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Abstract. Conditional Random Fields (CRFs) have received a great amount of
attentions in many fields and achieved good results. However, a case frequently
encountered in practice is that the test data’s domain is different with the training
data’s. It would affect negatively the performance of CRFs. This paper presents
a novel technique for maximum a posteriori (MAP) adaptation of Conditional
Random Fields model. The background model, which is trained on data from a
domain, could be well adapted to a new domain with a small number of labeled
domain specific data. Experimental results on tasks of chunking and capitalizing
show that this technique can significantly improve performance on out-of-domain
data. In chunking task, the relative improvement given by the adaptation tech-
nique is 56.9%. With two in-domain sentences, it also can achieve 30.2% relative
improvement.

1 Introduction

Conditional Random Fields (CRFs) are undirected graphical models that were devel-
oped for labeling relational data [1]. A CRF has a single exponential model for the joint
probability of the entire sequence of labels given the observation sequence. Therefore,
the weights of different features at different states can be traded off against each other.
CRFs modeling technique has received a great amount of attentions in many fields, such
as part-of-speech tagging [1], shallow parsing [2], named entity recognition [3,4],
bioinfomatics [5], Chinese word segmentation [6,7], and Information Extraction [8].
It achieves good results in them.

Similar to most of the classification algorithms, CRFs also have the assumption that
training and test data are drawn from the same underlying distributions. However, a
case frequently encountered in practice is that the test data is drawn from a distribution
that is related but not identical with the training data’s. For example, one may wish to
use a POS tagger trained with WSJ corpus to label email or bioinformatics research
papers. This typically affects negatively the performance of a given model. From the
experimental results we can know that the performance of the chunker trained with
WSJ corpus can achieve 96.2% in different part of WSJ corpus. While performance of
the same chunker in BROWN corpus is only 88.4%.

In order to achieve better results in a specific domain, labeled in-domain data is
needed. Although large scale in-domain labeled corpus is hard to get, a small number
of in-domain labeled data(adaptation data) and a large number of domain related la-
beled data(background data) is easier to get. For example Penn Treebanks [9] can be
used as background training data for POS tagging, chunking, parsing and so on. This
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kind of adaptation technique is used in many fields, such as language modelling [10],
capitalization [11], automatic speech recognition [12], parsing [13,14] and so on.

Directly combining background and adaptation data together is a way to use the in-
domain data. But if the scale of adaptation data is much smaller than the background
data, the adaptation data’s impact would be low. It can be seen from the experimen-
tal results. Another disadvantage of this method is that this technique need to retrain
the whole model. It would waste a lot of time. In order to take advantage of the in-
domain labeled data, a maximum a-posteriori (MAP) adaptation technique for Condi-
tional Random Fields models is developed, following the similar idea with adaptation
of Maximum Entropy [11]. The adaptation procedure proves to be quite effective in
further improving the classification result on different domains. We evaluate the perfor-
mance of this adaptation technique in chunking, capitalizing. The relative chunking’s
performance improvement of the adapted model over the background model is 56.9%.
In capitalization task, the adapted model achieves 29.6% relative improvement.

The remainder of this paper is organized as follows: Section 2 describes the related
works. The CRFs modeling technique is briefly reviewed in Section 3. Section 4 de-
scribes the MAP adaptation technique used for CRFs. The experimental results are
presented in Section 5. Conclusions are presented in the last section.

2 Related Works

Leggetter and Woodland [12] introduced a method of speaker adaptation for continuous
density Hidden Markov Models (HMMs). Adaptation statistics are gathered from the
available adaptation data and used to calculate a linear regression-based transformation
for the mean vectors.

Several recent papers also presented their works on modifying learning approaches-
boosting [15], naive Bayes [16], and SVMs [17] - to use domain knowledge in text
classification. Those methods all modify the base learning algorithm with manually
converted knowledge about words.

Chelba and Acero [11] presented a technique for maximum a posteriori (MAP) adap-
tation of maximum entropy (MaxEnt) and maximum entropy Markov models (MEMM).
The technique was applied to the problem of recovering the correct capitalization of
uniformly cased text. Our work has similarities to Chelba and Acero’s.

Daume and Marcu [18] presented a framework for domain adaptation problem. They
treat the in-domain data as drawn from a mixture of “truly in-domain” distribution and a
“general domain” distribution. Similarly, the out-of-domain are also drawn from a “truly
out-of-domain” distribution and a “general domain” distribution. Then they apply EM
method to estimate parameters. However, this framework used in CRF is computation-
ally expensive.

