
A Simulated Shallow Dependency Parser Based on
Weighted Hierarchical Structure Learning

Zhiming Kang, Chun Chen�, Jiajun Bu, Peng Huang, and Guang Qiu

College of Computer Science, Zhejiang University, Hangzhou, China
{kzm,chenc,bjj,huangp,qiuguang}@zju.edu.cn

Abstract. In the past years much research has been done on data-driven depen-
dency parsing and performance has increased steadily. Dependency grammar has
an important inherent characteristic, that is, the nodes closer to root usually make
more contribution to audiences than the others. However, that is ignored in pre-
vious research in which every node in a dependency structure is considered to
play the same role. In this paper a parser based on weighted hierarchical structure
learning is proposed to simulate shallow dependency parsing, which has the pref-
erence for nodes closer to root during learning. The experimental results show
that the accuracies of nodes closer to root are improved at the cost of a little
decrease of accuracies of nodes far from root.

1 Introduction

Recently, dependency grammar has gained renewed attention and becomes more promi-
nent. Currently it is dominant that using data-driven approaches to learn parsers auto-
matically from experience, such as probabilistic generative models [3], generative prob-
abilistic parsing models [2] and deterministic discriminative model [7] and so on. Gen-
erally speaking, data-driven approaches fall into two categories, i.e. generative models
and discriminative models. The latest state-of-the-art dependency parsers are discrimi-
native which are based on classifiers trained to score trees, given a sentence, either via
factored whole structure scores [5] or local parsing decision scores [6]. However, sel-
dom work about shallow dependency parsing like shallow phrase-structure parsing has
been done. In the paper, a discriminative dependency parser based on weighted hierar-
chical structure learning is proposed to simulate shallow dependency parsing, aiming at
improving dependency parsing for nodes closer to the root node.

The remainder of this paper is organized as follows. Section 2 first makes a brief
introduction to dependency grammar, and then describe dependency parsing algorithm
in detail. Section 3 gives the details of adopted learning algorithm and some discussion.
To demonstrate the usefulness of our algorithm, Section 4 contains the results produced
by several dependency parsers. Last section contains some conclusions plus some ideas
for future work.

� Corresponding author.

H. Li et al. (Eds.): AIRS 2008, LNCS 4993, pp. 484–489, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Simulated Shallow Dependency Parser 485

2 Dependency Parsing

2.1 Overview of Dependency Grammar

In Dependency Grammar, individual words in a sentence are considered to be linked
together in dependency relations instead of being combined just mechanically. When-
ever two words are linked by a dependency relation, we say that one of them is the head
and the other is the dependent, and that there is an edge connecting them. In general,
the dependent is the modifier or complement; the head plays the larger role in deter-
mining the behavior of the pair. The dependent presupposes the presence of the head;
the head may require the presence of the dependent. The figure 1 depicts the skeleton
of dependency structure of a sentence. The dashed line means the head ‘Root’ and the
relation <‘Root’, ‘had’> both are dummies. Essentially, a dependency link is a directed
arc pointing from head to dependent. The dependency structure is a tree with the main
verb as its root (head).

Root (Economic news) (had) (little effect) (on (financial markets))

Fig. 1. An example of annotated image

Similar to shallow phrase-structure parsing, shallow dependency parsing breaks up
sentence into ‘spans’, and then link them with directed arcs. The edges connecting dif-
ferent spans are named ‘span-link’, and the two nodes linked by ‘span-link’ are defined
as ‘span-head’ with respect to corresponding span. Different from full parsing, shallow
dependency parsing only focuses on ‘span-head’ and ‘span-link’, instead of nodes and
edges inside spans. Currently there is no standard about what is shallow dependency
parsing like shallow phrase-structure parsing, and the following gives a rough guide-
line: the dummy node ‘Root’ is the root of a dependency tree; each subtree is treated as
a span in shallow parsing. Based on above analysis, it is reasonable to think that ‘span-
head’ and ‘span-link’ closer to ‘Root’ are more important than the others in shallow
parsing, such as that inside span. Thus it is feasible to improve accuracy of dependency
relations closer to ‘Root’ to simulate shallow dependency parsing, with regular full
parsing.

