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Abstract. The development process of high-integrity systems has
shifted from manual coding to designing with modeling tools that verify
the correctness of the design well before production. The parallel applica-
tion of several different modeling tools in the design of separate parts of
the same system is now a common industrial practice. The advantage of
using several, domain-specific tools is however balanced by an increasing
complexity in the integration phase: it is indeed necessary to guarantee
the correctness of the interaction of the several subapplications, which
also includes the integration of the source code automatically generated
by the different modeling tools. This constitutes a major concern for the
introduction of several modeling tools in the industrial community, as
well as for certification institutes. In this paper we present our practi-
cal experiences in the definition of a computer-aided sound development
process to permit model-driven integration of heterogeneous models.

Keywords: Model-driven Integration, High-Integrity Systems, Auto-
mated Code Generation.

1 Introduction

The development of high-integrity systems stands to gain much from exploitation
of different tools and languages in the implementation of a component based sys-
tem. For example, in the domain of space-related applications (which is our main
domain of interest), the system implementation is usually co-developed by several
different providers, each one using a tool specifically suited for a particular sub-
set of the application: Matlab [1] for the implementation of algorithms, SDL [2]
for state machine logic, UML2 [3] for object-oriented architectures, AADL [4]
or the emerging SysML [5] for system modeling, etc. The use of domain-specific
tools offers two main advantages: (i) domain-specific semantics greatly simplifies
the design and verification of a precise kind of applications; and (ii) the men-
tioned tools usually provide for automated source code generation through a
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specifically tailored process (for example, the code generator which comes with
SCADE has been qualified for DO-178B level A systems [6]).

The exploitation of several, domain-specific tools providing automated code
generation to implement the functional specification surely decreases the verifi-
cation and validation costs; but it also increases the criticality of the integration
phase, as the switch from software modeling to system modeling - which is
the design of the system architecture - may negatively affect the semantics of
common data types and the non-functional properties of the system. Currently,
the integration process is handled manually, making it very error-prone and a
possible source of defects.

The idea we present in this paper is to exploit model-driven technologies to au-
tomate the integration phase, guaranteeing that the whole process can be applied
in domains subject to strict certification standards. Model-Driven Engineering
(MDE, [7]) is currently one of the main innovation vectors in software engineer-
ing. The whole idea at the heart of model-driven engineering is to promote the
use of a formal, high-abstraction, representation of the system, a model, during
each phase of the development cycle. In a model-driven development process,
models are designed, analyzed, transformed, verified and executed. The notion
of model transformation is particularly meaningful in MDE. Models are usually
designed at a very high abstraction level, which may be agnostic on aspects such
as target execution platform, deployment, and distribution middleware: a model
transformation which takes as input the model and the platform specification
may automatically generate the implementation of the system for a particular
platform. Ideally, the developers do not need to cope with low-level represen-
tations of the system at all: the generation of source code is for example just
one of the several possible transformations a model is subject to. In mainstream
software engineering, model-driven engineering has de facto taken the name of
the OMG initiative named Model-Driven Architecture (MDA, [8]); MDE is how-
ever not limited to the OMG world: SCADE or Matlab Simulink [9] are indeed
excellent examples of MDE infrastructures because they permit to design, verify
and deploy systems using a high-abstraction modeling semantics. Another key
aspect of model-driven engineering is the concept of domain-specific metamodel-
ing (DSM), which is the definition of design languages and tools to fully support
MDE in a particular domain.

