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Abstract. Although regarded as one of the most successful algorithm
to identify predictive features, Relief is quite vulnerable to outliers and
noisy features. The recently proposed I-Relief algorithm addresses such
deficiencies by using an iterative optimization scheme. Effective as it is,
I-Relief is rather time-consuming. This paper presents an efficient alter-
native that significantly enhances the ability of Relief to handle outliers
and strongly redundant noisy features. Our method can achieve compara-
ble performance as I-Relief and has a close-form solution, hence requires
much less running time. Results on benchmark information retrieval
tasks confirm the effectiveness and efficiency of the proposed method.

1 Introduction

Feature subset selection is a process of identifying a small subset of highly pre-
dictive features out of a large set of candidate features which might be strongly
irrelevant and redundant [2I3]. It plays a fundamental role in data mining, in-
formation retrieval, and more generally machine learning tasks for a variety of
reasons [3]. In the literature, many feature selection methods approach the task
as a search problem [34], where each state in the search space is a possible fea-
ture subset. Feature weighting simplify this problem by assigning to each feature
a real valued number to indicate its usefulness, making possible to select a subset
of features efficiently by searching in a continuous space rather than a discrete
state space.

Among the existing feature weighting methods, Relief [BI709] is considered
one of the most successful ones due to its effectiveness, simplicity and efficiency.
Suppose we are given a set of input vectors {x, }_, along with corresponding
targets {y,}2_,, where x, € X C RP is a training instance (e.g., the vector
space model of a document) and y,, € Y={0,1,...,C-1} is its label (e.g., the
category of the document), N, D, C' denote the training set size, the input space
dimensionality and the total number of categories respectively. The d-th feature
of x is denoted as (), d=1,2,...,D. Relief ranks the features according to the
weights wg’s obtained from a convex optimization problem [9]:

* This work is supported in part by NSFC (#60073007, #60121302).

H. Li et al. (Eds.): AIRS 2008, LNCS 4993, pp. 184-{I31] 2008.
© Springer-Verlag Berlin Heidelberg 2008



Efficient Feature Selection in the Presence of Outliers and Noises 185

W = arg max 25:1 wlm, (1)

st |lwll =1,wg >0,d=1,2,...D

where w=(w1,wa, ...,wp)T, m, = |x, — M(x,)| — |xn — H(x,)| is called the
margin for the pattern x,,, H(x,) and M (x,) denote the nearest-hit (the near-
est neighbor from the same class) and nearest-miss (the nearest neighbor form
different class) of x,, respectively.

However, a crucial drawback [9] of the standard Relief algorithm is that it lacks
mechanisms to tackling outliers and redundant features, which heavily degrade
its performance in practice.

e The success of Relief hinges largely on its attempting to discriminate between
neighboring patterns (nearest-miss and nearest-hit). However, the nearest
neighbors are defined in the original feature space. When there are a large
number of redundant and/or noisy features present in the data, it is less likely
that the nearest neighbors in the original feature space will be the same as
those in the target feature space. As a consequence, the performance of Relief
can be degraded drastically;

e The objective function of the Relief algorithm, Eq.(d), is to maximize the
average margin of the training samples. This formulation makes it rather
vulnerable to outliers, because the margins of outlying patterns usually take
very negative values (thus can heavily affect the performance of Relief).

The recently proposed Iterative-Relief algorithm (I-Relief, [9]) addresses these
two problems by introducing three latent variables for each pattern and em-
ploying the Expectation-Maximization (EM) principal to optimize the objective
function. Powerful as it is, this algorithm surfers two drawbacks: (i) It is very
time-consuming since there is no close-form solution. Therefore, iterative op-
timization scheme must be employed. In particular, within each iteration, the
I-Relief algorithm involves at least O(N2D) times of computation, which is only
tractable for very small data set; (i7) I-Relief requires storing and manipulating
three N x N-sized matrix at each iteration, which is infeasible for large data set.

