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Abstract. Text segmentation has a wide range of applications such as information 
retrieval, question answering and text summarization. In recent years, the use of 
semantics has been proven to be effective in improving the performance of text 
segmentation. Particularly, in finding the subtopic boundaries, there have been 
efforts in focusing on either maximizing the lexical similarity within a segment or 
minimizing the similarity between adjacent segments. However, no optimal 
solutions have been attempted to simultaneously achieve maximum within-
segment similarity and minimum between-segment similarity. In this paper, a 
domain independent model based on min-max similarity (MMS) is proposed in 
order to fill the void. Dynamic programming is adopted to achieve global 
optimization of the segmentation criterion function. Comparative experimental 
results on real corpus have shown that MMS model outperforms previous 
segmentation approaches.  

Keywords: text segmentation, within-segment similarity, between-segment 
similarity, segment lengths, similarity weighting, dynamic programming. 

1   Introduction 

A natural language discourse is usually composed of multiple subtopics, which in turn 
may convey only one main topic. In traditional text processing tasks such as 
information retrieval (IR), question answering (QA) and text summarization, if the 
subtopic structure of a text can be identified and consequently its semantic segments 
can be used in the basic processing unit, the performance of the system will be greatly 
improved [1][2]. In addition, the segment-based IR will provide users with answers of 
higher accuracy and less redundancy results. The core technology involved in the 
identification of subtopic structure and therefore semantic segments of a text is called 
text segmentation, which is the focus of this paper. 

In text segmentation, it becomes critical how to design a good criterion to evaluate 
the subtopic coherence of a document. According to the definition of text segmentation 
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task, in an appropriate segmentation, sentences within a segment convey the same 
subtopic while sentences among different segments belonging to different subtopics. 
Therefore, in order to achieve good separation over all segments, both high within-
segment similarity and low between-segment similarity should be achieved. However, 
in previous literature [2-10], no solutions have been given to simultaneously optimize 
both within-segment and between-segment similarities. 

Another important issue in text segmentation is the strategy for finding the best 
segmentation. Some algorithms use local optimization approaches, such as sliding 
window [2-3]and divisive clustering [6-7], to detect subtopic changes. Some models 
use more global strategy by representing lexical distribution on a dotplot [4]. However 
this is still not a complete globalization strategy. A truly global optimization searching 
strategy is dynamic programming [5] [8] [10] 

In this paper we present a global optimization model, MMS, for text segmentation. 
This model adopts a segmentation criterion function attempting to optimize both within-
segment lexical similarity and between-segment lexical similarity. Segmentation with 
maximum within-segment and minimum between-segment similarity is selected as the 
optimal one. In MMS model, additional text structure factors, such as segment lengths 
and lexical similarity weighting strategy based on sentence distance, are also 
incorporated as part of lexical similarity weighting strategy. To achieve global 
optimization, we implemented our MMS model using the dynamic programming 
searching strategy, with which the number of segments can be determined 
automatically. Experimental results show that our MMS model outperforms other 
popular approaches in terms of Pk [11]and WindowDiff [12] measure. 

The remainder of this paper is organized as follows. Literature research is briefly 
reviewed in Section 2. In Section 3, the proposed MMS model and a complete text 
segmentation algorithm are described in detail. In Section 4, experimental results are 
given to compare our approach with other popular systems. At last, we draw 
conclusion and address future work in Section 5. 

2   Related Work 

Existing text segmentation algorithms can be classified into two categories with 
respect to the segmentation criteria being employed. One is to make use of the 
property that lexical similarity within a segment is high. Lexical densities within 
segments are measured to find lexically homogeneous text fragments [6-10]. The 
second approach assumes that lexical similarity between different segments is low, 
and subtopic boundaries correspond to locations where adjacent text fragments have 
the lowest lexical similarity [2-5].  

