
Design and Development of Component-Based
Embedded Systems for Automotive Applications

Marco Di Natale

Scuola Superiore S. Anna, Pisa, Italy
marco@sssup.it

Abstract. Automotive software systems are characterized by increas-
ing complexity, tight safety and performance requirements, and need
to be developed subject to substantial time-to-market pressure. Model-
and component-based design methodologies can be used to improve the
overall quality of software systems and foster reuse. In this work, we dis-
cuss challenges in the adoption of model-based development flows, and
we review recent advances in component-based methodologies, including
existing or upcoming standards, such as the MARTE UML profile, ADL
languages and AUTOSAR. Finally, the paper provides a quick glance at
results on a methodology based on virtual platforms and timing analysis
to perform the exploration and selection of architecture solutions.

1 Introduction

The automotive domain is experiencing evolutionary changes because of the de-
mand for new advanced functions, technological opportunities and challenges,
and organizational issues. The increased importance and value of electronics
systems and the introduction of new functions with unprecedented complex-
ity, timing and safety issues are changing the way systems are designed and
developed and are bringing a revolution in the automotive supply chain. New
standards and methodologies are being developed that will likely impact not
only automotive electronics systems, but also other application domains, which
share similar problems.

The automotive supply chain is currently structured in tiers

– Car manufacturers (or Original Equipment Manufacturers OEMs).
– Tier 1 suppliers who provide electronics subsystems to OEMs.
– Tier 2 suppliers e.g., chip manufacturers, IP providers, RTOS, middleware

and tool suppliers, who serve OEMs and more likely Tier 1 suppliers.
– Manufacturing suppliers providing manufacturing services.

Currently, automotive systems are an assembly of components that are designed
and developed in house or, more often, by Tier 1 suppliers. These subsystems
have traditionally been loosely interconnected, but the advent of active-safety
and future safety-critical functions, including by-wire systems, and the inter-
dependency of these functions is rapidly changing the scenario. Furthermore,

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 15–29, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 M. Di Natale

subsystems are developed using different design methods, software architec-
tures, hardware platforms, real-time operating systems and middleware layers.
To give an idea of architecture complexity, the number of Electronic Control
Units (ECUs) in a vehicle is presently in the high tens, and further increasing.
In the face of this scenario, OEMs need to understand and control the emerging
behavior of the complex distributed functions, resulting from the integration of
subsystems. This includes both functional and para-functional properties, such
as timing and reliability. The supply process, traditionally targeted at simple,
black-box integrated subsystems, will evolve from the current situation, where
the specifications issued to the OEMs consist of the message interface and gen-
eral performance requirements, to more complex component specifications that
allow plug-and-play of portable software sub-systems.

The essential technical problem to solve for this vision is the establishment
of standards for interoperability among IPs, both software and hardware, and
tools. AUTOSAR [1], a world-wide consortium of almost all players in the supply
chain of automotive electronics, has this goal very clear in mind. However, several
issues need to be solved for function partitioning and subsystem integration, in
the presence of real-time and reliability requirements, including:

– Composability and refinement of subsystems. The automotive indus-
try together with the avionic industry was the first to embrace model-based
design, as a tool to remove coding errors and to speed up the software de-
velopment process. This approach was made possible by the introduction of
powerful simulation tools where the functionality of the system is captured
with a mathematically-oriented formalism, such as Simulink [12]. However,
the definition of a process that goes from system-level to component models,
in which behaviors are formally and unambiguously defined, such that they
can verified at design time, and that allows for automatic code generation,
is a quite challenging task. Such a process would indeed require that all rel-
evant functional and non-functional constraints and properties are captured
by the models used at all levels and that model semantics is preserved at
each refinement/transformation steps. In Section 2 we discuss the issues re-
lated to model-based development and we review the impact of AUTOSAR
on the design methodology.

– Time predictability. This issue is related to the capability of predicting
the system-level timing behavior (latencies and jitter), resulting from the
synchronization between tasks and messages, but also from the interplay
that different tasks can have at the RTOS level and the synchronization and
queuing policies of the middleware. The timing of end-to-end computations
depends, in general, on the deployment of the tasks and messages on the
target architecture and on the resource management policies. In Section 3,
we review issues in this domain.