In this paper, we propose efficient alternative approaches to address the defi-
ciencies of Relief in tackling outliers and noises. In particular, in order to handle
outliers, we borrow the concept of margin-based loss function [IJ6] from the
supervise learning literature, and integrate a loss function into the objective
function of Relief, i.e.: instead of maximizing the average margin, this method
minimizes the empirical sum of a specific loss function. Since the resulted prob-
lem has a close-form solution, this method is much more efficient (in fact, it is of
the same complexity as the standard Relief). In the meanwhile, when appropri-
ate loss functions are chosen, this method can achieve comparable performance
as [-Relief. In addition, to tackling noisy features, we propose a novel algorithm,
named Exact-Relief, which is based on a new perspective of Relief as a greedy
nonparametric Bayes error minimization feature selection approach. We finally
conduct empirical evaluations on various benchmark information retrieval tasks.
The results confirm the advantages of our proposed algorithms.
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2 The Proposed Algorithms

2.1 Against Outliers: Ramp-Relief

Relief maximizes the empirical average margin on the training set (see Eq.(D)).
An alternative (and equivalent) way to view this is to minimize the empirical
sum of a margin-based loss function:

min ZTJLI I(wim,,)
st ||w|] =1, wg >0,d=1,2,....D

(2)

where [(-) is a margin-based loss function [IJ6]. In this viewpoint, the standard
Relief is a special case of the above formulation, i.e., it uses a simple linear loss
function I(z)=-z.

To minimize empirical sum of a specific margin-based loss function has been
extensively studied in supervised learning literature both theoretically and em-
pirically. This methodology offers various advantages. We refer the interested
readers to [6I] and the references therein for more detailed discussions.

The new perspective of Relief allows us to extend Relief from using linear loss
function to other more extensively studied loss functions. For computational
simplicity, we solve an approximate problem in this paper, i.e.:

min 25:1 wll(m,)

st |lwl| =1,wg >0,d=1,2,...D ®)

and a variation of the Ramp loss function used in v-learning [8] is employed:

r(z) = max(z2, min(zo — 2, 21))

21,2 < zZp— 21 (4)
= 29,2 > 20 — 22
zo — 2, else

where zg, 21 and 2o are three constants. By using the Lagrangian technique, a
quite simple close-form solution to problem Eq.([ ) can be easily derived, i.e.:

w =)/l (®)

where v = ZnN:l —r(Jxp — H(xpn)| — |%xn — M(x4)]), and (-)T denotes the posi-
tive part.

We term this algorithm as Ramp-Relief (R-Relief). We will show that the
R-Relief algorithm is able to deal with outliers as well as I-Relief but is much
more efficient and simpler to compute.

2.2 Against Noisy Features: Exact-Relief

Recently, we found that Relief greedily attempts to minimize the nonparamet-
ric Bayes error estimated by k-nearest-neighbor (kKNN) methods with feature
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Fig. 1. Linear loss function (left) and ramp loss function (right)

weighting as the search strategy [10]. One of the assumptions made by Re-
lief is that the nearest neighbor of a pattern x locates close to x in any sin-
gle dimensional space. For instance, suppose X, is the nearest neighbor of x:
[1xa — x|] < ||%xn —x]|| for n = 1,2,..., N, Relief implicitly assumes that '

is also, approximately, the nearest neighbor of (%), that is ac((fl) R ml()d), where

|ml(,d) —z@|| < ||m51d) —z(D]| (bis dependent on d). Therefore, Relief approximates

acl()d) with mgd) for all d = 1,2,..., D. Although this approximation can reduce
the computation complexity significantly, it also pays prices. In particular, if the
feature set is strongly redundant such that a large proportion of features are
irrelevant, noisy, or useless. In that case, axgd) is highly unlikely to locate close to
2@ which can heavily degrade the performance of the solutions. Therefore, it
may be preferable to eliminate this assumption. For this purpose, we propose an
algorithm refereed as ‘Exact-Relief’ (E-Relief), which resemble the standard

Relief algorithm except using a different margin definition: m,, = (mgd)) Dx1,

mi? = |x£1d) - Méd)\ - |.1‘$Ld) - Hy(Ld)|, where MY and HS" denote the nearest-
miss and nearest-hit of x,, in the d-th dimension.

