
F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 254–267, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Ada 2005 Technology for Distributed and Real-Time
Component-Based Applications

Patricia López Martínez, José M. Drake, Pablo Pacheco, and Julio L. Medina

Departamento de Electrónica y Computadores, Universidad de Cantabria,
39005-Santander, SPAIN

{lopezpa,drakej,pachecop,medinajl}@unican.es

Abstract: The concept of interface in Ada 2005 significantly facilitates its usage
as the basis for a software components technology. This technology, taking ben-
efit of the resources that Ada offers for real-time systems development, would be
suitable for component-based real-time applications that run on embedded plat-
forms with limited resources. This paper proposes a model based technology for
the implementation of distributed real-time component-based applications with
Ada 2005. The proposed technology uses the specification of components and
the framework defined in the LwCCM standard, modifying it with some key fea-
tures that make the temporal behaviour of the applications executed on it, pre-
dictable, and analysable with schedulability analysis tools. Among these
features, the dependency on CORBA is replaced by specialized communication
components called connectors, the threads required by the components are cre-
ated and managed by the environment, and interception mechanisms are placed
to control their scheduling parameters in a per-transaction basis. This effort aims
to lead to a new IDL to Ada mapping, a prospective standard of the OMG.

Keywords: Ada 2005, Component-based technology, embedded systems, real-
time, OMG standards

1 Introduction1

While in the general-purpose software applications domain the component-based soft-
ware engineering (CBSE) approach is progressing as a promising technology to improve
productivity and to deal with the increasing complexity of applications, in the embedded
and real-time systems domain, instead, its usage has evolved significantly slower. The
main reason for this delay is that the most known CBSE technologies like EJB, .NET, or
CCM, are inherently heavy and complex, they introduce not easily predictable overheads
and do not scale well enough to fit the significant restrictions on the availability of
resources usually suffered by embedded systems.

Trying to find an appropriate solution to this problem, european research projects like
COMPARE [1] and FRESCOR [2], tackle from different points of view, the development

1 This work has been funded by the European Union’s FP6 under contracts FP6/2005/IST/5-
034026 (FRESCOR project) and IST-004527 (ARTIST2 One) and by the Spanish Govern-
ment under grant TIC2005-08665-C03 (THREAD project) and the ITEA SPICES project.
This work reflects only the author’s views; the EU is not liable for any use that may be made
of the information contained herein.

An Ada 2005 Technology 255

of a real-time component-based technology compatible with the embedded systems
constraints. Their approach is based on the usage of the Container/Component model
pattern defined in the LwCCM specification developed by OMG [3], but avoiding the
usage of CORBA as communication middleware, which is too heavy for this kind of
applications. With this pattern, the interaction of the component with the run-time
environment is completely carried out through the container, whose code is generated by
automatic tools with the purpose of isolating the component developer from the details
concerning the code of the execution environment.

The recent modification of the Ada language specification [4], so called Ada 2005,
provides an enhanced option for the implementation of fully Ada native component-
based technologies, which is really suitable for embedded platforms. Ada’s native support
for concurrency, scheduling policies, synchronization mechanisms, and remote
invocations has always been a strength for implementing real-time and distributed
systems. New to Ada 2005 is the concept of interface, which provides support for multiple
inheritance. This is a key aspect in a component-based technology because it allows the
components to inherit characteristics from both the technology with which they are
developed as well as the application domain to which they belong. Besides, interfaces are
used to encapsulate the services offered by the components (Facets in LwCCM) and also
as the mechanism to make reference to the required services (Receptacles in LwCCM).

This paper proposes a component-based technology based on Ada. It implements the
LwCCM framework, with the container/component model, and both the code of the
environment and the code of the components are written in Ada 2005. The technology
incorporates mechanisms to the running environment, and extends the specification of the
components, in such a way that the timing behaviour of the final application is totally
controlled by the automatically generated execution environment. In this way, real-time
models of the application can be elaborated and analysed in order to verify its
schedulability when the application is run in closed platforms, or to define the resource
usage contracts required to operate in open environments like FRESCOR[2][5]. The
description and deployment of applications and components in the technology follow the
“Deployment and Configuration of Component-Based Distributed Applications”
standard of the OMG [6] (D&C). The paper is focused in the description of the framework
that is the base of the technology, particularly on the resources used to guarantee the
required predictability.

