

H. Li et al. (Eds.): AIRS 2008, LNCS 4993, pp. 478–483, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Full Distributed Web Crawler Based on Structured
Network

Kunpeng Zhu, Zhiming Xu, Xiaolong Wang, and Yuming Zhao

Intelligent Technology and Natural Language Processing Lab, School of Computer Science and
Technology, Harbin Institute of Technology, Harbin 150001, China
{kpzhu,xuzm,wangxl,ymzhao}@insun.hit.edu.cn

Abstract. Distributed Web crawlers have recently received more and more at-
tention from researchers. Full decentralized crawler without a centralized man-
aging server seems to be an interesting architectural paradigm for realizing
large scale information collecting systems for its scalability, failure resilience
and increased autonomy of nodes. This paper provides a novel full distributed
Web crawler system which is based on structured network, and a distributed
crawling model is developed and applied in it which improves the performance
of the system. Some important issues such as assignment of tasks, solution of
scalability have been discussed. Finally, an experimental study is used to verify
the advantages of system, and the results are comparatively satisfying.

Keywords: Web crawling; full distributed; structured network.

1 Introduction

Due to the exponential growth of the web, an important challenge of web crawler is to
efficiently collect massive pages in a limited time frame, one that has received con-
siderable research attention.

Some distributed crawling systems have been worked out to finish Web massive
information collecting task. The distributed crawling systems mentioned in [1, 2, 3]
use a centralized server to manage the communication and synchronization of
crawling nodes. These centralized solutions are known to have problems like link
congestion, being a single point of failure, and expensive administration. Some full
distributed crawling systems have been proposed in [4, 5, 6], that is, no central coor-
dinator can exist in these systems. In these systems, large numbers of nodes collabo-
rate dynamically in an ad-hoc manner and share information in large-scale distributed
environments without centralized coordination. An important issue of the presented
crawlers is dynamic load balance. Most systems concern the methods of static load
assignment and ignore the unbalance in crawling process. Another issue that has not
been well resolved is scalability caused by the arrivals and departures of nodes.

In this paper, our research mainly focuses on how to design a full distributed
crawler based on a distributed crawling model. A structured architecture will be pro-
posed and the mechanism to achieve load balance and scalability will be given.

 A Full Distributed Web Crawler Based on Structured Network 479

2 Architecture

In our crawler, crawling nodes are organized as a structured ring network to offer the
service of collecting Web pages. The ring is composed of several crawling nodes that
autonomously coordinate their behaviour in such a way that each of them scans its
share of the Web. Such organization has several desirable properties – it is highly
resilient to a single point of failure, and incur low overhead at node arrivals and de-
partures. More importantly, they are simple to implement and incur virtually no over-
head in topology maintenance. The overview of crawler system can be described by
Figure.1.

Fig. 1. Overview of crawler system

Each crawling node in system is composed of 2 parts: crawling module and control
module. The function of crawling module is to download web pages from Internet
according to the URLs queue. The function of control module is to manage the com-
munication and harmony with other crawling nodes.

The inside organization of each crawling node can be described by Figure.2.

Fig. 2. Architecture of each crawling node

480 K. Zhu et al.

3 Distributed Crawling Model

Our research mainly focuses on the decentralized crawling strategy which has been
implemented in control module. The core of the strategy is called distributed crawling
model (DCM). As mention above, the model is composed of three parts which will be
described as follow.

3.1 Tasks Assignment

The sub-module of tasks assignment is used to divide whole crawling task into differ-
ent parts, and allocate them to each node in order to achieve a parallel processing. We
propose a new method of tasks assignment which is a dynamic consecutive division to
the value space of hash function, and we explain why this method makes it possible to
decentralize every task and to resolve the above problems.

Let the value space of hash function be a rang from
0a to

na . For example, if

)(URLH denotes the sum of integer parts of the IP of URL’s host, then 00 =a and

10204255 =×=na . Let n denote the number of nodes, we can get a division with

1−n numbers denoted by),...,,(121 −naaa and
nn aaaaa <<<<< −1210 ... , the node i

will take charge of the URLs whose)(URLH are located in the range of),(1 ii aa − .

At the beginning, we initialize the value of
ia as follow:

)1,...,2,1(−=×= nii
n

a
a n

i
 (1)

Obviously, formula (1) is a n equivalent division on the range of),(0 naa . We will

dynamically change the value of
ia in crawling process to achieve a load balance, the

more detail will described in next section.
The crawling nodes are organized as a ring. Each node has two neighbors which

called “preceding-node” and “following-node”. The hashing value of URLs on pre-
ceding-node is smaller than that on following-node. Each node need maintain three
URLs queues: local-queue, preceding-queue and following-queue. The URLs in pre-
ceding-queue need to be sent to preceding-node, URLs in following-queue need to be
sent to following-node and URLs in local-queue need to be sent to local download
queue. In order to complete this process, we define two token in our structured net-
work named “forward-token” and “backward-token”. The “forward-token” starts off
from the first node in network which charges the set of the smallest hashing value of
URLs. The node holding “forward-token” will operate as follow:

1. The node sends its following-queue to its following-node.
2. The following-node will accept the queue and divide the queue into two parts,

one is added into its own local download queue, the other is added into its fol-
lowing-queue.