Model-driven principles and technologies have already been applied to the
integration problem [10]: the OMG MOF facility is by itself an integration frame-
work for heterogeneous metamodels. The most common domain for the appli-
cation of model-driven integration is enterprise computing. One of the most
typical application is the reverse engineering of legacy components (usually in
the from of source code, CORBA interfaces, XML) to UML models, so as to
permit the generation of a middleware layer to interface the components [11].
Another common application is the interoperaction between metadata defined
with domain-specific metamodels which are all traced to a common metamodel,
usually in the form of UML profiles [12].
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Our first main contribution to the field of model-driven integration is the do-
main we target: high-integrity systems, in particular in the space domain. The
most well-known (and probably unique) example of model integration in the
high-integrity domain is the SCADE Simulink Gateway which permits to import
Simulink models in SCADE, modify them and generate code using the SCADE
code generation engine. As a first notable difference, we aim to integrate mod-
els designed with radically different tools along with their generated code. The
models we plan to integrate are functional models because they represent the
functional (sequential) specification of the system. The integration process must
thus guarantee that the interaction between the models designed with different
tools does not corrupt the properties proved during the modeling phase and that
the interfacing of the generated code does not corrupt the semantics of the ex-
changed data: the solution of this last problem cannot be found in mainstream
technologies like CORBA, SOAP or WEB-services, because of the peculiarities of
the target domain (embedded systems with strict performance and predictability
requirements). Finally, we also wish to verify system-level properties (in partic-
ular the timing behaviour) of the integrated system via model-based analysis: to
achieve this goal, the integration process must be able to extract the information
relevant to the analysis from the imported models.

1.1 The Overall Picture

The work presented in this paper is part of a toolchain infrastructure for the
design, verification and implementation of high-integrity real-time systems. The
main aim of our work is to define a new development process for high-integrity
systems and develop a set of tools to support it. We have already developed
a full Eclipse plug-in for the design of high-integrity, real-time systems. The
plug-in is based on a domain-specific metamodel called RCM [13]. The RCM
metamodel is conceptually traceable to a UML2 profile: it allows functional
modeling by means of class and state machine diagrams and system modeling
through component and deployment diagrams. The RCM metamodel guarantees
that any designed system abides by the constraints enforced by the Ravenscar
Computational Model [14] and can thus be statically analyzed for its timing
behavior. The timing analysis is automatically performed on the model itself and
encompasses logically and physically distributed systems [15]. The plug-in also
comes with an automated code generation engine targeting Ada 2005 [16], which
achieve 100% code generation for the concurrent and distributed architecture of
the system [13].

2 System Models as an Integration Framework

The notion of heterogeneity entails that functional models are defined with dif-
ferent semantics: in MDE terms, we would say that the metamodel underlying
each model is potentially different. This is in fact the case, as tools like SCADE,
SDL and UML have their own semantics; the same fact applies also to manually
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written code, as a programming language - or more accurately, its grammar and
semantics - is by itself a metamodel.

The place where the (different) semantics of (heterogeneous) functional mod-
els fit together is the system model, which is the model representing the overall
system in terms of both functional and non-functional (like concurrency and de-
ployment) features. We believe that a system model should be considered as a
true integration framework — a pivotal representation of the system — because
this is the place where software and system semantics merge: only in a system
model is it possible to assure the correct interaction between integrated models
and verify system-level properties which are affected by both the software and
system modeling process. Our metamodel of choice for system modeling is the
RCM metamodel, briefly introduced in section 1.1 and described in [13] and [17].

Merging heterogeneous functional models within a single system model may
render particularly challenging to:

1. verify that the functional models do not interfere with the synchronization
mechanism of the concurrent architecture;

2. assure that the concurrent architecture does not corrupt the properties of
functional models by introducing race condition or deadlocks;

3. guarantee that the (possibly remote) interactions between heterogeneous
functional models are semantically preserving, which basically means they
do not corrupt the passed data;

4. keep the software and system view consistent with each other.