Various proposals dealing with the adaptation of CBSE to real-time systems have
appeared in the last years, though none of them have fully satisfied the industry
requirements [7]. In the absence of a standard, some companies have developed their own
solutions, adapted to their corresponding domains. Examples of that kind of technologies
are Koala [8], developed by Philips, or Rubus [9], developed by Arcticus Systems and
used by Volvo. These technologies have been successfully applied in the companies that
created them, though none of them have stimulated an inter-enterprise software
components market. However, they have served as the basis of other academic
approaches. The Robocop component model [10] is based on Koala and adds some
features to support analysis of real-time properties; Bondarev et al. [11] have developed
an integrated environment for the design and performance analysis of Robocop models.
Similarly, Rubus has been used as the starting point of the SaveCCT technology [12]; the
component concept in SAVE is applied at a very low granularity. Under appropriate

256 P. López Martínez et al.

assumptions for concurrency, simple RMA analysis can be applied and the resulting
timing properties introduced as quality attributes of the assemblies. SaveCCT focuses on
control systems for the automotive domain. In a similar way, COMDES-II [13]
encapsulates control tasks following a hierarchical composition scheme, applied in an ad-
hoc C based RT-kernel. The technology presented in this paper follows the idea proposed
by PECT (Prediction-Enabled Component Technology) [14]. Sets of constraints in the
components allow one to predict the behaviour of an assembly of components. In our case,
this approach is applied to obtain the complete real-time model of the application. Though
the Ada language is significantly used in the design and implementation of embedded
real-time systems, we have not found references of its usage in support of component-
based environments. This is probably due to the lack of support for multiple inheritance in
the previous versions of the language.

The rest of this paper is organized as follows. Section 2 describes the two main
processes involved in a components technology, emphasizing the main contributions of
the proposal. Section 3 describes in detail the reference model of the framework, and the
aspects included for developing analysable applications. Section 4 details the architecture
and classes to which a component is mapped in the technology. Finally, Section 5 and 6
shows some practical experiences, conclusions and future work.

2 Real-Time Component-Based Development

A component technology defines two different development processes, shown in Figure 1.
The components development process comprises the specification, implementation, and
packaging of components as reusable and independently distributable entities. The devel-
opment of component-based applications includes specification, configuration, deploy-
ment and launching of applications built as assemblies of available components. Both
processes are independent and they are carried out by different agents in different stages,
however, they require to be coordinated because the final products of the first process are

Fig. 1. Main processes in a component technology

Componentsdevelopment

Required
functionality

Component
specification

(idl3 file)

Component
specification

(idl3 file)

Component
Implementation

Component
Implementation

Component
Implementation

Component
Description

(code,metadata,
real-time model…)

Component
Description

(code,metadata,
real-time model…)

Applicationdevelopment

Application
Specification Deployment

Plan
Deployment

Plan
Application
Execution
Application
Execution

Ada 2005
Codegeneration

Automatic
tool

Packager
Tool

Design
Tool

Launching
Tool

Real-Time
Model

Real-Time
Model

Real-Time
Model

Workload
Model

Workload
Model RT Model

Compiler
Application
RT Model

Application
RT Model

RT Analysis
Tool

Componentpackage

Repository

Platform
description& model Componentpackage

Repository

Platform
description& model

Specifier Developer

Packager

Assembler/
Planner

Executor

Real-time
Requirements

An Ada 2005 Technology 257

the inputs for the second. So, in order to guarantee their coherence, a component technol-
ogy must define a set of rules about the kind of products and information that are generated
in each phase of the process, and the formats in which they are supplied. A key aspect in a
component technology is the opacity of the components; during the process of application
development, components must be used without any knowledge of the internal details of
their implementation or code. To achieve this opacity, models and information concerning
functional and non-functional aspects of the component must be added to its implementa-
tion in the package that describes the component.

A component development process starts when the “specifier”, who is an expert in a
particular application domain, creates the specification of a component with concrete
functionality in the domain. The “developer” implements this specification and creates
models that describe the installation requirements of the component. This work is
supported by automatic tools, which generate the skeletons for the code of the component
based on the selected technology. Therefore, the developer task is reduced to design and
implement the specific business code of the component without having to be aware of
internal details about the technology. Finally, the “packager” gathers all the information
required to make use of the component, and creates and publishes the distributable
element that constitutes the component. Relevant aspects of the proposed technology
related to components development are:

• The methodology for functional specification of components and the framework
proposed by the LwCCM specification have been adopted as the basis for the
technology. Hence, a container/component model is used in the component
implementations, but CORBA is replaced by simpler static communication
mechanisms with predictable behaviour, and suitable for the execution platform.
Remote communication between components is achieved by using connectors. They
are special components whose code is completely generated by the tools and which
encapsulate all the support for interactions among components.