3. The node gives the forward-token to its following-node.

The “backward-token” starts off from the last node and the process is the oppo-
site with the “forward-token”.

 A Full Distributed Web Crawler Based on Structured Network 481

The time of token walking a circle on the ring is called cycle T . In order to avoid
frequent communication in the network, we let T equal a longish time, such as one
hour. So, the interval of sending token from one node to another is nT . And a new

URL will arrive at the corresponding node within the time T .

3.2 Dynamic Load Balance Management

Load balance means that each node should be responsible for approximately the same
number of URLs. But the n equivalent division on the range of),(0 naa can not as-

sure that there are same number URLs located in each part. So we provide a dynamic
load balance model to achieve the characteristic of load balance. Our model is based
on three principles:

1. A little unbalance is permitted for the communication price of adjusting load
balance.

2. At certain moment, the operation of adjusting load balance only occurs be-
tween two adjoining nodes.

3. Local balance should comply with the global.

We use a token called DLBT (dynamic load balance token) to perform the function.
The operation of adjusting load balance only occurs between the node holding DLBT
and its “following-node”. The DLBT starts off from the first node and walk on the ring.

3.3 Scalability Maintenance

High scalability means that the more crawling nodes, the higher performance. We
should develop the mechanism to maintain the topology of structured ring networks
and manage the arrivals and departures of crawling nodes.

The mechanism is rather simple. Each node in the structured network not only
keeps the information of its two neighbors, but also saves the information of three
closest nodes in up and down direction. If a node is failure, its neighbor will find the
next node to rebuild the virtual link. If a node joins in the network, it will request for
the connected node and get the information of neighbors to create the link, of course,
the redundant link will be removed.

4 Evaluation Methodology and Experiment Results

The goal of this section is to analyze the load balance and scalability features of our
crawler. In order to achieve the load balance of the system, we use hash function to
dynamically assign URLs to each crawling node. The consequence can be obtained by
analyzing colleted Web pages by each node every hour.

In Jan 2007, we utilize our crawler to get experimental data which are about
7771402 Web pages with 21.75GB capacity within ten hours. And the number of
parsed URLs is about 58606584. All of our measurements are made on six general
Intel PCs with the P4 3.0GHZ Intel processors, 2GB of memory and 400GB hard
SATA disk, the bandwidth is 100M. The operating system is Redhat Linux 9.0.

482 K. Zhu et al.

Fig. 3. Evaluation of load balance

Figure.3 shows the performance of load balance of our system. The experimental
results show that our dynamic load balance model has a remarkable performance in
improving the load balance in distributed crawler systems.

With the more number of crawling nodes, the crawling speed of our system is
higher, shown in figure.4. The relation is almost linear. But with the increasing of
nodes, the overload of the synchronization and communication among the nodes may
decrease the performance.

Fig. 4. Evaluation of scalability

5 Conclusions

In this paper we present a full distributed crawler system based on a structured net-
work. A distributed crawling model (DCM) is proposed to achieve the merits of load
balance and scalability. And a new method of tasks assignment is presented, which is

 A Full Distributed Web Crawler Based on Structured Network 483

a dynamic consecutive division on the value space of hash function. Also, a dynamic
load balance model is used on the structured ring network. The experiment results
show that our methods achieve a well performance to improve the load balance and
scalability in distributed crawling environment.

Acknowledgements

This paper is supported by the Key Program of National Natural Science Foundation
(No. 60435020).

References

1. Yan, H., Wang, J., Li, X., Guo, L.: Architectural Design and Evaluation of an Efficient
Web-crawling System. Journal of System and Software 60(3), 185–193 (2002)

2. Shkapenyuk, V., Suel, T.: Design and Implementation of a High-Performance Distributed
Web Crawler. In: Proceedings of the 18th International Conference on Data Engineering
(ICDE 2002), pp. 357–368 (2002)

3. Hafri, Y., Djeraba, C.: High performance crawling system. In: Proceedings of the 6th ACM
SIGMM international workshop on multimedia information retrieval, pp. 299–306. ACM
Press, New York (2004)

4. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A scalable fully distributed
Web crawler. Software: Practice & Experience 34(8), 711–726 (2004)

5. Loo, B.T., Cooper, O., Krishnamurthy, S.: Distributed Web Crawling over DHTs. Tech.
Rep. UCB//CSD-04-1332, UC Berkeley, Computer Science Division (February 2004)

6. Singh, A., Srivatsa, M., Liu, L., Miller, T.: Apoidea: A Decentralized Peer-to-Peer Archi-
tecture for Crawling the World Wide Web. In: The Proceedings of the SIGIR workshop on
distributed information retrieval (August 2003)

	A Full Distributed Web Crawler Based on Structured Network
	Introduction
	Architecture
	Distributed Crawling Model
	Tasks Assignment
	Dynamic Load Balance Management
	Scalability Maintenance

	Evaluation Methodology and Experiment Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