3 Conditional Random Fields

Conditional Random Fields (CRFs) are undirected graphical models trained to maxi-
mize a conditional probability [1]). CRFs avoid a fundamental limitation of maximum
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entropy Markov models (MEMMs), which can be biased towards states with few suc-
cessor states.

Let X = x1...xn and Y = y1...yn represent the generic input sequence and label
sequence. The cliques of the graph are now restricted to include just pairs of states
(yi−1, yi) that are neighbors in the sequence. Linear-chain CRFs thus define the condi-
tional probability of a state sequence given an input sequence to be

PΛ(Y |X) =
1

Zx
exp

(
n∑

i=1

m∑
k=1

λkfk(yi−1, yi, x, i)

)

where Zx is a normalization factor over all state sequences, fk(yi−1, yi, x, i) is an arbi-
trary feature function over its arguments, and λk (ranging from −∞ to ∞) is a learned
weight for each feature function. A feature function is either a state feature s(yi, x, i)
or a transition feature t(yi−1, yi, x, i).

Then, the CRF’s global feature vector for input sequence X and label sequence Y is
given by

F (Y, X) =
∑

i

f(yi−1, yi, x, i)

where i ranges over input positions. Using the global feature vector, PΛ(Y |X) =
1

ZX
exp(Λ · F (Y, X)). The most probable path Ŷ for input sequence X is then given

by

Ŷ = arg max
Y ∈Y (x)

P (Y |X) = argmax
Y

λ · F (Y, X)

which can be found by Viterbi algorithm.

3.1 Parameter Estimation

CRFs can be trained by the standard maximum likelihood estimation, i.e., maximizing
the log-likelihood LΛ of a given training set T = {< Xj , Yj >}N

j=1.

Λ̂ = arg max
Λ∈Rk

LΛ,

where

LΛ =
∑

j

log(P (Yj|Xj))

=
∑

j

[
Λ · F (Yj , Xj) − log(ZXj )

]
.

To perform the optimization, we seek the zero of the gradient

∂LΛ

∂λk
=

∑
j

(
Fk(Yj , Xj) − EP (Y |X)[Fk(Y, Xj)]

)
= Ok − Ek = 0,
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where Ok =
∑

j Fk(Yj , Xj) is the count of feature k observed in the training data T ,
and Ek = EP (Y |X)[Fk(Y, Xj)] is the expectation of feature k over the model distribu-
tion P (Y |X) and T . The expectation can be efficiency calculated using a variant of the
forward-backword algorithm.

EP (Y |X)[Fk(Y, X)] =
∑
i

αi(fi∗Mi)βT
i

ZX

ZX = αn · 1T

where αi and βi are the forward and backward state-cost vectors defined by

αi =
{

αi−1Mi 0 < i ≤ n
1 i = 0

βT
i−1 =

{
Mi+1β

T
i+1 0 ≤ i < n

1 i = n

To avoid over fitting, we also use Gaussian weight prior [19]:

Lλ
′ =

∑
j

log(P (Yj |Xj) − ‖λ‖2

2σ2 + const

with gradient

∇Lλ
′ = Ok − Ek − λ

σ2

The optimal solutions can be obtained by using traditional iterative scaling algorithms
(e.g., IIS or GIS [20]) or quasi-Newton methods(e.g., L-BFGS [21]).

4 MAP Adaptation of Conditional Random Fields

The overview of adaptation stages is shown in Figure 1. A simple way to accomplish
this is to use MAP adaptation using a prior distribution on the model parameters [11].
A Gaussian prior for the model parameters Λ has been previously used to smooth CRFs
models. The prior has 0 mean and diagonal covariance: Λ ∼ N (0, diag(σ2

i )). In the
adaptation part, the prior distribution is centered at the parameter Λ0 estimated from
the background data:Λ ∼ N (Λ0, diag(σ2

i )). For the features generated only from the
adaptation, the prior distribution is still centered at 0. In our experiments the variances
were tied to σi = σ whose value was determined by line search on development data
drawn from the background data or adaptation data.