• Since component implementations are generated in Ada2005, it has been necessary
to define the set of Ada packages to which the components and the elements of the
LwCCM framework are mapped. An automatic code generation tool has been
developed. This tool takes the specification of a component as input and generates all
the code elements that provide support for the component inside the framework.

• The technology follows the D&C specification for the description of the package that
holds the distributable component.

In order to apply the technology to hard real-time component-based applications, both
standard specifications, D&C and LwCCM, have been extended with new elements that
are used to describe the temporal behaviour of components and the requirements they
impose on the resources in order to meet timing requirements:

• D&C specification has been extended in order to associate a temporal behaviour
model to the specifications and implementations of components. This real-time
model is used to describe the temporal responses of the component and the
configuration parameters that it requires. This paper does not detail the modelling
approach used. For a complete explanation of the approach see [15]. The basic idea is
that the real-time model of a component is a parameterized model, independent of the

258 P. López Martínez et al.

application in which the component is used, which describes the component
temporal behaviour through references to the models of the platform in which the
component is executed and to the models of other components that it uses in order to
implement its functionality. Once all these elements are known in the context of an
application deployed in a concrete platform, as it is shown in Figure 2a, the real time
model of the complete application can be generated by composition of the individual
real-time models of the software and hardware components that form it. This model
describes the set of real-time transactions [16] executed in the application, as the one
in Figure 2b, and can be used to obtain the response time of services, analyse the
schedulability or evaluate the scheduling parameters required to satisfy the timing
requirements imposed to the application. In our case, the real-time models of the
components are formulated according to the MAST model [16], so that the set of
tools offered by the MAST environment can be used to analyse the system.

• The LwCCM functional specification of a component has been refined with the
purpose of controlling threading characteristics of the components. These
characteristics include the number and assignment of threads and scheduling
parameters. A component can not create threads inside its business code. Instead of
that, for each thread that a component requires, it declares a port in its specification.
This port implements one of the predefined interfaces OneShotActivation or
PeriodicActivation (see Section 3).

• Interception mechanisms are used to control the scheduling parameters with which
each invocation received by a component is executed. The specification of a
component declares the configuration parameters required to assign concrete values
of these scheduling parameters to a component instance.

The application development process consists in assembling component instances,
choosing them from those which have been previously developed, and stored in the repos-
itory of the design environment. This process is carried out by three different agents in
three consecutive phases. The “assembler” builds the application choosing the required
component instances and connecting them according to their instantiation requirements.

Fig. 2. RT Modeling of component-based applications

Client
component

Processor A

<<periodicActivation>>
Client thread

Client
Thread

Dispatch A
Thread

Dispatch B
Thread

Servant
Thread

Activation period
from Cliente RT-Model

update() processing time
from Cliente RT-Model

operation() processing time
from Server RT-Model

Communication processing time
from Connector RT-Model

Scheduling parameters
from Proc. A RT_ model

Scheduling parameters
from Client RT_ model

Scheduling parameters
from Servant RT_ model

Scheduling parameters
from Proc. B RT_ model

<<active>>

Server
component

<<passive>>

Client
RT-model

Platform
RT-model

Servant
RT-model

Processor B

Network

Connector
<<OneShotActivation>>

Servant thread

Connector
RT-model

(a) Component model (b) Reactive and RT-Model

An Ada 2005 Technology 259

This work is led by the functional specification of the application, the real-time require-
ments of the application, and the description of the available components. The result of
this first stage is a description of the application as a composite component, which is use-
ful by itself. The “planner” (usually the same agent as the assembler) takes this description
and designs a deployment model for the application. This model includes assigments of
component instances to nodes and the communication mechanisms between them. The
result of this stage is the deployment plan, which completely describes the application and
the way in which it is planned to be executed. Finally, the “executor” deploys, installs, and
executes the application, taking the deployment plan and the information about the execu-
tion platform as inputs. This labour is usually assisted by automatic tools. Relevant
aspects of the proposed technology regarding application development are:

• As well as describing components, the D&C specification is the basis for the process
of designing and deploying an application. D&C defines the structure of the
deployment plan that leads this process. It describes the component instances that
form the application, their connections, the configuration parameters assigned to
each instance and the assignment of instances to nodes.