Coping with items 1 - 2 above is straightforward. If the concurrent semantics is
prohibited in functional models, then the functional specification cannot affect
the synchronization of the system; it is quite easy to identify the elements (or key
words in a programming language) related to concurrency in the metamodel for
functional modeling and prohibit their use. Tools for functional modeling usu-
ally permit to express some sort of aggregation properties for services accessing
the same functional state: a SCADE block or a UML class are such examples.
In order to avoid the corruption of the functional specification by the concur-
rent execution of the system, it is enough to constrain the concurrent semantics
to permit at most one task at a time to access a functional model — in other
words, to have a single executer behind the state machine underlying the func-
tional model1. This constraint leaves two possible choices for stateful functional
models: (i) a single dedicated task always executes the state machine; or (ii) each
triggering procedure of the state machine presents a synchronization protocol as-
suring mutual access to the whole functional state. Stateless functional models
(for example mathematical functions) do not require any particular attention in
deciding their concurrent behavior. By choosing the concurrent semantics in a
way the aforementioned constraints are guaranteed, no race condition may hap-
pen; deadlocks can also be prevented by enforcing the immediate priority ceiling
protocol [18] and implementing remote communication with an asynchronous,
message-based protocol.
1 We do not consider non-intersecting, parallel state machines within the same class.
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To guarantee semantic preservation of exchanged data (point 3) we use ASN.1
[19] for data modeling and an appropriate compiler to generate stubs to convert
the raw representation of data between different languages/architecture: it is
however less clear how we can integrate with the code generated by different
modeling tools (SCADE, SDL, etc.). View-consistency (point 4) requires more
attention and is strongly related with cross-cutting concerns. Cross-cutting con-
cerns are aspects of the system affected by both the software and the system
modeling process. A typical example of cross-cutting concerns is the definition
of (execution/information/data) flows: they of course depend on the connection
between component instances and on their deployment; but they also depend
on the functional specification, which basically tells which services are invoked
in response to the execution of a functional procedure. A sound determination
of flows is a fundamental requirement for several kinds of model-based analysis,
it being related to, for example, timing performance or security preservation. In
the scope of our experimentation, we used the modelization of execution flows
to perform model-based timing analysis [15].

3 Semantic Preservation in Practice

Three main dimensions require particular care if several modeling tools are ex-
ploited: (i) the semantics of common data types, and in particular their physical
representations on different execution platforms; (ii) the integration of the code
generated by the different modeling tools; and (iii) the extraction and evaluation
of cross-cutting concerns.

3.1 Data Semantics Preservation

Abstract Syntax Notation One [19,20] (ASN.1) is a standard and flexible nota-
tion that allows detailed data structure representation, as well as portable and
efficient encoding and decoding of data into bitstreams.

In the context of our work, ASN.1 was used as the center of a “star formation”;
all the communication taking place between the subsystems (possibly modeled in
different modeling tools) is done through ASN.1 messages. This enforces a com-
mon semantic “contract” between the communicating entities, in terms of what
information is exchanged; ASN.1 therefore guarantees the semantic equivalence
of the data types used in the different modeling tools.

To enforce this semantic equivalence contract, a semantic translation takes
place immediately after the definition of the ASN.1 grammar that describes the
exchanged data. The ASN.1 definitions of the messages form the basis; the de-
sired target definitions are the semantically equivalent ones in the data definition
languages offered by the modeling tools. A custom tool was built [21] that reads
the ASN.1 definitions and translated them into the equivalent data definitions,
to the extent supported by the target modeling tool languages (e.g. Lustre (for
SCADE), SDL (for ObjectGeode), etc).
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The translation process is guided from the overall system view; by parsing it
and learning about the implementation platform of each subsystem, the trans-
lation tool is in a position to know the desired target language per message and
accurately translate it preserving the semantic information.

As an example, from this ASN.1 data definition:

EXAMPLE DEFINITIONS IMPLICIT TAGS : := BEGIN PosData : :=
[APPLICATION 1 ] SEQUENCE {

x INTEGER, y INTEGER,
d e s c r i p t i o n OCTET STRING (SIZE ( 1 . . 8 0 ) )

} END

we get this translation in Lustre:

l e t type System Types
PosData = [ x : int , y : int , d e s c r i p t i o n : char ˆ 8 0 ] ;

t e l ;

This translation is in fact the key to guarantee semantic consistency; e.g. the
team developing a subsystem in SCADE will use the structure definitions as they
are generated from the translation tool, knowing in advance that this process
will neither introduce new content nor prune existing ones. If there is informa-
tion in the ASN.1 definitions that is not translatable to the target modeling tool
language, the translation tool will complain and warn the user about it - provid-
ing early feedback about the potential loss of information and preventing side
effects from this loss. Notice also that by using the overall system view, the tool
knows exactly what targets it needs to generate code for, thus being minimal
and complete - optimal - in the generated definitions.