In contrast to previous work, the focus of our work is not only lexical relations 
within a segment or between different segments, but appropriate combination of the 
two factors. Fundamental structural factors of written texts, such as segment length and 
sentence distance are also taken into account in the design of the segmentation 
criterion. In analogy, our work is similar to [13], which measured homogeneity of a 
segment not only by the similarity of its words, but also by their relation to words in 
other segments of the text. However, their method is designed for spoken lecture 
segmentation and can not address the problems of written texts very well. Zhu [14] 
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used Multiple Discriminant Analysis (MDA) criterion function to find the best 
segmentation by means of the largest word similarity within a segment and the smallest 
word similarity between segments. However, the algorithm applied a full search to find 
the optimal segmentation, which is an NP problem with high computational 
complexity. In comparison, MMS model adopts dynamic programming strategy, which 
greatly reduces the time cost. Fragkou[10] also used dynamic programming in 
optimizing the segmentation cost function. But their method only considers within-
segment similarity and needs prior information about segment length. 

3   The Segmentation Algorithm 

3.1   Problem Definition 

Let’s assume a text consists of K sentences, denoted by {1,2,..., }S K= , and has a 

vocabulary of T distinct words 1 2{ , ,..., }TV w w w= . Each sentence can be represented as 

a point in a T-dimensional data space. Assume that the topic boundaries occur at the 
ends of sentences and there are N segments in the text, then the task of text 
segmentation is to partition the sentences into N groups 

1{1, 2,..., }G p= , 

1 1 2{ 1, 2,..., }p p p+ + ,…, 1 1{ 1, 2,..., }N Np p K− −+ + . Each group 1 1{ 1, 2,..., }i i i iG p p p− −= + +  

is a segment that reflects an individual subtopic. A shorter representation of the 
segmentation can be given as 0 1{ , ,..., }NG p p p= , where 

0 1, ,..., Np p p  are segment 

boundaries with 
0 0p =  and

Np K= . Text segmentation aims at finding the best 

segmentation G* among all possible segmentations. 
In this paper we design a criterion function J to evaluate segmentations of a text. 

Thus the process of finding the best segmentation can be viewed as the process of 
finding the segmentation with the highest evaluation score as follows:  

* arg max ( , ) .
G

G J S G=  (1) 

In the following section we will introduce our motivation in designing the criterion. 

3.2   Motivation 

It will reasonably hold true that in an appropriately segmented text, sentences within a 
single segment are topically related and sentences that belong to adjacent segments 
are topically unrelated conveying different subtopics. In much of previous work[4] [6-
10], the lexical similarity is a natural candidate in measuring the topical relation of 
sentences. If two sentences describe the same topic, words used in them tend to be 
related to one another. Thus, within a segment, vocabulary tends to be cohesive and 
repetitive, leading to significant within-segment lexical similarity; whereas between 
adjacent segments, the vocabulary tends to be distinct, leading to dismal between-
segment similarity. We believe that the above lexical similarity property must exist 
for a good segmentation strategy. 
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3.3   Segmentation Criterion Function 

Following the lexical similarity property stated above, we propose our MMS model to 
comprise of the segmentation evaluating criterion function as follows: 

( , ) .Within BetweenJ F Sim Sim=  (2) 

where SimWithin refers to the within-segment similarity, SimBetween refers to the 
between-segment similarity. F is a function whose value increases as SimWithin 
increases, and decreases as SimBetween increases. The best segmentation can be 
achieved by maximizing the value of F, which is expressed as: 

( , ) (1 )  .Within Between Within BetweenF Sim Sim Sim Simα α= ⋅ − − ⋅  (3) 

where α  and 1 α−  are the relative weight of within-segment lexical similarity and 
between-segment lexical similarity, respectively. 

Within-segment lexical similarity is: 

1 1
,1 1

2
1 1

.
( )

i i

i i

p p
N m nm p n p

Within
i i i

D
Sim

p p
− −= + = +

= −

=
−

∑ ∑
∑  (4) 

where m and n are the mth and nth sentence in the text. ,m nD  is the lexical similarity 

between sentence m and sentence n. The value of 
,m nD  equals to one if there exist one 

or more words in common between sentence m and n, and zero otherwise. SimWithin 
represents the global density of word repetition within segments.  