2.3 Against Both Outliers and Noisy Features

In practice, it is quite possible that both outliers and noisy features are present
in the data. For instance, in spam filtering, junk mails usually contain a large
amount of noisy characters in order to cheat the filter. On the other hand,
legitimate mails may only have very few words but contain many hyperlinks.
Such mails not only contain many noisy features but can also be easily detected
as outliers. To handle both factors, an obvious strategy is to combine the R-Relief
and E-Relief algorithm, i.e.:

D N
d d d d
maXdeZr(|x%)—M£)|—|x%)—H§l)\) ()
d=1 n=1
st.:w>0,|wl|=1

We term this algorithm as ER-Relief. It can be easily seen that ER-Relief
and E-Relief are of the same complexity, i.e., O(N?D), which is much more
efficient compared to I-Relief, whose worst case complexity is O(N3D).
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Table 1. Characteristics of data sets

Data Set #Train #Test #Feature #Class
Spam 1000 3601 57 2

LRS 380 151 93 48
Vowel 530 460 11 11
Trecll 114 300 6429 9
Trecl2 113 200 5799 8
Trec23 84 120 5832 6

Trec31 227 700 10127 7
Trecdl 178 700 7454 10
Trec4b 190 500 8261 10

3 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness
and efficiency of the proposed methods in comparison with state-of-art algo-
rithms in Relief family.

3.1 Experiments on UCI Data Sets

To demonstrate the performance of the proposed algorithms in different infor-
mation retrieval tasks, we first perform experiments on three benchmark UCI
data sets, namely, the spam filtering data set (Spam), the low-resolution satellite
image recognition data set (LRS) and the speaker-independent speech recognition
data set (Vowel). To conduct comparison in a controlled manner, fifty irrelevant
features (known as 'probes’) are added to each pattern, each of which is an inde-
pendently Gaussian distributed random variable, i.e., N(0,20). The efficiency of
a feature selection algorithm can be directly measured by its running time. To
evaluate the effectiveness, two distinct metrics are used. One is the classification
accuracy estimated by ANN classifier, where k is determined by five-fold cross
validation. The other metric is the Receiver Operating Characteristic (ROC)
curve [9], which is used to indicate the abilities of different feature selection al-
gorithms in identifying relevant features and at the same time ruling out useless
ones. To eliminate statistical deviations, all the experiments are repeated for 20
runs. In each run, the data set is randomly partitioned into training and testing
data, and only the training data are used to learn the feature selector. Three
groups of experiments have been done:

1. Against outliers. Relief, I-Relief and R-Relief are compared. A randomly
selected subset of 10% training samples are mislabelled. The testing data is
kept intact. No probe is added. The testing errors is shown in the top line of
Figl2l We can see R-Relief improves the performance of Relief significantly.
It performs comparably with I-Relief when outliers are present.

2. Against noisy features. E-Relief is compared with Relief and I-Relief. 50
probes are added to each example, but no mislabelling is conducted. The



Efficient Feature Selection in the Presence of Outliers and Noises 189

Spam Vowel

o
2

o
>

. 03 . .
3 2 s
2 £ 5 os
Wo2s a o
3
3 3
2 Ay 2 04
0.2
03
015 02

0.1

10 20 30 40 50
Num of Features

Spam LRS

0.9
- . 08 .
e e e
b W8 u
3 3 3
[ [ [
06
05
04
10 20 30 40 50 20 40 60 80 2 4 6 8 10
Num of Features Num of Features Num of Features
Spam LRS Vowel
0—0-—0—0 Q0
90y i
50 80Q
8 g ¢
E 37 E
T 40% 1 5
fra & o &
= 3 3
3 ¢ D 4 >
B 2 3 3 3
S i S
ks —o— Relief 2. —O— Relief 2 —0— Relief
o 104 : —4— |-Relief « B —O— |-Relief 0 —O— I-Relief
- O - E-Relief & . - O - E-Relief : - O - E-Relief]
o
10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
Selected Useless Features Selected Useless Features Selected Useless Features
Fig. 2. Comparison of R-Relief/E-Relief I-Relief and Relief on UCI data set
Against Outliers and Noisy Features Against Outliers and Noisy Features
500
I Relief
[ 1-Relief
[ R-Relief
[ E-Relief
ER-Relief 100 [ ER-Relief
d E
w =
£ 2
ki E
Spam Vowel Spam LRS Vowel
Data Sets

