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Abstract. Creating multiple threads for performance gain is not only common
for complex computations on supercomputers but also for ordinary application
programs. Multi-threaded/parallel programs have many advantages but also in-
troduce new types of errors that do not occur in purely sequential programs.
Race conditions are one important class of these special problems because the
effects of race conditions occur nondeterministically and range from incorrect re-
sults to unexpected program behaviour. This paper presents RCanalyser, a tool
for the detection of race conditions, which is based on a Must Locks analysis
using a flexible interface for the integration of different points-to analyses. As the
problem of detecting race conditions is NP-hard in the general case, the tool is
restricted to the detection of so-called data races [1]. The tool is able to analyse
C/C++programs that use thread APIs for the implementation and synchronization
of concurrent units. We applied the tool to a set of real programs, which use the
POSIX thread API, and present results and statistics.

1 Introduction

In parallel programs, different threads are created and often communicate with each
other. Different communication methods are available for these interactions, e.g., mes-
sage passing or shared memory. Furthermore, threads may need to claim other system
resources that are shared among them. As multiple threads try to access shared re-
sources, their actions must be protected through some synchronisation mechanism to
avoid interleaving. Absence of such a mechanism during these accesses can lead to
inconsistent states of shared resources, which can result in abnormal or unpredictable
program behavior. An important class of inter-process or inter-thread anomalies is race
conditions. A race condition occurs when different threads simultaneously perform read
and write access on shared data without prior synchronization. Such erroneous situa-
tions tend to be very difficult to detect or to recreate by test runs; they arise in real-life
execution as an inexplicable, sudden, and not re-creatable, sometimes disastrous mal-
function of the system. Debugging of parallel programs requires tools and mechanisms
that can discover such situations and assist programmers in locating the culprit source
code. Moreover, for parallel programs using shared resources, mechanisms are required
to determine when a race condition can manifest and, to provide further assistance in
locating it. Due to their critical effects on the deterministic behaviour of software, guide-
lines on thread programming have been devised to avoid data races [2]. However, this
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can restrict a programmer’s benefits achievable through full use of the concurrency fea-
tures of a programming language.

Many research communities have investigated this issue and have proposed different
dynamic and static techniques to detect race conditions [3,4,5,6,7,8,9,10]. The available
race detection techniques exhibit different limitations depending on the nature of anal-
yses underneath, i.e., dynamic or static analyses. Some of them raise the degree of false
positives while others impose overhead in terms of time and space complexity [11].

This paper presents the tool RCanalyser, which performs flow- and context-sensitive
analyses of the program to find a Probable Lock for each shared variable. Further,
it provides the flexibility to combine different points-to analysis mechanisms while
present tools do not incorporate points-to analysis or cover only simple aspects. Our
mechanism performs detection of data races based on locks and shared variable analy-
sis. Shared variable discovery has a major effect on the accuracy of data race detection.
Therefore, unlike others [4,12], in our approach we first discover shared variables and
then investigate if they are consistently protected. For the safe detection of accesses to
shared variables and the execution of synchronization operations, knowledge about the
potential targets of pointers is essential. RCanalyser is a part of the Bauhaus [13] tool
suite and uses its interface for different points-to analysis techniques implemented in
the infrastructure which helps us to increase the precision for those programs which
heavily use pointers. This paper is structured as follows; section 2 discusses the related
work in this area. In section 3 we explain our definitions and terminology for the scope
of this paper. The design and implementation of RCanalyser is described in section 4.
Section 5 presents the evaluation of RCanalyser. Finally, section 6 concludes the paper
and discusses future trends.

