions. 

8 Conclusion and Future Work 

In this paper, we presented a generic approach for BPI based on interaction protocols. 
The proposed translation rules from AUML/BPEL4WS notations to Coloured Petri nets 
enable the use of many verification techniques during the design phase to detect errors 
as early as possible. 

Such translation allows to easily model complex e-business applications. We also 
proposed an automated procedure for converting an interaction protocol specification 
to a corresponding coloured Petri nets and illustrated its use through a case study. 

The verified and validated interaction protocols specification is exploited afterwards 
with an intermediate agent called Integrator Agent to enact the integration process and 
to manage it efficiently in all steps of composition and monitoring. 

Our primary future work direction is the exploitation of the BPEL4WS specified 
BPI by the Integrator agent to facilitate the creation, monitoring, and control of 
interaction life cycle at run-time. We will also introduce the notion of intelligence; we 
will try to specify all the cooperative agents of our architecture as intelligent and 
autonomous Web components. 

References 

1. Papazoglou, M.P., Kratz, B.: Web Services Technology in Support of Business 
Transactions. Int. journal of Service Oriented Computing 1 (1 ), 51---63 (2007) 

2. Jung, J.Y., Kang, S.H.: Business Process Choreography for B2B Collaboration. IEEE 
Internet Computing, 37--45 (2004) 

3. Aissi, S., Malu, P., Srinivasan, K.: E-business process modeling: the next big step. IEEE 
Computer, 55-62 (2002) 

4. Luck, M., McBurney, P., Shehory, 0., Willmott, S.: The AgentLink Community: Agent 
Technology: Computing as Interaction - A Roadmap for Agent-Based Computing. 
AgentLink III (2005) 



92 D. Benmerzoug, F. Kordon, and M. Boufaida 

5. Benmerzoug, D., Boufaida, M., Kordon, F.: A Specification and Validation Approach for 
Business Process Integration Based on Web Services and Agents. In: Int. Workshop on 
Modeling, Simulation, Verification and Validation of Enterprises Information Systems 
(MSVVEIS 2007), pp. 163-168. INSTICC press (2007) 

6. Benmerzoug, D., Boufaida, Z., Boufaida, M.: From the Analysis of Cooperation Within 
Organizational Environments to the Design of Cooperative Information Systems: An 
Agent-Based Approach. In: Meersman, R., et al. (eds.) OTM Workshops 2004. LNCS, pp. 
496-506. Springer, Heidelberg (2004) 

7. Benmerzoug, D., Boufaida, M., Boufaida, Z.: Developing Cooperative Information Agent­
Based Systems with the AMCIS Methodology. In: IEEE International Conference on 
Advances in Intelligent Systems: Theories and Application, Luxembourg (2004) 

8. Cost, R., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Using Colored Petri nets for 
Conversation Modeling. In: Dignum, F., Greaves, M. (eds.) Issues in Agent 
Communication. LNCS (LNAI), vol. 1916, pp. 178-192. Springer, Heidelberg (2000) 

9. Girault, C., Valk, R.: Petri Nets for Systems Engineering - A Guide to Modeling, 
Verification, and Applications. Springer, Heidelberg (2003) 

10. Koehler, J., Tirenni, G., Kumaran, S.: From Business Process Model to Consistent 
Implementation: A Case for Formal Verification Methods. In: Pro. of the Sixth 
International Enterprise Distributed Object Computing Conference, IEEE Computer 
Society, Los Alamitos (2002) 

11. Peregrine B2B Integration Platform, http: I /www. peregrine. corn 
12. Thatte, S.: XLANG: Web Services for Business Process Design, Microsoft Corp., cf 

(2001), http: I !www. gotdotnet. corn/ tearn/xrnl_wsspecs/ 
13. Huget, M., Odell, J.: Representing agent interaction protocols with agent UML. In: 3rd 

International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1244-
1245. IEEE Computer Society, Los Alamitos (2004) 

14. Business Process Execution Language for Web Services Version 1.1 (2003), http: I I 
www-106.ibrn.corn/developerworks/ 

15. Sun Microsystems. Java Web Services Development Pack 1.1 (2006), http: I /java. 
sun.corn/webservices/webservicespack.htrnl/ 

16. Gutnik, G., Karninka, G.A.: A Scalable Petri Net Representation of Interaction Protocols 
for Overhearing. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004. LNCS 
(LNAI), vol. 3394, pp. 1246-1247. Springer, Heidelberg (2005) 

17. Buhler, P.A., Vidal, J.M.: Towards adaptive workflow enactment using multiagent 
systems. Int. Jour. On Information Technology and Management, 61-87 (2005) 

18. Chafle, G., Chandra, S., Mann, V., Nanda, M.: Decentralized Orchestration of Composite 
Web Services. In: Proc. of the Alternate Track on Web Services at the 13th International 
World Wide Web Conference (WWW 2004), pp. 134-143 (2004) 

19. Martial, F.: Coordinating Plans of Autonomous Agents. LNCS (LNAI), vol. 610. Springer, 
Heidelberg (1992) 

20. Parunak, H.V.D.: Visualizing Agent Conversations: Using Enhanced Dooley Graphs for 
Agent Design and Analysis. In: Proceedings of the International Conference on Multi­
Agent Systems (1996) 

21. Mazouzi, H., Fallah-Seghrouchni, A.E., Haddad, S.: Open Protocol Design for Complex 
Interactions in Multi-Agent Systems. In: Proceedings of AAMAS 2002, pp. 517-526 (2002) 

22. Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language for object-oriented 
development. Document set version 1.0, Rational Software Corporation, Santa Clara (1997) 

23. OMG; Object Constraint Language Specification, http: I /www. orng. org I cgi-bin/ 
doc?forrnal/03-03-13 



Competencies and Responsibilities of 
Enterprise Architects 

A Jack-of-All-Trades? 

Claudia Steghuis1 and Erik Proper1•2 

1 Capgemini, Papendorpseweg 100, 3500 GN Utrecht, The Netherlands 
claudia.steghuis~capgemini.com 

2 Radboud University Nijmegen, Toernooiveld 1, 
6525 ED Nijmegen, The Netherlands 

e.proper~acm.org 

Abstract. This paper is not concerned with enterprise architecture as a 
product or as a process, but rather concerns itself with the professionals 
who are responsible for the creation of the products and the execution 
of the associated processes: the enterprise architects. 

We will discuss the responsibilities of enterprise architects, as well as 
the basic competencies and personality types which an enterprise archi­
tect is expected to have in meeting these responsibilities. Since enterprise 
architects are likely to operate in teams we also discuss the competencies 
needed to effectively work in teams. 

The presented results are based on existing studies into the skills of 
architects, surveys conducted among enterprise architects, as well as the 
experience of our organisations in teaching future enterprise architects. 

Keywords: Enterprise architecture, competencies. 

1 Introduction 

The emerging instrument of enterprise architecture promises to provide man­
agement with insight and overview to harness the complexities involved in the 
evolution and development of enterprises. Where classical approaches will handle 
problems one by one, enterprise architecture aims to deal with these issues in a 
coherent and integral fashion. At the same time it offers a medium to achieve 
a shared understanding and conceptualisation among all stakeholders involved 
and govern the enterprise's evolution and development based on this conceptual­
isation. This paper focusses on the person who needs to execute these tasks; The 
Enterprise Architect. We aim to discuss the competencies, roles, and abilities 
needed by an enterprise architect to best conduct their tasks. 

One only needs to look at one of the many job-adds to see that an enterprise 
architect needs to have a wide range of competencies. Consider for example: 

Assist the Enterprise Architecture team to develop a Target EA, Transition 
Plan and EA governance strategies. Work with lead to develop all stages 

J.L.G. Dietz et al. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 93-107, 2008. 
©Springer-Verlag Berlin Heidelberg 2008 



94 C. Steghuis and E. Proper 

of enterprise architecture, information engineering, system development 
methodologies, EA strategic planning, business process re-engineering, 
workflow processing, requirements analysis, prototyping, system testing, 
major system and database implementation. Assist in the development of 
an EA roadmap and strategy, current architecture assessment, architec­
ture tools and repository evaluation and approach, development of EA gov­
ernance, communication, metrics, investment management, modelling of 
current and target architecture views, gap analysis, and migration plan to 
integrate their IT efforts with mission goals. 1 

This example shows that the role of enterprise architect demands leadership 
qualities, a deep knowledge of IT and business domains as well as ample com­
munication skills. Clearly not a starter's position. In randomly chosen job adds 
for enterprise architects, the following tasks and responsibilities are asked for: 

Responsible for executing the architectural vision for IT systems within the 
organisation including those that support Internet applications, ensuring that 
architecture conforms to enterprise standards. 
Provide technical and architectural direction to the software and infrastruc­
ture team. 
Stay constantly attuned to emerging technologies and recommend business 
direction based on those technologies. 
Provides technical expertise to peers and associates on overall distributed 
enterprise architecture and design. 
Assist in developing and maintaining strategies that result in efficient and 
effective use of enterprise core services. 
Strong conceptual and analytical skills. 
Experience in creating and defining new technology concepts and solutions. 
Java development experience preferably in a SAP Enterprise Portal environ­
ment. 
Experience in development of Segment Architectures that align with and en­
able agency strategic goals and business requirements. 

The requirements put on an enterprise architect seem to range from very 
specific programming skills to broad leadership qualities as well as the ability to 
develop a business strategy. Tasks and responsibilities differ per job add: there 
is no one set of tasks and responsibilities for the role of enterprise architect. 

Besides an enterprise architect, there are many other types of architects, such 
as business architects, information architects, process architects, IT architects, 
software architects, application architects, etcetera. The difference between these 
types of architects and the enterprise architect is that the enterprise architect 
covers the breadth of business and IT, while domain architects focus on one 
aspect of the enterprise (business, IT, information) and solution architects on 
one small part of the implementation of the architecture (applications, software, 
business processes). 

1 Fto1n: http://hotjobs.yahoo.com/jobseeker/jobsearch/job_detail.html?job_ 
id=JVVWL53A4E1 (11-01-2008). 



Competencies and Responsibilities of Enterprise Architects 95 

Some initial work has already been done regarding the abilities and competen­
cies that should be met by enterprise architects. For instance, organisations such 
as TOGAF [1] and the Netherlands Architecture Forum [2] have created frame­
works of competencies for architects. Some organizations have created their own 
competencies frameworks [3, 4], or have even introduced their own certification 
programs (for example: IBM, HP, Capgemini, Federal Enterprise Architecture 
Certification Institute, and TOGAF). 

Standard guidelines regarding the competencies of an enterprise architect still 
lack. Responsibilities differ per company/ assignment and research showed that 
architects themselves expect to have to have a variety of competencies [5]. Us­
ing pre-existing frameworks for competencies and abilities [6, 7, 8, 1, 2, 5, 3, 4] 
as a starting point, this paper provides a competency framework for enterprise 
architects which is geared towards the responsibilities of enterprise architects. 

The goal of our study is to collect information about the profile of the enter­
prise architect, to be able to improve the composition of enterprise architecture 
teams and to improve education programmes for future enterprise architects. 
Therefore, we compared earlier research about competence frameworks with 
literature about enterprise architecture roles and Belbin team roles. We have 
synthesized a framework in which we relate: the responsibilities of enterprise ar­
chitects, relevant competencies, typical roles of an architect, as well as their roles 
in teams, by means of a number of mappings. These actual mappings are the re­
sult of studying earlier work on competencies of enterprise architects [2,4], as well 
as a survey conducted among (certified) enterprise architects from Capgemini. 
With our research we aim to answer the following questions: 

1. What competencies do enterprise architects need in meeting their responsi­
bilities? 

2. What roles/attitudes should enterprise architects cover and what competen­
cies are needed for those roles? 

3. What team roles should be fulfilled by enterprise architects? 

This paper is structured as follows. In section 2 we discuss the basic competen­
cies which an enterprise architect is expected to have, while section 3 summarises 
the responsibilities of enterprise architects and relates them to the competencies. 
In section 4 we then continue by discussing the personality types needed to meet 
the responsibilities enterprise architects. Since enterprise architects are likely to 
operate in teams, section 5 considers competencies related to working in teams. 

2 Relevant Competencies 

In this section we look at the competencies that are relevant to the work of enter­
prise architects. As we will see in the next section, not all of these competencies 
are relevant to each of the roles played by architects. 

According to a survey among enterprise architects, one has to be a jack-of­
all-trades to be a good enterprise architect [5]. Even more, job adds for enter­
prise architects typically claim at least five years of experience, profound domain 



96 C. Steghuis and E. Proper 

expertise, specific knowledge about networks, applications, operating systems, 
etc, communication skills and proven success in implementation. Providing a 
complete list of competencies of the architect is therefore also hardly possible. 
We will limit ourselves by introducing the essential competencies on the different 
fields which are needed. In doing so, we distinguish two kinds of competencies: 

Professional competencies - Competencies dealing with knowledge, attitude 
and skills necessary to a successful performance in a specific function or role [9]. 

Personal competencies - Competencies that can be used in several functions 
or roles (i.e. communication skills) and personality characteristics. 

2.1 Professional Competencies 

The professional competencies comprise the knowledge, attitude and skills to 
perform successfully in a specific function [2]. The enterprise architect should 
be able to understand and have knowledge of all four areas (business, informa­
tion, information systems and infrastructure), while he needs to be an expert 
in at least one area [3]. TOGAF divides the professional competencies in their 
Architecture skills framework in business skills and methods, enterprise archi­
tecture skills, programme or project management skills, IT general knowledge 
skills, technical IT skills, and legal environment [1]. 

When looking at the competence model of a standardisation effort such as 
TOGAF [1] as well as the competence model of an architecture society such as 
the NAF [2], one can conclude that architects need to have knowledge about 
the different domains they act in. In addition, knowledge about architecture 
principles, architecture frameworks and governance is most important, while 
keeping informed about new developments is also necessary. 

2.2 Personal Competencies 

For the personal competencies we do not distinguish between different types 
of architects. Even more, it seems those competencies are quite close to adja­
cent professions such as strategists, process developers and system developers. 
The personal competencies can be divided in intermediary competencies, values, 
norms and ethics and personality characteristics [2]. This last group contains 
natural abilities of a person and these are therefore hard to be learned. One of 
these is persuasiveness, which is recognized by [7] as an important characteris­
tic of an architect. Others are independence, persistence, initiative, etcetera [2]. 
Values, norms and ethics differ per person and organization. Intermediary com­
petencies are the ones mostly mentioned in literature and job adds. A short 
comparison between four sources [1, 2, 10, 11] showed the following top five inter­
mediary competencies for the architect (using the naming conventions of [2]): 

- Analytical skills. 
- Communication skills. 
- Negotiation. 



Competencies and Responsibilities of Enterprise Architects 97 

- Abstraction capacity. 
- Sensitivity and empathy. 

Besides those, creativity and leadership appear to be essential for the enterprise 
architect, especially because (s)he needs to cover the whole spectrum of business 
and ICT and often operates in a leadership role in close collaboration with other 
architects. Based upon [2] and extended with some competencies concerning 
change management from [8] and communication [3], we identify the following 
personal competencies: 

Abstraction capacity - The ability to learn in new situations and to adapt 
acquired knowledge and facts, rules, principles to new domains. 

Accurateness - Working neatly and precise. 
Analytical skills - The ability to identify a concept or problem, to dissect 

or isolate its components, to organise information for decision making, to 
establish criteria for evaluation, and to draw appropriate conclusions. 

Authenticity - Being true to one's own personality, spirit, or character. 
Consulting - Being able to give recommendations on a certain case. 
Creativity - To be able to generate creative ideas and solutions, invent new 

ways of doing business, and be open to new information. 
Decisiveness - To be able to take decisions after having enough or complete 

information and act towards these decisions. 
Dedication - Driven to accomplish their goals. 
Didactical skills - The ability to transfer complex knowledge to other people. 
Diplomacy - Ability to communicate about sensitive issues without arousing 

hostility. 
Facilitation skills - Be able to facilitate workshops. 
Flexibility - Ability to deal with changed conditions, assumptions, environ-

ment, etc. 
Independency - To be able to act without being influenced by others. 
Initiative - Readiness to act on opportunities. 
Integrity - Moral soundness. 
Leadership - Inspiring and guiding groups and people. 
Listening - Listen actively to understand information or directions and be able 

to provide relevant feedback. 
Loyalty - Faithful to the key stakeholders. 
Negotiation- To be able to maintain a position in conversation with others 

and improve this position. 
Openness - Open to alternative directions, solutions and opinions. 
Opinion forming - Being able to make a judgement about a certain case. 
Organisational awareness - To understand the inner working of the organi-

sation; to estimate the value of the own influence and consequences of deci­
sions or activities. 

Persistence - Being determined to do or achieve something. 
Persuasiveness - To be able to convince others of a certain opinion. 
Plan and organize- Making objectives and take actions to reach these ob­

jectives in an effective way. 



98 C. Steghuis and E. Proper 

Result driven - To be able to realise objectives and results. 
Self-confident - Confident about (and familiar with) their own (in)abilities. 
Self-development - Reflect on your performance and goals, identify learning 

needs and development options, and develop knowledge and skills. 
Sensitivity and empathy - Sensing others' feelings and perspective, and tak­

ing an active interest in their concerns. 
Stability - Has a stable character and mood. 
Teamwork- Working with others towards shared goals and creating group 

synergy in pursuing these goals. 
Verbal communication skills- Use appropriate technical or business vocab­

ulary to be able to express thoughts and feelings in a concise way and to 
respond adequately to others. 

Visualisation skills - Be able to visualize architecture results. 
Working systematically - Be able to execute the work in a prescribed way. 
Written communication skills - Write clear and accurate reports, letters 

and documents. 

3 Responsibilities of an Enterprise Architect 

According to [11] an enterprise architect's job can involve governance commit­
tees, architecture review boards, technology life cycles, portfolio management, 
architecture strategy and strategic project support. Bredemeyer [7] shows that 
enterprise architecture has broadened its scope from just an IT issue to the en­
terprise wide IT architecture and business architecture, with as goal to increase 
enterprise agility and alignment with business strategy. 

In [12] a more elaborate discussion of the process of architecting and the 
responsibilities architects have in this process is provided. This discussion is 
based on a survey involving several sources, such as: [13, 14, 15, 16, 17, 18, 19,20, 1, 
7, 21,22, 23]. In this paper we will only provide a summary of the responsibilities 
of an enterprise architect: 

Create: The creation of an enterprise architecture. 

- Understand purpose and context of the enterprise architecture. 
- Determine which deliverables are required for the creation of a specific 

enterprise architecture. 
- Monitor the enterprise's context and the stakeholders involved in the 

enterprise's development. 
- Create shared conceptualisation among the stakeholders involved in the 

enterprise's development. 
- Design the processes involved in creating the enterprise architecture. 

Determine impacts of alternative enterprise architectures. 
- Communicate results of the creation process. 



Competencies and Responsibilities of Enterprise Architects 99 

Apply: The application of an enterprise architecture. 

- Inform stakeholders about the selected enterprise architecture and its 
motivations. 

- Support decision-making based-on the enterprise architecture. 
- Ensure compliance of development of the enterprise to the architecture. 
- Ensure the enterprise architecture results are available. 
- (Re )-communicate the architecture and its impact to relevant stakehold-

ers. 

Maintain: The maintenance of an enterprise architecture. 

- Monitor the enterprise's context and the stakeholders involved in the 
enterprise's development. 

- Assess drivers for change inside/outside the enterprise. 
- Update and (re-)communicate the enterprise architecture. 

Organise: The organisation of the processes involved in enterprise architecting. 

Organise the enterprise architecture team. 
- Select frameworks, tools and tricks. 
- Communicate about enterprise architecture as a means. 
- Embed enterprise architecting in the enterprise's governance. 

Monitor maturity of the enterprise architecting process. 
- Manage quality of the enterprise architecture; both product and process. 
- Establish leadership. 
- Innovate the architecture processes. 

In meeting these responsibilities, the enterprise architect needs certain personal 

competencies. Table 1 provides a mapping from the responsibilities to the compe­

tencies discerned in the previous section based upon a survey among (certified) 

enterprise architects within Capgemini. We have not mapped the professional 
competencies to the responsibilities, this needs further research. 

4 Personality Types 

Strano et al. [24] report on a survey conducted among enterprise architects of 

the federal government of the United States of America, and concluded that an 

enterprise architect can have the roles of a change agent, communicator, leader, 
manager, and modeller. In [24] these roles are defined as: 

Change agent - "As a change agent, the enterprise architect supports enter­
prise leaders in establishing and promoting the best strategy to accomplish 
business goals and objectives." 

Communicator- "As a communicator, he assists managers, analysts, systems 
architects and engineers in understanding the details of the strategy suffi­
ciently well to make decisions and execute the plan that leads to realization 
of the shared vision." 



T
ab

le
 1

. 
C

om
pe

te
nc

ie
s 

m
ap

p
ed

 u
p

o
n

 r
es

po
ns

ib
il

it
ie

s 

~
 I 

"
0

 
:!! 

c 

l 
.. 

1 
.~ 

.2 
"' 

c 

I 
! 

.. 
~
 

~(
i 

c 
~
 

.~ 
.!!

 .
. 

.g
 

.§
 

·~ 
s 

.!
!e

 
.!!

 

1 
~
~
 
~
~
 
8
~
 

a
=

 
.. 

E
 

E
 

8~
 

... ~ 
" 

.. 
.,

.!
! 

"'"
' 

g 
~ 

8 
E

 

I 
"
0

 
;;

 c
 
·d

 a
i 

o>
.'l

 
·~ 

~ 
t
"
'
 

.B.
 

£! 
""

 
! ~

 
8 

i~
 

J 
~ 

u 
~ 

~~
 -

E
 

~~
 ~
i 

·e
 i 

-~
§
 

* 
E

 
~
 

.. 
H

 
~;
; 

o8
 ~

ts
. 

8 
J2

 
rH

 
:!1 

.. 
a:

 
:d

! 
.<

~£
 

• 
0 

c 
w

 
::;

 
::

>
U

 

A
bs

tra
ct

io
n 

C
ap

ac
ity

 
X

 
X

 
X

 
X

 
X

 
X

 

A
cc

ur
at

en
es

s 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 

A
na

iV
Iic

al
 S

ki
lls

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 

A
ut

he
nt

ic
ity

 
X

 
X

 
X

 
X

 
X

 
X

 

C
on

su
lti

ng
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

C
re

al
iv

itv
 

X
 

X
 

X
 

X
 

X
 

X
 

D
ec

is
iv

en
es

s 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 

D
ed

ic
at

io
n 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

D
id

ac
tic

al
 S

ki
lls

 
X

 
X

 
X

 
X

 
X

 
X

 

D
ip

lo
m

ac
y 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

Fa
ci

lit
at

io
n 

sk
ill

s 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 

F
le

xi
bi

lil
y 

X
 

X
 

X
 

I 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
• 

In
iti

at
iv

e 
X

 
X

 
X

 
• 

• 
X

 
• 

X
 

X
 

• 
X

 
X

 

In
te

gr
ity

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 

Le
ad

er
sh

ip
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

U
st

en
in

a 
X

 
X

 
• 

X
 

X
 

• 
X

 
X

 

Lo
ya

lly
 

• 
• 

N
eg

ot
ia

lio
n 

• 
X

 
X

 
X

 
• 

O
pe

nn
es

s 
X

 
X

 
X

 
X

 
X

 
• 

• 
X

 

O
pi

ni
on

 F
or

m
in

g 
X

 
X

 
• 

X
 

X
 

X
 

X
 

O
ra

an
is

at
io

na
l A

W
81

en
es

s 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
• 

X
 

X
 

X
 

P
er

si
st

en
ce

 
X

 
• 

• 
X

 
X

 
X

 

P
er

su
as

iv
en

es
s 

X
 

X
 

X
 

X
 

X
 

P
la

n 
A

nd
 O

ra
an

iz
e 

X
 

X
 

X
 

R
es

un
 D

riv
en

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 

Se
H

 D
ev

el
oP

m
en

t 
X

 

S
eH

-c
on

lid
en

ce
 

X
 

• 
X

 
X

 
X

 
X

 
X

 
X

 

S
en

si
liv

itv
 A

nd
 E

m
ca

lh
v 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

S
ta

bi
tit

v 
X

 
X

 
X

 
X

 
X

 
X

 
• 

T
ea

m
w

or
k 

X
 

X
 

X
 

X
 

X
 

X
 

V
er

ba
l C

om
m

un
ic

al
io

n 
X

 
X

 
• 

X
 

• 
X

 
X

 
X

 
X

 
X

 
X

 
X

 

V
is

ua
lis

at
io

n 
sk

ill
s 

X
 

X
 

• 
X

 
X

 
X

 
X

 

W
or

l<
ln

o 
S

vs
te

m
at

ic
al

lv
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

W
rl

ne
n 

C
om

m
un

ic
at

io
n 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

3 
.{

 
~ 

E
 

0 

"' 
~~

 .. 
.5

 
~ 

~ 
.!!

 

I ·~ 
c 

i:1i 
.. 

:>
 

.i
': 

E
 

)J 
.. 

8i:
1i 

E
' 

.,
;~

 
0 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

• 
X

 
X

 
X

 
X

 

• 
• X

 
X

 

X
 

X
 

X
 

• 
X

 
X

 
X

 
X

 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

·~
 

~ 
a .. 

" 
E

 
<

7 

0 
" go 

·e
 

c 
~
 

"' ::; 
X

 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

• X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 • 

X
 

• 
X

 

X
 

X
 

Q
. 

:2
 .. Q;
 

"
0

 .. .!!
 

.c
 .. ~ ;;
 

w
 

X
 

X
 

X
 

X
 • X
 

X
 

X
 

X
 

X
 

X
 

X
 

~ ~ 

1
--

' 
0 0 



Competencies and Responsibilities of Enterprise Architects 101 

Leader - "As a leader, the enterprise architect participates in creating a shared 
vision, motivating members of the enterprise to aspire to achieving the vision, 
and providing clear direction regarding what is required to execute a strategy 
to accomplish goals and objectives that result in performance improvements." 

Manager- "As a manager, he organizes the architecture team and ensures that 
adequate resources are secured to perform the architecture process." 

Modeller - "As a modeller, the enterprise architect provides a representation 
of the relationships of enterprise components with sufficient detail and in the 
format needed to enable making necessary decisions to execute the strategic 
plan." 

As an alternative to these roles, [7] suggests four competency areas: credible 
expert, strategist, politician and leadership. In this paper we adapt the roles 
of [24] since they are based on a documented empirical study. 

In [8] five stereotypical styles of thinking about change are identified. Each 
style is typed by its own-colour: 

Blueprint-thinking- Focuses on the formulation of unambiguous objectives, 
development of a plan of action, monitoring and adjusting the change process 
accordingly. 

Yellowprint-thinking- Focuses on bringing interests together, stimulating 
stakeholders to formulate opinions, creating win-win situations and forming 
coalitions. 

Redprint-thinking - Focuses on stimulation of people, and implementing so­
phisticated HRM-instruments. 

Green print-thinking - Focuses on ensuring that people are aware of new per­
spectives and personal shortcomings, while motivating them to see, learn, do 
new things, and create suitable shared learning experiences. 

Whiteprint-thinking - Focuses on the natural flow of people's processes, in­
terests and energies, and is concerned with the removal of blockades. 

Each of these "colours" of thinking about change has their own merits. De­
pending on the organizational culture and architectural maturity in which an 
enterprise architect needs to operate, a different prevailing style will be needed. 