2.2 Parsing Algorithm

The CKY algorithm is a well-known O(n3) algorithm for PCFG parsing [4]. When
applied to dependency parsing, however, the CKY has the time complexity of O(n5).
Eisner proposed an parsing algorithm similar to CKY that has a time complexity of
O(n3) [3]. The idea is to parse the left and right dependents of a word independently
and combine them at a later stage. During dependency parsing, there are many spans
produced. Among them adjacent spans are possible to be combined into a longer span
iteratively. At last one span including all words can be generated as output. This pars-
ing algorithm removes the need for the additional head indices and requires only two
additional binary variables that specify the direction of the item and whether an item is

486 Z. Kang et al.

complete. For space limitation the parsing algorithm is described here briefly, and for
details please refer to [3,5].

3 Learning

As indicated earlier, dependency tree is built bottom-up via combining small spans
iteratively. The number of generated spans, however, grows exponentially with the size
of sentence length, so the learning task is to, given a sentence, find the best one from
numerous candidates. In this paper we adopt a strategy similar to McDonald et al [5],
that is to say, every candidate is scored and chooses the one with highest score as final
dependency parsing output.

An extension of original binary perceptron for multiclass problem (MPA) is proposed
by Collins [1] as follows:

w = w + α · (φ(xi, yi) − φ(xi, zi)) (1)

where zi is a prediction for instance xi and α is a constant positive factor for promo-
tion or demotion, and the definition of φ is the same as the previous representations
of feature vector. Note that the parameter α is a constant, that means weights of all
relations in dependency structure are updated (add or minus) with equal scalar. How-
ever, it is not always reasonable. For instance, in figure 2 there are three dependency
tree candidates - a correct dependency tree (a), both incorrect dependency trees (b) and
(c) (node enclosed by dashed circle has incorrect head) - for sentence “Economic news
had little effect on financial markets”. The shallow parsing result, “news had effect on
markets”, can be easily drawn from the right candidate (a) or the wrong candidate (b),
except for (c). So from the viewpoint of shallow parsing, (b) is better than (c) in spite of
both having one wrong relation. As discussed in subsection 2.1, we only concentrate on
‘span-head’ and ‘span-link’ in shallow dependency parsing: the nodes and edges closer
to ‘Root’ transmit more semantic information than others. Based on analysis above, we
proposed a simulated shallow dependency parser derived from a full parsing.

To differentiate nodes and edges in dependency tree we replace the scalar factor
α with a diagonal matrix A = (∂1, . . . , ∂n). Assuming that feature vector φ(x, y)
is denoted by (f1, . . . , fn), we obtain (αf1, . . . , αfn) as the result of ‘α·φ(x, y)’, or
(∂1f1, . . . , ∂nfn) as the result of ‘A ·φ(x, y)’. Note that feature fi is a binary value, i.e.
1 or 0. In what follows we make some assumptions for simplicity. Given a sentence xi

and corresponding dependency tree yi, let T be the set of candidates. The inner product,
φ(xi, yi) ·wT , is defined to be the score of candidate yi of sentence xi. The error set for
instance (xi, yi) is defined to be the set of the index of candidates which achieve higher
scores than correct dependency tree yi:

E = {r �= yi|r ∈ T, φ(xi, r) · wT > φ(xi, yi) · wT } (2)

Comparing to original perceptron algorithm and others, the innovation of our algorithm
derived from the refinement of update factor, i.e. diagonal matrix A. Given a candidate
z drawn from error set E, Az is defined as follows:

Az = diag(∂1, ..., ∂n), ∂i = 2fi · (1 + ehl(fi,z))−1 (3)

A Simulated Shallow Dependency Parser 487

news

had

effect

Economic little on

financial
(a)

markets

Root

Economic

markets

news

had

effect

little on

financial

(b)