2 Related Work

Since the detection of race conditions in parallel programs is notoriously difficult, a
large community has focused on this issue. In fact, it is quite difficult to detect such
problems by manually testing the programs. Additionally, most of the existing concur-
rent software systems are written in C. Therefore, the need of an efficient mechanism
for detecting parallel program anomalies is always present. As a consequence of dif-
ficulties involved in the race detection process, tools and mechanisms which provide
automatic detection are extremely valuable. Hence, there has been a substantial amount
of past work in building tools for analysis and detection of data races [3,4,5,6,7,8,9,10].
These tools are either based on the verification of access event ordering or they verify
a locking discipline for mutual exclusion [7]. This means, if there is no unordered ac-
cess to a shared variable such that at least one access is a write, the program is free
from race conflicts. Similarly, if the accesses to shared variables in a program obey
a locking discipline then the program is race free. In the traditional manner, the re-
search can be categorised as on-the-fly, ahead-of-time, and post-mortem techniques.
These techniques exhibit different strengths for race detection in programs. The ahead-
of-time approaches encompass those detection techniques that apply static analysis and
compile-time heuristics while on-the-fly approaches are dynamic in nature.
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In well-known techniques and tools RacerX, Locksmith and Chord are based on static
analysis, whereas Eraser uses dynamic analysis. RacerX [4] performs a flow-sensitive
inter-procedural analysis to extract lock-set information and uses it for race and dead-
lock detection. It detects multi-threaded parts of the program and shared accesses that
can be dangerous. However, RacerX assumes that code segments which are protected
through locks perform parallel accesses to shared variables which may not be true if
they are contained in threads which do not run in parallel. Eraser [5] employs a binary
code instrumentation approach for runtime race detection, which is further extended
for Java by [7] [6]. Chord [14] detects race conditions in Java programs by employ-
ing a combination of static analyses (reachability, aliasing, escape and lockset anal-
yses) for successive reduction of memory access pairs. Locksmith [12] assumes the
common approach that shared memory locations are consistently protected by a lock
(consistent correlation). It uses a constraint-based analysis that context-sensitively in-
fers the consistent correlation, and uses its outcome to check the proper guarding of
locations by locks. However, these tools have restrictions in terms of time and space
complexity. Some of them use very naive points-to information. Therefore, the need
for a scalable solution is always present considering the pervasive presence of complex
multi-threaded applications.

3 Terminology

Here we present the terminologies and definitions, which are used throughout this paper.

3.1 Threads

In sequential programs there is only one thread, which controls the execution of the pro-
gram in a defined order. However, a sequential execution on a multi-processor system
is unable to utilize the multiple processors in an efficient manner. Further, sequential
programs cannot support the response time characteristics required in complex sys-
tems. These problems are alleviated by parallel programs by creating multiple threads
of control. Unlike processes, threads share the same memory area and resources. Com-
munication among threads is achieved through shared program memory. In this paper
the term thread is used to refer to a POSIX thread, which is defined by the tuple

t = (id, attributes, start routine, data)

Each thread has a unique id, attributes (e.g., scope, state, stacksize, etc. or can be
NULL if default attributes are meant to be used), a procedure to start with and some
data that can be either a shared resource or specific to it.

Threads Execute in Parallel: Threads which are active at the same time may run
in parallel. On a single processor system threads execute concurrently (logical paral-
lelism), whereas on a multi-processor system they can truly run in parallel. Unless the
execution of threads depends on each other and is synchronised through some mech-
anism, this paper considers them to be running in parallel. Further, the execution of a
thread is parallel to other threads if its execution is not deterministic with respect to
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those threads. If T represents the set of threads of a program and SynchOrder is a re-
lation of synchronization between threads ti and tj then the parallel relation is defined
as follows:

ti‖tj ⇔ ¬SynchOrder(ti, tj)

The parallel relation ‖ is symmetric, therefore if ti‖tj then also tj‖ti. As threads
are created dynamically we need a static representation for threads such that each static
thread corresponds to a set of dynamic threads. In RCanalyser we chose invocation
sites of thread-create functions for the representation of threads, as a call to a thread-
create API might be performed in a loop with the same start routine and create multiple
threads at runtime. There is no further distinction between the created threads and we
consider the static thread having multiple instances. If the invocation is guaranteed to
be performed only once in each execution of the program, the static thread is considered
to be a single thread.