The five roles from [24] can be mapped upon the competencies mentioned in 
section 2 In most of these roles, communication, negotiation and sensitivity and 
empathy play a large role. Analytical skills and abstraction capacity are definitely 
needed for the modeller, but are also important to fulfil such a multidimensional 
role as enterprise architect. Using the competencies of enterprise architects as 
discussed in the previous section, these roles can be made more specific as shown 
in Table 2. Note that we have treated the roles as "extremes" or "caricatures" 
when mapping the competencies. For example, to be a leader, an architect will 
also need some abstraction capacity. Nevertheless, the ability to abstract is really 
the core of their role as modeller. Conversely, when modelling, an architect also 
needs to be able to listen, which is a key trait for the communicator role. 

In Table 2, the change agent role has been refined to include the colours of 
thinking about change discussed in [8]. In this table, we can see that the first four 



102 C. Steghuis and E. Proper 

Table 2. Mapping competencies to roles and change colours 

Change Agent 

Roles c c c .. c c .. .. Cl .. Cl Cl <( Cl .. <( <( - .. <( Cl 

~ Cl <( .. .. 
c .. .. Cl Cl 

u '" Cl Cl 
c c 

·;: .c c c '" '" ~ i u '" '" 
.c .c 

:I .c u u 
E ~ Cl ~ u .c 

'" Qi u c 
~ E 'C .!:! .. 

'" c 'C .. 
i ~ 0 j '" 0 Qi :I .c 

Competencies u :::;; :::;; > iii a: CJ 3:: 
Abstraction Capacity X 

Accurateness X X X 

Analytical Skills X X 

Authenticity X 

Consulting X X 

Creativity X X X 

Decisiveness X X X X 

Dedication X X X X 

Didactical Skills X X X X 

Diplomacy X X 

Facilitation skills X X 

Flexibility X X X X X 

Independency X X X X X 

Initiative X X 

Integrity X X X 

Leadership X X X 

Listening X X X 

Loyalty 
Negotiation X X X 

Openness 
Opinion Formino X X 

Organisational Awareness X X X X X X 

Persistence X X X 

Persuasiveness X X X X 

Plan And Orqanize X X 

Result Driven X 

Self Development X X 

Self-confidence X X X X 

Sensitivity And Empathy X X X X X 

Stability X X X 

Teamwork X X X X 

Verbal Communication X X X X X X X X X 

Visualisation skills X X 

WorkinQ Systematically X X X 

Written Communication X X X X X 

roles have many competencies in common, while the modeller 1s a completely 
different role. 

Combining Table 1 with Table 2 results in Table 3. When exammmg this 
latter table, it is most striking to see that responsibilities and roles are not 
aligned to each other. Some responsibilities are attached to no role at all, while 
others are a combination of all roles. This really calls for future research. What 
seems to be the case is: 

No justice is done to the responsibilities involved in the maintanance of 
architectures. At the moment, only the modeller and blue change agent role 
are important for these. 
The communicator role seems less necessary than expected. 



Competencies and Responsibilities of Enterprise Architects 103 

Table 3. Relating process and responsibilit ies to roles 

~ 
Change Agent 

5 
;;; 
" ·c: ... l! :::1 ... Gl 

E Gl "' '1ii 3: c .! .. 
E 

, 
c "C .2 Gl Gl .. al ~ :.c 0 Gl "' 0 '1ii :::1 

ipl 1(1 (.) ...I :0 :0 > iii a: Cl :: 
Create 
Understand purpose and context X X X X X 

Determine deliverables X X X X X X 

Monitor context and stakeholders X X X X X X X X X 

Create shared conceptualisation X X X X X X X )( X 

Design creation process 
Determine impacts 
Communicate X X X X X X 

I Apply 
Inform X 

Suooort decision-makina X X X X X X X X X 
Ensure comoliance X X X X X X X X 

Make results available X X 

Re·)communicate X X X 

Maintain 
Monitor context & stakeholders X 

Assess drivers for change X 

Update & Communicate X X 

Organise 
Organise team X X 

Select framework, tools & tricks 
Communicate about EA X X X X X 

Embed EA in Governance X X X 

Monitor maturitv 
Manage quality X X X X X 

Establish leadership X X X X X X X 

Innovate 

5 Enterprise Architecture Teams 

Since enterprise architects are likely to operate in teams, it is not necessary to 
find a single person who fulfils all competencies. To combine a team of architect s 
it is not only necessary to find a good coverage of t he competencies defined in 
section 2, but also to ensure t he group of selected architects indeed operates as 
a team. It is therefore also relevant to consider models for the abilit ies of people 
to work in teams. 

In [6] a number of roles of members in teams are identified: 

Implementer - Well-organised and predictable. Takes basic ideas and makes 
them work in practice. Can be slow. 

Shaper - Lots of energy and action, challenging others to move forwards. Can 
be insensit ive. 

Completer /Finisher - Reliably sees t hings through to t he end , ironing out 
t he wrinkles and ensuring everything works well. Can worry too much and 
not trust others. 



104 C. Steghuis and E . Proper 

Table 4. Belbin roles and the architecture process 

Belbin-role 

0 
.. 

~ ., 
~ iO "E ., ~ 
Ql c ., .. ~ 0 

a 'E E s :I ~ 3: 
E 

., ·;: "E 0 Q. E 0 a 
~' 

.. .. 
Architecture orocess 

0 0 E 0 .. .<:. ., 
u u ::E a: Ul ..... 

Create 
Understand PUIDOse and context X 

Detennine deliverables X X X 

Monitor context and stakeholders X X X X 
Create shared conceptualisation X X X X X X X 

Design creation process X 

Determine imoacts X X X 

Communicate X X 

IADPIY 
Inform 
Suooort decision·makina X X X X X X X 

Ensure compliance X X X X X 

Make results available X X X 

Ae·)communicate X X 

Maintain 
Monitor context & stakeholders X X 

Assess drivers for chance X X 

Update & Communicate X X 

OrGanise 
Oraanise team X 

Select framework. tools & tricks 
Communicate about EA X X X 

Embed EA in Governance X X X X 

Monitor maturitv X X 

Manage Quality X X 

Establish leadership X X 

Innovate 

Plant - Solves difficult problems with original and creative ideas. Can be poor 
communicator and may ignore the details. 

Monitor /Evaluator - Sees the big picture. Thinks carefully and accurately 
about things. May lack energy or ability to inspire others. 

Specialist- Has expert knowledge/ skills in key areas and will solve many prob­
lems here. Can be disinterested in all other areas. 

Coordinator- Respected leader who helps everyone focus on their task. Can 
be seen as excessively controlling. 

Team worker- Cares for individuals and the team. Good listener and works 
to resolve social problems. Can have problems making difficult decisions. 

Resource/investigator - Explores new ideas and possibilities with energy 
and with others. Good networker. Can be too optimistic and lose energy 
after the initial flush. 

Within a team of enterprise architects there should be a balance between each 
of these roles. When considering the responsibilities identified in section 3, one 



Competencies and Responsibilities of Enterprise Architects 105 

can identify shifts in the priority that should be given to each of the involve­
ment roles. We have made an attempt to achieve a mapping between the team 
involvement roles and the responsibilities of an enterprise architect (team), by 
comparing the competencies attached to a team role with the competencies from 
Table 1. In creating the table, all role/responsibility combinations were selected 
were the team role had at least 60% of their underlying competencies in com­
mon with the competencies required by the responsibility. The result of this are 
shown in Table 4. 

The specialist is left out of scope for the comparison, because this is the per­
son who is needed for expert roles, and less for his personal competencies. While 
all roles are assigned to at least one responsibility, there are many tasks who are 
assigned to more than one role. Therefore, there seems to be no direct link be­
tween the roles and the responsibilities. An enterprise architect seems to be able 
to fulfil multiple roles for executing one responsibility. It is also striking to see 
that not all responsibilities are mapped to these roles. The 'Inform' responsibility 
somehow is not mapped to Belbin-roles. 

6 Conclusion 

In this paper we discussed the basic competencies which an enterprise architect 
is expected to have, and tied these to the personality types needed to meet 
the responsibilities of enterprise architects. Though this match provides insight 
into the responsibilities, roles and competencies of architects, further research is 
needed. The alignment between roles and responsibilities was not what we had 
expected. Some responsibilities are attached to no role at all, while others are a 
combination of all roles. Since enterprise architects are likely to operate in teams 
we also discussed the competencies needed to effectively work in teams. Also in 
this case, not all competencies and responsibilities were mapped. 

Using the presented framework as a starting point, we aim to further inves­
tigate (mainly using surveys among enterprise architects) the responsibilities, 
competencies, personality types and team roles relevant to enterprise architects, 
as well as the mapping between these. The results of these surveys will then be 
used to improve our training programs for enterprise architects. In future sur­
veys we aim to involve enterprise architects in general, as also done in the initial 
studies of the Netherlands Architecture Forum [2], and not only Capgemini's 
architects. 

References 

1. TOGAF: TOGAF- The Open Group Architectural Framework (2005), 
http://www.togaf.org 

2. Steghuis, C., Voermans, K., Wieringa, R.: Competencies of the ICT architect. 
Technical report, Netherlands Architecture Forum (2005) 



106 C. Steghuis and E. Proper 

3. Capgemini: Architecture curriculum. Technical report, Capgemini (2007), 
http://academy.capgemini.com 

4. Wagter, R., Witte, D., Proper, H.: The GEA architecture function: A strategic 
specialism. White Paper GEA-7, Ordina, Utrecht, The Netherlands, EU (2007) (in 
Dutch) 

5. Voermans, K., Steghuis, C., Wieringa, R.: Architect roles and competencies - A 
questionnaire conducted during the Dutch Architectural Conference 2004. Techni­
cal report, Netherlands Architecture Forum (2005) (in Dutch) 

6. Belbin, R.: Team Roles at Work. Butterworth Heinemann (1993) ISBN-10: 
0750626755 

7. Bredemeyer, D., Malan, R.: What It Takes to Be a Great Enterprise Architect. 
Enterprise Architecture- Cutter Consortium 7 (2004) 

8. de Caluwe, L., Vermaak, H.: Learning to Change: A Guide for Organization Change 
Agents. Sage publications, London (2003) 

9. Bergenhenegouwen, G., Mooijman, E., Tillema, H.: Strategic education and learn­
ing in organisations, 2nd edn. Kluwer, Deventer (1999) (in Dutch) 

10. Bean, S.: The elusive enterprise architect. IT Adviser (2006), 
http://www.nccmembership.co.uk 

11. Walker, M.: A day in the life of an enterprise architect. Technical report, Microsoft 
corporation (2007), 
http://msdn2.microsoft.com/en-us/library/bb945098.aspx 

12. Op 't Land, M., Proper, H., Waage, M., Cloo, J., Steghuis, C.: Enterprise Archi­
tecture- Creating Value by Informed Governance (forthcoming, 2008) 

13. Groote, G., Hugenholtz-Sasse, C., Slikker, P.: Projecten leiden: Methoden en tech­
nieken voor projectmatig werken, Het Spectrum, Utrecht, The Netherlands (1995) 
(in Dutch) ISBN-10: 9027497605 

14. Mintzberg, H., Ahlstrand, B., Lampe!, J.: Strategy safari- A guided tour through 
the wilds of strategic management. The Free Press, New York (1998) 

15. Humphrey, W.: Managing the Software Process. The SEI Series in Software Engi­
neering. Addison-Wesley Professional, Massachusetts (1989) 

16. Sanden, W.v.d., Sturm, B.: Informatie-architectuur - de infrastructurele be­
nadering. Panfox, Rosmalen, The Netherlands, EU (1997) (in Dutch) ISBN-10: 
9080127027 

17. Sitter, L.d.: Synergetisch produceren; Human Resources Mobilisation in de pro­
duktie: een inleiding in structuurbouw. Van Gorcum, Assen, The Netherlands, EU 
(1998) (in Dutch) ISBN-13: 9789023233657 

18. Amelsvoort, P.v.: De moderne sociotechnische benadering - Een overzicht van 
de socio-technische theorie. ST-Groep, Vlijmen, The Netherlands, EU (1999) (in 
Dutch) ISBN-10: 9080138568 

19. Grembergen, W.v., Saull, R.: Aligning business and information technology 
through the balanced scorecard at a major canadian financial group: its status 
measured with an it bsc maturity model (2001), 
http://www.hicss.hawaii.edu/HICSS_34/PDFs/OSKBE03.pdf 

20. Pyzdek, T.: The six sigma handbook: The complete guide for greenbelts, black­
belts, and managers at all levels, revised and expanded edition (2003) ISBN-13: 
9780071410151 

21. Lankhorst, M., eta!.: Enterprise Architecture at Work: Modelling, Communication 
and Analysis. Springer, Berlin (2005) 



Competencies and Responsibilities of Enterprise Architects 107 

22. Wagter, R., Berg, M.v.d., Luijpers, J., Steenbergen, M.v.: Dynamic Enterprise 
Architecture: How to Make It Work. Wiley, New York (2005) 

23. Dietz, J.: Enterprise Ontology- Theory and Methodology. Springer, Berlin, Ger­
many (2006) 

24. Strano, C., Rehmani, Q.: The role of the enterprise architect. Information Systems 
and E-Business Management 5, 379-396 (2007) 



lnteroperability Strategies for Business Agility 

Mats-Ake Hugoson, Thanos Magoulas, and Kalevi Pessi 

IT University ofGoteborg 
P.O.B. 8718, SE-412 96 Goteborg, Sweden 

JOnkoping International Business School 
P.O.B. 1026, SE-551 11 Jonkoping, Sweden 

Mats-Ake.Hugoson@ihh.hj.se, thanos@ituniv.se, pessi@ituniv.se 

Abstract. In times of increasing uncertainty and turbulence in the business 
environment, the concept of agility has become a new guiding principle for the 
change and development of enterprises. Agile business requires agile information 
systems and this have consequences on how the systems should intemperate. This 
paper describes and analyzes the impact of information systems interoperability 
strategies on business agility. Three interoperability strategies are identified; 
unification, intersection and interlinking. Cases from Swedish Health Care are 
used to demonstrate the application of the strategies. The conclusion is that the 
choice of interoperability strategy has significant impact on business agility and 
should therefore be analyzed and evaluated carefully. If the wrong strategy is 
chosen, there is a considerable risk for misalignment and expensive consequences. 
The challenge is to create architectural solutions for interoperability that are in 
harmony with the demands of the business, both in a short term and a long term 
perspective. 

Keywords: Business Agility, Enterprise Architecture, Information Systems 
Architecture, Interoperability Strategy, Alignment. 

1 Introduction 

During the last few decades, new perspectives have evolved where organizations are 
viewed as dynamic and complex information environments. While many entrenched 
business and other organizations experience varying degrees of crises, we can note a 
rapid growth of new, flexible and dynamic organizations that have found new ways to 
compete and cooperate. New concepts, such as agile organizations, virtual 
organizations and imaginary organizations, and so forth have been minted to describe 
these new types of organizations that compete in an increasingly dynamic and 
complex environment. 

Likewise, the information environment of business for which we create 
information systems and in which we use information technology (IT) is characterized 
by greater dynamics and complexity. Contemporary organizational boundaries are no 
longer clearly easily defined or delineated. This change has resulted in the 
organizations "external" and "internal" environments becoming more closely inter­
twined, increasing the complexity and dynamics. Today's information technology has 

J.L.G. Dietz eta!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 108-121, 2008. 
©Springer-Verlag Berlin Heidelberg 2008 



Interoperability Strategies for Business Agility 109 

opened the way to the creation of many different types of influences on organizations 
as well as cooperation between different organizations. One consequence of this is 
that the role of information technology has developed from being a means to 
rationalize and automate to being a means to create agile organizational forms. 

Agility is probably one of the most important characteristics of businesses that 
have to cope with increasingly competitive environment. Agility gives enterprises the 
ability to sense and respond rapidly to unpredictable events and to take advantage of 
changes as opportunities. This means that the supporting information systems and 
their interoperability must be equally agile in order to achieve a close alignment 
between business and information systems. 

Interoperability and the degree of integration between different information 
systems have become a major issue in IT development and decisions on heavy 
investments must be taken in this area. It is important that the chosen interoperability 
strategy is compatible with the various forms of business agility the organization 
demands. There is, however, sometimes a lack of understanding of the impact from 
alternative interoperability strategies, which increase the risk for expensive failures 
and undesired consequences on agility. 

This paper describes and analyzes the impact of different interoperability strategies 
on business agility. Three interoperability strategies are identified and discussed: 
unification, intersection and interlinking. These strategies are analyzed further and 
cases from Swedish Health Care are used to illustrate these strategies. Finally 
consequences of the strategies on business agility and on business and information 
systems alignment are discussed. 

2 Business Agility 

The concept of agility has been discussed since the early 1990's in the area of 
manufacturing [1] and was introduced into IS research some year ago. In the year 
2005, the International Federation of Information processing (IFIP) had a conference 
on "Business Agility and Information Technology Diffusion" [2]. At this conference 
the concept of agility was covered ranging from software development to business 
innovation. 

Several definitions of agility may be found in the growing number of articles about 
agile business and information systems. Christoffer and Towill define agility as "a 
business-wide capability that embraces organizational structures, information 
systems, logistical processes and in particular, mindsets" [3]. Yusuf et al. [4] gives 
several examples of definitions in the area of manufacturing. They summarize the 
main points of the definitions of various authors as follows: 

High quality and highly customized products. 
Products and services with high information and value-adding content 
Mobilization of core competencies 
Responsiveness to social and environmental issues 
Synthesis of diverse technologies 
Intra-enterprise and inter-enterprise integration 



110 M.-A. Hugoson, T. Magoulas, and K. Pessi 

Alberts and Hayes [5] discuss agility in general and claim that the key dimensions 
of agility are the following six attributes: 

Robustness: the ability to maintain effectiveness across a range of tasks, situations, 
and conditions. 
Resilience: the ability to recover from or adjust to misfortune, damage, or a 
destabilizing perturbation in the environment. 
Responsiveness: the ability to react to a change in the environment in a timely 
manner. 
Flexibility: the ability to employ multiple ways to succeed and the capacity to 
move seamless between them. 
Innovation: the ability to do new things and the ability to do old things in new 
ways; and 
Adaption: the ability to change work processes and the ability to change the 
organisation. 

Many researchers consider responsiveness and adaptability as major attributes or 
key dimensions of agility. For example Ramasesh et al defines agility as "the 
capability of a manufacturing system to provide an effective response to unanticipated 
changes" [6]. According to Kidd [7] agility is about" ... to adapt and respond quickly 
to changing customer requirements". Others consider flexibility as a key characteristic 
of agility. For example Christoffer and Towill [3] "A key characteristics of an agile 
organization is flexibility". One common denominator of agility is the capability to 
respond to changes and the ability to change in a purposeful way rather than in an ad 
hoc manner (purposeful changeability) [8]. 

3 Enterprise Architecture and Alignment 

Since the 1970's, organizations are spending more and more money building new 
information systems. The fast growing number of systems and in many cases the ad 
hoc manner in which the systems were integrated have exponentially increased the 
cost and complexity of information systems. At the same time organizations were 
finding it more and more difficult to keep these information systems in alignment 
with business need. Furthermore, the role of information systems has changed during 
this time, from automation of routine administrative tasks to a strategic and 
competitive weapon. In light of this development, a new field of research and practice 
was born that soon came to be known as Enterprise Architecture. One of the pioneers 
introducing the concept of architecture was John Zachman [9][10]. His Enterprise 
Architecture Framework is probably one of the most referred both by practitioners 
and in researchers. A number of Enterprise Architecture Framework has evolved 
since Zachman first introduced his framework. For example the Open Group 
Architectural Framework (TOGAF) [11] and the Federal Enterprise Architecture 
Framework (FEAF) [12] to mention two well-known Frameworks. 

Enterprise Architecture is usually divided into different categories or domains or 
architecture types. For example Aerts et al. identify three domains in which 
architecture matters [13]: 



Interoperability Strategies for Business Agility 111 

1. The business architecture defines the business system in its environment of 
suppliers and customers. The business system consists of humans and resources, 
business processes, and rules. The business architecture is derived from the 
business vision, goals and strategies. 

2. The application architecture (or information systems architecture) details the 
information systems components of business and their interaction. 

3. ICT platform architecture (or IT architecture) is the architecture of the generic 
resource layer, which describes the computers, networks, peripherals, operating 
systems, database management systems, UI frameworks, system service, 
middleware etc. that will be used as a platform for the construction of the system 
for the enterprise. 

Some Enterprise Architecture Frameworks distinguish between Information 
Architecture and Application Architecture and present four architecture types: 
Business Architecture, Application (or Systems) Architecture, Data (or Information) 
Architecture and Technical (or IT) Architecture [11][13][14]. 

The developments in the various domains influence each other and the increasing 
need of business for agility to cope with changes may be provided by architectures 
supporting reflectivity [13]. Alignment practices must take into consideration the 
relation between the various architectures. In this paper we will focus on business 
architecture and information systems architecture and the alignment between these two. 

4 Strategies for Interoperability 

One of the major issues in designing and developing enterprise architecture is which 
degree of interoperability should there be between the various business units of the 
enterprise and how this should be reflected in the integration of their information systems. 
lnteroperability is usually defined as "the ability of two or more systems or components to 
exchange and use information" [15]. TOGAF [11] defines interoperability as: (1) the 
ability of two or more systems or components to exchange and use shared information and 
(2) the ability of systems to provide and receive services from other systems and to use the 
services so interchanged to enable them to operate effectively together. 

Much work has been done in defining the concept of interoperability from an 
Information Systems perspective. Clark and Jones [16] argue that understanding 
levels of organizational interoperability is also important. They propose a model of 
organizational interoperability consisting of five levels of organizational maturity: 

Level 0 - Independent - This level describes the interaction between independent 
organizations. These are organizations that normally don't have any interaction and 
do not have common goals or purpose, but they may be required to intemperate in 
some scenario that has no precedent. 

Level 1 - Ad hoc - At this level of interoperability only very limited organizational 
frameworks are in place which could support ad hoc arrangements. 

Level 2 - Collaborative - The collaborative organizational interoperability level is 
where recognized frameworks are in place to support interoperability and shared goals 



112 M.-A. Hugoson, T. Magoulas, and K. Pessi 

are recognized and roles and responsibilities are allocated as part of on-going 
responsibilities however the organizations are still distinct. 

Level 3 - Integrated - The integrated level of organizational interoperability is one 
where there are shared value systems and shared goals, a common understanding and 
a preparedness to intemperate. The frameworks are in place and practiced however 
there are still residual attachments to a home organization. 

Level 4 - Unified - A unified organization is one in which the organizational goals, 
value systems, command structure/style, and knowledge bases are shared across the 
system. 

Although Clark and Jones maturity model concerns inter-organizational interopera­
bility, similar levels could also be used in understanding intra-organizational interop­
erability. For example Alter [17] identifies five levels of business process interoperability: 
common culture, common standards, information sharing, coordination and collaboration. 
In this paper we will mainly focus on the levels 2-4 (Collaborative, Integrated and 
Unified) interoperability according to Clark and Jones maturity model. When it comes to 
integration of information systems in order to achieve interoperability, levels 2-4 have 
their counterparts in the three interoperability strategies: Unification, Intersection and 
Interlinking [18][19]. The three strategies will be described in more detail below. Finally, 
we want to emphasis that both ontology and semantics are important issues of 
interoperability, however not explicitly treated in this paper. The focus of this paper is a 
business driven delineation of interoperability. 

4.1 Unification Strategy 

Unification is defined as the process of producing a common structure for two or 
more information systems [18]. A unification strategy creates a unified information 
space. One kind of unification means that two or more integration entities are merged 
into one entity (one common system principle). Another kind of unification is 
standardization of two or more systems with regard to their inner structure, functions 
and content. In this case, the systems don't merge into one physical system, rather 
there are many systems which are replicas of each other (replication principle). The 
latter situation covers physically distinct systems that conceptually are treated as one 
system. Unification is about the full integration into one common system or the 
standardization of information systems with respect to their inner structure, function 
and content. 

Unification as strategy leads to a very high intensity of interoperability or 
integration. Accordingly, a change in one system must necessarily lead to changes in 
all other systems. Very often economic and efficiency reasons are the driving force 
behind unification as strategy. One purpose of unification strategy may be to improve 
the simplicity, rationality and costs of information management. Another purpose 
may be to equally treat social events (e.g. pensions, insurances, membership and so 
forth). 



Interoperability Strategies for Business Agility 113 

4.2 Intersection Strategy 

The second interoperability strategy is Intersection [18][19]. The objective of 
intersection strategy is to improve the quality of information and the efforts of 
information management through the elimination of redundancies. Accordingly, the 
intersection strategy (or overlapping) takes place when the structure of each of the 
participating systems has one or more elements whose properties are identical (or 
sufficiently similar) or one of the participating systems has elements which can be 
used in some of the other systems. Intersection strives to eliminate duplicates. 

The intersection strategy creates a shared information space, which can be 
exemplified by a situation where the participating information systems share some of 
their constituent parts, i.e. the conceptual base, the information base, or the rule base. 
In this sense, the participating information systems can be coordinated either (1) by 
keeping the previously redundant part in one system and allowing the other systems to 
access to that part, or (2) by unifying the redundant local parts into one shared and 
common part (like a common database). Thus, a shared information environment 
might be seen as the result of a coordinating process aiming either to eliminate the 
overlapping parts of the participating systems or the globalization of some of their 
parts. 

The shared parts become a common property because any kind of change in those 
parts may have effects on all of the participating systems. Locally, the right to alter 
the system is limited to unshared parts only. In this sense the effects of integration 
might be described in terms of expectations for better quality and availability of 
information services, as well as, in terms of an acceptance of a limited freedom of 
alteration. 

4.3 Interlinking Strategy 

Interlinking represents a different concept for systems interoperability. Computerized 
interaction between different systems is carried out through the exchange of messages 
which are based on business demands. A significant feature of interlinking is that 
interoperability takes place without substantial interference with the structures of the 
participating systems and without substantial limitation of their independence 
[18][19]. Only information exchange is federated in the interaction agreement, which 
means that the inner structure in each system can be specified and developed quite 
independent of the inner structure in all other systems in the total structure. Each 
system has to automatically produce specified messages according to interaction 
agreements, either as a planned task or on request, and has to handle incoming 
specified messages. 

The principle has been used in EDI (Electronic Data Interchange) since the 1980's 
for interaction between information systems in different companies, especially for 
logistics control, but can be used as a general tool for systems interoperability when 
there is a high demand for systems independence. 

Interlinking implies a change from access or sharing thinking to messaging. If 
independence is to be preserved, it is not enough to 'open the books' and to show the 
data structures in each system. Interaction is instead bridged through the defined 
messages based on business relations. It is not a question of understanding data in 



114 M.-A. Hugoson, T. Magoulas, and K. Pessi 

other systems; it is a question of understanding what information is to be transferred 
between the systems. The different data structures are local and connected to the 
messages through mapping mechanisms, which must be developed and maintained for 
each system. If the inner structure in one system is changed, then the mapping 
mechanism may need to be changed in that very system in order to maintain proper 
interaction, but there will be no change in any other system as long as the interaction 
agreement stands. 

In the long perspective interlinking creates the possibility to replace a system 
without any changes in interoperability, as long as the new system fulfills interaction 
agreement. This has a major impact in that it reduces migration problems and 
facilitates the sustainability of complex structures of systems. 

5 Cases from Swedish Health Care 

In this section, we introduce and discuss cases from Swedish Health Care in order to 
illustrate different interoperability strategies. These cases has been analyzed and 
discussed during three years with more than 30 professionals from Western Region of 
Sweden. These individuals currently attend (or have participated) in an IT 
management master program for professionals. Most of them have worked with IT in 
the health care area for more than 15 years. 

5.1 Background 

In Sweden (as in many other countries) health care is decentralized to a number of 
regional authorities, County Councils. State authorities set the regulations and give 
directives, but health care is performed in different types of health care units (HCU) 
in the County Councils and financed locally through taxes in each County. 