– Dependability. The deployment of the functions onto the ECUs and the
communication and synchronization policies must be selected to meet de-
pendability targets. A system-level design tool should integrate support for
design patterns suited to the development of highly-reliable systems with

Design and Development of Component-Based Embedded Systems 17

fault containment both at the functional level and at the timing level. Such
tools should also support the automatic construction of fault-trees to com-
pute the probability of a hazard occurrence.

Complex automotive functions, including active-safety and safety-critical sys-
tems, are characterized by non-functional requirements, including timing and
performance, requirements for safety, and cost, together with reusability and ex-
tensibility of the architecture artifacts. System-level analysis and new modeling
and analysis methods and tools are not only needed for predictability and com-
posability when partitioning end-to-end functions, but also for providing guid-
ance and support in the evaluation and selection of the electronics and software
architectures. In Section 4, we provide the description of a design methodology
based on virtual platforms in which models of the functions and of the possible
solutions for the physical architecture are defined and matched to select the best
possible hardware platform with respect to performance. Opportunities for the
automatic synthesis of the software architecture are also discussed.

2 Model-Based Design, Composability and AUTOSAR

Model-based design methodologies are increasingly adopted for improving the
quality and the reusability of software. A model-based environment allows the
development of control and dataflow applications in a graphical language that
is familiar to control engineers and domain experts. The possibility of defining
components (subsystems) at higher levels of abstraction and with well defined
interfaces allows separation of concerns and improves modularity and reusabil-
ity. Furthermore, the availability of verification tools (often by simulation) gives
the possibility of a design-time verification of the system properties. However,
when considered in the context of a design flow that starts from the early stages
of architecture exploration and analysis and supports complex interacting func-
tions with real-time requirements, deployed on a distributed architecture, most
modern tools for model-based design have a number of shortcomings

Lack of separation between the functional model and the architecture model: such
a separation is fundamental for exploring different architecture options with
respect to a set of functionality and for reusing an architecture platform with
different functions.

Lack of support for the definition of the task and resource model: Most model-
based flows support the transition from the functional model directly to the
code implementation. The designer has limited control on the generation of the
task set and the task and resource model is scantly addressed. Placement of
tasks in a distributed environment is typically performed at the code level. The
specification of the task and message design and of the resource allocation is
necessary to evaluate the timing and dependability properties of the system.

Insufficient support for the specification of timing constraints and attributes:
The definition of end-to-end deadlines, as well as jitter constraints is often not
considered by modeling languages.

18 M. Di Natale

Lack of modeling support for the analysis and the back-annotation of scheduling-
related delays: Most tools support simulation and verification of the functional
model, which is typically based on an assumption of zero communication and
computation delays. The definition of the deployment on a given architecture al-
lows the analysis of the delays caused by resource sharing. In a sound design flow,
tools should support this type of analysis, and the communication and schedul-
ing delays should be back-annotated into the model to verify the performance
of the function on a given architecture solution.

Issue of semantics preservation: The generation of the code starting from a
model description is not always performed in such a way that the original se-
mantics is preserved. It is important that designers and developers understand
under what conditions the code generation stage can preserve the model seman-
tics and what are the implications of an incorrect implementation.

Some of these issues can be reviewed in more detail, with reference to an ab-
stract design flow, which encompasses all the refinement steps, from the system-
level view, down to the code implementation (Figure 1).

���������
���������
���������

���������
���������
���������

OSEKMarte

ASCET

Simulink
Behavior

Task
models

models

Physical architecture
models

AUTOSARmodels
Component

UML−SysML / ADL
(functional) design
System−level

Process gaps
(possible inconsistencies
and omissions)

Fig. 1. An abstract development flow: standards and process gaps

The highest level in the description of the system corresponds to the early
decomposition of high-level end-to-end functions (typically derived from user
requirements). The system description is characterized by a behavior specifica-
tion, but also by reliability and time requirements. Candidate languages and
standards for system-level modeling, which may include a first-level decomposi-
tion into major functional blocks or subsystems, are the Unified Modeling Lan-
guage (UML) and its specialized profile SysML, and Architecture Description
Languages (ADL), like the EAST/ADL [22].