LRS
Data Sets

Fig. 3. Average testing errors and running times (sec.) as well as standard deviations
on UCI data sets when both outliers and noisy features are involved

testing errors are shown in Figl2 (middle line). The ROC curves are also
plotted in Fig2l(bottom line). We can see that E-Relief performs comparably
with I-Relief (much better than Relief) when noisy features are involved.
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3. Against outliers and noisy features. E-Relief, R-Relief and their com-
bination, ER-Relief, along with I-Relief and Relief are compared. 50 probes
are added to each pattern (both training and testing), and 10% of train-
ing samples are mislabeled. The testing errors and running times of each
algorithm, with average values and standard deviations, are shown by two
bar plot, in Fig[3l We can see that in the presence of both outliers and
noisy features, the performance of Relief is degraded badly. R-Relief and
E-Relief do not necessarily improve the performance. However, their com-
bination, ER-Relief, improves the performance drastically. In most cases,
ER-Relief performs comparably with I-Relief. In some cases, it performs the
best. With respect to computational efficiency, we can see that E-Relief,
R-Relief and ER-Relief do not introduce a large increase of computational
expense compared to Relief, while I-Relief is far more time-consuming.

3.2 Document Clustering and Categorization

We then apply the algorithms to document clustering and categorization tasks.
For this purpose, six benchmark text data sets from Trec (the Text REtrieval
Contest, http://trec.nist.gov) collection that are frequently used in information
retrieval research are selected. The information of each data set is also summa-
rized in Table.1.

The Relief, I-Relief and ER-Relief algorithms are compared, with no probe
or mislabelling. For text clustering, C-mean algorithm is employed to get the
clustering result after dimensionality reduction. For simplicity, the number of
cluster, C| is set to be the true number of classes. For document categorization,
the nearest-neighbor classifier is applied for final classification. Each experiment
is repeated for 20 runs, each of which is based on a random splitting of the data
set. The Macrogy. F1 and Microg,.F; are used to assess the classification results,
and ARI (Adjusted Rand Index) and NMI (Normalized Mutual Information) are
used to evaluate the clustering results. Table.2 presents the best average result
of each algorithm.

Again, we observe that (i) ER-Relief performs much better than Relief, and
that () ER-Relief has achieved comparable performances comparably to I-Relief
in most cases, although its computation complexity and operating time are much
less than I-Relief. Note that the results about the running time are not given
due to space limitation.

In information retrieval, huge amount of data and extremely high dimension-
ality are two core challenges (and are also becoming increasingly challenging).
Therefore, the efficiency of ER-Relief as well as its effective ability to identify
a small subset of predictive features (out of a huge amount of redundant ones)
may make it a rather appealing and encouraging tool for both challenges, i.e., it
is efficient with respect to data set size, and, it is able to effectively reduce the
dimensionality. This confirms our attempting in applying ER-Relief to informa-
tion retrieval tasks and encourages us to investigate its performance in extensive
IR applications in the future.
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Table 2. Comparison of feature weighting algorithms: Relief (RLF), I-Relief (IRLF)
and ER-Relief (ERRL), in text categorization and clustering tasks. Best results are
highlighted in bold.

4

Categorization Clustering
Macrogyg F1 Microgeg F1 ARI NMI
RLF IRLF ERRL RLF IRLF ERRL RLF IRLF ERRL RLF IRLF ERRL
Trecll 0.50 0.43 0.45 0.61 0.54 0.57 0.17 0.13 0.11 0.25 0.16 0.16
Trecl2 0.58 0.58 0.64 0.59 0.58 0.60 0.04 0.06 0.07 0.10 0.13 0.15
Trec23 0.49 0.53 0.42 0.62 0.66 0.59 0.04 0.07 0.05 0.09 0.12 0.10
Trec31 0.66 0.66 0.71 0.82 0.80 0.86 0.07 0.08 0.09 0.13 0.12 0.15
Trec41l 0.65 0.68 0.64 0.74 0.77 0.78 0.16 0.17 0.17 0.20 0.33 0.29
Trec45 0.63 0.54 0.61 0.68 0.61 0.71 0.06 0.05 0.07 0.19 0.16 0.21

Conclusion

Fast growing internet data poses a big challenge for information retrieval. Feature
selection, for the purpose of defying curse of dimensionality among others, plays
a fundamental role in practice. Relief is an appealing feature selection algorithm.
However, it lacks mechanisms to handle outliers and noisy features. In this paper,
we have established two algorithms to address these two factor respectively.
Compared with the recently proposed I-Relief, our algorithms are able to achieve
comparable performance, while operating much more efficiently, which is proved
by extensive experiments on various benchmark information retrieval tasks.
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