Within each County a number of private and public health care units may operate. 
Private units must be authorized by the County Council and must comply with all 
regulations set by the State Medical Authorities (Ministry of Health and Social 
Affairs). 

For each visit to a health care unit a medical record must be added to the patient's 
case book by the responsible doctor. When a patient is referred to another health care 
unit (for instance a specialist clinic), a referral is sent. The response to the referral 
must always be reported back to the referring doctor, as well as included in the 
patient's case book. Since a patient is free to book a visit to a different HCU (also in a 
different County) the patient may have a number of different medical case books in 
different health care units in different Counties. Emergency treatment and the fact that 
patients move result in patient history being split among several case books. 

If it was possible for the treating doctor to get relevant information from different 
case books, treatment effectiveness would improve, costs will be reduced and better 
quality could be given in health care. The minister of Health and Social Affairs has 
stated that this is an issue of utmost importance, and has instructed the Swedish 
Health Care to meet this demand. Solutions must be nationwide and consider 
interaction with private HCU:s as well as possible changes in healthcare organization. 



Interoperability Strategies for Business Agility 115 

IT support for medical records 
The amount of information in medical case books is huge and calls for IT solutions. 
The acquisition of information systems to handle medical records can however so far 
be characterized as somewhat unstructured. Different health care units have acquired 
their own systems, sometimes based on initiatives from interested doctors. There are 
two main reasons for this decentralized or even anarchistic approach: a legal reason in 
that the unit is responsible for medical records within that unit and a professional 
reason, in that a certain medical discipline may have special demands, which are not 
relevant for other disciplines. The result is a diversity of systems from many different 
vendors resulting in a very low degree of standardization (low level of unification). In 
addition, even the same type of health care units may have different types of systems 
implemented (e.g. within radiology). The systems are generally well adapted for 
medical demands within the actual healthcare unit, and they also fulfill demands on 
privacy and integrity as all patients records are kept within the healthcare unit. A main 
problem is, however, that the computerized interaction between these systems is very 
limited. For referrals between health care units and support units (for instance blood 
test and bacteriological tests) some communication solutions have been developed 
and implemented. Transfer of medical records from one unit to another is however 
still performed manually in most cases. 

The challenge is now to create architectural solutions for systems interoperability 
that are in harmony with demands from healthcare, both in a short (business agility) 
and long term perspective (strategic alignment). 

The problem of "need to know" 
For each health care unit the IT support may be sufficient, but from an overall 
perspective the problem is that information from a medical record in one system is not 
available for treating doctors in other healthcare units. The solution to the problem 
can be divided into two tasks: 

a) knowing in which other units treatment has been (or is) carried out and in which 
systems medical records are stored, and 

b) getting relevant information out of these systems. 

Evidently there is a need for interoperability between different information systems 
for medical records in order to support these two tasks. When seeking solutions for 
this some conditions must be considered: 

Only medical records from relevant types of visits to other healthcare units should 
be available. If, for instance, the actual concerns a leg fracture, the doctor should 
not be allowed to read medical records on the patient's treatment for drug 
addiction. 
The doctor must have the patient's direct permission to read and use medical 
records from other healthcare units. 
If the doctor receives a medical record from some other healthcare unit, this record 
must be inserted in the actual case book. 



116 M.-A. Hugoson, T. Magoulas, and K. Pessi 

5.2 Alternative for Interoperability Based on Unification Strategy 

A seemingly simple solution to the problem is to create a common system where all 
medical records are stored. Just a single search on an identified patient would make 
the total computerized case book directly available. This is an application of the 
unification strategy based on the "one common system" principle. This alternative 
means that single set of general medical records must be defined, which are relevant 
and useful for all medical disciplines and for all different types of treatment. 
Furthermore, this central system must fulfill all legal demands on integrity and 
patients' rights. Finally, the system must gain general acceptance as it is either to 
replace existing systems or will have a major impact on current systems in use. 

Projects based on this unification principle have been started at different levels. An 
observation is that in project proposals no other strategy are evaluated. Project 
managers seem to have the opinion that there is no other real alternative to 
unification. Results have been reached, for instance using a central system in a 
hospital, but attempts to develop a total system at regional level have so far failed [20] 
[21]. A project for a common regional system for medical records was in 2008 
terminated due to: 

too long time for development and increasing costs, and 
specified functionality could not satisfy the demands from all the different 
interests. 

Furthermore, the system and its resultant organizational impact were not accepted 
out in the organization. Even if regional systems were possible, interaction between 
these regional systems at national level would still be an unsolved problem. As 
different County Councils develop their own solutions independent of each other, one 
single total national system seems destined to fail. 

5.3 Alternative for Interoperability Based on Intersection Strategy 

The intersection strategy for interoperability should mean unification of only those 
parts of data storage which are of interest for interoperation, allowing access to other 
systems for retrieval on demand. There are groups of information systems for medical 
records that are homogenous, as they emanate from the same standardized system 
package from a certain vendor. Within each of these groups it could be possible to 
apply the intersection principle, in order to solve task b) (the getting problem) 
specified above, without major changes in existing systems. In total there is, however, 
a high degree of heterogeneity in the total structure of systems. To implement access 
ability and intersection for heterogeneous systems calls for major changes in or 
replacement of all existing systems, and then we are back to the same problems that 
are listed for the unification strategy. 

In a longer perspective, intersection will cause maintenance problems. A change or 
replacement of a system which includes changes in the inner structure for that system 
will have an impact on all other system in the structure, as coordination of inner 
structure and data storage is the basis for interoperation in order to facilitate access to 
stored data. 



Interoperability Strategies for Business Agility 117 

For the "need to know" problem in health care the intersection principle does not 
automatically solve the problem of knowing where the relevant information resides. 
Thus, there is a need for some type of common system in order to make known in 
which of the other systems relevant medical records for the actual patient may exist. 

5.4 Alternative for Interoperability Based on Interlinking Strategy 

As this alternative is not quite obvious, a more detailed analysis may be necessary in 
order to explain differences and possible outcomes from the alternative. 

The first task a), knowing where relevant information resides, calls for some kind 
of medical visit directory. This is sometimes referred to as RLS, Record Locater 
Service. In figure 1, a special system MED DIR is inserted for this purpose. In an 
extended structure it is possible to have more than one directory system. 

r------------------------------------------------------------------------------------------------------1 

i~~~~~E~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:-_-:_-::_-::_i~~-~::_-_-_-_-:_-_-::::_-:_-_-::_-:_-_-i--- i 
: ' Hospital r.;;::::;J • : : 
i ~ i 1 ! 

i ~cu i i i 

' 
' ' 
' 
' ' ' 

' ' 
' 
' ' 

' 

' ' ' ' ' ' ' ' ' ' ' ' : ~ I 

' ' 
I ! 

l _____________________________________________________________ J::::::::::::::::::::::::::::::: _______________ j ___ _. 

Fig. 1. Medical Directory, interacting with local systems applying interlinking 

A message (VISIT in figl) is defined for reporting each medical visit. In order to 
solve task b, the message must identify the patient and indicate the type of visit in 
order to facilitate the choice of relevant system for later information exchange. All 
attached systems must produce this type of message, and medical visits are thus 
automatically reported to MED.DIR through this planned messaging. The patient has 
however the right to decide that a certain medical record should not be available out 
of the treating healthcare unit. If so, the VISIT record is not sent. Existing systems 
(and additional systems that gradually will enter the structure) must be given the 
functionality to create this message, but the inner structure for data storage in each 



118 M.-A. Hugoson, T. Magoulas, and K. Pessi 

system is not affected. Changes or replacement of a certain systems (including 
MED.DIR) can therefore be carried out without any changes in other systems as long 
as the message VISIT can be sent/received. The solution for task a) can thus gradually 
be established, and can be maintained in a long term perspective, without major 
changing the inner structure for existing systems. 

The second task b), making relevant information from other systems available for 
the treating doctor can now be supported the following way: (see fig 2). 

r·-------------------------------------------------------------------------------------------------------------. 
' ' r---J--.............................................................................................................................................................................................................. -. : 

' ' 

·:~~~-~~=~~~~~!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--------i~~-~-·····-··-------·---·--i i 
: Hospital ~ : : : 
: ~ ! :! 
! ~cu 1 i i 
i ~cu : i: ' ' ' ' ' ' ' ' ' 

i i E!JED.DI i 
i : ~ : ' ' 
~ ~ REQ.1 // 

' ' Cl / 
t-------------------------------------------------------------------j D 

Fig. 2. Interlinking strategy for transfer of relevant Medical Record 

A request is sent to MED.DIR from the system that supports the treating doctor. 
This message (REQ.l in fig2) is basically patient's identification. The automatic 
answer to this request is a message pointing out in which systems the actual patient 
has medical records. The treating doctor has to judge which records can be relevant, 
and (after authorization and permission from patient if possible) to decide on which 
records to pick up. The transfer of medical records can be achieved by using Request 
- Answer messages (applying the interlinking principle). Both request and answer 
must be centrally defined, and this is a critical task. The main objective is to make the 
record available and readable for the treating doctor. However, a number of varieties 
of medical records may exist because the different medical disciplines. The point is 
however, that only interaction must be centrally defined. The inner structure in each 
system must not be known outside the system, and the retrieval from local storage is 
performed inside the system, in order to produce the relevant message as an answer to 
the request. The received relevant medical records from other systems are locally 



Interoperability Strategies for Business Agility 119 

inserted in the actual patient's case book according to the local systems storing 
principles. It is essential that information transferred from other medical units is 
inserted without any changes. 

The interlinking strategy allows establishing of interoperability for medical records 
step by step. When MED.DIR is implemented different local systems can gradually 
be attached. The task of "knowing where" (task a) can thus be incrementally 
supported, even if the computerized solution for the task of "getting relevant 
information" (task b) is not yet fully implemented, i.e. the transfer of medical records 
must be carried out manually. The interlinking alternative for systems interoperation 
maintains independence between the systems. This means in a long term perspective 
that this strategy can support both a) and b) through a sustainable structure in which 
each system can be changed or even replaced without consequences for any other 
systems, given that the new /changed system can receive and send specified 
messages. 

6 Summary and Conclusion 

The focus in this paper has been on elucidation of the relation between 
interoperability strategies, business agility and alignment. Our main point is that an 
interoperability strategy has significant impact on business agility and should 
therefore be careful chosen in order to avoid misalignment. This decision must be 
based on an analysis of the pros and cons of various alternatives in relation to the 
requirements from the business. Our experience is that this kind of analysis is seldom 
done in practice (which is validated from the health care cases). 

Business agility, in general, may be seen as a capability to respond to changes and 
the ability to change in a purposeful way rather than in an ad hoc manner. However 
business agility presupposes information systems interoperability. The larger, 
heterogeneous, and dynamic the business and its environment are, the more crucial 
are the issues of information systems interoperability. However, the information 
systems interoperability does not live in its own world; it must be aligned with 
business requirements. 

The concept of interoperability in general refers to the ability of two or more 
business units to exchange or share information and in our case especially through the 
use of their information systems. Accordingly, the nature of the business environment 
should define the pattern or strategy upon which the business entities and their 
information systems should intemperate. Thus, in situations where the environment is 
characterized by homogeneous and relatively stable requirements the business units 
may follow global unified rules and principles and the ability to share information 
may increase. Accordingly, systems interoperability may follow the same unified 
rules and sharing principles. However, if the situation is characterized by 
heterogeneous and dynamic requirements, the involved business units may emphasis 
ability to change and thus also ask for similar ability concerning their information 
systems. Interoperability in general and systems interoperability in particular 
presupposes a well established alignment between business units and their 
corresponding information systems. 



120 M.-A. Hugoson, T. Magoulas, and K. Pessi 

Alignment is any form of fitness or workable harmony between the requisites of 
business units and the capabilities of information systems to satisfy these requirements. 
Perfect alignment is a utopia because every business enterprise exists in a continuum of 
changes occurred in the domains of business, domain of information systems as well as 
in the domain of technology. Furthermore, there are no organizations that are 100% 
agile (at least to our knowledge). Large organizations have areas where agility is 
required, and areas where agility is not crucial. All three interoperability strategies may 
be relevant, but in different situations. This must be taken into account in the broader 
perspective of enterprise architecture. 

Enterprise Architecture is an expression of workable alignment between business 
requirements and systems assets that have been organized in a particular way as a 
response to the nature of business environment. Therefore, Enterprise Architecture 
Frameworks should give guidelines and principles for the choice of interoperability 
strategy. Such guidelines and principles should take into account: 

How to delineate information systems and create "systems of systems". 
How the different systems should intemperate in order to satisfy the expectations 
of the business and its environment. 
How to manage the requisites of alignment between business architecture and 
information systems architecture. 

Unfortunately, very few existing Enterprise Architecture Frameworks give clear 
guidance about how to architect and manage the critical issues of interoperability. 
Thus, there is a need for more knowledge about enterprise architectures that holds in 
harmony 1) the ever changing nature of business and 2) the capabilities and assets to 
respond quickly to these changes. 

In this study, we argue that the choice of interoperability strategy has a significant 
impact on business agility and should therefore be analyzed and evaluated before 
launching development projects for systems interoperability. The choice of a suitable 
strategy is a main condition for aligning information systems interoperability to 
business demands and to create agility. If the wrong strategy is chosen, there is a 
considerable risk for misalignment and expensive consequences. 

References 

1. Benson, S., Dove, R., Kann, J.: An Agile Systems Framework: A Foundation Tool. In: 
Proceedings of Annual Conference Agility Forum (1992) 

2. Baskerville, R., Mathiassen, L., Pries-Heje, J., De Gross, J. (eds.): Business Agility and 
Information Technology Diffusion. Springer, NY (2005) 

3. Christopher, M., Towill, D.: Supply Chain Migration from Lean and Functional to Agile 
and Customised. Supply Chain Management 5(4), 206-213 (2000) 

4. Yusuf, Y.Y., Sarhadi, M., Gunasekaran, A.: Agile manufacturing: the drivers, concepts 
and attributes. International Journal of Production Economics 62(1/2), 33-43 (1999) 

5. Alberts, D.S., Hayes, R.E.: Understanding Command and Control. CCRP Publication 
Series (2006) 

6. Ramasesh, R., Kulkarni, S., Jayakumar, M.: Agility in manufacturing systems: an exploratory 
modelling framework and simulation. Integrated manufacturing Systems 12(7), 534-548 
(2001) 



Interoperability Strategies for Business Agility 121 

7. Kidd, P.T.: Agile Manufacturing, Forging New Frontiers. Addison-Wesley, London (1995) 
8. Holmqvist, M., Pessi, K.: Agility through scenario development and continuous 

implementation: A global aftermarket logistics case. In European Journal on Information 
Systems, special issue on Business Agility and IT Diffusion (2006) 

9. Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems 
Joumal26(3), 276-292 (1987) 

10. Sowa, J.F., Zachman, J.A.: Extending and Formalizing the Framework for Information 
Systems Architecture. IBM Systems Joumal31(3), 590-616 (1992) 

11. The Open Group: The Open Group Architecture Framework: Version 8.1.1, Enterprise 
Edition (2007) 

12. CIO Council: A Practical Guide to Federal Enterprise Architecture. Chief Information 
Officer Council, Version 1.0, February 2001 (2001) 

13. Aerts, A.T.M., Goossenaerts, J.B.M., Hammer, D.K., Wortmann, J.C.: Architectures in 
context: on the evolution of business, application software, and ICT platform architectures. 
Information & Management 41, 781-794 (2004) 

14. vanderPoel, P., van Waes, R.: Framework for Architectures in Information Planning. In: 
Falkenberg, I.E., Lindgreen, P. (eds.) Information Systems Concept: An In-depth Analysis, 
Elsevier Science Publishers, North Holland (1989) 

15. IEEE STD 610.12. Standard Glossary of Software Engineering Terminology, IEEE (May 
1990) ISBN: 155937067X 

16. Clark, T., Jones, R.: Organisational Interoperability Maturity Model for C2 (1999), 
http:llwww.dodccrp.orgleventsi1999_CCRTSipdf_filesltrack_51049 
clark.pdf 

17. Alter, S.: Information Systems. The Benjamin/Cummings Publishing Company, Inc. 
(1996) 

18. Solotruk, M., Kristofic, M.: Increasing the Degree of Information System Integration and 
Developing an Integrated Information System. Information & Management 3(3) (1980) 

19. Magoulas, T., Pessi, K.: Strategic IT Management. Doctoral Dissertation Department of 
Informatics Gothenburg, Sweden (in Swedish) (1998) 

20. Back, M.: Missama som knackte GVD (in Swedish) (2007), http: I I i ti varden. 
idg.sel2.289811.130869 

21. Jerrang, M.: Fiaskot kostar 300 miljoner (in Swedish) (2008), http: 1 I i ti varden. 
idg.sel2.289811.147465 



Towards a Business-Oriented Specification for 
Services 

Linda Terlouw1'2 

1 Delft University of Technology, 
Mekelweg 4, 2628 CD Delft, The Netherlands 

l.i.terlouw~tudelft.nl 

2 Ordina, 
Ringwade 1, 3439 LM Nieuwegein, The Netherlands 

Abstract. By far the best known standard for registering and search­
ing for services is the UDDI. A great weakness of this standard is its 
technology-driven way of specifying services; it is still inadequate for 
specifying the majority of aspects that are relevant from a business point 
of view. This stands in sharp contrast to the main premises of SOA, 
i.e. increased flexibility by the reuse of services and better business/IT­
alignment by speaking the same language. A more comprehensive ap­
proach to specifying services is the business component specification 
framework. One of the aspects that needs to be specified according to 
this framework are the business tasks. The framework, however, does not 
define precisely what a task is and how a task should be identified. In 
this paper we propose taking the enterprise ontology as a starting point 
for specifying these tasks. Furthermore, we demonstrate our approach 
using a life insurance company case. 

Keywords: SOA, service specification, enterprise ontology. 

1 Introduction 

As Service Oriented Architecture (SOA) and Service Oriented Design (SoD) 
are gaining popularity in industry, enterprises1 struggle with the question how 
to identify and specify services that support the execution of their business 
processes. Several approaches for the identification of services exist, for instance 
business process decomposition [1], component-based identification [2,3], and 
legacy system analysis [4]. Once identified, services need to be specified in order 
to (i) implement them, either by building new software systems or by using 
existing ones and (ii) enable potential service consumers to find the services they 
require. Service registries act as a means for storing these service specifications. 

When looking into the contents of service registries of large enterprises, one 
often finds many technical services that have little meaning and relevance to 
business people. Also, services that are of interest to business people are usually 

1 By enterprise we mean commercial as well as non-profit organizations as well as 
networks of organizations. 

J.L.G. Dietz et al. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 122-136, 2008. 
©Springer-Verlag Berlin Heidelberg 2008 



Towards a Business-Oriented Specification for Services 123 

specified in a way that is incomprehensible for them, because they simply do 
not 'speak' the Web Service Description Language (WSDL) [5]. Even though 
business people do not have to browse through the service registry themselves, 
they do need to validate whether a certain service really fits their needs for 
business process support. 

In this article we build on the work on enterprise ontology [6] and busi­
ness components specification [7]. More precisely formulated, we take the Actor 
Transaction Diagram and the Object Fact Diagram of the enterprise ontology as 
a starting point for the specification of the business tasks a service supports. The 
main contribution of work lies in the field of service specification; the relationship 
between the service and the enterprise ontology makes it clear to a business ana­
lyst what business value the service brings. Though a more fundamental problem 
remains, i.e. the gap between formal, unambiguous models needed for specifica­
tion and the natural language that is best understood by business analysts, our 
work is a first step in speaking in real business terminology instead of technical 
interface descriptions. 

The rest of this paper is organized as follows. Section 2 provides an overview of 
the current approaches to service specification, including the business component 
framework. In section 3 we introduce a template based on the enterprise ontology 
for specifying the business tasks a service supports. In section 4 we discuss 
an insurance company case to show the practical value of our work. Finally, 
section 5 concludes the paper by summarizing how we contributed to the service 
specification process. 

2 Current Approaches to Service Specification 

Before we provide our own approach in section 3, we discuss related existing 
work on service specification in the next paragraphs. 

2.1 Specification Using the UDDI 

Universal Description Discovery and Integration (UDDI) [8] is the web service 
standard for publishing and discovering services. The UDDI distinguishes between 
the following specification elements: businessEntity, businessService, bindingTem­
plate, and tModel. Each businessEntity contains information about a service 
provider such as the name of the provider and the details of the contact person. 
This businessEntity provides zero or more businessServices. The businessService 
is the actual service specification which consists of a name and a description in free­
format natural language. If this service is implemented, then it has a reference to 
a interface description file, or WSDL file, specified in the bindingTemplate. The 
bindingTemplate in its turn can reference to a tModel. This tModel is not very 
precisely defined in the UDDI standard and can specify among others industry 
taxonomies, service categories, and technical specifications. 

OASIS provides an overview of UDDI related products [9]. Most vendors of 
these products are also vendors of Enterprise Service Bus products and have a 
focus on the run-time environment. 



124 L.l. Terlouw 

2.2 Specification Using Semantic Web Services 

In order to make service registries more powerful the UDDI standard is some­
times combined with semantic web service standards like OWL-S [10,11], WSMO 
[12], and WSDL-S [13]. Also more generic approaches for semantically enhancing 
UDDI registries are possible [14]. The goal of semantic web services is thoroughly 
specifying every aspect of a service in order to enable automatic matching of sup­
ply of and demand for services. It takes a lot of effort (if feasible at all) for a large 
enterprise to specify everything into so much detail that automatic matching on 
run-time becomes possible. 

At this moment none of the semantic web service approaches are popular 
in industry. Though industrial partners participate in research projects, we see 
little (if any) semantic service registries in real SOA environments. In practice 
supply and demand is still matched by a human being. 

Until recently semantic web service approaches did not make a clear dis­
tinction between the specification of the service itself and the specification of 
a task a service supports. Both were regarded at the same level of granular­
ity. Recent work [15] builds on WSMO to create more clarity on how semantic 
web service support business processes by introducing the standard BPMO. The 
meta-model of BPMO specifies among others business goals, business processes, 
business roles, business rules, and business data. 

2.3 Specification Using Business Component Specification 

A business component is a software component of an information system that 
support directly the activities of an enterprise. These business components are 
reusable, self-contained and marketable [7] and are accessed via services. Even 
though business components are always accessed by services, services do not have 
to be constructed of components, but can just as well be constructed of, for ex­
ample, a monolithic system. In SOA we simply don't care about the construction 
and implementation. 

Figure 1 shows the specification aspects for a business component. A more 
thorough explanation is provided in the memorandum "Standardized Specifica­
tion of Business Components" [7]. A prototype of a tool for specifying business 
components is provided by Zaha and Albani [16]. As far as we know, no com­
mercial versions of this kind of registries are available. 

2.4 Evaluation 

In Table 1 we provide an overview of the requirements to which a service spec­
ification needs to conform to make it understandable and useful to a business 
analyst. These requirements are based on experience in several case studies. We 
describe the consequences of not conforming to these requirements to illustrate 
their importance. 

When we recall the different approaches described in this section, we see that 
none of them actually conforms to all requirements (see Table 2). 



... 
Ill c 
111 CD 
Cl) c 
c 0 
'iii c. 
:::s E 

CCI 0 
(.) 

Towards a Business-Oriented Specification for Services 125 

Interface Level 

Facts to be specllled 

Businesss-ofganizRonalft.aturn 
Technical iniliol oonditions 

Tasl<olhotare automate< ~ lhe Busin ... 
Corr!>onent, PIKJlOSO 

Fundic~Nilet'IM of !he bo>lness domain 

0 ~ qu.a!i1y r..atutes 
0 Measwement llnits and methods 
0 SIHVice-lo'!il 

0 Succession reCationships between the 
seMces of other components 

0 Sucoouioo re!atiooshipo be!Neen tho 
services done component 

IJ Cooditioos (111Variants. ~e- and post 
(:CI<ldj .... ) 

Denomination of Bu~ .... ~b. 

services. parameters. data types and 
fai/JJre repons 

0 SeMce~gnai\J'es 
Asslgmentto buolr>esa tasks 

Fig. 1. The business component specification framework [7] 

The UDDI conforms to none of the requirements since it is a very technical 
oriented standard. Although the concepts BusinessEntity, BusinessService, and 
BindingTemplate are relatively well defined, the tModel is used (misused?) in 
very different ways. Though the tModel can be used for the categorization of 
services, it remains unclear how services should be categorized and how the 
categories relate to business tasks. 

Most semantic web services standards describe the function that a service 
fulfills in a consistent way and process models describe the relationship between 
services. The semantic web service approaches make a distinction between the 
service itself and the business task that the service supports, however, they are 
treated at the same level of granularity. In order to make the semantic models 
understandable to a human business analyst, we need to answer the questions: 
what is really relevant from a business perspective and what can be omitted and 
how do we describe tasks in such a way that they are stable? 

The business component framework clearly distinguishes between the service 
itself and the business task that is fulfilled. The function of the service is specified 
in terms of its interface and behavior. The task that a service supports is de­
scribed in business terminology. An example specification of the tasks supported 



126 L.I. Terlouw 

Table 1. Requirements for business tasks specification 

IN r .1 Requirement !Consequence of not conforming 

rl It is clear which business The business analyst does not know what the business 
task(s) a service supports value of a service is and he cannot judge whether the 

service fits his purpose or not. 
r2 Relationships between tasks The business analyst loses overview of the total pic-

are clearly described ture and searching for service can become time con-
suming. 

r3 Task are formulated in a The business analyst may not find the services that 
consistent way fit his purpose or may find services that not find his 

purpose, because he is not sure whether the task de-
scription of the service provider is consistent with his 
own view on the task description. 

r4 The tasks are stable, i.e. The business analyst needs to deal with constantly 
tasks descriptions only changing task descriptions which is time consuming. 
change when the essence of 
the enterprise changes 

Table 2. Evaluation of specification methods from business point of view 

INr.IUDDI !Semantic WS !Business Component 

rl possible to specify using most approaches describe tasks are acknowledged as 
the tModel business tasks or activities one of the main specifica-

at the same level of gran- tion aspects for a service 
ularity as the services, ex-
cept for BPMO 

r2 relationships between tasks relationships between tasks relationships between 
cannot be specified are specified using logic tasks are specified using 

reconstructed functional 
language or natural lan-
guage 

r3 no consistently applied tasks are specified using tasks are specified in re-
structure logic constructed functional lan-

guage or natural language 
r4 not clear how to identify not clear how to identify not clear how to identify 

stable tasks, tasks are in stable tasks, tasks are in stable tasks, tasks are in 
general quite low level and general quite low level and general quite low level and 
therefore unstable therefore unstable therefore unstable 

by the (services of the) business component, as depicted in Table 3, is provided 
by Fettke and Loos [17]. Though the authors specify these tasks in business ter­
minology, the tasks are still quite low level and little insight is provided in why 
we need to look up a bank code or how this task is related to other tasks. Since 
the business component framework does not prescribe how to identify the tasks, 
one does not know whether tasks are stable or not. 



Towards a Business-Oriented Specification for Services 127 

Table 3. Example task specification [17] 

!Task name !Task description 

verify bank code this task verifies if a given bank code is valid or if a given 
bank code corresponds to a given bank name. 

look up bank code this task looks up the bank code for a given bank name. 
look up bank this task looks up the bank name for a given bank code. 