In order to allow for the specification and modeling of time and reliability
requirements, UML has recently been extended by two profiles (specialized re-
strictions of the language semantics), the MARTE profile for the specification
of timing requirements and properties [20] and the UML Profile for Modeling
QoS and Fault Tolerance Characteristics and Mechanisms [21]. Both standards
are expected to provide support for expressing time and reliability properties
and requirements. However, because of the need of dealing with the general-
ity of the UML language, they are typically cumbersome (the MARTE profile

Design and Development of Component-Based Embedded Systems 19

specification is currently 658 pages long) and must rely on faithful and efficient
implementation by tool vendors, which presently cannot be guaranteed.

Subsystem specifications are then passed from OEMs to Tier-1 suppliers, who
are responsible for their development. Although UML can still be used at this
stage, the AUTOSAR development partnership [1], including several OEM man-
ufacturers, Tier-1 suppliers, tool and software vendors, has been created with
the purpose of developing an open industry standard for component specification
and later integration.

To achieve the technical goals of modularity, scalability, transferability and
re-usability of functions, AUTOSAR provides a common software infrastructure
based on standardized interfaces for the different layers. The current version of
the AUTOSAR model includes a reference architecture and interface specifica-
tions. AUTOSAR has been focused on the concepts of location independence,
standardization of interfaces and portability of code. While these goals are un-
doubtedly of extreme importance, their achievement is not a sufficient condition
for improving the quality of software.

The current specification has at least two major shortcomings. The AU-
TOSAR metamodel, as of now, is affected by the lack of a clear and unam-
biguous communication and synchronization semantics and the lack of a timing
model. The AUTOSAR consortium recently acknowledged that the specification
was lacking a formal model of components for design time verification of their
properties. As a result, the definition of the AUTOSAR metamodel was started.
Similarly to UML, the AUTOSAR metamodel is sufficiently mature in its static
or structural part, but offers an often incomplete behavioral description, which
is planned for significant updates in its upcoming revision. Furthermore, the
standard does not address adequately issues related to timing and performance,
therefore underestimating the complexity of current and future applications, in
which component interactions generate a variety of timing dependencies due
to scheduling, communication, synchronization, arbitration, blocking, buffering.
The reuse of a component requires that the behavior of the reused components
and the result of the composition with respect to time can be predicted in the
new configuration. If this problem is not addressed, the composition will even-
tually lead to (possibly transient) timing problems. The definition of a timing
model for AUTOSAR and the development of a standardized infrastructure for
the handling of time specifications is the objective of the ITEA project TIMMO,
which started in April 2007 and includes car manufacturers like Audi, PSA, Volvo
Technology and Volkswagen, as well as electronics and tool suppliers, including
Bosch, Continental, ETAS, Siemens VDO, Symtavision and TTTech.

On a separate context, a discussion of the issues that need to be considered
when mapping UML into AUTOSAR (and vice-versa) and the possible gaps and
inconsistencies in this transformation can be found in [22].

Components must be characterized by (a set of) behavior requirements and a
corresponding internal behavior model. In AUTOSAR, the behavior of Atomic-
SoftwareComponents is represented by a set of RunnableEntities (Runnables for
short) communicating with each other over the ports of the container structural

20 M. Di Natale

entities (components). Like in UML, structural and behavioral entities are linked
to each other but are kept separated. AUTOSAR provides several mechanisms
for Runnables to access the data items for sender/receiver communication and
the services of client/server communication, but the synchronization and timing
semantics in the execution of Runnables is only partly specified. In AUTOSAR,
the runtime environments (RTEs) of each ECU are responsible for establishing
the communication between the Runnables (local or remote) and triggering their
execution using the following events:

– Timing Event triggering periodical execution of Runnables.
– DataReceivedEvent upon reception on a Sender/Receiver communication.
– OperationInvokedEvent for invocation of Client/Server service.
– DataSendCompleteEvent upon sending a Sender/Receiver communication.
– WaitPoint allows blocking a runnable while waiting for an Event.

Behavioral models are not supported in AUTOSAR, but the standard relies on
external behavioral modeling tools like Simulink and ASCET, which brings the
issue of the composition of (possibly heterogeneous) models. Therefore, any inte-
gration environment (EAST-ADL2 [22] is an example), must define the triggering
and execution semantics of functions. This semantic should be deterministic to
allow execution verification.

An example of the possible issues in the definition of the execution semantics
(and also an example of model translation issues) can be found in Figure 2
(adapted from [22]), in which three models of a control algorithm, respectively
in Simulink, UML (activity diagram) and AUTOSAR are represented.