The parallel relation is reflexive iff multiple instances of a (static) thread are present
in the program and might run in parallel.

3.2 Race Condition (RC)

A race condition can be formalised through different definitions, however for the scope
of this paper the following equation defines a race for a memory location m ∈ M as a
symmetric binary relation RC(m) ⊆ S(m)×S(m). Where S is the set of all statements
in a program source and S(m) contains all those statements s which access a shared
memory location m such that S(m) ⊆ S.

S(m) = {s | m ∈ DEF (s) ∪ USE(s)}

As in standard data-flow analysis, the sets DEF (s) and USE(s) contain memory
elements which are modified or read by the statement s ∈ S(m). The set of shared
memory locations M is defined in section 3.3. Race conditions relating to m ∈ M are
defined as

RC(m) = {(si, sj) | si ‖ sj ∧ m ∈ DEF (si) ∩ (DEF (sj) ∪ USE(sj))}

si ‖ sj represents the parallel relation between ststaments si, sj and is defined in
section 3.6.

3.3 Shared Accesses

Shared variables or memory locations (used interchangeably in this paper) are gen-
erally variables in parallel programs, which are accessed from more than one thread.
Therefore shared memory locations are potential targets of data races. A shared mem-
ory location can include stack, global and heap variables. We do not consider volatile
and atomic variables. Depending upon the requirements of the analysis compound ob-
jects and elements/components of these objects are distinguished. Additionally, a local
variable whose reference is passed to other threads through a pointer also belongs to
the category of shared memory locations. However, reference variables require special
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consideration because their accessibility to more than one thread does not necessarily
result in the same memory location during dereference. RCanalyser can perform two
different analyses for shared memory location for compound types and their elements:
it can either consider an access to a compound object’s element as an access to the
whole compound object or consider all elements as individual variables in a program.
Differentiation between elements of the compound object will decrease the number of
false positives. Furthermore, local static variables are also treated as global variables
because they remain preserved even after a call to the enclosing procedure has finished.
With this, the set of shared memory locations M is defined as:

M = {m | ∃si, sj ∈ S : ∃ti, tj ∈ T :
(si ∈ statements(ti) ∧ sj ∈ statements(tj)∧
(ti 
= tj ∨ (ti = tj ∧ ti ∈ mult inst))) ∧ m ∈ Nonlocals∧
m ∈ (DEF (si) ∪ USE(si)) ∧ m ∈ (DEF (sj) ∪ USE(sj))}

In the above definition, T represents all threads of the program, statements(t) con-
tains all statements reachable by a thread t and multi inst indicates if multiple active
instances of a thread might exist at runtime. Nonlocals are global variables accessible
in all functions and procedures of a program but are not local to them. Further, they also
include those references which escape their definition scope.

int *arrptr;

int *copy (int *p, int size)
{
int *tmp;
tmp = malloc(size * sizeof(int));
for(int i=0; i<size; i++) tmp[i] = p[i];
return tmp;

}

int main() {
int a[5];
...
arrptr = copy(&a, 5);
...

}

For example in the above code snippet arrptr, the allocated heap object and the
array a are nonlocal objects.

Existing techniques [4,5] perform shared variable detection based on the underlying
assumption that accesses to shared variables almost always follow a lock acquisition.
By focusing on the lock variable relation, however, consideration of only such variables
as shared can lead to false negatives of data races, because shared variables may be
accessed without lock acquisition if a programmer assumes its access is safe without
acquiring a lock e.g., in interactive user input. Therefore, we discover shared variables
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according to the above definitions and then detect if they need to be protected or not.
For details see section 4.3