3 Specifying Business Tasks Using the Enterprise 
Ontology 

In this section we describe how we use the enterprise ontology as a starting point 
for specifying which tasks a service supports. We propose to take the enterprise 
ontology as a basis for specifying which business tasks a service supports, because 
it has two main advantages over most other business modeling methods; (i) the 
models are quite compact, because non-ontological transactions are omitted and 
coordination acts are captured in the transaction and (ii) different modelers 
create the same models because the enterprise ontology is more than only a 
modeling language; it is also a way of thinking. 

3.1 Definitions 

We first need to clarify what we mean by a service as a lot of different inter­
pretations exist [18]. We define a service as follows based on the ideas of the 
enterprise ontology: 

Definition 1. A service is a task offered by a service provider to (potential) 
service consumers that conforms to the following properties: 

1. it is accessible through an interface; 
2. it is described by a service specification that provides information for the 

service consumer to find and use the service; 
3. its implementation is hidden to (potential) service consumers; 
4- it is autonomous, i.e. it is designed, deployed, versioned, and managed inde­

pendently of other services; 
5. it supports a transaction; 
6. it is either ontological, infological, or datalogical. 

The first four properties are often encountered in definitions of services. The last 
two properties require some clarification. Dietz [6] defines in the second axiom of 
his tli-theory that coordination acts are performed as steps in universal patterns. 
These patterns, also called transactions, always involve two actor roles and are 
aimed at achieving a particular result. The basic transaction pattern consists of 
the following coordination acts: 

request: the initiating actor role request the executing actor role to perform 
a certain production act; 



128 L.I. Terlouw 

- promise: the executing actor role promises to execute the production act; 
- state: the executing actor role states that the production act has been exe-

cuted; 
- accept: the initiating actor role accepts the result of the production act. 

The basic transaction pattern can be extended with dissent patterns and 
cancellation patterns to represent more complex coordination mechanisms. The 
enterprise ontology only takes into account transactions at the ontological level, 
where ontology is defined as follows [6]: 

Definition 2. the ontology of a system2 is the understanding of the system's 
operation that is fully independent of the way in which it is or might be imple­
mented. 

What this means is that the enterprise ontology only includes transactions that 
are concerned with the bringing about of new, original thing like decisions, judg­
ments etc. Therefore the ontological business process model is quite stable and 
business processes from enterprises in the same industry tend to look very much 
the same. 

Besides directly supporting ontological transactions, services can also support 
transactions by providing infological and datalogical capabilities. Infological ser­
vices deal with the processing of information. Datalogical services deal with the 
recording of and the transportation of recorded information items. 

In the field of SOA, most architects use the words 'orchestration' and 'busi­
ness process' as synonyms. We, however, make a clear distinction between the 
orchestration, the complete business process, and the ontological business pro­
cess. 

An orchestration controls the sequence of service calls. This orchestration has 
a graphical representation (flowchart) and machine-readable representation ( usu­
ally in XML). When executing, the orchestration (i) calls automated function­
ality by invoking automated services (ii) coordinates human services by taking 
input from and providing output to a human user through a portal. When an 
orchestration only invokes automated services and does not need any manual 
intervention, it is said to support straight through processing. Manual services 
in an orchestration are called human workflow. Human workflow is increasing 
in popularity at this moment and the main standard for orchestration, Busi­
ness Process Execution Language (BPEL), that originally was meant only for 
orchestrating software services, was extended with BPEL4People [19] in 2007. 

The complete business process consists of all the activities that need to be per­
formed to reach a certain business result. For the specification of stable business 
tasks, we are only interested in the ontological business process which is defined 
as follows [6]: 

Definition 3. A collection of causally related transaction types, such that the 
starting step is either a request performed by an actor role in the environment 
or a request by an internal actor role to itself. 

2 The notion of system is used in a broad meaning and does not only apply to auto­
mated systems. 



Towards a Business-Oriented Specification for Services 129 

Table 4. Types of processes and their scopes 

I Type of process I Scope of process 

Ontological business process Controls the sequence of ontological trans-
actions 

Complete business processes Controls the sequence of all business activ-
ities 

Orchestration Straight through pro- Controls the sequence of automated ser-
cessing vices 
Human workflow Controls the sequence of (messages to and 

from humans for coordinating) human ser-
vices 

Figure 4 exhibits the different types of process we mentioned in this paragraph 
and their scopes. 

3.2 The Specification Template 

Figure 5 exhibits our template for the specification of the business tasks that a 
service supports. In the template we specify the service layer and category, the 
transaction type(s) that a service supports, and the object classes(es) from the 
result type of the transaction type(s). The transaction types and object classes 
are directly available from the enterprise ontology. The service layer and service 
category require some more explanation. 

Although, according to the !li-theory, always a human actor is responsible and 
has authority to fulfill a certain actor role, information technology can support 
human subjects in the coordination and execution of transactions. The coor­
dination steps of a transaction can be automated using human workflow. The 
execution step of the transaction is not always automatable. In case of transac­
tions that affect concrete objects, like the preparation of a pizza, one only can 

Table 5. Template for the specification of the business tasks 

!Template for task specification 

Service layer: 
Service category: 

Supported transaction: The transaction that the service supports 
Description of transaction: Explanation of the transaction in natural language 
Result of transaction: The result of the transaction that the service supports 
Executor of transaction: The executor of the transaction that the service supports 
Initiators of transaction: The initiator(s) of the transaction that the service supports 
Related transactions: Transaction that are one step away from the transaction that the 

service supports 

Object class: The object class that is referred to by the result type of the trans-
action. 

Related object classes: The object classes related to the previously mentioned object 
class. 



130 L.I. Terlouw 

automate the administrative reflection of the status of the real world. In this 
situation the only possible automated service is the administration of the P-fact 
"pizza x has been prepared on <date> <time>". In case of transaction that 
do not affect concrete objects, one can also automate the execution itself. Take, 
for example, the quotation of an insurance policy. We call services that directly 
support the execution step of ontological transactions business services. These 
services cannot be divided into categories since they are specific to a certain 
industry. 

Infological services deal with the processing of information. Looking at the 
infological services, we can find a subdivision of functionality in among others 
calculation services, validation services, selection services, and matching services. 
An example of a calculation service is the calculation of an insurance premium for 
a specific person. A validation service checks whether a certain conditions holds, 
e.g. checking whether a potential client is not on a black-list. A selection service 
makes it possible to select one or more values from a list of values. Matching cer­
tain values, like received payment on a bank account and outstanding accounts, 
can be done with matching services. 

Datalogical services deal with the recording of and the transportation of 
recorded information items. If the recording of information items is automated, 
then the services used for recording are analogue to create, read, update and 
delete (CRUD) functions for databases. We prefer, however, not to use the term 
CRUD, because the words that form this abbreviation have no meaning to busi­
ness analysts and suggest that one is working on database schemas instead of 
conceptual business objects that may be spread over multiple databases. Rather 
we speak of registration, retrieval, alteration, and removal services. If the trans­
portation of recorded information items is automated, then we require distribu­
tion services, e.g. an insurance agent passes information about a new client to 
an insurer. If the transportation of information items is not automated, then 
services that transfer data from and to the real world could be used: virtual-to­
real-world services and real-to-virtual-world services. The first type of service, 
e.g. a service for printing, is more common and more easy to implement then 
the second one, e.g. a service for retrieving sensor information. 

Using the enterprise ontology we can make services on a lower level traceable 
to essential business transactions. Either directly or indirectly services support 
one or more transactions. The purpose of a service is therefore always clear. 

4 The Insurance Company 

4.1 Background 

The insurance company Protector provides three types of life insurance products; 
term life insurance, pension insurance, and capital sum insurance. For each type 
of product the life insurance policy has an insurant, one or more insured, and 
one or more beneficiaries. The insurant is an organization that or person who is 
responsible for the payment of the premium of a policy. The insured is a person 



TO! 
T04 
T05 
T06 

T07 
T17 
T18 

T26 
T27 

Towards a Business-Oriented Specification for Services 131 

Table 6. Transaction Result Table (TRT) 

!Transaction type !Result type 

product advising product advice adv is created 
policy quotation policy pol is quoted (only for individual policies) 
policy binding policy pol is bound 
premium payment premium is paid for policy pol for premium period 

per 
voluntary deposit voluntary deposit is made for policy pol 
reinsurance of policies policy collection pco is reinsured for per 
reinsurance premium reinsurance premium is paid for policy collection 
payment pco for period per 
commission payment commission com is paid 
policy underwriting underwriting for policy pol has been done 

- GAOO: INSlJRER-- -

A18 

policy 
ln!efwnter 

1\26 

commission 
payer 

CA06 

l<lins.J...:eor 
{dk:ies nlinslnl' 

Fig. 2. Actor Transaction Diagram (ATD) 

who is the 'insured object'. The beneficiary is a person who receives a payment 
if the insurant has right to a benefit according to the product rules of a policy. 

Protector sells the products either to a company, i.e. collectively, or to an in­
dividual person, i.e. individually. Some products may be sold collectively as well 
as individually, some only collectively or individually. An example of a collective 



132 L.I. Terlouw 

insurance is a pension insurance provided by a company to its employees. Usu­
ally, an employee can choose whether or not he participates. An example of an 
individual insurance is a term life insurance related to a mortgage. We use the 
word 'policy' for the individual policy as well as for a contract participation. 

In the next sections we will show some of the models of the enterprise ontology 
of Protector and we will apply our template to two example services. 

4.2 Dealing with New Individual Policies 

Table 6 exhibits the subset of the transactions of the life insurer that is of 
relevance for handling new individual policies. Figure 2 depicts these transactions 
graphically in an Actor Transaction Diagram. The appendix presents the Object 
Fact Diagram for the life insurance company in an ORM-based language. The 
result types of Table 6 are depicted as diamonds in this diagram. 

Table 7. Business task specification of CalculatePremium service 

ICalculatePremium Service 

Type of service: infological 
Subtype of service: calculation service 

Supported transaction: T04: policy quotation 
Description of transaction: offering a policy of a product to a potential policy holder 
Result of transaction: R04: policy pol is quoted 
Executor of transaction: A04: policy quotator 
Initiator of transaction: CA03: potential individual policy holder 
Related transactions: none 

Supported transaction: T27: policy underwriting 
Description of transaction: determining whether a potential individual policy holder is ac-

cepted as insured or not and on what terms 
Result of transaction: R27: underwriting for policy pol has been done 
Executor of transaction: A27: policy underwriter 
Initiator of transaction: A05: policy binder 
Related transactions: T05: policy binding, Tl7: reinsurance of policy 

Object class: POLICY 
Related object classes: POLICY pol belongs to POLICY COLLECTION pco 

the payer of INSURANCE PREMIUM pre is the insurant of POL-
ICY pol 
the beneficiary of INSURANCE BENEFIT ben is the beneficiary 
of POLICY pol 
PERSON per is the beneficiary of POLICY pol 
PERSON per is the insured of POLICY pol 
PARTY par is the insurant of POLICY pol 
PRODUCT pro is the product of POLICY pol 

The process of handling new individual policies runs as follows3 . A potential in­
dividual policy holder requests a quotation for a product with or without getting 
an advice first. After the promise of the policy binder, the policy underwriting is 

3 The graphical representation of the process, the process step diagram, is omitted due 
to space limitations. 



Towards a Business-Oriented Specification for Services 133 

Table 8. Business task specification of Register Advice service 

I Register Advice Service 

Type of service: datalogical 
Subtype of service: registration service 

Supported transaction: TOl: product advising 
Description of transaction: giving advice on the product that bests suits the potential indi-

vidual policy holder needs 
Result of transaction: ROl: PRODUCT ADVICE adv is given 
Executor of transaction: AOl: product advisor 
Initiators of transaction: CA03: potential individual policy holder 
Related transactions: none 

Object class: PRODUCT ADVICE 
Related object classes: the advised PRODUCT in PRODUCT ADVICE adv is pro 

the creator of PRODUCT ADVICE adv is AGENT age 

requested. The policy underwriter checks if the risk is acceptable and optionally 
request reinsurance of the policy. Reinsurance is also known as 'the insurance for 
insurance companies'. It protects an insurance company against exposure to large 
risks. Sometimes regular insurance companies fulfill the role of reinsurer, some­
times specialized companies fulfill this role. If (i) reinsurance is necessary and the 
reinsurance states or (ii) if no reinsurance is needed, then the underwriter states. 
The policy binder accepts and then request premium payment to the insurant and 
optionally requests commission payment to the agent. 

4.3 Example Services 

We applied our template to two services of Protector: the CalculatePremium 
service and the Register Advice service. Tables 7 and 8 depict their specifications. 
The first service calculates the premium for an individual policy, which is used 
for supporting transactions T04 and T27. 

The second service stores the advice that a product advisor has given to the 
potential individual policy holder and supports TOl. 

5 Conclusions 

Although the UDDI is currently the most popular standard for implementing 
service registries, it lacks the ability to specify services from a business point of 
view. Its original intent was to provide a world-wide registry for accessing services 
at run-time. In practice, however, most service registries are used within one 
organization or organizational network and services are found on design-time. 
Even for this purpose the information in the UDDI is too limited to determine 
whether or not the service is useful for supporting a specific business process. 
Still a lot of work on service specification needs to be done. 

In this paper we built upon the work on business component specification and 
formal enterprise modeling. The business component specification framework 
prescribes seven levels that need to be specified. Though standards exist for 



134 L.l. Terlouw 

the lower-level layer of the business component specification framework, e.g. 
WSDL for the interface level and UML Object Constraint Language (OCL) for 
the behavioral level, there are less formal models for the higher levels, e.g. the 
terminology, marketing, and task level. We have provided a contribution to the 
specification of the task level, which specifies which business tasks are supported. 
We have used the enterprise ontology as a basis for a business task specification 
template. This template makes services traceable to the ontological transactions 
they support, i.e. their business purpose. We have shown the practical relevance 
of this work in a life insurance company case study of which we have discussed 
parts in this paper. 

Future research will address the design of an XML-based standard for the 
proposed template and its integration with the UDDI standard. 

References 

1. Henkel, J.Z.M., Johannesson, P.: Service-based processes: design for business and 
technology. In: ICSOC 2004: Proceedings of the 2nd international conference on 
Service oriented computing, pp. 21-29. ACM Press, New York (2004) 

2. Albani, A., Dietz, J.: The benefit of enterprise ontology in identifying business 
components. In: WCC 2006: Proceedings of the IFIP World Computer Congress, 
Santiago de Chile, Chile (2006) 

3. McGovern, J., Sims, 0., Jain, A., Little, M.: Enterprise Service Oriented Architec­
tures: Concepts, Challenges, Recommendations. Springer, New York (2006) 

4. Erradi, A., Anand, S., Kulkarni, N.: Evaluation of strategies for integrating legacy 
applications as services in a service oriented architecture. In: SCC 2006: Proceed­
ings of the IEEE International Conference on Services Computing, Washington, 
DC, USA, pp. 257-260. IEEE Computer Society Press, Los Alamitos (2006) 

5. W3C. Web services description language (wsdl) 1.1 (March 2001), 
http://www.w3.org/TR/wsdl 

6. Dietz, J.L.G.: Enterprise Ontology, Theory and Methodology. Springer, Heidelberg 
(2006) 

7. Ackermann, J., et a!.: Standardized specification of business components. Memo­
randum of the working group 5.10.3, Component Oriented Business Application 
Systems (2002) 

8. OASIS. Advancing web service discovery standard (June 2007), 
http://www.uddi.org 

9. OASIS. Uddi products and components (June 2007), 
http://www.uddi.org/solutions.html 

10. Colasuonno, F., Coppi, A., Stefano, Ragone, Scorcia, L., Di Noia, T., Di Sciascio, 
E.: juddi+: A semantic web services registry enabling semantic discovery and com­
position. In: The 8th IEEE Conference on E-Commerce Technology and the 3rd 
IEEE Conference on Enterprise Computing (2006) 

11. Luo, J., Montrose, B., Kim, A., Khashnobish, A., Kang, M.: Adding owl-s support 
to the existing uddi infrastructure. In: ICWS 2006: Proceedings of the IEEE In­
ternational Conference on Web Services (ICWS 2006), Washington, DC, USA, pp. 
153-162. IEEE Computer Society Press, Los Alamitos (2006) 

12. WSMO. D10 v0.1 wsmo registry (June 2007), 
http://www.wsmo.org/2004/d10/v0.1/ 



Towards a Business-Oriented Specification for Services 135 

13. Rajasekaran, P., Miller, J.A., Verma, K., Sheth, A.P.: Enhancing web services 

description and discovery to facilitate composition. In: Cardoso, J., Sheth, A.P. 

(eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 55~68. Springer, Heidelberg (2005) 

14. Colgrave, J., Akkiraju, R., Goodwin, R.: External matching in uddi. In: ICWS 

2004: Proceedings of the IEEE International Conference on Web Services (ICWS 

2004), Washington, DC, USA, p. 226. IEEE Computer Society Press, Los Alamitos 

(2004) 
15. Yan, Z., Cimpian, E., Zaremba, M., Mazzara, M.: Bpmo: Semantic business process 

modeling and wsmo extension. In: ICWS, pp. 1185~ 1186. IEEE Computer Society, 

Los Alamitos (2007) 
16. Zaha, J.M., Albani, A.: Tool based support for teaching formal specification of 

business components. Teaching Formal Methods: Practice and Experience. Oxford, 

Great Britain (2003) 
17. Fettke, P., Loos, P.: Specification of business components. In: Aksit, M., Mezini, M., 

Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 62~75. Springer, Heidelberg 

(2003) 
18. Baida, Z., Gordijn, J., Omelayenko, B.: A shared service terminology for online 

service provisioning. In: ICEC 2004: Proceedings of the 6th international conference 

on Electronic commerce, Delft, The Netherlands, pp. 1~10. ACM Press, New York 

(2004) 
19. Active Endpoints Inc. et al.: Ws-bpel extension for people (bpel4people), version 

1.0 (June 2007), http: I /xml. coverpages. org/BPEL4People-V1-200706.pdf 



p
o

l b
el

on
gs

 lo
 c

o
l 

p
re

 h
as

 b
ee

n 
pa

id
 f

o
r 

p
re

m
iu

m
 p

er
io

d 
p

er
 

F
ig

. 3
. 

O
b

je
ct

 F
ac

t 
D

ia
gr

am
 (

O
F

D
) 

o
f 

th
e 

li
fe

 i
n

su
ra

n
ce

 c
om

pa
ny

 

vo
lu

nt
ar

y 
d

e
p

o
si

t i
s 

m
ad

e 
fo

r 
p

o
l 

un
de

rw
rit

in
g 

lo
t p

ol
 h

a
s 

be
en

 d
on

e 

>
 

.....
 "' 

"0
 

O
l 

"0
 

('!
) = 

t-<
 

Q
.. 

;...
.. 

.... ~ 
~
 

..., 
0 

0 ~ 
0"

 
:;: 

~
.
 

('!
) 

("
) 

<"
+ ~
 

("
) 

<"
+ tJ
 .... ~ (J

q .., ~
 s 



Automated Model Thansformations Using the 
C.C Language 

Vojtech Merunka1 , Oldfich Nouza2 , and Jifi Brozek1 

1 Czech University of Life Sciences Prague, Faculty of Economics and Management, 
Department of Information Engineering 

merunka@pef.czu.cz, brozekj@pef.czu.cz 
2 Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical 

Engineering, Department of Mathematics 
nouza@kmi.fjfi.cvut.cz 

Abstract. This paper introduces the C.C programming language, which 
is designed for automated model transformations. The C.C language is 
outcome of our research and has been implemented in the CASE tool of 
a British software company. This technology started to be used by com­
panies in the Central Europe and for business and software engineering 
courses at several Czech and Slovak universities, Loughborough U niver­
sity in the UK and Lehigh University in Pennsylvania. An interesting 
side-effect of this technology is C.C language application as a first teach­
ing language in algorithmization, programming and software engineering 
courses. 

Keywords: C.C language, model transformations, modelling and simu­
lation, BORM. 

1 Introduction 

Modern CASE tools solve issues of business modeling and software modeling 
integration. This convergence requires strong support of the model-driven ap­
proach (MDA), where requirement modeling and business model simulation are 
used for subsequent information system design. 

There are numerous modeling problems related to this matter. They concern 
interconnection of business models and software models, business process sim­
ulations, step-by-step transformations, domain-specific capabilities, flexibility, 
consistency and integrity checking etc. It remains questionable how these com­
plex requirements should be implemented in CASE tools. We think that hard 
coding of these features is not the effective way. Hence we report our original ex­
perience with the C.C language, show its basic concepts, syntax and demonstrate 
the way it supports modelling process. 

The C.C language design is an outcome of our research [11]. Interpreter of 
this language has been recently included into the Craft.CASE modeling tool 
developed by the British Company CRAFT.CASE Limited. This company thus 
takes all activities which were connected with the Craft.CASE and the BORM 
method in the past, including their future advancements. 

J.L.G. Dietz eta!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 137-151, 2008. 
©Springer-Verlag Berlin Heidelberg 2008 



138 V. Merunka, 0. Nouza, and J. Brozek 

1.1 Model Transformation Techniques 

There are several ways how to classify model transformation techniques. For 
example, Jean-Marc Jezequel [14] presents the following classification: 

1. General purpose programming languages- Java, VB, C++, C#, etc. Rules 
and model behavior are implemented from scratch using the programming 
language. 

2. Generic transformation tools - XSLT (XML transformation) and graph 
transformation tools. 

3. CASE tools scripting languages- for example Arcstyler, Objecteering, Op­
timalJ, or Fujaba. 

4. Dedicated model transformation tools- for example OMG QVT, which uses 
language OCL. 

5. Meta Metamodeling tools- for example MetaEdit+, XMF-Mosaic, or Ker-
Meta. 

The Craft.CASE modeling tool provides model transformation via the C.C in­
terpreter. This approach combines features from categories 1 to 4. In addition, 
the C.C interpreter is able to perform all operations on the model (including 
simulations, refactoring, new diagram creation, user-interactive procedures, ma­
nipulation with values of concrete object instances etc.), that are executed man­
ually by users from graphical user interface. On the other hand, the language 
is not yet standardized on the present, therefore it is not possible to share the 
source code with other modeling tools. 

2 Craft.CASE and BORM 

Craft.CASE is a tool primarily targeted for modelling, testing and simulation of 
business processes and conceptual modelling of information systems using one 
coherent approach based in MDA and UML [3]. 

Craft.CASE and its C.C interpreter are developed in the VisualWorks for 
Small talk programming environment, which is an enterprise-class application de­
velopment and delivery platform based on pure object-oriented programming [19]. 

The Craft.CASE implements the BORM method (Business Object Relation 
Modeling). BORM is the result of our previous work and has been described in 
[11,9,12]. BORM is based on the idea of object-oriented paradigm in conjunction 
with the process-based approach. As other MDA-based methodologies, BORM 
starts with a business-oriented specification of the problem area. Then it is step­
by-step transformed to the correct software solution. 

Craft.CASE supports these concepts transformations via business process sim­
ulators, instance-level modeling and set of transformation rules describing how 
to derive subsequent concepts from previous ones. Moreover, in each step of 
the method, Craft.CASE keeps consistency between two layers of a model; sub­
jects and behaviors. Thanks to metamodel background and system internal C.C 
procedures, there is rigidly checked, whether all subjects from the first layer 
(e.g. classes, object states, packages etc.) have corresponding behaviors from the 
second layer (e.g. scenarios, use-cases, operations etc.) and vice versa. 



Automated Model Transformations Using the C.C Language 139 

Fig. 1. Business process example 

2.1 Business Process Modeling in Craft.CASE 

Craft.CASE respects UMLand MDA, but uses an original diagram for business 
process modeling. It conveys together information from three separate UML 
diagrams: state, communication and sequence. The BORM group have found 
that it is clearly understood by business stakeholders. 

Each subject participating in a process is displayed in its states and transi­
tions. 
This diagram expresses all the possible process interactions between process 
partcipants. The business process itself consists of a sequence of particular 
communications and data flows among participating subjects. 

More formally, BORM process diagrams are graphical representations of inter­
connected Mealy-type finite state machines [17] of particular subjects. Visual 
simulation of a business process is based on market-graph Petri net [18]. (This 
approach is described in [2] .) Therefore we can show states, transitions and oper­
ations for all subjects playing a role in a business process. This is a very powerful, 
yet simple diagram. 

There is an example of BORM business process diagram at figure 1. It shows 
an invoice processing. There are six participating subjects in this process: Sup­
plier, Invoice Registration Department, Store Department, Account Payable De­
partment, SAP and Bank. Small rectangles within these subjects are their states. 
Ovals within subjects are their activities, which are conceiveable as transitions 
between states as well. Big arrows between subjects are subject communications, 
small arrows are data flows. 



140 V. Merunka, 0. Nouza, and J. Brozek 

2.2 Software Systems Modeling in Craft.CASE 

Craft.CASE uses the UML standard for software systems modeling activities. 
The differences from other CASE tools are as follows: 

1. Both business model and software model share common metamodel. This 
metamodel is described in section 4.1. 

2. The content of UML software models is dependent on the content of business 
models. For example, each conceptual class from UML class diagram must 
have its predecessor in some business subject. This information is kept in 
the project database. 

3. Craft.CASE stresses pre-implementation stages of system development and 
is not primarily appointed for software code generation. The main purpose 
is business and software modeling. This is the reason for strong demand on 
consistency, simulation, cross-reference checking and other features. How­
ever, various source codes generated from the project database are feasible 
through user-written modules in the C.C language. 

3 The C.C Language 

The C.C language is a functional programming language with PASCAL-like syn­
tax with several imperative constructs and some features coming from languages 
PROLOG, Erlang, Ruby, Python and Smalltalk. It has an interpreted program­
ming environment. C.C is used for following purposes: 

As a scripting language. Procedures in C.C are able to pass through project 
database and compose miscellaneous documentation reports. 
Precise process simulation. Procedures in C.C can compute various simula­
tion data, control simulation flow, etc. 
Automated manipulations with the model (e.g. applying design patterns, 
refactoring and class normalization). 
Consistency and integrity check of project database. This feature covers the 
same functionality as the OCL [4]. 

- Data export in different formats (namely XMI and binary formats of other 
CASE tools). 

- Data import from different data sources (e.g. ODBC, CSV etc.). 

3.1 Inspiration - Pascal and LISP 

The Pascal programming language as a simplified ALGOL was so successful 
that there were and still are attempts to use its ideas in many application ar­
eas. These include miscellaneous languages for data manipulations, scripting 
or object-oriented programming. Pascal is still frequently used as a first pro­
gramming language. Its syntax dominates in theoretical publications oriented at 
algorithmization, theory of programming, new algorithm description etc. 

The LISP programming language has been developed out of the needs of artifi­
cial intelligence programming. LISP (and its modern successor Scheme) smoothly 
implemented the concepts of lambda-calculus and functional programming in­
troduced by Alonzo Church in 1930s [8]. 



Automated Model Transformations Using the C.C Language 141 

3.2 Motivation 

As stated in section 1.1, the C.C language covers features of miscellaneous ex­
isting tools. We required these features to have in one modeling environment. 
First of all, these are 

- interactive model transformations, 
- prototyping and instance-level testing (e.g. querying and manipulation with 

concrete values of particular object instances emerging in the model) and 
- simulation. 

Recently we have decided to use C.C as the same language for algorithmization 
and software engineering courses. 

3.3 Basic Concepts 

- The C.C architecture consists of modules having functions. Modules are both 
system built-in and user-written. 

- Variables must begin with capital letters. 
Built-in values are true, false, nil, e (Euler's number), i (purely imaginary 
number), pi (Ludolf's number), infinity, tiny (infinitesimal zero) and a 
lot of functions in miscellaneous modules. 