AUTOSAR

Add
Integrator

Mul ConstVal

Display

C_mul

C_integr

C_val

C_displ

Simulink

UML

C_add
C_gen

+
+
Add Integrator

Step

2
Mul

Scope
z−1

K Ts

Step_sig

Fig. 2. Model-to-model transformation issues

Despite a similarity in their structure, the three models differ in the execution
order of the actions. Contrary to UML activity diagrams, in Simulink, blocks
are not executed in lexicographic order. In Simulink, blocks for which the output
does not depend on the input at any given time, such as the Integrator in the
Figure, can be executed before the others. Indeed, the simulation behavior of
the depicted Simulink model will start with the output of the Integrator, and

Design and Development of Component-Based Embedded Systems 21

then continue with the Mul and Add blocks. In the UML activity diagram, the
Add action will run before the Integrator block. The difference in the execution
order may lead to different model behaviors and different simulation results.

In UML, in fact, the triggering order is defined when operations are called, but
the execution order is undefined in the case of communication by data (streams)
received on ports. SysML tries to define the semantics of data reception on ports,
but the bindings between behavior parameters, and either the flow properties or
the containing block properties are a semantic variation point [22]. In conclusion,
for triggering semantics that differ from the loose UML standard definition,
designers are required to explicitly define their own semantics by introducing
stereotypes (specializing generic UML concepts by additional constraints and
tagged values) in a dedicated profile .

However, execution order is not the only problemwith our example. In Simulink,
all blocks react at the same time and produce outputs in zero time (according
to the Synchronous Reactive semantics), which leads to possible problems when
the model has algebraic loops (instantaneous cyclic dependencies of signals from
themselves). In this case, the system may have a fixed point solution or the model
may be simply not correct. The definition of a Synchronous Reactive semantics
in UML is probably possible by leveraging the Marte profile, but it would re-
quire the adoption of a stereotyped (discrete) time model. Additional diagrams
are probably required to synchronize triggers and/or enforcing the correct ex-
ecution order (possibly state diagrams). Finally, in case other types of timing
constraints on end-to-end computations exist, an additional sequence diagram
(and a stereotyped notation for timed events) would be required as well.

Finally, the AUTOSAR specification is based on the OSEK specification for
Operating Systems. In an OSEK system, tasks are executing concurrently with
priorities and subject to preemption. Hence, special care must be taken in the
code generation stage, when the structural and behavioral part of the specifi-
cation are mapped into concurrent tasks using automatic code generation tech-
niques. Runnables and functional blocks must be executed by tasks in such a
way to ensure data consistency of the variables implementing the communication
links, and also time determinism in the execution of blocks. Furthermore, the
implementation must guarantee the enforcement of the set of partial orders in
the execution of blocks, as determined by the model semantics.

3 Timing Predictability, Timing Isolation and Standards

The automotive domain has been traditionally receptive to methods and tech-
niques for timing predictability and time determinism. The standard Controller
Area Network (CAN) bus [6] for communication is based on the concept of a
deterministic resolution of the contention and on the assignment of priorities
to messages. The OSEK standard for real-time operating systems [14] not only
supports predictable priority-based scheduling [10], but also bounded worst-case
blocking time through an implementation of the immediate priority ceiling pro-
tocol [17] and the definition of non-preemptive groups [18] for a possible further

22 M. Di Natale

improvement of some response times and to allow for stack space reuse. In the
absence of faults, and assuming that the worst-case execution time of a task can
be safely estimated, these standards allow the designer to predict the worst-case
timing behavior of computations and communications.

Priority-based scheduling of tasks and messages fits well within the tradi-
tional design cycle, in which timing properties are largely verified a-posteriori
and applications require conformance with respect to worst-case latency con-
straints rather than tight time determinism. Furthermore, control algorithms
are designed to be tolerant with respect to small changes in the timing behavior
and to the nondeterminism in time that possibly arises because of preemption
and scheduling delays [7], or even possibly to overwritten data or skipped task
and message instances because of temporary timing faults. Finally, although
formally incorrect, there is a common perception that small changes in the tim-
ing parameters (decreased periods and/or wrong estimates of the computation
times) typically only result in a graceful degradation of the response times of
tasks and messages and that such degradation will in any case preserve the high
priority computations.