3.2 Integration of Generated Code

Creating semantically equivalent definitions is the first step - it guarantees that
all subsystems will be functionally modeled with equivalent message definitions.
This is not enough, however. Each modeling tool follows its own scheme in terms
of how it generates code. To be precise, the code generated by the tools can be
conceptually split in two categories:

– Code that implements the logic of the subsystem: state machines, algorithmic
descriptions of work to be done in response to incoming signals, etc

– Code that describes the data structures of the exchanged messages

Since the data definitions have been produced by the translation tool, the data
structures generated are certainly equipped with the same data. The details
however - e.g. variable names, ordering, language-specific type definitions, etc -
vary a great deal between different modeling tools. As a consequence, the actual
generated code cannot interoperate as it is; error-prone manual labour is required
to “glue” the pieces together. This is the source of multiple problems2, and it is
2 http://awads.net/wp/2005/12/05/ten-worst-software-bugs/
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another reason for using ASN.1: by placing it at the center of a star formation
amongst all modeling tools, the “glue-ing” can be done automatically:

– An ASN.1 compiler is used to create encoders and decoders for the messages
exchanged between subsystems [22]

– Another custom tool is used [21], that creates mapping code (“glue” code);
code that translates the data at runtime between the data structures of the
ASN.1 compiler, and the data structures generated by the modeling tools.

As long as the mapping is a well defined one - that is, as long as the modeling tools
follow specific rules in how they translate message data into data structures -
this mapping work is feasible at compile time. This translation tool starts from
the overall system view, just as the first one (Section 3.1) did: it learns about all
the “paths” that messages have to go across, and thus, it knows what kind of glue
code to generate at the source and the destination of each message exchange.

Fig. 1. Mapping data using ASN.1

This process is significantly easier to test and verify - compared to the manual
translation process that would have to take place in its absence. Instead of
painstakingly checking all the manually written code parts that marshal data
back and forth between the data structures of the modeling tools’ generated
code, the only tests that need to be done are performed on the code generating
primitives, that is; mapping of integers, mapping of floating point numbers,
mapping of strings, etc. When each category has been tested and is known to
be handled in the correct manner, no further testing is necessary, regardless
of the complexity of the message structure itself. This significantly lessens the
effort required to use complex messages in the exchanges taking place between
different modeling tools.

Additionally, this glue layer offers a central point for tool-indifferent mar-
shalling: common mapping API can be developed that pertain to specific type
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mapping and tool categories; as an example, SCADE/Lustre are just one of the
technologies adhering to a synchronous modeling paradigm; common patterns
for all such tools can be extracted into a message marshalling portability layer.

Here is an example declaration section from the glue code generated:

#inc lude <s t d l i b . h> /∗ f o r s i z e t ∗/ i n t
Convert From ASN1C To TCLink In TC Parser Id (

void ∗pBuffer , s i z e t iBu f f e r S i z e ) ;

A number of marshalling functions are generated, one (or more) per message
marshalling interface: they convey the message data as (pBuffer, iBufferSize)
pairs into the appropriate data structures generated by the modeling tools; data
are passed via (pBuffer, iBufferSize) pairs because it is a language-neutral rep-
resentation of a series of octet - the ASN.1 message. Their implementation is
completely automated, and their code generation process can cope with arbi-
trarily complex message definitions in a transparent way. The end user simply
calls them, without ever worrying about the details of the mapping code.

3.3 Managing Cross-Cutting Concerns

Cross-cutting concerns (as the representation of functional provided/required
services or the identification of execution flows) require the correct understand-
ing of both the software and the system specification. A simple but illustrative
example is the following. Given a state machine SM, suppose that the state
entered by invoking method p() includes, among its actions, the invocation of
method r() on object o (a class member). It is evident that there is a flow from p()
to o.r(), but from the pure software specification it is not possible to determine
which object resolves the invocation, because this information is contained in
the deployment diagram where objects are linked; similarly the semantics of the
invocation of o.r() is obscure in the functional model, as it may be synchronous
or asynchronous, local or remote: this information is again contained in the sys-
tem specification. On the other side, by looking at a pure system specification
(it being written in RCM, SysML or AADL), it is not possible to determine the
functional behavior behind the invocation of a service, as the action semantics
is not completely visible from a system model. The current industrial practice
would require the manual translation of cross-cutting concerns from a software
to a system model (or viceversa): for example, flows may be manually identified
in the system level, assuming the designer has a complete knowledge of the un-
derlying functional specification. This process is inevitably error-prone: design
errors may of course be caught during the verification phase, but this approach
still requires additional manual intervention and thus increases the cost of vali-
dation. The presence of several possible modeling tools (each one with its own
metamodel), makes it even harder for the designer to completely understand
all possible formalisms for software design and extract the required information
from the software models. Furthermore, to correctly identify cross-cutting con-
cerns, the designer is actually required to define a semantic mapping between
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the metamodel used for system modeling and the metamodel(s) for software
modeling. Industrial practitioners often seem to overlook the hidden complexity
of that kind of mapping, which is definitely a potential source of inconsistency
between system and software models.