• A deployment tool processes the information provided by the deployment plan. It
selects the code of the components suitable for the target platform and generates the
code required to support the execution of the components in each node. Specifically,
it automatically generates the connectors, which provide the communication
mechanisms between remote component instances, as well as the code for the main
procedures executed on each node.

The specific aspects included in the application development process to support hard real-
time applications are:

• Once the planner has developed the deployment plan, the local or remote nature of
each connection between component ports is defined. Then, an automatic tool
generates the code of the connectors based on the selected communication service
and its corresponding configuration parameters, which were assigned to the
connection in the deployment plan. The communication service used must hold a
predictable behaviour, hence, the tool generates also the real-time models that
describe the temporal behaviour of those connectors.

• Once the connectors have been developed together with their real-time models, and
based on the deployment plan, a tool elaborates the real-time model of the application
by composition of the real-time models of the components that form it (connectors
included) and the models of the platform resources. This model is used either to
analyse the schedulability of the application under a certain workload, or to calculate
the resource usage contracts necessary to guarantee its operation in an open
contractual environment [5]. In the latter case, these contracts will be negotiated,
prior to the application execution, by the launching tool.

• The execution environment includes a special internal service as well as interception
mechanisms that are used to manage in an automated way the scheduling parameters
of the threads involved in the application execution. The configuration parameters of
this service, whose values may be obtained by schedulability analysis, are specified
in the deployment plan and assigned to the service at launching time.

260 P. López Martínez et al.

3 Reference Model of the Technology

The proposed technology is based on the reusability (with no modification) of the busi-
ness code of the components, and the complete generation by automatic tools of the code
that adapts the component to the execution environment. This code is generated according
to the reference model shown in Figure 3. It takes the LwCCM framework as a starting
point, and adds to it the features required to control the real-time behaviour of the applica-
tion execution. Each of the elements that take part in the execution environment are
explained below.

Component: A component is a reusable software module that offers a well-defined
business functionality. This functionality is specified through the set of services that the
component offers to other components, grouped in ports called facets, and the set of
services it requires from other components, grouped in ports called receptacles.

With the purpose of having complete control of the threading and scheduling
characteristics of an application, and in the look for being able to analyse it, components in
our technology are passive. The operations they offer through their facets are made up of
passive code that can call protected objects. But this does not mean that there can not be
active components in the framework, concurrency is provided by means of activation
ports. When a component requires a thread for implementing its functionality, it declares
a port that implements one of the two special interfaces defined in the framework:
OneShotActivation or PeriodicActivation. These ports are recognized by the
environment, which creates and activates the corresponding threads for their execution
once the component is instantiated, connected and configured. The interface
OneShotActivation declares a run() procedure, which will be executed once by the
created thread, while the interface PeriodicActivation declares an update() procedure,
which will be invoked periodically. A component can declare several activation ports,
each of them representing an independent unit of concurrency managed by the
component, and which are independent of the business invocations.

 Activation ports are declared in the component specification (in the IDL file), and all
the elements required for their execution are created by the code generation tool. Their
configuration parameters, which include the scheduling parameters of the threads as well
as the activation period (in case of PeriodicActivation ports) are assigned for each
component instance in the deployment plan.

Fig. 3. Reference model of the technology

Client
Component
(bussiness
code)

Server
Component
(business
code)

Connectorinstance

Proxy
fragment

Servant
fragment

Client
Adapter

Server
Adapter

Interceptor

Executionenvironment

Activation
port

Environmentservices

Scheduling
AttributeService

Receptacle Facet

An Ada 2005 Technology 261

Adapter: An adapter is the part of the component’s code which provides the run-time
support for the business code. All the platform related aspects are included in the adapter.
Its code is automatically generated according to the component/container model. With
this programming approach the component developer does not need to know any detail
about the underlying technology, he is only in charge of business code development.

Connector: A connector is the mechanism through which a component communicates
with another component connected to it through a port. In our technology, a connector has
the same structure as a component, but its business code is also generated by the
deployment tool, based on:

• The interface of the connected ports. The connectors are generated from a set of
templates which are adapted so that they implement the operations of the required
interface.

• The location of the components (local vs remote), and the type of invocation
(synchronous or asynchronous). Combinations among these different characteristics
lead to different types of connectors. For local and synchronous invocations, the
connector is not necessary, the client component invokes the operation directly on the
server. For local and asynchronous invocations the connector requires an additional
thread to execute the operation (obtained through activation ports). If the invocation
is distributed, the connector is divided in two fragments: the proxy fragment, which is
instantiated in the client node, and the servant fragment, which is instantiated in the
server node. The communication between the two fragments is achieved by means of
the communication service selected for the connection. In this case, the connector
can also implement synchronous or asynchronous invocations, including the
required mechanisms in the proxy fragment.