Similarly, between-segment lexical similarity is defined as: 

1

1
,1 1

1 1 1

.
( )( )

i i

i i

p p
N m nm p n p

Between
i i i i i

D
Sim

p p p p

+

−= + = +

= + −

=
− −

∑ ∑
∑  (5) 

SimBetween represents the global lexical similarity between adjacent segments. 
Combining Eq. 3 to Eq. 5, the segmentation evaluation function is computed: 

1

1 1 1
, ,1 1 1 1

2
1 1 1 11

(1 )  .
( )( )( )

i i i i

i i i i

p p p p
N Nm n m nm p n p m p n p

i i i i i ii i

D D
J

p p p pp p
α α

+

− − −= + = + = + = +

= = + −−

= ⋅ − − ⋅
− −−

∑ ∑ ∑ ∑
∑ ∑  (6) 

3.4   Text Structure Weighting Factors 

In addition to segment lexical similarity, there are other text structure factors that are 
weighted into the proposed text segmentation algorithm. 

 Segment Length Factor 
In text segmentation, text pieces that are too short do not adequately describe an 
independent subtopic. For example, if there is a sentence in a text, and is not closely 
related with its adjacent text, and then it is likely a parenthesis or a connecting link 
between its preceding and its successive segments to enhance coherence. To address 
this phenomenon, we should avoid introducing too many segments. Restriction on 
segment number is added into the segmentation criterion function. It penalizes 
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segmentation choices with too many segments by assigning a small evaluation 
function score to it.  

For example, we have a segmentation G={G1, G2, …, GN}, each segment Gi has 
length Li, and the length of the whole text is L. Then the length factor can be defined 

as 2

1

( )
N

i

i

L

L=
∑ , where

1

N

i
i

L L
=

=∑ . This factor achieves low value when too many segments 

are produced. 

 Distance-based Similarity Weighting 
If we randomly select two sentences from a discourse, the probability of them 
belonging to the same segment varies greatly with the distance between them. Two 
sentences far apart are unlikely to belong to the same segment, whereas two adjacent 
sentences are much more likely. Therefore, we add a distance-based weighting factor 
to the density function, thus the lexical similarity of two sentences fluctuate with the 
distance between them. 

Having incorporated the above factors, the overall segmentation evaluating 
function for our proposed MMS model becomes: 

1 1

1

1

, ,1 1

2
1 1

, ,1 1 2

1 11 1

( )

(1 ) ( )  .
( )( )

i i

i i

i i

i i

p p
N m n m nm p n p

i i i

p p
N Nm n m nm p n p i
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p p p p L

α

α β

− −
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−
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− −
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∑

∑ ∑
∑ ∑

 (7) 

where Wm,n is the weighting factor, and based on the distance between the sentence m 
and sentence n. The values of m and n represent the positions of each corresponding 
sentence. An exemplary definition of Wm.n is as follows: 

,

1 2

1

| | 1
m n

if m n

W
else

m n

⎧ − ≤
⎪= ⎨
⎪ − −⎩

 (8) 

We see that in our MMS model, rich information such as the within-segment 
similarity and between-segment similarity, segment length and the distance between 
sentences, are considered to discover topical coherence. 

Eq. 7 represents the final form of the evaluation function in our MMS model, in 
which N stands for the desired number of segments. 