- The only types are: 
• Symbol (atomic textual values beginning with non-capital letters). 
• String of characters written in double quotation marks. 
• Number. 
• Date in format 00-MMM-YYYY. 
• Time in format HH: MM: SS. 
• Logical value as predefined symbols true and false. 
• nil. 
• Collection of elements. There are three types of collections: list , set 

and dictionary. 
• Function, which implements lambda-expression and is written in curly 

brackets. To illustrate, lambda-expression (A.xA.y I x 2 + y) is written as 
{:X, :Yir2+Y}. 

£. 0 )( 
hello world! 

------.1.1 console pnno("hello worldl") 

10 +20 3J 

Al:upo Cln+S 

~ Oo rt Clrl.O 

l'l Pnnt ~ Clrl+P 

?' Oobug rl 

f:/.. Prcfllort 

Fig. 2. Hello world example in C.C 



142 V. Merunka, 0. Nouza, and J. Brozek 

Following line of the C.C code implements a hello world program (shown in 
the figure 2). This code is written in the system workspace and the result appears 
in the system console. 

console: print ("Hello world! ") . 

3.4 Functions 

Each function must be a member of a certain module. Therefore the previous 
example of a hello world program working with the module named console and 
the function named print can be written as follows. 

I M , F I # declaration of variable names 
M := console. 
F := print. 
M:F(hello world!). 

# assigning symbol "console" to var "M" 
# assigning symbol "print" to var "F" 

# function call 

User-defined functions are represented by function expressions stored in vari­
ables. For example function F(x, y) = lOx+ y can be implemented as 

F := {:X , :Y I 10*X + Y}. 

The F function can be applied on arguments via round brackets as for example 
F ( 3, 4) . However, this function call can be used directly without the need to store 
this function in any variable, like {:X, :YI10*X+Y}(3,4). 

(Additionally, there are yet some advanced features related to default values 
of lambda-variables, order of parameters in function call and possibility to call 
function with incomplete set of parameters). 

3.5 Collections 

Following example shows declaration of a list L and a dictionary D. 

L ·= [10 , 20 , 30 , 40 , 50]. 
D ·=[first := 10, second:= 20]. 

Then we can access elements of these collections as follows. 

L[1] = 10. L[2] = 20. D [first] = 10. D[second] = 20. 

We have defined nine operators for comfortable collection processing (e.g. el­
ement adding, removing etc.). Nonetheless these operators (and all other C.C 
operators) are interpreted as functions as well. There are also two special func­
tions selection and projection, which are explained in this example: 

[10,20,30,40,50] II {:X 
[10,20,30,40,50] >> {:X 

X > 20} 
X + 1} 

[30,40,50]. 
[11,21,31,41,51]. 

Craft. CASE model elements behave as collections as well. For example, if there 
is an element AClass, then the expression AClass [name] : =NewValue. changes 
the value of the property name of this element. 



Automated Model Transformations Using the C.C Language 143 

3.6 Control Structures 

Control structures are realized by operators, but they have internally the same 
interpretation as functions. They are: 

if logical-expression then function [else function]. 
for collection do function. 
from value to value [by value] do function. 
repeat function until logical-expression. 
while logical-expression do function. 

Following two pieces of code show the same iteration: 

for [10,20,30,40,50] do {:X I console:print-nl(X)}. 

I X 
X := 10. 
while not(X >50) do {console:print-nl(X). X·= X+ 10}. 

3. 7 Programming Environment, C.C Data Modeler 

Programming environment of the C.C implementation consists of module browser 
and traceable debugger (figure 3) and time profiler (figure 4). 

A......,...__ -~ 
rn....._ Module6 Prototols Funehons 

I~ Dt 1:' t> Ml I r~ ~ ~ ~ 
N:3 

algotJimlzatlon fibonnacc1 
U 1n algontm•zatton fibonnaec1 

Source I Proptrhes J algonlm1zat1on fibonntc:CI 
()in algontmil tton fibonnnc• 

Name Arguments 
li N< 2 I ~bonn&ctl I N 

then (II 
Code 

t la• lfibonnaet•• + ~bonnacc1{N · 2)) 

I'' N <2 ~ thon (II 
ebe (fibonnotco(N. I)+ fibonnacco(N · 2)1 

Fig. 3. Debugger and module browser 

The tool also has a lite-version called C.C Data Modeler supporting the C.C 
language and only selected subset of UML models. This version is aimed for 
software engineering and introductory programming courses. 

3.8 Code Examples 

The C.C language is a universal programming language. It is used at several uni­
versities as an introductory programming language. Here are two small examples 
of well-known algorithms. 



144 V. Merunka, 0. Nouza, and J. Brozek 

~-~~·1 1 ~ ~ &l 
_ax 

Accept Clrt+S 

~ 
algontm•zation:tibonnacci(5) 

1 Don Ctrt+O 
~ Pnnlil Clrl+P 

demo:facl("abcd") ~ Det>ugrt C1rt+G 

~ Profile• Clrl+f 

l' Cut Clrl+X 

tt -
Execut•on tree 

~~0~ • olgorlunlutlon:Obonnaccl 

rO%-core< 
~0%· mllh + 
39%. math· 

8'86.3~. atgorltmlzallon:Obonnoccl 
~39%· core< 

Copy Clrt+C 
tJ Paste CuiN 

Func11on calls 

lgorltmlzodon:flbonnaccl -15x 
Find .. or-e <- 15• 

: Replace math · · 14x 
math+· 7x 

Fig. 4. Profiler 

##### recursive definition of factorial 
I Factorial I 

##### 

Factorial := {:X if X = 0 
then {1} else {X * Factorial(X - 1)}} . 

##### Eratosthenes' generator of prime numbers ##### 

I Max , Non-primes , Primes I 
Max := integer(dialog:request("maximum number?")). 
Non-primes := set:new(). Primes := list:new(). 
from 2 to Max do {:N I if not(N in Non-primes) 

then {Primes add N. 
from N to Max by N 

do {:N1 I Non-primes add N1}}}. 
console:print(Primes). 

4 Craft.CASE Modeling 

4.1 Craft.CASE Metamodel 

_ax 

~ 
~ 

Craft. CASE works with a simple metamodel, which is common for both business 
and software modeling. This model shares the same ideas as other metamodels 
used in CASE tools implementations. (For example GOPRR metamodel [10] by 
Steven Kelly made for MetaEdit+ CASE tool [13]). 

In the Craft.CASE metamodel we work with only two types of elements: 
nodes and links. Each link is one-way oriented and has one source and one 
target. Content of source or target can be both node or link (See figure 5). Each 
type of link knows which are its possible types of sources and targets to be 
connected. 

The whole project is a node as well. If this project consists of diagrams, they 
are nodes linked to this project. If a diagram consist of elements, they are nodes 
linked to this diagram. Of course, miscellaneous relations between the elements 
in particular diagrams are links between corresponding nodes too. 



Automated Model Transformations Using the C.C Language 145 

nod clement 1 

1 
orooerll:es.-

I \ 
I Node II Link source 

ta.rget 

Fig. 5. Craft. CASE metamodel 

SAP 

,____ ____ -~---n:.l: -,---

Fig. 6. Concrete nodes and links 

Figure 6 shows the Craft. CASE metamodel on the example of business process 
from figure 1. Subject SAP is a node connected to other five nodes. These five 
nodes are states and activities of this subject SAP and are connected by links. 

Another example of the metamodel can be the UML class-diagram. Class 
symbols are nodes, relations (e.g. inheritance, association, composition, etc.) are 
links between classes. If a class has methods (or attributes, of course), these 
methods are nodes connected to this class. Additional informat ion like cardinal­
ities or link attributes are nodes connected to corresponding association, which 
is a link as well, because it connects classes. 

4.2 C.C Constructs for Craft.CASE Metamodel 

The Craft.CASE metamodel is supported by several system modules. There 
is also one special operator (internal function) called "path expression" in the 
metamodel structure. This operator complements functionality of selection and 
projection. Semantics of selection operator is also extended. 

element-or-collection-of-elements - ) function-or-typename . 
collection-of-elements I I function-or-typename. 

Path expression is an implementation of the graph t raversing algorithm. It con­
trives to collect neighbors of an element or a collection of elements in the project 



146 V. Merunka, 0. Nouza, and J. Brozek 

database with respect to the metamodel. For example, if there is an element 
Supplier from figure 1, then we are able to collect all interrelated data-flows 
of this element. This is a path expression traversing from this element to its 
activities, then from these activities to their communications and finally to their 
data-flows. 

Supplier -> "activity" -> "communication" -> "data flow" 
["Invoice" , "Letter" , "Wire Payment"]. 

Another example shows the selection of only the data flow elements from a 
set of all selected elements in a diagram editor. 

editor:selection() // "data flow". 

4.3 C.C Modules 

The interpreter of the C.C language made for Craft.CASE has several built-in 
modules with a certain amount of built-in functions. These functions are im­
plemented directly in the system byte-code [19]. Hence their execution is much 
faster. These functions cover general programming features (this segment of C.C 
can be used separately from Craft.CASE), support for precise simulations and 
support for the Craft.CASE metamodel and user interface (e.g. dialogues, con­
sole output, file access, ODBC data access etc.). There are yet some interesting 
modules: 

- math: Support for mathematical processing such as work with complex num­
bers, vectors, matrices, infinitezimal numbers, numerical derivation and nu­
merical integration etc. For example, math: integral ( {: Xlr2+X}, 3, 5) de-

notes J:(x2 + x) dx. 
list: Functions specific to lists of values as head, tail, cons, sort, etc. 

project: Basic processing with the project database. Here are functions as 
new-node, new-link, remove-element, for example. 

element: Functions specific to project elements. Here are functions as nodes, 
links, source, target, get-property, set-property, for example. 

diagram: Functions specific to diagram elements. For example, here are 
functions as add-element and remove-elements. (If an element is removed 
from a diagram, still it can persist in the project database.) 

editor: Functions specific to an actively opened diagram editor. Here are 
functions as selection, add-into-selection, remove-from-selection, 
etc. 
simulation: Functions specific to business process simulation. Here are 
functions as activate, start, step, terminate, raise-exception etc. 

report: Functions for generation of Craft. CASE reports in formats HTML 
and PDF. 



Automated Model Transformations Using the C.C Language 147 

5 Modeling Examples 

Our experience denotes the fact that the design pattern technique, the object 
normalization technique and refactoring technique share the common principle 
of model transformation. Hence all these techniques can be automated through 
the C.C code with a project database. In this chapter we demonstrate practical 
examples of this idea. These examples are taken from our software engineering 
courses. 

5.1 Refactoring 

It is possible to define refactoring as any sequence of system transformations, 
where the behavior of the system remains unchanged. (An exception might be for 
instance a slightly different delay between the user impulse and the subsequent 
system response, nevertheless from the user's point of view, refactoring has actu­
ally no importance.) From the system modeling aspect, refactoring is performed 
for optimalization, reusability and maintainability reasons [15]. A classical book 
on refactoring is [5]. 

In the following piece of code we present an interactive algorithm for creating 
a new super-class to selected classes from a conceptual class-diagram. 

I Classes , NewClass I 
# which are classes from selection? 
Classes := editor: selection() I I "Class". 
if list:is-empty(Classes)then{return dialog:warn("No classes selected!")}. 

# create new class, name it and add it into diagram 
NewClass := project:new-node("Class"). 
NewClass[name] := dialog:request("New class name?"). 
editor:add-element(NewClass). 

# assign new class as superclass of selected classes 
for Classes 

do {:Class I editor:add-new-link(Class , NewClass , "Supertype")}. 

5.2 Design Patterns 

Design patterns are proven solutions to design problems. A design pattern is a 
template for how to solve a particular problem. It is mature, proven and widely 
accepted software development technique. More information on design patterns 
for software systems development and their classification is in the book [6]. 

Currently all design patterns from this book are implemented as interactive 
functions in the C.C language. Moreover, we expect existence of similar patterns 
for business process modelling. This is indicated in [2], for example. Hence we 
started the exploration of business process patterns from practical projects made 
in the Craft.CASE and their subsequent implementation as C.C functions. 

Following piece of code shows the implementation of Adapter pattern, which 
is demonstrated in pictures 7 and 8. 



148 V. Merunka, 0. Nouza, and J. Brozek 

..'9d Name I Gnd ,.... 3 loom ~ More I Soloc! I N- I r Hlgh~ght 
!r=~~--------------~----~=---~ 

Dea•gn Pauems ... Adlliat J 
Normalrzation ... Bndge I 
Refoctonng • I 

lace tltmtnt 
HC_odo 

iK!t'~ MWCieoo 
1!!1 CI111A(Ciooa) 

BatlcCI-
~ 1!!1 Dolo (Bille Class) 
H!! lnlogor (Bille Cillo) 

Fig. 7. Adapter pattern example- initial situation 

{'Jc_..,..,.__, ...... _ex 

S'JNamo Gnd luse 3 Zoom~ More I Soloct l New 1 r H1ghlighl 

A dopier 
lact t lt mt nl: 

OHIA 

r ~·-
1 adapttt ~ 1!!1 nowCieoo 

RtQUUI() I Ill ........... (Cino, 
§ ClouA (Cino) a .. ,.c,_ 
1!!1 0 II (8Hic Cillo) 

j ~l!!llm'9tr (Stale ~•) 

Fig. 8. Adapter pattern example - result 

I Classes , Adaptee , Adapter , AdapterLink , Method I 
# which are classes from selection? 
Classes := editor:selection() //"Class". 

if list:size(Classes) <> 1 
then {return dialog:warn("Select one class to be adapted!")}. 

# select adaptee class 
Adaptee :=Classes[!] . 

#create and link adapter class 
Adapter : = project :new-node("Class"). Adapter[name] := "Adapter". 
editor:add-element(Adapter). 
AdapterLink := project:new-link(Adapter, Adaptee , "Composition") . 
AdapterLink[name] := "adaptee". AdapterLink[cardinality] := "1". 
editor:add-element(AdapterLink). 
Method := project :new-node("Method"). Method[name] := "Request()" . 
project:new-link(Adapter , Method, "ownership (conceptual)") . 

5.3 Object Normalization 

j 

Object normalization is a similar approach to the relational data normalization. 
It is applied to object-oriented data model. There are several approaches to 
object normalization [16]. The most advanced information is in the book by Scott 
Ambler [1], where object-oriented data modeling is discussed. In our technology, 



Automated Model Transformations Using the C.C Language 149 

e )( lA )( 

Select attnbutee to bo o>'lraelod . New cla" name? 

date 

~ 
I Cuotomo~ I amount 

~ ~~0~~~::, name ~ Cancetl 

[v' .customer address 
_s_ystomer id 

PtO<ll<l COI'IItat1 

name String date Dale , ___ 
code .Integer amount Integer 

SeleC1AHI 1" products eustomer ld :String 

~ Coneell 
customer name ~ng 
customer addntts String 

Fig. 9. Third normal form example - initial situation 

Ptodllct Cor•rlM:t 

name :String date: :Oa11 
coda :lnleger amount lnttgtr .... products 

t1 
C.ustOilltf 

cus.1omer name Str1ng 
cu81omer ld :Str\ng 
cuslomer address Siring 

Fig. 10. Third normal form example - result 

we use the Scott Ambler's three levels of object-oriented model normal forms. 
(It is obvious that "standard" relational normal forms are implementable by a 
C.C code as well.) 

Following user-interactive function shows our implementation of the third 
normal form. Figures 9 and 10 show a concrete example of extracting new class 
Customer from class Contract. 

Classes,OldClass,NewClass,AttributeNames,RemovedAttributes,Link 

# which is class in selection? 
Classes:= editor:selection() //"Class". 

if list:size(Classes) <> 0 
then {return dialog:warn("Select one class!")} . 
OldClass := Classes[1]. 

# create new class, name it and add it into diagram 
NewClass := editor:add-new-node("Class"). 
NewClass[name] := dialog:request("New class name?" , "New Class"). 
editor:add-new-link(OldClass , NewClass , "Composition"). 



150 V. Merunka, 0. Nouza, and J. Brozek 

# select instance variables to be extracted from old class to new class 
AttributeNames := 
dialog:choose-multiple("Select attributes to be extracted ... ", 

DldClass ->"Composition"» {:X I X[name]}). 
#remove them from an old class and remember them 
RemovedAttributes := dictionary:new(). 
for (DldClass -> "Composition") 
do {:Composition I if Composition[name] in AttributeNames 

then {project:remove-element(Composition). 
RemovedAttributes[Composition[name]] ·= 

element:target(Composition)}}. 
#link removed attributes into a new class 
for dictionary:keys(RemovedAttributes) 
do {:Name I Link := 

project:new-link(NewClass,RemovedAttributes[Name],"Composition"). 
Link[name] := Name}. 

6 Conclusion 

In this paper, we presented the C.C language concepts and demonstrated the 
C.C modeling on real examples. 

The C.C language is an instrument we use to support our research in the 
area of business and software systems modeling. The combination of the lan­
guage C.C, the Craft.CASE metamodel and BORM methodology makes us a 
flexible technology, which allows to model business and software systems in one 
coherent paradigm. It solves the interconnection of business models and soft­
ware models, business process simulations, step-by-step model transformations, 
domain-specific capabilities, model checking an reporting etc. 

Our next work will concentrate on elaboration of the C.C language, connec­
tivity to other tools and research in the area of business process patterns. 

Acknowledgement. The authors would like to acknowledge the support of 
the Czech Ministry of Education, Youth and Sports by the grant project 
MSM6046070904 and LA08015. 

References 

1. Ambler, S.: Building Object Applications That Work, Your Step-By-Step Hand­
book for Developing Robust Systems Using Object Technology. Cambridge Uni­
versity Press/SIGS Books (1997) 

2. Barjis, J.: Developing Executable Models of Business Systems. In: Proceedings of 
the ICEIS - International Conference on Enterprise Information Systems, pp. 5-13. 
INSTICC Press (2007) 

3. Craft.CASE home page, http: I /www. craft case. com 
4. Pollet, D., Vojtisek, D., Jezequel, J.-M.: OCL as a core UML transformation lan­

guage. WITUML 2002 Position paper, Malaga, Spain (2002), 
http://ctp.di.fct.unl.pt/ja/wituml02.htm 



Automated Model Transformations Using the C.C Language 151 

5. Fowler, M.: Refactoring. Addison-Wesley, Reading (1999) 
6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns- Elements of 

Reusable Object-Oriented Software. Addison-Wesley, Reading (1994) 
7. Hall, J., et al.: Accounting information systems - Part 4, System development 

activities, 4th edn., Thomson South-Western New York (2004) 
8. Hankin, C.: Lambda Calculi- A Guide for Computer Scientists. Clarendon Press, 

Oxford (1994) 
9. Liu, L., Roussev, B., et al.: Management of the Object-Oriented Development 

Process- Part 15: BORM Methodology. Idea Group Publishing (2006) 
10. Kelly, S.: GOPRR Metamodel- Appendix of Towards a Comprehensive MetaCASE 

and CAME Environment: Conceptual, Architectural, Functional and Usability Ad­
vances in Metaedit+. Ph.D. Thesis. Jyvskyl University (1997) 

11. Knott, R.P., Merunka, V., Polak, J.: The BORM methodology: a third-generation 
fully object-oriented methodology. Knowledge-Based Systems 16(2), 77-89 (2003) 

12. Merunka, V., Polak, J., Knott, R.P.: Process Modeling for Object-Oriented Anal­
ysis Using BORM Behavioral Analysis. In: Proceedings of Fourth International 
Conference on Requirement Engineering - ICRE 2000, IEEE Computer Society, 
Los Alamitos (2000) 

13. MetaEdit+ home page, http: I /www. metacase. com/ 
14. Muller, P.-A., Fleurey, F., Jezequel, J.-M.: Weaving executability into object­

oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. 
LNCS, vol. 3713, pp. 264-278. Springer, Heidelberg (2005) 

15. Sunye, G., Pollet, D., Le Traon, Y., Jezequel, J.-M.: Refactoring UML Models, 
http://www.irisa.fr/triskell/publis/2001/Sunye01b.pdf 

16. Vrany, J., Struska, Z., Merunka, V.: Object normalization as the contribution to 
the area of formal methods of object-oriented database design. In: Proceedings of 
the eighth International Conference on Enterprise Information Systems: Databases 
and Information Systems Integration ICEIS 2006, Paphos, Cyprus, INSTICC Press 
(2006) 

17. Roth Jr., C.H.: Fundamentals of Logic Design. Thomson-Engineering, 364-367 
(2004) 

18. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, En­
glewood Cliffs (1981) 

19. VisualWorks home page, http: I /www. cine om. com/visual works/ 



Improvement in the Translation Process from Natural 
Language to System Dynamics Models 

Yutaka Takahashi 

School of Commerce, Senshu University 
2-1-1, Higashimita, Tama, Kawasaki, Kanagawa, Japan 

takahasi@isc.senshu-u.ac.jp 

Abstract. In order to solve social science problems or make models for business 
forecasts, descriptive information in natural language is as important as measured 
numerical information. While numerical information is widely used in various 
stages, most descriptive information is employed only to describe the background 
or the very primitive stage of modelling. However, descriptive information has 
rich contents. One uses it to organise one's ideas and to communicate with other 
people. The modelling method which can employ this rich content information is 
System Dynamics. It has an interface to express such descriptive information, 
stock flow diagrams. Moreover, these diagrams are also used when numerical 
simulations are conducted. However, matching descriptive information and 
diagrams has depended on model builders' skill and mental models. This paper 
shows matching rules between descriptive information and stock flow diagrams as 
improvement in an existing method. 

Keywords: Descriptive information, natural language, simulation. 

1 Introduction 

Research themes of social science contain numerical and descriptive information. 
Both kinds of information are equally important in building models which are 
employed to make solutions or finding the nature of social systems. Numerical 
information is usually processed by techniques similar to ones in natural science 
fields. However, descriptive information is mainly used only in the earlier stages of 
modelling, such as setting the direction of research. 

Nevertheless, descriptive information naturally has rich contents, which are essential 
for meaningful research; most descriptive information expresses fundamental value or 
mental models, which are important to make formal model precisely, of involved 
people. This paper shows some guidelines to find dynamic structure and mathematical 
information from descriptive information. 

Research objects of natural science have enormous numerical data so that studies 
can be completed without descriptive information. Moreover, natural science fields 
have no "interactive" research objects; scientists need to watch and record their 
research objects but do not need to interview animals, plants, or inorganic materials. 

J.L.G. Dietz eta!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 152-163, 2008. 
©Springer-Verlag Berlin Heidelberg 2008 



Improvement in the Translation Process 153 

Therefore, it is reasonable that there is no need to process descriptive information in 
natural science. 

On the other hand, social science fields have enormous amounts of descriptive 
information, in addition to numerical information. For example, fieldwork researchers 
conduct interviews. Interviewees' stories are mainly descriptive. In business fields, 
company managers have their own opinions, beliefs, or mental models'. These kinds 
of information are all descriptive information. Researchers should be attentive to them 
in order to organise their opinions. Since what social science researchers are studying 
tends to have more hidden or complex causal structures than research objects of 
natural science, the role of descriptive information is important in order to obtain 
appropriate analyses. 

However, descriptive information is not easily processed in the same way as 
numerical data. First, descriptive information is written in natural language, which is 
used when one records something or communicates with others, such as English, 
French, etc. Natural language is flexible both in terms of reading and writing, so some 
possibilities for misunderstanding exist. Second, the interpretation or evaluation of 
something, expressed in stories, depends on the reader. 

Such difficulties are recently found not only in social science fields but also nearby 
natural science fields. For example, software development processes are logical and 
scientific, but software must match users' needs. Therefore, there are several practices 
which use requirement analysis methods, such as UML [1]. These methods or tools 
focus on leading software development projects. This means that communication (or 
whole information flows) is relatively close and takes only a short time; therefore, 
hidden effects caused by feedbacks are not considered. This ignorance of feedback 
effects does not cause problems when managing a short software development 
process. 

On the other hand, social science fields, including business activities, policy making 
and social movement analyses, need to consider long term effects of past activities or 
decisions and mutual effects not only inside but also outside object systems. 

A method which can manage this problem is System Dynamics modelling. System 
Dynamics is described as "a rigorous method for qualitative description, exploration and 
analysis of complex systems in terms of their processes, information, organisational 
boundaries and strategies," by Wolstenholme [2]. Models are expressed as stock flow 
diagrams which indicate causal structures and types of variables. Stock flow diagrams 
express how model builders understand their research objects and produced models are 
constructed. Fig. 1 is one of the simplest examples. 

It indicates that population increases only when babies are born and the number of 
babies is influenced by the current population and capacity. There is no other interpreta­
tion. The model must reflect its model builder's idea about the object, namely a popula­
tion system. Thus, stock flow diagrams can trace descriptive information and avoid 
misunderstandings brought about by the ambiguity of natural language. 

1 Mental models are firm beliefs or stereotypes which are not derived from logical deduction, 
similar to ideas expressed by Senge [ 4]. 



154 Y. Takahashi 

Fig. 1. Here indicates an example of a stock flow diagram, based on a story about population 
dynamics. Of course, this is not a real, practical model, but includes all fundamental elements 
in System Dynamics models. 

There is another diagram in System Dynamics: namely causal loop diagrams. 
Causal loop diagrams indicate only causal structures in models. Fig. 2 is a causal loop 
diagram sample using the same theme as fig. 1. One can conduct qualitative analyses 
using causal loop diagrams. Causal loop diagrams are easily drawn even by beginners 
of System Dynamics. In addition, qualitative analyses can allow researchers to have 
an open mind and present various perspectives of elements in their research. 
However, most practical results require quantitative simulation, which causal loop 
diagrams cannot provide but which stock flow diagrams can, because parameter 
volumes influence performance of systems. Therefore, it is ultimately necessary to 
make stock flow diagrams and to perform some simulations in order to obtain 
meaningful results. 

~~ 
newborn population dead 

~~ 
Fig. 2. The causal loop diagram's structure is very similar to that of the stock flow diagram. 
However, an arrow which decreases population has the opposite direction. Stock flow 
diagram's pipes, or double line arrows mean flow-in and flow-out. However, all arrows in 
causal loop diagrams express the cause-effect (or dependent-independent) relationships. 

Stock flow diagrams are similar to causal loop diagrams. Nevertheless, some 
people who can draw causal loop diagrams face difficulties in drawing stock flow 
diagrams. The difference between stock flow diagrams and causal loop diagrams is 
the presence of the variable type classifying process. Therefore, one reason for the 
difficulty in modelling stock flow diagrams is the difficulty in distinguishing types of 
variables: stock, flow or auxiliary. Indeed, Sweeney and Sterman [5] reports that 
people are not used to dealing separately with stock and other variables. 

A classic method to distinguish types of variables is the "snapshot test," explained 
in Sterman [3]. This test makes logical sense. However, there are sometimes 
possibilities that a variable can be defined both as a stock and as another type. It 
depends on model builders' understanding of objects. Thus, this approach is directly 
influenced by the ambiguity of natural language. 

As another approach, Richmond [6] indicates correspondences between elements 
in natural language and types of variables in stock flow diagrams. He suggestes the 



Improvement in the Translation Process 155 

metaphors that stock, flow and auxiliary variables are namely subjects, verbs and 
adjectives in natural language sentences. These are not rigid correspondences but 
heuristically convenient for model builders. The use of descriptive information as 
important parts of models or modelling is unique. UML modelling texts, such as 
Jacobson et al. [1], also mention similar approaches2• 

These correspondences contribute to easy distinction when deciding types of 
variables. This idea is instructive, but does not mention relationships among variables. 
Takahashi [7] suggests an extension of Richmond's idea. He points out sentence 
patterns corresponding to eight combinations of variables in stock flow diagrams. 
Possible combinations in stock flow diagrams are limited to these eight patterns. Each 
corresponding sentence is defined using simple syntax and limited vocabulary. Model 
builders paraphrase their descriptive information using these simple syntax sentences; 
simple syntax sentences are used as a middle language. Both original descriptive 
information and simple syntax sentences are written in natural language. Model 
builders can paraphrase without special tools. 