In order to try to overcome the limits intrinsic to the manual nature of cop-
ing with cross-cutting concerns, we reasoned on the possibility of automating
the interchange of semantic information between software and system models,
and in particular to automatically import heterogeneous functional models in
the system model. In section 2 we have acknowledged the pivotal role of the
system model: our idea is to automatically determine the system representation
of (part of) cross-cutting concerns by importing software models into the system
model; in this manner, the design process would be guided by the automatically
imported information, avoiding errors and inconsistencies between the system
and software specification by construction. The import of a functional model is
basically a model transformation which transforms a functional model conform-
ing to the metamodel of the tool used to design it, to a model which conforms
to the RCM metamodel: the first metamodel is said to be the source meta-
model, while the second is the target metamodel. When importing a functional
model, two distinct options are possible: we can import the entire semantics of
the source model or we can extract just the information required to create a
valid RCM model. In the first case, we should guarantee that the target meta-
model (RCM) is expressive enough for every possible functional metamodel and
develop a complex model transformation encompassing the entire semantics of
the source metamodel: this solution may not even be possible to implement. In
the case of importing a selected subset of the functional model, we are required
to extract only the information that is needed for an RCM model: basically,
the target metamodel specifies which kind of semantics must be present in the
source metamodel to permit a meaningful import process. The required sub-
set of semantics of the source metamodel is usually determined by the needs
for system-level model-based analysis and code generation: in our case, to per-
form model-based timing analysis, we are interested in just provided/required
services of each functional model and in their relation (basically, the execution
flow: which required service is invoked during the execution of a provided one).
In order to obtain the best cost/benefit ratio, we chose the second option.

The following step is the definition of the semantic mapping between the
source metamodel and the RCM metamodel. From a purely conceptual point of
view, a semantic mapping requires the comparison of the semantics of two differ-
ent languages and the definition of a series of functions to move from the source
to the target metamodel. Unfortunately, a mathematically sound methodology
to specify and prove semantic mappings in MDE is yet to come: we thus still
rely on the comparison of the language standards to define the model transfor-
mations. On a more pragmatic dimension, the model transformation requires to
extract a set of information from a functional model, which may come in the
form of a textual language (SDL, SCADE) or via an XML-based representa-
tion (UML2). If the source model is encoded using the latest (meta)modeling



180 M. Bordin, T. Tsiodras, and M. Perrotin

technologies, the model importer can exploit state-of-the-art tools to directly
transform the source model into the target model. On the other side, importing
a model specified via a textual language is more complex, because it requires a
sort of “double-pass” transformation: first the model is parsed, then it must be
transformed into an XML tree on which perform a model transformation.

The import process creates RCM entities representing the imported functional
models within the functional view of an RCM model. Such entities are basically
read-only, because they were designed, verified and deployed (transformed to
code) with extern modeling tools. At the same time, the generated entities are
marked with an appropriate tag to permit the RCM code generator to generate
the code required to interface with the source generated by the original modeling
tool. Once the software model is imported into an RCM model, the RCM rep-
resentations of system-level provided/required services and possible execution
flows are automatically determined out of the functional specification (see [17]
for a complete explanation): it is thus impossible for system-level properties to
be specified in a manner which is inconsistent with the imported software mod-
els. From this perspective, the RCM metamodel presents a clear advantage over
other system modeling languages: it guarantees view consistency by strongly
relating semantic element of each view. The RCM system model thus contains
all the information required to perform model-based timing analysis: from this
point on, the verification process proceeds as described in [15].