• The communication service or middleware used for the connection and its
corresponding configuration parameters, which are assigned for each connection
between ports in the deployment plan.

Interceptors: The concept of interception is taken from QoSforCCM [17]. It brings a way
to support the management of non-functional features of the application. An interceptor
allows to incorporate calls to the environment services inside the sequence of an
invocation by executing certain actions before and after the operation is executed on the
component. The support for interceptors is introduced in the adapter, so it is hidden to the
component developer. Their introduction is optional for each operation, and it is specified
in the deployment plan.

In our technology, interceptors are used to control the scheduling parameters with
which each received invocation is executed. Based on the configuration parameters
assigned to it in the deployment plan, each interceptor knows the scheduling parameter
which corresponds to the current invocation, and uses the SchedulingParameterService to
modify it in the invoking thread. With this strategy, different schemes for scheduling
parameters assignment can be implemented. Besides common assignment policies, like
Client Propagated or Server Declared [18], our technology allows to apply an assignment
based on the transactional model of the application. With this policy, a service can be
executed with different scheduling parameters inside the same end-to-end flow
depending on the particular step inside the flow in which the invocation takes place. This

262 P. López Martínez et al.

scheme enables better schedulability results [19]. The values of these parameters are
obtained from the analysis using holistic priority assignment tools like the ones included
in MAST, which is used as analysis environment in our technology.

SchedulingParameterService: It is an internal environment service which is invoked by
the interceptors to change the scheduling parameters of the invoking thread. The kind of
scheduling parameters that will be effectively used depends strongly on the execution
platform, it may be a single priority, deadline, or the contract to use in the case of a FRES-
COR flexible scheduling platform.

4 Architecture of a Component Implementation

There are two complementary aspects that a component implementation must address:

• The component has to implement the functionality that it offers through its facets,
making use of its own business logic and the services of other components.

• The implementation must include the necessary resources to instantiate, connect and
execute the component in the corresponding platform. This aspect is addressed by
implementing the appropriate interfaces which allow to manage the component in an
standard way. In our case, those defined by LwCCM.

Each aspect requires knowledge about different domains. For the first aspect, an expert on
the application domain corresponding to the component functionality is required. For the
second, however, what it is required is an expert on the corresponding component technol-
ogy. The proposed architecture for a component implementation tries to find an structural
pattern to achieve independency of the Ada packages that implement each aspect.
Besides, the packages that implement the technology related aspects are to be automati-
cally generated according to the component specification. With this approach, the compo-
nent developer only has to design and implement the business code of the component.

The proposed architecture is based on the reference one proposed by LwCCM, but
adapted for:

• Making use of the abstraction, security and predictability characteristics of Ada.
• Including the capacity for controlling threading characteristics of the components.
• Facilitating the automatic generation of code taking the IDL3 specification of the

component as input and generating the set of classes that represent a component in the
technology.

• Providing a well-defined frame in which the component developer designs and
writes the business code.

In the proposed technology, the architecture of a component is significantly simplified as
a consequence of the usage of connectors. When two connected components are installed
in different nodes, the client component interacts only with the proxy fragment of the con-
nector, while the server component interacts only with the servant fragment of the connec-
tor. Therefore, all the interactions between components are local, since it is the connector
who hides the communications mechanisms used for the interaction.

For each component, four Ada packages are generated. Three of them are completely
generated by the tool, while the last package leaves the “blank” spaces in which the

An Ada 2005 Technology 263

component developer must include the business code of the component. The first module
represents the adapter (or container) of the component. It includes the set of resources that
adapt the business code of the component to the platform, following the interaction rules
imposed by the technology. It defines three classes:

• The wrapper class of the component, called {ComponentName}_Wrapper, which
represents the most external class of the component. It offers the equivalent interface
of the component, which LwCCM establishes as the only interface that can be used
by clients or by the deployment tool to access to the component. With this purpose,
the class implements the CCMObject interface, which, among others, offers
operations to access to the component facets, or to connect the corresponding server
components to the receptacles. Besides, the capacity to incorporate interceptors is
achieved by implementing the Client/ServerContainerInterceptorRegistration
interfaces, a modified version of the interfaces with the same name defined in
QoSCCM [17]. As it is shown in Figure 4, this class is a container which aggregates or
references all the elements that form the component:
- The component context, through which components access to their receptacles.
- The home, which represents the factory used to create the component instance.
- The executor of the component, which represents its real business code imple-

mentation. Its structure is explained below.
- An instance of a facet wrapper class that is aggregated for each facet of the

component. They capture the invocations received in the component and trans-
fer them to the corresponding facet implementations, which are defined in the
executor. The facet wrappers are the place in which the interceptors for manag-
ing non-functional features are included.