These assumptions can be misleading and faulty. The worst-case response
times of tasks and messages, scheduled on priority-based systems, such as those
defined by the OSEK and CAN standards can be computed using a fixed point
formula. For a periodic task τi, activated with period Ti and worst-case compu-
tation time Ci, the worst-case response time ri is given by (in case ri ≤ Ti, the
general case is discussed in [11])

ri = Bi + Ci +
∑

j∈hp(i)

⌈
ri

Tj

⌉
Cj (1)

Where j ∈ hp(i) means all the indexes of the generic tasks τj with a priority
higher than τi and Bi is the worst-case blocking time in which the task cannot
execute because of an activity (typically a critical section or an interrupt handler)
executed on behalf of a lower priority task. The worst-case latency of a CAN
message can be upper bound as shown in [9], where the factor Bi is the largest
transmission time of any message frame.

wi = Bi +
∑

j∈hp(i)

⌈
wi

Tj

⌉
Cj (wi > 0)

ri = wi + Ci

(2)

In the face of the development of larger and more complex applications, which
are deployed with a significant amount of parallelism on each ECU and consist of
a densely connected graph of distributed computations, and of new safety-critical
functions, which require tight deadlines and guaranteed absence of timing faults,
a new rigorous science needs to be established. A number of issues need to be
considered with respect to the current standards and the use of priority based
scheduling of tasks and messages.

Design and Development of Component-Based Embedded Systems 23

– Priority-based scheduling can lead to discontinuous behavior in time and
timing anomalies. The dependency of the response time of a lower priority
task or message with respect to the computation time (or period) of a higher
priority task is not linear and not even continuous. Furthermore, especially
in distributed systems, it may even be possible that shorter computation
times result in larger latencies [16]. A recently developed branch of worst-
case timing analysis is focusing on sensitivity analysis [5][16] as a means for
understanding which computation and communication loads are critical for
the preservation of deadlines.

– Variability of the response times between the worst-case and the best case
scenario, together with the possible preemptions, can lead to the violation
of time-deterministic model semantics in the implementation of software
models by priority scheduled tasks and messages [4].

– Extensibility and (to some degree) tolerance with respect to unexpectedly
large resource requirements from tasks and messages that is allowed by
priority-based scheduling comes at the price of additional jitter and latency
and lack of timing isolation.

– Future applications, including safety critical (x-by-wire) and active safety
need shorter latencies and time determinism (reduced jitter) because of in-
creased performance. The current model for the propagation of informa-
tion, based on communication by periodic sampling, among non-synchronized
nodes has very high latency in the worst-case and a large amount of jitter
between the best case and the worst-case delays. Even if communication-
by-sampling can be formally studied and platform implementations can be
defined to guarantee at least some fundamental properties of the communica-
tion flow (such as data preservation), time determinism is typically disrupted
and the application must be able to tolerate the large latencies caused by
random sampling delays.

– The deployment of reliable systems requires timing isolation in the execution
of the software components, and protection from timing faults. One of the
major downsides of priority-based scheduling of resources is that faulty high
priority computation or communication flows can easily obtain the control
of the ECU or the bus, subtracting time from lower priority tasks or mes-
sages. For example, an excessive request of computation time from any high
priority task impacts the response time of lower priority tasks on the same
ECU. Timing protection is even more important in the light of AUTOSAR,
when components from Tier1 suppliers are integrated into the same ECU,
leveraging the standardization of interfaces, and faulty behaviors (functional
and temporal) need to be contained and isolated.

– The development of future applications will also require the enforcement
of composability and compositionality not only in the functional domain
but also for para-functional properties of the system, including the timing
behavior of the components and their reliability. (see next section)

Time-based schedulers, including those supported by the FlexRay and OSEK-
Time [13] standards force context switches on the ECUs and the assignment of

24 M. Di Natale

the communication bus at predefined points in time, regardless of the outstand-
ing requests from the tasks for computation and communication bandwidth.
Therefore, they are better suited to provide temporal protection, except that
the enforcement of a strict time window for the execution and communication
requires a much better capability of the designer in predicting the worst case ex-
ecution times of tasks so that the execution window can be appropriately sized,
and guardians are needed to ensure that an out-of-time transmission will not
disrupt the communication flow on the bus.