At the moment, we have developed prototype importers of UML2, Object-
Geode (SDL) and SCADE (Lustre) models into an RCM model: the UML2
importer is not particular interesting because, since RCM mimics the UML2
semantics, its development is purely a technical (not conceptual) exercise; SDL
and SCADE importers are indeed worth of additional explanation. The tools we
used to parse and transform SDL and SCADE models are, respectively, Ope-
nArchitectureWare xText and the Atlas Transformation Language (ATL).

Importing SCADE models. In order to preserve the properties of SCADE
blocks (verified and proved with the appropriate modeling tool), we decided to
prohibit the invocation of extern operations from within a SCADE block. For
this reason, a SCADE block is always the leaf of an execution flow: in other
words, it does not present required interfaces. The importing process of SCADE
block is thus quite simple: it is simply mapped as a RCM class providing the
service(s) offered by the block.

Importing SDL models. The import of SDL models is more complicated
because they may have both provided and required interfaces - meaning that
it is necessary to extract not only provided and required services, but also the
execution flow. After the parsing, the transformation process is divided into three
main steps:

1. Each SDL process is mapped onto an RCM class in the functional model:
the accepted input signal are mapped as public methods of the class.
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2. The output signals or calls executed by the SDL process compose the re-
quired interface of the RCM class: they are grouped by their target element,
which may be another SDL state machine, a SCADE block or an UML class.

3. For every output signal or call sent in response to an input signal, an exe-
cution flow between the method corresponding to the input signal and the
required interface corresponding to the output signal or call is generated in
the RCM class.

All information imported from the SDL model are automatically represented in
the system view, thanks to the view consistency enforced by the RCM meta-
model. To some extent, the SDL importer is still primitive because it does not
take into account conditional execution: all possible execution flows are consid-
ered at the same time, even those which are mutually exclusive. For the purpose
of timing analysis, this limit induces a clear pessimism, because the worst case
execution path is composed by the union of all paths. To limit the pessimism, in
the first prototype of our tool we permit to manually select which flows must be
considered for the analysis: we are aware that a manual intervention may poten-
tially corrupt the model consistency, but we consider this solution as a temporary
defect induced by technical reasons, rather than by conceptual difficulties.

4 Results and Discussion

To evaluate our approach and the tools we developed, we designed a simple
example using the RCM metamodel and related tools. The prototype is a sim-
plification of the software architecture of a subset of the embedded software of
a satellite, in particular the positioning and guidance and navigation system: it
is composed by communicating applications designed in SCADE (algorithmical
computations), SDL (state machines modeling) and RCM (system modeling).
The prototype has been demonstrated during the final review of the ASSERT
project (cf. the Acknowledgements section). The designed system is an approx-
imation of a real-life architecture, but it demonstrates most of the components
categories usually present in this family of applications; our purpose of evaluating
our approach in model-driven integration of heterogenous models is adequately
illustrated by this simplified prototype. Our evaluation is based on a set of met-
rics quite common in model-driven development, namely semantic preservation
in model transformations, ease of model-based analysis, model-to-code traceabil-
ity and the quality and size of generated code.

The prototype importer tools developed to generate RCM functional models
from SCADE and SDL models enabled us to accurately determine the system-
level representation of provided and required services; at the same time, possible
execution paths are identified during the importing process, permitting a safer
identification of the flows of interest for model-based (timing) analysis: with the
described approach, the identification of cross-cutting concerns cannot be a pos-
sible cause of semantic inconsistency anymore. The presence of an XML-based
and well-defined metamodel for all involved modeling tools is a highly desired re-
quirement to simplify any importing process by using more productive modeling
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technologies: modeling technologies using XML and OCL (or equivalent) -based
technologies render the development of the model importer/analysis tools eas-
ier and more cost effective. The effort we spent in developing an SDL importer
(starting from a textual specification) is a practical indication of the truth behind
this statement: state-of-the-art modeling technologies permit much easier model
query and manipulation, thanks to the exploitation of domain-specific tools;
as an exemplary quantitative evaluation, just the implementation (and not the
conception of the semantic mapping) of a UML2 importer from an EMF-based
implementation took us less than half of the time than the development of the
corresponding tool for SDL. Our belief is strengthened by the general industrial
trend toward some sort of XML-based metamodeling technology, even for lan-
guages originally born as a pure textual specification such as SCADE or AADL
(cf. the TOPCASED project).