Different from the Chelba and Acero’s method [11], we use both σa and σm here.
In their method, σ is used not only to balance the background and adaptation data, but
also to represent the variance of the adaptation data. However they are different in most
of circumstance. In order to overcome this problem we use two σ in adaptation step.
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The log-likelihood LΛ of the given adaptation data set becomes:

Lλ
′ =

∑
j

log(P (yj |xj) −
Fbackground∑

i=1

‖λi − λ0
i ‖2

2σ2
m

−
Fadaptation∑

i=1

‖λi‖2

2σ2
a

Therefore the gradient becomes:

∇Lλ
′ = Ok − Ek −

Fbackground∑
i=1

λi − λ0
i

σ2
m

−
Fadaptation∑

i=1

λi

σ2
a

,

where Fbackground is the features generated from the background data, Fadaptation is
the features generated only from the adaptation data, σa represents the variance of the
adaptation data, and σm is used to balance the background and adaptation model. A
small variance σm will keep the weight λm close to the background model, while a
large variance σm will make the model sensitive to adaptation data. With Lλ

′ and ∇Lλ
′,

λ can be iteratively calculated through L-BFGS.

Algorithm MAP Adaptation of CRFs
Fbackground = Feature set generated from background
data
Fadaptation = Feature set generated from adaptation data
λi = fi’s corresponding weight

Generate Fbackground from background data

Estimate λ0
i for Fbackground

Generate Fadaptation from adaptation data

Let F = Fbackground

⋃
Fadaptation

Let λi = λ0
i if fi ∈ Fbackground

λi = 0, otherwise

Estimate λi with equation Lλ
′ and ∇Lλ

′

Fig. 1. Algorithm of MAP Adaptation of CRFs
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Table 1. Feature templates used by Chunker

type template
Base features w−2, w−1, w0,w1, w2

p−2, p−1, p0,p1, p2

Bi-gram features w−2w−1, w−1w0,
w0w1,w1w2

p−2p−1, p−1p0,
p0p1,p1p2

p−2w−1, p−1w0,
p0w1,p1w2

w−2p−1, w−1p0,
w0p1,w1p2

Tri-gram features w−2w−1w0, w−1w0w1,
w0w1w2

p−2p−1p0, p−1p0p1,
p0p1p2

p−2p−1w0, p−1w0p1,
p0w1p2

w−2w−1p0, w−1p0w1,
w0p1w2

w0 is the word at current position, w1 is the word instant after w0, w−1 is the word instant before
it, p∗ represents word’s POS tags.

5 Experiments

To evaluate the MAP adaptation of CRFs, we did several experiments on chunking and
capitalizing. Penn Treebanks III [9] is used to train chunker. Capitalizer’s training data
comes from Tipster corpus [22]. We will introduce the detail steps and features used in
the following parts.

5.1 Experiments on Chunking

The goal of chunking is to group sequences of words together and classify them by
syntactic labels. Various NLP tasks can be seen as a chunking task, such as English
base noun phrase identification (base NP chunking), English base phrase identification
(chunking), and so on. Because chunking technique is used in many different fields, we
choose chunking task to evaluate the adaptation methods.

The background data used for chunker is generated from WSJ data(wsj 0200.mrg -
wsj 2172.mrg). The in-domain test data is from wsj 0000.mrg to wsj 0199.mrg. The
others are used to tune parameters. Bracketed representation is converted into IOB2
representation [23,24].

For adaptation experiments we use BROWN data in Penn Treebanks III. As Brown
Corpus dataset contains eight types of articles, we extract one article from each type(C*
01.mrg), which are used as adaptation data. The second articles from each type(C* 02.

mrg) are used as development data. The others are used for evaluations.
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Adaptation data size

88%

90%

92%

94%

96%

A
cc

ur
ac

y

Test on BROWN data
Test on WSJ data

0%0%0%       10%      20%      30%      40%      50%      60%      70%      80%      90%

Fig. 2. The impact of the adaptation data’s size

Table 2. Chunking Results on in-domain(WSJ) and out-of-domain data(BROWN)

Background Adaptation Evaluation Accuracy
data data data
WSJ NONE B-tst 88.4%
WSJ B-ada B-tst 95.0%
WSJ NONE wsj-tst 96.2%
WSJ B-ada wsj-tst 88.4%

where “wsj-tst” represents the test part of WSJ, “B-tst” represents the test part of BROWN.

The templates used in chunking experiments are shown is Table 1.
Results of both in-domain and out-of-domain are shown in Table 2. The σ2 used in

background model is selected by in-domain development data. σ2
a, and σ2

m are selected
by development data extracted from BROWN data. From the result we observe that
the performance of background model in in-domain data is significantly better than in
out-of-domain data. Adaptation improves the performance on Brown data by 56.9%
relative.