3.4 Critical Section (CS)

A critical section is a part of the program that accesses shared resources and needs
to be executed atomically by threads, i.e., no other thread may enter a critical section
if a thread is currently executing it. Critical sections are necessary to avoid inconsis-
tent states of shared variables during successive operations. Critical sections implement
mutual exclusion mechanisms, which prevent other threads to access the shared data si-
multaneously. Critical sections can be implemented using synchronization instructions
such as semaphores, locks or synchronized objects. During execution a thread acquires
a lock and enters the critical section. Meanwhile, other threads who want to acquire the
lock before entering the critical region have to wait until the lock is released. On release
waiting threads attempt to obtain the lock and execute their critical code. RCanalyser
considers a section of the program protected by a lock as a critical section to be ex-
tended to the point where it finds a release statement for the lock. A critical section of
a thread t can be defined as a single-entry single-exit sequence of statements between
lock acquire and release statements in a thread t:

CS(l, t) = {sn |∃π = (s1, . . . , sn) :
∀si ∈ π : si ∈ statements(t)∧
s1 locks l∧ 
 ∃sx ∈ π : unlocks l}

This definition of a critical section does not differentiate between global locks and
locks which are kept as fields of dynamic data-structure. If RCanalyser does not find any
shared variables we argue that it is unnecessary to implement critical sections for mutual
exclusion because threads do not contain accesses to shared variables and resources.

3.5 Locks and Thread Synchronisation

Critical sections are protected by locks or other synchronisation mechanisms. However,
in the scope of this paper we consider locks as a mutual exclusion mechanism used
for the protection of the critical sections. The term lock is synonymously used for mu-
tex. Before entering into a critical section a thread must obtain the associated lock and
on exit it must release the lock to allow other threads to execute their critical section.
If the critical section contains more than one shared variable then all these variables
are protected using the lock associated with this critical section. This condition must
hold for all accesses to shared variables in critical sections in other threads, otherwise
inconsistent lock protection to shared variables could lead to race conditions during ac-
cesses among different threads. A thread can contain nested critical sections accessing
variables shared between different threads and protected through multiple locks. The
only constraint is that threads must hold a common lock before performing accesses
to shared variables, locks protecting critical sections may hold locks for the contained
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shared variables. All locks definitely held at a statement s in a thread t without consid-
ering path conditions can be defined as the set of Must Locks

Must Locks(s, t) = {l |l ∈ Locks∧
∀π = (t.entry, . . . , s) : l is held at s}

In the above definition Must Locks contains all locks held by a thread before exe-
cuting a statement s. We define a function LockCount(m, l) to compute the number of
statements which hold the lock l and access the shared variable m.

Lock Count(m, l) = |{s ∈ S(m) | l ∈ Must Locks(s, t)}|

The Lock Count(m, l) serves two purposes, first we use it to compute a single lock
i.e., Probable Lock(m) which must be obtained before an access to the shared variable
m in a safe program. The computed lock has the highest acquisition number for shared
variable m. Second, if two locks have the same acquisition number for a shared variable
then both locks become plausible and are considered in Probable Lock(m). However,
during race detection accesses to the shared variable are considered unprotected due to
inconsistent locking and both locks are reported to the user to decide the appropriate
lock.

Probable Lock(m) ={l ∈ Locks |
∀l′ ∈ Locks : l 
= l′ ∧ Lock Count(m, l) ≥ Lock Count(m, l′)}

3.6 Statements Exceuting in Parallel

The statements of two threads which run in parallel potentially participate in a race
condition if they are not synchronised. However, if two threads run in parallel not all of
their statements necessarily run in parallel. Statements accessing a shared resource can
only happen in parallel if they are not synchronised through common locks, however,
this does not represent their execution order i.e., a statement will happen before the
other.

si‖sj ⇔ ∃ti, tj ∈ T : si ∈ statements(ti) ∧ sj ∈ statements(tj)∧
ti‖tj∧ 
 ∃l ∈ Locks : si ∈ CS(l, ti) ∧ sj ∈ CS(l, tj)

Simultaneously reachable statements participate in a data race, therefore, statements
in critical sections of two different threads with the same lock cannot execute concur-
rently. Additionally, statements cannot execute in parallel or perform parallel accesses,
if there is a prior access to the must lock associated with shared variables.