However, there is a possibility that multiple sentences can apply to one 
combination. For example, the sentence "More A, more B" can produce any 
combination of variables. It is possible to avoid this problem by applying more strict 
(narrow meaning) sentences earlier than sentences with wide meaning. However, 
when model builders assign sentences with wide meaning, it can be difficult to 
change them after finishing paraphrasing. 

This study shows rules to use correspondences appropriately in Takahashi [7] and 
suggests an improvement on them. 

2 Rules to Select an Appropriate Stock Flow Structure 

The fact that one sentence has multiple choices of model structure can lower its 
convenience in using the correspondences suggested in Takahashi [7]. The reason that 
this problem arises is a lack of two important concepts in the middle language: units, 
delay, and expression of transition of an individual material or a person. 

2.1 Unit Concept 

System Dynamics modelling needs to deal precisely with units of all variables, in the 
same way as other modelling methods do. This means that a stock variable and its 
flow variables must use an identical unit. This consistency of unit keeps model 
builders from excessive simplification. For example, suppose we are given the 
descriptive information below. 

"More employees, more output." 

This sentence contains two variables: employees and output. If this sentence expresses 
a scene in a steel factory, these two variables obviously have different units; employees 
should be counted as a number of people and output might be tons. Therefore, model 
builders reasonably divide them into two separate stock flow combinations (Fig. 3). 

2 They suggest making classes by finding nouns in requirement specification documents in Object 
Oriented Programming. 



156 Y. Takahashi 

Richardson and Pugh [8] mentions that this check can "prove incorrectness of 
wrong modelling." In the meaning that inconsistent use of units in a stock flow 
combination, this check works correctly. However, if all variables deliberately use the 
same unit, the check does not work. For example, see the sentence below. 

"More order placement, more shipment." 

One can use the same unit for both variables: order and shipment. Indeed, to use 
dollars or a number of goods is reasonable for most cases for the scenario expressed 
by this sentence. However, it is inappropriate to put both variables in the same stock 
flow combination. Fig. 4 is an incorrect diagram for the sentence above. 

Wrong Correct 
output e!Tl>loyees 

accumulated output 

output per day 

Fig. 3. On the left is an incorrect stock flow diagram. It should be drawn in separate stock flow 
lines. 

Wrong Correct 
shipment 

©~0>===~'-------' 
order placement 

Fig. 4. The number of Order placement is not the amount of sales goods 

Moreover, this diagram appears to mean and actually means "order placement" 
activity brings sales goods to the shop shelf. This is strange and actually different 
from reality. 

Indeed, they have the same unit. However, the number of order placement is 
information, while the amount of shipment is the number of sales goods. This 
distinction between information and physical quantity and understanding what kind of 
material flows in it is significant in avoiding this problem. Richmond [6] suggests a 
"unit conversion flow." This idea simply brings the difficulty of correct modelling to 
model builders because it eliminates unit check possibilities. 

Therefore, in addition to the unit consistency rule, model builders need to deal 
separately with information variables and physical quantity variables. In addition, 



Improvement in the Translation Process 157 

each stock flow combination carries and reserves only the same material in it when a 
translation using simple syntax middle language is conducted. 

2.2 Delay and Causality 

Causal relationships, which start from stock variables, implicitly suppose time delay. 
This is natural and reasonable because of the meaning of causality; all results follow 
their causes. In this sense, relationships without any time delay are not causal 
relationships but an "expression in other words3". 

Most System Dynamics software has "delay" functions. These functions are originally 
"abbreviations" of some stock flow structures which have causal relationships starting 
from stock variables. 

transit time divided by three transit time 

Fig. 5. "The third order exponential delay" can be expressed without built-in functions 

Moreover, relationships from outflow variables to other variables also have implicit 
stock flow structures. Some software can set outflow variables as "non negative." This 
means that these outflow variables refer the state of connected stock variables. If 
descriptive information refers to these stock variables' change, they therefore implicitly 
include time delay. 

inplicit constraint 
........ 

5~===~ 
outflow 

Fig. 6. Outflow variables are controlled by their stock variables when they are set as "non­
negative," even if there is no explicit link indicated as the broken line arrow 

Thus, when descriptive information can be correctly expressed with delay, there 
should be stock variables in corresponding models. 

2.3 Transition of Individual Material or Person 

System Dynamics modelling allows model builders to make sequences of stock flow 
connections. Direct use of the method suggested by Takahashi [7] produces only separate 

3 Some software such as S1ELLA and ithink (isee systems) uses the variable type name "converter" 
instead of "auxiliary." 



158 Y. Takahashi 

susceptible 

Fig. 7. Each stock indicates the population in a stage of immunising. Some separated stock flow 
combinations should be connected as a sequential pipeline. 

"one stock with some flow variables structures" with reference links, not with flow links 
such as in Fig. 7. It should be connected for the reason of simplicity. 

To determine the connection of stock flow combinations, each stock variable in these 
combinations must store the same elements at different time. If an individual material or 
person can be counted in a unit all time and transit several states over time, each state 
should be expressed as a stock variable, and transition movements between stocks should 
be expressed as flow variables. For example, Fig. 7 should be expressed as in Fig. 8. 

susceptible people patient recovered people 

newborns recoverys 

Fig. 8. All states are connected in one stock flow sequence 

This kind of connection of stock flow combinations can make the diagrams 
themselves and equation definition processes simple and easy to understand. 

2.4 Improved Translation Process 

Three additional processes are shown above. Here, the whole translation process from 
natural language to System Dynamics models is listed. All sentences are middle 
language expressions such as those suggested by Takahashi [7]. Sentences express 
relationships between variables, X and Y, whose type (stock, flow, or auxiliary 
variable) are uncertain, and are conditions which should be satisfied in order to 
choose a model structure. One needs to try to apply patterns in the order shown 
below. Slashes signify alternatives 

1. "X uses the same unit per time as Y. X will be/was part of Y. More/less X, 
more/less rapid growth/decrease of Y." This description shows that Y is a stock 
variable and that X is a flow variable connected toY. See Fig. 9. 



Improvement in the Translation Process 159 

y 

Fig. 9. "X uses the same unit per time as Y. X will be/was part of Y. More/less X, more/less 
rapid growth/decrease of Y." 

2. "More/less X, more rapid/slower growth/decrease of Y." Y is a stock variable and X 
is not directly connected to Y. In addition, the variable type of X is still uncertain, but 
it is clear that there is another flow variable which connects X and Y. See Fig. 10. 

y 

X can be a stock or flow variable. 

X 

Fig. 10. "More/less X, more rapid/slower growth/decrease ofY" 

3. "More rapid/slower growth/decrease of X, more rapid/slower growth/decrease of 
Y. X andY use the same unit. One stays in the states expressed as X, and it can be 
in Yin the future." Both X andY are stock variables and their flows are connected 
(from the flow of X to the flow of Y). Both of the stocks are on the same connected 
pipeline. See Fig. 11. 

Fig. 11. "More rapid/slower growth/decrease of X, more rapid/slower growth/decrease of Y. X 
and Y use the same unit. One stays in the states expressed as X, and it can be in Yin the future." 

4. "One is in the state expressed as X, and after that, it moves to Y." Both X and Y 
are stock variables and they are connected by one flow, from X toY. Both of the 
stocks are on the same connected pipeline. The flow variable's definition is 
uncertain. See Fig.12. 

X y 

Fig. 12. "One is in the state expressed as X, and after that, it moves to Y" 



160 Y. Takahashi 

5. "After X changes/increases/decreases, Y changes/increases/decreases." X is a stock 
variable. A causal link starts from X toY (if Y is a flow or auxiliary variable) or to 
the flow of Y (if Y is a stock variable). See Fig.13. 

X 

y 

Fig. 13. "After X changes/increases/decreases, Y changes/increases/decreases" 

6. "More rapid/slower growth/decrease of X, more rapid/slower growth/decrease of Y." 
Both X and Y are stock variables and their flows are connected (from the flow of X 
to the flow ofY). However, they are not on the same connected pipeline. See Fig.14. 

X 

Fig. 14. "More rapid/slower growth/decrease of X, more rapid/slower growth/decrease of Y" 

7. "X andY changes/increases/decreases simultaneously." This is the same as above 
(6, Fig. 14) or a simple connection between flow or auxiliary variables (Fig. 15). 

Xl 

Y3 Y4 
Yl Y2 

Fig. 15. "X and Y changes/increases/decreases simultaneously" 



Improvement in the Translation Process 161 

When there are still uncertain connections after using the checks above, original 
translation correspondences suggested by Takahashi [7] can be used. 

3 Application 

Anderson and Johnson [9] introduced several case studies. In one of them, they relate 
the story that a computer manufacturer, ComputeFast, failed to support their 
customers when they succeeded in acquisition of market share (Section 5). First, 
possible variables are chosen from the story: customers, angry customers, profit, 
support backlog, and support personnel. Of course, modellers can add other variables 
when they find later. Second, in addition to these variables, change rates need to be 
considered; the variables above might stock variables with flow variables. According 
to the story, there are additional variables: obtaining new customers, unsatisfied 
(customers), (support) request, supported (requests), sales, support cost, and hiring 
personnel. Then, the story of ComputeFast can be paraphrased using the middle 
language, limited syntax and vocabulary shown in the previous section, as below. The 
numbers in parentheses correspond to the sentence examples in Section 2.3. 

[a] The customers of ComputeFast and their profit increase simultaneously. (7) 
[b] More profit, more rapid growth of customers. (2) 
[c] One customer is in the state expressed as customer, and after that, it moves to 

"angry customer." (4) 
[d] More "angry customers," slower growth of customers. (2) 
[e] More customers, more rapid growth of "support backlog." (2) 
[f] More "support backlog," more rapid growth of "angry customers." (2) 
[g] More "support personnel," more rapid decrease in profit. (2) 
[h] After "support backlog" increases, "support personnel" increases. (5) 
[i] Mter "support personnel" increases, "support backlog" decreases. (5) 

There are other choices of middle language expressions; there can be other choices 
of combination of variables. For example, the model part [b] can be expressed as 
"more rapid growth of customers, more rapid grows of profit" using sentence pattern 
6. All combinations should be expressed as this middle language. A variable can have 
possibility of having two or three choices of variable types. However, when all 
combinations with such a variable correspond to middle language expressions, its 
variable type would be determined. The important point is that using this limited 
syntax and vocabulary paraphrasing helps model builders to focus on correct 
distinctions concerning variable types and link structures. 

Fig. 16 is the stock flow diagram produced from the middle language sentences, [a] 
to [i] above. The letters in brackets correspond to the middle language sentences. 

This use of middle language is not always necessary; some can immediately determine 
variable types without the middle language. However, there are many cases in which one 
can choose two or three type of variables. Moreover, descriptive information often shows 
"decorative" information which is not essential for modelling. Paraphrasing to the middle 
language, which is also natural language, can help to clarify the problem structures by 
eliminating excessive information. 



162 Y. Takahashi 

[e][f] 

Fig. 16. After paraphrasing, model builders can connect variables automatically 

4 Conclusion 

This paper shows additional required information for the middle language suggested 
by Takahashi [7]. These additions make the middle language more complex to write. 
However, additions shown here can reduce the possibility of building inappropriate 
causal model structures. When obtaining an appropriate structure, it is easy to set 
parameters or functions in each variable definition using statistical or econometrica} 
techniques. Moreover, the complexity is not in syntax but in expression. This means 
that syntax checks and production of middle language description for given 
descriptive information can be automated. Thus, the improved translation process 
shown here is more practical than the original process. 

References 

1. Jacobson, I., Christerson, M., Jonsson, P., Oevergaad, G.: Object-oriented Software 
Engineering. Addison-Wesley, Reading (1992) 

2. Wolstenholme, E.: System Enquiry. Wiley, Chichester (1990) 
3. Sterman, J.: Business Dynamics. McGraw-Hill, New York (2000) 
4. Senge, P.M.: The Fifth Discipline. Doubleday (1992) 
5. Sweeney, L.B., Sterman, J.: Bathtub Dynamics: Initial Results of a Systems Thinking 

Inventory. System Dynamics Review 16(4), 249-286 (2000) 



Improvement in the Translation Process 163 

6. Richmond, B.: An Introduction to Systems Thinking. iseesystems (1992) 
7. Takahashi, Y.: Translation from Natural Language to Stock Flow Diagrams. In: Proceedings 

of 23rd International Conference of System Dynamics Society (2005) 
8. Richardson, G.P., Pugh III, A.L.: Introduction to System Dynamics Modeling. Pegasus 

Communications (1989) 
9. Anderson, V., Johnson, L.: Systems Thinking Basics. Pegasus Communications (1997) 



Developing a Simulation Model Using a 
SPEM-Based Process Model and Analytical 

Models 

Seunghun Park, Hyeonjeong Kim, Dongwon Kang, and Doo-Hwan Bae 

Division of Computer Science, 
Department of EECS, KAIST, Korea 

{seunghun,hjkim,dwkang,bae}~se.kaist.ac.kr 

Abstract. It is hard to adopt a simulation technology because of the dif­
ficulty in developing a simulation model. In order to resolve the difficulty, 
we consider the following issues: reducing the cost to develop a simula­
tion model, reducing the simulation model complexity, and resolving the 
lack of historical data. We propose an approach to deriving a simulation 
model from a descriptive process model and widely adopted analytical 
models. We provide a method to develop simulation models and a tool 
environment to support the method. We applied our approach in de­
veloping the simulation model for a government project. Our approach 
resolves the issues by the transformation algorithms, the hierarchical and 
modularized modeling properties of UML and (Discrete Event System 
Specification) DEVS, and widely adopted analytical models. 

Keywords: Simulation modeling, Hybrid simulation model, Software 
process modeling, SPEM, Analytical models. 

1 Introduction 

With the increasing interest in improving the effectiveness and efficiency of a 
software process, software process management becomes one of the most im­
portant issues. Organizations have tried to adopt software process simulation to 
manage their own software processes. However, it is difficult to adopt a simu­
lation technology. One of the reasons is that the simulation models tend to be 
difficult to build and maintain [1]. In order to resolve the difficulty in develop­
ing the simulation model, we consider some key aspects of simulation modeling 
technology: 

High cost for developing a simulation model 
Developing a simulation model requires the knowledge for designing the pro­
cess to be performed as well as the detailed skills for simulation tools or 
languages. It results in communication difficulties between the stakehold­
ers such as a process modeler, a project manager, and simulation devel­
oper, eventually causing difficulties in technology adoption. The consistency 
issue between the process model to be performed, the descriptive process 

J.L.G. Dietz eta!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 164-178, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 



Simulation Model from SPEM-Based Process Model and Analytical Models 165 

model, and the simulation model is another cost associated with the simula­
tion model development. The consistency issue forces the software engineers 
to spend additional effort to develop simulation models even if the organi­
zation has a detailed process model. We need the way to reduce the devel­
opment cost by automating the simulation model development as much as 
possible, minimizing the intervention of human agents. 
High complexity of the process being modeled 
The higher level of detail and fidelity to the process, greater amount of effort 
to build the simulation model [1]. Most simulation models are developed at 
once in the detailed level. It requires an amount of knowledge and experience 
to develop the model. We need the way to gradually develop the simulation 
model, lowering the abstraction level of the model. 

- Lack of the historical data 
Quantitative equations and parameters are usually obtained from the histor­
ical data. Most of companies may suffer from collecting data that are needed 
for establishing the quantitative equations and parameters. Although they 
collect the data, people are unable to provide timely and accurate quanti­
tative data due to the security or policy of company. We need the way to 
obtain the quantitative equations and parameters with less data. 

A simulation model consists of the two major components: a simulation model 
structure and the quantitative equations and parameters. The simulation model 
structure provides operational guidance on the sequence of a process. The quan­
titative equations define functional relationships between one dependent param­
eter and one or more independent parameters [2]. Therefore it needs to enable a 
process engineer to easily and efficiently specify the simulation model structure 
and define the quantitative models to ease the simulation technology adoption. 

We propose an approach to developing the simulation model derived from a 
descriptive process model and widely adopted analytical models such as CO­
COMO II [3]. This approach extends our previous approach by considering the 
definition of quantitative models [4]. We provide a method for deriving a simula­
tion model consisting of the three steps: identifying a simulation model structure, 
identifying the quantitative information, and generating a simulation model. We 
also suggest a tool environment to support the method. We use Software Pro­
cess Engineering Metamodel (SPEM) [5] and Discrete Event System Specifica­
tion (DEVS)-Hybrid formalism for our research [6]. SPEM is a metamodel for 
defining processes and their components as a standard for process modeling [5]. 
SPEM can be defined as a UML Profile. It allows SPEM to gain the benefit 
of the expressiveness of UML. The DEVS-Hybrid simulation model is based on 
the DEVS-Hybrid formalism, which is an extension of DEVS formalism to the 
hybrid software process simulation [6]. 

This approach enables the simulation model development cost to be reduced 
by automatically transforming a descriptive process model into a simulation 
model, minimizing the intervention of the stakeholders. Project managers can 
gradually develop the hierarchical simulation model by using UML and DEVS­
Hybrid simulation model. In addition, it enables the project managers to adopt 



166 S. Park et a!. 

the simulation technology although they do not obtain enough data to develop 
the quantitative equations. 

The structure of this paper is as follows. In Section 2, we briefly introduce 
SPEM and the DEVS-Hybrid formalism as a background. Section 3 introduces 
the related work. Section 4 describes the method to develop a simulation model 
and the tool environment. Section 5 provides a case study as a validation for 
this approach. Section 6 summarizes the main results of this paper and gives a 
plan for future work. 

2 Background 

2.1 SPEM 

The SPEM, defined by Object Management Group (OMG), is used to describe 
a concrete software development process or a family of related software devel­
opment processes [5]. SPEM uses an object-oriented approach to modeling a 
family of related software processes and allows us to use UML as a notation. 
The SPEM is built from the SPEM Foundation package, a subset of UML 1.4, 
and the SPEM Extensions package, which adds the constructs and semantics re­
quired for software process modeling. The core idea of SPEM is that a software 
development process is the collaboration between abstract active entities, called 
ProcessRoles, which perform operations, called Activities or Steps, on concrete, 
tangible entities, called WorkProducts. 

2.2 DEVS-Hybrid Formalism 

DEVS-Hybrid simulation model is based on the DEVS-Hybrid formalism, which 
is extended to accommodate the hybrid characteristics of software development 
process [6]. DEVS-Hybrid simulation model uses the system dynamics modeling 
to convey the details concerning the activity behaviors and managerial policies, 
while the discrete event modeling controls the activity start/finish and sequence. 
DEVS-Hybrid can represent the discrete activities explicitly and consistently 
with the continuously varying project environments by fully incorporating the 
feedback mechanism of the system dynamics. Similarly DEVS [7], DEVS-Hybrid 
simulation model has two kinds of models to represent systems. One is an atomic 
model and the other is a coupled model. While the coupled model is the same 
as DEVS, the atomic model is extended. The DEVS-Hybrid formalism for the 
atomic model as follows [8]: 

DEVS-Hybrid =(X, Y, yphase, S, t5ext, t5int, Cphase, A, ta) 

where: 
X is a set of input values. Y is a set of output values. yphase is a set of output 
values, which is the phase event triggered by phase event condition function 
( Cphase). S is the set of states. t5ext : Q X X ---+ S is the external transition 



Simulation Model from SPEM-Based Process Model and Analytical Models 167 

function, where Q = {(s,e)ls E S,O::::; e::::; ta(s)} is the total state set, e is the 
time elapsed since last transition. 8int : S ----+ S is the internal transition function. 
Cphase : Q x X ----+ Baal is the phase event condition function for conditioning the 
execution of the phase event. ,\ : S ----+ Y is the output function. ta : S ----+ Rt 00 

is the set positive reals between 0 and oo. ' 
An atomic model can stay only in one state at any time. The maximum time 

to stay in one state without external event is determined by ta( s) function. 8ext 

distinguishes the input into discrete or continuous one, and the input follows 
two different processing path after that. When an atomic model is in a state 
0 ::::; e ::::; ta( s), it changes its state by 8ext if it gets an external discrete event. 
If the model gets the external continuous input, which contains the fiow(rate) 
and stock variables, the model updates the stock variables by using the equation 
as shown in [6]. If possible remaining time in one state is passed, it generates 
output by ,\ and changes the state by 8int· If a phase event condition function 
becomes true, the phase output event(Yphase) occurs. 

A coupled model is constructed by coupling the atomic models or other cou­
pled models. Through the coupling, the output events of one model are converted 
into input events of other models. In DEVS theory, the coupling of DEVS mod­
els defines new DEVS models (i.e., DEVS is closed under coupling) and then 
complex systems can be represented by DEVS in a hierarchical way. In the 
DEVS-Hybrid coupled model, the two atomic models are connected by input 
and output ports internally, which is called Internal Coupling (IC). An atomic 
model is connected by external input which is called External Input Coupling 
(EIC) and external output which is called External Output Coupling (EOC) 
with a coupled model. 

The DEVS-Hybrid simulation model is executed by DEVSim++, which is a 
C++ based DEVS simulation environment [9]. 

3 Related Work 

There are researches to develop a simulation model more systematically and 
efficiently. Pfahl et al. developed a methodology for integrated measurement, 
modelling and simulation (IMMoS) [2]. IMMoS helps industrial practitioners to 
build system dynamics (SD) models efficiently and effectively. IMMoS integrates 
system dynamics modeling with goal-oriented measurement and descriptive pro­
cess modeling. In order to integrate the descriptive process model into a SD 
model, authors map the descriptive process model elements to SD model flow 
graphs representation. Quantitative models by goal-oriented measurement are 
used to define start conditions, implicit management decision rules, and explicit 
management decision rules of SD models. This approach provides the system­
atic methodology to develop a simulation model based on the descriptive process 
model. However, the approach still requires simulation model developers to share 
the knowledge about each model which causes the communication difficulty. It 
also does not provide the way to ensure the consistency between the descriptive 
process model and the simulation model. 



168 8. Park et al. 

Raffo et al. proposed the generalized process simulation model (GPSM) con­
cepts [17] . Authors introduce generic building blocks which enable modulariza­
tion, and reuse of components. A GPSM is developed by tailoring the existing 
generic GPSM blocks. This work makes it easy to reduce the time and cost of 
building a simulation model by reusing the modularized building blocks. How­
ever, it still requires the communication overhead between stakeholders to select 
and tailor the building blocks. In addition, there is no guidance to develop the 
quantitative equations. 

Donzelli proposed the hybrid simulation modeling approach [11 J. He describes 
the simulation model structure by using a discrete-event queuing network. He 
uses the analytical and the continuous modeling methods to describe the dy­
namic behavior of each activity. This approach allows the simulation model 
developers to utilize the predefined models. However, we should describe the 
process model in queuing network. It makes the process model to be difficult to 
develop and understand. As the result , the communication cost is increased. 

4 A Method for Developing a Simulation Model and a 
Tool Environment 

Figure 1 illustrates the overview of our approach to derive a DEVS-Hybrid 
simulation model from a SPEM-based process model and the analytical models. 

Identify the simulation 
model structure 

E_.o 

~ Identify quantitative lntonnatlon 

·· ...... -~--· .-...-,.,.,..-
~re····· -··-

tmutatlon model 

Fig. 1. The procedure of the simulation model development 

At first, we select the part of the process to be simulated and develop a pro­
cess model using UML representation based on SPEM. The SPEM-based process 
model represents the simulation model structure. And then we define quantita­
tive relationships by using an influence diagram and the analytical models widely 
adopted in the software community. The quantitative relationships are integrated 
into the simulation model structure. Finally, the integrated simulation model 
structure is automatically transformed into a DEVS-Hybrid simulation model. 



Simulation Model from SPEM-Based Process Model and Analytical Models 169 

4.1 Identifying the Simulation Model Structure 

Simulation models can be developed at different levels of scope and depth to suit 
organization's needs [1]. We should decide which part of a process is simulated 
depending on the scope and purpose of simulation. For example, when we want 
to analyze the impact of requirements change on the schedule or effort, we may 
consider the directly and indirectly affected parts of a process. We may also 
consider the whole process to identify the impact of the change on the process 
performance. After deciding the part of a process to be simulated, we model the 
part of a process using UML representation. 

The UML profile for SPEM gives benefits of using UML diagrams to present 
different perspectives of a software process model [5]. We use the two UML di­
agrams among them: Use case diagram and Activity diagram. The examples 
are presented in Section 4. Use case diagram describes the assignment of Pro­
cessRoles to Phases or Activities and represents the Work Breakdown Structure 
(WBS) of the process. For example, a Phase can include many Activities. Stereo­
typed «include» relation is used to specify the relationship between a Phase 
and the Activities which comprise the phase. Using the use case diagram, we can 
hierarchically construct the coupled model of a DEVS-hybrid simulation model. 

Activity diagram represents the sequence of activities with their input and 
output WorkProducts. Activity diagram can also illustrate the behavior of an 
activity with the ActionStates which represent Steps of an Activity. In general, 
the statechart diagram illustrates the behavior of an activity. SPEM specification 
defines that Step should be used only in the activity diagram. In this usage of 
the activity diagram, it defines how to change the state based on the input 
message and generates outputs after entering a specific state like the statechart 
diagram in order to calculate the quantitative parameters. All the parameters 
defined in the activity diagram are used as attributes of the atomic model and 
the attributes are instantiated by the scenario ofDEVS-hybrid simulation model. 

4.2 Identifying Quantitative Information 

We should identify the causal relationships to represent the dynamic behavior 
of a simulation model. A cause-effect or influence diagram is widely used to 
describe the relationships. These diagrams describe the factors which typically 
change the behavior of other project factors and the causal relationships between 
the factors. The causal relationships can be obtained by analyzing the literature 
or expert's opinion. 

Several approaches tried to apply well-known analytical models to a simula­
tion technology. We have analyzed the simulation models which use the ana­
lytical models. Abdel-Hamid and Madnick use COCOMO to obtain the initial 
estimates for the completion time, the number of tasks to be accomplished, and 
the required effort and manpower [10]. The initial estimates provide the baseline 
performance of the process. Donzelli et al. apply COCOMO equations to esti­
mate the size of the output artifacts and the effort and delivery time required 
to perform the corresponding tasks [11]. They also apply the Rayleigh model to 



170 S. Park et al. 

predict the staffing profile. Madachy develops a system dynamics model of an 
inspection-based process to evaluate the effects of inspections [12]. The develop­
ment rate of each phase is constrained by the manpower allocation and current 
productivity which are derived from COCOMO. The modified Rayleigh staffing 
curve dynamically distributes the effort based on the development progress com­
pared to the development schedule. These approaches give us insights into the 
possibility of using analytical models in a simulation technology. 

We have provided the way to use COCOMO II to estimate the effort, schedule, 
and quality of the software development project when the project environment is 
dynamically changing [8]. We decomposed the time-aggregated effort and sched­
ule estimates of COCOMO II into the time-continuously varying development 
rate of each phase by using the effort and schedule distribution data. The ef­
fort and schedule estimates provided by COCOMO II are time-aggregated in 
that they just show the end state of the project. To dynamically simulate the 
development process, the model needs a small-time incremented development 
rate, which also needs to be dynamically changed during the course of a project 
according to the effects of the dynamic environment. 

4.3 Generating the Simulation Model 

The quantitative equations and parameters are incorporated into the activity 
diagrams which describe the behavior of each activity. The keyword do represents 
an ongoing activity that is performed as long as the modeled element is in 
the state. Using the keyword do, we specify the equations and parameters. For 
example, if we want to calculate the development rate of a specific activity, 
we describe the equation for the development rate with the expression, "do 
DevelopmentRate...A = ManpowerRate...A *Productivity ..A". 