• The class that represents the context implementation, called {ComponentName}_
Context. It includes all the information and resources required by the component to
access to the components which are connected to its receptacles.

• The {ComponentName}_Home_Wrapper, which implements the equivalent
interface of the home of the component. It includes the class procedures (static) that
are used as factories for component instantiation.

Fig. 4. Example of Component Wrapper Structure for ComponentX

CCMObject

provide_facet()
connect()

<<Interface>>

ServerContainerInterceptorRegistration

register_server_interceptor()

<<Interface>>

ClientContainerInterceptorRegistration

register_client_interceptor()

<<Interface>>

Interface_A

operA()

<<Interface>>

CCM_ComponentX_Context

get_connection_thePortU()

<<Interface>>

ComponentX_Context

CCM_ComponentX
<<Interface>>

CCMHome

create_component()

<<Interface>>

ServerInterceptor

receive_request()

<<Interface>>

wrapper_Interface_A

delegated : CCM_Interface_A

0..n

interceptor_for_OperA

0..n

ComponentX_Wrapper
1

theContext
1

1

theHome

1
1

thePort_A_Facet
1

1 theExecutor1

264 P. López Martínez et al.

The rest of generated Ada packages contain the classes that represent the implementation
of the business code of the component (the executor). The LwCCM standard fixes a set of
rules that define the programming model to follow in order to develop a component imple-
mentation. Taking the IDL3 specification of a component, LwCCM defines a set of
abstract classes and interfaces which have to be implemented, either automatically or by
the user, to develop the functionality of the component. This set of root classes and inter-
faces are grouped in the generated package {ComponentName}_Exec. The {Compo-
nentName}_Exec_Impl package includes the concrete classes for the component
implementation which inherit from the classes defined in the previous package. The class
that represents the component implementation, {ComponentName}_Exec_Impl, which
is shown in Figure 5, has the following attributes:

• A reference to the component context. It is set by the environment through the
set_session_context() operation, and it is used to access to the receptacles.

• An aggregated object of the {ComponentName}_Impl class, whose skeleton is
generated by the tool and has to be completed by the developer.

• Each activation port defined in the specification of the component, represents a
thread that is required by the component to implement its functionality. For
implementing those threads two kinds of Ada task types have been defined. The
OneShotActivationTask executes once the corresponding run() procedure of the
port, while the PeriodicActivationTask executes periodically the update() procedure
of the corresponding port. Both types of task receive as a discriminant during its
instantiation, a reference to the data structure that qualify their execution, including
scheduling parameters, period, state of the component and the procedure to execute.
For each activation port defined in the component, a thread of the corresponding type
is declared. They will be activated and terminated by the environment by means of
standard procedures that LwCCM includes in the CCMObject interface to control the
lifecycle of the component.

The {ComponentName}_Impl class, represented in Figure 5, is defined in a new package,
in order to hide the environment internals to the code developer. It represents the reference
frame in which the developer introduces the business code. Relevant elements of this class
are:

Fig. 5. Example of Component Implementation Structure for ComponentX

CCM_ComponentX

set_session_context()
get_thePortA()
set_attribute1()

<<Interface>>

Interface_A
<<Interface>>

thePortA_Port

ComponentX_State

thePortU : Interface_U
attribute1 : Attr_Type_1
...

OneShotActivationBlock

PeriodicActivationBlock

theState

CCM_ComponentX_Context
<<Interface>>

ComponentX_Impl

get_state() : ComponentX_State
theOSAPort_run()
thePAPort_update()

thePortA_facet

1

theState

1

OneShotActivationTask

1

1

1
block

1

PeriodicActivationTask

1block 1

ComponentX_Exec_Impl

theContext

1

theImpl

1

1

theOSAPort

1

1

-thePAPort

1

An Ada 2005 Technology 265

• For each facet offered by the component, a facet implementation object is aggregated.
However, in the case of simple components, the class itself can implement the
interfaces supported by the facets.