4 Design and Implementation

The static recognition of race conditions in parallel programs is not a simple problem.
Therefore many tools and mechanisms analyse the synchronisation structure of input
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programs and perform unsafe approximations to detect the absence of necessary syn-
chronisation [4]. RCanalyser assumes that a shared variable is consistently protected
by a single lock. Hence, if different locks protect a shared variable then the lock with
a higher acquisition count will be considered. RCanalyser has been designed and im-
plemented in six different stages as illustrated in figure 1. In the following sections we
discuss them in detail.

May and Must Lock

Thread Analysis

Analysis

Analysis

Compiler
Frontend

Pointer
Analysis

Control−Flow
Analysis

Lock and Shared Memory
Detection of Data Races

Prioritisation of Errors

Backtracking 

Bauhaus Infrastructure

Fig. 1. The components of RCanalyser

4.1 Bauhaus Infrastructure

RCanalyser has been implemented on top of the Bauhaus infrastructure [13]. Bauhaus
provides a base for implementing different high and low-level static program analyses.
For our implementation we have used different Bauhaus features, e.g., an annotated
abstract syntax graph (IML) for the full source program generated through language
frontend and a local control-flow analysis to obtain intra-procedural control-flow graphs
for all subprograms. The generic pointer analysis interface of Bauhaus provides us with
different classical points-to analyses, e.g, Steensgaard [15], Das [16], and Andersen
[17], which approximate the effects of pointers and determine the targets of indirect or
dispatching calls.

4.2 Escape Analysis

If a majority of locks and shared variables are accessed via pointer dereferences in an
analysed program, then the precision of the analysis depends directly on the quality of
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the pointer analysis. By inaccuracies of the points-to analysis, the degree of false posi-
tives will be high, since apparent accesses to shared variables will be noted through the
analysis, which will not occur during execution of the program. Therefore, to mitigate
the imprecise effect of points-to analyses, RCanalyser provides the flexibility to use
different points-to analyses to achieve different levels of precision. Further, RCanal-
yser performs a thread specific escape analysis to improve the quality of error reports.
RCanalyser checks if a local variable’s reference is ever assigned to a pointer during
execution and marks such locals as escaped references. If a reference never escapes its
scope a race condition on such variable is considered spurious and ignored, because
a flow- and context-insensitive points-to analysis result for a pointer can nevertheless
contain this variable’s reference.

4.3 Lock and Shared Variable Analyses

Shared variable analysis detects all variables which are accessed (read, write) in at least
two threads. Therefore, all accesses to global and reference variables are computed on
a per-thread basis. If a global variable is read or written in a statement by a thread it is
immediately marked as a shared access. An access to a reference variable is registered
as an access to all global or local variables to which it possibly refers. However, if a
local variable’s address is never assigned to a reference variable it cannot contribute in
a data race and accesses to it are simply ignored. Shared variable analysis determines
read and write accesses on a variable and stores this information for each thread in the
program. Later this information is used to determine conflicts between threads.

The lock analysis is one of the most important parts of RCanalyser. RCanalyser per-
forms a flow- and context-sensitive lock analysis as defined in [4]. The task of this
analysis is to compute Must Locks for each statement. It is important to note that it
is not determined which lock in the program is always set for a statement, but all the
acquired locks are computed. This benefits the analysis by providing the information
if a lock is obtained on all paths in the program. However, due to flow- and context-
sensitivity its runtime complexity can increase exponentially. The analysis is performed
in a depth first search order. To determine all possible locks RCanalyser computes which
locks are acquired before a procedure call and visits the control-flow-graph of the pro-
cedure to determine which locks are acquired and released during the procedure call.
This result is propagated back to the call site and Must Locks information is updated
along the analysed path. If a procedure call contains more than one possibility to exit,
then information propagated to the call site can contain different locks or locksets of
Must Locks. Further analysis then has to compute Must Locks within the context of
each lock or lockset. The resulting Must Locks of this procedure is saved in a cache
to avoid a re-computation, in case the procedure is called again with the same locks.
In the same manner Must Locks information for statements is computed and saved in
the cache.