4 Platform-Based Design for Architecture Selection

Platform-based design requires/entices the identification of clear abstraction lay-
ers and a design interface that allows for the separation of concerns between the
refinement of the functional architecture specification and the abstractions of
possible implementations. The application-layer software components are thus
decoupled from changes in microcontroller hardware, ECU hardware, I/O de-
vices, sensors, actuators, and communication links. The basic idea is captured on
the left side of Figure 3. The vertex of the two cones represents the combination of
the functional model and the architecture platform. Decoupling the application-
layer logic from dependencies on infrastructure-layer hardware or software en-
ables the application-layer components to be reused without changes across
multiple vehicle programs. A prerequisite for the adoption of the platform-based

5

vehicle

of platform
independent

s1

Application Space

Architecture Space

Arch. option

Application
instance

Platform abstractions platform model
system

of both
independent

architect. model
execution

of functionality
independent

f2 f3 f4

f5 f6

s2 s4

s3
s5

f1

task task

task tasksr
1

1
1

2

2msg

msg

3 4

CAN

ECUECU ECU ECU ECU

CAN 1

1 2

2

3 4

functional model

Fig. 3. Platform-based design and models

design and of the meet-in-the-middle approach is the definition of the right mod-
els and abstractions for the description of the functional platform specification
and for the architecture solutions at the top and the bottom of the hourglass
of Figure 3. The platform interface must be isolated from lower-level details
but, at the same time, must provide enough information to allow design space
exploration with a fairly accurate prediction of the properties of the implemen-
tation. This model may include size, reliability, power consumption and timing;
variables that are associated to the lower level abstraction.

Design and Development of Component-Based Embedded Systems 25

Design space exploration consists of seeking the optimal mapping of the sys-
tem platform model into the candidate execution platform instances. The map-
ping must be driven by a set of methods and tools providing a measure of the
fitness of the architecture solutions with respect to a set of feasibility constraints
and optimization metric functions. This work focuses on timing constraints and
metrics. In Section 4.2, we discuss the possibility for the automatic selection of
part of the platform configuration by software tools. The technology, however,
is not mature yet for a full synthesis of the task and message design and the
definition of the architecture mapping. The approach that is currently viable is
a what-if analysis where different options are selected as representatives of the
principal platform options and evaluated according to measurable metrics.

Functional Model
The starting point for the definition of ECS based vehicle architecture is the
specification of the set of features that the system is expected to provide. A
feature is a very high level description of a system capability, such as an active-
safety function. The software component of each feature is further developed
by control engineers who devise algorithms fulfilling the design goals. Typically,
these algorithms are captured by a hierarchical set of block diagrams produced
with commercial tools for control design. The functional model(s) are created
from the decomposition of the feature in a hierarchical network of components
encapsulating a behavior, within a provided and required interface, expressed
by a set of ports or by a set of methods with the corresponding signature. This
view abstracts from the details of the functional behavior and models only the
interface and the communication semantics, including the specification of the
activation signal for each functional block, be it periodic, sporadic, or arriving,
together with the incoming data, from one of its input ports. The functional
description is further endowed with the required constraints. For example, timing
constraints are expressed in the context of the functional architecture by adding
end-to-end deadlines to the computation paths, maximum jitter requirements to
any signal and time correlation constraints between any signal pair.

Architecture Model
The model of the architecture is hierarchical and captures the logical topology
of the vehicle network, including the communication buses, such as CAN [6] and
time triggered links, the number of processors for each ECU and the resource
management policies that control the allocation of each ECU and BUS. At this
stage, the hardware and software resources that are available for the execution
of the application tasks and the resource allocation and scheduling policies must
also be specified.

Platform Model
The system platform model is where physical concurrency and resource re-
quirements are expressed. The system platform model(s) are a representation
of the mapping process. Tasks are defined as units of computation processed
concurrently in response to environment stimuli or prompted by an internal

26 M. Di Natale

clock. Tasks cooperate by exchanging messages and synchronization or activa-
tion signals and contend for use of the processing and communication resource(s)
(e.g., processors and buses) as well as for the other resources in the system. The
system platform model entities are, on one hand, the implementation of the
functional model and, on the other hand, are mapped onto the target hardware.
The mapping phase consists of allocating each functional block to a software
task and each communication signal variable to a virtual communication object
(right side of Figure 3). The task activation rates are derived from the functional
blocks activation rates. As a result of the mapping of the platform model into
the execution architecture, the entities in the functional models are put in re-
lation with timing execution information derived by worst-case execution time
analysis or back-annotations extracted from physical or virtual implementation.
Given a mapping, it is possible to determine which signals are local (because the
source and destination functions are deployed onto the same ECU) and which
are remote and, hence, need to go over the network. Each communication signal
is therefore mapped to a message, or to a task private variable or to a protected
shared variable. Each message, in turn, is mapped to a serial data link. The
mapping of the threads and message model into the corresponding architecture
model and the selection of resource management policies allows the subsequent
validation against timing constraints.