• All the implementation elements (facet implementations, activation tasks, etc.)
operate according to the state of the component, which is unique for each instance.
Based on that, the state has been implemented as an independent aggregated class,
which can be accessed by the rest of the elements, avoiding cyclic dependencies.

• For each activation port defined in the component specification, the corresponding
{PortName}_run() or {PortName}_update procedures are declared.

Most of the code of this class is generated automatically, the component developer only
has to write the body of the activation port procedures (run or update), and the body of the
operations offered by each of the facets implementations. The developer, who knows the
temporal behaviour of the code, must also elaborate the real-time model of the compo-
nent. In the case of a connector, the structure generated is exactly the same, but the “busi-
ness” code, which in that case consists in the code required to implement remote
invocations, is also automatically generated by the deployment tool.

The current available Ada mapping for IDL [20] is based in Ada95, so for the
development of the code generation tool, it has been necessary to define new mappings for
some IDL types in order to get benefit of the new concepts introduced in Ada 2005. The
main change concerns to the usage of interfaces. The old mapping for the IDL “interface”
type led to a complex Ada structure while now can be directly mapped to an Ada interface.
Besides, some data structures defined in IDL, as for example the “sequence” type, can be
implemented now with the new Ada 2005 containers.

5 Practical Experience

At the time of the first attempts made to validate the proposed technology, there was no
real-time operating system with support for Ada 2005 applications, so the tests were run
on a Linux platform, using the GNAT (GAP) 2007 compiler. The construction of the con-
nectors for the communication between remote components, was made using the native
Ada Distributed System Annex (DSA), Annex E of the Ada specification. The implemen-
tation of DSA used was GLADE [21]. Distributed test applications were developed and
executed successfully. The platforms used in this evaluation were sufficient for the con-
ceptual validation of the technology, since from the point of view of the software architec-
ture the final code is equivalent, but of course, it is not appropriate for the validation of the
timing properties of real-time applications.

The recently released new version of MaRTE_OS [22] provides now support for the
execution of Ada 2005 applications, and allows to test the technology over a hard real-
time environment. Still there is a lack for a real-time communication middleware. An
enhanced version of GLADE that enables messages priority assignment exists for
MaRTE_OS & GNAT [23], but it has not been ported to the new versions. To overcome
this limitation, we have developed simpler connectors using a link layer real-time
protocol. Our first tests on a real-time platform have been done with connectors that use
directly the RT-EP [24] protocol for the communication between remote components.

266 P. López Martínez et al.

The same application tested in the linux platform was used in MaRTE_OS, and as
expectable, the code of the components did not require any modification, the only
necessary change was the development of the new connectors suitable for the new
communication service (RT-EP) used.

6 Conclusions and Future Work

This paper proposes a model based technology for the development of real-time compo-
nent-based applications. The usage of the Ada language for its implementation, makes it
particularly suitable for applications that run in embedded nodes with limited resources
and strict timing requirements. The technology is based on the D&C and LwCCM stand-
ard specifications, which have been extended in order to support the development of
applications with a predictable and analysable behaviour.

The key features of this technology have been specified and tested successfully.
Nevertheless some challenges arise for this community to face. The most rewarding of
them is the availability of an Ada native communication middleware, here used in the
development of connectors, which must hold predictable behaviour, and allow a priority
assigment for the messages based on the transactional (or so called end-to-end flow)
model. Our aim is to develop the connectors using the Ada Distributed System Annex so
that applications rely only on the Ada run-time infrastructure with no additional
middleware, which is highly desirable to target small embedded systems.

As future work, some more tests have to be applied in order to quantify the concrete
overheads introduced by the technology. A planned enhancement for the technology is the
construction of a graphical environment to integrate all the stages of development of an
application: design, code generation, analysis, and finally, execution. Another effort that
has been started in the OMG and arise from this work is the elaboration of an updated
version of the mapping from IDL to Ada 2005 [25].