3.5   Text Segmentation Algorithm 

To optimize the segmentation evaluating function (Eq. 7) globally, we provide an 
implementation using the dynamic programming searching strategy to find the best 
segmentation. Since there is a between-segment similarity item in the function, two-
dimension dynamic programming is applied. The complete text segmentation 
algorithm is shown in Figure 1, followed by detailed explanation. 
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Input: The K×K sentence similarity matrix D; the parameter α , β  

Initialization 

For t = 1, 2, ..., K 

  For s = 1, 2, ..., t 

    Sum = 0; 

    For k = s, ..., t 

      For w = s, ..., t 

        Sum = Sum + Ww,k ⋅Dw,k; 

      End 

    End 

    Ss,t= Sum; 

  End 

End 

Maximization 

For t = 1, 2, ..., K 

  For s = 0, 1, ..., t-1 

,
0 ;

t sC =  

1 ,

2, 0
;t

t

S

tC α= ⋅
 

    For w = 0, 1, ..., s-1 

1 , 1 , 1 , 1 , 2
,2,

I f   (1 ) ( )
( ) ( )( )

s t w t w s s t
t ss w

t s
C

t s s w Kt s
S S S S

C α α β+ + + +− − −
+ ⋅ − − ⋅ + ⋅ ≥

− −−

 

1 , 1 , 1 , 1 , 2
2, ,

(1 ) ( ) ;
( ) ( )( )

s t w t w s s t

t s s w

t s

t s s w Kt s
S S S S

C C α α β+ + + +− − −= + ⋅ − − ⋅ + ⋅
− −−

 

,
;

t s
wZ =  

      EndIf 

    End 

  End 

End 

Backtracking 

e = − ∞ ; k = 0; N=1;  

For t = 0, 1, ..., T-1 
  

,
I f  

T t
eC ≥  

     k = t; 

  EndIf 
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End 

1
;

K
TS − =  

;
K

kS =  

1
,

0W h i le   
N NS SZ

−
>

 

    N = N + 1; 
    

2 1, ;
N NS SN

ZS − −
=  

End 

N = N+1; 

0 ;t =  

For k =1, 2, ..., N 

;
N kk St −=  

End 

Output: The optimal segmentation vector 
1 2( , , . . . , )Nt t t t=  

Fig. 1. MMS text segmentation algorithm using dynamic programming scheme 

In the above procedure, maximization and backtracking are the basic parts. During 
maximization, we recursively compute Ct,s, which is the optimal (maximum) value of the 
segmentation criterion function of the subtext starting from sentence 1 and ending at 
sentence t ( with the second to the last boundary of s). That is, Ct,s is the maximum (with 
respect to s and w) value of 1 , 1 , 1 , 1 , 2

2,
(1 ) ( )

( ) ( )( )
s t w t w s s t

s w

t s

t s s w Kt s
S S S S

C α α β+ + + +− − −+ ⋅ − − ⋅ + ⋅
− −−

, 

where w is the best boundary before t and s. This sum is the optimal evaluation score to 
segment sentences 1 to s (with the second to last boundary of w) plus the score of 
creating a segment including sentences s+1 until t. Zt,s is the segment boundary preceding 
s (with the next boundary of t) in the optimal segmentation. Upon completion of the 
maximization part of the algorithm we have computed the maximum segmentation 
criterion function value for sentences 1 until K. The backtracking part produces the 
optimal segmentation 

0 1( , , . . . , )Nt t t t=  in reverse order. In this process, the optimal 

number of segments N is computed automatically. The time complexity of the algorithm 
is O(K3) (K is the number of sentences in the text). 

4   Evaluation 

The evaluation has been conducted systematically under a strict guideline in order to 
compare our approach with other state of the art algorithms on a fair basis. The key 
requirements are: 1) Evaluation should be conducted using a sizable testing data in 
order to generate meaningful results; 2) The testing data should be publicly available; 
3) In order to compare with other people’s work, we attempt to use their own 
implementations or published results as these are likely optimized for taking 
maximum advantages of their merits. 