Figure 2 shows the result of the impact of the adaptation data’s size. X axis represents
the percentage of the adaptation data in BROWN corpus(B-ada). Y axis represents the
accuracy. Two lines represent the results of test data set on BROWN (B-tst) and WSJ
(wsj-tst) corpus. The result in 0% is got by the background model. The result in 10% is
got by the model adapted by 10 percents B-ada data. We observe from the result that the
larger adaptation data are used the higher accuracy in this domain could be get. When
the size of the adaptation data is very small, this technique can also achieve good result.
We use two sentences extracted from B-ada data to adapt the background model. The
adapted model also achieves 30.2% relative improvement.

Then we evaluate the impact of σ2
m to the performance. The result is shown in Fig-

ure 3. X axis represents σ2
m. Y axis represents the accuracy. As expected low values of
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Fig. 3. The impact of the σ2
m

σ2
m result little adaptation. When the σ2

m is between 1 and 10, the accuracy does have
significant changes. Therefore this parameter can be easily set in the real system.

5.2 Experiments on Capitalizing

Capitalization can be converted to sequence tagging problem. Each low case words re-
ceive a tag which represents its capitalization form. It’s also domain dependent. For
example, in bioinformatics domain “gene” is almost low case form. It represents a con-
cept. While in some domains, “gene” is usually capitalized, which represents a human
name. Therefor we did some experiments to show the impact of model adaptation tech-
nique on this task.

The TIPSTER copra are used to generate both background and adaptation data for
the capitalizer. The background data is WSJ data from 1987 - files from WSJ7 001 to
WSJ7 127 in TIPSTER Phrase I. The in-domain test data is WSJ 0402 and WSJ 0403,
which belong to WSJ 1990 in TIPSTER Phrase II. WSJ 0404 and WSJ 0405 are in-
domain development data. The out-of-domain adaptation data is the combination of
AP880212 and AP880213, which belong Associated Press 1988 in TIPSTER Phrase II.
Files AP880214 and AP880215 are out-of-domain test data.

We use the same tag set with the set used in [11]. Each word in a sentence is labeled
with one of the tags:

– LOC lowercase
– CAP capitalized
– MXC mixed case; no further guess is made as to the capitalization of such words.
– AUC all upper case
– PNC punctuation;

The feature templates we used are shown in table 3.
Table 4 shows results of in-domain and out-of-domain data. The σ2 in background

model we use in this experiment is 5, which is selected by development data. The σ2
a
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Table 3. Feature templates used by Capitalizer

type template
Base features w−1, w0,w1

Bi-gram features w−1w0, w0w1

used in adaptation part is set to 5. The σ2
m is 10. We can get the same trend with chunk-

ing’s results. The adapted model gives 29.6% relative improvement. The size of adap-
tation data is less than 1% of the background WSJ data’s size.

Table 4. Capitalizing Results on in-domain and out-of-domain data

Background Adaptation Evaluation Accuracy
data data data
WSJ NONE AP-tst 94.6%
WSJ AP-ada AP-tst 96.2%
WSJ NONE wsj-tst 96.8%
WSJ AP-ada wsj-tst 96.4%

WSJ+AP-ada NONE AP-tst 94.7%
WSJ+AP-ada NONE wsj-tst 96.8%

where “wsj-tst” represents the test part of WSJ,“AP-ada” represents the adaptation data, “AP-tst”
represents the test part of Associated Press.

Then we combine adaptation data(AP-ada) with the background data(WSJ) and train
a capitalizer with it. The accuracy of capitalizing wsj-tst is 96.8%. In AP-tst data, the
accuracy is 94.7%. Comparing with the results got by background model, the capitalizer
trained by combined data couldn’t significantly improve the performance.

6 Conclusions

In this paper we present a novel technique for maximum a posteriori (MAP) adaptation
of Conditional Random Fields Model. Through experimental results,we observe that
this technique can effectively adapt a background model to a new domain with a small
amount of domain specific labeled data. We did several experiments in three different
fields: chunking and capitalizing. The relative chunking’s performance improvement
of the adapted model over the background model is 56.9%. With two in-domain sen-
tences, it also can achieve 30.2% relative improvement. The relative improvement of
capitalizing experiment is 29.6%. The experimental results prove that the MAP adap-
tation of Conditional Random Fields Model technique can benefit the performances in
different tasks.
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