4.1 What-If Analysis

The procedure for architecture selection and evaluation is a what-if iterative pro-
cess. First, the set of metrics and constraints that apply to the design is defined.
Then, based on the designer’s experience, a set of initial candidate architec-
ture configurations is produced. These architectures are evaluated and, based
on the results of the quantitative analysis, a solution can be extracted from the
set as the best fit. If the designer is not satisfied with the result, a new set of
candidate architectures can be selected. The iterative process continues, until a
solution is obtained. The intervention of the designer is required in two tightly
related stages of the exploration cycle. The designer must provide the initial
set of architecture options. After the options have been scored and annotated
by the analysis and simulation tools, the designer must understand the results
of the analysis and select the architecture options that are the best fit to the
exploration goals and (more importantly) understand the results of the analysis
to add other options to the next set of configurations that needs to be evalu-
ated. The set of analysis methods that are available for architecture evaluation
are:

– Evaluation of end-to-end latency and schedulability against deadlines for
chains of computations spanning tasks and messages scheduled with fixed
priority [19].

– Sensitivity analysis for tasks and messages scheduled with fixed priorities
and sensitivity analysis for resources scheduled with fixed priorities [5].

Design and Development of Component-Based Embedded Systems 27

– Evaluation of message latencies in CAN bus networks [8].
– System level simulation of time properties and functional behaviors (based

on the Metropolis engine [3]).
– Analysis of fault probability and cutsets (conditions leading to critical faults)

based on fault trees.

4.2 Automatic Configuration of the SW Architecture

The mapping of the functional model into the execution platform is part of the
platform-based design referred in the previous sections and of the Y-chart design
flow [2] shown in Figure 4, where the application description and architectural
description are joined in an explicit mapping step. The mapping definition and
the creation of the task and resource models can be performed in several ways.
In single processor systems, the problem is usually very simple, and often sub-
sumed by the code generation phase. In distributed architectures, the design of
the software architecture is a more complex task and it is very often delegated
to the experience of the designer. When a software implementation is not feasi-
ble because of resource constraints, design iterations may be triggered and the
functional model itself or the architecture configuration may be modified.

Function allocation

Code implementation

ArchitectureFunctional ArchitecturePhysical

ECU selection
topology

period
activ. and synch.

Deployment

Task allocation
Priority assignment

Fig. 4. Design flow stages and period synthesis

Once the function and the architecture are defined, there are several possible
options for the intermediate layer, and automated tools can provide guidance in
the selection of the optimal configuration with respect to the timing constraints
and a performance-related metric function.

The mapping consist of the following stages: function to task mapping; task to
ECU deployment and signal to message mapping, and, finally, of the assignment
of priorities to tasks and messages. When iterations are required on the functional
model, a different selection of the execution periods of the functions, or different
synchronization and communication solutions may be explored.

We defined solutions based on mixed integer linear programming (MILP) and
geometric programming (GP), respectively, for the problem of optimizing the
activation mode of tasks and messages [19] and the selection of task periods [8].

28 M. Di Natale

The effectiveness of these approaches has been demonstrated by application to on
an experimental vehicle system case. We are currently exploring approximated
solutions for the selection of a feasible mapping of tasks to ECUs and signals to
messages and the assignment of priorities to tasks and messages.

5 Conclusions

The structure of the automotive electronic industry and the state-of-the-art of
automotive electronics design methodology was summarized. Issues on model-
based design, composability and timing protection and a quick look at the op-
portunities and the limitations of the existing standards were also discussed.
We concluded with a proposed methodology for architecture exploration, based
on virtual platforms and the separation of functional and physical architecture
models. We envision the availability of an intermediate platform layer in which
the functions are mapped into the architecture option and the result is evalu-
ated with respect to para-functional metrics and constraints related to timing,
dependability and cost. It will be of highest importance to support the evolution
of the automotive standards to ensure the feasibility of a correct and robust
design flow based on virtual platform.