4.4 Thread Analysis

Thread analysis computes which threads in the program can run in parallel. RCanalyser
considers threads in parallel with other threads if their start and end is in the range
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of the other thread’s execution span. To determine the execution span of threads, a
global logical clock is defined in such a way that it is incremented each time a thread
starts or gets joined by other threads independent from its runtime execution behavior.
Execution span is calculated flow sensitively in topological ordering from the value of
the global clock at a thread’s creation call to its corresponding join call. Therefore, the
termination of a thread in relation to other threads is defined by the clock count value
when its join call is found. After execution spans are computed for all threads, a run
in parallel relation between threads is computed for each thread. All threads which are
alive during the execution span of a specific thread are considered to potentially run in
parallel. Due to the symmetric nature of the run in parallel relation, the computation
complexity is reducible.

4.5 Variable Lock Relation

The next step in RCanalyser is to determine Must Locks for each shared variable as
defined in section 3.5. For each shared variable we count the number of statements
which access the shared variable and hold a specific lock l. The lock with the highest
number of statements is considered as must lock for the shared variable. If the number
of statements and lock acquisition count is equal then shared variables are consistently
protected. If a statement appears in two critical sections protected through different
locks which include accesses to a shared variable such that one critical section is nested
in a thread and the other is not then there will be no data race on this variable if a
common lock is held by both threads. This common lock will be considered as a must
lock for this variable.

4.6 Detection of Data Races

Having computed the information about threads, shared variables and must locks, a
potential data race can be determined by using the equation defined in section 3.2.
If RCanalyser does not find a required lock for a shared variable v which is held at
all parallel statements accessing v, we consider accesses to this variable as data races.
However, read accesses are not considered as a data race, at least one single write access
on a shared variable is necessary for a data race. It is possible that a thread makes a
procedure call after obtaining a lock and another thread without acquiring a lock calls it
and itself holds the lock for a shared variable, such a case will not fall in the category of
race condition. Because a common lock is always held before the access is performed.
Furthermore, accesses on a shared variable with different locks held in different threads
will also indicate a race condition.

4.7 Prioritization and Backtraces

RCanalyser computes a prioritisation between detected data races depending upon the
type of the shared variables and the threads’ run in parallel information. The criterion
followed for prioritisation based on severity and probability are
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Prioritization: Severe Errors

– If a global variable is involved in a data race it has a high priority.
– The priority of a data race in a thread where must lock for a variable is not acquired

is high as compared to the thread which acquires a lock for a shared variable but
run in parallel with this thread.

Prioritization: Probable Errors

– If the involved variable is accessed in a loop the priority is high.
– For reference variables with many possible destinations the priority is low.
– If the accessed object is of a compound type, i.e., a structure or an array, the priority

is low because the exact location index of the accessed element may be imprecisely
calculated.

– When two threads who cannot possibly run in parallel access a shared variable
without acquiring a common lock the priority of data race is also low.

The error reports can be viewed using RCanalyser interactive shell in the order of
their priority. Backtraces report the path along which a data race can occur. If the path
contains conditional statements the trace report represents which branch is considered.

5 Experimental Results and Evaluation

RCanalyser delivers results to our expectations, i.e., all locks are computed, and shared
variables are recognised. It computes the parallel threads and must locks for each vari-
able and partially excludes the variable initializations from data races, and successfully
prioritizes the errors, depending upon their nature. Nevertheless, due to the conservative
nature of analyses implemented by RCanalyser it can also report false positives. It can
report a data race on a compound object accessed through a pointer even if different
elements are involved during accesses. However, this can be mitigated by enabling the
field sensitive points-to analysis for program variables. Similarly, it is undecideable to
distinguish between different elements of an array object. An access to an array element
is considered as an access to the complete array. RCanalyser performs a context- and
flow-sensitive lock analysis. Therefore, the tool handles function calls precisely and it
does not consider infeasible paths due to invocations of functions. Nevertheless, infea-
sible paths might be considered in local contexts because the tool does not evaluate
conditions and always considers all paths after a branch.