After integrating the quantitative equations and parameters into the SPEM­
based simulation model structure, we can transform the simulation model struc­
ture into a DEVS-hybrid simulation model. We propose the algorithms to 
automate the transformation: the structural transformation algorithm and the 
behavioral transformation algorithm. 

The structural transformation algorithm uses a use case diagram and the 
activity diagram describing the overall sequence of all the activities in a pro­
cess. Figure 2 shows the structural transformation algorithm. We assume the 
activities in the activity diagram are one to one mapped to the use cases stereo­
typed with «Activity» in the use case diagram. The use cases stereotyped 
with «Phase» are transformed into the coupled models. Activities included in 
a phase are transformed into the corresponding atomic models. The interactions 
between the activities in the same phase are transformed into ICs of the phase. 
Inputs from the activities in the different phases are transformed into the in­
put variables of the coupled model and EICs between the atomic models which 
receive the inputs and the coupled model including the atomic models. Simi­
larly, outputs toward the activities in the different phases are transformed into 
EOCs and output variables of the coupled model. One of the output variables is 
transformed into the phase output variable. 



Simulation Model from SPEM-Based Process Model and Analytical Models 171 

Input: a UseCase diagram, an Activity diagram describing the overall structure 
Output: Coupled model 

- UC,, UCm, UCn : use cases in the UseCase diagram 
- AC1, ACm, ACn: activities in the Activity diagram 
- S :a set of use cases which are the targets of include relation associated with UC, 
- T : a set of activities receiving the work product which AC1 sends 
-WP :the work products between AC1 and ACm 
-Wq: the work products between ACn and AC1 
- Z : a set of activities sending the work product to AC1 

For all use cases UC1 in the UseCase diagram 

if UC 's stereotype ="Phase" or "WorkDefinition?' 
{ . 

) 

UC, ~ Coupled Model 

For ~CU~\Yc S { 
J J 

I* Construct outgoing relations from an activity */ 
For all ACmE T { 
UCm~ACm 

Ifo/cC~ ~ S) II if two activities are performed in the same phase 

Else { P II iftwo activities are performed in the different phase 
Eoc~w 

lf(!(W E! Yor ~ •••• ~ II w, does not already exist as an output 
Y~W,or~._~w, 

I* Construct incoming relations to an activity •1 
For all AC. EZ { 

uc.~Ac. 

If(IJ(?!b.~S) II iftwo activities are performed in the same phase 

Else { q II iftwo activities are performed in the different phase 
Eic~w 
If(!(W El: X)) IIW, does not already exist as an input 
x~\\1, 

Else ifUC,'s stereotype~ "Activity" 
UC, ~ Atomtc Model 

Fig. 2. The structural transformation algorithm 

Figure 3 shows the behavioral transformation algorithm. All ActionStates rep­
resenting the Steps are transformed into the states of the atomic model and all 
external events are transformed into input variables. Guard condition on a tran­
sition is used to check whether an activity is complete or not and transformed 
into the phase event condition function. The action with a guard condition is 
transformed into the phase output variable. The transition triggered by an exter­
nal event is transformed into the external transition function. On the other hand, 
the transition triggered when the specified time is elapsed is transformed into 
the internal transition function and the action on the transition is transformed 
into the output function. 

We need to confirm that the transformation algorithms operate correctly. 
We validate the transformation algorithms with the criteria proposed in [13]: 
termination and behavioral equivalence. The termination means that the trans­
formation algorithm should be applied finitely. The number of applications of 
the structural transformation algorithm and the behavioral transformation algo­
rithm are limited to the number of use cases. Therefore, the transformation algo­
rithms in our approach are applied finitely. The behavioral equivalence means the 
behavior of a source model is preserved in the transformed model. The behavior 
of models is described in the activity diagrams and atomic models. Table 1 shows 



172 S. Park et al. 

Input: a UseCase diagram, Activity diagrams describing the behavior of the activities 
OUtput: Atomic model 

- UC,: a use case in the UseCase diagram 
~ S<W»s : states in an atomic model 
- Ssrep : ActionStates in the Activity diagram 
- E : external events on all the transitions in an Activity diagram 
-A: actions on all the transitions in an Activity diagram 
- AE : an action associated with the TimeEvent 

For all use cases in the UseCase diagram 

ifUC,'s stereotype= ••Activity., { 
For the activity diagram which is mapped to UC, 

~:::;s;snep 

if (guard condition on a transition) 

2::::.: ::..ard condition 
) 
Else 

Y~A 

For all events e in the Activity diagram 
if(e = = "qfter") { //if the event is a TimeEvent 

0'-"l =(the souxce state, the target state) 
.il =(the source state, AE) 
ta = time of" qfter" 

) 
Else ( 

o • .u =(the source state, the target state, e) 
ta = infinity 

Fig. 3. The behavioral transformation algorithm 

Table 1. The mapping between the elements of activity diagram and atomic model 

The elements of an 
DEVS-Hybrid activity diagram 

Event: E Input value: X 
Output value : Y, 

Action: A Phase output value : yphase 
Output function (.X) 

ActionState: S State: S 

Transition: T 
External transition function (8ext) 
Internal transition function ( 8;nt) 

TimeEvent: after Time advance function(ta) 
Guard condition Phase condition function ( Cphase) 

the mapping between the elements of an activity diagram and an atomic model. 
The mapping is deduced from the fact that the two models are based on the 
state machine. As shown in Table 1, the behavioral properties of every element 
of an activity diagram is one to one mapped to atomic model of DEVS-Hybrid 
simulation model. The behavior of the source model, therefore, is preserved in 
the transformed model. 

4.4 Tool Environment to Support the Method 

The proposed method can be automatically performed by supporting tools. 
Figure 4 shows the tool environment to support the method we proposed. This 



Simulation Model from SPEM-Based Process Model and Analytical Models 173 

Process modeler 

--- -""='~: 

Simulation model 
(C++ classes) 

DOM processor 

Fig. 4. Tool environment 

tool environment can cover the overall procedure we proposed. The process mod­
eler supports the process modeling using UML representation based on SPEM. 
We can develop the simulation model structure and integrate the quantitative 
information using the process modeler. The process modeler exports a XML 
Metadata Interchange (XMI) file for an interchanging model in a serialized form. 
Extensible Stylesheet Language Transformations (XSLT) processor automati­
cally transforms the exported XMI file into a XML file by applying the transfor­
mation algorithms. Document Object Model (DOM) processor finally generate 
DEVSim classes executed with DEVSim++ engine. 

5 A Case Study 

In this section, we provide a case study for validat ing our approach in the in­
dustry. We develop the simulation model supporting for deciding the acceptable 
requirements creeping. The simulation model can help project managers to an­
alyze how much requirements can be added or changed in given constraints on 
schedule or cost. We describe the procedure for developing the simulation model 
and show the result of simulation. The project int roduced in this paper is the 
same as in [4]. The project type is the new development of information system. 
The initial size of the project is 30KLOC. T he lifecycle model is t he typical wa­
terfall model. There has been the requirements creeping as the following pattern: 
Design (77%), Code (13%), Test (10%). 

5.1 The Descriptive Process Model Represented by UML 

There was several subprocesses in the project. We selected the process related 
to the business process management system. The use case diagram shown in 
Figure 5 describes the part of the decomposition of the process into several phases 
and activities applied to the project. The process component "Develop Business 
Process Management (BPM)" consists of the four phases: "Requirements", "De­
sign" , "Code", and "Test" . Each phase also consists of several activities such as 
"Identify the customer requirements" . Figure 6 shows the inputs, outputs, and 
sequences of activities. T he swimlane represents ProcessRoles assigned to each 



174 S.Parketal. 

Perform• 
""-... <ProcossRolo> 

""-..,. 

ProcessPerformer> 
0 

-<CProce:ssRole Developtr 

Fig. 5. The part of the use case diagram of the descriptive process model 

Fig. 6. The part of an activity diagram of the descriptive process model 

activity. This activity diagram gives the overall sequence of the process. Figure 7 
describes the behavior of the activity "Identify the customer requirements". This 
activity diagram focuses on the timing of process steps. The activity consists 
of the two steps: "Interview with customer", and "Develop requirements list". 
When the activity "Identify the customer requirements" receives the work prod­
uct "Customer _needs" as an input, the activity enters to the state "Interview 
with customer" and calculates t he effort and the amount of the performed work. 
After entering the state "Develop requirements list", TimeEvent occurs after 
the amount of time given to the parameter "TimeForDevelopList" elapses. With 
this event, if customer needs are identified over than 90%, then the work prod­
uct "RequirementsJist" is produced as an output and transferred to the next 
activity "Analyze the requirements". 



Simulation Model from SPEM-Based Process Model and Analytical Models 175 

Fig. 7. The activity diagram for the activity "Identify the customer requirements" 

5.2 The Quantitative Information 

The quantitative equations and parameters are defined based on the COCOMO 
II proposed in [8]. For example, we can calculate the development rate of each 
activity by the equation, DevelopmentRate = ManpowerRate x Productivity. 
The productivity of each activity is the amount of the job size that can be 
performed by the unit effort in the activities. The development rate of each phase 
is the product of the manpower rate and productivity of each activity, which 
shows how much work is processed in the unit time. The Manpower Rate of each 
activity is the rate of how many personnel is put into the activity in the unit time. 
This can be obtained by multiplying the two values: average full-time equivalent 
software personnel to complete the project, which is derived by dividing the 
total effort by the total schedule and the rate of effort(effort(%)/schedule(%)) 
required in the activity. 

We adopt the use case point method to calculate the available number of 
requirements [14], [15]. We assume one use case represents one requirement. 
Given schedule or cost constraints, we can know the size of available requirements 
creeping in lines of code unit. We use the size as an input of COCOMO II. 
Equation (1) shows how to calculate the number of use cases. 

L uci X pi = A X (Size)B X II EM. (1) 

uci represents the number of use cases which can be developed additionally. pi 
means the required effort per a use case. Pi has different values based on the 
size of software, but we assume it has same value in one project. 

5.3 DEVS-Hybrid Simulation Model 

Figure 8 shows the part of the derived simulation model by applying the transfor­
mation algorithms to the SPEM-based process model including the quantitative 
information. 

Each phase is transformed into the corresponding coupled models and in­
cludes the activities which are transformed into the corresponding atomic mod­
els. For example, the phase "Requirements" includes the two activities in the 
use case diagram: "Identify customer requirements" and "Analyze the require­
ments". The coupled model "Requirements" also includes the two atomic models 
in the DEVS-Hybrid simulation model: "Iden_CusLReqs", and "Analy_Reqs". 
The name of those atomic models has the compressed form of the activity "Iden­
tify customer requirements" and the activity "Analyze the requirements", re­
spectively, because of the convenience of displaying. The work products of the 



176 S. Park et al. 

Fig. 8. The part of the transformed DEVS-Hybrid simulation model 

activities are transformed into the corresponding EICs, EOCs, and ICs. The 
work product "RequirementsJist", for example, is sent from the activity "Iden­
tify customer needs" and received by the activity "Analyze requirements" in 
the descriptive process model. Because the two activities are in the same phase, 
the work product should be transformed to IC followed by the structural trans­
formation rule. The IC between the atomic model "Identify Customer require­
ments" and the atomic model "Analyze requirements" is "RequirementsJist". 
The transformation, therefore, is correctly performed. 

The simulator which is implemented using the DEVSim++ and available at 
[16] for our research. We can design various simulation scenarios by changing the 
upper limit of the schedule or cost. The simulation tool can show the simulation 
results with the numerical values and a chart. Figure 9 shows the simulation 
results under various cost upper limits. When we set the cost upper limit as 10% 
of the initial cost, 24 use cases or requirements can be acceptable at the maxi­
mum. After the cost upper limit reaches 30% of the initial cost, few requirements 
can be accepted. The project manager decided that he could accept less than 40 
requirements because accepting over than 40 requirements is not cost-effective . 

.. . , ....---I .. 

- /-~ -! 
,. . 

0 .. 
/ . ,. . 

20 --. _. 0.14 0 11 0 .22 0,26 ... 0.!4 o.n oc2 046 OS 

cost up,..r limrt 

Fig. 9. The number of acceptable use cases 



Simulation Model from SPEM-Based Process Model and Analytical Models 177 

6 Conclusion and Future Work 

We proposed an approach to developing simulation models by deriving a simu­
lation model from the predefined models. This approach can resolve the issues 
that we raised. 

- High cost for developing a simulation model 
Once a descriptive process model is developed, a simulation model can be 
automatically generated from the descriptive process model. It minimizes 
the interventions of stakeholders resulting in reduction of communication 
cost. It also ensures the consistency because the descriptive process model 
is directly transformed into a simulation model. 
High complexity of the process being modeled 
UML supports the hierarchical modeling with several diagrams. DEVS-Hybrid 
formalism also supports the hierarchical modeling with the coupled models, 
and the atomic models. We can develop the overall structure of a simulation 
model at first and then build up the detailed behavior. 
Lack of the historical data 
There are many predefined analytical models such as COCOMO. Those an­
alytical models are developed by the historical data from a variety of orga­
nizations. By adopting the analytical models, we can supplement the lack of 
historical data. But we need to calibrate the models before adopting. 

As a future work, we will apply our approach to a variety of methods for quan­
titatively analyzing a descriptive process model. At first we will apply our ap­
proach to analyzing the impact of process changes during process enactment 
in Process-centered Software Engineering Environments (PSEEs). A PSEE con­
tains the descriptive process model to be enacted. By transforming the process 
model to be changed into a simulation model and simulating the model, it can 
help a project manager decide whether the change is adopted or not. We will 
apply our approach to process construction or process tailoring by using the 
existing process modules used in constructing a simulation model. 

Acknowledgments. This research was supported by the MIC(Ministry of In­
formation and Communication), Korea, under the ITRC(Information Technology 
Research Center) support program supervised by the IITA(Institute of Informa­
tion Technology Advancement)(IITA-2008-(C1090-0801-0032)). This work was 
also partially supported by Defense Acquisition Program Administration and 
Agency for Defense Development under the contract. 

References 

1. Raffo, D., Spehar, G., Nayak, U.: Generalized Simulation Models: What, Why and 
How? In: ProSim 2003, Oregon (2003) 

2. Pfahl, D., Ruhe, G.: IMMoS: A Methodology for Integrated Measurement, Mod­
elling and Simulation. Software Process Improvement and Practice 7(3-4), 189-210 
(2002) 



178 S. Park et al. 

3. Boehm, B.: Software Cost Estimation with COCOM0-11. Prentice-Hall, Englewo­
ord Cliffs (2006) 

4. Park, S., Choi, K., Yoon, K., Bae, D.: Deriving Software Process Simulation Model 
from SPEM-based Software Process Model. In: APSEC 2007, Nagoya, Japan, pp. 
382-389 ( 2007) 

5. Software Process Engineering Metamodel Specification, Version 1.1, OMG Docu­
ment formal/05-01-06 (2005) 

6. Choi, K., Bae, D., Kim, T.: An approach to a hybrid software process simulation 
using DEVS formalism. Software Process Improvement and Practice 11(4), 373-383 
(2006) 

7. Zeigler, B., Pracehofer, H., Kim, T.: Theory of Modeling and Simulation, 2nd edn. 
Academic Press, New York (2000) 

8. Choi, K.: Hybrid Software Process Simulation Modeling for Analyzing Software­
Intensive System Acquisition. Ph.D Dissertation, KAIST (2007) 

9. Kim, T.: DEVSimHLA v2.2.0 Developer's Manual, KAIST (2004) 
10. Abdel-Hamid, T., Madnick, S.: Software Project Dynamics: An Integrated Ap­

proach. Prentice-Hall, Englewood Cliffs (1991) 
11. Donzelli, P.: A Decision Support System for Software Project Management. IEEE 

Software 23(4), 67-75 (2006) 
12. Madachy, R.: System dynamics modeling of an inspection-based process. In: Pro­

ceeding of the 18th ICSE, pp. 376-386 (1996) 
13. Lara, J., Taentzer, G.: Automated Model Transformation and its Validation Using 

AToM3 and AGG. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 
2004. LNCS (LNAI), vol. 2980, pp. 182-198. Springer, Heidelberg (2004) 

14. Smith, J.: The estimation of effort based on use cases. Rational Software, white 
paper (1999) 

15. Mohagheghi, P., Anda, B., Conradi, R.: Effort Estimation of Use Cases for In­
cremental Large-Scale Software Development. In: ICSE 2005, St Louis, USA, pp. 
303-311 (2005) 

16. Project Management Simulator, 
http://spic.kaist.ac.kr/~selab/html/Simulator.zip 

17. Raffo, D., Nayak, U., Wakeland, W.: Implementing Generalized Process Simulation 
Models. In: ProSim 2005, St. Louis (2005) 



Formal Modeling and Discrete-Time 
Analysis of BPEL Web Services 

Radu Mateescu1 and Sylvain Rampacek2 

1 INRIA / VASY, Centre de Recherche Grenoble- Rh6ne-Alpes, France 
Radu.Mateescu@inria.fr 

2 LE2I, Universite de Bourgogne, Dijon, France 
Sylvain.Rampacek@u-bourgogne.fr 

Abstract. Web services are increasingly used for building enterprise 
information systems according to the Service Oriented Architecture 
(SoA) paradigm. We propose in this paper a tool-equipped methodology 
allowing the formal modeling and analysis of Web services described in 
the BPEL language. The discrete-time transition systems modeling the 
behavior of BPEL descriptions are obtained by an exhaustive simulation 
based on a formalization of BPEL semantics using the Algebra of Timed 
Processes (ATP). These models are then analyzed by model checking 
value-based temporal logic properties using the CADP toolbox. The ap­
proach is illustrated with the design of a Web service for GPS navigation. 

Keywords: Web services, formal specification, model checking, exhaus­
tive simulation, process algebra. 

1 Introduction 

Information systems present in companies and organizations are complex soft­
ware artifacts involving concurrency, communication, and coordination among 
various applications that exchange data and participate to business processes. 
Service Oriented Architecture (SoA) [15] is a state-of-the-art methodology for 
developing information systems by structuring them in terms of services, which 
can be distributed and composed over a network infrastructure to form complex 
business processes. Web services are a useful basis for implementing business pro­
cesses, either by wrapping existing software or by creating new functionalities as 
combinations of simpler ones. BPEL (Business Process Execution Language) [14] 
is a standardized language of wide industrial usage for describing abstract busi­
ness processes and detailed Web services. It allows to capture both the behavioral 
aspects (concurrency and communication) and the timing aspects (duration of 
activities) of Web services. 

The BPEL language allows to create Web services either from scratch, or as 
the composition of existing sub-services, which can be invoked sequentially (one 
at a time) or concurrently (several ones at the same time). Each Web service 
described in BPEL can be used as a sub-service by other Web services (described 

J.L.G. Dietz et a!. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 179-193, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 



180 R. Mateescu and S. Rampacek 

in BPEL or not), thus enabling a hierarchical construction of complex Web ser­
vices. A BPEL business process is defined by a workflow consisting of various 
steps, which correspond internally to algorithmic computations (possibly with 
time constraints) and externally to message-passing interactions with a client. 
Business processes are typically built upon existing Web services (although this 
is not mandatory), each one being specialized for carrying out a particular task. 
These sub-services are invoked every time a specific information is needed dur­
ing a step of the workflow; therefore, a business process is not simply the set of 
sub-services it is built upon, but acts as an orchestrator of these sub-services in 
order to provide newly added functionalities. 

The conjunction of concurrency and timing constraints makes business pro­
cesses complex and requires a careful design in order to avoid information losses 
and to obtain a satisfactory quality of service. In this context, formal modeling 
and analysis techniques available from the domain of concurrent systems allow 
to improve the quality of the design process and to reduce the development 
costs by detecting errors as soon as possible during the business process life 
cycle. These techniques can operate successfully on languages equipped with a 
formal semantics definition, from which suitable models can be constructed and 
analyzed automatically. 

In this paper, we propose a tool-supported approach for the formal modeling 
and analysis of business processes and Web services described in BPEL. Our 
approach consists of the following ingredients: the definition of a formal semantics 
of BPEL in terms of process algebraic rules, taking into account the discrete­
timing aspects [11,12]; the automated generation of models (state/transition 
graphs) from the BPEL specifications using an exhaustive simulation based on 
the formal semantics rules, implemented in the WSMOD tool; and the analysis of 
the resulting models by using standard verification tools for concurrent systems, 
such as CADP [9]. We illustrate the application of this approach to the design 
and discrete-time analysis of a Web service for GPS navigation. 

Related work. The modeling and analysis of Web services benefits from a con­
siderable attention in the research community. The WSAT tool proposed in [5,6] 
gives to Web service designers the possibility of verifying LTL properties on BPEL 
business processes by applying the SPIN model checker. Each BPEL process is 
transformed into a PROMELA model (via a pattern) and connected to other pro­
cesses in the description. This work covers only the untimed aspects of BPEL. 

Another approach, proposed in [28], uses the CRESS (Chisel Representation 
Employing Systematic Specification) notation for specifying the untimed behav­
ior of Web services. CRESS descriptions are translated into the formal description 
technique LOTOS [13] and analyzed with dedicated tools, such as TOPO, LOLA or 
CADP. A direct translation from BPEL to LOTOS is given in [4], enabling the use 
of the aforementioned tools for analyzing the untimed behavior of Web services. 
BPEL was also used as target language for producing executable Web services 
from LOTOS specifications [2,25]; this allows to combine the advantages of the 
formal verification using CADP and of the deployment and execution features of 
BPEL. 



Formal Modeling and Discrete-Time Analysis of BPEL Web Services 181 

Compared to existing work, our approach differs in the following respects: it is 
based on a translation ofBPEL directly into state/ transition graphs, without using 
an intermediate language such as PROMELA or LOTOS, thus being potentially more 
efficient; and it handles not only the behavioral, but also the discrete-time aspects 
of BPEL descriptions. 

Paper outline. Section 2 presents our methodology and software platform for 
modeling and analyzing BPEL descriptions. Section 3 describes the GPS Web 
service case-study and its analysis using the platform. Finally, Section 4 gives 
some concluding remarks and directions for future work. 

2 Modeling and Analysis Approach 

Web services can be seen as complex distributed systems that communicate by 
message-passing. Therefore, their design methodology can be naturally supported 
by the formal modeling and analysis techniques stemming from the domain of 
concurrent systems. To apply these techniques, it is necessary to represent the 
dynamic behavior of Web services in a formal, non-ambiguous manner. 

BPEL 
formalization 1-+------/ 

WSMod 

exhaustive 
simulation 
driven by 
ATP rules 

~------------------_J 

(ATP) 

CADP 

Fig. 1. Platform for Web service modeling and analysis 

The approach we propose for the modeling and analysis of Web services de­
scribed in BPEL is illustrated in Figure 1. Our software platform consists roughly 
of two parts, described in the sequel: the BPEL descriptions are first translated 
into discrete-time LTSs using the WSMoD tool, and are subsequently analyzed 
using the CADP verification toolbox. 

2.1 Translation from BPEL to Discrete-Time LTSs 

The behavior of a Web service comprises not only the concurrency and com­
munication between its various constituent activities, but also the delay of re­
sponse of the service. These aspects can be modeled using DT LTSs (discrete-time 



182 R. Mateescu and S. Rampacek 

11 ..... . ..... "" ... ....... 
e-•• ._ . .............. " .. ~~ ..... 
rtd)--~.-.... ... --
11'0-alf...olll,~ . ~·..._, 
uftt«<lll~fllh•~~p , u,...., 

, .............. rwti" ........ -­
~·-....,..ID-illiNI, ...... 
lfOI&.,JtCiiltD?t ......... ,.., . ... . 
•~•M~St-ro-~ .... - . 
~ ....... :r..-.~ 
~ ....... :r.-........ " '"""" ..... }. 
(?f"OIS .... AI • .-.111'(1111. 

~NCliiiJC'I'M···.s ....... -·II'C't. 
e~~~~~'rdlc""-..,_" 

101. r~·~"'''"'-""" 
.,.. ~l'tCIIII(IQ.O.MIQOJil)II.G, 

..,.,0J..0(1G I , IX.UI)OJ "'"'40 
j,M4.0.11'1110(t.X.IJt.,_!l(_......., ...... 
,._.H .t P ..... H4 "" ... M0 
~ .... t .. - ... 111111-
..,....,......,...o~ ........ m 

,. ............ "'''lltl«o.....,_..,, 
-·~~-tl4-Uihf1::t") 

11--. .. tt .... .,.._ .. .... ,..,,. .... , .... ,.. ... ., .. ) 

,.., 

IAU 

Fig. 2. Screenshot of the WSMoo tool 

Labeled Transition Systems ), i.e., state/transition graphs in which every tran­
sition is labeled by an action performed by the Web service. The actions 
are of the following kinds: emissions and receptions of messages, prefixed by 
'! ' and'?', respectively; elapsing of time, represented by the symbol x (discrete­
time tick, also noted time); the internal action T (or tau) denoting unobservable 
activity of the service; and the terminating action J (or done), which is the last 
internal action that a service can do. 

The global behavior of the Web service (and t herefore, the actions it can 
perform) is obtained by an exhaustive simulation of t he BPEL description , per­
formed by the WSMoo tool (see a screenshot in Figure 2) , which is able to 
handle both discrete [11] and continuous [12] time representations. WSMoo 
takes two different inputs (see Figure 1): 

A Web service description in BPEL [14], a standardized language allowing to 
specify the behavior of business processes. BPEL supports two different types 
of business processes: executable processes specify the behavior of business 
processes in full detail, such that they can be executed by an orchestration 
engine; and abstract business protocols specify the public message exchanges 
between the service and a client (i.e., excluding the message exchanges which 
take place internally, e.g., during invocations of sub-services) . 
A formal representation of the BPEL semantics, based on the Algebra of 
Timed Processes (ATP) [24], which specifies using operational rules how the 
model of the business process behavior is generated. Depending on the time 



Formal Modeling and Discrete-Time Analysis of BPEL Web Services 183 

representation chosen, the resulting model is either a DTLTS, or a timed 
automaton (TA) [1]. An excerpt of the ATP rules formalizing the BPEL se­
mantics in discrete-time is shown in Table 1. For example, the process "time" 
can only elapse time (represented by the x action), and the process "receive" 
or "reply" can send or receive a message (first rule) or elapse time too (second 
rule). 

To generate the model representing the behavior of the input BPEL descrip­
tion, WSMOD performs an exhaustive simulation guided by the operational ATP 
rules. The tool is also able to synthesize automatically the model of an adapted 
client interacting with the Web service, whose behavior complies with that of the 
service as regards emission and reception of messages, time elapsing, etc. In this 
study, we focus only on the Web service model generation feature of WSMoD. 

2.2 Analysis of Discrete-Time LTSs 

Once the DTLTS model of the BPEL specification under design has been obtained, 
it can be analyzed by using standard tool environments available for concur­
rent systems. For our purpose, we use the CADP (Construction and Analysis 
of Distributed Processes) toolbox [9] dedicated to the formal specification and 
verification of concurrent asynchronous systems. CADP accepts as input specifi­
cations written in process algebraic languages, such as LOTOS [13], FsP [18,26] 
or CHP [19,27], as well as networks of communicating automata given in the ExP 
language [16]. These formal specifications are translated by specialized compilers 
into labeled transition systems (LTss), i.e., state spaces modeling exhaustively 
the dynamic behavior of the specified systems. LTSs are the formal model un­
derlying the analysis functionalities offered by CADP, which aim at assisting the 
user throughout the whole design process: code generation and rapid prototyp­
ing, random execution, interactive and guided simulation, model checking and 
equivalence checking, test case generation, and performance evaluation. 