Our automated code generation process proved to be useful and efficient when
applied to the described test case: the code generated from SCADE and Object-
GEODE (an SDL tool) could be automatically integrated with the code gen-
erated from the system view (designed in RCM) to implement the concurrent
and deployment architecture of the system. From a quantitative point of view,
the amount of generated code is comparable in sheer size to the source gen-
erated to handle the concurrent and distribution infrastructure, but probably
not more than what we would have written in a manual development process:
such an evaluation is a good empirical estimation of the productive advantages
of the developed tools. We are currently working to integrate the overall trans-
formation chain (including the code generator for RCM models and the tools
described in sections 3.1 and 3.2) within a single Eclipse plug-in: in this man-
ner, we plan to decrease the effort required by the end user to generate code
integrating heterogenous models within a single system model.

From a purely technological point of view, the results we achieved are quite
important, since they represent one of the first (if not the first) successful attempt
to apply model-driven integration in the space application domain: our test case
— while simple — is a valid proof of concepts and exploits tools widely used in
the industrial community. Some concerns however still remain.

First, some optimization concerns: while ASN1 modeling is surely an effective
way to guarantee the preservation of the semantics of data types across different
languages/architectures, when the interacting subsystems are designed in the
same modeling tool and they “live” in the same process space, they can commu-
nicate more optimally (speed-wise) by directly accessing each other’s data struc-
tures. This would avoid the overhead of needless data conversions. On the code
generation side, the choice of always passing through ASN1 (un)marshalling has
two main drawbacks: (i) it induces a penalty on the execution time: the penalty
is not evident in the model and cannot be evaluated on the functional specifi-
cation (it is introduced by the code generator), making it difficult to perform
accurate model-based timing analysis; and (ii) it makes model-to-code trace-
ability difficult, as the invocation of any required service is actually mapped as
an invocation to a sort of middleware composed by the ASN1 (un)marshallers,
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instead of a proper method invocation like in the originating model. To partially
overcome the cited problems, we may consider to extend our tools to apply ASN1
(un)marshalling only when strictly required and add traceability information to
the generated code.

5 Conclusion

In this paper we have described an experimental approach to model-driven
integration for the development of high-integrity systems exploiting multiple
modeling tools. By identifying in the system model the place where heteroge-
neous models should be integrated, we developed a set of tools allowing a highly
automated integration process encompassing model importing and automated
generation of glue code. The main difference of our approach when compared
to mainstream solutions is its focus on integrating radically different models
and their generated code, with particular attention for the consistency of cross-
cutting concerns and the verification of system-level properties in the integrated
system model: the integration process indeed also includes the extraction of in-
formation relevant to model-based analysis from the imported models. During
our investigation, two main results rose. First of all, multiple-view consistency
emerged as a highly desirable property for system modeling languages aiming
to support model-based analysis in the high-integrity domain: contrary to the
RCM metamodel, current state-of-the-art modeling languages do not enforces
any form of view consistency, forcing the designer to manually guarantee it. In
addition, selective3 model import via automated model transformations showed
to be a worthy solution for analysis-oriented model-driven integration.

The industrial need for the developed technologies is strongly related to the
heterogeneity of modeling tools/platforms/architectures for the domain of inter-
est: the more the variety, the more useful our tools are. In current-generation sys-
tems the weight of the side-effects introduced by the chosen technological solutions
is not small, in particular for what regards model-based analysis, model-to-code
traceability and performance; next-generation applications are however expected
to drastically increase their complexity, along with the amount of exploited mod-
eling formalisms and programming languages: the recent rise of AADL, SysML
and RTSJ are a clear example of this trend. We thus expect the integration issue
to gain more and more importance in the development of future systems; the in-
dustrial community must then strive to find effective and cost-wise solutions to
solve it: the approach we presented in this paper is a good starting point in that
direction and surely a valid reference milestone for future improvements.
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