148 N. Ye et al. 

 

4.1   Experiment Settings 

In our experiments, we use two suites of corpus including English one and Chinese 
one to evaluate the proposed model. The English testing corpus is the publicly 
available book Mars written by Percival Lowell in 1895. There are 11 chapters in all 
and the body of the book (6 chapters) is extracted for testing. Each chapter is 
composed of 2-4 sections. Chinese testing corpus is the scientific exposition 
Exploring Nine Planets. There are 10 chapters in the corpus and each chapter consists 
of 2-6 sections. The boundaries of paragraphs in the sections are taken as the subtopic 
boundaries for reference. Sections with few paragraphs (less than 3) are excluded. 

In fact, there is another testing corpus developed by Choi1, which is widely used for 
the evaluation of text segmentation algorithms. This is a synthetic corpus in which 
each article is a concatenation of ten text segments. A segment is the first n sentences 
of a randomly selected document from the Brown corpus. The motivation of 
constructing corpus in this way is to avoid the difficulty of judging subtopic boundaries 
by human beings. However this strategy has introduced obvious limitations to the 
corpus. Namely the subtopic similarity in the article is artificially enhanced, making 
the boundaries more distinct. This is quite different from real corpus and cannot 
represent the performance on real corpus by reducing the difficulty of segmentation. 
Therefore we used the real corpus instead of the synthetic one in our experiments. 

To evaluate text segmentation algorithms, using precision and recall is inadequate 
because inaccurately identified segment boundaries are penalized equally regardless 
of their distance from the correct segment boundaries. In 1997, Beeferman[11] 
proposed the Pk metric to overcome the shortcoming. Pk is the probability that a 
randomly chosen pair of words with a distance of k words apart is incorrectly 
segmented2. Pk metric is defined as: 

1

( , )( ( , ) ( , )) .k k ref hyp
i j K

P D i j i j i jδ δ
≤ ≤ ≤

= ⊕∑  (9) 

where ( , )ref i jδ  is an indicator function whose value is one if sentences i and j belong 

to the same segment and zero otherwise. Similarly, ( , )hyp i jδ  is one if the two 

sentences are hypothesized as belonging to the same segment and zero otherwise. The 
⊕  operator is the XOR operator. The function Dk is the distance probability 
distribution that uniformly concentrates all its mass on the sentences which have a 
distance of k. The value of k is usually selected as half the average segment length. 
Low Pk value indicates high segmentation accuracy. 

This error metric was recently criticized by Pevzner [12] to have several biased 
flaws such as penalizing missed boundaries more than erroneous additional 
boundaries and a new metric called WindowDiff was proposed: 

1

1
( , ) (| ( , ) ( , ) | 0) .

K k

i i k i i k
i

WindowDiff ref hyp b ref ref b hyp hyp
K k

−

+ +
=

= − >
− ∑  (10) 

                                                           
1 www.lingware.co.uk/homepage/freddy.choi/index.htm 
2 We use the implementation of Pk in Choi’s software package. (www.lingware.co.uk/ 
   homepage/freddy.choi/index.htm). 
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where ref is the correct segmentation for reference, hyp is the segmentation produced 
by the model, K is the number of sentences in the text, k is the size of the sliding 
window and b(i, j) is the number of boundaries between sentence i and sentence j. 
Low WindowDiff value indicates high segmentation accuracy. We will make 
comparison under both metrics (Pk and WindowDiff) on the testing corpus. 

In experiments, punctuation marks and stopwords are removed. The Porter[15] 
stemming algorithm is applied to the remaining words to obtain word stems for 
English experiments. 

4.2   Experimental Results 

In MMS model, there are two parameters α  and β  that affect the quality of 

segmentation over certain ranges. To obtain the best parameter we randomly selected 
50% corpus for training. The algorithm is run on the training corpus with α  and β  

varies (the variation is 0.1 each time). Appropriate combination of α  and β  value is 

selected as the one which yields the minimum WindowDiff value. The rest of the 
corpus is used as testing corpus. 

We evaluate MMS model in comparison to the C99 [6] method and Dotplotting[4] 
method including minimization algorithm (D_Min) and maximization algorithm 
(D_Max). The experimental results of the two methods come from Choi’s software 
package, and it is an exact implementation of the published method3. Table 1 and 
Table 2 summarize the experimental results of all the algorithms on English corpus 
and Chinese corpus, respectively. 