An LTS can be represented within CADP in two complementary ways: either 
explicitly, by its list of states and transitions encoded as a file in the BeG (Binary 
Coded Graphs) format equipped with specialized compression algorithms, or 
implicitly, by its successor function given as a C program complying to the 
interface defined by the OPEN/CJESAR [7] environment for graph manipulation. 
The explicit representation is suitable for global verification algorithms, which 
explore transitions forward and backward, whereas the implicit representation is 
suitable for local (or on-the-fly) verification algorithms, which explore transitions 
forward, thus enabling an incremental construction of the LTS during verification. 
To deal with large systems, CADP provides several advanced analysis techniques: 
on-the-fly verification, partial order reductions, compositional verification, and 
massively parallel verification using clusters of machines. 

CADP contains currently over 40 tools and libraries for LTS manipulation, 
which can be invoked either in interactive mode via the EucALYPTUS graphi­
cal interface, or in batch mode via the SvL [8] scripting language dedicated to 



184 R. Mateescu and S. Rampacek 

Table 1. An extract of the process algebra formalizing BPEL, in discrete-time 

BPEL ATP 

empty empty ~0 
time time _2__, time 

throw 'i e E Ex, throw[e] ~ 0 
with Ex set of exceptions that can be thrown. 

receive / *O[m] ~empty with* E {?, !} 
reply *o[m] _2__, *o[m] 

sequence ( ; ) 'i a "I y', p~p' 

P;Q~P';Q 

'i a, p ___:!____., P' 1\ Q~Q' 

P·O~O' 
switch switch[{Pi};Er]- 'ii E I, switch[{Pi I i E I}]___::__. Pi 
while while[P] ___::__. P ; while[P] 

while[P] ___::__. empty 
scope Let Mr = { mi I i E I} a set of messages and 

let EJ = { ei I j E J} a set of exceptions. 
scope(P, E) withE= [{(mi, Pi) I i E I}, (d, Q), {(ej, Rj) I j E J}] 

p ___:!____., 

scope(P,E) ___:!____.,0 

'i a ~ {x, y'} u Ex U Mr p~p' 

scope(P,E)~scope(P' ,E) 

d> 1, 
p~p' and VaEExU:(T,J.:::J, ~(P~) 

scope(P,Ed)~scope(P,Ed-1) 
p~p' and VaEEs_U:(T,Ji:}, ~(P~) 

scope(P,El)~Q 

'ii E I, \1 aEExU :(T,y:], ~(P~) 
scope(P,E)~Pi 

'ijEEJ, p~ 
scope(P,EJ~Rj 

'ie~EJ, P-----> 
scope(P E)----=----.0 

pick pick[E] =scope( time, E) 
withE= [{(mi, Pi) I i E I}, (d, Q), {(ej, Ri) I j E J} 

the description of complex verification scenarios. The toolbox was used for the 
validation of more than 100 industrial case-studies1. 

Since we focus on model checking discrete-time properties on DTLTSs, 
we could apply in principle existing tools operating on LTSs, such as the 
EVALUATOR 3.5 [20] on-the-fly model checker of CADP, which takes as input tem­
poral formulas expressed in regular alternation-free JL-calculus. However, the eval­
uation of discrete-time properties requires the counting of time actions in the 
DT LTS; this can be encoded in JL-calculus using fixed point operators (one opera­
tor for each counter value), but may lead to prohibitively large temporal formulas, 
as noticed in the framework of temporal Ccs [23]. Discrete-time properties can be 

1 See the online catalog at http: I lwww. inrialpes. fr lvasy I cad pi case-studies 



Formal Modeling and Discrete-Time Analysis of BPEL Web Services 185 

naturally formulated using data-handling extensions of the modal!-L-calculus, such 
as the MeL language [21] underlying the EVALUATOR 4.0 tool recently integrated 
into CADP. We will illustrate the usage of MeL in Section 3.3. 

3 Case Study: A Web Service for GPS Navigation 

We illustrate in this section the application of our approach to the modeling 
and analysis of a Web service dedicated to GPS navigation. Given the relative 
complexity of this Web service, we do not detail here its textual BPEL and WSDL 
descriptions, but present its workflow graphically using the BPMN [10] notation. 

3.1 System Description 

The purpose of the GPS Web service is to compute itineraries from a position to 
a destination fixed by a user (client of the service) . In addition to the requested 
itinerary, the user can also obtain: pictures of the travel (taken from the air), 
the global map of the itinerary, and various kinds of information (about traffic, 
radar stations, point of interest (Por), etc) . At last, the user can configure the 
subscription to the various kinds of information, as well as some parameters of 
the travel (e.g., to take motorway or not, to deviate toward a Por, etc.) . The 
relationships between these functionalities are represented in Figure 3. 

The behavior of the GPS Web service consists of two main phases, described 
in the sequel: the initialization phase (login, setting of the initial position and 
destination) and the main loop phase (management of the itinerary, modification 
of the parameters, etc.). 

Initialization Phase. The initialization phase comprises three activities: login, 
position and destination. 

Login activity. The access to the Web service is restricted to authenticated users 
only. To identify itself, the user must send a couple login/ password, to which the 
service responds by a message "Ok" or "NOk" depending whether the couple is 
valid or not. 

Position activity. After authentication, in order to use the main functionalities 
of the Web service, the user must indicate where t he start location of the travel 
is. This is done by sending a message with information about t he street, city, 
and country where the navigation session must be started; t he message must be 
resent until the start location is accepted by the service (message "Ok"). 



186 R. Mateescu and S. Rampacek 

navigation 
mode 

configuration 
mode 

Fig. 3. Functionality workflow of the GPS Web service 

Destination activity. Finally, before the service may attempt to calculat e an 
itinerary, the user must enter a destination. This is similar to the position activity 
above: the user must retry until the end location is accepted by t he service. 

Main Loop Phase. After the init ialization phase, t he service can compute an 
itinerary, send information about traffic , POI, etc. To maintain the connection 
with the user, the service requires that the time elapsed between certain consec­
utive user actions does not exceed a given t imeout value (a kind of "ping alive") . 
In Section 3.2 we will consider for analysis configurations of the system with a 
t imeout value ranging from 1 to 60 seconds. 



Formal Modeling and Discrete-Time Analysis of BPEL Web Services 187 

From the Web service point of view (see Figure 3), this timeout is managed 
by a "scope" process: when the timeout is reached, this process generates an 
exception that will be caught by another process. The main activity of this 
"scope" process is a "pick" process. This kind of choice enables the user to 
select a desired action; if we used the "switch" BPEL construct instead, the 
choice would be made by the Web service and not by the user. Furthermore, 
the "scope" is encapsulated into a "while", enabling the user to do more than 
one operation during the session (notice that the first action carried out by the 
service when entering the "while" is the emission of a ready message to the user). 
Finally, the "while" is the main activity of a second "scope", that catches the 
first exception thrown when the timeout is reached. 

The activities executed by the main loop are partitioned in two modes, de­
scribed in the sequel: the navigation mode (obtaining the itinerary, modifying 
the current position or destination, getting a picture or a roadmap), and the con­
figuration mode (subscribing to a POI, getting information on radars or traffic, 
setting of parameters). 

Navigation mode. In navigation mode, the user can change the current position 
and the destination (using the same procedure as for the initialization phase). 
Next, the user can ask for the itinerary, a picture, the roadmap, or enter in 
configuration mode. There are two types of answer for itinerary requests: either 
a complete itinerary leading from the current position to the destination, with 
various information (about street, radar, POI, etc.) depending on the user sub­
scriptions, or simply a destination message indicating that the current position 
is (near) to the destination. The requests for picture and roadmap allow the user 
to obtain an air-picture of the area (in PNG format) or a veritable roadmap (in 
Svc format). 

Configuration mode. In configuration mode, the user can subscribe or cancel his 
subscription to information about POI, radar or traffic. This information is added 
to the itinerary if necessary. Additionally, the user can set various parameters, 
such as the kind of the itinerary (on motorway or not), etc. 

3.2 Discrete-Time LTS Synthesis 

Starting from the BPEL description of the GPS Web service, we apply the 
WSMOD tool in order to obtain a DTLTS on which the verification tools of 
CADP will operate. We show below the DTLTS model obtained for a timeout of 
1 second, then we study its variation in size as the timeout value increases, and 
finally we discuss the behavior of the Web service w.r.t. the ambiguity detection 
feature implemented in WSMOD. 

Discrete-timed labeled transition system. DTLTS models represent the observable 
behavior of Web services. The actions labeling the DTLTS transitions denote 
the messages exchanged (emissions and receptions are prefixed by '!' and '?', 
respectively), the elapse of a discrete-time unit x (or time), the internal action 



188 R. Mateescu and S. Rampacek 

Initialization 
phase 

Main loop 
phase 

Fig. 4. DTLTS model of the GPS Web service, with zoom on the initialization phase. 
The action !GoodJourney makes the link between the initialization phase and the main 
loop phase. 



Formal Modeling and Discrete-Time Analysis of BPEL Web Services 189 

T (or tau), and the termination action y' (or done ). The global behavior of the 
Web service is obtained by an exhaustive simulation of the BPEL description 
driven by the ATP rules given in Table 1. The DTLTS obtained in this manner 
for the GPS Web service with a timeout value of 1 second is shown in Figure 4. 

Variation of DTLTS size with the timeout value. The size of the DTLTS (number 
of states and transitions) depends on several aspects of the BPEL description: 
the number of BPEL processes, their complexity and nesting, the amount of 
communications, and the values of the timeouts. For the sake of readability, we 
have shown in Figure 4 the DTLTSs for a timeout of 1 second (corresponding to 
one x in discrete-time), but we carried out verification also for larger values of 
the timeout. 

The figure on the right shows 
the variation of the DTLTS size , ... 
for timeout values ranging from I , ... 
1 to 60. We observe a linear in- ~ 

crease of both the number of J ,,.. 
states and transitions; this is a ! 1000 

consequence of the fact that the j ... 
BPEL description contains a sin- f 
gle timeout (according to the ~ 
ATP rules). In the presence of 
multiple, overlapped timeouts, 
the size of the DTLTS may in­
crease much more quickly. 

TimeOut (In Me.) 

Non ambiguous Web service. In this study, we focus on the verification of the 
Web service behavior. However, the WSMoo tool can also synthesize automat­
ically a DTLTS modeling the behavior of an adapted client interacting with the 
Web service, provided that the model of the service respects certain properties 
(concerning non ambiguity in message exchanges, t ime elapsed, etc.) detailed 
in [11]. Here, the GPS Web service is identified as non ambiguous by WSMoo, 
meaning that the tool can synthesize an adapted client that can know, on each 
message exchange, the exact choice made on the service side, and therefore the 
client and the service can evolve without any deadlocks or mismatches. 

3.3 Verification of Discrete-Time Properties 

We analyze below the behavior of the GPS Web service (considering a time­
out of 50 seconds) by means of discrete-time model checking using the 
EVALUATOR 4.0 [21] tool of CADP. Table 2 illustrates the formulation in MeL 
of several safety and liveness properties, of both untimed and t imed nature. The 
colored parts of the formulas indicate discrete-time properties, which involve 
the counting of time actions. All properties were successfully verified on the 
corresponding DTLTS of the system, which has 535 states and 1473 t ransitions. 



190 R. Mateescu and S. Rampacek 

Table 2. Safety and liveness properties of the GPS Web service (timeout of 50 sec.) 

I Prop. I MeL formula I 
SI [ ( ·!LoginOk )".?set Position V ? set Destination ] false 

[ (true• . 
s2 ((!getPo ·ition.(•?s tPosition)*) I (!getDestination.(•?setD stination)*)). 

!GoodJourney) ] false 
[ true*.?getltinerary.(•(!Itin m1·yV !Destination))*. 

s3 (?getPicture V ?getRoadMapV ?configMode V 

?setPosition V ?setDestination V ?get ftinerary) ) false 
[ true• .?getftinerary.( •(!Itinemry V !Destination))*. 

s4 (time.(•(!Itinerary V !Destination))"){51} . 
(!Itinerary V !Destination) ] false 

LI [ true• .!LoginOk ] AF (!getPosition V !getDestination V !GoodJourney) true 
£2 [ t rue• .!GoodJourney.(r V time)* ] ((r V time)" . !Ready V !bye) t rue) 

£3 [ true* .!Ready. time{ ... 50} l 
(true• .!Picture V !RoadM ap V !Itinerary V !Destination) true 

[ true• .!Ready. 
£4 ((• (!Itinerary V !Destination V !Picture V !RoadMap)) .time){51} 1 

AF (!ConnectionEn·or) true 

Safety properties: they specify informally that "something bad never happens" 
during the execution of the system. In the MeL language, these properties can be 
expressed in a concise manner by identifying the undesirable execution sequences, 
characterizing them using extended regular expressions, and forbidding their 
existence in the DTLTS model using necessity modalities. 

Properties S1 and S2 concern the ordering of actions during the initialization 
phase: sl specifies that the user cannot set the position or the destination before 
logging in successfully, and S2 states that after requesting the position or the 
destination, the Web service cannot begin the main loop before receiving an 
appropriate answer from the user. Properties S3 and S4 deal with t he main 
loop phase: S3 forbids the user to make another request before the current one 
(here, an itinerary demand) has been handled by the service, and s4 states 
that a demand cannot be fulfilled anymore by the service after the timeout has 
expired. The R{ ... n} and R{ n} extended regular operators denote the repetition 
of a regular expression R at most n times and exactly n times, respectively. 

Liveness properties: they specify informally that "something good eventually 
happens" during the execution of the system. In MeL, these properties contain 
diamond modalities and minimal fixed point operators for encoding the existence 
of certain desirable execution sequences (potentiality) or trees (inevitability) in 
the DTLTS. 

Properties L 1 and L2 concern the initialization phase: L1 specifies t hat after 
the user has logged in, the Web service will eventually ask for the position, the 
destination, or end the initialization, and L 2 states that after the initialization 
was finished the service will end up in the main loop or decide to terminate the 



Formal Modeling and Discrete-Time Analysis of BPEL Web Services 191 

session. Properties £ 3 and £ 4 deal with the main loop phase: £ 3 indicates that 
as long as the timeout has not expired, the service can still prompt for a user 
request, and £4 states that an expiration of the timeout eventually interrupts the 
connection. The AF p operator of CTL [3] expressing the inevitable reachability 
of a state pis defined in J.t-calculus as J.tX.p V ((true) true 1\ [true]X). 

4 Conclusion and Future Work 

The design of complex business processes according to the SoA approach re­
quires to carefully take into account the presence of concurrency, communication, 
and timing constraints induced by the interaction of Web services. To facilitate 
the design process, we propose here a tool-equipped methodology for modeling 
and analyzing Web services described in BPEL. We focus on the behavioral and 
discrete-time aspects of Web services, and rely upon the model-based verifica­
tion technologies stemming from the concurrency domain. The state/transition 
models of BPEL Web services are produced automatically by the WSMoo tool, 
which implements an exhaustive simulation algorithm based on a formalization 
of BPEL semantics by means of process algebraic rules. The tool is able to handle 
both discrete and continuous time constraints; for the moment we handle only 
discrete-time models, which can be analyzed using the EVALUATOR 4.0 model 
checker [21] of the CADP toolbox [9]. Discrete-time safety and liveness properties 
can be concisely expressed using the data-handling facilities of the MeL language 
accepted as input by EVALUATOR 4.0, and particularly the extended regular ex­
pressions over transition sequences, which allow to count tick actions occurring 
in the model. We illustrated the verification of discrete-time properties on the 
example of a GPS Web service; however, most of them can be easily adapted for 
other business processes described in BPEL. Our methodology enables the Web 
service designers to carry out formal analysis on complex Web services before 
publishing them, and thus to improve the quality of the design process. 

We plan to continue our work along several directions. Firstly, we can improve 
the connection between WSMoo and CADP by producing implicit DTLTSs ac­
cording to the interface defined by OPEN/CLESAR [7]. This would enable on-the­
fly verification, which allows to detect errors in large systems without constructing 
the complete DTLTS model beforehand but exploring it in a demand-driven way. 
Secondly, using discrete-time models allows to directly reuse the tools available 
for data-based temporal logics, such as EVALUATOR 4.0; however, this may lead 
to state explosion in the presence of numerous timeouts. An alternative solution 
would be to use continuous time models; this can be achieved by connecting the 
time automata produced by WSMoo with the UPPAAL [17] tool dedicated to the 
verification of continuous time models. Finally, we will extend the methodology 
to handle compositions of multiple Web services, following our previous work on 
automated client synthesis [22], but focusing on the verification of composition. 
For this purpose, the compositional verification techniques available in tools such 
as ExP.OPEN [16] will be certainly useful. 



192 R. Mateescu and S. Rampacek 

References 

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci­
ence 126(2), 183-235 (1994) 

2. Chirichiello, A., Salaiin, G.: Encoding abstract descriptions into executable web 
services: Towards a formal development. In: Proc. of WI 2005, pp. 457-463. IEEE 
Computer Society, Los Alamitos (2005) 

3. Clarke, E., Grumberg, 0., Peled, D.: Model Checking. MIT Press, Cambridge 
(2000) 

4. Ferrara, A.: Web services: a process algebra approach. In: ICSOC, pp. 242-251 
(2004) 

5. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proc. 
of the 13th International World Wide Web Conference (WWW 2004), USA, ACM 
Press, New York (2004) 

6. Fu, X., Bultan, T., Su, J.: WSAT: A tool for formal analysis of web services. In: 
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, Springer, Heidelberg 
(2004) 

7. Garavel, H.: OPEN/ClESAR: An open software architecture for verification, sim­
ulation, and testing. In: Steffen, B. (ed.) ETAPS 1998 and TACAS 1998. LNCS, 
vol. 1384, pp. 68-84. Springer, Heidelberg (1998) 

8. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification. In: 
Proc. of FORTE 2001, IFIP, pp. 377-392. Kluwer Academic Publishers, Dordrecht 
(2001); Full version available as INRIA Research Report RR-4223 

9. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A toolbox for the 
construction and analysis of distributed processes. In: Damm, W., Hermanns, H. 
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158-163. Springer, Heidelberg (2007) 

10. Object Management Group. Business process modeling notation (BPMN) specifi­
cation (May 2006) 

11. Haddad, S., Melliti, T., Moreaux, P., Rampacek, S.: Modelling web services in­
teroperability. In: Proc. of the 6th Int. Conf. on Enterprise Information Systems 
(ICEIS 2004), Porto, Portugal (April14-17, 2004) 

12. Haddad, S., Moreaux, P., Rampacek, S.: A formal semantics and a client synthesis 
for a BPEL service. In: ICEIS 2006, Revised Selected Paper. Lecture Notes in 
Business Information Processing, vol. 3, Springer, Heidelberg (2008) 

13. ISO /IEC. LOTOS - a formal description technique based on the temporal order­
ing of observational behaviour. International Standard 8807, International Orga­
nization for Standardization - Information Processing Systems - Open Systems 
Interconnection, Geneve (September 1989) 

14. Jordan, D., Evdemon, J.: Web Services Business Process Execution Language Ver­
sion 2.0 - Oasis Standard (April 11, 2007) 

15. Josuttis, N.: Soa in Practice - The Art of Distributed System Design, O'Reilly 
Media, City (2007) 

16. Lang, F.: EXP.OPEN 2.0: A flexible tool integrating partial order, compositional, 
and on-the-fly verification methods. In: Romijn, J.M.T., Smith, G.P., van de Pol, 
J. (eds.) IFM 2005. LNCS, vol. 3771, Springer, Heidelberg (2005) 

17. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. Journal on 
Software Tools for Technology Transfer 1(1-2), 134-152 (1997) 

18. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. Wiley, 
Chichester (1999) 



Formal Modeling and Discrete-Time Analysis of BPEL Web Services 193 

19. Martin, A.J.: Compiling communicating processes into delay-insensitive VLSI cir­
cuits. Distributed Computing 1(4), 226-234 (1986) 

20. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular 
alternation-free mu-calculus. Science of Computer Programming 46(3), 255-281 
(2003) 

21. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing 
systems. In: Proc. of FM 2008. LNCS, vol. 5014, Springer, Heidelberg (2008) 

22. Melliti, T., Boutrous-Saab, C., Rampacek, S.: Verifying correctness of web services 
choreography. In: Proc. of ECOWS 2006, Zurich, Switzerland, IEEE Computer 
Society Press, Los Alamitos (2006) 

23. Morley, M.J.: Safety-level communication in railway interlockings. Science of Com­
puter Programming 29(1-2), 147-170 (1997) 

24. Nicollin, X., Sifakis, J.: The algebra of timed processes ATP: Theory and applica­
tion (1994) 

25. Salaiin, G., Ferrara, A., Chirichiello, A.: Negotiation Among Web Services Using 
LOTOS/CADP. In: (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, 
vol. 3250, pp. 198-212. Springer, Heidelberg (2004) 

26. Salaiin, G., Kramer, J., Lang, F., Magee, J.: Translating FSP into LOTOS and 
networks of automata. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, 
pp. 558-578. Springer, Heidelberg (2007) 

27. Salaiin, G., Serwe, W.: Translating hardware process algebras into standard process 
algebras - illustration with CHP and LOTOS. In: Proc. of IFM 2005. LNCS, 
vol. 3371, pp. 287-306. Springer, Heidelberg (2005) 

28. Turner, K.J.: Representing and analysing composed web services using CRESS. J. 
Netw. Comput. Appl. 30(2), 541-562 (2007) 



Author Index 

Bae, Doo-Hwan 164 
Benmerzoug, Djamel 78 
Boufaida, Mahmoud 78 
Brozek, Jifi 137 

de Vreede, Gert-Jan 61 
Dietz, Jan L.G. 1 

Hugoson, Mats-Ake 108 

Kang, Dongwon 164 
Kannengiesser, Udo 31 
Kim, Hyeonjeong 164 
Kolfschoten, Gwendolyn L. 61 
Kordon, Fabrice 78 

Magoulas, Thanos 108 
Mans, Ronny 16 
Mateescu, Radu 179 
May, Norman 46 
Merunka, Vojtech 137 
Mulyar, Nataliya 16 

Nouza, Oldfich 137 

Park, Seunghun 164 
Pessi, Kalevi 108 
Proper, Erik 93 

Rampacek, Sylvain 179 
Renger, Michiel 61 
Russell, Nick 16 

Schonenberg, Helen 16 
Steghuis, Claudia 93 

Takahashi, Yutaka 152 
Terlouw, Linda 122 

van der Aalst, Wil 16 

Weber, Ingo 46 


	Title Page
	Preface
	Organization
	Table of Contents
	On the Nature of Business Rules
	Introduction
	A Survey of Current Business Rule Notions
	Research Questions and Research Approach

	An Introduction to Enterprise Ontology
	Theoretical Foundations
	The Universal Transaction Pattern
	The Aspect Organizations

	Assessing the Notion of Business Rule
	Clarifications
	Illustrations

	Conclusions
	References

	Process Flexibility: A Survey of Contemporary Approaches
	Introduction
	Taxonomy of Flexibility
	Specification Approaches
	Flexibility Types in Detail

	Evaluation of Contemporary Offerings
	Related Work
	Conclusion

	Subsuming the BPM Life Cycle in an Ontological Framework of Designing
	Introduction
	An Ontological View of Business Processes
	The Function-Behaviour-Structure Ontology
	FBS Views in the BPM Life Cycle

	The BPM Life Cycle in a Framework of Designing
	An Initial Framework of Designing
	A Model of Three Interacting Worlds
	Business Process Design in the Situated FBS Framework

	Conclusion
	References

	Information Gathering for Semantic Service Discovery and Composition in Business Process Modeling
	Introduction
	Foundations
	Semantics for Business Process Models
	Service Discovery
	Service Composition
	Process Validation
	Shortcomings of State-of-the-Art Solutions

	Solution Approach
	Modification of the Search Space
	Configuration Options
	Applying Search Space Modifications During Modeling

	Related Work
	Conclusion

	Challenges in Collaborative Modeling: A Literature Review
	Introduction
	Background
	Collaborative Modeling Defined
	Approaches in Collaborative Modeling

	Method
	Results
	Roles and Group Composition
	Collaboration and Participation
	Modeling Method
	Model Quality

	Discussion and Conclusions
	References

	A Petri-Net Based Formalisation of Interaction Protocols Applied to Business Process Integration
	Introduction
	An Overview of the Proposed Approach
	A CPN-Based Model for BPI Based on Interaction Protocol
	Translation Rules from IP Elements to CPN
	An Algorithm for Transforming an IP to Its CPN Representation

	A Case Study: The Agent-Based Transportation e-Market System
	Validation and Property Verification
	Enabling Integration Process with Multi-Agent Systems
	Related Work
	Conclusion and Future Work
	References

	Competencies and Responsibilities of Enterprise Architects
	Introduction
	Relevant Competencies
	Professional Competencies
	Personal Competencies

	Responsibilities of an Enterprise Architect
	Personality Types
	Enterprise Architecture Teams
	Conclusion

	Interoperability Strategies for Business Agility
	Introduction
	Business Agility
	Enterprise Architecture and Alignment
	Strategies for Interoperability
	Unification Strategy
	Intersection Strategy
	Interlinking Strategy

	Cases from Swedish Health Care
	Background
	Alternative for Interoperability Based on Unification Strategy
	Alternative for Interoperability Based on Intersection Strategy
	Alternative for Interoperability Based on Interlinking Strategy

	Summary and Conclusion
	References

	Towards a Business-Oriented Specification for Services
	Introduction
	Current Approaches to Service Specification
	Specification Using the UDDI
	Specification Using Semantic Web Services
	Specification Using Business Component Specification
	Evaluation

	Specifying Business Tasks Using the Enterprise Ontology
	Definitions
	The Specification Template

	The Insurance Company
	Background
	Dealing with New Individual Policies
	Example Services

	Conclusions

	Automated Model Transformations Using the C.C Language
	Introduction
	Model Transformation Techniques

	Craft.CASE and BORM
	Business Process Modeling in Craft.CASE
	Software Systems Modeling in Craft.CASE

	The C.C Language
	Inspiration -- Pascal and LISP
	Motivation
	Basic Concepts
	Functions
	Collections
	Control Structures
	Programming Environment, C.C Data Modeler
	Code Examples

	Craft.CASE Modeling
	Craft.CASE Metamodel
	C.C Constructs for Craft.CASE Metamodel
	C.C Modules

	Modeling Examples
	Refactoring
	Design Patterns
	Object Normalization

	Conclusion

	Improvement in the Translation Process from Natural Language to System Dynamics Models
	Introduction
	Rules to Select an Appropriate Stock Flow Structure
	Unit Concept
	Delay and Causality
	Transition of Individual Material or Person
	Improved Translation Process

	Application
	Conclusion
	References

	Developing a Simulation Model Using a SPEM-Based Process Model and Analytical Models
	Introduction
	Background
	SPEM
	DEVS-Hybrid Formalism

	Related Work
	A Method for Developing a Simulation Model and a Tool Environment
	Identifying the Simulation Model Structure
	Identifying Quantitative Information
	Generating the Simulation Model
	Tool Environment to Support the Method

	A Case Study
	The Descriptive Process Model Represented by UML
	The Quantitative Information
	DEVS-Hybrid Simulation Model

	Conclusion and Future Work

	Formal Modeling and Discrete-Time Analysis of BPEL Web Services
	Introduction
	Modeling and Analysis Approach
	Translation from BPEL to Discrete-Time LTSs
	Analysis of Discrete-Time LTSs

	Case Study: A Web Service for GPS Navigation
	System Description
	Discrete-Time LTS Synthesis
	Verification of Discrete-Time Properties

	Conclusion and Future Work

	Author Index