Root

had

news

effect

Economic

little on

markets

financial

(c)

Root

Fig. 2. Dependency tree examples: one correct (a) and two incorrect (b) and (c)

where hl(fi, z) is a function named ‘hierarchical length function’ and defined as: (1).
The height of a relation < i, j > is the number of passed edges from ‘Root’ to node
j, for example the height of <‘had’, ‘news’> in figure 2(a) is 2, while that of <‘on’,
‘markets’> is 4; (2). If feature fi is derived purely from a relation r, then hl(fi, z) is
the height of r; (3). If feature fi is a mixture of features derived from more than one re-
lations r1, r2, . . . , rm, then hl(fi, z) is the minimum relation height among r1, . . . , rm.

Then we can rewrite formula 1 by substituting ‘A’ for ‘α’ and obtain formula 4:

w = w + Ayi · φ(xi, yi) − 1
k

k∑

i=1

Azi · φ(xi, zi), zi ∈ E (4)

where E is the error set of size k and zi is some candidate belonging to error set E. It is
clear that diagonal element ∂i is zero when corresponding feature fi is zero, therefore,
we can ignore ‘zero’ features in implementation for simplifying the computation. The
definition of A in equation 3 implies that the closer to ‘root’ nodes and relations are,
the more aggressive the update to them are during learning. Consequently, we make a
trade-off between relations closer to ‘root’ and relations far from ‘root’: improve the
learning of the former at the cost of decrease of the latter. We have drawn a conclusion
in subsection 2.1 that nodes and edges close to ‘root’ are more semantic and important
than those far from ‘root’. Likewise, shallow dependency parsing concentrates on nodes
and edges which are close to ‘root’. So it is feasible to simulate shallow dependency
parser via the proposed approach.

4 Experimental Study

4.1 Data and Task Definition

The original data consisting of 10,000 Chinese instances are provided by Information
Retrieval Lab of Harbin Institute of Technology. These instances have been labeled

488 Z. Kang et al.

manually with POS, relation and relation type in advance. The total data in the exper-
iments were randomly divided into two groups: one for training with size of 9000 and
one for test with size of 1000.

The task in the experiment is to assign labeled dependency edges to Chinese sen-
tences. Each sentence was represented as a sequence of tokens plus POS. For each to-
ken, the parser must output its head and corresponding dependency relation. The metrics
applying to evaluate parsers are defined as follows (Specially, excluding punctuation
from scoring):

– LAS (labeled attachment score). It is the proportion of “scoring” tokens that are
assigned both the correct head and the correct dependency relation label

– UAS (unlabeled attachment score). It is the proportion of “scoring” tokens that are
assigned the correct head (regardless of the dependency relation label)

– LS (label attachment score). It is the proportion of “scoring” tokens that are as-
signed the correct dependency relation label (regardless of the head)

– LAS-n (labeled attachment score with height n). The height of a token is the num-
ber of passed edges from the dummy node ‘Root’ of dependency tree to itself.
Specially, the height of one token t is equal to the height of one relation whose
child is just t. Arabic numeral n indicates a concrete height. For example, in figure
2 (a) the height of “financial” is 5, “news” is 2, and “Economic” is 3. LAS-n is the
proportion of “scoring” tokens with height n in dependency tree that are assigned
both the correct head and the correct dependency relation label. In this experiment
dependency structure are divided into 5 partitions: LAS-1, LAS-2, LAS-3, LAS-4,
and LAS-5+. Specially, LAS-5+ includes nodes whose height is larger than 5 (in-
cluding 5). If there are 100 tokens with height 1, and 80 tokens are assigned both
the correct head and the correct label, then LVS-1 is 80%.