In the above tables, CmSn refers to the nth section of the mth chapter in the corpus. 
From experimental results we can see that our MMS model performs better with more 
than 6% reduction on average error rate (WindowDiff) for min and max Dotplotting 
methods and up to 6.4% for C99 on English corpus. Similar results are obtained on  
 

Table 1. Comparative Results on English Testing Corpus 

 

Pk WindowDiff Method 
MMS C99 D_Min D_Max MMS C99 D_Min D_Max 

C1S2 

C2S1 
C3S2 
C4S2 
C5S1 

C5S2 

C6 
Average 

0.3023 
0.3664 
0.4609 
0.3095 
0.4105 
0.3293 
0.4240 
0.3718 

0.5763 
0.3990 
0.4771 
0.4691 
0.4958 
0.4127 
0.4356 
0.4665 

0.3709 
0.4385 
0.4500 
0.4525 
0.4562 
0.4515 
0.3619 
0.4259 

0.3636 
0.4604 
0.4785 
0.3580 
0.4547 
0.3985 
0.4555 
0.4242 

0.4318 
0.4578 
0.4609 
0.4330 
0.4407 
0.3822 
0.4240 
0.4329 

0.5836 
0.4488 
0.4897 
0.4947 
0.5196 
0.4468 
0.4857 
0.4956 

0.4562 
0.5197 
0.5349 
0.4259 
0.5351 
0.5312 
0.4722 
0.4965 

0.4586 
0.5401 
0.5634 
0.4938 
0.6129 
0.5029 
0.4918 
0.5234 

 

                                                           
3 For the Dotplotting method, Choi[6] developed a package that includes both the 

implementation of the original Dotplotting method and his own interpretation. In this paper 
we cite the experimental results of the original Dotplotting method as published in [4]. The 
implementation comes from the publicly available software package. (www.lingware.co.uk/ 
homepage/freddy.choi/index.htm) 
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Table 2. Comparative Results on Chinese Testing Corpus 

Pk WindowDiff Method 
MMS C99 D_Min D_Max MMS C99 D_Min D_Max 

C2S1 
C2S3 
C4S4 
C4S5 
C5S2 

C6S2 
C6S4 
C9S1 
C10S2 
C10S3 
C10S5 

Average 

0.3922 
0.1947 
0.2900 
0.2820 
0.3934 
0.2279 
0.4157 
0.2248 
0.4224 
0.3872 
0.4235 
0.3322 

0.4122 
0.3344 
0.4342 
0.3658 
0.4812 
0.5785 
0.4002 
0.3120 
0.5136 
0.2673 
0.3848 
0.4077 

0.3946 
0.1447 
0.4806 
0.4899 
0.4158 
0.5247 
0.5305 
0.3736 
0.4699 
0.4895 
0.5359 
0.4409 

0.3673 
0.6006 
0.5269 
0.3416 
0.4019 
0.4487 
0.5610 
0.4136 
0.4589 
0.4697 
0.5523 
0.4675 

0.4079 
0.2047 
0.3583 
0.3030 
0.4341 
0.3145 
0.4824 
0.2960 
0.4308 
0.4343 
0.4345 
0.3728 

0.4696 
0.3427 
0.4831 
0.4391 
0.5064 
0.6537 
0.4188 
0.3992 
0.5668 
0.2772 
0.3867 
0.4494 

0.4492 
0.2129 
0.5320 
0.5705 
0.4994 
0.5353 
0.6054 
0.4568 
0.5372 
0.5566 
0.5404 
0.4996 

0.4468 
0.6272 
0.5564 
0.4439 
0.5101 
0.4611 
0.6287 
0.4816 
0.5106 
0.5665 
0.6114 
0.5313 

 
Chinese corpus. MMS model achieves more than 12% average error rate reduction 
from Dotplotting methods and up to 7.7% for C99. The tables also indicate that 
WindowDiff metric penalizes errors more heavily than Pk metric. However the overall 
rank of the algorithms remains approximately the same on both metrics.  