Currently RCanalyser can be configured to detect races in POSIX/Apache Runtime
Environment based multi-threaded C programs. The experimental results of our test
suite downloaded from sourceforge.net are listed below. We have used Das analysis to
compute points-to information for these programs. The result clearly shows the effective
discovery of shared variables and number of threads in each program (columns Sh Vars
and Threads). The results also illustrate that RCanalyser is scalable and can be applied
to benchmarks with up to 6.1 kloc (same as Locksmith [12] tool.)

The column Warnings shows the number of locations where a race condition might
manifest. The reported numbers are higher as compared to others [12], because, after lo-
cating the first unprotected access to a shared variable we record all following locations
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Benchmark KLOC Threads Sh Vars Warnings Unguarded Real Races

aget-0.4 1.6 4 13 49 47 11
smtprc-2.0.3 6.1 3 10 200 180 7
ctrace-1.2 1.8 3 14 53 50 6
tplay-0.6.1 3.9 3 5 47 46 2

Fig. 2. Test Results

as well. The figures in column Unguarded describe program statements performing
access to a shared variable without lock acquisition. These figures do not contain the
locations where a lock has been held before access to a shared variable. It might be
possible that these warnings are only about some shared variables which are targets of a
data race. Real races presents the number of data races found after a careful inspection
of unguarded program locations.

5.1 Discussion of Results

Due to the conservative nature of the static analyses in RCanalyser, it will safely find
all potential race conditions in a program. But it may also report false positives which
come from over-approximations done in the base analyses and RCanalyser itself.

In Figure 2 we can see that the differences of the number of Warnings and the num-
ber of Real races are still high. A detailled inspection lets us conclude that many of
the reported false positives are manifestations of the features not yet present in our
implementation.

A great deal of inaccuracy has its cause in an inadequate handling of (conceptual)
reference parameters in our base analyses. The context- and flow-insensitive pointer
analyses which are currently used in Bauhaus merge the targets of a reference param-
eter for multiple invocations of a subprogram. Therefore RCanalyser currently does
not distinguish between different invocation contexts. The usage of a context-sensitive
pointer analysis would bring a great benefit and is planned as a future work.

Another reason for false positives was the lack of path conditions in RCanalyser. The
analysis currently considers all branches in the control flow of a program as equally
feasible. A first step towards an improvement is the integration of a copy propagation
analysis which lets us detect if a condition is always true or false. This helps us to
remove dead code which can not contribute to a race condition. We expect another im-
provement from the implementation of a same-value analysis which determines if the
values of different conditions are definitely the same. With that we are able to exclude
infeasible paths as a reason for race conditions. A same-value analysis for thread vari-
ables will also mitigate the decision process of which thread gets joined or canceled at
a given point, because thread identifier are integers and may get another value during
program execution.

6 Conclusion and Future Work

Obtaining information about which threads run in parallel has significant applications in
the detection of anomalies such as race conditions and deadlocks. Further, C-programs
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make intensive use of pointers, which make it difficult to find data races in parallel
threads. Algorithms which can compute this information effectively and precisely are
of great value. Previous approaches analyse programs without significant consideration
of points-to information. We developed RCanalyser, a tool for the conservative detec-
tion of data races in multi-thread/parallel programs using Must Locks analysis with
flexibility to incorporate different points-to analysis mechanisms. The framework can
handle multi-threaded programs of practical nature. The results have shown that due to
the conservativeness of our technique and unavailability of a flow- and context-sensitive
points-to analysis, it can produce false positives. However, RCanalyser can handle all
types of pointer used in C programs. In the future, we plan to improve our mechanisms
to correctly identify the accessed components of compound data types and thread es-
cape analysis to optimize the precision and reduce the number of false positives. Ad-
ditionally, we would like to implement a data-flow analysis for parallel programs in
our framework to detect updates which may change thread identifiers. A further goal
is to make RCanalyser more scalable to handle larger program code up 50-100K and
incorporate the most used synchronization techniques e.g., condition variables, signal
wait etc.
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