References

1. AUTOSAR. Consortium web page, www.autosar.org
2. Balarin, F., et al.: Hardware-Software Co-Design of Embedded Systems – The Polis

Approach. Kluwer Academic Publishers, Dordrecht (1997)
3. Balarin, F., Lavagno, L., Passerone, C., Watanabe, Y.: Processes, interfaces and

platforms. Embedded software modeling in Metropolis. In: Proc. of the 2nd ACM
EMSOFT, Grenoble, France (October 2002)

4. Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A.: Efficient em-
bedded software design with synchronous models. In: Proc. of the 5th ACM EM-
SOFT. ACM Press, New York (2005)

5. Bini, E., Natale, M.D., Buttazzo, G.: Sensitivity analysis for fixed-priority real-time
systems. In: Euromicro ECRTS, Dresden, Germany (June 2006)

6. Bosch, R.: Controller area network specification, version 2.0. Stuttgart (1991)
7. Caspi, P., Benveniste, A.: Toward an approximation theory for computerised con-

trol. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS,
vol. 2491, pp. 294–304. Springer, Heidelberg (2002)

8. Davare, A., Zhu, Q., Natale, M.D., Pinello, C., Kanajan, S., Sangiovanni-
Vincentelli, A.: Period optimization for hard real-time distributed automotive sys-
tems. In: Design Automation Conference, San Diego, CA (June 2007)

9. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (can)
schedulability analysis: refuted, revisited and revised. Real-Time Systems 35, 239–
272 (2007)

10. Harbour, M.G., Klein, M., Lehoczky, J.: Timing analysis for fixed-priority sched-
uling of hard real-time systems. IEEE Transactions on Software Engineering 20(1)
(January 1994)

www.autosar.org

Design and Development of Component-Based Embedded Systems 29

11. Lehoczky, J.P., Sha, L., Ding, Y.: The rate-monotonic scheduling algorithm: Exact
characterization and average case behavior. In: Proc. of the 10th RTSS, Santa
Monica, CA (December 1989)

12. Mathworks. The Mathworks Simulink and StateFlow User’s Manuals,
http://www.mathworks.com

13. OSEK. OSEK/VDX Steering Committee: Time-Triggered Operating System,
http://www.osek-vdx.org

14. OSEK. OS vers. 2.2.3 specification (2006), http://www.osek-vdx.org
15. DSpace TargetLink product page, http://www.dspaceinc.com
16. Racu, R., Ernst, R.: Scheduling anomaly detection and optimization for distributed

systems with preemptive task-sets. In: 12th RTAS, San Jose (April 2006)
17. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach

to real-time synchronization. IEEE Transactions on computers 39(9), 1175–1185
(1990)

18. Wang, Y., Saksena, M.: Scheduling fixed priority tasks with preemption threshold.
In: Proc. of the RTCSA Conference (December 1999)

19. Zheng, W., Natale, M.D., Pinello, C., Giusto, P., Sangiovanni-Vincentelli, A.: Syn-
thesis of task and message activation models in real-time distributed automotive
systems. In: Proc. of the DATE conference, Nice, April 15-18 (2007)

20. Object Management Group MARTE profile: Modeling and Analysis of Real-time
and Embedded systems, http://www.omgmarte.org/

21. Object Management Group UML Profile for Modeling QoS and Fault Toler-
ance Characteristics and Mechanisms, http://www.omg.org/cgi-bin/doc?ptc/
2006-12-02

22. ATESST Advanced Traffic Efficiency and Safety through Software Technology De-
liverable 3.2 Report on behavior modeling with the EAST-ADL 2.0 (July 12, 2007)

http://www.mathworks.com
http://www.osek-vdx.org
http://www.osek-vdx.org
http://www.dspaceinc.com
http://www.omgmarte.org/
http://www.omg.org/cgi-bin/doc?ptc/2006-12-02
http://www.omg.org/cgi-bin/doc?ptc/2006-12-02

	Design and Development of Component-Based Embedded Systems for Automotive Applications
	Introduction
	Model-Based Design, Composability and AUTOSAR
	Timing Predictability, Timing Isolation and Standards
	Platform-Based Design for Architecture Selection
	What-If Analysis
	Automatic Configuration of the SW Architecture

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