On both corpora MMS achieves best performance on most chapters (5 out of 7 for 
English corpus and 8 out of 11 for Chinese corpus). This is because more weighting 
factors affecting the segmentation choices are considered in our model. As previously 
mentioned, either within-segment or between-segment lexical similarity is examined 
in Dotplotting and C99 while our MMS model examines both factors. In addition, 
using text structure factors such as segment lengths and sentence distances also leads 
to an improvement.  

The dynamic programming searching strategy adopted in our model is a global 
optimization algorithm. Compared to the divisive clustering algorithm of C99 and 
dotplot algorithm of Dotplotting, our strategy is more accurate and effective due to 
the global perspective of dynamic programming. With this strategy, the number of 
segments can be determined automatically when the best segmentation is achieved. In 
contrast, the number of segments has to be given in advance for Dotplotting method 
because it cannot decide when to stop inserting boundaries. The same problem exists 
in C99 method. Although the author proposed an algorithm to determine the number 
of segments automatically, this algorithm has some negative influence on the 
performance of the method[6]. 

MMS model remedies two problems of Dotplotting. Ye [16] reported analysis of 
two problems in Dotplotting’s segmentation evaluating function:  

1 , ,

2 1

.
( )( )

i i i

N
p p p K

D
i i i i

V V
f

p p K p
−

= −

⋅
=

− −∑  (11) 

where K is the end of the whole text, and Vx,y is a vector containing the word counts 
associated with word positions x through y in the article. 

First, the above function is asymmetric. If the text is scanned from the end to the 
start, a “backward” function will be got in a form different from Eq. 11. This problem 
leads to the apparent illogical phenomenon that forward scan may result in different 
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segmentation with backward scan. In MMS model, the segmentation criterion 
function (Eq. 7) is symmetrized.  

Secondly, while determining the next boundary, the evaluating strategy of 
Dotplotting does not adequately take the previously located boundaries into account. 
For each candidate boundary pi being examined, only the segment boundary before it 
(pi-1) is taken into consideration, and may work less effectively because it ignores the 
restriction of the segment boundary after it (pi+1). In our MMS model, the restrictions 
of adjacent segment boundaries on both sides are considered. From the within-
segment and between-segment similarity function (Eq. 4 and Eq. 5) we can see the 
segmentation evaluating function value after locating a boundary at pi is determined 
by pi-1 and pi+1. In this way the restriction from the previously located boundaries is 
strengthened. The optimization process of dynamic programming also helps to select 
boundaries globally. 

5   Conclusion and Future Work 

In this paper we presented a dynamic programming model for text segmentation. This 
model attempts to simultaneously maximizing within-segment and minimizing 
between-segment similarity. An analytical form of the segmentation evaluation 
function is given and a complete text segmentation algorithm using two-dimension 
dynamic programming searching scheme is described. In addition, other text structure 
factors, such as segment length and sentence distance, are also incorporated in the 
model to capture subtopic changes.  

Experimental results on the public available real corpora are provided and 
compared with popular systems. The MMS model is shown to be promising and 
effective in text segmentation that it outperforms all other systems in most testing data 
sets. In comparing with the best comparable system (C99), the MMS model has 
achieved a reduction of more than 6% in average error rate (WindowDiff metric). 

In the future we plan to optimize our algorithm by incorporating more features of 
the subtopic distribution and text structure. It is demonstrated in [17] that semantic 
information trained from background corpus can help improve text segmentation 
performance. We will also consider introducing semantic knowledge in the model. 
Besides, the length factor in our model is in a simple form and more adequate 
segment length factor needs to be investigated. Applying the algorithm to other text 
segmentation tasks such as news stream and conversation segmentation is also an 
important research topic. 
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