4.2 Experimental Results and Analysis

In this paper we proposed a variation of multiclass perceptron algorithm (VMPA), using
update rule in formula 4, for simulated shallow dependency parsing. To verify the effec-
tiveness of the proposed approach, we carried out the experiment in which two parsers
were built from the training dataset of size 9000 using VMPA and original multiclass
perceptron algorithm (MPA) described in formula 1, and then applied them to the test
dataset of size 1000 respectively. To make a comparison, we evaluated additional two
state-of-the-art dependency parsers: MSTParser1 and MaltParser2, which were devel-
oped by McDonald [5] and Nivre [6] respectively. Note that MaltParser used embedded
SVM learner and predefined feature model for Chinese. MSTParser used its default
setting in the experiment. All results were reported in table 1. The results of VMPA
showed that the accuracies of tokens with lower height, comparing to that of MPA,
had some improvement. LAS-1 and LAS-2 increased 5.86% and 2.02% respectively.
Of course, the improvement was at the cost of decrease of accuracies of nodes far from
‘Root’. At the same time, the results of both VMPA and MPA were a little worst than
two state-of-the-art parsers, i.e. MSTParser and MaltParser. We believed that may be
due to the difference of learning algorithms.

1 http://sourceforge.net/projects/mstparser
2 http://w3.msi.vxu.se/ nivre/research/MaltParser.html

A Simulated Shallow Dependency Parser 489

Table 1. Results of three dependency parsers. (MST:MSTParser, Malt:MaltParser)

Algos LAS UAS LS LAS-1 LAS-2 LAS-3 LAS-4 LAS-5+

VMPA 77.16% 79.01% 80.23% 76.87% 75.67% 78.69% 79.01 75.83%
MPA 77.73% 80.20% 83.06% 71.01% 73.65% 80.95% 79.93% 76.45%
Malt 81.16% 83.20% 87.06% 75.13% 77.65% 78.15% 84.93% 84.45%
MST 81.51% 83.21% 86.19% 77.93% 84.16% 83.21% 80.63% 78.01%

5 Conclusions and Future Work

In this paper we focus on shallow dependency parsing and propose a discriminative de-
pendency parsing algorithm based on weighted hierarchical structure learning to sim-
ulate it. The results demonstrated that accuracies of nodes closer to ‘Root’ increased
at the cost of some decrease in nodes far from ‘root’. This improvement, however, is
somewhat limited because the learning is based on instance one by one thus could not
make overall trade-off over all training instances. Some improvements to the proposed
approach may be brought through additional research. First, the definition for shallow
dependency parsing in this paper is still rough and simple. Secondly, the trade-off is
based on single example one by one instead of the whole examples due to the online
framework of the learning algorithm. In future work we may consider applying batch
learning algorithm, such as SVM, with trade-off strategy for shallow parsing.

References

1. Collins, M.: Head-driven statistical models for natural language parsing. Computational Lin-
guistics 29(4), 589–637 (2003)

2. Collins, M., Ramshaw, L., Haji, Ccirc, J., Tillmann, C.: A statistical parser for czech. In:
Proceedings of the 37th conference on Association for Computational Linguistics, pp. 505–
512 (1999)

3. Eisner, J.: Three new probabilistic models for dependency parsing: An exploration. In: Pro-
ceedings of the 16th International Conference on Computational Linguistics (COLING 1996),
pp. 340–345 (1996)

4. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and Speech Recognition. MIT Press, Cam-
bridge (2000)

5. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of dependency parsers.
In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
pp. 91–98 (2005)

6. Nivre, J., Hall, J., Nilsson, J.: Maltparser: A data-driven parser-generator for dependency pars-
ing. In: Proc. of LREC 2006 (2006)

7. Yamada, H., Matsumoto, Y.: Statistical dependency analysis with support vector machines. In:
Proc. IWPT (2003)

	A Simulated Shallow Dependency Parser Based on Weighted Hierarchical Structure Learning
	Introduction
	Dependency Parsing
	Overview of Dependency Grammar
	Parsing Algorithm

	Learning
	Experimental Study
	Data and Task Definition
	Experimental Results and Analysis

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