References

[1] IST project COMPARE: Component-based approach for real-time and embedded systems,
http://www.ist-compare.org

[2] IST project FRESCOR: Framework for Real-time Embedded Systems based on Contracts,
http://www.frescor.org

[3] OMG: Lightweight Corba Component Model, ptc/03-11-03 (November 2003)
[4] Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P.: Ada 2005 Reference

Manual. LNCS, vol. 4348, pp. 43–48. Springer, Heidelberg (2006)
[5] Aldea, M., et al.: FSF: A Real-Time Scheduling Architecture Framework. In: Proc. of 12th

RTAS Conference, April 2006, San Jose, USA (2006)
[6] OMG: Deployment and Configuration of Component-Based Distributed Applications Spec-

ification, version 4.0, Formal/06-04-02 (April 2006)
[7] Möller, A., Åkerholm, M., Fredriksson, J., Nolin, M.: Evaluation of Component Technolo-

gies with Respect to Industrial Requirements. In: Proc. of 30th Euromicro Conference on
Software Engineering and Advanced Applications (August 2004)

[8] Ommering, R., Linden, F., Kramer, J.: The koala component model for consumer electronics
software. IEEE Computer, IEEE, 78–85 (2000)

An Ada 2005 Technology 267

[9] Lundbäck, K.-L., Lundbäck, J., Lindberg, M.: Component based development of dependable
real-time applications Arcticus Systems, http://www.arcticus-systems.com

[10] Bondarev, E., de With, P., Chaudron, M.: Predicting Real-Time Properties of Component-
Based Applications. In: Proc. of 10th RTCSA Conference, Goteborg (August 2004)

[11] Bondarev, E., et al.: CARAT: a toolkit for design and performance analysis of component-
based embedded systems. In: Proc. of DATE 2007 Conference (April 2007)

[12] Åkerholm, M., et al.: The SAVE approach to component-based development of vehicular
systems. Journal of Systems and Software 80(5) (May 2007)

[13] Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: A Component-Based Framework for Gen-
erative Development of Distributed Real-Time Control Systems. In: Proc. of 13th RTCSA
Conference (August 2007)

[14] Wallnau, K.C.: Volume III: A Technology for Predictable Assembly from Certifiable Com-
ponents, Technical report, Software Engineering Institute, Carnegie Mellon University,
April 2003, Pittsburgh, USA (2003)

[15] López, P., Drake, J.M., Medina, J.L.: Real-Time Modelling of Distributed Component-Based
Applications. In: Proc. of 32h Euromicro Conference on Software Engineering and
Advanced Applications, August 2006, Croatia (2006)

[16] González Harbour, M., Gutiérrez, J.J., Palencia, J.C., Drake, J.M.: MAST: Modeling and
Analysis Suite for Real-Time Applications. In: Proc. of the Euromicro Conference on Real-
Time Systems (June 2001)

[17] OMG: Quality of Service for CORBA Components, ptc/06-04-05 (April 2006)
[18] OMG: Real-Time CORBA Specification, v1.2 formal/05-01-04. Enero (2005)
[19] Gutiérrez García, J.J., González Harbour, M.: Prioritizing Remote Procedure Calls in Ada

Distributed Systems. In: Proc. of the 9th Intl. Real-Time Ada Workshop, ACM Ada Letters,
XIX, 2, pp. 67–72 (June 1999)

[20] OMG: Ada Language Mapping Specification - Version 1.2 (October 2001)
[21] Pautet, L., Tardieu, S.: GLADE: a Framework for Building Large Object-Oriented Real-

Time Distributed Systems. In: Proc. of the 3rd IEEE Intl. Symposium on Object- Oriented
Real-Time Distributed Computing, March 2000, Newport Beach, USA (2000)

[22] Aldea, M., González, M.: MaRTE OS: An Ada Kernel for Real-Time Embedded Applica-
tions. In: Strohmeier, A., Craeynest, D. (eds.) Ada-Europe 2001. LNCS, vol. 2043. Springer,
Heidelberg (2001)

[23] López-Campos, J., Gutiérrez, J.-J., González-Harbour, M.: The Chance for Ada to Support
Distribution and Real-Time in Embedded Systems. In: Llamosí, A., Strohmeier, A. (eds.)
Ada-Europe 2004. LNCS, vol. 3063, pp. 91–105. Springer, Heidelberg (2004)

[24] Martínez, J.M., González, M.: RT-EP: A Fixed-Priority Real Time Communication Protocol
over Standard Ethernet. In: Vardanega, T., Wellings, A.J. (eds.) Ada-Europe 2005. LNCS,
vol. 3555, pp. 180–195. Springer, Heidelberg (2005)

[25] Medina, J.: Status report of the Ada2005 expected impact on the IDL to Ada Mapping. OMG
documents mars/07-09-12 and mars/07-06-13 (2007), http://www.omg.org

	An Ada 2005 Technology for Distributed and Real-Time Component-Based Applications
	${\rm Introduction}^{\rm 1}$
	Real-Time Component-Based Development
	Reference Model of the Technology
	Architecture of a Component Implementation
	Practical Experience
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

